
Tutorial
Version 2.0.2, April 2004

IONA, IONA Technologies, the IONA logo, Orbix, Orbix/E, Orbacus, Artix, Orchestrator,
Mobile Orchestrator, Enterprise Integrator, Adaptive Runtime Technology, Transparent
Enterprise Deployment, and Total Business Integration are trademarks or registered
trademarks of IONA Technologies PLC and/or its subsidiaries.
Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.
CORBA is a trademark or registered trademark of the Object Management Group, Inc. in
the United States and other countries. All other trademarks that appear herein are the
property of their respective owners.
While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of
any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or
consequential damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third
party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publication
and features described herein are subject to change without notice.

Copyright © 2001�2004 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: 30-Apr-2004

M 3 1 9 5

Contents

Preface v

What is Covered in this Book v
Who Should Read this Book v
Organization of this Book v
Related Documentation v
Online Help vi
Suggested Path for Further Reading vi
Additional Resources for Help vii
Typographical Conventions vii
Keying Conventions viii

Chapter 1 Introduction 1
Introduction to the Tutorial 2

Chapter 2 The WSDL File 3
What Are Web Services? 4
What is WSDL? 6
A Complete WSDL File 14

Chapter 3 Coding the Web Service 17
The wsdltocpp Utility 18
The wsdltojava Utility 21
Generating Code 24

Generating the Client Application Code 26
Generating the Server Application Code 29

Completing the Coding 32
Building the Client Application 37

Running the Application 38
The C++ Application 39
The Java Application 40
Interoperability Between the C++ and Java Applications 41

Chapter 4 Using the Artix� Designer 43
iii

CONTENTS
The Artix Designer 44
The Artix Workspace 45
Writing the WSDL File 50

Create the WSDL File 51
Define the Types 54
Define the Messages 64
Define the portType 69
Define the Binding 73
Define the Service 77

Developing an Application 81
Generating Starting Point Code 85

Defining Deployment Profiles 86
Defining Deployment Bundles 87
Generating the C++ and Java Code 91

Completing the Code 94
The C++ Client Code 95
The C++ Server Code 97
The Java Client Code 99
The Java Server Code 100

Compiling the Applications 101
Running the Application 103

Chapter 5 Faults and Exceptions 105
Raising Exceptions 106
Handling Runtime Exceptions 107
Working with WSDL Faults 109
Developing An Application 113

Chapter 6 Mortgage Calculator 121
The Mortgage Calculator Web Service 122
The WSDL File 124
The Application Code 127
Building and Running the Applications 131
 iv

Preface
What is Covered in this Book
 The Artix Basic Tutorial provides a basic understanding of the concepts and
terms used in the IONA Artix Standard product.

Who Should Read this Book
This manual is aimed at first-time Artix users. It is assumed that the reader
is familiar with C++ and/or Java coding.

Organization of this Book
This book will guide you through the development of several Artix
applications. Initially you will use command line tools and the Artix Designer
to build and deploy HelloWorld applications. At the end of the book you will
be given an opportunity to build and deploy a more involved application.
See Chapter 1 for a more complete detailing of the chapter contents.

Related Documentation
The document set for Artix includes the following:

� Getting Started with Artix

� Designing Artix Solutions

� Deploying and Managing Artix Solutions

� Artix Installation Guide

� Artix Tutorial

� Developing Artix Applications with C++
v

PREFACE
� Developing Artix Applications with Java

� Artix Security Guide

The latest updates to the Artix documentation can be found at http://
iona.com/support/docs/artix/2.0/index.xml.

Online Help
The Artix Designer includes comprehensive online help, providing:
� Detailed step-by-step instructions on how to perform important tasks.

� A contextual description of each screen.

� A comprehensive index and glossary.

� A full search feature.

There are two ways to access the online help: via the Help menu in the Artix
Designer, or by clicking the Help button on any interface dialog.

Suggested Path for Further Reading
If you are new to Artix, we suggest you read the documentation in the
following order:

1. Artix Basic Tutorial

2. Getting Started with Artix

The Getting Started book describes the basic concepts behind Artix. It
also provides a detailed walk through for developing a Web Service.

3. Designing Artix Solutions with Artix Designer

The Artix Designer book describes how to use the Artix GUI to describe
your services in an Artix contract.

4. Designing Artix Solutions from the Command Line

This book provides detailed information about the WSDL extentions
used in Artix contracts and explains the mappings between data types
and Artix bindings.

5. Developing Artix Applications with C++
Developing Artix Applications in Java

The development guide discusses the technical aspects of
programming applications using the Artix API.

6. Deploying and Managing Artix Solutions
 vi

PREFACE
The deployment guide describes deploying Artix enabled systems. It
provides detailed examples for a number of typical use cases.

7. Artix Security Guide

An introduction to the security features in Artix.

Additional Resources for Help
The IONA Knowledge Base contains helpful articles, written by IONA
experts, about Artix and other products. You can access the knowledge base
at the following location: (http://www.iona.com/support/knowledge_base/
index.xml)

The IONA Update Center (http://www.iona.com/support/updates/index.xml)
contains the latest releases and patches for IONA products:

If you need help with this or any other IONA products, contact IONA at
support@iona.com. Comments on IONA documentation can be sent to

.

Typographical Conventions
This book uses the following typographical conventions:

Constant width Constant width (courier font) in normal text
represents portions of code and literal names of items
such as classes, functions, variables, and data
structures. For example, text might refer to the
CORBA::Object class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#include <stdio.h>
vii

PREFACE
Keying Conventions
This book uses the following keying conventions:

Italic Italic words in normal text represent emphasis and
new terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your
particular system. For example:

% cd /users/your_name

Note: Some command examples may use angle
brackets to represent variable values you must
supply. This is an older convention that is replaced
with italic words or characters.

No prompt When a command�s format is the same for multiple
platforms, a prompt is not used.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

> The notation > represents the DOS or Windows
command prompt.

...

.

.

.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

[] Brackets enclose optional items in format and syntax
descriptions.

{ } Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| A vertical bar separates items in a list of choices
enclosed in { } (braces) in format and syntax
descriptions.
 viii

CHAPTER 1

Introduction
This tutorial describes the basics of creating a Web service
using Artix� Encompass Standard 2.0.

In This Chapter This chapter discusses the following topics:

Introduction to the Tutorial page 2
1

CHAPTER 1 | Introduction
Introduction to the Tutorial

What is Covered This tutorial discusses the basics of building a Web service application using
Artix Encompass Standard edition. The examples use SOAP encoding over
the HTTP transport.

Chapter 2, �The WSDL File� discusses the content of a WSDL file and how
this file provides all of the information needed to develop and access a Web
service.

Chapter 3, �Coding the Web Service� discusses how you can use Artix to
create a Web service from an existing WSDL file. This chapter details usage
of the wsdltocpp and wsdltojava utilities, command line applications that
generate starting point code for your application.

Chapter 4, �Using the Artix� Designer� instructs you on how to use the
Artix Designer to write a WSDL file. You will also use the designer to
generate starting point code for your application.

Chapter 5, �Faults and Exceptions� discusses Web service faults and their
representation as C++ and Java exceptions. You will use the Artix designer
to add fault handling to the application developed in Chapter 4.

Chapter 6, �Mortgage Calculator� gives you an opportunity to build a Web
service that is significantly more involved than the HelloWorld examples
developed in the earlier chapters.

With the exception of the work in Chapter 6, minimal coding is required and
the tutorial commentary provides all of the code you need to implement the
examples. Consequently, even if you are not an experienced C++ or Java
programmer, you will gain a considerable understanding of Artix by working
through this tutorial.

You may use this tutorial as the first piece of Artix product documentation
that you review. When you complete this tutorial you will be ready to study
the more detailed product documentation, specifically the programmer�s
guide Developing Artix Applications.
 2

CHAPTER 2

The WSDL File
A Web service is defined as an application that:

Is a service defined and described by an XML document.
Is a service that can be discovered using XML documents.

This chapter discusses how the Web Services Definition
Language (WSDL) file can be used to satisfy these
requirements.

In This Chapter This chapter discusses the following topics:

What Are Web Services? page 4

What is WSDL? page 6

A Complete WSDL File page 14
3

CHAPTER 2 | The WSDL File
What Are Web Services?

Web Service Concepts The information services community generally regards Web services as
application-to-application interactions that utilize XML data representations
and the hypertext transfer protocol (HTTP). The advantages of Web services
lie in the fact that the data encoding scheme and transport semantics are
based on standardized, non-proprietary specifications. Additionally,
string-based message content is human readable, can be created and
manipulated by any programming development tool, and provides a high
level of security and data integrity.

What is Artix�? Artix extends the concept of Web services to include multiple data encoding
schemas and transport protocols. Additionally, Artix provides transparent
conversions between different data encoding schemas and/or transport
protocols. As a consequence, you are now free to develop applications that
integrate different middleware technologies without the burden of writing
wrapper or adapter components.

Artix is built on IONA�s Adaptive Runtime Technology (ART). Application
functionality is extended through configuration rather than coding. Customer
applications are built on a collection of plugin libraries. If your application
does not require the functionality provided by a plugin, you can exclude this
library from your development and production environment. Additionally,
the capabilities of the Artix product line can be easily extended through the
introduction of new plugins. Existing applications, which obviously do not
require the services of the new plugin, are unaffected.

The Artix runtime environment also includes a number of enterprise
services, e.g., management or security, which support your production
requirements.

Using Artix There are three approaches to using Artix:

� First, you can write applications using the Artix Application
Programming Interface (API). In this situation, you are writing new
applications using Artix as your development tool. This is the approach
introduced in this tutorial.
 4

What Are Web Services?
� Second, you can integrate two existing applications, built on different
middleware technologies, into a single application. In this situation,
developers work with their current development tools and Artix
functions as a broker between the two dissimilar data encoding
schemas and transport protocols. This approach requires the extended
functionality of the Artix Encompass Advanced or Enterprise or Artix
Relay Advanced or Enterprise products, and is not covered in this
tutorial.

� Finally, you can use Artix as a replacement for other middleware
transport protocols. Your application code remains unchanged; the
Artix libraries replace the middleware libraries within your executable.
This approach is not covered in this tutorial.

Becoming Proficient with Artix To become an effective Artix developer you need to understand four central
concepts, only one of which is related to writing code.

� First, you need to understand the syntax for WSDL files and the Artix
extensions to the WSDL specification.

� Second, you need to understand the relationship between Artix WSDL
extensions, Adaptive Runtime Technology plugins, and setting
configuration entries.

� Third, if you are programming in C++ you need an understanding of
the Artix API, and the IONA and Artix foundation class libraries, which
you can use in your application.

� Fourth, you must gain proficiency with the Artix Designer, a tool
through which you can write and edit WSDL files, convert CORBA
Interface Definition Language (IDL) files, data files, and COBOL
copybooks into WSDL, and generate code.

This tutorial introduces concepts in all four of these categories. The product
documentation covers each of these concepts in greater detail.
5

CHAPTER 2 | The WSDL File
What is WSDL?

Web Services Description
Language

A WSDL file is an XML document that is used to describe a Web service. In
this respect, it is similar to a CORBA IDL file, an abstract C++ class, or a
Java interface definition. Information within the WSDL file describes the
operations offered by the Web service and the location of the Web service.
Since the WSDL file is an XML document, it may be validated against an
XML Schema document to insure its accuracy.

WSDL files include three sets of elements, which collectively define a Web
service:

� Import Section

� Logical section

� Physical section

While a complete Web service definition requires content from each of these
sections, a specific WSDL file does not need to include all three sections.

The Import Section The Import section integrates content from other WSDL files into the current
WSDL file. Like a CORBA IDL file, you can build a complex WSDL file by
simply importing other WSDL files. Inclusion of import elements is optional,
but its use greatly facilitates writing and maintenance of large, or complex,
WSDL files.

The Logical Section The Logical section includes a description of the Web service that is
independent of any programming language, marshalling schema or protocol.
This section of the WSDL file describes the data types and operations
offered by the Web service. It is composed of three subsections:

� Types subsection

� Message subsection

� PortType subsection

Types subsection

The types subsection includes the definitions for specific data types used
within an application. This subsection is an XML schema document that
defines the format of these types. In creating a WSDL file, you may either
 6

What is WSDL?
include the XML schema as part of the file or import an existing schema file.
By using file imports, you can maintain your type definitions in a separate
file that is used by multiple applications. The types subsection describes
how the data will be represented within your application�s code. Each Web
service development tool will map these data definitions into programming
language-specific data types and classes.

The following WSDL file fragment illustrates the contents of the types
subsection. There are two data types defined: InParameter and
OutParameter. Both types represent string values. Do not be misled by the
names: InParameter and OutParameter. The types can be used to represent
any string value.

Message subsection

The message subsection describes how the data will be combined to form
Web service requests and responses. For example, your messages might
specify that a Web service request will require two pieces of data, termed
parts, while the corresponding response includes only a single part.

<types>
 <schema targetNamespace="http://www.iona.com/tutorial"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <simpleType name="InParameter">
 <restriction base="xsd:string"/>
 </simpleType>
 <simpleType name="OutParameter">
 <restriction base="xsd:string"/>
 </simpleType>
 </schema>
</types>
7

CHAPTER 2 | The WSDL File
The following WSDL file fragment illustrates the contents of the message
subsection. There are two message definitions. Each message contains a
single part. Do not be misled by the names of the messages or parts.
Regardless of the assigned name, the messages could be used to represent
either a Web service request or response.

PortType subsection

The portType subsection describes how messages will be combined to
define the operations available from the Web service. For example, a
request/response type operation will specify one input message and one
output message. A portType may include one or more operation definitions.
Each Web service development tool will map the portType to a class, each
operation to a method in the class definition, and each message to either
the input or output parameters of a method.

The following WSDL file fragment illustrates the contents of the portType
subsection. In Artix, the portType name will become the name of the class
that implements the Web service. This class will contain the method sayHi,
whose signature includes an in parameter corresponding to the input
element and an out parameter corresponding to the output element.

The syntax and format of the logical section is standardized through
specifications issued by the World Wide Web Consortium (W3C). All Web
service development tools must support these specifications to insure
interoperability between Web services developed with different tools.

<message name="RequestMessage">
 <part name="InPart" type="tns:InParameter"/>
</message>

<message name="ResponseMessage">
 <part name="OutPart" type="tns:OutParameter"/>
</message>

<portType name="TutorialPortType">
 <operation name="sayHi">
 <input message="tns:RequestMessage" name="sayHiRequest"/>
 <output message="tns:ResponseMessage" name="sayHiResponse"/>
 </operation>
</portType>
 8

What is WSDL?
The Physical Section The Physical section includes the data marshalling schema and
transport-specific content, and describes the interaction of a Web service
application with the runtime environment. The information in this section is
specific to your current application. It is composed of two subsections:

� Binding subsection

� Service subsection

The binding subsection describes how the data will be encoded during
transmission, while the service subsection provides information specific to
the transport protocol.

For standard SOAP-encoded Web services, there are two formats to the
binding subsection: rpc/encoded and document/literal. The syntax and
contents of both formats are described in W3C specifications. For this
reason, the contents of the binding element, and its child elements, can be
relatively sparse, as each Web service product implements the same
specification and the interpretation of the marshalling schema and format
can be coded into the product.

Artix supports alternative marshalling schemas and formats for the binding
subsection. In WSDL files using these extensions, the contents of the
binding subsection will be more complex. Artix provides command line and
graphical utilities that generate these more complex bindings, so you will
not need to hand edit your WSDL files.

The following WSDL file fragment illustrates the contents of the binding and
service subsections. In the second and third lines, you can see that the
TutorialPortType_SOAPBinding describes the marshalling of data for the
TutorialPortType. Each binding element is associated with only one
portType, although a WSDL file may contain multiple binding elements
9

CHAPTER 2 | The WSDL File
associated with the same portType. Note that the binding specifies the
rpc/encoded format. Later in this tutorial you will use the Artix Designer to
write a WSDL file using the document/literal format.

The service subsection is associated, through its nested port elements, with
the binding TutorialPortType_SOAPBinding. Each service element is
associated with only one binding.

Although the W3C provides specifications for some binding and service
definitions (for example, the Simple Object Access Protocol [SOAP]
binding), it is permissible for Web service development tools to define
alternative binding and service representations. To support multiple data
encoding schemas and transport protocols, Artix extends the W3C
specifications. These Artix extensions are provided as components of the

<binding
 name="TutorialPortType_SOAPBinding"
 type="tns:TutorialPortType">
 <soap:binding
 style="rpc"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="sayHi">
 <soap:operation soapAction="" style="rpc"/>
 <input name="sayHiRequest">
 <soap:body
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://soapinterop.org/" use="encoded"/>
 </input>
 <output name="sayHiResponse">
 <soap:body
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://soapinterop.org/" use="encoded"/>
 </output>
 </operation>
</binding>

<service name="HelloWorldService">
 <port
 binding="tns:TutorialPortType_SOAPBinding"
 name="HelloWorldPort">
 <soap:address location="http://localhost:9000"/>
 </port>
</service>
 10

What is WSDL?
Artix Encompass Advanced and Enterprise and Artix Relay Advanced and
Enterprise products. The Artix Encompass Standard product is limited to
SOAP encoding over the HTTP transport.

Namespace Definitions Every element in a WSDL file must belong to a namespace. Namespace
declarations are scoped. A declaration may exist globally over the entire
WSDL document or locally within an element and its enclosed child
elements.

Namespaces are identified through namespace prefixes, which are generally
defined within the opening root element of the WSDL file. Prefixes defined
within the root element have global scope and are available throughout the
entire WSDL file. However namespaces may be defined, or redefined, within
an element. In this case, the scope of the prefix applies only to the element
and its child elements.

If an element name is not qualified with a namespace prefix, the element
belongs to the default namespace. When writing a WSDL file, you can
redefine the default namespace within an element. By redefining the default
namespace locally, you can reduce the effort needed to define the child
elements contained within this element.

Later in this tutorial you will use the Artix Designer to write a WSDL file. The
designer completely manages the namespace and prefix declarations. You
will not need to edit these entries.

The following WSDL file fragment illustrates the contents of the opening root
<definitions> element. This element contains the global namespace
prefixes that are themselves prefixed with xmlns, which corresponds to the
default namespace.

Let�s review what each entry represents.

The name attribute is an arbitrary, user-defined name assigned to this
WSDL file.

<definitions
 name="HelloWorldTutorial"
 targetNamespace="http://www.iona.com/tutorial"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://www.iona.com/tutorial"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
11

CHAPTER 2 | The WSDL File
The targetNamespace attribute is an arbitrary, user-defined identifier for the
namespace that applies to elements defined within this WSDL file. Although
the value of this attribute appears to be an Internet URL, it need not actually
represent a Web page. The URL format is used to insure uniqueness; you
can use any unique content for this value. Note that the value of the
targetNamespace attribute and the value of the xmlns:tns namespace prefix
are identical. Elements within the WSDL file prefixed with tns are also
assigned to the target namespace.

The attribute xmlns defines the default namespace and corresponds to the
schema that defines the structure of a WSDL document. This entry is a valid
URL and you can use it to retrieve a copy of the XML schema file that
describes the WSDL file contents. Elements within your WSDL file that do
not include a namespace prefix become members of this namespace. These
elements must be defined in the XML schema file available at
http://schemas.xmlsoap.org/wsdl/.

The xmlns:soap attribute defines the namespace that must be used when
adding elements that describe a SOAP binding. Again this entry is a valid
URL and you can use it to retrieve a copy of the XML schema file that
describes the SOAP binding. You can see how this namespace prefix is used
in the WSDL file fragment described in �The Physical Section�.

The xmlns:tns attribute is the namespace prefix for elements defined in this
WSDL file document. Its value is assigned by the user and is identical to the
value of the targetNamespace attribute. You use the tns prefix to refer to the
original default namespace within elements that have a locally defined
target namespace.

The attribute xmlns:xsd defines the namespace for the basic XML types.
This too is a valid URL that you can use to obtain further information about
the XML basic types.
 12

What is WSDL?
Finally, the attribute xmlns:wsdl also defines the default namespace; it is
the same value as the xmlns attribute. You use this prefix within an element
where you have redefined the default namespace. For example, in the types
element,

the default namespace is redefined to be the value associated with the
xmlns:xsd prefix � http://www.w3.org/2001/XMLSchema. This is because
this element contains many child elements that are described within this
namespace and by redefining the default namespace it is no longer
necessary to include the xsd prefix with each element. However, since there
may also be a need to use an element that is defined within the
http://schemas.xmlsoap.org/wsdl/ namespace, you now need a
corresponding prefix, which is defined locally within the opening
<schema> element.

<types>
 <schema targetNamespace="http://www.iona.com/tutorial"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <simpleType name="InParameter">
 <restriction base="xsd:string"/>
 </simpleType>
 <simpleType name="OutParameter">
 <restriction base="xsd:string"/>
 </simpleType>
 </schema>
</types>
13

CHAPTER 2 | The WSDL File
A Complete WSDL File

The HelloWorld Web Service The following WSDL file describes a simple HelloWorld Web service. In the
earlier sections of this chapter, you reviewed the contents of this file.

<?xml version="1.0" encoding="UTF-8"?>

<definitions
 name="HelloWorldTutorial"
 targetNamespace="http://www.iona.com/tutorial"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://www.iona.com/tutorial"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<types>
 <schema targetNamespace="http://www.iona.com/tutorial"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <simpleType name="InParameter">
 <restriction base="xsd:string"/>
 </simpleType>
 <simpleType name="OutParameter">
 <restriction base="xsd:string"/>
 </simpleType>
 </schema>
</types>

<message name="RequestMessage">
 <part name="InPart" type="tns:InParameter"/>
</message>

<message name="ResponseMessage">
 <part name="OutPart" type="tns:OutParameter"/>
</message>
 14

A Complete WSDL File
You will use this file in the following chapter to create a Web service
application.

<portType name="TutorialPortType">
 <operation name="sayHi">
 <input message="tns:RequestMessage" name="sayHiRequest"/>
 <output message="tns:ResponseMessage" name="sayHiResponse"/>
 </operation>
</portType>
<binding
 name="TutorialPortType_SOAPBinding"
 type="tns:TutorialPortType">
 <soap:binding
 style="rpc"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="sayHi">
 <soap:operation soapAction="" style="rpc"/>
 <input name="sayHiRequest">
 <soap:body
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://soapinterop.org/" use="encoded"/>
 </input>
 <output name="sayHiResponse">
 <soap:body
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://soapinterop.org/" use="encoded"/>
 </output>
 </operation>
</binding>
<service name="HelloWorldService">
 <port
 binding="tns:TutorialPortType_SOAPBinding"
 name="HelloWorldPort">
 <soap:address location="http://localhost:9000"/>
 </port>
</service>
</definitions>
15

CHAPTER 2 | The WSDL File
 16

CHAPTER 3

Coding the Web
Service
Once you have a WSDL file, you can generate code and develop
a Web service application. The discussion in this chapter
illustrates how to use the Artix� wsdltocpp and wsdltojava
utilities to generate C++ and Java code from a WSDL file.

In This Chapter This chapter discusses the following topics:

The wsdltocpp Utility page 18

The wsdltojava Utility page 21

Generating Code page 24

Completing the Coding page 32

Running the Application page 38
17

CHAPTER 3 | Coding the Web Service
The wsdltocpp Utility

Generating C++ Code Once you have a WSDL file, whether you write it yourself or obtain it from
another source, you will want to write an application. With Artix Encompass
Standard, you can write a client application against an existing Web service,
you can write a server application that implements the Web service, or you
can write both the client and server applications. The wsdltocpp utility is a
command line tool that you will use to generate C++ code from a WSDL
file.

wsdltocpp Utility Command Line
Options

You control the output of the wsdltocpp command line utility through
command line options. By specifying the appropriate options, you can
generate exactly the code you need. The syntax used to invoke the
wsdltocpp utility is:

Where {WSDL-URL} is the path, or Web location, of the WSDL file, and
options may be:

wsdltocpp [options] {WSDL-URL}

-e Web-service-name
 The value of the name attribute in the <service> element. If

the WSDL file includes multiple <service> elements, and the -e
option is not specified, the value defaults to the name of the
first <service> element in the WSDL file.

-t port
 The value of the name attribute in the <port> element. If a

<service> element contains multiple <port> elements, and the
-t option is not specified, the value defaults to the name of
the first <port> element. If neither the -e nor -t option is
specified, the first <port> element within the first
<service> element in the WSDL file is used for code
generation.

-d output-directory
 The directory into which to generate the code.
 Defaults to the directory in which the wsdltocpp utility runs.
-n namespace
 The C++ namespace for the generated code.
 Defaults to the global namespace.
 18

The wsdltocpp Utility
There are other options in addition to those described. These additional
options are not, however, commonly used and will not be discussed in this
tutorial. Refer to the Artix product documentation for a complete discussion
of the command line options.

Specifying the Service/Port If your WSDL file includes multiple <service> elements, or multiple
<port> elements within a single <service> element, you need to specify
what <service> and/or <port> should be referenced during the code
generation process. You use the -e and -t command line options to specify
these values. If the WSDL file contains multiple service/port definitions and
you do not use the -e and/or -t options, code will be generated for the first
service and port defined in the WSDL file.

-impl
 Whether to generate starting point code for the C++ class into

which you will code the Web service implementation.
-m { NMAKE | UNIX }
 Whether to generate a makefile for the selected platform.
 Choose either NMAKE for Windows or UNIX for Unix.
-server
 Whether to generate server stub classes only.
-client
 Whether to generate client proxy classes only.
-sample
 Whether to generate starting point code for client and/or

server mainline applications. Works in conjunction with the
-server and -client options.

-plugin
 Whether to generate bus plugin code that registers an instance

of the implementation object with the bus. If specified, the
utility generates a file containing implementation code for
the plugin. If omitted, the utility generates the
registration code as part of the server mainline code.

-all
 Whether to generate code for all port types described in the

WSDL file. If omitted, the utility will generate code only for
the interface associated with the service and port specified
through the -e and -t options.

-?
-flags
 Usage information.
19

CHAPTER 3 | Coding the Web Service
For the simple HelloWorldTutorial.wsdl file developed in the previous
chapter, there is only a single <service> element containing a single
<port> element. Consequently, you will not need to use these options
when generating code from this WSDL file.

Specifying the C++ Namespace Generated C++ code should be included within a C++ namespace. You
use the -n option to provide the name of the namespace. Use of this option
is not required, but it is good programming style to generate code within a
namespace.

Generating the Implementation
Class

The wsdltocpp utility will generate starting point code for the Web service
implementation class when you supply the -impl option. There is no way to
specify names for the generated files; the names of the generated files are
derived from either the portType name or the name of the WSDL file.
Therefore, if you use the -impl option multiple times, the starting point code
will be regenerated, wiping out any code you may have added to an earlier
version of the generated files.

Application Specific Code
Generation

You can control whether code is generated only for client applications, only
for server applications, or for both types of applications. Use the -client
option to restrict code generation to client related files; use the -server
option to restrict code generation to server related files.

The -sample option indicates whether starting point client and/or server
mainline code should be generated. You must be careful not to overwrite the
client mainline code once you have begun coding your application. If you
need to rerun the wsdltocpp utility, be certain not to use the -sample option.

Generating the Makefile If desired, the wsdltocpp utility will create a makefile. The makefile will be
complete for the type of application you are creating. That is, if you are only
building a client application, the makefile will not include any references to
files and classes specific to server applications.
 20

The wsdltojava Utility
The wsdltojava Utility

Generating Java Code The wsdltojava utility is a command line tool that you will use to generate
Java code from a WSDL file.

wsdltojava Utility Command Line
Options

You control the output of the wsdltojava command line utility through
command line options. By specifying the appropriate options, you can
generate exactly the code you need. The syntax used to invoke the
wsdltocpp utility is:

Where {WSDL-URL} is the path, or Web location, of the WSDL file, and
options may be:

wsdltojava [options] {WSDL-URL}

-e Web-service-name
 The value of the name attribute in the <service> element. If

the WSDL file includes multiple <service> elements, and the -e
option is not specified, the value defaults to the name of the
first <service> element in the WSDL file.

-t port
 The value of the name attribute in the <port> element. If a

<service> element contains multiple <port> elements, and the
-t option is not specified, the value defaults to the name of
the first <port> element. If neither the -e nor -t option is
specified, the first <port> element within the first
<service> element in the WSDL file is used for code
generation.

-d output-directory
 The directory into which to generate the code.
 Defaults to the directory in which the wsdltocpp utility runs.
-p package
 The package name for the generated code. If omitted, the

utility creates a package name from the value of the
targetNamespace attribute in the WSDL file. If you do not want
a package, enter -p "".

-impl
 Whether to generate starting point code for the Java class

into which you will code the Web service implementation.
21

CHAPTER 3 | Coding the Web Service
There are other options in addition to those described. These additional
options are not, however, commonly used and will not be discussed in this
tutorial. Refer to the Artix product documentation for a complete discussion
of the command line options.

Specifying the Service/Port If your WSDL file includes multiple <service> elements, or multiple <port>
elements within a single <service> element, you need to specify what
<service> and/or <port> should be referenced during the code generation
process. You use the -e and -t command line options to specify these
values. If the WSDL file contains multiple service/port definitions and you do
not use the -e and/or -t options, code will be generated for the first service
and port defined in the WSDL file.

For the simple HelloWorldTutorial.wsdl file developed in the previous
chapter, there is only a single <service> element containing a single <port>
element. Consequently, you will not need to use these options when
generating code from this WSDL file.

Specifying the Package Generated Java code should be included within a package. You use the -p
option to provide the package name.

Generating the Implementation
Class

The wsdltojava utility will generate starting point code for the Web service
implementation class when you supply the -impl option. There is no way to
specify names for the generated files; the names of the generated files are
derived from either the portType name or the name of the WSDL file.

-server
 Whether to only generate code for the server stub classes and

a server mainline.
-client
 Whether to generate client proxy classes only.
-sample
 Whether to generate starting point code for the client

mainline application.
-all
 Whether to generate code for all port types described in the

WSDL file. If omitted, the utility will generate code only for
the interface associated with the service and port specified
through the -e and -t options.

-?
-flags
 Usage information.
 22

The wsdltojava Utility
Therefore, if you use the -impl option multiple times, the starting point code
will be regenerated, wiping out any code you may have added to an earlier
version of the generated files.

Application Specific Code
Generation

You can control whether code is generated only for client applications, only
for server applications, or for both types of applications. Use the -client
option to restrict code generation to client related files; use the -server
option to restrict code generation to server related files. When you supply
the -server option, the wsdltojava utility generates both the server stubs
and mainline code.

The -sample option indicates whether starting point client mainline code
should be generated. You must be careful not to overwrite mainline code
once you have begun coding your application. If you need to rerun the
wsdltojava utility, be certain not to use the -sample option.
23

CHAPTER 3 | Coding the Web Service
Generating Code

Installing Artix You must first install the Artix Standard product. Follow the instructions in
the installation guide. For Windows NT4, service pack 6a, Windows 2000
Professional, service pack 3, or Windows XP Professional, you will need
Microsoft Visual Studio or Microsoft Visual C++, v6.0, service pack 3 or
higher, or Microsoft Visual C++, v7.0.

Artix requires the Java Runtime Environment v1.4.1, or higher. If necessary,
Artix will install the JRE during the installation process. Using the JRE
restricts your development options to C++, although you will be able to run
the Java versions of the product demos. If you want to develop Artix
applications in Java, you must have a full JDK 1.4.1 (or higher) installation.

If you already have the v1.4.1 JDK installed, you will be able to run Artix
against your existing installation. If you are using an existing JDK
installation, you must set the environment variable JAVA_HOME to the
installation directory. If you are using the JRE installed by Artix, you do not
need to set the JAVA_HOME environment variable.1

Configuring Artix During the installation process, Artix creates two configuration files. The file
<installationDirectory>\artix\2.0\etc\domains\artix.cfg is the main
configuration file. During start-up, every Artix process reads this file. For the
purposes of this tutorial you do not need to be concerned with the contents
of this file. As you develop more involved applications, you will extend
and/or edit this file.

The file <installationDirectory>\artix\2.0\bin\artix_env.bat is used
to set the Artix development and runtime environments. You must run this
file in every command window before building or running an Artix
application.

1. If you have an earlier version of the JRE or JDK installated on your computer, for
example, v1.3.x, you may have already set a JAVA_HOME environment variable.
You must remove this environment variable for Artix to work properly with the
JRE included as part of the Artix installation. There is no need to remove the
existing JRE/JDK. You must not remove the JAVA_HOME environment variable if
it points to your JDK v1.4.1 installation.
 24

Generating Code
You must also be certain that your C++ compiler and libraries are available
to your applications. With Windows, you may need to run the vcvars32.bat
file to properly set your environment.2

Creating the Directory Structure After installing Artix, a number of demo applications will be available in the
<installationDirectory>\artix\2.0\demos directory. After you complete
this tutorial you should review each of these demos.

For this tutorial, you will add another subdirectory under the demos
directory. Under the demos directory, create the subdirectory Tutorial.
Under the Tutorial directory, create the subdirectories client and server,
and within the client and server subdirectories, create the subdirectories
cxx and java.

Copying the WSDL File Return to the previous chapter and copy the contents of the
HelloWorldTutorial.wsdl file into a text document.3 Save the file as
HelloWorldTutorial.wsdl into the Tutorial\client and the
Tutorial\server directories. To view the contents with formatting, open the
file in your Internet Explorer browser.

2. You may find it convenient to place a call to the vcvars32.bat file into the
artix_env script file. In a text editor, open the artix_env script file and place the
following entry at the beginning of the file:
 call "C:\Program Files\Microsoft Visual Studio\VC98\bin\vcvars32.bat";
This syntax assumes that your Visual Studio installation is in the default location.
The quotation marks and semicolon are required.

3. In the PDF version of this tutorial, the file content spans two pages. You will need
to copy and paste the contents from the first page and then copy and paste the
contents from the second page.
25

CHAPTER 3 | Coding the Web Service
Generating the Client Application Code
You will separately generate the client and server application code in their
respective directories.

Generating the C++ client
application

1. Open a command window to the
<installationDirectory>\artix\2.0\bin directory and run the
artix_env.bat file.

2. Move to the
<installationDirectory>\artix\2.0\demos\Tutorial\client
directory by issuing the command:

3. Generate the C++ client application with the command:

The following files are generated within the client\cxx subdirectory:

♦ Tutorial.h: A header file that defines the method signatures for
the Web service.

♦ TutorialClient.h, TutorialClient.cxx: Header and
implementation files that define the client proxy class. This client
proxy class will implement the virtual sayHi method. You do not
need to edit the code in these files, but you should review the
contents of the header file. Note that there are multiple
constructors defined. In this tutorial your code will use the first
constructor, which does not require any input from your code. As
you develop more complex applications you will learn the value of
the alternative constructors. The alternative constructors will not
be discussed in this tutorial.

♦ TutorialSampleClient.cxx: The starting point code for your
client application. In this tutorial, you will need to flush out the
coding in this file.

cd ..\demos\Tutorial\client

wsdltocpp -n ArtixDemo -client -sample -m NMAKE
HelloWorldTutorial.wsdl
 26

Generating Code
♦ HelloWorldTutorial_wsdlTypes.h,
HelloWorldTutorial_wsdlTypes.cxx: Header and
implementation files that include the definitions for the classes
that represent the data types defined in the WSDL file <types>
section. You must review the contents of the header file, from
which you will learn the APIs needed to work with the generated
type definitions.

♦ HelloWorldTutorial_wsdlTypesFactory.h,
HelloWorldTutorial_wsdlTypesFactory.cxx: Header and
implementation files for factory classes required if you have
defined an anyType in your WSDL file. You do not need to review
the contents of these files.

♦ makefile: A makefile that you can use to build the client
application.

Generating the Java client
application

1. Open a command window to the
<installationDirectory>\artix\2.0\bin directory and run the
artix_env.bat file.

2. Move to the
<installationDirectory>\artix\2.0\demos\Tutorial\client\java
directory by issuing the command:

3. Generate the Java client application with the command:

The utility creates the subdirectory ArtixDemo, into which the following
files are generated:

♦ Tutorial.java: An interface that defines the method signatures
for the Web service.

♦ TutorialTypeFactory.java: Definition of a class that creates and
manages anyTypes defined in your WSDL file.

cd ..\demos\Tutorial\client\java

wsdltojava -p ArtixDemo -client -sample
../HelloWorldTutorial.wsdl
27

CHAPTER 3 | Coding the Web Service
♦ TutorialDemo.java: Starting point code for a client mainline
application. For this simple example, the generated code in this
file represents a fully functional application. With a more involved
application, you would use this code as a template for writing a
more complex client application.
 28

Generating Code
Generating the Server Application Code

Generate the C++server
application

To generate code for the server application:

1. Move to the Tutorial\server directory by issuing the command:

2. Generate the C++ server application with the command:

The following files are generated into the server\cxx subdirectory:

♦ Tutorial.h: A header file that defines the method signatures for
the Web service.

♦ TutorialServer.h, TutorialServer.cxx: Header and
implementation files that define the server stub class. You do not
need to review the contents of these files.

♦ TutorialServerSample.cxx: The starting point code for your
server mainline application. In this tutorial, you will not need to
add code to this file. In more complex applications, you may need
to extend the generated code, perhaps by using the servant
management classes. Refer to the product documentation (and/or
the product demos in the servant_management subdirectory) for
additional information on this topic.

♦ TutorialImpl.h, TutorialImpl.cxx: Header and
implementation files that contain starting point code for your Web
service implementation class. For this tutorial you will need to
add coding to the method bodies corresponding to the Web
service operations. In more complex applications, you may need
to edit the header file as well as add code to the implementation
file, for example by overriding the activated method inherited
from the implementation class� superclass. Refer to the product
documentation for additional information on this topic.

cd ..\server

wsdltocpp -n ArtixDemo -server -sample -m NMAKE -impl
../HelloWorldTutorial.wsdl
29

CHAPTER 3 | Coding the Web Service
♦ HelloWorldTutorial_wsdlTypes.h,
HelloWorldTutorial_wsdlTypes.cxx: Header and
implementation files that include the definitions for the classes
that represent the data types defined in the WSDL file <types>
section. You must review the contents of the header file, from
which you will learn the APIs needed to work with the generated
type definitions.

♦ HelloWorldTutorial_wsdlTypesFactory.h,
HelloWorldTutorial_wsdlTypesFactory.cxx: Header and
implementation files for factory classes that create instances of
your application specific data types. You do not need to review
the contents of these files.

♦ makefile: A makefile that you can use the build the server
application.

3. Move to the server\java directory by issuing the command:

Generating the Java server
application

To generate code for the server application:

1. Move to the Tutorial\server directory by issuing the command:

2. Generate the Java server application with the command:

The utility creates the subdirectory ArtixDemo, into which the following
files are generated:

♦ Tutorial.java: An interface that defines the method signatures
for the Web service.

♦ TutorialTypeFactory.java: Definition of a class that creates and
manages anyTypes defined in your WSDL file.

cd ..\java

cd ..\server

wsdltojava -p ArtixDemo -server -impl
../HelloWorldTutorial.wsdl
 30

Generating Code
♦ TutorialImpl.java: Starting point code for your Web service
implementation class. For this tutorial you will need to add coding
to the method bodies corresponding to the Web service
operations.

♦ TutorialServer.java: Starting point code for a server mainline
application. For this simple example, the generated code in this
file represents a fully functional application. With a more involved
application, you might extend the generated code.
31

CHAPTER 3 | Coding the Web Service
Completing the Coding

Overview The files describing the C++ or Java implementation classes contain
compilable code, but there is no processing logic in the method bodies. In
this demo application, you only need to add processing logic to the
implementation class� sayHi method.

The C++ Implementation Class In a text editor, open the TutorialImpl.cxx file and note the signature for
the sayHi method.

The method includes two parameters, the first representing the part within
the input message and the second representing the part within the output
message. The return type is void.

All C++ methods in Artix have void return types and output is always
represented by out parameters. At first this may seem to be an
inconvenience. But when you consider the facts that input and output
messages could include multiple parts and that WSDL has no concept of a
return value, only input and output messages, this approach makes sense.
In parameters correspond to the parts of the input message and out
parameters correspond to the parts of the output message. Since an output
message does not assign greater importance to one of its possible multiple
parts, it would be impossible for the code generating logic to select which
part should correspond to a return value.

You must now add processing logic to the sayHi method. The desired
processing is straight forward � just return a message that includes the
input. For example, Hello Artix User, where Artix User corresponds to the
value of InPart.

void
TutorialImpl::sayHi(
 const ArtixDemo::InParameter & InPart,
 ArtixDemo::OutParameter & OutPart
) IT_THROW_DECL((IT_Bus::Exception))
{
}

 32

Completing the Coding
This seems simple. InParameter and OutParameter both correspond to an
xsd:string, so it would seem that you could simply concatenate "Hello " with
InPart and assign the new string to OutPart. But, not so fast.

Look into the HelloWorldTutorial_wsldTypes.h file and find the definitions
for InParameter and OutParameter. They are not strings, but classes that
encapsulate a member variable that is a string. To get and set the value of
this member variable you must use the accessor methods.

namespace ArtixDemo
{
 . . .

 class InParameter : public IT_Bus::AnySimpleType
 {
 public:
 InParameter();
 InParameter(const InParameter & value);
 . . .

 void setvalue(const IT_Bus::String & value);
 const IT_Bus::String & getvalue() const;

 private:
 IT_Bus::String m_val;

 };
 . . .

 class OutParameter : public IT_Bus::AnySimpleType
 {
 public:
 OutParameter();
 OutParameter(const OutParameter & value);
 . . .

 void setvalue(const IT_Bus::String & value);
 const IT_Bus::String & getvalue() const;

 private:
 IT_Bus::String m_val;

 };
 . . .
};
33

CHAPTER 3 | Coding the Web Service
Consequently, the code you add to the sayHi method body becomes:

The Java Implementation Class In a text editor, open the file TutorialImpl.java. The code you add to the
sayHi method body is:

Building the C++ Server
Application

Now that you have completed coding the implementation object, you can
build the application.

1. Open a command window to the
<installationDirectory>\artix\2.0\bin directory and run the
artix_env.bat file.

2. Move to the <installationDirectory>\artix\2.0\demos\Tutorial\
server\cxx directory by issuing the command:

3. Build the server application with the command:

This creates the server executable file server.exe.

Building the Java Server
Application

Now that you have completed coding the implementation object, you can
build the application.

1. Move to the <installationDirectory>\artix\2.0\demos\Tutorial\
server\java directory by issuing the command:

2. Build the server application with the command:

This creates the server file TutorialServer.class.

OutPart.setvalue("Hello " + InPart.getvalue());

return "Hello " + inPart;

cd ..\demos\Tutorial\server\cxx

nmake all

cd ..\java

javac ArtixDemo/*.java
 34

Completing the Coding
The C++ Client Application For this demo, you only need to work with the TutorialClientSample.cxx
file. Although this file is compilable, it does not actually invoke the Web
service operations. Open the file and examine the generated code.

#include <it_bus/bus.h>
#include <it_bus/Exception.h>
#include <it_cal/iostream.h>

#include "TutorialClient.h"

IT_USING_NAMESPACE_STD
using namespace ArtixDemo
using namespace IT_Bus;

int
main(int argc, char* argv[])
{
 cout << "Tutorial Client" << endl;

 try
 {
 IT_Bus::init(argc, argv);
 TutorialClient client;

 // Sample invocation calls are shown in
 // commented lines below.
 /*
 ArtixDemo::InParameter InPart;
 ArtixDemo::OutParameter OutPart;
 client.sayHi (InPart, OutPart);
 */
 }
 catch(IT_Bus::Exception& e)
 {
 cout << endl << "Error : Unexpected error occured!"
 << endl << e.Message()
 << endl;
 return -1;
 }
 return 0;
}

35

CHAPTER 3 | Coding the Web Service
Note that the code generation process flushed out a simple invocation of the
sayHi method, but the code is commented out and there is no value
assigned to the in parameter and no output statement to display the value
returned in the out parameter.

You need to remove the comment delimiters and edit the code as follows:

The Java Client Application For this example, the generated code is a complete running application. To
run the demo, there is no need to modify the generated code.

ArtixDemo::InParameter InPart;
ArtixDemo::OutParameter OutPart;

InPart.setvalue("Artix User");

client.sayHi (InPart, OutPart);

cout << "sayHi returned: " + OutPart.getvalue() << endl;
 36

Completing the Coding
Building the Client Application
Now that you have completed coding the client mainline, you can build the
application.

The C++ Application 1. Open a command window to the
<installationDirectory>\artix\2.0\bin directory and run the
artix_env.bat file.

2. Move to the
<installationDirectory>\artix\2.0\demos\Tutorial\client\cxx
directory by issuing the command:

3. Build the client application with the command:

This creates the client executable file client.exe.

The Java Application 1. Move to the
<installationDirectory>\artix\2.0\demos\Tutorial\cxx\java
directory by issuing the command:

2. Build the client application with the command:

This creates the client file TutorialDemo.class.

cd ..\demos\Tutorial\client\cxx

nmake all

cd ..\java

javac ArtixDemo/*.java
37

CHAPTER 3 | Coding the Web Service
Running the Application

Set the Runtime Environment Before you can run the application, you must set the environment.

1. Open a command window to the
<installationDirectory>\artix\2.0\bin directory and run the
artix_env.bat file.

2. Alter the CLASSPATH to include the current directory. Issue the
command:

set CLASSPATH=.;%CLASSPATH%
 38

Running the Application
The C++ Application
You can start the C++ server application and then run the C++ client
application.

Start the Server Application To start the server application:

1. Move to the <installationDirectory>\artix\2.0\demos\Tutorial\
server\cxx directory by issuing the command:

2. Start the server application with the command:

A new command window opens and the server application starts.

Run the Client Application To run the client application:

1. Move to the
<installationDirectory>\artix\2.0\demos\Tutorial\client\cxx
directory by issuing the command:

2. Run the client application with the command:

The client application invokes on the Web service and displays the return.

Stop the Server Application Issue Ctrl-C in the command window running the server application.

cd ..\demos\Tutorial\server\cxx

start server

cd ..\..\client\cxx

client
39

CHAPTER 3 | Coding the Web Service
The Java Application
You can start the Java server application and then run the Java client
application.

Start the Server Application To start the server application:

1. Move to the <installationDirectory>\artix\2.0\demos\Tutorial\
server\java directory.

2. Start the server application with the command:

A new command window opens and the server application starts.

Run the Client Application To run the client application:

1. Move to the <installationDirectory>\artix\2.0\demos\Tutorial\
client\java directory by issuing the command:

2. Run the client application with the command:

The client application invokes on the Web service and displays the return.

Stop the Server Application Issue Ctrl-C in the command window running the server application.

start java ArtixDemo.TutorialServer

cd ..\..\client\java

java ArtixDemo.TutorialDemo sayHi
 40

Running the Application
Interoperability Between the C++ and Java Applications
To demonstrate that the C++ and Java Web service applications and
clients are interoperable, you can run the Java client application against the
C++ server application, and vice versa.
41

CHAPTER 3 | Coding the Web Service
 42

CHAPTER 4

Using the Artix�
Designer
In the previous chapters, you used a pre-written WSDL file to
build your Web service application. In this chapter, you will
use the Artix Designer to write an equivalent WSDL file. You
will also use the designer to generate the starting point code.

In This Chapter This chapter discusses the following topics:

The Artix Designer page 44

The Artix Workspace page 45

Writing the WSDL File page 50

Developing an Application page 81

Generating Starting Point Code page 85

Completing the Code page 94

Compiling the Applications page 101

Running the Application page 103
43

CHAPTER 4 | Using the Artix� Designer
The Artix Designer

The Designer The Artix Designer is a graphical user interface based application through
which you will write and/or edit WSDL files. Although there are other XML
editing tools that you could use to write a WSDL file, the Artix Designer has
an understanding of the Artix WSDL extensions and is a much easier way to
write the WSDL files used in an Artix application. For example, the designer
will automatically add the required namespace declarations and prefix
definitions when you build Artix applications that involve other data
marshalling schemas, transport protocols, or routing.

The designer is also integrated with the Artix command line tools, for
example, the wsdltocpp utility, so that you can also use the designer to
generate starting point code. Integration with other command line utilities
allows the designer to import IDL files and convert their contents into
WSDL, generate starting point code for Java Web service applications, or
convert WSDL files into IDL.

Starting the Artix Designer In Windows you have two ways to start the Artix Designer.

� Select Start | Programs | IONA Artix 2.0 | IONA Artix 2.0 |
Designer.

� Or, open a command window to the directory
<installationDirectory>\artix\2.0\bin and run the batch file
start_designer.bat.

Selecting the menu entry simply runs the start_designer.bat file.
 44

The Artix Workspace
The Artix Workspace

Artix Workspaces The Artix Designer maintains all of the files comprising an application within
a larger entity called a workspace. The Artix workspace is analogous to a
project grouping used by many Interactive Development Environment
products.

When you start the designer, you are presented with the option of creating a
new workspace, returning to an existing workspace, or starting the designer
with no workspace open. You may also run a short video that illustrates
some of the concepts of working with the designer.

The name you assign to a workspace becomes the name of a directory under
which the application files are stored. Artix will not let you assign two
workspaces the same path and name. Consequently, when creating a new
workspace you should not create the workspace directory manually; let the
Artix Designer create the directory.

It is not necessary to create all of the application files using the designer. For
example, one approach is to import an existing WSDL file into the designer
and then edit the file, if necessary. Alternatively, you can import a CORBA
IDL file into the designer, and the designer then transforms the contents of
the IDL file into the equivalent WSDL file.

Figure 1: Artix Welcome
45

CHAPTER 4 | Using the Artix� Designer
In this tutorial you will use the designer to create a new workspace and
write an original WSDL file. You will then use the designer to generate
starting point C++ and Java code.

Creating a New Workspace 1. After starting the Artix Designer, you are presented with the Welcome
window. Select Create a new workspace and click the OK button.

If this window is not currently visible, select File | New | Workspace.

Figure 2: Artix Welcome
 46

The Artix Workspace
2. In the New Workspace window, select New Workspace Wizard and
click the OK button.

3. In the Define Workspace panel, name your project GuiTutorial, and
enter, or browse to, the directory that will contain your project.

The Add Shared Resources checkbox is used to import an existing
WSDL or IDL file. For example, you could import the WSDL file used in

Figure 3: New Workspace
47

CHAPTER 4 | Using the Artix� Designer
the previous chapters. In this tutorial, you will be using the Artix
designer to write a new WSDL file, so simply click the Next button.

Figure 4: Naming the Workspace
 48

The Artix Workspace
4. The Summary panel is shown. Click Finish to create the Workspace.

The designer creates the workspace, and displays these in the left-hand
pane as a list of shared resources (WSDL files) and collections (processes).
You must save the project to actually create the project directories on your
drive.

Figure 5: Creating the Workspace
49

CHAPTER 4 | Using the Artix� Designer
Writing the WSDL File

In this section This section will lead you through the following tasks:

Create the WSDL File page 51

Define the Types page 54

Define the Messages page 64

Define the portType page 69

Define the Binding page 73

Define the Service page 77
 50

Writing the WSDL File
Create the WSDL File
You will write the WSDL file as an entry under the Resources icon. You will
then create collections corresponding to your client and server applications.
Finally, you will associate your resource (WSDL file) with each of the
collections and generate code.

1. Right click on the Shared Resources folder and select New Resource
(or select File | New Resource).

The New Resource wizard appears.

2. Select Empty Contract and click OK.

3. In the New Contract dialog, enter HelloWorldGuiTutorial into the
Name text box, and enter http://www.iona.com/guitutorial into the
TargetNamespace text box.

Figure 6: New Resource

Note: The Contract from File or URL icon lets you to create a
resource from an existing WSDL or IDL file, and the Contract from
Data Set icon let you create a resource from a description of an
existing data record format.
51

CHAPTER 4 | Using the Artix� Designer
These entries become the values of the name, targetNamespace, and
xmlns:tns attributes in the opening <definitions> element in the
WSDL file.

4. Click the OK button.

The designer displays the various elements of the contract in the
right-hand pane.

Figure 7: Naming the Contract

Figure 8: New contract elements
 52

Writing the WSDL File
5. To view the contents of the WSDL file click on the WSDL tab.

The WSDL will look as follows:

Currently the WSDL file only includes the opening <definitions>
element.

Figure 9: WSDL contents
53

CHAPTER 4 | Using the Artix� Designer
Define the Types
The <types> section of the WSDL file contains your data type definitions.
For this simple application you have several choices.

� You could choose not to define unique types for the application and
use a basic type instead, for example, xsd:string, as message parts.

� Alternatively, you could define simple types, that is new types that are
derived from an existing xsd type. This was the approach used in the
earlier example.

� Finally, you could define element types, which are wrappers around
other defined types. This approach is especially useful if your types are
complex or highly structured, for example, a structure or array.
Additionally, using elements as message parts allows selection of the
document/literal encoding format for your binding.

Defining the Simple Types In this example, you will employ the third approach. You will first need to
define simple types derived from xsd:string and then define element types
that contain these simple types.

1. In the left-hand pane of the designer, highlight the
HelloWorldGuiTutorial icon under Shared Resources and select
Contract | New | Type.

(Alternatively right-click on the HelloWorldGuiTutorial icon and select
New | Type from the popup menu, or click on the Types icon in the
right-hand pane and select NewType.)
 54

Writing the WSDL File
2. In the Select WSDL screen, select the Add to existing WSDL
"HelloWorldGuiTutorial" radio button and click the Next button.

Figure 10: Adding Type to existing WSDL

Note: Throughout the entire WSDL file creation process you will add your
new content to the current WSDL file. Selecting the Add to new WSDL
radio button will create another WSDL file that will include selected
content. This is the approach you would follow if you want to create WSDL
file fragments for reuse.
55

CHAPTER 4 | Using the Artix� Designer
3. In the Define Type Properties screen, enter InParameter into the Name
text box and select the simpleType radio button. Click the Next button.

4. In the Define Type Attributes screen, select xsd:string from the Base
Type drop down list. The remaining controls are used to further restrict
the simple type, for example, limiting the length of the string to a

Figure 11: Specifying Type
 56

Writing the WSDL File
specific number of characters or to one of a restricted number of
entries. For this example, you do not need these additional restrictions.
Simply click on the Next button.

Figure 12: Defining Type Attributes
57

CHAPTER 4 | Using the Artix� Designer
5. In the View Summary screen, you can review the content that will be
added to the WSDL file. Click on the Finish button

6. Repeat steps 1 to 5 to create a second simple type named
OutParameter. Note that the Base Type drop down list now includes
tns:InParameter as a valid type. Be careful, as newly defined types
are added to the top of the list; you will need to scroll down the list to
find the xsd:string entry.

7. Click on the Save icon or select File | Save.

8. If you double-click on the Types icon in the right-hand pane you will
see the two new parameters:

Figure 13: New Type Summary

Figure 14: New Types
 58

Writing the WSDL File
9. Select the WSDL tab to review the current contents of the WSDL file.
Note that the <types> section has been added to the file

Defining the Element Types You now want to define element types that wrap each of your simple types.
This process is identical to defining a simple type except that you must
select the element radio button in the Define Type Properties screen.

Figure 15: WSDL with Types added
59

CHAPTER 4 | Using the Artix� Designer
In the Define Type Attributes screen you are only presented with a Type drop
down list. Since an element type is simply a wrapper around another type,
there are no additional options.

1. In the left-hand pane of the designer, highlight the
HelloWorldGuiTutorial icon under Shared Resources and select
Contract | New | Type.

2. In the Select WSDL screen, select the Add to existing WSDL
"HelloWorldGuiTutorial" radio button and click the Next button.

Figure 16: Adding type to existing WSDL
 60

Writing the WSDL File
3. In the Define Type Properties screen, enter InElement into the Name
text box and select the element radio button. Click the Next button.

4. In the Define Type Attributes screen select type tns:InParameter.

5. Click Next, then in the Summary screen click Finish.

6. Repeat steps 1 to 5 to create a second type named OutParameter. The
type should be tns:OutParameter.

7. Click on the Save icon or select File | Save.

Figure 17: Define Type Properties
61

CHAPTER 4 | Using the Artix� Designer
8. Highlight the HelloWorldGuiTutorial icon and review the contents of
the WSDL file.

Note that the <types> section now includes four definitions:

♦ Simple type InParameter, of type xsd:string.

♦ Simple type OutParameter, of type xsd:string.

♦ Element type InElement, of type tns:InParameter.

♦ Element type OutElement, of type tns:OutParameter.

The following WSDL file fragment summarizes the content of the
HelloWorldGuiTutorial.wsdl file.

Figure 18: New Types in WSDL
 62

Writing the WSDL File
<?xml version="1.0" encoding="UTF-8"?>
<definitions name="HelloWorldGuiTutorial"
 targetNamespace="http://www.iona.com/guitutorial"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://www.iona.com/guitutorial"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <types>
 <schema targetNamespace="http://www.iona.com/guitutorial"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <simpleType name="InParameter">
 <restriction base="xsd:string"/>
 </simpleType>
 <simpleType name="OutParameter">
 <restriction base="xsd:string"/>
 </simpleType>
 <element name="InElement" type="tns:InParameter"/>
 <element name="OutElement" type="tns:OutParameter"/>
 </schema>
 </types>

</definitions>
63

CHAPTER 4 | Using the Artix� Designer
Define the Messages
Now that you have defined the required types, you can begin to define the
messages. Your types will be used as the message parts.

1. Highlight the HelloWorldGuiTutorial icon and select Contract | New |
Message (or right-click on the HelloWorldGuiTutorial icon and select
New | Message from the popup menu).

2. In the Select WSDL panel, select the Add to existing WSDL
"HelloWorldGuiTutorial" radio button and click the Next button.

Figure 19: Adding Message to existing WSDL
 64

Writing the WSDL File
3. In the Define Message Properties panel, enter RequestMessage into the
Name text box. Click the Next button.

4. In the Define Parts panel, enter InPart into the Name text box and
select tns:InElement from the Type drop down list.

Figure 20: Naming Message

Note: Be careful � Do not select tns:InParameter from the Type
drop down list
65

CHAPTER 4 | Using the Artix� Designer
5. Now click the Add button; your part is added to the Part List control. If
your message requires multiple parts (which is not the situation in this
example), you would simply define another part and add it to the Part
List. Finally, click the Next button.

Figure 21: Adding parts
 66

Writing the WSDL File
6. In the View Summary panel, you can review the content that will be
added to the WSDL file.

7. Check the Check here to create another message checkbox and click
the Next button.

8. Repeat steps 2 to 6 to create a second message � ResponseMessage �
with a part named OutPart of type tns:OutElement. In the View
Summary panel click the Finish button.

9. Click on the Save icon or select File | Save.

10. Highlight the HelloWorldGuiTutorial icon and click on the WSDL tab to
review the contents of the WSDL file.

Figure 22: Message Summary

Figure 23: New messages definition in WSDL
67

CHAPTER 4 | Using the Artix� Designer
The following WSDL file fragment shows the new content of the
HelloWorldGuiTutorial.wsdl file.

<message name="RequestMessage">
 <part element="tns:InElement" name="InPart"/>
</message>

<message name="ResponseMessage">
 <part element="tns:OutElement" name="OutPart"/>
</message>
 68

Writing the WSDL File
Define the portType
A portType contains operations, which are composed of one or more
messages.

� A oneway operation will include only an input message; the client
application will not receive a response from the Web service.

� A request:response operation includes an input message, an output
message, and zero, or more, fault messages. Defining and coding fault
messages will be discussed in the following chapter.

For this example, you will define a portType that includes one
request:response operation �sayHi � that uses RequestMessage as its input
and ResponseMessage as its output. There is nothing significant about the
names assigned to the messages or parts; name assignments are to assist
the developer, Artix doesn�t care what names are used. An identical
application could be created by naming the messages One and Two and the
parts X and Y.

1. Highlight the HelloWorldGuiTutorial icon and select Contract | New |
Port Type (or right-click on the HelloWorldGuiTutorial icon and select
New | Port Type from the popup menu).

2. In the Select WSDL panel, select the Add to existing WSDL
"HelloWorldGuiTutorial" radio button and click the Next button.
69

CHAPTER 4 | Using the Artix� Designer
3. In the Define Port Type Properties screen, enter GuiTutorialPT into
the Name text box. Click the Next button.

4. In the Define Port Type Operations screen, enter sayHi into the Name
text box. Select Request-response from the Style drop down list and
click the Next button.

Figure 24: Port Type Properties

Figure 25: Port Type Operations
 70

Writing the WSDL File
5. In the Define Operation Messages screen, select input from the Type
drop down list and tns:RequestMessage from the Message drop down
list. The Name sayHiRequest appears in the Name text box. If desired,
you can change this entry to something more meaningful to your
application. In this example, leave the suggested content.

6. Click the Add button, which transfers the input message to the
Operation Messages control.

7. Now, click on the Type drop down list. Note that input no longer
appears in the listing; an operation can have only one input message.
Select output from the Type list then select tns:ResponseMessage
from the Message drop down list. The Name sayHiResponse appears
in the Name text box; leave this suggested content.

8. Click the Add button to transfer the ouptut message to the Operation
Messages control.

If you click on the Type drop down list you will see that the output
entry no longer appears in the listing; an operation can have only one
output message. While you will not be adding fault messages to this
operation, multiple fault message may be added to an operation.
Consequently, you can repeat this process to add one or more fault
messages to the operation.

Figure 26: Define Operation Messages
71

CHAPTER 4 | Using the Artix� Designer
9. Finally, click on the Next button and review the content in the View
Port Operations Summary screen. Since this example only requires one
portType, click on the Next and then Finish buttons.

10. Click on the Save icon or select File | Save.

11. Highlight the HelloWorldGuiTutorial icon, click on the WSDL tab, and
review the contents of the WSDL file. The following WSDL file
fragment shows the new content of the HelloWorldGuiTutorial.wsdl
file.

Figure 27: Define Operation Messages

<portType name="GuiTutorialPT">
 <operation name="sayHi">
 <input message="tns:RequestMessage" name="sayHiRequest"/>
 <output message="tns:ResponseMessage" name="sayHiResponse"/>
 </operation>
</portType>
 72

Writing the WSDL File
Define the Binding
A binding describes how the messages will be marshalled. Each binding is
associated with a single portType, although the same portType may be
associated with multiple bindings.

In the previous example, the binding used the rpc/encoded style. In this
example, you will specify the document/literal style, which is required when
message parts are element types.

1. Highlight the HelloWorldGuiTutorial icon and select Contract | New |
Binding (or right-click on the HelloWorldGuiTutorial icon and select
New | Binding from the popup menu).

2. In the Select WSDL screen, select the Add to existing WSDL
"HelloWorldGuiTutorial" radio button and click the Next button.

3. In the Select Binding Type window, select the SOAP radio button. The
other binding choices are not available in the Artix Encompass
Standard product. Click the Next button.

Figure 28: Binding Type
73

CHAPTER 4 | Using the Artix� Designer
4. In the Select Port Type screen, select the GuiTutorialPT entry from the
Port Type drop down list.

Actually, since your WSDL file only contains one portType definition,
this is the only entry in the list. But if there were multiple portTypes
defined, you would need to select the desired portType from the list.

Note that a suggested Binding Name is already entered into the Name
text box. You can change this entry; the only requirement is that each
binding in the WSDL file, if you create multiple bindings, have a
unique Binding Name.

5. In the Optional Settings control group there are two drop down list
controls. From the Style list, select document, and from the Use list,
select literal. If you select an invalid combination, for example
rpc/encoded or document/encoded, you will not be able to move to the
next window. Click the Next button.

Figure 29: Port Type
 74

Writing the WSDL File
6. In the Edit Binding screen, highlight the sayHi icon representing your
operation and review the binding details. Click the Next button.

7. In the View WSDL Contract screen, you can review the new content
that will be added to the WSDL file. Finally, click the Finish button.

8. Click on the Save icon or select File | Save.

9. Highlight the HelloWorldGuiTutorial icon, click on the WSDL tab, and
review the contents of the WSDL file. The following WSDL file
fragment shows the new content of the HelloWorldGuiTutorial.wsdl
file.

Figure 30: Port Type
75

CHAPTER 4 | Using the Artix� Designer
<binding name="GuiTutorialPT_SOAPBinding"
 type="tns:GuiTutorialPT">
 <soap:binding style="document"

transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="sayHi">
 <soap:operation soapAction="" style="document"/>
 <input name="sayHiRequest">
 <soap:body use="literal"/>
 </input>
 <output name="sayHiResponse">
 <soap:body use="literal"/>
 </output>
 </operation>
</binding>
 76

Writing the WSDL File
Define the Service
A service provides transport specific information. Each service element may
include one, or more, port elements. The port elements must be uniquely
identified through the value of the name attribute. Each port element is
associated with a single binding element, although the same binding
element may be associated with one, or more, port elements. In addition, a
WSDL file may contain multiple service elements.

In this example, the WSDL file contains one service element, which contains
a single port element.

1. Highlight the HelloWorldGuiTutorial icon and select Contract | New |
Service (or right-click on the HelloWorldGuiTutorial icon and select
New | Service from the popup menu).

2. In the Select WSDL window, select the Add to existing WSDL
"HelloWorldGuiTutorial" radio button and click the Next button.

3. In the Define Service window, enter HelloWorldService into the Name
text box. Click the Next button.

Figure 31: New Service
77

CHAPTER 4 | Using the Artix� Designer
4. In the Define Port window, enter HelloWorldPort into the Name text
box and select GuiTutorialPT_SOAPBinding from the Binding drop
down list. Actually, since your WSDL file only contains one binding
definition, this is the only entry in the list. But if there were multiple
bindings defined, you would need to select the desired binding from
the list. Click the Next button.

Figure 32: New Service
 78

Writing the WSDL File
5. In the Define Extensor Properties window, select soap from the
Transport Type drop down list and enter http://localhost:9000 as
the value for the location attribute. This is the only required entry, and
you may specify any port number you choose. Refer to the Artix
documentation for a discussion of the other extensor properties.

6. Click the Next button. In the Port Summary window, you can review
the new content that will be added to the WSDL file. Finally, click the
Finish button.

7. Click on the Save icon or select File | Save.

Figure 33: New Service
79

CHAPTER 4 | Using the Artix� Designer
8. Highlight the HelloWorldGuiTutorial icon, click on the WSDL tab, and
review the contents of the WSDL file. The following WSDL file
fragment shows the new content of the HelloWorldGuiTutorial.wsdl
file.

The elements with the namespace prefix http-conf are unique to Artix and
represent the unspecified extensor properties. Note the inclusion of the
http-conf namespace prefix definition in the opening <definitions>
element. The designer added this prefix definition to the WSDL file during
the service definition effort.

<service name="HelloWorldService">
 <port binding="tns:GuiTutorialPortType_SOAPBinding"
 name="newPort">
 <soap:address location="http://localhost:9000"/>
 <http-conf:client/>
 <http-conf:server/>
 </port>
</service>
 80

Developing an Application
Developing an Application

Project Summary You have now completed writing the WSDL file. Currently the file is located
under the Shared Resources icon within the Artix Designer and in the
GuiTutorial\Resources directory on your drive. Other than the fact that this
WSDL file uses element types and document/literal encoding, this WSDL file
is functionally equivalent to the file used in the previous example. You could
repeat the earlier example using this WSDL file instead of the file provided in
this document.

In this example, you want to use the same WSDL file for both the client and
server applications. With the Artix Designer you accomplish this goal by
creating Collections, which are the resources that are used by a Web service
component.
81

CHAPTER 4 | Using the Artix� Designer
The Client Application When you create a new collection, Artix places a corresponding icon under
the Collections icon in the designer�s explorer panel.

1. To create a collection, select File | New | Collection. (Alternatively,
you can highlight the Collections icon, right click, and select New
Collection from the popup menu).

2. In the New Collection dialog, select the New Collection icon and click
the OK button.

3. In the Define Collection screen, enter Client into the Name text box.
Note that the designer automatically adds the HelloWorldGuiTutorial
resource to the collection. If you had a workspace with multiple entries

Figure 34: New Collection Wizard
 82

Developing an Application
under the Shared Resources icon, you might not want to include each
resource in every collection. Simply uncheck the entry and it will be
excluded.

4. Click on the Next and Finish buttons.

5. Click on the Save icon or select File | Save.

The designer�s explorer panel now includes an icon representing the Client
application. Note the nested icon and italic font representing the included
resource file. This format indicates that the collection�s resource is a link to
the resource file listed under the Shared Resources icon and not a resource
uniquely associated with this application.

Figure 35:

Figure 36: New Client item
83

CHAPTER 4 | Using the Artix� Designer
In a more complex application, your collection might include both shared
resources and resources specific to the application. In this situation, you
could create a new resource within the collection rather than as a shared
resource.

The Server Application Following the same procedure, create a second collection named Server
that also includes the HelloWorldGuiTutorial resource.
 84

Generating Starting Point Code
Generating Starting Point Code

Approach The Artix Designer is capable of generating starting point code for multiple
platforms and operating systems and for multiple implemenation languages.
Depending on your objectives, you may want to generate only client code,
only server code, or only some of the files produced by the wsdltocpp or
wsdltojava utilities. You provide this information to the designer by defining
a Deployment Profile and Deployment Bundle.

� The Deployment Profile is a collection of platform, operating system,
and implementation language specifications.

� The Deployment Bundle is a collection of application related
specifications.
85

CHAPTER 4 | Using the Artix� Designer
Defining Deployment Profiles
A profile may be used with multiple deployment bundles in generating code
for the same platform, operating system, and implementation language.

The C++ Deployment Profile 1. Highlight the icon representing your workspace (the GuiTutorial icon)
and select File | New | Deployment Profile (or right click on the
GuiTutorial icon and select New | Deployment Profile from the popup
menu).

2. In the Profile Details screen, enter cxx_profile for the Name entry and
select Windows from the Operating System drop down list.

3. In the Artix Location screen, confirm that the paths to your Artix
Installation Directory and artix_env script files are correct. Select the
C++ radio button and click on the Next and Finish buttons.

4. Click on the Save icon or select File | Save.

This profile will be used to generate C++ code for the Windows operating
system.

The Java Deployment Profile 1. Highlight the icon representing your workspace (the GuiTutorial icon)
and select File | New | Deployment Profile (or right click on the
GuiTutorial icon and select New | Deployment Profile from the popup
menu).

2. In the Profile Details screen, enter java_profile for the Name entry
and select Windows screen the Operating System drop down list.

3. In the Artix Location window, confirm that the paths to your Artix
Installation Directory and artix_env script files are correct. Select the
Java radio button and click on the Next and Finish buttons.

4. Click on the Save icon or select File | Save.

This profile will be used to generate Java code for the Windows operating
system.
 86

Generating Starting Point Code
Defining Deployment Bundles
Since you have separate collections for the client and server applications,
and you want to generate both C++ and Java starting point code, you will
need to define four deployment bundles:

� C++ client

� C++ server

� Java client

� Java server

The Client Deployment Bundles Create two deployment bundles, one containing the specifications for your
C++ client application and the second containing the specifications for your
Java client application.

The C++ Client Bundle

1. Highlight the icon representing the Client collection.

2. Right click and select New | Deployment Bundle from the popup
menu. (Alternatively, select File | New | Deployment Bundle).

3. In the Bundle Details screen, enter cxx_client into the Name text box.
In the Location text box, and enter the path to directory into which you
want to generate the starting point code. For this application, store the
files in the suggested location:
C:\IONA\artix\2.0\demos\GuiTutorial\Client\cxx_client.

Now, select the cxx_profile entry from the Deployment Profile drop
down list.

Finally, select the Client radio button and click the Next button.

4. In the Code Generation screen, confirm the target directory for the code
generation process. Select HelloWorldService and HelloWorldPort
from the service and port drop down lists. Since your WSDL file only
contains one service/port, these lists only contain one item.

Finally, enter GUI as the value for the Namespace within the Code
Generation Options grouping. This entry becomes the C++ namespace
within the generated code.

5. Click the Next button twice, and then the Finish button.

6. Click on the Save icon or select File | Save.
87

CHAPTER 4 | Using the Artix� Designer
The Java Client Bundle

1. Highlight the icon representing the Client collection.

2. Right click and select New | Deployment Bundle from the popup
menu. (Alternatively, select File | New | Deployment Bundle).

3. In the Bundle Details screen, enter java_client into the Name text
box. In the Location text box, and enter the path to directory into which
you want to save the starting point code. For this application, store the
files in the suggested location:
C:\IONA\artix\2.0\demos\GuiTutorial\Client\java_client.

Then, select the java_profile entry from the Deployment Profile drop
down list.

Finally, select the Client radio button and click the Next button.

4. In the Code Generation screen, confirm the target directory for the code
generation process. Select HelloWorldService and HelloWorldPort
from the service and port drop down lists. Since your WSDL file only
contains one service/port, these lists only contain one item.

Finally, click the Override Namespace as packaging name checkbox
enter com.iona as the value for the Java Package within the Code
Generation Options grouping. This entry becomes the Java package
hierarchy within the generated code.

5. Click the Next button twice, and then the Finish button.

6. Click on the Save icon or select File | Save.

The Server Deployment Bundles Create two deployment bundles, one containing the specifications for your
C++ server application and the second containing the specifications for
your Java server application.

The C++ Server Bundle

1. Highlight the icon representing the Server collection.

2. Right click and select New | Deployment Bundle from the popup
menu. (Alternatively, select File | New | Deployment Bundle).
 88

Generating Starting Point Code
3. In the Bundle Details screen, enter cxx_server into the Name text box.
In the Location text box, and enter the path to directory into which you
want to save the starting point code. For this application, store the files
in the suggested location:
C:\IONA\artix\2.0\demos\GuiTutorial\Server\cxx_server.

Then, select the cxx_profile entry from the Deployment Profile drop
down list.

Finally, select the Server radio button and click the Next button.

4. In the Code Generation screen, confirm the target directory for the code
generation process. Select HelloWorldService and HelloWorldPort
from the service and port drop down lists. Since your WSDL file only
contains one service/port, these lists only contain one item.

Finally, enter GUI as the value for the Namespace within the Code
Generation Options grouping. This entry becomes the C++ namespace
within the generated code.

5. Click the Next button twice, and then the Finish button.

6. Click on the Save icon or select File | Save.

The Java Server Bundle

1. Highlight the icon representing the Server collection.

2. Right click and select New | Deployment Bundle from the popup
menu. (Alternatively, select File | New | Deployment Bundle).

3. In the Bundle Details screen, enter java_server into the Name text box.
In the Location text box, and enter the path to directory into which you
want to save the starting point code. For this application, store the files
in the suggested location:
C:\IONA\artix\2.0\demos\GuiTutorial\Server\java_server.

Then, select the java_profile entry from the Deployment Profile drop
down list.

Finally ,select the Server radio button and click the Next button.

4. In the Code Generation screen, confirm the target directory for the code
generation process. Select HelloWorldService and HelloWorldPort
from the service and port drop down lists. Since your WSDL file only
contains one service/port, these lists only contain one item.
89

CHAPTER 4 | Using the Artix� Designer
Finally, click the Override Namespace as package name checkbox,
and enter com.iona as the value for the Java Package within the Code
Generation Options grouping. This entry becomes the Java package
hierarchy within the generated code.

5. Click the Next button three times, and then the Finish button. The
skipped windows are used when specifying more advanced code
generation processes.

6. Click on the Save icon or select File | Save.
 90

Generating Starting Point Code
Generating the C++ and Java Code
Now that you have the deployment profile and associated deployment
bundles, generating the code is simple.

The Client Applications You will first generate the code for the C++ client application and then
repeat the process for the Java client application.

The C++ Client

1. Highlight the Client icon and select Tools | Run Deployer.
(Alternatively, right click on the Client icon and select Run Deployer
from the popup menu).

2. In the Run Deployer screen, select cxx_client from the Deployment
Bundle drop down list. Note that the list only displays bundles that
were defined for the client application.

3. Note that the deployer is preconfigured to generate Stub Code and
Environment Scripts for the client application. Since you want to
generate all of the client starting point code, check the box under the
Generate heading for the User Code component.

4. Click the OK button. The code generation process runs to completion.
Click the Close button to dismiss the window.
91

CHAPTER 4 | Using the Artix� Designer
The Java Client

1. Highlight the Client icon and select Tools | Run Deployer.
(Alternatively, right click on the Client icon and select Run Deployer
from the popup menu).

2. In the Run Deployer screen, select java_client from the Deployment
Bundle drop down list. Note that the list only displays bundles that
were defined for the client application.

3. Note that the deployer is preconfigured to generate Stub Code and
Environment Scripts for the client application. Since you want to
generate all of the client starting point code, check the box under the
Generate heading for the User Code component.

4. Click the OK button. The code generation process runs to completion.
Click the Close button to dismiss the window.

The Server Applications You will now generate the code for the C++ server application and then
repeat the process for the Java server application.

The C++ Server

1. Highlight the Server icon and select Tools | Run Deployer.
(Alternatively, right click on the Server icon and select Run Deployer
from the popup menu).

2. In the Run Deployer screen, select cxx_server from the Deployment
Bundle drop down list.
 92

Generating Starting Point Code
3. Note that the deployer is preconfigured to generate Stub Code and
Environment Scripts for the client application. Since you want to
generate all of the server starting point code, check the box under the
Generate heading for the User Code component.

4. Click the OK button. The code generation process runs to completion.
Click the Close button to dismiss the window.

The Java Server

1. Highlight the Server icon and select Tools | Run Deployer.
(Alternatively, right click on the Server icon and select Run Deployer
from the popup menu).

2. In the Run Deployer screen, select java_server from the Deployment
Bundle drop down list.

3. Note that the deployer is preconfigured to generate Stub Code and
Environment Scripts for the client application. Since you want to
generate all of the server starting point code, check the box under the
Generate heading for the User Code component.

4. Click the OK button. The code generation process runs to completion.
Click the Close button to dismiss the window.

Close the Artix Designer You have now finished with the Artix Designer. Close the application by
selecting File | Exit.
93

CHAPTER 4 | Using the Artix� Designer
Completing the Code

The Generated Code Through the code generation process you created four applications: the
C++ client, the Java client, the C++ server, and the Java server. All these
applications will compile and run. However, since there is no business logic
in the sayHi method body, and since the C++ client code does not actually
make a request against the Web service, running the applications will not
produce output. You must now complete the coding in the files representing
the C++ and Java implementation objects and in the C++ client mainline
file. The Java client mainline file is actually a complete, albeit very basic,
application.

In this section This section covers the following tasks:

The C++ Client Code page 95

The C++ Server Code page 97

The Java Client Code page 99

The Java Server Code page 100
 94

Completing the Code
The C++ Client Code
The code generation process creates the following files.

GuiTutorialPT.h This header file is common to both the client and server applications. It
contains the signatures for each of the Web service operations. Open this file
in a text editor and review the signature for the sayHi method.

Note that although the message parts were defined as the element types
InElement and OutElement, the method signature uses C++ classes
derived from the simple types InParameter and OutParameter.

GuiTutorialPTClient.h/.cxx These files represent the client proxy class. Your client mainline code must
instantiate an instance of this class to invoke on the Web service. The proxy
class includes multiple constructors, a destructor, and a method for each of
the Web service�s operations.

In this simple application your client code will use the no argument
constructor. Alternative constructors allow you to change the WSDL file,
service name, or port name initialization values. One constructor allows
initialization from an Artix reference. Review the product documentation to
learn how and when to use these alternate constructors.

HelloWorldGuiTutorial_
wsdlTypes.h/.cxx

These files are common to both the client and server applications and
include the definitions and implementations for the classes that represent
your application specific types. You must review the contents of these files
to understand how to use the APIs of these classes.

HelloWorldGuiTutorial_
wsdlTypesFactory.h/.cxx

These files are common to both the client and server applications and
include definitions and implementations for the factory methods required if
your application specific types includes the anyType.

virtual void
 sayHi(
 const InParameter & InPart,
 OutParameter & OutPart
) IT_THROW_DECL((IT_Bus::Exception)) = 0;
95

CHAPTER 4 | Using the Artix� Designer
For this application, you do not need to be concerned with the contents of
these files.

GuiTutorialPTClientSample For the client application, you only need to work with the
GuiTutorialPTClientSample.cxx file.

Note that the code generation process flushed out a simple invocation of the
sayHi method, but the code is commented out and there is no value
assigned to the in parameter and no output statement to display the value
returned in the out parameter.

InParameter InPart;
OutParameter OutPart;

InPart.setvalue("Artix User");

client.sayHi (InPart, OutPart);

cout << "sayHi returned: " + OutPart.getvalue() << endl;
 96

Completing the Code
The C++ Server Code
The code generation process creates the following files.

GuiTutorialPT.h The header file that is common to both the client and server applications.

GuiTutorialPTServer.h/.cxx These files represent the server stub class. Your code does not directly use
this class. Rather, the implementation class is a subclass of the
GuiTutorialPTServer class.

HelloWorldGuiTutorial_
wsdlTypes.h/.cxx

These files are common to both the client and server applications and
include the definitions and implementations for the classes that represent
your application specific types. You must review the contents of these files
to understand how to use the APIs of these classes.

HelloWorldGuiTutorial_
wsdlTypesFactory.h/.cxx

These files are common to both the client and server applications and
include definitions and implementations for the factory methods required if
your application specific types includes the anyType.

For this application, you do not need to be concerned with the contents of
these files.

GuiTutorialPTServerSample.cxx This file represents the server mainline application. For this application you
do not need to edit the contents of this file. The server mainline instantiates
an instance of the implementation class and registers it with the Artix
runtime. The process then enters an event loop to process incoming
requests.

GuiTutorialPTImpl.h/.cxx These files represent your Web service�s implementation class. The
GuiTutorialPTImpl.cxx file contains compilable code, but there is no
processing logic in the method bodies. For the server application, you only
need to add processing logic to the implementation class� sayHi method.

In a text editor, open the GuiTutorialPTImpl.cxx file and note the signature
for the sayHi method.
97

CHAPTER 4 | Using the Artix� Designer
The method includes two parameters, the first representing the part within
the input message and the second representing the part within the output
message. The return type is void.

The code you add to the sayHi method body is:

OutPart.setvalue("Hello " + InPart.getvalue());
 98

Completing the Code
The Java Client Code
The code generation process creates the following files.

GuiTutorialPT.java This file represents the interface definition common to both the client and
server applications. This interface defines the operation offerred by the Web
service.

GuiTutorialPTTypes.java and
GuiTutorialPTTypesFactory.java

Definition of the classes that create and manage anyTypes defined in your
WSDL file.

GuiTutorialPTDemo.java This file represents the client mainline application. For this simple example,
the generated code in this file represents a fully functional application. With
a more involved application, you would use this code as a template for
writing a more complex client application.

public String sayHi(String inPart) throws RemoteException
99

CHAPTER 4 | Using the Artix� Designer
The Java Server Code
The code generation process creates the following files.

GuiTutorialPT.java The interface definition common to both the client and server applications.

GuiTutorialPTTypes.java and
GuiTutorialPTTypesFactory.java

Definition of the classes that create and manage anyTypes defined in your
WSDL file.

GuiTutorialPTServer.java Starting point code for a server mainline application. For this simple
example, the generated code in this file represents a fully functional
application. With a more involved application, you might extend the
generated code.

GuiTutorialPTImpl.java Starting point code for your Web service�s implementation class. For this
tutorial you will need to add coding to the method bodies corresponding to
the Web service operations.

In a text editor, open the file GuiTutorialPTImpl.java. The code you add to
the sayHi method body is:

return "Hello " + inPart;
 100

Compiling the Applications
Compiling the Applications

Compiling the C++ Applications To build the C++ client and server applications:

1. Open a command window to the
<installationDirectory>\artix\2.0\bin directory and run the
artix_env.bat file.

2. Move to the
<installationDirectory>\artix\2.0\demos\GuiTutorial\

Client\cxx_client\src\cpp directory by issuing the command:

3. Build the client application with the command:

4. Move to the
<installationDirectory>\artix\2.0\demos\GuiTutorial\

Server\cxx_server\src\cpp directory by issuing the command:

5. Build the server application with the command:

Do not close the command window; you will use the same window to
compile the Java applications.

Compiling the Java Applications To build the Java client and server applications:

1. In the open command window, place the current directory onto the
CLASSPATH with the command:

cd ..\demos\GuiTutorial\Client\cxx_client\src\cpp

nmake all

cd ..\..\..\..\Server\cxx_server\src\cpp

nmake all

set CLASSPATH=.;%CLASSPATH%
101

CHAPTER 4 | Using the Artix� Designer
2. Move to the
<installationDirectory>\artix\2.0\demos\GuiTutorial\

Client\java_client\src\java directory.

3. Build the client application with the command:

4. Move to the
<installationDirectory>\artix\2.0\demos\GuiTutorial\

Server\java_server\src\java directory by issuing the command:

5. Build the server application with the command:

Close the command window.

javac com/iona/*.java

cd ..\..\..\..\Server\java_server\src\java

javac com/iona/*.java
 102

Running the Application
Running the Application

The C++ Applications To run the C++ client against the C++ server:

1. Open a command window to the
<installationDirectory>\artix\2.0\bin directory and run the
artix_env.bat file.

2. Move to the
<installationDirectory>\artix\2.0\demos\GuiTutorial\

Server\cxx_server\src\cpp directory by issuing the command:

3. Start the server process with the command:

The server process starts in a new command window.

4. Move to the
<installationDirectory>\artix\2.0\demos\GuiTutorial\

Client\cxx_client\src\cpp directory by issuing the command:

5. Run the client process with the command:

Observe the message in the client process window.

6. Stop the server process by issuing the command Ctrl-C in its command
window.

Do not close the command window; you will use the same window to run
the Java applications.

cd ..\demos\GuiTutorial\Server\cxx_server\src\cpp

start server

cd ..\..\..\..\Client\cxx_client\src\cpp

client
103

CHAPTER 4 | Using the Artix� Designer
The Java Applications To run the Java client against the Java server:

1. In the open command window, place the current directory onto the
CLASSPATH with the command:

2. Move to the
<installationDirectory>\artix\2.0\demos\GuiTutorial\

Server\java_server\src\java directory.

3. Start the server process with the command:

The server process starts in a new command window.

4. Move to the
<installationDirectory>\artix\2.0\demos\GuiTutorial\

Client\java_client\src\java directory by issuing the command:

5. Run the client process with the command:

Observe the message in the client process window.

6. Stop the server process by issuing the command Ctrl-C in its command
window.

Interoperability You may also run the C++ client against the Java server or the Java client
against the C++ server. Use the steps in the previous sections as a guide.

set CLASSPATH=.;%CLASSPATH%

start java com.iona.GuiTutorialPTServer

cd ..\..\..\..\Client\cxx_client\src\cpp

java com.iona.GuiTutorialPTDemo sayHi <a_Name>
 104

CHAPTER 5

Faults and
Exceptions
This chapter focuses on how to declare faults in WSDL files
and how to handle the corresponding C++ and Java
exceptions in Artix� client and server applications.

In this chapter This chapter discusses the following topics:

Raising Exceptions page 106

Handling Runtime Exceptions page 107

Working with WSDL Faults page 109

Developing An Application page 113
105

CHAPTER 5 | Faults and Exceptions
Raising Exceptions

Types of Artix Exceptions Exceptions may originate from three different sources.

� The Artix runtime libraries may throw a C++ exception.

� The Artix runtime services, for example, the locator service, may throw
a C++ exception.

� The business logic within the Web service itself may throw a C++ or
Java exception.

In each case, the exception is returned to the client application.

The WSDL file provides no information about exceptions originating from the
Artix runtime libraries as these exceptions are not directly related to your
Web service contract. In C++ applications, these exceptions are returned
as subclasses of the Artix class IT_Bus::Exception. Consequently, your client
code must use try{} and catch (IT_Bus::Exception){} blocks to gracefully
handle possible exceptions. In Java applications, these exceptions are
returned as java.lang.Exception.

Many of the Artix runtime services are described in WSDL files, and a
service�s operations may include fault messages. If your application uses
these services, your application must also include the client-side classes
generated from this WSDL file. In this case, you can use the runtime
service�s WSDL file, and the contents of the generated code, to understand
how the WSDL faults map to C++ and Java classes. Your application code
will use these classes to handle the service�s exceptions.

When you write the WSDL file that describes your Web service, you may
include zero or more fault messages in each request:response operation.
When you run the code generation utilities, these fault messages become
C++ or Java classes that your application code will use to handle your
application�s exceptions.

Handling exceptions raised by either an Artix runtime service or your
application�s business logic is similar. You enclose your application code
within a try{} block and use one, or more, catch{} blocks to handle the
possible exceptions.
 106

Handling Runtime Exceptions
Handling Runtime Exceptions

Types of Runtime Exceptions Artix includes an extensive collection of runtime exceptions, which primarily
represent errors that may arise during marshalling and transport.

♦ IT_Bus::ConnectException

♦ IT_Bus::DeserializationException

♦ IT_Bus::IOException

♦ IT_Bus::NoDataException

♦ IT_Bus::SecurityException

♦ IT_Bus::SerializationException

♦ IT_Bus::ServiceException

♦ IT_Bus::TransportException

♦ IT_Bus::UserFaultException

These exceptions are defined in corresponding header files, which are
located in the <installationDirectory>\artix\2.0\include\it_bus
directory.

Since IT_Bus::Exception is the superclass for all of these exception classes,
you may use the IT_Bus::Exception class� API to extract details about what
caused the exception.

The IT_Bus::Exception Class API

The IT_Bus::Exception class is actually just a typedef of the
IT_Bus::FWException class. The header file that includes this typedef entry
is <installationDirectory>\artix\2.0\include\it_bus\types.h.

Your application code will never create an instance of a runtime exception.
Consequently, the only API methods you need are used to obtain a
description, and optionally a message code, describing the processing error.

The IT_Bus::Exception::message() method returns an informative
description of the error that caused the runtime exception.

The IT_Bus::Exception::error() method returns an exception code.
107

CHAPTER 5 | Faults and Exceptions
Handling IT_Bus::Exception You have already seen an example of handling the runtime exceptions. The
code generated for your C++ client application includes a try{} block

The Java client application�s main method includes a throws Exception
clause. To handle the runtime exceptions, you could place a try{} block
around the remote method invocation followed by a corresponding catch{}
block.

This is generally all that is needed, although your code could catch each of
the runtime exceptions separately.

int
main(int argc, char* argv[])
{
 . . .

 try
 {
 . . .
 }
 catch(IT_Bus::Exception& e)
 {
 cout << endl << "Error : Unexpected error occured!"
 << endl << e.message()
 << endl;
 return -1;
 }
 return 0;
}

 108

Working with WSDL Faults
Working with WSDL Faults

Defining WSDL Faults A WSDL fault is simply a message, which when using the document literal
paradigm, may contain zero or one part. A message corresponding to a
WSDL fault is referenced by the <fault> child element under the
<operation> element. A request:response operation may include zero, or
more, child fault elements. If appropriate to the Web service, the same fault
message may be associated with multiple operations.

The wsdltocpp utility creates a C++ class corresponding to the message; a
message part becomes an instance variable and accessor methods are
provided to manipulate the value of this variable. If a fault message needs to
contain multiple parts, you need to define a complex type, which then
becomes the type of the message part.

You will need to study the generated code to understand how to create and
manipulate the exception class.

As with messages representing a request or response, fault messages may
contain either encoded or literal element parts. The following fragment
illustrates the WSDL file definition of a fault message.

<types>
 <schema targetNamespace="http://www.iona.com/guitutorial"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 . . .

 <complexType name="FaultDetails">
 <sequence>
 <element name="FaultMsg" type="xsd:string"/>
 <element name="FaultID" type="xsd:int"/>
 </sequence>
 </complexType>
 <element name="DoIKnowYou" type="tns:FaultDetails"/>

 </schema>
</types>

<message name="UnknownUser">
 <part element="tns:DoIKnowYou" name="theFault"/>
</message>
109

CHAPTER 5 | Faults and Exceptions
Note that the message, UnknownUser, only contains one part, theFault,
which is an instance of the element DoIKnowYou. DoIKnowYou is a wrapper
around the complex type FaultDetails, which contains two pieces of
information, a string message and a numeric code.

The operation that uses this fault must include a fault child element within
the operation element, as illustrated in the following fragment.

If you are using the Artix Designer to create your WSDL file, you do not need
to worry about how to include the fault message in the binding; the designer
will handle this task.

When you run the wsdltocpp utility, two C++ classes are generated. The
class FaultDetails corresponds to the complex type. This class includes
variables corresponding to the FaultMsg and FaultID elements and accessor
methods to manipulate these values. The class UnknownUserException
corresponds to the UnknownUser message. This class includes a variable of
type FautlDetails and accessor methods to manipulate this value.

When you run the wsdltojava utility, two Java classes are generated. The
class FaultDetails corresponds to the complex type. This class includes
variables corresponding to the FaultMsg and FaultID elements and accessor
methods to manipulate these values. The class FaultDetailsException
corresponds to the UnknownUser message. This class includes instance
variables corresponding to the FaultMsg and FaultID elements and accessor
methods to manipulate these values. Your code uses the
FaultDetailsException directly; there is no need to use the FaultDetails class.

Throwing the Exception While both C++ class definitions include a copy constructor, neither class
includes a constructor that allows you to set the instance variables.
Consequently, to throw the exception from your Web service�s code, you

<portType name="GuiTutorialPT">
 <operation name="sayHi">
 <input message="tns:RequestMessage" name="sayHiRequest"/>
 <output message="tns:ResponseMessage" name="sayHiResponse"/>
 <fault message="tns:UnknownUser" name="sayHiFault"/>
 </operation>
</portType>
 110

Working with WSDL Faults
must first instantiate and initialize an instance of the FaultDetails class and
then use this instance to initialize an instance of the UnknownUserException
class. Finally, your code throws the UnknownUserException instance.

In the Java FaultDetailsException class, there is a constructor that allows
you to set values for the FaultMsg and FaultID. Consequently, your code can
instantiate, initialize, and throw the exception in a single line of code.

Handling the Exception In C++, the exception UnknownUserException is derived from the Artix
class IT_Bus::UserFaultException, which is derived from IT_Bus::Exception.

Consequently, you must include code to catch this exception before your
code that handles IT_Bus::Exception. Since the catch block receives a
reference to the UnknownUserException object, your code needs to use the
accessor method to obtain the FaultDetails object and then extract the
FaultMsg and FaultID.

In Java, the client mainline code generated by the wsdltojava utility includes
a catch{} block to process the FaultDetailsException. Do not be concerned
with the exception stack trace; the generated code prints this information.

FaultDetails faultData;
faultData.setFaultMsg("User unknown to me");
faultData.setFaultID(200);

UnknownUserException ex;
ex.settheFault(faultData);

throw ex;

throw new FaultDetailsException("User unknown to me", 200);

catch(UnknownUserException& ex)
{
 FaultDetails& fd = ex.gettheFault();
 cout << "Error Message: " << fd.getFaultMsg() << endl;
 cout << "Error ID: " << fd.getFaultID() << endl;
 return -1;
}

111

CHAPTER 5 | Faults and Exceptions
catch (com.iona.FaultDetailsException ex)
 {
 System.out.println
 ("Exception: com.iona.FaultDetailsException has Occurred.");
 ex.printStackTrace();
 }
 112

Developing An Application
Developing An Application

The GuiTutorial Application The application developed in the preceding chapter can be easily modified
to demonstrate fault usage. Since you must define new types representing
the fault details, a new message, and modify the sayHi operation details,
the changes will also impact the binding definition. Consequently, it is
easiest to delete the existing binding and service elements from the WSDL
file and recreate these entries once the other modifications are complete.

Modifying the WSDL File Start the Artix Designer and return to the GuiTutorial project.

1. Highlight the HelloWorldGuiTutorial icon under the Shared Resources
icon and click on the WSDL tab. The WSDL file contents are displayed
in the panel.

2. Select Contract | Edit | Services (or right click on the
HelloWorldGuiTutorial icon and select Edit | Services from the popup
menu).

3. In the Edit Services screen, highlight the HelloWorldService icon in the
top panel and click on the Delete button. Confirm your decision by
clicking the Yes button. Then click on the Apply and OK buttons. View
the WSDL file contents and confirm that the <service>...</service>
section has been removed.

4. Select Contract | Edit | Bindings (or right click on the
HelloWorldGuiTutorial icon under the Contracts icon and select Edit |
Bindings from the popup menu).

5. Select the Edit Bindings window, highlight the
GuiTutorialPT_SOAPBinding icon in the top panel and click the Delete
button. Confirm you decision by clicking the Yes button. The click on
the Apply and OK buttons. View the WSDL file contents and confirm
that the <binding>...</binding> section has been removed.

If you highlight the HelloWorldGuiTutorial icon under either the Client or
Server icons under the Collections icon and view the WSDL file contents,
you will observe the edited content. These icons actually represent links to
the WSDL file in the Shared Resources directory, so edits are applied to the
file associated with the Client and Server collections.
113

CHAPTER 5 | Faults and Exceptions
Create the data types You now create the data types that represent the exception details.

1. Highlight the HelloWorldGuiTutorial icon and select Contract | New |
Type, (or right click on the HelloWorldGuiTutorial icon and select New
| Type from the popup menu).

2. In the Select WSDL screen, select the Add to existing WSDL
"HelloWorldGuiTutorial" radio button and click the Next button.

3. In the Define Type Properties window, enter FaultDetails into the
Name text box and select the complexType radio button. Click the
Next button.

4. In the Define Type Attributes screen, select sequence from the Group
Type drop down list. From the Type drop down list, select the
xsd:string entry and enter FaultMsg into the Name text box. Click the
Add button, which transfers this element to the Element List panel.

5. To add the second member of the FaultDetails sequence, select xsd:int
from the Type drop down list and then enter FaultID into the Name
text box. Click the Add button. Your sequence now includes two
members. Click the Next and Finish buttons to complete the type
definition entry.

6. You now want to define an element type that wraps your complex
types. This process is identical to defining the complex type except that
you must select the element radio button in the Define Type Properties
window.

7. In the Define Type Attributes window, you are only presented with a
Type drop down list. Since an element type is simply a wrapper around
another type, there are no additional options.

8. Create one element type:

♦ DoIKnowYou of type tns:FaultDetails.
 114

Developing An Application
Define the fault message You must now define the fault message. There is nothing that links this
message to an operation fault except how you use the message when
defining an operation.

1. Highlight the HelloWorldGuiTutorial icon and select Contract | New |
Message menu entry, (or right click on the HelloWorldGuiTutorial icon
and select New | Message from the popup menu).

2. In the Select WSDL screen, select the Add to existing WSDL
"HelloWorldGuiTutorial" radio button and click the Next button.

3. In the Define Message Properties screen, enter UnknownUser into the
Name text box. Click the Next button.

4. In the New Message � Artix Designer � Define Parts window, enter
theFault into the Name text box and select tns:DoIKnowYou from the
Type drop down list. Now click the Add button; your part is added to
the Part List control. Finally, click the Next button.

5. In the View Summary screen, you can review the content that will be
added to the WSDL file. Click the Finish button.

Edit the portType definition Finally you need to edit the portType definition.

1. Highlight the HelloWorldGuiTutorial icon and select Contract | Edit |
Port Types (or right click and select Edit > Port Types from the popup
menu).

2. In the Edit Port Types screen, highlight the sayHi operation in the top
panel and then click the Edit button below the Operation Messages
grouping control.

3. In the Edit Operation Messages screen select fault from the Type drop
down list. From the Message drop down list select the
tns:UnknownUser entry. Click on the Add button, which adds the fault
message to the Operation Messages listing. Finally, click on the Apply,
OK, and OK buttons.

4. Review the contents of the WSDL file and confirm that the sayHi
operation now includes a fault element.
115

CHAPTER 5 | Faults and Exceptions
Recreate the SOAP binding Now you need to recreate the SOAP binding and service and port
definitions.

1. Highlight the HelloWorldGuiTutorial icon and select Contract | New |
Binding, (or right click on the HelloWorldGuiTutorial icon and select
New | Binding from the popup menu).

2. In the Select WSDL window, select the Add to existing WSDL
"HelloWorldGuiTutorial" radio button and click the Next button.

3. In the Select Binding Type window, select the SOAP radio button.
Click the Next button.

4. In the Select Port Type window, select the GuiTutorialPT entry from
the Port Type drop down list. Note that a suggested Binding Name is
already entered into the Name text box. You can change this entry; the
only requirement is that each binding in the WSDL file, if you create
multiple bindings, have a unique Binding Name.

5. In the Optional Settings control group there are two drop down list
controls. From the Style list, select document, and from the Use list,
select literal. Click the Next button.

6. In the Edit Binding window, highlight the sayHi icon representing your
operation and review the binding details. Click the Next button.

7. In the View WSDL Contract window, you can review the new content
that will be added to the WSDL file.

8. Finally, click the Finish button. Highlight the HelloWorldGuiTutorial
icon, click on the WSDL tab, and review the contents of the WSDL file.

9. Once again, highlight the HelloWorldGuiTutorial icon and select
Contract | New | Service, (or right click on the HelloWorldGuiTutorial
icon and select New | Service from the popup menu).

10. In the Select WSDL screen, select the Add to existing WSDL
"HelloWorldGuiTutorial" radio button and click the Next button.

11. In the Define Service window, enter HelloWorldService into the Name
text box. Click the Next button.

12. In the Define Port window, enter HelloWorldPort into the Name text
box and select GuiTutorialPT_SOAPBinding from the Binding drop
down list. Click the Next button.
 116

Developing An Application
13. In the Define Extensor Properties screen, select soap from the
Transport Type drop down list and enter http://localhost:9000 as the
value for the location attribute. This is the only required entry, and you
may specify any port screen you choose.

14. Click the Next button. In the Port Summary window, you can review
the new content that will be added to the WSDL file. Finally, click the
Finish button.

Generating the Application Code You will use the Artix Designer to generate starting point code for the
application. Since the Deployment Profiles and Deployment Bundles have
already been created, you only need to regenerate the starting point code
and then reimplement and recompile the applications.

Repeat the steps described in �Generating the C++ and Java Code� on
page 91.

Completing the Code In the C++ implementation class, you need to complete the sayHi method.
You will modify the previous coding so that the UnknownUserException is
thrown unless the value of InPart is Artix User.

if (InPart.getvalue() != "Artix User")
{
 FaultDetails faultData;
 faultData.setFaultMsg("User unknown to me");
 faultData.setFaultID(200);

 UnknownUserException ex;
 ex.settheFault(faultData);

 throw ex;
}
OutPart.setvalue("Hello " + InPart.getvalue());
117

CHAPTER 5 | Faults and Exceptions
In the client application GuiTutorialPTClientSample.cxx file, remove the
comment delimiters and replace with the following code.

Also add a new catch{} block before the existing catch{} block.

In the Java application, the client mainline produced by the wsdltojava
utility already includes a catch{} block to handle the FaultDetailsException.

GuiTutorial::InParameter InPart;
GuiTutorial::OutParameter OutPart;

// Set user name to command line parameter
InPart.set_value("Artix User");
if (argc > 1)
{
 InPart.setvalue(argv[1]);
}
// Alternative code to set user name
/*
argc > 1 ? InPart.set_value(argv[1]) : \
 InPart.setvalue("Artix User");
*/
client.sayHi (InPart, OutPart);
cout << "sayHi returned: " + OutPart.getvalue() << endl;

catch(UnknownUserException& ex)
{
 FaultDetails& fd = ex.gettheFault();
 cout << "Error Message: " << fd.getFaultMsg() << endl;
 cout << "Error ID: " << fd.getFaultID() << endl;
 return -1;
}

try {
 if ("sayHi".equals(args[0]))
 {
 . . .
 }
catch (com.iona.FaultDetailsException ex)
 {
 System.out.println
 ("Exception: com.iona.FaultDetailsException
 has Occurred.");
 ex.printStackTrace();
 }
 118

Developing An Application
You need to add code to the GuiTutorialPTImpl.java file, providing an
implementation for the sayHi method that throws the FaultDetailsException.

Building the Application Now that you have completed coding, you can build the application. Repeat
the steps described in �Compiling the Applications� on page 101.

Running the Application Run the applications as described in �Running the Application� on
page 103.

When running the C++ client, Artix User is supplied to the Web service
when you do not provide a name on the command line. If you provide a
name on the command line, that name is passed to the Web service. When
running the Java client supply "Artix User" or another name as the required
parameter (quotation marks around Artix User are important).

Note that the server simply throws the exception, which the client
applications catch and display if the name is not Artix User.

public String sayHi(String inPart) throws FaultDetailsException
{
 String _return = null;
 if (inPart.equals("Artix User"))
 {
 _return = "Hello " + inPart;
 }
 else
 {
 FaultDetailsException fd = new FaultDetailsException
 ("User unknown to me", 200);
 throw fd;
 }
 return _return;
}

119

CHAPTER 5 | Faults and Exceptions
 120

CHAPTER 6

Mortgage
Calculator
This chapter is your "final exam." With minimal guidance, you
will use the Artix� Designer to recreate a WSDL file that
describes a mortgage calculator Web service. Once you write
the WSDL file, you will generate the starting point code and
build the service.

In This Chapter This chapter discusses the following topics:

The Mortgage Calculator Web Service page 122

The WSDL File page 124

The Application Code page 127
121

CHAPTER 6 | Mortgage Calculator
The Mortgage Calculator Web Service

The Service Assume you work in the information services department of a banking
institution. The bank has decided to deploy a mortgage calculator Web
service so that mortgage brokers and potential customers can determine the
amount of a monthly mortgage payment. You have been given the
assignment of creating this Web service.

The service is relatively simple. It receives a request that includes the
amount of the anticipated loan, the annual interest rate percentage, and the
term of the loan in years. The service returns the same information and the
monthly payment value.

In a real work situation, you would be given the responsibility of defining the
data types, writing the WSDL file, and implementing the service. If you
want, you can approach this tutorial in the same way. Here is all of the
information you need to know:

� Input values:

Dollar amount of loan, for example, $100,000.00.

Annual interest percentage rate, for example, 8.75.

Term of loan in years, for example, 25.

� Output values:

Dollar amount of loan.

Annual interest percentage rate.

Term of loan in years.

Monthly payment.

� Faults:

The bank does not issue mortgages that exceed $2000.00 per
month. If the monthly payment is greater than this amount, the
service should raise the fault PaymentExceedsLimit, which
includes the monthly payment value as a member.

� Monthly payment formula:

Numerator = (($ amount of loan) * (monthly interest rate))

Denominator = (1 - ((1 +(monthly interest)) ** (-(Term * 12))))
 122

The Mortgage Calculator Web Service
Monthly Payment = Numerator \ Denominator

Where:

Monthly interest rate is a decimal value equal to the annual interest
percentage rate divided by 1200.

* represents multiplication.

** represents exponentiation.

/ represents division.

You can use the WSDL file described in the next section and the wsdltocpp,
or wsdltojava, utility (discussed in Chapter 3, �Coding the Web Service�) to
generate the starting point code.

Finally, you can use the WSDL file described in the next section as a guide
and use the Artix Designer to recreate the WSDL file and generate the
starting point code (as discussed in Chapter 4, �Using the Artix�
Designer�).

Which approach you take is your decision.
123

CHAPTER 6 | Mortgage Calculator
The WSDL File

The Web Service Description The following WSDL file describes the Mortgage Calculator Web service.
Although this Web service can be adequately described using simple data
types and messages with multiple parts, this WSDL file consolidates all of
the required input and output values into complex types and each method
contains only one part.

<?xml version="1.0" encoding="UTF-8"?>
<definitions
 name="MortgageCalculator"
 targetNamespace="http://www.bank.com/mortgagecalculator"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:http-conf=
 "http://schemas.iona.com/transports/http/configuration"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://www.bank.com/mortgagecalculator"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <types>
 <schema
 targetNamespace="http://www.bank.com/mortgagecalculator"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <element name="CalculateFault" type="tns:MonthlyPayment"/>
 <element name="Request" type="tns:LoanRequest"/>
 <element name="Response" type="tns:BankAnswer"/>
 <simpleType name="LoanAmount">
 <restriction base="xsd:double"/>
 </simpleType>
 <simpleType name="Term">
 <restriction base="xsd:int"/>
 </simpleType>
 <simpleType name="AnnualInterestRate">
 <restriction base="xsd:double"/>
 </simpleType>
 <simpleType name="MonthlyPayment">
 <restriction base="xsd:double"/>
 </simpleType>
 124

The WSDL File
 <complexType name="BankAnswer">
 <sequence>
 <element name="Principal" type="tns:LoanAmount"/>
 <element name="Years" type="tns:Term"/>
 <element name="PercentageRate"
 type="tns:AnnualInterestRate"/>
 <element name="Payment" type="tns:MonthlyPayment"/>
 </sequence>
 </complexType>
 <complexType name="LoanRequest">
 <sequence>
 <element name="Principal" type="tns:LoanAmount"/>
 <element name="Years" type="tns:Term"/>
 <element name="PercentageRate"
 type="tns:AnnualInterestRate"/>
 </sequence>
 </complexType>
 </schema>
 </types>

 <message name="PaymentExceedsLimit">
 <part element="tns:CalculateFault"
 name="CalculatedPayment"/>
 </message>
 <message name="CustomerRequest">
 <part element="tns:Request" name="Input"/>
 </message>
 <message name="BankResponse">
 <part element="tns:Response" name="Output"/>
 </message>

 <portType name="Calculator">
 <operation name="CalculateMonthlyPayment">
 <input message="tns:CustomerRequest"
 name="CalculateMonthlyPaymentRequest"/>
 <output message="tns:BankResponse"
 name="CalculateMonthlyPaymentResponse"/>
 <fault message="tns:PaymentExceedsLimit"
 name="CalculateMonthlyPaymentFault"/>
 </operation>
 </portType>
125

CHAPTER 6 | Mortgage Calculator
If you want to use this file directly, you will need to copy the content into a
text file. Since in the PDF form of this document the content spans three
pages, you will need to copy and paste from each page separately,
recombining the extracts in the proper order in your text file. You can then
proceed as described in Chapter 3.

If you want to use this file as a guide to writing your own WSDL file with the
Artix Designer, you should start the designer, create a new project, and then
create the WSDL file. Start with the simple type definitions, then the
complex types followed by the element types. Next, define the messages,
port type, binding, and service. You can then create the client and server
applications, and generate starting point code, as described in Chapter 4.

 <binding name="Calculator_SOAPBinding" type="tns:Calculator">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="CalculateMonthlyPayment">
 <soap:operation soapAction="" style="document"/>
 <input name="CalculateMonthlyPaymentRequest">
 <soap:body use="literal"/>
 </input>
 <output name="CalculateMonthlyPaymentResponse">
 <soap:body use="literal"/>
 </output>
 <fault name="CalculateMonthlyPaymentFault">
 <soap:fault name="CalculateMonthlyPaymentFault"
 use="literal"/>
 </fault>
 </operation>
 </binding>

 <service name="MortgageService">
 <port binding="tns:Calculator_SOAPBinding"
 name="MortgagePort">
 <soap:address location="http://localhost:9000"/>
 <http-conf:client/>
 <http-conf:server/>
 </port>
 </service>

</definitions>
 126

The Application Code
The Application Code

Application Files The wsdltocpp and wsdltojava utilities, or the Artix Designer, generate all of
the files you need to write this application. This chapter provides an
example solution for the C++ application.

The C++ Application � CalculatorClientSample.cxx is your client application. You will need
to add the code that makes the invocation and prints out the results.
You will also want to allow the user to input loan amount, annual
interest rate, and term as command line arguments to the client
application. Assume that the input will not include the dollar or percent
signs.

� <WSDLfileName>_wsdlTypes.h is the file that contains your type
definitions. You must review the content of this file to understand the
API for each of these types.

� CalculatorImpl.cxx is your implementation object. You will need to
add the code that calculates the monthly payment from the input
values. Remember that the processing logic in the
CalculateMonthlyPayment method needs to throw the
PaymentExceedsLimitException if the monthly payment is greater than
$2000.00.

The Client Application Code The following code fragment is a workable solution to this coding
assignment.

#include <it_bus/bus.h>
#include <it_bus/Exception.h>
#include <it_cal/iostream.h>
#include "CalculatorClient.h"

IT_USING_NAMESPACE_STD
using namespace MortgageCalculator;
using namespace IT_Bus;
127

CHAPTER 6 | Mortgage Calculator
int
main(
 int argc,
 char* argv[]
)
{
 cout << "Calculator Client" << endl;
 try
 {
 IT_Bus::init(argc, argv);
 CalculatorClient client;
 MortgageCalculator::LoanRequest Input;
 Input.getPrincipal().setvalue
 (strtod(argv[1], (char**)NULL));
 Input.getPercentageRate().setvalue
 (strtod(argv[2], (char**)NULL));
 Input.getYears().setvalue(atoi(argv[3]));

 MortgageCalculator::BankAnswer Output;
 client.CalculateMonthlyPayment (Input, Output);

 cout << "Principal: $" << Output.getPrincipal().getvalue()
 << endl;
 cout << "Term: " << Output.getYears().getvalue()
 << " years" << endl;
 cout << "Rate: " << Output.getPercentageRate().getvalue()
 << "%" << endl;
 cout << "Payment: $" << Output.getPayment().getvalue()
 << endl;
 }
 catch (PaymentExceedsLimitException& ex)
 {
 cout << endl << "PaymentExceedsLimitException Raised"
 << endl;
 cout << "\tMonthly payment too large: $"
 << ex.getCalculatedPayment().getvalue() << endl;
 }
 catch(IT_Bus::Exception& e)
 {
 cout << endl << "Error : Unexpected error occured!"
 << endl << e.message() << endl;
 return -1;
 }
 return 0;
}

 128

The Application Code
The CalculatorImpl Code The following code fragment is a workable solution to this coding
assignment (only the code for the CalculatorImpl class is shown).

#include "CalculatorImpl.h"
#include <it_cal/cal.h>
// Add include for math.h
#include <math.h>

using namespace MortgageCalculator;

CalculatorImpl::CalculatorImpl(IT_Bus::Bus_ptr bus)
 : MortgageCalculator::CalculatorServer(bus) {}

CalculatorImpl::~CalculatorImpl() {}

void
CalculatorImpl::CalculateMonthlyPayment(
 const MortgageCalculator::LoanRequest & Input,
 MortgageCalculator::BankAnswer & Output
) IT_THROW_DECL((IT_Bus::Exception))
{
 IT_Bus::Double principal = Input.getPrincipal().getvalue();
 IT_Bus::Double rate = Input.getPercentageRate().getvalue();
 IT_Bus::Int term = Input.getYears().getvalue();

 // Convert yearly interest rate to monthly interest rate
 rate/=1200;

 // Multiply principle by rate
 // The value in numerator will become the payment
 IT_Bus::Double numerator = principal*rate;

 // Convert years to months
 term*=12;

 // Calculate value of denominator
 IT_Bus::Double denominator = (1 - ((pow((1+rate), (-term)))));

 // Calculate monthly payment
 numerator/=denominator;
 // Numerator now holds the monthly payment
129

CHAPTER 6 | Mortgage Calculator
Note the include statement for the math.h file; this header file is not
included by the Artix code generation process.

 // Declare a variable to return the payment
 MonthlyPayment payment;
 // Set payment into return object
 payment.setvalue(numerator);

 if (numerator >= 2000)
 {
 // Create and throw exception
 PaymentExceedsLimitException ex;
 ex.setCalculatedPayment(payment);
 throw ex;
 }

 // Initialize return
 // Transfer values from input
 Output.setPrincipal(Input.getPrincipal());
 Output.setYears(Input.getYears());
 Output.setPercentageRate(Input.getPercentageRate());
 // Set monthly payment
 Output.setPayment(payment);
}

 130

Building and Running the Applications
Building and Running the Applications

The C++ Application Compile the applications as described in either Chapter 3 or Chapter 4.

Open a command window and set the environment by running the
artix_env.bat file.

Move to the directory containing your server application. Start the server
with the command:

Move to the directory containing your client application. Run the client,
providing loan amount, annual interest rate, and term (in years) as
command line arguments; do not enter $ or % signs.

Run the client with several combinations of input and confirm that the
exception is properly thrown and handled.

start server

client <loan amount> <annual interest rate> <term>
131

CHAPTER 6 | Mortgage Calculator
 132

	Preface
	Introduction
	Introduction to the Tutorial

	The WSDL File
	What Are Web Services?
	What is WSDL?
	A Complete WSDL File

	Coding the Web Service
	The wsdltocpp Utility
	The wsdltojava Utility
	Generating Code
	Generating the Client Application Code
	Generating the Server Application Code

	Completing the Coding
	Building the Client Application

	Running the Application
	The C++ Application
	The Java Application
	Interoperability Between the C++ and Java Applications

	Using the Artix™ Designer
	The Artix Designer
	The Artix Workspace
	Writing the WSDL File
	Create the WSDL File
	Define the Types
	Define the Messages
	Define the portType
	Define the Binding
	Define the Service

	Developing an Application
	Generating Starting Point Code
	Defining Deployment Profiles
	Defining Deployment Bundles
	Generating the C++ and Java Code

	Completing the Code
	The C++ Client Code
	The C++ Server Code
	The Java Client Code
	The Java Server Code

	Compiling the Applications
	Running the Application

	Faults and Exceptions
	Raising Exceptions
	Handling Runtime Exceptions
	Working with WSDL Faults
	Developing An Application

	Mortgage Calculator
	The Mortgage Calculator Web Service
	The WSDL File
	The Application Code
	Building and Running the Applications

