
User’s Guide
Version 1.2, October 2003

IONA, IONA Technologies, the IONA logo, Artix Encompass, Artix Relay, Orbix, Orbix/E,
ORBacus, Artix, Orchestrator, Mobile Orchestrator, Enterprise Integrator, Adaptive Runt-
ime Technology, Transparent Enterprise Deployment, and Total Business Integration are
trademarks or registered trademarks of IONA Technologies PLC and/or its subsidiaries.
Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.
CORBA is a trademark or registered trademark of the Object Management Group, Inc. in
the United States and other countries. All other trademarks that appear herein are the
property of their respective owners.
While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty
of any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for
a particular purpose. IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or
consequential damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third
party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publica-
tion and features described herein are subject to change without notice.

Copyright © 2001�2003 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: 31-Oct-2003

M 3 1 1 3

Contents

List of Figures ix

List of Tables xi

Preface xiii

Chapter 1 Introduction to Using Artix 1
The Artix Bus 2
The Artix Design Process 5

Chapter 2 Understanding Artix Contracts 7
Web Services Description Language Basics 8
Abstract Data Type Definitions 11
Abstract Message Definitions 14
Abstract Interface Definitions 17
Mapping to the Concrete Details 20
Artix Contract Specifics 21

The Logical Section 23
The Physical Section 25

Chapter 3 Configuration 27
Establishing the Host Computer Environment 28
Configuring Artix Runtime Behavior 31
Runtime Configuration Variables 35

ORB Plug-ins List 36
Binding Lists 38
Thread Pool Control 40

Artix Plug-in Configuration 42
Routing Plug-in 43
CORBA Plug-in 45
TIBCO Rendezvous Plug-in 46
Tuxedo Plug-in 47
iii

CONTENTS
Locator Service Plug-in 48
Locator Service Endpoint Plug-in 49
Session Manager Plug-in 50
Session Manager Simple Policy Plug-in 51
Session Manager Endpoint Plug-in 52

Chapter 4 Artix Standalone Service 53
The Artix Standalone Service 54
Configuring the Service 57
Starting and Stopping the Service 59
Installing the Service as a Windows Service 61
Contracts for the Standalone Service 63

Chapter 5 Routing 65
Artix Routing 66
Configuring Artix to Use Routing 67
Compatibility of Ports and Operations 68
Defining Routes in Artix Contracts 71

Using Port-Based Routing 72
Using Operation-Based Routing 75
Advanced Routing Features 78

Attribute Propagation through Routes 82
Routing with Artix Designer 84
Error Handling 91

Chapter 6 Using the Artix Locator Service 93
Deploying the Locator 95
Registering a Server with the Locator 99
Obtaining References from the Locator 101
Controlling Server Workloads 104
Fault Tolerance 106

Chapter 7 Using the Artix Session Manager 107
Deploying the Session Manager 109
Registering a Server with the Session Manager 114
Working with Sessions 117
Fault Tolerance 125
 iv

CONTENTS
Chapter 8 Artix Logging and SNMP Support 127
Artix Logging 128
Using Trace Macros 129

Application Server Platform Trace Macros 131
Logging to a File 133
Using the SNMP Logging Plug-in 134
Using the XML Logging Plug-in 141
IT_Logging Overview 148
IT_Logging::LogStream Interface 152
Example 155

Using the Logging Functionality 156
Performance Logging 157

Chapter 9 Load Balancing 161
Load Balancing with the Artix Locator 162
Load Balancing with CORBA 164

Chapter 10 Using the CORBA Plug-in 171
CORBA Type Mapping 172

Primitive Type Mapping 173
Complex Type Mapping 175
Mapping XMLSchema Features that are not Native to IDL 187

Modifying a Contract to Use CORBA 195
Adding a CORBA Binding 196
Adding a CORBA Port 204

Generating IDL from an Artix Contract 209
Generating a Contract from IDL 211
Configuring Artix to Use the CORBA Plug-in 219
Using the CORBA Naming Service 220
Embedding Artix in a CORBA Application 222

Chapter 11 Using the HTTP Plug-in 225
HTTP Overview 226
Adding an HTTP Port 233

Adding an HTTP Port for Non-Secure Connections 234
Adding an HTTP Port for Secure Connections 240

HTTP WSDL Extensions 243
HTTP WSDL Extensions Overview 244
v

CONTENTS
HTTP WSDL Extensions Details 246
HTTP Transport Attributes 264

Transport Attributes Overview 265
Server Transport Attributes 266
Client Transport Attributes 268

Chapter 12 Using the WebSphere MQ Plug-in 269
Introduction 270
Describing an Artix WebSphere MQ Port 271

Configuring an Artix WebSphere MQ Port 272
Adding an WebSphere MQ Port to an Artix Contract 281

Chapter 13 Using the Tuxedo Plug-in 285
Introduction 286
Using FML Buffers 288

Mapping FML Buffer Descriptions to Artix Contracts 289
Using the Tuxedo Transport 293
Embedding Artix in the Tuxedo Container 297

Chapter 14 Using the TIBCO Rendezvous Plug-in 299
Introduction 300
Using TibrvMsg 301
Using the TIB/RV Transport 305

Chapter 15 Using the IIOP Tunnel 313
Introduction to IIOP Tunnels 314
Modifying a Contract to Use the IIOP Tunnel 315
Using the CORBA Naming Service 321

Chapter 16 Payload Formats 323
G2++ Data Format 324
Fixed Record Length Data Format 331

Fixed Record Length Message Data Mapping 332
Adding a Fixed Record Length Binding to an Artix Contract 341

Pure XML Format 348
Tagged Data Format 353

Tagged Data Mapping 354
 vi

CONTENTS
Adding a Tagged Data Binding to an Artix Contract 362

Chapter 17 SOAP Payload Format 371
Overview of SOAP 372

Background to SOAP 373
SOAP Messages 376
SOAP Encoding of Data Types 382

Adding a SOAP Binding 390
Adding a Port for SOAP over HTTP 396

Adding a Port for Non-Secure Connections 397
Adding a Port for Secure Connections 402

SOAP WSDL Extensions 405
SOAP WSDL Extensions Overview 406
SOAP WSDL Extensions Details 407

Supported XML Types 415

Glossary 421

Index 425
vii

CONTENTS
 viii

List of Figures

Figure 1: Artix Message Transporting 2

Figure 2: An Artix Contract 21

Figure 3: Using multiple Artix daemons 55

Figure 4: Using a single Artix daemon 55

Figure 5: Routing WSDL Location 85

Figure 6: Source and Destination Selection 86

Figure 7: Route Properties 87

Figure 8: Transport Attribute Routing Rules 88

Figure 9: Operation Routing Selection 89

Figure 10: Review of Route Information 90

Figure 11: Session Manager 108

Figure 12: Select WSDL location 199

Figure 13: Select Interface to Map to CORBA 200

Figure 14: Edit the CORBA Binding 201

Figure 15: Select WSDL Location 206

Figure 16: Edit CORBA Port Properties 207

Figure 17: IDL Import 212

Figure 18: IDL Include Directories 213

Figure 19: Select WSDL location 235

Figure 20: Selecting an HTTP Transport Type 236

Figure 21: Example Set of HTTP Configuration Settings in GUI 238

Figure 22: Example Set of SSL-Related HTTP Configuration Settings 241

Figure 23: Select WSDL location 282

Figure 24: WebSphere MQ Port Properties 283

Figure 25: Select WSDL Location 294

Figure 26: Edit Tuxedo Port Properties 295
ix

LIST OF FIGURES
Figure 27: Select WSDL Location 318

Figure 28: Edit IIOP Tunnel Port Properties 319

Figure 29: Binding Selection 342

Figure 30: Fixed Binding Information Screen 343

Figure 31: Select WSDL location 350

Figure 32: Select Interface to Map to XML Format 351

Figure 33: Edit the CORBA Binding 352

Figure 34: Binding Selection 363

Figure 35: Tagged Binding Information Screen 364

Figure 36: Overview of Role of SOAP Encoding and Decoding 383

Figure 37: Select WSDL location 391

Figure 38: Editing a SOAP Binding for an Operation 393

Figure 39: Selecting a SOAP Transport Type 398

Figure 40: Example Set of SOAP_HTTP Configuration Settings in GUI 400

Figure 41: Example Set of SSL-Related HTTP Configuration Settings 403
 x

List of Tables

Table 1: Part Data Type Attributes 15

Table 2: Operation Message Elements 17

Table 3: Attributes of the Input and Output Elements 18

Table 4: Artix Namespaces 23

Table 5: Artix Transport Plug-ins 36

Table 6: Artix Payload Format Plug-ins 37

Table 7: Artix Service Plug-ins 37

Table 8: Artix Standalone Service Configuration Variables 57

Table 9: it_artix_service Parameters 59

Table 10: it_artix_service Parameters 61

Table 11: it_artix_service Parameters 62

Table 12: IT_Logging Common Data Types, Methods, and Macros 148

Table 13: Primitive Type Mapping for CORBA Plug-in 173

Table 14: Complex Type Mapping for CORBA Plug-in 175

Table 15: HTTP Server Configuration Attributes 246

Table 16: HTTP Client Configuration Attributes 253

Table 17: HTTP Server Transport Attributes 266

Table 18: HTTP Client Transport Attributes 268

Table 19: Supported WebSphere MQ Features 270

Table 20: WebSphere MQ Port Attributes 272

Table 21: UsageStyle Settings 274

Table 22: MQGET and MQPUT Actions 275

Table 23: Artix WebSphere MQ Access Modes 275

Table 24: ReportOption Attribute Settings 277

Table 25: FormatType Attribute Settings 279

Table 26: Artix ATMI Feature Support 286
xi

LIST OF TABLES
Table 27: Artix FML Feature Support 286

Table 28: Supported TIBCO Rendezvous Features 300

Table 29: TibrvMsg Binding Attributes 301

Table 30: TIBCO to XSD Type Mapping 302

Table 31: TIB/RV Transport Properties 305

Table 32: TIB/RV Supported Payload formats 307

Table 33: Attributes for soap:binding 407

Table 34: Attributes for soap:operation 409

Table 35: Attributes for soap:body 410

Table 36: soap:fault attributes 413

Table 37: Attribute for soap:address 414
 xii

Preface
Audience This guide is intended for Artix System designers. It assumes that the reader

has a working knowledge of the middleware transports that are being used
to implement the Artix system. It also assumes that the reader is familiar
with WSDL and software design concepts.

Organization of this guide This guide is divided as follows:

� Chapter 1 provides an overview of the concepts behind using Artix to
solve integration projects.

� Chapter 2 describes the use of Web Services Description Language and
the specifics of Artix contracts.

� Chapter 3 describes how to configure Artix services to provide optimal
performance.

� Chapter 4 describes how to deploy the Artix standalone service.

� Chapter 5 describes how to create message routes using Artix.

� Chapter 6 describes how to use the Artix Locator Service.

� Chapter 7 describes how to use the Artix Session Manager.

� Chapter 8 provides a detailed discussion of using the advanced logging
features of Artix.

� Chapter 10 describes how to integrate CORBA systems into an Artix
solution.

� Chapter 11 describes how to use HTTP with Artix.

� Chapter 12 describes how to integrate IBM WebSphere MQ systems
into an Artix solution.
xiii

PREFACE
� Chapter 13 describes how to use FML and BEA Tuxedo in an Artix
solution.

� Chapter 14 describes how to integrate TIBCO Rendezvous into an Artix
solution.

� Chapter 16 describes how to use the different payload formats
supported by Artix.

Online help Artix includes comprehensive online help, providing:

� Detailed step-by-step instructions on how to perform important tasks.

� A description of each screen.

� A comprehensive index and glossary.

� A full search feature.

� Context-sensitive help.

The Help menu in Artix Designer provides access to this online help.

Related documentation The document set for Artix includes the following:

� Getting Started with Artix

� Artix Tutorial

� Artix User�s Guide

� Artix C++ Programmer�s Guide

� Artix Security Reference

� Artix Thread Library Reference

The latest updates to the Artix documentation can be found at http://
www.iona.com/support/docs.

Reading path If you are new to Artix, you should read the documentation in the following
order:

1. Getting Started with Artix

The getting started book describes the basic concepts behind Artix. It
also provides details on installing the system and a detailed walk
through for developing a C++ client for a Web Service.

2. Artix Tutorial

The tutorial guides you through programming Artix applications against
all of the supported transports.
 xiv

http://www.iona.com/support/docs
http://www.iona.com/support/docs

PREFACE
3. The Artix User�s Guide

The user�s guide describes the development pattern for designing and
deploying Artix enabled systems. It provides detailed examples for a
number of typical use cases.

4. GUI Online Help

The Artix design tools have context sensitive online help that provides
information specific to the tools that you are using.

5. Artix C++ Programmer�s Guide

The programmer�s guide discusses the technical aspects of
programming applications using the Artix C++ API.

Additional resources The IONA knowledge base contains helpful articles, written by IONA
experts, about Artix and other products. You can access the knowledge base
at the following location:

The IONA update center contains the latest releases and patches for IONA
products:

If you need help with this or any other IONA products, contact IONA at
support@iona.com. Comments on IONA documentation can be sent to

.

Typographical conventions This guide uses the following typographical conventions:

Constant width Constant width (courier font) in normal text
represents portions of code and literal names of items
such as classes, functions, variables, and data
structures. For example, text might refer to the
CORBA::Object class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#include <stdio.h>
xv

mailto:support@iona.com
http://www.iona.com/support/knowledge_base/index.xml
http://www.iona.com/support/updates/index.xml

PREFACE
Keying conventions This guide may use the following keying conventions:

Italic Italic words in normal text represent emphasis and
new terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your
particular system. For example:

% cd /users/your_name

Note: Some command examples may use angle
brackets to represent variable values you must
supply. This is an older convention that is replaced
with italic words or characters.

No prompt When a command�s format is the same for multiple
platforms, a prompt is not used.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

> The notation > represents the DOS or Windows
command prompt.

...

.

.

.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

[] Brackets enclose optional items in format and syntax
descriptions.

{} Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| A vertical bar separates items in a list of choices
enclosed in {} (braces) in format and syntax
descriptions.
 xvi

CHAPTER 1

Introduction to
Using Artix
Artix allows you to design and deploy integration solutions that
are middleware-neutral.

In this chapter This chapter discusses the following topics:

The Artix Bus page 2

The Artix Design Process page 5
1

CHAPTER 1 | Introduction to Using Artix
The Artix Bus

Overview The Artix bus provides a middleware connectivity solution that minimizes
invasiveness and lets an organization avoid being locked into any one
middleware transport. For example, the Artix bus can be used to connect a
BEA Tuxedo�-based server to a CORBA client. The Artix bus transparently
handles the message mapping and transformation between them. The
Tuxedo server is unaware that its client is using CORBA. In fact, with the
bus handling the communication, the client could be changed to an IBM
WebSphere MQ� client without modifying the server.

Bus message transporting The Artix bus shields applications from the details of the transports used by
applications on the other end of the bus, by providing on-the-wire message
transformation and mapping. Unlike the approach taken by Enterprise
Application Integration (EAI) products, the Artix bus does not use an
intermediate canonical format; it transforms the messages once. Figure 1
shows a high level view of how a message passes through the bus.

The approach taken by the Artix bus provides a high level of throughput by
avoiding the overhead of making two transformations for each message. The
approach does, however, limit the flexibility of message mapping. The Artix
bus can only map messages across varying transports; it cannot modify the
content or structure of the message.

Figure 1: Artix Message Transporting

Artix Bus
 2

The Artix Bus
Supported message transports The Artix bus supports the following message transports:

� HTTP

� BEA Tuxedo

� IBM WebSphere MQ

� IIOP

� TIBCO Rendezvous�

� IIOP Tunnel

Supported payload formats The Artix bus can automatically transform between the following payload
formats:

� G2++

� FML � Tuxedo format

� CORBA (GIOP) � CORBA format

� FRL � fixed record length

� VRL � variable record length

� SOAP

� TibrvMsg - TIBCO Rendezvous format

Bus contracts An Artix bus contract defines the interaction of a Service Access Point (SAP)
or endpoint with an Artix bus. Contracts are written using a superset of the
standard Web Service Definition Language (WSDL). Following the procedure
described by W3C, IONA has extended WSDL to support the bus� advanced
functionality, and use of transports and formats other than HTTP and SOAP.

A bus contract consists of two parts:

Logical

The logical portion of the contract defines the namespaces, messages, and
operations that the SAP exposes. This part of the contract is independent of
the underlying transports and wire formats. It fully specifies the data
structures and possible operation/interaction with the interface. It is made
up of the WSDL tags <message>, <operation>, and <portType>.

Physical

The physical portion of the contract defines the transports, wire formats,
and routing information used to deliver messages to and from SAPs, over
the bus. This portion of the contract also defines which messages use each
3

CHAPTER 1 | Introduction to Using Artix
of the defined transports and bindings. The physical portion of the contract
is made up of the standard WSDL tags <binding>, <port>, and
<operation>. It is also the portion of the contract that may contain IONA
WSDL extensions.

Deployment models Applications that use the Artix bus can be deployed in one of two ways:

Embedded mode is the most invasive use of the Artix bus and provides the
highest performance. In embedded mode, an application is modified to
invoke Artix functions directly and locally, as opposed to invoking a
standalone Artix service. This approach is the most invasive to the
application, but also provides the highest performance. Embedded mode
requires linking the application with Artix-generated stubs and skeletons to
connect client and server (respectively) to the Bus.

Standalone mode runs as a separate process invoked as a service. In
standalone mode, the Artix bus provides a zero-touch integration solution on
the application side. When designing a system, you simply generate and
deploy the Artix contracts that specify each endpoint of the bus. Because a
standalone switch is not linked directly with the applications that use it (as
in embedded mode), a contract for standalone mode deployment must
specify routing information. This is the least efficient of the two modes.

Advanced Features The Artix bus also supports the following advanced functionality:

� Message routing based on the operation or the port, including routing
based on characteristics of the port.

� Transaction support over Tuxedo and WebSphere MQ.

� SSL and TLS support.

� Security support for Tuxedo and WebSphere MQ.

� Container based deployment with IONA�s Application Server Platform
6.0 and Tuxedo 7.1 or higher.
 4

The Artix Design Process
The Artix Design Process

Overview Artix is a flexible and easy to use tool for integrating your existing
applications across a number of different middleware platforms. Artix also
makes it easy to expose your existing applications as Web services or as a
service for any number of applications using other middleware transports. In
addition, Artix provides a flexible programming model that allows you to
create new applications that can communicate using any of protocols that
Artix supports.

Despite the flexibility and power of Artix, designing solutions using Artix is a
straightforward process which requires a minimum of coding. The Artix
Designer provides a full suite of wizards to guide you through the modeling
of your systems, the generation of Artix components, and the deployment of
your system. Artix also ships with a number of command line tools that can
be used to generate Artix components.

Regardless of the complexity of your Artix project or the tools you chose to
develop your Artix project, there are four basic steps in developing a solution
using Artix:

1. Create an Artix contract to model your existing services.

2. Modify your Artix contract to describe how you intend to integrate or
expose your systems.

3. Generate the Artix components.

4. Develop any application level code needed to complete the solution.

Creating an Artix contract The first step in solving a problem using Artix is to create a contract which
models the services you want to integrate. This involves creating logical
descriptions of the data and the operations you want the services to share,
and mapping them to the physical payload formats and transports the
services use to expose themselves to the network. Artix uses the industry
standard Web Services Description Language (WSDL) to model services.

For more information on Artix contracts and modeling services in WSDL,
read �Understanding Artix Contracts� on page 7.
5

CHAPTER 1 | Introduction to Using Artix
Describe the integration of the
services

After describing how your services are currently deployed, you must decide
how you want them to be integrated. If your services share a common
interface, you may simply need to add routing rules to your contract. Artix
provides a rich set of routing capabilities to map operations and interfaces to
one another. For a detailed discussion of routing, see Chapter 5 on page 65.

If you are exposing an existing service using a new transport or payload
format, you need to add the mapping of the service�s data and operations to
the new payload format and transport.

Generate Artix components If you are using Artix in standalone mode, you will need to generate a
configuration scope for your Artix switch and save the Artix contract defining
the interaction of your services.

If you are using Artix in embedded mode, you will also need to generate the
Artix stubs and skeletons that will form the backbone of your Artix
application code.

For a detailed discussion of Artix configuration, see Chapter 3 on page 27.
For a detailed description of generating Artix stubs and skeletons, see the
Artix C++ Programmer�s Guide.

Develop application code Unless your services share identical interfaces, you will need to develop
some application code. Artix can only map between services that share a
common interface. Typically, you can make the required changes to only
one side of the services you are integrating and you can write the application
code using a familiar programming paradigm. For example, if you are a
CORBA developer integrating a CORBA system with a Tuxedo application,
Artix will generate the IDL representing the interface used in the service
integration. You can then implement the interface using CORBA.

If you are developing new applications using Artix, you will have to write the
application logic from scratch using the stubs and skeletons generated by
Artix. For a detailed discussion of developing applications using Artix, see
the Artix C++ Programmer�s Guide.
 6

CHAPTER 2

Understanding
Artix Contracts
Artix contracts are WSDL documents that have IONA-specific
WSDL extensions, and which define Artix applications.

In this chapter This chapter discusses the following topics:

Web Services Description Language Basics page 8

Abstract Data Type Definitions page 11

Abstract Message Definitions page 14

Abstract Interface Definitions page 17

Mapping to the Concrete Details page 20

Artix Contract Specifics page 21
7

CHAPTER 2 | Understanding Artix Contracts
Web Services Description Language Basics

Overview Web Services Description Language (WSDL) is an XML document format
used to describe services offered over the Web. WSDL is standardized by
the World Wide Web Consortium (W3C) and is currently at revision 1.1.
You can find the standard on the W3C website, www.w3.org.

Web service endpoints and Artix
service access points

WSDL documents describe a service as a collection of endpoints. Each
endpoint is defined by binding an abstract operation description to a
concrete data format and specifying a network protocol and address for the
resulting binding.

Artix service access points extend the concept of endpoint to include
services that are available over any computer network, not just the web. A
service access point can be bound to payload formats other than SOAP and
can use transports other than HTTP.

Abstract operations The abstract definition of operations and messages is separated from the
concrete data formatting definitions and network protocol details. As a
result, the abstract definitions can be reused and recombined to define
several endpoints. For example, a service can expose identical operations
with slightly different concrete data formats and two different network
addresses. Or, one WSDL document could be used to define several services
that use the same abstract messages.

Port types A portType is a collection of abstract operations that define the actions
provided by an endpoint. When a port type is mapped to a concrete data
format, the result is a concrete representation of the abstract definition, in
the form of an endpoint or service access point.

Concrete details The mapping of a particular port type to a concrete data format results in a
reusable binding. A port is defined by associating a network address with a
reusable binding, and a collection of ports define a service.
 8

http://www.w3.org/TR/wsdl

Web Services Description Language Basics
Because WSDL was intended to describe services offered over the Web, the
concrete message format is typically SOAP and the network protocol is
typically HTTP. However, WSDL documents can use any concrete message
format and network protocol. In fact, Artix contracts bind operations to
several data formats and describe the details for a number of network
protocols.

Namespaces and imported
descriptions

WSDL supports the use of XML namespaces defined in the <definition>
element as a way of specifying predefined extensions and type systems in a
WSDL document. WSDL also supports importing WSDL documents and
fragments for building modular WSDL collections.

Elements of a WSDL document A WSDL document is made up of the following elements:

� <types> � the definition of complex data types based on in-line type
descriptions and/or external definitions such as those in an XML
Schema (XSD).

� <message> � the abstract definition of the data being communicated.

� <operation>� the abstract description of an action.

� <portType> � the set of operations representing an absract endpoint.

� <binding> � the concrete data format specification for a port type.

� <port> � the endpoint defined by a binding and a physical address.

� <service> � a set of ports.

Example Example 1 shows a simple WSDL document. It defines a SOAP over HTTP
service access point that returns the date.

Example 1: Simple WSDL

<?xml version="1.0"?>
<definitions name="DateService"

targetNamespace="urn:dateservice"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="urn:dateservice"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsd1="http://iona.com/dates/schemas">
9

CHAPTER 2 | Understanding Artix Contracts
 <types>
 <schema targetNamespace="http://iona.com/dates/schemas"

xmlns="http://www.w3.org/2000/10/XMLSchema">
 <element name="dateType">
 <complexType>>
 <all>
 <element name="day" type="xsd:int"/>
 <element name="month" type="xsd:int"/>
 <element name="year" type="xsd:int" />
 </all>
 </complexType>
 <element>
 </schema>
 </types>
 <message name="DateResponse">
 <part name="date" element="xsd1:dateType" />
 </message>
 <portType name="DatePortType">
 <operation name="sendDate">
 <output message="tns:DateResponse" name="sendDate" />
 </operation>
 </portType>
 <binding name="DatePortBinding" type="tns:DatePortType">
 <soap:binding style="rpc"

transport="http://schemas.xmlsoap.org/soap/http" />
 <operation name="sendDate">
 <soap:operation soapAction="" style="rpc" />
 <output name="sendDate">
 <soap:body

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="urn:dateservice" use="encoded" />

 </output>
 </operation>
 </binding>
 <service name="DateService">
 <port binding="tns:DatePortBinding" name="DatePort">
 <soap:address location="http://www.iona.com/DatePort/" />
 </port>
 </service>
</definitions>

Example 1: Simple WSDL
 10

Abstract Data Type Definitions
Abstract Data Type Definitions

Overview Applications typically use datatypes that are more complex than the
primitive types, like int, defined by most programming languages. WSDL
documents represent these complex datatypes using a combination of
schema types defined in referenced external XML schema documents and
complex types described in <types> elements.

Complex type definitions Complex data types are described in a <types> element. The W3C
specification states the XSD is the preferred canonical type system for a
WSDL document. Therefore, XSD is treated as the intrinsic type system.
Because these data types are abstract descriptions of the data passed over
the wire and not concrete descriptions, there are a few guidelines on using
XSD schemas to represent them:

� Use elements, not attributes.

� Do not use protocol-specific types as base types.

� Define arrays using the SOAP 1.1 array encoding format.

WSDL does allow for the specification and use of alternative type systems
within a document.

Example The structure, personalInfo, defined in Example 2, contains a string, an
int, and an enum. The string and the int both have equivalent XSD types
and do not require special type mapping. The enumerated type
hairColorType, however, does need to be described in XSD.

Example 2: personalInfo

enum hairColorType {red, brunette, blonde};

struct personalInfo
{
 string name;
 int age;
 hairColorType hairColor;
}

11

CHAPTER 2 | Understanding Artix Contracts
Example 3 shows one mapping of personalInfo into XSD. This mapping is
a direct representation of the data types defined in Example 2.
hairColorType is described using a named simpleType because it does not
have any child elements. personalInfo is defined as an element so that it
can be used in messages later in the contract.

Another way to map personalInfo is to describe hairColorType in-line as
shown in Example 4. WIth this mapping, however, you cannot reuse the
description of hairColorType.

Example 3: XSD type definition for personalInfo

<types>
 <xsd:schema targetNamespace="http:\\iona.com\personal\schema"

xmlns:xsd1="http:\\iona.com\personal\schema"
xmlns="http://www.w3.org/2000/10/XMLSchema">

 <simpleType name="hairColorType">
 <restriction base="xsd:string">
 <enumeration value="red" />
 <enumeration value="brunette" />
 <enumeration value="blonde" />
 </ restriction>
 </ simpleType>
 <element name="personalInfo">
 <complexType>
 <element name="name" type="xsd:string" />
 <element name="age" type="xsd:int" />
 <element name="hairColor" type="xsd1:hairColorType" />
 </ complexType>
 </ element>
 </ schema>
</ types>

Example 4: Alternate XSD mapping for personalInfo

<types>
 <xsd:schema targetNamespace="http:\\iona.com\personal\schema"

xmlns:xsd1="http:\\iona.com\personal\schema"
xmlns="http://www.w3.org/2000/10/XMLSchema">

 <element name="personalInfo">
 <complexType>
 <element name="name" type="xsd:string" />
 <element name="age" type="xsd:int" />
 12

Abstract Data Type Definitions
 <element name="hairColor">
 <simpleType>
 <restriction base="xsd:string">
 <enumeration value="red" />
 <enumeration value="brunette" />
 <enumeration value="blonde" />
 </ restriction>
 </ simpleType>
 </ element>
 </ complexType>
 </ element>
 </ schema>
</ types>

Example 4: Alternate XSD mapping for personalInfo
13

CHAPTER 2 | Understanding Artix Contracts
Abstract Message Definitions

Overview WSDL is designed to describe how data is passed over a network and
because of this it describes data that is exchanged between two endpoints
in terms of abstract messages described in <message> elements. Each
abstract message consists of one or more parts, defined in <part> elements.
These abstract messages represent the parameters passed by the operations
defined by the WSDL document and are mapped to concrete data formats in
the WSDL document�s <binding> elements.

Messages and parameter lists For simplicity in describing the data consumed and provided by an
endpoint, WSDL documents allow abstract operations to have only one
input message, the representation of the operation�s incoming parameter
list, and one output message, the representation of the data returned by the
operation. In the abstract message definition, you cannot directly describe a
message that represents an operation's return value, therefore any return
value must be included in the output message

Messages allow for concrete methods defined in programming languages
like C++ to be mapped to abstract WSDL operations. Each message
contains a number of <part> elements that represent one element in a
parameter list. Therefore, all of the input parameters for a method call are
defined in one message and all of the output parameters, including the
operation�s return value, would be mapped to another message.

Example For example, imagine a server that stored personal information as defined in
Example 2 on page 11 and provided a method that returned an employee�s
data based on an employee ID number. The method signature for looking up
the data would look similar to Example 5.

Example 5: personalInfo lookup method

personalInfo lookup(long empId)
 14

Abstract Message Definitions
This method signature could be mapped to the WSDL fragment shown in
Example 6.

Message naming Each message in a WSDL document must have a unique name within its
namespace. It is also recommended that messages are named in a way that
represents whether they are input messages, requests, or output messages,
responses.

Message parts Message parts are the formal data elements of the abstract message. Each
part is identified by a name and an attribute specifying its data type. The
data type attributes are listed in Table 1

Messages are allowed to reuse part names. For instance, if a method has a
parameter, foo, that is passed by reference or is an in/out, it can be a part in
both the request message and the response message as shown in
Example 7.

Example 6: WSDL Message Definitions

<message name="personalLookupRequest">
 <part name="empId" type="xsd:int" />
<message />
<message name="personalLookupResponse>
 <part name="return" element="xsd1:personalInfo" />
<message />

Table 1: Part Data Type Attributes

Attribute Description

type="type_name" The datatype of the part is defined by a
simpleType or complexType called type_name

element="elem_name" The datatype of the part is defined by an
element called elem_name.

Example 7: Reused part

<message name="fooRequest">
 <part name="foo" type="xsd:int" />
<message>
15

CHAPTER 2 | Understanding Artix Contracts
<message name="fooReply">
 <part name="foo" type="xsd:int" />
<message>

Example 7: Reused part
 16

Abstract Interface Definitions
Abstract Interface Definitions

Overview WSDL <portType> elements define, in an abstract way, the operations
offered by a service. The operations defined in a port type list the input,
output, and any fault messages used by the service to complete the
transaction the operation describes.

Port types A portType can be thought of as an interface description and in many Web
service implementations there is a direct mapping between port types and
implementation objects. Port types are the abstract unit of a WSDL
document that is mapped into a concrete binding to form the complete
description of what is offered over a port.

Port types are described using the <portType> element in a WSDL
document. Each port type in a WSDL document must have a unique name,
specified using the name attribute, and is made up of a collection of
operations, described in <operation> elements. A WSDL document can
describe any number of port types.

Operations Operations, described in <operation> elements in a WSDL document are an
abstract description of an interaction between two endpoints. For example,
a request for a checking account balance and an order for a gross of widgets
can both be defined as operations.

Each operation within a port type must have a unique name, specified using
the name attribute. The name attribute is required to define an operation.

Elements of an operation Each operation is made up of a set of elements. The elements represent the
messages communicated between the endpoints to execute the operation.
The elements that can describe an operation are listed in Table 2.

Table 2: Operation Message Elements

Element Description

<input> Specifies a message that is received from another
endpoint. This element can occur at most once for each
operation.
17

CHAPTER 2 | Understanding Artix Contracts
An operation is required to have at least one input or output element. The
elements are defined by two attributes listed inTable 3.

It is not necessary to specify the name attribute for all input and output
elements; WSDL provides a default naming scheme based on the enclosing
operation�s name. If only one element is used in the operation, the element
name defaults to the name of the operation. If both an input and an output
element are used, the element name defaults to the name of the operation
with Request or Response respectively appended to the name.

Return values Because the port type is an abstract definition of the data passed during in
operation, WSDL does not provide for return values to be specified for an
operation. If a method returns a value it will be mapped into the output
message as the last <part> of that message. The concrete details of how the
message parts are mapped into a physical representation are described in
the binding section.

<output> Specifies a message that is sent to another endpoint. This
element can occur at most once for each operation.

<fault> Specifies a message used to communicate an error
condition between the endpoints. This element is not
required and can occur an unlimited number of times.

Table 2: Operation Message Elements

Element Description

Table 3: Attributes of the Input and Output Elements

Attribute Description

name Identifies the message so it can be referenced when
mapping the operation to a concrete data format. The name
must be unique within the enclosing port type.

message Specifies the abstract message that describes the data
being sent or received. The value of the message attribute
must correspond to the name attribute of one of the abstract
messages defined in the WSDL document.
 18

Abstract Interface Definitions
Example For example, in implementing a server that stored personal information in
the structure defined in Example 2 on page 11, you might use an interface
similar to the one shown in Example 8.

This interface could be mapped to the port type in Example 9.

Example 8: personalInfo lookup interface

interface personalInfoLookup
{
 personalInfo lookup(in int empID)
 raises(idNotFound);
}

Example 9: personalInfo lookup port type

<message name="personalLookupRequest">
 <part name="empId" type="xsd:int" />
<message />
<message name="personalLookupResponse">
 <part name="return" element="xsd1:personalInfo" />
<message />
<message name="idNotFoundException">
 <part name="exception" element="xsd1:idNotFound" />
<message />
<portType name="personalInfoLookup">
 <operation name="lookup">
 <input name="empID" message="personalLookupRequest" />
 <output name="return" message="personalLookupResponse" />
 <fault name="exception" message="idNotFoundException" />
 </ operation>
</ portType>
19

CHAPTER 2 | Understanding Artix Contracts
Mapping to the Concrete Details

Overview The abstract definitions in a WSDL document are intended to be used in
defining the interaction of real applications that have specific network
addresses, use specific network protocols, and expect data in a particular
format. To fully define these real applications, the abstract definitions need
to be mapped to concrete representations of the data passed between the
applications and the details of the network protocols need to be added.

This is done by the WSDL bindings and ports. WSDL binding and port
syntax is not tightly specified by W3C. While there is a specification defining
the mechanism for defining the syntaxes, the syntaxes for bindings other
than SOAP and network transports other than HTTP are not bound to a
W3C specification.

Bindings To define an endpoint that corresponds to a running service, port types are
mapped to bindings which describe how the abstract messages defined for
the port type map to the data format used on the wire. The bindings are
described in <binding> elements. A binding can map to only one port type,
but a port type can be mapped to any number of bindings.

It is within the bindings that details such as parameter order, concrete data
types, and return values are specified. For example, the parts of a message
can be reordered in a binding to reflect the order required by an RPC call.
Depending on the binding type, you can also identify which of the message
parts, if any, represent the return type of a method.

Services The final piece of information needed to describe how to connect a remote
service is the network information needed to locate it. This information is
defined inside a <port> element. Each port specifies the address and
configuration information for connecting the application to a network.

Ports are grouped within <service> elements. A service can contain one or
many ports. The convention is that the ports defined within a particular
service are related in some way. For example all of the ports might be bound
to the same port type, but use different network protocols, like HTTP and
WebSphere MQ.
 20

Artix Contract Specifics
Artix Contract Specifics

Overview Artix contracts are WSDL documents that describe Artix service access
points and their integration. Each mapping of a port type to a binding and
port defines an Artix service access point. An Artix contract also describes
the routing between service access points.

An Artix contract has two sections as shown in Figure 2:

Logical describes the abstract operations, messages, and data types used
by a service access point.

Physical describes the concrete message formats and transports used by a
service access point. The routing information defining how messages are
mapped between different service access points is also specified here.

In this section The following topics are discussed in this section:

Figure 2: An Artix Contract
21

CHAPTER 2 | Understanding Artix Contracts
The Logical Section page 23

The Physical Section page 25
 22

Artix Contract Specifics
The Logical Section

Overview The logical section of an Artix contract defines the abstract operations that
the service access points offer. The logical view includes the <types>,
<message>, and <portType> tags in a WSDL document. This portion of the
contract also specifies the namespaces used in defining the contract.

Namespaces Artix contracts use several IONA-specific namespaces to define the Artix
extensions for mapping to different data formats and network transports.
These namespaces include:

Table 4: Artix Namespaces

Namespace Description

http://schemas.iona.com/transports/http Specifies the WSDL extensions for HTTP

http://schemas.iona.com/transports/http/configuration Specifies additional extensions to configure
the HTTP transport.

http://schemas.iona.com/bindings/corba Specifies the WSDL extensions used to map
data to CORBA. This namespace also
specifies the transport specific configuration
setting for a CORBA port.

http://schemas.iona.com/bindings/corba/typemap Specifies the type mapping information used
to fully describe complex CORBA types
defined in IDL.

http://schemas.iona.com/routing Specifies the WSDL extensions to define
routing between Artix SAPs.

http://schemas.iona.com/transports/mq Specifies the WSDL extensions to configure
the WebSphere MQ transport.
23

CHAPTER 2 | Understanding Artix Contracts
Port types and code generation The Artix code generation tools, including the IDL generator, are driven by
the port types defined in an Artix contract. For each port type defined in a
contract, the code generators create an object named for the port type it
represents. For example, the port type defined in Example 9 on page 19
results in an object similar to the one shown in Example 10.

For more information on Artix code generation, see the Artix C++
Programmer�s Guide.

Example 10:personalInfo Object

class personalInfoLookup
{
 personalInfoLookup();
 ~personalInfoLookup();

 void lookup(int empID, personalLookupResponse &return);
}

 24

Artix Contract Specifics
The Physical Section

Overview The physical section of an Artix contract defines the actual bindings and
transports used by the service access points. It includes the information
specified in the <binding> and <service> tags of a WSDL document. It also
includes the routing rules defining how the messages are routed between
the endpoints defined in the contract.

Bindings WSDL is intended to describe service offered over the Web and therefore
most bindings are specified using SOAP as the message format. WSDL can
bind data to other message formats however.

Artix provides bindings for several message formats including CORBA and
FML. For specific information on using these bindings see the appropriate
chapter in this guide.

Network protocols WSDL documents typically use HTTP as the network protocol. However,
WSDL is not limited to representing connections over HTTP. Artix provides
port descriptions for several network protocols including IIOP and
WebSphere MQ. For more information on using these network protocols in
Artix see the appropriate chapter in this guide.

CORBA type map When using the CORBA additional data is required to fully map the logical
types to concrete CORBA data types. This is done using a CORBA type map
extension to standard WSDL. For a detailed description of how Artix maps
logical types to CORBA types read �CORBA Type Mapping� on page 172.

Routing To fully describe the integration of service access points across an
enterprise, Artix contracts include routing rules for directing data between
the service access points. Routing rules are described in �Routing� on
page 65.
25

CHAPTER 2 | Understanding Artix Contracts
 26

CHAPTER 3

Configuration
Artix�s customizable configuration provides a great deal of
control over how Artix systems perform. Configuration settings
affect the runtime behavior of Artix plug-ins.

Overview There are several tasks involved in creating an environment in which Artix
applications can run:

� Establishing the host computer environment

� Establishing the common and application-specific Artix runtime
environments

� Configuring plug-ins to provide additional functions, for example,
logging and routing plug-ins.

In this chapter This chapter discusses the following topics:

Establishing the Host Computer Environment page 28

Configuring Artix Runtime Behavior page 31

Runtime Configuration Variables page 35

Artix Plug-in Configuration page 42
27

CHAPTER 3 | Configuration
Establishing the Host Computer Environment

Overview To use the Artix design tools and the Artix runtime environment, the host
computer must have several IONA specific environment variables set. These
can be configured during installation or set later by running the provided
artix_env script.

Environmental variables Artix requires that the following environment variables be set on your
system:

� JAVA_HOME

� IT_PRODUCT_DIR

� IT_CONFIG_FILE

� IT_IDL_CONFIG_FILE

� IT_CONFIG_DIR

� IT_CONFIG_DOMAINS_DIR

� IT_DOMAIN_NAME

� PATH

JAVA_HOME

The path to your system�s JDK is specified with the system environment
variable JAVA_HOME. This must be set if you wish to use the Artix Designer.

IT_PRODUCT_DIR

IT_PRODUCT_DIR points to the top level of your IONA product installaion. For
example, if you install Artix into the C:\Program Files\IONA directory of
your Windows system, you would set IT_PRODUCT_DIR to point to that
directory.

You can override this variable using the -ORBproduct_dir command line
parameter when running your Artix applications.

Note: If you have other IONA products installed and you choose not to
install them into the same directory tree, you will need to reset
IT_PRODUCT_DIR each time you switch IONA products.
 28

Establishing the Host Computer Environment
IT_CONFIG_FILE

IT_CONFIG_FILE specifies the location of the configuration file Artix services
use by default. You can overide this setting by using the -ORBdomain_name
and -ORBconfig_domains_dir command line options.

IT_IDL_CONFIG_FILE

IT_IDL_CONFIG_FILE specifies the configuration used by the Artix IDL
compiler. If this variable is not set, you will be unable to run the IDL to
WSDL tools provided with Artix. The configuration file for the Artix IDL
compiler is set as follows.

UNIX

Defaults to $IT_INSTALL_DIR/artix/1.2/etc/idl.cfg.

Windows

Defaults to %IT_INSTALL_DIR%\artix\1.2\etc\idl.cfg.

IT_CONFIG_DIR

IT_CONFIG_DIR specifies the root configuration directory. The default root
configuration directory is /etc/opt/iona on UNIX, and product-dir\etc on
Windows. You can override this varaible using the -ORBconfig_dir
command line parameter.

IT_CONFIG_DOMAINS_DIR

IT_CONFIG_DOMAINS_DIR specifies the directory where Artix searches for its
configuration files. The configuration domains directory defaults to
ORBconfig_dir/domains on UNIX, and ORBconfig_dir\domains on
Windows. You can override this variable using the -ORBconfig_domians_dir
command line parameter.

IT_DOMAIN_NAME

IT_DOMAIN_NAME specifies the name of the configuration domain used by
Artix to locate its configuration information. This variable also specifes the
file name the configuration information is stored in. For example the
configuration information for domain artix would be stored in
ORBconfig_dir\domains\atrix.cfg on Windows and
ORBconfig_dir/domains/artix.cfg on Unix. You can override this variable
with the -ORBdomain_name command line parameter.

Note: Do not modify the default IDL configuration file.
29

CHAPTER 3 | Configuration
PATH

The Artix bin directories should be placed first on the PATH, this ensures that
the proper libraries, configuration files, and utility programs (for example,
the IDL compiler) are used. These settings avoid problems that might
otherwise occur if the Application Server Platform and/or Tuxedo (both of
which include IDL compilers and CORBA class libraries) are installed on the
same host computer.

The default Artix bin directories are:

UNIX
$IT_PRODUCT_DIR/artix/1.2/bin

Windows
%IT_PRODUCT_DIR%\artix\1.2\bin

Running the artix_env Script The installation process creates a script, artix_env, that captures the
default information for setting the host computer�s Artix environment.
Running this script will properly configure your system to use Artix. It is
located in the Artix bin directory.

IT_PRODUCT_DIR\artix\1.2\bin\artix_env
 30

Configuring Artix Runtime Behavior
Configuring Artix Runtime Behavior

Overview Artix, like the Application Server Platform, is built upon IONA�s Adaptive
Runtime Architecture (ART). Runtime behaviors are established through
common and application-specific configuration settings that are applied
during application startup. As a result, the same application code may be
run -- and may exhibit different capabilities -- in different configuration
environments.

An Artix configuration domain is a collection of configuration information in
an Artix runtime environment. This information consists of configuration
variables and their values. A default Artix configuration is provided when
Artix is installed. The default configuration file is located in
%IT_PRODUCT_DIR%\artix\1.2\etc\domains\artix.cfg on Windows and
$IT_PRODUCT_DIR/artix/1.2/etc/domains/artix.cfg on Unix.

The contents of this file may need to be changed to modify Artix logging,
routing, and other behaviors. Such changes may be the result of either
automatically generated code, settings in the Artix System Designer, or
manual editing of the Artix configuration file (artix.cfg).

You can also manually create new Artix configuration domains to
compartmentalize your applications. However, this is only recommended if
you are familiar with configuring IONA�s ART platform.

Configuration Scopes An Artix configuration is divided into scopes. These are typically organized
into a hierarchy of scopes, whose fully-qualified names map directly to ORB
names. By organizing configuration variables into various scopes, you can
provide different settings for individual services, or common settings for
groups of services.

Configuration scopes apply to a subset of services or to a specific services in
an environment. Instances of the Artix standalone service can each have
their own configuration scopes. A default Artix standalone service scope is
automatically created when you install Artix.

Artix applications can have their own configuration scopes.
31

CHAPTER 3 | Configuration
Application-specific configuration variables either override default values
assigned to common configuration variables, or establish new configuration
variables. Configuration scopes are localized through a name tag and
delimited by a set of curly braces terminated with a semicolon, for example,
(nameTag {…};).

A configuration scope may include nested configuration scopes.
Configuration variables set within nested configuration scopes take
precedence over values set in enclosing configuration scopes.

In the artix.cfg file, there are several predefined configuration scopes. For
example, the demo configuration scope includes nested configuration scopes
for some of the demo programs included with the product.

demo
{
 fml_plugin
 {
 orb_plugins = ["local_log_stream", "iiop_profile",
 "giop", "iiop", "soap", "http", "G2", "tunnel",
 "mq", "ws_orb", "fml"];
 };
 telco
 {
 orb_plugins = ["local_log_stream", "iiop_profile",
 "giop”, "iiop”, "G2", "tunnel"];
 plugins:tunnel:iiop:port = "55002";
 poa:MyTunnel:direct_persistent = "true";
 poa:MyTunnel:well_known_address = "plugins:tunnel";

 server
 {
 orb_plugins = ["local_log_stream", "iiop_profile",
 "giop", "iiop”, "ots", "soap", "http", "G2:,
 "tunnel"];
 plugins:tunnel:poa_name = "MyTunnel";
 };
 };
 tibrv
 {
 orb_plugins = ["local_log_stream", "iiop_profile",
 "giop", "iiop", "soap", "http", "tibrv"];

 event_log:filters = ["*=FATAL+ERROR"];
 };
};
 32

Configuring Artix Runtime Behavior
Note that the orb_plugins list is redefined within each configuration scope.

Mapping to a configuration scope To make an Artix process run under a configuration scope, you name that
scope using the -ORBname parameter. During process initialization, Artix
searches for a configuration scope with the same name as the -ORBname
parameter.

There are two methods for supplying the -ORBname parameter to an Artix
process:

� Pass the argument on the command line.

� Specify the ORBname as the third parameter to IT_Bus::init().

For example, to start an Artix process using the configuration specified in the
demo.tibrv configuration scope, you could start the process use the
following syntax:

Alternately, you could use the following code fragment to initialize the Artix
bus:

If a corresponding configuration scope is not located, the process starts
under the higher level configuration scope. If there are no configuration
scopes that correspond to the ORBname parameter, the Artix process runs
under the default global scope. For example, if the nested configuration
scope tibrv does not exist, the Artix process uses the configuration
specified in the demo configuration scope; if the scope demo does not exist,
the process runs under the default global scope.

Namespaces Most configuration variables are organized within namespaces, which serve
to group related variables. Namespaces can be nested, and are delimited by
colons (:). For example, configuration variables that control the behavior of
a plug-in begin with plugins: followed by the name of the plug-in for which
the variable is being set. For example, the to specify the port in which the
Artix standalone service starts up on you would set the following variable:

<processName> [application parameters] -ORBname demo.tibrv

IT_Bus::init (argc, argv, “demo.tibrv”);

plugins:artix_service:iiop:port
33

CHAPTER 3 | Configuration
To set the location of the routing plug-in�s contract you would set the
following variable:

Variables Configuration data is stored in variables that are set within each namespace.
In some instances variables in different namespaces share the same variable
names.

Variables can also be reset several times within successive layers of a
configuration scope. Configuration variables set in narrower configuration
scopes override variable settings in wider scopes. For example, a
company.operations.orb_plugins variable would override a
company.orb_plugins variable. Similarly, plug-ins specified at the company
scope would apply to all SAPs in that scope, except those SAPs that belong
specifically to the company.operations scope and its child scopes.

Data types Each configuration variable has an associated data type that determines the
variable�s value. When creating configuration variables, you must specify the
variable type.

Data types can be categorized into two types:

� Primitive types

� Constructed types

Primitive types

There are three primitive types: boolean, double, and long,.

Constructed types

Artix supports two constructed types: string and ConfigList (a sequence
of strings).

� In an Artix configuration file, the string character set is ASCII.

� The ConfigList type is simply a sequence of string types. For
example:

plugins:routing:wsdl_url

orb_plugins = ["local_log_stream", "iiop_profile",
"giop","iiop"];
 34

Runtime Configuration Variables
Runtime Configuration Variables

In this section This section provides an overview of the most common configuration
variables use by the Artix runtime. The following topics are discussed in this
section:

ORB Plug-ins List page 36

Binding Lists page 38

Thread Pool Control page 40
35

CHAPTER 3 | Configuration
ORB Plug-ins List

Overview The orb_plugins variable specifies the plug-ins that Artix should load during
application initialization. A plug-in is a class or code library that can be
loaded into an Artix application at runtime. These plug-ins provide the user
the ability to load network transports, payload format mappers, error logging
streams, and other features �on the fly.�

The default entry for the orb_plugins variable includes all of the logging and
transport plug-ins:

Artix plug-ins Each network transport and payload format that Artix is capable of
interoperating with uses its own plug-in. Many of the Artix features also use
plug-ins. The Artix transport plug-ins are listed in Table 5.

orb_plugins = ["xmlfile_log_stream",
 "iiop_profile",
 "giop",
 "iiop",
 "soap",
 "http",
 "tunnel",
 "mq",
 "ws_orb"];

Table 5: Artix Transport Plug-ins

Plug-in Transport

http Provides support for using HTTP and HTTPS.

ws_orb Provides support for CORBA interoperability.

tunnel Provides support for the IIOP transport using non-CORBA
payloads.

tuxedo Provides support for Tuxedo interoperability.

mq Provides support for WebSphere MQ interoperability.

tibrv Provides support for TIBCO Rendezvous interoperability.
 36

Runtime Configuration Variables
The Artix payload format plug-ins are listed in Table 6.

The Artix feature plug-ins are listed in Table 7.

Table 6: Artix Payload Format Plug-ins

Plug-in Payload Format

soap Decodes and encodes messages using the SOAP format.

G2 Decodes and encodes messages packaged using the G2++
format.

fml Decodes and encodes messages packaged in FML format.

fixed Decode and encodes fixed record length messages.

Table 7: Artix Service Plug-ins

Plug-in Artix Feature

routing Enables Artix routing.

locator_endpoint Enables endpoints to use the Artix locator
service.

locator_svr Enables the Artix locator. An Artix server acting
as the locator service must load this plug-in.

artix_wsdl_publish Enables Artix endpoints to publish and use Artix
object references.
37

CHAPTER 3 | Configuration
Binding Lists

Overview The Artix binding namespace contains variables that specify interceptor
settings. An interceptor acts on a message as it flows from sender to
receiver. Computing concepts that fit the interceptor abstraction include
transports, marshaling streams, transaction identifiers, encryption, session
managers, message loggers, containers, and data transformers. Interceptors
are a form of the �Chain of Responsibility� design pattern. Artix creates and
manages chains of interceptors between senders and receivers, and the
interceptor metaphor is a means of creating a �virtual connection� between
a sender and a receiver.

The Artix binding namespace includes the following variables:

� client_binding_list

� server_binding_list

client_binding_list Artix provides client request-level interceptors for OTS, GIOP, and POA
collocation (where server and client are collocated in the same process), and
message-level interceptors used in client-side bindings for IIOP, SHMIOP
and GIOP.

The client_binding_list specifies a list of potential client-side bindings.
Each item is a string that describes one potential interceptor binding. For
example:

Interceptor names are separated by a plus (+) character. Interceptors to the
right are �closer to the wire� than those on the left. The syntax is as follows:

� Request-level interceptors, such as GIOP, must precede message-level
interceptors, such as IIOP.

� GIOP or POA_coloc must be included as the last request-level
interceptor.

� Message-level interceptors must follow the GIOP interceptor, which
requires at least one message-level interceptor.

� The last message-level interceptor must be a message-level transport
interceptor, such as IIOP or SHMIOP.

binding:client_binding_list = ["OTS+POA_Coloc","POA_Coloc","OTS+GIOP+IIOP","GIOP+IIOP"];
 38

Runtime Configuration Variables
When a client-side binding is needed, the potential binding strings in the list
are tried in order, until one successfully establishes a binding. Any binding
string specifying an interceptor that is not loaded, or not initialized through
the orb_plugins variable, is rejected.

For example, if the ots plug-in is not configured, bindings that contain the
OTS request-level interceptor are rejected, leaving ["POA_Coloc",
"GIOP+IIOP", "GIOP+SHMIOP"]. This specifies that POA collocations should
be tried first; if that fails, (the server and client are not collocated), the GIOP
request-level interceptor and the IIOP message-level interceptor should be
used. If the ots plug-in is configured, bindings that contain the OTS request
interceptor are preferred to those without it.

server_binding_list server_binding_list specifies interceptors included in request-level
binding on the server side. The POA request-level interceptor is implicitly
included in the binding.

The syntax is similar to client_binding_list. However, in contrast to the
client_binding_list, the left-most interceptors in the
server_binding_list are �closer to the wire�, and no message-level
interceptors can be included (for example, IIOP). For example:

An empty string ("") is a valid server-side binding string; this specifies that
no request-level interceptors are needed. A binding string is rejected if any
named interceptor is not loaded and initialized.

The default server_binding_list is ["OTS", ""]. If the ots plug-in is not
configured, the first potential binding is rejected, and the second potential
binding ("") is used, with no explicit interceptors added.

binding:server_binding_list = ["OTS",""];
39

CHAPTER 3 | Configuration
Thread Pool Control

Overview Variables in the thread_pool namespace set policies related to thread
control. They can be set globally for Artix instances in a configuration scope,
or they can be set on a per-service basis. The settings set on a per-service
basis override the global settings for the configuration scope.

To set the values globally, use the following syntax:

To set the values on a per-service basis you can specify either the service�s
name or the service�s fully qualified QName. The syntax is as follows:

For example, if an Artix instance�s contract has a service named
personalInfoService, you would specify its thread control settings as
follows:

The thread control settings specify the values for the thread pool on a
per-port basis. For instance, if personalInfoService describes three ports,
each port will have its own thread pool with values as specified by the
settings in the thread_pool:personalInfoService namespace.

The following variables are in this namespace:

� high_water_mark

� initial_threads

� low_water_mark

high_water_mark high_water_mark sets the maximum number of threads allowed in each
port�s thread pool. Defaults to 25.

initial_threads initial_threads sets the number of initial threads in each port�s thread
pool. Defaults to 2.

thread_pool:variable_name

thread_pool:service_name:variable_name
thread_pool:service_qname:variable_name

thread_pool:personalInfoService:variable_name
 40

Runtime Configuration Variables
low_water_mark low_water_mark sets the minimum number of threads in each port�s thread
pool. Artix will terminate unused threads until only this number exists.
Defaults to 5.
41

CHAPTER 3 | Configuration
Artix Plug-in Configuration

Overview Each Artix transport and payload format have properties which are
configurable. The variables used to configure plug-in behavior are specified
in the configuration scopes of each Artix runtime instance and follow the
same order of precedence. A plug-in setting specified in the global
configuration scope will be overridden in favor of a value set in a narrower
scope.

For example, if you set plugins:routing:use_type_factory to true in the
global configuration scope and set it to false in the scope widget_form, all
Artix runtimes, except for those running under the scope widget_form,
would use true for the value of use_type_factory. Any Artix instance using
the scope widget_form would use false the value of use_type_factory.

In this section This section discusses the following topics:

Routing Plug-in page 43

CORBA Plug-in page 45

TIBCO Rendezvous Plug-in page 46

Tuxedo Plug-in page 47

Locator Service Plug-in page 48

Locator Service Endpoint Plug-in page 49

Session Manager Plug-in page 50

Session Manager Simple Policy Plug-in page 51

Session Manager Endpoint Plug-in page 52
 42

Artix Plug-in Configuration
Routing Plug-in

Overview The routing plug-in uses the following variables:

� plugins:routing:shlib_name

� plugins:routing:routing_wsdl

� plugins:routing:use_type_factory

� plugins:routing:use_pass_through

plugins:routing:shlib_name

plugins:routing:shlib_name specifies the shared library that implements
the routing plug-in. The default value for this is it_routing. Do not change
this vaue.

plugins:routing:routing_wsdl

plugins:routing:routing_wsdl specifies the URL to search for Artix
contracts containing the routing rules for your application. This value can be
either a single URL or a list of URLs. If your application is using the routing
plug-in you must spcecify a value for this variable.

plugins:routing:use_type_factory

plugins:routing:use_type_factory specifies if the routing plug-in loads
user compiled type factories. The default setting is false.

Note: The use of type factories in routing is deprecated.
43

CHAPTER 3 | Configuration
plugins:routing:use_pass_through

plugins:routing:use_pass_through specifies if the routing plug-in uses the
pass-through routing optimization. This optimization allows the router to
copy the message buffer directly from the source endpoint to the destination
endpoint if both use the same binding. The default value is true.

Note: A few attributes are carried in the message body, as opposed to by
the transport. Such attributes are always propagated when the
pass-through optimization is in effect, regardless of attribute propagation
rules.
 44

Artix Plug-in Configuration
CORBA Plug-in

Overview In general, the Artix CORBA plug-in does not have any configuration
variables directly associated with it. However, the CORBA plug-in is
implemented using the same framework as IONA�s Application Server
Platform and it is affected by the same configuration settings as IONA�s
Application Server Platform.

For example, if you set the configuration variable:

This will impact the CORBA messages that Artix sends.

Or, if you remove the plug-in POA_Coloc from the client binding list, then
collocation will not work.

Shared library configuration The only configuration variable that is directly associated with the CORBA
plug-in is plugins:ws_orb:shlib_name. plugins:ws_orb:shlib_name
specifies the shared library that implements the CORBA plug-in. The default
value for this is it_ws_orb. Do not change this value.

policies:giop:interop_policy:send_principal = "true";
45

CHAPTER 3 | Configuration
TIBCO Rendezvous Plug-in

Overview The TIBCO Rendezvous plug-in has only one configuration variable:

� plugins:tibrv:shlib_name

plugins:tibrv:shlib_name

plugins:tibrv:shlib_name specifies the shared library that implements the
TIBCO Rendevous plug-in. The default value for this is it_tibrv. Do not
change this vaue.
 46

Artix Plug-in Configuration
Tuxedo Plug-in

Overview The Tuxedo plug-in has only one configuration variable:

� plugins:tuxedo:server

plugins:tuxedo:server

plugins:tuxedo:server is a boolean that specifies if the Artix process is a
Tuxedo server and must be started using tmboot. The default is false.
47

CHAPTER 3 | Configuration
Locator Service Plug-in

Overview The locator service plug-in, service_locator, has the following
configuration variables:

� plugins:locator:service_url

� plugins:locator:peer_timeout

plugins:locator:service_url

plugins:locator:service_url specifies the location of the Artix contract
defining the location service and configuring its address. The name of this
contract is locator.wsdl.

plugins:locator:peer_timeout

plugins:locator:peer_timeout specifies the amount of time, in
milliseconds, the locator plug-in waits between keep-alive pings of the
services registered with it. The default is 4000000 (4 sec.).
 48

Artix Plug-in Configuration
Locator Service Endpoint Plug-in

Overview The locator service endpoint plug-in, locator_endpoit, has the following
configuration variables:

� plugins:locator:wsdl_url

� plugins:session_endpoint_manager:peer_timout

plugins:locator:wsdl_url

plugins:locator:wsdl_url specifies the location of the Artix contract
defining the location service and specifying the address locator endpoints
use to communicate with the locator service. The name of this contract is
locator.wsdl.

plugins:session_endpoint_manager:peer_timout

plugins:session_endpoint_manager:peer_timout specifies the specifies
the amount of time, in milliseconds, the server waits between keep-alive
oings of the locator service. The default is 4000000 (4 sec.).
49

CHAPTER 3 | Configuration
Session Manager Plug-in

Overview The session manager plug-in, session_manager_service, has the following
configuration variables:

� plugins:session_manager_service:service_url

� plugins:session_manager_service:peer_timeout

plugins:session_manager_service:service_url

plugins:session_manager_service:service_url specifies the location of
the Artix contract defining the session manager. The name of this contract is
session-manager.wsdl and it is located in the wsdl folder of your
installation.

plugins:session_manager_service:peer_timeout

plugins:session_manager_service:peer_timeout specifies the amount of
time, in milliseconds, the session manager plug-in waits between keep-alive
pings of the services registered with it. The default is 4000000 (4 sec.).
 50

Artix Plug-in Configuration
Session Manager Simple Policy Plug-in

Overview The session manager�s simple policy plug-in, sm_simple_policy, has the
following configuration variables:

� plugins:sm_simple_policy:max_concurrent_sessions

� plugins:sm_simple_policy:min_session_timeout

� plugins:sm_simple_policy:max_session_timeout

plugins:sm_simple_policy:max_concurrent_sessions

plugins:sm_simple_policy:max_concurrent_sessions specifies the
maximum number of concurrent sessions the session manager will allocate.
Default value is 1.

plugins:sm_simple_policy:min_session_timeout

plugins:sm_simple_policy:min_session_timeout specifies the minimum
amount of time, in seconds, allowed for a session�s timeout setting. Zero
means the unlimited. Default is 5.

plugins:sm_simple_policy:max_session_timeout

plugins:sm_simple_policy:max_session_timeout specifies the maximum
amount of time, in seconds, allowed for a session�s timesout setting. Zero
means the unlimited. Default is 600.
51

CHAPTER 3 | Configuration
Session Manager Endpoint Plug-in

Overview The session manager endpoint plug-in, session_endpoint_manager, has the
following configuration variables:

� plugins:session_endpoint_manager:wsdl_url

� plugins:session_endpoint_manager:endpoint_manager_url

� plugins:session_endpoint_manager:default_group

� plugins:session_endpoint_manager:header_validation

plugins:session_endpoint_manager:wsdl_url

plugins:session_endpoint_manager:wsdl_url specifies location of the
contract defining the session management service the endpoint manager is
to contact.

plugins:session_endpoint_manager:endpoint_manager_url

plugins:session_endpoint_manager:endpoint_manager_url specifies the
location of the contract defining the enpoint manager. The contract contains
the contact information for the endpoint manager.

plugins:session_endpoint_manager:default_group

plugins:session_endpoint_manager:default_group specifies the default
group name for all endpoints that are instantiated using the configuration
scope.

plugins:session_endpoint_manager:header_validation

plugins:session_endpoint_manager:header_validation specifies whether
or not a server validates the session headers passed to it by clients. Default
value is true.
 52

CHAPTER 4

Artix Standalone
Service
Artix lets you deploy middleware translation functions as a
standalone service external to both client and server
applications. The Artix standalone service can perform
transport switching, message routing, and middleware
bridging between non-Artix enabled applications.

In this chapter This chapter discusses the following topics:

The Artix Standalone Service page 54

Configuring the Service page 57

Starting and Stopping the Service page 59

Installing the Service as a Windows Service page 61

Contracts for the Standalone Service page 63
53

CHAPTER 4 | Artix Standalone Service
The Artix Standalone Service

Overview The Artix standalone service is a minimally invasive means of connecting
applications that use different communication transports and message
formats. It does not require that any Artix-specific code be compiled or
linked into existing applications.

How it works The Artix standalone service is a daemon that listens for traffic on access
points specified in the Artix contract. It re-directs messages based on the
routing rules you provide, and performs any transport switching and
message formatting needed for the receiving application. Neither application
is aware that its messages are being intercepted by Artix and no application
development is required.

The standalone service�s behavior is controlled by a combination of an Artix
contract and the Artix configuration file. For more information on Artix
contracts see �Understanding Artix Contracts� on page 7. For more
information on configuring the Artix runtime see �Configuration� on page 27.

Deployment patterns An Artix standalone service can be deployed in a number of ways. Two
common deployment patterns are:

Note: Artix requires that services being integrated use equivalent
message layouts. For example, a service expecting a long cannot be sent a
float.
 54

The Artix Standalone Service
Deploying several daemons, each of which bridges between two distinct
applications.

This approach simplifies designing integration solutions and provides faster
processing of each message. Using this approach, the Artix contract
describing the interaction of the applications is simpler because it contains
only the logical interfaces shared by the two applications, and the bindings
for each payload format.

Because most applications use only one network transport, the number of
ports will be minimal and the routing rules will also be simple. The fact that
the contract is kept simple also enhances the performance of each
individual daemon because it has less processing to do. In this approach,
each daemon�s resource usage can also be limited by tailoring its
configuration to optimize the daemon for the particular integration task for
which it is responsible.

Deploying one daemon to bridge between all of the applications in a
particular domain.

Figure 3: Using multiple Artix daemons

Figure 4: Using a single Artix daemon
55

CHAPTER 4 | Artix Standalone Service
This approach limits the number of external services required in your
deployment environment. This can simplify monitoring and installation of
deployments. It also reduces the number of �moving parts� in an integration
solution.
 56

Configuring the Service
Configuring the Service

Overview Each instance of the Artix standalone service running on a host machine
needs its own configuration scope to specify the unique port on which its
administrative interface listens. Each instance also needs a corresponding
administrative interface configuration scope.

Having separate configuration scopes for each instance of the service also
allows greater control over the resources the service uses. You can specify
that it only load the transport and payload format plug-ins it requires. You
can also control the services threading and time-out behaviors.

For more information on configuring Artix, see �Configuration� on page 27.

Orb plugins list In addition to the Artix plugins that provide support for the transports and
payload formats it will be working with, the Artix standalone service needs
to load the following plugins:

� iiop_profile

� logging

� iiop

� giop

 These need to be entered in its orb_plugins list.

Service plug-in settings The configuration variable that controls the behavior of the Artix standalone
service are in the plugins:artix_service namespace. Table 8 lists the
variables and their settings.

Table 8: Artix Standalone Service Configuration Variables

Variable Effect

shlib_name Specifies the name of the Artix
service�s shared library. This value
should always be set to
it_artix_service_svr.
57

CHAPTER 4 | Artix Standalone Service
Service admin interface Each instance of the Artix standalone service must have a corresponding
administrative interface configuration scope. This scope must contain an
entry for initial_references:IT_ArtixServiceAdmin:reference.
initial_references:IT_ArtixServiceAdmin:reference specifies the port
number of this admin interface�s corresponding Artix service. The port
number is specified using the corbaloc syntax:

hostname is the hostname of the computer on which the corresponding Artix
service is running. port is the port number on which the corresponding Artix
service is listening.

iiop:port Specifies the port number on
which the service listens for calls
from its administrative interface.
See �Service admin interface�.

iiop:host Specifies the name of the host
computer on which the service is
running. See �Service admin
interface�.

direct_persistence Specifies if the service�s object
reference is persistent across
multiple invocations.

Table 8: Artix Standalone Service Configuration Variables

Variable Effect

corbaloc:iiop:1.2@hostname:port/IT_ArtixServiceAdmin
 58

Starting and Stopping the Service
Starting and Stopping the Service

Starting the service To start the Artix standalone service, use the following script:

This script starts an instance of the Artix standalone service using the
default configuration scope of iona_services.artix_service.

Alternatively, you can start the service directly using the following
command:

Table 9 describes the parameters taken by it_artix_service.

For more information about configuring Artix see �Configuration� on
page 27.

start_artix_service

itartix_service -ORBname orb_name -ORBdomain_name domain_name
-ORBconfig_domains_dir domain_dir run [-background]

Table 9: it_artix_service Parameters

Parameter Description

-ORBname orb_name Specifies the scope under which the service finds its configuration
details.

-ORBdomain_name domain_name Specifies the service's configuration file name. The configuration file
has the name domain_name.cfg.

For example, given domain name acmewidgets, the service will read
its configuration from acmewidgets.cfg.

-ORBconfig_domains_dir domain_dir Specifies the location of the service�s configuration file.

run Specifies that the service is to begin monitoring.

-background Specifies that the service is to run in the background. If this
parameter is not specified, the service runs in the foreground of the
active command window.
59

CHAPTER 4 | Artix Standalone Service
Stopping the service To stop the Artix standalone service use the following script:

This script will stop an instance of the Artix standalone service started using
the start script, start_artix_service.

Alternatively, you can manually call the service�s administrative interface to
stop the service. To do so use the following command:

The value passed with the -ORBname flag specifies the configuration scope
under which the administrative interface finds its configuration information.
The vital entry in the administrative interfaces configuration is the entry for
initial_references:IT_ArtixServiceAdmin:reference. This entry must
contain the corbaloc address of the Artix service instance you wish to
shutdown.

stop_artix_service

itartix_service_admin -ORBname orb_name
 60

Installing the Service as a Windows Service
Installing the Service as a Windows Service

Overview On Windows systems, you can install instances of the Artix standalone
service as a service. This means the service starts at system boot and that
limited management functionality is provided through the Windows service
controls.

Installing the service To install the Artix standalone service as a Windows service, use the
following script:

This script installs the Artix standalone service using the default
configuration scope of iona_services.artix_service.

Alternatively, you can install an instance of the service directly using the
following command:

Table 10 describes the parameters taken by it_artix_service.

install_artix_service

it_artix_service -ORBname orb_name -ORBdomain_name domain_name
-ORBconfig_domains_dir domain_dir install

Table 10: it_artix_service Parameters

Parameter Description

-ORBname orb_name Specifies the scope under which the service finds its configuration
details.

-ORBdomain_name domain_name Specifies the service's configuration file name. The configuration file
has the name domain_name.cfg.

For example, given domain name acmewidgets, the service will read
its configuration from acmewidgets.cfg.

-ORBconfig_domains_dir domain_dir Specifies the location of the service�s configuration file.

install Specifies that the service is to installed as a Windows service.
61

CHAPTER 4 | Artix Standalone Service
Uninstalling the service To uninstall the Artix standalone service as a Windows service use the
following script:

This script uninstalls the Artix standalone service using the default
configuration scope of iona_services.artix_service.

Alternatively, you can uninstall instances of the service directly using the
following command:

Table 10 describes the parameters taken by it_artix_service.

uninstall_artix_service

it_artix_service -ORBname orb_name -ORBdomain_name domain_name
-ORBconfig_domains_dir domain_dir uninstall

Table 11: it_artix_service Parameters

Parameter Description

-ORBname orb_name Specifies the scope under which the service finds its configuration
details.

-ORBdomain_name domain_name Specifies the service's configuration file name. The configuration file
has the name domain_name.cfg.

For example, given domain name acmewidgets, the service will read
its configuration from acmewidgets.cfg.

-ORBconfig_domains_dir domain_dir Specifies the location of the service�s configuration file.

uninstall Specifies that the service is to remove itself from the Windows
registry.
 62

Contracts for the Standalone Service
Contracts for the Standalone Service

Routing Contracts for instances of the Artix standalone service must have routing
rules to direct the flow of messages between the services defined within the
contract.

You must also ensure that the routing plug-in is loaded by the Artix
standalone service by placing the following entry in the orb_plugins list of
the instance�s configuration scope:

Locating the contracts The Artix standalone service loads the contract specified by the
plugins:routing:wsdl_url configuration variable. For example if an
instance of the Artix standalone service was designed to use a contract
called personalInfo.wsdl and the contract was located in /etc/contracts,
you would place the following in the instance�s configuration scope:

For more information For more information on Artix runtime configuration, see �Configuring Artix
Runtime Behavior� on page 31.

orb_plugins = [... "routing"];

plugins:routing:wsdl_url="/etc/contracts/personalInfo.wsdl";
63

CHAPTER 4 | Artix Standalone Service
 64

CHAPTER 5

Routing
Artix provides messages routing based on operations, ports, or
message attributes.

In this chapter This chapter discusses the following topics:

Artix Routing page 66

Configuring Artix to Use Routing page 67

Compatibility of Ports and Operations page 68

Defining Routes in Artix Contracts page 71

Attribute Propagation through Routes page 82

Routing with Artix Designer page 84

Error Handling page 91
65

CHAPTER 5 | Routing
Artix Routing

Overview Artix routing is implemented within Artix service access points and is
controlled by rules specified in the SAP�s contract. Artix SAPs that include
routing rules can be deployed either in standalone mode or embedded into
an Artix service.

Artix supports the following types of routing:

� Port-based

� Operation-based

A router's contract must include definitions for the source services and
destination services. The contract also defines the routes that connect
source and destination ports, according to some specified criteria. This
routing information is all that is required to implement port-based or
operation-based routing. Content-based routing requires that application
code be written to implement the routing logic.

Port-based Port-based routing acts on the port or transport-level identifier, specified by
a <port> element in an Artix contract. This is the most efficient form of
routing. Port-based routing can also make a routing decision based on port
properties, such as the message header or message identifier. Thus Artix
can route messages based on the origin of a message or service request, or
based on the message header or identifier.

Operation-based Operation-based routing lets you route messages based on the logical
operations described in an Artix contract. Messages can be routed between
operations whose arguments are equivalent. Operation-based routing can be
specified on the interface, <portType>, level or the finer grained operation
level.
 66

Configuring Artix to Use Routing
Configuring Artix to Use Routing

Overview Artix port- and operation-based routing is implemented as a plug-in to the
Artix runtime. Content based routing does not require that the routing
plug-in be loaded.

Adding the routing plug-in When using Artix port- or operation-based routing you must add the routing
plug-in to your SAP�s orb_plugin list. The routing plug-in is simply called
routing. The following shows an orb_plugin list for an Artix SAP that uses
routing:

See �Configuration� on page 27 for more information.

Locating the routing information You need to add configuration information to point the routing plug-in to the
contract, or contracts, that contain the routing information the router is to
use. This is done with the plugins:routing:wsdl variable. This variable
specifies the contracts the routing plug-in will parse for routing rules. The
contract names are relative to the location from which the Artix SAP is
started.

For example, if an SAP�s configuration contained the following entry:

The routing plug-in would expect that route1.wsdl was located in the
directory in which the SAP was started and route2.wsdl was located one
directory level higher.

orb_plugins = ["xmlfile_log_stream", "iiop_profile", "giop",
 "iiop", "soap", "mq", "routing"];

plugins:routing:wsdl=["route1.wsdl", "../route2.wsdl",
 "/artix/routes/route3"];
67

CHAPTER 5 | Routing
Compatibility of Ports and Operations

Overview Artix can route messages between services that expect similar messages.
The services can use different message transports and different payload
formats, but the messages must be logically identical. For example, if you
have a baseball scoring service that transmits data using SOAP over HTTP,
Artix can route the score data to a reporting service that consumes data
using CORBA. The only requirement for operation-based routing is that the
two services have an operation that uses messages with the same logical
description in the Artix contract defining their integration. For port-based
routing, the destination service must have a matching operation defined for
each of the operations defined for the source service.

Port-based routing Port-based routing is rough grained in that it the routing rules are defined on
the <port> elements of an Artix contract and do not look at the individual
operations defined in the logical interface, or <portType>, to which the port
is bound. Therefore, port-based routing requires that the services between
which messages are being routed must have compatible logical interface
descriptions.

For two ports to have compatible logical interfaces the following conditions
must be met:

� The destination�s logical interface must contain a matching operation
for each operation in the source�s logical interface. Matching
operations must have the same name.

� Each of the matching operations must have the same number of input,
output, and fault messages.

� Each of the matching operations� messages must have the same
sequence of part types.

For example, given the two logical interfaces defined in Example 11 you
could construct a route from a port bound to baseballScorePortType to a
port bound to baseballGamePortType. However, you could not create a
 68

Compatibility of Ports and Operations
route from a port bound to finalScorePortType to a port bound to
baseballGamePortType because the message types used for the getScore
operation do not match.

Example 11:Logical interface compatibility example

<message name="scoreRequest>
 <part name="gameNumber" type="xsd:int" />
</message>
<message name="baseballScore">
 <part name="homeTeam" type="xsd:int" />
 <part name="awayTeam" type="xsd:int" />
 <part name="final" type="xsd:boolean" />
</message>
<message name="finalScore">
 <part name="home" type="xsd:int" />
 <part name="away" type="xsd:int" />
 <part name="winningTeam" type="xsd:string" />
</message>
<message name="winner">
 <part name="winningTeam" type="xsd:string" />
</message>
<portType name="baseballGamePortType">
 <operation name="getScore">
 <input message="tns:scoreRequest" name="scoreRequest"/>
 <output message="tns:basballScore" name="baseballScore"/>
 </operation>
 <operation name="getWinner">
 <input message="tns:scoreRequest" name="winnerRequest"/>
 <output message="tns:winner" name="winner"/>
 </operation>
</portType>
<portType name="baseballScorePortType">
 <operation name="getScore">
 <input message="tns:scoreRequest" name="scoreRequest"/>
 <output message="tns:basballScore" name="baseballScore"/>
 </operation>
</portType>
<portType name="finalScorePortType">
 <operation name="getScore">
 <input message="tns:scoreRequest" name="scoreRequest"/>
 <output message="tns:finalScore" name="finalScore"/>
 </operation>
</portType>
69

CHAPTER 5 | Routing
Operation-based routing Operation-based routing provides a finer grained level of control over how
messages can be routed. Operation-based routing rules check for
compatibility on the <operation> level of the logical interface description.
Therefore, messages can be routed between any two compatible messages.

The following conditions must be met for operations to be compatible:

� The operations must have the same number of input, output, and fault
messages.

� The messages must have the same sequence of part types.

For example, if you added the logical interface in Example 12 to the
interfaces in Example 11 on page 69, you could specify a route from
getFinalScore defined in fullScorePortType to getScore defined in
finalScorePortType. You could also define a route from getScore defined
in fullScorePortType to getScore defined in baseballScorePortType.

Example 12:Operation-based routing interface

<portType name="fullScorePortType">
 <operation name="getScore">
 <input message="tns:scoreRequest" name="scoreRequest"/>
 <output message="tns:basballScore" name="baseballScore"/>
 </operation>
 <operation name="getFinalScore">
 <input message="tns:scoreRequest" name="scoreRequest"/>
 <output message="tns:finalScore" name="finalScore"/>
 </operation>
</portType>
 70

Defining Routes in Artix Contracts
Defining Routes in Artix Contracts

Overview Artix port-based and operation-based routing are fully implemented in the
contract defining the integration of your systems. Routes are defined using
WSDL extensions that are defined in the namespace
http://schemas.iona.com/routing. The most commonly used of these
extensions are:

<routing:route> is the root element of any route defined in the contract.

<routing:source> specifies the port that serves as the source for messages
that will be routed using the route.

<routing:destination> specifies the port to which messages will be routed.

You do not need to do any programming and your applications need not be
aware that any routing is taking place.

In this section This section discusses the following topics:

Using Port-Based Routing page 72

Using Operation-Based Routing page 75

Advanced Routing Features page 78
71

CHAPTER 5 | Routing
Using Port-Based Routing

Overview Port-based routing is the highest performance type of routing Artix performs.
It is also the easiest to implement. All of the rules are specified in the Artix
contract describing how your systems are integrated. The routes specify the
source port for the messages and the destination port to which messages
are routed.

Describing routes in an Artix
contract

The Artix routing elements are defined in the
http://schemas.iona.com/routing namespace. When describing routes in
an Artix contract you must add the following to your contract�s definition
element:

To describe a port-based route you use three elements:

<routing:route>

<routing:route> is the root element of each route you describe in your
contract. It takes on required attribute, name, the specifies a unique identifier
for the route. route also has an optional attribute, multiRoute, which is
discussed in �Advanced Routing Features� on page 78.

<routing:source>

<routing:source> specifies the port from which the route will redirect
messages. A route can have several source elements as long as they all
meet the compatibility rules for port-based routing discussed in �Port-based
routing� on page 68.

<routing:source> requires two attributes, service and port. service
specifies the service element in which the source port is defined. port
specifies the name of the port element from which messages are being
received.

<definition ...
 xmlns:routing="http://schemas.iona.com/routing"
 ...>
 72

Defining Routes in Artix Contracts
<routing:destination>

<routing:destination> specifies the port to which the source messages
are directed. The destination must be compatible with all of the source
elements. For a discussion of the compatibility rules for port-based routing
see �Port-based routing� on page 68.

In standard routing only one destination is allowed per route. Multiple
destinations are allowed in conjunction with the route element�s muliRoute
attribute that is discussed in �Advanced Routing Features� on page 78.

<routing:destination> requires two attributes, service and port. service
specifies the service element in which the destination port is defined. port
specifies the name of the port element to which messages are being sent.

Example For example, to define a route from baseballScorePortType to
baseballGamePortType, defined in Example 11 on page 69, your Artix
contract would contain the elements in Example 13.

Example 13:Port-based routing example

1 <service name="baseballScoreService">
 <port binding="tns:baseballScoreBinding"
 name="baseballScorePort">
 <soap:address location="http://localhost:8991"/>
 </port>
</service>
<service name="baseballGameService">
 <port binding="tns:baseballGameBinding"
 name="baseballGamePort">
 <corba:address location="file://baseball.ref"/>
 </port>
</service>

2 <routing:route name="baseballRoute">
 <routing:source service="tns:baseballScoreService"
 port="tns:baseballScorePort" />
 <routing:destination service="tns:baseballGameService"
 port="tns:baseballGamePort" />
</routing:route>
73

CHAPTER 5 | Routing
There are two sections to the contract fragment shown in Example 13:

1. The logical interfaces must be bound to physical ports in <service>
elements of the Artix contract.

2. The route, baseballRoute, is defined with the appropriate service and
port attributes.
 74

Defining Routes in Artix Contracts
Using Operation-Based Routing

Overview Operation-based routing is a refinement of port-based routing. With
operation-based routing you can specify specific operations within a logical
interface as a source or a destination.

Like port-based routing, operation-based routing is fully implemented by
adding routing rules to Artix contracts.

Describing routes in an Artix
contract

The contract elements for defining operation-based routes are defined in the
same namespace as the elements for port-based routing and you will need
to include in your contract�s namespace declarations to use operation based
routing.

To specify an operation-based route you need to specify one additional
element in your route description: <routing:operation>.
<routing:operation> specifies an operation defined in the source port�s
logical interface and an optional target operation in the destination port�s
logical interface. You can specify any number of operation elements in a
route. The operation elements must be specified after all of the source
elements and before any destination elements.

operation takes one required attribute, name, that specifies the name of the
operation in the source port�s logical interface that is to be used in the route.

operation also has an optional attribute, target, that specifies the name
operation in the destination port�s logical interface to which the message is
to be sent. If a target is specified, messages are routed between the two
operations. If no target is specified, the source operation�s name is used as
the name of the target operation. The source and target operations must
meet the compatibility requirements discussed in �Operation-based routing�
on page 70.

How operation-based rules are
applied

Operation-based routing rules apply to all of the source elements listed in
the route. Therefore, if an operation-based routing rule is specified, a
message will be routed if all of the following are true:

� The message is received from one of the ports specified in a source
element.
75

CHAPTER 5 | Routing
� The operation name associated with the received message is specified
in one of the <operation> elements.

If there are multiple operation-based rules in the route, the message will be
routed to the destination specified in the matching operation�s target
attribute.

Example For example to route messages from getFinalScore defined in
fullScorePortType, shown in Example 12 on page 70, to getScore defined
in finalScorePortType, shown in Example 11 on page 69, your Artix
contract would contain the elements in Example 14.

There are two sections to the contract fragment shown in Example 14:

1. The logical interfaces must be bound to physical ports in <service>
elements of the Artix contract.

2. The route, scoreRoute, is defined using the <route:operation>
element.

Example 14:Operation to Operation Routing

1 <service name="fullScoreService">
 <port binding="tns:fullScoreBinding"
 name="fullScorePort">
 <corba:address="file://score.ref" />
 </port>
</service>
<service name="finalScoreSerice">
 <port binding="tns:finalScoreBinding"
 name="finalScorePort">
 <tuxedo:address serviceName="finalScoreServer" />
 </port>
</service>

2 <routing:route name="scoreRoute">
 <routing:source service="tns:fullScoreService"
 port="tns:fullScorePort"/>
 <routing:operation name="getFinalScore" target="getScore"/>
 <routing:destination service="tns:finalScoreService"
 port="tns:finalScorePort"/>
</routing:route>
 76

Defining Routes in Artix Contracts
You could also create a route between getScore in baseballGamePortType
to a port bound to baseballScorePortType; see Example 11 on
page 69.The resulting contract would include the fragment shown in
Example 15.

Note that the <routing:operation> element only uses the name attribute.
In this case the logical interface bound to baseballScorePort,
baseballScorePortType, must contain an operation getScore that has
matching messages as discussed in �Port-based routing� on page 68.

Example 15:Operation to Port Routing Example

<service name="baseballGameService">
 <port binding="tns:baseballGameBinding"
 name="baseballGamePort">
 <soap:address location="http://localhost:8991"/>
 </port>
</service>
<service name="baseballScoreService">
 <port binding="tns:baseballScoreBinding"
 name="baseballScorePort">
 <iiop:address location="file:\\score.ref"/>
 </port>
</service>
<routing:route name="scoreRoute">
 <routing:source service="tns:baseballGameService"
 port="tns:baseballGamePort"/>
 <routing:operation name="getScore"/>
 <routing:destination service="tns:baseballScoreService"
 port="tns:baseballScorePort"/>
</routing:route>
77

CHAPTER 5 | Routing
Advanced Routing Features

Overview Artix routing also supports the following advanced routing capabilities:

� Broadcasting a message to a number of destinations.

� Specifying a failover service to route messages to provide a level of
high-availability.

� Routing messages based on transport attributes in the received
message�s header.

Message broadcasting Broadcasting a message with Artix is controlled by the routing rules in an
Artix contract. Setting the multiRoute attribute to the <routing:route>
element to fanout in your route definition allows you to specify multiple
destinations in your route definition to which the source messages are
broadcast.

To do this using the routing editor of the Artix Designer

There are three restrictions to using the fanout method of message
broadcasting:

� All of the sources and destinations must be oneways. In other words,
they cannot have any output messages.

� The sources and destinations cannot have any fault messages.

� The input messages of the sources and destinations must meet the
compatibility requirements as described in �Compatibility of Ports and
Operations� on page 68.

Example 16 shows an Artix contract fragment describing a route for
broadcasting a message to a number of ports.

Example 16:Fanout Broadcasting

<message name="statusAlert">
 <part name="alertType" type="xsd:int"/>
 <part name="alertText" type="xsd:string"/>
</message>
 78

Defining Routes in Artix Contracts
Failover routing Artix failover routing is also specified using the <routing:route>�s
multiRoute attribute. To define a failover route you set multiRoute to equal
failover. When you designate a route as failover, the routed message�s
target is selected in the order that the destinations are listed in the route. If
the first target in the list is unable to receive the message, it is routed to the
second target. The route will traverse the destination list until either one of
the target services can receive the message or the end of the list is reached.

<portType name="statusGenerator">
 <operation name="eventHappens">
 <input message="tns:statusAlert" name="statusAlert"/>
 </operation>
</portType>
<portType name="statusChecker">
 <operation name="eventChecker">
 <input message="tns:statusAlert" name="statusAlert"/>
 </operation>
</portType>
<service name="statusGeneratorService">
 <port binding="tns:statusGeneratorBinding"
 name="statusGeneratorPort">
 <soap:address location="http:\\localhost:8081"/>
 </port>
</service>
<service name="statusCheckerService">
 <port binding="tns:statusCheckerBinding"
 name="statusCheckerPort1">
 <corba:address location="file:\\status1.ref"/>
 </port>
 <port binding="tns:statusCheckerBinding"
 name="statusCheckerPort2">
 <tuxedo:address serviceName="statusService"/>
 </port>
</service>
<routing:route name="statusBroadcast" multiRoute="fanout">
 <routing:source service="tns:statusGeneratorService"
 port="tns:statusGeneratorPort"/>
 <routing:operation name="eventHappens" target="eventChecker"/>
 <routing:destination service="tns:statusCheckerService"
 port="tns:statusCheckerPort1"/>
 <routing:destination service="tns:statusCheckerService"
 port="tns:statusCheckerPort2"/>
</routing:route>

Example 16:Fanout Broadcasting
79

CHAPTER 5 | Routing
To create a failover route using the Artix Designer...

Given the route shown in Example 17, the message will first be routed to
destinationPortA. If service on destinationPortA cannot receive the
message, it is routed to destinationPortB.

Routing based on transport
attributes

Artix allows you to specify routing rules based on the transport attributes set
in a message�s header when using HTTP or WebSphere MQ. Rules based on
message header transport attributes are defined in
<routing:transportAttribute> elements in the route definition. Transport
attribute rules are defined after all of the operation-based routing rules and
before any destinations are listed.

The criteria for determining if a message meets the transport attribute rule
are specified in sub-elements to the <routing:tranportAttribute>. A
message passes the rule if it meets each criteria specified in the listed
sub-element.

Each sub-element has a name attribute to specify the transport attribute, and
most have a value attribute that can be tested. Attributes dealing with string
comparisons have an optional ignorecase attribute that can have the values
yes or no (no is the default). Each of the sub-elements can occur zero or
more times, in any order:

<routing:equals> applies to string or numeric attributes. For strings, the

ignorecase attribute may be used.

<routing:greater> applies only to numeric attributes and tests whether the
attribute is greater than the value.

<routing:less> applies only to numeric attributes and tests whether the
attribute is less than the value.

Example 17:Failover Route

<routing:route name="failoverRoute" multiRoute="failover">
 <routing:source service="tns:sourceService"
 port="tns:sourcePort"/>
 <routing:destination service="tns:destinationServiceA"
 port="tns:destinationPortA"/>
 <routing:destination service="tns:destinationServiceB"
 port="tns:destinationPortB"/>
</routing:route>
 80

Defining Routes in Artix Contracts
<routing:startswith> applies to string attributes and tests whether the
attribute starts with the specified value.

<routing:endswith> applies to string attributes and tests whether the
attribute ends with the specified value.

<routing:contains> applies to string or list attributes. For strings, it tests
whether the attribute contains the value. For lists, it tests whether the value
is a member of the list. contains accepts an optional ignorecase attribute
for both strings and lists.

<routing:empty> applies to string or list attributes. For lists, it tests
whether the list is empty. For strings, it tests for an empty string.

<routing:nonempty> applies to string or list attributes. For lists, it passes if
the list is not empty. For strings, it passes the string is not empty.

For information on the transport attributes for HTTP see �Using the HTTP
Plug-in� on page 225. For information on the transport attributes for
WebSphere MQ see �Using the WebSphere MQ Plug-in� on page 269.

To add transport attributes rules to your route using the Artix Designer...

Example 18 shows a route using transport attribute rules based on HTTP
header attributes. Only messages whose If-Modified-Since is equal to
"Sat, 29 Oct 1994 19:43:31 GMT".

Example 18:Transport Attribute Rules

<rotuing:route name="httpTransportRoute">
 <routing:source service="tns:httpService"
 port="tns:httpPort"/>
 <routing:trasnportAttributes>
 <rotuing:equals name="IfModifiedSince"
 value="Sat, 29 Oct 1994 19:43:31 GMT"/>
 </routing:transportAttributes>
 <routing:destination service="tns:httpDest"
 port="tns:httpDestPort"/>
</routing:route>
81

CHAPTER 5 | Routing
Attribute Propagation through Routes

Overview Often you will need to ensure that message attributes are propagated
through the router when it transforms messages between different payload
formats or translates it across different transports. Artix can either simply
drop the message attributes between the formats or it can use attribute
propagation rules specified in the Artix contract describing the system.

The rule describing attribute propagation between two endpoints are
specified in the routing section of the Artix contract for the system. Each
route must specify the attributes it wants to propagate and for which
message it is propagated. If the attribute is not explicitly listed, the router
will not propagate it.

Describing attribute propagation
rules in an Artix contract

To describe attribute propagation rules in a contract you use two elements.
One describes the attributes of the input message passed between the two
endpoints. The other describes the attributes of the output message
between the two endpoints.

<routing:propagateInputAttribute>

<routing:propagateInputAttribute> specifies an attribute from the input
message to propagate through the route. It takes one required property,
name, which specifies the name of the message attribute to be propagated
through the route. For example, if you wanted to propagate the attribute
UserName between two HTTP endpoints you would include the rule shown in
Example 19 in your contract�s route.

Note: There are a few attributes that are included as part of the message
body and these are propagated regardless of the specified propagation
rules.

Example 19:Attribute Propagation Input Rule

<routing:route name="VOD" >
 <routing:propagateInputAttribute name="UserName" />
 ...
</routing:route>
 82

Attribute Propagation through Routes
propagateInputAttribute also takes a second optional property, target,
that allows you to specify the name of the coressponding attribute name in
the destination endpoint�s transport. If you do not specify a target, the router
assumes that the attribute names for both transports are identical.

For example, if your route is between an HTTP port and a JMS port and you
want to propagate the HTTP port�s UserName attribute to the JMS port�s
JMSXUserID attribute you would include the rule shown in Example 20 in
your contract�s route.

<routing:propagateOutputAttribute>

<routing:propagateOutputAttribute> specifies an attribute from the
output message to propagate through the route. It takes the same properties
as propagateInputAttributes.

For example, if you needed the service at the HTTP endpoint in Example 20
needed to validate the UserName of the message returned from the JMS
endpoint, you would need to specify that the output message�s JMSXUserID
was propagated to the HTTP endpoint�s UserName attribute by including
the rule shown in Example 21 in your contract�s route.

Example 20:Attribute Propagation Input Rule with Target

<routing:route name="VOD" >
 <routing:propagateInputAttribute name="UserName"

target="JMSXUserID" />
 ...
</routing:route>

Example 21:Attribute Propagation Output Rule with Target

<routing:route name="VOD" >
 <routing:propagateOutputAttribute name="JMSXUserID"

target="UserName" />
 ...
</routing:route>
83

CHAPTER 5 | Routing
Routing with Artix Designer

Overview The Artix Designer includes a routing wizard that assists you in creating
routes from the services available in your contract. It walks you through the
steps of creating a route and provides you with the valid options for the
services available. It performs all of the compatibility testing for you and will
never allow you to create an invalid route.

Creating a route To create a route with the Artix Designer complete the following steps:

1. Load a contract with multiple service definitions that have operations
that can be routed.

2. Select Contracts|New|Route from the Designer menu.

Note: If the Route option is not available, your contract does not
have any compatible operations for routing.
 84

Routing with Artix Designer
3. You will see a screen like Figure 5.

4. Select where you want to add the routing information.

♦ Add to existing WSDL adds the routing information to the bottom
of the existing contract and does not make a back-up of the
non-routed WSDL file.

♦ Add to new WSDL creates a new WSDL document that contains
the routing information and imports the original WSDL document.

5. Click Next.

Figure 5: Routing WSDL Location
85

CHAPTER 5 | Routing
6. You will see a screen like Figure 6.

7. Select the source portType for the route from the PortType pull-down
list.

8. Select the source endpoint from the available options in the Source
Endpoints list.

9. Select the destination endpoint from the available options in the
Destination Endpoints list.

10. Click Next.

Figure 6: Source and Destination Selection
 86

Routing with Artix Designer
11. You will see a screen like Figure 7.

12. Enter the name of your route in the Route Name field.

13. If you selected multiple destination endpoints on the previous screen,
select either Failover or Fanout under Multiple Route Destination
Preference.

14. Click Next.

Figure 7: Route Properties

Note: This panel will allow you to select an invalid multiroute
behavior and you will get an error dialog when you click Next.
87

CHAPTER 5 | Routing
15. You will see a screen like Figure 8.

16. To add transport attribute based routing rules, click Add Rule Set.

17. The counter will automatically set itself to 0.

18. Enter the name of the transport attribute to be used in Name.

19. Enter the value to be used as the test case in Value.

20. Click Add Attribute to add the attribute to the Transport Attribute
table.

21. Once the attribute is in the table you can edit it to determine how
matching attributes are compared to the value.

Figure 8: Transport Attribute Routing Rules
 88

Routing with Artix Designer
22. Repeat this for all the attributes you want to use in routing.

23. When you are finished entering attributes, click Next.

24. You will see a screen like Figure 9.

25. Select the desired operations to route between.

26. Click Next.

Note: The editor has no knowledge of the valid attribute names and
will allow you to enter any names and values.

Figure 9: Operation Routing Selection
89

CHAPTER 5 | Routing
27. You will see a screen similar to Figure 10.

28. Click Finish to create your route.

Figure 10: Review of Route Information
 90

Error Handling
Error Handling

Initialization errors Errors that can be detected during initialization while parsing the WSDL,
such as routing between incompatible logical interfaces and some kinds of
route ambiguity, are logged and an exception is raised. This exception aborts
the initialization and shuts down the server.

Runtime errors Errors that are detected at runtime are reported as exceptions and returned
to the client; for example �no route� or �ambiguous routes�.
91

CHAPTER 5 | Routing
 92

CHAPTER 6

Using the Artix
Locator Service
The Artix Locator allows Artix servers to publish their
references for dynamic discovery by Artix clients.

Overview A system with many servers cannot afford the overhead of manually
propagating each servers contact information to all off the clients that might
need to contact them. Given the large number of clients and the distributed
nature of enterprise level deployments, the time required to accomplish this,
and the room for error, are too great. Also, over time hardware upgrades,
machine failures, or site reconfiguration require you to move servers and
repeat the exercise of propagating the server�s information to all clients.

The Artix locator isolates clients from changes in a server�s contact
information. The Artix contract defining how the client contacts the server
contains the address for the Artix locator and it is the locator that provides
the client with a reference to the server. Servers are automatically registered
with the locator when they start-up.

In this Chapter This chapter discusses the following topics:

Deploying the Locator page 95

Registering a Server with the Locator page 99

Obtaining References from the Locator page 101
93

CHAPTER 6 | Using the Artix Locator Service
Controlling Server Workloads page 104

Fault Tolerance page 106
 94

Deploying the Locator
Deploying the Locator

Overview The Artix locator is implemented as a group of ART plug-ins. This means
that any Artix application can host the locator service by loading the
service_locator plug-in. However, it is recommended that users generate
a simple Artix server that only hosts the locator service and deploy that
service into there Artix environment.

In either case, the locator service requires modifications to the Artix
configuration domain in which the locator is run. You also need to generate
a copy of locator.wsdl, the contract that describes the locator service,
containing the locator service�s contact information.

Generating the locator service To generate an instance of the locator service you simply need to write a
simple Artix server mainline and link it with the Artix libraries. Example 22
shows an example of the locator�s mainline.

Example 22:Artix Locator Mainline

include <it_bus/bus.h>
#include <it_bus/Exception.h>
#include <it_bus/fault_exception.h>

using namespace IT_Bus;

int main(int argc, char* argv[])
{
 try
 {
 IT_Bus::init(argc, argv, "locator_service");
 IT_Bus::run();
 IT_Bus::shutdown();
 }
 catch (IT_Bus::Exception& e)
 {
 printf("Exception occurred: %s", e.Message());
 return 1;
 }

 return 0;
}

95

CHAPTER 6 | Using the Artix Locator Service
The locator�s main() only needs to initialize the Artix bus with the name of
the locator�s configuration scope and call IT_Bus::run(). The configuration
scope name is the third parameter to IT_Bus::init(), locator.service.
The Artix bus will load the plug-ins for the locator service.

Example 23 shows a sample makefile for building the locator service.

The locator must be linked with the following Artix libraries:

� it_bus.lib

� it_afc.lib

� it_art.lib

� it_ifc.lib

Example 23:Locator Makefile

IT_PRODUCT_VER = 1.2

ART_BIN_DIR=$(IT_PRODUCT_DIR)\artix\$(IT_PRODUCT_VER)\bin
ART_CXX_INCLUDE_DIR="$(IT_PRODUCT_DIR)\artix\$(IT_PRODUCT_VER)\i

nclude"
ART_LIB_DIR="$(IT_PRODUCT_DIR)\artix\$(IT_PRODUCT_VER)\lib"

CXX=cl
CXXFLAGS=-I$(ART_CXX_INCLUDE_DIR) -Zi -nologo -GR -GX -W3 -Zm250

-MD $(EXTRA_CXXFLAGS) $(CXXLOCAL_DEFINES)

LINK=link
LDFLAGS=/DEBUG /NOLOGO
LDLIBS=/LIBPATH:$(ART_LIB_DIR) $(EXTRA_LIB_PATH) $(LINK_WITH)

kernel32.lib ws2_32.lib advapi32.lib user32.lib

SHLIB_CXX_COMPILER_ID= vc60
SHLIBLDFLAGS=-dll -debug -incremental:no

OBJS=$(SOURCES:.cxx=.obj)

LINK_WITH=it_bus.lib it_afc.lib it_art.lib it_ifc.lib

SOURCES = locator.cxx
all: locator.exe

locator.exe:$(SOURCES) $(OBJS)
 if exist $@ del $@
 $(LINK) /out:$@ $(LDFLAGS) $(OBJS) $(LDLIBS)
 96

Deploying the Locator
Configuring the locator To run the locator you need to ensure that it loads the locator service
plug-in, service_locator. In addition, the locator must load the soap and
http plug-ins as all of its communication is done using SOAP over HTTP.

In the locator�s configuration scope specify the service plug-in to read the
correct Artix contract for the locator by setting
plugins:locator:service_url to point to the copy of locator.wsdl
containing the address for this instance of the locator.

Example 24 shows the configuration scope used to start the locator.

For more information on Artix configuration see �Configuration� on page 27.

Generating the locator�s contact
information

You also need to configure the port on which the locator will run. To do this
you modify locator.wsdl, provided in the wsdl folder of your Artix
installation, to specify the HTTP address at which the locator service will
listen. This can be either done manually for deploying the locator on a
well-known fixed port, or automatically for deploying the locator on a
dynamically allocated port.

To deploy the locator on a well-known fixed port, open locator.wsdl in any
text editor and edit the <soap:address> entry at the bottom of the contract
to specify the proper address. Example 25 shows a modified locator service
contract entry. The highlighted part has been modified to point to the
desired address.

Example 24:Locator configuration scope

locator_service
{
 plugins:locator:service_url="locator.wsdl"
 orb_plugins = ["xmlfile_log_stream", "iiop_profile", "giop",

"iiop", "soap", "http", "service_locator"];
};

Example 25:Locator Service Address

<service name="LocatorService">
 <port name="LocatorServicePort" binding="ls:LocatorServiceBinding">
 <soap:address location="http://localhost:8080/services/locator/LocatorService"/>
 </port>
</service>
97

CHAPTER 6 | Using the Artix Locator Service
To deploy the locator on a dynamically allocated port, configure the locator
to use the copy of locator.wsdl shipped with Artix. Once the locator
initializes the Artix bus, it will need to publish a new copy of its contract
with the actual contact information. Example 26 shows how to publish the
locator�s contract.

Starting the locator Once the locator has been generated and properly configured it can be
started just like any other application.

Example 26:Dynamically Located Locator Service

IT_Bus::Bus_var bus = IT_Bus::init(argc, argv,
 "locator_service");

// Now we write out the updated WSDL for the Locator Services

// Get the WSDL Defintions object.
IT_Bus::QName service_name("",
 "LocatorService",
 "http://ws.iona.com/locator");
IT_Bus::Service * service = bus->get_service(service_name);
const IT_WSDL::WSDLDefinitions & definitions =
 service->get_wsdl_definitions();

// Serialize the WSDL model to another wsdl file.
IT_Bus::FileOutputStream stream("active-locator.wsdl");
IT_Bus::XMLOutputStream xml_stream(stream, true);
definitions.write(xml_stream);
stream.close();

IT_Bus::run();
 98

Registering a Server with the Locator
Registering a Server with the Locator

Overview A server does not need to have its implementation changed to work with the
Artix locator. All that is required is that the server be configured to load the
proper plug-ins and to reference the correct locator contract.

Configuring the server Any server that wishes to register itself with the locator must load the
following plug-ins in addition to the transport and payload plug-ins it
requires:

� soap

� http

� locator_endpoint

locator_endpoint allows the server to register with the running locator.

The server�s configuration also needs to set plugins:locator:wsdl_url to
point to the appropriate locator contract.

Example 27 shows the configuration scope of a server that registers with the
locator service.

rune_server provides its services using SOAP over IIOP so in addition to the
locator plug-ins it also loads the tunnel plug-in.

For more information on Artix configuration see �Configuration� on page 27.

Registration Once a properly configured server starts up, it automatically registers with
the locator specified by the contract pointed to by
plugins:locator:wsdl_url.

Example 27:Server Configuration Scope

rune_server
{
 plugins:locator:wsdl_url="locator.wsdl";
 orb_plugins = ["xmlfile_log_stream", "soap", "http", "tunnel",

"locator_endpoint"];
 };
99

CHAPTER 6 | Using the Artix Locator Service
You can register multiple instances of the same server with a locator. The
locator will generate a pool of references for the server type. When clients
make a request for a server, the locator will supply references from this pool
using a round-robin algorithm.
 100

Obtaining References from the Locator
Obtaining References from the Locator

Overview Unlike servers, clients must be specifically written to work with the Artix
locator. There are three steps a client must take to obtain a server reference
from the Artix locator. They are:

1. Instantiate a proxy for the locator service.

2. Look up the desired server�s endpoint using the locator service proxy.

3. Create a proxy for the desired server using the returned endpoint.

Instantiating a locator service
proxy

Before a client can invoke any of the look up methods on the locator service,
it must create a proxy to forward requests to the running locator. To do this
the client creates an instance of LocatorServiceClient using the locator
service�s contract name, locator.wsdl, the locator service�s QName, and
the port name used in the locator service�s contract, LocatorServicePort.

Example 28 shows how to instantiate a locator service proxy. The
parameters used to create the locator service�s QName, LocatorService
and http://ws.iona.com/locator, should never be modified.

Note: For more information on Artix proxy constructors, read the Artix
C++ Programmer�s Guide.

Example 28: Instantiating a Locator Service Proxy

// C++
QName locator_service_name("", "LocatorService",
 "http://ws.iona.com/locator");
locator_proxy = new LocatorServiceClient("locator.wsdl",
 locator_service_name,
 "LocatorServicePort");
101

CHAPTER 6 | Using the Artix Locator Service
Looking up a server�s endpoint After instantiating a locator service proxy, a client can then look up servers
using the proxy�s lookup_endpoint() method. lookup_endpoint() has the
following signature:

input contains the QName of the server the client is looking up. The QName
is set using the setservice_qname() method. The QName of the service is
comprised of the service name specified in the Artix contract�s <service>
tag and the target namespace of the Artix contract.

output contains a reference to the server. If the locator cannot find a
registered instance of the requested server, lookup_endpoint() returns an
endpointNotExistFault exception.

Example 29 shows the client code to look up an instance of the widget
ordering service, orderWidgetService.

Creating a server proxy The client uses the reference returned in the output parameter of
lookup_endpoint() to instantiate a server proxy for making requests on the
requested server. To instantiate the proxy use the correct proxy class for the

void lookup_endpoint(lookupEndpoint input,
 lookupEndpointResponse output);

Example 29:Looking up a Server Using the Locator Service

// C++
// Create the QName for the server
QName service_name("", "orderWidgetsService",
 "http://widgetVendor.com/widgetOrderForm");

// Create lookup input parameter
lookupEndpoint input;
input.setservice_qname(service_name);

// The output parameter is set by lookup_endpoint
lookupEndpointResponse output;

// call lookup_endpoint on the locator proxy
locator_proxy->lookup_endpoint(input, output);
 102

Obtaining References from the Locator
server you have requested and pass the return value of the returned
lookupEndpointResponse�s getservice_endpoint() method to the proxy
class� constructor.

Example 30 shows the client code for creating a proxy widget server from
the results of the look up performed in Example 29 on page 102.

For more information on writing Artix client code read the Artix C++
Programmer�s Guide.

Note: Because the Artix locator�s look up is only one level deep, it is
possible that the original look up can return a reference to a second Artix
locator. Clients running in an environment where multiple locator redirects
are possible must be explicitly designed to handle this situation.

Example 30: Instantiate a Proxy Server

// C++
orderWidgetsClient widget_proxy(output.getservice_endpoint());
103

CHAPTER 6 | Using the Artix Locator Service
Controlling Server Workloads

Overview Services can request that they temporarily be taken off of the locator�s list of
active references. This is particularly useful for managing the workloads
placed on services. When they reach a certain capacity, a service can in
effect disappear from any new clients wishing to access it. When the
service�s workload is reduced it can then reappear and once again become
available to new clients.

Procedure To control the registered state of service you need to do the following three
things:

1. Obtain a handle for the service with which you intend to work.

2. Use the obtained handle to temporarily deregister the service from the
locator.

3. Use the obtained handle to reregister the service with the locator.

Get a service instance To get an instance of a service you need to use IT_Bus::get_service() on
a bus instance. get_service() takes the QName of the desired service and
returns a generic service handle, IT_Bus::Service*.

Example 31 shows how to obtain a handle for a service from the active bus.

For more information on using get_service() see the Artix C++
Programmer�s Guide.

Note: A bus instance can only return service handles for services that is
activated on that particular bus.

Example 31:Obtaining a Service Handle

//C++
// Build service QName
IT_Bus::QName service_name("", "MMService", "http://MM.com");

// Get the service handle from the active bus
IT_Bus::Service* = bus->get_service(service_name);
 104

Controlling Server Workloads
Deregistering a service To temporarily deregister a service, you use the reached_capacity()
method of the service handle returned by the active bus. This method
informs the service�s endpoint manager that the service is busy and does not
want to receive requests from any new clients. The endpoint manager will
then contact the locator and ask to be removed from the list of available
services.

Example 32 shows how to call reached_capacity().

Reregistering a service When the service is ready to be reregistered, you use the below_capacity()
method of the service handle used when deregistering the service.
below_capacity() informs the endpoint manager that the service is capable
of accepting requests from new clients. The endpoint manager then contacts
the locator and asks to be placed on the list of available services.

Example 33 shows how to call reached_capacity().

Note: Clients that already have a valid reference for the service will still
be able to make request on the service once it has been deregistered.

Example 32:Calling reached_capacity()

\\ C++
\\ Service otained previously
service->reached_capacity();

Example 33:Calling below_capacity()

\\ C++
\\ Service otained previously
service->below_capacity();
105

CHAPTER 6 | Using the Artix Locator Service
Fault Tolerance

Overview Enterprise level deployments demand that applications can cleanly recover
from occasional failures. The Artix locator is designed to recover from the
two most common failures faced by a look-up service:

� failure of a registered end-point.

� failure of the look-up service itself.

Endpoint failure When an endpoint gracefully shuts down, it notifies the locator that it will no
longer be available and the locator removes the endpoint from its list so it
cannot give a client a reference to a dead endpoint. However, when an
endpoint fails unexpectedly, it cannot notify the locator and the locator can
unknowingly give a client an invalid reference causing the failure to cascade.

To mitigate the risk of passing invalid references to clients, the locator
service occasionally pings all of its registered endpoints to see if they are still
running. If an endpoint does not respond to a ping, the locator removes that
endpoint�s reference.

You can adjust the interval between locator service pings by setting the
configuration variable plugins:locator:peer_timeout. The default setting
is 4 seconds. For more information see �Configuration� on page 27.

Service failure When the locator service fails all of the references to the registered
endpoints are lost and the active endpoints are no longer registered with the
locator. To ensure that the active endpoints reregister with the locator when
it restarts, the endpoints, after the locator has missed its ping interval, will
periodically attempt to reregister with the locator until they are successful.

You can adjust the interval at which the endpoint pings the locator by
setting the configuration variable
plugins:session_endpoint_manager:peer_timout. The default setting is 4
seconds. For more information see �Configuration� on page 27.
 106

CHAPTER 7

Using the Artix
Session Manager
The Artix Session Manager provides a mechanism for
managing server resources in enterprise deployments.

Overview The Artix session manager ensures that a one to one relationship is
maintained between a client and a server. When the session manager is
loaded, clients are granted session tokens when requesting a service
instance from the locator and the server will only accept requests that
include a valid session token. All other requests will be rejected.

For example, you deploy three instances of a stock trading service into an
environment with the Artix Locator and the Artix Session Manager. Each
instance of the service will register with the locator when it starts up. When
client A requests an instance of the service from the locator, the locator
gives it a reference to instance to stock service 1 and the session manager
assigns client A a session token that is only valid for stock service 1. If client
2 gets a reference to stock service 1 and makes a request, the request will
107

CHAPTER 7 | Using the Artix Session Manager
be rejected as long as client A�s session is valid. Client 2 will need to request
a reference and valid session token from the locator. This is shown in
Figure 11.

In this chapter This chapter discusses the following topics:

Figure 11: Session Manager

Deploying the Session Manager page 109

Registering a Server with the Session Manager page 114

Working with Sessions page 117

Fault Tolerance page 125
 108

Deploying the Session Manager
Deploying the Session Manager

Overview The Artix session manager is implemented as a group of ART plug-ins. This
means that any Artix application can host the session manager�s core
functionality by loading the session_manager_service and
sm_simple_policy plug-ins. However, it is recommended that users
generate a simple Artix server that only hosts the session manager and
deploy that server into the Artix environment.

In either case, the session manager requires modifications to the Artix
configuration domain in which the locator is run. You also need to generate
a copy of session-manager.wsdl, the contract that describes the session
manager, containing the session manager�s contact information.

Generating the session manager To generate an instance of the session manager you simply need to write a
simple Artix server mainline and link it with the Artix libraries. Example 34
shows an example of the session manager�s mainline.

Example 34:Artix Session Manager Mainline

include <it_bus/bus.h>
#include <it_bus/Exception.h>
#include <it_bus/fault_exception.h>

using namespace IT_Bus;
109

CHAPTER 7 | Using the Artix Session Manager
The session manager�s main() only needs to initialize the Artix bus with the
name of the session manager�s configuration scope and call IT_Bus::run().
The configuration scope name is third parameter to IT_Bus::init(),
managed_sessions. The Artix bus will load the plug-ins for the session
manager.

Example 35 shows a sample makefile for building the session manager.

#int main(int argc, char* argv[])
{
 try
 {
 IT_Bus::init(argc, argv, "managed_sessions");
 IT_Bus::run();
 IT_Bus::shutdown();
 }
 catch (IT_Bus::Exception& e)
 {
 printf("Exception occurred: %s", e.Message());
 return 1;
 }

 return 0;
}

Example 34:Artix Session Manager Mainline

Example 35:Session Manager Makefile

IT_PRODUCT_VER = 1.2

ART_BIN_DIR=$(IT_PRODUCT_DIR)\artix\$(IT_PRODUCT_VER)\bin
ART_CXX_INCLUDE_DIR="$(IT_PRODUCT_DIR)\artix\$(IT_PRODUCT_VER)\i

nclude"
ART_LIB_DIR="$(IT_PRODUCT_DIR)\artix\$(IT_PRODUCT_VER)\lib"

CXX=cl
CXXFLAGS=-I$(ART_CXX_INCLUDE_DIR) -Zi -nologo -GR -GX -W3 -Zm250

-MD $(EXTRA_CXXFLAGS) $(CXXLOCAL_DEFINES)
 110

Deploying the Session Manager
The session manager must be linked with the following Artix libraries:

� it_bus.lib

� it_afc.lib

� it_art.lib

� it_ifc.lib

Configuring the session manager To run the session manager you need to ensure that it loads the session
manager service plug-in, session_manager_service and the session
manager policy plug-in, sm_simple_policy. In addition, the session
manager must load the soap and http plug-ins as all of its communication
is done using SOAP over HTTP.

In the session manager�s configuration scope you will need to specify the
location for the session manager�s contract by setting
plugins:session_manager_service:service_url to point to the copy of
session-manager.wsdl containing the contact information for this session
manager.

LINK=link
LDFLAGS=/DEBUG /NOLOGO
LDLIBS=/LIBPATH:$(ART_LIB_DIR) $(EXTRA_LIB_PATH) $(LINK_WITH)

kernel32.lib ws2_32.lib advapi32.lib user32.lib

SHLIB_CXX_COMPILER_ID= vc60
SHLIBLDFLAGS=-dll -debug -incremental:no

OBJS=$(SOURCES:.cxx=.obj)

LINK_WITH=it_bus.lib it_afc.lib it_art.lib it_ifc.lib

SOURCES = session_manager.cxx
all: session_manager.exe

locator.exe:$(SOURCES) $(OBJS)
 if exist $@ del $@
 $(LINK) /out:$@ $(LDFLAGS) $(OBJS) $(LDLIBS)

Example 35:Session Manager Makefile
111

CHAPTER 7 | Using the Artix Session Manager
Example 36 shows the configuration scope used to start the session
manager.

For more information on Artix configuration see �Configuration� on page 27.

Generating the locator�s contact
information

You also need to configure the port on which the session manager will run.
To do this you modify session-manager.wsdl, provided in the wsdl folder of
your Artix installation, to specify the HTTP address at which the session
manager will listen. This can be either done manually for deploying the
session manager on a well-known fixed port, or automatically for deploying
the session manager on a dynamically allocated port.

To deploy the session manager on a well-known fixed port, open
session-manager.wsdl in any text editor and edit the <soap:address> entry
for the SessionManagerService to specify the proper address. Example 37
shows a modified session manager contract entry. The highlighted part has
been modified to point to the desired address.

Example 36:Locator configuration scope

managed_sessions
{
 orb_plugins = ["xmlfile_log_stream", "iiop_profile", "giop", "iiop", "soap", "http",

"session_manager_service", "sm_simple_policy"];
 plugins:session_manager_service:service_url="session-namager.wsdl"
};

Example 37:Session Manager Address

<service name="SessionManagerService">
 <port name="SessionManagerPort" binding="sm:SessionManagerBinding">
 <soap:address

location="http://localhost:8080/services/sessionManagement/sessionManagerService"/>
 </port>
</service>
 112

Deploying the Session Manager
To deploy the session manager on a dynamically allocated port, configure
the session manager to use the copy of session-manager.wsdl shipped with
Artix. Once the session manager initializes the Artix bus, it will need to
publish a new copy of its contract with the actual contact information.
Example 38 shows how to publish the session manager�s contract.

Starting the session manager Once the session manager has been generated and properly configured it
can be started just like any other application. The only caveat is that the
session manager must be started before any servers that need to register
with it.

Example 38:Dynamically Located Locator Service

IT_Bus::Bus_var bus = IT_Bus::init(argc, argv,
 "managed-sessions");

// Now we write out the updated WSDL for the session manager

// Get the WSDL Defintions object.
IT_Bus::QName service_name("",
 "SessionManagerService",
 "http://ws.iona.com/session-manager");
IT_Bus::Service * service = bus->get_service(service_name);
const IT_WSDL::WSDLDefinitions & definitions =
 service->get_wsdl_definitions();

// Serialize the WSDL model to another wsdl file.
IT_Bus::FileOutputStream stream("active-smservice.wsdl");
IT_Bus::XMLOutputStream xml_stream(stream, true);
definitions.write(xml_stream);
stream.close();

IT_Bus::run();
113

CHAPTER 7 | Using the Artix Session Manager
Registering a Server with the Session Manager

Overview Services that wish to be managed by the session manager must register with
a running session manager. To do this the servers instantiating these
services must load the session manager endpoint plug-in and properly
configure themselves. They do not require any special application code.

Once registered with a session manager, the services will only accept
requests containing a valid session header. All clients wishing to access the
services must be written to support session managed services.

Configuring the server Any server that wishes to be managed by the session manager must load
the following plug-ins in addition to the transport and payload plug-ins it
requires:

� soap

� http

� session_endpoint_manager

session_endpoint_manager allows the server to register with a running
session manager.

The server�s configuration also needs to set the following configuration
variables:

plugins:session_endpoint_manager:wsdl_url points to the contract
describing the contact information for the session manager that will be
managing the server.

plugins:session_endpoint_manager:endpoint_manager_url points to the
contract describing the contact information for the endpoint manager for this
server. This enables the session manager to contact the service to with
updated state information.

plugins:session_endpoint_manager:default_group specifies the default
group name for the services instantiated by the server.

Note: While the session manager does not require it, it is recommended
that all services in a group implement the same interface.
 114

Registering a Server with the Session Manager
Example 39 shows the configuration scope of a server that is managed by
the session manager.

A server loaded into the qajaq_server configuration scope will be managed
by the session manager at the location specified in
session-manager-service.wsdl, its endpoint manager will come up at the
address specified in session-manager-endpoint.wsdl, and by default all
services instantiated by the server will belong to the session manager group
qajaq_group.

For more information on Artix configuration see �Configuration� on page 27.

You also need to configure the port on which the endpoint manager will run.
To do this you modify session-manager.wsdl, provided in the wsdl folder of
your Artix installation, to specify the HTTP address at which the endpoint
manager will be available. Using any text editor, open
session-manager.wsdl and edit the <soap:address> entry for the
SessionEndpointManagerService to specify the proper address.
Example 40 shows a modified session manager contract entry. The
highlighted part has been modified to point to the desired address.

Example 39:Server Configuration Scope

qajaq_server
{
 orb_plugins = ["xmlfile_log_stream", "soap", "http", "fixed", "session_endpoint_manager"];
 plugins:session_endpoint_manager:wsdl_url="session-manager-service.wsdl";
 plugins:session_endpoint_manager:endpoint_manager_url="session-manager-endpoint.wsdl";
 plugins:session_endpoint_manager:deafult_group="qajaq_group";
 };

Example 40:Endpoint Manager Address

<service name="SessionEndpointManagerService">
 <port name="SessionEndpointManagerPort" binding="sm:SessionEndpointManagerBinding">
 <soap:address

location="http://localhost:8080/services/sessionManagement/sessionEndpointManager"/>
 </port>
</service>
115

CHAPTER 7 | Using the Artix Session Manager
In the server�s configuration scope specify the endpoint manager plug-in to
read the correct Artix contract for the endpoint manager by setting
plugins:session_endpoint_mamanger:endpoint_manager_url to point to
the copy of session-manager.wsdl containing the address for this instance
of the endpoint manager.

Registration Once a properly configured server starts up, it automatically registers with
the session manager specified by the contract pointed to by
plugins:session_endpoint_manager:wsdl_url.

You can register multiple instances of the same server with a session
manager. The session manager generates a pool of references for the server
type and associate them by their group. Clients are given a list of all
available endpoints in a given group and can request a session from the
pool.
 116

Working with Sessions
Working with Sessions

Overview Clients that wish to make requests from session managed services must be
designed explicitly to interact with the Artix session manager and pass
session headers to the session managed services.

There are eight steps a client takes when making requests on a session
managed service. They are:

1. Instantiate a proxy for the session management service.

2. Start a session for the desired service�s group using the session
manager proxy.

3. Obtain the list of endpoints available in the group.

4. Create a service proxy from one of the endpoints in the group.

5. Build a session header to pass to the service.

6. Invoke requests on the endpoint using the proxy.

7. Renew the session as needed.

8. End the session using the session manager proxy when finished with
the endpoint.

Instantiating a session manager
proxy

Before a client can request a session from the session manager, it must
create a proxy to forward requests to the running session manager. To do
this the client creates an instance of SessionManagerClient using the
locator service�s contract name, session-manager.wsdl, the session
manager�s QName, and the port name used in the locator service�s contract,
SessionManagerPort.

Note: For more information on Artix proxy constructors, read the Artix
C++ Programmer�s Guide.
117

CHAPTER 7 | Using the Artix Session Manager
Example 41 shows how to instantiate a session manager proxy. The
parameters used to create the session manager�s QName, SessionManager
and http://ws.iona.com/session_manager, should never be modified.

Start a session After instantiating a session manager proxy, a client can then start a session
for the desired service�s group using the session manager�s
begin_session() method. begin_session() has the following signature:

input contains the name of the group containing the desired service and the
duration that the session is valid for before it needs to be renewed. The
group name is set using the setendpoint_group() method. The group name
can be any valid string and corresponds to the default group name set in the
service�s configuration scope as described in �Configuring the server� on
page 114.

The session duration is set using the setprefered_renew_timeout()
method. The duration is specified in seconds. If the specified duration is less
than the value specified by the service�s min_session_timeout configuration
setting, it will be set to the configured minimum value. If the specified
duration is higher than the value specified by the service�s
max_session_timeout configuration setting, it will be set the configured max
value. For more information see �Configuration� on page 27.

output contains the information needed to use the session.

Once a session is returned in output, you will need to extract the session ID
to work with the session. This is done using
IT_Bus_Services::ActiveSession::getsession_id(). getsession_id()
returns the session ID as an IT_Bus_Services::SessionID.

Example 41: Instantiating a Session Manager Proxy

// C++
QName session_manager_name("", "SessionManager",
 "http://ws.iona.com/session_manager");
locator_proxy = new LocatorServiceClient("session_manager.wsdl",
 session_manager_name,
 "SessionManagerPort");

void begin_session(IT_Bus_Services::BeginSession input,
 IT_Bus_Services::BeginSessionResponse output);
 118

Working with Sessions
Example 42 shows the client code to begin a session for qajaq_group.

Get a list of endpoints in the group The session manager hands out sessions for a group of services, so in order
to get an individual endpoint upon which to make requests a client needs to
get a list of the endpoints in the session�s group. The session manager
proxy�s get_all_endpoints() method returns a list of all endpoints
registered to the specified group. get_all_endpoints() has the following
signature:

request contains the session ID for which you are requesting endpoints. Set
the session ID using the setsession_id() method on request with the
session ID returned from the session manager.

response contains the list of endpoints returned from get_all_endpoints().
If the group has no endpoints, response will be empty.

Example 42:Beginning a Session

// C++
IT_Bus_Services::BeginSession begin_session_request;
IT_Bus_Services::BeginSessionResponse begin_session_response;

// set the group to request
begin_session_request.setendpoint_group("qajaq_group");
// set session renewal interval to 10 mins
begin_session_request.setpreferred_renew_timeout(600);

session_mgr.begin_session(begin_session_request,
 begin_session_response);

IT_Bus_Services::SessionId session;
session =

begin_session_response.getsession_info().getsession_id();

void get_all_endpoints(IT_Bus_Services::GetAllEndpoints request,
 IT_Bus_Services::GetAllEndpointsResponse response)
119

CHAPTER 7 | Using the Artix Session Manager
Example 43 shows how to get the list of endpoints for a group.

Create a proxy for the requested
service

The client can use any of the endpoints returned by get_all_endpoints()
to instantiate a server proxy for making requests on the requested server. To
instantiate the proxy, you first need to narrow down the list returned
endpoints to the desired one. GetAllEnpointsResponse contains an array of
references to active endpoints that can be retrieved using
GetAllEndpointsResponse�s getendpoints() method. You can use simple
indexing to get one of the references. For example, to use the first endpoint
you would use the following:

Because the session manager simply returns the endpoints in the order the
services registered with the session manager, the clients must be
responsible for circulating through the list or else they will all make requests
on only one service in the group. Also, because the session manager does
not force all members of a group to implement the same interface, you may

Example 43:Retrieving the List of Endpoints in a Group

//C++
IT_Bus_Services::GetAllEndpoints request;
IT_Bus_Services::GetAllEndpointsResponse response;

// group session initialized above.
get_all_endpoints_request.setsession_id(session);

session_mgr.get_all_endpoints(request, response);

response.getendpoints()[0]
 120

Working with Sessions
want to have your clients check each endpoint to see if it implements the
correct interface by checking the reference�s service name as shown in
Example 44.

Example 45 shows the client code for creating a proxy qajaq server from a
group endpoint.

Create a session header Services that are being managed by the session manager will only accept
requests that include a valid session header. The session header information
is passed to the server as part of the proxy�s input message attributes.
Creating the session header and putting into the input message attributes
takes three steps:

1. Set the proxy to use input message attributes.

2. Get a handle to the proxy�s input message attributes.

3. Set the session information into the input message attributes.

Setting the proxy to use input message attributes

Artix client proxies all support a helper method, get_port(), that provides
access to the port information used by the client to connect the server. One
of an Artix proxy�s port properties is use_input_message_attributes.

Example 44:Checking the Endpoint for its Interface

//C++
IT_Bus::Reference endpoint = response.getendpoints()[0];
if (endpoint.get_service_name() ==
 QName("", "QajaqService", "http://qajaqs.com"))
 {
 // instantiate a QajaqService using endpoint
 }
else
 {
 // do something else
 }

Example 45: Instantiate a Proxy Server

// C++
QajaqClient qajaq_proxy(response.getendpoints()[0]);
121

CHAPTER 7 | Using the Artix Session Manager
Setting this property to true tells the bus to endure the input message
attributes are propagated through to the server. Example 46 shows how to
set the client proxy port�s use_input_message_attributes property to true.

Getting a handle to the input message attributes

A pointer to the proxy port�s input message attributes is returned by the
port�s get_input_message_attributes() method. Example 47 shows how
to get a handle to the input message attributes.

Setting the session information into the input message attributes

There are two attributes that need to be set to include the proper session
information in the input message:

SessionName specifies the name the session manager has given this
session. The session manager endpoints in the group will also be given this
name to validate session header�s against. The session name is returned by
invoking getname() of the session ID of the active session.

SessionGroup specifies the group name for which the session is valid. The
session endpoints also use to ensure that the session is for the correct
group. The session group is returned by invoking getendpoint_group() on
the session ID of the active session.

Example 46:Use Input Message Attributes

//C++
// Get the proxy’s port
IT_Bus::Port proxy_port = qajaq_proxy.get_port();

// set the port property
proxy_port.use_input_attributes(true);

Example 47:Getting the Input Message Attributes

MessageAttributes& input_attributes =
proxy_port().get_input_message_attributes();
 122

Working with Sessions
The input message attributes are set using the message attribute handle�s
set_string() method. set_string() takes two attributes. The first is a
string specifying the name of the attribute being set. The second is the value
to be set for the attribute. Example 48 shows how to set the session
information in to the input message attributes.

Make requests on service proxy Once the session information is added to the proxy�s port information, the
client can invoke operations on the client as it would a non-managed server.
If the endpoint rejects the request because the client�s session is not valid,
an exception is raised.

Renewing a session If a client is going to use a session for a longer than the duration requested
when the session was granted, the client will need to renew its session or
the session will timeout. A session is renewed using the session manager
proxy�s renew_session() method. renew_session() has the following
signature:

params contains the session ID of the session being renewed and the
duration, in seconds, of the renewal. The session ID is set using params�
setsession_id() method. The renewal duration is set using params�
setrenew_timeout() method.

If the renewal is successful, renewed will return containing the duration of
the renewal. The returned duration may be different if the requested renewal
duration was outside of the configured range for session timeouts.

If the renewal is unsuccessful, an
IT_Bus_Services::renewSessionFaultException is raised.

Example 48:Setting the Input Message Attributes

// C++
input_attributes.set_string("SessionName", session.getname());
input_attributes.set_string("SessionGroup",
 session.getendpoint_group());

void renew_session(IT_Bus_Services::RenewSession params,
 IT_Bus_Services::RenewSessionResponse renewed);
123

CHAPTER 7 | Using the Artix Session Manager
Example 49 shows how to end a session.

End the session When a client is finished with a session managed service, it should explicitly
end its session. This will ensure that the session will be freed up
immediately. A session is ended using the session manager proxy�s
end_session() method. end_session() has the following signature:

params contains the session ID of the session being ended. The session ID is
set using params� setsession_id() method.

Example 50 shows how to end a session.

For more information on writing Artix client code read the Artix C++
Programmer�s Guide.

Example 49:Ending a Session

//C++
IT_Bus_Services::RenewSession params;
IT_Bus_Services::RenewSessionResponse renewed;
params.setsession_id(session);
parames.setrenewal_timeout(600);
try
{
 session_mgr.renew_session(params, renewed);
}
catch (IT_Bus_Services::renewSessionFaultException)
{
 // handle the exception
}

void end_session(IT_Bus_Services::EndSession params);

Example 50:Ending a Session

//C++
IT_Bus_Services::EndSession params;
params.setsession_id(session);
session_mgr.end_session(params);
 124

Fault Tolerance
Fault Tolerance

Overview Enterprise level deployments demand that applications can cleanly recover
from occasional failures. The Artix session is designed to recover from the
two most common failures:

� failure of a registered endpoint.

� failure of the session manager itself.

Endpoint failure When an endpoint gracefully shuts down, it notifies the session manager
that it will no longer be available and the session manager removes the
endpoint from its list so it cannot give a client a reference to a dead
endpoint. However, when an endpoint fails unexpectedly, it cannot notify
the session manager and the session manager can unknowingly give a client
an invalid reference causing the failure to cascade.

To mitigate the risk of passing invalid references to clients, the session
manager occasionally pings all of its registered endpoints to see if they are
still running. If an endpoint does not respond to a ping, the session manager
removes that endpoint�s reference.

You can adjust the interval between session manager pings by setting the
configuration variable plugins:session_manager:peer_timeout. The
default setting is 4 seconds. For more information see �Configuration� on
page 27.

Service failure When the session manager fails all of the references to the registered
endpoints are lost and the active endpoints are no longer be registered. To
ensure that the active endpoints reregister with the session manager when it
restarts, the endpoints, after the session manager has missed its ping
interval, will periodically attempt to reregister with the session manager until
they are successful.

You can adjust the interval between the endpoint�s pings of the session
manager by setting the configuration variable
plugins:session_endpoint_manager:peer_timout. The default setting is 4
seconds. For more information see �Configuration� on page 27.
125

CHAPTER 7 | Using the Artix Session Manager
 126

CHAPTER 8

Artix Logging and
SNMP Support
This chapter describes various Artix logging approaches,
including Artix support for SNMP (Simple Network
Management Protocol) and integration with third-party SNMP
management tools.

In this chapter This chapter includes the following sections:

Artix Logging page 128

Using Trace Macros page 129

Logging to a File page 133

Using the SNMP Logging Plug-in page 134

Using the XML Logging Plug-in page 141

IT_Logging Overview page 148

IT_Logging::LogStream Interface page 152

Example page 155

Performance Logging page 157
127

CHAPTER 8 | Artix Logging and SNMP Support
Artix Logging

Overview Artix provides the following IT_Logging::logstream plug-ins: the
xmlfile_logstream and snmp_logstream. In addition, IONA Application
Server Platform logging features such as local_logstream. are provided.

For information on configuring these plugins see �Configuration� on
page 27.
 128

Using Trace Macros
Using Trace Macros

Artix Trace Macros In using Trace macros, the most important concept is the trace level. Trace
level is an enum, defined in it_bus/logging_support, that lets you filter
events:

The simplest trace statement emits a constant string at level IT_TRACE. For
example:

Several versions of the macro allow using a C printf format string, and
passing in some arguments. Because you cannot have variable argument
lists for macros, there are several defined according to how many arguments
are allowed:

Both the zero argument and the multi argument versions have a set that
allows a trace level to be passed in, instead of level IT_TRACE. For example:

const IT_TraceLevel IT_TRACE_FATAL = 64; //FATAL

const IT_TraceLevel IT_TRACE_ERROR = 32; //ERROR

const IT_TraceLevel IT_TRACE_WARNING = 16; //WARNING

const IT_TraceLevel IT_TRACE = 4; //INFO_HIGH

const IT_TraceLevel IT_TRACE_BUFFER = 2; //INFO_MED

const IT_TraceLevel IT_TRACE_METHODS = 1; //INFO_LOW

const IT_TraceLevel IT_TRACE_METHODS_INTERNAL = 1; //INFO_LOW

TRACELOG("Hello world");

TRACELOG1("My name is: %s", "Slim Shady");
TRACELOG2("At state number %d, this happened: %s", 44, "connection failure");

TRACELOG_WITH_LEVEL(IT_METHODS, "MyClass::MyClass()");
TRACELOG_WITH_LEVEL1(IT_TRACE_METHODS_INTERNAL, "Value of my_name_field was %s", my_name_field);
129

CHAPTER 8 | Artix Logging and SNMP Support
If you must create your own output using iostreams or another expensive
process that isn't supported by the macro, you use the trace guard block, so
that the trace level test will prevent your trace creation code from running
when it will not produce output. For example:

To create binary output (for instance, a hex dump of the buffer), use
TRACELOGBUFFER. For example:

If the trace statement issues at a level less than or equal to the process trace
level, then the entry is written to disk. The default log file name is
it_bus.log.

BEGIN_TRACE(IT_TRACE)
 String trace_message = "data elements: ";
 for(i = 0; i < data_count; i++)
 {
 trace_message = trace_message + data_item[i] + "

";
 }
 TRACELOG(trace_message.c_str());
END_TRACE

TRACELOGBUFFER(vvMQMessageData, vvMQMessageData.GetSize())
 130

Using Trace Macros
Application Server Platform Trace Macros

<orbix\logging_support.h> defines ASP-style logging macros.

IT_LOG_MESSAGE Macros

IT_LOG_MESSAGE() Macro

// C++
#define IT_LOG_MESSAGE(\
 event_log, \
 subsystem, \
 id, \
 severity, \
 desc \
) ...

A macro to use for reporting a log message.

Parameters

Examples Here is a simple example of usage:

event_log The log (EventLog) where the message is to be reported.

subsystem The SubsystemId.

id The EventId.

severity The EventPriority.

desc A string description of the event.

...
IT_LOG_MESSAGE(
 event_log,
 IT_IIOP_Logging::SUBSYSTEM,
 IT_IIOP_Logging::SOCKET_CREATE_FAILED,
 IT_Logging::LOG_ERROR,
 SOCKET_CREATE_FAILED_MSG
);
131

CHAPTER 8 | Artix Logging and SNMP Support
IT_LOG_MESSAGE_1() Macro

// C++
#define IT_LOG_MESSAGE_1(\
 event_log, \
 subsystem, \
 id, \
 severity, \
 desc, \
 param0 \
) ...

A macro to use for reporting a log message with one event parameter.

Parameters

In addition, the IT_LOG_MESSAGE_2(), IT_LOG_MESSAGE_3(),
IT_LOG_MESSAGE_4(), and IT_LOG_MESSAGE_5() macros, are provided for
reporting log messages with two, three, four, and five parameters,
respectively.

event_log The log (EventLog) where the message is to be reported.

subsystem The SubsystemId.

id The EventId.

severity The EventPriority.

desc A string description of the event.

param0 A single parameter for an EventParameters sequence.
 132

Logging to a File
Logging to a File
133

CHAPTER 8 | Artix Logging and SNMP Support
Using the SNMP Logging Plug-in

SNMP The Artix SNMP LogStream plug-in uses the open source library net-snmp
(v.5.0.7) to emit SNMPv1/v2 traps. For more information on this
implementation, see http://sourceforge.net/projects/net-snmp/. To obtain a
freeware SNMP Trap Receiver, visit http://www.ncomtech.com.

Simple Network Management Protocol (SNMP) is the Internet standard
protocol for managing nodes on an IP network. SNMP can be used to
manage and monitor all sorts of equipment (for example, network servers,
routers, bridges, and hubs).
 134

http://sourceforge.net/projects/net-snmp/
http://sourceforge.net/projects/net-snmp/

Using the SNMP Logging Plug-in
the Artix Management
Information Base (MIB)

A MIB file is a database of objects that can be managed using SNMP. It has
a hierarchical structure, similar to a DOS or UNIX directory tree. It contains
both pre-defined values and values that can be customized. The Artix MIB is
shown below:
135

CHAPTER 8 | Artix Logging and SNMP Support
Example 51:Artix MIB

IONA-ARTIX-MIB DEFINITIONS ::= BEGIN

 IMPORTS
 MODULE-IDENTITY, OBJECT-TYPE,
 Integer32, Counter32,
 Unsigned32,
 NOTIFICATION-TYPE FROM SNMPv2-SMI
 DisplayString FROM RFC1213-MIB
;

-- v2 s/current/current

 iona OBJECT IDENTIFIER ::= { iso(1) org(3) dod(6) internet(1) private(4) enterprises(1) 3027 }

 ionaMib MODULE-IDENTITY
 LAST-UPDATED "200303210000Z"

 ORGANIZATION "IONA Technologies PLC"
 CONTACT-INFO
 "
 Corporate Headquarters
 Dublin Office
 The IONA Building
 Shelbourne Road
 Ballsbridge
 Dublin 4 Ireland
 Phone: 353-1-662-5255
 Fax: 353-1-662-5244

 US Headquarters
 Waltham Office
 200 West Street 4th Floor
 Waltham, MA 02451
 Phone: 781-902-8000
 Fax: 781-902-8001

 Asia-Pacific Headquarters
 IONA Technologies Japan, Ltd
 Akasaka Sanchome Bldg.
 7F 3-21-16 Akasaka, Minato-ku,
 Tokyo, Japan 107-0052
 Tel: +81 3 3560 5611
 Fax: +81 3 3560 5612
 136

Using the SNMP Logging Plug-in
 E-mail: support@iona.com
 "
 DESCRIPTION
 "This MIB module defines the objects used and format of SNMP traps that are generated
 from the Event Log for Artix based systems from IONA Technologies"

 ::= { iona 1 }

-- iona(3027)

-- |
-- ionaMib(1)
-- |
-- __
-- | | |
-- orbix3(2) IONAAdmin (3) Artix (4)
- |
-- --------------------
-- | |
-- ArtixEventLogMibObjects(0) ArtixEventLogMibTraps (1)
-- | |
-- -- -----------------------
-- |- eventSource (1) |- ArtixbaseTrapDef (1)
-- |- eventId (2)
-- |- eventPriority (3)
-- |- timeStamp (4)
-- |- eventDescription (5)

 Artix OBJECT IDENTIFIER ::= { ionaMib 4 }
 ArtixEventLogMibObjects OBJECT IDENTIFIER ::= { Artix 0 }
 ArtixEventLogMibTraps OBJECT IDENTIFIER ::= { Artix 1 }
 ArtixBaseTrapDef OBJECT IDENTIFIER ::= { ArtixEventLogMibTraps 1 }

-- MIB variables used as varbinds
 eventSource OBJECT-TYPE
 SYNTAX DisplayString (SIZE(0..255))
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The component or subsystem which generated the event."

Example 51:Artix MIB
137

CHAPTER 8 | Artix Logging and SNMP Support
 ::= { ArtixEventLogMibObjects 1 }

 eventId OBJECT-TYPE
 SYNTAX INTEGER
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The event id for the subsystem which generated the event."

 ::= { ArtixEventLogMibObjects 2 }

 eventPriority OBJECT-TYPE
 SYNTAX INTEGER
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The severity level of this event. This maps to IT_Logging::EventPriority types. All
 priority types map to four general types: INFO (I), WARN (W), ERROR (E), FATAL_ERROR (F)"

 ::= { ArtixEventLogMibObjects 3 }

 timeStamp OBJECT-TYPE
 SYNTAX DisplayString (SIZE(0..255))
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The time when this event occurred."

 ::= { ArtixEventLogMibObjects 4 }

 eventDescription OBJECT-TYPE
 SYNTAX DisplayString (SIZE(0..255))
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The component/application description data included with event."

 ::= { ArtixEventLogMibObjects 5 }

-- SNMPv1 TRAP definitions
-- ArtixEventLogBaseTraps TRAP-TYPE
-- OBJECTS {
-- eventSource,
-- eventId,
-- eventPriority,

Example 51:Artix MIB
 138

Using the SNMP Logging Plug-in
IONA SNMP integration Events received from various Artix components are converted into SNMP
management information. This information is sent to designated hosts as
SNMP traps, which can be received by any SNMP managers listening on the
hosts. In this way, Artix enables SNMP managers to monitor Artix-based
systems.

Artix supports SNMP version 1 and 2 traps only.

Artix provides a logstream plug-in called snmp_log_stream. The shlib name
of the SNMP plug-in found in the artix.cfg file is:

-- timestamp,
-- eventDescription
-- }

-- STATUS current
-- ENTERPRISE iona
-- VARIABLES { ArtixEventLogMibObjects }
-- DESCRIPTION "The generic trap generated from an Artix Event Log."
-- ::= { ArtixBaseTrapDef 1 }

-- SNMPv2 Notification type

 ArtixEventLogNotif NOTIFICATION-TYPE
 OBJECTS {
 eventSource,
 eventId,
 eventPriority,
 timestamp,
 eventDescription
 }

 STATUS current
 ENTERPRISE iona
 DESCRIPTION "The generic trap generated from an Artix Event Log."
 ::= { ArtixBaseTrapDef 1 }

END

Example 51:Artix MIB

plugins:snmp_log_stream:shlib_name = "it_snmp"
139

CHAPTER 8 | Artix Logging and SNMP Support
The SNMP plug-in has five configuration variables, whose defaults can be
overridden by the user. The availability of these variables is subject to
change. The variables and defaults are:

The last plugin described, oid, is the Enterprise Object Identifier. This
identifier is assigned to specific enterprises by the Internet Assigned
Numbers Authority (IANA). The first six numbers correspond to the prefix:
"iso.org.dod.internet.private.enterprise" (1.3.6.1.4.1). Each enterprise is
assigned a unique number, and can provide additional numbers to further
specify the enterprise and product. For example, the oid for IONA is 3027.
IONA has added "1.4.1.0" for Artix. Thus the complete OID for IONA�s Artix
is "1.3.6.1.4.1.3027.1.4.1.0". To find the number for your enterprise, visit
the IANA website at http://www.iana.org.

The SNMP plug-in implements the IT_Logging::LogStream interface and
hence, acts like the local_log_stream plug-in.

plugins:snmp_log_stream:community = "public";

plugins:snmp_log_stream:server = "localhost";

plugins:snmp_log_stream:port = "162";

plugins:snmp_log_stream:trap_type = "6";

plugins:snmp_log_stream:oid = "<your IANA number in dotted decimal notation>"
 140

http://www.iana.org

Using the XML Logging Plug-in
Using the XML Logging Plug-in

Using the XML Logging Plug-in You can modify your event log filters to enable or disable Artix tracing.

The out of the box setting for event_log:filters is ["*=FATAL+ERROR"].

So, for example, to cause transport buffer events to be shown, update the
event_log:filters to includel INFO_MED:

The following causes typical trace statement output:

In addition, you can:

� add xmlfile_log_stream to the orb_plugins list

� update the filename variable (default is it_bus.log):
 plugins:xmlfile_log_stream:filename = "artix_logfile.xml";

� modify the size element (default is 2MB):
 plugins:xmlfile_log_stream:max_file_size = "100000";

� add optional element (default is false):
 plugins:xmlfile_log_stream:use_pid = "false";

The Artix logging output from the TRACE macros now goes to the event log,
so local_log_stream, xmlfil_log_stream or SNMP_log_stream can be
used.

logging_support.h

event_log:filters = ["*=FATAL+ERROR+WARNING+INFO_MED"];

event_log:filters = ["*=FATAL+ERROR+WARNING+INFO_HI"];
141

CHAPTER 8 | Artix Logging and SNMP Support
Example 52:Artix logging_support.h

#if !defined(_IT_BUS_LOGGING_)
#define _IT_BUS_LOGGING_
#include <stdio.h>
#include <stdarg.h>

#include <it_bus/API_Defines.h>

#define MAX_STACK_ALLOCATION 256
#define MAX_TRACE_SIZE 16384

typedef IT_UShort IT_TraceLevel;

//these are now equal to ART logging values, these are just for backward compatibility
 //value to put in event_log:filters
const IT_TraceLevel IT_TRACE_FATAL = 64; //FATAL
const IT_TraceLevel IT_TRACE_ERROR = 32; //ERROR
const IT_TraceLevel IT_TRACE_WARNING = 16; //WARNING
const IT_TraceLevel IT_TRACE = 4; //INFO_HIGH
const IT_TraceLevel IT_TRACE_BUFFER = 2; //INFO_MED
const IT_TraceLevel IT_TRACE_METHODS = 1; //INFO_LOW
const IT_TraceLevel IT_TRACE_METHODS_INTERNAL = 1; //INFO_LOW

extern IT_AFC_API IT_TraceLevel g_log_filter;

namespace CORBA
{
class ORB;
};

namespace IT_Logging
{
 class EventLog;
}

 142

Using the XML Logging Plug-in
extern "C"
{
 void IT_AFC_API set_global_log_filter(IT_TraceLevel trace_level);
 void IT_AFC_API set_logging_default_ORB(CORBA::ORB* orb);

 void IT_AFC_API write_log_record(IT_Logging::EventLog* event_log, IT_TraceLevel trace_level,
const char* description, ...);

 void IT_AFC_API write_log_record_with_CDATA(IT_Logging::EventLog* event_log, IT_TraceLevel
trace_level, const char* description, const char* data_buffer, long buffer_size);

 void IT_AFC_API write_log_record_with_binary(IT_Logging::EventLog* event_log, IT_TraceLevel
trace_level, const char* description, const char* data_buffer, long buffer_size);

}

//These are for writing data buffers
//binary buffers are written in a hex dump format.
//to see output from these, include INFO_MED in your event_log:filters
#define IT_LOG_BUFFER(event_log, Entry, Length) \
 if ((g_log_filter & IT_TRACE_BUFFER) != 0) \
 { \
 write_log_record_with_binary(event_log, IT_TRACE_BUFFER, "Buffer Output", Entry, Length);

\
 }

#define IT_LOG_CDATA(event_log, description, Entry) \
 if ((g_log_filter & IT_TRACE_BUFFER) != 0) \
 { \
 write_log_record_with_CDATA(event_log, IT_TRACE_BUFFER, description, Entry, 0); \
 }

#define IT_LOG_CDATA_SIZE(event_log, description, Entry, Size) \
 if ((g_log_filter & IT_TRACE_BUFFER) != 0) \
 { \
 write_log_record_with_CDATA(event_log, IT_TRACE_BUFFER, description, Entry, Size); \
 }

#define IT_LOG_CDATA_BINARY_BUFFER(event_log, description, bbData) \
 if ((g_log_filter & IT_TRACE_BUFFER) != 0) \
 { \
 write_log_record_with_binary(event_log, IT_TRACE_BUFFER, description,

bbData.get_const_pointer(), bbData.get_size()); \
 }

Example 52:Artix logging_support.h
143

CHAPTER 8 | Artix Logging and SNMP Support
//these are used for controlled tracing operations. description is a printf format string
//they allow specifying the trace level so callers can control visibility
#define IT_LOG_GUARDED0(event_log, trace_level, description) \
 if ((g_log_filter & trace_level) != 0) \
 write_log_record(event_log, trace_level, description);

#define IT_LOG_GUARDED(event_log, trace_level, description) \
 IT_LOG_GUARDED0(event_log, trace_level, description)

#define IT_LOG_GUARDED1(event_log, trace_level, description, Arg1) \
 if ((g_log_filter & trace_level) != 0) \
 { \
 write_log_record(event_log, trace_level, description, Arg1); \
 }

#define IT_LOG_GUARDED2(event_log, trace_level, description, Arg1, Arg2) \
 if ((g_log_filter & trace_level) != 0) \
 { \
 write_log_record(event_log, trace_level, description, Arg1, Arg2); \
 }

#define IT_LOG_GUARDED3(event_log, trace_level, description, Arg1, Arg2, Arg3) \
 if ((g_log_filter & trace_level) != 0) \
 { \
 write_log_record(event_log, trace_level, description, Arg1, Arg2, Arg3); \
 }

#define IT_LOG_GUARDED4(event_log, trace_level, description, Arg1, Arg2, Arg3, Arg4) \
 if ((g_log_filter & trace_level) != 0) \
 { \
 write_log_record(event_log, trace_level, description, Arg1, Arg2, Arg3, Arg4); \
 }

#define IT_LOG_GUARDED5(event_log, trace_level, description, Arg1, Arg2, Arg3, Arg4, Arg5) \
 if ((g_log_filter & trace_level) != 0) \
 { \
 write_log_record(event_log, trace_level, description, Arg1, Arg2, Arg3, Arg4, Arg5); \
 }

Example 52:Artix logging_support.h
 144

Using the XML Logging Plug-in
//these are used to guard a code block from executing when the purpose of the code
//block is solely for formatting a trace statement. It prevents the code from
//executing when the trace_level is filtered out and wouldn't be used anyway.
#define BEGIN_TRACE(trace_level) \
 if ((g_log_filter & trace_level) != 0) \
 {

#define END_TRACE \
 }

//all the macros that follow are just short hand for the previous ones, but they
//default the event_log to 0, which uses the first one that was loaded (usually
//the only one unless you are using multiple orb names in your cfg file

//These are for writing data buffers
//binary buffers are written in a hex dump format.
//to see output from these, include INFO_MED in your event_log:filters
#define TRACELOGBUFFER(Entry, Length) \
 if ((g_log_filter & IT_TRACE_BUFFER) != 0) \
 { \
 write_log_record_with_binary(0, IT_TRACE_BUFFER, "Buffer Output", Entry, Length); \
 }

#define TRACELOG_CDATA(description, Entry) \
 if ((g_log_filter & IT_TRACE_BUFFER) != 0) \
 { \
 write_log_record_with_CDATA(0, IT_TRACE_BUFFER, description, Entry, 0); \
 }

#define TRACELOG_CDATA_SIZE(description, Entry, Size) \
 if ((g_log_filter & IT_TRACE_BUFFER) != 0) \
 { \
 write_log_record_with_CDATA(0, IT_TRACE_BUFFER, description, Entry, Size); \
 }

#define TRACELOG_CDATA_BINARY_BUFFER(description, bbData) \
 if ((g_log_filter & IT_TRACE_BUFFER) != 0) \
 { \
 write_log_record_with_binary(0, IT_TRACE_BUFFER, description, bbData.get_const_pointer(),

bbData.get_size()); \
 }

Example 52:Artix logging_support.h
145

CHAPTER 8 | Artix Logging and SNMP Support
//These are used for method level tracing
//to see output from these, include INFO_LOW in your event_log:filters
#define BEGIN_INTERNAL_METHOD(Name) \
 const char *FuncName = Name; \
 if ((g_log_filter & IT_TRACE_METHODS_INTERNAL) != 0) \
 write_log_record(0, IT_TRACE_METHODS_INTERNAL, FuncName);

#define END_INTERNAL_METHOD

#define BEGIN_METHOD(Name) \
 const char *FuncName = Name; \
 if ((g_log_filter & IT_TRACE_METHODS_INTERNAL) != 0) \
 write_log_record(0, IT_TRACE_METHODS, FuncName);

#define END_METHOD

//these are used for controlled tracing operations. description is a printf format string
//they allow specifying the trace level so callers can control visibility
#define TRACELOG_WITH_LEVEL0(trace_level, description) \
 IT_LOG_GUARDED(0, trace_level, description)

#define TRACELOG_WITH_LEVEL(trace_level, description) \
 IT_LOG_GUARDED(0, trace_level, description)

#define TRACELOG_WITH_LEVEL1(trace_level, description, Arg1) \
 IT_LOG_GUARDED1(0, trace_level, description, Arg1)

#define TRACELOG_WITH_LEVEL2(trace_level, description, Arg1, Arg2) \
 IT_LOG_GUARDED2(0, trace_level, description, Arg1, Arg2)

#define TRACELOG_WITH_LEVEL3(trace_level, description, Arg1, Arg2, Arg3) \
 IT_LOG_GUARDED3(0, trace_level, description, Arg1, Arg2, Arg3)

#define TRACELOG_WITH_LEVEL4(trace_level, description, Arg1, Arg2, Arg3, Arg4) \
 IT_LOG_GUARDED4(0, trace_level, description, Arg1, Arg2, Arg3, Arg4)

#define TRACELOG_WITH_LEVEL5(trace_level, description, Arg1, Arg2, Arg3, Arg4, Arg5) \
 IT_LOG_GUARDED5(0, trace_level, description, Arg1, Arg2, Arg3, Arg4, Arg5)

Example 52:Artix logging_support.h
 146

Using the XML Logging Plug-in
//these are used for normal tracing operations. description is a printf format string
//they default the trace level to IT_TRACE, if you want to use another level see the previous set
#define TRACELOG(description) \
 IT_LOG_GUARDED(0, IT_TRACE, description)

#define TRACELOG0(description) \
 IT_LOG_GUARDED(0, IT_TRACE, description)

#define TRACELOG1(description, Arg1) \
 IT_LOG_GUARDED1(0, IT_TRACE, description, Arg1)

#define TRACELOG2(description, Arg1, Arg2) \
 IT_LOG_GUARDED2(0, IT_TRACE, description, Arg1, Arg2)

#define TRACELOG3(description, Arg1, Arg2, Arg3) \
 IT_LOG_GUARDED3(0, IT_TRACE, description, Arg1, Arg2, Arg3)

#define TRACELOG4(description, Arg1, Arg2, Arg3, Arg4) \
 IT_LOG_GUARDED4(0, IT_TRACE, description, Arg1, Arg2, Arg3, Arg4)

#define TRACELOG5(description, Arg1, Arg2, Arg3, Arg4, Arg5) \
 IT_LOG_GUARDED5(0, IT_TRACE, description, Arg1, Arg2, Arg3, Arg4, Arg5)

#endif

Example 52:Artix logging_support.h
147

CHAPTER 8 | Artix Logging and SNMP Support
IT_Logging Overview
The IT_Logging module is the centralized point for controlling all logging
methods. The LogStream interface controls how and where events are
received.

The IT_Logging module also uses the following common data types, static
method, and macros.

IT_Logging::ApplicationId Data Type

//IDL
typedef string ApplicationId;

An identifying string representing the application that logged the event.

For example, a Unix and Windows ApplicationId contains the host name
and process ID (PID) of the reporting process. Because this value can differ
from platform to platform, streams should only use it as informational text,
and should not attempt to interpret it.

IT_Logging::EventId Data Type

//IDL
typedef unsigned long EventId;

An identifier for the particular event.

Table 12: IT_Logging Common Data Types, Methods, and Macros

Common Data Types Methods and Macros

ApplicationId
EventId
EventParameters
EventPriority
SubsystemId
Timestamp

format_message()

IT_LOG_MESSAGE()
IT_LOG_MESSAGE_1()
IT_LOG_MESSAGE_2()
IT_LOG_MESSAGE_3()
IT_LOG_MESSAGE_4()
IT_LOG_MESSAGE_5()
 148

IT_Logging Overview
IT_Logging::EventParameters Data Type

//IDL
typedef CORBA::AnySeq EventParameters;

A sequence of locale-independent parameters encoded as a sequence of Any
values.

IT_Logging::EventPriority Data Type

//IDL
typedef unsigned short EventPriority;

Specifies the priority of a logged event. These can be divided into the
following categories of priority.

The possible values for an EventPriority consist of the following:

LOG_NO_EVENTS
LOG_ALL_EVENTS
LOG_INFO_LOW
LOG_INFO_MED
LOG_INFO_HIGH
LOG_INFO (LOG_INFO_LOW)

Information A significant non-error event has occurred. Examples include
server startup/shutdown, object creation/deletion, and
information about administrative actions. Informational
messages provide a history of events that can be invaluable
in diagnosing problems.

Warning The subsystem has encountered an anomalous condition, but
can ignore it and continue functioning. Examples include
encountering an invalid parameter, but ignoring it in favor of
a default value.

Error An error has occurred. The subsystem will attempt to
recover, but may abandon the task at hand. Examples
include finding a resource (such as memory) temporarily
unavailable, or being unable to process a particular request
due to errors in the request.

Fatal Error An unrecoverable error has occurred. The subsystem or
process will terminate.
149

CHAPTER 8 | Artix Logging and SNMP Support
LOG_ALL_INFO
LOG_WARNING
LOG_ERROR
LOG_FATAL_ERROR

A single value is used for EventLog operations that report events or
LogStream operations that receive events. In filtering operations such as
set_filter(), these values can be combined as a filter mask to control
which events are logged at runtime.

IT_Logging::format_message()

// C++
static char* format_message(
 const char* description,
 const IT_Logging::EventParameters& params
);

Returns a formatted message based on a format description and a sequence
of parameters.

Parameters Messages are reported in two pieces for internationalization:

format_message() copies the description into an output string, interprets
each event parameter, and inserts the event parameters into the output
string where appropriate. Event parameters that are primitive and
SystemException parameters are converted to strings before insertion. For
all other types, question marks (?) are inserted.

IT_Logging::SubsystemId Data Type

//IDL
typedef string SubsystemId;

An identifying string representing the subsystem from which the event
originated. The constant _DEFAULT may be used to enable all subsystems.

description A locale-dependent string that describes of how to use the
sequence of parameters in params.

params A sequence of locale-dependent parameters.
 150

IT_Logging Overview
IT_Logging::Timestamp Data Type

//IDL
typedef unsigned long Timestamp;

The time of the logged event in seconds since January 1, 1970.
151

CHAPTER 8 | Artix Logging and SNMP Support
IT_Logging::LogStream Interface
Each of the Artix logging plug-ins implements the IT_Logging::LogStream
interface. The LogStream interface allows an application to intercept events
and write them to some concrete location via a stream.
IT_Logging::EventLog objects maintain a list of LogStream objects. You
register a LogStream object from an EventLog using register_stream().
The complete LogStream interface is as follows:

// IDL in module IT_Logging
interface LogStream {
 void report_event(
 in ApplicationId application,
 in SubsystemId subsystem,
 in EventId event,
 in EventPriority priority,
 in Timestamp event_time,
 in any event_data
);

 void report_message(
 in ApplicationId application,
 in SubsystemId subsystem,
 in EventId event,
 in EventPriority priority,
 in Timestamp event_time,
 in string description,
 in EventParameters parameters
);
};

These operations are described in detail as follows:

LogStream::report_event()

// IDL
void report_event(
 in ApplicationId application,
 in SubsystemId subsystem,
 in EventId event,
 in EventPriority priority,
 in Timestamp event_time,
 in any event_data
 152

IT_Logging::LogStream Interface
);

Reports an event and its event-specific data to the log stream.

Parameters

See also IT_Logging::EventLog::report_event()

IT_Logging::LogStream::report_message()

LogStream::report_message()

// IDL
void report_message(
 in ApplicationId application,
 in SubsystemId subsystem,
 in EventId event,
 in EventPriority priority,
 in Timestamp event_time,
 in string description,
 in EventParameters parameters
);

Reports an event and message to the log stream.

Parameters

See also IT_Logging::EventLog::report_message()

application An ID representing the reporting application.

subsystem The name of the subsystem reporting the event.

event A unique ID defining the event.

priority The event priority.

event_time The time when the event occurred.

event_data Event-specific data.

application An ID representing the reporting application.

subsystem The name of the subsystem reporting the event.

event The unique ID defining the event.

priority The event priority.

event_time The time when the event occurred.

description A string describing the format of parameters.

parameters A sequence of parameters for the log.
153

CHAPTER 8 | Artix Logging and SNMP Support
IT_Logging::LogStream::report_event()
 154

Example
Example

Controlling Application Logging This example shows application logging enable by including the
xmlfile_log_stream plugin in the orb_plugins list (this plugin is included
in the default orb_plugins list, though it is not included in the orb_plugins
lists within many of the demo program configuration scopes). If you want to
enable logging to an XML file for the applications you develop, include this
plugin in your orb_plugins list.

To enable usage of the xmlfile_log_stream plugin, several other
configuration variables must also be set. These variable are all set within the
default/global scope in the artix.cfg file:

plugins:xmlfile_log_stream:shlib_name =
 “it_xmlfile”;

plugins:xmlfile_log_stream:filename =
 “artix_logfile.xml”;
default: it_bus.log

plugins:xmlfile_log_stream:max_file_size =
 “2000000”;
default: 2 mb

plugins:xmlfile_log_stream:use_pid =
 “false”;
default: false

standard logging setting; logs errors and warnings
event_log:filters =
 [“*=FATAL+ERROR+WARNING”];

very detailed logging
#event_log:filters = [“*=*”];

transport buffer logging
#event_log:filters =
 [“*=FATAL+ERROR+WARNING+INFO_MED”];

high level informational logging
#event_log:filters =
 [“*=FATAL+ERROR+WARNING+INFO_HI”];
155

CHAPTER 8 | Artix Logging and SNMP Support
Using the Logging Functionality
The default configuration settings enable logging of only serious errors and
warnings. If you want more exhaustive information, you should either select
a different filter list at the default scope, or include a more expansive
event_log:filters configuration variable within your configuration scope.

If you have trouble running any of the demos, you should enable a high level
of logging, whichrequires adding the xmlfile_log_stream plugin to the
orb_plugins list and selecting the desired reporting level.
 156

Performance Logging
Performance Logging

Overview The performance logging plugins allow applications based on IONA products
to integrate effectively with Enterprise Management Systems (EMSs) such
as IBM Tivoli�, HP OpenView�, CA Unicenter� or BMC Patrol�.

Performance logging lets you see how each server is responding to load.
These plugins log this data to file or syslog. Your EMS can read the
performance data from the logs and initiate appropriate actions. For
example, issuing a restart to a server that has become unresponsive, or
starting a new replica for an overloaded cluster.

Configuration The performance logging component consist of three plugins:

� The response time logger plugin

� The request counter plugin

� The collector plugin

The response time logger plugin monitors response times of requests as they
pass through ART binding chains. It can be used to collect response times
for CORBA, RMI-IIOP or HTTP calls in IONA�s CORBA and J2EE products.
The request counter plugin performs the same function for Artix.

The collector plugin periodically harvests data from the response time logger
and request counter plugins and logs the results. To monitor the
performance of CORBA or J2EE requests (made in the context of IONA�s
Application Server Platform), you must perform the following steps to
reconfigure the Application Server Platform:
157

CHAPTER 8 | Artix Logging and SNMP Support
Add it_response_time_logger to the orb_plugins list for the server you
wish to instrument. Add it_reponse_time_logger to the server and servlet
binding lists for that server. For example:

Monitoring an Artix Server

Configuring the collector plugin You can configure the collector plugin to log data either to a file or to syslog.
The following example results in performance data being logged to
/var/log/my_app/perf_logs/treasury_app.log every 90 seconds (if you
do not specify the period, it defaults to 60 seconds):

binding:servlet_binding_list= [
"it_response_time_logger + it_servlet_context + it_character_encoding
+ it_locale + it_naming_context + it_exception_mapping + it_http_sessions
+ it_web_security + it_servlet_filters + it_web_redirector + it_web_app_activator "
];
binding:server_binding_list=[
"it_response_time_logger+it_naming_context+CSI+j2eecsi+OTS+it_security_role_mapping",
"it_response_time_logger+it_naming_context+OTS+it_security_role_mapping",
"it_response_time_logger+it_naming_context + CSI+j2eecsi+it_security_role_mapping",
"it_response_time_logger+it_naming_context+it_security_role_mapping",
"it_response_time_logger+it_naming_context",
"it_response_time_logger"
];

orb_plugins=[
"it_servlet_binding_manager", "it_servlet_context",
"it_http_sessions", "it_servlet_filters", "http",
"it_servlet_dispatch", "it_exception_mapping", "it_naming_context",
"it_web_security", "it_web_app_activator",
"it_default_servlet_binding", "it_security_service", "it_character_encoding",
"it_locale", "it_classloader_servlet","it_classloader_mapping",
"it_web_redirector", "it_deployer",
"it_response_time_logger"
];

plugins:it_response_time_collector:period = "90";

plugins:it_response_time_collector:filename =
 "/var/log/my_app/perf_logs/treasury_app.log";
 158

Performance Logging
You can also configure the collector to log to a syslog daemon or Windows
Event Log:

syslog_appid lets you specify the application name, which is prepended to
all syslog messages. If you do not specify a syslog_appid, it defaults to
"iona".

You can cause your EMS to monitor a cluster of servers by configuring
multiple servers to log to the same file. If the servers are running on different
hosts, then the log file�s location must be on an NFS mounted or shared
directory.

Alternatively, you can use syslogd as a mechanism for monitoring a cluster,
by choosing one syslogd to act as the central logging server for the cluster.
For example, to use the host teddy as the central log server, edit the
/etc/syslog.conf file for each host that runs a server replica, and add:

Some syslog daemons do not accept log messages from other hosts by
default. In this case it may be necessary to restart the syslogd on teddy
with a special flag to allow remote log messages. Consult the man pages on
your system to determine whether this is necessary and what flags to use.

Logging Formats Performance data is logged in a well-defined format. For CORBA and J2EE
applications based on IONA�s Application Server Platform, this format is:

� operation is the name of the operation for CORBA invocations or the
URI for requests on servlets.

� count is the number of times this operation or URI was logged during
the last interval.

� avg is average response time (in milliseconds) for this operation or URI
during the last interval.

� max is the longest response time (in milliseconds) for this operation or
URI during the last interval.

plugins:it_response_time_collector:system_logging_enabled = "true";
plugins:it_response_time_collector:syslog_appid = "treasury";

Substitute the name of your log server

user.info @teddy

YYYY-MM-DDTHH:MM:SS [operation=name] count=n avg=n max=n min=n
159

CHAPTER 8 | Artix Logging and SNMP Support
� min is the shortest response time (in milliseconds) for this operation or
URI during the last interval.

The format for Artix log messages is:

� namespace is an Artix namespace.

� service is an Artix service.

� port is an Artix port.

� operation is the name of the operation for CORBA invocations or the
URI for requests on servlets.

� count is the number of times this operation or URI was logged during
the last interval.

� avg is average response time (in milliseconds) for this operation or URI
during the last interval.

� max is the longest response time (in milliseconds) for this operation or
URI during the last interval.

� min is the shortest response time (in milliseconds) for this operation or
URI during the last interval.

The combination of namespace, service and port denote a unique Artix
Service Access Point.

YYYY-MM-DDTHH:MM:SS [namespace=nnn service=sss port=ppp operation=name] count=n avg=n max=n min=n
 160

CHAPTER 9

Load Balancing
Artix solutions can be configured to balance workloads among
a number of servers.

Overview Artix provides two methods for balancing workloads among a number of
servers. One uses the lightweight Artix locator to load balance among a
groups of Artix enabled servers. The second leverages IONA�s Application
Server Platform�s location services to load balance among Artix servers that
use CORBA as their communications medium.

In this chapter This chapter discusses the following topics:

Load Balancing with the Artix Locator page 162

Load Balancing with CORBA page 164
161

CHAPTER 9 | Load Balancing
Load Balancing with the Artix Locator

Overview The Artix locator provides a lightweight mechanism for balancing workloads
among a group of servers. When a number of servers with the same service
name register with the Artix locator, it automatically creates a list of the
references and hands out the references to clients using a round robin
algorithm. This process is invisible to both the clients and the servers.

Advantages Using the Artix locator to load balance provides several advantages over
using CORBA load balancing. Chief among these is that using the Artix
locator allows you to use all of the supported Artix transports. Also, the Artix
locator does not require you to have another middleware platform installed
into your environment.

Starting to load balance To begin load balancing with the Artix locator you must deploy an Artix
locator, configure your servers to load the locator plug-ins, and design your
clients to look up their server references from the Artix locator. For
information on doing this see �Using the Artix Locator Service� on page 93.

Once the locator is deployed and your servers are properly configured, you
need to bring up a number of instances of the same service. This can be
accomplished by one of two methods depending on your system topology:

1. Create an Artix contract with a number of ports for the same service
and have each server instance startup on a different port.

2. Create a number of copies of the Artix contract defining the service,
change the port information so each copy has a separate port address,
and then bring up each server instance using a different copy of the
Artix contract.

Note: The locator uses the service name specified in the <service> tag of
the server�s Artix contract to determine if it is part of a group. It is
recommended that if you are using the Artix locator to load balance, your
services should be associated with the same binding and logical interface.
 162

Load Balancing with the Artix Locator
As each server starts up it will automatically register with the locator. The
locator will recognize that the servers all have the same service name
specified in their Artix contracts and will create a list of references for these
server instances.

As clients make requests for the service, the locator will cycle through the
list of server instances to hand out references.
163

CHAPTER 9 | Load Balancing
Load Balancing with CORBA

Overview If an Artix SAP is mapped to a CORBA service, and that CORBA service is
accessible via IONA�s Application Server Platform 6.0 Service Pack 1 (or
later), the implementation of that service can be load balanced using the
Application Server Platform�s locator service. In order to accomplish this,
the Artix configuration file must duplicate some of the information from the
Application Server Platform configuration domain, as described in the
following steps.

For information on the load balancing feature of the Application Server
Platform�s load balancing features read the Application Server Platform
Administrator�s Guide.

Configuration Steps The following steps work with an Application Server Platform installation
that uses either file-based configuration or a configuration repository.
However, because Artix supports only file-based configuration, the relevant
configuration information must be inserted into the artix.cfg file. The
following configuration example assumes that an Application Server
Platform domain exists, and that the locator service is run from this domain:

1. From the domain.cfg file, obtain the following configuration
information and add it to artix.cfg file.

2. Create an ORBname for each Artix SAP that participates in load
balancing. For example:

initial_references:IT_NodeDaemon:reference =
"IOR:000000000000002149444c3a49545f4e6f64654461656d6f6e2f4e6f64654461656d6f6e3a312e3000000000
0000000100000000000000760001020000000008686f726174696f00782800000000001d3a3e0233310c6e6f64655
f6461656d6f6e000a4e6f64654461656d6f6e00000000000003000000010000001800000000000100010000000000
01010400000001000101090000001a00000004010000000000000600000006000000000011";

itadmin orbname create demos.clustering.server_1
itadmin orbname create demos.clustering.server_2
itadmin orbname create demos.clustering.server_3
 164

Load Balancing with CORBA
3. Create a POA that declares these ORBnames as replicas, and specify
either round-robin or random load balancing. For example:

The POA name (ClusterDemo) is expressed in WSDL as:

You can choose any POA name; however, the POA name you register using
itadmin must be the same name you declare in the WSDL file.

When corba:policy persistent=true is specified, you must also specify
serviceid. Failure to specify serviceid will either result in an IOR that
cannot be used for load balancing, or a process that outlives the POA.

To run such a ClusterDemo, you start the CORBA servers that underlie the
Artix SAP as follows:

When you run a client to connect to the Artix SAP, the first request goes to
the first server (because round_robin load balancing was declared). If a
second client is started, its request goes to the second server, and a third
client�s request goes to the third server.

Replicated Application Server
Platform services

If your Application Server Platform services are replicated, and if Artix is
deployed on each of the machines on which those services are replicated,
then the Artix SAPs themselves can be replicated and load-balanced. For
example,

1. On the �master� machine (e.g., the machine that hosts the
configuration repository), create an ORBname for each Artix SAP that
participates in load balancing. For example:

itadmin poa create -replicas
demos.clustering.server_1,demos.clustering.server_2,demos.clustering.server_3
-load_balancer round_robin ClusterDemo

<corba:policy persistent="true" serviceid="service_id" poaname="ClusterDemo"/>

Server -ORBname demos.clustering.server_1
Server -ORBname demos.clustering.server_2
Server -ORBname demos.clustering.server_3

itadmin orbname create demos.clustering.server_1
itadmin orbname create demos.clustering.server_2
itadmin orbname create demos.clustering.server_3
165

CHAPTER 9 | Load Balancing
2. Create a POA that declares these ORBnames as replicas, and specify
either round-robin or random load balancing. For example:

3. On each machine that replicates the service, obtain the Node
Daemon�s initial reference and add it to the artix.cfg file on that
machine.

4. Start a server on each machine, passing one of the three specified
ORBnames to it (clustering.server_1, demos.clustering.server_2,
or demos.clustering.server_3).

This service is now load balanced among the three replicated Artix SAPs. If
one or two of these SAPs is killed, the client invocation is directed to the
remaining machine(s).

Creating the load-balanced
environment dynamically

It is possible to create a load balance environment without creating the POA
or manually registering ORB names. To accomplish this:

1. On the master machine, obtain the Node Daemon initial reference and
put it in the artix.cfg file.

2. Start the CORBA service, passing the same ORB name as that
specified in the Artix client�s WSDL contract. This ORB name is
received by the Node Daemon, which creates a POA with that name. If
you do not specify an ORB name, the name WSORB is used.

3. On the master machine, issue the following command in the
Application Server Platform environment with the name you chose:

4. On each of the slave machines where the service is replicated, obtain
the Node Daemon initial reference from the Application Server
Platform domain configuration and put it in the artix.cfg file.

5. On each of the slave machines where the service is replicated, start the
CORBA service, using a different ORBname each time.

itadmin poa create -replicas
demos.clustering.server_1,demos.clustering.server_2,demos.clustering.server_3
-load_balancer round_robin ClusterDemo

itadmin poa modify -allowdynreplicas yes POA_Name
 166

Load Balancing with CORBA
6. On the master machine, issue the following command in the
Application Server Platform environment (inserting the type of load
balancing and the ORBnames you have chosen):

7. Start the Artix SAP.

Other load balancing features In addition to POA name, the Application Server Platform configuration file
can also affect load balancing by specifying:

1. Persistent or Transient POA policy

2. Object ID

These load-balancing-related configuration values can be specified in an
Artix WSDL contract using WSDL extensions for CORBA ports:

The POA name can be specified as follows:

The default POA name is WSORB.

The POA persistence policy can be set as follows:

If this value is set to true, the POA policy is persistent. The default
persistence value is false.

The Service ID can be set as follows:

Object ID is provided by the POA if the POA Policy SYSTEM_ID is set. Setting
this to any string sets the POA policy USER_ID and uses the value provided
as the object_id. If this is not set, the POA policy is SYSTEM_ID.

The following WSDL examples illustrate these points.

The contract fragment in Example 53 results in the following POA policy
settings:

� PERSISTENT

� USER_ID

� POAName="master1"

itadmin poa modify -l <round_robin | random> POA_name

<corba:policy poaname="my_poa_name"/>

 <corba:policy persistent="true | false"/>

<corba:policy serviceid="ncname"/>
167

CHAPTER 9 | Load Balancing
� ObjectID="master1"

The contract fragment in Example 54 results in the following POA policy
settings:

� TRANSIENT (Default)

� SYSTEM_ID (Default)

� POAName="master1"

The contract fragment in Example 55 results in a POA with the following
policy settings:

� TRANSIENT (Default)
� USER_ID

� POAName="WSORB" (Default)

� ObjectID="master1"

Example 53:Setting the PERSISTENT POA policy

<service name="BaseService">
 <port binding="tns:BasePortCorbaBinding" name="BasePortCorba">
 <corba:address location="file://master.ref"/>
 <corba:policy persistent="true" poaname="master1" serviceID="master1"/>
 </port>
</service>

Example 54:Setting the POAName POA policy

<service name="BaseService">
 <port binding="tns:BasePortCorbaBinding" name="BasePortCorba">
 <corba:address location="file://master.ref"/>
 <corba:policy poaname="master1"/>
 </port>
</service>

Example 55:Setting the USER_ID POA policy

 <service name="BaseService">
 <port binding="tns:BasePortCorbaBinding" name="BasePortCorba">
 <corba:address location="file://master.ref"/>
 <corba:policy poaname="master1" serviceID="master1"/>
 </port>
 </service>
 168

Load Balancing with CORBA
The contract fragment in Example 56 results in a POA with all default
policies.

Example 56:Default POA policies

<service name="BaseService">
 <port binding="tns:BasePortCorbaBinding" name="BasePortCorba">
 <corba:address location="file://master.ref"/>
 </port>
</service>
169

CHAPTER 9 | Load Balancing
 170

CHAPTER 10

Using the CORBA
Plug-in
The CORBA Plug-in allows CORBA applications to be used with
an Artix integration solution. It also provides CORBA
functionality to Artix applications.

In this chapter This chapter discusses the following topics:

CORBA Type Mapping page 172

Modifying a Contract to Use CORBA page 195

Generating IDL from an Artix Contract page 209

Generating a Contract from IDL page 211

Using the CORBA Naming Service page 220

Embedding Artix in a CORBA Application page 222
171

CHAPTER 10 | Using the CORBA Plug-in
CORBA Type Mapping

Overview To ensure that messages are converted into the proper format for a CORBA
application to understand, Artix contracts need to unambiguously describe
how data is mapped to CORBA data types. For primitive types, the mapping
is straightforward. However, complex types such as structures, arrays, and
exceptions require more detailed descriptions.

Unsupported types The following CORBA types are not supported:

� object references

� value types

� boxed values

� local interfaces

� abstract interfaces

� forward-declared interfaces

In this section This section discusses the following topics:

Primitive Type Mapping page 173

Complex Type Mapping page 175

Mapping XMLSchema Features that are not Native to IDL page 187
 172

CORBA Type Mapping
Primitive Type Mapping

Mapping chart Most primitive IDL types are directly mapped to primitive XML Schema
types. Table 13 lists the mappings for the supported IDL primitive types.

Unsupported types Artix does not support the following CORBA types:

� wchar

� wstring

� long double

Table 13: Primitive Type Mapping for CORBA Plug-in

IDL Type XML Schema Type CORBA Binding Type Artix C++ Type

Any xsd"anyType corba:any IT_Bus::AnyHolder

boolean xsd:boolean corba:boolean IT_Bus::Boolean

char xsd:byte corba:char IT_Bus::Char

double xsd:double corba:double IT_Bus::Double

float xsd:float corba:float IT_Bus::Float

octet xsd:unsignedByte corba:octet IT_Bus::Octet

long xsd:int corba:long IT_Bus::Long

long long xsd:long corba:longlong IT_Bus::LongLong

short xsd:short corba:short IT_Bus::Short

string xsd:string corba:string IT_Bus::String

unsigned short xsd:unsignedShort corba:ushort IT_Bus::UShort

unsigned long xsd:unsignedInt corba:ulong IT_Bus::ULong

unsigned long long xsd:unsignedLong corba:ulonglong IT_Bus::ULongLong
173

CHAPTER 10 | Using the CORBA Plug-in
Example The mapping of primitive types is handled in the CORBA binding section of
the Artix contract. For example, consider an input message that has a part,
score, that is described as an xsd:int as shown in Example 57.

 It is described in the CORBA binding as shown in Example 58.

The IDL is shown in Example 59.

Example 57:WSDL Operation Definition

<message name="runsScored">
 <part name="score" />
</message>
<portType ...>
 <operation name="getRuns">
 <input message="tns:runsScored" name="runsScored" />
 </operation>
</portType>

Example 58:Example CORBA Binding

<binding ...>
 <operation name="getRuns">
 <corba:operation name="getRuns">
 <corba:param name="score" mode="in" idltype="corba:long"/>
 </corba:operation>
 <input/>
 <output/>
 </operation>
</binding>

Example 59:getRuns IDL

// IDL
void getRuns(in score);
 174

CORBA Type Mapping
Complex Type Mapping

Overview Because complex types (such as structures, arrays, and exceptions) require
a more involved mapping to resolve type ambiguity, the full mapping for a
complex type is described in a <corba:typeMapping> element at the bottom
of an Artix contract. This element contains a type map describing the
metadata required to fully describe a complex type as a CORBA data type.
This metadata may include the members of a structure, the bounds of an
array, or the legal values of an enumeration.

The <corba:typeMapping> element requires a targetNamespace attribute
that specifies the namespace for the elements defined by the type map. The
default URI is http://schemas.iona.com/bindings/corba/typemap. By
default, the types defined in the type map are referred to using the corbatm:
prefix.

Mapping chart Table 14 shows the mappings from complex IDL types to XMLSchema, Artix
CORBA type, and Artix C++ types.

Table 14: Complex Type Mapping for CORBA Plug-in

IDL Type XML Schema Type CORBA Binding Type Artix C++ Type

struct See Example 60 corba:struct IT_Bus::SequenceComplexType

enum See Example 61 corba:enum IT_Bus::AnySimpleType

fixed xsd:decimal corba:fixed IT_Bus::Decimal

union See Example 66 corba:union IT_Bus::ChoiceComplexType

typedef See Example 69

array See Example 71 corba:array IT_Bus::ArrayT<>

sequence See Example 77 corba:sequence IT_Bus::ArrayT<>

exception See Example 80 corba:exception IT_Bus::UserFaultException
175

CHAPTER 10 | Using the CORBA Plug-in
Structures Structures are mapped to <corba:struct> elements. A <corba:struct>
element requires three attributes:

The elements of the structure are described by a series of <corba:member>
elements. The elements must be declared in the same order used in the IDL
representation of the CORBA type. A <corba:member> requires two
attributes:

For example, the structure defined in Example 2 on page 11, personalInfo,
can be represented in the CORBA type map as shown in Example 60:

The idltype corbatm:hairColorType refers to a complex type that is defined
earlier in the CORBA type map.

Enumerations Enumerations are mapped to <corba:enum> elements. A <corba:enum>
element requires three attributes:

name A unique identifier used to reference the CORBA type in
the binding.

type The logical type the structure is mapping.

repositoryID The fully specified repository ID for the CORBA type.

name The name of the element

idltype The IDL type of the element. This type can be either a
primitive type or another complex type that is defined
with in the type map.

Example 60:CORBA Type Map for personalInfo

<corba:typeMapping targetNamespace="http://schemas.iona.com/bindings/corba/typemap">
...
 <corba:struct name="personalInfo" type="xsd1:personalInfo" repositoryID="IDL:personalInfo:1.0">
 <corba:member name="name" idltype="corba:string" />
 <corba:member name="age" idltype="corba:long" />
 <corba:member name="hairColor" idltype="corbatm:hairColorType" />
 </corba:struct>
</corba:typeMapping>

name A unique identifier used to reference the CORBA type in
the binding.

type The logical type the structure is mapping.
 176

CORBA Type Mapping
The values for the enumeration are described by a series of
<corba:enumerator> elements. The values must be listed in the same order
used in the IDL that defines the CORBA enumeration. A
<corba:enumerator> element takes one attribute, value.

For example, the enumeration defined in Example 2 on page 11,
hairColorType, can be represented in the CORBA type map as shown in
Example 61:

Fixed Fixed point data types are a special case in the Artix contract mapping. A
CORBA fixed type is represented in the logical portion of the contract as the
XML Schema primitive type xsd:decimal. However, because a CORBA fixed
type requires additional information to be fully mapped to a physical CORBA
data type, it must also be described in the CORBA type map section of an
Artix contract.

CORBA fixed data types are described using a <corba:fixed> element. A
<corba:fixed> element requires five attributes:

repositoryID The fully specified repository ID for the CORBA type.

Example 61:CORBA Type Map for hairColorType

<corba:typeMapping targetNamespace="http://schemas.iona.com/bindings/corba/typemap">
...
 <corba:enum name="hairColorType" type="xsd1:hairColorType"

repositoryID="IDL:hairColorType:1.0">
 <corba:enumerator value="red" />
 <corba:enumerator value="brunette" />
 <corba:enumerator value="blonde" />
 </corba:enum>
</corba:typeMapping>

name A unique identifier used to reference the CORBA type in
the binding.

repositoryID The fully specified repository ID for the CORBA type.

type The logical type the structure is mapping (for CORBA
fixed types, this is always xsd:decimal).

digits The upper limit for the total number of digits allowed.
This corresponds to the first number in the fixed type
definition.
177

CHAPTER 10 | Using the CORBA Plug-in
For example, the fixed type defined in Example 62, myFixed, would be

described by a type entry in the logical type description of the contract, as
shown in Example 63.

In the CORBA type map portion of the contract, it would be described by an
entry similar to Example 64. Notice that the description in the CORBA type
map includes the information needed to fully represent the characteristics of
this particular fixed data type.

Unions Unions are particularly difficult to describe using the WSDL framework of an
Artix contract. In the logical data type descriptions, the difficulty is how to
describe the union without losing the relationship between the members of
the union and the discriminator used to select the members. The easiest
method is to describe a union using an <xsd:choice> and list the members
in the specified order. The OMG�s proposed method is to describe the union
as an <xsd:sequence> containing one element for the discriminator and an
<xsd:choice> to describe the members of the union. However, neither of
these methods can accurately describe all the possible permutations of a
CORBA union.

scale The number of digits allowed after the decimal point.
This corresponds to the second number in the fixed type
definition.

Example 62:myFixed Fixed Type

\\IDL
typedef fixed<4,2> myFixed;

Example 63:Logical description from myFixed

<xsd:element name="myFixed" type="xsd:decimal"/>

Example 64:CORBA Type Map for myFixed

<corba:typeMapping targetNamespace="http://schemas.iona.com/bindings/corba/typemap">
...
 <corba:fixed name="myFixed" repositoryID="IDL:myFixed:1.0" type="xsd:decimal" digits="4"

scale="2" />
</corba:typeMapping>
 178

CORBA Type Mapping
Artix�s IDL compiler generates a contract that describes the logical union
using both methods. The description using <xsd:sequence> is named by
prepending _omg_ to the types name. The description using <xsd:chioce> is
used as the representation of the union throughout the contract.

For example consider the union, myUnion, shown in Example 65:

This union is described in the logical portion of the contact with entries
similar to those shown in Example 66:

Example 65:myUnion IDL

//IDL
union myUnion switch (short)
{
 case 0:
 string case0;
 case 1:
 case 2:
 float case12;
 default:
 long caseDef;
};

Example 66:myUnion Logical Description

<xsd:complexType name="myUnion">
 <xsd:choice>
 <xsd:element name="case0" type="xsd:string"/>
 <xsd:element name="case12" type="xsd:float"/>
 <xsd:element name="caseDef" type="xsd:int"/>
 </xsd:choice>
</xsd:complexType>
<xsd:complexType name="_omg_myUnion4">
 <xsd:sequence>
 <xsd:element minOccurs="1" maxOccurs="1" name="discriminator" type="xsd:short"/>
 <xsd:choice minOccurs="0" maxOccurs="1">
 <xsd:element name="case0" type="xsd:string"/>
 <xsd:element name="case12" type="xsd:float"/>
 <xsd:element name="caseDef" type="xsd:int"/>
 </xsd:choice>
 </xsd:sequence>
</xsd:complexType>
179

CHAPTER 10 | Using the CORBA Plug-in
In the CORBA type map portion of the contract, the relationship between
the union�s discriminator and its members must be resolved. This is
accomplished using a <corba:union> element. A <corba:union> element
has four mandatory attributes.

The members of the union are described using a series of nested
<corba:unionbrach> elements. A <corba:unionbranch> element has two
required attributes and one optional attribute.

Each <corba:unionbranch> except for one describing the union�s default
member will have at least one nested <corba:case> element. The
<corba:case> element�s only attribute, label, specifies the value used to
select the union member described by the <corba:unionbranch>.

For example myUnion, Example 65 on page 179, would be described with a
CORBA type map entry similar to that shown in Example 67.

name A unique identifier used to reference the CORBA type in
the binding.

type The logical type the structure is mapping.

descriminator The IDL type used as the discriminator for the union.

repositoryID The fully specified repository ID for the CORBA type.

name A unique identifier used to reference the union member.

idltype The IDL type of the union member. This type can be
either a primitive type or another complex type that is
defined in the type map.

default The optional attribute specifying if this member is the
default case for the union. To specify that the value is the
default set this attribute to true.

Example 67:myUnion CORBA type map

<corba:typeMapping targetNamespace="http://schemas.iona.com/bindings/corba/typemap">
...
 <corba:union name="myUnion" type="xsd1:myUnion" discriminator="corba:short"

repositoryID="IDL:myUnion:1.0">
 <corba:unionbranch name="case0" idltype="corba:string">
 <corba:case label="0" />
 </corba:unionbranch>
 180

CORBA Type Mapping
Type Renaming Renaming a type using a typedef statement is handled using a
<corba:alias> element in the CORBA type map. The Artix IDL compiler
also adds a logical description for the renamed type in the <types> section
of the contract, using an <xsd:simpleType>.

For example, the definition of myLong in Example 68, can be described as

shown in Example 69:

 <corba:unionbranch name="case12" idltype="corba:float">
 <corba:case label="1" />
 <corba:case label="2" />
 </corba:unionbranch>
 <corba:unionbranch name="caseDef" idltype="corba:long" default="true"/>
 </corba:union>
</corba:typeMapping>

Example 67:myUnion CORBA type map

Example 68:myLong IDL

//IDL
typedef long myLong;

Example 69:myLong WSDL

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="typedef.idl" ...>
 <types>
 ...
 <xsd:simpleType name="myLong">
 <xsd:restriction base="xsd:int"/>
 </xsd:simpleType>
 ...
 </types>
...
 <corba:typeMapping targetNamespace="http://schemas.iona.com/bindings/corba/typemap">
 <corba:alias name="myLong" type="xsd:int" repositoryID="IDL:myLong:1.0"

basetype="corba:long"/>
 </corba:typeMapping>
</definitions>
181

CHAPTER 10 | Using the CORBA Plug-in
Arrays Arrays are described in the logical portion of an Artix contract, using an
<xsd:sequence> with its minOccurs and mxOccurs attributes set to the value
of the array�s size. For example, consider an array, myArray, as defined in
Example 70.

Its logical description will be similar to that shown in Example 71:

In the CORBA type map, arrays are described using a <corba:array>
element. A <corba:array> has five required attributes.

For example, the array myArray will have a CORBA type map description
similar to the one shown in Example 72:

Example 70:myArray IDL

//IDL
typedef long myArray[10];

Example 71:myArray logical description

<xsd:complexType name="myArray">
 <xsd:sequence>
 <xsd:element name="item" type="xsd:int" minOccurs="10" maxOccurs="10" />
 </xsd:sequence>
</xsd:complexType>

name A unique identifier used to reference the CORBA type in
the binding.

repositoryID The fully specified repository ID for the CORBA type.

type The logical type the structure is mapping.

elemtype The IDL type of the array�s element. This type can be
either a primitive type or another complex type that is
defined within the type map.

bound The size of the array.

Example 72:myArray CORBA type map

<corba:typeMapping targetNamespace="http://schemas.iona.com/bindings/corba/typemap">
 <corba:array name="myArray" repositoryID="IDL:myArray:1.0" type="xsd1:myArray"

elemtype="corba:long" bound="10"/>
</corba:typeMapping>
 182

CORBA Type Mapping
Multidimensional Arrays Multidimensional arrays are handled by creating multiple arrays and
combining them to form the multidimensional array. For example, an array
defined as follows:

generates the following logical description:

The corresponding entry in the CORBA type map is:

Sequences Because CORBA sequences are an extension of arrays, sequences are
described in Artix contracts similarly. Like arrays, sequences are described
in the logical type section of the contract using <xsd:sequence> elements.
Unlike arrays, the minOccurs and maxOccurs attributes do not have the
same value. minOccurs is set to 0 and maxOccurs is set to the upper limit of
the sequence. If the sequence is unbounded, maxOccurs is set to unbounded.

Example 73:Multidimensional Array

\\ IDL
typedef long array2d[10][10];

Example 74:Logical Description of a Multidimensional Array

<xsd:complexType name="_1_array2d">
 <xsd:sequence>
 <xsd:element name="item" type="xsd:int" minOccurs="10" maxOccurs="10"/>
 </xsd:sequence>
</xsd:complexType>
<xsd:complexType name="array2d">
 <xsd:sequence>
 <xsd:element name="item" type="xsd1:_1_array2d" minOccurs="10" maxOccurs="10"/>
 </xsd:sequence>
</xsd:complexType>

Example 75:CORBA Type Map for a Multidimensional Array

<corba:typeMapping targetNamespace="http://schemas.iona.com/bindings/corba/typemap">
 <corba:anonarray name="_2_array2d" type="xsd1:_2_array2d" elemtype="corba:long" bound="10"/>
 <corba:array name="array2d" repositoryID="IDL:array2d:1.0" type="xsd1:array2d"

elemtype="corbatm:_2_array2d" bound="10"/>
</corba:typeMapping>
183

CHAPTER 10 | Using the CORBA Plug-in
For example, the two sequences defined in Example 76, longSeq and
charSeq:

are described in the logical section of the contract with entries similar to
those shown in Example 77:

In the CORBA type map, sequences are described using a
<corba:sequence> element. A <corba:sequence> has five required
attributes.

Example 76: IDL Sequences

\\ IDL
typedef sequence<long> longSeq;
typedef sequence<char, 10> charSeq;

Example 77:Logical Description of Sequences

<xsd:complexType name="longSeq">
 <xsd:sequence>
 <xsd:element name="item" type="xsd:int" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
</xsd:complexType>
<xsd:complexType name="charSeq">
 <xsd:sequence>
 <xsd:element name="item" type="xsd:byte" minOccurs="0" maxOccurs="10"/>
 </xsd:sequence>
</xsd:complexType>

name A unique identifier used to reference the CORBA type in
the binding.

repositoryID The fully specified repository ID for the CORBA type.

type The logical type the structure is mapping.

elemtype The IDL type of the sequence�s elements. This type can
be either a primitive type or another complex type that is
defined within the type map.

bound The size of the sequence.
 184

CORBA Type Mapping
For example, the sequences described in Example 77 has a CORBA type
map description similar to that shown in Example 78:

Exceptions Because exceptions typically return more than one piece of information, they
require both an abstract type description and a CORBA type map entry. In
the abstract type description, exceptions are described much like structures.
In the CORBA type map, exceptions are described using <corba:exception>
elements. A <corba:exception> element has three required attributes:

The pieces of data returned with the exception are described by a series of
<corba:member> elements. The elements must be declared in the same
order as in the IDL representation of the exception. A <corba:member> has
two required attributes:

For example, the exception defined in Example 79, idNotFound,

Example 78:CORBA type map for Sequences

<corba:typeMapping targetNamespace="http://schemas.iona.com/bindings/corba/typemap">
 <corba:sequence name="longSeq" repositoryID="IDL:longSeq:1.0" type="xsd1:longSeq"

elemtype="corba:long" bound="0"/>
 <corba:sequence name="charSeq" repositoryID="IDL:charSeq:1.0" type="xsd1:charSeq"

elemtype="corba:char" bound="10"/>
 </corba:typeMapping>

name A unique identifier used to reference the CORBA type in
the binding.

type The logical type the structure is mapping.

repositoryID The fully specified repository ID for the CORBA type.

name The name of the element

idltype The IDL type of the element. This type can be either a
primitive type or another complex type that is defined
within the type map.

Example 79: idNotFound Exception

\\IDL
exception idNotFound
{
 short id;
};
185

CHAPTER 10 | Using the CORBA Plug-in
would be described in the logical type section of the contract, with an entry
similar to that shown in Example 80:

In the CORBA type map portion of the contract, idNotFound is described by
an entry similar to that shown in Example 81:

Example 80: idNotFound logical structure

<xsd:complexType name="idNotFound">
 <xsd:sequence>
 <xsd:element name="id" type="xsd:short"/>
 </xsd:sequence>
</xsd:complexType>

Example 81:CORBA Type Map for idNotFound

<corba:typeMapping targetNamespace="http://schemas.iona.com/bindings/corba/typemap">
...
 <corba:exception name="idNotFound" type="xsd1:idNotFound" repositoryID="IDL:idNotFound:1.0">
 <corba:member name="id" idltype="corba:short" />
 </corba:exception>
</corba:typeMapping>
 186

CORBA Type Mapping
Mapping XMLSchema Features that are not Native to IDL

Overview There are a number of data types that you can describe in your Artix
contract using XMLSchema that are not native to IDL. Artix can map these
data types into legal IDL so that your CORBA systems can interoperate with
applications that use these data type descriptions in their contracts.

These features include:

� Binary type mappings

� Attribute mapping

� Nested choice mapping

� Inheritance mapping

� Nillable mapping

Binary type mappings There are three binary types defined in XMLSchema that have direct
correlation to IDL data-types. These types are:

� xsd:base64Binary

� xsd:hexBinary

� soapenc:base64

These types are all mapped to octet sequences in CORBA. For example, the
schema type, joeBinary, described in Example 82 results in the CORBA
typemap description shown in Example 83.

The resulting IDL for joeBinary is shown in Example 84.

Example 82: joeBinary schema description

<xsd:element name="joeBinary type="xsd:hexBinary" />

Example 83: joeBinary CORBA typemap

<corba:sequence name="joeBinary" bound="0"
 elemtype="corba:octet" repositoryID="IDL:joeBinary:1.0"
 type="xsd:hexBinary" />
187

CHAPTER 10 | Using the CORBA Plug-in
The mappings for xsd:base64Binary and soapenc:base64 would be similar
except that the type attribute in the CORBA typemap would specify the
appropriate type.

Attribute mapping XMLSchema attributes are treated as normal elements in a CORBA
structure. For example, the complex type, madAttr, described in
Example 85 contains two attributes, material and size.

madAttr would generate the CORBA typemap shown in Example 86. Notice
that material and size are simply incorporated into the madAttr structure
in the CORBA typemap.

Example 84: joeBinary IDL

\\IDL
typedef sequence<octet> joeBinary;

Example 85:madAttr XMLSchema

<complexType name="madAttr">
 <sequence>
 <element name="style" type="xsd:string" />
 <element name="gender" type="xsd:byte" />
 </sequence>
 <attribute name="material" type="xsd:string" />
 <attribute name="size" type="xsd:int" />
<complexType>

Example 86:madAttr CORBA typemap

<corba:struct name="madAttr" repositoryID="IDL:madAttr:1.0" type="typens:madAttr">
 <corba:member name="style" idltype="corba:string"/>
 <corba:member name="gender" idltype="corba:char"/>
 <corba:member name="material" idltype="corba:string"/>
 <corba:member name="size" idltype="corba:long"/>
</corba:struct>
 188

CORBA Type Mapping
Similarly, in the IDL generated using a contract containing madAttr, the
attributes are made elements of the structure and are placed in the order in
which they are listed in the contract. The resulting IDL structure is shown in
Example 87.

Nested choice mapping When mapping complex types containing nested xsd:choice elements into
CORBA, Artix will break the nested xsd:choice elements into separate
unions in CORBA. The resulting union will have the name of the original
complex type with ChoiceType appended to it. So, if the original complex
type was named joe, the union representing the nested choice would be
named joeChoiceType.

The nested choice in the original complex type will be replaced by an
element of the new union created to represent the nested choice. This
element will have the name of the new union with _f appended. So if the
original structure was named carla, the replacement element will be named
carlaChoiceType_f.

The original type description will not be changed, the break out will only
appear in the CORBA typemap and in the resulting IDL.

Example 87:madAttr IDL

\\IDL
struct madAttr
{
 string style;
 char gender;
 string material;
 long size;
}

189

CHAPTER 10 | Using the CORBA Plug-in
For example, the complex type details, shown in Example 88, contains a
nested choice.

The resulting CORBA typemap, shown in Example 89, contains a new
union, detailsChoiceType, to describe the nested choice. Note that the
type attribute for both details and detailsChoiceType have the name of
the original complex type defined in the schema. The nested choice is
represented in the original structure as a member of type
detailsChoiceType.

Example 88:details XMLSchema

<complexType name="Details">
 <sequence>
 <element name="name" type="xsd:string"/>
 <element name="address" type="xsd:string"/>
 <choice>
 <element name="employer" type="xsd:string"/>
 <element name="unemploymentNumber" type="xsd:int"/>
 </choice>
 </sequence>
</complexType>

Example 89:details CORBA typemap

<corba:struct name="details" repositoryID="IDL:details:1.0" type="xsd1:details">
 <corba:member idltype="corba:string" name="name"/>
 <corba:member idltype="corba:string" name="address"/>
 <corba:member idltype="ns1:detailsChoiceType" name="detailsChoiceType_f"/>
</corba:struct>
<corba:union discriminator="corba:long" name="detailsChoiceType"
 repositoryID="IDL:detailsChoiceType:1.0" type="xsd1:details">
 <corba:unionbranch idltype="corba:string" name="employer">
 <corba:case label="0"/>
 </corba:unionbranch>
 <corba:unionbranch idltype="corba:long" name="unemploymentNumber">
 <corba:case label="1"/>
 </corba:unionbranch>
</corba:union>
 190

CORBA Type Mapping
The resulting IDL is shown in Example 90.

Inheritance mapping XMLSchema describes inheritance using the <extension> tag. For example
the complex type seaKayak, described in Example 91, inherits a number of
fields from the complex type kayak.

Example 90:details IDL

\\IDL
union detailsChoiceType switch(long)
{
 case 0:
 string employer;
 case 1:
 long unemploymentNumber;
};
struct details
{
 string name;
 string address;
 detailsChoiceType DetailsChoiceType_f;
};

Example 91: seaKayak XMLSchema

<complexType name="kayak">
 <sequence>
 <element name="length" type="xsd:int" />
 <element name="width" type="xsd:int" />
 <element name="material" type="xsd:string" />
 </sequence>
</complexType>
<complexType name="seaKayak">
 <complexContent>
 <extension base="kayak">
 <sequence>
 <element name="chines" type="xsd:string" />
 <element name="cockpitStyle" type="xsd:string" />
 </sequence>
 </extension>
 </complexContent>
</complexType>
191

CHAPTER 10 | Using the CORBA Plug-in
When complex types using inheritance described with the <extension> tag
are mapped into CORBA, Artix flattens the inheritance. As shown in
Example 92, Artix maps the inherited fields as normal members of the
structure in the CORBA type map. The inheritance chain is not maintained.

The IDL generated by Artix to handle complex schema types that use
inheritance also flattens the inheritance as shown in Example 93.

Because the CORBA mappings break the inheritance chain, you must be
careful about how data is exchanged between components using contracts
with this type of mapping. While the service for which the original schema

Example 92: seaKayak CORBA type map

<corba:struct name="seaKayak" repositoryID="IDL:seaKayak:1.0" type="typens:seaKayak">
 <corba:element name="length" idltype="corba:long" />
 <corba:element name="width" idltype="corba:long" />
 <corba:element name="material" idltype="corba:string" />
 <cobra:element name="chines" idltype="corba:string" />
 <corba:element name="cockpitStyle" idltype="corba:string" />
</corba:struct>
<corba:struct name="kayak" repositoryID="IDL:seaKayak:1.0" type="typens:seaKayak">
 <corba:element name="length" idltype="corba:long" />
 <corba:element name="width" idltype="corba:long" />
 <corba:element name="material" idltype="corba:string" />
</corba:struct>

Example 93: seaKayak IDL

\\ IDL
struct seaKayak
{
 long length;
 long width;
 string material;
 string chines;
 string cockpitStyle;
}
struct kayak
{
 long length;
 long width;
 string material;
}

 192

CORBA Type Mapping
types were developed may treat certain objects as equivalent due to
inheritance, the CORBA services using the contract do not and will not
handle receiving the wrong data gracefully.

Nillable mapping XMLSchema supports an optional attribute, nillable, that specifies that an
element can be nil. Setting an element to nil is different than omitting an
element whose minoccurs attribute is set to 0; the element must be
included as part of the data sent in the message.

Elements that have nillabe="true" set in their logical description are
mapped to a CORBA union with a single case, TRUE, that holds the value of
the element if it is not set to nil.

For example, imagine a service that maintains a database of information on
people who download software from a web site. The only required piece of
information the visitor needs to supply is their zip code. Optionally, visitors
can supply their name and e-mail address. The data is stored in a data
structure, webData, shown in Example 94.

Example 94:webData XMLSchema

<complexType name="webData">
 <sequence>
 <element name="zipCode" type="xsd:int" />
 <element name="name" type="xsd:string" nillable="true />
 <element name="emailAddress" type="xsd:string"
 nillable="true" />
 </sequence>
</complexType>
193

CHAPTER 10 | Using the CORBA Plug-in
When webData is mapped to a CORBA binding, it will generate a union,
string_nil, to provide for the mapping of the two nillable elements, name
and emailAddress. Example 95 shows the CORBA typemap for webData.

The type assigned to the union, string_nil, does not matter as long as the
type assigned maps back to an xsd:string. This is true for all nillable
element types.

Example 96 shows the IDL for webData.

Example 95:webData CORBA Typemap

<corba:typemapping ...>
 <corba:struct name="webData" repositoryID="IDL:webData:1.0" type="xsd1:webData">
 <corba:member idltype="corba:long" name="zipCode"/>
 <corba:member idltype="ns1:string_nil" name="name"/>
 <corba:member idltype="ns1:string_nil" name="emailAddress"/>
 </corba:struct>
 <corba:union discriminator="corba:boolean" name="string_nil" repositoryID="IDL:string_nil:1.0"
 type="xsd1:emailAddress">
 <corba:unionbranch idltype="corba:string" name="value">
 <corba:case label="TRUE"/>
 </corba:unionbranch>
 </corba:union>
</corba:typeMapping>

Example 96:webData IDL

\\IDL
union string_nil switch(boolean) {
 case TRUE:
 string value;
};
struct webData {
 long zipCode;
 string_nil name;
 string_nil emailAddress;
};
 194

Modifying a Contract to Use CORBA
Modifying a Contract to Use CORBA

Overview Service Access Points (SAPs) that use CORBA require that special binding,
port, and type mapping information be added to the physical portion of the
Artix contract. The binding definition resolves any ambiguity about
parameter order, return values, and type. The port definition specifies the
addressing information need by clients or servers to locate the CORBA
object. The port can also specify POA policies the exposed CORBA object
uses. The type mapping information maps complex schema types, defined
in the logical portion of the contract, into CORBA data types.

In this section This section discusses the following topics:

Adding a CORBA Binding page 196

Adding a CORBA Port page 204
195

CHAPTER 10 | Using the CORBA Plug-in
Adding a CORBA Binding

Overview CORBA applications use a specific payload format when making and
responding to requests. The CORBA binding, described using an IONA
extension to WSDL, maps the parts of a logical message to the proper
payload format for CORBA applications. The CORBA binding specifies the
repository ID of the IDL interface, resolves parameter order and mode
ambiguity, and maps the data types to CORBA data types.

Mapping to the binding The extensions used to map a logical operation to a CORBA binding are
described in detail below:

corba:binding indicates that the binding is a CORBA binding. This element
has one required attribute: repositoryID. repositoryID specifies the full
type ID of the interface. The type ID is embedded in the object�s IOR and
therefore must conform to the IDs that are generated from an IDL compiler.
These are of the form:

The corba:binding element also has an optional attribute, bases, that
specifies that the interface being bound inherits from another interface. The
value for bases is the type ID of the interface from which the bound
interface inherits. For example, the following IDL:

would produce the following corba:binding:

corba:operation is an IONA-specific element of <operation> and describes
the parts of the operation�s messages. <corba:operation> takes a single
attribute, name, which duplicates the name given in <operation>.

IDL:module/interface:1.0

//IDL
interface clash{};
interface bad : clash{};

<corba:binding repositoryID="IDL:bad:1.0"
 bases="IDL:clash:1.0"/>
 196

Modifying a Contract to Use CORBA
corba:param is a member of <corba:operation>. Each <part> of the input
and output messages specified in the logical operation, except for the part
representing the return value of the operation, must have a corresponding
<corba:param>. The parameter order defined in the binding must match the
order specified in the IDL definition of the operation. <corba:param> has the
following required attributes:

corba:return s a member of <corba:operation> and specifies the return
type, if any, of the operation. It only has two attributes:

corba:raises is a member of <corba:operation> and describes any
exceptions the operation can raise. The exceptions are defined as fault
messages in the logical definition of the operation. Each fault message must
have a corresponding <corba:raises> element. <corba:raises> has one
required attribute, exception, which specifies the type of data returned in
the exception.

mode Specifies the direction of the parameter. The values
directly correspond to the IDL directions: in, inout, out.
Parameters set to in must be included in the input
message of the logical operation. Parameters set to out
must be included in the output message of the logical
operation. Parameters set to inout must appear in both
the input and output messages of the logical operation.

idltype Specifies the IDL type of the parameter. The type names
are prefaced with corba: for primitive IDL types, and
corbatm: for complex data types, which are mapped out
in the corba:typeMapping portion of the contract.

name Specifies the name of the parameter as given in the
logical portion of the contract.

name Specifies the name of the parameter as given in the
logical portion of the contract.

idltype Specifies the IDL type of the parameter. The type names
are prefaced with corba: for primitive IDL types and
corbatm: for complex data types which are mapped out
in the corba:typeMapping portion of the contract.
197

CHAPTER 10 | Using the CORBA Plug-in
In addition to operations specified in <corba:operation> tags, within the
<operation> block, each <operation> in the binding must also specify
empty <input> and <output> elements as required by the WSDL
specification. The CORBA binding specification, however, does not use
them.

For each fault message defined in the logical description of the operation, a
corresponding <fault> element must be provided in the <operation>, as
required by the WSDL specification. The name attribute of the <fault>
element specifies the name of the schema type representing the data passed
in the fault message.

Using Artix Designer The Binding Editor walks you through the generation of a CORBA binding
based on your existing contract. It then generates a new contract containing
the CORBA binding and the associated CORBA type map.

To add a CORBA binding to an Artix contract complete the following steps:

1. From the project tree, select the service to which you want to add the
CORBA binding.

2. Select Bindings|New Binding from the Contract menu of the designer.
 198

Modifying a Contract to Use CORBA
3. You will see a screen like Figure 12.

4. Select where to create the WSDL entry for the new binding.

♦ Add to existing WSDL adds the routing information to the bottom
of the existing contract and does not make a back-up of the
non-routed WSDL file.

♦ Add to new WSDL creates a new WSDL document that contains
the routing information and imports the original WSDL document.

5. Click Next.

6. Select CORBA from the list of possible bindings.

Figure 12: Select WSDL location
199

CHAPTER 10 | Using the CORBA Plug-in
7. Click Next to select the interface you want mapped to the CORBA
binding.

8. You will see a dialog similar to Figure 13.

9. From the drop down list select the interface you want to map to the
CORBA binding.

10. Enter the name for the new binding.

11. If there is more than one operation described in the interface, select
the operation that are to be mapped into the CORBA binding.

12. Click Next to edit the new CORBA binding.

Figure 13: Select Interface to Map to CORBA
 200

Modifying a Contract to Use CORBA
13. You will see a dialog similar to Figure 14.

14. Examine the different elements of the binding by selecting them from
the tree at the top of the dialog.

15. Edit the values shown in white if they are not correct.

16. When you are finished editing the binding, click Next.

17. Review the newly created contract containing the new CORBA binding.

18. If the contract is correct, click Finish.

When you have completed creating the new CORBA binding the contract
describing the binding and the CORBA type map is added to the project tree
under the selected service. This new contract will not contain a CORBA port
description. For details on adding a CORBA port description see �Adding a
CORBA Port� on page 204.

Figure 14: Edit the CORBA Binding
201

CHAPTER 10 | Using the CORBA Plug-in
Using the command line The wsdltocorba tool also adds CORBA binding information to an existing
Artix contract. To generate a CORBA binding using wsdltocorba use the
following command:

The command has the following options:

The generated WSDL file will also contain a CORBA port with no address
specified. To complete the port specification you can do so manually or use
the Artix Designer.

Example For example, the logical operation personalInfoLookup, shown in
Example 9 on page 19, has a CORBA binding similar to the one shown in
Example 97.

wsdltocorba -corba -i portType [-d dir][-b binding][-o file]
wsdl_file

-corba Instructs the tool to generate a CORBA binding for the
specified port type.

-i portType Specifies the name of the port type being mapped to a
CORBA binding.

-d dir Specifies the directory into which the new WSDL file is
written.

-b binding Specifies the name for the generated CORBA binding.
Defaults to portTypeBinding.

-o file Specifies the name of the generated WSDL file. Defaults
to wsdl_file-corba.wsdl.
 202

Modifying a Contract to Use CORBA
Example 97:personalInfoLookup CORBA Binding

<binding name="personalInfoLookupBinding" type="tns:personalInfoLookup">
 <corba:binding repositoryID="IDL:personalInfoLookup:1.0"/>
 <operation name="lookup">
 <corba:operation name="lookup">
 <corba:param name="empId" mode="in" idltype="corba:long"/>
 <corba:return name="return" idltype="corbatm:personalInfo"/>
 <corba:raises exception="corbatm:idNotFound"/>
 </corba:operation>
 <input/>
 <output/>
 <fault name="personalInfoLookup.idNotFound"/>
 </operation>
</binding>
203

CHAPTER 10 | Using the CORBA Plug-in
Adding a CORBA Port

Overview CORBA ports are described using the IONA-specific WSDL elements
<corba:address> and <corba:policy> within the WSDL <port> element, to
specify how a CORBA object is exposed.

Address specification The IOR of the CORBA object is specified using the <corba:address>
element. You have four options for specifying IORs in Artix contracts:

� Specify the objects IOR directly, by entering the object�s IOR directly
into the contract using the stringified IOR format:

� Specify a file location for the IOR, using the following syntax:

� Specify that the IOR is published to a CORBA name service, by
entering the object�s name using the corbaname format:

For more information on using the name service with Artix see �Using
the CORBA Naming Service� on page 220.

� Specify the IOR using corbaloc, by specifying the port at which the
service exposes itself, using the corbaloc syntax.

When using corbaloc, you must be sure to configure your service to
start up on the specified host and port.

Specifying POA policies Using the optional <corba:policy> element, you can describe a number of
POA polices the Artix service will use when creating the POA for connecting
to a CORBA application. These policies include:

� POA Name

� Persistence

IOR:22342....

file://file_name

corbaname:rir:NameService#object_name

corbaloc:iiop:host:port/service_name
 204

Modifying a Contract to Use CORBA
� ID Assignment

Setting these policies lets you exploit some of the enterprise features of
IONA�s Application Server Platform 6.0, such as load balancing and fault
tolerance, when deploying an Artix integration project. For information on
using these advanced CORBA features, see the Application Server Platform
documentation.

POA Name

Artix POAs are created with the default name of WS_ORB. To specify the
name of the POA Artix creates to connect with a CORBA object, you use the
following:

Persistence

By default Artix POA�s have a persistence policy of false. To set the POA�s
persistence policy to true, use the following:

ID Assignment

By default Artix POAs are created with a SYSTEM_ID policy, meaning that
their ID is assigned by the ORB. To specify that the POA connecting a
specific object should use a user-assigned ID, use the following:

This creates a POA with a USER_ID policy and an object id of POAid.

Procedure To add a CORBA port to your service contract using the GUI, complete the
following steps:

1. From the project tree, select the contract to which you want to add the
CORBA port.

2. Select Services|New Service from the Contract menu of the designer.

<corba:policy poaname="poa_name" />

<corba:policy persistent="true" />

<corba:policy serviceid="POAid" />
205

CHAPTER 10 | Using the CORBA Plug-in
3. You will see a screen like Figure 12.

4. Select where to create the WSDL entry for the new service.

♦ Add to existing WSDL adds the routing information to the bottom
of the existing contract and does not make a back-up of the
non-routed WSDL file.

♦ Add to new WSDL creates a new WSDL document that contains
the routing information and imports the original WSDL document.

5. Click Next.

6. Enter a unique name for the new service.

Figure 15: Select WSDL Location
 206

Modifying a Contract to Use CORBA
7. Click Next.

8. Enter a name for the new CORBA port that is being created.

9. From the drop down list, select the binding that the port is going to
expose.

10. Click Next.

11. You will see a dialog similar to Figure 16.

12. From the drop down list in the Transport box, select corba.

13. In the Address table, enter the CORBA address in the line for Location.

14. If you want to set any of the supported POA policies, place a check in
the Specified box on the appropriate line in the Policy table and enter
a valid value.

15. Click Next.

16. Review the settings for the new CORBA port.

17. If it is correct, click Next.

18. Review the settings for the new service in which the CORBA port is
described.

Figure 16: Edit CORBA Port Properties
207

CHAPTER 10 | Using the CORBA Plug-in
19. If it is correct, click Finish.

Example For example, a CORBA port for the personalInfoLookup binding would look
similar to Example 98:

Artix expects the IOR for the CORBA object to be located in a file called
objref.ior, and creates a persistent POA with an object id of personalInfo
to connect the CORBA application.

Example 98:CORBA personalInfoLookup Port

<service name="personalInfoLookupService">
 <port name="personalInfoLookupPort"
 binding="tns:personalInfoLookupBinding">
 <corba:address location="file://objref.ior" />
 <corba:policy persistent="true" />
 <corba:policy serviceid="personalInfoLookup" />
 </ port>
</ service>
 208

Generating IDL from an Artix Contract
Generating IDL from an Artix Contract

Overview Artix clients that use a CORBA transport require that the IDL defining the
interface exist and be accessible. Artix provides tools to generate the
required IDL from an existing WSDL contract. The generated IDL captures
the information in the logical portion of the contract and uses that to
generate the IDL interface. Each <portType> in the contract generates an
IDL module.

Using Artix Designer To generate IDL from the Artix Designer complete the following steps:

1. Select the Development icon under the service for which you are going
to generate IDL.

2. From the drop down list next to Development Environment select IDL.

3. Enter the name and location of the file to which the generated IDL will
be generated.

4. Click OK.

From the command line The wsdltocorba tool compiles Artix contracts and generates IDL for the
specified CORBA binding and port type. To generate IDL using wsdltocorba
use the following command:

The command has the following options:

Note: The service must have a CORBA binding defined in one of its
associated contracts to generate IDL.

wsdltocorba -idl -b binding [-corba][-i portType][-d dir]
 [-o file] wsdl_file

-idl Instructs the tool to generate an IDL file from the
specified binding.

-b binding Specifies the CORBA binding from which to generate IDL.

-corba Instructs the tool to generate a CORBA binding for the
specified port type.
209

CHAPTER 10 | Using the CORBA Plug-in
By combining the -idl and -corba flags with wsdltocorba, you can
generate a CORBA binding for a logical operation and then generate the IDL
for the generated CORBA binding. When doing so, you must also use the -i
portType flag to specify the port type from which to generate the binding
and the -b binding flag to specify the name of the binding to from which to
generate the IDL.

-i portType Specifies the name of the port type being mapped to a
CORBA binding.

-d dir Specifies the directory into which the new WSDL file is
written.

-o file Specifies the name of the generated WSDL file. Defaults
to wsdl_file.idl.
 210

Generating a Contract from IDL
Generating a Contract from IDL

Overview If you are starting from a CORBA server or client, Artix can build the logical
portion of the WSDL contract from IDL. Contracts generated from IDL have
CORBA-specific entries and namespaces added.

The IDL compiler also generates the binding information required to format
the operations specified in the IDL. However, since port information is
specific to the deployment environment, the port information is left blank.

CORBA WSDL namespaces Contracts generated from IDL include two additional name spaces:

Unsupported type handling Be aware that the IDL compiler ignores any definitions that use unsupported
CORBA types. The IDL compiler also ignores any definition that uses a
previously ignored definition. For example, assume you have the following
IDL definitions in file.idl:

The IDL compiler does not generate any corresponding contract information
for the structure S because it contains a member that uses an object
reference. Similarly, the IDL complier does not generate any contract
information for the operation get_op() because it references structure S.

Using Artix Designer The Artix Designer imports IDL files, generates a new Artix contract to
describe the CORBA service represented by the IDL, and adds the new
contract to the project tree.

xmlns:corba="http://schemas.iona.com/bindings/corba"
xmlns:corbatm="http://schemas.iona.com/bindings/corba/typemap"

interface A
{
 struct S
 {
 A member;
 };

 S get_op();
};
211

CHAPTER 10 | Using the CORBA Plug-in
To import an IDL file into Artix Designer complete the following steps:

1. Select either a contracts folder or a service node from the project tree.

2. Select Import... from the Contract menu.

3. You will see a dialog similar to Figure 17.

4. Click Browse to locate the IDL file.

5. Select Local WSDL or IDL FIles from the Import Type drop down list.

6. If you only wish to generate the logical portion of the contract select
Logical Contract Only.

7. Click Add to move the IDL file into the Selected Contracts list.

Figure 17: IDL Import

Note: If this option is selected the generated contracts will not
contain any binding, CORBA typemap, or transport information.
 212

Generating a Contract from IDL
8. A dialog similar to Figure 18 will appear.

9. Enter the names of the directories to search for included IDL files.

10. Click Add to add a directory to the list.

11. When finished adding directories, click OK.

12. Repeat steps 4 through 11 until you have added all of the IDL files to
import.

13. Click OK.

One contract will be added to the project tree under the selected folder or
service for each IDL file imported. The contracts will include a CORBA
binding, a CORBA type map, and a CORBA port description. You will need
to add location information to the CORBA port before you can deploy a
service using the CORBA port. For information on adding a location to the
CORBA port see �Address specification� on page 204.

Figure 18: IDL Include Directories
213

CHAPTER 10 | Using the CORBA Plug-in
From the command line IONA�s IDL compiler supports several command line flags that specify how
to create a WSDL file from an IDL file. The IDL compiler is run using the
following command:

The command has the following options:

idl -wsdl:[-aaddress][-ffile][-Odir][-turi][-stype][-rfile][-Lfile][-Pfile] idlfile

-wsdl Specifies that WSDL is to be generated. This flag is
required.

-aaddress Specifies an absolute address through which the object
reference may be accessed. The address may be a
relative or absolute path to a file, or a corbaname URL

-ffile Specifies a file containing a string representation of an
object reference. The contents of this file is incorporated
into the WSDL file. The file must exist when you run the
IDL compiler.

-Odir Specifies the directory into which the WSDL file is
written.

-turi Specifies the URI for the corbatm namespace. This
overrides the default.

-stype Specifies the XMLSchema type used to map the IDL
sequence<octet> type. Valid values are base64Binary
and hexBinary. The default is base64Binary.

-rfile Specify the pathname of the schema file imported to
define the Reference type. If the -r option is not given,
the idl compiler gets the schema file pathname from
etc/idl.cfg.

-Lfile Specifies that the logical portion of the generated WSDL
specification into is written to file. file is then imported
into the default generated file.

-Pfile Specifies that the physical portion of the generated WSDL
specification into is written to file. file is then imported
into the default generated file.
 214

Generating a Contract from IDL
To combine multiple flags in the same command, use a colon delimited list.
The colon is only interpreted as a delimiter if it is followed by a dash.
Consequently, the colons in a corbaname URL are interpreted as part of the
URL syntax and not as delimiters.

Example Imagine you needed to generate an Artix contract for a CORBA server that
exposes the interface shown in Example 99.

To generate the contract, you run it through the IDL compiler using either
the GUI or the command line. The resulting contract is similar to that shown
in Example 100.

Note: The command line flag entries are case sensitive even on
Windows. Capitalization in your generated WSDL file must match the
capitalization used in the prewritten code.

Example 99:personalInfoService Interface

interface personalInfoService
{
 enum hairColorType {red, brunette, blonde};

 struct personalInfo
 {
 string name;
 long age;
 hairColorType hairColor;
 };

 exception idNotFound
 {
 short id;
 };

 personalInfo lookup(in long empId)
 raises (idNotFound);
};
215

CHAPTER 10 | Using the CORBA Plug-in
Example 100:personalInfoService Contract

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="personalInfo.idl"
 targetNamespace="http://schemas.iona.com/idl/personalInfo.idl"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://schemas.iona.com/idl/personalInfo.idl"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://schemas.iona.com/idltypes/personalInfo.idl"
 xmlns:corba="http://schemas.iona.com/bindings/corba"
 xmlns:corbatm="http://schemas.iona.com/bindings/corba/typemap">
 <types>
 <schema targetNamespace="http://schemas.iona.com/idltypes/personalInfo.idl"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <xsd:simpleType name="personalInfoService.hairColorType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="red"/>
 <xsd:enumeration value="brunette"/>
 <xsd:enumeration value="blonde"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:complexType name="personalInfoService.personalInfo">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="age" type="xsd:int"/>
 <xsd:element name="hairColor" type="xsd1:personalInfoService.hairColorType"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="personalInfoService.idNotFound">
 <xsd:sequence>
 <xsd:element name="id" type="xsd:short"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:element name="personalInfoService.lookup.empId" type="xsd:int"/>
 <xsd:element name="personalInfoService.lookup.return"

type="xsd1:personalInfoService.personalInfo"/>
 <xsd:element name="personalInfoService.idNotFound"

type="xsd1:personalInfoService.idNotFound"/>
 </schema>
 </types>
 <message name="personalInfoService.lookup">
 <part name="empId" element="xsd1:personalInfoService.lookup.empId"/>
 </message>
 <message name="personalInfoService.lookupResponse">
 <part name="return" element="xsd1:personalInfoService.lookup.return"/>
 </message>
 216

Generating a Contract from IDL
 <message name="_exception.personalInfoService.idNotFound">
 <part name="exception" element="xsd1:personalInfoService.idNotFound"/>
 </message>
 <portType name="personalInfoService">
 <operation name="lookup">
 <input message="tns:personalInfoService.lookup" name="lookup"/>
 <output message="tns:personalInfoService.lookupResponse" name="lookupResponse"/>
 <fault message="tns:_exception.personalInfoService.idNotFound"

name="personalInfoService.idNotFound"/>
 </operation>
 </portType>
 <binding name="personalInfoServiceBinding" type="tns:personalInfoService">
 <corba:binding repositoryID="IDL:personalInfoService:1.0"/>
 <operation name="lookup">
 <corba:operation name="lookup">
 <corba:param name="empId" mode="in" idltype="corba:long"/>
 <corba:return name="return" idltype="corbatm:personalInfoService.personalInfo"/>
 <corba:raises exception="corbatm:personalInfoService.idNotFound"/>
 </corba:operation>
 <input/>
 <output/>
 <fault name="personalInfoService.idNotFound"/>
 </operation>
 </binding>
 <service name="personalInfoServiceService">
 <port name="personalInfoServicePort" binding="tns:personalInfoServiceBinding">
 <corba:address location="..."/>
 </port>
 </service>
 <corba:typeMapping targetNamespace="http://schemas.iona.com/bindings/corba/typemap">
 <corba:enum name="personalInfoService.hairColorType"

type="xsd1:personalInfoService.hairColorType"
repositoryID="IDL:personalInfoService/hairColorType:1.0">

 <corba:enumerator value="red"/>
 <corba:enumerator value="brunette"/>
 <corba:enumerator value="blonde"/>
 </corba:enum>
 <corba:struct name="personalInfoService.personalInfo"

type="xsd1:personalInfoService.personalInfo"
repositoryID="IDL:personalInfoService/personalInfo:1.0">

 <corba:member name="name" idltype="corba:string"/>
 <corba:member name="age" idltype="corba:long"/>
 <corba:member name="hairColor" idltype="corbatm:personalInfoService.hairColorType"/>
 </corba:struct>

Example 100:personalInfoService Contract
217

CHAPTER 10 | Using the CORBA Plug-in
 <corba:exception name="personalInfoService.idNotFound"
type="xsd1:personalInfoService.idNotFound"
repositoryID="IDL:personalInfoService/idNotFound:1.0">

 <corba:member name="id" idltype="corba:short"/>
 </corba:exception>
 </corba:typeMapping>
</definitions>

Example 100:personalInfoService Contract
 218

Configuring Artix to Use the CORBA Plug-in
Configuring Artix to Use the CORBA Plug-in

Overview The CORBA interopability features of Artix are provided through a plug-in. If
you are using Artix with the CORBA transport, you need to ensure that the
CORBA plug-in is loaded by the Artix runtime and that the plug-in is
properly configured.

Loading the plug-in To configure the Artix runtime to load the CORBA plug-in add ws_orb to the
orb_plugins list for your Artix instance. For example, if your Artix instance
is getting its configuration from the configuration scope, the orb_plugins list
would look like Example 101.

Plug-in configuration The CORBA plug-in is configured using the same configuration variables as
IONA�s Application Server Platform�s CORBA implementation. For more
information on configuring the CORBA plug-in, see the Application Server
Platform Configuration Reference.

Example 101:orb_plugin list for CORBA

{
 ...
 corba_interop
 {
 orb_plugins = ["xmlfile_log_stream", "iiop_profile", "giop",

"iiop", "mq", "ws_orb", "fixed"];
 ...
 }
}

219

CHAPTER 10 | Using the CORBA Plug-in
Using the CORBA Naming Service

Overview In order to fully integrate with deployed CORBA systems, Artix can use a
CORBA naming service that supports the CosNaming interface. Doing so
requires editing the port information in the service�s contract and modifying
the Artix configuration.

Servers To specify that an Artix instance (acting as proxy for a server) is to use the
COBRA naming service, you edit the <corba:address> element of the
CORBA port. In place of the file name used in the location attribute,
specify a corbaname. For example, to specify that the converter server
publishes its IOR to the CORBA naming service, specify the
<corba:address> as follows:

This registers the server in the name service under the name
personalInfoService.

Clients An Artix instance (acting as a proxy for a client) can also use the
<corba:address> element to specify what name to look up in the CORBA
name service. The name the client looks up in the name service is the string
after the # in the specified location. For example, a client using the
<corba:address> shown above in �Servers� looks up the IOR for an object
named personalInfoService.

Configuration Artix applications that wish to use a CORBA name service must be
configured to load a name resolver plug-in and have an initial reference for
the running name service.

<corba:address location=“corbaname:rir:/NameService#personalInfoService”/>
 220

Using the CORBA Naming Service
To modify the Artix configuration do the following:

1. Open the Artix configuration file,
IT_PRODUCT_DIR\artix\1.2\etc\artix.cfg, in a text editor.

2. In the global scope, add the following lines:

portNumber is the number of the port on which the name service is
running.

For more information on configuring Artix, see �Configuration� on page 27.

initial_references:NameService:reference="corbaloc::localhost:portNumber/NameService";
url_resolvers:corbaname:plugin="naming_resolver";
plugins:naming_resolver:shlib_name="it_naming";
221

CHAPTER 10 | Using the CORBA Plug-in
Embedding Artix in a CORBA Application

Overview Artix, because it is built on IONA�s flexible ART platform, can be embedded
within any CORBA application implemented using IONA�s Applications
Server Platform 6.0 or later without modifying any of the CORBA
applications code. Embedding Artix is done by altering the applications
configuration to load the required Artix plug-ins.

Embedding Artix into your CORBA application has several advantages:

� You do not need a separate process to route messages to the
non-CORBA pieces of your application.

� You improve messaging performance over using the Artix standalone
service.

� You can still code using a familiar paradigm and realize the benefits of
using Artix.

� You can leverage all of the CORBA infrastructure to provide enterprise
level qualities of service and management.

CORBA client applications To embed Artix into a CORBA client application you need to do the
following:

1. Create an Artix contract that fully describes the interfaces, bindings,
transports, and routing rules used in your Artix application.

2. Edit the configuration scope for your CORBA client so that the ORB
plug-ins list contains the required Artix plug-ins to support the bindings
and transports used by your Artix application.

For example, if your CORBA client will be interacting with a sever using
SOAP over WebSphere MQ your ORB plug-in list would be similar to
the one in Example 102 on page 223. Note that the required Artix
plug-ins for the SOAP binding, the WebSphere MQ transport, CORBA,
and routing are highlighted.

3. Make an entry for plugins:routing:wsdl_url that specifies where the
Artix applications contract resides.
 222

Embedding Artix in a CORBA Application
In Example 102, the Artix contract describing the application is stored
in /artix/wsdlRepos/scoreBox.wsdl.

4. When you start your CORBA client ensure that you start it using the
proper ORB name to load the Artix plug-ins.

For a client that uses the configuration shown in Example 102, you
would start the client with the following command:

CORBA server applications To embed Artix into a CORBA server that uses the routing plug-in there are
two caveats:

� Your CORBA server must generate persistent object references.

� Your CORBA server must run one time to export the persistent
references and then be restarted for the Artix routing plug-in to work.

The routing plug-in requires valid object references to properly load itself
and when embedded into the CORBA server, the routing plug-in is loaded by
the ORB before any object references are generated. By using persistent
object references and pregenerating them before fully deploying the server,
as when using the naming service, you satisfy the routing plug-in.

Complete the following steps to configure a CORBA server to embed Artix:

1. Create an Artix contract that fully describes the interfaces, bindings,
transports, and routing rules used in your Artix application.

2. Edit the configuration scope for your CORBA server so that the ORB
plug-ins list contains the required Artix plug-ins to support the bindings
and transports used by your Artix application.

For example, if your CORBA server will be interacting with a client
using SOAP over WebSphere MQ your ORB plug-in list would be
similar to the one in Example 103 on page 224. Note that the required

Example 102:Embedded Artix orb_plugin list

corba_client.artix
{
 orb_plugins=["iiop_profile", "giop", "soap", "mq", "ws_orb",

"routing"];
 plugins:routing:wsdl_url="/artix/wsdlRepos/scoreBox.wsdl";
}

client -ORBname corba_client.artix
223

CHAPTER 10 | Using the CORBA Plug-in
Artix plug-ins for the SOAP binding, the WebSphere MQ transport,
CORBA, and routing are highlighted.

3. Make an entry for plugins:routing:wsdl_url that specifies where the
Artix applications contract resides.

In Example 103, the Artix contract describing the application is stored
in /artix/wsdlRepos/scoreBox.wsdl.

4. Edit the server�s client binding list, binding:client_binding_list, so
that none of the listed bindings use POA_Coloc.

The configuration scope in Example 103 shows a client binding list
that does not use POA_Coloc. The default client binding list includes
entries for "OTS+POA_Coloc" and "POA_Coloc".

5. When you start your CORBA server ensure that you start it using the
proper ORB name to load the Artix plug-ins.

For a server that uses the configuration shown in Example 103, you
would start the client with the following command:

Example 103:Embedded Artix Server Configuration

corba_server.artix
{
 orb_plugins=["iiop_profile", "giop", "soap", "mq", "ws_orb",

"routing"];
 plugins:routing:wsdl_url="/artix/wsdlRepos/scoreBox.wsdl";
 binding:client_binding_list=[“OTS+GIOP+IIOP”, “GIOP+IIOP”];
 binding:server_binding_list=["OTS"];
}

server -ORBname corba_server.artix
 224

CHAPTER 11

Using the HTTP
Plug-in
The HTTP plug-in lets you configure an Artix integration
solution to use the HTTP transport. This chapter first provides
a brief introductory overview of HTTP. It then explains how to
configure and extend a WSDL contract to use an HTTP port
and provides a description of the WSDL extensions involved.
Finally it provides an overview of the WSDL extension schema
that supports the use of HTTP with Artix.

In this chapter This chapter discusses the following topics:

HTTP Overview page 226

Adding an HTTP Port page 233

HTTP WSDL Extensions page 243

HTTP Transport Attributes page 264
225

CHAPTER 11 | Using the HTTP Plug-in
HTTP Overview

Overview This section provides an introductory overview of the hypertext transport
protocol (HTTP). The following topics are discussed:

� �What is HTTP?� on page 226.

� �Resources and URLs� on page 226.

� �HTTP transaction processing� on page 227.

� �Format of HTTP client requests� on page 227.

� �Format of HTTP server responses� on page 229.

� �HTTP properties� on page 230.

What is HTTP? HTTP is the standard TCP/IP-based protocol used for client-server
communications on the World Wide Web. The main function of HTTP is to
establish a connection between a web browser (client) and a web server for
the purposes of exchanging files and possibly other information on the Web.

HTTP is termed an application protocol. It defines how messages between
web browsers and web servers should be formatted and transmitted. It also
defines how web browsers and web servers should behave in response to
various commands.

Resources and URLs The files and other information that can be transmitted are collectively
known as resources. A resource is basically a block of information. Files are
the most common example of resources and they can be in various
multimedia formats, such as text, graphics, sound, and video. Other
examples of resources are server-side script output or dynamically generated
query results.

Note: A complete introduction to HTTP is outside the scope of this guide.
For more details about HTTP see the W3C HTTP specification at
http://www.w3.org/Protocols/rfc2616/rfc2616.html.
 226

HTTP Overview
A resource is identifiable by a uniform resource locator (URL). As its name
suggests, a URL is the address or location of a resource. A URL typically
consists of protocol information followed by host (and optionally port)
information followed by the full path to the resource. HTTP is not the only
protocol or mechanism for data transfer; other examples include TELNET or
the file transfer protocol (FTP). Each of the following is an example of a
URL:

� http://www.iona.com/support/docs/index.xml

� ftp://ftp.omg.org/pub/docs/formal/01-12-35.pdf

� telnet://xyz.com

In the first of the preceding examples, http: denotes that the protocol for
data transfer is HTTP, //www.iona.com denotes the hostname where the
resource resides, and /support/docs/index.xml is the full path to the
resource (in this case, an XML text file). The other URLs follow similar
patterns.

HTTP transaction processing When a web user on the client-side requests a resource, either by typing a
URL or by clicking on a hypertext link, the client browser builds an HTTP
request and opens a TCP/IP socket connection to send the request to the
internet protocol (IP) address for the host denoted by the URL for the
requested resource. The web server host contains an HTTP daemon that
waits for client browser requests and handles them when they arrive. When
the HTTP daemon receives a request, the requested resource is then
returned to the client browser. The server�s response can take the form of
HTML pages and possibly other programs in the form of ActiveX controls or
Java applets.

Format of HTTP client requests The following is an example of the typical format of an HTTP client request:

GET REQUEST-URI HTTP/1.1
header field: value
header field: value

HTTP request body (if applicable)
227

CHAPTER 11 | Using the HTTP Plug-in
The preceding code can be explained as follows:

GET This is an HTTP method that instructs the server to return
the requested resource.

Other HTTP methods might be used here instead. These
include:

� HEAD�this instructs the server to just return
information about the resource (in headers) but not
the actual resource itself.

� POST�this can be used if you want to send data in
the body of the request for subsequent processing
by the server.

� PUT�this can be used to replace the contents of the
target resource with data from the client.

Note: GET is the most commonly used method in HTTP
client requests.

REQUEST-URI This represents the URL of the resource that the client is
requesting. The typical format of a URL is:

http://hostname/path-to-resource

For example:
http://www.iona.com/support/docs/index.xml

HTTP/1.1 This indicates that the client is using HTTP to transmit
the request, and the version of HTTP that the client is
using (in this example, 1.1).

header field Header information can be included to provide
information about the request. In HTTP 1.1, the only
mandatory header field is Host:, to identify the host
where the requested resource resides.

In Artix, a number of HTTP client request headers can be
configured and sent as part of a client request to a server.
See �HTTP WSDL Extensions� on page 243 and �Server
Transport Attributes� on page 266 for more details.

HTTP request
body

This can contain user-entered data or files that are being
sent to the server for processing.

Note: This is typically blank in an HTTP request unless
the PUT or POST method is specified.
 228

HTTP Overview
Format of HTTP server responses The following is an example of the typical format of an HTTP server
response:

The preceding code can be explained as follows:

HTTP/1.1 200 OK
header field: value
header field: value

HTTP response body

HTTP/1.1 This indicates that the server is using HTTP to transmit
the response, and the version of HTTP that the server is
using (in this example, 1.1).

200 OK This is status information that indicates whether the
request was processed successfully. The 3-digit code is
meant to be machine-readable, and the accompanying
descriptive text is for human consumption.

Status codes can be broadly described as follows:

� 2xx�A status code starting with 2 means the
request was processed successfully.

� 3xx�A status code starting with 3 means the
resource is now located elsewhere and the client
should redirect the request to that new location.

� 4xx�A status code starting with 4 means that the
request has failed because the client has either sent
a request in the wrong syntax, or it might have
requested a resource that is invalid or that it is not
authorized to access.

� 5xx�A status code starting with 5 means that the
request has failed because the server has
experienced internal problems or it does not support
the request method specified.
229

CHAPTER 11 | Using the HTTP Plug-in
HTTP properties The basic properties of HTTP can be summarized as follows:

� Comprehensive addressing�The target resource on which a client
request is to be invoked is indicated by means of a universal resource
identifier (URI), either as a location (URL) or name (URN). As
explained in �Resources and URLs� on page 226, a URL consists of
protocol information followed, typically, by host (and optionally port)
information followed by the full path to the resource. For example:

See �Resources and URLs� on page 226 for more details.

� Request/response paradigm�A client (web browser) can establish an
HTTP connection with a web server by means of a URI, to send a
request to that server. See �Format of HTTP client requests� on
page 227 for details of the format of a client request message. See
�Format of HTTP server responses� on page 229 for details of the
format of a server response message.

� Connectionless protocol�HTTP is termed a connectionless protocol
because an HTTP connection is typically closed after a single
request/response operation. While it is possible for a client to request
the server to keep a connection open for subsequent request/response

header field Header information can be included to provide
information about the response itself or about the
information contained in the body of the response.

In Artix, a number of HTTP server response headers can
be configured and sent as part of the server response to
the client. See �HTTP WSDL Extensions� on page 243
and �Client Transport Attributes� on page 268 for more
details.

HTTP response
body

This is where the requested resource is returned to the
client, if the request has been processed successfully.
Otherwise, it might contain some explanatory text as to
why the request was not processed successfully.

The data in the body of the response can be in a variety
of formats, such as HTML or XML text, GIF or JPEG
image, and so on.

http://www.iona.com/support/docs/index.xml
 230

HTTP Overview
operations, the server is not obliged to keep the connection open. The
advantage of closing connections is that it does not incur any overhead
in terms of session housekeeping; however, the disadvantage is that it
makes it difficult to track user behavior.

� Stateless protocol�Because HTTP connections are typically closed
after each request/response operation, there is no memory or footprint
between connections. A workaround to this, in CGI applications, is to
encode state information in hidden fields, in the path information, or in
URLs in the form returned to the client browser. State can also be
saved in a file, rather than being encoded, as in the typical example of
a visitor counter program, where state is identified by means of a
unique identifier in the form of a sequential integer.

� Multimedia support�HTTP supports the transfer of various types of
data, such as text (for example, HTML or XML files), graphics (for
example, GIF or JPEG files), sound, and video. These types are
commonly referred to as multipart internet mail extension (MIME)
types. A server response can include header information that informs
the client of the MIME type of the information being sent by the server.

� Proxies and caches�The communication chain between a client and
server might include intermediary programs known as proxies. A proxy
can receive client requests, possibly modify the request in some way,
and then forward the request along the chain possibly to another proxy
or to the target server. Such intermediaries can employ caches to store
responses that might be appropriate for subsequent requests. Caches
can be shared (public) or private. Specific directives can be established
in relation to cache behavior and not all responses might be cacheable.

Note: A potential workaround to tracking user behavior is through
the use of cookies. A cookie is a string sent by a web server to a web
browser and which is then sent back to the web server again each
time the browser subsequently contacts that server.
231

CHAPTER 11 | Using the HTTP Plug-in
� Security�Secure HTTP connections that run over the secure sockets
layer (SSL) or transport layer security (TLS) protocol can also be
established. A secure HTTP connection is referred to as HTTPS and
uses port 443 by default. (A non-secure HTTP connection uses port 80
by default.)

Note: See �HTTP WSDL Extensions� on page 243 for details of the
various SSL-related configuration attributes that can be used in
extending a WSDL contract.
 232

Adding an HTTP Port
Adding an HTTP Port

Overview You can configure an Artix WSDL contract with various extensions that
support the use of an HTTP port with an Artix integration solution. When
adding an HTTP port to a contract you can choose to specify whether or not
HTTP connections should run securely (over SSL or TLS). This section
describes how to use the Artix Designer GUI to add both secure and
non-secure HTTP ports to WSDL contracts.

In this section This section discusses the following topics:

Note: This section is only relevant if you want to use HTTP with a
payload format other than SOAP. If you are using SOAP over HTTP, see
the �SOAP Payload Format� chapter of this guide.

Adding an HTTP Port for Non-Secure Connections page 234

Adding an HTTP Port for Secure Connections page 240
233

CHAPTER 11 | Using the HTTP Plug-in
Adding an HTTP Port for Non-Secure Connections

Overview This section describes how to use the Artix Designer GUI to add to a WSDL
contract an HTTP port that does not enable secure connections. It discusses
the following topics:

� �GUI steps� on page 234.

� �WSDL example� on page 237.

GUI steps To add an HTTP port to your service contract, using the Artix Designer GUI,
complete the following steps:

1. From the project tree, select the contract to which you want to add the
HTTP port.

2. Select Services|New Service from the Contract menu of the designer.

Note: This section deals specifically with how to set up port information
within the <service> component of a WSDL contract. To add a port, you
must have already created a payload format binding within the <binding>
component of the contract. See the chapter relating to the payload format
you are using for more details about setting up a binding for it in a WSDL
contract.
 234

Adding an HTTP Port
3. You will see a screen like Figure 19.

4. Select where to create the WSDL entry for the new binding.

♦ Add to existing WSDL adds the routing information to the bottom
of the existing contract and does not make a back-up of the
non-routed WSDL file.

♦ Add to new WSDL creates a new WSDL document that contains
the routing information and imports the original WSDL document.

5. Click Next.

6. Enter a unique name for the new service.

Figure 19: Select WSDL location
235

CHAPTER 11 | Using the HTTP Plug-in
7. Click Next.

8. Enter a name for the new HTTP port that is being created.

9. From the Binding drop down list, select the binding that the port is
going to expose.

10. Click Next.

11. From the Transport Type drop down list, select http-conf. The screen
then appears as shown in Figure 20.

Figure 20: Selecting an HTTP Transport Type

Note: Except for the URL attribute in the Client configuration table, all
attributes on this screen are optional.
 236

Adding an HTTP Port
12. To specify a value for a particular attribute, place a check in the
Specified box on the appropriate line, and type (or in the case of
certain true or false attributes select) the value you want.

13. Click Next.

14. Review the settings for the new HTTP port.

15. If it is correct, click Next.

16. Review the settings for the new service in which the HTTP port is
described.

17. If it is correct, click Finish.

WSDL example Figure 21 shows an example summary of HTTP configuration settings in the
GUI.

Note: You must specify a value for the URL attribute. In this case,
the URL you specify has a http:// prefix. See �HTTP WSDL
Extensions� on page 243 for details of all attributes.
237

CHAPTER 11 | Using the HTTP Plug-in
Figure 21: Example Set of HTTP Configuration Settings in GUI
 238

Adding an HTTP Port
Example 104 shows the WSDL extract that is subsequently generated for
the service component of your Artix contract, based on the example settings
in Figure 21 on page 238. As shown in Example 104, client and server
HTTP configuration attributes are contained respectively within elements
called http-conf:client and http-conf:server.

Example 104:Extract of Example WSDL Contract

<wsdl:service name="BaseService">
 <wsdl:port binding="ns1:BasePortTypeBinding" name="HTTP_Port">
 <http-conf:client Password="goofy" ReceiveTimeout="3000" SendTimeout="3000"
 URL="http://www.iona.com/support/docs/index.xml" UserName="jsmith"/>
 <http-conf:server HonorKeepAlive="true" ReceiveTimeout="3000"
 SendTimeout="3000" SuppressClientReceiveErrors="false"
 SuppressClientSendErrors="false"/>
 </wsdl:port>
</wsdl:service>
239

CHAPTER 11 | Using the HTTP Plug-in
Adding an HTTP Port for Secure Connections

Overview This section describes how to use the Artix Designer GUI to add to a WSDL
contract an HTTP port that enables secure connections. It discusses the
following topics:

� �SSL-related attributes� on page 240.

� �GUI steps� on page 241.

� �WSDL example� on page 241.

SSL-related attributes The SSL-related attributes that can be configured to be included in the
<http-conf:client> and <http-conf:server> elements of an HTTP port
binding are as follows:

See Table 15 on page 246 for more details of the server attributes. See
Table 16 on page 253 for more details of the client attributes.

Note: This section deals specifically with how to set up HTTP port
information within the <service> component of a WSDL contract. To add
a port, you must have already created a payload format binding within the
<binding> component of the contract. See the chapter relating to the
payload format you are using for more details about setting up a binding
for it in a WSDL contract.

Client SSL Attributes Server SSL Attributes

UseSecureSockets UseSecureSockets

ClientCertificate ServerCertificate

ClientCertificateChain ServerCertificateChain

ClientPrivateKey ServerPrivateKey

ClientPrivateKeyPassword ServerPrivateKeyPassword

TrustedRootCertificate TrustedRootCertificate
 240

Adding an HTTP Port
GUI steps All the GUI steps described in �GUI steps� on page 234 are relevant and
should be followed here, with the following stipulations:

� Specify https:// rather than http:// as the prefix for the value of the
URL attribute in the Client configuration table.

� Enter values for the various SSL-related attributes in the Client and
Server configuration tables. See �SSL-related attributes� on page 240
for a listing of these attributes. See �HTTP WSDL Extensions� on
page 243 for more details about them.

WSDL example Figure 22 shows an example summary of SSL-related HTTP configuration
settings in the GUI

Note: When you specify https:// as the prefix for the value of the URL
attribute in the Client configuration table, a secure HTTP connection is
automatically enabled, even if UseSecureSockets is not set to true.

Figure 22: Example Set of SSL-Related HTTP Configuration Settings
241

CHAPTER 11 | Using the HTTP Plug-in
Example 105 shows the WSDL extract that is subsequently generated for
the service component of your Artix contract, based on the example settings
in Figure 22 on page 241. As shown in Example 105, client and server
HTTP configuration attributes are contained respectively within elements
called http-conf:client and http-conf:server.

Example 105:Extract of Example WSDL Contract with SSL Attributes

<wsdl:service name="BaseService">
 <wsdl:port binding="ns1:BasePortTypeBinding" name="HTTP_SSL_Port">
 <http-conf:client ClientCertificate="c:\aspen\x509\certs\key.cert.pem"
 ClientCertificateChain="c:\aspen\x509\certs\key.cert.pem"
 ClientPrivateKey="c:\aspen\x509\certs\privkey.pem"
 ClientPrivateKeyPassword="mykeypass" Password="goofy"
 TrustedRootCertificates="c:\aspen\x509\ca\cacert.pem"
 URL="https://www.iona.com/support/docs/index.xml"
 UseSecureSockets="true"
 UserName="jsmith"/>
 <http-conf:server ServerCertificate="c:\aspen\x509\certs\key.cert.pem"
 ServerCertificateChain="c:\aspen\x509\certs\key.cert.pem"
 ServerPrivateKey="c:\aspen\x509\certs\privkey.pem"
 ServerPrivateKeyPassword="mykeypass"
 TrustedRootCertificates="c:\aspen\x509\ca\cacert.pem"
 UseSecureSockets="true"/>
 </wsdl:port>
</wsdl:service>
 242

HTTP WSDL Extensions
HTTP WSDL Extensions

Overview This section provides an overview and description of the attributes that you
can configure as extensions to a WSDL contract for the purposes of using
the HTTP transport plug-in with Artix.

In this section This section discusses the following topics:

HTTP WSDL Extensions Overview page 244

HTTP WSDL Extensions Details page 246
243

CHAPTER 11 | Using the HTTP Plug-in
HTTP WSDL Extensions Overview

Overview This subsection provides an overview of the WSDL extensions involved in
configuring the HTTP transport plug-in for use with Artix.

Configuration layout Example 106 shows (in bold) the WSDL extensions used to configure the
HTTP transport plug-in for use with Artix. (Ellipses (that is, �) are used to
denotes sections of the WSDL that have been omitted for brevity.)

Example 106:HTTP configuration WSDL extensions

<definitions…
xmlns:http=”http://schemas.iona.com/transports/http"
xmlns:http-conf="http://schemas.iona.com/transports/http/configu

ration"
…
<service name="…">
 <port binding="…">
 <http-conf:client SendTimeout="…"
 ReceiveTimeout="…"
 AutoRedirect="…"
 UserName="…"
 Password="…"
 AuthorizationType="…"
 Authorization="…"
 Accept="…"
 AcceptLanguage="…"
 AcceptEncoding="…"
 ContentType="…"
 Host="…"
 Connection="…"
 CacheControl="…"
 Cookie="…"
 BrowserType="…"
 Referer="…"
 ProxyServer="…"
 ProxyUserName="…"
 ProxyPassword="…"
 ProxyAuthorizationType="…"
 ProxyAuthorization="…"
 UseSecureSockets="…"
 244

HTTP WSDL Extensions
 ClientCertificate="…"
 ClientCertificateChain="…"
 ClientPrivateKey="…"
 ClientPrivateKeyPassword="…"
 TrustedRootCertificate="…"/>

 <http-conf:server SendTimeout="…"
 ReceiveTimeout="…"
 SuppressClientSendErrors="…"
 SuppressClientReceiveErrors="…"
 HonorKeepAlive="…"
 RedirectURL="…"
 CacheControl="…"
 ContentLocation="…"
 ContentType="…"
 ContentEncoding="…"
 ServerType="…"
 UseSecureSockets="…"
 ServerCertificate="…"
 ServerCertificateChain="…"
 ServerPrivateKey="…"
 ServerPrivateKeyPassword="…"
 TrustedRootCertificate="…"/>

Example 106:HTTP configuration WSDL extensions
245

CHAPTER 11 | Using the HTTP Plug-in
HTTP WSDL Extensions Details

Overview This subsection describes each of the configuration attributes that can be
set up as part of the WSDL extensions for configuring the HTTP transport
plug-in for use with Artix. It discusses the following topics:

� �Server configuration attributes� on page 246.

� �Client configuration attributes� on page 253.

Server configuration attributes Table 15 describes the server-side configuration attributes for the HTTP
transport that are defined within the http-conf:server element.

Table 15: HTTP Server Configuration Attributes

Configuration Attribute Explanation

SendTimeout This specifes the length of time, in milliseconds, that the server can
continue to try to send a response to the client before the connection is
timed out.

The timeout value is at the user�s discretion. The default is 3000.

ReceiveTimeout This specifies the length of time, in milliseconds, that the server can
continue to try to receive a request from the client before the connection
is timed out.

The timeout value is at the user�s discretion. The default is 3000.

SuppressClientSendErrors This specifies whether exceptions are to be thrown when an error is
encountered on receiving a client request.

Valid values are true and false. The default is false, to throw
exceptions on encountering errors.

SuppressClientReceiveErrors This specifies whether exceptions are to be thrown when an error is
encountered on sending a response to a client.

Valid values are true and false. The default is false, to throw
exceptions on encountering errors.
 246

HTTP WSDL Extensions
HonorKeepAlive This specifies whether the server should honor client requests for a
connection to remain open after a server response has been sent to a
client. Servers can achieve higher concurrency per thread by honoring
requests to keep connections alive.

Valid values are true and false. The default is false, to close the
connection after a server response is sent.

If set to true, the request socket is kept open provided the client is using
at least version 1.1 of HTTP and has requested that the connection is
kept alive (via the client-side Connection configuration attribute).
Otherwise, the connection is closed.

If set to false, the socket is automatically closed after a server response
is sent, even if the client has requested the server to keep the connection
alive (via the client-side Connection configuration attribute).

RedirectURL This specifies the URL to which the client request should be redirected if
the URL specified in the client request is no longer appropriate for the
requested resource.

In this case, if a status code is not automatically set in the first line of the
server response, the status code is set to 302 and the status description
is set to Object Moved.

If this is set, it is sent as a transport attribute in the header of a response
message from the server to the client.

Table 15: HTTP Server Configuration Attributes

Configuration Attribute Explanation
247

CHAPTER 11 | Using the HTTP Plug-in
CacheControl This specifies directives about the behavior that must be adhered to by
caches involved in the chain comprising a response from a server to a
client.

Valid values are:

� no-cache�This prevents a cache from using a particular response
to satisfy subsequent client requests without first revalidating that
response with the server. If specific response header fields are
specified with this value, the restriction applies only to those
header fields within the response. If no response header fields are
specified, the restriction applies to the entire response.

� public�This indicates that a response can be cached by any
cache.

� private�This indicates that a response is intended only for a
single user and cannot be cached by a public (shared) cache. If
specific response header fields are specified with this value, the
restriction applies only to those header fields within the response. If
no response header fields are specified, the restriction applies to
the entire response.

� no-store�This indicates that a cache must not store any part of a
response or any part of the request that evoked it.

� no-transform�This indicates that a cache must not modify the
media type or location of the content in a response between a
server and a client.

� must-revalidate�This indicates that if a cache entry relates to a
server response that has exceeded its expiration time, the cache
must revalidate that cache entry with the server before it can be
used in a subsequent response.

� proxy-revalidate�This indicates the same as must-revalidate,
except that it can only be enforced on shared caches and is ignored
by private unshared caches. If using this directive, the public
cache directive must also be used.

Table 15: HTTP Server Configuration Attributes

Configuration Attribute Explanation
 248

HTTP WSDL Extensions
� max-age�This indicates that the client can accept a response
whose age is no greater than the specified time in seconds.

� s-maxage�This indicates the same as max-age, except that it can
only be enforced on shared caches and is ignored by private
unshared caches. The age specified by s-maxage overrides the age
specified by max-age. If using this directive, the proxy-revalidate
directive must also be used.

� cache-extension�This indicates additional extensions to the other
cache directives. Extensions might be informational (that is, do not
require a change in cache behavior) or behavioral (that is, act as
modifiers to the existing base of cache directives). An extended
directive is specified in the context of a standard directive, so that
applications not understanding the extended directive can at least
adhere to the behavior mandated by the standard directive.

If this is set, it is sent as a transport attribute in the header of a response
message from the server to the client.

ContentLocation This specifies the URL where the resource being sent in a server
response is located.

If this is set, it is sent as a transport attribute in the header of a response
message from the server to the client.

Table 15: HTTP Server Configuration Attributes

Configuration Attribute Explanation
249

CHAPTER 11 | Using the HTTP Plug-in
ContentType This specifies the media type of the information being sent in a server
response (for example, text/html, image/gif, and so on). This is also
known as the multipurpose internet mail extensions (MIME) type. MIME
types are regulated by the Internet Assigned Numbers Authority (IANA).
See http://www.iana.org/assignments/media-types/ for more details.

Specified values consist of a main type and sub-type, separated by a
forward slash. For example, a main type of text might be qualified as
follows: text/html or text/xml. Similarly, a main type of image might
be qualified as follows: image/gif or image/jpeg.

The default type is text/xml. Other specifically supported types include:
application/jpeg, application/msword, application/xbitmap,
audio/au, audio/wav, text/html, text/text, image/gif, image/jpeg,
video/avi, video/mpeg. Any content that does not fit into any type in the
preceding list should be specified as application/octet-stream.

If this is set, it is sent as a transport attribute in the header of a response
message from the server to the client.

ContentEncoding This can be used in conjunction with ContentType. It specifies what
additional content codings have been applied to the information being
sent by the server, and what decoding mechanisms the client therefore
needs to retrieve the information.

The primary use of ContentEncoding is to allow a document to be
compressed using some encoding mechanism, such as zip or gzip.

If this is set, it is sent as a transport attribute in the header of a response
message from the server to the client.

ServerType This specifies what type of server is sending the response to the client.

Values in this case take the form program-name/version. For example,
Apache/1.2.5.

If this is set, it is sent as a transport attribute in the header of a response
message from the server to the client.

Table 15: HTTP Server Configuration Attributes

Configuration Attribute Explanation
 250

HTTP WSDL Extensions
UseSecureSockets This indicates whether the server wants a secure HTTP connection
running over SSL or TLS. A secure HTTP connection is commonly
referred to as HTTPS.

Valid values are true and false. The default is false, to indicate that
the server does not want to open a secure connection.

Note: If the http-conf:client URL attribute has a value with a prefix of
https://, a secure HTTP connection is automatically enabled, even if
UseSecureSockets is not set to true.

ServerCertificate This is only relevant if the HTTP connection is running securely over SSL
or TLS.

This specifies the full path to the PEM-encoded X509 certificate issued
by the certificate authority for the server. For example:

c:\aspen\x509\certs\key.cert.pem

A server must present such a certificate, so that the client can
authenticate the server.

ServerCertificateChain This is only relevant if the HTTP connection is running securely over SSL
or TLS.

PEM-encoded X509 certificates can be issued by intermediate certificate
authorities that are not trusted by the client, but which have had their
certificates issued in turn by a trusted certificate authority. If this is the
case, you can use ServerCertificateChain to allow the certificate chain
of PEM-encoded X509 certificates to be presented to the client for
verification.

This specifies the full path to the file that contains all the certificates in
the chain. For example:

c:\aspen\x509\certs\key.cert.pem

ServerPrivateKey This is only relevant if the HTTP connection is running securely over SSL
or TLS.

This is used in conjuction with ServerCertificate. It specifies the full
path to the PEM-encoded private key that corresponds to the X509
certificate specified by ServerCertificate. For example:

c:\aspen\x509\certs\privkey.pem

This is required if, and only if, ServerCertificate has been specified.

Table 15: HTTP Server Configuration Attributes

Configuration Attribute Explanation
251

CHAPTER 11 | Using the HTTP Plug-in
ServerPrivateKeyPassword This is only relevant if the HTTP connection is running securely over SSL
or TLS.

This specifies a password that is used to decrypt the PEM-encoded
private key, if it has been encrypted with a password.

The certificate authority typically encrypts these keys when sending
them over a public network, and the password is delivered by a secure
means.

TrustedRootCertificate This is only relevant if the HTTP connection is running securely over SSL
or TLS.

This specifies the full path to the PEM-encoded X509 certificate for the
certificate authority. For example:

c:\aspen\x509\ca\cacert.pem

This is used to validate the certificate presented by the client.

Table 15: HTTP Server Configuration Attributes

Configuration Attribute Explanation
 252

HTTP WSDL Extensions
Client configuration attributes Table 16 describes the client-side configuration attributes for the HTTP
transport that are defined within the http-conf:client element.

Table 16: HTTP Client Configuration Attributes

Configuration Attribute Explanation

SendTimeout This specifies the length of time, in milliseconds, that the client can
continue to try to send a request to the server before the connection is
timed out.

The timeout value is at the user�s discretion. The default is 3000 (that is,
30 seconds).

ReceiveTimeout This specifies the length of time, in milliseconds, that the client can
continue to try to receive a response from the server before the
connection is timed out.

The timeout value is at the user�s discretion. The default is 3000 (that is,
30 seconds).

AutoRedirect This specifies whether a client request should be automatically
redirected on behalf of the client when the server issues a redirection
reply via the RedirectURL server-side configuration attribute.

Valid values are true and false. The default is false, to let the client
redirect the request itself.

UserName Some servers require that client users can be authenticated. In the case
of basic authentication, the server requires the client user to supply a
username and password. This specifies the user name that is to be used
for authentication.

Note: Artix does not perform any validation on user names specified. It
is the user�s responsibility to ensure that user names are correct in terms
of spelling and case (if case-sensitivity applies at application level).

If this is set, it is sent as a transport attribute in the header of a request
message from the client to the server.
253

CHAPTER 11 | Using the HTTP Plug-in
Password Some servers require that client users can be authenticated. In the case
of basic authentication, the server requires the client user to supply a
username and password. This specifies the password that is to be used
for authentication.

Note: Artix does not perform any validation on passwords specified. It
is the user�s responsibility to ensure that passwords are correct in terms
of spelling and case (if case-sensitivity applies at application level).

If this is set, it is sent as a transport attribute in the header of a request
message from the client to the server.

AuthorizationType Some servers require that client users can be authenticated. If basic
username and password-based authentication is not in use by the server,
this specifies the type of authentication that is in use.

This specifies the name of the authorization scheme in use. This name is
specified and handled at application level. Artix does not perform any
validation on this value. It is the user�s responsibility to ensure that the
correct scheme name is specified, as appropriate.

Note: If basic username and password-based authentication is being
used, this does not need to be set.

If this is set, it is sent as a transport attribute in the header of a request
message from the client to the server.

Authorization Some servers require that client users can be authenticated. If basic
username and password-based authentication is not in used by the
server, this specifies the actual data that the server should use to
authenticate the client.

This specifies the authorization credentials used to perform the
authorization. These are encoded and handled at application-level. Artix
does not perform any validation on the specified value. It is the user�s
responsibility to ensure that the correct authorization credentials are
specified, as appropriate.

Note: If basic username and password-based authentication is being
used, this does not need to be set.

If this is set, it is sent as a transport attribute in the header of a request
message from the client to the server.

Table 16: HTTP Client Configuration Attributes

Configuration Attribute Explanation
 254

HTTP WSDL Extensions
Accept This specifies what media types the client is prepared to handle. These
are also known as multipurpose internet mail extensions (MIME) types.
MIME types are regulated by the Internet Assigned Numbers Authority
(IANA). See http://www.iana.org/assignments/media-types/ for more
details.

Specified values consist of a main type and sub-type, separated by a
forward slash. For example, a main type of text might be qualified as
follows: text/html or text/xml. Similarly, a main type of image might
be qualified as follows: image/gif or image/jpeg.

An asterisk (that is, *) can be used as a wildcard to specify a group of
related types. For example, if you specify image/*, this means that the
client can accept any image, regardless of whether it is a GIF or a JPEG,
and so on. A value of */* indicates that the client is prepared to handle
any type.

Examples of typical types that might be set are text/xml, text/html,
text/text, image/gif, image/jpeg, application/jpeg,
application/msword, application/xbitmap, audio/au, audio/wav,
video/avi, video/mpeg. A full list of MIME types is available at
http://www.iana.org/assignments/media-types/.

If this is set, it is sent as a transport attribute in the header of a request
message from the client to the server.

AcceptLanguage This specifies what language (for example, American English) the client
prefers for the purposes of receiving a response. Language tags are
regulated by the International Organisation for Standards (ISO) and are
typically formed by combining a language code (determined by the
ISO-639 standard) and country code (determined by the ISO-3166
standard) separated by a hyphen. For example, en-US represents
American English. A full list of language codes is available at
http://www.w3.org/WAI/ER/IG/ert/iso639.htm. A full list of country
codes is available at http://www.iso.ch/iso/en/prods-services/
iso3166ma/02iso-3166-code-lists/list-en1.html.

If this is set, it is sent as a transport attribute in the header of a request
message from the client to the server.

Table 16: HTTP Client Configuration Attributes

Configuration Attribute Explanation
255

CHAPTER 11 | Using the HTTP Plug-in
AcceptEncoding This specifies what content codings the client is prepared to handle. The
primary use of content codings is to allow documents to be compressed
using some encoding mechanism, such as zip or gzip. Content codings
are regulated by the Internet Assigned Numbers Authority (IANA). See
http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html for more
details of content codings.

Possible content coding values include zip, gzip, compress, deflate,
and identity. Artix performs no validation on content codings. It is the
user�s responsibility to ensure that a specified content coding is
supported at application level.

If this is set, it is sent as a transport attribute in the header of a request
message from the client to the server.

ContentType This is relevant if the client request specifies the POST method, to send
data to the server for processing. This specifies the media type of the
data being sent in the body of the client request.

For web services, this should be set to text/xml. If the client is sending
HTML form data to a CGI script, this should be set to
application/x-www-form-urlencoded. If the HTTP POST request is
bound to a fixed payload format (as opposed to SOAP), the content type
is typically set to application/octet-stream.

If this is set, it is sent as a transport attribute in the header of a request
message from the client to the server.

Host This specifies the internet host (and port number) of the resource on
which the client request is being invoked. This is sent by default based
upon the URL specified in the URL attribute. It indicates what host the
client prefers for clusters (that is, for virtual servers mapping to the same
internet protocol (IP) address).

Note: Certain DNS scenarios or application designs might request you
to set this, but it is not typically required.

If this is set, it is sent as a transport attribute in the header of a request
message from the client to the server.

Table 16: HTTP Client Configuration Attributes

Configuration Attribute Explanation
 256

HTTP WSDL Extensions
Connection This specifies whether a particular connection is to be kept open or
closed after each request/response dialog.

Valid values are close and Keep-Alive. The default is close, to close
the connection to the server after each request/response dialog.

If Keep-Alive is specified, and the server honors it, the connection is
reused for subsequent request/response dialogs.

Note: The server can choose to not honor a request to keep the
connection open, and many servers and proxies (caches) do not honor
such requests.

If this is set, it is sent as a transport attribute in the header of a request
message from the client to the server.

Table 16: HTTP Client Configuration Attributes

Configuration Attribute Explanation
257

CHAPTER 11 | Using the HTTP Plug-in
CacheControl This specifies directives about the behavior that must be adhered to by
caches involved in the chain comprising a request from a client to a
server.

Valid values are:

� no-cache�This prevents a cache from using a particular response
to satisfy subsequent client requests without first revalidating that
response with the server. If specific response header fields are
specified with this value, the restriction applies only to those
header fields within the response. If no response header fields are
specified, the restriction applies to the entire response.

� no-store�This indicates that a cache must not store any part of a
response or any part of the request that evoked it.

� max-age�This indicates that the client can accept a response
whose age is no greater than the specified time in seconds.

� max-stale�This indicates that the client can accept a response
that has exceeded its expiration time. If a value is assigned to
max-stale, it represents the number of seconds beyond the
expiration time of a response up to which the client can still accept
that response. If no value is assigned, it means the client can
accept a stale response of any age.

� min-fresh�This indicates that the client wants a response that
will be still be fresh for at least the specified number of seconds
indicated by the value set for min-fresh.

� no-transform�This indicates that a cache must not modify media
type or location of the content in a response between a server and a
client.

� only-if-cached�This indicates that a cache should return only
responses that are currently stored in the cache, and not responses
that need to be reloaded or revalidated.

Table 16: HTTP Client Configuration Attributes

Configuration Attribute Explanation
 258

HTTP WSDL Extensions
� cache-extension�This indicates additional extensions to the other
cache directives. Extensions might be informational (that is, do not
require a change in cache behavior) or behavioral (that is, act as
modifiers to the existing base of cache directives). An extended
directive is specified in the context of a standard directive, so that
applications not understanding the extended directive can at least
adhere to the behavior mandated by the standard directive.

If this is set, it is sent as a transport attribute in the header of a request
message from the client to the server.

Cookie This specifies the cookie to be sent to the server. Some session designs
that maintain state use cookies to identify sessions.

Note: If the cookie is static, you can supply it here. However, if the
cookie is dynamic, it must be set by the server when the server is first
accessed, and is then handled automatically by the application runtime.

If this is set, it is sent as a transport attribute in the header of a request
message from the client to the server.

BrowserType This specifies information about the browser from which the client
request originates. In the standard HTTP specification from the World
Wide Web consortium (W3C) this is also known as the user-agent.
Some servers optimize based upon the client that is sending the request.

Specifying the browser type is usually only necessary if sites have HTML
customized for use with Netscape as opposed to Internet Explorer, and
so on. However, you can also specify the browser type to facilitate
optimizing for different SOAP stacks.

If this is set, it is sent as a transport attribute in the header of a request
message from the client to the server.

Table 16: HTTP Client Configuration Attributes

Configuration Attribute Explanation
259

CHAPTER 11 | Using the HTTP Plug-in
Referer If a client request is as a result of the browser user clicking on a
hyperlink rather than typing a URL, this specifies the URL of the
resource that provided the hyperlink.

This is sent automatically if AutoRedirect is set to true. This can allow
the server to optimize processing based upon previous task flow, and to
generate lists of back-links to resources for the purposes of logging,
optimized caching, tracing of obsolete or mistyped links, and so on.
However, it is typically not used in web services applications.

If this is set, it is sent as a transport attribute in the header of a request
message from the client to the server.

ProxyServer This specifies the URL of the proxy server, if one exists along the
message path. A proxy can receive client requests, possibly modify the
request in some way, and then forward the request along the chain
possibly to the target server. A proxy can act as a special kind of security
firewall.

Note: Artix does not support the existence of more than one proxy
server along the message path.

ProxyUserName This is only relevant if a proxy server exists along the message path.

Some proxy servers require that client users can be authenticated
regardless of whether those users have already been authenticated by
any downstream login. In the case of basic authentication, the proxy
server requires the client user to supply a username and password. This
specifies the user name that is to be used for authentication.

Note: Artix does not perform any validation on user names specified. It
is the user�s responsibility to ensure that user names are correct in terms
of spelling and case (if case-sensitivity applies at application level).

Table 16: HTTP Client Configuration Attributes

Configuration Attribute Explanation
 260

HTTP WSDL Extensions
ProxyPassword This is only relevant if a proxy server exists along the message path.

Some proxy servers require that client users can be authenticated
regardless of whether those users have already been authenticated by
any downstream login. In the case of basic authentication, the proxy
server requires the client user to supply a username and password. This
specifies the password that is to be used for authentication.

Note: Artix does not perform any validation on passwords specified. It
is the user�s responsibility to ensure that passwords are correct in terms
of spelling and case (if case-sensitivity applies at application level).

ProxyAuthorizationType This is only relevant if a proxy server exists along the message path.

Some proxy servers require that client users can be authenticated
regardless of whether those users have already been authenticated by
any downstream login. If basic username and password-based
authentication is not in use by the proxy server, this specifies the type of
authentication that is in use.

This specifies the name of the authorization scheme in use. This name is
specified and handled at application level. Artix does not perform any
validation on this value. It is the user�s responsibility to ensure that the
correct scheme name is specified, as appropriate.

Note: If basic username and password-based authentication is being
used by the proxy server, this does not need to be set.

ProxyAuthorization This is only relevant if proxy servers are in use along the
request-response chain.

Some proxy servers require that client users can be authenticated
regardless of whether those users have already been authenticated by
any downstream login. If basic username and password-based
authentication is not in used by the proxy server, this specifies the actual
data that the proxy server should use to authenticate the client.

This specifies the authorization credentials used to perform the
authorization. These are encoded and handled at application-level. Artix
does not perform any validation on the specified value. It is the user�s
responsibility to ensure that the correct authorization credentials are
specified, as appropriate.

Note: If basic username and password-based authentication is being
used by the proxy server, this does not need to be set.

Table 16: HTTP Client Configuration Attributes

Configuration Attribute Explanation
261

CHAPTER 11 | Using the HTTP Plug-in
UseSecureSockets This indicates whether the client wants to open a secure connection
(that is, HTTP running over SSL or TLS). A secure HTTP connection is
commonly referred to as HTTPS.

Valid values are true and false. The default is false, to indicate that
the client does not want to open a secure connection.

Note: If the http-conf:client URL attribute has a value with a prefix of
https://, a secure HTTP connection is automatically enabled, even if
UseSecureSockets is not set to true.

ClientCertificate This is only relevant if the HTTP connection is to run securely over SSL
or TLS (that is, if UseSecureSockets is set to true).

This specifies the full path to the PEM-encoded X509 certificate issued
by the certificate authority for the client. For example:

c:\aspen\x509\certs\key.cert.pem

Some servers might require the client to present a certificate, so that the
server can authenticate the client.

ClientCertificateChain This is only relevant if the HTTP connection is to run securely over SSL
or TLS (that is, if UseSecureSockets is set to true).

PEM-encoded X509 certificates can be issued by intermediate certificate
authorities that are not trusted by the server, but which have had their
certificates issued in turn by a trusted certificate authority. If this is the
case, you can use ClientCertificateChain to allow the certificate chain
of PEM-encoded X509 certificates to be presented to the server for
verification.

This specifies the full path to the file that contains all the certificates in
the chain. For example:

c:\aspen\x509\certs\key.cert.pem

ClientPrivateKey This is only relevant if the HTTP connection is to run securely over SSL
or TLS (that is, if UseSecureSockets is set to true).

This is used in conjuction with ClientCertificate. It specifies the full
path to the PEM-encoded private key that corresponds to the X509
certificate specified by ClientCertificate. For example:

c:\aspen\x509\certs\privkey.pem

This is required if, and only if, ClientCertificate has been specified.

Table 16: HTTP Client Configuration Attributes

Configuration Attribute Explanation
 262

HTTP WSDL Extensions
ClientPrivateKeyPassword This is only relevant if the HTTP connection is to run securely over SSL
or TLS (that is, if UseSecureSockets is set to true).

This specifies a password that is used to decrypt the PEM-encoded
private key, if it has been encrypted with a password.

The certificate authority typically encrypts these keys when sending
them over a public network, and the password is delivered by a secure
means.

Note: Artix does not perform any validation on passwords specified. It
is the user�s responsibility to ensure that passwords are correct in terms
of spelling and case (if case-sensitivity applies at application level).

TrustedRootCertificate This is only relevant if the HTTP connection is to run securely over SSL
or TLS (that is, if UseSecureSockets is set to true).

This specifies the full path to the PEM-encoded X509 certificate for the
certificate authority. For example:

c:\aspen\x509\ca\cacert.pem

This is used to validate the certificate presented by the server.

Table 16: HTTP Client Configuration Attributes

Configuration Attribute Explanation
263

CHAPTER 11 | Using the HTTP Plug-in
HTTP Transport Attributes

Overview One of the basic properties of HTTP is that client or server information, and
information about the possible content of a message, is made available
through a series of header fields on an HTTP message. This section outlines
both the client transport attributes and server transport attributes that can
be sent, using Artix, in an HTTP request or response message.

In this section This section discusses the following topics:

Transport Attributes Overview page 265

Server Transport Attributes page 266

Client Transport Attributes page 268
 264

HTTP Transport Attributes
Transport Attributes Overview

Overview This subsection outlines the background to the HTTP transport attributes
that can be used with Artix.

What are transport attributes? A number of the configuration attributes described in �HTTP WSDL
Extensions� on page 243 can be subsequently transmitted, for information
purposes, as transport attributes in the header of HTTP request and
response messages. Client configuration attributes can be sent by the client
as server transport attributes in the header of a request message. Similarly,
server configuration attributes can be sent by the server as client transport
attributes in the header of a response message.

Programmatic use of transport
attributes

The application runtime can read transport attributes to facilitate it in the
processing of client requests and server responses. See the C++ Artix
Programmer�s Guide for more details of how applications can handle
transport attributes.

Note: Transport attributes can only be sent if they have been configured
as extensions to a WSDL contract, as described in �HTTP WSDL
Extensions� on page 243.
265

CHAPTER 11 | Using the HTTP Plug-in
Server Transport Attributes

Overview This subsection outlines the attributes that can be sent to a server for
information purposes in the header of a request message.

Details Table 17 describes the transport attributes that can be sent from a client to
a server in the header of a request message.

Table 17: HTTP Server Transport Attributes (Sheet 1 of 2)

Configuration Attribute Explanation

UserName This lets the server know the user name of the browser user for the
purposes of basic HTTP authentication by the server.

Password This lets the server know the password of the browser user for the
purposes of basic HTTP authentication by the server.

AuthorizationType This lets the server know what type of authentication the client expects
the server to use, if username and password-based basic authentication
is not being used.

Authorization This lets the server know the actual authentication data (authorization
token) being sent by the client, if username and password-based basic
authentication is not being used.

Accept This lets the server know what multimedia (MIME) types (for example,
text/html, image/gif, image/jpeg, and so on) the client can accept.

AcceptLanguage This lets the server know what language(s) (for example, English,
French, German, and so on) the client prefers for the purposes of
receiving a request.

AcceptEncoding This lets the server know what content codings (for example, gzip) the
client can accept.

ContentType If a client request is using the POST method, to send data to the server for
processing, this lets the server know the MIME type of the data being
sent.

Note: This should be text/xml for web services. If the client is sending
form data, this can be set to application/x-www-form-urlencoded.
 266

HTTP Transport Attributes
Host This lets the server know what host the client prefers for clusters (that is,
for virtual servers mapping to the same IP).

Connection This lets the server know whether the client wants a particular
connection to be kept open or not after each request/response dialog.

Note: The server can choose to not honor a request to keep the
connection open, and many servers and proxies (caches) do not honor
such requests.

CacheControl This lets the server know what behavior the client expects caches
involved in the request chain to adhere to. See �CacheControl� on
page 258 for more details of possible settings for this field.

Cookie This lets the server know what cookie is being sent to the server.

Note: This relates to static cookies. Dynamic cookies are set by the
server when the server is first accessed, and are then handled
automatically by the application runtime.

BrowserType This lets the server know details about the browser from which the client
request originates.

Referer If the client request has resulted from the browser user clicking on a
hyperlink rather than entering a URL from the keyboard, this lets the
server know the URL that contains the hyperlink. This in turn lets the
server generate lists of back-links to resources for the purposes of
logging, optimized caching, tracing of obsolete or mistyped links, and so
on.

Note: This is sent automatically if the client request is configured (via
the AutoRedirect attribute) to be automatically redirected when the
server issues a redirection reply via the RedirectURL server-side
attribute. This can allow the server to optimize processing based upon
previous task flow. However, it is typically not used in web services
applications.

ClientCertificate If the HTTP connection is running securely over SSL or TLS, this lets the
server know the PEM-encoded X509 certificate issued by the certificate
authority for the client. Some servers can require the client to present a
certificate, so that the server can authenticate the client.

Table 17: HTTP Server Transport Attributes (Sheet 2 of 2)

Configuration Attribute Explanation
267

CHAPTER 11 | Using the HTTP Plug-in
Client Transport Attributes

Overview This subsection outlines the attributes that can be sent to a client for
information purposes in the header of a response message.

Details Table 17 describes the transport attributes that can be sent from a server to
a client in the header of a response message.

Table 18: HTTP Client Transport Attributes

Configuration Attribute Explanation

RedirectURL This lets the client know the URL to which the client request was
redirected if the URL specified in the client request was no longer
appropriate for the requested resource.

In this case, if a status code is not automatically set in the first line of the
server response, the status code in the first line of the response is set to
302 and the status description is set to Object Moved.

CacheControl This lets the client know what behavior the server expects caches
involved in the response chain to adhere to. See �CacheControl� on
page 248 for more details of possible settings for this field.

ContentLocation This lets the client know the URL from which the requested resource is
coming.

ContentType This lets the client know the MIME type (that is, text/html, image/gif,
image/jpeg, and so on) of the information that is being sent by the
server.

ContentEncoding This lets the client know how the information being sent by the server is
encoded. This in turn lets the client know what decoding mechanisms it
needs to retrieve the information.

ServerType This lets the client know what type of server is sending the information.
 268

CHAPTER 12

Using the
WebSphere MQ
Plug-in
The Artix WebSphere MQ plug-in and the associated WSDL
binding extensions provides the ability to integrate with
WebSphere MQ applications or provide WebSphere MQ
qualities of service to non-WebSphere MQ applications.

In this chapter This chapter discusses the following topics:

Introduction page 270

Describing an Artix WebSphere MQ Port page 271
269

CHAPTER 12 | Using the WebSphere MQ Plug-in
Introduction

Overview Artix provides connectivity to IBM�s WebSphere MQ messaging system. This
connectivity opens several opportunities for using Artix. The most obvious
use is to integrate non-WebSphere MQ applications with WebSphere MQ
applications. Another powerful use of Artix�s WebSphere MQ connectivity is
writing Artix code that leverages WebSphere MQ qualities of service to
provide enterprise class solutions.

Integration with synchronous
messaging models

Because Artix abstracts the details of the messaging infrastructure from the
application level code, Artix allows for a seamless integration between
WebSphere MQ, which uses an asynchronous messaging model, and
applications that use a synchronous messaging model. Asynchronous
WebSphere MQ applications will still send messages without blocking and
poll the reply queue for a response if one is expected. Synchronous
applications, such as CORBA applications, will continue to block between
making a request and receiving a response. Neither end needs to be aware
of how the other end handles messages.

Supported Features Table 19 shows the matrix of WebSphere MQ features Artix supports.

Table 19: Supported WebSphere MQ Features

Feature Supported Not
Supported

Dynamic Queue Creation x

SSL x

Queue Manager Clustering x

LDAP x

Channel Process Pooling x

Wildcards for Security Settings x
 270

Describing an Artix WebSphere MQ Port
Describing an Artix WebSphere MQ Port

Overview To enable Artix to interoperate with WebSphere MQ, you must describe the
WebSphere MQ port in the Artix contract defining the behavior of your Artix
instance. Artix uses a number of proprietary WSDL extensions to specify all
of the attributes that can be set on an WebSphere MQ port. The
XMLSchema describing the extensions used for the WebSphere MQ port
definition is included in the Artix installation under the schemas directory.

The Artix Designer walks you through adding an WebSphere MQ port to an
Artix contract and ensures that you include all of the required information. If
you are comfortable editing Artix contracts, you can also describe the port
manually using any standard text editor.

WebSphere MQ port elements When describing an WebSphere MQ port in your Artix contract you use two
child elements to the port:

<mq:client> describes the port Artix client applications use to connect to a
WebSphere MQ server application.

<mq:server> describes the port WebSphere MQ client applications use to
connect to Artix.

You must use at least one of these elements in your Artix WebSphere MQ
port description.

In this section This section discusses the following topics:

Configuring an Artix WebSphere MQ Port page 272

Adding an WebSphere MQ Port to an Artix Contract page 281
271

CHAPTER 12 | Using the WebSphere MQ Plug-in
Configuring an Artix WebSphere MQ Port

Overview The Artix WebSphere MQ port description is specified by the namespace
http:\\schemas.iona.com\transports\mq. It defines a number of attributes
to configure an WebSphere MQ port. Table 20 lists the defined attributes.
They are described in detail following the table.

Table 20: WebSphere MQ Port Attributes

Attributes Description

QueueManagerName Specifies the name of the queue manager.

QueueName Specifies the name of the message queue.

ReplyQueueName Specifies the name of the queue where response messages are received.

ReplyQueueManager Specifies the name of the reply queue manager.

ModelQueueName Specifies the name of the queue to be used as a model for creating dynamic
queues.

ConnectionName Specifies the name of the connection by which the adapter connects to the
queue.

ConnectionReusable Specifies if the connection can be used by more than one application.

ConnectionFastPath Specifies if the queue manager will be loaded in process.

UsageStyle Specifies if messages can be queued without expecting a response.

CorrelationStyle Specifies the type of identifier to be used to correlate request and response
messages with each other.

AccessMode Specifies the level of access applications have to the queue.

Timeout Specifies the amount of time within which the send and receive processing
must begin before an error is generated.

MessageExpiry Specifies how long messages are retained in the queue.

MessagePriority Specifies the priority with which messages will be processed.

DeliveryMode Specifies the delivery mode of the messages sent to the queue.
 272

Describing an Artix WebSphere MQ Port
QueueManagerName QueueManagerName specifies the name of the WebSphere MQ queue
manager that controls the message queue the port uses. Defaults to the
local queue manager name.

QueueName QueueName is a required attribute for an WebSphere MQ port. It specifies the
message queue the port uses.

ReplyQueueName ReplyQueueName specifies the name of the reply message queue used by the
port.

ReplyQueueManager ReplyQueueManager specifies the name of the WebSphere MQ queue
manager that controls the reply message queue. Defaults to the local queue
manager name.

ModelQueueName ModelQueueName is only needed if you are using dynamically created queues.
It specifies the name of the queue from which the dynamically created
queues are created.

Transactional Specifies if transaction operations must be performed on the messages sent
to the queue.

ReportOption Specifies how the queue reports message activity.

FormatType Specifies what type of data is contained in the message body.

MessageId Specifies a unique ID to assist in correlating messages with their responses.

CorrelationId Specifies a unique ID to assist in correlating messages with their responses.

ApplicationData Specifies optional information to be associated with the message.

AccountingToken Specifies user-supplied information for accounting purposes.

Convert Specifies in the messages in the queue need to be converted to the system�s
native encoding.

Table 20: WebSphere MQ Port Attributes

Attributes Description
273

CHAPTER 12 | Using the WebSphere MQ Plug-in
ConnectionName ConnectionName is a required attribute for an Artix WebSphere MQ port. It
specifies the name of the connection Artix uses to connect to its queue.

ConnectionReusable ConnectionReusable specifies if the connection named in the
ConnectionName field can be used by more than one application. Valid
entries are yes and no. Defaults to no.

ConnectionFastPath ConnectionFastPath specifies if you want to load the queue manager in
process. Valid entries are yes and no. Defaults to no.

UsageStyle UsageStyle specifies if a message can be queued without expecting a
response. Valid entries are peer, requester, and responder as described in
Table 21.

CorrelationStyle CorrelationStyle determines how WebSphere MQ matches both the
message identifier and the correlation identifier to select a particular
message to be retrieved from the queue (this is accomplished by setting the
corresponding MQMO_MATCH_MSG_ID and MQMO_MATCH_CORREL_ID in the
MatchOptions field in MQGMO to indicate that those fields should be used as
selection criteria).

The valid correlation styles for an Artix WebSphere MQ port are messageId,
correlationId, and messageId copy.

Table 21: UsageStyle Settings

Attribute Setting Description

peer Specifies that messages can be queued without
expecting any response.

requester Specifies that the message sender expects a
response message.

responder Specifies that the response message must contain
enough information to facilitate correlation of the
response with the original message.
 274

Describing an Artix WebSphere MQ Port
Table 22 shows the actions of MQGET and MQPUT when receiving a message
using specified message ID and correlation ID.

AccessMode AccessMode is a required attribute for an Artix WebSphere MQ port. It
controls the action of MQOPEN in the Artix WebSphere MQ transport. Its
values can be peek, send, recive, receive exclusive, and receive
shared, as explained in Table 23.

Table 22: MQGET and MQPUT Actions

Artix Port Setting Action for MQGET Action for MQPUT

messageId Set correlation ID on message descriptor
to message ID

Copy message ID onto message
descriptor�s Correlation_ID

correlationId Set correlation ID on message descriptor
to CorrelationID

Copy CorrelationID onto message
descriptor�s CorrelationID

messageId copy Set message ID on message descriptor to
messageID

Copy MessageID onto message
descriptor�s MessageID

Table 23: Artix WebSphere MQ Access Modes

Attribute Setting Description

peek Equivalent to MQOO_BROWSE. peek opens a queue
to browse messages. This setting is not valid for
remote queues.

send Equivalent to MQOO_OUTPUT. send opens a queue
so that it is open to receive messages.

receive Equivalent to MQOO_INPUT_AS_Q_DEF. receive
opens a queue to get messages using a
queue-defined default. The default value depends
on the DefInputOpenOption queue attribute
(MQOO_INPUT_EXCLUSIVE or MQOO_INPUT_SHARED).
275

CHAPTER 12 | Using the WebSphere MQ Plug-in
Timeout Timeout specifies the amount of time, in milliseconds, that a message can
sit on the queue before an error message is generated. If the reply to a
particular request has not arrived after the specified period, it is treated as
an error.

MessageExpiry MessageExpiry specifies message lifetime, expressed in tenths of a second.
It is set by the Artix endpoint that puts the message onto the queue. The
message becomes eligible to be discarded if it has not been removed from
the destination queue before this period of time elapses.

The value is decremented to reflect the time the message spends on the
destination queue, and also on any intermediate transmission queues if the
put is to a remote queue. It may also be decremented by message channel
agents to reflect transmission times, if these are significant.

MessageExpiry can also be set to INFINITE which indicates that the
messages have unlimited lifetime and will never be eligible for deletion. If
MessageExpiry is not specified, it defaults to INFINITE lifetime.

recieve exclusive Equivalent to MQOO_INPUT_EXCLUSIVE. receive
exclusive opens a queue to get messages with
exclusive access. The queue is opened for use
with subsequent MQGET calls. The call fails with
reason code MQRC_OBJECT_IN_USE if the queue is
currently open (by this or another application) for
input of any type.

receive shared Equivalent to MQOO_INPUT_SHARED. receive
shared opens queue to get messages with shared
access. The queue is opened for use with
subsequent MQGET calls. The call can succeed if
the queue is currently open by this or another
application with MQOO_INPUT_SHARED.

Table 23: Artix WebSphere MQ Access Modes

Attribute Setting Description
 276

Describing an Artix WebSphere MQ Port
MessagePriority MessagePriority defines the message priority. Its value must be greater
than or equal to zero; zero is the lowest priority. If not specified, this field
defaults to priority normal, which is 5. The special values for
MessagePriority include highest (9), high (7), medium (5), low (3) and
lowest (0).

DeliveryMode DeliveryMode can be persistent or not persistent. persistent means
that the message survives both system failures and restarts of the queue
manager. Internally, this sets MQMD Persistence of the Artix WebSphere MQ
port to MQPER_PERSISTENT or MQPER_NOT_PERSISTENT. To support
transactional messaging, you must make the messages persistent.

Transactional Transactional controls the ability for a message to participate in a
transaction. Valid values are yes and no. For a yes value, messages operate
within the normal unit-of-work protocols; a message is not visible outside
the unit of work until the unit of work is committed. If the unit of work is
rolled back, the message is deleted from the queue. For a no value,
messages operate outside the normal unit-of-work protocols; a message is
available immediately and it cannot be deleted by rolling back a unit of
work.

The default value is no.

ReportOption ReportOption enables the application sending the original message to
specify which report messages are required, whether the application
message data is to be included in them, and how the message and
correlation identifiers in the report or reply message are to be set. The values
of this attribute are explained in Table 21.

Table 24: ReportOption Attribute Settings

Attribute Setting Description

none (Default) Corresponds to MQRO_NONE. none specifies that no
reports are required. This value can be used to
indicate that no other options have been specified.
277

CHAPTER 12 | Using the WebSphere MQ Plug-in
FormatType FormatType specifies an optional format name to indicate to the receiver the
nature of the data in the message. The name may contain any character in
the queue manager's character set, but it is recommended that the name be
restricted to the following:

coa Corresponds to MQRO_COA. coa specifies that
confirm-on-arrival reports are required. This type of
report is generated by the queue manager that owns
the destination queue, when the message is placed
on the destination queue.

cod Corresponds to MQRO_COD. cod specifies that
confirm-on-delivery reports are required. This type
of report is generated by the queue manager when
an application retrieves the message from the
destination queue in a way that causes the message
to be deleted from the queue.

exception Corresponds to MQRO_EXCEPTION. exception
specifies that exception reports are required. This
type of report can be generated by a message
channel agent when a message is sent to another
queue manager and the message cannot be
delivered to the specified destination queue. For
example, the destination queue or an intermediate
transmission queue might be full, or the message
might be too big for the queue.

expiration Corresponds to MQRO_EXPIRATION. expiration
specifies that expiration reports are required. This
type of report is generated by the queue manager if
the message is discarded prior to delivery to an
application because its expiration time has passed.

discard Corresponds to MQRO_DISCARD_MSG. discard
indicates that the message should be discarded if it
cannot be delivered to the destination queue. An
exception report message is generated if one was
requested by the sender

Table 24: ReportOption Attribute Settings

Attribute Setting Description
 278

Describing an Artix WebSphere MQ Port
� Uppercase A through Z

� Numeric digits 0 through 9

The special values for Format can be none, string, event, programmable
command, and unicode , as described in Table 25.

Table 25: FormatType Attribute Settings

Attribute Setting Description

none (Default) Corresponds to MQFMT_NONE. No format name
is specified.

string Corresponds to MQFMT_STRING. string
specifies that the message consists entirely of
character data. The message data may be
either single-byte characters or double-byte
characters.

unicode Corresponds to MQFMT_STRING. unicode
specifies that the message consists entirely of
Unicode characters. (Unicode is not
supported in Artix at this time.)

event Corresponds to MQFMT_EVENT. event specifies
that the message reports the occurrence of an
WebSphere MQ event. Event messages have
the same structure as programmable
commands.

programmable command Corresponds to MQFMT_PCF. programmable
command specifies that the messages are
user-defined messages that conform to the
structure of a programmable command format
(PCF) message.

For more information, consult the IBM
Programmable Command Formats and
Administration Interfaces documentation at
http://publibfp.boulder.ibm.com/epubs/html/c
sqzac03/csqzac030d.htm#Header_12.
279

http://publibfp.boulder.ibm.com/epubs/html/csqzac03/csqzac030d.htm#Header_12
http://publibfp.boulder.ibm.com/epubs/html/csqzac03/csqzac030d.htm#Header_12

CHAPTER 12 | Using the WebSphere MQ Plug-in
MessageId MessageId is an alphanumeric string of up to 20 bytes in length. This string
will be used to correlate request and response messages with each other. A
value must be specified in this attribute if CorrelationStyle is set to none.

CorrelationId CorrelationId is an alphanumeric string of up to 20 bytes in length. This
string will be used to correlate request and response messages with each
other. A value must be specified in this attribute if CorrelationStyle is set
to none.

ApplicationData ApplicationData specifies any application specific information that needs
to be set in the message header.

AccountingToken AccountingToken specifies application specific information used for
accounting purposes.

Convert Convert specifies if messages are to be converted to the receiving systems
native data format. Valid values are yes and no. Default is no.
 280

Describing an Artix WebSphere MQ Port
Adding an WebSphere MQ Port to an Artix Contract

Overview The description for an Artix WebSphere MQ port is entered in a <port>
element of the Artix contract containing the interface to be exposed over
WebSphere MQ. Artix defines two elements to describe WebSphere MQ
ports and their attributes:

<mq:client> describes the port Artix client applications use to connect to
an WebSphere MQ server application.

<mq:server> describes the port WebSphere MQ client applications use to
connect to Artix.

You can use one or both of the WebSphere MQ elements to describe the
Artix WebSphere MQ port. Each can have different configurations depending
on the attributes you choose to set.

Artix Designer walks you through the process of adding an WebSphere MQ
port to an Artix contract.

Procedure To add an WebSphere MQ port to an Artix contract complete the following
steps:

1. Select the node for the service to which you want to add the
WebSphere MQ port from the project tree.

2. Select Contracts|New|Service from the Designer menu.
281

CHAPTER 12 | Using the WebSphere MQ Plug-in
3. You will see a screen like Figure 23.

4. Select where to create the WSDL entry for the new service.

♦ Add to existing WSDL adds the routing information to the bottom
of the existing contract and does not make a back-up of the
non-routed WSDL file.

♦ Add to new WSDL creates a new WSDL document that contains
the routing information and imports the original WSDL document.

5. Click Next.

6. Enter the name for the new service.

Figure 23: Select WSDL location
 282

Describing an Artix WebSphere MQ Port
7. Click Next.

8. Enter a name for the new port.

9. Select the desired binding from the Available Bindings pull-down list.

10. Click Next.

11. Select mq from the Transport Type pull-down list.

12. You will see a screen like Figure 24.

13. Enter values for the desired attributes.

You must supply values for the QueueName and AccessMode of the port
at a minimum.

14. Ensure that the attributes you want set have a check mark in the
Specified column.

15. Click Next.

16. Click Finish.

Figure 24: WebSphere MQ Port Properties
283

CHAPTER 12 | Using the WebSphere MQ Plug-in
Example An Artix contract exposing an interface, monsterBash, bound to a SOAP
payload format, Raydon, on an WebSphere MQ queue, UltraMan would
contain a service element similar to Example 107.

Example 107:Sample WebSphere MQ Port

<service name="Mothra">
 <port name="X" binding="tns:Raydon">
 <mq:server QueueManager="UMA"
 QueueName="UltraMan"
 ReplyQueueManager="WINR"
 ReplyQueueName="Elek"
 AccessMode="receive"
 CorrelationStyle="messageId copy"/>
 </port>
</service>
 284

CHAPTER 13

Using the Tuxedo
Plug-in
Artix easily integrates BEA Tuxedo applications with CORBA
and Web service applications.

In this chapter This chapter discusses the following topics:

Introduction page 286

Using FML Buffers page 288

Using the Tuxedo Transport page 293

Embedding Artix in the Tuxedo Container page 297
285

CHAPTER 13 | Using the Tuxedo Plug-in
Introduction

Overview Artix provides integration with Tuxedo applications by supporting use of the
Tuxedo ATMI transport. Artix also supports Field Manipulation Language
(FML) buffers, in Tuxedo Version 7.1 or higher.

ATMI support Artix supports the following ATMI features:

FML support Artix supports the following FML features:

Table 26: Artix ATMI Feature Support

Feature Supported Not
Supported

Table 27: Artix FML Feature Support

Feature Supported Not
Supported

16-bit FML Buffers x

32-bit FML Buffers x

VIEWS x

Buffer Pointers x

Embedded 32-bit FML Buffers x

Embedded 32-bit Views x
 286

Introduction
Character Arrays x

Multi-Byte Character Arrays x

Packed Decimals x

Multiple Occurrence Fields x

Table 27: Artix FML Feature Support

Feature Supported Not
Supported
287

CHAPTER 13 | Using the Tuxedo Plug-in
Using FML Buffers

Overview Field Manipulation Language (FML) buffers allow Tuxedo applications to
manipulate data stored outside of their application space with ease. FML
buffers are described using field table files that may be compiled into C
header files.

Artix enables non-Tuxedo applications to interact with Tuxedo applications
that use FML buffers by translating the data stored in the buffers into data
that the non-Tuxedo application can understand. Artix allows the
non-Tuxedo application to manipulate the data in the buffer in the same
manner as a Tuxedo application.

In this section This section discusses the following topics:

Mapping FML Buffer Descriptions to Artix Contracts page 289
 288

Using FML Buffers
Mapping FML Buffer Descriptions to Artix Contracts

Overview FML buffers used by Tuxedo applications are described in one of two ways:

� A field table file that is loaded at run time.

� A C header file that is compiled into the application.

A field table file is a detailed and user readable text file describing the
contents of a buffer. It clearly describes each field�s name, id number, data
type, and a comment. Using the FML library calls, Tuxedo applications map
the field table description to usable fldids at run time.

The C header file description of an FML buffer simply maps field names to
their fldid. The fldid is an integer value that represents both the type of
data stored in a field and a unique identifying number for that field. To
create an FML header file from a field table file, you use the Tuxedo
mkfldhdr and mkfldhdr32 utility programs.

Mapping to logical type
descriptions

Because FML does not provide a means for determining if a field has
multiple entries without scanning the buffer, FML buffers must be described
as a sequence of sequences. Each field of a buffer is described as an
unbounded sequence of the type specified in the field description table. The
field elements are ordered in increasing order by their fldid.

For example, the personalInfo structure, defined in Example 2 on page 11,
could be described by the field table file shown in Example 108.

Example 108:personalInfo Field Table File

personalInfo Field Table
name number type flags comment
name 100 string - Person’s name
age 102 short - Person’s age
hairColor 103 string - Person’s hair color
289

CHAPTER 13 | Using the Tuxedo Plug-in
The C++ header file generated by the Tuxedo mkfldhdr tool to represent
the personlInfo FML buffer is shown in Example 109. Even if you are not
planning to access the FML buffer using the compile time method, you will
need to generate the header file when using Artix because this will give you
the fldid values for the fields in the buffer.

The order of the elements in the sequence used to logically describe the
FML buffer are ordered in increasing order by fldid value. For the
personalInfo FML buffer age must be listed first in the Artix contract
despite the fact that it is the second element listed in the field table. The
corresponding logical description of the FML buffer data in an Artix contract
is shown in Example 110.

Mapping to the physical FML
binding

Artix defines an FML namespace to describe the physical binding of a
message to an FML buffer. To include the FML namespace to your Artix
contract include the following in the <definition> element at the beginning
of the contract.

Example 109:personalInfo C++ header

/* fname fldid */
/* ----- ----- */
#define name ((FLDID)41060) /* number: 100 type: string */
#define age ((FLDID)102) /* number: 102 type: short */
#define hairColor ((FLDID)41063) /* number: 103 type: string */

Example 110:Logical description of personalInfo FML buffer

<types>
 <schema targetNamespace="http://soapinterop.org/xsd"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <complexType name="personalInfoFML16">
 <sequence>
 <element name="age" type="xsd:short" minOccurs="0" maxOccurs="unbounded"/>
 <element name="name" type="xsd:string" minOccurs="0" maxOccurs="unbounded"/>
 <element name="hairColor" type="xsd:string" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 </schema>
</types>

xmlns:fml="http://www.iona.com/bus/fml"
 290

Using FML Buffers
The FML namespace defines a number of elements to extend the Artix
contract�s <binding> element. These include:

<fml:binding>

The <fml:binding> element identifies that this binding definition is for an
FML buffer. It also specifies the encoding style and transport used with this
message.

The encoding style is specified using the mandatory style attribute. The
valid encoding styles are doc and rpc.

The transport is specified using the mandatory transport attribute. This
attribute can take the URI for any of the valid Artix transport definitions.

<fml:idNameMapping>

The <fml:idNameMapping> element contains the map describing how the
element names defined in the logical portion of the contract to the fldid
values for the corresponding fields in the FML buffer. This map consists of a
series of <fml:element> elements whose fieldName attribute is the name of
the logical type describing the element and whose fieldId attribute is the
fldid value for the field in the FML buffer. The field elements must be listed
in increasing order of their fldid values.

The <fml:idNameMapping> element also specifies if the application is to use
FML16 buffers or FML32 buffers. This is done using the mandatory type
attribute. type can be either fml16 for specifying FML16 buffers or fml32 for
specifying FML32 buffers.

<fml:operation>

The <fml:operation> element is a child of the standard <operation>
element. It informs Artix that the operation�s messages are to be packed into
an FML buffer. <fml:operation> takes a single attribute, name, whose value
must be identical to the name attribute of the <operation> element.

Example For example, the binding for the personalInfo FML buffer, defined in
Example 108 on page 289, will be similar to the binding shown in
Example 111.
291

CHAPTER 13 | Using the Tuxedo Plug-in
Example 111:personalInfo FML binding

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="personalInfoService" targetNamespace="http://info.org/"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://soapinterop.org/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://soapinterop.org/xsd"
 xmlns:fml="http://www.iona.com/bus/fml">
...
 <message name="requestInfo">
 <part name="request" type="xsd1:personalInfoFML16"/>
 </message>
 <message name="infoReply">
 <part name="reply" type="xsd1:personalInfoFML16"/>
 </message>

 <portType name="personalInfoPort">
 <operation name="infoRequest">
 <input message="tns:requestInfo" name="requestInfo" />
 <output message="tns:infoReply" name="infoReply" />
 </operation>
 </portType>

 <binding name="personalInfoBinding" type="tns:personalInfoPort">
 <fml:binding style="rpc" transport="http://schemas.iona.com/transports/tuxedo"/>
 <fml:idNameMapping type="fml16">
 <fml:element fieldName="age" fieldId="102" />
 <fml:element fieldName="name" fieldId="41060" />
 <fml:element fieldName="hairColor" fieldId="41063" />
 </fml:idNameMapping>

 <operation name="infoRequest">
 <fml:operation name="infoRequest"/>
 <input name="requestInfo" />
 <output name="infoReply" />
 </operation>
 </binding>
...
</definitions>
 292

Using the Tuxedo Transport
Using the Tuxedo Transport

Overview Artix allows services to connect using Tuxedo�s transport mechanism. This
provides them with all of the qualities of service associated with Tuxedo.

Describing a Tuxedo port To use the Tuxedo transport, you need to describe the port using Tuxedo in
the physical part of an Artix contract. The extensions used to describe a
Tuxedo port are defined in the namespace:

This namespace will need to be included in your Artix contract�s
<definition> element.

As with other transports, the Tuxedo transport description is contained
within a <port> element. Artix uses <tuxedo:server> to describe the
attributes of a Tuxedo port. <tuxedo:server> takes a single mandatory
attribute, serviceName, which specifies the bulletin board name of the
Tuxedo port being exposed.

Using Artix Designer to add a
Tuxedo port to an Artix contract

To add a Tuxedo port to an Artix contract using Artix Designer complete the
following steps:

1. Select the contract you to which you are going to add the Tuxedo port.

2. Select Services|New Service... from the Contract menu.

xmlns:tuxedo="http://schemas.iona.com/transports/tuxedo"

Note: The contract must have an existing SOAP binding before Artix
Designer will allow you to add a Tuxedo port to the contract.
293

CHAPTER 13 | Using the Tuxedo Plug-in
3. You will see a screen like Figure 25.

4. Select where to create the WSDL entry for the new service.

♦ Add to existing WSDL adds the routing information to the bottom
of the existing contract and does not make a back-up of the
non-routed WSDL file.

♦ Add to new WSDL creates a new WSDL document that contains
the routing information and imports the original WSDL document.

5. Click Next.

6. Enter a new for the new service and click Next.

Figure 25: Select WSDL Location
 294

Using the Tuxedo Transport
7. Enter a name for the Tuxedo port.

8. From the Binding drop-down list select the SOAP binding which this
port will expose to the network.

9. Click Next.

10. Select tuxedo from the Transport drop-down list.

11. The Attributes table will look similar to the one shown in Figure 26.

12. Enter a valid Tuxedo service name in the ServiceName Value field.

13. Click Next to review the settings for the new service and Tuxedo port.

14. Click Finish to create the new service and Tuxedo port.

Artix Designer will create a new contract containing the new service and
place it in the project tree.

Example An Artix contract exposing the personalInfoService, defined in
Example 111 on page 292, would contain a <service> element similar to
Example 112 on page 296.

Figure 26: Edit Tuxedo Port Properties
295

CHAPTER 13 | Using the Tuxedo Plug-in
Example 112:Tuxedo port description

<service name="personalInfoService">
 <port binding="tns:personalInfoBinding" name="tuxInfoPort">
 <tuxedo:server serviceName="personalInfoService" />
 </port>
</service>
 296

Embedding Artix in the Tuxedo Container
Embedding Artix in the Tuxedo Container

Overview In order to have Artix interact properly with native Tuxedo applications, you
need to embed Artix into the Tuxedo container. At a minimum this involves
adding information about Artix to your Tuxedo configuration file and
registering your Artix processes with the Tuxedo bulletin board. You can also
have Tuxedo bring up your Artix process as a Tuxedo server when running
tmboot.

Procedure To embed an Artix process into a Tuxedo container complete the following
steps:

1. Ensure that your environment is properly configured for Tuxedo.

2. Add the Tuxedo plug-in, tuxedo, to your Artix process�s orb_plugins
list. See �ORB Plug-ins List� on page 36.

3. Set plugins:tuxedo:server to true in your Artix configuration scope.

4. Ensure that the executable for your Artix process is placed into the
directory specified in the APPDIR entry of your Tuxedo configuration.

5. Edit your Tuxedo configuration�s SERVERS section to include an entry for
your Artix process.

For example, if the executable of your Artix process is boingo, you
make the following entry in the SERVERS section:

This associates boingo with the Tuxedo group called OINGO in your
configuration and assigns boingo a server ID of 1. You can modify the
server�s properties as needed.

6. Edit your Tuxedo configuration�s SERVICES section to include an entry
for your Artix process.

While standard Tuxedo servers only require a SERVICES entry if you are
setting optional runtime properties, Artix servers in the Tuxedo
container require an entry even if no optional runtime properties are

orb_plugins=["iiop_profile", "giop", "iiop", "tuxedo"];

boingo SVRGRP=OINGO SVRID=1
297

CHAPTER 13 | Using the Tuxedo Plug-in
being set. The name entered for the Artix process is the name specified
in the serviceName attribute of the Tuxedo port defined in the process�
Artix contract.

For example, given the port definition shown in Example 112 on
page 296, the SERVICES entry would be personalInfoService.

7. If you made the Tuxedo configuration changes in the ASCII version of
the configuration, UBBCONFIG, reload the TUXCONFIG with tmload.

Once you have properly configured Tuxedo, it will manage your Artix process
as if it were a regular Tuxedo server.
 298

CHAPTER 14

Using the TIBCO
Rendezvous
Plug-in
Artix supports the integration of applications using TIBCO
Rendezvous and TIBCO JMS messaging systems. Artix also
supports the use of the TibrvMsg payload format.

In this chapter This chapter discusses the following topics:

Introduction page 300

Using TibrvMsg page 301

Using the TIB/RV Transport page 305
299

CHAPTER 14 | Using the TIBCO Rendezvous Plug-in
Introduction

Overview The TIBCO Rendezvous plug-in lets you use Artix to integrate systems based
on TIBCO Rendezvous (TIB/RV) software. TIB/RV uses its own proprietary
message schema and transport protocol, and the plug-in bridges these to
and from Artix data types, based on a given WSDL contract and the
mapping rule. Artix also allows you to send raw XML and opaque data
across the TIB/RV messaging transport.

Requirements To use the plug-in, you need to have a TIBCO Rendezvous 7.1 installed on
your system. No special configuration is required for running the plug-in. At
this time, the plug-in is only supported on Solaris 8 and Windows 2000.

Supported Features Table 28 shows the matrix of TIBCO Rendezvous features Artix supports.

Table 28: Supported TIBCO Rendezvous Features

Feature Supported Not
Supported

Server Side Advisory Callbacks x

Certified Message Delivery x

Fault Tolerance (TibrvFtMember/Monitor) x

Virtual Connections (TibrvVcTransport) x

Secure Daemon (rvsd/TibrvSDContext) x

TIBRVMSG_IPADDR32 x

TIBRVMSG_IPPORT16 x
 300

Using TibrvMsg
Using TibrvMsg

Overview Artix supports the use of the TibrvMsg format when using the TIBCO
Rendezvous transport.

Binding tags To use this message format you need to define a binding between the
interface you are exposing and the TibrvMsg format. The binding description
is placed inside the standard <binding> tag and uses the tags listed in
Table 29.

Table 29: TibrvMsg Binding Attributes

Attribute Description

tibrv:binding Specifies that the interface is exposed using TibrvMsgs.

tibrv:operation Specifies that the operation is exposed using TibrvMsgs.

tibrv:input Specifies that the input message is mapped to a TibrvMsg.

tibrv:input@sortFields Specifies whether the server will sort the input message parts when
they are unmarshalled.

tibrv:input@messageNameFieldPath Specifies the field path that includes the input message name.

tibrv:input@messageNameFieldValue Specifies the field value that corresponds to the output message
name.

tibrv:output Specifies that the output message is mapped to a TibrvMsg.

tibrv:output@sortFields Specifies whether the client will sort the output message parts
when they are unmarshalled.

tibrv:output@messageNameFieldPath Specifies the field path that includes the output message name.

tibrv:output@messageNameFieldValue Specifies the field value that corresponds to the output message
name.
301

CHAPTER 14 | Using the TIBCO Rendezvous Plug-in
TIBRVMSG type mapping Table 30 shows how TibrvMsg data types are mapped to XSD types in Artix
contracts and C++ data types in Artix application code.

Table 30: TIBCO to XSD Type Mapping

TIBRVMSG XSD Artix C++

TIBRVMSG_STRING1 xsd:string IT_BUS::String

TIBRVMSG_BOOL xsd:boolean IT_BUS::Boolean

TIBRVMSG_I8 xsd:byte IT_BUS::Byte

TIBRVMSG_I16 xsd:short IT_BUS::Short

TIBRVMSG_I32 xsd:int IT_BUS::Int

TIBRVMSG_I64 xsd:long IT_BUS::Long

TIBRVMSG_U8 xsd:unsignedByte IT_BUS::UByte

TIBRVMSG_U16 xsd:unsignedShort IT_BUS::UShort

TIBRVMSG_U32 xsd:unsignedInt IT_BUS::UInt

TIBRVMSG_U64 xsd:unsignedLong IT_BUS::ULong

TIBRVMSG_F32 xsd:float IT_BUS::Float

TIBRVMSG_F64 xsd:double IT_BUS::Double

TIBRVMSG_STRING xsd:decimal IT_BUS::Decimal

TIBRVMSG_DATETIME2 xsd:dateTime IT_BUS::DateTime

TIBRVMSG_OPAQUE xsd:base64Binary IT_BUS::Base64Binary

TIBRVMSG_OPAQUE xsd:hexBinary IT_BUS::HexBinary

TIBRVMSG_MSG3 xsd:complexType/sequence IT_BUS::SequenceComplexType

TIBRVMSG_MSG4 xsd:complexType/all IT_BUS::AllComplexType

TIBRVMSG_MSG5 xsd:complexType/choice IT_BUS::ChoiceComplexType

TIBRVMSG_*ARRAY/MSG6 xsd:complexType/sequence
with element
MaxOccurs > 1

IT_BUS::Array
 302

Using TibrvMsg
1. TIB/RV does not provide any mechanism to indicate the encoding of
strings in a TibrvMsg. The TIBCO plug-in port definition includes a
property, stringEncoding, for specifying the string encoding. However,
neither TIB/RV nor Artix look at this attribute; they merely pass the
data along. It is up to the application developer to handle the encoding
details if desired.

2. TIBRVMSG_DATATIME has microsecond precision. However,
xsd:dateTime has only millisecond precision. Therefore, when using
Artix sub-millisecond percision will be lost.

3. Sequences are mapped to nested messages where each element is a
separate field. These fields are placed in the same order as they appear
in the original sequence with field IDs beginning at 1. The fields are
accessed by their field ID.

4. Alls are mapped to nested messages where each elements is mapped
to a separate field. The fields representing the elements of the all are
given the same field name as element name and field IDs beginning
from 1. They can be accessed by field name beginning from field ID 1.
That means that the order of fields can be changed.

5. Choices are mapped to nested messages where each elements is a
separate field. Each field is enclosed with the same field name/type as
element name/type of active member, and accessed by field name with
field ID 1.

6. Arrays having integer or float elements are mapped to appropriate
TIB/RV array types; otherwise they are mapped to nested messages.

7. SOAP RPC-encoded multi-dimensional arrays will be treated as
one-dimensional: e.g. a 3x5 array will be serialized as a
one-dimensional array having 15 elements. To keep dimensional
information, use nested sequences with maxOccurs > 1 instead.

TIBRVMSG_*ARRAY/MSG6 SOAP-ENC:Array7 IT_BUS::Array

TIBRVMSG_MSG3 SOAP-ENV:Fault8 IT_BUS::FaultException

Table 30: TIBCO to XSD Type Mapping

TIBRVMSG XSD Artix C++
303

CHAPTER 14 | Using the TIBCO Rendezvous Plug-in
8. When a server response message has a fault, it includes a field of type
TIBRVMSG_MSG with the field name fault and field ID 1. This
submessage has two fields of TIBRVMSG_STRING. One is named
faultcode and has field ID 1, and the other is named faultstring
and has field ID 2.

Example
 304

Using the TIB/RV Transport
Using the TIB/RV Transport

Overview Artix contract descriptions of TIB/RV ports use a number of Artix specific
WSDL extensions. These extensions allow you to specify a number of
TIB/RV properties for the port.

Port attributes Table 31 lists the Artix contract elements used to describe a TIB/RV port.

Table 31: TIB/RV Transport Properties

Attribute Explanation

tibrv:port Indicates that the port uses the TIB/RV transport.

tibrv:port@serverSubject A required element that specifies the subject to which
the server listens. This parameter must be the same
between client and server.

tibrv:port@clientSubject Specifies the subject that the client listens to. The
default is to use the transport inbox name. This
parameter only affects clients.

tibrv:port@bindingType Specifies the message binding type.

tibrv:port@callbackLevel Specifies the server-side callback level when TIB/RV
system advisory messages are received.

tibrv:port@responseDispatchTimeout Specifies the client-side response receive dispatch
timeout.

tibrv:port@stringEncoding Specifies the charset used to encode
TIBRVMSG_STRING data.

tibrv:port@transportService Specifies the UDP service name or port for
TibrvNetTransport.

tibrv:port@transportNetwork Specifies the binding network addresses for
TibrvNetTransport.

tibrv:port@transportDaemon Specifies the TCP daemon port for the
TibrvNetTransport.
305

CHAPTER 14 | Using the TIBCO Rendezvous Plug-in
tibrv:port@transportBatchMode Specifies if the TIB/RV transport uses batch mode to
send messages.

tibrv:port@cmSupport Specifies if Certified Message Delivery support is
enabled.

tibrv:port@cmTransportServerName Specifies the server�s TibrvCmTransport
correspondent name.

tibrv:port@cmTransportClientName Specifies the client TibrvCmTransport correspondent
name.

tibrv:port@cmTransportRequestOld Specifies if the endpoint can request old messages on
start-up.

tibrv:port@cmTransportLedgerName Specifies the TibrvCmTransport ledger file.

tibrv:port@cmTransportSyncLedger Specifies if the endpoint uses a synchronous ledger.

tibrv:port@cmTransportRelayAgent Specifies the endpoint�s TibrvCmTransport relay
agent.

tibrv:port@cmTransportDefaultTimeLimit Specifies the default time limit for a Certified
Message to be delivered.

tibrv:port@cmListenerCancelAgreements Specifies if Certified Message agreements are
canceled when the endpoint disconnects.

tibrv:port@cmQueueTransportServerName Specifies the server�s TibrvCmQueueTransport
correspondent name.

tibrv:port@cmQueueTransportClientName Specifies the client�s TibrvCmQueueTransport
correspondent name.

tibrv:port@cmQueueTransportWorkerWeight Specifies the endpoint�s TibrvCmQueueTransport
worker weight.

tibrv:port@cmQueueTransportWorkerTasks Specifies the endpoint�s TibrvCmQueueTransport
worker tasks parameter.

tibrv:port@cmQueueTransportSchedulerWeight Specifies the TibrvCmQueueTransport scheduler
weight parameter.

Table 31: TIB/RV Transport Properties

Attribute Explanation
 306

Using the TIB/RV Transport
tibrv:port@bindingType tibrv:port@bindingType specifies the message binding type. TIB/RV Artix
ports support three types of payload formats as described in Table 32.

tibrv:port@callbackLevel tibrv:port@callbackLevel specifies the server-side callback level when
TIB/RV system advisory messages are received. It has three settings:

� INFO

� WARN

� ERROR (default)

This parameter only affects servers.

tibrv:port@responseDispatchTim
eout

tibrv:port@responseDispatchTimeout specifies the client-side response
receive dispatch timeout. The default is TIBRV_WAIT_FOREVER. Note that if
only the TibrvNetTransport is used and there is no server return response for

tibrv:port@cmQueueTransportSchedulerHeartbeat Specifies the endpoint�s TibrvCmQueueTransport
scheduler heartbeat parameter.

tibrv:port@cmQueueTransportSchedulerActivation Specifies the TibrvCmQueueTransport scheduler
activation parameter.

tibrv:port@cmQueueTransportCompleteTime Specifies the TibrvCmQueueTransport complete time
parameter.

Table 31: TIB/RV Transport Properties

Attribute Explanation

Table 32: TIB/RV Supported Payload formats

Setting Payload Formats TIB/RV Message Implications

msg TibrvMsg The top-level messages will have a field of TIBRVMSG_STRING, a
null name, and an ID of 0. This field will contain the name of the
operation, from the Artix contract, that should be invoked.

xml SOAP, tagged data The message data is encapsulated in a field of TIBRVMSG_XML with
a null name and an ID of 0.

opaque fixed record length data,
variable record length data

The message data is encapsulated in a field of TIBRVMSG_OPAQUE
with a null name and an ID of 0.
307

CHAPTER 14 | Using the TIBCO Rendezvous Plug-in
a request, then not setting a timeout value causes the client to block forever.
This is because client has no way to know whether any server is processing
on the sending subject or not. In this case, we recommend that
responseDispatchTimeout is set.

tibrv:port@stringEncoding tibrv:port@stringEncoding specifies the charset used to encode
TIBRVMSG_STRING data. Use IANA preferred MIME charset names
(http://www.iana.org/assignments/character-sets). This parameter must be
the same for both client and server.

tibrv:port@transportService tibrv:port@transportService specifies the UDP service name or port for
TibrvNetTransport. If empty or omitted, the default is rendezvous. If no
corresponding entry exists in /etc/services, 7500 for the TRDP daemon, or
7550 for the PGM daemon will be used. This parameter must be the same for
both client and server.

tibrv:port@transportNetwork tibrv:port@transportNetwork specifies the binding network addresses for
TibrvNetTransport. The default is to use the interface IP address of the host
for the TRDP daemon, 224.0.1.78 for the PGM daemon. This parameter must
be interoperable between the client and the server.

tibrv:port@transportDaemon tibrv:port@transportDaemon specifies the TCP daemon port for
TibrvNetTransport. The default is to use 7500 for the TRDP daemon, or 7550
for the PGM daemon.

tibrv:port@transportBatchMode tibrv:port@transportBatchMode specifies if the TIB/RV transport uses
batch mode to send messages. The default is false which specifies that the
endpoint will send messages as soon as they are ready. When set to true,
the endpoint will send its messages in timed batches.

Note: The infrastructure will not perform any charset conversions, and
this is purely for the contract between client and server application
implementation.
 308

http://www.iana.org/assignments/character-sets

Using the TIB/RV Transport
tibrv:port@cmSupport tibrv:port@cmSupport specifies if Certified Message Delivery support is
enabled. The default is false which disables CM support. Set this
parameter to true to enable CM support.

tibrv:port@cmTransportServerNa
me

tibrv:port@cmTransportServerName specifies the server�s
TibrvCmTransport correspondent name. The default is to use a transient
correspondent name. This parameter must be the same for both client and
server if the client also uses Certified Message Delivery.

tibrv:port@cmTransportClientNa
me

tibrv:port@cmTransportClientName specifes the client�s
TibrvCMTransport correspondent name. The default is to use a transient
correspondent name.

tibrv:port@cmTransportRequest
Old

tibrv:port@cmTransportRequestOld specifies if the endpoint can request
old messages on start-up. requestOld parameter. The default is false which
disables the endpoint�s ability to request old messages when it starts up.
Setting this property to true enables the ability to request old messages.

tibrv:port@cmTransportLedgerN
ame

tibrv:port@cmTransportLedgerName specifes the file name of the
endpoint�s TibrvCMTrasnport ledger. The default is to use an in-process
ledger that is stored in memory.

tibrv:port@cmTransportSyncLed
ger

tibrv:port@cmTransportSyncLedger Specifies if the endpoint uses a
synchronous ledger. true specifies that the endpoint uses a synchronous
ledger. The default is false.

tibrv:port@cmTransportRelayAge
nt

tibrv:port@cmTransportRelayAgent Specifies the endpoint�s
TibrvCmTransport relay agent. If this property is not set, the endpoint does
not use a relay agent.

tibrv:port@cmTransportDefaultTi
meLimit

tibrv:port@cmTransportDefaultTimeLimit specifies TibrvCmTransport
message default time limit. The default is that no message time limit will be
set.

Note: When CM support is disabled all other CM properties are ignored.
309

CHAPTER 14 | Using the TIBCO Rendezvous Plug-in
tibrv:port@cmListenerCancelAgr
eements

tibrv:port@cmListenerCancelAgreements specifies if the TibrvCmListener
cancels Certified Message agreements when the endpoint disconnects.
parameter. If set to true, CM agreements are cancelled when the endpoint
disconnects. The default is false.

tibrv:port@cmQueueTransportSe
rverName

tibrv:port@cmQueueTransportServerName specifies the server�s
TibrvCmQueueTransport correspondent name. If this property is set, the
server listener joins to the distributed queue of the specified name. This
parameter must be the same among the server queue members.

tibrv:port@cmQueueTransportCli
entName

tibrv:port@cmQueueTransportClientName specifies the client�s
TibrvCmQueueTransport correspondent name. If this property is set, the
client listener joins to the distributed queue of the specifies name. This
parameter must be the same among all client queue members.

tibrv:port@cmQueueTransportW
orkerWeight

tibrv:port@cmQueueTransportWorkerWeight specifies the endpoint�s
TibrvCmQueueTransport worker weight. The default is
TIBRVCM_DEFAULT_WORKER_WEIGHT.

tibrv:port@cmQueueTransportW
orkerTasks

tibrv:port@cmQueueTransportWorkerTasks specifies the endpoint�s
TibrvCmQueueTransport worker tasks parameter. The default is
TIBRVCM_DEFAULT_WORKER_TASKS.

tibrv:port@cmQueueTransportSc
hedulerWeight

tibrv:port@cmQueueTransportSchedulerWeight specifies the
TibrvCmQueueTransport scheduler weight parameter. The default is
TIBRVCM_DEFAULT_SCHEDULER_WEIGHT.

tibrv:port@cmQueueTransportSc
hedulerHeartbeat

tibrv:port@cmQueueTransportSchedulerHeartbeat specifies the
TibrvCmQueueTransport scheduler heartbeat parameter. The default is
TIBRVCM_DEFAULT_SCHEDULER_HB.

Note: If distributed queue is enabled on the client side, the transport
does not handle any request-response semantics. This is for load-balanced
polling-type clients, e.g. one client in the distributed queue periodically
invokes an operation that only has outputs and no input, and one listener
in the group processes the response.
 310

Using the TIB/RV Transport
tibrv:port@cmQueueTransportSc
hedulerActivation

tibrv:port@cmQueueTransportSchedulerActivation Specifies the
TibrvCmQueueTransport scheduler activation parameter. The default is
TIBRVCM_DEFAULT_SCHEDULER_ACTIVE.

tibrv:port@cmQueueTransportCo
mpleteTime

tibrv:port@cmQueueTransportCompleteTime specifies the
TibrvCmQueueTransport complete time parameter. The default is 0.
311

CHAPTER 14 | Using the TIBCO Rendezvous Plug-in
 312

CHAPTER 15

Using the IIOP
Tunnel
The IIOP tunnel provides access to CORBA services while using
non-CORBA payload formats.

In this chapter This chapter discusses the following topics:

Introduction to IIOP Tunnels page 314

Modifying a Contract to Use the IIOP Tunnel page 315

Using the CORBA Naming Service page 321
313

CHAPTER 15 | Using the IIOP Tunnel
Introduction to IIOP Tunnels

Overview An IIOP tunnel provides a means for taking advantage of existing CORBA
services while transmitting messages using a payload format other than
CORBA. For example, you could use an IIOP tunnel to send fixed format
messages to an endpoint whose address is published in a CORBA naming
service.

Benefits Using IIOP tunnels provides the following benefits:

� Endpoints can publish their addresses in a CORBA naming service or a
CORBA trader service

� Active connection management

� Transport level security

� Codeset negotiation

� Persistence

Supported payload formats IIOP tunnels can transport messages using the following payload formats:

� SOAP

� Fixed format

� Fixed record length

� G2++

� Octet streams
 314

Modifying a Contract to Use the IIOP Tunnel
Modifying a Contract to Use the IIOP Tunnel

Overview Service Access Points (SAPs) that use the IIOP tunnel require that a special
port be added to the physical portion of the Artix contract.The port definition
specifies the IOR used to locate the CORBA object and any POA policies the
used in exposing the IIOP tunnel.

IIOP tunnel ports are described using the IONA-specific WSDL elements
<iiop:address> and <iiop:policy> within the WSDL <port> element, to
specify how the IIOP tunnel is configured.

Address specification The IOR, address, of the IIOP tunnel is specified using the <iiop:address>
element. You have four options for specifying IORs in Artix contracts:

� Specify the objects IOR directly, by entering the object�s IOR directly
into the contract using the stringified IOR format:

� Specify a file location for the IOR, using the following syntax:

� Specify that the IOR is published to a CORBA name service, by
entering the object�s name using the corbaname format:

For more information on using the name service with Artix see �Using
the CORBA Naming Service� on page 321.

� Specify the IOR using corbaloc, by specifying the port at which the
service exposes itself, using the corbaloc syntax.

When using corbaloc, you must be sure to configure your service to
start up on the specified host and port.

IOR:22342....

file://file_name

corbaname:rir:NameService#object_name

corbaloc:iiop:host:port/service_name
315

CHAPTER 15 | Using the IIOP Tunnel
Specifying type of payload
encoding

The IIOP tunnel can perform codeset negotiation on the encoded messages
passed through it if your CORBA system supports it. By default, this feature
is turned off so that the agents sending the message maintain complete
control over codeset conversion. If you wish to turn automatic codeset
negotiation on use the following:

Specifying POA policies Using the optional <iiop:policy> element, you can describe a number of
POA polices the Artix service will use when creating the IIOP tunnel. These
policies include:

� POA Name

� Persistence

� ID Assignment

Setting these policies lets you exploit some of the enterprise features of
IONA�s Application Server Platform 6.0, such as load balancing and fault
tolerance, when deploying an Artix integration project using the IIOP tunnel.
For information on using these advanced CORBA features, see the
Application Server Platform documentation.

POA Name

Artix POAs are created with the default name of WS_ORB. To specify the
name of the POA Artix creates for the IIOP tunnel, you use the following:

The POA name is used for setting certain policies, such as direct persistence
and well-known port numbers in the CORBA configuration.

Persistence

By default Artix POA�s have a persistence policy of false. To set the POA�s
persistence policy to true, use the following:

<iiop:payload type="string" />

<iiop:policy poaname="poa_name" />

<iiop:policy persistent="true" />
 316

Modifying a Contract to Use the IIOP Tunnel
ID Assignment

By default Artix POAs are created with a SYSTEM_ID policy, meaning that
their ID is assigned by Artix. To specify that the IIOP tunnel�s POA should
use a user-assigned ID, use the following:

This creates a POA with a USER_ID policy and an object id of POAid.

Procedure To add an IIOP tunnel port to your service contract using the GUI, complete
the following steps:

1. From the project tree, select the contract to which you want to add the
IIOP tunnel port.

2. Select Services|New Service from the Contract menu of the designer.

<corba:policy serviceid="POAid" />
317

CHAPTER 15 | Using the IIOP Tunnel
3. You will see a screen like Figure 27.

4. Select where to create the WSDL entry for the new service.

♦ Add to existing WSDL adds the routing information to the bottom
of the existing contract and does not make a back-up of the
non-routed WSDL file.

♦ Add to new WSDL creates a new WSDL document that contains
the routing information and imports the original WSDL document.

5. Click Next.

6. Enter a unique name for the new service.

Figure 27: Select WSDL Location
 318

Modifying a Contract to Use the IIOP Tunnel
7. Click Next.

8. Enter a name for the new IIOP tunnel port that is being created.

9. From the drop down list, select the binding that the port is going to
expose.

10. Click Next.

11. You will see a dialog similar to Figure 28.

12. From the drop down list in the Transport box, select tunnel.

13. In the Address table, enter the address in the line for Location.

14. If you want to set any of the supported POA policies, place a check in
the Specified box on the appropriate line in the Policy table and enter
a valid value.

15. Click Next.

Figure 28: Edit IIOP Tunnel Port Properties
319

CHAPTER 15 | Using the IIOP Tunnel
16. Review the settings for the new IIOP tunnel port.

17. If it is correct, click Next.

18. Review the settings for the new service in which the IIOP port is
described.

19. If it is correct, click Finish.

Example For example, an IIOP tunnel port for the personalInfoLookup binding would
look similar to Example 113:

Artix expects the IOR for the IIOP tunnel to be located in a file called
objref.ior, and creates a persistent POA with an object id of personalInfo
to configure the IIOP tunnel.

Example 113:CORBA personalInfoLookup Port

<service name="personalInfoLookupService">
 <port name="personalInfoLookupPort"
 binding="tns:personalInfoLookupBinding">
 <iiop:address location="file://objref.ior" />
 <iiop:policy persistent="true" />
 <iiop:policy serviceid="personalInfoLookup" />
 </ port>
</ service>
 320

Using the CORBA Naming Service
Using the CORBA Naming Service

Overview In order to fully integrate with deployed CORBA systems, Artix can use a
CORBA naming service that supports the CosNaming interface. Doing so
requires editing the port information in the service�s contract and modifying
the Artix configuration.

Servers To specify that an Artix instance (acting as proxy for a server) is to use the
COBRA naming service, you edit the <iiop:address> element of the IIOP
tunnel port. In place of the file name used in the location attribute, specify
a corbaname. For example, to specify that the IIOP tunnel for the personal
info server publishes its IOR to the CORBA naming service, specify the
<corba:address> as follows:

This registers the server in the name service under the name
personalInfoService.

Clients An Artix instance (acting as a proxy for a client) can also use the
<iiop:address> element to specify what name to look up in the CORBA
name service. The name the client looks up in the name service is the string
after the # in the specified location. For example, a client using the
<iiop:address> shown above in �Servers� looks up the IOR for an object
named personalInfoService.

Configuration Artix applications that wish to use a CORBA name service must be
configured to load a name resolver plug-in and have an initial reference for
the running name service.

<corba:address location=“corbaname:rir:/NameService#personalInfoService”/>
321

CHAPTER 15 | Using the IIOP Tunnel
To modify the Artix configuration do the following:

1. Open the Artix configuration file,
IT_PRODUCT_DIR\artix\1.2\etc\artix.cfg, in a text editor.

2. In the global scope, add the following lines:

portNumber is the number of the port on which the name service is
running.

For more information on Artix configuration, see �Configuration� on page 27.

initial_references:NameService:reference="corbaloc::localhost:portNumber/NameService";
url_resolvers:corbaname:plugin="naming_resolver";
plugins:naming_resolver:shlib_name="it_naming";
 322

CHAPTER 16

Payload Formats
Artix supports several transport independent payload format
such as SOAP and Fixed Record Length buffers.

In this chapter This chapter discusses the following topics:

G2++ Data Format page 324

Fixed Record Length Data Format page 331

Pure XML Format page 348

Tagged Data Format page 353
323

CHAPTER 16 | Payload Formats
G2++ Data Format

Overview G2++ is a set of mechanisms for defining and manipulating hierarchically
structured messages. G2++ messages can be thought of as records, which
are described in terms of their structure and the data types they contain.

G2++ is an alternative to �raw� structures (such as C or C++ structs),
which rely on common data representation characteristics that may not be
present in a heterogeneous distributed system.

Simple G2++ mapping example Consider the following instance of a G2++ message:

This G2++ message can be mapped to the following logical description,
expressed in WSDL:

Note: Because tabs are significant in G2++ files (that is, tabs indicate
scoping levels and are not simply treated as �white space�), examples in
this chapter indicate tab characters as an up arrow (caret) followed by
seven spaces.

Example 114:ERecord G2++ Message

ERecord
^ XYZ_Part
^ ^ XYZ_Code^ someValue1
^ ^ password^ someValue2
^ ^ serviceFieldName^ someValue3
^ newPart
^ ^ newActionCode^ someValue4
^ ^ newServiceClassName^ someValue5
^ ^ oldServiceClassName^ someValue6

Example 115:WSDL Logical Description of ERecord Message

<types>
 <schema targetNamespace="http://soapinterop.org/xsd"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 324

G2++ Data Format
Note that each of the message sub-structures (newPart and XYZ_Part) are
initially described separately in terms of their elements, then the two
sub-structure are aggregated together to form the enclosing record
(PRequest).

 <complexType name="XYZ_Part">
 <all>
 <element name="XYZ_Code" type="xsd:string"/>
 <element name="password" type="xsd:string"/>
 <element name="serviceFieldName" type="xsd:string"/>
 </all>
 </complexType>
 <complexType name="newPart">
 <all>
 <element name="newActionCode" type="xsd:string"/>
 <element name="newServiceClassName" type="xsd:string"/>
 <element name="oldServiceClassName" type="xsd:string"/>
 </all>
 <complexType name="PRequest">
 <all>
 <element name="newPart" type="xsd1:newPart"/>
 <element name="XYZ_Part" type="xsd1:XYZ_Part"/>
 </all>
 </complexType>

Example 115:WSDL Logical Description of ERecord Message
325

CHAPTER 16 | Payload Formats
This logical description is mapped to a physical representation of the G2++
message, also expressed in WSDL:

Note at all G2++ definitions are contained within the scope of the
<G2Definitions> </G2Definitions> tags. Each of the messages are
defined with the scope of a <G2MessageDescription>
</G2MessageDescription> construct. The type attribute for message
descriptions must be "msg" while the name attribute simply has to be
unique.

Each record is described within the scope of a <G2MessageComponent>
</G2MessageComponent> construct. Within this, the name attribute must
reflect the G2++ record name. and the type attribute must be "struct".

Nested within the records are the element definitions, however if required a
record could be nested here by inclusion of a nested <G2MessageComponent>
scope (newPart and XYZ_Part are nested records of parent ERecord.
Element �name� attributes must match the G2 element name. Defining a
record and then referencing it as a nested struct of a parent is legal for the
logical mapping but not the physical. In the physical mapping, nested
structs must be defines in-place.

Example 116:WSDL Physical Representation of ERecord Message

<binding name="ERecordBinding" type="tns:ERecordRequestPortType">
 <soap:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <artix:binding transport="tuxedo" format="g2++">
 <G2Definitions>
 <G2MessageDescription name="creation" type="msg">
 <G2MessageComponent name="ERecord" type="struct">
 <G2MessageComponent name="XYZ_Part" type="struct">
 <element name="XYZ_Code" type="element"/>
 <element name="password" type="element"/>
 <element name="serviceFieldName" type="element"/>
 </G2MessageComponent>
 <G2MessageComponent name="newPart" type="struct">
 <element name="newActionCode" type="element"/>
 <element name="newServiceClassName" type="element"/>
 <element name="oldServiceClassName" type="element"/>
 </G2MessageComponent>
 </G2MessageComponent>
 </G2MessageDescription>
 </G2Definitions>
</artix:binding>
 326

G2++ Data Format
The following example illustrates the custom mapping of arrays, which
differs from strictly defined G2++ array mappings. The array definition is
shown below:

This represents an array with two elements. When placed in a G2++
message, the result is as follows:

In this version of the ERecord record, XYZ_Part contains an array called
XYZ_MetaData, whose size is one. The single entry can be thought of as a
name/value pair: pushToTalk/PT01, which allows us to ignore columnName
and columnValue.

IMS_MetaData^ 2
^ 0
^ ^ columnName^ SERVICENAME
^ ^ columnValue^ someValue1
^ 1
^ ^ columnName^ SERVICEACTION
^ ^ columnValue^ someValue2

Example 117:Extended ERecord G2++ Message

ERecord
^ XYZ_Part
^ ^ XYZ_Code^ someValue1
^ ^ password^ someValue2
^ ^ serviceFieldName^ someValue3
^ XYZ_Metadata^ 1
^ ^ 0
^ ^ ^ columnName^ pushToTalk
^ ^ ^ columnValue^ PT01
^ newPart
^ ^ newActionCode^ someValue4
^ ^ newServiceClassName^ someValue5
^ ^ oldServiceClassName^ someValue6
327

CHAPTER 16 | Payload Formats
Mapping the new ERecord record to a WSDL logical description results in
the following:

Example 118:WSDL Logical Description of Extended ERecord Message

<types>
 <schema targetNamespace="http://soapinterop.org/xsd"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

 <complexType name="XYZ_Part">
 <all>
 <element name="XYZ_Code" type="xsd:string"/>
 <element name="password" type="xsd:string"/>
 <element name="serviceFieldName" type="xsd:string"/>
 <element name="pushToTalk" type="xsd:string"/>
 </all>
 </complexType>

 <complexType name="newPart">
 <all>
 <element name="newActionCode" type="xsd:string"/>
 <element name="newServiceClassName" type="xsd:string"/>
 <element name="oldServiceClassName" type="xsd:string"/>
 </all>

 <complexType name="PRequest">
 <all>
 <element name="newPart" type="xsd1:newPart"/>
 <element name="XYZ_Part" type="xsd1:XYZ_Part"/>
 </all>
 </complexType>
 328

G2++ Data Format
Thus the array elements columnName and columnValue are �promoted� to a
name/Value pair in the logical mapping. This physical G2++ representation
can now be mapped as follows:

This physical mapping of the extended ERecord message now contains an
array, described with its XYZ_MetaData name (as per the G2++ record
definition). Its type is "array" and its size is one. This
G2MessageComponent contains a single element called "pushToTalk".

Example 119:WSDL Physical Representation of Extended ERecord
Message

<binding name="ERecordBinding" type="tns:ERecordRequestPortType">
 <soap:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <artix:binding transport="tuxedo" format="g2++">
 <G2Definitions>
 <G2MessageDescription name="creating" type="msg">
 <G2MessageComponent name="ERecord" type="struct">
 <G2MessageComponent name="XYZ_Part" type="struct">
 <element name="XYZ_Code" type="element"/>
 <element name="password" type="element"/>
 <element name="serviceFieldName" type="element"/>
 <G2MessageComponent name="XYZ_MetaData" type="array" size="1">
 <element name="pushToTalk" type="element"/>
 </G2MessageComponent>
 </G2MessageComponent>
 <G2MessageComponent name="newPart" type="struct">
 <element name="newActionCode" type="element"/>
 <element name="newServiceClassName" type="element"/>
 <element name="oldServiceClassName" type="element"/>
 </G2MessageComponent>
 </G2MessageComponent>
 </G2MessageDescription>
 </G2Definitions>
</artix:binding>
329

CHAPTER 16 | Payload Formats
Ignoring unknown elements It is possible to create a G2Definitions scope that begins with a G2-specific
configuration scope. This configuration scope is called G2Config in the
following example:

In this scope, the only variable used is IgnoreUnknownElements, which can
have a value of �true� or �false�. If the value is set to true, elements or array
elements that are not defined in the G2 message definitions will be ignored.
For example the following record would be valid if IgnoreUnknownElements
is set to true.

When parsed, the above ERecord would not include the elements
"AnElement" or "AnArrayElement". If IgnoreUnknownElements is set to
false, the above record would be rejected as invalid.

<G2Definitions>
^ <G2Config>
^ ^ <IgnoreUnknownElements value="true"/>
</G2Config>
 .
 .
 .

Example 120:Valid G2++ Record With Ignored Fields

ERecord
^ XYZ_Part
^ XYZ_Code^ someValue1
^ AnElement^ foo
^ password^ someValue2
^ serviceFieldName^ someValue3
^ XYZ_MetaData^ 2
^ ^ 0
^ ^ ^ columnName^ pushToTalk
^ ^ ^ columnValue^ PT01
^ ^ 1
^ ^ ^ columnName^ AnArrayElement
^ ^ ^ columnValue^ bar
^ newPart
^ ^ newActionCode^ someValue4
^ ^ newServiceClassName^ someValue5
^ ^ oldServiceClassName^ someValue6
 330

Fixed Record Length Data Format
Fixed Record Length Data Format

Overview Many applications send data in fixed length records. For example, COBOL
applications often send fixed record data over WebSphere MQ. Artix
provides a binding that maps logical messages to concrete fixed record
length messages. The binding allows you to specify attributes such as
encoding style, justification, and padding characters.

Type support Artix supports text based fixed length record data. For instance, numerals,
such as 42, are represented as the ASCII characters ’4’ and ’2’. This
allows the data to be easily translated from one codeset to another if
needed.

Binary data, such as packed decimals, are not supported.

Binding namespace The IONA extensions used to describe fixed record length bindings are
defined in the namespace http://schemas.iona.com/bindings/fixed. Artix
tools use the prefix fixed to represent the fixed record length extensions and
add the following line to your contracts:

If you add a fixed record length binding to an Artix contract by hand you
must also include this namespace.

In this section This section discusses the following topics:

xmlns:fixed="http://schemas.iona.com/bindings/fixed

Fixed Record Length Message Data Mapping page 332

Adding a Fixed Record Length Binding to an Artix Contract page 341
331

CHAPTER 16 | Payload Formats
Fixed Record Length Message Data Mapping

Overview Artix defines seven elements that extend the WSDL binding element to
support the fixed record length binding. These elements are:

� <fixed:binding>

� <fixed:operation>

� <fixed:body>

� <fixed:field>

� <fixed:enumeration>

� <fixed:sequence>

� <fixed:choice>

� <fixed:case>

<fixed:binding> <fixed:binding> specifies that the binding is for fixed record length data. It
has three optional attributes:

The settings for the attributes on these elements become the default settings
for all the messages being mapped to the current binding. All of the values
can be overridden on a message by message basis.

<fixed:operation> <fixed:operation> is a child element of the WSDL <operation> element
and specifies that the operation�s messages are being mapped to fixed
record length data. It takes one opetional attribute, discriminator, which
allows you to assign a name to the operation for identifying the operation as
it is sent down the wire by the Artix runtime.

justification Specifies the default justification of the data contained in
the messages. Valid values are left and right. Default is
left.

encoding Specifies the codeset used to encode the text data. Valid
values are any valid ISO locale or IANA codeset name.
Default is en.

padHexCode Specifies the hex value of the character used to pad the
record.
 332

Fixed Record Length Data Format
<fixed:body> <fixed:body> is a child element of the <input>, <output>, and <fault>
messages being mapped to fixed record length data. It specifies that the
message body is mapped to fixed record length data on the wire and
describes the exact mapping for the message�s parts.

<fixed:body> takes three optional attributes:

These values override the defaults set in the <fixed:binding> element.

<fixed:body> will have one or more of the following child elements:

� <fixed:field>

� <fixed:sequence>

� <fixed:choice>

They describe the detailed mapping of the data to fixed length record data to
be sent on the wire.

<fixed:field> <fixed:field> is used to map simple data types to a fixed length record.
Each <fixed:field> element has one required attribute, name, which
corresponds to the name of the message part being mapped to the fixed
record. This name must be the name of a message part defined in the
logical message description.

Each <fixed:field> element that maps a message part also requires either
the size attribute or the format attribute. A <fixed:field> element would
never use both attributes.

justification Specifies the default justification of the data contained in
the messages. Valid values are left and right.

encoding Specifies the codeset used to encode the text data. Valid
values are any valid ISO locale or IANA codeset name.

padHexCode Specifies the hex value of the character used to pad the
record.
333

CHAPTER 16 | Payload Formats
size

size specifies the length of a string record. For example, the logical
message part, raverID, described in Fixed String MessageExample 121
would be mapped to a <fixed:field> similar to Example 122.

In order to complete the mapping, you must know the length of the record
field and supply it. In this case, the field, raverID, can contain no more
than twenty characters.

format

format specifies how non-string data is formatted. For example, if a field
contains a 2-digit numeric value with one decimal place, it would be
described in the logical part of the contract as an xsd:float, as shown in
Example 123.

From the logical description of the message, Artix has no way of determining
that the value of rageLevel is a 2-digit number with one decimal place
because the fixed record length binding treats all data as characters. When
mapping rageLevel in the fixed binding you would specify its format with
##.#, as shown in Example 124. This provides Artix with the meta-data
needed to properly handle the data.

Example 121:Fixed String Message

<message name="fixedStingMessage">
 <part name="raverID" type="xsd:string" />
</message>

Example 122:Fixed String Mapping

<fixed:field name="raverID" size="20" />

Example 123:Fixed Record Numeric Message

<message name="fixedNumberMessage">
 <part name="rageLevel" type="xsd:float" />
</message>

Example 124:Mapping Numerical Data to a Fixed Binding

<fixed:flield name="rageLevel" format="##.#" />
 334

Fixed Record Length Data Format
Dates are specified in a similar fashion. For example, the format of the date
12/02/72 is MM/DD/YY. When using the fixed binding it is recommended that
dates are described in the logical part of the contract using xsd:string. For
example, a message containing a date would be described in the logical part
of the contract as shown in Example 125.

If goDate is entered using the standard short date format for US English
locales, mm/dd/yyyy, you would map it to a fixed record field as shown in
Example 126.

bindingOnly

<fixed:field> elements supports an optional bindingOnly attribute.
bindingOnly is a boolean attribute that specifies that the field is specific to
the binding and does not appear in the logical message description. When
bindingOnly is set to true, the field described by the <fixed:field>
element is not propagated beyond the binding. For input messages, this
means that the field is read in and then discarded. For output messages,
you must also use the fixedValue attribute.

fixedValue

fixedValue can be used in place of the size and format attributes. It
specifies a static value to be passed on the wire. When used without
bindingOnly="true", the value specified by fixedValue replaces any data
that is stored in the message part passed to the fixed record binding. For
example, if goDate, shown in Example 125 on page 335, were mapped the
the fixed field shown in Example 127, the actual message returned from the
binding would always have the date 11/11/2112.

Example 125:Fixed Date Message

<message name="fixedDateMessage">
 <part name="goDate" type="xsd:string" />
</message>

Example 126:Fixed Format Date Mapping

<fixed:field name="goDate" format="mm/dd/yyyy" />

Example 127:fixedValue Mapping

<fixed:field name="goDate" fixedValue="11/11/2112" />
335

CHAPTER 16 | Payload Formats
<fixed:enumeration> <fixed:enumeration> is a child element of <fixed:field> and is used to
map enumerated types to a fixed record length message. It takes two
required attributes, value and fixedValue. value corresponds to the
enumeration value as specified in the logical description of the enumerated
type. fixedValue specifies the concrete value that will be used to represent
logical value on the wire.

For example, if you had an enumerated type with the values FruityTooty,
Rainbow, BerryBomb, and OrangeTango the logical description of the type
would be similar to Example 128.

When you map the enumerated type, you need to know the concrete
representation for each of the enumerated values. The concrete
respresentations can be identical to the logical or some other value. The
enumerated type in Example 128 could be mapped to the fixed field shown
in Example 129. Using this mapping Artix will write OT to the wire for this
field if the enumerations value is set to OranceTango.

Note that the parent <fixed:field> element uses the size attribute to
specify that the concrete representation is two characters long. When
mapping enumerations, the size attribute will always be used to represent
the size of the concrete representation.

Example 128:Ice Cream Enumeration

<xs:simpleType name="flavorType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="FruityTooty"/>
 <xs:enumeration value="Rainbow"/>
 <xs:enumeration value="BerryBomb"/>
 <xs:enumeration value="OrangeTango"/>
 </xs:restriction>
</xs:simpleType>

Example 129:Fixed Ice Cream Mapping

<fixed:field name="flavor" size="2">
 <fixed:enumeration value="FruityTooty" fixedValue="FT" />
 <fixed:enumeration value="Rainbow" fixedValue="RB" />
 <fixed:enumeration value="BerryBomb" fixedValue="BB" />
 <fixed:enumeration value="OrangeTango" fixedValue="OT" />
</fixed:field>
 336

Fixed Record Length Data Format
<fixed:sequence> <fixed:sequence> maps arrays and sequences to a fixed record length
message. It has one required attribute, name, that corresponds to the name
of the logical message part being mapped by this element.

<fixed:sequence> also takes two optional attributes, occurs and
counterName. occurs specifies the number of times this sequence occurs in
the message buffer. The default for occurs is 1.

When you specify a value greater that 1 for occurs, you must also use
counterName. counterName specifies the field used for indexing the array or
sequence. The value of counterName corresponds to a bindingOnly
<fixed:field> with at least enough digits to count to the value specified in
occurs as shown in Example 130.

A <fixed:sequence> can contain any number of <fixed:field>,
<fixed:sequence>, or <fixed:choice> child elements to describe the data
contained within the sequence being mapped. For example, a structure
containing a name, a date, and an ID number would contain three
<fixed:field> elements to fully describe the mapping of the data to the
fixed record message. Example 131 shows an Artix contract fragment for
such a mapping.

Example 130:Using counterName

<fixed:field name="count" format="##" bindingOnly="true"/>
<fixed:sequence name="items" counterName="count" occurs="10">
...
</fixed:sequence>

Example 131:Mapping a Sequence to a Fixed Record Length Message

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="fixedMappingsample"

targetNamespace="http://www.iona.com/FixedService"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:fixed="http://schemas.iona.com/bindings/fixed"
 xmlns:tns="http://www.iona.com/FixedService"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<types>
 <schema targetNamespace="http://www.iona.com/FixedService"

xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
337

CHAPTER 16 | Payload Formats
<fixed:choice> <fixed:choice> is used to map unions into fixed record length messages. It
takes one required attribute, name, which corresponds to the name of the
logical message part being mapped.

<fixed:choice> also supports an optional attribute, discriminatorName,
that specifies the message part used as the discriminator for the union. The
value for discriminatorName corresponds to the name of a bindingOnly
<fixed:field> that describes the type used for the union�s descriminator as
shown in Example 132. The only restriction in describing the descriminator

 <xsd:complexType name="person">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="date" type="xsd:string"/>
 <xsd:element name="ID" type="xsd:int"/>
 </xsd:sequence>
 </xsd:complexType>
...
</types>
<message name="fixedSequence">
 <part name="personPart" type="tns:person" />
</message>
<portType name="fixedSequencePortType">
...
</portType>
<binding name="fixedSequenceBinding"
 type="tns:fixedSequencePortType">
 <fixed:binding />
...
 <fixed:sequence name="personPart">
 <fixed:field name="name" size="20" />
 <fixed:field name="date" format="MM/DD/YY" />
 <fixed:field name="ID" format="#####" />
 </fixed:sequence>
...
</binding>
...
</definition>

Example 131:Mapping a Sequence to a Fixed Record Length Message
 338

Fixed Record Length Data Format
is that it must be able to handle the values used to determine the case of the
union. Therefore the values used in the union mapped in Example 132 must
be two digit integers.

A <fixed:choice> may contain one or more <fixed:case> child elements to
map the cases for the union to a fixed record length message.

<fixed:case> <fixed:case> is a child element of <fixed:choice> and describes the
complete mapping of a unions individual cases to a fixed record length
message. It takes two required attributes, name and fixedValue. name
corresponds to the name of the case element in the union�s logical
description. fixedValue specifies the value of the descriminator that selects
this case. The value of fixedValue must correspond to the format specified
by the discriminatorName attribute of <fixed:chioce>.

<fixed:case> must contian one child element to describe the mapping of
the case�s data to a fixed record length message. Valid child elements are
<fixed:field>, <fixed:sequence>, and <fixed:choice>. Example 133
shows an Artix contract fragment mapping a union to a fixed record length
message.

Example 132:Using discriminatorName

<fixed:field name="disc" format="##" bindingOnly="true"/>
<fixed:choice name="unionStation" discriminatorName="disc">
...
</fixed:choice>

Example 133:Mapping a Union to a Fixed Record Length Message

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="fixedMappingsample"

targetNamespace="http://www.iona.com/FixedService"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:fixed="http://schemas.iona.com/bindings/fixed"
 xmlns:tns="http://www.iona.com/FixedService"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<types>
 <schema targetNamespace="http://www.iona.com/FixedService"

xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
339

CHAPTER 16 | Payload Formats
 <xsd:complexType name="unionStationType">
 <xsd:choice>
 <xsd:element name="train" type="xsd:string"/>
 <xsd:element name="bus" type="xsd:int"/>
 <xsd:element name="cab" type="xsd:int"/>
 <xsd:element name="subway" type="xsd:string" />
 </xsd:choice>
 </xsd:complexType>
...
</types>
<message name="fixedSequence">
 <part name="stationPart" type="tns:unionStationType" />
</message>
<portType name="fixedSequencePortType">
...
</portType>
<binding name="fixedSequenceBinding"
 type="tns:fixedSequencePortType">
 <fixed:binding />
...
 <fixed:field name="disc" format="##" bindingOnly="true" />
 <fixed:choice name="stationPart"
 descriminatorName="disc">
 <fixed:case name="train" fixedValue="01">
 <fixed:field name="name" size="20" />
 </fixed:case>
 <fixed:case name="bus" fixedValue="02">
 <fixed:field name="number" format="###" />
 </fixed:case>
 <fixed:case name="cab" fixedValue="03">
 <fixed:field name="number" format="###" />
 </fixed:case>
 <fixed:case name="subway" fixedValue="04">
 <fixed:field name="name" format="10" />
 </fixed:case>
 </fixed:choice>
...
</binding>
...
</definition>

Example 133:Mapping a Union to a Fixed Record Length Message
 340

Fixed Record Length Data Format
Adding a Fixed Record Length Binding to an Artix Contract

Overview Currently Artix does not provide an automated tool to generate fixed record
length message bindings for logical interfaces defined in an Artix contract.
You must hand enter the mapping information or create a new contract in
Artix Designer using the fixed record length data description as a starting
point.
341

CHAPTER 16 | Payload Formats
Using Artix Designer To create a new contract using fixed record length data complete the
following steps:

1. Select New|Contract From....

2. You will see a screen similar to Figure 29.

3. Select Fixed.

4. Click Next to enter the binding information.

Figure 29: Binding Selection
 342

Fixed Record Length Data Format
5. You will see a screen similar to Figure 30.

6. Under the Fixed Bindings Defaults enter the default justification,
encoding, padding for this binding.

These values correspond to the justification, encoding, and
padHexCode attributes of the <fixed:binding> tag as described on
page 332.

7. Under Operations enter the information for the operations your service
offers.

8. Under Messages enter the messages for the operation selected in the
Operations field.

You are able to provide alternate values for the justification,
encoding, and padHexCode attributes here. These values are set on the
<fixed:body> tag as described on page 333.

9. Under Fields enter the fields that make up the message selected in the
Messages field.

Figure 30: Fixed Binding Information Screen
343

CHAPTER 16 | Payload Formats
Each message part can be either a field as described in �<fixed:field>�
on page 333, an enumeration as described in �<fixed:enumeration>�
on page 336, a sequence as described in �<fixed:sequence>� on
page 337, or a choice as described in �<fixed:choice>� on page 338.

10. Click Finish to create the contract with the fixed record binding.

Example Example 134 shows an example of an Artix contract containing a fixed
record length message binding.

Example 134:Fixed Record Length Message Binding

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="widgetOrderForm.wsdl"
 targetNamespace="http://widgetVendor.com/widgetOrderForm"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://widgetVendor.com/widgetOrderForm"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:fixed="http://schames.iona.com/binings/fixed"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://widgetVendor.com/types/widgetTypes">
 <types>
 <schema targetNamespace="http://widgetVendor.com/types/widgetTypes"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <xsd:simpleType name="widgetSize">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="big"/>
 <xsd:enumeration value="large"/>
 <xsd:enumeration value="mungo"/>
 <xsd:enumeration value="gargantuan"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:complexType name="Address">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="street1" type="xsd:string"/>
 <xsd:element name="street2" type="xsd:string"/>
 <xsd:element name="city" type="xsd:string"/>
 <xsd:element name="state" type="xsd:string"/>
 <xsd:element name="zipCode" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 344

Fixed Record Length Data Format
 <xsd:complexType name="widgetOrderInfo">
 <xsd:sequence>
 <xsd:element name="amount" type="xsd:int"/>
 <xsd:element name="order_date" type="xsd:string"/>
 <xsd:element name="type" type="xsd1:widgetSize"/>
 <xsd:element name="shippingAddress" type="xsd1:Address"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="widgetOrderBillInfo">
 <xsd:sequence>
 <xsd:element name="amount" type="xsd:int"/>
 <xsd:element name="order_date" type="xsd:string"/>
 <xsd:element name="type" type="xsd1:widgetSize"/>
 <xsd:element name="amtDue" type="xsd:float"/>
 <xsd:element name="orderNumber" type="xsd:string"/>
 <xsd:element name="shippingAddress" type="xsd1:Address"/>
 </xsd:sequence>
 </xsd:complexType>
 </schema>
 </types>
 <message name="widgetOrder">
 <part name="widgetOrderForm" type="xsd1:widgetOrderInfo"/>
 </message>
 <message name="widgetOrderBill">
 <part name="widgetOrderConformation" type="xsd1:widgetOrderBillInfo"/>
 </message>
 <portType name="orderWidgets">
 <operation name="placeWidgetOrder">
 <input message="tns:widgetOrder" name="order"/>
 <output message="tns:widgetOrderBill" name="bill"/>
 </operation>
 </portType>

Example 134:Fixed Record Length Message Binding
345

CHAPTER 16 | Payload Formats
 <binding name="orderWidgetsBinding" type="tns:orderWidgets">
 <fixed:binding/>
 <operation name="placeWidgetOrder">
 <fixed:operation discriminator="widgetDisc"/>
 <input name="widgetOrder">
 <fixed:body>
 <fixed:sequence name="widgetOrderForm">
 <fixed:field name="amount" format="###" />
 <fixed:field name="order_date" format="MM/DD/YYYY" />
 <fixed:field name="type" size="2">
 <fixed:enumeration value="big" fixedValue="bg" />
 <fixed:enumeration value="large" fixedValue="lg" />
 <fixed:enumeration value="mungo" fixedValue="mg" />
 <fixed:enumeration value="gargantuan" fixedValue="gg" />
 </fixed:field>
 <fixed:sequence name="shippingAddress">
 <fixed:field name="name" size="30" />
 <fixed:field name="street1" size="100" />
 <fixed:field name="street2" size="100" />
 <fixed:field name="city" size="20" />
 <fixed:field name="state" size="2" />
 <fixed:field name="zip" size="5" />
 </fixed:sequence>
 </fixed:sequence>
 </fixed:body>
 </input>

Example 134:Fixed Record Length Message Binding
 346

Fixed Record Length Data Format
 <output name="widgetOrderBill">
 <fixed:body>
 <fixed:sequence name="widgetOrderConformation">
 <fixed:field name="amount" format="###" />
 <fixed:field name="order_date" format="MM/DD/YYYY" />
 <fixed:field name="type" size="2">
 <fixed:enumeration value="big" fixedValue="bg" />
 <fixed:enumeration value="large" fixedValue="lg" />
 <fixed:enumeration value="mungo" fixedValue="mg" />
 <fixed:enumeration value="gargantuan" fixedValue="gg" />
 </fixed:field>
 <fixed:field name="amtDue" format="####.##" />
 <fixed:field name="orderNumber" size="20" />
 <fixed:sequence name="shippingAddress">
 <fixed:field name="name" size="30" />
 <fixed:field name="street1" size="100" />
 <fixed:field name="street2" size="100" />
 <fixed:field name="city" size="20" />
 <fixed:field name="state" size="2" />
 <fixed:field name="zip" size="5" />
 </fixed:sequence>
 </fixed:sequence>
 </fixed:body>
 </output>
 </operation>
 </binding>
 <service name="orderWidgetsService">
 <port name="widgetOrderPort" binding="tns:orderWidgetsBinding">
 <http:address location="http://localhost:8080"/>
 </port>
 </service>
</definitions>

Example 134:Fixed Record Length Message Binding
347

CHAPTER 16 | Payload Formats
Pure XML Format

Overview The pure XML payload format provides an alternative to the SOAP binding
by allowing services to exchange data using straight XML documents
without needing the overhead of the SOAP envelope.

Binding namespace The IONA extensions used to describe XML format bindings are defined in
the namespace http://schemas.iona.com/bindings/xmlformat. Artix tools
use the prefix xmlformat to represent the fixed record length extensions and
add the following line to your contracts:

If you add an XML format binding to an Artix contract by hand you must also
include this namespace.

Type support The XML data format supports all of the types supported by the SOAP
binding using doc/literal encoding. See �Supported XML Types� on
page 415 for a full listing of the supported types.

Messages mapped to an XML format binding can only have one part. For
example the message in Example 135 can be mapped to an XML format
binding:

However, the message in Example 136 cannot be mapped to an XML
format binding because it has more than one part.

xmlns:fixed="http://schemas.iona.com/bindings/xmlformat

Example 135:Valid XML Binding Message

<message name="operator">
 <part name="lineNumber" type="xsd:int" />
</message>

Example 136:Invalid XML Binding Message

<message name="matilldas">
 <part name="dancing" type="xsd:boolean" />
 <part name="number" type="xsd:int" />
</message>
 348

Pure XML Format
Mapping to an XML format
binding

The XML format binding uses a single IONA-specific extension,
<xmlformat:binding>, to identify the binding type. <xmlformat:binding>
takes no attributes and is listed just after the <binding> element. Beyond
the use of <xmlformat:binding>, an XML format binding is identical to a
SOAP binding. Each operation is listed and its input, output, and fault
messages are listed.

For example, Example 137 shows how the widget service would be mapped
to an XML format binding.

Adding an XML format binding to
an Artix Contract

To add an XML format binding to an Artix contract using Artix designer
complete the following steps:

1. From the project tree, select the service to which you want to add the
XML format binding.

2. Select Contract|Bindings|New Binding from the menu of the
designer.

Example 137:XML Format Binding for Widgets

<message name="widgetOrder">
 <part name="widgetOrderForm" type="xsd1:widgetOrderInfo"/>
</message>
<message name="widgetOrderBill">
 <part name="widgetOrderConformation" type="xsd1:widgetOrderBillInfo"/>
</message>
<portType name="orderWidgets">
 <operation name="placeWidgetOrder">
 <input message="tns:widgetOrder" name="order"/>
 <output message="tns:widgetOrderBill" name="bill"/>
 </operation>
</portType>
<binding name="widgetXMLBinding" type="tns:orderWidgets">
 <xmlformat:binding />
 <operation name="placeWidgetOrder">
 <input name="order" />
 <output name="bill" />
 </operation>
</binding>
349

CHAPTER 16 | Payload Formats
3. You will see a screen like Figure 31.

4. Select where to create the WSDL entry for the new binding.

♦ Add to existing WSDL adds the routing information to the bottom
of the existing contract and does not make a back-up of the
non-routed WSDL file.

♦ Add to new WSDL creates a new WSDL document that contains
the routing information and imports the original WSDL document.

5. Click Next.

6. Select XML from the list of possible bindings.

Figure 31: Select WSDL location
 350

Pure XML Format
7. Click Next to select the interface you want mapped to the XML format
binding.

8. You will see a dialog similar to Figure 32.

9. From the drop down list select the interface you want to map to the
XML format binding.

10. Enter the name for the new binding.

11. If there is more than one operation described in the interface, select
the operation that are to be mapped into the XML format binding.

12. Click Next to edit the new XML format binding.

Figure 32: Select Interface to Map to XML Format
351

CHAPTER 16 | Payload Formats
13. You will see a dialog similar to Figure 33.

14. Examine the different elements of the binding by selecting them from
the tree at the top of the dialog.

15. Edit the values shown in white if they are not correct.

16. When you are finished editing the binding, click Next.

17. Review the newly created contract containing the new XML format
binding.

18. If the contract is correct, click Finish.

Figure 33: Edit the CORBA Binding
 352

Tagged Data Format
Tagged Data Format

Overview The tagged data format supports applications that use self-describing, or
delimited, messages to communicate. Artix can read tagged data and write
it out in any supported data format. Similarly, Artix is capable of converting
a message from any of its supported data formats into a self-describing or
tagged data message.

Binding namespace The IONA extensions used to describe tagged data bindings are defined in
the namespace http://schemas.iona.com/bindings/tagged. Artix tools
use the prefix tagged to represent the tagged data extensions and add the
following line to your contracts:

If you add a tagged data binding to an Artix contract by hand you must also
include this namespace.

In this section This section discusses the following topics:

xmlns:tagged="http://schemas.iona.com/bindings/tagged

Tagged Data Mapping page 354

Adding a Tagged Data Binding to an Artix Contract page 362
353

CHAPTER 16 | Payload Formats
Tagged Data Mapping

Overview Artix defines seven elements that extend the WSDL binding element to
support the tagged data format. These elements are:

� <tagged:binding>

� <tagged:operation>

� <tagged:body>

� <tagged:field>

� <tagged:enumeration>

� <tagged:sequence>

� <tagged:choice>

� <tagged:case>

<tagged:binding> <tagged:binding> specifies that the binding is for tagged data format
messages. It has five attributes:

selfDescribing Required attribute specifying if the message data
on the wire includes the field names. Valid
values are true or false. If this attribute is set to
false, the setting for fieldNameValueSeparator
is ignored.

fieldSeparator Required attribute that specifies the delimiter the
message uses to separate fields. Supported
values are newline(\n), comma(,), and pipe(|).

fieldNameValueSeparatorSpecifies the delimiter used to separate field
names from field values in self-describing
messages. Supported vales are: equals(=),
tab(\t), and colon(:).

scopeType Specifies the scope identifier for complex
messages. Supported values are tab(\t),
curlybrace({data}), and none. The default is
tab.

flattened Specifies if data structures are flattened when
they are put on the wire. If selfDescribing is
false, then this attribute is automatically set to
true.
 354

Tagged Data Format
The settings for the attributes on these elements become the default settings
for all the messages being mapped to the current binding. All of the values
can be overridden on a message by message basis.

<tagged:operation> <tagged:operation> is a child element of the WSDL <operation> element
and specifies that the operation�s messages are being mapped to a tagged
data format. It takes two optional attributes:

<tagged:body> <tagged:body> is a child element of the <input>, <output>, and <fault>
messages being mapped to a tagged data format. It specifies that the
message body is mapped to taged data on the wire and describes the exact
mapping for the message�s parts.

<tagged:body> takes six optional attributes:

discriminator Specifies a name to the operation for identifying the
operation as it is sent down the wire by the Artix
runtime.

discriminatorStyle Specifies how the discriminator will identify data as it
is sent down the wire by the Artix runtime. Supported
values are msgname, partlist, and fieldname.

selfDescribing Specifies if the message data on the wire
includes the field names. Valid values are true or
false. If this attribute is set to false, the setting
for fieldNameValueSeparator is ignored.

fieldSeparator Specifies the delimiter the message uses to
separate fields. Supported values are
newline(\n), comma(,), and pipe(|).

fieldNameValueSeparatorSpecifies the delimiter used to separate field
names from field values in self-describing
messages. Supported vales are: equals(=),
tab(\t), and colon(:).

scopeType Specifies the scope identifier for complex
messages. Supported values are tab(\t),
curlybrace({data}), and none. The default is
tab.
355

CHAPTER 16 | Payload Formats
These values override the defaults set in the <tagged:binding> element.

<tagged:body> will have one or more of the following child elements:

� <tagged:field>

� <tagged:sequence>

� <tagged:choice>

They describe the detailed mapping of the message to the tagged data to be
sent on the wire.

<tagged:field> <tagged:field> is used to map simple types and enumerations to a tagged
data format. It has four attributes:

When describing enumerated types <tagged:field> will have a number of
<tagged:enumeration> child elements.

flattened Specifies if data structures are flattened when
they are put on the wire. If selfDescribing is
false, then this attribute is automatically set to
true.

Note: The selfDescribing attribute at this level does not override the
message level setting in Artix 1.2.

name A required attribute that must correspond to the name of
the logical message part that is being mapped to the
tagged data field.

alias An optional attribute specifying an alias for the field that
can be used to identify it on the wire.

bindingOnly An optional attribute specifying that the field is only
specified in the binding and has no corresponding logical
message part. Valid settings are true and false. The
default is false.

fixedValue An optional attribute specifying the value of a
bindingOnly field. If bindingOnly is set to false, this
attribute is ignored. If bindingOnly is set to true, this
attribute is required.
 356

Tagged Data Format
<tagged:enumeration> <tagged:enumeration> is a child element of <taggeded:field> and is used
to map enumerated types to a tagged data format. It takes one required
attribute, value, that corresponds to the enumeration value as specified in
the logical description of the enumerated type.

For example, if you had an enumerated type, flavorType, with the values
FruityTooty, Rainbow, BerryBomb, and OrangeTango the logical description
of the type would be similar to Example 138.

flavorType would be mapped to the tagged data format shown in
Example 139.

<tagged:sequence> <taggeded:sequence> maps arrays and sequences to a tagged data format.
It has three attributes:

Example 138:Ice Cream Enumeration

<xs:simpleType name="flavorType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="FruityTooty"/>
 <xs:enumeration value="Rainbow"/>
 <xs:enumeration value="BerryBomb"/>
 <xs:enumeration value="OrangeTango"/>
 </xs:restriction>
</xs:simpleType>

Example 139:Tagged Data Ice Cream Mapping

<tagged:field name="flavor">
 <tagged:enumeration value="FruityTooty" />
 <tagged:enumeration value="Rainbow" />
 <tagged:enumeration value="BerryBomb" />
 <tagged:enumeration value="OrangeTango" />
</tagged:field>

name A required attribute that must correspond to the name of
the logical message part that is being mapped to the
tagged data sequence.

occurs An optional attribute specifying the number of
occurrences of the sequence�s child elements in the
message. Default is 1.
357

CHAPTER 16 | Payload Formats
A <tagged:sequence> can contain any number of <tagged:field>,
<tagged:sequence>, or <tagged:choice> child elements to describe the
data contained within the sequence being mapped. For example, a structure
containing a name, a date, and an ID number would contain three
<tagged:field> elements to fully describe the mapping of the data to the
fixed record message. Example 140 shows an Artix contract fragment for
such a mapping.

alias An optional attribute specifying an alias for the sequence
that can be used to identify it on the wire.

Example 140:Mapping a Sequence to a Tagged Data Format

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="taggedDataMappingsample"

targetNamespace="http://www.iona.com/taggedService"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:fixed="http://schemas.iona.com/bindings/tagged"
 xmlns:tns="http://www.iona.com/taggedService"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<types>
 <schema targetNamespace="http://www.iona.com/taggedService"

xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

 <xsd:complexType name="person">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="date" type="xsd:string"/>
 <xsd:element name="ID" type="xsd:int"/>
 </xsd:sequence>
 </xsd:complexType>
...
</types>
<message name="taggedSequence">
 <part name="personPart" type="tns:person" />
</message>
<portType name="taggedSequencePortType">
...
</portType>
<binding name="taggedSequenceBinding"
 type="tns:taggedSequencePortType">
 <tagged:binding selfDescribing="false" fieldSeparator="pipe"/>
...
 358

Tagged Data Format
<tagged:choice> <tagged:choice> maps unions to a tagged data format. It takes three
attributes:

A <tagged:choice> may contain at one or more <tagged:case> child
elements to map the cases for the union to a tagged data format.

<tagged:case> <tagged:case> is a child element of <tagged:choice> and describes the
complete mapping of a unions individual cases to a tagged data format. It
takes one required attributeb, name, that corresponds to the name of the
case element in the union�s logical description.

<tagged:case> must contian one child element to describe the mapping of
the case�s data to a tagged data format. Valid child elements are
<tagged:field>, <tagged:sequence>, and <tagged:choice>. Example 141
shows an Artix contract fragment mapping a union to a tagged data format.

 <tagged:sequence name="personPart">
 <tagged:field name="name"/>
 <tagged:field name="date" />
 <tagged:field name="ID" />
 </tagged:sequence>
...
</binding>
...
</definition>

Example 140:Mapping a Sequence to a Tagged Data Format

name A required attribute that must correspond to the name
of the logical message part that is being mapped to the
tagged data union.

discriminatorNameSpecifies the message part used as the discriminator for
the union.

alias An optional attribute specifying an alias for the union
that can be used to identify it on the wire.
359

CHAPTER 16 | Payload Formats
Example 141:Mapping a Union to a Tagged Data Format

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="fixedMappingsample"

targetNamespace="http://www.iona.com/tagService"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:fixed="http://schemas.iona.com/bindings/tagged"
 xmlns:tns="http://www.iona.com/tagService"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<types>
 <schema targetNamespace="http://www.iona.com/tagService"

xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

 <xsd:complexType name="unionStationType">
 <xsd:choice>
 <xsd:element name="train" type="xsd:string"/>
 <xsd:element name="bus" type="xsd:int"/>
 <xsd:element name="cab" type="xsd:int"/>
 <xsd:element name="subway" type="xsd:string" />
 </xsd:choice>
 </xsd:complexType>
...
</types>
<message name="tagUnion">
 <part name="stationPart" type="tns:unionStationType" />
</message>
<portType name="tagUnionPortType">
...
</portType>
<binding name="tagUnionBinding" type="tns:tagUnionPortType">
 <tagged:binding selfDescribing="false"
 fieldSeparator="comma"/>
...
 360

Tagged Data Format
 <tagged:choice name="stationPart" descriminatorName="disc">
 <tagged:case name="train">
 <tagged:field name="name" />
 </tagged:case>
 <tagged:case name="bus">
 <tagged:field name="number" />
 </tagged:case>
 <tagged:case name="cab">
 <tagged:field name="number" />
 </tagged:case>
 <tagged:case name="subway">
 <tagged:field name="name"/>
 </tagged:case>
 </tagged:choice>
...
</binding>
...
</definition>

Example 141:Mapping a Union to a Tagged Data Format
361

CHAPTER 16 | Payload Formats
Adding a Tagged Data Binding to an Artix Contract

Overview Currently Artix does not provide an automated tool to generate tagged data
format bindings for logical interfaces defined in an Artix contract. You can
either create a new contract for the tagged data binding and operations or
hand enter the mapping information.

Using Artix Designer Currently Artix does not provide an automated tool to generate fixed record
length message bindings for logical interfaces defined in an Artix contract.
You must hand enter the mapping information or create a new contract in
Artix Designer using the fixed record length data description as a starting
point.
 362

Tagged Data Format
Using Artix Designer To create a new contract using fixed record length data complete the
following steps:

1. Select New|Contract From....

2. You will see a screen similar to Figure 34.

3. Select Tagged.

4. Click Next to enter the binding information.

Figure 34: Binding Selection
363

CHAPTER 16 | Payload Formats
5. You will see a screen similar to Figure 35.

6. Under the Tagged Bindings Defaults enter the default values for the
selfDescribing, fieldSeperator, fieldNameSeperator, scopeType,
and flattened attributes for this binding.

These attributes of the <tagged:binding> tag are described on page
354.

7. Under Operations enter the information for the operations your service
offers.

8. Under Messages enter the messages for the operation selected in the
Operations field.

You are able to provide alternate values for the selfDescribing,
fieldSeperator, fieldNameSeperator, scopeType, and flattened
attributes here. These values are set on the <tagged:body> tag as
described on page 355.

9. Under Fields enter the fields that make up the message selected in the
Messages field.

Figure 35: Tagged Binding Information Screen
 364

Tagged Data Format
Each message part can be either a field as described in
�<tagged:field>� on page 356, an enumeration as described in
�<tagged:enumeration>� on page 357, a sequence as described in
�<tagged:sequence>� on page 357, or a choice as described in
�<tagged:choice>� on page 359.

10. Click Finish to create the contract with the tagged data binding.

Example Example 142 shows an example of an Artix contract containing a tagged
data format binding.

Example 142:Tagged Data Format Binding

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="widgetOrderForm.wsdl"
 targetNamespace="http://widgetVendor.com/widgetOrderForm"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://widgetVendor.com/widgetOrderForm"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:fixed="http://schames.iona.com/binings/tagged"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://widgetVendor.com/types/widgetTypes">
 <types>
 <schema targetNamespace="http://widgetVendor.com/types/widgetTypes"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <xsd:simpleType name="widgetSize">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="big"/>
 <xsd:enumeration value="large"/>
 <xsd:enumeration value="mungo"/>
 <xsd:enumeration value="gargantuan"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:complexType name="Address">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="street1" type="xsd:string"/>
 <xsd:element name="street2" type="xsd:string"/>
 <xsd:element name="city" type="xsd:string"/>
 <xsd:element name="state" type="xsd:string"/>
 <xsd:element name="zipCode" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
365

CHAPTER 16 | Payload Formats
 <xsd:complexType name="widgetOrderInfo">
 <xsd:sequence>
 <xsd:element name="amount" type="xsd:int"/>
 <xsd:element name="order_date" type="xsd:string"/>
 <xsd:element name="type" type="xsd1:widgetSize"/>
 <xsd:element name="shippingAddress" type="xsd1:Address"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="widgetOrderBillInfo">
 <xsd:sequence>
 <xsd:element name="amount" type="xsd:int"/>
 <xsd:element name="order_date" type="xsd:string"/>
 <xsd:element name="type" type="xsd1:widgetSize"/>
 <xsd:element name="amtDue" type="xsd:float"/>
 <xsd:element name="orderNumber" type="xsd:string"/>
 <xsd:element name="shippingAddress" type="xsd1:Address"/>
 </xsd:sequence>
 </xsd:complexType>
 </schema>
 </types>
 <message name="widgetOrder">
 <part name="widgetOrderForm" type="xsd1:widgetOrderInfo"/>
 </message>
 <message name="widgetOrderBill">
 <part name="widgetOrderConformation" type="xsd1:widgetOrderBillInfo"/>
 </message>
 <portType name="orderWidgets">
 <operation name="placeWidgetOrder">
 <input message="tns:widgetOrder" name="order"/>
 <output message="tns:widgetOrderBill" name="bill"/>
 </operation>
 </portType>

Example 142:Tagged Data Format Binding
 366

Tagged Data Format
 <xsd:complexType name="widgetOrderInfo">
 <xsd:sequence>
 <xsd:element name="amount" type="xsd:int"/>
 <xsd:element name="order_date" type="xsd:string"/>
 <xsd:element name="type" type="xsd1:widgetSize"/>
 <xsd:element name="shippingAddress" type="xsd1:Address"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="widgetOrderBillInfo">
 <xsd:sequence>
 <xsd:element name="amount" type="xsd:int"/>
 <xsd:element name="order_date" type="xsd:string"/>
 <xsd:element name="type" type="xsd1:widgetSize"/>
 <xsd:element name="amtDue" type="xsd:float"/>
 <xsd:element name="orderNumber" type="xsd:string"/>
 <xsd:element name="shippingAddress" type="xsd1:Address"/>
 </xsd:sequence>
 </xsd:complexType>
 </schema>
 </types>
 <message name="widgetOrder">
 <part name="widgetOrderForm" type="xsd1:widgetOrderInfo"/>
 </message>
 <message name="widgetOrderBill">
 <part name="widgetOrderConformation" type="xsd1:widgetOrderBillInfo"/>
 </message>
 <portType name="orderWidgets">
 <operation name="placeWidgetOrder">
 <input message="tns:widgetOrder" name="order"/>
 <output message="tns:widgetOrderBill" name="bill"/>
 </operation>
 </portType>

Example 142:Tagged Data Format Binding
367

CHAPTER 16 | Payload Formats
 <binding name="orderWidgetsBinding" type="tns:orderWidgets">
 <tagged:binding selfDescribing="false" fieldSeparator="pipe" />
 <operation name="placeWidgetOrder">
 <tagged:operation discriminator="widgetDisc"/>
 <input name="widgetOrder">
 <tagged:body>
 <tagged:sequence name="widgetOrderForm">
 <tagged:field name="amount" />
 <tagged:field name="order_date" />
 <tagged:field name="type" >
 <tagged:enumeration value="big" />
 <tagged:enumeration value="large" />
 <tagged:enumeration value="mungo" />
 <tagged:enumeration value="gargantuan" />
 </tagged:field>
 <tagged:sequence name="shippingAddress">
 <tagged:field name="name" />
 <tagged:field name="street1" />
 <tagged:field name="street2" />
 <tagged:field name="city" />
 <tagged:field name="state" />
 <tagged:field name="zip" />
 </tagged:sequence>
 </tagged:sequence>
 </tagged:body>
 </input>

Example 142:Tagged Data Format Binding
 368

Tagged Data Format
 <output name="widgetOrderBill">
 <tagged:body>
 <tagged:sequence name="widgetOrderConformation">
 <tagged:field name="amount" />
 <tagged:field name="order_date" />
 <tagged:field name="type">
 <tagged:enumeration value="big" />
 <tagged:enumeration value="large" />
 <tagged:enumeration value="mungo" />
 <tagged:enumeration value="gargantuan" />
 </tagged:field>
 <tagged:field name="amtDue" />
 <tagged:field name="orderNumber" />
 <tagged:sequence name="shippingAddress">
 <tagged:field name="name"/>
 <tagged:field name="street1"/>
 <tagged:field name="street2" />
 <tagged:field name="city" />
 <tagged:field name="state" />
 <tagged:field name="zip" />
 </tagged:sequence>
 </tagged:sequence>
 </tagged:body>
 </output>
 </operation>
 </binding>
 <service name="orderWidgetsService">
 <port name="widgetOrderPort" binding="tns:orderWidgetsBinding">
 <http:address location="http://localhost:8080"/>
 </port>
 </service>
</definitions>

Example 142:Tagged Data Format Binding
369

CHAPTER 16 | Payload Formats
 370

CHAPTER 17

SOAP Payload
Format
The SOAP plug-in lets you configure an Artix integration
solution to use the SOAP payload format for communication
between distributed applications. This chapter first provides
an introductory overview of SOAP. It then explains how to
configure and extend a WSDL contract to use a SOAP binding
and a SOAP-over-HTTP port. It provides a description of the
WSDL extensions involved in extending a WSDL contract for
SOAP. It outlines the XML types supported by SOAP in Artix.
Finally, it provides an overview of the WSDL extension schema
that supports the use of SOAP with Artix.

In this chapter This chapter discusses the following topics:

Overview of SOAP page 372

Adding a SOAP Binding page 390

Adding a Port for SOAP over HTTP page 396

SOAP WSDL Extensions page 405

Supported XML Types page 415
371

CHAPTER 17 | SOAP Payload Format
Overview of SOAP

Overview This section provides an introductory overview of the simple object access
protocol (SOAP) in terms of its purpose, how it evolved, the elements of a
SOAP message, and how it handles (encodes) application data types.

In this section This section discusses the following topics:

Background to SOAP page 373

SOAP Messages page 376

SOAP Encoding of Data Types page 382

Note: A complete introduction to SOAP is outside the scope of this guide.
For more details see the W3C SOAP 1.1 specification at
http://www.w3.org/TR/SOAP/. IONA�s Artix product supports only version
1.1 of the W3C SOAP specification.
 372

Overview of SOAP
Background to SOAP

Overview This subsection discusses the purpose of SOAP and how it evolved. It
discusses the following topics:

� �What is SOAP?� on page 373.

� �XML� on page 373.

� �XML and Unicode� on page 374.

� �HTTP� on page 374.

� �SOAP specification� on page 375.

What is SOAP? SOAP is a lightweight, XML-based protocol that is used for client-server
communications on the World Wide Web. The primary function of SOAP is
to enable access to distributed services and to facilitate the exchange of
structured and typed information between peers across the Web.

With the evolution of the Web, and the ever-increasing need to do business
more quickly and more proactively across it, there arose a need to have a
dynamic, flexible, extensible, but standards-based system of communication
between applications across the Internet. SOAP evolved as a solution to this
need, by combining existing standards such as extensible markup language
(XML) and the hypertext transfer protocol (HTTP).

SOAP is termed a messaging protocol. It is a framework for transporting
client request and server response messages in the form of XML documents
over (usually) the HTTP transport.

XML XML is a simple form of standard generalized markup language (SGML). The
purpose of a markup language is to facilitate preparation of electronic
documents, by allowing information to be added to the document text that
indicates the logical components of the document or how they are to be
formatted. SGML describes the relationship between a document�s content
and its structure.

XML uses user-defined tags to describe the actual data elements contained
within a web page or file. (This is unlike the hypertext markup language
(HTML), which can only use a limited set of predefined tags to describe how
the contents of a web page or file are to be formatted.) XML tags are
373

CHAPTER 17 | SOAP Payload Format
unlimited, because they can be defined at the user�s discretion, depending
on the data elements that need to be defined. This is why XML is termed
extensible. XML processors now exist for any common platform or language.

XML and Unicode XML works on the assumption that all character data belongs to the
universal character set (UCS). UCS is more commonly known as unicode.
This is a mechanism for setting up binary codes for text or script characters
that relate to the principal written languages of the world. Unicode therefore
provides a standard means of interchanging, processing, and displaying
written texts in diverse languages. See http://www.unicode.org for details.

Because unicode uses 16 bits to represent a particular character, it can
represent more than 65,000 different international text characters. This
makes Unicode much more powerful than other text representation formats,
such as ASCII (American standard code for information interchange), which
only uses 7 bits to represent a particular character and can only represent
128 characters. Unicode uses a conversion method called UTF (universal
transformation format) that can convert text to 8�bit or 16�bit Unicode
characters. To this effect, there are UTF�8 and UTF�16 encoding formats.
All XML processors, regardless of the platform or programming language for
which they are implemented, must accept character data encoded using
UTF�8 or UTF�16 encoding formats.

HTTP HTTP is the standard TCP/IP-based transport used for client-server
communications on the Web. Its main function is to establish connections
between distributed web browsers (clients) and web servers for exchanging
files and possibly other information across the Internet. HTTP is available on
all platforms, and HTTP requests are usually allowed through security
firewalls. See �Using the HTTP Plug-in� on page 225 for a more detailed
overview of HTTP.

Given the dynamic features of XML and HTTP, SOAP has therefore become
regarded as the optimum tool for enabling communication between
distributed, heterogeneous applications over the Internet.

Note: Although most implementations of SOAP are HTTP-based, SOAP
can be used with any transport that supports transmission of XML data.
Depending on the particular transport in use, SOAP can also be
implemented to support different types of message-exchange patterns,
such as one-way or request-response.
 374

Overview of SOAP
SOAP specification SOAP is a framework for transporting client request and server response
messages in the form of XML documents over HTTP or some other
transport. The W3C SOAP specification at http://www.w3.org/TR/SOAP/
defines the standards for SOAP in relation to:

� Format and components of SOAP messages.

� SOAP usage with HTTP.

� SOAP encoding rules for application-defined data types.

� SOAP standards for representing remote procedure calls (RPCs) and
responses.

�SOAP Messages� on page 376 briefly discusses the format and
components of SOAP messages, and their use with HTTP. �SOAP Encoding
of Data Types� on page 382 briefly discusses how data types are handled in
SOAP. Again, a complete introduction to these topics is outside the scope of
this guide, and you should see the W3C SOAP 1.1 specification at
http://www.w3.org/TR/SOAP/ for full details.
375

CHAPTER 17 | SOAP Payload Format
SOAP Messages

Overview This subsection uses an example of a simple client-server application to
outline the typical format of a SOAP request and response message. It
discusses the following topics:

� �Example overview� on page 376.

� �Example of SOAP request message� on page 377.

� �Explanation of SOAP request message� on page 377.

� �Example of SOAP response message� on page 378.

� �Explanation of SOAP response message� on page 379.

� �Example of SOAP response with fault� on page 379.

� �Explanation of SOAP response with fault� on page 380.

Example overview The distributed application in this example involves a client that invokes a
GetStudentGrade method on a target server. The client passes a student
code and subject name, both of type string, as input parameters to the
method request. On processing the request, the server returns the grade
achieved by that student for that subject�the grade is of type int. The
following example shows the logical definition of this application in a WSDL
contract:

Example 143:Example of logical definition in WSDL

…
<message name="GetStudentGrade">
 <part name="StudentCode" type="xsd:string"/>
 <part name="Subject" type="xsd:string"/>
</message>
<message name="GetStudentGradeResponse">
 <part name="Grade" type="xsd:int"/>
</message>
<portType name="StudentPortType">
 <operation name="GetStudentGrade">
 <input message="tns:GetStudentGrade" name="GetStudentGrade"/>
 <output message="tns:GetStudentGradeResponse" name="GetStudentGradeResponse"/>
 </operation>
</portType>
…

 376

Overview of SOAP
Example of SOAP request
message

Example 144 shows an example of the format of a typical SOAP request
message, based on Example 143 on page 376 (in this case, the client has
passed student code 815637 and subject History as input parameters):

Explanation of SOAP request
message

Example 144 on page 377 can be explained as follows:

1. The first five lines represent HTTP header information (in this example,
the SOAP request is running over HTTP). When a SOAP request is
running over HTTP, the HTTP method must be set to POST, the HTTP
Content-Type header must be set to text/xml, and a SOAPAction
HTTP header should also be included that specifies a URI indicating
what is being requested. (However, the SOAPAction field can be left
blank, in which case the URI specified in the first couple of lines is
taken to indicate the intent of the request instead.)

Example 144:Example of a SOAP Request Message

1 POST /StockQuote HTTP/1.1
Host: www.stockquoteserver.com
Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn
SOAPAction: "Some-URI"

<?xml version="1.0" encoding=’UTF-8’?>
2 <SOAP-ENV:Envelope

 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/
 encoding/"/>

3 <SOAP-ENV:Body>
 <m:GetStudentGrade xmlns:m="Some-URI">
 <StudentCode>815637</StudentCode>
 <Subject>History</Subject>
 </m:GetStudentGrade>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Note: See �Using the HTTP Plug-in� on page 225 for more details of
the format of HTTP request headers.
377

CHAPTER 17 | SOAP Payload Format
2. The SOAP Envelope is the top-level element and is mandatory in every
SOAP message. It defines a framework for describing what is in the
message and how to process it.

3. The SOAP Body element is mandatory in every SOAP message. It holds
the actual message data in sub-elements called body entries. Each
body entry relates to a particular data type and must be encoded as an
independent element. Body entries can contain attributes called
encodingStyle, id, and href (see �SOAP Encoding of Data Types� on
page 382 for more details of these).

In Example 144 on page 377, the SOAP Body contains two body
entries, StudentCode and Subject, within a wrapper element that
corresponds to the GetStudentGrade operation. The two body entries
in this case correspond to the two input parameters for the
GetStudentGrade operation.

Example of SOAP response
message

Example 145 shows an example of the format of a typical SOAP response
message, based on Example 143 on page 376 (in this case, the server has
returned grade A):

Example 145:Example of a SOAP Response Message

1 HTTP/1.1 200 OK
Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn

<?xml version="1.0" encoding=’UTF-8’?>
2 <SOAP-ENV:Envelope

 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/
 encoding/"/>

3 <SOAP-ENV:Body>
 <m:GetStudentGradeResponse xmlns:m="Some-URI">
 <Grade>A</Grade>
 </m:GetStudentGradeResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>
 378

Overview of SOAP
Explanation of SOAP response
message

Example 145 can be explained as follows:

1. The first three lines represent HTTP header information (in this
example, the SOAP response is running over HTTP). See �Using the
HTTP Plug-in� on page 225 for more details of the format of HTTP
response headers.

2. The explanation of the SOAP Envelope element is the same as in
�Explanation of SOAP request message� on page 377.

3. The explanation of the SOAP Body element is the same as in
�Explanation of SOAP request message� on page 377, except in this
case the SOAP Body contains one body entry, Grade, within a wrapper
element that corresponds to the server response part of the
GetStudentGrade operation. The body entry in this case corresponds to
the output parameter returned by the server in response to the client
request (that is, the grade for the student and subject combination
specified by the client).

Example of SOAP response with
fault

If an error occurs during the processing of a SOAP request, the server can
handle and report the error within the SOAP Body of the response.
Example 146 shows an example of the format of a typical SOAP response
message indicating an error.

Example 146:Example of SOAP Response with Error Information

1 HTTP/1.1 500 Internal Server Error
Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body>

2 <SOAP-ENV:Fault>
 <faultcode>SOAP-ENV:Server</faultcode>
 <faultstring>Server Error</faultstring>
 <detail>
 <e:myfaultdetails xmlns:e="Some-URI">
 <message>
 Application did not work
 </message>
379

CHAPTER 17 | SOAP Payload Format
Explanation of SOAP response
with fault

Example 146 on page 379 can be explained as follows:

1. The first three lines represent HTTP header information (in this
example, the SOAP response is running over HTTP). See �Using the
HTTP Plug-in� on page 225 for more details of the format of HTTP
response headers.

2. Errors are reported within a SOAP Fault element within the SOAP
Body. In this case, the SOAP Body must not contain any other
elements. Only one SOAP Fault element can be defined in any SOAP
message. SOAP Fault in turn defines the following four sub-elements:

 <errorcode>
 1001
 </errorcode>
 </e:myfaultdetails>
 </detail>
 </SOAP-ENV:Fault>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Example 146:Example of SOAP Response with Error Information

faultcode This describes the error. The default faultcode values
defined by the W3C SOAP specification are:

� VersionMismatch�This means the SOAP
Envelope was associated with an invalid
namespace (that is, a namespace other than
http://schemas.xmlsoap.org/soap/envelope/).

� MustUnderstand�This means a header element
that needed to be processed was not processed
correctly.

� Client�This means the message was not
properly formed or did not contain appopriate
information to be successfully processed.

� Server�This means the message could not be
processed, but not due to message contents.

faultstring This provides a human-readable explanation of the
fault.
 380

Overview of SOAP
faultactor This indicates where the fault originated along the
message path. This element is mandatory for an
intermediary proxy application along the message
path, but it is optional for the ultimate target server.

Note: Artix supports the use of only one intermediary
proxy along the message path.

Example 146 on page 379 is an example of an error
being reported by the ultimate target server, and it
omits a faultactor attribute.

detail This in turn contains sub-elements, called detail
elements, that hold application-specific error
information when the fault is due to unsuccessful
processing of the SOAP Body.
381

CHAPTER 17 | SOAP Payload Format
SOAP Encoding of Data Types

Overview This subsection provides an overview of the concepts of SOAP encoding. It
discusses the following topics:

� �What is encoding?� on page 382.

� �Role of SOAP encoding� on page 382.

� �SOAP encoding styles� on page 384.

� �Encoding simple types� on page 384.

� �Encoding complex struct types� on page 386.

� �Encoding complex array types� on page 388.

What is encoding? Encoding is the process of converting application-defined data to binary
form for transfer across a network. Decoding is the process of converting
binary data back to an application-defined format. XML encoding and
decoding rules, such as UTF-8 or UTF-16, define how data is to be
converted between application-defined and binary form.

SOAP encoding rules define how application data types are to be structured
in an XML document before being converted to binary. The overall process
of encoding, data transfer, and subsequent decoding is termed serialization.

Role of SOAP encoding XML uses the UTF-8 and UTF-16 encoding formats to convert data to binary
form. As explained in �Background to SOAP� on page 373, all XML
processors (regardless of platform or programming language) must accept
character data encoded using UTF-8 or UTF1-16 formats.

Problems can arise, however, when converting data to and from binary, if
the data is represented differently by different applications. For example,
some systems might have an integer as a 32-bit value, while others might
have it as a 16-bit value. Such disparities can lead to data corruption during
the data conversion process.

To avoid potential data corruption due to differences between source and
target systems, SOAP encoding and decoding rules are used as a stepping
stone between the expression of data types in a particular programming
language and the XML UTF-8 or UTF-16 encoding or decoding rules used to
convert those data types to and from binary. (See Figure 36 on page 383 for
 382

Overview of SOAP
more details.) SOAP encoding rules, therefore, define the elements and data
types that are designed to support serialization of data between disparate
systems.

As shown in Figure 36, all data transferred as part of a SOAP payload is
marshalled across the network as UTF-encoded binary strings.

Figure 36: Overview of Role of SOAP Encoding and Decoding

ArtixTransport Layer
(for example, HTTP)

Transport Layer
(for example, HTTP)

Application Data

SOAP Message

Binary data

Application Data

SOAP Message

Binary data

Network

UTF-decoded
binary strings

UTF-encoded
binary strings
383

CHAPTER 17 | SOAP Payload Format
SOAP encoding styles A standard XML schema for SOAP encoding has been developed by the
W3C and is located at http://schemas/xmlsoap/org/soap/encoding/. This
W3C SOAP encoding schema uses the following namespace declaration:

It is recommended, but not mandatory, that a SOAP implementation
adheres to the encoding style based on the W3C SOAP encoding schema.
The W3C SOAP specification states that a company can use alternative
encoding styles if it wants. To this effect, an encodingStyle attribute can be
specified for any element within a SOAP message, to indicate the encoding
rules that apply to that particular element.

An encodingStyle attribute can take one or more URIs as its value, with
each URI denoting the location of a particular set of encoding rules. If
specifying a list of URIs, each URI should be separated by a space. A list
should also be ordered so that the URI relating to the most restrictive set of
encoding rules is specified first, and the URI relating to the least restrictive
set of encoding rules is specified last.

Encoding simple types The W3C SOAP specification states that SOAP encodings can support all
the simple types that are specified in the W3C XML Schema Part 2:
Datatypes specification at http://www.w3.org/TR/SOAP/#XMLS2. In other
words, a SOAP encoding should support any simple type that can be used in
XML schema definition language.

The W3C SOAP encoding schema defines elements whose names
correspond to each of the simple types defined in the W3C XML Schema
Part 2: Datatypes specification. Among the simple types supported are
integers, floats, doubles, booleans, and so on. Other types considered
�simple� for the purposes of a SOAP encoding are strings, enumerations,
and arrays of bytes.

In a SOAP encoding, each data value must be specified within an element.
The type of a particular value can be denoted by the element name that
encompasses it, provided that element name has been defined in the

xmlns:SOAP-ENC="http://schemas.xmlsoap/org/soap/encoding/"
 384

Overview of SOAP
encoding schema as a derived type. The following is an example of a
schema fragment that defines a series of elements (for example, an element
called age of type int, an element called height of type float, and so on):

The following is an example of how the elements defined in the preceding
sample schema might then be used in a SOAP encoding:

If an element name in a SOAP encoding has not been defined as a derived
type in an encoding schema (for example, the element name relating to a
member of an array), that element must include an xsi:type attribute in the
SOAP encoding to indicate the data type. See �Encoding complex array
types� on page 388 for an example of this.

<element name="age" type="int"/>
<element name="height" type="float"/>
<element name="displacement" type="negativeInteger"/>
<element name="color">
 <simpleType base="xsd:string">
 <enumeration value="Blue"/>
 <enumeration value="Brown"/>
 </simpleType>
</element>

<age>34</age>
<height>6.0</height>
<displacement>-350</displacement>
<color>Brown</color>
385

CHAPTER 17 | SOAP Payload Format
Encoding complex struct types The W3C SOAP specification defines two complex data types�structs and
arrays. A struct is a compound value whose members are each
distinguished by a unique name (also known as that member�s accessor).

The following is an example of a schema fragment that defines elements
called Book, Author, and Address respectively, each of which is a structure
containing a series of types:

<element name="Book">
<complexType>
 <sequence>
 <element name="title" type="xsd:string"/>
 <element name="author" type="tns:Author"/>
 </sequence>
</complexType>
</e:Book>
<element name="Author">
<complexType>
 <sequence>
 <element name="name" type="xsd:string"/>
 <element name="address" type="tns:Address"/>
 </sequence>
</complexType>
</e:Author>
<element name="Address">
<complexType>
 <sequence>
 <element name="street" type="xsd:string"/>
 <element name="city" type="xsd:string"/>
 <element name="country" type="xsd:string"/>
 </sequence>
</complexType>
</e:Address>
 386

Overview of SOAP
The following is an example of how the preceding schema definition could
be subsequently used in a SOAP encoding (the following example shows
embedded single-reference values for the author and address):

In some cases an element might potentially contain more than one possible
value. For example, if there was another book also called Great
Expectations, written by some other author, there could be potentially more
than one possible value for the author and address in the preceding
example. When an element can contain more than one possible value it is
termed multireference. In this case, an id attribute must be used to identify
a multireference element, and a href attribute can be used to reference that
element. For example, the href attribute of the <author> element in the
following example refers to the id attribute of the multireference <Person>
element. Similarly, the href attribute of the <address> element refers to the
id attribute of the multireference <Home> element (this is assuming the
author in question has more than one home).

<e:Book>
 <title>Great Expectations</title>
 <author>
 <name>Charles Dickens</name>
 <address>
 <street>Whitechurch Road</street>
 <city>London</city>
 <country>England</country>
 </address>
 </author>
</e:Book>

<e:Book>
 <title>Great Expectations</title>
 <author href="#Person-1"/>
</e:Book>
<e:Person id="Person-1">
 <name>Charles Dickens</name>
 <address> href="Home-1"/>
</e:Person>
<e:Home id="Home-1"/>
 <street>Whitechurch Road</street>
 <city>London</city>
 <country>England</country>
</e:Home>
387

CHAPTER 17 | SOAP Payload Format
Encoding complex array types The W3C SOAP specification defines two complex data types�structs and
arrays. An array is a compound value whose member values are
distinguished by means of ordinal position within the array. An array in
SOAP is of type SOAP-ENC:Array or a type derived from that.

The following is an example (taken from the W3C SOAP specification) of a
schema fragment that defines an element called myFavoriteNumbers that is
of type SOAP-ENC:Array:

The following is an example (taken from the W3C SOAP specification) of
how the array defined in the preceding sample schema could be
subsequently used in a SOAP encoding:

The preceding example shows an array of two integers, with both members
of the array called number (this is unlike the members of a struct which must
all have unique names). The members of a SOAP array do not have to be all
of the same type. The following is an example of the SOAP encoding for an
array where an xsi:type attribute is used to specify the type of each
member of the array:

<element name="myFavoriteNumbers"
 type="SOAP-ENC:Array"/>

<myFavoriteNumbers SOAP-ENC:arrayType="xsd:int[2]">
 <number>3</number>
 <number>4</number>
</myFavoriteNumbers>>

Note: As explained in �Encoding simple types� on page 384, if the type
of a value is not identifiable from the element name (or accessor)
corresponding to that value, an xsi:type attribute must be used in the
SOAP encoding.

<SOAP-ENC:Array SOAP-ENC:arrayType="xsd:ur-type[4]">
 <thing xsi:type="xsd:int">98765</thing>
 <thing xsi:type="xsd:decimal">3.857</thing>
 <thing xsi:type="xsd:string">The cat sat on the mat</thing>
 <thing xsi:type="xsd:uriReference">http://www.iona.com</thing>
</SOAP-ENC:Array>
 388

Overview of SOAP
SOAP encoding rules also support:

� Arrays of complex structs or other arrays.

� Multi-dimensional arrays.

� Partially transmitted arrays.

� Sparse arrays.

See the W3C SOAP specification for more details of the encoding guidelines
for arrays.
389

CHAPTER 17 | SOAP Payload Format
Adding a SOAP Binding

Overview You can configure an Artix WSDL contract with various extensions that
support the use of a SOAP binding with Artix. This section describes how to
use the Artix Designer GUI to add a SOAP binding to a WSDL contract. It
discusses the following topics:

� �GUI steps� on page 390.

� �WSDL example� on page 395.

GUI steps To add a SOAP binding to your service contract, using the Artix Designer
GUI, complete the following steps:

1. From the project tree, select the contract to which you want to add the
SOAP binding.

2. Select New|Binding from the Contract menu of the designer.

Note: This section deals specifically with how to set up a SOAP binding
within an Artix WSDL contract. It assumes that you have already set up
the logical components of the contract relating to types, messages, and
port types.
 390

Adding a SOAP Binding
3. You will see a screen like Figure 37.

4. Select where to create the WSDL entry for the new binding.

♦ Add to existing WSDL adds the routing information to the bottom
of the existing contract and does not make a back-up of the
non-routed WSDL file.

♦ Add to new WSDL creates a new WSDL document that contains
the routing information and imports the original WSDL document.

5. Click Next.

6. Select SOAP as your binding type.

Figure 37: Select WSDL location
391

CHAPTER 17 | SOAP Payload Format
7. Click Next.

8. From the Port Type drop down list, select the port type that the
binding relates to.

9. Type a name for your binding in the Binding Name field, or accept the
default that consists of the port type name with a _SOAPBinding suffix.

10. From the Use drop down list, select either encoded or literal, to
indicate whether message parts are to consist of abstract type
definitions or concrete schema definitions. The value you choose is
subsequently populated in the soap:body use attribute in your WSDL
contract. See �soap:body element� on page 410 for more details.

11. From the Style drop down list, select either rpc or document, to
indicate whether message parts pertaining to each operation are to
consist of RPC-based parameters and return values or document-based
body entries by default. The value you choose is subsequently
populated in the soap:binding style attribute in your WSDL contract.
See �soap:binding element� on page 407 for more details.

12. Click Next.

13. Click on the name of an operation within your binding. The screen then
appears as shown in Figure 38. (For this example, assume that
encoded was selected in point 7, and rpc was selected in point 8.)
 392

Adding a SOAP Binding
Figure 38: Editing a SOAP Binding for an Operation
393

CHAPTER 17 | SOAP Payload Format
14. If you want to include a SOAPAction field in the HTTP header of a
SOAP message, use the highlighted SOAP Action field to type the URL
that represents the resource being requested by the operation.

15. If you want to override for a particular operation the default setting for
Style that you set in point 8, delete the default value and type the new
value in the relevant field in the Style (Encoded) column. (See point 8
for more details of valid values.)

16. If you want to override for a particular operation the default setting for
Use that you set in point 7, delete the default value and type the new
value in the relevant field(s) in the Use column. (See point 7 for more
details of valid values.)

17. If you want to use one or more customized encoding styles, add the
URL(s) relating to each customized encoding style to the relevant
field(s) in the Style (Encoded) column.

18. Click Next.

19. Review the WSDL for the new SOAP binding. See Example 147 for an
example of how the WSDL might appear.

20. If it is correct, click Finish.

Note: This step only relates to the use of SOAP over HTTP, but it is
not mandatory for the purposes of Artix. It is available in case some
third-party SOAP servers that do use a SOAPAction field in their
HTTP headers are to be contacted.

Note: If you want this field to contain more than one URL, ensure
that each URL is separated by a space, and the URLs are ordered
according to the most restrictive set of rules first and least restrictive
set of rules last.
 394

Adding a SOAP Binding
WSDL example Example 147 provides an example of how the WSDL might appear for a
SOAP binding in an Artix contract.

Example 147:Example of WSDL for a SOAP Binding

<wsdl:binding name="StudentPortType_SOAPBinding" type="ns1:StudentPortType">
 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="GetStudentGrade">
 <soap:operation soapAction="" style="rpc"/>
 <wsdl:input name="GetStudentGrade">
 <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 use="encoded"/>
 </wsdl:input>
 <wsdl:output name="GetStudentGradeResponse">
 <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 use="encoded"/>
 </wsdl:output>
 </wsdl:operation>
</wsdl:binding>
395

CHAPTER 17 | SOAP Payload Format
Adding a Port for SOAP over HTTP

Overview You can configure an Artix WSDL contract with various extensions that
support the use of a SOAP-over-HTTP port. This section describes how to
use the Artix Designer GUI to add to a WSDL contract a port that enables
the use of SOAP over HTTP.

In this section This section discusses the following topics:

Note: This section is only relevant if you want to use SOAP over HTTP. If
you are using SOAP with another transport type, ignore this section and
see the relevant chapter in this guide that pertains to that transport type.

Adding a Port for Non-Secure Connections page 397

Adding a Port for Secure Connections page 402
 396

Adding a Port for SOAP over HTTP
Adding a Port for Non-Secure Connections

Overview This subsection describes how to use the Artix Designer GUI to add a port
for SOAP over HTTP that does not enable secure connections. It discusses
the following topics:

� �GUI steps� on page 397.

� �WSDL example� on page 400.

GUI steps Complete the following steps to add a port to your service contract, using
the Artix Designer GUI, to enable the use of SOAP over HTTP:

1. From the project tree, select the contract to which you want to add the
port.

2. Select Services|New Service from the Contract menu of the designer.

3. Enter a unique name for the new service.

4. Click Next.

5. Enter a name for the new port that is being created.

6. From the Binding drop down list, select the binding that the port is
going to expose.

Note: This section deals specifically with how to set up port information
within the <service> component of a WSDL contract. To add a port, you
must have already created a payload format binding within the <binding>
component of the contract. See �Adding a SOAP Binding� on page 390 or
the relevant chapter relating to the payload format you are using for more
details about setting up a binding in a WSDL contract.
397

CHAPTER 17 | SOAP Payload Format
7. Click Next to open the screen shown in Figure 39.

8. Ensure that SOAP is selected as your transport type.

9. In the Value field corresponding to the location line of the Address
configuration table, type the URL that represents the resource being
requested.

Figure 39: Selecting a SOAP Transport Type

Note: The Address configuration table relates to the soap:address
element within the port component of the WSDL contract. You must
specify a value for the location attribute. See �SOAP WSDL
Extensions� on page 405 for more details of the soap:address
location attribute.
 398

Adding a Port for SOAP over HTTP
10. To specify a value for another attribute, place a check in the Specified
box on the appropriate line in the appropriate configuration table, and
type or (in the case of certain true or false attributes) select the value
you want.

11. Click Next.

12. Review the settings for the new port.

13. If it is correct, click Next.

14. Review the settings for the new service in which the port is described.

15. If it is correct, click Finish.

Note: All attributes are optional in the Client and Server
configuration tables. These relate to the http-conf:client and
http-conf:server elements that can be specified as peers of the
soap:address element under the same port binding. See �Using the
HTTP Plug-in� on page 225 for details of each attribute relating to
http-conf:client and http-conf:server.
399

CHAPTER 17 | SOAP Payload Format
WSDL example Figure 40 shows an example summary of port configuration settings in the
GUI.

Figure 40: Example Set of SOAP_HTTP Configuration Settings in GUI
 400

Adding a Port for SOAP over HTTP
Example 148 shows the WSDL extract that is subsequently generated for
the service component of your Artix contract, based on the example settings
in Figure 40. As shown in Example 148, client and server HTTP
configuration attributes are contained respectively within elements, called
http-conf:client and http-conf:server, which are peers of the
soap:address element.

Example 148:Extract of Example WSDL Contract

<wsdl:service name="BaseService">
 <wsdl:port binding="ns1:StudentPortType_SOAPBinding" name="SOAP_HTTP_Port">
 <soap:address location="http://www.iona.com/support/docs/index.xml"/>
 <http-conf:client Password="goofy" ReceiveTimeout="3000" SendTimeout="3000"
 UserName="jsmith"/>
 <http-conf:server HonorKeepAlive="true" ReceiveTimeout="3000"
 SendTimeout="3000" SuppressClientReceiveErrors="false"
 SuppressClientSendErrors="false"/>
 </wsdl:port>
</wsdl:service>
401

CHAPTER 17 | SOAP Payload Format
Adding a Port for Secure Connections

Overview This subsection describes how to use the Artix Designer GUI to add a port
for SOAP over HTTP that enables secure connections. It discusses the
following topics:

� �SSL-related attributes� on page 402.

� �GUI steps� on page 403.

� �WSDL example� on page 403.

SSL-related attributes The SSL-related attributes that can be configured to be included in the
<http-conf:client> and <http-conf:server> elements of an HTTP port
binding are as follows:

See �Using the HTTP Plug-in� on page 225 more details of these attributes.

Note: This section deals specifically with how to set up port information
within the <service> component of a WSDL contract. To add a port, you
must have already created a payload format binding within the <binding>
component of the contract. See the chapter relating to the payload format
you are using for more details about setting up a binding for it in a WSDL
contract.

Client SSL Attributes Server SSL Attributes

UseSecureSockets UseSecureSockets

ClientCertificate ServerCertificate

ClientCertificateChain ServerCertificateChain

ClientPrivateKey ServerPrivateKey

ClientPrivateKeyPassword ServerPrivateKeyPassword

TrustedRootCertificate TrustedRootCertificate
 402

Adding a Port for SOAP over HTTP
GUI steps All the GUI steps described in �GUI steps� on page 397 are relevant and
should be followed here, with the following stipulations:

� Specify https:// rather than http:// as the prefix for the value of the
location attribute in the Address configuration table.

� Enter values for the various SSL-related attributes in the Client and
Server configuration tables. See �SSL-related attributes� on page 402
for a listing of these attributes.

WSDL example Figure 41 shows an example summary of SSL-related HTTP configuration
settings in the GUI

Note: When you specify https:// as the prefix for the value of the
location attribute in the Address configuration table, a secure HTTP
connection is automatically enabled, even if UseSecureSockets is not set
to true.

Figure 41: Example Set of SSL-Related HTTP Configuration Settings
403

CHAPTER 17 | SOAP Payload Format
Example 149 shows the WSDL extract that is subsequently generated for
the service component of your Artix contract, based on the example settings
in Figure 41 on page 403. As shown in Example 149, client and server
HTTP configuration attributes are contained respectively within elements
called http-conf:client and http-conf:server.

Example 149:Extract of Example WSDL Contract with SSL Attributes

<wsdl:service name="BaseService">
 <wsdl:port binding="ns1:StudentPortType_SOAPBinding" name="SOAP_HTTP_Port">
 <soap:address location="http://www.iona.com/support/docs/index.xml"/>
 <http-conf:client ClientCertificate="c:\aspen\x509\certs\key.cert.pem"
 ClientCertificateChain="c:\aspen\x509\certs\key.cert.pem"
 ClientPrivateKey="c:\aspen\x509\certs\privkey.pem"
 ClientPrivateKeyPassword="mykeypass" Password="goofy"
 TrustedRootCertificates="c:\aspen\x509\ca\cacert.pem"
 UseSecureSockets="true"
 Password="goofy"
 UserName="jsmith"/>
 <http-conf:server ServerCertificate="c:\aspen\x509\certs\key.cert.pem"
 ServerCertificateChain="c:\aspen\x509\certs\key.cert.pem"
 ServerPrivateKey="c:\aspen\x509\certs\privkey.pem"
 ServerPrivateKeyPassword="mykeypass"
 TrustedRootCertificates="c:\aspen\x509\ca\cacert.pem"
 UseSecureSockets="true"/>
 </wsdl:port>
</wsdl:service>
 404

SOAP WSDL Extensions
SOAP WSDL Extensions

Overview This subsection provides an overview and description of the attributes that
you can set as extensions to a WSDL contract for the purposes of using the
SOAP payload format plug-in with Artix.

In this section This section discusses the following topics:

SOAP WSDL Extensions Overview page 406

SOAP WSDL Extensions Details page 407
405

CHAPTER 17 | SOAP Payload Format
SOAP WSDL Extensions Overview

Overview This subsection provides an overview of the WSDL extensions involved in
configuring the SOAP payload format plug-in for use with Artix.

Configuration layout Example 150 shows (in bold) the WSDL extensions used to configure the
SOAP message format plug-in for use with Artix. (Ellipses (that is, �) are
used to denotes sections of the WSDL that have been omitted for brevity.)

Example 150:SOAP Configuration WSDL Extensions

<definitions…
…
xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap"
…

<definitions >
 <binding >
 <soap:binding style="rpc|document" transport="uri">
 <operation >
 <soap:operation soapAction="uri" style="rpc|document">
 <input>
 <soap:body use="literal|encoded" encodingStyle="uri-list">
 </input>
 <output>
 <soap:body use="literal|encoded" encodingStyle="uri-list">
 </output>
 <fault>*
 <soap:fault name="nmtoken" use="literal|encoded" encodingStyle="uri-list">
 </fault>
 </operation>
 </binding>

 <port >
 <soap:address location="uri"/>
 </port>
</definitions>
 406

SOAP WSDL Extensions
SOAP WSDL Extensions Details

Overview This subsection describes each of the configuration attributes that can be
set up as part of the WSDL extensions for configuring the SOAP message
format plug-in for use with Artix. It discusses the following topics:

� �soap:binding element� on page 407.

� �soap:operation element� on page 409.

� �soap:body element� on page 410.

� �soap:fault element� on page 412.

� �soap:address element� on page 413.

soap:binding element The soap:binding element in a WSDL contract is defined within the
<binding> component, as follows:

Only one soap:binding element is defined in a WSDL contract. It is used to
signify that SOAP is the message format being used for the binding.
Table 33 describes the attributes defined within the soap:binding element.

<binding name="…" type="…">
 <soap:binding style="…" transport="…">

Table 33: Attributes for soap:binding

Configuration Attribute Explanation

style The value of the style attribute within the soap:binding element acts
as the default for the style attribute within each soap:operation
element. It indicates whether request/response operations within this
binding are RPC-based (that is, messages contain parameters and return
values) or document-based (that is, messages contain one or more
documents).

Valid values are rpc and document. The specified value determines how
the SOAP Body within a SOAP message is structured.
407

CHAPTER 17 | SOAP Payload Format
If rpc is specified, each message part within the SOAP Body is a
parameter or return value and will appear inside a wrapper element
within the SOAP Body. The name of the wrapper element must match
the operation name. The namespace of the wrapper element is based on
the value of the soap:body namespace attribute. The message parts
within the wrapper element correspond to operation parameters and
must appear in the same order as the parameters in the operation. Each
part name must match the parameter name to which it corresponds.

For example, the SOAP Body of a SOAP request message (based on the
WSDL example in Example 143 on page 376) is as follows if the style is
RPC-based:

<SOAP-ENV:Body>
 <m:GetStudentGrade xmlns:m="URL">
 <StudentCode>815637</StudentCode>
 <Subject>History</Subject>
 </m:GetStudentGrade>
</SOAP-ENV:Envelope>

If document is specified, message parts within the SOAP Body appear
directly under the SOAP Body element as body entries and do not appear
inside a wrapper element that corresponds to an operation. For example,
the SOAP Body of a SOAP request message (based on the WSDL
example in Example 143 on page 376) is as follows if the style is
document-based:

<SOAP-ENV:Body>
 <StudentCode>815637</StudentCode>
 <Subject>History</Subject>
</SOAP-ENV:Envelope>

transport This defaults to the URL that corresponds to the HTTP binding in the
W3C SOAP specification (http://schemas.xmlsoap.org/soap/http). If
you want to use another transport (for example, SMTP), modify this
value as appropriate for the transport you want to use.

Table 33: Attributes for soap:binding

Configuration Attribute Explanation
 408

SOAP WSDL Extensions
soap:operation element A soap:operation element in a WSDL contract is defined within an
<operation> component, which is defined in turn within the <binding>
component, as follows:

A soap:operation element is used to encompass information for an
operation as a whole, in terms of input criteria, output criteria, and fault
information. Table 33 describes the attributes defined within a
soap:operation element.

<binding name="…" type="…" >
 <soap:binding style="…" transport="…">
 <operation name="…" >
 <soap:operation style="…" soapAction="…">

Table 34: Attributes for soap:operation

Configuration Attribute Explanation

style This indicates whether the relevant operation is RPC-based (that is,
messages contain parameters and return values) or document-based
(that is, messages contain one or more documents).

Valid values are rpc and document. See �soap:binding element� on
page 407 for more details of the style attribute.

The default value for soap:operation style is based on the value
specified for the soap:binding style attribute.

soapAction This specifies the value of the SOAPAction HTTP header field for the
relevant operation. The value must take the form of the absolute URI
that is to be used to specify the intent of the SOAP message.

Note: This attribute is mandatory only if you want to use SOAP over
HTTP. Leave it blank if you want to use SOAP over any other transport.
409

CHAPTER 17 | SOAP Payload Format
soap:body element A soap:body element in a WSDL contract is defined within both the <input>
and <output> components within an <operation> component, as follows:

A soap:body element is used to provide information on how message parts
are to be appear inside the body of a SOAP message. As explained in
�soap:operation element� on page 409, the structure of the SOAP Body
within a SOAP message is dependent on the setting of the soap:operation
style attribute.

Table 33 describes the attributes defined within the soap:body element.

<binding name="…" type="…">
 <soap:binding style="…" transport="…">
 <operation name="…">
 <soap:operation style="…" soapAction="…">
 <input>
 <soap:body use="…" encodingStyle="…" namespace="…">
 </input>
 <output>
 <soap:body use="…" encodingStyle="…" namespace="…">
 </output>
 </operation>

Table 35: Attributes for soap:body

Configuration Attribute Explanation

use This attribute indicates how message parts are used to denote data
types. Each message part relates to a particular data type that in turn
might relate to an abstract type definition or a concrete schema
definition.

An abstract type definition is a type that is defined in some remote
encoding schema whose location is referenced in the WSDL contract via
an encodingStyle attribute. In this case, types are serialized based on
the set of rules defined by the specified encoding style.

A concrete schema definition relates to types that are defined in the
WSDL contract itself, within a <schema> element within the <types>
component of the contract.

Valid values for soap:body use are encoded and literal.
 410

SOAP WSDL Extensions
If encoded is specified, the type attribute that is specified for each
message part (within the <message> component of the WSDL contract) is
used to reference an abstract type defined in some remote encoding
schema. In this case, a concrete SOAP message is produced by applying
encoding rules to the abstract types. The encoding rules are based on
the encoding style identified in the soap:body encodingStyle attribute.
The encoding takes as input the name and type attribute for each
message part (defined in the <message> component of the WSDL
contract). If the encoding style allows variation in the message format for
a given set of abstract types, the receiver of the message must ensure
they can understand all the format variations.

If literal is specified, either the element or type attribute that is
specified for each message part (within the <message> component of the
WSDL contract) is used to reference a concrete schema definition
(defined within the <types> component of the WSDL contract). If the
element attribute is used to reference a concrete schema definition, the
referenced element in the SOAP message appears directly under the
SOAP Body element (if the operation style is document-based) or under
a part accessor element that has the same name as the message part (if
the operation style is RPC-based). If the type attribute is used to
reference a concrete schema definition, the referenced type in the SOAP
message becomes the schema type of the SOAP Body (if the operation
style is documented-based) or of the part accessor element (if the
operation style is document-based).

The use attribute is mandatory.

encodingStyle This attribute is used when the soap:body use attribute is set to
encoded. It specifies a list of URIs (each separated by a space) that
represent encoding styles that are to be used within the SOAP message.
The URIs should be listed in order, from the most restrictive encoding to
the least restrictive.

This attribute can also be used when the soap:body use attribute is set
to literal, to indicate that a particular encoding was used to derive the
concrete format, but that only the specified variation is supported. In this
case, the sender of the SOAP message must conform exactly to the
specified schema.

Table 35: Attributes for soap:body

Configuration Attribute Explanation
411

CHAPTER 17 | SOAP Payload Format
soap:fault element A soap:fault element in a WSDL contract is defined within the <fault>
component within an <operation> component, as follows:

Only one soap:fault element is defined for a particular operation. The
operation must be a request-response or solicit-response type of operation,
with both <input> and <output> elements. The soap:fault element is used
to transmit error and status information within a SOAP response message.

namespace If the soap:operation style attribute is set to rpc, each message part
within the SOAP Body of a SOAP message is a parameter or return value
and will appear inside a wrapper element within the SOAP Body. The
name of the wrapper element must match the operation name. The
namespace of the wrapper element is based on the value of the
soap:body namespace attribute.

Table 35: Attributes for soap:body

Configuration Attribute Explanation

<binding name="…" type="…">
 <soap:binding style="…" transport="…">
 <operation name="…">
 <soap:operation style="…" soapAction="…">
 <input>
 <soap:body use="…" encodingStyle="…">
 </input>
 <output>
 <soap:body use="…" encodingStyle="…">
 </output>
 <fault>
 <soap:fault name="…" use="…" encodingStyle="…"
 </fault>
 </operation>
</binding>

Note: A fault message must consist of only a single message part. Also, it
is assumed that the soap:operation style element in the WSDL is set to
document, because faults do not contain parameters.
 412

SOAP WSDL Extensions
Table 33 describes the attributes defined within the soap:fault element.

soap:address element The soap:address element in a WSDL contract is defined within the <port>
component within the <service> component, as follows:

Only one soap:address element is defined in a WSDL contract. It is only
specified when you want to use SOAP over HTTP. If you want to use SOAP
over a different transport (for example, IIOP), the element name in this case
is iiop:address. Similarly, if you want to use a different payload format
over HTTP, the http-conf:client URL attribute is used instead.

Table 36: soap:fault attributes

Configuration Attribute Explanation

name This specifies the name of the fault. This relates back to the name
attribute for the <fault> element specified for the corresponding
operation within the <portType> component of the WSDL contract.

use This attribute is used in the same way as the use attribute within the
soap:body element. See �use� on page 410 for more details.

encodingStyle This attribute is used in the same way as the encodingStyle attribute
within the soap:body element. See �encodingStyle� on page 411 for
more details.

<service name="…">
 <port binding="…" name="…">
 <soap:address location="…">
 </port>
</service>

Note: When you are using SOAP over HTTP, the http-conf:client and
http-conf:server elements can still be validly specified as peer elements
of the soap:address element. See the "Using the HTTP Plug-in" chapter of
this guide for more details of http-conf:client and http-conf:server.
413

CHAPTER 17 | SOAP Payload Format
Table 33 describes the location attribute defined within the soap:address
element.

Table 37: Attribute for soap:address

Configuration Attribute Explanation

location This specifies the URL of the server to which the client request is being
sent.

Valid values are of the form:

http://myserver/mypath/
https://myserver/mypath
http://myserver:9001/mypath

The soap:address element is mandatory if you want to use SOAP over
HTTP. It does not need to be set if you want to use SOAP over any other
transport.
 414

Supported XML Types
Supported XML Types

Overview This section provides an overview of the XML data types that are supported
by SOAP with Artix. It discusses the following topics:

� �Supported simple (built-in) types� on page 415.

� �Other supported types� on page 416.

Supported simple (built-in) types The following simple (built-in) types are supported:

� xsd:string

� xsd:int

� xsd:long

� xsd:short

� xsd:float

� xsd:double

� xsd:boolean

� xsd:byte

� xsd:decimal

� xsd:dateTime

� xsd:base64Binary

� xsd:hexBinary

Note: Artix does not currently support the use of multipart/related MIME
attachments with SOAP.
415

CHAPTER 17 | SOAP Payload Format
Other supported types The following list provides an overview (and in some cases an example of)
other supported types:

Type Description/Example

Enumeration For example:

<xsd:element name="EyeColor"
type="EyeColorType"/>

<xsd:simpleType name="EyeColorType" >
 <xsd:restriction base="xsd:string" >
 <xsd:enumeration value="Green" />
 <xsd:enumeration value="Blue" />
 <xsd:enumeration value="Brown" />
 </xsd:restriction>
</xsd:simpleType>

<xsd:complexType> For example:

<xsd:complexType name="USAddress">
 <xsd:sequence>
 <xsd:element name="name"
 type="xsd:string"/>
 <xsd:element name="street"
 type="xsd:string"/>
 <xsd:element name="city"
 type="xsd:string"/>
 <xsd:element name="state"
 type="xsd:string"/>
 <xsd:element name="zip"
 type="xsd:decimal"/>
 </xsd:sequence>
 <xsd:attribute name="country"
 type="xsd:NMTOKEN"
 fixed="US"/>
</xsd:complexType>

Circular references that can occur with, for
example, circular linked lists are not supported.

xsd:attribute For example:

<xsd:attribute name="country"
 type="xsd:NMTOKEN"
 fixed="US"/>
 416

Supported XML Types
xsd:element Occurence constraints (minOccurs and
maxOccurs) for xsd:element within
xsd:sequence. For example:

<xsd:complexType name="PurchaseOrderType">
 <xsd:sequence>
 <xsd:element name="shipTo"

type="USAddress"/>
 <xsd:element name="billTo"

type="USAddress"/>
 <xsd:element ref="comment"

minOccurs="0"/>
 <xsd:element name="items"

type="Items"/>
 </xsd:sequence>
 <xsd:attribute name="orderDate"
 type="xsd:date"/>

</xsd:complexType>

<xsd:ref> Attribute for reference to global elements.

Derived simple
types.

Derived simple types by restriction of an existing
simple type. For example:

<xsd:simpleType name="myInteger">
 <xsd:restriction base="xsd:integer">
 <xsd:minInclusive value="10000"/>
 <xsd:maxInclusive value="99999"/>
 </xsd:restriction>
</xsd:simpleType>

Array derived from
soap:Array.

Array derived from soap:Array by restriction
using the wsdl:arrayType attribute. For example:

<complexType name="ArrayOfInteger">
 <complexContent>
 <restriction base="soapenc:Array">
 <attribute

ref="soapenc:arrayType"

wsdl:arrayType="xsd:int[]"/>
 </restriction>
 </complexContent>
</complexType>

Type Description/Example
417

CHAPTER 17 | SOAP Payload Format
<xsd:sequence> For example:

<xsd:complexType name="PurchaseOrderType">
 <xsd:sequence>
 <xsd:element name="shipTo"

type="USAddress"/>
 <xsd:element name="billTo"

type="USAddress"/>
 <xsd:element name="items"

type="Items"/>
 </xsd:squence>
</xsd:complexType>

In this case, minOccurs and maxOccurs attributes
are ignored.

<xsd:choice> For example:

<xsd:complexType name="PurchaseOrderType">
 <xsd:sequence>
 <xsd:choice>
 <xsd:group ref="shipAndBill"/>
 <xsd:element name="singleUSAddress"
 type="USAddress"/>
 </xsd:choice>
 <xsd:element name="items"

type="Items"/>
 </xsd:sequence>
</xsd:complexType>

In this case, minOccurs and maxOccurs attributes
are ignored.

<xsd:all> For example:

<xsd:complexType name="PurchaseOrderType">
 <xsd:all>
 <xsd:element name="shipTo"

type="USAddress"/>
 <xsd:element name="billTo"

type="USAddress"/>
 <xsd:element name="items"

type="Items"/>
 </xsd:all>
</xsd:complexType>

Type Description/Example
 418

Supported XML Types
Complex type
derived from simple
type.

For example:

<xsd:element name="internationalPrice">
 <xsd:complexType>
 <xsd:simpleContent>
 <xsd:extension

base="xsd:decimal">
 <xsd:attribute

name="currency"

type="xsd:string"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>
</xsd:element>

Type Description/Example
419

CHAPTER 17 | SOAP Payload Format
 420

Glossary
B Binding

A binding associates a specific protocol and data format to operations defined
in a portType.

C Connection
An established communication link between any two Artix endpoints. Also
the representation of such a link in System Designer, which displays
connection characteristics such as its binding.

Contract
An Artix contract is a WSDL file that defines the interface and all connection
(binding) information for that interface. A contract contains two components:
logical and physical. The logical contract defines things that are independent
of the underlying transport and wire format: �portType�, �Operation�, �Message�,
�Type�, and �Schema.�

The physical contract defines the wire format, middleware transport, and
service groupings, as well as the mapping between the portType �operations�
and wire formats, and the buffer layout for fixed formats and extensors, The
physical contract defines: �Port,� �Binding� and �Service.�

D Distillation
The process by which Artix helps the user reconcile type information among
WSDL, message formats, and marshalling schemes. Artix supports only typed
contracts, and type support for conversions is limited by the WSDL type
meta-model and by the types supported for a specific marshalling. For
example, ANYs are not supported in GIOP, and must be replaced with the
typed data definition for the specific case.

E Embedded Mode
Operational mode in which an application directly invokes Artix APIs. Code
generated by System Designer is compiled into the application program. This
provides the highest switch performance but is also the most invasive to the
applications.
421

CHAPTER 18 |
End-point
The runtime deployment of one or more contracts, where one or more
transports and its marshalling is defined, and at least one contract results in
a generated stub or skeleton (thus an end-point can be compiled into an
application).

H Host
The network node on which a particular switch (service) resides. Also the
representation of that node (in the context of an integration project) in Service
Designer.

I IntelliJ
An integrated development environment provided by JetBrains. The Artix
developer tools are accessed via this environment.

L Language Binding
Support for a specified programming language, which allows Artix to generate
server skeletons, client stubs, or both from a contract. Use of a language
binding requires the Artix runtime to be linked with the application.

M Marshalling Format
A marshalling format controls the layout of a message to be delivered over a
transport. A marshalling format is bound to a transport in the WSDL definition
of a Port and its binding. A binding can also be specified in a logical contract
portType, which allows for a logical contract to have multiple bindings and
thus multiple wire message formats for the same contract.

R Routing
The redirection of a message from one WSDL binding to another. Routing
rules apply to an end-point, and the specification of routing rules is required
for an Artix standalone service. Artix supports topic-, subject- and
content-based routing. Topic- and subject-based routing rules can be fully
expressed in the WSDL contract. However, content-based routing rules may
need to be placed in custom handlers (C plug-ins). Content-based routing
handler plug-ins are dynamically loaded.
 422

S Service
An Artix service is instance of an Artix runtime deployed with one or more
contracts, but no generated language bindings (contrast this with end-point).
The service acts as a daemon that has no compile-time dependencies. A
service is dynamically configured by deploying one or more contracts on it.

Standalone Mode
Operational mode in which an Artix switch runs in a separate process, and is
invoked as a service. This is the least invasive approach but provides the
lowest performance.

Switch
The implementation of an Artix WSDL service contract. Also the
representation of such a service contract in System Designer.

System
A collection of services�for example, an WebSphere MQ system with several
different queues on it.

System Designer
The main design tool within the Artix development tool suite. This component
lets the developer graphically describe the integration project in terms of hosts,
systems, services, and connections.

System Diagram
A diagram produced by System Designer, which represents the integration
project being solved by Artix.

T Transport Plug-In
A plug-in module that provides wire-level interoperation with a specific type
of middleware. When configured with a given transport plug-in, Artix will
interoperate with the specified middleware at a remote location or in another
process. The transport is specified in the �Port� property in of a contract.
423

CHAPTER 18 |
 424

Index

A
Adaptive Runtime Architecture 31
Address specification

CORBA 204
IIOP 315

ApplicationId data type 148
arrays

CORBA 182
ART 31
Artix contract

logical view 23
physical view 25

Artix Designer
binding editor 198

B
begin_session() 118
below_capacity() 105
binding 8
binding element 25
bindings

client-side 38
CORBA 196

bus contracts 3

C
configuration variables

data type 34
constructed 34

configuring IIOP 316
corba:address 204
corba:alias 181
corba:array 182
corba:binding 196
corba:case 180
corba:enum 176
corba:enumerator 177
corba:excpetion 185
corba:fixed 177
corba:member 176, 185
corba:operation 196
corba:param 197
corba:policy 204
corba:raises 197
corba:return 197
corba:struct 176
corba:union 180
corba:unionbrach 180

D
_DEFAULT in logging 150

E
Embedded mode 4
endpointNotExistFault 102
end_session() 124
enumerations

CORBA 176
EventId data type 148
EventParameters data type 149
EventPriority data type 149
exceptions

CORBA 185
extension 191

F
Field Manipulation Language 286
fixed:binding 332
fixed:body 333
fixed:enumeration 336

fixedValue 336
fixed:field 333

bindingOnly 335
fixedValue 335
format 334
size 334

fixed:operation 332
fixed:sequnce 337
fixed data types

CORBA 177
FML 286
fml:binding 291
fml:element 291
fml:idNameMapping 291
425

INDEX
fml:operation 291
format_message() 150

G
get_all_endpoints() 119
getendpoints() 120
get_input_message_attributes() 122
get_port() 121
getservice_endpoint() 103

H
high_water_mark 40

I
ignorecase 80
iiop:address 315
iiop:payload 316
iiop:policy 316
initial_threads 40
interceptors

client request-level 38
IOR specification 204, 315
IT_Bus::get_service() 104
IT_Bus_Services::ActiveSession::getsession_id() 11

8
IT_Bus_Services::renewSessionFaultException 123
IT_Bus_Services::SessionID 118
IT_LOG_MESSAGE() macro 131
IT_LOG_MESSAGE_1() macro 132

L
LocatorServiceClient 101
LOG_ALL_EVENTS 149
LOG_ALL_INFO 150
LOG_ERROR 150
LOG_FATAL_ERROR 150
logical portion 3
logical view 23
LOG_INFO 149
LOG_INFO_HIGH 149
LOG_INFO_LOW 149
LOG_INFO_MED 149
LOG_NO_EVENTS 149
LOG_WARNING 150
lookup_endpoint() 102
low_water_mark 41
 426
M
MIB

definition 135
mq:client 271, 281
mq:server 271, 281

N
namespaces

WebSphere MQ 272
nillable 193

O
orb_plugins 36

P
physical portion 3
physical view 25

defining 25
plugins

corba 36
fixed 37
fml 37
G2 37
http 36
mq 36
soap 37
tibrv 36
tunnel 36
tuxedo 36
ws_orb 36, 219

plugins:locator:peer_timeout 48, 106
plugins:locator:service_url 48
plugins:locator:wsdl_url 49
plugins:routing:use_pass_through 44
plugins:session_endpoint_manager:default_group 5

2
plugins:session_endpoint_manager:endpoint_manag

er_url 52
plugins:session_endpoint_manager:header_validatio

n 52
plugins:session_endpoint_manager:peer_timout 49,

106, 125
plugins:session_endpoint_manager:wsdl_url 52
plugins:session_manager:peer_timeout 125
plugins:session_manager_service:peer_timeout 50
plugins:session_manager_service:service_url 50
plugins:sm_simple_policy:max_concurrent_sessions

51

INDEX
plugins:sm_simple_policy:max_session_timeout 51,
118

plugins:sm_simple_policy:min_session_timeout 51,
118

plugins:tuxedo:server 47
port 8
portType 8, 17

R
reached_capacity() 105
renew_session() 123
report_event() 152
report_message() 153
routing

broadcast 78
failover 79
fanout 78

routing:contains 81
routing:destination 73

port 73
service 73

routing:empty 81
routing:endswith 81
routing:equals 80

name 80
routing:greater 80
routing:less 80
routing:nonempty 81
routing:operation 75

name 75
target 75

routing:propagateInputAttribute 82
routing:propagateOutputAttribute 83
routing:route 72

multiRoute 78, 79
failover 79
fanout 78

name 72
routing:source 72

port 72
service 72

routing:startswith 81
routing:transportAttribute 80

S
service access point 8, 21, 164
service element 25
SessionManagerClient 117
setendpoint_group() 118
setprefered_renew_timeout() 118
setservice_qname() 102
setsession_id() 119
size 334
SNMP

definition 134
Management Information Base 135

snmp_log_stream 139
soapenc:base64 187
Specifying POA policies 204, 316
Standalone mode 4
structures

CORBA 176
SubsystemId data type 150

T
tagged:binding 354
tagged:body 355
tagged:case 359
tagged:choice 359
tagged:enumeration 357
tagged:field 356
tagged:operation 355
tagged:sequence 357
thread_pool:high_water_mark 40
thread_pool:initial_threads 40
thread_pool:low_water_mark 41
thread pool policies 40

initial number of threads 40
maximum threads 40
minimum threads 41

tibrv:binding 301
tibrv:input 301
tibrv:input@messageNameFieldPath 301
tibrv:input@messageNameFieldValue 301
tibrv:input@sortFields 301
tibrv:operation 301
tibrv:output 301
tibrv:output@messageNameFieldPath 301
tibrv:output@messageNameFieldValue 301
tibrv:output@sortFields 301
tibrv:port 305
tibrv:port@bindingType 307
tibrv:port@callbackLevel 307
tibrv:port@clientSubject 305
tibrv:port@cmListenerCancelAgreements 310
tibrv:port@cmQueueTransportClientName 310
tibrv:port@cmQueueTransportCompleteTime 311
427

INDEX
tibrv:port@cmQueueTransportSchedulerActivation 3
11

tibrv:port@cmQueueTransportSchedulerHeartbeat 3
10

tibrv:port@cmQueueTransportSchedulerWeight 310
tibrv:port@cmQueueTransportServerName 310
tibrv:port@cmQueueTransportWorkerTasks 310
tibrv:port@cmQueueTransportWorkerWeight 310
tibrv:port@cmSupport 309
tibrv:port@cmTransportClientName 309
tibrv:port@cmTransportDefaultTimeLimit 309
tibrv:port@cmTransportLedgerName 309
tibrv:port@cmTransportRelayAgent 309
tibrv:port@cmTransportRequestOld 309
tibrv:port@cmTransportServerName 309
tibrv:port@cmTransportSyncLedger 309
tibrv:port@serverSubject 305
tibrv:port@stringEncoding 308
tibrv:port@transportBatchMode 308
tibrv:port@transportDaemon 308
tibrv:port@transportNetwork 308
tibrv:port@transportService 308
TibrvMsg 301
Timestamp data type 151
tuxedo:server 293
typedefs

CORBA 181

U
unions

Artix mapping 179
CORBA 178, 180
logical description 178

use_input_message_attributes 121

V
value 336

W
W3C 8
Web Service Definition Language 3
Web Services Definition Language 8
WebSphere MQ

AccessMode 275
AccountingToken 280
ApplicationData 280
ConnecitonName 274
ConnectionFastPath 274
 428
ConnectionReusable 274
Convert 280
CorrelationId 280
CorrelationStyle 274
DeliveryMode 277
FormatType 278
MessageExpiry 276
MessageId 280
MessagePriority 277
ModelQueueName 273
QueueManagerName 273
QueueName 273
ReplyQueueManager 273
ReplyQueueName 273
ReportOption 277
Timeout 276
Transactional 277
UsageStyle 274

World Wide Web Consortium 8
WSDL 3, 8
WSDL endpoint 8
wsdltocorba 202, 209

X
xmlformat:binding 349
XSD 11
xsd:base64Binary 187
xsd:hexBinary 187

INDEX
429

INDEX
 430

	List of Figures
	List of Tables
	Preface
	Introduction to Using Artix
	The Artix Bus
	The Artix Design Process

	Understanding Artix Contracts
	Web Services Description Language Basics
	Abstract Data Type Definitions
	Abstract Message Definitions
	Abstract Interface Definitions
	Mapping to the Concrete Details
	Artix Contract Specifics
	The Logical Section
	The Physical Section

	Configuration
	Establishing the Host Computer Environment
	Configuring Artix Runtime Behavior
	Runtime Configuration Variables
	ORB Plug-ins List
	Binding Lists
	Thread Pool Control

	Artix Plug-in Configuration
	Routing Plug-in
	CORBA Plug-in
	TIBCO Rendezvous Plug-in
	Tuxedo Plug-in
	Locator Service Plug-in
	Locator Service Endpoint Plug-in
	Session Manager Plug-in
	Session Manager Simple Policy Plug-in
	Session Manager Endpoint Plug-in

	Artix Standalone Service
	The Artix Standalone Service
	Configuring the Service
	Starting and Stopping the Service
	Installing the Service as a Windows Service
	Contracts for the Standalone Service

	Routing
	Artix Routing
	Configuring Artix to Use Routing
	Compatibility of Ports and Operations
	Defining Routes in Artix Contracts
	Using Port-Based Routing
	Using Operation-Based Routing
	Advanced Routing Features

	Attribute Propagation through Routes
	Routing with Artix Designer
	Error Handling

	Using the Artix Locator Service
	Deploying the Locator
	Registering a Server with the Locator
	Obtaining References from the Locator
	Controlling Server Workloads
	Fault Tolerance

	Using the Artix Session Manager
	Deploying the Session Manager
	Registering a Server with the Session Manager
	Working with Sessions
	Fault Tolerance

	Artix Logging and SNMP Support
	Artix Logging
	Using Trace Macros
	Application Server Platform Trace Macros

	Logging to a File
	Using the SNMP Logging Plug-in
	Using the XML Logging Plug-in
	IT_Logging Overview
	IT_Logging::LogStream Interface
	Example
	Using the Logging Functionality

	Performance Logging

	Load Balancing
	Load Balancing with the Artix Locator
	Load Balancing with CORBA

	Using the CORBA Plug-in
	CORBA Type Mapping
	Primitive Type Mapping
	Complex Type Mapping
	Mapping XMLSchema Features that are not Native to IDL

	Modifying a Contract to Use CORBA
	Adding a CORBA Binding
	Adding a CORBA Port

	Generating IDL from an Artix Contract
	Generating a Contract from IDL
	Configuring Artix to Use the CORBA Plug-in
	Using the CORBA Naming Service
	Embedding Artix in a CORBA Application

	Using the HTTP Plug-in
	HTTP Overview
	Adding an HTTP Port
	Adding an HTTP Port for Non-Secure Connections
	Adding an HTTP Port for Secure Connections

	HTTP WSDL Extensions
	HTTP WSDL Extensions Overview
	HTTP WSDL Extensions Details

	HTTP Transport Attributes
	Transport Attributes Overview
	Server Transport Attributes
	Client Transport Attributes

	Using the WebSphere MQ Plug-in
	Introduction
	Describing an Artix WebSphere MQ Port
	Configuring an Artix WebSphere MQ Port
	Adding an WebSphere MQ Port to an Artix Contract

	Using the Tuxedo Plug-in
	Introduction
	Using FML Buffers
	Mapping FML Buffer Descriptions to Artix Contracts

	Using the Tuxedo Transport
	Embedding Artix in the Tuxedo Container

	Using the TIBCO Rendezvous Plug-in
	Introduction
	Using TibrvMsg
	Using the TIB/RV Transport

	Using the IIOP Tunnel
	Introduction to IIOP Tunnels
	Modifying a Contract to Use the IIOP Tunnel
	Using the CORBA Naming Service

	Payload Formats
	G2++ Data Format
	Fixed Record Length Data Format
	Fixed Record Length Message Data Mapping
	Adding a Fixed Record Length Binding to an Artix Contract

	Pure XML Format
	Tagged Data Format
	Tagged Data Mapping
	Adding a Tagged Data Binding to an Artix Contract

	SOAP Payload Format
	Overview of SOAP
	Background to SOAP
	SOAP Messages
	SOAP Encoding of Data Types

	Adding a SOAP Binding
	Adding a Port for SOAP over HTTP
	Adding a Port for Non-Secure Connections
	Adding a Port for Secure Connections

	SOAP WSDL Extensions
	SOAP WSDL Extensions Overview
	SOAP WSDL Extensions Details

	Supported XML Types

	Glossary
	Index

