
Visual COBOL and
COBOL for .NET
Language Introduction

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK
http://www.microfocus.com

Copyright © Micro Focus IP Development Limited . All rights reserved.

MICRO FOCUS, the Micro Focus logo and are trademarks or registered trademarks of Micro
Focus IP Development Limited or its subsidiaries or affiliated companies in the United
States, United Kingdom and other countries.

All other marks are the property of their respective owners.

ii

Contents

Visual COBOL and COBOL for .NET Language Introduction4
Introduction ...4

Visual Studio Overview ..4
Starting Visual COBOL ..5
Projects and Solutions ..6

A First Console Application ...6
Creating a Console Application ..6
Building and Executing an Application from Visual Studio7
Building and Executing an Application from a Command Prompt7

A First Graphical Application ...8
Creating a Graphical Application ..8
Adding a Label Control ...8
Adding a Button Control ...9
Adding a Click Event Handler ...9
Adding a Text Box Control ...10
Tying it all Together ..10

Overview of Visual COBOL Debugging ..11
Building for Debug ..11
Executing with Debug ...12
Breakpoints ..12
Debug Navigation ...13

Migrating to Managed Code ..14
The CblDemo1 Sample Application ...14
Working with Data Types and Namespaces ..17
Error Capture ..22
Working With Classes ..23

Further Application Enhancements ...26
Appendix ...28

Changing the Startup Object ..28
Data Type Reference ...29
Working with IntelliSense ...30

Contents | 3

Visual COBOL and COBOL for .NET
Language Introduction

Introduction
This document provides a short introduction to Visual COBOL for Visual Studio and the COBOL for .NET
language. It introduces basic parts of the development environment, and shows some basic application
benefits, features, and enhancements of COBOL for .NET.

The document is split into two parts. In the first part, you create a simple application and get a feel for the
Visual COBOL for Visual Studio development environment. The first part ends with an overview of the
debugging tools available with Visual COBOL. The second part starts with a small legacy application and
progressively introduces Visual COBOL concepts and features into the application. This gives helps you
understand how existing code can be migrated to take full advantage of Visual COBOL and COBOL
for .NET.

Visual Studio Overview
Visual Studio is an integrated development environment (IDE) used to develop a wide variety of console
and graphical user interface (GUI) applications. You can also use it to develop web sites, applications and
services in both native and managed code.

The graphical code editor includes numerous built in tools and accepts plug-ins for additional functionality,
from both Microsoft and third party vendors. It supports different programming languages, some built-in,
some installed separately. Individual language-specific plug-ins are also available providing language
support for a more dedicated development environment. Visual COBOL is one such plug-in.

The COBOL for .NET Language

Visual COBOL for Visual Studio offers COBOL for .NET, which is COBOL with extensions that support
the .NET managed framework. The extensions allow Object Oriented (OO) syntax support and access to
available .NET class libraries.

Managed and Native Code
Native code is code that is created and compiled to low-level executable code for a specific microprocessor
and operating system. It is not portable to systems with different microprocessors and operating systems.

Managed code is code that executes in a controlled runtime environment. Machines with microprocessor
types different from the source code machine cannot execute the code natively without a system to
manage code execution. On Windows systems, the controlled environment is the .NET Framework
Common Language runtime (CLR).

4 | Visual COBOL and COBOL for .NET Language Introduction

On windows systems, source code is encoded in the Microsoft Intermediate Language (MSIL). The CLR
manages the encoding to MSIL. Any programming language that targets the CLR produces the correct
encoding for that language. Before execution, the CLR compiles the MSIL into machine dependent, or
native executable code. Because the compiling is done in a managed environment, that managed code
can be used by any host machine.

Starting Visual COBOL
Start Visual COBOL for Visual Studio to load the standard libraries and tools used to develop robust and
reusable applications using COBOL.

• Click Start menu > All Programs > Micro Focus Visual COBOL 2010 > Visual COBOL for Visual
Studio.

If prompted to set the environment, choose General development environment. The General
development environment customizes Visual Studio to work with COBOL projects.

Visual COBOL starts within Visual Studio, and the Visual Studio Start page appears with up-to-date Visual
Studio information as follows.

Visual COBOL and COBOL for .NET Language Introduction | 5

Use the File menu to open solutions and projects. The Solution Explorer appears in the right-hand pane.
The Solution Explorer displays the structure of the opened solution or project.

In the Solution Explorer, double click a file name to display its contents in a separate Code Editor tab.

The Output window displays below the Code Editor tab. This is where messages from the Visual Studio
Integrated Development Environment (IDE) and compiler appear. The Error List tab in the Output window
shows any error messages, warnings and other messages that occur during code development or when
compiling a solution or project.

Projects and Solutions
A solution is a container holding one or more projects that work together to create an application. A
solution file has a .sln extension and is a readable text file.

A project is a packaging unit that typically builds a single library or executable. A Managed COBOL project
file has a .cblproj extension and is a readable text file.

Both solution and project files should not be updated outside of Visual Studio.

A First Console Application
This section shows how to create a managed COBOL console application from supplied templates and
extend it to create a traditional Hello World application. It also shows how to build and execute the
application with Visual COBOL and how to execute the application from a command prompt.

Creating a Console Application
Follow the steps to create a new solution and new project. The new solution displays in the Solution
Explorer. The COBOL program created from a template for the project displays in the Code Editor tab.

6 | Visual COBOL and COBOL for .NET Language Introduction

1. Click File > New > Project.
The New Project dialog box appears.

2. Click COBOL > Managed in the Installed Templates pane.
Available COBOL templates appear in the templates list.

3. Select Console Application from the list.

4. Enter ConsoleHelloWorld as the name of the project in the Name field, and click OK.
Visual Studio creates a new solution and a project in the solution named ConsoleHelloWorld, and a
new program template named Program1.cbl. Program1.cbl displays in a Code Editor tab. The
current code for Program1.cbl is the template code, as shown in the following.

program-id. Program1 as "ConsoleHelloWorld.Program1".

data division.
working-storage section.

procedure division.

 goback.

end program Program1.

5. Add a statement to this program to display the text "Hello World" when executed.
To do this, place the cursor after the procedure division. line and press Tab to move the cursor to
the start of Area B (column 12). Add the display statement into the program between the procedure
division and the goback statement so the program looks as follows.

program-id. Program1 as "ConsoleHelloWorld.Program1".

data division.
working-storage section.

procedure division.
 display "Hello World"
 goback.

end program Program1.

6. Click File > Save Program1.cbl to save the code update.

Building and Executing an Application from Visual
Studio
Building an application in Visual Studio converts the code to MSIL. You can execute an application in
Visual Studio or from a command prompt. When executing an application, the MSIL is compiled by the
CLR into the machine code required by the host machine.

1. Click Build > Build ConsoleHelloWorld.
ConsoleHelloWorld is the current project name. The Output window shows messages generated during
the build.

2. Once the application has built, click Debug > Start without debugging.
A console prompt displays the text Hello World. You are prompted to press any key to continue. This
closes the console prompt.

Building and Executing an Application from a
Command Prompt

Visual COBOL and COBOL for .NET Language Introduction | 7

To execute an application from a command prompt instead of with Visual COBOL, open a Visual COBOL
command prompt and enter the command to execute the application.

1. Click Start menu > All Programs > Micro Focus Visual COBOL 2010 > Visual COBOL Tools >
Visual COBOL Command Prompt (32-bit).
This opens a command prompt to your document directory by default. From this directory, navigate to
the directory containing the application. This directory is \Visual Studio 2010\Projects
\ConsoleHelloWorld\ConsoleHelloWorld\bin\debug by default. Verify that the application is in this
directory.

2. To navigate to the directory containing the application, type cd \[default document directory]
\Visual Studio 2010\Projects\ConsoleHelloWorld\ConsoleHelloWorld\bin\debug at
the command prompt and press Enter.

3. Type ConsoleHelloWorld and press Enter.
The application starts, displays the text Hello World and then ends. The text Press any key to
continue... does not appear. This text only appears if the application runs in Visual COBOL to allow
you to see the console application output after completion.

A First Graphical Application
This section shows how to create a managed COBOL application from a template and use it to create the
traditional Hello World application. It also shows how to extend the application by adding user input and
button control.

Creating a Graphical Application
Follow these steps to create a new solution for the graphical application.

1. Click File > New > Project.
The New Project dialog box displays.

2. Click COBOL > Managed in the Installed Templates pane.
Available COBOL templates appear in the templates list.

3. Select Windows Forms Application from the list.

4. Type WindowsHelloWorld as the name of the project in the Name field and click OK.
Visual Studio creates a new solution and a project in the solution named WindowsHelloWorld, and a
new program template called Main.cbl. It also creates a new form and associated program named
Form1.cbl and Form1.Designer.cbl. The project structure displays in the Solution Explorer, and
the Form1.cbl form displays in a Code Editor tab.

Adding a Label Control
Use labels to place text on a form that names or titles another control on the form. Label text cannot be
edited by a user. This includes labels for text fields, instructions and some warning indicators. Follow these
steps to create and place a label on the form.

1. Click View > Toolbox to display the Toolbox.

2. Drag and drop a Label control onto the form.
This creates a Label control named label1 containing the text label1.

3. In the Solution Explorer, highlight the Text property value in the Appearance section of the Properties
pane.
The Properties pane is in the bottom right of the Visual Studio IDE under the Solution Explorer pane by
default.

8 | Visual COBOL and COBOL for .NET Language Introduction

4. Type Hello World to change the property value and press Enter.
The property value for the Label control updates.

Use instructions in Building and Executing an Application from Visual Studio to build and execute the
application. This opens a form called form1 that displays a label named Hello World. Click on the x in
the top-right corner to close the form and stop the application.

Adding a Button Control
A button is a control on a form that a user can click to perform a predetermined task. A click event handler
defines the task the button performs. Use the following steps to place a button onto the Form1.cbl form.

1. Click View > Toolbox to display the Toolbox.

2. Drag and drop a Button control onto the form.

Tip: Visual Studio displays line guides when controls are aligned on the page.

3. In the Solution Explorer, highlight the Text property value in the Appearance section of the Properties
pane.

4. Type Say Hello to change the property value and press Enter.
The property value for the Button control updates.

Use instructions in Building and Executing an Application from Visual Studio to build and execute the
application. The button displays on the form. However clicking the button has no effect as there is currently
no click event handler written for it. The next exercise adds the click event handler for the button.

Adding a Click Event Handler
A click event handler is code that executes when a control is clicked. The code can be a single action or
several actions, including navigation to a different page. The following steps add the click event handler to
the button control.

1. Double-click the button.
The code for Form1.cbl appears. Code for a method named button1_click generates and appears in a
separate Code Editor tab. The method is given the same name as the button with _click appended.
This method contains the code to be executed when clicking the button, as shown in the following.

working-storage section.

method-id NEW.
procedure division.
 invoke self::InitializeComponent
 goback.
end method.

method-id button1_Click final private.
procedure division using by value sender as object e as type
System.EventArgs.
end method.

end class.

2. Add a statement to move Hello World into the text property of the label named label1 previously
created. Currently label1 already contains a value, so this is removed. To do this, place the cursor after
the procedure division line and press Enter.
This creates a new line and puts the cursor to the start of Area A (column 8).

3. Press the Tab key to move the cursor to the start of Area B and type the event handler code as follows.

set self::label1::Text to "Hello World"

Visual COBOL and COBOL for .NET Language Introduction | 9

This code moves the text Hello World to the Text property of the previously created label1 label. This
removes the current label1 value.

Tip: Visual COBOL uses IntelliSense to suggest text completions as you type. See Working With
IntelliSense for more information.

The code should be as follows.

working-storage section.

method-id NEW.
procedure division.
 invoke self::InitializeComponent
 goback.
end method.

method-id button1_Click final private.
procedure division using by value sender as object e as type
System.EventArgs.
 set self::label1::Text to "Hello World"
end method.

end class.

4. Click on the tab labeled Form1.cbl [Design] at the top of the code editor to display the form in the
Code Editor tab.

5. Click on the Label control.
The control's properties appear in the Properties pane.

6. Clear the Text property value and press Enter.
The property value updates.

Use instructions in Building and Executing an Application from Visual Studio to build and start the
application. When started, the form opens and displays a button with the text Say Hello. Click the button
to cause Hello World to display on the form. Click the x in the top-right corner to close the form and stop
the application.

Adding a Text Box Control
A text box is a control that lets you enter textual content. Follow these steps to place a text box onto the
form.

1. Click on Form1.cbl [Design] tab to display the form designer window.

2. Click View > Toolbox to display the Toolbox.

3. Drag and drop a Text box control onto the form.
A text box control is added to the form.

Use instructions in Building and Executing an Application from Visual Studio to build and execute the
application, which displays a text box and a button. At this point, no matter what you enter into the text box,
nothing is done with it.

Tying it all Together
The application now has Label, Button and Text box controls and a click event handler. All that remains is
to display a text label for the entry field and add an event to the button to do something with the entry field.
To do this, perform the following steps.

1. Add a Label control to the form.
Place the label near the text box to give the user an indication of what to type into the text box.

10 | Visual COBOL and COBOL for .NET Language Introduction

2. In the Solution Explorer, highlight the Text property value in the Appearance section of the Properties
pane.

3. Type First Name to change the property value and press Enter.
The property value for the Label control updates.

4. Double-click the Button control.
The code for Form1.cbl appears. This code contains the click event handler for the button that was
updated in the exercise to add a click event handler, but with an additional method for the new label as
shown in the following.

working-storage section.

method-id NEW.
procedure division.
 invoke self::InitializeComponent
 goback.
end method.

method-id button1_Click final private.
procedure division using by value sender as object e as type
System.EventArgs.
 set self::label1::Text to "Hello " & self::textBox1::Text
end method.

method-id label2_Click final private.
procedure division using by value sender as object e as type
System.EventArgs.
end method.

end class.

5. Replace the previously added code so it reads as follows:

set self::label1::Text to "Hello " & self::textBox1::Text

This concatenates the constant text Hello and the contents of the text box textBox1, and places the
results into the label1 label when clicking the button.

Build and execute the application to display a text box labeled First Name and a button. Type Fred into
the text box and click the button. The text Hello Fred appears.

Overview of Visual COBOL Debugging
Writing and building an application like the Hello World example is very simple. The chance of creating an
error by spelling a word incorrectly is low, especially with the dynamic checking being done by IntelliSense
within Visual COBOL.

As an application gets more complex the likelihood of an application error gets higher very quickly. Visual
COBOL provides tools to help the cause of these errors should they occur. This section shows how to build
and run using debugging and how to use the debugging features.

Building for Debug
To debug an application, ensure that the debug configuration is selected. The Solution Configurations
listbox on the Visual Studio toolbar shows the current configuration type. To change the configuration,
select the appropriate option from the list box.

Visual COBOL and COBOL for .NET Language Introduction | 11

Executing with Debug
Visual COBOL provides a wide variety of application debugging tools that let you to track down any
application errors. These tools are available during the application execution when execution is configured
for debugging. To configure for debugging:

1. Click Debug > Start Debugging.
Visual COBOL automatically rebuilds the application if any source has changed since the previous
build, and the application starts.

2. (optional) Set breakpoints to make the application stop at specific points during execution.

Breakpoints
A breakpoint is a placeholder placed in the source code. When a breakpoint is encountered during
application execution, the application pauses and the line containing the breakpoint highlights. While the
application is paused you can retrieve information about current variables, set additional breakpoints or
interrogate application behavior.

Tip: Pausing the application during debug execution is also known as break mode.

Setting a Breakpoint

Perform the following steps to set a breakpoint:

1. Click the line where you want to pause the application execution.
2. Click Debug > Toggle Breakpoint.

A breakpoint is created. A red dot displays in the left margin next to the code line where execution is set
to pause.

12 | Visual COBOL and COBOL for .NET Language Introduction

Note: If a breakpoint is set on a non-executing code line, the application pauses at the next executing
code line.

Disabling a Breakpoint

While debugging you might want to ignore a set breakpoint, but keep it in place for later use. This cannot
be done by using the menu options at the top of the Visual COBOL window, but instead via the context
menu as follows:

1. Right-click on the line of code beside the breakpoint to display the context menu.

2. Select Breakpoint > Disable Breakpoint.
The selected breakpoint disables as indicated by the red circle in the left margin. To re-enable a
breakpoint select Breakpoint > Enable Breakpoint from the context menu.

Removing a Breakpoint

Once you have no further use for a breakpoint, remove it by doing the following.

1. Select the breakpoint by clicking on the corresponding code line.

2. Click Debug > Toggle Breakpoint.
The selected breakpoint is removed. Repeating these steps alternatively sets and removes a
breakpoint.

Debug Navigation
Dynamically interrogating and monitoring data movement during application execution is a powerful and
useful feature within the Visual COBOL environment. The current line of execution displays in the Code
Editor tab during application debugging. As the application executes, the display steps into or over the
methods as directed, highlighting the next line of code to be executed. The list below shows the
navigational options available during debugging.

• Stepping Over (Debug > Step Over)

Executes the current line and progresses to the next line of code in the current code block. Any
methods the debugger encounters execute completely. If the end of the code block is reached, control
returns to the calling block.

• Stepping Into (Debug > Step Into)

Executes one code command at a time. For a simple numeric operation, the debugger behaves as if
Step Over is being used. For more complex code, the debugger passes control to any called method
and executes its first code line, steps through the rest of the method before returning to the calling
method. The Code Editor tab shows the executing code line.

• Stepping Out (Debug > Step Out)

Completes the current method and stops at the next line of the calling method.
• Restarting the debugger (Debug > Restart)

Restarts debugging at the first line of the application.
• Stopping the debugger (Debug > Stop Debugging)

Terminates the debugger.
• Setting the next statement.

Allows you to set the next statement to be executed. To do this, right-click the line of code to be
executed and select Set Next Statement.

Visual COBOL and COBOL for .NET Language Introduction | 13

Migrating to Managed Code
This part of the Language Introduction illustrates some of the major benefits of using COBOL with
Windows forms when the application is built as managed code. It shows how to take advantage of tools
and techniques to speed up your software development and produce efficient and powerful platform-
independent applications.

Using a simplified procedural console application, the next sections show the capabilities and benefits of
using COBOL as part of a managed solution. As you progress through the sections, the code adds
supported Object Oriented (OO) syntax to access available extensions.

The sections use a sample solution named CblDemoSolution, which contains a project named
CblDemoProject. CblDemoProject contains programs which relate to the following sections, starting with
CblDemo1. The project also includes a class definition named Person, which is used in the final section. To
execute the programs, ensure that the startup object is set correctly for the project. To change the startup
object, see Changing the Startup Object in the appendix.

The CblDemo1 Sample Application
CblDemo1 is a console application that asks for name, date of birth and today's date and displays the
number of days until your next birthday. It is a complete application in that it can be executed.

Use this sample application to complete exercises in this section. The solution has been left deliberately
poor in design so it can be extended with your own functionality. The application is reproduced below in its
entirety for ease of reference without complete code formatting. Comments are excluded to simplify
maintenance and readability.

IDENTIFICATION DIVISION.
PROGRAM-ID. CblDemo1.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 today.
 03 today-month PIC 99.
 03 today-day PIC 99.
01 dob.
 03 dob-month PIC 99.
 03 dob-day PIC 99.
01 test-date.
 03 test-month PIC 99.
 03 test-day PIC 99.
01 max-month PIC 99.
01 max-days PIC 99.
01 total-days PIC 999.
01 full-name PIC X(30).
01 display-output PIC X(60).
01 greeting-output PIC X(60).
01 show-non-usage PIC X(12).
01 txt1 PIC X(10) value "Hello Mr ".
01 diff-output.
 03 txt2 PIC X(11) value " you have ".
 03 output-days PIC ZZ9.
 03 txt3 PIC X(40) value " days until next birthday".

PROCEDURE DIVISION.
 DISPLAY "Enter your full name"
 ACCEPT full-name
 DISPLAY "Enter your date of birth in mmdd format"
 ACCEPT test-date

14 | Visual COBOL and COBOL for .NET Language Introduction

 PERFORM validate-test-date
 MOVE test-date TO dob
 DISPLAY "Enter the date today in mmdd format"
 ACCEPT test-date
 PERFORM validate-test-date
 MOVE test-date TO today
 PERFORM add-day-difference
 PERFORM add-mth-difference UNTIL (max-month = DOB-month)
 MOVE total-days TO output-days
 STRING txt1, full-name DELIMITED BY SIZE INTO greeting-output
 DISPLAY greeting-output
 STRING full-name, diff-output DELIMITED BY SIZE INTO display-output
 DISPLAY display-output
 STOP RUN
 .

validate-test-date SECTION.
 IF (test-day = 0)
 STOP "Invalid day field"
 STOP RUN
 END-IF.
 IF ((test-month = 0) OR (test-month > 12))
 STOP "Invalid month field"
 STOP RUN
 END-IF.
 MOVE test-month TO max-month.
 PERFORM set-max-days.
 IF (test-day > max-days)
 STOP "Invalid day field"
 STOP RUN
 END-IF
 .

add-day-difference SECTION.
 MOVE today-month TO max-month
 PERFORM set-max-days
 IF (DOB-day = today-day)
 MOVE ZERO TO total-days
 ELSE
 IF (DOB-day > today-day)
 COMPUTE total-days = DOB-day - today-day
 ELSE
 COMPUTE total-days = (max-days - today-day) + DOB-day
 PERFORM increment-test-month
 END-IF
 END-IF
 .

add-mth-difference SECTION.
 PERFORM set-max-days
 ADD max-days TO total-days
 PERFORM increment-test-month
 .

increment-test-month SECTION.
 ADD 1 TO max-month
 IF (max-month > 12)
 MOVE 1 TO max-month
 END-IF
 .

unused SECTION.
EXIT SECTION.

Visual COBOL and COBOL for .NET Language Introduction | 15

set-max-days SECTION.
 EVALUATE max-month
 WHEN 1 MOVE 31 TO max-days
 WHEN 2 MOVE 28 TO max-days
 WHEN 3 MOVE 31 TO max-days
 WHEN 4 MOVE 30 TO max-days
 WHEN 5 MOVE 31 TO max-days
 WHEN 6 MOVE 30 TO max-days
 WHEN 7 MOVE 31 TO max-days
 WHEN 8 MOVE 31 TO max-days
 WHEN 9 MOVE 30 TO max-days
 WHEN 10 MOVE 31 TO max-days
 WHEN 11 MOVE 30 TO max-days
 WHEN 12 MOVE 31 TO max-days
 END-EVALUATE
 .

END PROGRAM CblDemo1.

Native Code Support
Existing native COBOL code can be built and executed in Visual COBOL without additional changes. This
means rapid migration of existing application code to the new environment, since an application can
quickly run alongside original applications.

With Visual COBOL, some procedural COBOL coding syntax is no longer required for applications to run.
Redundant lines are still recognized but are ignored during the application build. In CblDemo1, some
redundant lines of code have been included as an illustration and are listed below, but will be removed
elsewhere in this document.

• IDENTIFICATION DIVISION
• ENVIRONMENT DIVISION
• DATA DIVISION
• WORKING-STORAGE SECTION

COBOL Margins
Visual COBOL displays the set COBOL margins. A gray margin for the sequence number and the indicator
displays when the format is set as Variable. An additional margin displays to the right when the format is
set as Fixed.

Changing COBOL Margins

The following steps show you how to change COBOL margins inVisual COBOL:

1. Right-click on the project in the Solution Explorer and select Properties.
The project properties display in the Properties page.

2. In the Properties page, select the COBOL tab.
The COBOL tab properties appear.

3. Use the Source Format list box to select the appropriate COBOL margin type.
This sets the displayed margins for COBOL code in Visual COBOL.

16 | Visual COBOL and COBOL for .NET Language Introduction

Use the Source Format setting to specifying margin settings instead of the SOURCEFORMAT compiler
directive.

Unused Member Identification
Visual COBOL helps you quickly find unused variables and sections in COBOL code.

By default, unused variable names in Visual COBOL appear in gray text. The text color changes to red by
default for variable names used in the application.

Variable name text color can help to determine which variables can be removed completely. CblDemo1
includes an example of an unused variable name called show-non-usage.

Identify an unused section by hovering the cursor over the section name. This displays a ToolTip indicating
the number of references. If No References displays in the ToolTip, then the section is a candidate for
removal. CblDemo1 includes the section unused with no references.

Working with Data Types and Namespaces
This section describes available managed code data types and briefly discusses what namespaces are
and how they are used. This section also:

• Uses CblDemo1 to show the DateTime data type and how to optimize DateTime functionality.
• Uses CblDemo3 to show the String data type and how to optimize String functionality.

In the sample solution, CblDemo2 contains the completed code based on DateTime data type exercises
completed in this section. CblDemo3 contains the completed code based on String data type exercises

Visual COBOL and COBOL for .NET Language Introduction | 17

completed in this section. See the Changing the Startup Object appendix for information on starting the
programs.

COBOL Data Types
Managed COBOL supports both .NET data types as well as traditional COBOL data types. Frequently
used types like Strings and Integers have synonyms in COBOL. You can reference other types using the
keyword TYPE followed by the type name as shown.

01 dob type DateTime.
01 display-output String.

See the appendix for a data type reference chart.

.NET Data Types
The .NET framework has strong data types. This means objects of one type cannot be freely exchanged
with another type, and implicit and explicit conversions allow for data conversion. All data types derive from
a System.Object data type, which can be assigned any object or variable.

Namespaces
A namespace is a grouping containing related data types.

A namespace references its available classes and methods. For example, the field dob is defined as being
of type DateTime which is grouped into the namespace System:

01 dob type System.DateTime.

The .NET Framework includes a variety of namespaces such as Accessibility, System.Data, System,
System.IO, and System.Runtime. All namespaces include related classes and methods.

Visual COBOL imports the namespace System by default, so there is no need to prefix classes from this
namespace. This means the example above can also be written as:

01 dob type DateTime.

Removing Namespace Prefixing

Add namespaces directly to your project properties so that you don't need to type the fully qualified
namespace when developing code. The System namespace is included by default. To add other
namespaces to your project properties:

1. Right-click on the project name in the Solution Explorer and select Properties.
The project properties display in the Properties page.

2. In the Properties page, select the References tab.
The References tab properties appear.

3. Scroll down to the Imported Namespaces list.
This list contains all available namespaces.

4. Select the check box next to each namespace in the list to directly import into the project build.
This indicates whether the namespace is directly imported in the project build. Namespaces not
selected require the full namespace prefixing in code.

Simplify your code by removing namespace prefixes included in the Imported Namespaces list. Use the
Imported Namespaces project setting to add namespace to a project, as it supercedes the $SET
ILUSING compiler directive.

DateTime Data Type
In the CblDemo1 sample application, the today and dob fields in the data definition can be replaced by the
System.DateTime data type to provide standard date and time functionality. Since the System

18 | Visual COBOL and COBOL for .NET Language Introduction

namespace is included in the imported namespaces list by default, the data definition for today and dob
can be replaced with simply DateTime. Types derived from System.Object must be declared at level
01. Since DateTime does not have a synonym in COBOL, the type keyword must precede it.

In the sample application, the variable today contains the current date. The value is initialized using the
built-in DateTime method Today().

The following shows the changed variable definitions:

01 today type DateTime value type DateTime::Today().
01 dob type DateTime.
01 test-date.
 03 test-month PIC 99.
 03 test-day PIC 99.
01 max-month PIC 99.
01 max-days PIC 99.
01 total-days PIC 999.
01 full-name PIC X(10).
01 display-output PIC X(60).
01 greeting-output PIC X(60).
01 txt1 PIC X(10) value "Hello Mr ".
01 diff-output.
 03 txt2 PIC X(11) value " you have ".
 03 output-days PIC ZZ9.
 03 txt3 PIC X(40) value " days until next birthday".

In this example, a variable derived from System.Object provides the contents of the variable by default.

You can use data types of a namespace to replace standard variable data definitions without having to
make further updates to existing procedure division code.

Since retrieving the current date for input is no longer required, the lines of code in the sample application
that previously defined the today and dob fields can be removed.

DateTime Object Initialization

The dob field is assigned the DateTime object value using validated variables as parts of a constructor. A
constructor is a method that is called when it's object is initialized, and is typically used to initialize the
object's parameters.

In the sample application, the year parameter is provided by the year field from the today object as shown
below:

set dob to new type DateTime(today::Year, test-month, test-day)

Note: Commas separating the parameters are optional.

DateTime Object Comparison

DateTime objects provide a range of methods allowing for date and time manipulation and comparison.
Using the difference between the today and dob fields can be obtained in a much simpler way.

To ensure that negative results are not returned, compare dates to ensure that the dob field contains a
value that is not less than the value in today. The DateTime object provides a CompareTo() method
which returns zero if the dates are identical and +1 or -1 to indicate a difference.

The DateTime object provides methods which add and subtract individual elements of a date,
automatically adjusting the other elements to ensure that the date remains valid.

In the demonstration application the year is incremented by one if the dob date is less than today's date to
ensure that it is in the future. The method to be used is AddYears() which accepts an integer as a
parameter.

Visual COBOL and COBOL for .NET Language Introduction | 19

In the following line, the if statement equates to true if today is greater than dob. If true, the year element
of dob increments by one.

if today::CompareTo(dob) > 0
 set dob to dob::AddYears(1)
end-if.

Use CompareTo() method as a condition to a perform statement to write a single section to determine
the number of days between two DateTime objects, as shown in the following.

perform add-to-total until today::CompareTo(dob) = 0

The add-to-total section increments the variable total-days and today. The add statement increments the
total-days variable. The AddDays() method increments the day element of the today variable.

add-to-total SECTION.
 add 1 to total-days
 set today to today::AddDays(1).

With the add-to-total section in place, the sections add-day-difference, dd-mth-difference and increment-
test-month are now redundant and can be removed.

String Data Type
You can change the sample application to take advantage of more managed COBOL features. Change the
PIC X variable definition for display-output to use the string data type to improve string
manipulation.

String Data Type Additions

In the CblDemo3 sample application, you can replace the display-output variable in the data definition
with the System.String data type to provide standardized text manipulation functionality. You can also
convert the constant text variables to show that initial values have not changed. Types derived from
System.Object must be declared at level 01, so the group variable diff-output can be removed. You can
also remove the output-days variable created to display the zero suppressed number of days as it is no
longer required.

Defining variables as type String removes the need to know the length of the constant. The object
automatically sizes to store the variable.

Note: String has a synonym in COBOL so does not need to be preceded with the type keyword.

The following shows the changed variable definitions, with temp1 and greeting-output added for later use:

01 today type DateTime value type DateTime::Today().
01 dob type DateTime.
01 test-date.
 03 test-month PIC 99.
 03 test-day PIC 99.
01 max-month PIC 99.
01 max-days PIC 99.
01 total-days PIC 999.
01 temp1 PIC 99.
01 full-name PIC X(30).
01 display-output String.
01 greeting-output String.
01 txt1 String value "Hello Mr ".
01 txt2 String value " you have ".
01 txt3 String value " days until next birthday".

Defining variables as type String does not require updates to procedure division code. This is because a
variable derived from System.Object provides the contents of the variable by default.

20 | Visual COBOL and COBOL for .NET Language Introduction

The sample application copies text captured from the console into the String field display-output to
take advantage of available methods.

String Functionality

Defining the variables as type String does not require amendments to procedure division code as default
behavior of a variable derived from System.Object provides the contents of the variable.

The sample application copies the text captured from the console into the String field display-output
to take advantage of available methods.

Displaying The Surname

The application displays an informal salutation. This exercise shows how to change this to display a
surname.

The application displays the contents of the field txt1 followed by the surname and lastly a comma (,).
Assuming that the surname is the last part of the full name preceded by a space character, the position of
the space just before the surname needs to be found.

The String object lets you use a method to retrieve a substring. To set up the code to take advantage of
this method, first set up the display-output variable to receive the substring. The Trim() method removes
all leading and trailing spaces from the string. Use the statement shown below to populate the greeting-
output variable with the substring.

set display-output to full-name
set greeting-output to display-output(???:)::Trim()

The example still needs to determine the start position of the surname. Use the String object to
determine the last occurrence of a provided Unicode character. To do this, use the LastIndexOf()
method with the first position of the string set to zero. The method takes two parameters separated by a
colon (:). The first parameter is the start position of the substring, with one being the first position in the
original string. The second parameter is the length of the string to retrieve. If not provided, the remainder of
the string is returned.

Use this to populate the temp1 variable so that the final space character position is just before the
surname. Increment the temp1 variable value by one to give the surname start position.

set display-output to full-name
set temp1 to display-output::Trim()::LastIndexOf(' ')
set greeting-output to display-output(temp1 + 1:)::Trim()

To display the information, use the display keyword followed by the variables in sequence:

set display-output to full-name
set temp1 to display-output::Trim()::LastIndexOf(' ')
set greeting-output to display-output(temp1 + 1:)::Trim()
display txt1 greeting-output ","

Displaying the First Name

Now that the code is updated to display the surname, this exercise shows how to update the code with
managed COBOL to display the following in order:

• The first name
• The txt2 variable value
• The number of days until the next birthday
• The txt3 variable value.

It is assumed that no leading spaces have been entered.

The previous exercise uses the substring method to display the surname as part of the salutation. This
exercise uses it to retrieve the first name from the beginning of the string. The exercise assumes no
leading spaces are entered in the string.

Visual COBOL and COBOL for .NET Language Introduction | 21

With the length of the first name string to be determined, the display statement is as follows:

display display-output(1:???) txt2 total-days txt3

Use the IndexOf() method to determine the position of the first provided Unicode character, with the first
position of the string being zero. Locating the string's first space position gives the length of the first name.
The following populates the temp1 variable with the first space in the display-output string:

set temp1 to display-output::IndexOf(' ')

Putting these two statements together results in displaying the first name with the contents of txt2, total-
days and txt3 as shown below:

set temp1 to display-output::IndexOf(' ')
display display-output(1:temp1) txt2 total-days txt3

The display statement concatenation accepts numeric and string values.

Error Capture
This section looks at the basic error capturing in the sample application and shows how use the Try
statement to enhance error capturing. Deciding what to do once an error is captured typically depends on
the application. This exercise displays a message when capturing an error.

Note: CblDemo4 contains completed code once for changes discussed in this section. To execute
the program see Changing the Startup Object appendix.

The validate-test-date section in the sample application validates that the supplied birth day and month are
in range. It validates that the birth day is not zero and that the birth month is a number from 1 to 12. The
set-max-days then retrieves the maximum days in the birth month and validates that the entered birth day
is within range:

validate-test-date SECTION.
 IF (test-day = 0)
 STOP "Invalid day field"
 STOP RUN
 END-IF
 IF ((test-month = 0) OR (test-month > 12))
 STOP "Invalid month field"
 STOP RUN
 END-IF
 MOVE test-month TO max-month.
 PERFORM set-max-days
 IF (test-day > max-days)
 STOP "Invalid day field"
 STOP RUN
 END-IF
 .

The section set-max-days is straightforward code. However, it contains no code to manage leap year
determination:

set-max-days SECTION.
 EVALUATE max-month
 WHEN 1 MOVE 31 TO max-days
 WHEN 2 MOVE 28 TO max-days
 WHEN 3 MOVE 31 TO max-days
 WHEN 4 MOVE 30 TO max-days
 WHEN 5 MOVE 31 TO max-days
 WHEN 6 MOVE 30 TO max-days
 WHEN 7 MOVE 31 TO max-days
 WHEN 8 MOVE 31 TO max-days
 WHEN 9 MOVE 30 TO max-days
 WHEN 10 MOVE 31 TO max-days
 WHEN 11 MOVE 30 TO max-days

22 | Visual COBOL and COBOL for .NET Language Introduction

 WHEN 12 MOVE 31 TO max-days
 END-EVALUATE
 .

This is an acceptable way to handle errors. However, the DateTime data type also validates the entered
values as the data type is created, including leap year determination, and throws an exception if they are in
error.

Exception Handling With The DateTime Data Type
The following code line in the sample application creates a DateTime instance from user-supplied
information:

set dob to new type DateTime(today::Year test-month test-day)

In the preceding code line, validate-test-date validates that the supplied information is in range. Replace
this line using data returned from the DateTime data type. The validation is stored as an
ArgumentException data type, with zero indicating success. The code includes a line that sets the
ArgumentException data type to a variable access the validation result.

01 argException type ArgumentException.

Wrapping the constructor in a try statement informs the application to check the validation result. If any
exceptions are raised, the first catch statement matching the thrown exception executes. The catch
statement below uses the variable result to tell the application what to do when the user supplied data
causes an exception.

try
 set dob to new type DateTime(today::Year test-month test-day)
catch argException
 display "I couldn't understand your date entry"
 display argException::Message
 stop run
end-try

The above code replaces the functionality provided by validate-test-date and set-max-days so that code
can be removed. The redundant variables max-month and max-days can also be removed.

Working With Classes
The sample application contains functions and information useful to other applications. But rather than
copying code everywhere it's functionality is required, create a class containing the functionality. The class
can then be used by other applications.

Note: In the sample solution, CblDemo5 and the class Person contain the completed code based on
exercises completed in this section. See the Changing the Startup Object appendix for information on
starting the programs.

Creating a Class

A class is a type definition containing fields and methods, usually representing a tangible thing or action.
Since the sample application includes code that creates, stores and displays information about an
individual, create the Person class for that information.

1. Right-click on the project name in the Solution Explorer window and select Add > New Item....
The Add New Item window appears.

2. Click COBOL Items > Managed in the Installed Templates pane, then select COBOL Class from the
list.

3. Type Person.cbl in the Name field. The Name indicates both the name of the file and class to create.
This denotes the name of the file and class being created.

Visual COBOL and COBOL for .NET Language Introduction | 23

4. Click Add to create a file called Person.cbl containing the empty Person class template. The class
template is very similar to the program template and contains an empty method.

class-id CblSolution.Person.

working-storage section.

method-id InstanceMethod.
local-storage section.
procedure division.

 goback.
end method.

end class.

5. Remove CblSolution from the class identifier located on the first line of the class template.
The solution name prefixes to the class identifier by default to ensure unique class names across the an
application. This is not required for the sample application and can be removed.

Populating the Class

Copy the relevant fields and functionality from existing code to the Person class. Ensure only to copy
relevant code to avoid confusion when using the class in other applications.

1. Copy the relevant variables into the class.
In the COBOL code, dob and full-name directly relate to a person. Copy these into the class, converting
the full name to a String data type to ensure correct sizing, as shown in the following.

working-storage section.
01 full-name string.
01 dob type DateTime.

2. Update the code to allow access to the attributes.
Class variables (also known as attributes) include a property that indicates variable accessability
outside the class. The property is set to private by default. This indicates no external access. To
allow access to the variables outside the class, set the property to public and name it for referencing
as shown in the following.

working-storage section.
01 full-name string public property as "FullName".
01 dob type DateTime public property as "DateOfBirth".

3. Create a constructor to allow the class fields to be used.
A constructor is a method that instantiates and initializes the fields defined in the class. To ensure that
the Person class always contains a name and date of birth, supply these values as parameters in the
constructor as shown in the following. Without the parameters, the method throws an error which can
be captured by the Try statement.

method-id New public.
procedure division using by value fullname as string
 birthday as type DateTime.
 set full-name to fullname
 set dob to birthday
 goback.
end method.

4. Remove the default method.
Creating a class also creates a method template. The method template is not required, so remove the
following code.

method-id InstanceMethod.
local-storage section.
procedure division.
 goback.
end method.

24 | Visual COBOL and COBOL for .NET Language Introduction

The Person class that contains the full name and date of birth of a person, which can only be successfully
created if both the full name and date of birth are provided.

Adding Methods to the Class

Now that the Person class is available, create a method for the functionality that relates to a person. The
functionality that relates to a person is as follows:

1. Number of days until next birthday functionality.
The application currently takes the date of birth and adds the birth year to ensure the stored date is the
next birthday. Then the current date is incremented until the two dates match, incrementing a counter in
parallel. Create a method that provides the next birthday, then use that date to determine the number of
days until the next birthday.

The following shows a method that provides the next birthday. It defines a local variable called today
which provides today's date. It also defines a temporary variable called return-value. Because this is
part of the method definition and includes the variable type, the run-time automatically creates this
variable. Change the set statement from the original code to use return-value:

method-id NextBirthday.
01 today type DateTime value type DateTime::Today().
procedure division returning return-value as type DateTime.
 set return-value to new DateTime(today::Year, dob::Month, dob::Day)
end method.

This method provides the date of the next birthday. Create a second method used compare it with the
current date and return the number of days.

To do this create a variable to provide today's date. A temporary variable is created to populate the
number of days. To use the method NextBirthday() defined in the current class, prefix it with the
keyword self. This provides a DateTime object containing the date of the next birthday. DateTime
has the method Subtract that returns the difference between it's contents and a provided DateTime
object as a TimeSpan object. The TimeSpan object has a method to return the number of days. As a
result, the method is coded as follows.

method-id DaysUntilBirthday.
01 today type DateTime value type DateTime::Today().
procedure division returning return-value as binary-long.
 set return-value to self::NextBirthday()::Subtract(today)::Days
end method.

Since there are two methods created that containing the today local variable, it might be tempting to
make this a field on the class so it can be re-used. As it stands, the variable value is the actual date and
time when the method is used. If moved, the value must be re-initialized before it can be used with
confidence. Another alternative could be to define DateTime as part of the method call, which results in
the following code.

method-id DaysUntilBirthday.
procedure division returning return-value as binary-long.
 set return-value to
 self::NextBirthday()::Subtract(type DateTime::Today())::Days
end method.

2. Surname functionality.
The application extracts the entered surname and displays it as part of a phrase. As the surname is
always part of the a person's name, Create a method to return it as a String. The offset needs to be
determined, so define a temporary variable to hold the offset. Then use it to evaluate the data to return.
To do this, use existing lines of code from the application and update it to populate the temporary
variable:

method-id FamilyName.
01 temp1 PIC 99.
procedure division returning return-value as type String.
 set temp1 TO full-name::Trim()::LastIndexOf(' ')

Visual COBOL and COBOL for .NET Language Introduction | 25

 set return-value to full-name(temp1 + 1:)::Trim()
end method.

3. First name functionality.
As with the surname, the sample application extracts entered first name and displays it as part of a
phrase. Create a method to return the first name as a StringUse existing code from the sample
application as a basis:

method-id FirstName.
01 temp1 PIC 99.
procedure division returning return-value as type String.
 set temp1 TO full-name::IndexOf(' ')
 set return-value to full-name(1:temp1)
end method.

You can combine the two lines above for efficiency as shown in the following, keep the code as two
lines for readability:

method-id FirstName.
procedure division returning return-value as type String.
 set return-value to full-name(1:full-name::IndexOf(' '))
end method.

Using the Person Class

With the Person class created, update the application to access it.

1. Create a variable to store the instance of the class.

01 person1 type Person.

2. Change the variable test-date to accept the birth year and associated prompt.
Now that we are going to store a persons' date of birth we need to accept it from the user.

3. Instantiate the variable in the code.
This is done in the same way as the dob variable and similarly can be wrapped up in error handling
code. The Person class constructor requires a DateTime object as the second argument, so we pass
in an instance of DateTime created using the information supplied by the user as shown:

try
 set person1 to new type Person(full-name
 new DateTime(test-year test-month test-day))
catch argException
 display "Invalid arguments provided"
 display argException::Message
 stop run
end-try

4. Replace application code with class methods.
All code that determines the first name, family name and number of days until the next birthday can be
replaced with the appropriate methods from the Person class and the now redundant section add-to-
total can also be removed.

5. Tidy up defined variables.
With some of the functionality moved into the Person class and the resultant code simplified, variables
defined in the demonstration application can now be reviewed and redundant definitions removed.

Further Application Enhancements
Now that the code for the sample application has been simplified and functionality moved into a class,
enhancing is much easier to do. Redundant code and variables have been removed.

26 | Visual COBOL and COBOL for .NET Language Introduction

By introducing classes to provide standard methods, new applications are easier and quicker to write. You
can update your existing applications to use the new class as the opportunity presents itself, steadily
moving code towards more efficiency in development.

With the updated sample application, the text constants are contained in three variables. These variables
could be removed, replacing them with the quoted string directly in the code, or the strings themselves
could be provided via a second class. The console application itself could be completely replaced with a
Windows application now that the functionality has been moved to a class.

The greeting text "Hello Mr " indicates that the application has been written assuming that the user will
always be a man; however the application could ask the user to enter their gender. The Person class could
then have a new method written to provide the formal greeting, allowing the text to simply read "Hello".

You can extend the demonstration application further with the suggestions above, or with additional
functionality of your own design. Below is the final console application code:

PROGRAM-ID. CblDemo5.
01 person1 type Person.
01 test-date.
 03 test-year PIC 9999.
 03 test-month PIC 99.
 03 test-day PIC 99.
01 full-name PIC X(30).
01 txt1 String value "Hello Mr ".
01 txt2 String value " you have ".
01 txt3 String value " days until next birthday".
01 argException type ArgumentException.

PROCEDURE DIVISION.
 display "Enter your full name"
 accept full-name
 display "Enter your date of birth in yyyymmdd format"
 accept test-date
 try
 set person1 to new type Person(full-name
 new DateTime(test-year test-month test-day))
 catch argException
 display "Invalid arguments provided"
 display argException::Message
 stop run
 end-try
 display txt1 & person1::familyName() & ","
 display person1::firstName() & txt2 & person1::daysUntilBirthday() & txt3
 stop run
 .

END PROGRAM CblDemo5.

Here is the final code for the Person class:

class-id Person.
01 full-name string public property as "FullName".
01 dob type DateTime public property as "DateOfBirth".

method-id New public.
procedure division using by value fullname as string
 birthday as type DateTime.
 set full-name to fullname
 set dob to birthday
 goback.
end method.

method-id NextBirthday.
01 today type DateTime value type DateTime::Today().

Visual COBOL and COBOL for .NET Language Introduction | 27

procedure division returning return-value as type DateTime.
 set return-value to new DateTime(today::Year, dob::Month, dob::Day)
end method.

method-id DaysUntilBirthday.
procedure division returning return-value as binary-long.
 set return-value to self::NextBirthday()::Subtract(type
DateTime::Today())::Days
end method.

method-id FamilyName.
01 temp1 PIC 99.
procedure division returning return-value as type String.
 set temp1 TO full-name::Trim()::LastIndexOf(' ')
 set return-value to full-name(temp1 + 1:)::Trim()
end method.

method-id FirstName.
procedure division returning return-value as type String.
 set return-value to full-name(1:full-name::IndexOf(' '))
end method.
end class.

Appendix

Changing the Startup Object
The startup object of a project is the entry point when the application begins. When you create a project
this is initially set to the program template that is created at the same time. You might want to change this
because, for example, you are replacing the user interface from console to Windows. By switching the
startup object between the two programs you will be able to check that functionality is maintained between
the existing and new programs. The following steps show you how to change the startup object:

1. Right-click on the project within the Solution Explorer.
The project properties are displayed in the Properties Page.

2. Select Application from the left tab list.
The properties in the application tab are brought to the foreground in the Properties Page.

3. Select the object from the list box labeled Startup object.
The next time the application executes it will begin with the selected object.

28 | Visual COBOL and COBOL for .NET Language Introduction

Data Type Reference
The table below shows the equivalent data types between legacy and current COBOL. In addition the data
types recognized within the .NET environment have been included. We strongly recommend you use the
current COBOL usage as this is recognized in both the Java Virtual Machine (JVM) and .NET
environments.

Current COBOL Legacy COBOL .NET Class

binary-char pic s9(2) comp-5 System.SByte

binary-char unsigned pic 9(2) comp-5 System.Byte

binary-short pic s9(4) comp-5 System.Int16

binary-short unsigned pic 9(4) comp-5 System.UInt16

binary-long pic s9(9) comp-5 System.Int32

binary-long unsigned pic 9(9) comp-5 System.UInt32

binary-double pic s9(18) comp-5 System.Int64

binary-double unsigned pic 9(18) comp-5 System.UInt64

character System.Char

float-short comp-1 System.Single

float-long comp-2 System.Double

condition-value System.Boolean

decimal System.Decimal

object System.Object

Visual COBOL and COBOL for .NET Language Introduction | 29

string System.String

Working with IntelliSense
IntelliSense® is the general term for the prompts that appear when the cursor hovers code, and for the
visual indicators that assist to speed code development. Visual COBOL makes full use of IntelliSense,
providing instant feedback and increased productivity. The main features of IntelliSense include the
following.

Variable
information

Placing the cursor over a variable displays a tooltip with information about the
variable, including number of times reference, type of variable and length.

Error
highlighting

Code is constantly recompiled in the background, which detects anything that would
cause a build error. Spellings are checked and suggested corrections are given.
Variable validation confirms that the variable has been defined.

Colorization As you type the code it is validated and color coded. The statements, variables,
constants and section names all have different assigned colors that can be
customized.

Word
completion

As you type statements, lists of variables display to assist in sentence completion. To
access the lists, right-click in the code editor to select the option Suggest Word.

Code snippets These are templates of common sections of code that are generated and pasted
directly into the code. To inset a code snippet, right-click at the point where the
snippet is to be inserted and select Insert Snippet. Double-click to select the snippet
required from the provided list.

30 | Visual COBOL and COBOL for .NET Language Introduction

	Contents
	Visual COBOL and COBOL for .NET Language Introduction
	Introduction
	Visual Studio Overview
	Managed and Native Code

	Starting Visual COBOL
	Projects and Solutions

	A First Console Application
	Creating a Console Application
	Building and Executing an Application from Visual Studio
	Building and Executing an Application from a Command Prompt

	A First Graphical Application
	Creating a Graphical Application
	Adding a Label Control
	Adding a Button Control
	Adding a Click Event Handler
	Adding a Text Box Control
	Tying it all Together

	Overview of Visual COBOL Debugging
	Building for Debug
	Executing with Debug
	Breakpoints
	Setting a Breakpoint
	Disabling a Breakpoint
	Removing a Breakpoint

	Debug Navigation

	Migrating to Managed Code
	The CblDemo1 Sample Application
	Native Code Support
	COBOL Margins
	Changing COBOL Margins

	Unused Member Identification

	Working with Data Types and Namespaces
	COBOL Data Types
	.NET Data Types
	Namespaces
	Removing Namespace Prefixing

	DateTime Data Type
	DateTime Object Initialization
	DateTime Object Comparison

	String Data Type
	String Data Type Additions
	String Functionality
	Displaying The Surname
	Displaying the First Name

	Error Capture
	Exception Handling With The DateTime Data Type

	Working With Classes
	Creating a Class
	Populating the Class
	Adding Methods to the Class
	Using the Person Class

	Further Application Enhancements
	Appendix
	Changing the Startup Object
	Data Type Reference
	Working with IntelliSense

