
Deploying & Managing Artix
Solutions

Version 2.1, June 2004

IONA Technologies PLC and/or its subsidiaries may have patents, patent applications,
trademarks, copyrights, or other intellectual property rights covering subject matter in
this publication. Except as expressly provided in any written license agreement from
IONA Technologies PLC, the furnishing of this publication does not give you any license
to these patents, trademarks, copyrights, or other intellectual property. Any rights not
expressly granted herein are reserved.

IONA, IONA Technologies, the IONA logo, Orbix, Orbix Mainframe, Orbix Connect, Artix,
Artix Mainframe, Artix Mainframe Developer, Mobile Orchestrator, Orbix/E, Orbacus,
Enterprise Integrator, Adaptive Runtime Technology, and Making Software Work Together
are trademarks or registered trademarks of IONA Technologies PLC and/or its
subsidiaries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.

CORBA is a trademark or registered trademark of the Object Management Group, Inc. in
the United States and other countries. All other trademarks that appear herein are the
property of their respective owners.

COPYRIGHT NOTICE

No part of this publication may be reproduced, republished, distributed, displayed, stored in a retrieval system
or transmitted, in any form or by any means, photocopying, recording or otherwise, without prior written consent
of IONA Technologies PLC. No third party intellectual property right liability is assumed with respect to the use of
the information contained herein. IONA Technologies PLC and/or its subsidiaries assume no responsibility for
errors or omissions contained in this publication. This publication and features described herein are subject to
change without notice.

Copyright © IONA Technologies PLC. All rights reserved.

All products or services mentioned in this publication are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: 23-Sep-2005

M 3 2 0 3

iii

Contents
List of Tables vii

List of Figures ix

Preface xi
What is Covered in this Book xi
Who Should Read this Book xi
How to Use this Book xii
Online Help xiii
Finding Your Way Around the Artix Library xiv
Additional Resources for Help xv
Typographical Conventions xv
Keying Conventions xvi

Part I Introduction

Chapter 1 Introduction to Artix 3
What is Artix? 4
Artix Concepts 7

Chapter 2 Deploying Artix Solutions: An Overview 9
Artix Deployment Modes 10
Embedded Application 11
Standalone Switching Service 13
Artix Locator 15
Artix Session Manager 17

CONTENTS

 iv

Part II Artix Configuration and Management

Chapter 4 Configuring Artix 23
Establishing the Host Computer Environment 24
Artix Runtime Configuration 29

Chapter 5 Artix Configuration Reference 35
Artix Runtime Configuration Variables 36

ORB Plug-ins 37
Policies 41
Binding Lists 42
Thread Pool Control 44

Artix Plug-in Configuration Variables 46
Artix Endpoint Configuration 48
CORBA Plug-in 50
CORBA Codeset Plug-in 51
Locator Service 54
Locator Service Endpoint Plug-in 55
Response Time Collector 56
Routing Plug-in 59
Service Lifecycle 61
Session Manager 63
Session Manager Endpoint Plug-in 64
Session Manager Simple Policy Plug-in 65
SOAP Plug-in 66
Transformer Service 67
Tuxedo Plug-in 68
Web Service Chain Service 69
WSDL Publishing Service 71
XML File Log Stream 72

Chapter 6 Artix Logging and SNMP Support 75
Configuring Artix Logging 76
Using Artix TRACE Macros 79

Orbix TRACE Macros 81
logging_support.h 83

IT_Logging Module 90

CONTENTS

v

IT_Logging::LogStream Interface 94
Using the SNMP Logging Plug-in 97

Chapter 7 Enterprise Performance Logging 103
Enterprise Management Integration 104
Configuring Performance Logging 106
Logging Message Formats 111

Chapter 8 Using Artix with International Codesets 115
Introduction to International Codesets 116
Working with Codesets using SOAP 119
Working with Codesets using CORBA 120
Working with Codesets using Fixed Length Records 123
Working with Codesets using Message Interceptors 126
Routing with International Codesets 135

Part III Using Artix Services

Chapter 10 Artix Standalone Service 141
The Artix Standalone Service 142
Configuring the Standalone Service 144
Controlling the Standalone Service 146
Installing the Standalone Service as a Windows Service 148
Specifying Routing with the Standalone Service 150

Chapter 11 Using the Artix Locator Service 151
Overview of the Artix Locator Service 152
Deploying the Locator 155
Registering a Server with the Locator 160
Obtaining References from the Locator 162
Load Balancing 165
Controlling Server Workloads 166
Fault Tolerance 168

Chapter 12 Using the Artix Session Manager 169
Introduction to Session Management in Artix 170

CONTENTS

 vi

Deploying the Session Manager Service 175
Registering a Server with the Session Manager 181
Working with Sessions 184
Fault Tolerance 192

Chapter 13 Deploying a Service Chain 193
The Artix Chain Builder 194
Configuring the Artix Chain Builder 196

Chapter 14 Deploying the Artix Transformer 201
The Artix Transformer 202
Standalone Deployment 205
Deployment as Part of a Chain 208

Part IV Integrating with Other Middleware Systems

Chapter 16 Using Artix in a CORBA Environment 213
Embedding Artix in a CORBA Application 214
Using the CORBA Naming Service 217
Load Balancing with CORBA 219

Chapter 17 Embedding Artix in a BEA Tuxedo Container 225
Introduction 226
Embedding an Artix Process in a Tuxedo Container 227

Chapter 18 Integrating with Enterprise Java Beans 229
Artix EJB Integration 230
Configuring an Artix EJB proxy to use JNDI 232
Exposing a Stateless EJB 233

Glossary 235

Index 239

vii

List of Tables
Table 1: Artix Environment Variables 24

Table 2: Options to artix_env Script 27

Table 3: Artix Transport Plug-ins 37

Table 4: Artix Payload Format Plug-ins 38

Table 5: Artix Service Plug-ins 39

Table 6: Defaults for the Native Narrow Codeset 51

Table 7: Defaults for the Narrow Conversion Codesets 52

Table 8: Defaults for the Native Wide Character Codesets 52

Table 9: Defaults for the Wide Character Conversion Codesets 53

Table 10: IT_Logging Common Data Types, Methods, and Macros 90

Table 11: Performance Logging Plug-ins 106

Table 12: Artix log message arguments 111

Table 13: Orbix log message arguments 112

Table 14: Simple life cycle message formats arguments 113

Table 15: IANA Charset Names 117

Table 16: Configuration Variables for CORBA Native Codeset 120

Table 17: Configuration Variables for CORBA Conversion Codesets 121

Table 18: Artix Standalone Service Configuration Variables 144

Table 19: itartix_service Parameters 146

Table 20: itartix_service Install Parameters 148

Table 21: itartix_service Uninstall Parameters 149

Table 22: Artix Endpoint Configuration 196

Table 23: Artix Endpoint Configuration 205

Table 24: JNDI Initial Context Properties 232

LIST OF TABLES

 viii

ix

List of Figures
Figure 1: Artix Message Transporting 5

Figure 2: Embedded Artix Deployment 11

Figure 3: Standalone Artix Deployment 13

Figure 4: Standalone Artix Locator 15

Figure 5: Embedded Artix Locator 16

Figure 6: Standalone Artix Session Manager 17

Figure 7: Embedded Artix Session Manager 18

Figure 8: Overview of an Artix and IBM Tivoli Integration 105

Figure 9: Routing Internationalized Requests 136

Figure 10: Using Multiple Artix Daemons 143

Figure 11: Using a Single Artix Daemon 143

Figure 12: The Locator Plug-ins 153

Figure 13: Locator Load Balancing 154

Figure 14: The Session Manager Plug-ins 172

Figure 15: Chaining Four Servers to Form a Single Service 194

Figure 16: Artix Transformer Deployed as a Servant 203

Figure 17: Artix Transformer Loaded by Client 203

Figure 18: Artix Transformer Deployed with the Chain Builder 204

Figure 19: Exposing an EJB 231

LIST OF FIGURES

 x

xi

Preface
What is Covered in this Book
Deploying and Managing Artix Solutions explains how to configure, deploy,

and manage IONA Artix runtime solutions. It presents different approaches

to deployment topography, and the merits of each. This book also provides

detailed descriptions of the specific tasks involved in configuring and

launching Artix applications and services.

This book does discuss the specifics of the different middleware and

messaging products that Artix interacts with. Any discussion about the

features of specific middleware products or transports relates to how Artix

interacts with these features. It is assumed that you have a working

knowledge of the specific middleware products and transports you are

using.

Who Should Read this Book
The main audience of Deploying and Managing Artix Solutions is Artix

system administrators. However, anyone involved in designing a large scale

Artix solution will find the general discussions about Artix deployment

topographies and Artix services useful.

Knowledge of specific middleware or messaging transports is not required to

understand the general topics discussed in this book. However, if you are

using this book as a guide to deploying runtime systems, you should have a

working knowledge of the middleware transports that you intend to use in

your Artix solutions.

PREFACE

 xii

How to Use this Book

Part I, Introduction

If you are new to Artix, Chapter 1 and Chapter 2 provide a high-level

overview of using Artix to solve integration projects, and how Artix fits into a

software environment.

Part II, Configuring and Managing Artix

To learn how to configure a system to run Artix solutions, read Chapter 4.

This chapter describes how to set up your environment to run Artix services,

and explains the Artix configuration mechanism. Chapter 5 provides

detailed reference information on Artix configuration variables. It explains

how to configure your Artix services for optimal performance.

If you need to use the logging features of Artix, read Chapter 6. This

provides a detailed discussion of using the advanced logging features of

Artix. Chapter 7 provides an overview of integrating Artix with Enterprise

Management Systems (for example, IBM Tivoli and BMC Patrol).

To learn how Artix handles codeset conversions, read Chapter 8. This

chapter provides a detailed discussion of which payload formats support

international codesets and how each transport handles them. It also

provides a description of how Artix handles codeset conversions when

routing between endpoints.

Part III, Using Artix Services

If you are using any Artix services you may want to read one or more of the

following:

• Chapter 10 explains how to use Artix standalone service.

• Chapter 11 explains how to use the Artix locator service.

• Chapter 12 explains how to use the Artix session manager.

Note: The session manager is unavailable in some editions of Artix.
Please check the conditions of your Artix license to see whether your
installation supports the session manager.

PREFACE

xiii

Part IV, Integrating with Other Middleware Systems

If you are using Artix to integrate with another middleware product you may

want to read one or more of the following:

• Chapter 16 describes how to deploy Artix into a CORBA environment.

• Chapter 17 describes how to deploy Artix into a BEA Tuxedo

environment.

• Chapter 18 describes how to integrate Artix with a deployed J2EE

system.

Online Help
While using the Artix Designer you can access contextual online help,

providing:

• A description of your current Artix Designer screen.

• Detailed step-by-step instructions on how to perform tasks from this

screen.

• A comprehensive index and glossary.

• A full search feature.

There are two ways that you can access the online help:

• Click the Help button on the Artix Designer panel, or

• Select Contents from the Help menu.

Note: Tuxedo integration is unavailable in some editions of Artix.
Please check the conditions of your Artix license to see whether your
installation supports Tuxedo integration.

PREFACE

 xiv

Finding Your Way Around the Artix Library
The Artix library contains several books that provide assistance for any of the

tasks you are trying to perform. The remainder of the Artix library is listed

here, with an short description of each book.

If you are new to Artix

You may be interested in reading Learning About Artix. This book describes

the basic Artix concepts. It also walks you through an example of using Artix

to solve a real world problem using code provided in the product.

To design Artix solutions

You should read Designing Artix Solutions. This book provides detailed

information about using the Artix Designer GUI to create WSDL-based Artix

contracts, Artix stub and skeleton code, and Artix deployment descriptors.

This book also provides detailed information about Artix command-line

interface and the WSDL extensions used in Artix contracts. It also explains

the mappings between data types and Artix bindings.

To develop applications using Artix stub and skeleton code

Depending on your development environment you should read one or more

of the following:

• Developing Artix Applications in C++. This book discusses the

technical aspects of programming applications using the Artix C++

API.

• Developing Artix Applications in Java. This book discusses the

technical aspects of programming applications using the Artix Java

API.

To configure and manage your Artix solution

You should read Deploying and Managing Artix Solutions. This describes

how to configure and deploy Artix-enabled systems. It also discusses how to

manage them when they are deployed.

In addition, if you are integrating Artix with either the IBM Tivoli or BMC

Patrol Enterprise Management System, you should read:

• IONA Tivoli Integration Guide.

• IONA BMC Patrol Integration Guide.

PREFACE

xv

To learn more about Artix security

You should read the Artix Security Guide. This outlines how to enable and

configure Artix’s security features. It also discusses how to integrate Artix

solutions into a secure environment.

Have you got the latest version?

The latest updates to the Artix documentation can be found at http://

www.iona.com/support/docs. Compare the version details provided there

with the last updated date printed on the inside cover of the book you are

using (at the bottom of the copyright notice).

Additional Resources for Help
The IONA Knowledge Base (http://www.iona.com/support/knowledge_base/

index.xml) contains helpful articles, written by IONA experts, about Artix

and other products.

The IONA Update Center (http://www.iona.com/support/updates/index.xml)

contains the latest releases and patches for IONA products.

If you need help with this or any other IONA products, go to IONA Online

Support (http://www.iona.com/support/index.xml).

Comments on IONA documentation can be sent to

.

Typographical Conventions
This book uses the following typographical conventions:

Constant width Constant width (courier font) in normal text

represents portions of code and literal names of items

such as classes, functions, variables, and data

structures. For example, text might refer to the

CORBA::Object class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#include <stdio.h>

http://www.iona.com/support/docs
http://www.iona.com/support/docs
http://www.iona.com/support/knowledge_base/index.xml
http://www.iona.com/support/updates/index.xml
http://www.iona.com/support/index.xml
http://www.iona.com/support/index.xml

PREFACE

 xvi

Keying Conventions
This book uses the following keying conventions:

Italic Italic words in normal text represent emphasis and
new terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your
particular system. For example:

% cd /users/ your_name

Note: Some command examples may use angle
brackets to represent variable values you must
supply. This is an older convention that is replaced
with italic words or characters.

No prompt When a command’s format is the same for multiple
platforms, a prompt is not used.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

> The notation > represents the DOS or Windows
command prompt.

...

.

.

.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

[] Brackets enclose optional items in format and syntax
descriptions.

{} Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| A vertical bar separates items in a list of choices
enclosed in {} (braces) in format and syntax
descriptions.

Part I
Introduction

In this part This part contains the following chapters:

Introduction to Artix page 3

Deploying Artix Solutions: An Overview page 9

3

CHAPTER 1

Introduction to
Artix
Artix enables you to deploy integration solutions that are
middleware-neutral.

In this chapter This chapter contains the following sections:

What is Artix? page 4

Artix Concepts page 7

CHAPTER 1 | Introduction to Artix

 4

What is Artix?

Overview Artix provides a middleware connectivity solution that minimizes

invasiveness and prevents an organization from being locked into any one

middleware transport. For example, Artix can be used to connect a BEA

Tuxedo™ server to a CORBA client. Artix transparently handles the message

mapping and transformation between them. The Tuxedo server is unaware

that its client is using CORBA. For example, with Artix handling the

communication, the client could be changed to an IBM WebSphere MQ™

client without modifying the server.

Scalable infrastructure Artix also provides a great deal of configurability because it is built on

IONA’s Adaptive Runtime architecture (ART). All of Artix’s transport and

payload format support is encapsulated in individual plug-ins as are all of

the services provided with Artix. This allows Artix to be scaled to fit any

environment.

Artix message transporting Artix shields applications from the details of the transports used by

applications that they are communicating with, by providing on-the-wire

message transformation and mapping. Unlike the approach taken by

Enterprise Application Integration (EAI) products, Artix does not use an

intermediate canonical format; it transforms the messages only once.

What is Artix?

5

Figure 1 shows a high-level view of how a message passes through Artix.

The approach taken by Artix provides a high-level of throughput by avoiding

the overhead of making two transformations for each message.

Figure 1: Artix Message Transporting

CHAPTER 1 | Introduction to Artix

 6

Supported message transports Artix supports the following message transports:

• HTTP

• BEA Tuxedo

• IBM WebSphere MQ

• IIOP

• TIBCO Rendezvous™

• IIOP Tunnel

Supported payload formats Artix can automatically transform between the following payload formats:

• G2++

• FML (Tuxedo format)

• GIOP (CORBA format)

• FRL (Fixed Record Length)

• VRL (Variable Record Length)

• SOAP

• TibrvMsg (TIBCO Rendezvous format)

Artix Concepts

7

Artix Concepts

Overview This section explains some of the high-level concepts behind Artix. For

example, Artix contracts, and their components, and Artix deployment

modes. For more detailed information on Artix, see Learning About Artix.

Artix contracts An Artix contract defines the interaction of a Service Access Point (SAP) or

endpoint with Artix. Contracts are written using a superset of the standard

Web Service Definition Language (WSDL). Following the procedure

described by W3C, IONA has extended WSDL to support Artix’s advanced

functionality, and use of transports and formats other than HTTP and SOAP.

An Artix contract consists of two parts:

Logical

The logical portion of the contract defines the namespaces, messages, and

operations that the SAP exposes. This part of the contract is independent of

the underlying transports and wire formats. It fully specifies the data

structures and possible operation/interaction with the interface. It consists of

the WSDL tags <message> , <operation> , and <portType> .

Physical

The physical portion of the contract defines the transports, wire formats,

and routing information used to deliver messages to and from SAPs, over

the bus. This portion of the contract also defines which messages use each

of the defined transports and bindings. The physical portion of the contract

consists of the standard WSDL tags <binding> , <port> , and <operation> . It

is also the portion of the contract that may contain IONA WSDL extensions.

CHAPTER 1 | Introduction to Artix

 8

Deployment modes Applications that use Artix can be deployed in one of two ways:

Embedded mode

In embedded mode, an application is modified to invoke Artix functions

directly and locally, as opposed to invoking a standalone Artix service. This

approach is the most invasive to the application, but also provides the

highest performance. Embedded mode requires linking the application with

Artix-generated stubs and skeletons to connect client and server

(respectively) to Artix.

Standalone mode

In standalone mode, Artix runs as a separate process invoked as a service.

In this deployment mode, Artix provides a zero-touch integration solution on

the application side. When designing a system, you simply generate and

deploy the Artix contracts that specify each endpoint. Because a standalone

switch is not linked directly with the applications that use it (as in

embedded mode), a contract for standalone mode deployment must specify

routing information. This is the least efficient of the two modes.

For more detailed information on Artix deployment modes, see Chapter 2.

Advanced Features Artix also supports the following advanced functionality:

• Message routing based on the operation or the port, including routing

based on characteristics of the port.

• Transaction support over Tuxedo, WebSphere MQ, and CORBA.

• SSL and TLS support.

• Security support for Tuxedo and WebSphere MQ.

• Container-based deployment with IONA’s Orbix 6.0 or higher and

Tuxedo 7.1 or higher.

• Session management.

• Location services.

• Load balancing.

9

CHAPTER 2

Deploying Artix
Solutions: An
Overview
Artix can be deployed in a number of ways depending on the
complexity of your project and your system architecture.

In this chapter This chapter includes the following sections:

Artix Deployment Modes page 10

Embedded Application page 11

Standalone Switching Service page 13

Artix Locator page 15

Artix Session Manager page 17

CHAPTER 2 | Deploying Artix Solutions: An Overview

 10

Artix Deployment Modes

Overview All Artix components have two basic deployment modes:

• Embedded mode

• Standalone mode

Embedded mode Embedded mode links Artix functionality directly into an application. The

application invokes Artix functions directly and locally. Embedded mode

requires linking the application with Artix-generated stubs and skeletons.

Standalone mode Standalone mode places Artix functionality outside of the application space

and runs it as a separate process invoked as a service. In standalone mode,

Artix is completely described by an Artix contract that specifies which

services are to be connected, what transports are in use, and how the

services are linked.

These deployment modes can be combined in a number of ways to fit the

needs of your applications and environment. For example, you can deploy

the Artix session manager and an Artix router in standalone mode while

embedding the Artix bus in your client and server applications. Or you could

embed all of the Artix components into a server application.

Embedded Application

11

Embedded Application

Overview The most basic deployment of Artix is an application with Artix embedded

inside. In this scenario, the application can use one of the transports

supported by Artix, and the Artix bus is deployed within the application

itself. The application gets all of its configuration information from the Artix

configuration file and the Artix contract describing the applications interface.

Embedded configuration Figure 2 shows an application with Artix embedded in it. Artix retrieves its

configuration information from two places.

First, when the application first initializes the Artix bus, Artix pulls

information about what plug-ins need to be loaded and other runtime

information from one of the scopes in the Artix configuration file. Then when

the application then registers a servant or instantiates a proxy object, Artix

reads in the transport information from the Artix contract describing the

application’s interfaces.

Figure 2: Embedded Artix Deployment

CHAPTER 2 | Deploying Artix Solutions: An Overview

 12

Why use this pattern This pattern is the most common deployment pattern when deploying a

Web service or developing a client application that needs to access a

back-end server running on one of the transports Artix supports. Its

simplicity makes it easy to configure and deploy. Also, its configuration can

be easily modified.

Deploying a simple embedded

application

To deploy an application with Artix embedded in it, you would do the

following:

1. Ensure that the system’s runtime environment has been properly set up

to run Artix applications.

2. Optionally, you can edit the Artix configuration file to create a custom

configuration scope for the application. This enables you to control

which plug-ins are loaded, the logging level and location, and other

runtime features of the bus.

3. Edit the Artix contract for the application to ensure that the transport

details are correct for your system.

4. Place the application’s contract in the directory where the application

will look for it. Typically, this is the same directory as the executable.

5. Run the application with the correct command line arguments.

Standalone Switching Service

13

Standalone Switching Service

Overview When using Artix as a bridge between applications running on different

transports, Artix will often be deployed as a standalone switching service, as

shown in Figure 3. When deployed in this scenario, Artix will use at least

two transports and route between two or more applications.

Standalone configuration Similar to when Artix is deployed as an embedded piece of an application,

Artix loads its configuration from two places. The bus gets its runtime

configuration from the Artix configuration file. The transports get their

configuration information from the Artix contract describing the interfaces

being integrated.

However, both the configuration information and the contract describing the

interfaces are more complicated. Artix needs to load more plug-ins to act as

a switch. The routing plug-in also needs to be configured to load a contract

with the required routing rules, and a control process will need to be

configured to ensure that the switch can be shutdown gracefully. The Artix

contract will have multiple transport configuration and routing information

about how messages are passed through the switch.

Figure 3: Standalone Artix Deployment

CHAPTER 2 | Deploying Artix Solutions: An Overview

 14

Deploying a standalone switch Artix is configured for the standalone switching service by default. To deploy

Artix as a standalone switching service, do the following:

1. Ensure that the system’s runtime environment has been properly set up

to run Artix applications. See “Establishing the Host Computer

Environment” on page 24.

2. If you are using the standalone service as a router, you must add the

routing plug-in to the orb_plugins list, and configure the location of

the WSDL used by the router.

3. Ensure that the Artix contract that describes the your integration

contains the correct and routing extensor details (for example, the

routing source and destination).

4. Place your application’s contract in the directory where the application

looks for it. Alternatively, your configuration must specify the location

of the router's WSDL relative to where you are running the router.

5. Run the standalone Artix service.

For more detailed information, see Chapter 10.

Artix Locator

15

Artix Locator

Overview The Artix locator can be deployed as either a standalone service or an

embedded service. The locator differs from Artix applications in that it does

not redirect messages and it has a predefined contract.

Standalone locator Figure 4 shows how system using the Artix locator in standalone mode

would look. The locator uses its own contract to configure and advertise on

which port it can be contacted. Both the application and the Artix service

share a common Artix configuration file. However, they do not share a

configuration scope. This style of deploying the locator is beneficial because

it does not place additional load on the application. It is best suited for

locators that service a number of server processes.

Embedded locator Figure 5 shows a system in which the Artix locator is embedded in an

application. The application still requires two contracts. One for the

application and one for the locator. However, when the Artix locator is

embedded within an application the application and the locator share a

configuration scope.

Figure 4: Standalone Artix Locator

CHAPTER 2 | Deploying Artix Solutions: An Overview

 16

This style of deployment limits the number of separate processes that need

to be deployed on a system. It is useful when the locator instance is only

going to be servicing the application that it is embedded in.

Deploying a standalone Artix

locator

To deploy a standalone Artix locator, complete the following steps:

1. Build a standalone Artix locator. This is discussed in Developing Artix

Applications with C++.

2. Edit your Artix configuration file to include a configuration scope for

your standalone locator.

3. In the locator’s configuration scope, ensure that the locator loads the

required plug-ins.

4. In the locator’s configuration scope, specify the location of the contract

for this instance of the locator service.

These steps are discussed in more detail in “Using the Artix Locator Service”

on page 151.

Deploying the Artix locator

embedded in an application

To deploy the Artix locator embedded in an application, complete the

following steps:

1. Edit your application’s configuration scope to specify that the locator

plug-ins are loaded at runtime.

2. In the application’s configuration scope, specify the location of the

contract for locator service instance used by this application.

These steps are discussed in more detail in “Using the Artix Locator Service”

on page 151.

Figure 5: Embedded Artix Locator

Artix Session Manager

17

Artix Session Manager

Overview The Artix session manager enables Web services to engage in statefull

communication. It can be deployed as either a standalone service or an

embedded service. The session manager, like the Artix locator, has a

predefined contract and service specific configuration information.

Standalone session manager Figure 4 shows a system using the Artix session manager in standalone

mode. The session manager uses its own contract to configure and advertise

how it can be contacted and how its interface is configured.

In addition to the standalone session manager, your application loads an

endpoint manager plug-in which also requires a contract defining the

interface between the application and the session manager. Both the

application and the session manager share a common Artix configuration

file.

The standalone session manager instance and the application have separate

configuration scopes. However, the configuration information for the

endpoint manager is placed in the application’s configuration scope. This

style of deploying the session manager is best suited for scenarios where the

session manager manages a number of endpoints.

Figure 6: Standalone Artix Session Manager

CHAPTER 2 | Deploying Artix Solutions: An Overview

 18

Embedded session manager Figure 5 shows a system in which the Artix session manager is embedded

within an application. The application still requires three contracts. One for

the application, one for the session manager, and one for the endpoint

manager. However, when the Artix session manager is embedded within an

application, the application and the session manager share a configuration

scope. This style of deployment limits the number of separate processes that

need to be deployed on a system and is useful when the session manger is

only servicing the application in which it is embedded.

Deploying a standalone Artix

session manager

To deploy a standalone Artix session manager, complete the following steps:

1. Build a standalone Artix session manager. This is discussed in

Developing Artix Applications with C++.

2. Edit your Artix configuration to include a configuration scope for your

standalone session manager.

3. In the session manager’s configuration scope, ensure that the session

manager loads the required plug-ins.

4. In the session manager’s configuration scope, specify the location of

the contract for this instance of the session management service.

Figure 7: Embedded Artix Session Manager

Artix Session Manager

19

5. In the application’s configuration scope, edit the orb_plugins list to

include the required plug-ins for the endpoint manager.

6. In the application’s configuration scope, specify the location of the

contract for this instance of the endpoint manager.

These steps are discussed in more detail in “Using the Artix Session

Manager” on page 169.

Deploying an embedded Artix

session manager

To deploy the Artix session manager embedded in an application, complete

the following steps:

1. Edit your application’s configuration scope to specify that the session

manager’s plug-ins are loaded at runtime.

2. Edit your application’s configuration scope to specify that the endpoint

manager’s plug-ins are loaded at runtime.

3. In the application’s configuration scope, specify the location of the

contract for session manager instance used by this application.

4. In the application’s configuration scope, specify the location of the

contract for this instance of the endpoint manager.

These steps are discussed in more detail in “Using the Artix Session

Manager” on page 169.

CHAPTER 2 | Deploying Artix Solutions: An Overview

 20

Part II
Artix Configuration and

Management

In this part This part contains the following chapters:

Configuring Artix page 23

Artix Configuration Reference page 35

Artix Logging and SNMP Support page 75

Enterprise Performance Logging page 103

Using Artix with International Codesets page 115

23

CHAPTER 4

Configuring Artix
Artix’s runtime configuration provides a great deal of control
over how Artix systems perform. This chapter explains how to
set up your system environment, and provides an overview of
Artix runtime configuration.

In this chapter This chapter discusses the following topics:

Overview There are several tasks involved in creating an environment in which Artix

applications can run:

• Establishing the host computer environment.

• Establishing common and application-specific Artix runtime

environments.

• Configuring plug-ins to provide optimal performance.

Establishing the Host Computer Environment page 24

Artix Runtime Configuration page 29

CHAPTER 4 | Configuring Artix

 24

Establishing the Host Computer Environment

Overview To use the Artix design tools and the Artix runtime environment, the host

computer must have several IONA-specific environment variables set. These

can be configured during installation, or set later by running the provided

artix_env script. This section includes the following:

• Setting environment variables.

• Running the artix_env script.

Setting environment variables Artix requires that the following environment variables be set on your

system:

• JAVA_HOME

• IT_PRODUCT_DIR

• IT_CONFIG_FILE

• IT_IDL_CONFIG_FILE

• IT_CONFIG_DIR

• IT_CONFIG_DOMAINS_DIR

• IT_DOMAIN_NAME

• PATH

These environment variables are explained in Table 1:

Table 1:Artix Environment Variables

Variable Description

JAVA_HOME The directory path to your system’s JDK is

specified with the system environment

variable JAVA_HOME. This must be set if you

wish to use the Artix Designer GUI.

Establishing the Host Computer Environment

25

IT_PRODUCT_DIR IT_PRODUCT_DIR points to the top level of

your IONA product installation. For example,

if you install Artix into the C:\Program

Files\IONA directory of your Windows

system, you would set IT_PRODUCT_DIR to

point to that directory.

Note: If you have other IONA products
installed and you choose not to install them
into the same directory tree, you must reset
IT_PRODUCT_DIR each time you switch IONA
products.

You can override this variable using the

-ORBproduct_dir command-line parameter

when running your Artix applications.

IT_CONFIG_FILE IT_CONFIG_FILE specifies the location of the

configuration file that Artix services use by

default. You can overide this setting by using

the -ORBdomain_name and

-ORBconfig_domains_dir command-line

options.

IT_IDL_CONFIG_FILE IT_IDL_CONFIG_FILE specifies the

configuration used by the Artix IDL compiler.

If this variable is not set, you will be unable

to run the IDL to WSDL tools provided with

Artix. The configuration file for the Artix IDL

compiler is set as follows. The default

location is:

UNIX

INSTALL_DIR/artix/2.1/etc/idl.cfg .

Windows

INSTALL_DIR\artix\2.1\etc\idl.cfg .

Note: Do not modify the default IDL
configuration file.

Table 1:Artix Environment Variables

Variable Description

CHAPTER 4 | Configuring Artix

 26

IT_CONFIG_DIR IT_CONFIG_DIR specifies the root

configuration directory. The default root

configuration directory is /etc/opt/iona on

UNIX, and product-dir\etc on Windows.

You can override this variable using the

-ORBconfig_dir command-line parameter.

IT_CONFIG_DOMAINS_DIR IT_CONFIG_DOMAINS_DIR specifies the

directory where Artix searches for its

configuration files. The configuration

domain’s directory defaults to

ORBconfig_dir/domains on UNIX, and

ORBconfig_dir\domains on Windows. You

can override this variable using the

-ORBconfig_domains_dir command-line

parameter.

IT_DOMAIN_NAME IT_DOMAIN_NAME specifies the name of the

configuration domain used by Artix to locate

its configuration information. This variable

also specifies the name of the file in which

the configuration information is stored.

For example, the configuration information

for domain artix would be stored in

ORBconfig_dir\domains\atrix.cfg on

Windows and

ORBconfig_dir/domains/artix.cfg on

UNIX. You can override this variable with

the -ORBdomain_name command-line

parameter.

Table 1:Artix Environment Variables

Variable Description

Establishing the Host Computer Environment

27

Running the artix_env script The installation process creates a script named artix_env , which captures

the default information for setting the host computer’s Artix environment.

Running this script properly configures your system to use Artix. It is located

in the Artix bin directory:

The artix_env script takes the following optional arguments:

PATH The Artix bin directories should be placed

first on the PATH to ensures that the proper

libraries, configuration files, and utility

programs (for example, the IDL compiler)

are used. These settings avoid problems that

might otherwise occur if Orbix and/or

Tuxedo (both of which include IDL compilers

and CORBA class libraries) are installed on

the same host computer.

The default Artix bin directory is:

UNIX

$IT_PRODUCT_DIR/artix/2.1/bin

Windows

%IT_PRODUCT_DIR%\artix\2.1\bin

Table 1:Artix Environment Variables

Variable Description

IT_PRODUCT_DIR\artix\2.1\bin\artix_env

Table 2: Options to artix_env Script

Option Description

-compiler vc71 On Windows, enables support for Microsoft
Visual C++ version 7.1 (Visual Studio .NET
2003). By default, Artix is enabled with
support for Microsoft Visual C++ version
6.0.

CHAPTER 4 | Configuring Artix

 28

-preserve Preserves the settings of environment
variables that have already been set. When
this argument is specified, artix_env will
not overwrite the values of variables that
have already been set.

This option applies to the following
environment variables:

IT_PRODUCT_DIR

IT_IDL_CONFIG_FILE

PATH

LD_LIBRARY_PATH

SHLIB_PATH

LIBPATH

IT_CONFIG_DIR

IT_CONFIG_DOMAINS_DIR

IT_DOMAIN_NAME

IT_ART_ADMIN_PATH

CLASSPATH

LD_PRELOAD

IT_LICENSE_FILE

-verbose Forces artix_env to output an audit trail of
all its actions to stdout .

Table 2: Options to artix_env Script

Option Description

Artix Runtime Configuration

29

Artix Runtime Configuration

Overview Artix is built upon IONA’s Adaptive Runtime architecture (ART). Runtime

behaviors are established through common and application-specific

configuration settings that are applied during application startup. As a

result, the same application code may be run—and may exhibit different

capabilities—in different configuration environments. This section includes

the following:

• Configuration domains.

• Configuration scopes.

• Specifying configuration scopes.

• Configuration namespaces.

• Configuration variables.

• Configuration data types.

Configuration domains An Artix configuration domain is a collection of configuration information in

an Artix runtime environment. This information consists of configuration

variables and their values. A default Artix configuration is provided when

Artix is installed. The default configuration file is located in:

The contents of this file may need to be changed to modify Artix logging,

routing, and other behaviors.

You can also manually create new Artix configuration domains to

compartmentalize your applications. These new configuration domains can

import information from other configuration domains using a #include

statement in your configuration. This provides a convenient way of

compartmentalizing your application specific configuration from the global

ART configuration information contained in the default domain.

Windows %IT_PRODUCT_DIR%\artix\2.1\etc\domains\artix.cfg

UNIX $IT_PRODUCT_DIR/artix/2.1/etc/domains/artix.cfg

CHAPTER 4 | Configuring Artix

 30

Configuration scopes An Artix configuration domain is subdivided into configuration scopes.

These are typically organized into a hierarchy of scopes, whose

fully-qualified names map directly to ORB names. By organizing

configuration variables into various scopes, you can provide different

settings for individual services, or common settings for groups of services.

Configuration scopes apply to a subset of services or to a specific service in

an environment. Instances of the Artix standalone service can each have

their own configuration scopes. A default Artix standalone service scope is

automatically created when you install Artix.

Application-specific configuration variables either override default values

assigned to common configuration variables, or establish new configuration

variables. Configuration scopes are localized through a name tag and

delimited by a set of curly braces terminated with a semicolon, for example,

(scopeNameTag {…};) .

A configuration scope may include nested configuration scopes.

Configuration variables set within nested configuration scopes take

precedence over values set in enclosing configuration scopes.

In the artix.cfg file, there are several predefined configuration scopes. For

example, the demo configuration scope includes nested configuration scopes

for some of the demo programs included with the product.

Example 1: Demo Configuration Scope

demo
{
 fml_plugin
 {
 orb_plugins = ["local_log_stream", "iiop_profi le",
 "giop", "iiop", "soap", "http", "G2", " tunnel",
 "mq", "ws_orb", "fml"];
 };

Artix Runtime Configuration

31

Specifying configuration scopes To make an Artix process run under a particular configuration scope, you

specify that scope using the -ORBname parameter. Configuration scope

names are specified using the following format

scope. subscope

For example, the scope for the telco server demo shown in Example 1 is

specified as demo.telco.server . During process initialization, Artix

searches for a configuration scope with the same name as the -ORBname

parameter.

There are two ways of supplying the -ORBname parameter to an Artix

process:

• Pass the argument on the command line.

• Specify the ORBname as the third parameter to IT_Bus::init() .

 telco
 {
 orb_plugins = ["local_log_stream", "iiop_profil e",
 "giop”, "iiop”, "G2", "tunnel"];
 plugins:tunnel:iiop:port = "55002";
 poa:MyTunnel:direct_persistent = "true";
 poa:MyTunnel:well_known_address = "plugins:tunn el";

 server
 {
 orb_plugins = ["local_log_stream", "iiop_pr ofile",
 "giop", "iiop”, "ots", "soap ", "http", "G2:,
 "tunnel"];
 plugins:tunnel:poa_name = "MyTunnel";
 };
 };
 tibrv
 {
 orb_plugins = ["local_log_stream", "iiop_profi le",
 "giop", "iiop", "soap", "http", "tibrv"];

 event_log:filters = ["*=FATAL+ERROR"];
 };
};

Note: The orb_plugins list is redefined within each configuration scope.

Example 1: Demo Configuration Scope

CHAPTER 4 | Configuring Artix

 32

For example, to start an Artix process using the configuration specified in the

demo.tibrv scope, you could start the process use the following syntax:

Alternately, you could use the following code fragment to initialize the Artix

bus:

If a corresponding scope is not located, the process starts under the highest

level scope that matches the specified scope name. If there are no scopes

that correspond to the ORBname parameter, the Artix process runs under the

default global scope. For example, if the nested tibrv scope does not exist,

the Artix process uses the configuration specified in the demo scope; if the

demo scope does not exist, the process runs under the default global scope.

Configuration namespaces Most configuration variables are organized within namespaces, which group

related variables. Namespaces can be nested, and are delimited by colons

(:). For example, configuration variables that control the behavior of a

plug-in begin with plugins: followed by the name of the plug-in for which

the variable is being set. For example, to specify the port on which the Artix

standalone service starts, set the following variable:

To set the location of the routing plug-in’s contract, set the following

variable:

<processName> [application parameters] -ORBname demo.tibrv

IT_Bus::init (argc, argv, “demo.tibrv”);

plugins:artix_service:iiop:port

plugins:routing:wsdl_url

Artix Runtime Configuration

33

Configuration variables Configuration data is stored in variables that are defined within each

namespace. In some instances, variables in different namespaces share the

same variable names.

Variables can also be reset several times within successive layers of a

configuration scope. Configuration variables set in narrower configuration

scopes override variable settings in wider scopes. For example, a

company.operations.orb_plugins variable would override a

company.orb_plugins variable. Plug-ins specified at the company scope

would apply to all processes in that scope, except those processes that

belong specifically to the company.operations scope and its child scopes.

Configuration data types Each configuration variable has an associated data type that determines the

variable’s value.

Data types can be categorized into two types:

• Primitive types

• Constructed types

Primitive types

There are three primitive types: boolean , double , and long ,.

Constructed types

Artix supports two constructed types: string and ConfigList (a sequence

of strings).

• In an Artix configuration file, the string character set is ASCII.

• The ConfigList type is simply a sequence of string types. For

example:

orb_plugins = ["local_log_stream", "iiop_profile",
"giop","iiop"];

CHAPTER 4 | Configuring Artix

 34

35

CHAPTER 5

Artix Configuration
Reference
Artix is based on IONA’s highly configurable Adaptive Runtime
(ART) infrastructure. This chapter explains the configuration
settings for the Artix runtime and the Artix-specific plug-ins.

In this chapter This chapter includes the following:

Artix Runtime Configuration Variables page 36

Artix Plug-in Configuration Variables page 46

CHAPTER 5 | Artix Configuration Reference

 36

Artix Runtime Configuration Variables

Overview The Artix runtime is based on IONA’s highly configurable Adaptive Runtime

(ART) infrastructure. This provides a high-speed, robust, and scalable

backbone for deploying integration solutions.

In this section The following topics are discussed in this section:

ORB Plug-ins page 37

Policies page 41

Binding Lists page 42

Thread Pool Control page 44

Artix Runtime Configuration Variables

37

ORB Plug-ins

Overview The orb_plugins variable specifies the plug-ins that Artix processes load

during initialization. A plug-in is a class or code library that can be loaded

into an Artix application at runtime. These plug-ins enable you to load

network transports, payload format mappers, error logging streams, and

other features “on the fly.”

The default entry for the orb_plugins variable includes all the logging and

transport plug-ins:

Artix ORB plug-ins

Each network transport and payload format that Artix interoperates with

uses its own plug-in. Many of the Artix services features also use plug-ins.

Artix plug-ins include the following:

• “Transport plug-ins”.

• “Payload format plug-ins”.

• “Service plug-ins”.

Transport plug-ins The Artix transport plug-ins are listed in Table 3.

orb_plugins = ["xmlfile_log_stream",
 "iiop_profile",
 "giop",
 "iiop",
 "soap",
 "http",
 "tunnel",
 "mq",
 "ws_orb"];

Table 3: Artix Transport Plug-ins

Plug-in Transport

http Provides support for HTTP and HTTPS.

ws_orb Provides support for CORBA interoperability.

CHAPTER 5 | Artix Configuration Reference

 38

Payload format plug-ins The Artix payload format plug-ins are listed in Table 4.

tunnel Provides support for the IIOP transport using non-CORBA
payloads.

tuxedo Provides support for Tuxedo interoperability.

mq Provides support for WebSphere MQ interoperability.

tibrv Provides support for TIBCO Rendezvous interoperability.

java Provides support for Java Message Service (JMS)
interoperability.

Note: You must ensure that a jvm_options variable is
specified. This variable supplies the command-line options
that are needed to load JMS.

Table 3: Artix Transport Plug-ins

Plug-in Transport

Table 4: Artix Payload Format Plug-ins

Plug-in Payload Format

soap Decodes and encodes messages using the SOAP format.

G2 Decodes and encodes messages packaged using the G2++
format.

fml Decodes and encodes messages packaged in FML format.

tagged Decodes and encodes messages packed in variable record
length messages or another self-describing message format.

fixed Decode and encodes fixed record length messages.

Artix Runtime Configuration Variables

39

Service plug-ins The Artix service feature plug-ins are listed in Table 5.

Table 5: Artix Service Plug-ins

Plug-in Artix Feature

routing Enables Artix routing.

locator_endpoint Enables endpoints to use the Artix locator
service.

service_locator Enables the Artix locator. An Artix server
acting as the locator service must load
this plug-in.

artix_wsdl_publish Enables Artix endpoints to publish and
use Artix object references.

bus_response_monitor Enables performance logging. Monitors
response times of Artix client/server
requests.

session_manager_service Enables the Artix session manager. An
Artix server acting as the session
manager must load this plug-in.

session_endpoint_manager Enables the Artix session manager.
Endpoints wishing to be managed by the
session manager must load this plug-in.

sm_simple_policy Enables the policy mechanism for the
Artix session manager. Endpoints wishing
to be managed by the session manager
must load this plug-in.

service_lifecycle Enables service lifecycle for the Artix
router. This optimizes performance of the
router by cleaning up proxies/routes that
are no longer in use.

xslt Enables Artix to process XSLT scripts.

CHAPTER 5 | Artix Configuration Reference

 40

jvm_options

The jvm_options configuration variable specifies the command-line options

that are needed to load and run the JMS transport. The following example is

from a default artix.cfg file:

Example 2: Example jvm_options setting

jvm_options=["-Djava.class.path=
 I:\iona/artix/${PRODUCT_VERSION}/lib/ifc.jar:I:\ iona/artix/
 ${PRODUCT_VERSION}/lib/concurrency.jar:I:\iona/a rtix/
 ${PRODUCT_VERSION}/lib/it_bus.jar:I:\iona/artix/ ${PRODUCT_VERSION}/
 lib/it_wsdl.jar:I:\iona/artix/${PRODUCT_VERSION} /lib/jms.jar:I:\
 iona/artix/${PRODUCT_VERSION}/lib/xerces.jar:I:\ iona/artix/
 ${PRODUCT_VERSION}/lib/log4j.jar"];

Artix Runtime Configuration Variables

41

Policies

Overview The policies namespace contains the following variables for controlling the

publishing of server hostnames:

• http:server_address_mode_policy:publish_hostname

• soap:server_address_mode_policy:publish_hostname

If the policy corresponding to the transport is used by the server, the

dynamically generated contract will be published with the original contents

of the address element.

http:server_address_mode_policy:publish_hostname

http:server_address_mode_policy:publish_hostname specifies how the

server’s address is published in dynamically generated Artix contracts.

When set this policy is set to false , the dynamically generated contract will

publish the IP address of the running server in the <http:address> element

describing the server’s location. When this policy is set to true , the

hostname of the machine hosting the running server is published in the

<http:address> element describing the server’s location.

soap:server_address_mode_policy:publish_hostname

soap:server_address_mode_policy:publish_hostname specifies how the

server’s address is published in dynamically generated Artix contracts.

When set this policy is set to false , the dynamically generated contract will

publish the IP address of the running server in the <soap:address> element

describing the server’s location. When this policy is set to true , the

hostname of the machine hosting the running server is published in the

<soap:address> element describing the server’s location.

CHAPTER 5 | Artix Configuration Reference

 42

Binding Lists

Overview When using Artix’s CORBA functionality you need to configure how Artix

binds itself to message interceptors. The Artix binding namespace contains

variables that specify interceptor settings. An interceptor acts on a message

as it flows from sender to receiver.

Computing concepts that fit the interceptor abstraction include transports,

marshaling streams, transaction identifiers, encryption, session managers,

message loggers, containers, and data transformers. Interceptors are a form

of the “chain of responsibility” design pattern. Artix creates and manages

chains of interceptors between senders and receivers, and the interceptor

metaphor is a means of creating a virtual connection between a sender and

a receiver.

The Artix binding namespace includes the following variables:

• client_binding_list

• server_binding_list

client_binding_list

Artix provides client request-level interceptors for OTS, GIOP, and POA

collocation (where server and client are collocated in the same process).

Artix also provides and message-level interceptors used in client-side

bindings for IIOP, SHMIOP and GIOP.

The client_binding_list specifies a list of potential client-side bindings.

Each item is a string that describes one potential interceptor binding. For

example:

Interceptor names are separated by a plus (+) character. Interceptors to the

right are “closer to the wire” than those on the left. The syntax is as follows:

• Request-level interceptors, such as GIOP, must precede message-level

interceptors, such as IIOP .

• GIOP or POA_coloc must be included as the last request-level

interceptor.

binding:client_binding_list = ["OTS+POA_Coloc","POA _Coloc","OTS+GIOP+IIOP","GIOP+IIOP"];

Artix Runtime Configuration Variables

43

• Message-level interceptors must follow the GIOP interceptor, which

requires at least one message-level interceptor.

• The last message-level interceptor must be a message-level transport

interceptor, such as IIOP or SHMIOP.

When a client-side binding is needed, the potential binding strings in the list

are tried in order, until one successfully establishes a binding. Any binding

string specifying an interceptor that is not loaded, or not initialized through

the orb_plugins variable, is rejected.

For example, if the ots plug-in is not configured, bindings that contain the

OTS request-level interceptor are rejected, leaving ["POA_Coloc",

"GIOP+IIOP", "GIOP+SHMIOP"] . This specifies that POA collocations should

be tried first; if that fails, (the server and client are not collocated), the GIOP

request-level interceptor and the IIOP message-level interceptor should be

used. If the ots plug-in is configured, bindings that contain the OTS request

interceptor are preferred to those without it.

server_binding_list

server_binding_list specifies interceptors included in request-level

binding on the server side. The POA request-level interceptor is implicitly

included in the binding.

The syntax is similar to client_binding_list . However, in contrast to the

client_binding_list , the left-most interceptors in the

server_binding_list are “closer to the wire”, and no message-level

interceptors can be included (for example, IIOP). For example:

An empty string ("") is a valid server-side binding string. This specifies that

no request-level interceptors are needed. A binding string is rejected if any

named interceptor is not loaded and initialized.

The default server_binding_list is ["OTS", ""] . If the ots plug-in is not

configured, the first potential binding is rejected, and the second potential

binding ("") is used, with no explicit interceptors added.

binding:server_binding_list = ["OTS",""];

CHAPTER 5 | Artix Configuration Reference

 44

Thread Pool Control

Overview Variables in the thread_pool namespace set policies related to thread

control. They can be set globally for Artix instances in a configuration scope,

or they can be set on a per-service basis. Settings on a per-service basis

override the global settings for the configuration scope.

To set the values globally, use the following syntax:

To set the values on a per-service basis, specify the service’s URI and the

service name from the Artix contract. The syntax is as follows:

The high and low water mark settings specify the values for the thread pool

on a per-service basis. However, the initial thread setting works on a

per-port basis. This namespace includes following variables:

• initial_threads

• low_water_mark

• high_water_mark

initial_threads

initial_threads sets the number of initial threads in each port’s thread

pool. Defaults to 1.

thread_pool: variable_name

thread_pool: variable_name: service_uri: service_name

Artix Runtime Configuration Variables

45

low_water_mark

low_water_mark sets the minimum number of threads in each service’s

thread pool. Artix will terminate unused threads until only this number

exists. Defaults to 5.

high_water_mark

high_water_mark sets the maximum number of threads allowed in each

service’s thread pool. Defaults to 25.

CHAPTER 5 | Artix Configuration Reference

 46

Artix Plug-in Configuration Variables

Overview Each Artix transport, payload format, and service have properties which are

configurable. The variables used to configure plug-in behavior are specified

in the configuration scopes of each Artix runtime instance, and follow the

same order of precedence. A plug-in setting specified in the global

configuration scope will be overridden in favor of a value set in a narrower

scope.

For example, if you set plugins:routing:use_type_factory to true in the

global scope and set it to false in the widget_form scope, all Artix

runtimes, except for those running in the widget_form scope, would use

true for the value of use_type_factory . Any Artix instance using the

widget_form scope would use false for the value of use_type_factory .

In this section This section includes the following:

Artix Endpoint Configuration page 48

CORBA Plug-in page 50

CORBA Codeset Plug-in page 51

Locator Service page 54

Locator Service Endpoint Plug-in page 55

Response Time Collector page 56

Routing Plug-in page 59

Service Lifecycle page 61

Session Manager page 63

Session Manager Endpoint Plug-in page 64

Session Manager Simple Policy Plug-in page 65

SOAP Plug-in page 66

Artix Plug-in Configuration Variables

47

Transformer Service page 67

Tuxedo Plug-in page 68

Web Service Chain Service page 69

WSDL Publishing Service page 71

XML File Log Stream page 72

CHAPTER 5 | Artix Configuration Reference

 48

Artix Endpoint Configuration

Overview The Artix Web service chain plugin and the Artix transformer use a common

configuration namespace to define attributes of the endpoints on which they

act. This namespace is artix:endpoint and it contains the following

variables:

• artix:endpoint:endpoint_list

• artix:endpoint:endpoint_name:wsdl_location

• artix:endpoint:endpoint_name:service_namespace

• artix:endpoint:endpoint_name:service_name

• artix:endpoint:endpoint_name:port_name

artix:endpoint:endpoint_list

artix:endpoint:endpoint_list specifies a list of endpoint names that will

be used to identify the defined endpoints. Each name in the list represents

an endpoint configured with the other variables in this namespace. The

endpoint names in this list are used by the Web service chain plugin and the

Artix transformer.

artix:endpoint:endpoint_name:wsdl_location

artix:endpoint: endpoint_name:wsdl_location specifies the location of

the Artix contract defining this endpoint.

artix:endpoint:endpoint_name:service_namespace

artix:endpoint: endpoint_name:service_namespace specifies the XML

namespace in which the interface for this endpoint is defined.

Artix Plug-in Configuration Variables

49

artix:endpoint:endpoint_name:service_name

artix:endpoint: endpoint_name:service_name specifies the name of the

<portType> that defines this endpoint’s logical interface.

artix:endpoint:endpoint_name:port_name

artix:endpoint:endpoint_name:port_name specifes the <port> that

defines the physical representation of the endpoint.

CHAPTER 5 | Artix Configuration Reference

 50

CORBA Plug-in

Overview In general, the Artix CORBA plug-in does not have any configuration

variables directly associated with it. However, the CORBA plug-in is

implemented using the same framework as IONA’s Orbix product, and it is

affected by the same configuration settings as Orbix.

For example, if you set the following configuration variable:

This will affect the CORBA messages that Artix sends.

Alternanatively, if you remove the POA_Coloc plug-in from the client binding

list, collocation will not work.

policies:giop:interop_policy:send_principal = "true ";

Artix Plug-in Configuration Variables

51

CORBA Codeset Plug-in

Overview The CORBA transport’s codeset negotiation plugin, codeset , has the

following configuration settings:

• plugins:codeset:char:ncs

• plugins:codeset:char:ccs

• plugins:codeset:wchar:ncs

• plugins:codeset:wchar:ccs

• plugins:codeset:always_use_default

plugins:codeset:char:ncs

plugins:codeset:char:ncs specifies the native codeset to use for narrow

characters. The default setting is determined as shown in Table 6.

Table 6: Defaults for the Native Narrow Codeset

Platform/Locale Language Setting

non-MVS, Latin-1 locale C++ ISO-8859-1

MVS C++ EBCDIC

ISO-8859-1/Cp-1292/US-ASCII locale Java ISO-8859-1

Shift_JIS locale Java UTF-8

EUC-JP locale Java UTF-8

other Java UTF-8

CHAPTER 5 | Artix Configuration Reference

 52

plugins:codeset:char:ccs

plugins:codeset:char:ccs specifies the list of conversion codesets

supported for narrow characters. The default setting is determined as shown

in Table 7.

plugins:codeset:wchar:ncs

plugins:codeset:wchar:ncs specifies the native codesets supported for

wide characters. The default setting is determined as shown in Table 8.

Table 7: Defaults for the Narrow Conversion Codesets

Platform/Locale Language Setting

non-MVS, Latin-1 locale C++

MVS C++ ISO-8859-1

ISO-8859-1/Cp-1292/US-ASCII locale Java UTF-8

Shift_JIS locale Java Shift_JIS, euc_JP,
ISO-8859-1

EUC-JP locale Java euc_JP, Shift_JIS,
ISO-8859-1

other Java file encoding, ISO-8859-1

Table 8: Defaults for the Native Wide Character Codesets

Platform/Locale Language Setting

non-MVS, Latin-1 locale C++ UCS-2, UCS-4

MVS C++ UCS-2, UCS-4

ISO-8859-1/Cp-1292/US-ASCII locale Java UTF-16

Shift_JIS locale Java UTF-16

EUC-JP locale Java UTF-16

other Java UTF-16

Artix Plug-in Configuration Variables

53

plugins:codeset:wchar:ccs

plugins:codeset:wchar:ccs specifies the list of conversion codesets

supported for wide characters. The default setting is determined as shown in

Table 9.

plugins:codeset:always_use_default

plugins:codeset:always_use_default specifies that hard-coded default

values will be used, and any settings for the codeset conversion plugin

settings in the same, or higher configuration scope, will be ignored.

Table 9: Defaults for the Wide Character Conversion Codesets

Platform/Locale Language Setting

non-MVS, Latin-1 locale C++ UTF-16

MVS C++ UTF-16

ISO-8859-1/Cp-1292/US-ASCII locale Java UCS-2

Shift_JIS locale Java UCS-2, Shift_JIS, euc_JP

EUC-JP locale Java UCS-2, euc_JP, Shift_JIS

other Java file encoding, UCS-2

CHAPTER 5 | Artix Configuration Reference

 54

Locator Service

Overview The locator service plugin, service_locator , has the following configuration

variables:

• plugins:locator:service_url

• plugins:locator:peer_timeout

plugins:locator:service_url

plugins:locator:service_url specifies the location of the Artix contract

defining the location service and configuring its address. A copy of this

contract, locator.wsdl , is located in the wsdl folder of your Artix

installation.

plugins:locator:peer_timeout

plugins:locator:peer_timeout specifies the amount of time, in

milliseconds, that the locator plug-in waits between keep-alive pings of the

services registered with it. The default is 4000000 (4 sec.).

Artix Plug-in Configuration Variables

55

Locator Service Endpoint Plug-in

Overview The locator service endpoint plug-in, locator_endpoint , has the following

configuration variables:

• plugins:locator:wsdl_url

• plugins:session_endpoint_manager:peer_timout

plugins:locator:wsdl_url

plugins:locator:wsdl_url specifies the location of the Artix contract

defining the location service and specifying the address locator endpoints

use to communicate with the locator service. A copy of this contract,

locator.wsdl , is located in the wsdl folder of your Artix installation.

plugins:session_endpoint_manager:peer_timout

plugins:session_endpoint_manager:peer_timout specifies the amount of

time, in milliseconds, the server waits between keep-alive pings of the

locator service. The default is 4000000 (4 sec.).

CHAPTER 5 | Artix Configuration Reference

 56

Response Time Collector

Overview The Artix response time collector plug-in configures settings for Artix
performance logging. The response time collector plug-in periodically
collects data from the response monitor plug-in and logs the results. See
Chapter 7 for full details of Artix performance logging.

The response time collector plug-in includes the following variables:

• “plugins:it_response_time_collector:client-id”.

• “plugins:it_response_time_collector:filename”.

• “plugins:it_response_time_collector:log_properties”.

• “plugins:it_response_time_collector:period”.

• “plugins:it_response_time_collector:server-id”.

• “plugins:it_response_time_collector:syslog_appID”.

• “plugins:it_response_time_collector:system_logging_enabled”.

plugins:it_response_time_collector:client-id

plugins:it_response_time_collector:client-id specifies a client ID that

is reported in your log messages. For example:

This setting enables management tools to recognize log messages from

client applications. This setting is optional; and if omitted, it is assumed that

that a server is being monitored.

plugins:it_response_time_collector:filename

plugins:it_response_time_collector:filename specifies the location of

the performance log file for a C++ application. For example:

plugins:it_response_time_collector:client-id = "my_ client_app";

plugins:it_response_time_collector:filename =
"/var/log/my_app/perf_logs/treasury_app.log";

Artix Plug-in Configuration Variables

57

plugins:it_response_time_collector:log_properties

plugins:it_response_time_collector:log_properties specifies the

Apache Log4J details. Artix Java applications use Apache Log4J instead of

the log filename used for C++. For example:

plugins:it_response_time_collector:period

plugins:it_response_time_collector:period specifies how often an

application should log performance data. For example, the following setting

specifies that an application should log performance data every 90 seconds:

If you do not specify the response time period, it defaults to 60 seconds.

plugins:it_response_time_collector:server-id

plugins:it_response_time_collector:server-id specifies a server ID

that will be reported in your log messages. This server ID is particularly

useful in the case where the server is a replica that forms part of a cluster.

In a cluster, the server ID enables management tools to recognize log

messages from different replica instances. For example:

This setting is optional; and if omitted, the server ID defaults to the ORB

name of the server. In a cluster, each replica must have this value set to a

unique value to enable sensible analysis of the generated performance logs.

plugins:it_response_time_collector:log_properties = ["log4j.rootCategory=INFO, A1",
"log4j.appender.A1=com.iona.management.logging.log4 jappender.TimeBasedRollingFileAppender",
"log4j.appender.A1.File="/var/log/my_app/perf_logs/ treasury_app.log",
"log4j.appender.A1.MaxFileSize=512KB",
"log4j.appender.A1.layout=org.apache.log4j.PatternL ayout",
"log4j.appender.A1.layout.ConversionPattern=%d{ISO8 601} %-80m %n"
];

plugins:it_response_time_collector:period = "90";

plugins:it_response_time_collector:server-id = "my_ server_app1";

CHAPTER 5 | Artix Configuration Reference

 58

plugins:it_response_time_collector:syslog_appID

plugins:it_response_time_collector:syslog_appID specifies an

application name that is prepended to all syslog messages. If you do not

specify an ID, it defaults to iona . For example:

plugins:it_response_time_collector:system_logging_enabled

plugins:it_response_time_collector:system_logging_e nabled specifies

whether system logging is enabled. For example:

This enables you to configure the collector to log to a syslog daemon or

Windows event log.

plugins:it_response_time_collector:syslog_appID = " treasury";

plugins:it_response_time_collector:system_logging_e nabled = "true";

Artix Plug-in Configuration Variables

59

Routing Plug-in

Overview The routing plug-in uses the following variables:

• plugins:routing:wsdl_url

• plugins:routing:use_type_factory

• plugins:routing:use_pass_through

plugins:routing:wsdl_url

plugins:routing:wsdl_url specifies the URL to search for Artix contracts

containing the routing rules for your application. This value can be either a

single URL or a list of URLs. If your application is using the routing plug-in,

you must specify a value for this variable. The following example is from a

default artix.cfg file:

plugins:routing:wsdl_url="../wsdl/router.wsdl" ;

plugins:routing:use_type_factory

plugins:routing:use_type_factory specifies if the routing plug-in loads

user compiled type factories. The default setting is false .

Note: This variable does not accept a mixture of back slashes and
forward slashes. You must specify locations using only "\ " or "/ ".

Note: The use of type factories in routing is deprecated.

CHAPTER 5 | Artix Configuration Reference

 60

plugins:routing:use_pass_through

plugins:routing:use_pass_through specifies if the routing plug-in uses the

pass-through routing optimization. This optimization enables the router to

copy the message buffer directly from the source endpoint to the destination

endpoint (if both use the same binding). The default value is true .

Note: A few attributes are carried in the message body, instead of by the
transport. Such attributes are always propagated when the pass-through
optimization is in effect, regardless of attribute propagation rules.

WARNING: Do not enable pass through in a secure router. When pass
through is enabled, the authentication and authorization steps are
skipped. Therefore, you must always set
plugins:routing:use_pass_through to false in a secure router. See
IONA Security Advisory, ISA130905.

Artix Plug-in Configuration Variables

61

Service Lifecycle

Overview The service lifecycle plug-in enables garbage collection of old or unused

proxy services. Dynamic proxy services are used when the Artix router

bridges services that have patterns such as callback, factory, or any

interaction that passes references to other services. When the router

encounters a reference in a message, it proxifies the reference into one that

a receiving application can use. For example, an IOR from a CORBA server

cannot be used by a SOAP client, so the router dynamically creates a new

route for the SOAP client.

However, dynamic proxies persist in the router memory and can have a

negative effect on performance. You can overcome this by using service

garbage collection to clean up old proxy services that are no longer used.

This cleans up unused proxies when a threshold has been reached on a

least recently used basis.

The Artix plugins:service_lifecycle namespace has the following

variable:

plugins:service_lifecycle:max_cache_size

plugins:service_lifecycle:max_cache_size

plugins:service_lifecycle:max_cache_size specifies the maximum

cache size of the service lifecycle. For example:

plugins:service_lifecycle:max_cache_size = "30";

To enable service lifecycle, you must also add the service_lifecycle

plugin to the orb_plugins list, for example:

orb_plugins = ["xmlfile_log_stream", "service_lifec ycle",
"routing"];

CHAPTER 5 | Artix Configuration Reference

 62

When writing client applications, you must also make allowances for the

garbage collection service; in particular, ensure that exceptions are handled

appropriately.

For example, a client may attempt to proxify to a service that has already

been garbage collected. To prevent this, do either of the following:

• Handle the exception, get a new reference, and continue. However, in

some cases, this may not be possible if the service has state.

• Set max_cache_size to a reasonable limit to ensure that all your clients

can be accommodated. For example, if you always expect to support

20 concurrent clients, each with a transient service session, you might

wish to configure the max_cache_size to 30.

You must not impact any clients, and ensure that a service is no longer

needed when it is garbage collected. However, if you set max_cache_size

too high, this may use up too much router memory and have a negative

impact on performance. For example, a suggested range for this setting is

30-100.

Artix Plug-in Configuration Variables

63

Session Manager

Overview The session manager, session_manager_service , has the following

configuration variables:

• plugins:session_manager_service:service_url

• plugins:session_manager_service:peer_timeout

plugins:session_manager_service:service_url

plugins:session_manager_service:service_url specifies the location of

the Artix contract defining the session manager. A copy of this contract,

session-manager.wsdl , is located in the wsdl folder of your Artix

installation.

plugins:session_manager_service:peer_timeout

plugins:session_manager_service:peer_timeout specifies the amount of

time, in milliseconds, that the session manager plug-in waits between

keep-alive pings of the services registered with it. The default is 4000000 (4

seconds).

CHAPTER 5 | Artix Configuration Reference

 64

Session Manager Endpoint Plug-in

Overview The session manager endpoint plug-in, session_endpoint_manager , has the

following configuration variables:

• plugins:session_endpoint_manager:wsdl_url

• plugins:session_endpoint_manager:endpoint_manager_url

• plugins:session_endpoint_manager:default_group

• plugins:session_endpoint_manager:header_validation

plugins:session_endpoint_manager:wsdl_url

plugins:session_endpoint_manager:wsdl_url specifies the location of the

contract defining the session management service that the endpoint

manager is to contact.

plugins:session_endpoint_manager:endpoint_manager_url

plugins:session_endpoint_manager:endpoint_manager_u rl specifies the

location of the contract defining the endpoint manager. The contract

contains the contact information for the endpoint manager.

plugins:session_endpoint_manager:default_group

plugins:session_endpoint_manager:default_group specifies the default

group name for all endpoints that are instantiated using the configuration

scope.

plugins:session_endpoint_manager:header_validation

plugins:session_endpoint_manager:header_validation specifies whether

or not a server validates the session headers passed to it by clients. Default

value is true .

Artix Plug-in Configuration Variables

65

Session Manager Simple Policy Plug-in

Overview The session manager’s simple policy plug-in, sm_simple_policy , has the

following configuration variables:

• plugins:sm_simple_policy:max_concurrent_sessions

• plugins:sm_simple_policy:min_session_timeout

• plugins:sm_simple_policy:max_session_timeout

plugins:sm_simple_policy:max_concurrent_sessions

plugins:sm_simple_policy:max_concurrent_sessions specifies the

maximum number of concurrent sessions the session manager will allocate.

Default value is 1.

plugins:sm_simple_policy:min_session_timeout

plugins:sm_simple_policy:min_session_timeout specifies the minimum

amount of time, in seconds, allowed for a session’s timeout setting. Zero

means the unlimited. Default is 5.

plugins:sm_simple_policy:max_session_timeout

plugins:sm_simple_policy:max_session_timeout specifies the maximum

amount of time, in seconds, allowed for a session’s timesout setting. Zero

means the unlimited. Default is 600.

CHAPTER 5 | Artix Configuration Reference

 66

SOAP Plug-in

Overview The SOAP plug-in, soap , has the following configuration settings:

• plugins:soap:encoding

• plugins:soap:shlib_name

plugins:soap:encoding

plugins:soap:encoding specifies the character encoding used when the

SOAP plugin writes service requests or notification broadcasts to the wire.

The valid settings are fully qualified IANA codeset names (Internet Assigned

Numbers Authority). The default is UTF-8 .

For a listing of valid codesets visit the IANA’s website

(http://www.iana.org/assignments/character-sets).

plugins:soap:shlib_name

plugins:soap:shlib_name specifies the name of the shared library for the

SOAP plug-in:

plugins:soap:shlib_name = "it_soap";

http://www.iana.org/assignments/character-sets

Artix Plug-in Configuration Variables

67

Transformer Service

Overview The Artix transformer service refers back to the Artix endpoints configured in

its configuration scope using artix:endpoint:endpoint_list . For each

endpoint that will use the transformer, you specify an operation map with

the corresponding endpoint_name from the endpoint list.

The transformer service, xslt , has the following configuration settings:

• plugins:xslt:servant_list

• plugins:xslt:endpoint_name:operation_map

plugins:xslt:servant_list

plugins:xslt:servant_list specifies a list of endpoints that will be

instaniated as servants by the transformer.

plugins:xslt:endpoint_name:operation_map

plugins:xslt: endpoint_name:operation_map specifies an ordered list of

XSLT operations and scripts to be used in processing the recieved XML

messages.

CHAPTER 5 | Artix Configuration Reference

 68

Tuxedo Plug-in

Overview The Tuxedo plug-in has only one configuration variable:

• plugins:tuxedo:server

plugins:tuxedo:server

plugins:tuxedo:server is a boolean that specifies if the Artix process is a

Tuxedo server and must be started using tmboot . The default is false .

Artix Plug-in Configuration Variables

69

Web Service Chain Service

Overview The Web service chain service refers back to the Artix endpoints configured

in its configuration scope using artix:endpoint:endpoint_list . For each

endpoint that will be part of the chain, you specify a service chain with the

corresponding endpoint_name from the endpoint list.

The Web service chain service, ws_chain , uses the following configuration

variables:

• plugins:chain:servant_list

• plugins:chain:endpoint_name:client:operation_list

• plugins:chain:endpoint_name:operation_name:service_chain

plugins:chain:servant_list

plugins:chain:servant_list specifies a list of the endpoints in the Web

service chain. Each name in the list must correspond to an endpoint

specified in the artix:endpoint:endpoint_list set in the configuration

scope.

plugins:chain:endpoint_name:client:operation_list

plugins:chain: endpoint_name:operation_list specifies the list of

operations the Web service chain plug-in is implementing. The operations in

the list must be defined in the Artix contract defining the endpoint specified

by endpoint_name.

CHAPTER 5 | Artix Configuration Reference

 70

plugins:chain:endpoint_name:operation_name:service_chain

plugins:chain: endpoint_name: operation_name:service_chain specifies

the chain followed by requests made on the operation specified by

opereration_name. The operation must be defined as part of the endpoint

specified by endpoint_name.

Service chains are specified using the syntax shown in Example 3.

Each operation and port entry correspond to an <operation> and a <port>

in the endpoint’s Artix contract. The request is passed through each service

in the order specified. The final operation in the list returns the response

back to the endpoint.

Example 3: Service Chain Specification Syntax

[" operation1@port1"," operation2@port2", ..., " operationN@portN"]

Artix Plug-in Configuration Variables

71

WSDL Publishing Service

Overview The WSDL publishing service, artix_wsdl_publishing , has the following

configuration variables:

• plugins:wsdl_publish:publish_port

• plugins:wsdl_publish:hostname

plugins:wsdl_publish:publish_port

plugins:wsdl_publish:publish_port specifies the port on which the

WSDL publishing service can be contacted.

plugins:wsdl_publish:hostname

plugins:wsdl_publish:hostname specifies how the hostname will be

published. By default, the local name of the machine will be published. The

possible values are as follows:

canonical Publishes the fully qualified hostname of the
machine in the dynamic WSDL.

unqualified Publishes the unqualified local hostname of the
machine in the dynamic WSDL. This does not
include domain name with the hostname.

ipaddress Publishes the IP address associated with the
machine in the dynamic WSDL.

CHAPTER 5 | Artix Configuration Reference

 72

XML File Log Stream

Overview The XML file log stream plug-in (xmlfile_log_stream) enables you to view

logging output in a file. It includes the following variables:

• “plugins:xmlfile_log_stream:shlib_name”.

• “plugins:xmlfile_log_stream:filename”.

• “plugins:xmlfile_log_stream:max_file_size”.

• “plugins:xmlfile_log_stream:rolling_file”.

• “plugins:xmlfile_log_stream:use_pid”.

plugins:xmlfile_log_stream:shlib_name

plugins:xmlfile_log_stream:shlib_name specifies the required name of

the log stream plug-in library. The is as follows:

plugins:xmlfile_log_stream:filename

plugins:xmlfile_log_stream:filename specifies an optional filename for

your log file, for example:

The default filename is it_bus.log .

plugins:xmlfile_log_stream:max_file_size

plugins:xmlfile_log_stream:max_file_size specifies an optional

maximum size for your log file,for example:

The default maximum size is 2 MB.

plugins:xmlfile_log_stream:shlib_name = "it_xmlfile ";

plugins:xmlfile_log_stream:filename = "artix_logfil e.xml";

plugins:xmlfile_log_stream:max_file_size = "100000" ;

Artix Plug-in Configuration Variables

73

plugins:xmlfile_log_stream:rolling_file

plugins:xmlfile_log_stream:rolling_file specifies that the logging

plug-in uses a rolling file to prevent the local log from growing indefinitely. In

this model, the log stream appends the current date to the configured

filename. This produces a complete filename, for example:

A new file begins with the first event of the day and ends at 23:59:59 each

day. The default behavior is true . To disable rolling file behavior, set this

variable to false:

plugins:xmlfile_log_stream:use_pid

plugins:xmlfile_log_stream:use_pid specifies that the logging plug-in

uses a optional process identifier. The default is false . To enable the

process identifier, set this variable to true :

/var/adm/art.log.02171999

plugins:xmlfile_log_stream:rolling_file = "false";

plugins:xmlfile_log_stream:use_pid = "true";

CHAPTER 5 | Artix Configuration Reference

 74

75

CHAPTER 6

Artix Logging and
SNMP Support
This chapter describes various approaches to Artix logging. It
also explains Artix support for SNMP (Simple Network
Management Protocol).

In this chapter This chapter includes the following sections:

Configuring Artix Logging page 76

Using Artix TRACE Macros page 79

IT_Logging Module page 90

IT_Logging::LogStream Interface page 94

Using the SNMP Logging Plug-in page 97

CHAPTER 6 | Artix Logging and SNMP Support

 76

Configuring Artix Logging

Overview Logging in Artix is controlled by the event_log:filters configuration

variable and by the log stream plug-ins (for example, xmlfile_log_stream

and local_log_stream) .

This section explains how to use these settings to configure logging in Artix.

It includes the following:

• “Setting the event log filter”.

• “Setting log stream plug-ins”.

• “Using a rolling log file”.

Setting the event log filter The event_log:filters configuration variable can be set to provide a wide

range of logging levels. You can set this variable in your Artix configuration

file:

install-dir\artix\2.1\etc\domains\artix.cfg.

Displaying errors

The default event_log:filters setting displays errors only:

Displaying warnings

The following setting displays errors and warnings only:

Displaying request/reply messages

Adding INFO_MED causes all of request/reply messages to be logged (for all

transport buffers):

event_log:filters = ["*=FATAL+ERROR"];

event_log:filters = ["*=FATAL+ERROR+WARNING"];

event_log:filters = ["*=FATAL+ERROR+WARNING+INFO_ME D"];

Configuring Artix Logging

77

Displaying trace output

The following setting displays typical trace statement output (without the

raw transport buffers being printed):

Displaying all logging

The following setting displays all logging:

The default configuration settings enable logging of only serious errors and

warnings. For more exhaustive information, select a different filter list at the

default scope, or include a more expansive event_log:filters setting in

your configuration scope.

Setting log stream plug-ins In addition to setting the event log filter, you should configure the log stream

plug-ins your artix.cfg file, for example:

event_log:filters = ["*=FATAL+ERROR+WARNING+INFO_HI "];

event_log:filters = ["*=*"];

//Ensure these two plug-ins exist in your orb_plugi ns list
orb_plugins = "local_log_stream", "xmlfile_log_stre am", ...];

// Required name of plugin library
plugins:xmlfile_log_stream:shlib_name = "it_xmlfile ";

// Optional filename (defaults to it_bus.log):
plugins:xmlfile_log_stream:filename = "artix_logfil e.xml";

// Optional max size (defaults to 2MB
plugins:xmlfile_log_stream:max_file_size = "100000" ;

// Optional process identifier (defaults to false)
plugins:xmlfile_log_stream:use_pid = "false";

CHAPTER 6 | Artix Logging and SNMP Support

 78

You must ensure that your application can detect the configuration settings

for the log stream plug-in. You can either set them at the global scope, or

configure a unique scope for use by your application, for example:

IT_Bus::init(argc, argv, "demo.myscope");

This enables you to place the necessary configuration in the demo.myscope

scope.

Using a rolling log file You can specify that the logging plug-in uses a rolling file to prevent the

local log from growing indefinitely. In this model, the stream appends the

current date to the configured filename. This produces a complete filename,

for example:

A new file begins with the first event of the day and ends at 23:59:59 each

day. The default behavior is true . To disable rolling file behavior, set the

following configuration variable to false:

Note: The xmlfile_log_stream plug-in is included in the default
orb_plugins list, but not in the orb_plugins lists in many demo
configuration scopes. To enable logging to an XML file for the applications
that you develop, include this plug-in your orb_plugins list.

/var/adm/art.log.02171999

plugins:xmlfile_log_stream:rolling_file = "false";

Using Artix TRACE Macros

79

Using Artix TRACE Macros

Artix Trace levels When the event log filter and log stream are properly configured, the Artix

logging output from the TRACE macros is sent to the event log.

When using TRACE macros, the most important concept is the trace level,

which is an enum that lets you filter events. Trace levels are defined in the

install-dir/artix/2.1/include/it_bus/logging_support.h file:

The simplest trace statement emits a constant string at level IT_TRACE. For

example:

Passing in arguments Several versions of the macro allow using a C printf format string, and

passing in some arguments. Because you cannot have variable argument

lists for macros, there are several defined according to how many arguments

are allowed:

Both the zero argument and the multi argument versions have a setting that

allows a trace level to be passed in, instead of level IT_TRACE. For example:

const IT_TraceLevel IT_TRACE_FATAL = 64; //FATAL

const IT_TraceLevel IT_TRACE_ERROR = 32; //ERROR

const IT_TraceLevel IT_TRACE_WARNING = 16; //WARNING

const IT_TraceLevel IT_TRACE = 4; //INFO_HIGH

const IT_TraceLevel IT_TRACE_BUFFER = 2; //INFO_MED

const IT_TraceLevel IT_TRACE_METHODS = 1; //INFO_LOW

const IT_TraceLevel IT_TRACE_METHODS_INTERNAL = 1; //INFO_LOW

TRACELOG("Hello world");

TRACELOG1("My name is: %s", "Slim Shady");
TRACELOG2("At state number %d, this happened: %s", 44, "connection failure");

TRACELOG_WITH_LEVEL(IT_METHODS, "MyClass::MyClass() ");
TRACELOG_WITH_LEVEL1(IT_TRACE_METHODS_INTERNAL, "Value of my_name_field was %s", my_name_field);

CHAPTER 6 | Artix Logging and SNMP Support

 80

Creating your own output If you must create your own output using iostreams or another expensive

process that is not supported by the macro, use the trace guard block. This

ensures that the trace level test prevents your trace creation code from

running when it does not produce output. For example:

To create binary output (for instance, a hex dump of the buffer), use

TRACELOGBUFFER. For example:

If the trace statement issues at a level less than or equal to the process trace

level, the entry is written to disk. The default log file name is it_bus.log .

BEGIN_TRACE(IT_TRACE)
 String trace_message = "data elements: ";
 for(i = 0; i < data_count; i++)
 {
 trace_message = trace_message + dat a_item[i] + "

";
 }
 TRACELOG(trace_message.c_str());
END_TRACE

TRACELOGBUFFER(vvMQMessageData, vvMQMessageData.Get Size())

Using Artix TRACE Macros

81

Orbix TRACE Macros

Overview The install-dir/artix/2.1/include/orbix/logging_support.h file defines

the following Orbix-style logging macros:

• “IT_LOG_MESSAGE() Macro”.

• “IT_LOG_MESSAGE_1() Macro”.

IT_LOG_MESSAGE() Macro

// C++
#define IT_LOG_MESSAGE(\
 event_log, \
 subsystem, \
 id, \
 severity, \
 desc \
) ...

A macro to use for reporting a log message.

Parameters

Examples The following is a simple example of usage:

event_log The log (EventLog) where the message is to be reported.

subsystem The SubsystemId .

id The EventId .

severity The EventPriority .

desc A string description of the event.

...
IT_LOG_MESSAGE(
 event_log,
 IT_IIOP_Logging::SUBSYSTEM,
 IT_IIOP_Logging::SOCKET_CREATE_FAILED,
 IT_Logging::LOG_ERROR,
 SOCKET_CREATE_FAILED_MSG
);

CHAPTER 6 | Artix Logging and SNMP Support

 82

IT_LOG_MESSAGE_1() Macro

// C++
#define IT_LOG_MESSAGE_1(\
 event_log, \
 subsystem, \
 id, \
 severity, \
 desc, \
 param0 \
) ...

A macro to use for reporting a log message with one event parameter.

Parameters

In addition, the IT_LOG_MESSAGE_2(), IT_LOG_MESSAGE_3(),

IT_LOG_MESSAGE_4(), and IT_LOG_MESSAGE_5() macros, are provided for

reporting log messages with two, three, four, and five parameters,

respectively.

event_log The log (EventLog) where the message is to be reported.

subsystem The SubsystemId.

id The EventId .

severity The EventPriority .

desc A string description of the event.

param0 A single parameter for an EventParameters sequence.

Using Artix TRACE Macros

83

logging_support.h

Overview This section shows the contents of an example logging_support.h file. This

file is located in the following directory:

install-dir/artix/2.1/include/it_bus/logging_support.h

Example 4: Artix logging_support.h

#if !defined(_IT_BUS_LOGGING_)
#define _IT_BUS_LOGGING_
#include <stdio.h>
#include <stdarg.h>

#include <it_bus/API_Defines.h>

#define MAX_STACK_ALLOCATION 256
#define MAX_TRACE_SIZE 16384

typedef IT_UShort IT_TraceLevel;

//These are now equal to ART logging values, and ar e for backward compatibility.
 //value to put in event_log:filters
const IT_TraceLevel IT_TRACE_FATAL = 64; //FATAL
const IT_TraceLevel IT_TRACE_ERROR = 32; //ERROR
const IT_TraceLevel IT_TRACE_WARNING = 16; //WARNING
const IT_TraceLevel IT_TRACE = 4; //INFO_HIGH
const IT_TraceLevel IT_TRACE_BUFFER = 2; //INFO_MED
const IT_TraceLevel IT_TRACE_METHODS = 1; //INFO_LOW
const IT_TraceLevel IT_TRACE_METHODS_INTERNAL = 1; //INFO_LOW

extern IT_AFC_API IT_TraceLevel g_log_filter;

namespace CORBA
{
class ORB;
};

namespace IT_Logging
{
 class EventLog;
}

CHAPTER 6 | Artix Logging and SNMP Support

 84

extern "C"
{
 void IT_AFC_API set_global_log_filter(IT_TraceL evel trace_level);
 void IT_AFC_API set_logging_default_ORB(CORBA:: ORB* orb);

 void IT_AFC_API write_log_record(IT_Logging::Ev entLog* event_log, IT_TraceLevel trace_level,
const char* description, ...);

 void IT_AFC_API write_log_record_with_CDATA(IT_ Logging::EventLog* event_log, IT_TraceLevel
trace_level, const char* description, const char* d ata_buffer, long buffer_size);

 void IT_AFC_API write_log_record_with_binary(IT _Logging::EventLog* event_log, IT_TraceLevel
trace_level, const char* description, const char* d ata_buffer, long buffer_size);

}

//These are for writing data buffers. Binary buffer s are written in a hex dump format.
//To see output from these, include INFO_MED in you r event_log:filters.
#define IT_LOG_BUFFER(event_log, Entry, Length) \
 if ((g_log_filter & IT_TRACE_BUFFER) != 0) \
 { \
 write_log_record_with_binary(event_log, IT_ TRACE_BUFFER, "Buffer Output", Entry, Length);

\
 }

#define IT_LOG_CDATA(event_log, description, Entry) \
 if ((g_log_filter & IT_TRACE_BUFFER) != 0) \
 { \
 write_log_record_with_CDATA(event_log, IT_T RACE_BUFFER, description, Entry, 0); \
 }

#define IT_LOG_CDATA_SIZE(event_log, description, E ntry, Size) \
 if ((g_log_filter & IT_TRACE_BUFFER) != 0) \
 { \
 write_log_record_with_CDATA(event_log, IT_T RACE_BUFFER, description, Entry, Size); \
 }

#define IT_LOG_CDATA_BINARY_BUFFER(event_log, descr iption, bbData) \
 if ((g_log_filter & IT_TRACE_BUFFER) != 0) \
 { \
 write_log_record_with_binary(event_log, IT_ TRACE_BUFFER, description,

bbData.get_const_pointer(), bbData.get_size()); \
 }

Example 4: Artix logging_support.h

Using Artix TRACE Macros

85

extern "C"
{
 void IT_AFC_API set_global_log_filter(IT_TraceL evel trace_level);
 void IT_AFC_API set_logging_default_ORB(CORBA:: ORB* orb);

 void IT_AFC_API write_log_record(IT_Logging::Ev entLog* event_log, IT_TraceLevel trace_level,
const char* description, ...);

 void IT_AFC_API write_log_record_with_CDATA(IT_ Logging::EventLog* event_log, IT_TraceLevel
trace_level, const char* description, const char* d ata_buffer, long buffer_size);

 void IT_AFC_API write_log_record_with_binary(IT _Logging::EventLog* event_log, IT_TraceLevel
trace_level, const char* description, const char* d ata_buffer, long buffer_size);

}

//These are for writing data buffers. Binary buffer s are written in a hex dump format.
//To see output from these, include INFO_MED in you r event_log:filters.
#define IT_LOG_BUFFER(event_log, Entry, Length) \
 if ((g_log_filter & IT_TRACE_BUFFER) != 0) \
 { \
 write_log_record_with_binary(event_log, IT_ TRACE_BUFFER, "Buffer Output", Entry, Length);

\
 }

#define IT_LOG_CDATA(event_log, description, Entry) \
 if ((g_log_filter & IT_TRACE_BUFFER) != 0) \
 { \
 write_log_record_with_CDATA(event_log, IT_T RACE_BUFFER, description, Entry, 0); \
 }

#define IT_LOG_CDATA_SIZE(event_log, description, E ntry, Size) \
 if ((g_log_filter & IT_TRACE_BUFFER) != 0) \
 { \
 write_log_record_with_CDATA(event_log, IT_T RACE_BUFFER, description, Entry, Size); \
 }

#define IT_LOG_CDATA_BINARY_BUFFER(event_log, descr iption, bbData) \
 if ((g_log_filter & IT_TRACE_BUFFER) != 0) \
 { \
 write_log_record_with_binary(event_log, IT_ TRACE_BUFFER, description,

bbData.get_const_pointer(), bbData.get_size()); \
 }

Example 4: Artix logging_support.h

CHAPTER 6 | Artix Logging and SNMP Support

 86

//These are used for controlled tracing operations. Description is a printf format string
//They allow specifying the trace level so callers can control visibility.
#define IT_LOG_GUARDED0(event_log, trace_level, des cription) \
 if ((g_log_filter & trace_level) != 0) \
 write_log_record(event_log, trace_level, de scription);

#define IT_LOG_GUARDED(event_log, trace_level, desc ription) \
 IT_LOG_GUARDED0(event_log, trace_level, descrip tion)

#define IT_LOG_GUARDED1(event_log, trace_level, des cription, Arg1) \
 if ((g_log_filter & trace_level) != 0) \
 { \
 write_log_record(event_log, trace_level , description, Arg1); \
 }

#define IT_LOG_GUARDED2(event_log, trace_level, des cription, Arg1, Arg2) \
 if ((g_log_filter & trace_level) != 0) \
 { \
 write_log_record(event_log, trace_level , description, Arg1, Arg2); \
 }

#define IT_LOG_GUARDED3(event_log, trace_level, des cription, Arg1, Arg2, Arg3) \
 if ((g_log_filter & trace_level) != 0) \
 { \
 write_log_record(event_log, trace_level , description, Arg1, Arg2, Arg3); \
 }

#define IT_LOG_GUARDED4(event_log, trace_level, des cription, Arg1, Arg2, Arg3, Arg4) \
 if ((g_log_filter & trace_level) != 0) \
 { \
 write_log_record(event_log, trace_level , description, Arg1, Arg2, Arg3, Arg4); \
 }

#define IT_LOG_GUARDED5(event_log, trace_level, des cription, Arg1, Arg2, Arg3, Arg4, Arg5) \
 if ((g_log_filter & trace_level) != 0) \
 { \
 write_log_record(event_log, trace_level , description, Arg1, Arg2, Arg3, Arg4, Arg5); \
 }

Example 4: Artix logging_support.h

Using Artix TRACE Macros

87

//These are used to guard a code block from executi ng when the purpose of the code
//block is solely for formatting a trace statement. It prevents the code from
//executing when the trace_level is filtered out an d would not be used anyway.
#define BEGIN_TRACE(trace_level) \
 if ((g_log_filter & trace_level) != 0) \
 {

#define END_TRACE \
 }

//All the macros that follow are just short hand fo r the previous ones, but they
//default the event_log to 0, which uses the first one that was loaded (usually
//the only one unless you are using multiple ORB na mes in your cfg file.

//These are for writing data buffers. Binary buffer s are written in a hex dump format.
//To see output from these, include INFO_MED in you r event_log:filters
#define TRACELOGBUFFER(Entry, Length) \
 if ((g_log_filter & IT_TRACE_BUFFER) != 0) \
 { \
 write_log_record_with_binary(0, IT_TRACE_BU FFER, "Buffer Output", Entry, Length); \
 }

#define TRACELOG_CDATA(description, Entry) \
 if ((g_log_filter & IT_TRACE_BUFFER) != 0) \
 { \
 write_log_record_with_CDATA(0, IT_TRACE_BUF FER, description, Entry, 0); \
 }

#define TRACELOG_CDATA_SIZE(description, Entry, Siz e) \
 if ((g_log_filter & IT_TRACE_BUFFER) != 0) \
 { \
 write_log_record_with_CDATA(0, IT_TRACE_BUF FER, description, Entry, Size); \
 }

#define TRACELOG_CDATA_BINARY_BUFFER(description, b bData) \
 if ((g_log_filter & IT_TRACE_BUFFER) != 0) \
 { \
 write_log_record_with_binary(0, IT_TRACE_BU FFER, description, bbData.get_const_pointer(),

bbData.get_size()); \
 }

Example 4: Artix logging_support.h

CHAPTER 6 | Artix Logging and SNMP Support

 88

//These are used for method level tracing.
//To see output from these, include INFO_LOW in you r event_log:filters.
#define BEGIN_INTERNAL_METHOD(Name) \
 const char *FuncName = Name; \
 if ((g_log_filter & IT_TRACE_METHODS_INTERNAL) != 0) \
 write_log_record(0, IT_TRACE_METHODS_INTERN AL, FuncName);

#define END_INTERNAL_METHOD

#define BEGIN_METHOD(Name) \
 const char *FuncName = Name; \
 if ((g_log_filter & IT_TRACE_METHODS_INTERNAL) != 0) \
 write_log_record(0, IT_TRACE_METHODS, FuncN ame);

#define END_METHOD

//These are used for controlled tracing operations. Description is a printf format string.
//They allow specifying the trace level so callers can control visibility.
#define TRACELOG_WITH_LEVEL0(trace_level, descripti on) \
 IT_LOG_GUARDED(0, trace_level, description)

#define TRACELOG_WITH_LEVEL(trace_level, descriptio n) \
 IT_LOG_GUARDED(0, trace_level, description)

#define TRACELOG_WITH_LEVEL1(trace_level, descripti on, Arg1) \
 IT_LOG_GUARDED1(0, trace_level, description, Ar g1)

#define TRACELOG_WITH_LEVEL2(trace_level, descripti on, Arg1, Arg2) \
 IT_LOG_GUARDED2(0, trace_level, description, Ar g1, Arg2)

#define TRACELOG_WITH_LEVEL3(trace_level, descripti on, Arg1, Arg2, Arg3) \
 IT_LOG_GUARDED3(0, trace_level, description, Ar g1, Arg2, Arg3)

#define TRACELOG_WITH_LEVEL4(trace_level, descripti on, Arg1, Arg2, Arg3, Arg4) \
 IT_LOG_GUARDED4(0, trace_level, description, Ar g1, Arg2, Arg3, Arg4)

#define TRACELOG_WITH_LEVEL5(trace_level, descripti on, Arg1, Arg2, Arg3, Arg4, Arg5) \
 IT_LOG_GUARDED5(0, trace_level, description, Ar g1, Arg2, Arg3, Arg4, Arg5)

Example 4: Artix logging_support.h

Using Artix TRACE Macros

89

//These are used for normal tracing operations. De scription is a printf format string.
//They default the trace level to IT_TRACE. To use another level, see the previous set.
#define TRACELOG(description) \
 IT_LOG_GUARDED(0, IT_TRACE, description)

#define TRACELOG0(description) \
 IT_LOG_GUARDED(0, IT_TRACE, description)

#define TRACELOG1(description, Arg1) \
 IT_LOG_GUARDED1(0, IT_TRACE, description, Arg1)

#define TRACELOG2(description, Arg1, Arg2) \
 IT_LOG_GUARDED2(0, IT_TRACE, description, Arg1, Arg2)

#define TRACELOG3(description, Arg1, Arg2, Arg3) \
 IT_LOG_GUARDED3(0, IT_TRACE, description, Arg1, Arg2, Arg3)

#define TRACELOG4(description, Arg1, Arg2, Arg3, Ar g4) \
 IT_LOG_GUARDED4(0, IT_TRACE, description, Arg1, Arg2, Arg3, Arg4)

#define TRACELOG5(description, Arg1, Arg2, Arg3, Ar g4, Arg5) \
 IT_LOG_GUARDED5(0, IT_TRACE, description, Arg1, Arg2, Arg3, Arg4, Arg5)

#endif

Example 4: Artix logging_support.h

CHAPTER 6 | Artix Logging and SNMP Support

 90

IT_Logging Module

Overview The IT_Logging module is the centralized point for programmatic control of

all logging. The LogStream interface controls how and where events are

received.

The IT_Logging module also uses the following common data types, static

method, and macros.

IT_Logging::ApplicationId Data Type

//IDL
typedef string ApplicationId;

An identifying string representing the application that logged the event.

For example, a UNIX and Windows ApplicationId contains the host name

and process ID (PID) of the reporting process. Because this value can differ

from platform to platform, streams should only use it as informational text,

and should not attempt to interpret it.

Table 10:IT_Logging Common Data Types, Methods, and Macros

Common Data Types Methods and Macros

ApplicationId
EventId
EventParameters
EventPriority
SubsystemId
Timestamp

format_message()

IT_LOG_MESSAGE()
IT_LOG_MESSAGE_1()
IT_LOG_MESSAGE_2()
IT_LOG_MESSAGE_3()
IT_LOG_MESSAGE_4()
IT_LOG_MESSAGE_5()

IT_Logging Module

91

IT_Logging::EventId Data Type

//IDL
typedef unsigned long EventId;

An identifier for the particular event.

IT_Logging::EventParameters Data Type

//IDL
typedef CORBA::AnySeq EventParameters;

A sequence of locale-independent parameters encoded as a sequence of Any

values.

IT_Logging::EventPriority Data Type

//IDL
typedef unsigned short EventPriority;

Specifies the priority of a logged event. These can be divided into the

following categories of priority.

Information A significant non-error event has occurred. Examples include

server startup/shutdown, object creation/deletion, and

information about administrative actions. Informational

messages provide a history of events that can be invaluable

in diagnosing problems.

Warning The subsystem has encountered an anomalous condition, but

can ignore it and continue functioning. Examples include

encountering an invalid parameter, but ignoring it in favor of

a default value.

Error An error has occurred. The subsystem will attempt to

recover, but may abandon the task at hand. Examples

include finding a resource (such as memory) temporarily

unavailable, or being unable to process a particular request

due to errors in the request.

Fatal Error An unrecoverable error has occurred. The subsystem or

process will terminate.

CHAPTER 6 | Artix Logging and SNMP Support

 92

The possible values for an EventPriority consist of the following:

LOG_NO_EVENTS
LOG_ALL_EVENTS
LOG_INFO_LOW
LOG_INFO_MED
LOG_INFO_HIGH
LOG_INFO (LOG_INFO_LOW)
LOG_ALL_INFO
LOG_WARNING
LOG_ERROR
LOG_FATAL_ERROR

A single value is used for EventLog operations that report events or

LogStream operations that receive events. In filtering operations such as

set_filter() , these values can be combined as a filter mask to control

which events are logged at runtime.

IT_Logging::format_message()

// C++
static char* format_message(
 const char* description,
 const IT_Logging::EventParameters& params
);

Returns a formatted message based on a format description and a sequence

of parameters.

Parameters Messages are reported in two pieces for internationalization:

format_message() copies the description into an output string, interprets

each event parameter, and inserts the event parameters into the output

string where appropriate. Event parameters that are primitive and

SystemException parameters are converted to strings before insertion. For

all other types, question marks (?) are inserted.

description A locale-dependent string that describes of how to use the

sequence of parameters in params .

params A sequence of locale-dependent parameters.

IT_Logging Module

93

IT_Logging::SubsystemId Data Type

//IDL
typedef string SubsystemId;

An identifying string representing the subsystem from which the event

originated. The constant _DEFAULT may be used to enable all subsystems.

IT_Logging::Timestamp Data Type

//IDL
typedef unsigned long Timestamp;

The time of the logged event in seconds since January 1, 1970.

CHAPTER 6 | Artix Logging and SNMP Support

 94

IT_Logging::LogStream Interface

Overview Each of the Artix logging plug-ins implements the IT_Logging::LogStream

interface. The LogStream interface allows an application to intercept events

and write them to some concrete location via a stream.

IT_Logging::EventLog objects maintain a list of LogStream objects. You

register a LogStream object from an EventLog using register_stream() .

The complete LogStream interface is as follows:

// IDL in module IT_Logging
interface LogStream {
 void report_event(
 in ApplicationId application,
 in SubsystemId subsystem,
 in EventId event,
 in EventPriority priority,
 in Timestamp event_time,
 in any event_data
);

 void report_message(
 in ApplicationId application,
 in SubsystemId subsystem,
 in EventId event,
 in EventPriority priority,
 in Timestamp event_time,
 in string description,
 in EventParameters parameters
);
};

These operations are described in detail as follows:

IT_Logging::LogStream Interface

95

LogStream::report_event()

// IDL
void report_event(
 in ApplicationId application,
 in SubsystemId subsystem,
 in EventId event,
 in EventPriority priority,
 in Timestamp event_time,
 in any event_data
);

Reports an event and its event-specific data to the log stream.

Parameters

See also IT_Logging::EventLog::report_event()

IT_Logging::LogStream::report_message()

LogStream::report_message()

// IDL
void report_message(
 in ApplicationId application,
 in SubsystemId subsystem,
 in EventId event,
 in EventPriority priority,
 in Timestamp event_time,
 in string description,
 in EventParameters parameters
);

Reports an event and message to the log stream.

application An ID representing the reporting application.

subsystem The name of the subsystem reporting the event.

event A unique ID defining the event.

priority The event priority.

event_time The time when the event occurred.

event_data Event-specific data.

CHAPTER 6 | Artix Logging and SNMP Support

 96

Parameters

See also IT_Logging::EventLog::report_message()

IT_Logging::LogStream::report_event()

application An ID representing the reporting application.

subsystem The name of the subsystem reporting the event.

event The unique ID defining the event.

priority The event priority.

event_time The time when the event occurred.

description A string describing the format of parameters .

parameters A sequence of parameters for the log.

Using the SNMP Logging Plug-in

97

Using the SNMP Logging Plug-in

SNMP Simple Network Management Protocol (SNMP) is the Internet standard

protocol for managing nodes on an IP network. SNMP can be used to

manage and monitor all sorts of equipment (for example, network servers,

routers, bridges, and hubs).

The Artix SNMP LogStream plug-in uses the open source library net-snmp

(v.5.0.7) to emit SNMPv1/v2 traps. For more information on this

implementation, see http://sourceforge.net/projects/net-snmp/. To obtain a

freeware SNMP Trap Receiver, visit http://www.ncomtech.com.

Artix Management Information

Base (MIB)

A MIB file is a database of objects that can be managed using SNMP. It has

a hierarchical structure, similar to a DOS or UNIX directory tree. It contains

both pre-defined values and values that can be customized. The Artix MIB is

shown below:

Example 5: Artix MIB

IONA-ARTIX-MIB DEFINITIONS ::= BEGIN

 IMPORTS
 MODULE-IDENTITY, OBJECT-TYPE,
 Integer32, Counter32,
 Unsigned32,
 NOTIFICATION-TYPE FROM SNMPv2 -SMI
 DisplayString FROM RFC121 3-MIB
;

-- v2 s/current/current

 iona OBJECT IDENTIFIER ::= { iso(1) org(3) dod(6) internet(1) private(4) enterprises(1) 3027 }

 ionaMib MODULE-IDENTITY
 LAST-UPDATED "200303210000Z"

 ORGANIZATION "IONA Technologies PLC"

http://sourceforge.net/projects/net-snmp/
http://sourceforge.net/projects/net-snmp/

CHAPTER 6 | Artix Logging and SNMP Support

 98

 CONTACT-INFO
 "
 Corporate Headquarters
 Dublin Office
 The IONA Building
 Shelbourne Road
 Ballsbridge
 Dublin 4 Ireland
 Phone: 353-1-662-5255
 Fax: 353-1-662-5244

 US Headquarters
 Waltham Office
 200 West Street 4th Floor
 Waltham, MA 02451
 Phone: 781-902-8000
 Fax: 781-902-8001

 Asia-Pacific Headquarters
 IONA Technologies Japan, Ltd
 Akasaka Sanchome Bldg.
 7F 3-21-16 Akasaka, Minato-ku,
 Tokyo, Japan 107-0052
 Tel: +81 3 3560 5611
 Fax: +81 3 3560 5612
 E-mail: support@iona.com
 "
 DESCRIPTION
 "This MIB module defines the objects used a nd format of SNMP traps that are generated
 from the Event Log for Artix based systems from IONA Technologies"

 ::= { iona 1 }

Example 5: Artix MIB

Using the SNMP Logging Plug-in

99

-- iona(3027)

-- |
-- ionaMib(1)
-- |
-- ___________________________________ _____
-- | | |
-- orbix3(2) IONAAdmin (3) Artix (4)
- |
-- --- -----------------
-- | |
-- ArtixEventLogMibOb jects(0) ArtixEventLogMibTraps (1)
-- | |
-- ----------------------------------- ----- -----------------------
-- |- eventSource (1) |- ArtixbaseTrapDef (1)
-- |- eventId (2)
-- |- eventPriority (3)
-- |- timeStamp (4)
-- |- eventDescription (5)

 Artix OBJECT IDENTIFIER ::= { ionaMib 4 }
 ArtixEventLogMibObjects OBJECT IDENTIFIER ::= { Artix 0 }
 ArtixEventLogMibTraps OBJECT IDENTIFIER ::= { Artix 1 }
 ArtixBaseTrapDef OBJECT IDENTIFIER ::= { ArtixEventLogMibTraps 1 }

-- MIB variables used as varbinds
 eventSource OBJECT-TYPE
 SYNTAX DisplayString (SIZE(0..255))
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The component or subsystem which generated the event."
 ::= { ArtixEventLogMibObjects 1 }

Example 5: Artix MIB

CHAPTER 6 | Artix Logging and SNMP Support

 100

 eventId OBJECT-TYPE
 SYNTAX INTEGER
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The event id for the subsystem which gener ated the event."

 ::= { ArtixEventLogMibObjects 2 }

 eventPriority OBJECT-TYPE
 SYNTAX INTEGER
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The severity level of this event. This ma ps to IT_Logging::EventPriority types. All
 priority types map to four general types: INFO (I), WARN (W), ERROR (E), FATAL_ERROR (F)"

 ::= { ArtixEventLogMibObjects 3 }

 timeStamp OBJECT-TYPE
 SYNTAX DisplayString (SIZE(0..255))
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The time when this event occurred."

 ::= { ArtixEventLogMibObjects 4 }

 eventDescription OBJECT-TYPE
 SYNTAX DisplayString (SIZE(0..255))
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The component/application description data included with event."

 ::= { ArtixEventLogMibObjects 5 }

-- SNMPv1 TRAP definitions
-- ArtixEventLogBaseTraps TRAP-TYPE
-- OBJECTS {
-- eventSource,
-- eventId,
-- eventPriority,

Example 5: Artix MIB

Using the SNMP Logging Plug-in

101

IONA SNMP integration Events received from various Artix components are converted into SNMP

management information. This information is sent to designated hosts as

SNMP traps, which can be received by any SNMP managers listening on the

hosts. In this way, Artix enables SNMP managers to monitor Artix-based

systems.

Artix supports SNMP version 1 and 2 traps only.

Artix provides a log stream plug-in called snmp_log_stream . The shared

library name of the SNMP plug-in found in the artix.cfg file is:

-- timestamp,
-- eventDescription
-- }

-- STATUS current
-- ENTERPRISE iona
-- VARIABLES { ArtixEventLogMibObjects }
-- DESCRIPTION "The generic trap generated from an Artix Event Log."
-- ::= { ArtixBaseTrapDef 1 }

-- SNMPv2 Notification type

 ArtixEventLogNotif NOTIFICATION-TYPE
 OBJECTS {
 eventSource,
 eventId,
 eventPriority,
 timestamp,
 eventDescription
 }

 STATUS current
 ENTERPRISE iona
 DESCRIPTION "The generic trap generated from a n Artix Event Log."
 ::= { ArtixBaseTrapDef 1 }

END

Example 5: Artix MIB

plugins:snmp_log_stream:shlib_name = "it_snmp"

CHAPTER 6 | Artix Logging and SNMP Support

 102

Configuring the SNMP plug-in The SNMP plug-in has five configuration variables, whose defaults can be

overridden by the user. The availability of these variables is subject to

change. The variables and defaults are:

Configuring the Enterprise Object

Identifier

The last plug-in described, oid , is the Enterprise Object Identifier. This is

assigned to specific enterprises by the Internet Assigned Numbers Authority

(IANA). The first six numbers correspond to the prefix:

iso.org.dod.internet.private.enterprise (1.3.6.1.4.1). Each

enterprise is assigned a unique number, and can provide additional

numbers to further specify the enterprise and product.

For example, the oid for IONA is 3027 . IONA has added 1.4.1.0 for Artix.

Therefore the complete OID for IONA’s Artix is 1.3.6.1.4.1.3027.1.4.1.0 .

To find the number for your enterprise, visit the IANA website at

http://www.iana.org.

The SNMP plug-in implements the IT_Logging::LogStream interface and

therefore acts like the local_log_stream plug-in.

plugins:snmp_log_stream:community = "public";

plugins:snmp_log_stream:server = "localhost";

plugins:snmp_log_stream:port = "162";

plugins:snmp_log_stream:trap_type = "6";

plugins:snmp_log_stream:oid = "<your IANA num ber in dotted decimal notation>"

http://www.iana.org

103

CHAPTER 7

Enterprise
Performance
Logging
IONA’s performance logging plug-ins enable Artix to integrate
effectively with third-party Enterprise Management Systems
(EMS).

In this chapter This chapter contains the following sections:

Enterprise Management Integration page 104

Configuring Performance Logging page 106

Logging Message Formats page 111

CHAPTER 7 | Enterprise Performance Logging

 104

Enterprise Management Integration

Overview IONA’s performance logging plug-ins enable both Artix and Orbix to integrate

effectively with Enterprise Management Systems (EMS), such as IBM

Tivoli™, HP OpenView™, CA Unicenter™, or BMC Patrol™. The

performance logging plug-ins can also be used in isolation or as part of a

bespoke solution.

Enterprise Management Systems enable system administrators and

production operators to monitor enterprise-critical applications from a single

management console. This enables them to quickly recognize the root cause

of problems that may occur, and take remedial action (for example, if a

machine is running out of disk space).

Performance logging When performance logging is configured, you can see how each Artix server

is responding to load. The performance logging plug-ins log this data to file

or syslog . Your EMS (for example, IBM Tivoli) can read the performance

data from these logs, and use it to initiate appropriate actions, (for example,

issue a restart to a server that has become unresponsive, or start a new

replica for an overloaded cluster).

Example EMS integration Figure 8 shows an overview of the IONA and IBM Tivoli integration at work.

In this example, a restart command is issued to an unresponsive server.

In Figure 8, the performance log files indicate a problem. The IONA Tivoli

Provider uses the log file interpreter to read the logs. The provider sees when

a threshold is exceeded and fires an event. The event causes a task to be

activated in the Tivoli Task Library. This task restarts the appropriate server.

This chapter explains how to manually configure the performance logging

plug-ins. It also explains the format of the performance logging messages.

For details on how to integrate your EMS environment with Artix, see the

IONA guide for your EMS. For example, the IONA Tivoli Integration Guide or

IONA BMC Patrol Integration Guide.

Enterprise Management Integration

105

Figure 8: Overview of an Artix and IBM Tivoli Integration

CHAPTER 7 | Enterprise Performance Logging

 106

Configuring Performance Logging

Overview This section explains how to manually configure performance logging. This

section includes the following:

• “Performance logging plug-ins”.

• “Monitoring Artix requests”.

• “Logging to a file or syslog”.

• “Logging to a syslog daemon”.

• “Monitoring clusters”.

• “Configuring a server ID”.

• “Configuring a client ID”.

• “Configuring with the GUI”.

Performance logging plug-ins The performance logging component includes the following plug-ins:

Note: You can also use the Artix Designer GUI tool to configure
performance logging automatically. However, manual configuration gives
you more fine-grained control.

Table 11: Performance Logging Plug-ins

Plug-in Description

Response monitor Monitors response times of requests as they
pass through the Artix binding chains.
Performs the same function for Artix as the
response time logger does for Orbix.

Collector Periodically collects data from the response
monitor plug-in and logs the results.

Configuring Performance Logging

107

Monitoring Artix requests You can use performance logging to monitor Artix server and client requests.

To monitor both client and server requests, add the bus_response_monitor

plug-in to the orb_plugins list in the global configuration scope. For

example:

To configure performance logging on the client side only, specify this setting

in a client scope only.

Logging to a file or syslog You can configure the collector plug-in to log data either to a file or to

syslog . The configuration settings depends on whether your application is

written in C++ or Java.

C++ configuration

The following example configuration for a C++ application results in

performance data being logged to

/var/log/my_app/perf_logs/treasury_app.log every 90 seconds:

If you do not specify the response time period, it defaults to 60 seconds.

Java configuration

Configuring the Java collector plug-in is slightly different from the C++

collector) because the Java collector plug-in makes use of Apache Log4J.

Instead of setting plugins:it_response_time_collector:filename , you set

the plugins:it_response_time_collector:log_properties to use Log4J,

for example:

orb_plugins = ["xmlfile_log_stream", "soap", "http" ,
"bus_response_monitor"];

plugins:it_response_time_collector:period = "90";
plugins:it_response_time_collector:filename =
"/var/log/my_app/perf_logs/treasury_app.log";

plugins:it_response_time_collector:log_properties = ["log4j.rootCategory=INFO, A1",
"log4j.appender.A1=com.iona.management.logging.log4 jappender.TimeBasedRollingFileAppender",
"log4j.appender.A1.File="/var/log/my_app/perf_logs/ treasury_app.log",
"log4j.appender.A1.MaxFileSize=512KB",
"log4j.appender.A1.layout=org.apache.log4j.PatternL ayout",
"log4j.appender.A1.layout.ConversionPattern=%d{ISO8 601} %-80m %n"
];

CHAPTER 7 | Enterprise Performance Logging

 108

Logging to a syslog daemon You can configure the collector to log to a syslog daemon or Windows event

log, as follows:

The syslog_appid enables you to specify your application name that is

prepended to all syslog messages. If you do not specify this, it defaults to

iona .

Monitoring clusters You can configure your EMS to monitor a cluster of servers. You can do this

by configuring multiple servers to log to the same file. If the servers are

running on different hosts, the log file location must be on an NFS mounted

or shared directory.

Alternatively, you can use syslogd as a mechanism for monitoring a cluster.

You can do this by choosing one syslogd to act as the central logging server

for the cluster. For example, say you decide to use a host named teddy as

your central log server. You must edit the /etc/syslog.conf file on each

host that is running a server replica, and add a line such as the following:

Some syslog daemons will not accept log messages from other hosts by

default. In this case, it may be necessary to restart the syslogd on teddy

with a special flag to allow remote log messages.

You should consult the man pages on your system to determine if this is

necessary and what flags to use.

plugins:it_response_time_collector:system_logging_e nabled = "true";
plugins:it_response_time_collector:syslog_appID = " treasury";

Substitute the name of your log server
 user.info @teddy

Configuring Performance Logging

109

Configuring a server ID You can configure a server ID that will be reported in your log messages.

This server ID is particularly useful in the case where the server is a replica

that forms part of a cluster.

In a cluster, the server ID enables management tools to recognize log

messages from different replica instances. You can configure a server ID as

follows:

This setting is optional; and if omitted, the server ID defaults to the ORB

name of the server. In a cluster, each replica must have this value set to a

unique value to enable sensible analysis of the generated performance logs.

Configuring a client ID You can also configure a client ID that will be reported in your log messages.

Specify this using the client-id configuration variable, for example:

This setting enables management tools to recognize log messages from

client applications. This setting is optional; and if omitted, it is assumed that

that a server is being monitored.

Configuration example The following simple example configuration file is from the management

demo supplied in your Artix installation:

plugins:it_response_time_collector:server-id = "Loc ator-1";

plugins:it_response_time_collector:client-id = "my_ client_app";

include "../../../../../etc/domains/artix.cfg";

demos {

 management

 {

 orb_plugins = ["xmlfile_log_stream", "soap", "h ttp",
 "bus_response_monitor"];

CHAPTER 7 | Enterprise Performance Logging

 110

In this example, the bus_response_monitor plug-in and

plugins:it_response_time_collector:period are set in the global scope.

This specifies these settings for both the client and server applications.

Configuring with the GUI The Artix Designer GUI tool automatically generates performance logging

configuration for the Artix services. The generated server-id defaults to the

following format:

domain-name_service-name_hostname (for example,

artix_locator_myhost)

For details on how to automatically generate performance logging, see the

IONA Tivoli Integration Guide or IONA BMC Patrol Integration Guide.

 plugins:it_response_time_collector:period = "5" ;

 client {

 plugins:it_response_time_collector:client-id=
 "management-demo-client";

 plugins:it_response_time_collector:filename=
 "management_demo_client.log";
 };

 server {

 plugins:it_response_time_collector:server-id=
 "management-demo-server";

 plugins:it_response_time_collector:filename=
 "management_demo_server.log";
 };
 };
};

Logging Message Formats

111

Logging Message Formats

Overview This section describes the logging message formats used by IONA products.

It includes the following:

• “Artix log message format”.

• “Orbix log message format”.

• “Simple life cycle message formats”.

Artix log message format Performance data is logged in a well-defined format. For Artix applications,

this format is as follows:

YYYY-MM-DD HH:MM:SS server= serverID [namespace= nnn service= sss
port= ppp operation= name] count= n avg= n max= n min= n int= n oph= n

Table 12: Artix log message arguments

Argument Description

server The server ID of the process that is logging the
message.

namespace The Artix namespace.

service The Artix service.

port The Artix port.

operation The name of the operation for CORBA
invocations or the URI for requests on servlets.

count The number of operations of invoked (IIOP).

or

The number of times this operation or URI was
logged during the last interval (HTTP).

avg The average response time (milliseconds) for
this operation or URI during the last interval.

CHAPTER 7 | Enterprise Performance Logging

 112

The combination of namespace, service and port above denote a unique

Artix endpoint.

Orbix log message format The format for Orbix log messages is as follows:

max The longest response time (milliseconds) for
this operation or URI during the last interval.

min The shortest response time (milliseconds) for
this operation or URI during the last interval.

int The number of milliseconds taken to gather the
statistics in this log file.

oph Operations per hour.

Table 12: Artix log message arguments

Argument Description

YYYY-MM-DD HH:MM:SS server= serverID [operation= name] count= n
avg= n max= n min= n int= n oph= n

Table 13: Orbix log message arguments

Argument Description

server The server ID of the process that is logging the
message.

operation The name of the operation for CORBA invocations or
the URI for requests on servlets.

count The number of operations of invoked (IIOP).

or

The number of times this operation or URI was
logged during the last interval (HTTP).

avg The average response time (milliseconds) for this
operation or URI during the last interval.

max The longest response time (milliseconds) for this
operation or URI during the last interval.

Logging Message Formats

113

Simple life cycle message formats The server will also log simple life cycle messages. All servers share the

following common format.

min The shortest response time (milliseconds) for this
operation or URI during the last interval.

int The number of milliseconds taken to gather the
statistics in this log file.

oph Operations per hour.

Table 13: Orbix log message arguments

Argument Description

YYYY-MM-DD HH:MM:SS server= serverID status= current_status

Table 14: Simple life cycle message formats arguments

Argument Description

server The server ID of the process that is logging the
message.

status A text string describing the last known status of
the server (for example, starting_up , running ,
shutting_down).

CHAPTER 7 | Enterprise Performance Logging

 114

115

CHAPTER 8

Using Artix with
International
Codesets
The Artix SOAP and CORBA bindings enable you to transmit
and receive messages in a range of codesets.

In this chapter This chapter includes the following:

Introduction to International Codesets page 116

Working with Codesets using SOAP page 119

Working with Codesets using CORBA page 120

Working with Codesets using Fixed Length Records page 123

Working with Codesets using Message Interceptors page 126

Routing with International Codesets page 135

CHAPTER 8 | Using Artix with International Codesets

 116

Introduction to International Codesets

Overview A coded character set, or codeset for short, is a mapping between integer

values and characters that they represent. The best known codeset is ASCII

(American Standard Code for Information Interchange). ASCII defines 94

graphic characters and 34 control characters using the 7-bit integer range.

European languages The 94 characters defined by the ASCII codeset are sufficient for English,

but they are not sufficient for European languages, such as French, Spanish,

and German.

To remedy the situation, an 8-bit codeset, ISO 8859-1, also known as

Latin-1, was invented. The lower 7-bit portion is identical to ASCII. The

extra characters in the upper 8-bit range cover those languages used widely

in Western Europe.

Many other codesets are defined under ISO 8859 framework. These cover

languages in other regions of Europe, as well as Russian, Arabic and

Hebrew. The most recent addition is ISO 8859-15, which is a revision of

ISO 8859-1. This adds the Euro currency symbol and other letters while

removing less used characters.

For further information about ISO-8859-x encoding, see the following web

site: “The ISO 8859 Alphabet Soup”

(http://wwwwbs.cs.tu-berlin.de/user/czyborra/charsets/).

Ideograms Asian countries that use ideograms in their writing systems need more

characters than fit in an 8-bit integer. Therefore, they invented double-byte

codesets, where a character is represented by a bit pattern of 2 bytes.

These languages also needed to mix the double-byte codeset with ASCII in a

single text file. So, character encoding schemas, or simply encodings, were

invented as a way to mix characters of multiple codesets.

Some of the popular encodings used in Japan include:

• Shift JIS

• Japanese EUC

• Japanese ISO 2022

http://wwwwbs.cs.tu-berlin.de/user/czyborra/charsets
http://wwwwbs.cs.tu-berlin.de/user/czyborra/charsets

Introduction to International Codesets

117

Unicode Unicode is a new codeset that is gaining popularity. It aims to assign a

unique number, or code point, to every character that exists (and even once

existed) in all languages. To accomplish this, Unicode, which began as a

double-byte codeset, has been expanded into a quadruple-byte codeset.

Unicode, in pure form, can be difficult to use within existing computer

architectures, because many APIs are byte-oriented and assume that the

byte value 0 means the end of the string.

For this reason, Unicode Transformation Format for 8-bit channel, or

UTF-8, is frequently used. When browsers list “Unicode” in its encoding

selection menu, they usually mean UTF-8, rather than the pure form of

Unicode.

For more information about Unicode and its variants, visit Unicode

(http://www.unicode.org/).

Charset names To address the need for computer networks to connect different types of

computers that use different encodings, the Internet Assigned Number

Authority, or IANA, has a registry of encodings at

http://www.iana.org/assignments/character-sets.

IANA names are used by many Internet standards including MIME, HTML,

and XML.

Table 15 lists IANA names for some popular charsets.

Table 15: IANA Charset Names

IANA Name Description

US-ASCII 7-bit ASCII for US English

ISO-8859-1 Western European languages

UTF-8 Byte oriented transformation of Unicode

UTF-16 Double-byte oriented transformation of Unicode

Shift_JIS Japanese DOS & Windows

EUC-JP Japanese adaptation of generic EUC scheme, used in
UNIX

http://www.unicode.org
http://www.unicode.org
http://www.iana.org/assignments/character-sets

CHAPTER 8 | Using Artix with International Codesets

 118

CORBA names

In CORBA, codesets are identified by numerical values registered with the

Open Group’s registry, OSF Codeset Registry:

ftp://ftp.opengroup.org/pub/code_set_registry/code_set_registry1.2g.txt.

Java names

Java has its own names for charsets. For example, ISO-8859-1 is named

ISO8859_1 , Shift_JIS is named SJIS , and UTF-8 is named UTF8.

Java is transitioning to IANA charset names, to be aligned with MIME. JDK

1.3 and above recognizes both names.

ISO-2022-JP Japanese adaptation of generic ISO 2022 encoding
scheme

Note: IANA names are case insensitive. For example, US-ASCII can be
spelled as us-ascii or US-ascii.

Table 15: IANA Charset Names

IANA Name Description

Note: Artix uses IANA charset names even for CORBA codesets.

ftp://ftp.opengroup.org/pub/code_set_registry/code_set_registry1.2g.txt

Working with Codesets using SOAP

119

Working with Codesets using SOAP

Overview Because SOAP messages are XML based, they are composed primarily of

character data that can be encoded using any of the existing codesets. If the

applications in a system are using different codesets, they can not interpret

the messages passing between them. The Artix SOAP plug-in uses the XML

prologue of SOAP messages to ensure that it stays in sync with the

applications that it interacts with.

Making requests When making requests or broadcasting a message, the SOAP plug-in

determines the codeset to use from its Artix configuration scope. You can set

the SOAP plug-in’s character encoding using the plugins:soap:encoding

configuration variable. This takes the IANA name of the desired codeset.

The default value is UTF-8 .

For more information on this configuration variable, see “SOAP Plug-in” on

page 66. For general information on configuring Artix applications, see

“Configuring Artix” on page 23.

Responding to SOAP requests When an Artix server receives a SOAP message, it checks the XML prologue

to see what encoding codeset the message uses. If the XML prologue

specifies the message’s codeset, Artix uses the specified codeset to read the

message and to write out its response to the request. For example, an Artix

server that receives a request with the XML prologue shown in Example 6

decodes the message using UTF-16 and encodes its response using UTF-16 .

If an Artix server receives a SOAP message where the XML prologue does

not include the encoding attribute, the server will use whatever default

codeset is specified in its configuration to decode the message and encode

the response.

Example 6: XML Prologue

<?xml version="1.0" encoding="UTF-16"?>

CHAPTER 8 | Using Artix with International Codesets

 120

Working with Codesets using CORBA

Overview The Artix CORBA plug-in supports both wide characters and narrow

characters to accommodate an array of codesets. It also supports codeset

negotiation. Codeset negotiation is the process by which two CORBA

processes which use different native codesets determine which codeset to

use as a transmission codeset. Occasionally, the process requires the

selection of a conversion codeset to transmit data between the two

processes. The algorithm is defined in section 13.10.2.6 of the CORBA

specification (http://www.omg.org/cgi-bin/apps/doc?formal/02-12-06.pdf).

Native codeset A native codeset (NCS) is a codeset that a CORBA program speaks natively.

For Java, this is UTF-8 (0x05010001) for char and String , and UTF-16

(0x00010109) for wchar and wstring .

For C and C++, this is the encoding that is set by setlocale() , which in

turn depends on the LANG and LC_xxxx environment variables.

You can configure the Artix CORBA plug-in’s native codesets using the

configuration variables listed in Table 16.

Note: For CORBA programing in Java, you can specify a codeset other
than the true native codeset.

Table 16: Configuration Variables for CORBA Native Codeset

Configuration Variable Description

plugins:codeset:char:ncs Specifies the native codeset for narrow
character and string data.

plugins:codeset:wchar:ncs Specifies the native codeset for wide
character and string data.

http://www.omg.org/cgi-bin/apps/doc?formal/02-12-06.pdf

Working with Codesets using CORBA

121

Conversion codeset A conversion codeset (CCS) is an alternative codeset that the application

registers with the ORB. More than one CCS can be registered for each of the

narrow and wide interfaces. CCS should be chosen so that the expected

input data can be converted to and from the native codeset without data

loss. For example, Windows code page 1252 (0x100204e4) can be a

conversion codeset for ISO-8859-1 (0x00010001), assuming only the

common characters between the two codesets are used in the data.

You can configure the Artix CORBA plug-in’s list of conversion codesets

using the configuration variables listed in Table 17.

Transmission codeset A transmission codeset (TCS) is the codeset agreed upon after the codeset

negotiation. The data on the wire uses this codeset. It is either the native

codeset, one of the conversion codesets, or UTF-8 for the narrow interface

and UTF-16 for the wide interface.

Negotiation algorithm Codeset negotiation uses the following algorithm to determine which

codeset to use in transferring data between client and server:

1. If the client and server are using the same native codeset, no

translation is required.

2. If the client has a converter to the server’s codeset, the server’s native

codeset is used as the transmission codeset.

3. If the client does not have an appropriate converter and the server does

have a converter to the client’s codeset, the client’s native codeset is

used as the transmission codeset.

Table 17: Configuration Variables for CORBA Conversion Codesets

Configuration Variable Description

plugins:codeset:char:ccs Specifies the list of conversion codesets
for narrow character and string data.

plugins:codeset:wchar:ccs Specifies the list of conversion codesets
for wide character and string data.

CHAPTER 8 | Using Artix with International Codesets

 122

4. If neither the client nor the server has an appropriate converter, the

server ORB tries to find a conversion codeset that both server and

client can convert to and from without loss of data. The selected

conversion codeset is used as the transmission codeset.

5. If no conversion codeset can be found, the server ORB determines if

using UTF-8 (narrow characters) or UTF-16 (wide characters) will

allow communication between the client and server without loss of

data. If UTF-8 or UTF-16 is acceptable, it is used as the transmission

codeset. If not, a CODESET_INCOMPATIBLE exception is raised.

Codeset compatibility The final steps involve a compatibility test, but the CORBA specification

does not define when a codeset is compatible with another. The

compatibility test algorithm employed in Orbix is outlined below:

1. ISO 8859 Latin-n codesets are compatible.

2. UCS-2 (double-byte Unicode), UCS-4 (four-byte Unicode), and UTF-x

are compatible.

3. All other codesets are not compatible with any other codesets.

This compatibility algorithm is subject to change without notice in future

releases. Therefore, it is best to configure the codeset variables as explicitly

as possible to reduce dependency on the compatibility algorithm.

Working with Codesets using Fixed Length Records

123

Working with Codesets using Fixed Length
Records

Overview Artix fixed record length support enables Artix to interact with mainframe

systems using COBOL. For example, many COBOL applications send fixed

length record data over WebSphere MQ.

Artix provides a fixed binding that maps logical messages to concrete fixed

record length messages. This binding enables you to specify attributes such

as encoding style, justification, and padding character.

Encoding attribute The Artix fixed binding provides an optional encoding attribute for both its

<fixed:binding> and <fixed:body> elements. The encoding attribute

specifies the codeset used to encode the text data. Valid values are any

IANA codeset name. See http://www.iana.org/assignments/character-sets

for details.

The encoding attribute for the <fixed:binding> element is a global setting;

while the <fixed:body> attribute is per operation. Both settings are

optional. If you do not set either, the default value is UTF-8 .

For more details, see fixed-binding.xsd , available in

install-dir\iona\artix\2.1\schemas .

Fixed binding example The following WSDL example shows a fixed binding with encoding

attributes for <fixed:body> elements. This binding includes two operations,

echoVoid and echoString .

Example 7: Fixed Length Record Binding

<?xml version="1.0" encoding="UTF-8"?>
<definitions xmlns="http://schemas.xmlsoap.org/wsdl /"

xmlns:fixed="http://schemas.iona.com/bindings/fixed "
xmlns:http="http://schemas.iona.com/transports/http "
xmlns:http-conf="http://schemas.iona.com/transports /http/configuration"
xmlns:iiop="http://schemas.iona.com/transports/iiop _tunnel"
xmlns:mq="http://schemas.iona.com/transports/mq"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

http://www.iana.org/assignments/character-sets

CHAPTER 8 | Using Artix with International Codesets

 124

 xmlns:tns="http://www.iona.com/artix/test/I18nB ase/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsd1="http://www.iona.com/artix/test/I18nBase " name="I18nBaseService"

 targetNamespace="http://www.iona.com/artix/test/ I18nBase/"

 <message name="echoString">
 <part name="stringParam0" type="xsd:string" />
 </message>

 <message name="echoStringResponse">
 <part name="return" type="xsd:string"/>
 </message>

 <message name="echoVoid"/>
 <message name="echoVoidResponse"/>

 <portType name="I18nBasePortType">
 <operation name="echoString">
 <input message="tns:echoString" name="e choString"/>
 <output message="tns:echoStringResponse " name="echoStringResponse"/>
 </operation>
 <operation name="echoVoid">
 <input message="tns:echoVoid" name="ech oVoid"/>
 <output message="tns:echoVoidResponse" name="echoVoidResponse"/>
 </operation>
 </portType>

 <binding name="I18nFIXEDBinding" type="tns:I18n BasePortType">
 <fixed:binding/>
 <operation name="echoString">
 <fixed:operation discriminator="discrim inator"/>
 <input name="echoString">
 <fixed:body encoding="ISO-8859-1">
 <fixed:field bindingOnly="true" fixedValue="01" name="discriminator"/>
 <fixed:field name="stringParam0 " size="50"/>
 </fixed:body>
 </input>
 <output name="echoStringResponse">
 <fixed:body encoding="ISO-8859-1">
 <fixed:field name="return" size ="50"/>
 </fixed:body>
 </output>
 </operation>

Example 7: Fixed Length Record Binding

Working with Codesets using Fixed Length Records

125

Further information For more details on the Artix fixed length binding, see Designing Artix

Solutions.

 <operation name="echoVoid">
 <fixed:operation discriminator="discrim inator"/>
 <input name="echoVoid">
 <fixed:body>
 <fixed:field name="discriminato r" fixedValue="02" bindingOnly="true"/>
 </fixed:body>
 </input>
 <output name="echoVoidResponse">
 <fixed:body/>
 </output>
 </operation>
 </binding>
</definitions>

Example 7: Fixed Length Record Binding

CHAPTER 8 | Using Artix with International Codesets

 126

Working with Codesets using Message
Interceptors

Overview Artix provides support for codeset conversion for transports that do not have

their own concept of headers. For example, IBM Websphere MQ, BEA

Tuxedo, and Tibco Rendezvous. This generic support is implemented using

an Artix message interceptor and WSDL port extensors.

For example, an Artix C++ client could use Artix Mainframe to access a

mainframe system, using a binding for fixed length record over MQ. In this

scenario, an Artix message interceptor can be configured to enable codeset

conversion between ASCII and EBCDIC (Extended Binary Coded Decimal

Interchange Code).

You can enable this codeset conversion simply by editing your WSDL file, or

by using accessor methods in your application code. This section explains

how to use both of these approaches.

Codeset conversion attributes This generic support for codeset conversion is implemented using a message

interceptor. This message interceptor manipulates the following codeset

conversion attributes:

You can specify these attributes to convert client-side requests and

server-side responses. All three attributes are optional.

Note: Codeset conversion set in application code takes precedence over
the same settings in a WSDL file.

LocalCodeSet Specifies the codeset used locally by a client or
server application.

OutboundCodeSet Specifies the codeset used by the application for
outgoing messages.

InboundCodeSet Specifies the codeset used by the application for
incoming messages.

Working with Codesets using Message Interceptors

127

Configuring codeset conversion in

a WSDL file

You can configure codeset conversion by setting the codeset conversion

attributes in a WSDL file. Example 8 shows the contents of the Artix

internationalization schema (i18n-context.xsd).

Example 8: Artix i18n Schema

<?xml version="1.0" encoding="UTF-8" ?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSche ma"
 xmlns:wsdl="http://schemas.xmlsoap.org/w sdl/"
 targetNamespace="http://schemas.iona.com /bus/i18n/context"
 xmlns:i18n-context="http://schemas.iona. com/bus/i18n/context"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">

 <xs:import namespace = "http://schemas.xmlsoap.or g/wsdl/"
schemaLocation="wsdl.xsd"/>

 <xs:element name="client" type="i18n-context:Clie ntConfiguration" />

 <xs:complexType name="ClientConfiguration">

 <xs:annotation>
 <xs:documentation> I18n Client Context Infor mation
 </xs:documentation>
 </xs:annotation>

 <xs:complexContent>
 <xs:extension base="wsdl:tExtensibilityElemen t" >
 <xs:attribute name="LocalCodeSet" type="xs: string" use="optional" />
 <xs:attribute name="OutboundCodeSet" type=" xs:string" use="optional" />
 <xs:attribute name="InboundCodeSet" type="x s:string" use="optional" />
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

CHAPTER 8 | Using Artix with International Codesets

 128

The Artix internationalization message interceptor uses this schema as a

port extensor. This enables you to configure codeset conversion attributes in

a WSDL file.

Client/server WSDL example The following example shows codeset conversion settings for a client and a

server application specified in a sample WSDL file:

 <xs:element name="server" type="i18n-context:Serve rConfiguration"/>

 <xs:complexType name="ServerConfiguration" >
 <xs:annotation>
 <xs:documentation> I18n Server Context Infor mation
 </xs:documentation>
 </xs:annotation>

 <xs:complexContent>
 <xs:extension base="wsdl:tExtensibilityElemen t" >
 <xs:attribute name="LocalCodeSet" type="xs: string" use="optional" />
 <xs:attribute name="OutboundCodeSet" type=" xs:string" use="optional" />
 <xs:attribute name="InboundCodeSet" type="x s:string" use="optional" />
 </xs:extension>
 </xs:complexContent>

 </xs:complexType>

</xs:schema>

Example 8: Artix i18n Schema

Example 9: i18n Specified in a WDSL File

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="I18nBaseService"

targetNamespace="http://www.iona.com/artix/test/I18 nBase/"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soa p/"
 xmlns:tns="http://www.iona.com/artix/test/I18nB ase/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:mq="http://schemas.iona.com/transports/mq "
 xmlns:http="http://schemas.iona.com/transports/ http"
 xmlns:http-conf="http://schemas.iona.com/transp orts/http/configuration"
 xmlns:fixed="http://schemas.iona.com/bindings/f ixed"
 xmlns:i18n-context="http://schemas.iona.com/bus /i18n/context"
 xmlns:xsd1="http://www.iona.com/artix/test/I18n Base">

Working with Codesets using Message Interceptors

129

This sample WSDL file shows a single service named I18nService , with two

bindings and two ports named I18nFIXED_HTTPPort and I18nFIXED_MQPort .

The binding in both cases is fixed length record, each with a single

operation.

 <import namespace="http://www.iona.com/artix/test /I18nBase"
location="./I18nServiceBindings.wsdl"/>

 <service name="I18nService">

 <port binding="tns:I18nFIXEDBinding" name="I 18nFIXED_HTTPPort">
 <http:address location="http://localho st:0"/>
 <i18n-context:client LocalCodeSet="ISO-8859 -1" InboundCodeSet="UTF-8"/>
 <i18n-context:server LocalCodeSet="UTF-8" O utboundCodeSet="ISO-8859-1"/>
 </port>

 <port binding="tns:I18nFIXEDBinding" name="I18 nFIXED_MQPort">

 <mq:client QueueManager="MY_DEF_QM" QueueNam e="MY_FIRST_Q" AccessMode="send"
 ReplyQueueManager="MY_DEF_QM" ReplyQueueNa me="REPLY_Q"
 CorrelationStyle="messageId copy" />

 <mq:server QueueManager="MY_DEF_QM" QueueNam e="MY_FIRST_Q"
 ReplyQueueManager="MY_DEF_QM" ReplyQueueName ="REPLY_Q" AccessMode="receive"
 CorrelationStyle="messageId copy" />
 <i18n-context:client LocalCodeSet="UTF-8" In boundCodeSet=""/>
 <i18n-context:server LocalCodeSet="ISO-8859- 1"/>
 </port>

 </service>

</definitions>

Example 9: i18n Specified in a WDSL File

CHAPTER 8 | Using Artix with International Codesets

 130

Enabling codeset conversion in

application code

You can also enable codeset conversion attributes by calling the following

accessor methods in your C++ application code:

An Artix ContextContainer in the message interceptor, and the WSDL

configuration are checked for each attribute. This is performed during the

client’s intercept_invoke() method and the server’s

intercept_dispatch() method. The client request buffer or server response

buffer can be converted to another encoding as needed. This conversion can

occur on the outbound or inbound intercept points.

The interceptor refers to the current context on a per-thread basis. For

detailed information on Artix contexts, see the Artix C++ Programmer’s

Guide.

Linking with the context library The message interceptor uses a common type library of Artix context

attributes. The application must be linked with this common library, and

with any transports that use this context to set or get attributes. The

generated header files for this common library are available in the following

directory:

install-dir\artix\2.1\include\it_bus_pdk\context_at trs

You must ensure that your application links with the context library that

contains the generated stub code for i18n-context.xsd .

void setLocalCodeSet(const IT_Bus::String * val);
void setLocalCodeSet(const IT_Bus::String & val);

void setOutboundCodeSet(const IT_Bus::String * val) ;
void setOutboundCodeSet(const IT_Bus::String & val) ;

void setInboundCodeSet(const IT_Bus::String * val);
void setInboundCodeSet(const IT_Bus::String & val);

Working with Codesets using Message Interceptors

131

Client code example Example 10 shows an example of the code that you need to add to your

C++ client application:

Example 10:Accessing i18n in C++ Client Code

void
I18nTest::echoString(
 I18nBaseClient* client, const String& instr)
{
 String outstr;
 try
 {

 // Set the i18n request context to match the fi xed binding encoding setting

 IT_Bus::Bus_var bus = client->get_bus();
 ContextRegistry * reg = bus->get_context_regist ry();

 ContextCurrent & cur = reg->get_current();
 ContextContainer * registered_ctx = cur.request _contexts();

 AnyType & i18n_ctx_info =
 registered_ctx->get_context(IT_ContextAttribute s::I18N_INTERCEPTOR_CLIENT_QNAME, true);
 ClientConfiguration & i18n_ctx_cfg = dynamic_ca st<ClientConfiguration&> (i18n_ctx_info);

 // Set the Inbound codeset to match the binding encoding

 static const String LOCAL_CODE_SET = "ISO-8859- 1";
 i18n_ctx_cfg.setLocalCodeSet(LOCAL_CODE_SET);

 const String & local_codeset = (*i18n_ctx_cfg.g etLocalCodeSet());

 client->echoString(instr, outstr);

 // Read the i18n reply context

 registered_ctx = cur.reply_contexts();

 AnyType & i18n_ctx_reply_info =
 registered_ctx->get_context(IT_ContextAttribu tes::I18N_INTERCEPTOR_CLIENT_QNAME, true);

 const ClientConfiguration & i18n_ctx_reply_cfg =
 dynamic_cast<const ClientConfiguration&> (i18 n_ctx_reply_info);

CHAPTER 8 | Using Artix with International Codesets

 132

Server code example Example 10 shows example of the code that you need to add to your C++

servant application.

 const String * local_codeset_reply = i18n_ctx_r eply_cfg.getLocalCodeSet();
 const String * outbound_codeset_reply = i18n_ct x_reply_cfg.getOutboundCodeSet();
 const String * inbound_codeset_reply = i18n_ctx _reply_cfg.getInboundCodeSet();

 if(local_codeset_reply)
 cout << "client LocalCodeSet reply context:" < < local_codeset_reply->c_str() << endl;
 if(outbound_codeset_reply)
 cout << "client OutboundCodeSet reply context: "<< outbound_codeset_reply->c_str << endl;
 if(inbound_codeset_reply)
 cout << "client InboundCodeSet reply context" << inbound_codeset_reply->c_str() << endl;
 }

 catch (IT_Bus::ContextException& ce)
 {
 ...
 }
 catch (IT_Bus::Exception& ex)
 {
 ...
 }
 catch (...)
 {
 ...
 }
}

Example 10:Accessing i18n in C++ Client Code

Example 11:Accessing i18n in C++ Server Code

void
I18nServiceImpl::echoString(
 const String& stringParam0,
 String & var_return) IT_THROW_DECL((IT_Bus::Exc eption))
{

 var_return = stringParam0;

Working with Codesets using Message Interceptors

133

 try
 {
 // Read the i18n reply context

 ContextRegistry * reg = m_bus->get_context_regis try();

 ContextCurrent & cur = reg->get_current();
 ContextContainer * registered_ctx = cur.request_ contexts();

 AnyType & i18n_ctx_info =
 registered_ctx->get_context(IT_ContextAttributes ::I18N_INTERCEPTOR_SERVER_QNAME, false);
 const ServerConfiguration & i18n_ctx_cfg =
 dynamic_cast<const ServerConfiguration&> (i18n_c tx_info);

 const String * local_codeset = i18n_ctx_cfg.getL ocalCodeSet();
 const String * outbound_codeset = i18n_ctx_cfg.g etOutboundCodeSet();
 const String * inbound_codeset = i18n_ctx_cfg.ge tInboundCodeSet();

 if(local_codeset)
 cout << "server LocalCodeSet request context:" << local_codeset->c_str() << endl;
 if(outbound_codeset)
 cout << "server OutboundCodeSet request contex t:" << outbound_codeset->c_str() << endl;
 if(inbound_codeset)
 cout << "server InboundCodeSet request context :" << inbound_codeset->c_str() << endl;

 // Add code to change the reply context

 registered_ctx = cur.reply_contexts();

 AnyType & i18n_reply_ctx =
registered_ctx->get_context(IT_ContextAttributes::I 18N_INTERCEPTOR_SERVER_QNAME, true);

 ServerConfiguration & i18n_reply_ctx_cfg =
 dynamic_cast<ServerConfiguration&> (i18n_reply_ ctx);

 // Set the local codeset to match the binding en coding

 static const String LOCAL_CODE_SET = "ISO-8859-1 ";
 i18n_reply_ctx_cfg.setLocalCodeSet(LOCAL_CODE_SE T);

 String & set_local_context = (*i18n_reply_ctx_cf g.getLocalCodeSet());

 assert(set_local_context == LOCAL_CODE_SET);
 }

Example 11:Accessing i18n in C++ Server Code

CHAPTER 8 | Using Artix with International Codesets

 134

Artix configuration settings Finally, you must also enable the i18n message interceptor in your Artix

configuration file (artix.cfg). Example 12 shows the required settings:

Further information For more information details on writing Artix C++ applications and on Artix

contexts, see the Artix C++ Programmer’s Guide.

 catch (IT_Bus::ContextException& ex)
 {
 cout << "Error with server context" << ex.mess age() << endl;
 }
 catch (IT_Bus::Exception& ex)
 {
 cout << "Error with server context" << ex.mess age() << endl;
 }
 catch (...)
 {
 cout << "Unknown Error with server context" << endl;
 }
}

Example 11:Accessing i18n in C++ Server Code

Example 12:Artix Configuration File Settings

// Add to a demo/application scope.
interceptor{
 binding:artix:client_message_interceptor_list = "i18n-context:I18nInterceptorFactory";

 binding:artix:server_message_interceptor_list = "i18n-context:I18nInterceptorFactory";

 orb_plugins = ["xmlfile_log_stream", "i18n_inte rceptor"];

 event_log:filters = ["*=WARN+ERROR+FATAL"];
};

Routing with International Codesets

135

Routing with International Codesets

Overview When routing between applications, Artix attempts to correctly map

between different codesets. If both endpoints use bindings that support

internationalization (i18n), Artix uses codeset conversion. If only one of the

endpoints supports internationalization, the Artix endpoint supporting

internationalization attempts to use codeset conversion on the messages.

The following bindings do not support internationalization:

• Tagged

• G2++

• XML

Routing between

internationalized endpoints

When Artix is routing between internationalized endpoints, the receiving

endpoint and the sending endpoint both behave independently of each

other.

For example, if one endpoint of a router receives a request in Shift_JIS and

the router is configured to use ISO-8859-1, the Shift_JIS request is properly

decoded by the router.

However, when the request is passed on by the router, it is passed on in

ISO-8859-1. If the two codesets are not compatible, there is a good chance

that data will be lost in the conversion and the request will not be properly

handled.

Note: If the codesets are not compatible, and data is lost in the router,
Artix does not generate a warning.

CHAPTER 8 | Using Artix with International Codesets

 136

Routing from

non-internationalized bindings to

internationalized bindings

When Artix is routing from a non-internationalized endpoint to an

internationalized endpoint, it uses the default codeset specified in the

router’s configuration for writing messages to internationalized endpoints. If

the Artix router is configured to encode messages using a codeset that is

different from the one used by the endpoint, you will lose data.

For example, if a Tibco application makes a request on a Web service

through a router, the router receives non-internationalized data from the

Tibco application. And the router then writes the SOAP message using the

codeset specified in its configuration. If the Web service and the router are

both configured to write in us-dk, the operation proceeds without a problem.

The router receives the encoded response from the server and passes it back

to the Tibco binding.

However, if the Web service is configured to accept data using us-dk, and

the router is configured to encode data using Chinese, data may be lost

between the router and the Web service due to codeset incompatibility.

Routing from internationalized

bindings to non-internationalized

bindings

When Artix is routing SOAP messages to a non-SOAP endpoint, such as a

Tuxedo server on a mainframe using the fixed plug-in, Artix handles the

message transformations so that the SOAP application receives responses in

the correct codeset.

For example, a Web service client in a Chinese locale encodes its requests in

eucTW and invokes on a service that is hosted on a mainframe that is

behind an Artix router, as shown in Figure 9.

Figure 9: Routing Internationalized Requests

Routing with International Codesets

137

The Artix router would process the request as follows:

1. On receiving the SOAP request, the router inspects the XML prologue

and decodes the message using the specified codeset (in this case,

eucTW).

2. The fixed binding plug-in then writes out the message to the

mainframe service.

3. When the mainframe sends its response back to the router, the fixed

binding decodes the message and passes it back to the SOAP plug-in.

4. The SOAP plug-in inspects the message and determines the request to

that corresponds it.

5. The SOAP plug-in then encodes the message using the codeset

specified in the request (in this case, eucTW), and passes the response

to the client.

CHAPTER 8 | Using Artix with International Codesets

 138

Part III
Using Artix Services

In this part This part contains the following chapters:

Artix Standalone Service page 141

Using the Artix Locator Service page 151

Using the Artix Session Manager page 169

Deploying a Service Chain page 193

Deploying the Artix Transformer page 201

141

CHAPTER 10

Artix Standalone
Service
Artix enables you to deploy middleware translation functions
as a standalone service that is external to both client and server
applications. The Artix standalone service can perform
transport switching, message routing, and middleware
bridging between non-Artix enabled applications.

In this chapter This chapter discusses the following topics:

The Artix Standalone Service page 142

Configuring the Standalone Service page 144

Controlling the Standalone Service page 146

Installing the Standalone Service as a Windows Service page 148

Specifying Routing with the Standalone Service page 150

CHAPTER 10 | Artix Standalone Service

 142

The Artix Standalone Service

Overview The Artix standalone service is a minimally invasive means of connecting

applications that use different communication transports and message

formats. It does not require that any Artix-specific code be compiled or

linked into existing applications.

How it works The Artix standalone service is a daemon that listens for traffic on access

points specified in the Artix contract. It re-directs messages based on the

routing rules that you provide, and performs any transport switching and

message formatting needed for the receiving application. Neither application

is aware that its messages are being intercepted by Artix and no application

development is required.

The standalone service’s behavior is controlled by a combination of an Artix

contract and the Artix configuration file.

For more information on Artix contracts see the Designing Artix Solutions.

For more information on configuring the Artix runtime see “Configuring Artix”

on page 23.

Deployment patterns An Artix standalone service can be deployed in a number of ways. Two

common deployment patterns are:

• Deploying multiple daemons—each bridging between two applications.

• Deploying one daemon to bridge between all applications in a domain.

Deploying multiple daemons—each bridging between two applications.

This approach simplifies designing integration solutions and provides faster

processing of each message (shown in Figure 10). Using this approach, the

Artix contract describing the interaction of the applications is simpler

because it contains only the logical interfaces shared by the two

applications, the bindings for each payload format, and the routing rules.

Note: Artix requires that services being integrated use equivalent
message layouts. For example, a service expecting a long cannot be sent a
float .

The Artix Standalone Service

143

Because most applications use only one network transport, the number of

ports is minimal and the routing rules are simple. Keeping the contract

simple also enhances the performance of each daemon because it has less

processing to do. In this approach, each daemon’s resource usage can also

be limited by tailoring its configuration to optimize the daemon for the

integration task that it is responsible for.

Deploying one daemon to bridge between all applications in a domain.

This approach limits the number of external services required in your

deployment environment (shown in Figure 11). This can simplify monitoring

and installation of deployments. It also reduces the number of moving parts

in an integration solution.

Figure 10: Using Multiple Artix Daemons

Figure 11: Using a Single Artix Daemon

CHAPTER 10 | Artix Standalone Service

 144

Configuring the Standalone Service

Overview Each instance of the Artix standalone service running on a host machine

needs its own configuration scope to specify the unique port that its

administrative interface listens on. The default scope in artix.cfg is

iona_services.artix_service . Each instance also needs a corresponding

administrative interface configuration scope. The default is

iona_services.artix_service_admin .

Having separate configuration scopes for each instance of the service also

enables greater control over the resources the service uses. You can specify

that it only load the transport and payload format plug-ins that it requires.

You can also control the services threading and time-out behaviors.

For more information on Artix configuration, see “Configuring Artix” on

page 23.

orb_plugins list In addition to the Artix plug-ins that provide support for the transports and

payload formats that it works with, the Artix standalone service must load

the following plug-ins:

• iiop_profile

• iiop

• giop

 These plug-ins must be included in the services’s orb_plugins list.

Service plug-in settings The configuration variable that controls the behavior of the Artix standalone

service are in the plugins:artix_service namespace. Table 18 lists the

variables and their settings.

Table 18: Artix Standalone Service Configuration Variables

Variable Effect

shlib_name Specifies the name of the Artix service’s
shared library. This value should always be
set to it_artix_service_svr .

Configuring the Standalone Service

145

Service admin interface Each instance of the Artix standalone service must have a corresponding

administrative interface configuration scope. The default is

iona_services.artix_service_admin . This scope must contain an entry for

initial_references:IT_ArtixServiceAdmin:reference . This variable

specifies the port number of this administrative interface’s corresponding

Artix service. The port number is specified using the corbaloc syntax:

hostname is the name of the computer that the Artix service is running on.

port is the port number that the Artix service is listening on.

iiop:port Specifies the port number that the service
listens on for calls from its administrative
interface. See “Service admin interface”.

iiop:host Specifies the name of the host computer that
the service is running on. See “Service admin
interface”.

direct_persistence Specifies if the service’s object reference is
persistent across multiple invocations.

Table 18: Artix Standalone Service Configuration Variables

Variable Effect

corbaloc:iiop:1.2@ hostname: port/IT_ArtixServiceAdmin

CHAPTER 10 | Artix Standalone Service

 146

Controlling the Standalone Service

Overview This section explains how to start and how to stop the Artix standalone

service, and lists the available startup options.

Starting the service To start the Artix standalone service, use the following script:

This script starts an instance of the Artix standalone service using the

default configuration scope of iona_services.artix_service .

itartix_service command

Alternatively, you can start the service directly using the following

command:

Table 19 describes the parameters taken by itartix_service .

install-dir\artix\2.1\bin\start_artix_service

itartix_service -ORBname orb_name -ORBdomain_name domain_name
-ORBconfig_domains_dir domain_dir run [-background]

Table 19: itartix_service Parameters

Parameter Description

-ORBname orb_name Specifies the scope under which the service finds its configuration.

-ORBdomain_name domain_name Specifies the service's configuration file name. The configuration file
name is domain_name.cfg . For example, given domain name
acmewidgets , the service reads its configuration from
acmewidgets.cfg .

-ORBconfig_domains_dir domain_dir Specifies the location of the service’s configuration file.

run Specifies that the service is to begin monitoring.

Controlling the Standalone Service

147

Stopping the service To stop the Artix standalone service, use the following script:

This script stops an instance of the Artix standalone service started using the

start script, start_artix_service .

Alternatively, you can manually call the service’s administrative interface to

stop the service. Use the following command:

The value passed with the -ORBname flag specifies the configuration scope

under which the administrative interface finds its configuration information.

The vital entry in the administrative interfaces configuration is the entry for

initial_references:IT_ArtixServiceAdmin:reference . This entry must

contain the corbaloc address of the Artix service instance that you wish to

shutdown.

Further information For more information about configuring Artix see “Configuring Artix” on

page 23.

-background Specifies that the service is to run in the background. If this
parameter is not specified, the service runs in the foreground of the
active command window.

Note: When the service is run in the background, the parent
process uses a separate artix_service.artix_service_init
sub-scope to start the service.

Table 19: itartix_service Parameters

Parameter Description

install-dir\artix\2.1\bin\stop_artix_service

itartix_service_admin -ORBname orb_name

CHAPTER 10 | Artix Standalone Service

 148

Installing the Standalone Service as a
Windows Service

Overview On Windows, you can install instances of the Artix standalone service as a

Windows service. This means the service starts at system boot and that

limited management functionality is provided through the Windows service

controls.

Installing the service To install the Artix standalone service as a Windows service, use the

following script:

This script installs the Artix standalone service using the default

configuration scope of iona_services.artix_service .

Alternatively, you can install an instance of the service directly using the

following command:

Table 20 describes the parameters taken by itartix_service .

install-dir\artix\2.1\bin\install_artix_service

itartix_service -ORBname orb_name -ORBdomain_name domain_name
-ORBconfig_domains_dir domain_dir install

Table 20: itartix_service Install Parameters

Parameter Description

-ORBname orb_name Specifies the scope under which the service finds its configuration
details.

-ORBdomain_name domain_name Specifies the service's configuration file name. The configuration file
name is domain_name.cfg . For example, given domain name
acmewidgets , the service reads its configuration from
acmewidgets.cfg .

-ORBconfig_domains_dir domain_dir Specifies the location of the service’s configuration file.

install Specifies that the service is to installed as a Windows service.

Installing the Standalone Service as a Windows Service

149

Uninstalling the service To uninstall the Artix standalone service as a Windows service use the

following script:

This script uninstalls the Artix standalone service using the default

configuration scope of iona_services.artix_service .

Alternatively, you can uninstall instances of the service directly using the

following command:

Table 20 describes the parameters taken by itartix_service .

install-dir\artix\2.1\bin\uninstall_artix_service

itartix_service -ORBname orb_name -ORBdomain_name domain_name
-ORBconfig_domains_dir domain_dir uninstall

Table 21: itartix_service Uninstall Parameters

Parameter Description

-ORBname orb_name Specifies the scope under which the service finds its configuration
details.

-ORBdomain_name domain_name Specifies the service's configuration file name. The configuration file
name is domain_name.cfg . For example, given domain name
acmewidgets , the service will read its configuration from
acmewidgets.cfg .

-ORBconfig_domains_dir domain_dir Specifies the location of the service’s configuration file.

uninstall Specifies that the service is to remove itself from the Windows
registry.

CHAPTER 10 | Artix Standalone Service

 150

Specifying Routing with the Standalone
Service

Routing Contracts for instances of the Artix standalone service must have routing

rules to direct the flow of messages between the services defined within the

contract.

You must ensure that the routing plug-in is loaded by the Artix standalone

service by placing the following entry in the orb_plugins list of the

instance’s configuration scope:

This routing plug-in is specified by default in the

iona_services.artix_service configuration scope.

Locating Artix contracts The Artix standalone service loads the contract that is specified by the

plugins:routing:wsdl_url configuration variable.

For example, if an instance of the Artix standalone service is designed to use

a contract called personalInfo.wsdl and the contract is located in

/etc/contracts , you would place the following in the instance’s

configuration scope:

For more information For more information on Artix runtime configuration, see “Artix Runtime

Configuration” on page 29.

orb_plugins = [... "routing"];

plugins:routing:wsdl_url="/etc/contracts/personalIn fo.wsdl";

151

CHAPTER 11

Using the Artix
Locator Service
The Artix locator enables Artix servers to publish their
references for dynamic discovery by Artix clients.

In this Chapter This chapter discusses the following topics:

Overview of the Artix Locator Service page 152

Deploying the Locator page 155

Registering a Server with the Locator page 160

Obtaining References from the Locator page 162

Load Balancing page 165

Controlling Server Workloads page 166

Fault Tolerance page 168

CHAPTER 11 | Using the Artix Locator Service

 152

Overview of the Artix Locator Service

Overview A system with many servers cannot afford the overhead of manually

propagating each server’s contact information to the clients that need to

contact them. Given the large number of clients and the distributed nature

of enterprise level deployments, the time required to accomplish this, and

the room for error, are too great. Also, over time, hardware upgrades,

machine failures, or site reconfiguration will require you to move servers and

repeat the exercise of propagating the server’s information to all clients.

The Artix locator service isolates clients from changes in a server’s contact

information. The Artix contract defining how the client contacts the server

contains the address for the Artix locator and it is the locator that provides

the client with a reference to the server. Servers are automatically registered

with the locator when they start-up.

Locator service components The Artix locator’s functionality is built into two plug-ins:

Locator Service Plug-in
(service_locator)

This is the central service plug-in. It accepts service
registrations, performs service look-ups, hands out
references to clients who request them, and
controls the load balancing of service groups.

Locator Endpoint

Manager Plug-in
(locator_endpoint)

This is the portion of the session manager that
resides in a registered service. It registers its
location with the service plug-in and monitors the
health of the service plug-in to ensure fault
tolerance.

Overview of the Artix Locator Service

153

How do the plug-ins interact? Figure 12 shows an overview of how the locator plug-ins are deployed in an

Artix system. While in this example, the locator service plug-in is deployed

in a standalone service, it can be deployed in any Artix process.

The endpoint manager plug-ins are deployed in the server processes that

contain services registered with the locator. A process can host two services,

(for example, Service C and Service D in Figure 12), but the process can

have only one endpoint manager. The endpoint manager plug-ins are in

constant communication with the locator service plug-in to report on

endpoint health, and to check on the health of the locator service.

Figure 12: The Locator Plug-ins

CHAPTER 11 | Using the Artix Locator Service

 154

Load balancing The locator also provides load balancing functionality. When a group of

services register with the locator using the same service name, the locator

considers the services as a single service and uses a round-robin load

balance algorithm to hand out references to the separate instances.

As shown in Figure 13, when each client makes a request for

widget_service , the locator cycles through the pool of registered

widget_service instances. For example, when client4 makes a request,

the locator starts handing out references from the top of the pool

(widget_service a) .

Services can also implement their own load balancing internally using calls

to the Artix locator service that temporarily remove them from the pool of

active references.

Figure 13: Locator Load Balancing

Deploying the Locator

155

Deploying the Locator

Overview The Artix locator is implemented as a group of ART plug-ins. This means

that any Artix application can host the locator service by loading the

service_locator plug-in. However, it is recommended that you generate an

Artix server that only hosts the locator service and deploy that service into

your Artix environment.

In either case, the locator service requires modifications to the Artix

configuration domain that the locator runs in. You must also generate a copy

of locator.wsdl , the contract that describes the locator service and

contains its contact information.

Building a standalone locator

service

To generate a standalone locator service, you write a simple Artix server

mainline and link it with the Artix libraries. Example 13 shows an example

of the locator mainline.

Example 13:Artix Locator Mainline

include <it_bus/bus.h>
#include <it_bus/Exception.h>
#include <it_bus/fault_exception.h>

using namespace IT_Bus;

int main(int argc, char* argv[])
{
 try
 {
 IT_Bus::init(argc, argv, "locator_service");
 IT_Bus::run();
 IT_Bus::shutdown();
 }
 catch (IT_Bus::Exception& e)
 {
 printf("Exception occurred: %s", e.Message()) ;
 return 1;
 }

 return 0;
}

CHAPTER 11 | Using the Artix Locator Service

 156

The locator’s main() only needs to initialize the Artix bus with the name of

the locator’s configuration scope and call IT_Bus::run() . The configuration

scope’s name is the third parameter to IT_Bus::init() , locator.service .

The Artix bus loads the plug-ins for the locator service.

Example 14 shows a sample makefile for building the locator service.

The locator must be linked with the following Artix libraries:

• it_bus.lib

• it_afc.lib

• it_art.lib

• it_ifc.lib

Example 14:Locator Makefile

IT_PRODUCT_VER = 1.2

ART_BIN_DIR=$(IT_PRODUCT_DIR)\artix\$(IT_PRODUCT_VE R)\bin
ART_CXX_INCLUDE_DIR="$(IT_PRODUCT_DIR)\artix\$(IT_P RODUCT_VER)\i

nclude"
ART_LIB_DIR="$(IT_PRODUCT_DIR)\artix\$(IT_PRODUCT_V ER)\lib"

CXX=cl
CXXFLAGS=-I$(ART_CXX_INCLUDE_DIR) -Zi -nologo -GR - GX -W3 -Zm250

-MD $(EXTRA_CXXFLAGS) $(CXXLOCAL_DEFINES)

LINK=link
LDFLAGS=/DEBUG /NOLOGO
LDLIBS=/LIBPATH:$(ART_LIB_DIR) $(EXTRA_LIB_PATH) $(LINK_WITH)

kernel32.lib ws2_32.lib advapi32.lib user32.lib

SHLIB_CXX_COMPILER_ID= vc60
SHLIBLDFLAGS=-dll -debug -incremental:no

OBJS=$(SOURCES:.cxx=.obj)

LINK_WITH=it_bus.lib it_afc.lib it_art.lib it_ifc. lib

SOURCES = locator.cxx
all: locator.exe

locator.exe:$(SOURCES) $(OBJS)
 if exist $@ del $@
 $(LINK) /out:$@ $(LDFLAGS) $(OBJS) $(LDLIBS)

Deploying the Locator

157

Configuring the locator To run the locator, you must configure it as follows:

1. Ensure that it loads the locator service plug-in, service_locator . In

addition, the locator must load the soap and http plug-ins as all of its

communication is done using SOAP over HTTP.

2. In the locator’s configuration scope, specify that the service plug-in

reads the correct Artix contract for the locator by setting

plugins:locator:service_url to point to the copy of locator.wsdl

that contains the address for this instance of the locator.

Example 15 shows the configuration scope used to start the locator.

For more information on Artix configuration see “Configuring Artix” on

page 23.

Generating the locator’s contact

information

You must also configure the port that the locator runs on. To do this, you

must modify the following file:

You must update this file with the HTTP address that the locator service will

listen at. This can be either done manually for deploying the locator on a

well-known fixed port, or automatically for deploying the locator on a

dynamically allocated port.

Example 15:Locator Configuration Scope

locator_service
{
 plugins:locator:service_url="locator.wsdl"
 orb_plugins = ["xmlfile_log_stream", "iiop_profil e", "giop",

"iiop", "soap", "http", "service_locator"];
};

install-dir\artix\2.1\wsdl\locator.wsdl

CHAPTER 11 | Using the Artix Locator Service

 158

Deploying on a fixed port

To deploy the locator on a well-known fixed port, open locator.wsdl in any

text editor and edit the <soap:address> entry at the bottom of the contract

to specify the correct address. Example 16 shows a modified locator service

contract entry. The highlighted part has been modified to point to the

desired address.

Deploying on a dynamic port

To deploy the locator on a dynamically allocated port, configure the locator

to use the copy of locator.wsdl shipped with Artix. When the locator

initializes the Artix bus, it needs to publish a new copy of its contract with

the contact information. Example 17 shows how to publish the locator’s

contract.

Example 16:Locator Service Address

<service name="LocatorService">
 <port name="LocatorServicePort" binding="ls:Locat orServiceBinding">
 <soap:address

location=" http://localhost:8080/services/locator/LocatorServi ce"/>
 </port>
</service>

Deploying the Locator

159

Starting the locator When the locator has been generated and properly configured, it can be

started just like any other application.

Example 17:Dynamic Locator Service

\\ C++
IT_Bus::Bus_var bus = IT_Bus::init(argc, argv,
 "locator_service ");

// Now we write out the updated WSDL for the Locato r Services

// Get the WSDL Defintions object.
IT_Bus::QName service_name("",
 "LocatorService",
 "http://ws.iona.com/loca tor");
IT_Bus::Service * service = bus->get_service(servic e_name);
const IT_WSDL::WSDLDefinitions & definitions =
 service->get_wsd l_definitions();

// Serialize the WSDL model to another wsdl file.
IT_Bus::FileOutputStream stream("active-locator.wsd l");
IT_Bus::XMLOutputStream xml_stream(stream, true);
definitions.write(xml_stream);
stream.close();

IT_Bus::run();

CHAPTER 11 | Using the Artix Locator Service

 160

Registering a Server with the Locator

Overview A server does not need to have its implementation changed to work with the

Artix locator. All that is required is that the server be configured to load the

correct plug-ins and to reference the correct locator contract.

Configuring the server Any server that wishes to register itself with the locator must load the

following plug-ins in addition to the transport and payload plug-ins that it

requires:

• soap

• http

• locator_endpoint

locator_endpoint enables the server to register with the running locator.

The server’s configuration also must have plugins:locator:wsdl_url set to

the appropriate locator contract.

Example 18 shows the configuration scope of a server that registers with the

locator service.

my_server provides its services using SOAP over IIOP so in addition to the

locator plug-ins it also loads the tunnel plug-in.

For more information on Artix configuration see “Configuring Artix” on

page 23.

Example 18:Server Configuration Scope

my_server
{
 plugins:locator:wsdl_url="locator.wsdl";
 orb_plugins = ["xmlfile_log_stream", "soap", "htt p", "tunnel",

"locator_endpoint"];
 };

Registering a Server with the Locator

161

Server registration When a properly configured server starts up, it automatically registers with

the locator specified by the contract pointed to by

plugins:locator:wsdl_url .

You can register multiple instances of the same server with a locator. The

locator generates a pool of references for the server type. When clients make

a request for a server, the locator supplies references from this pool using a

round-robin algorithm. For more information on load balancing see “Load

Balancing” on page 165.

CHAPTER 11 | Using the Artix Locator Service

 162

Obtaining References from the Locator

Overview Unlike servers, clients must be specifically written to work with the Artix

locator. There are three steps a client must take to obtain a server reference

from the Artix locator:

1. Instantiate a proxy for the locator service.

2. Look up the desired server’s endpoint using the locator service proxy.

3. Create a proxy for the desired server using the returned endpoint.

Instantiating a locator service

proxy

Before a client can invoke any of the look up methods on the locator service,

it must create a proxy to forward requests to the running locator. To do this

the client creates an instance of LocatorServiceClient using the following

information:

• The locator service contract name, locator.wsdl .

• The locator service QName.

• The port name used in the locator service contract,

LocatorServicePort .

Example 19 shows how to instantiate a locator service proxy. The

parameters used to create the locator service’s QName, LocatorService

and http://ws.iona.com/locator , should never be modified.

Note: For more information on Artix proxy constructors, see the Artix

C++ Programmer’s Guide.

Example 19: Instantiating a Locator Service Proxy

// C++
QName locator_service_name("", "LocatorService",
 "http://ws.iona.com/loca tor");
locator_proxy = new LocatorServiceClient("locator.w sdl",
 locator_se rvice_name,
 "LocatorSe rvicePort");

Obtaining References from the Locator

163

Looking up a server’s endpoint After instantiating a locator service proxy, a client can then look up servers

using the proxy’s lookup_endpoint() method. This method has the

following signature:

Example 20 shows the client code to look up an instance of the widget

ordering service, orderWidgetService .

void lookup_endpoint(lookupEndpoint input,
 lookupEndpointResponse output) ;

input Contains the QName of the server the client is looking up. The

QName is set using the setservice_qname() method. The

QName includes the service name specified in the Artix

contract’s <service> tag and the target namespace of the Artix

contract.

output Contains a reference to the server. If the locator cannot find a

registered instance of the requested server, lookup_endpoint()

returns an endpointNotExistFault exception.

Example 20:Looking up a Server Using the Locator Service

// C++
// Create the QName for the server
QName service_name("", "orderWidgetsService",
 "http://widgetVendor.com/widge tOrderForm");

// Create lookup input parameter
lookupEndpoint input;
input.setservice_qname(service_name);

// The output parameter is set by lookup_endpoint
lookupEndpointResponse output;

// call lookup_endpoint on the locator proxy
try
{
 locator_proxy->lookup_endpoint(input, output);
}
catch (IT_BusServices::endpointNotExistFault& e)
{
 // handle fault
}

CHAPTER 11 | Using the Artix Locator Service

 164

Creating a server proxy The client uses the reference returned in the output parameter of

lookup_endpoint() to instantiate a server proxy for making requests on the

requested server. To instantiate the proxy, use the correct proxy class for the

server you have requested and pass the return value of the returned

lookupEndpointResponse ’s getservice_endpoint() method to the proxy

class’ constructor.

Example 21 shows the client code for creating a proxy widget server from

the results of the look up performed in Example 20 on page 163.

For more information on writing Artix client code, see the Artix C++

Programmer’s Guide.

Note: Because the Artix locator’s look up is only one level deep, it is
possible that the original look up can return a reference to a second Artix
locator. Clients running in an environment where multiple locator redirects
are possible must be explicitly designed to handle this situation.

Example 21: Instantiate a Proxy Server

// C++
orderWidgetsClient widget_proxy(output.getservice_e ndpoint());

Load Balancing

165

Load Balancing

Overview The Artix locator provides a lightweight mechanism for balancing workloads

among a group of servers. When a number of servers with the same service

name register with the Artix locator, it automatically creates a list of the

references and hands out the references to clients using a round robin

algorithm. This process is invisible to both the clients and the servers.

Starting to load balance When the locator is deployed and your servers are properly configured, you

need to bring up a number of instances of the same service. This can be

accomplished by one of two methods depending on your system topology:

1. Create an Artix contract with a number of ports for the same service

and have each server instance startup on a different port.

2. Create a number of copies of the Artix contract defining the service,

change the port information so each copy has a separate port address,

and then bring up each server instance using a different copy of the

Artix contract.

As each server starts up it automatically registers with the locator. The

locator recognizes that the servers all have the same service name specified

in their Artix contracts and creates a list of references for these server

instances.

As clients make requests for the service, the locator cycles through the list of

server instances to hand out references.

Note: The locator uses the service name specified in the <service> tag of
the server’s Artix contract to determine if it is part of a group. If you are
using the Artix locator to load balance, your services should be associated
with the same binding and logical interface.

CHAPTER 11 | Using the Artix Locator Service

 166

Controlling Server Workloads

Overview Services can request that they temporarily be taken off of the locator’s list of

active references. This is particularly useful for managing the workloads

placed on services. When they reach a certain capacity, a service can

disappear from any new clients wishing to access it. When the service’s

workload is reduced it can then reappear and once again become available

to new clients.

Procedure To control the registered state of service, perform the following steps:

1. Obtain a handle for the service with which you intend to work.

2. Use the obtained handle to temporarily deregister the service from the

locator.

3. Use the obtained handle to reregister the service with the locator.

Get a service instance To get an instance of a service, use IT_Bus::get_service() on a bus

instance. The get_service() method takes the QName of the desired

service and returns a generic service handle, IT_Bus::Service* .

Example 22 shows how to obtain a handle for a service from the active bus.

For more information on using get_service() see the Artix C++

Programmer’s Guide.

Note: A bus instance can only return service handles for services that are
activated on that particular bus.

Example 22:Obtaining a Service Handle

//C++
// Build service QName
IT_Bus::QName service_name("", "MMService", "http:/ /MM.com");

// Get the service handle from the active bus
IT_Bus::Service* = bus->get_service(service_name);

Controlling Server Workloads

167

Deregistering a service To temporarily deregister a service, use the reached_capacity() method of

the service handle returned by the active bus. This method informs the

service’s endpoint manager that the service is busy and does not want to

receive requests from any new clients. The endpoint manager then contacts

the locator and asks to be removed from the list of available services.

Example 23 shows how to call reached_capacity() .

Reregistering a service When the service is ready to be reregistered, use the below_capacity()

method of the service handle used when deregistering the service.

below_capacity() informs the endpoint manager that the service is capable

of accepting requests from new clients. The endpoint manager then contacts

the locator and asks to be placed on the list of available services.

Example 24 shows how to call reached_capacity() .

Note: Clients that already have a valid reference for the service will still
be able to make request on the service when it has been deregistered.

Example 23:Calling reached_capacity()

\\ C++
\\ Service otained previously
service->reached_capacity();

Example 24:Calling below_capacity()

\\ C++
\\ Service otained previously
service->below_capacity();

CHAPTER 11 | Using the Artix Locator Service

 168

Fault Tolerance

Overview Enterprise level deployments demand that applications can cleanly recover

from occasional failures. The Artix locator is designed to recover from the

two most common failures faced by a look-up service:

• Failure of a registered endpoint.

• Failure of the look-up service.

Endpoint failure When an endpoint gracefully shuts down, it notifies the locator that it will no

longer be available. The locator removes the endpoint from its list so it

cannot give a client a reference to a dead endpoint. However, when an

endpoint fails unexpectedly, it cannot notify the locator and the locator can

unknowingly give a client an invalid reference causing the failure to cascade.

To mitigate the risk of passing invalid references to clients, the locator

service occasionally pings all of its registered endpoints to see if they are still

running. If an endpoint does not respond to a ping, the locator removes that

endpoint’s reference.

You can adjust the interval between locator service pings by setting the

plugins:locator:peer_timeout configuration variable. The default setting

is 4 seconds. For more information see “Configuring Artix” on page 23.

Service failure When the locator service fails, all the references to the registered endpoints

are lost and the active endpoints are no longer registered with the locator.

To ensure that the active endpoints reregister with the locator when it

restarts, the endpoints, after the locator has missed its ping interval,

periodically attempts to reregister with the locator until they are successful.

You can adjust the interval at which the endpoint pings the locator by

setting the plugins:session_endpoint_manager:peer_timout configuration

variable. The default setting is 4 seconds. For more information see

“Configuring Artix” on page 23.

169

CHAPTER 12

Using the Artix
Session Manager
The Artix session manager enables you to manage service
resources.

In this chapter This chapter discusses the following topics:

Introduction to Session Management in Artix page 170

Deploying the Session Manager Service page 175

Registering a Server with the Session Manager page 181

Working with Sessions page 184

Fault Tolerance page 192

CHAPTER 12 | Using the Artix Session Manager

 170

Introduction to Session Management in Artix

Overview The Artix session manager is a group of ART plug-ins that work together to

manage the number of concurrent clients accessing a group of services. This

enables you to control how long each client can use the services in the

group before having to check back with the session manager.

The two main session manager plug-ins are:

Note: The Artix session manager is unavailable in some editions of Artix.
Please check the conditions of your Artix license to see whether your
installation supports the Artix session manager.

Session manager service

plug-in
(session_manager_service)

This is the central service plug-in. It accepts
and tracks service registration, hands out
sessions to clients, and accepts or denies
session renewal.

Session manager endpoint

plug-in
(session_endpoint_manager)

This is the portion of the session manager that

resides in a registered service. It registers its

location with the service plug-in, and accepts

or rejects client requests based on the validity

of their session headers.

The Artix session manager also has a
pluggable policy callback mechanism that
enables you to implement your own session
management policies. The session manager
includes a simple policy callback plug-in,
sm_simple_policy . This provides control over
the allowable duration for a session and the
maximum number of concurrent sessions
allowed for each group.

Introduction to Session Management in Artix

171

How do the plug-ins interact? Figure 14 shows how the session manager plug-ins are deployed in an Artix

system. The session manager service plug-in and the policy callback plug-in

are both deployed into the same process.

While, in this example, these plug-ins are deployed into a standalone

service, they can be deployed in any Artix process. The session manager

service plug-in and the policy plug-in interact to ensure that the session

manager does not hand out sessions that violate the policies established by

the policy plug-in.

CHAPTER 12 | Using the Artix Session Manager

 172

Figure 14: The Session Manager Plug-ins

Introduction to Session Management in Artix

173

The endpoint manager plug-ins are deployed into the server processes that

contain session managed services. A process can host two services (for

example, Service C and Service D in Figure 14), but the process can have

only one endpoint manager. The endpoint manager plug-ins are in constant

communication with the session manager service plug-in to report on

endpoint health. They also receive information on new sessions that have

been granted to the managed services, and check on the health of the

session manager service.

What are sessions? The session manager controls access to services by handing out sessions to

clients who request access to the services. A session is a pass that provides

access to the services in a specific group for a specific time.

For example, if a client application wants to use the services in the sales

group, it asks the session manager for a session with the sales group. The

session manager then checks and see if the sales group has an available

session, and if so, it returns a session ID and the list of sales service

references to the client. The session manager then notifies the endpoint

managers in the sales group that a new session has been issued. It also

supplies the new session ID, and the duration for which the session is valid.

When the client then makes requests on the services in the sales group, it

must include the session information as part of the request. The endpoint

manager for the services then checks the session information to ensure it is

valid. If it is, the request is accepted. If it is not, the request is rejected.

If the client wants to continue using the sales services beyond the duration

of its lease, the client will have to ask the session manager to renew its

session before the session expires. When a client’s session has expired, it

must request a new one.

CHAPTER 12 | Using the Artix Session Manager

 174

What are groups? The Artix session manager does not pass out sessions for each individual

service that is registered with it. Instead, services are registered as part of a

group, and sessions are handed out for the group. A group is a collection of

services that are managed as one unit by the session manager. While the

session manager does not specify that the services in a group be related, it

is recommended that the endpoints have some relationship.

A service’s group affiliation is controlled by the configuration scope under

which it is run. To change a service’s group, edit the value for

plugins:session_endpoint_manager:default_group in the process

configuration scope. For more information on Artix configuration, see

“Configuring Artix” on page 23.

Deploying the Session Manager Service

175

Deploying the Session Manager Service

Overview Because the Artix session manager is implemented as a group of ART

plug-ins, any Artix application can host the session manager’s core

functionality by loading the session_manager_service and

sm_simple_policy plug-ins. However, it is recommended that users

generate an Artix server that only hosts the session manager and deploy that

server into the Artix environment.

In either case, the session manager requires modifications to the Artix

configuration domain that the session manager is run in. You also need to

generate a copy of session-manager.wsdl . This is the contract that

describes the session manager and contains the session manager’s contact

information.

Building a standalone session

manager

To generate a standalone instance of the session manager, write a simple

Artix server mainline and link it with the Artix libraries. Example 25 shows

an example of the session manager’s mainline.

Example 25:Artix Session Manager Mainline

include <it_bus/bus.h>
#include <it_bus/Exception.h>
#include <it_bus/fault_exception.h>

using namespace IT_Bus;

CHAPTER 12 | Using the Artix Session Manager

 176

The session manager’s main() only needs to initialize the Artix bus with the

name of the session manager’s configuration scope and call IT_Bus::run() .

The configuration scope name is third parameter to IT_Bus::init() ,

managed_sessions . The Artix bus loads the plug-ins for the session

manager.

Example 26 shows a sample makefile for building the session manager.

#int main(int argc, char* argv[])
{
 try
 {
 IT_Bus::Bus_var bus = IT_Bus::init(argc, argv ,
 "managed_s essions");
 bus->run();
 bus->shutdown();
 }
 catch (IT_Bus::Exception& e)
 {
 printf("Exception occurred: %s", e.Message()) ;
 return 1;
 }

 return 0;
}

Example 25:Artix Session Manager Mainline

Example 26:Session Manager Makefile

IT_PRODUCT_VER = 1.2

ART_BIN_DIR=$(IT_PRODUCT_DIR)\artix\$(IT_PRODUCT_VE R)\bin
ART_CXX_INCLUDE_DIR="$(IT_PRODUCT_DIR)\artix\$(IT_P RODUCT_VER)\i

nclude"
ART_LIB_DIR="$(IT_PRODUCT_DIR)\artix\$(IT_PRODUCT_V ER)\lib"

CXX=cl
CXXFLAGS=-I$(ART_CXX_INCLUDE_DIR) -Zi -nologo -GR - GX -W3 -Zm250

-MD $(EXTRA_CXXFLAGS) $(CXXLOCAL_DEFINES)

Deploying the Session Manager Service

177

The session manager must be linked with the following Artix libraries:

• it_bus.lib

• it_afc.lib

• it_art.lib

• it_ifc.lib

Configuring the session manager To run the session manager, you must ensure that it loads the session

manager service plug-in, session_manager_service and the session

manager policy plug-in, sm_simple_policy . In addition, the session

manager must load the soap and http plug-ins because all of its

communication uses SOAP over HTTP.

In the session manager’s configuration scope, you must specify the location

for the session manager’s contract. You do this by setting

plugins:session_manager_service:service_url to point to the copy of

session-manager.wsdl containing the contact information for this session

manager.

LINK=link
LDFLAGS=/DEBUG /NOLOGO
LDLIBS=/LIBPATH:$(ART_LIB_DIR) $(EXTRA_LIB_PATH) $(LINK_WITH)

kernel32.lib ws2_32.lib advapi32.lib user32.lib

SHLIB_CXX_COMPILER_ID= vc60
SHLIBLDFLAGS=-dll -debug -incremental:no

OBJS=$(SOURCES:.cxx=.obj)

LINK_WITH=it_bus.lib it_afc.lib it_art.lib it_ifc. lib

SOURCES = session_manager.cxx
all: session_manager.exe

session_manager.exe:$(SOURCES) $(OBJS)
 if exist $@ del $@
 $(LINK) /out:$@ $(LDFLAGS) $(OBJS) $(LDLIBS)

Example 26:Session Manager Makefile

CHAPTER 12 | Using the Artix Session Manager

 178

Example 27 shows the configuration scope used to start the session

manager.

For more information on Artix configuration, see “Configuring Artix” on

page 23.

Generating the session manager’s

contact information

You must also configure the port on which the session manager runs. To do

this, modify session-manager.wsdl , in the wsdl folder of your Artix

installation, to specify the HTTP address at which the session manager

listens. You can either do this manually by deploying the session manager

on a well-known fixed port, or automatically for deploying the session

manager on a dynamically allocated port.

Deploying on a fixed port

To deploy the session manager on a well-known fixed port, open

session-manager.wsdl in any text editor, and edit the <soap:address>

entry for the SessionManagerService to specify the correct address.

Example 28 shows a modified session manager contract entry. The

highlighted part specifies the desired address.

Example 27:Session Manager Configuration Scope

managed_sessions
{
 orb_plugins = ["xmlfile_log_stream", "iiop_profil e", "giop", "iiop", "soap",

"http", "session_manager_service", "sm_simple_polic y"];

 plugins:session_manager_service:service_url="sess ion-namager.wsdl"
};

Example 28:Session Manager Address

<service name="SessionManagerService">
 <port name="SessionManagerPort" binding="sm:Sessi onManagerBinding">
 <soap:address

location= "http://localhost:8080/services/sessionManagement/s essionManagerService" />
 </port>
</service>

Deploying the Session Manager Service

179

Deploying on a dynamic port

To deploy the session manager on a dynamically allocated port, configure

the session manager to use the copy of session-manager.wsdl shipped with

Artix.

You can limit the range of ports that the session manger is deployed on by

specifying a range of ports for the session managers SOAP or HTTP address.

Example 29 shows a modified session manager contract entry. The

highlighted part specifies the desired range of ports.

When the session manager initializes the Artix bus, it must publish a new

copy of its contract with the actual contact information. Example 30 shows

how to publish the session manager’s contract.

Example 29:Session Manager Port Range

<service name="SessionManagerService">
 <port name="SessionManagerPort" binding="sm:Sessi onManagerBinding">
 <soap:address

location= "http://localhost:11000-11100/services/sessionManag ement/sessionManagerService" />
 </port>
</service>

CHAPTER 12 | Using the Artix Session Manager

 180

Starting the session manager When the session manager has been generated and correctly configured, it

can be started just like any other application. The only difference is that the

session manager must be started before any servers that need to register

with it.

Example 30:Dynamically Located Session Manager

IT_Bus::Bus_var bus = IT_Bus::init(argc, argv,
 "managed-session s");

// Now we write out the updated WSDL for the sessio n manager

// Get the WSDL Defintions object.
IT_Bus::QName service_name("",
 "SessionManagerService",
 "http://ws.iona.com/sess ion-manager");
IT_Bus::Service * service = bus->get_service(servic e_name);
const IT_WSDL::WSDLDefinitions & definitions =
 service->get_wsd l_definitions();

// Serialize the WSDL model to another wsdl file.
IT_Bus::FileOutputStream stream("active-smservice.w sdl");
IT_Bus::XMLOutputStream xml_stream(stream, true);
definitions.write(xml_stream);
stream.close();

IT_Bus::run();

Registering a Server with the Session Manager

181

Registering a Server with the Session Manager

Overview Services that wish to be managed by the session manager must register with

a running session manager. To do this, the servers instantiating these

services must load the session manager endpoint plug-in and correctly

configure themselves. They do not require any special application code.

When registered with a session manager, the services only accept requests

containing a valid session header. All clients wishing to access the services

must be written to support session managed services.

Configuring the server Any server hosting services that are to be managed by the session manager

must load the following plug-ins in addition to the transport and payload

plug-ins it requires:

• soap

• http

• session_endpoint_manager

session_endpoint_manager enables the server to register with a running

session manager.

The server’s configuration also needs to set the following configuration

variables:

plugins:session_endpoint_manager:wsdl_url points to the contract

describing the contact information for the session manager that manages

the services.

plugins:session_endpoint_manager:endpoint_manager_url points to the

contract describing the contact information for the endpoint manager for this

server. This enables the session manager to contact the service to with

updated state information.

plugins:session_endpoint_manager:default_group specifies the default

group name for the services instantiated by the server.

CHAPTER 12 | Using the Artix Session Manager

 182

Example 31 shows the configuration scope of a server that hosts services

managed by the session manager.

A server loaded into the acme_server configuration scope is managed by the

session manager at the location specified in

session-manager-service.wsdl . Its endpoint manager comes up at the

address specified in session-manager-endpoint.wsdl , and by default all

services instantiated by the server belongs to the acme_group session

manager group.

For more information on Artix configuration see “Configuring Artix” on

page 23.

You also need to configure the port on which the endpoint manager runs. To

do this, modify session-manager.wsdl , in the wsdl folder of your Artix

installation, to specify the HTTP address that the endpoint manager

available at. Using any text editor, open session-manager.wsdl and edit the

<soap:address> entry for the SessionEndpointManagerService to specify

the proper address. Example 32 shows a modified session manager contract

entry. The highlighted part specifies the desired address.

Example 31:Server Configuration Scope

acme_server
{
 orb_plugins = ["xmlfile_log_stream", "soap", "htt p", "fixed", "session_endpoint_manager"];
 plugins:session_endpoint_manager:wsdl_url="sessio n-manager-service.wsdl";
 plugins:session_endpoint_manager:endpoint_manager _url="session-manager-endpoint.wsdl";
 plugins:session_endpoint_manager:deafult_group="a cme_group";
 };

Example 32:Endpoint Manager Address

<service name="SessionEndpointManagerService">
 <port name="SessionEndpointManagerPort" binding=" sm:SessionEndpointManagerBinding">
 <soap:address

location= "http://localhost:8080/services/sessionManagement/s essionEndpointManager" />
 </port>
</service>

Registering a Server with the Session Manager

183

In the server’s configuration scope, specify the endpoint manager plug-in to

read the correct Artix contract for the endpoint manager. You can do this by

setting plugins:session_endpoint_manager:endpoint_manager_u rl to

point to the copy of session-manager.wsdl containing the address for this

instance of the endpoint manager.

Server registration When a properly configured server starts up, it automatically registers with

the session manager specified by the contract pointed to by

plugins:session_endpoint_manager:wsdl_url .

CHAPTER 12 | Using the Artix Session Manager

 184

Working with Sessions

Overview Clients wishing to make requests from session managed services must be

designed explicitly to interact with the Artix session manager and pass

session headers to the session managed services.

The client takes the following steps when making requests on a session

managed service:

1. Instantiate a proxy for the session management service.

2. Start a session for the desired service’s group using the session

manager proxy.

3. Obtain the list of endpoints available in the group.

4. Create a service proxy from one of the endpoints in the group.

5. Build a session header to pass to the service.

6. Invoke requests on the endpoint using the proxy.

7. Renew the session as needed.

8. End the session using the session manager proxy when finished with

the services.

Instantiate a session manager

proxy

Before a client can request a session from the session manager, it must

create a proxy to forward requests to the running session manager. To do

this, the client creates an instance of SessionManagerClient using the

session manager’s contract name, session-manager.wsdl .

Example 33 shows how to instantiate a session manager proxy.

For more information on instantiating Artix proxies, see the Artix C++

Programmer’s Guide.

Example 33: Instantiating a Session Manager Proxy

// C++
SessionManagerClient session_manager_proxy = new

SessionManagerClient("session_manager.wsdl");

Working with Sessions

185

Start a session After instantiating a session manager proxy, a client can then start a session

for the desired service’s group using the session manager’s

begin_session() method:

void begin_session(IT_Bus_Services::BeginSession in put,
 IT_Bus_Services::BeginSessionRes ponse output);

input Contains the name of the desired group and the desired duration

of the session. The group name is set using the

setendpoint_group() method. The group name can be any valid

string and corresponds to the default group name set in the

service’s configuration scope as described in “Configuring the

server” on page 181.

Specifying the session duration The session duration is set using
the setprefered_renew_timeout() method. The duration is
specified in seconds. If the specified duration is less than the
value specified by the session manager’s min_session_timeout
configuration setting, it is set to the configured minimum value. If
the specified duration is higher than the value specified by the
session manager’s max_session_timeout configuration setting, it
is set to the configured max value. For more information see
“Configuring Artix” on page 23.

output Contains the information needed to use the session.

When a session is returned in output , you must extract the
session ID to work with the session. This is done using
getsession_id() , which returns the session ID as an
IT_Bus_Services::SessionID .

CHAPTER 12 | Using the Artix Session Manager

 186

Example 34 shows the client code to begin a session for acme_group .

Get a list of endpoints in the group The session manager hands out sessions for a group of services. Therefore,

to get an individual service to make requests on, a client needs to get a list

of the services in the session’s group. The session manager proxy’s

get_all_endpoints() method returns a list of all endpoints registered to the

specified group:

Example 34:Beginning a Session

// C++
IT_Bus_Services::BeginSession begin_session_request ;
IT_Bus_Services::BeginSessionResponse begin_session _response;

// set the group to request
begin_session_request.setendpoint_group("acme_group ");
// set session renewal interval to 10 mins
begin_session_request.setpreferred_renew_timeout(60 0);

session_mgr.begin_session(begin_session_request,
 begin_session_response);

IT_Bus_Services::SessionId session;
session =

begin_session_response.getsession_info().getsession _id();

void get_all_endpoints(IT_Bus_Services::GetAllEndpo ints request,
 IT_Bus_Services::GetAllEndpointsResponse re sponse)

request Contains the session ID that you are requesting services for.
Set the session ID using the setsession_id() method on
request with the session ID returned from the session
manager.

response Contains the list of services returned from
get_all_endpoints() . If the group has no services, response
will be empty.

Working with Sessions

187

Example 35 shows how to get the list of services for a group.

Create a proxy for the requested

service

The client can use any of the services returned by get_all_endpoints() to

instantiate a service proxy. To instantiate the proxy, you must first narrow

down the list returned services to the desired one. GetAllEnpointsResponse

contains an array of references to active services that can be retrieved using

its getendpoints() method. You can use simple indexing to get one of the

references. For example, to use the first service in the list you would use the

following:

Because the session manager simply returns the services in the order that

the services registered with the session manager, the clients must be

responsible for circulating through the list or else they all make requests on

only one service in the group. Also, because the session manager does not

force all members of a group to implement the same interface, you may

want to have your clients check each service to see if it implements the

correct interface by checking the reference’s service name as shown in

Example 36.

Example 35:Retrieving the List of Services in a Group

//C++
IT_Bus_Services::GetAllEndpoints request;
IT_Bus_Services::GetAllEndpointsResponse response;

// group session initialized above.
get_all_endpoints_request.setsession_id(session);

session_mgr.get_all_endpoints(request, response);

response.getendpoints()[0]

CHAPTER 12 | Using the Artix Session Manager

 188

Example 37 shows the client code for creating a proxy acme server from a

group service.

Create a session header Services that are being managed by the session manager will only accept

requests that include a valid session header. The session header information

is passed to the server as part of the proxy’s input message attributes.

Creating the session header and putting into the input message attributes

takes three steps:

1. Set the proxy to use input message attributes.

2. Get a handle to the proxy’s input message attributes.

3. Set the session information into the input message attributes.

Setting the proxy to use input message attributes

Artix client proxies all support a helper method, get_port() , which provides

access to the port information used by the client to connect the service. One

of an Artix proxy’s port properties is use_input_message_attributes .

Example 36:Checking the Service Reference for its Interface

//C++
IT_Bus::Reference endpoint = response.getendpoints()[0];
if (endpoint.get_service_name() ==
 QName("", "AcmeService", "http://acme.com"))
 {
 // instantiate an AcmeService using endpoint
 }
else
 {
 // do something else
 }

Example 37: Instantiate a Proxy Server

// C++
AcmeClient acme_proxy(response.getendpoints()[0]);

Working with Sessions

189

Setting this property to true tells the bus to ensure the input message

attributes are propagated through to the server. Example 38 shows how to

set the client proxy port’s use_input_message_attributes property to true .

Getting a handle to the input message attributes

A pointer to the proxy port’s input message attributes is returned by the

port’s get_input_message_attributes() method. Example 39 shows how

to get a handle to the input message attributes.

Setting the session information into the input message attributes

There are two attributes that must be set to include the correct session

information in the input message:

Example 38:Use Input Message Attributes

//C++
// Get the proxy’s port
IT_Bus::Port proxy_port = acme_proxy.get_port();

// set the port property
proxy_port.use_input_attributes(true);

Example 39:Getting the Input Message Attributes

MessageAttributes& input_attributes =
proxy_port().get_input_message_attributes();

SessionName Specifies the name the session manager has given this
session. The session manager endpoints in the group will
also be given this name to validate session header’s
against. The session name is returned by invoking
getname() of the session ID of the active session.

SessionGroup Specifies the name the session manager has given this
session. The session manager endpoints in the group will
also be given this name to validate session header’s
against. The session name is returned by invoking
getname() of the session ID of the active session.

CHAPTER 12 | Using the Artix Session Manager

 190

The input message attributes are set using the message attribute handle’s

set_string() method. set_string() takes two attributes. The first is a

string specifying the name of the attribute being set. The second is the value

to be set for the attribute. Example 40 shows how to set the session

information in to the input message attributes.

Make requests on service proxy When the session information is added to the proxy’s port information, the

client can invoke operations on the client as it would a non-managed

service. If the endpoint rejects the request because the client’s session is not

valid, an exception is raised.

Renew the session If a client is going to use a session for a longer than the duration the session

was granted, the client must renew its session or the session times out. A

session is renewed using the session manager proxy’s renew_session()

method:

Example 40:Setting the Input Message Attributes

// C++
input_attributes.set_string("SessionName", session. getname());
input_attributes.set_string("SessionGroup",
 session.getendpoint_gro up());

void renew_session(IT_Bus_Services::RenewSession pa rams,
 IT_Bus_Services::RenewSessionRes ponse renewed);

params Contains the session ID of the session being renewed and
the duration, in seconds, of the renewal. The session ID is
set using the params ’s setsession_id() method. The
renewal duration is set using the params ’s
setrenew_timeout() method.

renewed If the renewal is successful, renewed returns containing
the duration of the renewal. The returned duration may
be different if the requested renewal duration was outside
of the configured range for session timeouts.

If the renewal is unsuccessful, an
IT_Bus_Services::renewSessionFaultException is
raised.

Working with Sessions

191

Example 41 shows how to end a session.

End the session When a client is finished with a session managed service, it should explicitly

end its session. This ensures that the session is freed up immediately. A

session is ended using the session manager proxy’s end_session() method:

params contains the session ID of the session being ended. The session ID is

set using params ’s setsession_id() method.

Example 42 shows how to end a session.

For more information on writing Artix client code, see the Artix C++

Programmer’s Guide.

Example 41:Ending a Session

//C++
IT_Bus_Services::RenewSession params;
IT_Bus_Services::RenewSessionResponse renewed;
params.setsession_id(session);
parames.setrenewal_timeout(600);
try
{
 session_mgr.renew_session(params, renewed);
}
catch (IT_Bus_Services::renewSessionFaultException)
{
 // handle the exception
}

void end_session(IT_Bus_Services::EndSession params);

Example 42:Ending a Session

//C++
IT_Bus_Services::EndSession params;
params.setsession_id(session);
session_mgr.end_session(params);

CHAPTER 12 | Using the Artix Session Manager

 192

Fault Tolerance

Overview Enterprise level deployments demand that applications can cleanly recover

from occasional failures. The Artix session manager is designed to recover

from the two most common failures:

• Failure of a registered endpoint.

• Failure of the session manager itself.

Endpoint failure When an endpoint gracefully shuts down, it notifies the session manager

that it is no longer available. The session manager removes the endpoint

from its list so it cannot give a client a reference to a dead endpoint.

However, when an endpoint fails unexpectedly, it cannot notify the session

manager and the session manager can unknowingly give a client an invalid

reference causing the failure to cascade.

To mitigate the risk of passing invalid references to clients, the session

manager occasionally pings all of its registered endpoint managers to see if

they are still running. If an endpoint manager does not respond to a ping,

the session manager removes that endpoint manager’s references.

You can adjust the interval between session manager pings by setting the

configuration variable plugins:session_manager:peer_timeout . The

default setting is 4 seconds. For more information see “Configuring Artix” on

page 23.

Service failure When the session manager fails all of the references to the registered

services are lost and the active services are no longer be registered. To

ensure that the active services reregister with the session manager when it

restarts, the endpoint managers, after the session manager has missed its

ping interval, will periodically attempt to reregister with the session manager

until they are successful.

You can adjust the interval between the endpoint manager’s pings of the

session manager by setting the configuration variable

plugins:session_endpoint_manager:peer_timout . The default setting is 4

seconds. For more information see “Configuring Artix” on page 23.

193

CHAPTER 13

Deploying a
Service Chain
Artix provides a chain builder that enables you to create a
series of services to invoke as part of a larger process.

In this chapter This chapter includes the following sections:

The Artix Chain Builder page 194

Configuring the Artix Chain Builder page 196

CHAPTER 13 | Deploying a Service Chain

 194

The Artix Chain Builder

Overview The Artix Chain Builder enables you to link together a series of services into

a multi-part process. This is useful if you have processes that require a set

order of steps to complete, or if you wish to link together a number of

smaller service modules into a complex service.

Chaining services together For example, you may have a four services that you wish to combine to

service requests from a single client. You can deploy a service chain like the

one shown in Figure 15.

Figure 15: Chaining Four Servers to Form a Single Service

The Artix Chain Builder

195

In this scenario, the client makes a single request and the chain builder

dispatches the request along the chain starting at Server1 . The chain

builder takes the response from Server1 and passes that to the next

endpoint in the chain, Server2 . This continues until the end of the chain is

reached at Server4. The chain builder then returns the finished response to

the client.

The chain builder is implemented as an Artix plug-in so it can be deployed

into any Artix process. The decision about which process that you deploy it

in depends on the complexity of your system, and also how you choose to

allocate resources for your system.

Assumptions To make the discussion of deploying the chain builder as straightforward as

possible, this chapter assumes that you are deploying it into an instance of

the Artix standalone service. However, the configuration steps for

configuring and deploying a chain builder are the same no matter which

process you choose to deploy it in.

CHAPTER 13 | Deploying a Service Chain

 196

Configuring the Artix Chain Builder

Overview To configure the Artix Chain Builder, complete the following steps:

1. Add the chain builder’s plug-in to the process’ orb_plugins list.

2. Configure all of the endpoints that are a part of the chain as generic

Artix endpoints.

3. Configure the chain so that it knows what servants to instantiate and

the service chain for each operation implemented by the servant.

Adding the chain builder in the

orb_plugins list

Configuring the application to load the chain builder’s plug-in requires

adding it to the application’s orb_plugins list. The plug-in name for the

chain builder is ws_chain . Example 43 shows an orb_plugins list for a

process hosting the chain builder.

Configuring the endpoints in the

chain

Each service that is a part of the chain and the client that makes requests

through the chain service must be configured as generic Artix endpoints in

the chain builder’s configuration scope. This provides the chain builder with

the necessary information to instantiate a servant that the client can make

requests against. It also supplies the information needed to make calls to

the services that make up the chain.

To configure a group of Artix endpoints, use the configuration variables in

the artix:endpoint namespace. These variables are described in Table 22.

Example 43:Plug-in List for Using a Web Service Chain

orb_plugins={"ws_chain", "xml_log_stream"};

Table 22: Artix Endpoint Configuration

Variable Function

artix:endpoint:endpoint_list Specifies a list of the endpoints and their names for
the current configuration scope.

artix:endpoint: endpoint_name:wsdl_location Specifies the location of the contract describing this
endpoint.

Configuring the Artix Chain Builder

197

Configuring the service chains The chain builder requires you to provide the following details

• A list of endpoints that are clients to the chain builder.

• A list of operations that each client can invoke.

• Service chains for each operation that the clients can invoke.

Specifying the servant list

The first configuration setting tells the chain builder how many servants to

instantiate, the interfaces that the servants must support, and the physical

details of how the servants are contacted. You specify this using the variable

plugins:chain:servant_list . plugins:chain:servant_list . This takes a

list of endpoint names from the list of Artix endpoints that you defined

earlier in the configuration scope.

Specifying the operation list

The second part of the chain builder’s configuration is a list of the operations

that each client to the chain builder can invoke. You specify this using

plugins:chain: endpoint:operation_list where endpoint refers to one of

the endpoints in the chain’s service list.

plugins:chain: endpoint:operation_list takes a list of the operations that

are defined in <operation> tags in the endpoint’s contract. You must list all

of the operations for the endpoint or an exception will be thrown at runtime.

You must also be sure to enter a list of operations for each endpoint

specified in the chain’s service list.

artix:endpoint: endpoint_name:service_namespace Specifies the XML namespace of the service that this
endpoint implements.

artix:endpoint: endpoint_name:service_name Specifies the name, from the WSDL <service>
element, of the service this endpoint implements.

artix:endpoint: endpoint_name:port_name Specifies the name, from the WSDL <port> element,
of the port that this endpoint can be contacted on.

Table 22: Artix Endpoint Configuration

Variable Function

CHAPTER 13 | Deploying a Service Chain

 198

Specifying the service chain

The third piece of the chain builder’s configuration is to specify a service

chain for every operation defined in the endpoints listed in

plugins:chain:servant_list . This is specified using the

plugins:chain: endpoint: operation:service_chain configuration variable.

The syntax for entering the service chains is shown in Example 44.

For each entry, the syntax is as follows:

Configuration example Example 45 shows the contents of a configuration scope for a process that

hosts the chain builder.

Example 44:Entering a Service Chain

plugins:chain: endpoint: operation:service_chain=[" op1@endpt1", " op2@endpt2", ..., " opN@endptN"];

endpoint Specifies the name of an endpoint from the chain builder’s
servant list

operation Specifies one of the operations defined by an <operation>
entry in the endpoints contract. The entries in the list refer to
operations implemented by other endpoints defined in the
configuration.

opN Specifies one of the operations defined by an <operation>

entry in the contract defining the service specified by endptN.

The operations in the service chain are invoked in the order

specified. The final result is returned back to the chain

builder which then responds to the client.

Example 45:Configuration for Hosting the Artix Chain Builder

colaboration
{
 orb_plugins = ["ws_chain"];

 artix:endpoint:endpoint_list = ["customer", "pm", "designer",
"builder"];

Configuring the Artix Chain Builder

199

 artix:endpoint:customer:wsdl_location = "order.ws dl";
 artix:endpoint:customer:service_namespace =

"http://needs.com";
 artix:endpoint:customer:service_name = "POC";
 artix:endpoint:customer:port_name = "order_port";

 artix:endpoint:pm:wsdl_location = "manager.wsdl";
 artix:endpoint:pm:service_namespace = "http://ORB SrUs.com";
 artix:endpoint:pm:service_name = "prioritize";
 artix:endpoint:pm:port_name = "pm_port";

 artix:endpoint:designer:wsdl_location = "designer .wsdl";
 artix:endpoint:designer:service_namespace =

"http://ORBSrUs.com";
 artix:endpoint:transformer:service_name = "design ";
 artix:endpoint:transformer:port_name = "desinger_ port";

 artix:endpoint:builder:wsdl_location = "engineer. wsdl";
 artix:endpoint:builder:service_namespace =

"http://ORBSrUs.com";
 artix:endpoint:builder:service_name = "produce";
 artix:endpoint:builder:port_name = "builder_port" ;

 plugins:chain:servant_list = ["customer"];
 plugins:chain:oldClient:operation_list = ["reques tSolution"];
 plugins:chain:customer:requestSolution:service_ch ain =
 ["estimatePriority@pm", "makeSpecification@desi gner",
 "buildORB@builder"];
};

Example 45:Configuration for Hosting the Artix Chain Builder

CHAPTER 13 | Deploying a Service Chain

 200

201

CHAPTER 14

Deploying the
Artix Transformer
Artix provides an XSLT transformer service that can be
configured to run as a servant process that replaces an Artix
server.

In this chapter This chapter discusses the following topics:

The Artix Transformer page 202

Standalone Deployment page 205

Deployment as Part of a Chain page 208

CHAPTER 14 | Deploying the Artix Transformer

 202

The Artix Transformer

Overview The Artix transformer provides a means of processing messages without

writing application code. The transformer processes messages based on

XSLT scripts and returns the result to the requesting application (XSLT

stands for Extensible Stylesheet Language Transformations).

These XLST scripts can perform message transformations, such as

concatenating two string fields, reordering the fields of a complex type, and

truncating values to a given number of decimal places. XSLT scripts can also

be used to validate data before passing it onto a Web service for processing,

and a number of other applications.

Deployment Patterns The Artix transformer is implemented as an Artix plug-in. Therefore, it can

be loaded into any Artix process. This makes it extremely flexible in how it

can be deployed in your environment. If the speed of calls or security is an

issue, the transformer can be loaded directly into an application. If you need

to spread resources across a number of machines, the transformer plug-in

can be loaded in a separate process.

There are two main patterns for deploying the Artix Transformer:

• Standalone deployment

• Deployment as part of a chain

Standalone deployment The first pattern is to deploy the transformer by itself. This is useful if your

application is doing basic data manipulation that can be described in an

XSLT script. The transformer replaces the server process and saves you the

cost of developing server application code. This style of deployment can also

be useful for performing data validation before passing requests to a server

for processing.

The Artix Transformer

203

The most straightforward way to deploy the transformer is to deploy it as a

separate servant process hosted by the Artix standalone service. When

deployed in this way the transformer receives requests from a client,

processes the message based on supplied XSLT scripts, and replies with the

results of the script. In this configuration, shown Figure 16, the transformer

becomes the server process in the Artix solution.

You can modify the deployment pattern shown in Figure 16 by eliminating

the Artix standalone service and having your client directly load the

transformer’s plug-in as shown in Figure 17. This saves the overhead of

making calls outside of the client process to reach the transformer However,

it can reduce the overall efficiency of your system if the transformer requires

a large amount of resources to perform its work.

Figure 16: Artix Transformer Deployed as a Servant

Figure 17: Artix Transformer Loaded by Client

CHAPTER 14 | Deploying the Artix Transformer

 204

Deployment as part of a chain The second pattern is to deploy the Artix transformer as part of a Web

service chain controlled by the Web Service Chain Builder. This deployment

is useful if you need to connect legacy clients to updated servers whose

interfaces may have changed or are connecting applications that have

different interfaces. It can also be useful for a range of applications where

data transformation is needed as part of a larger set of business logic.

Figure 18 shows an example of this type of deployment where the

transformer and the chain builder are both hosted by the Artix standalone

service. The chain builder directs the requests to the transformer which

transforms messages. When the transformer returns the processed data, the

chain builder then passes it onto the server.

In this example, the server returns the results to the client without further

processing, but the results can also be passed back through the transformer.

Neither the client nor the server need to be aware of the processing.

You could modify this deployment pattern in a number of ways depending

on how you wish to allocate your resources. For example, you can configure

the client process to load the chain builder and the transformer. You can

also have the chain builder and the transformer loaded into separate

processes.

Figure 18: Artix Transformer Deployed with the Chain Builder

Standalone Deployment

205

Standalone Deployment

Overview To deploy an instance of the Artix transformer you must first decide what

process is hosting the transformer’s plug-in. You must then add the

following to the process configuration scope:

• The transformer plug-in, xslt .

• An Artix endpoint configuration to represent the transformer.

• The transformer’s configuration information.

Updating the orb_plugins list Configuring the application to load the transformer requires adding it to the

application’s orb_plugins list. The plug-in name for the transformer is xslt .

Example 46 shows an orb_plugins list for a process hosting the

transformer.

Adding an Artix endpoint

definition

The transformer is defined as a generic Artix endpoint. To instantiate it as a

servant, Artix must know the following details:

• The location of the Artix contract that defines the transformer’s

endpoint.

• The interface that the endpoint implements.

• The physical details of its instantiation.

This information is configured using the configuration variables in the

artix:endpoint namespace. These variables are described in Table 23.

Example 46:Plug-in List for Using XSLT

orb_plugins={"xslt", "xml_log_stream"};

Table 23: Artix Endpoint Configuration

Variable Function

artix:endpoint:endpoint_list Specifies a list of the endpoints and their names for
the current configuration scope.

artix:endpoint: endpoint_name:wsdl_location Specifies the location of the contract describing this
endpoint.

CHAPTER 14 | Deploying the Artix Transformer

 206

Configuring the transformer Configuring the transformer involves two steps that enable it to instantiate

itself as a servant process and perform its work.

• Configuring the list of servants.

• Configuring the list of scripts.

Configuring the list of servants

The name of the endpoints that will be brought up as transformer servants is

specified in plugins:xslt:servant_list . The endpoint identifier is one of

the endpoints defined in artix:endpoint:endpoint_list entry. The

transformer uses the endpoint’s configuration information to instantiate the

appropriate servants

Configuring the list of scripts

The list of the XSLT scripts that each servant uses to process requests is

specified in plugins:xslt: endpoint_name:operation_map . Each endpoint

specified in the servant list has a corresponding operation map entry in the

configuration. The operation map is specified as an ordered list using the

syntax shown in Example 47.

artix:endpoint: endpoint_name:service_namespace Specifies the XML namespace of the service that this
endpoint implements.

artix:endpoint: endpoint_name:service_name Specifies the name, from the WSDL <service>
element, of the service this endpoint implements.

artix:endpoint: endpoint_name:port_name Specifies the name, from the WSDL <port> element,
of the port on which this endpoint can be contacted.

Table 23: Artix Endpoint Configuration

Variable Function

Note: artix:endpoint:endpoint_list must be specified in the same
configuration scope.

Example 47:Operation Map Syntax

plugins:xslt: endpoint_name:operantion_map = [" wsdlOp1@filename1"
, " wsdlOp2@filename2", ..., " wsdlOpN@filenameN"];

Standalone Deployment

207

Each entry in the map specifies a logical operation that is defined in the

service’s contract by an <operation> element and the XSLT script to run

when a request is made on the operation. You must specify an XSLT script

for every operation defined for the endpoint. If you do not, the transformer

raises an exception when the unmapped operation is invoked.

Configuration example Example 48 shows the configuration scope of an Artix application,

transformer , that loads the Artix Transformer to process messages. The

transformer is configured as an Artix endpoint named hannibal and the

transformer uses the endpoint information to instantiate a servant to handle

requests.

Example 48:Configuration for Using the Artix Transformer

transformer
{
orb_plugins = ["local_log_stream","xslt"];

artix:endpoint:endpoint_list = ["hannibal"];

artix:endpoint:hannibal:wsdl_location = "transforme r.wsdl";
artix:endpoint:hannibal:service_namespace = " http://transformer.com/xslt ";
artix:endpoint:hannibal:service_name = "WhiteHat";
artix:endpoint:hannibal:port_name = "WhitePort";

plugins:xslt:servant_list=["hannibal"]
plugins:xslt:hannibal:operation_map = ["op1@../scri pt/op1.xsl", "op2@../script/op2.xsl",

"op3@../script/op3.xsl"]
}

CHAPTER 14 | Deploying the Artix Transformer

 208

Deployment as Part of a Chain

Overview Deploying the Artix Transformer as part of Web service chain allows you to

use it as part of an integration solution without needing to necessarily

modify your applications. The Artix Web Service Chain Builder facilitates the

placement of the transformer into a series of Web service calls managed by

Artix.

The plug-in architecture of the transformer and the chain builder allow for

you to deploy this type of solution in a variety of ways depending on what is

the best fit for your particular solution. The most straightforward way to

deploy this type of solution is to deploy both the transformer and the chain

builder into the same process. This is the deployment that will be used to

outline the steps for configuring the transformer to be deployed as part of a

Web service chain. In general, you will need to complete all of the same

steps regardless of how you choose to deploy your solution.

Procedure To deploy the transformer as part of a Web service chain you need to

complete the following steps:

1. Modify your process’s configuration scope to load the transformer and

the chain builder.

2. Configure Artix endpoints for each of the applications that will be part

of the chain.

3. Configure an Artix endpoint to represent the transformer.

4. Configure the transformer.

5. Configure the service chain to include the transformer at the

appropriate place in the chain.

Deployment as Part of a Chain

209

Updating the orb_plugins list Configuring the application to load the transformer plug-in and the chain

builder plug-in requires adding them to the process’s orb_plugins list. The

plug-in name for the transformer is xslt and the plug-in name for the chain

builder is ws_chain . Example 49 shows an orb_plugins list for a process

hosting the transformer and the chain builder.

Configuring the endpoints in the

chain

The Artix Web Service Chain Builder uses generic Artix endpoints to

represent all of the applications in a chain, including the transformer.

Table 23 on page 205 shows the configuration variables used to configure a

generic Artix endpoint.

Configuring the transformer The transformer requires the same configuration information regardless of

how it is deployed. You must provide it with the name of the endpoints it

will instantiate from the list of endpoints and provide each instantiation with

an operation map. For more information about providing this information

see “Configuring the transformer” on page 206.

Placing the transformer in the

chain

The chain builder instantiates a servant for each endpoint specified in its

servant list. Each servant can have a multiple operations. For each operation

that will be involved in a Web service chain, you need to specify an ordered

list of endpoints and their operations that make up the chain. This list is

specified using

plugins:chain: endpoint_name: operation_name:service_chain .

To include the transformer in one of the chains, you add the appropriate

operation and endpoint names for the transformer at the appropriate place

in the service chain.

For more information on configuring the chain builder see “Deploying a

Service Chain” on page 193.

Example 49:Loading the Artix Transformer as Part of a Chain

orb_plugins={"xslt", "ws_chain", "xml_log_stream"};

CHAPTER 14 | Deploying the Artix Transformer

 210

Configuration example Example 50 shows a configuration scope that contains configuration

information for deploying the transformer as part of a Web service chain.

Example 50:Configuration for Deploying the Artix Transformer in a Web

Service Chain

transformer
{
 orb_plugins = ["ws_chain", "xslt"];

 artix:endpoint:endpoint_list = ["oldClient", "new Server",
"transformer"];

 artix:endpoint:oldClient:wsdl_location = "bank.ws dl";
 artix:endpoint:oldClient:service_namespace =

"http://bank.com";
 artix:endpoint:oldClient:service_name = "ATM";
 artix:endpoint:oldClient:port_name = "client_port ";

 artix:endpoint:newServer:wsdl_location = "bank.ws dl";
 artix:endpoint:newServer:service_namespace =

"http://bank.com";
 artix:endpoint:newServer:service_name = "newATM";
 artix:endpoint:newServer:port_name = "server_port ";

 artix:endpoint:transformer:wsdl_location = "bank. wsdl";
 artix:endpoint:transformer:service_namespace =

"http://bank.com";
 artix:endpoint:transformer:service_name = "transf ormer";
 artix:endpoint:transformer:port_name = "transform er_port";

 plugins:xslt:servant_list = ["transformer"];
 plugins:xslt:transformer:operation_map =

["transform@transformer.xsl"];

 plugins:chain:servant_list = ["oldClient"];
 plugins:chain:oldClient:operation_list = ["withdr aw"];
 plugins:chain:oldClient:client_operation:service_ chain =

["transform@transformer", "withdraw@newServer"];
};

Part IV
Integrating with Other
Middleware Systems

In this part This part contains the following chapters:

Using Artix in a CORBA Environment page 213

Embedding Artix in a BEA Tuxedo Container page 225

Integrating with Enterprise Java Beans page 229

213

CHAPTER 16

Using Artix in a
CORBA
Environment
Artix can be run inside an existing CORBA environment and
leverage a number of its services.

In this chapter This chapter discusses the following topics:

Embedding Artix in a CORBA Application page 214

Using the CORBA Naming Service page 217

Load Balancing with CORBA page 219

CHAPTER 16 | Using Artix in a CORBA Environment

 214

Embedding Artix in a CORBA Application

Overview Because Artix is built on IONA’s flexible ART platform, it can be embedded

in any CORBA application implemented using IONA’s Orbix 6.0 or later

without modifying any CORBA application’s code. You can embed Artix by

updating the application configuration to load the required Artix plug-ins.

Embedding Artix in your CORBA application has several advantages:

• No need for a separate process to route messages to the non-CORBA

parts of your application.

• Improved messaging performance over using the Artix standalone

service.

• Write your code using a familiar paradigm and realize the benefits of

using Artix.

• Leverage all of the CORBA infrastructure to provide enterprise-level

qualities of service and management.

Embedding Artix in a CORBA

client

To embed Artix in a CORBA client application, do the following:

1. Create an Artix contract that fully describes the interfaces, bindings,

transports, and routing rules used in your Artix application.

2. Edit your CORBA client’s configuration scope so that the ORB plug-ins

list contains the required Artix plug-ins to support the bindings and

transports used by your Artix application.

For example, if your CORBA client interacts with a sever using SOAP

over WebSphere MQ, your ORB plug-in list would be similar to

Example 51 on page 215. The required Artix plug-ins are highlighted.

3. Make an entry for plugins:routing:wsdl_url that specifies where the

Artix application’s contract resides.

Embedding Artix in a CORBA Application

215

In Example 51, the Artix contract describing the application is stored in

/artix/wsdlRepos/scoreBox.wsdl .

4. When you start your CORBA client, ensure that you start it using the

correct ORB name to load the Artix plug-ins.

For a client that uses the configuration in Example 51, you would start

the client with the following command:

Embedding Artix in a CORBA

server

To embed Artix in a CORBA server that uses the routing plug-in, you must

first ensure that:

• Your CORBA server generates persistent object references.

• Your CORBA server runs one time to export the persistent references,

and is then restarted for the Artix routing plug-in to work.

The routing plug-in requires valid object references to properly load itself.

When embedded in the CORBA server, the routing plug-in is loaded by the

ORB before any object references are generated. By using persistent object

references and pregenerating them before fully deploying the server, as

when using the naming service, you satisfy the routing plug-in.

To configure a CORBA server to embed Artix, complete the following steps:

1. Create an Artix contract that fully describes the interfaces, bindings,

transports, and routing rules used in your Artix application.

2. Edit the CORBA server’s configuration scope so that the ORB plug-ins

list contains the required Artix plug-ins to support the bindings and

transports used by your Artix application.

Example 51:Embedded Artix orb_plugins list

corba_client.artix
{
 orb_plugins=["iiop_profile", "giop", "soap", "mq", "ws_orb",

"routing"];
 plugins:routing:wsdl_url="/artix/wsdlRepos/scoreB ox.wsdl";
}

client -ORBname corba_client.artix

CHAPTER 16 | Using Artix in a CORBA Environment

 216

For example, if your CORBA server interacts with a client using SOAP

over WebSphere MQ, your ORB plug-in list would be similar to

Example 52. The required Artix plug-ins are highlighted.

3. Make an entry for plugins:routing:wsdl_url that specifies where the

Artix applications contract resides.

In Example 52, the Artix contract describing the application is stored in

/artix/wsdlRepos/scoreBox.wsdl .

4. Edit the server’s client binding list, binding:client_binding_list , so

that none of the listed bindings use POA_Coloc .

The configuration scope in Example 52 shows a client binding list that

does not use POA_Coloc . The default client binding list includes entries

for "OTS+POA_Coloc" and "POA_Coloc" .

5. When you start your CORBA server ensure that you start it using the

correct ORB name to load the Artix plug-ins.

For a server that uses the configuration in Example 52, you would start

the client with the following command:

Example 52:Embedded Artix Server Configuration

corba_server.artix
{
 orb_plugins=["iiop_profile", "giop", "soap", "mq", "ws_orb",

"routing"];
 plugins:routing:wsdl_url="/artix/wsdlRepos/scoreB ox.wsdl";
 binding:client_binding_list=[“OTS+GIOP+IIOP”, “GI OP+IIOP”];
 binding:server_binding_list=["OTS"];
}

server -ORBname corba_server.artix

Using the CORBA Naming Service

217

Using the CORBA Naming Service

Overview To fully integrate with deployed CORBA systems, Artix can use a CORBA

naming service that supports the CosNaming interface. This requires editing

the port information in the service’s contract and modifying the Artix

configuration.

Specifying servers To specify that an Artix instance (acting as proxy for a server) is to use the

CORBA naming service, edit the <corba:address> element of the CORBA

port. In place of the file name in the location attribute, specify a

corbaname .

For example, to specify that the converter server publishes its IOR to the

CORBA naming service, specify the <corba:address> as follows:

This registers the server in the name service under the name

personalInfoService .

Specifying clients An Artix instance (acting as a proxy for a client) can also use the

<corba:address> element to specify what name to look up in the CORBA

name service. The name that the client looks up in the name service is the

string after the # in the specified location.

For example, a client using the <corba:address> shown above in

“Specifying servers” looks up the IOR for an object named

personalInfoService .

<corba:address location=“corbaname:rir:/NameService #personalInfoService”/>

CHAPTER 16 | Using Artix in a CORBA Environment

 218

Configuring Artix Artix applications that wish to use a CORBA name service must be

configured to load a name resolver plug-in and have an initial reference for

the running name service.

To modify the Artix configuration, do the following:

1. Open the Artix configuration file in a text editor:

install-dir\artix\2.0\etc\artix.cfg ,.

2. In the global scope, add the following lines:

portNumber is the number of the port on which the name service is

running.

For more information on configuring Artix, see “Configuring Artix” on

page 23.

initial_references:NameService:reference="corbaloc: :localhost: portNumber/NameService";
url_resolvers:corbaname:plugin="naming_resolver";
plugins:naming_resolver:shlib_name="it_naming";

Load Balancing with CORBA

219

Load Balancing with CORBA

Overview If an Artix Service Access Point (SAP) is mapped to a CORBA service, and

that CORBA service is accessible using IONA’s Orbix 6.0 SP 1 (or later), the

implementation of that service can be load balanced using the Orbix locator

service. To accomplish this, the Artix configuration file must duplicate some

of the information from the Orbix configuration domain, as described in this

section.

For information on the Orbix load balancing features, see the Orbix

Administrator’s Guide.

Configuration Steps The following steps work with an Orbix installation that uses either

file-based configuration or a configuration repository. However, because

Artix supports only file-based configuration, the relevant configuration

information must be inserted into the artix.cfg file. The following

configuration example assumes that an Orbix domain exists, and that the

locator service is run from this domain:

1. From the orbix-domain-name.cfg file, get the following configuration

information, and add it to artix.cfg file.

2. Create an ORBname for each Artix SAP that participates in load

balancing. For example:

initial_references:IT_NodeDaemon:reference =
"IOR:000000000000002149444c3a49545f4e6f64654461656d 6f6e2f4e6f6465446165
6d6f6e3a312e300000000000000001000000000000007600010 20000000008686f72617
4696f00782800000000001d3a3e0233310c6e6f64655f646165 6d6f6e000a4e6f646544
61656d6f6e00000000000003000000010000001800000000000 10001000000000001010
400000001000101090000001a00000004010000000000000600 000006000000000011";

itadmin orbname create demos.clustering.server_1
itadmin orbname create demos.clustering.server_2
itadmin orbname create demos.clustering.server_3

CHAPTER 16 | Using Artix in a CORBA Environment

 220

3. Create a Portable Object Adapter (POA) that declares these ORBnames

as replicas, and specify either round-robin or random load balancing.

For example:

The POA name (ClusterDemo) is expressed in WSDL as:

You can choose any POA name; however, the POA name you register

using itadmin must be the same name you declare in the WSDL file.

When corba:policy persistent=true is specified, you must also

specify serviceid . Failure to specify serviceid either results in an IOR

that cannot be used for load balancing, or a process that outlives the

POA.

4. To run ClusterDemo , you would start the CORBA servers that underlie

the Artix SAP as follows:

When you run a client to connect to the Artix SAP, the first request goes to

the first server (because round_robin load balancing was declared). If a

second client is started, its request goes to the second server, and a third

client’s request goes to the third server.

Replicated Orbix services If your Orbix services are replicated, and if Artix is deployed on each of the

machines that those services are replicated on, the Artix SAPs themselves

can be replicated and load-balanced. For example:

1. On the master machine (the machine that hosts the configuration

repository), create an ORBname for each Artix SAP that participates in

load balancing. For example:

itadmin poa create -replicas
demos.clustering.server_1,demos.clustering.server_2 ,demos.clustering.server_3
-load_balancer round_robin ClusterDemo

<corba:policy persistent="true" serviceid="service_ id" poaname="ClusterDemo"/>

Server -ORBname demos.clustering.server_1
Server -ORBname demos.clustering.server_2
Server -ORBname demos.clustering.server_3

itadmin orbname create demos.clustering.server_1
itadmin orbname create demos.clustering.server_2
itadmin orbname create demos.clustering.server_3

Load Balancing with CORBA

221

2. Create a POA that declares these ORBnames as replicas, and specify

either round-robin or random load balancing. For example:

3. On each machine that replicates the service, obtain the node daemon’s

initial reference, and add it to the artix.cfg file on that machine.

4. Start a server on each machine, passing one of the three specified

ORBnames to it:

This service is now load balanced among the three replicated Artix SAPs. If

one or two of these SAPs is killed, the client invocation is directed to the

remaining machine(s).

Creating the load-balanced

environment dynamically

You can create a load balance environment without creating the POA or

manually registering ORB names. To accomplish this:

1. On the master machine, obtain the node daemon initial reference and

put it in the artix.cfg file.

2. Start the CORBA service, passing the same ORB name as that

specified in the Artix client’s WSDL contract. This ORB name is

received by the Node Daemon, which creates a POA with that name. If

you do not specify an ORB name, the name WSORB is used.

3. On the master machine, issue the following command in the Orbix

environment with the name you chose:

4. On each of the slave machines where the service is replicated, obtain

the node daemon initial reference from the Orbix domain configuration

and put it in the artix.cfg file.

5. On each slave machine where the service is replicated, start the

CORBA service, using a different ORBname each time.

itadmin poa create -replicas
demos.clustering.server_1,demos.clustering.server_2 ,demos.clustering.server_3
-load_balancer round_robin ClusterDemo

clustering.server_1,
demos.clustering.server_2
demos.clustering.server_3

itadmin poa modify -allowdynreplicas yes POA_Name

CHAPTER 16 | Using Artix in a CORBA Environment

 222

6. On the master machine, issue the following command in the Orbix

environment (inserting the type of load balancing and the ORBnames

you have chosen):

7. Start the Artix SAP.

Other load balancing features In addition to POA name, the Orbix configuration file can also affect load

balancing by specifying:

• Persistent or Transient POA policy

• Object ID

These load-balancing-related configuration values can be specified in an

Artix WSDL contract using WSDL extensions for CORBA ports:

Specifying the POA name

The POA name can be specified as follows:

The default POA name is WSORB.

Specifying the POA Persistence policy

The POA persistence policy can be set as follows:

If this value is set to true , the POA policy is persistent. The default

persistence value is false .

Specifying the Service ID

The Service ID can be set as follows:

Specifying the Object ID

Object ID is provided by the POA if the POA Policy SYSTEM_ID is set. Setting

this to any string sets the POA policy USER_ID and uses the value provided

as the object_id . If this is not set, the POA policy is SYSTEM_ID.

itadmin poa modify -l <round_robin | random> POA_name

<corba:policy poaname="my_poa_name"/>

 <corba:policy persistent="true | false"/>

<corba:policy serviceid="ncname"/>

Load Balancing with CORBA

223

Examples The following WSDL examples illustrate these additional load balancing

features.

Setting the persistent POA policy

The contract fragment in Example 53 results in the following POA policy

settings:

• PERSISTENT

• USER_ID

• POAName="master1"

• ObjectID ="master1"

Setting the POA name policy

The contract fragment in Example 54 results in the following POA policy

settings:

• TRANSIENT (Default)

• SYSTEM_ID (Default)

• POAName="master1"

Example 53:Setting the PERSISTENT POA policy

<service name="BaseService">
 <port binding="tns:BasePortCorbaBinding" name="Ba sePortCorba">
 <corba:address location="file://master.ref"/>
 <corba:policy persistent="true" poaname="master 1" serviceID="master1"/>
 </port>
</service>

Example 54:Setting the POAName POA policy

<service name="BaseService">
 <port binding="tns:BasePortCorbaBinding" name="Ba sePortCorba">
 <corba:address location="file://master.ref"/>
 <corba:policy poaname="master1"/>
 </port>
</service>

CHAPTER 16 | Using Artix in a CORBA Environment

 224

Setting the User ID policy

The contract fragment in Example 55 results in a POA with the following

policy settings:

• TRANSIENT (Default)

• USER_ID

• POAName="WSORB" (Default)

• ObjectID="master1"

Setting the default policy

The contract fragment in Example 56 results in a POA with all default

policies.

Example 55:Setting the USER_ID POA policy

<service name="BaseService">
 <port binding="tns:BasePortCorbaBinding" name="B asePortCorba">
 <corba:address location="file://master.ref"/ >
 <corba:policy poaname="master1" serviceID="m aster1"/>
 </port>
</service>

Example 56:Default POA policies

<service name="BaseService">
 <port binding="tns:BasePortCorbaBinding" name="Ba sePortCorba">
 <corba:address location="file://master.ref"/>
 </port>
</service>

225

CHAPTER 17

Embedding Artix
in a BEA Tuxedo
Container
Artix can be run and managed by BEA Tuxedo like a native
Tuxedo application.

In this chapter This chapter includes the following sections:

Introduction page 226

Embedding an Artix Process in a Tuxedo Container page 227

CHAPTER 17 | Embedding Artix in a BEA Tuxedo Container

 226

Introduction

Overview To enable Artix to interact with native BEA Tuxedo applications, you must

embed Artix in the Tuxedo container.

At a minimum, this involves adding information about Artix in your Tuxedo

configuration file, and registering your Artix processes with the Tuxedo

bulletin board.

In addition, you can also enable to Tuxedo bring up your Artix process as a

Tuxedo server when running tmboot .

This chapter explains these steps in detail.

Note: BEA Tuxedo integration is unavailable in some editions of Artix.
Please check the conditions of your Artix license to see whether your
installation supports Tuxedo integration.

Embedding an Artix Process in a Tuxedo Container

227

Embedding an Artix Process in a Tuxedo
Container

Procedure To embed an Artix process in a Tuxedo container, complete the following

steps:

1. Ensure that your environment is correctly configured for Tuxedo.

2. Add the Tuxedo plug-in, tuxedo , to your Artix process’s orb_plugins

list. See “ORB Plug-ins” on page 37.

3. Set plugins:tuxedo:server to true in your Artix configuration scope.

4. Ensure that the executable for your Artix process is placed in the

directory specified in the APPDIR entry of your Tuxedo configuration.

5. Edit your Tuxedo configuration’s SERVERS section to include an entry for

your Artix process.

For example, if the executable of your Artix process is ringo , add the

following entry in the SERVERS section:

This associates ringo with the Tuxedo group called BEATLES in your

configuration and assigns ringo a server ID of 1. You can modify the

server’s properties as needed.

6. Edit your Tuxedo configuration’s SERVICES section to include an entry

for your Artix process.

While standard Tuxedo servers only require a SERVICES entry if you are

setting optional runtime properties, Artix servers in the Tuxedo

container require an entry, even if no optional runtime properties are

being set. The name entered for the Artix process is the name specified

in the serviceName attribute of the Tuxedo port defined in the Artix

contract for the process.

orb_plugins=["iiop_profile", "giop", "iiop", "tuxed o"];

ringo SVRGRP=BEATLES SVRID=1

CHAPTER 17 | Embedding Artix in a BEA Tuxedo Container

 228

For example, given the port definition shown in Example 57, the

SERVICES entry would be personalInfoService .

7. If you made the Tuxedo configuration changes in the ASCII version of

the configuration, UBBCONFIG, reload the TUXCONFIG with tmload .

When you have configured Tuxedo, it manages your Artix process as if it

were a regular Tuxedo server.

Example 57:Sample Service Entry

<service name="personalInfoService">
 <port name="tuxInfoPort" binding="tns:personalIn foBinding">
 <tuxedo:server>
 <tuxedo:service name="personalInfoServic e"/>
 </tuxedo:server>
 </port>
</service>

229

CHAPTER 18

Integrating with
Enterprise Java
Beans
Artix can connect to Enterprise Java Beans and provide a
means of exposing them throughout your environment.

In this chapter This chapter includes the following sections

Artix EJB Integration page 230

Configuring an Artix EJB proxy to use JNDI page 232

Exposing a Stateless EJB page 233

CHAPTER 18 | Integrating with Enterprise Java Beans

 230

Artix EJB Integration

Overview Many applications are developed using Java technology and J2EE Enterprise

Java Beans (EJBs). While Java enables applications to run on a number of

hardware platforms, it does not provide native interoperability with

applications developed using a variety of other middleware platforms.

In addition, J2EE (prior to 1.4) does not provide a native means of exposing

stateless EJBs as Web services. Artix provides tools that map stateless EJBs

to WSDL and expose its functionality as a Web service or to applications

using any of the transports supported by Artix.

Exposure by proxy Artix exposes a stateless EJB by placing an Artix proxy in front it. This proxy

communicates with the stateless EJB and handles the transformation of the

incoming and outgoing messages. The proxy is implemented in a Java Artix

server process that registers a special EJBServant object with the Artix bus.

This special servant object does not require an implementation object

because it makes requests on the stateless EJB’s methods to fulfil client

requests.

Instantiating an EJBServant Example 58 shows the signature for the EJBServant constructor.

This method takes the following parameters:

When the EJBServant is instantiated, it gets the stateless EJB’s contact

information using a JNDI look-up.

Example 58: Instantiating an EJBServant

public EJBServant(String wsdlLoc, Bus bus, String j ndiName);

wsdlLoc The location of the WSDL document describing the
stateless EJB’s interface and the ports over which it is
being exposed.

bus A reference to an initialized Artix bus.

jndiName The JNDI name of the EJB’s remote interface.

Artix EJB Integration

231

Example Figure 19 shows how Artix exposes a stateless EJB to applications outside

of the J2EE container. In this instance, Artix is connecting the stateless EJB

to a Web service client communicating using SOAP over HTTP.

Figure 19: Exposing an EJB

CHAPTER 18 | Integrating with Enterprise Java Beans

 232

Configuring an Artix EJB proxy to use JNDI

Overview For your Artix EJB proxy to perform the JNDI look-up of a stateless EJB, it

must have its initial context properties configured. You can do this by adding

the entries shown Table 24 in to a file named

initial_context.properties .

Example Example 59 shows the initial context properties for using JBoss.

Table 24: JNDI Initial Context Properties

Property Description

java.naming.factory.initial Specifies the class name of initial context
factory to use with your JNDI
implementation.

java.naming.factory.url.packages Specifies a colon-separated list of package
prefixes to use when loading in URL context
factories. com.sun.jndi.url is always added
to end of list.

java.naming.provider.url Specifies configuration information for
provider to use.

Example 59: JBoss Initial Context Properties

java.naming.factory.initial=org.jnp.interfaces.Nami ngContextFactory
java.naming.factory.url.pkgs=org.jboss.naming:org.j np.interfaces
java.naming.provider.url=jnp://localhost:1099

Exposing a Stateless EJB

233

Exposing a Stateless EJB

Procedure To expose a stateless EJB using Artix, complete the following steps:

1. Use the javatowsdl tool on your stateless EJB’s remote interface to

generate a logical WSDL document representing its interface. This

process is described in Designing Artix Solutions.

2. Add the binding for the desired payload format to the generated WSDL

document. For example, if you are exposing the stateless EJB as a Web

service, you would add a SOAP binding.

3. Add the port information defining the transport that the stateless EJB

can be contacted on. For example, to expose the stateless EJB as a

Web service, you would add an HTTP port.

4. Generate Java code for an Artix server from your edited WSDL

document using wsdltojava . This procedure is described in

Developing Artix Applications with Java.

5. Edit the generated server’s mainline to instantiate an EJBServant

instead of a SingleInstanceServant .

6. Build and run the generated server.

Example Example 60 shows the main() of an Artix Java server modified to expose a

stateless EJB. The highlighted code instantiates an EJBServant for a

stateless EJB with the JNDI name HelloWorld .

Example 60:EJBServant main()

// Java
import com.iona.jbus.*;
import javax.xml.namespace.QName;

public class Server
{
 public static void main(String args[])
 throws Exception
 {

CHAPTER 18 | Integrating with Enterprise Java Beans

 234

 // Initialize the Artix bus
 Bus bus = Bus.init(args);

 // Register the implementation object factory
 QName name = new QName("http://xmlbus.com/Hello World",
 "HelloWorldService");
 Servant servant =
 new EJBServant(“./HelloWorld.wsd l”,
 bus, “HelloWorld”);
 bus.registerServant(servant, name, "HelloWorldP ort");

 // Start the Bus
 bus.run();
 }
}

Example 60:EJBServant main()

235

Glossary

A Artix Designer

A suite of GUI tools for creating, managing, and deploying Artix integration

solutions.

B Binding

A binding associates a specific transport/protocol and data format with the

operations defined in a <portType> .

Bus

See Service Bus

Bridge

A usage mode in which Artix is used to integrate applications using different

payload formats.

C Collection

A group of related WSDL contracts that can be deployed as one or more

physical entities such as Java, C++, or CORBA based applications. It can

also be deployed as a switch process.

Connection

An established communication link between any two Artix endpoints.

Contract

An Artix contract is a WSDL file that defines the interface and all

connection-related information for that interface. A contract contains two

components: logical and physical. The logical contract defines things that are

independent of the underlying transport and wire format, and is specified in

the <portType> , <operation> , <message> , <type> , and <schema> WSDL tags.

The physical contract defines the payload format, middleware transport, and

service groupings, and the mappings between these things and portType

‘operations.’ The physical contract is specified in the <port> , <binding> and

<service> WSDL tags.

GLOSSARY

 236

Contract Editor

A GUI tool used for editing Artix contracts. It provides several wizards for

adding services, transports, and bindings to an Artix contract.

D Deployment Mode

One of two ways in which an Artix application can be deployed: Embedded

and Standalone. An embedded-mode Artix application is linked with

Artix-generated stubs and skeletons to connect client and server to the service

bus. A standalone application runs as a separate process in the form of a

daemon.

E Embedded Mode

Operational mode in which an application creates a Service Access Point,

either by invoking Artix APIs directly, or by compiling and linking

Artix-generated stubs and skeletons to connect client and server to the service

bus.

Endpoint

The runtime deployment of one or more contracts, where one or more

transports and its marshalling is defined, and at least one contract results in

a generated stub or skeleton (thus an endpoint can be compiled into an

application). Contrast with Service.

H Host

The network node on which a particular service resides.

M Marshalling Format

A marshalling format controls the layout of a message to be delivered over a

transport. A marshalling format is bound to a transport in the WSDL definition

of a Port and its binding. A binding can also be specified in a logical contract

portType, which allows for a logical contract to have multiple bindings and

thus multiple wire message formats for the same contract.

237

P Payload Format

The on-the-wire structure of a message over a given transport. A payload

format is associated with a port (transport) in the WSDL using the binding

definition.

Protocol

A protocol is a transport whose format is defined by an open standard.

R Routing

The redirection of a message from one WSDL binding to another. Routing

rules are specified in a contract and apply to both endpoints and standalone

services. Artix supports port-based routing and operation-based routing

defined in WSDL contracts. Content-based routing is supported at the

application level.

Router

A usage mode in which Artix redirects messages based on rules defined in an

Artix contract.

S Service

An Artix service is an instance of an Artix runtime deployed with one or more

contracts, but with no generated language bindings. The service has no

compile-time dependencies. A service is dynamically configured by deploying

one or more contracts on it.

Service Access Point

The mechanism, and the points at which individual service providers and

consumers connect to the service bus.

Service Bus

The set of service providers and consumers that communicate via Artix. Also

known as an Enterprise Service Bus.

GLOSSARY

 238

Standalone Mode

An Artix instance running independently of either of the applications it is

integrating. This provides a minimally invasive integration solution and is fully

described by an Artix contract.

Switch

A usage mode in which Artix connects applications using two different

transport mechanisms.

System

A collection of services and transports.

T Transport

An on-the-wire format for messages.

Transport Plug-in

A plug-in module that provides wire-level interoperation with a specific type

of middleware. When configured with a given transport plug-in, Artix will

interoperate with the specified middleware at a remote location or in another

process. The transport is specified in the <port> element of a contract.

W Workspace

The Artix Workspace defines the structure of your Artix solution. It is the first

thing you need to create when using the Designer, and all of the solution’s

components are included within it.

A workspace will typically have one or more collections, which in turn contain

resources that define your solution's interface. A workspace also contains

shared resources that are common across one or more collections.

239

Index
A
Adaptive Runtime architecture 4, 29
advanced functionality 8
Apache Log4J, configuration 57, 107
ApplicationId data type 90
ART 4, 29
artix.cfg 134, 144
artix:endpoint 48, 196, 205
artix:endpoint:endpoint_list 48, 69, 196, 205
artix:endpoint:endpoint_name:port_name 49, 197,

206
artix:endpoint:endpoint_name:service_name 49,

197, 206
artix:endpoint:endpoint_name:service_namespace 4

8, 197, 206
artix:endpoint:endpoint_name:wsdl_location 48,

196, 205
Artix bus 11
Artix Chain Builder 194
Artix contracts 7
artix_env script 27
Artix locator 15
artix_service 144
artix_service_admin 144, 145
artix_service_init 147
Artix session manager 17
Artix standalone service 141
Artix transformer 202
ASCII 116
avg 111

B
-background 147
begin_session() 185
below_capacity() 167
binding

artix:client_message_interceptor_list 134
client_binding_list 42
server_binding_list 43

binding:artix:server_message_interceptor_list 134
bus_response_monitor 39, 107

C
C++ configuration 107
canonical 71
character encoding schema 116
client-id 56, 109
codeset 116
CODESET_INCOMPATIBLE 122
codeset negotiation 120, 121
collection 235
Collector 106
-compiler vc71 27
configuration

data type 33
domain 29
namespace 32
scope 30
variables 33

constructed types 33
ContextContainer 130
Conversion codeset 121
count 111

D
_DEFAULT in logging 93
Dynamic 61
dynamic proxies 61

E
EBCDIC 126
EJBServant 230
Embedded mode 8, 10
EMS, definition 104
endpointNotExistFault 163
end_session() 191
Enterprise Management Systems 104
EUC-JP 117
EventId data type 91
event_log

filters 76
event_log:filters 134
EventParameters data type 91
EventPriority data type 91

INDEX

 240

F
format_message() 92

G
get_all_endpoints() 186
getendpoints() 187
get_input_message_attributes() 189
get_port() 188
getservice_endpoint() 164
getsession_id() 185
giop 144

H
high_water_mark 45
http 160
http:server_address_mode_policy:publish_hostname

41

I
i18n_interceptor 134
IBM Tivoli integration 104
IBM WebSphere MQ, internationalization 126
iiop 144
iiop_profile 144
InboundCodeSet 126
initial_references:IT_ArtixServiceAdmin:reference 14

5, 147
initial_threads 44
input 185
install 148
install_artix_service 148
int 112
intercept_dispatch() 130
intercept_invoke() 130
interceptors 42

client request-level 42
internationalization

CORBA 120
MQ 126
SOAP 119

Internet Assigned Number Authority 117
IONA Tivoli Provider 104
iostreams 80
ipaddress 71
ISO-2022-JP 118
ISO 8859 116
ISO-8859-1 117
it_afc.lib 156

it_art.lib 156
it_bus.lib 156
IT_Bus::get_service() 166
IT_Bus::init() 31, 78, 156
IT_Bus::run() 156
IT_Bus::Service 166
IT_Bus_Services::renewSessionFaultException 190
IT_Bus_Services::SessionID 185
IT_CONFIG_DIR 26
IT_CONFIG_DOMAINS_DIR 26
IT_CONFIG_FILE 25
IT_DOMAIN_NAME 26
IT_IDL_CONFIG_FILE 25
it_ifc.lib 156
IT_LOG_MESSAGE() macro 81
IT_LOG_MESSAGE_1() macro 82
IT_PRODUCT_DIR 25
IT_TRACE 79

J
java.naming.factory.initial 232
java.naming.factory.url.packages 232
java.naming.provider.url 232
Java configuration 107
JAVA_HOME 24
jndiName 230
jvm_options 38, 40

L
life cycle message formats 113
load balancing 154
LocalCodeSet 126
local_log_stream 76
locator 15
locator.wsdl 157
locator_endpoint 152, 160
LocatorServiceClient 162
LocatorServicePort 162
Log4J, configuration 57, 107
LOG_ALL_EVENTS 92
LOG_ALL_INFO 92
LOG_ERROR 92
LOG_FATAL_ERROR 92
log file interpreter 104
logging message formats 111
logical portion 7
LOG_INFO 92
LOG_INFO_HIGH 92

INDEX

241

LOG_INFO_LOW 92
LOG_INFO_MED 92
LOG_NO_EVENTS 92
log_properties 107
LOG_WARNING 92
lookup_endpoint() 163
low_water_mark 45

M
makefile 156
max 112
message transports 6
MIB, definition 97
Microsoft Visual C++ 27
min 112
MQ, internationalization 126

N
namespace 111
native codeset 120
NCS 120

O
operation 111
oph 112
-ORBconfig_domains_dir 146, 148, 149
-ORBdomain_name 146, 148, 149
-ORBname 146, 148, 149
-ORBname parameter 31
orb_plugins 37, 107, 196, 205, 209
OSF CodeSet Registry 118
OutboundCodeSet 126
output 185

P
params 190
payload formats 6
performance logging 104
physical portion 7
plugins

artix_wsdl_publish 39
corba 37
fixed 38
fml 38
G2 38
http 37
it_response_time_collector

log_properties 57
java 38
locator_endpoint 39
mq 38
routing 39
service_locator 39
session_endpoint_manager 39
session_manager_service 39
sm_simple_policy 39
soap 38
tagged 38
tibrv 38
tunnel 38
tuxedo 38
ws_orb 37
xslt 39

plugins:artix_service:direct_persistence 145
plugins:artix_service:iiop

port 145
plugins:artix_service:iiop:host 145
plugins:artix_service:shlib_name 144
plugins:chain:endpoint:operation:service_chain 198
plugins:chain:endpoint:operation_list 197
plugins:chain:endpoint_name:operation_list 69
plugins:chain:endpoint_name:operation_name:servic

e_chain 70, 209
plugins:chain:servant_list 69, 197
plugins:codese:wchar:ncs 52
plugins:codeset:always_use_default 53
plugins:codeset:char:ccs 52
plugins:codeset:char:ncs 51, 120
plugins:codeset:wchar:ccs 53
plugins:codeset:wchar:ncs 120
plugins:it_response_time_collector:client-id 56, 109
plugins:it_response_time_collector:filename 56,

107
plugins:it_response_time_collector:log_properties 1

07
plugins:it_response_time_collector:period 57, 107
plugins:it_response_time_collector:server-id 56, 57,

58, 109
plugins:it_response_time_collector:syslog_appID 58

, 108
plugins:it_response_time_collector:system_logging_e

nabled 58, 108
plugins:locator:peer_timeout 54, 168
plugins:locator:service_url 54, 157
plugins:locator:wsdl_url 55
plugins:routing:use_pass_through 60

INDEX

 242

plugins:routing:use_type_factory 59
plugins:routing:wsdl_url 59, 150
plugins:service_lifecycle:max_cache_size 61
plugins:session_endpoint_manager:default_group 6

4, 174, 181
plugins:session_endpoint_manager:endpoint_manag

er_url 64, 181
plugins:session_endpoint_manager:header_validatio

n 64
plugins:session_endpoint_manager:peer_timout 55,

168, 192
plugins:session_endpoint_manager:wsdl_url 64,

181
plugins:session_manager:peer_timeout 192
plugins:session_manager_service:peer_timeout 63
plugins:session_manager_service:service_url 63
plugins:sm_simple_policy:max_concurrent_sessions

65
plugins:sm_simple_policy:max_session_timeout 65,

185
plugins:sm_simple_policy:min_session_timeout 65,

185
plugins:soap:encoding 66, 119
plugins:soap:shlib_name 66
plugins:tuxedo:server 68
plugins:wsdl_publish:hostname 71
plugins:wsdl_publish:publish_port 71
plugins:xmlfile_log_stream:filename 77
plugins:xmlfile_log_stream:max_file_size 77
plugins:xmlfile_log_stream:rolling_file 78
plugins:xmlfile_log_stream:shlib_name 77
plugins:xmlfile_log_stream:use_pid 77
plugins:xslt:endpoint_name:operation_map 67, 206
plugins:xslt:servant_list 67, 206
port 111
-preserve 28
primitive types 33
printf 79
proxies 61

R
reached_capacity() 167
renewed 190
renew_session() 190
report_event() 95
report_message() 95
request 186
response 186
Response monitor 106

router 61
run 146
running 113

S
SAP 7
server ID 111, 113
server ID, configuring 57, 109
service 111
Service Access Point 7, 219
service bus 11
service_lifecycle 39
service_locator 152, 155
session_endpoint_manager 170
SessionGroup 189
session manager 17
session-manager.wsdl 178
SessionManagerClient 184
session-manager-endpoint.wsdl 182
SessionManagerService 178
session_manager_service 170
session-manager-service.wsdl 182
SessionName 189
setendpoint_group() 185
setInboundCodeSet 130
setLocalCodeSet 130
setlocale() 120
setOutboundCodeSet 130
setprefered_renew_timeout() 185
setservice_qname() 163
setsession_id() 186
set_string() 190
Shift_JIS 117
shutting_down 113
SNMP

definition 97
Management Information Base 97

snmp_log_stream 101
soap 160
soap:address 158
soap:server_address_mode_policy:publish_hostnam

e 41
standalone mode 8, 10
standalone switching service 13, 141
start_artix_service 146
starting_up 113
status 113
stop_artix_service 147
SubsystemId data type 93

INDEX

243

switching service 13, 141

T
thread_pool:high_water_mark 45
thread_pool:initial_threads 44
thread_pool:low_water_mark 45
thread pool policies 44

initial number of threads 44
maximum threads 45
minimum threads 45

Timestamp data type 93
Tivoli integration 104
Tivoli Task Library 104
trace level 79
TRACELOGBUFFER 80
TRACE macros 79
transformer 202
transmission codeset 120, 121
transports 6

U
Unicode 117
uninstall 149
uninstall_artix_service 149
unqualified 71
US-ASCII 117
use_input_message_attributes 188
UTF-16 117
UTF-8 117

V
-verbose 28
Visual Studio .NET 2003 27

W
Web Service Definition Language 7
WebSphere MQ, internationalization 126
Workspace 238
ws_chain 196
WSDL 7
wsdlLoc 230

X
xmlfile_log_stream 76
XSLT service 201

INDEX

 244

	List of Tables
	List of Figures
	Preface
	What is Covered in this Book
	Who Should Read this Book
	How to Use this Book
	Online Help
	Finding Your Way Around the Artix Library
	Additional Resources for Help
	Typographical Conventions
	Keying Conventions

	Part I
	Introduction to Artix
	What is Artix?
	Artix Concepts

	Deploying Artix Solutions: An Overview
	Artix Deployment Modes
	Embedded Application
	Standalone Switching Service
	Artix Locator
	Artix Session Manager

	Part II
	Configuring Artix
	Establishing the Host Computer Environment
	Artix Runtime Configuration

	Artix Configuration Reference
	Artix Runtime Configuration Variables
	ORB Plug-ins
	Artix ORB plug-ins
	jvm_options
	Policies
	http:server_address_mode_policy:publish_hostname
	soap:server_address_mode_policy:publish_hostname
	Binding Lists
	client_binding_list
	server_binding_list
	Thread Pool Control
	initial_threads
	low_water_mark
	high_water_mark

	Artix Plug-in Configuration Variables
	Artix Endpoint Configuration
	artix:endpoint:endpoint_list
	artix:endpoint:endpoint_name:wsdl_location
	artix:endpoint:endpoint_name:service_namespace
	artix:endpoint:endpoint_name:service_name
	artix:endpoint:endpoint_name:port_name
	CORBA Plug-in
	CORBA Codeset Plug-in
	plugins:codeset:char:ncs
	plugins:codeset:char:ccs
	plugins:codeset:wchar:ncs
	plugins:codeset:wchar:ccs
	plugins:codeset:always_use_default
	Locator Service
	plugins:locator:service_url
	plugins:locator:peer_timeout
	Locator Service Endpoint Plug-in
	plugins:locator:wsdl_url
	plugins:session_endpoint_manager:peer_timout
	Response Time Collector
	plugins:it_response_time_collector:client-id
	plugins:it_response_time_collector:filename
	plugins:it_response_time_collector:log_properties
	plugins:it_response_time_collector:period
	plugins:it_response_time_collector:server-id
	plugins:it_response_time_collector:syslog_appID
	plugins:it_response_time_collector:system_logging_enabled
	Routing Plug-in
	plugins:routing:wsdl_url
	plugins:routing:use_type_factory
	plugins:routing:use_pass_through
	Service Lifecycle
	plugins:service_lifecycle:max_cache_size
	Session Manager
	plugins:session_manager_service:service_url
	plugins:session_manager_service:peer_timeout
	Session Manager Endpoint Plug-in
	plugins:session_endpoint_manager:wsdl_url
	plugins:session_endpoint_manager:endpoint_manager_url
	plugins:session_endpoint_manager:default_group
	plugins:session_endpoint_manager:header_validation
	Session Manager Simple Policy Plug-in
	plugins:sm_simple_policy:max_concurrent_sessions
	plugins:sm_simple_policy:min_session_timeout
	plugins:sm_simple_policy:max_session_timeout
	SOAP Plug-in
	plugins:soap:encoding
	plugins:soap:shlib_name
	Transformer Service
	plugins:xslt:servant_list
	plugins:xslt:endpoint_name:operation_map
	Tuxedo Plug-in
	plugins:tuxedo:server
	Web Service Chain Service
	plugins:chain:servant_list
	plugins:chain:endpoint_name:client:operation_list
	plugins:chain:endpoint_name:operation_name:service_chain
	WSDL Publishing Service
	plugins:wsdl_publish:publish_port
	plugins:wsdl_publish:hostname
	XML File Log Stream
	plugins:xmlfile_log_stream:shlib_name
	plugins:xmlfile_log_stream:filename
	plugins:xmlfile_log_stream:max_file_size
	plugins:xmlfile_log_stream:rolling_file
	plugins:xmlfile_log_stream:use_pid

	Artix Logging and SNMP Support
	Configuring Artix Logging
	Using Artix TRACE Macros
	Orbix TRACE Macros
	IT_LOG_MESSAGE() Macro
	IT_LOG_MESSAGE_1() Macro
	logging_support.h

	IT_Logging Module
	IT_Logging::ApplicationId Data Type
	IT_Logging::EventId Data Type
	IT_Logging::EventParameters Data Type
	IT_Logging::EventPriority Data Type
	IT_Logging::format_message()
	IT_Logging::SubsystemId Data Type
	IT_Logging::Timestamp Data Type

	IT_Logging::LogStream Interface
	LogStream::report_event()
	LogStream::report_message()

	Using the SNMP Logging Plug-in

	Enterprise Performance Logging
	Enterprise Management Integration
	Configuring Performance Logging
	Logging Message Formats

	Using Artix with International Codesets
	Introduction to International Codesets
	Working with Codesets using SOAP
	Working with Codesets using CORBA
	Working with Codesets using Fixed Length Records
	Working with Codesets using Message Interceptors
	Routing with International Codesets

	Part III
	Artix Standalone Service
	The Artix Standalone Service
	Configuring the Standalone Service
	Controlling the Standalone Service
	Installing the Standalone Service as a Windows Service
	Specifying Routing with the Standalone Service

	Using the Artix Locator Service
	Overview of the Artix Locator Service
	Deploying the Locator
	Registering a Server with the Locator
	Obtaining References from the Locator
	Load Balancing
	Controlling Server Workloads
	Fault Tolerance

	Using the Artix Session Manager
	Introduction to Session Management in Artix
	Deploying the Session Manager Service
	Registering a Server with the Session Manager
	Working with Sessions
	Fault Tolerance

	Deploying a Service Chain
	The Artix Chain Builder
	Configuring the Artix Chain Builder

	Deploying the Artix Transformer
	The Artix Transformer
	Standalone Deployment
	Deployment as Part of a Chain

	Part IV
	Using Artix in a CORBA Environment
	Embedding Artix in a CORBA Application
	Using the CORBA Naming Service
	Load Balancing with CORBA

	Embedding Artix in a BEA Tuxedo Container
	Introduction
	Embedding an Artix Process in a Tuxedo Container

	Integrating with Enterprise Java Beans
	Artix EJB Integration
	Configuring an Artix EJB proxy to use JNDI
	Exposing a Stateless EJB

	Glossary
	Index

