
Command Line Reference
Version 2.1, June 2004

IONA, IONA Technologies, the IONA logo, Orbix, Orbix/E, Orbacus, Artix, Orchestrator,
Mobile Orchestrator, Enterprise Integrator, Adaptive Runtime Technology, Transparent
Enterprise Deployment, and Total Business Integration are trademarks or registered
trademarks of IONA Technologies PLC and/or its subsidiaries.
Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.
CORBA is a trademark or registered trademark of the Object Management Group, Inc. in
the United States and other countries. All other trademarks that appear herein are the
property of their respective owners.
While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty
of any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for
a particular purpose. IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or
consequential damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third
party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publica-
tion and features described herein are subject to change without notice.

Copyright © 2001–2003 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: 18-Aug-2004

Contents

Generating WSDL 1

Generating from Java Classes 2
Generating from CORBA IDL 4
Generating from a COBOL Copybook 6

Adding Bindings 9
Generating a SOAP Binding 10
Generating a CORBA Binding 11

Validating WSDL 13

Generating Code from WSDL 15
C++ Code Generation 16
Java Code Generation 20

Tools for Generating Support Files 23
Generating IDL from WSDL 24
Generating an ACL File 25
iii

CONTENTS
 iv

CHAPTER 1

Generating WSDL
Artix provides a number of command line tools for generating
WSDL.

In this chapter This chapter discusses the following topics:

Generating from Java Classes page 2

Generating from CORBA IDL page 4

Generating from a COBOL Copybook page 6
1

CHAPTER 1 | Generating WSDL
Generating from Java Classes

Overview Artix supplies a command line tool, javatowsdl, that generates the logical
portion of an Artix contract for existing Java class files. javatowsdl uses the
mapping rules described in Sun’s JAX-RPC 1.1 specification.

JAVATOWSDL

Synopsis javatowsdl [-t namespace] [-x namespace] [-i porttype] [-o file]
[-useTypes] [-v] [-?] ClassName

Options The command has the following options:

-t namespace Specifies the target namespace of the generated WSDL
document. By default, the java package name will be
used as the target namespace. If no package name is
specified, the generated target namespace will be
http:\\www.iona.com\ClassName.

-x namespace Specifies the target namespace of the XMLSchema
information generated to represent the data types inside
the WSDL document.By default, the generated target
namespace of the XMLSchema will be
http:\\www.iona.com\ClassName\xsd.

-i porttype Specifies the name of the generated <portType> in the
WSDL document. By default the name of the class from
which the WSDL is generated is used.

-o file Specifies output file into which the WSDL is written.

-useTypes Specifies that the generated WSDL will use types in the
WSDL message parts. By default, messages are
generated using wrapped doc/literal style. A wrapper
element with a sequence will be created to hold method
parameters.

-v Prints out the version of the tool.

-? Prints out a help message explaining the command line
flags.
 2

Generating from Java Classes
The generated WSDL will not contain any physical details concerning the
payload formats or network transports that will be used when exposing the
service. You will need to add this information manually.

Note: When generating contracts, javatowsdl will add newly generated
WSDL to an existing contract if a contract of the same name exists. It will
not generate a new file or warn you that a previous contract exists.
3

CHAPTER 1 | Generating WSDL
Generating from CORBA IDL

Overview IONA’s IDL compiler supports several command line flags that specify how
to create a WSDL file from an IDL file. The default behavior of the tool is to
create WSDL file that uses wrapped doc/literal style messages. Wraped
doc/literal style messages have a single part, defined using an element, that
wraps all of the elements in the message.

IDLTOWSDL

Synopsis idltowsdl [-useypes][-unwrap][-a address][-f file][-o dir][-s
type][-r file][-L file][-P file][-w namespace][-x namespace][-t
namespace][-T file][-n file][-b] idlfile

Options The command has the following options:

-usetypes Generate rpc style messages. rpc style messages have
parts defined using XMLSchema types instead of XML
elements.

-unwrap Generate unwrapped doc/literal messages. Unwrapped
messages have parts that represent individual elements.
Unlike wrapped messages, unwrapped messages can
have multiple parts and are not allowed by the WS-I.

-a address Specifies an absolute address through which the object
reference may be accessed. The address may be a
relative or absolute path to a file, or a corbaname URL

-f file Specifies a file containing a string representation of an
object reference. The object reference is placed in the
<corba:address> element in the <port> definition of the
generated service. The file must exist when you run the
IDL compiler.

-o dir Specifies the directory into which the WSDL file is
written.

-s type Specifies the XMLSchema type used to map the IDL
sequence<octet> type. Valid values are base64Binary
and hexBinary. The default is base64Binary.
 4

Generating from CORBA IDL
To combine multiple flags in the same command, use a colon delimited list.
The colon is only interpreted as a delimiter if it is followed by a dash.
Consequently, the colons in a corbaname URL are interpreted as part of the
URL syntax and not as delimiters.

-r file Specify the pathname of the schema file imported to
define the Reference type. If the -r option is not given,
the idl compiler gets the schema file pathname from
etc/idl.cfg.

-L file Specifies that the logical portion of the generated WSDL
specification into is written to file. file is then imported
into the default generated file.

-P file Specifies that the physical portion of the generated WSDL
specification into is written to file. file is then imported
into the default generated file.

-w namespace Specifies the namespace to use for the WSDL
targetNamespace. The default is
http://schemas.iona.com/idl/idl_name.

-x namespace Specifies the namespace to use for the Schema
targetNamespace. The default is
http://schemas.iona.com/idltypes/idl_name.

-t namespace Specifies the namespace to use for the CORBA
TypeMapping targetNamespace. The default is
http://schemas.iona.com/typemap/corba/idl_name.

-T file Specifies that the schema types are to be generated into
a separate file. The schema file is included in the
generated contract using an import statement. This
option cannot be used with the -n option.

-n file Specifies that a schema file, file, is to be included in the
generated contract by an import statement. This option
cannot be used with the -T option.

-b Specifies that bounded strings are to be treated as
unbounded. This eliminates the generation of the special
types for the bounded string.

Note: The command line flag entries are case sensitive even on
Windows. Capitalization in your generated WSDL file must match the
capitalization used in the prewritten code.
5

CHAPTER 1 | Generating WSDL
Generating from a COBOL Copybook

Overview Artix provides a command line tool, colboltowsdl, that will import COBOL
copybook data and generate an Artix contract containing a fixed binding to
define the COBOL interface for Artix applications.

COLBOLTOWSDL

Synopsis coboltowsdl -b binding -op operation -im [inmessage:]incopybook [-om
[outmessage:]outcopybook] [-fm [faultmessage:]faultbook] [-i
portType] [-t target] [-x schema_name] [-useTypes] [-o file]

Parameters The command has the following required parameters:

Options The command has the following options:

-b binding Specifies the name for the generated binding.

-op operation Specifies the name for the generated
operation.

-im
 [inmessage:]incopybook

Specifies the name of the input message and
the copybook file from which the data
defining the message is taken. The input
message name, inmessage, is optional.
However, if the copybook has more than one
01 levels, you will be asked to choose the one
you want to use as the input message.

-om
 [outmessage:]outcopybook

Specifies the name of the output message
and the copybook file from which the data
defining the message is taken. The output
message name, outmessage, is optional.
However, if the copybook has more than one
01 levels, you will be asked to choose the one
you want to use as the output message.
 6

Generating from a COBOL Copybook
Once the new contract is generated, you will still need to add the port
information before you can use the contract to develop an Artix solution.

-fm
[faultmessage:]faultbook

Specifies the name of a fault message and
the copybook file from which the data
defining the message is taken. The fault
message name, faultmessage, is optional.
However, if the copybook has more than one
01 levels, you will be asked to choose the one
you want to use as the fault message. You
can specify more than one fault message.

-i portType Specifies the name of the port type in the
generated WSDL. Defaults to
bindingPortType.a

-t target Specifies the target namespace for the
generated WSDL. Defaults to
http://www.iona.com/binding.

-x schema_name Specifies the namespace for the schema in
the generated WSDL. Defaults to
http://www.iona.com/binding/types.

-useTypes Specifies that the generated WSDL will use
<types>. Default is to generate <element> for
schema types.

-o file Specifies the name of the generated WSDL
file. Defaults to binding.wsdl.

a. If binding ends in Binding or binding, it is stripped off before being used
in any of the default names.
7

CHAPTER 1 | Generating WSDL
 8

CHAPTER 2

Adding Bindings
Artix provides a tools for adding bindings to WSDL.

In this chapter This chapter discusses the following topics:

Generating a SOAP Binding page 10

Generating a CORBA Binding page 11
9

CHAPTER 2 | Adding Bindings
Generating a SOAP Binding

Overview Artix provides a tool, wsdltosoap, that will generate a SOAP binding from an
existing logical interface defined in a WSDL <portType>. The tool will
generate a new contract which includes the generated SOAP binding.

WSDLTOSOAP

Synopsis wsdltosoap -i portType -n namespace wsdl_file [-b binding][-d dir]
[-o file] [-style {document|rpc}] [-use {literal|encoded}]

Parameters The command has the following required parameters:

Options The command has the following options:

Notes wsdltosoap does not support the the generatoin of document/encoded SOAP
bindings.

-i portType Specifies the name of the port type being mapped to a
SOAP binding.

-n namespace Specifies the namespace to use for the SOAP binding.

wsdl_file Specifies the WSDL file in which the logical binding is
defined.

-b binding Specifies the name for the generated SOAP binding.
Defaults to portTypeBinding.

-d dir Specifies the directory into which the new WSDL file is
written.

-o file Specifies the name of the generated WSDL file. Defaults
to wsdl_file-soap.wsdl.

-style Specifies the encoding style to use in the SOAP binding.
Defaults to document.

-use Specifies how the data is encoded. Default is literal.
 10

Generating a CORBA Binding
Generating a CORBA Binding

Overview The wsdltocorba tool adds CORBA binding information to an existing Artix
contract. The generated WSDL file will also contain a CORBA port with no
address specified.

WSDLTOCORBA

Synopsis wsdltocorba -corba -i portType [-d dir] [-b binding] [-o file] [-n
namespace] wsdl_file

Parameters The command has the following required parameters:

Options The command has the following options:

Notes By combining the -idl and -corba flags with wsdltocorba, you can generate
a CORBA binding for a logical operation and then generate the IDL for the
generated CORBA binding. When doing so, you must also use the -i portType
flag to specify the port type from which to generate the binding and the -b
binding flag to specify the name of the binding to from which to generate the
IDL.

-corba Instructs the tool to generate a CORBA binding for the
specified port type.

-i portType Specifies the name of the port type being mapped to a
CORBA binding.

wsdl_file Specifies the name of the WSDL file containing the
logical interface to which the CORBA binding is mapped.

-d dir Specifies the directory into which the new WSDL file is
written.

-b binding Specifies the name for the generated CORBA binding.
Defaults to portTypeBinding.

-o file Specifies the name of the generated WSDL file. Defaults
to wsdl_file-corba.wsdl.

-n namespace Specifies the namespace to use for the generated CORBA
typemap
11

CHAPTER 2 | Adding Bindings
 12

CHAPTER 3

Validating WSDL
Artix can validate your contracts to see if they are well-formed
WSDL documents. In addition, Artix can validate your contract
against the WS-I Basic Profile.

Overview Artix includes a command line tool, schemavalidator, for validating Artix
contracts.

SCHEMAVALIDATOR

Synopsis schemavalidator [-d schema-directory]* [-wd wsdl-directory] [-s
schema-url]* [-w WSDL_XSD_URL] [-deep] [-wsi] [-wh
wsi-test-tools.home] [-tad BasicProfileAssertions] [-?] [-v]
[-verbose]

Parameters You must specify the location of a WSDL contract file, WSDL_XSD_URL, for the
schema validator to work.

Options You can supply the following optional parameters:

-d schema-directory Specifies the directory used to search for
schemas. This switch can appear multiple
times.

-wd wsdl-directory Specifies the directory to look for the
specified contract.

-s schema-url Specifies the URL of a user specific
schema to be included in the validation of
the contract. This switch can appear
multiple times..
13

CHAPTER 3 | Validating WSDL
-w WSDL_XSD_URL Specifies the name of contract to validate.

-deep Specifies that the validator is to check all
WSDL imports and all WSDL semantics.
When using this switch, the tool will also
validate the imported WSDL.

-wsi Specifies that the tool is to use the
wsi-test-tools from wsi.org to validate the
contract.

-wh wsi-test-tools.home Specifies the base directory of
wsi-test-tools.

-tad BasicProfileAssertions Specifies the URL of the of
BasicProfileTestAssertions.xml used in
wsi-test-tools.

-? Displays detailed information about the
tool’s options.

-v Displays the version of the tool.

-verbose Displays detailed information on the tools
progress as it is validating.

-verbose Send extra diagnostic messages to the
console while wsdltocpp is running.
 14

CHAPTER 4

Generating Code
from WSDL
Artix generates stub and skeleton code that provides a
developer with a simple model to develop
transport-independent applications.

In this chapter This chapter discusses the following topics:

C++ Code Generation page 16

Java Code Generation page 20
15

CHAPTER 4 | Generating Code from WSDL
C++ Code Generation

Overview Artix includes a command line tool, wsdltocpp, for generating Artix C++
skeletons for the services defined in an Artix contract. It can also generate
starting point code for your server and client applications.

WSDLTOCPP

Synopsis wsdltocpp [options] { WSDL-URL | SCHEMA-URL } [-e web_service_name]
[-t port] [-b binding_name] [-i port_type]* [-d output-dir] [-n
URI=C++namespace]* [-nexclude URI[=C++namespace]]* [-ninclude
URI[=C++namespace]]* [-nimport C++namespace] [-impl] [-m {NMAKE |
UNIX}:[exe|lib]] [-jp plugin_class] [-f] [-server] [-client]
[-sample] [-plugin] [-v] [-license] [-declspec declspec] [-all] [-?]
[-flags] [-upper|-lower|-minimal|-mapper class] [-verbose]
[-reflect]

Parameters You must specify the location of a valid WSDL contract file, WSDL-URL, for the
code generator to work.

Options You can supply the following optional parameters:

i port_type Specifies the name of the port type for
which the tool will generate code. The
default is to use the first port type listed in
the contract. This switch can appear
multiple times.

-e web_service_name Specifies the name of the service for which
the tool will generate code. The default is
to use the first service listed in the
contract.

-t port Specifies the name of the port for which
code is generated. The default is to used
the first port listed in the contract.

-b binding_name Specifies the name of the binding to use
when generating code. The default is the
first binding listed in the contract.
 16

C++ Code Generation
-d output_dir Specifies the directory to which the
generated code is written. The default is
the current working directory.

-n [URI=]C++namespace Maps an XML namespace to a C++
namespace. The C++ stub code generated
from the XML namespace, URI, is put into
the specified C++ namespace,
C++namespace. This switch can appear
multiple times.

-nexclude URI[=C++namespace]Do not generate C++ stub code for the
specified XML namespace, URI. You can
optionally map the XML namespace, URI,
to a C++ namespace, C++namespace, in
case it is referenced by the rest of the XML
schema/WSDL contract. This switch can
appear multiple times.

-ninclude URI[=C++namespace]Generates C++ stub code for the specified
XML namespace, URI. You can optionally
map the XML namespace, URI, to a C++
namespace, C++namespace. This switch
can appear multiple times.

-nimport C++namespace Specifies the C++ namespace to use for
the code generated from imported schema.

-impl Generates the skeleton code for
implementing the server defined by the
contract.

-m {NMAKE | UNIX}:[exe |
lib]

Used in combination with -impl to
generate a makefile for the specified
platform (NMAKE for Windows or UNIX for
UNIX). You can specify that the generated
makefile builds an executable, by
appending :exe, or a library, by appending
:lib. For example, the options, -impl -m
NMAKE:exe, would generate a Windows
makefile to build an executable.

-f Deprecated -- No longer used (was needed
to support routing in earlier versions.

-server Generates code for a sample
implementation of a server.
17

CHAPTER 4 | Generating Code from WSDL
Generated files The code generator produces a number of stub files from the Artix contract.
They are named according to the port type name, PortTypeName, specified
in the logical portion of the Artix contract. If the contract specifies more than
one port type, code will be generated for each one.

The following stub files are generated:

-client Generates code for a sample
implementation of a client.

-sample Generates code for a sample
implementation of a client and a server
(equivalent to -server -client).

-plugin Generates servant registration code as a
Bus plug-in.

-v Displays the version of the tool.

-license Displays the currently available licenses.

-declspec declspec Creates NT declaration specifiers for
dllexport and dllimport. This option makes
it easier to package Artix stubs in a DLL
library.

-all Generate stub code for all of the port types
and the types that they use. This option is
useful when multiple port types are defined
in a WSDL contract.

-? Displays help on using the command line
tool.

-flags Displays detailed information about the
options.

-verbose Send extra diagnostic messages to the
console while wsdltocpp is running.

-reflect Enables reflection on generated data
classes.

-wrapped When used with document/literal wrapped
style, generates function signatures with
wrapped parameters, instead of
unwrapping into separate parameters.
 18

C++ Code Generation
PortTypeName.h defines the superclass from which the client and server are
implemented. It represents the API used by the service defined in the
contract.

PortTypeNameService.h and PortTypeNameService.cxx are the server-side
skeleton code to implement the service defined in the contract.

PortTypeNameClient.h and PortTypeNameClient.cxx are the client-side
stubs for implementing a client to use the service defined by the contract.

PortTypeName_wsdlTypes.h and PortTypeName_wsdlTypes.cxx define the
complex datatypes defined in the contract (if any).

PortTypeName_wsdlTypesFactory.h and
PortTypeName_wsdlTypesFactory.cxx define factory classes for the
complex datatypes defined in the contract (if any).
19

CHAPTER 4 | Generating Code from WSDL
Java Code Generation

Overview wsdltojava generates JAX-RPC compliant Java code stubs and skeletons for
the services defined in the specified Artix contract. It can also generate
starting point code for your server and client applicaitons. The default
behavior of wsdltojava is to generate all of the java code needed to develop
a client and server.

WSDLTOJAVA

Synopsis wsdltojava [-e service][-t port][-b binding][-i portType][-d
output_dir][-p [namespace=]package][-impl][-server][-client]
[-types][-interface][-sample][-all][-ant][-datahandlers]
[-nexclude namespace[=package]] [-ninclude namespace[=package]]
artix-contract

Description You must specify the location of a valid Artix contract for the code generator
to work. The default behavior of wsdltojava is to generate all of the java code
needed to develop a client aSd server.

Options You can supply the following optional parameters to control the portions of
the code generated:

-e service Specifies the name of the service for which the
tool will generate code. The default is to use the
first service listed in the contract.

-t port Specifies the name of the port for which code is
generated. The default is to use the first port
listed in the service.

-b binding Specifies the name of the binding to use when
generating code. The default is to use the first
binding listed in the contract.

-i portType Specifies the name of a portType for which code
will be generated. You can specify this flag for
each portType for which you want code
generated. The default is to use the first portType
in the contract.
 20

Java Code Generation
-d output_dir Specifies the directory to which the generated
code is written. The default is the current working
directory.

-p [namespace=]package Specifies the name of the Java package to use for
the generated code. You can optionally map a
WSDL namespace to a particular package name if
your contract has more than one namespace.

-impl Generates the skeleton class for implementing the
server defined by the contract.

-server Generates a simple main class for the server.

-client Generates only the Java interface and code
needed to implement the complex types defined
by the contract. This flag is equivalent to
specifying -interface -types.

-types Generates the code to implement the complex
types defined by the contract.

-interface Generates the Java interface for the service.

-sample Generates a sample client that can be used to test
your Java server.

-all Generates code for all portTypes in the contract.

-ant Generate an ant build target for the generated
code.

-datahandlers When a service uses SOAP w/ attachments as its
payload format, generate code that uses
javax..activation.DataHandler instead of the
standard Java classes specified in the JAX-RPC
specification.

-nexclude
 namespace[=package]

Instructs the code generator to skip the specified
XMLSchema namespace when generating code.
You can optionally specify a package name to use
for the types that are not generated.

-ninclude
 namespace[=package]

Instructs the code generator to generate code for
the specified XMLSchema namespace. You can
optionally specify a package name to use for the
types in the specified namespace.
21

CHAPTER 4 | Generating Code from WSDL
Generated files The Artix code generator produces a number of files from the Artix contract.
They are named according to the port name specified when the code was
generated. The files include:

portTypeName.java defines the Java interface that both the client and
server implement.

portTypeNameImpl.java defines the class used to implement the server.

portTypeNameServer.java is a simple main class for the server.

In addition to these files, the code generator also creates a class for each
named schema type defined in the Artix contract. These files are named
according to the type name they are given in the contract and contain the
helper functions needed to use the data types. The naming convention for
the helper type functions conforms to the JAX-RPC specification.

Generated type packages The generated types are generated into a single package which must be
imported for any methods using them. By default, the package name will be
mapped from the target namespace of the schema describing the types. The
default package name is created following the algorithm specified in the
JAXB specification. The mapping algorithm follows four basic steps:

1. The leading http:// or urn:// are stripped off the namespace.

2. If the first string in the namespace is a valid internet domain, for
example it ends in .com or .gov, the leading www. is stripped off the
string, and the two remaining components are flipped.

3. If the final string in the namespace ends with a file extension of the
pattern .xxx or .xx, the extension is stripped.

4. The remaining strings in the namespace are appended to the resulting
string and separated by dots.

5. All letters are made lowercase.

For example, the XML namespace
http://www.widgetVendor.com/types/widgetTypes.xsd would be mapped
to the Java package name com.widgetvendor.types.widgettypes.

Exceptions If you generate code from a WSDL file that contains multiple portTypes,
multiple bindings, multiple services, or multiple ports wsdltojava will
generate a warning message informing you that it is using the first instance
of each to use for generating code. If you use the command line flags to specify
which instances to use, the warning message is not displayed.
 22

CHAPTER 5

Tools for
Generating
Support Files
Artix provides a tools to generate a number of support files
that can be used in conjunction with Artix solutions.

In this chapter This chapter discusses the following topics:

Generating IDL from WSDL page 24

Generating an ACL File page 25
23

CHAPTER 5 | Tools for Generating Support Files
Generating IDL from WSDL

Overview The wsdltocorba tool compiles Artix contracts containing a CORBA binding
and generates IDL for the specified binding and port type.

WSDLTOCORBA

Synopsis wsdltocorba -idl -b binding [-corba] [-i portType] [-d dir] [-o
file] wsdl_file

Parameters The command has the following required parameters:

Options The command has the following options:

Notes By combining the -idl and -corba flags with wsdltocorba, you can generate
a CORBA binding for a logical operation and then generate the IDL for the
generated CORBA binding. When doing so, you must also use the -i portType
flag to specify the port type from which to generate the binding and the -b
binding flag to specify the name of the binding to from which to generate the
IDL.

-idl Instructs the tool to generate an IDL file from the
specified binding.

-b binding Specifies the CORBA binding from which to generate IDL.

wsdl_file Specifies the WSDL file to process.

-corba Instructs the tool to generate a CORBA binding for the
specified port type.

-i portType Specifies the name of the port type being mapped to a
CORBA binding.

-d dir Specifies the directory into which the new WSDL file is
written.

-o file Specifies the name of the generated WSDL file. Defaults
to wsdl_file.idl.
 24

Generating an ACL File
Generating an ACL File

Overview The wsdltoacl tool generates an ACL file for the operation for which the
default role name is not sufficient. It takes a WSDL file and generates an
appropriate ACL file. You will need to add information specific to your
deployment to this file.

WSDLTOACL

Synopsis wsdltoacl -s server WSDL-URL [-i interface] [-r default_role] [-d
output_dir] [-o output_file] [-props props_file] [-v] [-?]

Parameters The command has the following required parameters:

Options The command has the following options:

-s server Specifies the name of the server. Typically this is the
ORB name of the server.

WSDL-URL Specifies the name of the WSDL file from which the ACL
file is generated.

-i interface Specifies the <portType> for which ACL data will be
generated. The default is to generate information for all
port types defined in the contract.

-r default_role Specifies the role name to use in the generated ACL
document. The default is IONAUserRole.

-d output_dir Specifies the directory where the generated file will be
written.

-o output_file Specifies the name of the generated ACL file. The
default is to use the name of the WSDL file with a .acl
extension.

-props props_fileSpecifies the properties file listing the roles for each
operation.
25

CHAPTER 5 | Tools for Generating Support Files
 26

	Generating WSDL
	Generating from Java Classes
	Generating from CORBA IDL
	Generating from a COBOL Copybook

	Adding Bindings
	Generating a SOAP Binding
	Generating a CORBA Binding

	Validating WSDL
	Generating Code from WSDL
	C++ Code Generation
	Java Code Generation

	Tools for Generating Support Files
	Generating IDL from WSDL
	Generating an ACL File

