IONA

>3 Artix™

Security Guide

Version 2.1, June 2004

Making Software Work Together™

IONA Technologies PLC and/or its subsidiaries may have patents, patent applications,
trademarks, copyrights, or other intellectual property rights covering subject matter in
this publication. Except as expressly provided in any written license agreement from
IONA Technologies PLC, the furnishing of this publication does not give you any license
to these patents, trademarks, copyrights, or other intellectual property. Any rights not
expressly granted herein are reserved.

IONA, IONA Technologies, the IONA logo, Orbix, Orbix Mainframe, Orbix Connect, Artix,
Artix Mainframe, Artix Mainframe Developer, Mobile Orchestrator, Orbix/E, Orbacus,
Enterprise Integrator, Adaptive Runtime Technology, and Making Software Work Together
are trademarks or registered trademarks of IONA Technologies PLC and/or its subsidiar-
ies.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries. CORBA is a trademark or registered trademark of the
Object Management Group, Inc. in the United States and other countries. All other
trademarks that appear herein are the property of their respective owners.

IONA Technologies PLC makes no warranty of any kind to this material including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose. IONA Technologies PLC shall not be liable for
errors contained herein, or for incidental or consequential damages in connection with the furnishing, perform-
ance or use of this material.

COPYRIGHT NOTICE

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third

party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publication
and features described herein are subject to change without notice.

Copyright © 2003-2004 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: 01-Jul-2005

M3211

Contents

List of Tables
List of Figures

Preface
What is Covered in this Book
Who Should Read this Book
Related Documentation
Online Help
Suggested Path for Further Reading
Additional Resources for Information
Typographical Conventions
Keying Conventions

Chapter 1 Getting Started with Artix Security
Security for SOAP Bindings
Secure Hello World Example
HTTPS Connection
IIOP/TLS Connection
Security Layer

Chapter 2 Introduction to the Artix Security Framework
Artix Security Architecture
Types of Security Credential
Protocol Layers
Security Layer
Using Multiple Bindings
Caching of Credentials

Chapter 3 Security for HTTP-Compatible Bindings
Overview of HTTP Security
Securing HTTP Communications with SSL/TLS

CONTENTS

HTTP Basic Authentication
X.509 Certificate-Based Authentication with HTTPS

Chapter 4 Security for SOAP Bindings
Overview of SOAP Security

Chapter 5 Security for CORBA Bindings
Overview of CORBA Security
Securing IIOP Communications with SSL/TLS
Securing Two-Tier CORBA Systems with CSI
Securing Three-Tier CORBA Systems with CSI
X.509 Certificate-Based Authentication for CORBA Bindings

Chapter 6 Single Sign-On
SSO and the Login Service
Username/Password-Based SSO for SOAP Bindings
SSO Sample Configuration for SOAP Bindings

Chapter 7 Configuring the Artix Security Service

Configuring the File Adapter

Configuring the LDAP Adapter

Configuring the SiteMinder Adapter

Configuring the Kerberos Adapter

Additional Security Configuration
Configuring Single Sign-On Properties
Federating the Artix Security Service
Configuring the Log4J Logging

Chapter 8 Managing Users, Roles and Domains
Introduction to Domains and Realms
Artix security domains
Artix Authorization Realms
Managing a File Security Domain
Managing an LDAP Security Domain
Managing a SiteMinder Security Domain

Chapter 9 Managing Access Control Lists

45
48

53
54

57
58
60
66
72
78

85
86
89
96

99
100
102
108
110
113
114
116
121

123
124
125
127
132
135
136

137

Overview of Artix ACL Files
ACL File Format
Generating ACL Files
Deploying ACL Files

Chapter 10 Managing Certificates
What are X.509 Certificates?
Certification Authorities
Commercial Certification Authorities
Private Certification Authorities
Certificate Chaining
PKCS#12 Files
Creating Your Own Certificates
Set Up Your Own CA
Use the CA to Create Signed Certificates
Deploying Certificates
Overview of Certificate Deployment
Deploying Trusted Certificate Authority Certificates
Deploying Application Certificates

Chapter 11 Configuring HTTPS and 1IOP/TLS Authentication
Requiring Authentication
Target-Only Authentication
Mutual Authentication
Specifying Trusted CA Certificates
Specifying an Application’s Own Certificate
Providing a Certificate Pass Phrase
Certificate Pass Phrase for HTTPS
Certificate Pass Phrase for IIOP/TLS
Advanced IIOP/TLS Configuration Options
Setting a Maximum Certificate Chain Length
Applying Constraints to Certificates

Chapter 12 Configuring IIOP/TLS Secure Associations
Overview of Secure Associations
Setting IIOP/TLS Association Options
Secure Invocation Policies
Association Options

CONTENTS

138
139
142
145

147
148
150
151
152
153
155
157
158
16l
164
165
166
171

175
176
177
181
184
185
186
187
189
191
192
193

195
196
198
199
200

CONTENTS

Choosing Client Behavior

Choosing Target Behavior

Hints for Setting Association Options
Specifying IIOP/TLS Cipher Suites

Supported Cipher Suites

Setting the Mechanism Policy

Constraints Imposed on Cipher Suites
Caching IIOP/TLS Sessions

Chapter 13 Principal Propagation
Introduction to Principal Propagation
Configuring
Programming
Interoperating with .NET

Explicitly Declaring the Principal Header
Modifying the SOAP Header

Chapter 14 Programming Authentication
Propagating a Username/Password Token
Propagating a Kerberos Token

Chapter 15 Configuring the Artix Security Plug-In
The Artix Security Plug-In
Configuring an Artix Configuration File
Configuring a WSDL Contract

Chapter 16 Developing an iSF Adapter
iSF Security Architecture
iSF Server Module Deployment Options
iSF Adapter Overview
Implementing the 1S2Adapter Interface
Deploying the Adapter
Configuring iSF to Load the Adapter
Setting the Adapter Properties
Loading the Adapter Class and Associated Resource Files

Vi

202
204
206
210
211
214
216
219

221
222
223
226
229
230
232

235
236
241

247
248
250
252

255
256
260
261
262
272
273
274
275

CONTENTS

Appendix A Artix Security 277
Applying Constraints to Certificates 279
initial_references 281
plugins:asp 282
plugins:atli2_tls 285
plugins:csi 286
plugins:gsp 287
plugins:http 291
plugins:iiop_tls 295
plugins:kdm 299
plugins:kdm_adm 301
plugins:login_client 302
plugins:login_service 303
plugins:schannel 304
plugins:security 305
policies 306
policies:asp 312
policies:csi 313
policies:iiop_tls 316
principal_sponsor 326
principal_sponsor:csi 330

Appendix B iSF Configuration 333
Properties File Syntax 334
iSF Properties File 335
logdj Properties File 356

Appendix C ASN.1 and Distinguished Names 359
ASN.1 360
Distinguished Names 361

Appendix D Action-Role Mapping DTD 365

Appendix E OpenSSL Utilities 369
Using OpenSSL Utilities 370

The x509 Utility 371

The req Utility 373

vii

CONTENTS

The rsa Utility
The ca Utility

The OpenSSL Configuration File
[req] Variables
[ca] Variables
[policy] Variables
Example openssl.cnf File

Appendix F bus-security C++ Context Data
Appendix G bus-security Java Context Data

Appendix H License Issues
OpenSSL License

Index

viii

375
377
379
380
381
382
383

385

391

397
398

401

List of Tables

Table 1: LDAP Properties in the com.iona.isp.adapter.LDAP.param Scope
Table 2: Description of Different Types of Association Option

Table 3: Setting EstablishTrustinTarget and EstablishTrustinClient Association Options
Table 4: Setting Quality of Protection Association Options

Table 5: Setting the NoProtection Association Option

Table 6: Cipher Suite Definitions

Table 7: Association Options Supported by Cipher Suites

Table 8: The Artix Security Plug-In Configuration Variables

Table 9: <bus-security:security> Attributes

Table 10: Mechanism Policy Cipher Suites

Table 11: Mechanism Policy Cipher Suites

Table 12: Commonly Used Attribute Types

106
206
207
208
209
212
217
250
252
308
320
362

LIST OF TABLES

List of Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4.
Figure b:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Overview of the Secure HelloWorld Example

A HTTPS Connection in the HelloWorld Example
An 1IOP/TLS Connection in the HelloWorld Example
The Security Layer in the HelloWorld Example
Protocol Layers in a HTTP-Compatible Binding
Protocol Layers in a SOAP Binding

Protocol Layers in a CORBA Binding

Example of an Application with Multiple Bindings
HTTP-Compatible Binding Security Layers

Figure 10: Overview of Certificate-Based Authentication with HTTPS
Figure 11: Overview of Security for SOAP Bindings

Figure 12: A Secure CORBA Application within the Artix Security Framework
Figure 13: Two-Tier CORBA System Using CSI Credentials

Figure 14: Three-Tier CORBA System Using CSIv2

Figure 15: Overview of Certificate-Based Authentication

Figure 16: Client Requesting an SSO Token from the Login Service

Figure 17: Overview of Username/Password Authentication without SSO

Figure 18: Overview of Username/Password Authentication with SSO

Figure 19: An iSF Federation Scenario

Figure 20: Architecture of an Artix security domain

Figure 21: Server View of Artix authorization realms

Figure 22: Role View of Artix authorization realms

Figure 23: Assignment of Realms and Roles to Users Janet and John

Figure 24: Locally Deployed Action-Role Mapping ACL File
Figure 25: A Certificate Chain of Depth 2
Figure 26: A Certificate Chain of Depth 3

11
18
29
30
30
32
36
49
54
58
66
72
79
87
89
90
117
125
128
129
130
138
153
154

Xi

LIST OF FIGURES

Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:

Xii

Elements in a PKCS#12 File

Target Authentication Only

Mutual Authentication

Configuration of a Secure Association
Constraining the List of Cipher Suites

Overview of the Artix Security Service

iSF Server Module Deployed as a CORBA Service

155
177
181
197
216
257
260

Preface

What is Covered in this Book

This book describes how to develop and configure secure Artix solutions.

Who Should Read this Book

This book is aimed at C++ developers who are developing Artix client and
server applications. The C++ API described in this book can be used with
any Artix binding or transport (CORBA, SOAP and so on). It is assumed that
the reader has a good knowledge of C++ and an elementary understanding
of WSDL and XML concepts.

Related Documentation
The Artix library includes the following books:

Artix Tutorial

Getting Started with Artix Encompass

Getting Started with Artix Relay

Getting Started with Artix Java

Designing Artix Solutions with Artix Designer
Designing Artix Solutions from the Command Line
Deploying and Managing Artix Solutions
Developing Artix Applications in C++

Developing Artix Applications in Java

Artix Security Guide

Xiii

PREFACE

Xiv

The latest updates to the Artix documentation can be found at http: //
i ona. coni docs.

Online Help

Artix includes comprehensive online help, providing:

® Detailed step-by-step instructions on how to perform important tasks.

® Adescription of each screen.

® A comprehensive index and glossary.
® Afull search feature.

® Context-sensitive help.

The Help menu in Artix Designer provides access to this online help.

Suggested Path for Further Reading

If you are new to Artix, we suggest you read the documentation in the
following order:

1. Getting Started with Artix Encompass

The Getting Started book describes the basic concepts behind Artix. It

also provides details on installing the system and a detailed walk
through for developing a C++ Web Service.

2. Artix Tutorial

The Tutorial guides you through programming Artix applications
against all of the supported transports.

3. Deploying and Managing Artix Solutions

The deployment guide describes deploying Artix enabled systems. It
provides detailed examples for a number of typical use cases.

4. Designing Artix Solutions with Artix Designer

The Artix Designer book describes how to use the Artix GUI to describe

your services in an Artix contract.
5. Developing Artix Applications in C++/Java

The development guide discusses the technical aspects of
programming applications using the Artix API.

http://iona.com/docs
http://iona.com/docs

PREFACE

6. Designing Artix Solutions from the Command Line

This book provides detailed information about the WSDL extensions
used in Artix contracts and explains the mappings between data types
and Artix bindings.

Additional Resources for Information

The IONA knowledge base (http://www.iona.com/support/knowledge base/
index.xml) contains helpful articles, written by IONA experts, about Artix
and other products. You can access the knowledge base at the following
location:

The IONA update center (http://www.iona.com/support/updates/index.xml)
contains the latest releases and patches for IONA products.

If you need help with this or any other IONA products, contact IONA at
suppor t @ona. com Comments on IONA documentation can be sent to
docs-support@iona.com .

XV

mailto:support@iona.com
http://www.iona.com/support/knowledge_base/index.xml
http://www.iona.com/support/updates/index.xml

PREFACE

Typographical Conventions
This book uses the following typographical conventions:

Constant width

Italic

Xvi

Constant width (courier font) in normal text
represents portions of code and literal names of items
such as classes, functions, variables, and data
structures. For example, text might refer to the
QORBA: : (hj ect class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#i ncl ude <stdi o. h>

Italic words in normal text represent emphasis and
new terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your
particular system. For example:

% cd /users/your_name

Note: Some command examples may use angle
brackets to represent variable values you must
supply. This is an older convention that is replaced
with italic words or characters.

PREFACE

Keying Conventions
This book uses the following keying conventions:

No prompt

%

[1]

{3}

When a command’s format is the same for multiple
platforms, a prompt is not used.

A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

The notation > represents the DOS or Windows
command prompt.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

Brackets enclose optional items in format and syntax
descriptions.

Braces enclose a list from which you must choose an
item in format and syntax descriptions.

A vertical bar separates items in a list of choices
enclosed in { } (braces) in format and syntax
descriptions.

xvii

PREFACE

Xviii

In this chapter

CHAPTER 1

Getting Started
with Artix Security

This chapter introduces features of Artix security by explaining
the architecture and configuration of the secure HelloWorld
demonstration in some detail.

This chapter discusses the following topics:

Security for SOAP Bindings page 2

CHAPTER 1 | Getting Started with Artix Security

Security for SOAP Bindings

Overview This section provides a brief overview of how the Artix Security Framework
provides security for SOAP bindings between Artix applications. The Artix
security framework is a comprehensive security framework that supports
authentication and authorization using data stored in a central security
service (the Artix security service). This discussion is illustrated by reference
to the secure HelloWorld demonstration.

In this section This section contains the following subsections:
Secure Hello World Example page 3
HTTPS Connection page 6
IIOP/TLS Connection page 11
Security Layer page 18

Security for SOAP Bindings

Secure Hello World Example

Overview This section provides an overview of the secure HelloWorld demonstration,
which introduces several features of the Artix Security Framework. In
particular, this demonstration shows you how to configure a typical Artix
client and server that communicate with each other using a SOAP binding
over a HTTPS transport. Figure 1 shows all the parts of the secure
HelloWorld system, including the various configuration files.

rem > Artix Client rommmn > Artix Server
1 1
|] HTTP Basic Authentication |)
o3 Security layer '-------i Security layer G 3
1 1 1
1 1 1
HTTPS
P--- > HTTPS - ® HTTPS | IOP/TLS i
| : ~ |
1 1 | 1
1 1 | 1
H H : H
WSDL WSDL X.509 ARM
Client copy Server copy Cert for HTTPS hello_warld_action_role_mapping.xml
R Artix Security |
"l File Service
User Data Adapter
IIOP/TLS <
is2_user_password_file.txt
Cert for security service is2.properties

Figure 1: Overview of the Secure HelloWorld Example

CHAPTER 1 | Getting Started with Artix Security

Location The secure HelloWorld demonstration is located in the following directory:
ArtixInstallDirl arti x/ Version/ denos/ security/ful | _security

Main elements of the example The main elements of the secure HelloWorld example shown in Figure 1
are, as follows:

® HelloWorld client.

® HelloWorld server.

® Artix security service.
® File adapter.

HelloWorld client The HelloWorld client communicates with the HelloWorld server using
SOAP over HTTPS, thus providing confidentiality for transmitted data. In
addition, the HelloWorld client is configured to use HTTP BASIC
authentication to transmit a username and a password to the server.

HelloWorld server The HelloWorld server employs two different kinds of secure transport,
depending on which part of the system it is talking to:
® HTTPS—to receive SOAP invocations securely from the HelloWorld
client.
®* |IOP/TLS—to communicate securely with the Artix security service,
which contains the central store of user data.

Artix security service The Artix security service manages a central repository of security-related
user data. The Artix security service can be accessed remotely by Artix
servers and offers the service of authenticating users and retrieving
authorization data.

File adapter The Artix security service supports a number of adapters that can be used to
integrate with third-party security products (for example, an LDAP adapter
and a SiteMinder adapter are available). This example uses the /SF file
adapter, which is a simple adapter provided for demonstration purposes.

WARNING: The file adapter is provided for demonstration purposes only.
IONA does not support the use of the file adapter in a production
environment.

Security layers

HTTPS layer

IIOP/TLS layer

Security layer

Security for SOAP Bindings

To facilitate the discussion of the HelloWorld security infrastructure, it is
helpful to analyze the security features into the following layers:

® HTTPS layer.
® |IOP/TLS layer.
® Security layer.

The HTTPS layer provides a secure transport layer for SOAP bindings. In
Artix, the HTTPS transport is configured by editing the WSDL contract (both
the client copy and the server copy).

For more details, see “HTTPS Connection” on page 6.

The IIOP/TLS layer consists of the OMG'’s Internet Inter-ORB Protocol (IIOP)
combined with the SSL/TLS protocol. The IIOP/TLS transport can be used
either with CORBA bindings or with the Artix Tunnel plug-in. In Artix, the
IIOP/TLS is configured by editing the arti x. cf g (or arti x- secur e. cf g) file.

For more details, see “IlOP/TLS Connection” on page 11.

The security layer provides support for a simple username/password
authentication mechanism, a principal authentication mechanism and
support for authorization. A security administrator can edit an action-role
mapping file to restrict user access to particular WSDL port types and
operations.

For more details, see “Security Layer” on page 18.

CHAPTER 1 | Getting Started with Artix Security

HTTPS Connection

Overview Figure 2 shows an overview of the HelloWorld example, focusing on the
elements relevant to the HTTPS connection. HTTPS is used on the SOAP
binding between the Artix client and the Artix server.

~---> Artix Client pmomes > Artix Server
| N | N
v ITTTTTTT s 1 LTTTTTTTTTTTTTTTTrTeT
:r----> Security layer i_ N Security layer
| . . VTt
! HTTPS i :
o-- HTTPS — ¥ HTTPS | IIOP/TLS :
i | N
| ! '
| ! |
: : '

WSDL WSDL X.509

o
]
=2
Q
o
]
<

Server copy Cert for HTTPS

Figure 2: A HTTPS Connection in the HelloWorld Example

OpenSSL toolkit HTTPS transport security is provided by the OpenSSL toolkit, which is a
publicly available implementation of the SSL protocol.

The OpenSSL libraries (1i beay. dI | and ssl eay. dl | on Windows) are
provided with Artix. The version of the OpenSSL libraries provided with Artix
are, however, subject to certain restrictions as follows:

® |DEA is not supported.

® Certain encryption suites are not supported.

HTTPS cipher suites

Target-only authentication

Client HTTPS configuration

Security for SOAP Bindings

The OpenSSL libraries provided with Artix support the following cipher
suites, which can be used by the HTTPS protocol:
® Null encryption, integrity-only ciphers:

NULL- M5

NULL- SHA
® Standard ciphers:

RC4- SHA

RC4- M6

DES- CBC3- SHA

DES- CBG SHA

EXP- DES- CBG- SHA

EXP- R22- CBG- M5

EXP- RCA- M6

EDH RSA- DES- CBG- SHA

EDH DSS- DES- CBG- SHA

EXP- EDH RSA- DES- CBC

EXP- EDH DSS- DES- CBG- SHA

EDH RSA- DES- CBC3- SHA

EDH DSS- DES- CBC3- SHA

The HelloWorld example is configured to use target-only authentication on
the HTTPS connection. That is, during the TLS handshake, the server
authenticates itself to the client (using an X.509 certificate), but the client
does not authenticate itself to the server. Hence, there is no X.509
certificate associated with the client.

Example 1 shows how to configure the client side of a HTTPS connection in
Artix, in the case of target-only authentication.

Example 1: WSDL Contract with Client HTTPS Configuration

<defi ni ti ons nane="Hel | oWr| dServi ce"
t ar get Namespace="ht t p: // xm bus. com Hel | oWr | d"
xm ns: soap="ht t p: / / schenas. xm soap. or g/ wsdl / soap/ "

xm ns: htt p-conf="http://schemas. i ona. comi t ransport s/ http/ confi gu
ration" ... >

<servi ce name="Hel | oWr | dServi ce">
<port bi ndi ng="t ns: Hel | oWr | dPort Bi ndi ng"
nane="Hel | oVr | dPort ">
<soap: address | ocation="https://| ocal host : 55012"/ >

[

2 <http-conf:client

CHAPTER 1 | Getting Started with Artix Security

Example 1: WSDL Contract with Client HTTPS Configuration

3 UseSecur eSocket s="t r ue"
4 TrustedRootCertificates="../certificates/openssl/x509/ cal cacert.
pent
User Nane="user _test"
Passwor d="user _passwor d"
/>
</ port >
</ servi ce>
</ definitions>

The preceding WSDL contract can be described as follows:

1. The fact that this is a secure connection is signalled here by using
https: instead of http: in the location URL attribute.

2. The <http-conf:client>tag contains all the attributes for configuring
the client side of the HTTPS connection.

3. If the UseSecur eSocket s attribute is t rue, the client will try to open a
secure connection to the server.

Note: If UseSecureSockets is f al se and the <soap: addr ess>
location URL begins with htt ps: , however, the client will
nevertheless attempt to open a secure connection.

4. The file specified by the Trust edRoot Cer ti fi cat es contains a
concatenated list of CA certificates in PEM format. The client uses this
CA list during the TLS handshake to verify that the server's certificate
has been signed by a trusted CA.

Server HTTPS configuration Example 2 shows how to configure the server side of a HTTPS connection in
Artix, in the case of target-only authentication.

Example 2: WSDL Contract with Server HTTPS Configuration

<defini ti ons nane="Hel | oWr| dSer vi ce"
t ar get Namespace="ht t p: / / xm bus. coni Hel | oWr | d"
xm ns: soap="ht t p: // schenas. xm soap. or g/ wsdl / soap/ "

xm ns: htt p-conf="htt p://schenas. i ona. coni t ransports/ http/ configu
ration"

1 xm ns: bus-security="http://schenas. i ona. coni bus/ security"
>

abh wN

Security for SOAP Bindings

Example 2: WSDL Contract with Server HTTPS Configuration

<servi ce name="Hel | oWr | dServi ce">
<port bi ndi ng="t ns: Hel | oWr | dPort Bi ndi ng"
name="Hel | oWr | dPort ">
<soap: address | ocation="https://| ocal host : 55012"/ >
<htt p- conf: server
UseSecur eSocket s="t r ue"

ServerCertificate="../certificates/openssl/x509/ certs/key. cer
t. pent

ServerPrivateKey="../certificates/openssl/x509/ certs/privkey.
pent
Server Pri vat eKeyPasswor d="t est aspen”

Trust edRoot Certificates="../certificates/openssl/x509/cal cace
rt. pem
/>
</ port>
</ servi ce>

</ definitions>

The preceding WSDL contract can be described as follows:

1.

The bus-security namespace prefix must be defined here, because
this prefix is used to identify the artix security interceptor in the server's
domain configuration (see “Server domain configuration and access
control” on page 21).

The fact that this is a secure connection is signalled by using ht t ps:
instead of http: in the location URL attribute.

The <ht t p- conf: server tag contains all the attributes for configuring
the server side of the HTTPS connection.

If the UseSecur eSocket s attribute is t r ue, the server will open a port to
listen for secure connections.

Note: If UseSecureSockets is f al se and the <soap: addr ess>
location URL begins with htt ps: , however, the server will listen for
secure connections.

CHAPTER 1 | Getting Started with Artix Security

10

The Server Certifi cat e attribute specifies the server's own certificate
in PEM format. For more background details about X.509 certificates,
see “Managing Certificates” on page 147.

The Server Pri vat ekey attribute specifies a PEM file containing the
server certificate’s encrypted private key.

The Server Pri vat eKeyPasswor d attribute specifies the password to
decrypt the server certificate’s private key.

Note: The presence of the private key password in the WSDL
contract file implies that this file must be read and write-protected to
prevent unauthorized users from obtaining the password.

For the same reason, it is also advisable to remove the
<ht t p- conf : ser ver > tag from the copy of the WSDL contract that is
distributed to clients.

The file specified by the Tr ust edRoot Certi fi cat es contains a
concatenated list of CA certificates in PEM format. This attribute value
is not used in the case of target-only authentication.

Security for SOAP Bindings

IIOP/TLS Connection

Overview

Baltimore toolkit

Figure 3 shows an overview of the HelloWorld example, focusing on the
elements relevant to the IIOP/TLS connection between the Artix server and
the Artix security service. In general, the Artix security service is accessible
only through the [IOP/TLS transport.

.............

Artix Security

: : File Service
: User Data © Adapter
: PR
"""" ' IIOP/TLS «
is2_user_password_file.txt ~ t----ecoee-e- -
h
1
\
X.500

Cert for Artix security service

Figure 3: An /IOP/TLS Connection in the HelloWorld Example

IIOP/TLS transport security is provided by the Baltimore toolkit, which is a
commercial implementation of the SSL/TLS protocol.

The Baltimore toolkit supports a wide range of cipher suites—see
“Supported Cipher Suites” on page 211.

11

CHAPTER 1 | Getting Started with Artix Security

Target-only authentication

Artix server IIOP/TLS
configuration

12

The HelloWorld example is configured to use target-only authentication on
the IIOP/TLS connection between the Artix server and the Artix security
service. That is, during the TLS handshake, the Artix security service
authenticates itself to the Artix server (using an X.509 certificate), but the
Artix server does not authenticate itself to the Artix security service. Hence,
in this example there is no X.509 certificate associated with the IIOP/TLS
transport in the Artix server.

WARNING: For a real deployment, you must modify the configuration of
the Artix security service so that it requires mutual authentication.
Otherwise, your system will be insecure.

The Artix server’s IIOP/TLS transport is configured by the settings in the
ArtixInstallDirl arti x/ 2. 0/ et ¢/ domai ns/ art i x- secur e. cf g file. Example 3
shows an extract from the arti x- secure. cf g file, highlighting some of the
settings that are important for the HelloWorld Artix server.

Example 3: Extract from the Artix Server IIOP/TLS Configuration

artix-secure.cfg File
secure_artix

{

policies:trusted_ca |list_policy =
"Clartix/artix/1.2/denos/ secure_hel |l o_worl d/http_soap/certi f
icates/tls/x509/trusted_ca_lists/ca_listl. peni;

initial _references:| T SecurityService:reference =
"corbal oc:iiops: 1. 2@ocal host : 55020, it _iiops: 1. 2@ ocal host : 55
020/ 1 T_SecurityService";

denos

{
hel | o_worl d
{
11 CP/ TLS Settings
orb plugins = ["xmfile_|log_streamt, "iiop_profile",
"giop", "iiop_tls", "soap", "http", "tunnel", "ng", "ws_orb",
"fixed"];

bi ndi ng: cli ent _binding_list = ["OIS+PQA Col oc",
"PQA Col oc", "OTS+td CP+I I CP", "A CPH I CP', "A CP+l | CP_TLS'];

Security for SOAP Bindings

Example 3: Extract from the Artix Server IIOP/TLS Configuration

I

princi pal _sponsor: use_princi pal _sponsor = "fal se";

policies:iiop_tls:client_secure_invocation_policy:requires =
["Integrity", "Confidentiality", "DetectReplay",
"Det ect M sordering", "EstablishTrustlnTarget"];

policies:iiop_tls:client_secure_invocation_policy:supports
["Integrity", "Confidentiality", "DetectReplay",
"Det ect M sordering", "EstablishTrustlnTarget"];

Security Layer Settings

¥

The preceding extract from the arti x. cf g file can be explained as follows:

1.

The policies:trusted_ca_list_policy variable specifies a file
containing a concatenated list of CA certificates. These CA certificates
are used to check the acceptability of any certificates received by the
Artix server over the IIOP/TLS transport. If a received certificate has not
been digitally signed by one of the CA certificates in the list, it will be
rejected by the Artix server.

For more details, see “Specifying Trusted CA Certificates” on

page 184.

This I T_Securi tyServi ce initial reference gives the location of the
Artix security service. When login security is enabled, the Artix server
uses this information to open an [IOP/TLS connection to the Artix
security service. In this example, the Artix security service is presumed
to be running on I ocal host and listening on the 55020 IP port.

Note: If you want to change the location of the Artix security service,
you should replace both instances of I ocal host : 55020 on this line. It
would also be necessary to change the listening details on the Artix
security service (see “Artix security service IIOP/TLS configuration” on
page 15).

13

CHAPTER 1 | Getting Started with Artix Security

14

The ORB pl ugi ns list specifies which of the Artix plug-ins should be
loaded into the Artix server. Of particular relevance is the fact that the
iiop_tls plug-inis included in the list (thus enabling IIOP/TLS
connections), whereas the i i op plug-in is excluded (thus disabling
plain IIOP connections).

The princi pal _sponsor settings can be used to attach a certificate to
the Artix server, which would be used to identify the server to its peers
during an [IOP/TLS handshake. In this example, however, the principal
sponsor is disabled (that is,

princi pal _sponsor: use_princi pal _sponsor="f al se").

Note: In a realistic deployment, you should enable the principal
sponsor and attach a certificate to the Artix server so that the Artix
server can identify itself to the Artix security service.

The client secure invocation policies specify what sort of secure
IIOP/TLS connections the Artix server can open when it acts in a client
role. In particular, these client invocation policies impose conditions on
the IIOP/TLS connection to the Artix security service.

For more details about the client secure invocation policy, see “Setting
IIOP/TLS Association Options” on page 198.

Note: In a realistic deployment, you should add the
Establ i shTrust I nd i ent association option to the list of supported
client invocation policies. This is needed for mutual authentication.

Independently of the [IOP/TLS settings, you also configure the security
layer using settings in the arti x- secure. cf g file. These settings are
described in “Security Layer” on page 18.

Artix security service IIOP/TLS
configuration

Security for SOAP Bindings

Example 4 shows an extract from the arti x- secure. cf g file, highlighting
the IIOP/TLS settings that are important for the Artix security service.

Example 4: Extract from the Artix security service IIOP/TLS Configuration

artix-secure.cfg File
secure_artix

{

policies:trusted ca list_policy =
"C\artix/artix/ 1.2/ denos/secure_hell o world/ http soap/certif
icates/tls/x509/trusted_ca_lists/ca listl. peni;

initial _references:| T SecurityService:reference =
"corbal oc:iiops:1.2@ocal host: 55020, it_iiops: 1. 2@ ocal host : 55
020/ 1 T_Securi t yServi ce";

security

{
|1 OP/TLS Settings
princi pal _sponsor: use_pri nci pal _sponsor = "true";
princi pal _sponsor: auth_method_id = "pkcsl2 file";

princi pal _sponsor: aut h_met hod_data =
["fil ename=C \artix/artix/1.2/ denos/ secure_hell o_world/ http_s
oap/ certificates/tls/x509/certs/services/adm ni strator.pl2",
"password _file=C\artix/artix/1.2/denmos/secure_hel | o_worl d/ ht
tp_soap/ certificates/tls/x509/ certs/services/adm ni strator. pw
f 15

pol i ci es:target _secure_i nvocation_policy:requires =
["NoProtection"];

policies:target secure_i nvocation_policy: supports =
["NoProtection", "Confidentiality", "EstablishTrustlnTarget",
"Establ i shTrustInQient", "DetectMsordering",
"Det ect Repl ay", "Integrity"];

policies:client_secure_invocation_policy:requires =
["NoProtection"];

policies:client_secure_invocation_policy:supports =
["NoProtection", "Confidentiality", "EstablishTrustlnTarget",
"Establ i shTrustInQient", "DetectMsordering",
"Det ect Repl ay", "Integrity"];

policies:all ow unauthenticated clients policy = "true";

15

CHAPTER 1 | Getting Started with Artix Security

Example 4: Extract from the Artix security service IIOP/TLS Configuration

Ik

orb _plugins = ["local _log streant, "iiop_profile", "giop",
"iiop_tls"];

plugins:security:iiop_tls:port = "55020";

pl ugi ns: security:iiop_tls:host = "l ocal host";

The preceding extract from the arti x. cf g file can be explained as follows:

1.

16

The policies:trusted_ca_list_policy variable specifies a file
containing a concatenated list of CA certificates. These CA certificates
are used to check the acceptability of any certificates received by the
Artix security service over the IIOP/TLS transport. If a received
certificate has not been digitally signed by one of the CA certificates in
the list, it will be rejected by the Artix security service.

The princi pal _sponsor settings are used to attach an X.509
certificate to the Artix security service. The certificate is used to identify
the Artix security service to its peers during an [IOP/TLS handshake.

In this example, the Artix security service’s certificate is stored in a
PKCS#12 file, adm ni strat or. p12, and the certificate’s private key
password is stored in another file, adm ni strat or. pwf .

For more details about configuring the IIOP/TLS principal sponsor, see
“principal_sponsor Namespace” on page 260 and “Providing a
Certificate Pass Phrase” on page 186.

Note: The certificate format used by the IIOP/TLS transport
(PKCS#12) differs from the format used by the HTTPS transport
(PEM).

Security for SOAP Bindings

The target secure invocation policies specify what sort of secure
IIOP/TLS connections the Artix security service can accept when it acts
in a server role. For more details about the target secure invocation
policy, see “Setting IIOP/TLS Association Options” on page 198.

WARNING: The target secure invocation policies shown here are too weak
for a realistic deployment of the Artix security service. In particular, you
should at least remove support for NoPr ot ecti on and require

Est abl i shTrust I nd i ent. For example, see “Mutual Authentication” on
page 181.

4.

The client secure invocation policies specify what sort of secure
IIOP/TLS connections the Artix security service can open when it acts
in a client role.

The ORB pl ugi ns list specifies which plug-ins should be loaded into
the Artix security service. Of particular relevance is the fact that the
iiop_tls plug-inis included in the list (thus enabling IIOP/TLS
connections), whereas the i i op plug-in is excluded (thus disabling
plain IIOP connections).

If you want to relocate the Artix security service, you must modify the
pl ugi ns: security:iiop_tls:host and

pl ugi ns: security:iiop_tls:port settings to specify, respectively, the
host where the server is running and the IP port on which the server
listens for secure IIOP/TLS connections.

17

CHAPTER 1 | Getting Started with Artix Security

Security Layer

Overview

18

Figure 4 shows an overview of the HelloWorld example, focusing on the
elements relevant to the security layer. The security layer, in general, takes
care of those aspects of security that arise after the initial SSL/TLS
handshake has occurred and the secure connection has been set up.

Artix Client

P > Artix Server

Security layer

HTTP Basic Authentication

Security layer

Client copy

HTTPS

T
'
'
'
'
'
L

Server copy heIIo_wérId_action_role_mapping.xmI

N Artix Security
" File Service
User Data Adapter
IIOP/TLS

is2_user_password_file.txt

is2.properties

Figure 4: The Security Layer in the HelloWorld Example

HTTP BASIC login

Security for SOAP Bindings

The security layer normally uses a simple username/password combination
for authentication, because clients usually do not have a certificate with
which to identify themselves. The username and password are sent along
with every operation, enabling the Artix server to check every invocation and
make fine-grained access decisions.

The mechanism that the Artix client uses to transmit a username and
password over a SOAP binding is HTTP BASIC login. This is a standard login
mechanism commonly used by Web browsers and Web services. On its
own, HTTP BASIC login would be relatively insecure, because the username
and password would be transmitted in plaintext. When combined with the
HTTPS protocol, however, the username and password are transmitted
securely over an encrypted connection, thus preventing eavesdropping.

The following extract from the client copy of the WSDL contract shows how
the User Nane and Passwor d attributes in the <htt p- conf: cl i ent > tag set
the HTTP BASIC login parameters for the Artix SOAP client.

<defi ni ti ons nane="Hel | oWr | dServi ce"
t ar get Namespace="ht t p: // xm bus. com Hel | oWr | d"
xm ns: soap="ht t p: / / schenas. xm soap. or g/ wsdl / soap/ "

xm ns: http-conf="http://schenas.iona.conmtransports/http/configu
ration" ... >

<servi ce name="Hel | oWr | dServi ce">
<port bi ndi ng="t ns: Hel | oWr | dPort Bi ndi ng"
name="Hel | oWr | dPort " >
<soap: address | ocation="https://| ocal host:55012"/>
<http-conf:client

User Nane="user _test"
Passwor d="user _passwor d"
/>
</ port>
</ servi ce>
</ definitions>

19

CHAPTER 1 | Getting Started with Artix Security

AuthenticationthroughtheiSF file On the server side, the Artix server delegates authentication to the Artix

adapter security service, which acts as a central repository for user data. The Artix
security service is configured by the i s2. properti es file, whose location is
specified in the arti x- secure. cf g file as follows:

artix-secure.cfg File
secure_artix {

security {
pl ugi ns: j ava_server: system properties =

["org. ong. CORBA. CRBA ass=com i ona. corba. art. artinpl. CRBI npl ",
"org. onmg. CCRBA. CRBSI ngl et ond ass=com i ona. corba. art. artinpl. O
RBSi ngl et on",
"is2.properties=C\artix/artix/1.2/denos/secure_hell o_world/h
ttp_soap/ bin/is2. properties.Fl LE",
"java.endorsed. dirs=C\artix/artix/1.2/1ib/endorsed"];

}s
Ik

In this example, the i s2. properti es file specifies that the Artix security
service should use a file adapter. The file adapter is configured as follows:

is2. properties File

TR

#

File Adapter Properties

Hit

TR

comiona.isp.adapter.file.class=comiona.security.is2adapter.fil
e. Fi | eAut hAdapt er

comiona.isp.adapter.file. parans=fil ename

comiona.isp.adapter.file. paramfil enane=../config/is2_user_pass
word_file.txt

20

Server domain configuration and
access control

Security for SOAP Bindings

The comiona. i sp. adapter. fil e. paramfil enane property is used to
specify the location of a file, i s2_user _password_fi | e. t xt, which contains
the user data for the iSF file adapter. Example 5 shows the contents of the
user data file for the secure HelloWorld demonstration.

Example 5: User Data from the is2_user_password _file.txt File
<?xm version="1.0" encodi ng="utf-8" ?>

<ns: securityl nfo xm ns: ns="ur n: www xm bus- com si npl e-security">
<user s>
<user name="user_test" password="user_password">
<r eal m nane="| ONAQ obal Real ni >
<rol e name="| ONAUser Rol e"/ >
<rol e name="Paul Onl yRol e"/>
</real n»
</ user >
</ user s>
</ ns: securityl nfo>

In order for the login step to succeed, an Artix client must supply one of the
usernames and passwords that appear in this file. The realm and role data,
which also appear, are used for authorization and access control.

For more details about the iSF file adapter, see “Managing a File Security
Domain” on page 132.

WARNING: The file adapter is provided for demonstration purposes only.
IONA does not support the use of the file adapter in a production
environment.

On the server side, authentication and authorization must be enabled by the
appropriate settings in the arti x-secure. cf g file. Example 6 explains the
security layer settings that appear in the arti x-secure. cf g file.

Example 6: Security Layer Settings from the artix-secure.cfg File

artix-secure.cfg File
secure_artix

{
denos

{

21

CHAPTER 1 | Getting Started with Artix Security

Example 6: Security Layer Settings from the artix-secure.cfg File

hell o_world

{
11 QP TLS Settings

Security Layer Settings
plugins:artix_security:shlib_name="it_security_plugin";

1 bi ndi ng: arti x: server_request _interceptor_list=
"bus-security:security";
2 orb plugins = ["xmfile_|log_streamt, "iiop_profile",
"giop", "iiop_tls", "soap", "http", "artix_security"];
3 pol i ci es: asp: enabl e_aut hori zati on = "true";
4 pl ugi ns: i s2_aut hori zati on: acti on_rol e_mappi ng =
"file://C\artix/artix/ 1.2/ denos/secure_hel |l o_worl d/ http_soap
/ confi g/ hell oworl d_action_rol e_mappi ng. xm " ;
5 pl ugi ns: asp: aut hori zati on_real m = "| ONAQ obal Real nf;
6 pl ugi ns: asp: security_type = "USERNAME PASSWRD';
IH
iE
ik
The security layer settings from the arti x- secur e. cf g file can be explained
as follows:
1. The Artix server request interceptor list must include the

22

bus- security: security interceptor, which provides part of the
functionality for the Artix security layer.

Note: The bus-security namespace prefix must be defined in the
application WSDL contract—see “Server HTTPS configuration” on
page 8.

The server's orb_pl ugi ns list must include the arti x_security
plug-in.

The pol i ci es: asp: enabl e_aut hori zat i on variable is set to t rue to
enable authorization.

This setting specifies the location of an action-role mapping file that
provides fine-grained access control to operations and port types.

Security for SOAP Bindings

5. The Artix authorization realm determines which of the user's roles will
be considered during an access control decision. Artix authorization
realms provide a way of grouping user roles together. The
| ONAQ obal Real m(the default) includes all user roles.

6. The pl ugi ns: asp: security_type variable specifies which kind of user
data is used for the purposes of authentication and authorization on
the server side (in this case, USERNAME_PASSWORD indicates that HTTP
Basic Login is supported). This configuration setting is necessary,
because the Artix security framework supports different mechanisms
for propagating user identities and some of these mechanisms can be
activated simultaneously.

Example 7 shows the contents of the action-role mapping file for the
HelloWorld demonstration.

Example 7: Action-Role Mapping file for the HelloWorld Demonstration

<?xm version="1.0" encodi ng="UTF- 8" ?>
<! DOCTYPE secur e- syst em SYSTEM "act i onr ol emappi ng. dt d">
<secur e- syst en»

<acti on-r ol e- mappi ng>

<server - nane>secur e_arti x. denos. hel | o_wor | d</ ser ver - nane>
<i nterface>

<nanme>ht t p: // xm bus. cond Hel | oWor | d: Hel | oWbr | dPor t Type</ name>
<action-rol e>
<acti on- name>sayH </ act i on- name>
<r ol e- name>l ONAUser Rol e</r ol e- name>
</ action-rol e>
<action-rol e>
<act i on- name>gr eet Me</ act i on- nane>
<r ol e- name>l ONAUser Rol e</r ol e- name>
</ action-rol e>
</interface>

</ action-rol e- mappi ng>
</ secur e- syst en»

For a detailed discussion of how to define access control using action-role
mapping files, see “Managing Users, Roles and Domains” on page 123.

23

CHAPTER 1 | Getting Started with Artix Security

24

In this chapter

CHAPTER 2

Introduction to the
Artix Security
Framework

This chapter describes the overall architecture of the Artix
Security Framework.

This chapter discusses the following topics:

Artix Security Architecture page 26

Caching of Credentials page 33

25

CHAPTER 2 | Introduction to the Artix Security Framework

Artix Security Architecture

Overview The Artix security architecture embraces a variety of protocols and security
technologies. This section provides a brief overview of the security features
supported by the different kinds of Artix bindings.

In this section This section contains the following subsections:
Types of Security Credential page 27
Protocol Layers page 29
Security Layer page 31
Using Multiple Bindings page 32

26

Artix Security Architecture

Types of Security Credential

Overview

WSSE username token

WSSE Kerberos token

CORBA Principal

The following types of security credentials are supported by the Artix
security framework:

® WSSE username token.

® WSSE Kerberos token.

® CORBA Principal.

¢ HTTP Basic Authentication.

® X.509 certificate.

® CSl authorization over transport.
® CSl identity assertion.

® SSO token.

The Web service security extension (WSSE) UsernameToken is a
username/password combination that can be sent in a SOAP header. The
specification of WSSE UsernameToken is contained in the WSS
UsernameToken Profile 1.0 document from OASIS (www.oasis-open.org).

This type of credential is available for the SOAP binding in combination with
any kind of Artix transport.

The WSSE Kerberos specification is used to send a Kerberos security token
in a SOAP header. If you use Kerberos, you must also configure the Artix
security service to use the Kerberos adapter.

This type of credential is available for the SOAP binding in combination with
any kind of Artix transport.

The CORBA Principal is a legacy feature originally defined in the early
versions of the CORBA GIOP specification. The CORBA Principal is
effectively just a username (no password can be propagated).

This type of credential is available only for the CORBA binding and for SOAP
over HTTP.

27

http://www.oasis-open.org/committees/download.php/5074/oasis-200401-wss-username-token-profile-1.0.pdf
http://www.oasis-open.org/committees/download.php/5074/oasis-200401-wss-username-token-profile-1.0.pdf
www.oasis-open.org

CHAPTER 2 | Introduction to the Artix Security Framework

HTTP Basic Authentication

X.509 certificate

CSI authorization over transport

CSI identity assertion

SSO token

28

HTTP Basic Authentication is used to propagate username/password
credentials in a HTTP header.

This type of credential is available to any HTTP-compatible binding.

Two different kinds of X.509 certificate-based authentication are provided,

depending on the type of Artix binding, as follows:

® HTTP-compatible binding—in this case, the common name (CN) is
extracted from the X.509 certificate’s subject DN. A combination of the
common name and a default password is then sent to the Artix security
service to be authenticated.

® CORBA binding—in this case, authentication is based on the entire
X.5009 certificate, which is sent to the Artix security service to be
authenticated.

This type of credential is available to any transport that uses SSL/TLS.

The OMG’s Common Secure Interoperability (CSI) specification defines an
authorization over transport mechanism, which passes username/password
data inside a GIOP service context. This kind of authentication is available
only for the CORBA binding.

This type of credential is available only for the CORBA binding.

The OMG’s Common Secure Interoperability (CSI) specification also defines
an identity assertion mechanism, which passes username data (no
password) inside a GIOP service context. The basic idea behind CSI identity
assertion is that the request message comes from a secure peer that can be
trusted to assert the identity of a user. This kind of authentication is
available only for the CORBA binding.

This type of credential is available only for the CORBA binding.

An SSO token is propagated in the context of a system that uses single
sign-on. For details of the Artix single sign-on feature, see “Single Sign-On”
on page 85.

Artix Security Architecture

Protocol Layers

Overview

HTTP-compatible binding

Within the Artix security architecture, each binding type consists of a stack
of protocol layers, where a protocol layer is typically implemented as a
distinct Artix plug-in. This subsection describes the protocol layers for the
following binding types:

® HTTP-compatible binding.

® SOAP binding.

® CORBA binding.

HTTP-compatible means any Artix binding that can be layered on top of the
HTTP protocol. Figure 5 shows the protocol layers and the kinds of
authentication available to a HTTP-compatible binding.

HTTP-compatible
binding

HTTP 14— HTTP Basic Authentication

SSL/TLS

Figure 5: Protocol Layers in a HTTP-Compatible Binding

29

CHAPTER 2 | Introduction to the Artix Security Framework

SOAP binding

CORBA binding

30

The SOAP binding is a specific example of a HTTP-compatible binding. The
SOAP binding is special, because it defines several additional credentials
that can be propagated only in a SOAP header. Figure 6 shows the protocol
layers and the kinds of authentication available to the SOAP binding over

HTTP.

l«—— WSSE UsernameToken
SOAP l¢—— WSSE Kerberos
«—— CORBA Principal
HTTP 14— HTTP Basic Authentication
X.509
SSL/TLS -—

Figure 6: Protocol Layers in a SOAP Binding

For the CORBA binding, there are only two protocol layers (CORBA binding
and IIOP/TLS). This is because CORBA is compatible with only one kind of
message format (that is, GIOP). Figure 7 shows the protocol layers and the
kinds of authentication available to the CORBA binding.

CORBA
binding

GIOP

IIOP/TLS

«—— CSI authentication over transport
[«—— CSI identity assertion
«—— CORBA Principal

X.509

Figure 7: Protocol Layers in a CORBA Binding

Artix Security Architecture

Security Layer

Overview

Authentication

Authorization

Single sign-on

Artix security plug-in

GSP security plug-in

The security layer is responsible for implementing a variety of different
security features with the exception, however, of propagating security
credentials, which is the responsibility of the protocol layers. The security
layer is at least partially responsible for implementing the following security
features:

¢ Authentication.

® Authorization.

® Single sign-on.

On the server side, the security layer selects one of the client credentials (a
server can receive more than one kind of credentials from a client) and calls
the central Artix security service to authenticate the credentials. If the
authentication call succeeds, the security layer proceeds to make an
authorization check; otherwise, an exception is thrown back to the client.

The security layer makes an authorization check by matching a user’s roles
and realms against the ACL entries in an action-role mapping file. If the
user does not have permission to invoke the current action (that is, WSDL
operation), an exception is thrown back to the client.

Single sign-on is an optional feature that increases security by reducing the
number of times that a user’s credentials are sent across the network. The
security layer works in tandem with the login service to provide the single
sign-on feature.

The Artix security plug-in provides the security layer for all Artix bindings
except CORBA. The ASP security layer is loaded, if arti x_security is listed
in the or b_pl ugi ns list in the Artix domain configuration, arti x. cf g.

The GSP security plug-in provides the security layer for the CORBA binding
only. The GSP security layer is loaded, if gsp is listed in the or b_pl ugi ns list
in the Artix domain configuration, arti x. cf g.

31

CHAPTER 2 | Introduction to the Artix Security Framework

Using Multiple Bindings

Overview

Example bindings

32

Figure 8 shows an example of an advanced application that uses multiple
secure bindings.

Application

GSP

ASP security security

G2++ SOAP | CORBA

HTTP GIOP
110P/
SSL/TLS TLS

Figure 8: Example of an Application with Multiple Bindings

This type of application might be used as a bridge, for example, to link a
CORBA domain to a SOAP domain. Alternatively, the application might be a
server designed as part of a migration strategy, where the server can support
requests in multiple formats, such as G2+ +, SOAP, or CORBA.

The following bindings are used in the application shown in Figure 8:

® G2+ +—-consisting of the following layers: ASP security, G2+ +
binding, HTTP, SSL/TLS.

® SOAP—consisting of the following layers: ASP security, SOAP binding,
HTTP, SSL/TLS.

® CORBA—consisting of the following layers: GSP security, CORBA
binding, GIOP, IIOP/TLS.

Caching of Credentials

Caching of Credentials

Overview

Cache time-out

Cache size

GSP configuration variables

To improve the performance of servers within the Artix Security Framework,
both the GSP plug-in (CORBA binding only) and the artix security plug-in
(all other bindings) implement caching of credentials (that is, the
authentication and authorization data received from the Artix security
service).

The credentials cache reduces a server's response time by reducing the
number of remote calls to the Artix security service. On the first call from a
given user, the server calls the Artix security service and caches the received
credentials. On subsequent calls from the same user, the cached credentials
are used, thereby avoiding a remote call to Artix security service.

The cache can be configured to time-out credentials, forcing the server to
call the Artix security service again after using cached credentials for a
certain period.

The cache can also be configured to limit the number of stored credentials.

The following variables configure the credentials cache for CORBA bindings:
pl ugi ns: gsp: aut henti cati on_cache_si ze
The maximum number of credentials stored in the authentication
cache. If this size is exceeded the oldest credential in the cache is
removed.

A value of -1 (the default) means unlimited size. A value of 0 means
disable the cache.

pl ugi ns: gsp: aut henti cati on_cache_ti neout
The time (in seconds) after which a credential is considered stale.
Stale credentials are removed from the cache and the server must
re-authenticate with the Artix security service on the next call from that
user.

A value of -1 (the default) means an infinite time-out. A value of 0
means disable the cache.

33

CHAPTER 2 | Introduction to the Artix Security Framework

ASP configuration variables

34

The following variables configure the credentials cache for all non-CORBA

bindings:

pl ugi ns: asp: aut henti cati on_cache_si ze
The maximum number of credentials stored in the authentication
cache. If this size is exceeded the oldest credential in the cache is
removed.

A value of -1 (the default) means unlimited size. A value of 0 means
disable the cache.

pl ugi ns: asp: aut henti cati on_cache_t i meout
The time (in seconds) after which a credential is considered stale.
Stale credentials are removed from the cache and the server must
re-authenticate with the Artix security service on the next call from that
user.

A value of -1 (the default) means an infinite time-out. A value of 0
means disable the cache.

In this chapter

CHAPTER 3

Security for
HTTP-Compatible
Bindings

This chapter describes the security features supported by the
Artix HTTP plug-in. These security features are available to any
Artix binding that can be layered on top of the HTTP transport.

This chapter discusses the following topics:

Overview of HTTP Security page 36
Securing HTTP Communications with SSL/TLS page 39
HTTP Basic Authentication page 45
X.509 Certificate-Based Authentication with HTTPS page 48

35

CHAPTER 3 | Security for HTTP-Compatible Bindings

Overview of HTTP Security

Overview

Security layers

36

Figure 9 gives an overview of HTTP security within the Artix security
framework, showing the various security layers (ASP, binding layer, HTTP,
and SSL/TLS) and the different authentication types associated with the
security layers. Because many different binding types (for example, SOAP or
G2+ +) can be layered on top of HTTP, Figure 9 does not specify a
particular binding layer. Any HTTP-compatible binding could be substituted
into this architecture.

ARM

Action-role

authorization

ASP security

mapping file

authentication

HTTP-compatible
binding

HTTP Basic Authentication —»| HTTP

SSL/TLS

— |

Artix Security Service

Figure 9: HTTP-Compatible Binding Security Layers

As shown in Figure 9, a HTTP-compatible binding has the following security
layers:

SSL/TLS layer.

HTTP layer.

HTTP-compatible binding layer.
ASP security layer.

SSL/TLS layer

HTTP layer

HTTP-compatible binding layer

ASP security layer

Overview of HTTP Security

The SSL/TLS layer provides guarantees of confidentiality, message integrity,
and authentication (using X.509 certificates). The TLS functionality is
integrated into the HTTP plug-in and can be switched on or off by a WSDL
configuration setting.

The HTTP plug-in's TLS layer is configured by editing an application’s WSDL
contract.

The HTTP layer offers the option of sending username/password data in the
HTTP message header (that is, HTTP Basic Authentication).

HTTP Basic Authentication is configured by editing an application’s WSDL
contract.

The HTTP-compatible binding layer could provide additional security
features (for example, propagation of security credentials), depending on the
type of binding. The following binding types are HTTP-compatible:

® SOAP binding.

® XML format binding.

® G2+ + binding.

® Fixed record length binding.
® Tagged data binding.

® MIME binding.

The ASP security layer is implemented by the Artix security plug-in, which

provides authentication and authorization checks for all binding types,

except the CORBA binding, as follows:

® Authentication—by selecting one of the available client credentials
and calling out to the Artix security service to check the credentials.

® Authorization—Dby reading an action-role mapping (ARM) file and
checking whether a user's roles allow it to perform a particular action.

37

CHAPTER 3 | Security for HTTP-Compatible Bindings

Authentication options

HTTP Basic Authentication

X.509 certificate-based
authentication

38

The following authentication options are common to all HTTP-compatible
bindings:

® HTTP Basic Authentication.

® X.509 certificate-based authentication.

HTTP Basic Authentication works by sending a username and password
embedded in the HTTP message header. This style of authentication is
commonly used by clients running in a Web browser.

For details of HTTP Basic Authentication, see “HTTP Basic Authentication”
on page 45.

X.509 certificate-based authentication is an authentication step that is
performed in addition to the checks performed at the socket layer during the
SSL/TLS security handshake.

For details of X.509 certificate-based authentication, see “X.509
Certificate-Based Authentication with HTTPS” on page 48.

Securing HTTP Communications with SSL/TLS

Securing HTTP Communications with

SSL/TLS

Overview

Generating X.509 certificates

HTTPS client with no certificate

This subsection describes how to configure the HTTP transport to use
SSL/TLS security, a combination usually referred to as HTTPS. In Artix,
HTTPS security is implemented by the HTTP plug-in and configured by
settings in the WSDL contract.

The following topics are discussed in this subsection:
® Generating X.509 certificates.

® HTTPS client with no certificate.

® HTTPS client with certificate.

® HTTPS server configuration.

A basic prerequisite for using SSL/TLS security is to have a collection of
X.509 certificates available to identify your server applications and,
optionally, your client applications. You can generate X.509 certificates in
one of the following ways:

® Use a commercial third-party to tool to generate and manage your
X.509 certificates.

® Use the free openssl utility provided with Artix—see “Creating Your
Own Certificates” on page 157 for details of how to use it.

Example 8 shows how to configure the client side of a HTTPS connection in
Artix, in the case of target-only authentication (no client certificate).

Example 8: WSDL Contract for HTTPS Client with No Certificate

<definitions name="Hel | oWr | dServi ce"
t ar get Namespace="ht t p: // xm bus. coni Hel | oWor | d"
xn ns: soap="ht t p: // schenas. xm soap. or g/ wsdl / soap/ "

xm ns: htt p-conf="http: //schemas. i ona. conftransport s/ http/ confi gu
ration" ... >

<servi ce nane="Hel | oWbr | dServi ce" >
<port bi ndi ng="t ns: Hel | oWr | dPort Bi ndi ng"

39

CHAPTER 3 | Security for HTTP-Compatible Bindings

40

Example 8: WSDL Contract for HTTPS Client with No Certificate

nane="Hel | oWr| dPort ">
<soap: address | ocation="https://| ocal host: 55012"/ >
<http-conf:client
UseSecur eSocket s="t r ue"

TrustedRoot Certificates="../certificates/openssl/x509/cal cacert.

pent
/>
</ port >
</ servi ce>

</ definitions>

The preceding WSDL contract can be described as follows:

1.

The fact that this is a secure connection is signalled here by using
https: instead of http: in the location URL attribute.

The <nt t p- conf: cl i ent > tag contains all the attributes for configuring
the client side of the HTTPS connection.

If the UseSecur eSocket s attribute is t rue, the client will try to open a
secure connection to the server.

Note: If UseSecureSockets is fal se and the <soap: addr ess>
location URL begins with htt ps:, however, the client will
nevertheless attempt to open a secure connection.

The file specified by the Trust edRoot Certi fi cat es contains a
concatenated list of CA certificates in PEM format. The client uses this
CA list during the TLS handshake to verify that the server's certificate
has been signed by a trusted CA.

HTTPS client with certificate

Securing HTTP Communications with SSL/TLS

Alternatively, instead of setting security attributes in the

<htt p- conf: cl i ent > tag, you can add security settings to the relevant scope
of your Artix domain configuration file, arti x. cf g, as shown in Example 9
(you still have to set the <soap: addr ess> in WSDL).

Example 9: Alternative Configuration for HTTPS Client with no Certificate
Artix Domai n Configuration

;Sle.cureC//'entScope {

plugins: http:client:use secure_sockets = "true";
plugins: http:client:trusted root_certificates="../certificates/o
penssl / x509/ ca/ cacert . pent
H

Example 10 shows how to configure the client side of a HTTPS connection
in Artix, in the case of mutual authentication.

Example 10: WSDL Contract for HTTPS Client with Certificate

<defi ni ti ons nane="Hel | oWr| dServi ce"
t ar get Nanespace="ht t p: // xm bus. cond Hel | oWor | d"
xm ns: soap="ht t p: / / schermas. xm soap. or g/ wsdl / soap/ "

xm ns: http-conf="http://schenas. iona.conmtransports/http/configu
ration* ... >

<servi ce name="Hel | oWr | dServi ce">
<port bi ndi ng="t ns: Hel | oWor | dPort Bi ndi ng"
name="Hel | oWr | dPort " >
<soap: address | ocation="https://| ocal host: 55012"/ >
<htt p- conf: cl i ent
UseSecur eSocket s="t r ue"
Trust edRoot Certificates="../certificates/openssl/x509/calcacert.
pent
dientCertificate="../certificates/openssl/x509/certs/client_cer
t. pent
AientPrivateKey="../certificates/openssl|/x509/ certs/client _priv
key. pent
d i ent Pri vat eKeyPasswor d="ClientPrivKeyPass"
/>
</ port>
</ servi ce>
</ definitions>

41

CHAPTER 3 | Security for HTTP-Compatible Bindings

42

The preceding WSDL contract can be described as follows:

1. ThedientCertificate attribute specifies the client’s own certificate
in PEM format.

2. The dientPrivateKey attribute specifies a PEM file containing the
client certificate’s encrypted private key. This private key enables the
client to respond to a challenge from a server during an SSL/TLS
handshake.

3. The dientPrivat eKeyPasswor d attribute specifies the password to
decrypt the contents of the d i ent Pri vat eKey file.

Note: The presence of the private key password in the WSDL
contract file implies that this file must be read and write-protected to
prevent unauthorized users from obtaining the password.

Alternatively, instead of setting security attributes in the

<ht t p- conf: cl i ent > tag, you can add security settings to the relevant scope
of your Artix domain configuration file, arti x. cf g, as shown in Example 11
(you still have to set the <soap: addr ess> in WSDL).

Example 11: Alternative Configuration for HTTPS Client with Certificate
Artix Domai n Configuration
;S.e.cureC/ientScope {

pl ugi ns: http: client:use secure_sockets = "true";
plugins:http:client:trusted root_certificates="../certificates/o
penssl / x509/ ca/ cacert . pen
plugins:http:client:client_certificate="../certificates/openssl/
x509/ certs/client_cert. pent
plugins:http:client:client_private key="../certificates/openssl/
x509/ certs/client_privkey. pent

plugins: http:client:client_private_key_passwor d="ClientPrivKeyPas
e

I

HTTPS server configuration

[§,] A WN =

o)}

Securing HTTP Communications with SSL/TLS

Example 12 shows how to configure the server side of a HTTPS connection
in Artix.

Example 12: WSDL Contract with Server HTTPS Configuration

<defi ni ti ons nane="Hel | oWr | dServi ce"
t ar get Namespace="ht t p: // xm bus. com Hel | oVWr | d"
xm ns: soap="ht t p: / / schenas. xm soap. or g/ wsdl / soap/ "

xm ns: htt p-conf="http://schemas. i ona. comi t ransport s/ htt p/ confi gu
ration" ... >

<servi ce name="Hel | oWr | dServi ce">
<port bi ndi ng="t ns: Hel | oWr | dPort Bi ndi ng"
name="Hel | oWr | dPort ">
<soap: address | ocation="https://| ocal host : 55012"/ >
<htt p- conf: server
UseSecur eSocket s="t r ue"
ServerCertificate="../certificates/openssl/x509/certs/server_cer
t. pent
Server PrivateKey="../certificates/openssl/x509/ certs/server_priv
key. pent
Ser ver Pri vat eKeyPasswor d=" ServerPrivKeyPass"
Trust edRoot Certificates="../certificates/openssl/x509/calcacert.
pent
/>
</ port>
</ servi ce>
</ defini ti ons>

The preceding WSDL contract can be described as follows:

1. The fact that this is a secure connection is signalled by using ht t ps:
instead of http: in the location URL attribute.

2. The <http-conf: server> tag contains all the attributes for configuring
the server side of the HTTPS connection.

3. Ifthe UseSecur eSocket s attribute is t rue, the server will open a port to
listen for secure connections.

Note: If UseSecureSockets is f al se and the <soap: addr ess>
location URL begins with htt ps: , however, the server will listen for
secure connections.

43

CHAPTER 3 | Security for HTTP-Compatible Bindings

44

4. The ServerCertificate attribute specifies the server's own certificate
in PEM format. For more background details about X.509 certificates,
see “Managing Certificates” on page 147.

5. The ServerPrivat eKey attribute specifies a PEM file containing the
server certificate’s encrypted private key.

6. The ServerPrivat eKeyPasswor d attribute specifies the password to
decrypt the server certificate’s private key.

Note: The presence of the private key password in the WSDL
contract file implies that this file must be read and write-protected to
prevent unauthorized users from obtaining the password.

For the same reason, it is also advisable to remove the

<ht t p- conf : ser ver > tag from the copy of the WSDL contract that is
distributed to clients.

7. The file specified by the Trust edRoot Certi fi cat es contains a
concatenated list of CA certificates in PEM format. This attribute value
is not used in the case of target-only authentication.

Alternatively, instead of setting server security attributes in the

<htt p- conf : server > tag, you can add security settings to the relevant scope
of your Artix domain configuration file, arti x. cf g, as shown in Example 11
(you still have to set the <soap: addr ess> in WSDL).

Example 13: Alternative Configuration for HTTPS Server
Artix Donai n Configuration
.Sle.cureServerScope {

pl ugi ns: htt p: server: use_secure_sockets = "true";
pl ugins: http:server:trusted root _certificates="../certificates/o
penssl / x509/ ca/ cacert . pent
pl ugi ns: htt p: server: server_certificate="../certificates/openssl/
x509/ cert s/ server_cert. pent
pl ugi ns: http: server: server_private_key="../certificates/openssl/
x509/ cert s/ server_pri vkey. pent

pl ugi ns: ht t p: server: server _pri vat e_key_passwor d=" ServerPrivKeyPas

s
IE

HTTP Basic Authentication

HTTP Basic Authentication

Overview

HTTP Basic Authentication client
configuration

This section describes how to configure an Artix client and server to use
HTTP Basic Authentication. With HTTP Basic Authentication,
username/password credentials are sent in a HTTP header.

For more details, see the W3 specification
(http://www.w3.org/Protocols/HTTP/1.0/spec.html) for HTTP/1.0.

Example 14 shows how to configure a client WSDL contract to use HTTP
Basic Authentication.

Example 14: WSDL Contract with Client HTTP Basic Authentication

<definitions name="Hel | oWr | dServi ce"
t ar get Namespace="ht t p: // xn bus. coni Hel | oWor | d"
xn ns: soap="ht t p: / / schenas. xm soap. or g/ wsdl / soap/ "
xm ns: htt p-conf="http://schemas. i ona. conftransport s/ http/ confi gu
ration"
xm ns: bus-security="http://schenas. i ona. con bus/ securi ty"
>

<servi ce nane="Hel | oWr | dServi ce">
<port bi ndi ng="t ns: Hel | oWr | dPort Bi ndi ng"
nanme="Hel | oWr | dPort ">
<soap: address | ocation="https://| ocal host: 55012"/ >
<http-conf:client
UseSecur eSocket s="t r ue"
Trust edRoot Certi fi cates="../certificates/openssl/x509/cal cacert.
pent
User Nane="user _test"
Passwor d="user _passwor d"
/>
</ port >
</ servi ce>
</ defini ti ons>

45

http://www.w3.org/Protocols/HTTP/1.0/spec.html

CHAPTER 3 | Security for HTTP-Compatible Bindings

HTTP Basic Authentication server
configuration

46

The preceding WSDL contract can be described as follows:

1.

The bus- securi ty namespace prefix must be defined here, because
this prefix is used to identify the artix security interceptor in the server’s
domain configuration (see “HTTP Basic Authentication server
configuration” on page 46).

In this example, HTTP Basic Authentication is combined with SSL/TLS
security. This ensures that the username and password are transmitted
across an encrypted connection, protecting them from snooping.

The User Nane attribute sets the user name for the HTTP Basic
Authentication credentials.

The Passwor d attribute sets the password for the HTTP Basic
Authentication credentials.

There is no need to make any modifications to the WSDL contract for
servers that support HTTP Basic Authentication.

However, it is necessary to make modifications to the domain configuration
file, arti x. cfg (in the ArtixInstallDirl arti x/ Version/ et ¢/ domai ns
directory), as shown in Example 15.

Example 15: Artix Configuration for Server HTTP Basic Authentication

Artix Configuration File
security artix {

denos
{
hel | o_worl d
{
pl ugi ns: artix_security:shlib_nane="it_security_pl ugin";
bi ndi ng: arti x: server_request _interceptor_list=
"bus-security:security";
bi ndi ng: client_binding |ist = ["Ors+PQA Col oc",
"PQA Col oc", "OTS+tE CP+I I CP', "G CP+l I CP', "A CP+l I CP_TLS'];

orb_plugins = ["xnmfile_log_streant, "iiop_profile",
"giop", "iiop_tls", "soap", "http", "tunnel", "ng", "ws_orb",
"fixed", "artix_security"];

pl ugi ns: i s2_aut hori zati on: acti on_rol e_mappi hg =
“file://ArtixInstallDirl arti x/ 2. 0/ demos/ secure_hel | o_worl d/ http_
soap/ confi g/ hel | owor!l d_acti on_rol e_mappi ng. xm ";

pol i ci es: asp: enabl e_aut hori zation = "true";

pl ugi ns: asp: security_type = "USERNAME PASSWRD';

HTTP Basic Authentication

Example 15: Artix Configuration for Server HTTP Basic Authentication

pl ugi ns: asp: security | evel = "MESSAGE LEVEL";
pl ugi ns: asp: aut henti cati on_cache_si ze = "5";
pl ugi ns: asp: aut henti cati on_cache_ti nmeout = "10";

%
I

The preceding extract from the domain configuration can be explained as

follows:

1. The Artix server request interceptor list must include the
bus-security: security interceptor, which provides part of the
functionality for the Artix security layer.

Note: The bus-security namespace prefix must be defined in the
application WSDL contract—see “HTTP Basic Authentication client
configuration” on page 45.

2. The orb_pl ugi ns list should include the arti x_security plug-in,
which is responsible for enabling authentication and authorization.

3. The action-role mapping file is used to apply access control rules to the
authenticated user. The file determines which actions (that is, WSDL
operations) can be invoked by an authenticated user, on the basis of
the roles assigned to that user.

See “Managing Access Control Lists” on page 137 for more details.

4. The policies: asp: enabl e_aut hori zat i on variable must be set to
true to enable authorization.

5. The next two configuration variables, pl ugi ns: asp: security_type and
pl ugi ns: asp: security_l evel , are used together to specify the type of
credentials authenticated on the server side. The particular
combination of settings shown here, USERNAME_PASSWCRD and
MESSAGE LEVEL, selects the username/password credentials from the
HTTP Basic Authentication header.

6. The next pair of configuration variables configure the asp caching
mechanism. For more details, see “ASP configuration variables” on
page 34.

47

CHAPTER 3 | Security for HTTP-Compatible Bindings

X.509 Certificate-Based Authentication with
HTTPS

Overview This section describes how to enable X.509 certificate authentication for
HTTP-compatible bindings, based on a simple two-tier client/server
scenario. In this scenario, the Artix security service authenticates the client’s
certificate and retrieves roles and realms based on the identity of the
certificate subject. When certificate-based authentication is enabled, the
X.509 certificate is effectively authenticated twice, as follows:

® SSL/TLS-level authentication—this authentication step occurs during
the SSL/TLS handshake and is governed by the HTTPS configuration
settings in the WSDL contract.

® ASP security-level authentication and authorization—this
authentication step occurs after the SSL/TLS handshake and is
performed by the Artix security service working in tandem with the
artix_security plug-in.

48

X.509 Certificate-Based Authentication with HTTPS

Certificate-based authentication Figure 10 shows an example of a two-tier system, where authentication of
scenario the client’s X.509 certificate is integrated with the Artix security service.

@ SSL/TLS-level @ Apply access

authentication control
Target
"

@ Retrieve user's
realms and roles

@ aut henticate()

Artix Security Service

A4

Figure 10: Overview of Certificate-Based Authentication with HTTPS

Scenario description The scenario shown in Figure 10 can be described as follows:

Stage Description

1 | When the client opens a connection to the server, the client

sends its X.509 certificate as part of the SSL/TLS handshake

(HTTPS). The server then performs SSL/TLS-level

authentication, checking the certificate as follows:

® The certificate is checked against the server's trusted CA
list to ensure that it is signed by a trusted certification
authority.

49

CHAPTER 3 | Security for HTTP-Compatible Bindings

Stage Description

2 | The server performs security layer authentication by calling
aut henti cate() on the Artix security service, passing
username and password arguments as follows:
® Username—obtained by extracting the common name
(CN) from the client certificate’s subject DN.
® Password—obtained from the value of the
pl ugi ns: asp: def aul t _passwor d configuration variable in
the server's arti x. cf g domain configuration.
WARNING: This step is not a true authentication step,

because the password is cached on the server side. Effectively,
this authentication is performed with a dummy password.

3 | If authentication is successful, the Artix security service returns
the user’s realms and roles.

4 | The ASP security layer controls access to the target's WSDL
operations by consulting an action-role mapping file to
determine what the user is allowed to do.

HTTPS prerequisites In general, a basic prerequisite for using X.509 certificate-based
authentication is that both client and server are configured to use HTTPS.

See “Securing HTTP Communications with SSL/TLS” on page 39.

Certificate-based authentication To enable certificate-based authentication on the client side, it is sufficient
client configuration for the client to be configured to use HTTPS with its own certificate. For
example, see “HTTPS client with certificate” on page 41.

50

Certificate-based authentication
server configuration

X.509 Certificate-Based Authentication with HTTPS

A prerequisite for using certificate-based authentication on the server side is
that the server's WSDL contract is configured to use HTTPS. For example,
see “HTTPS server configuration” on page 43.

Additionally, on the server side it is also necessary to configure the ASP
security layer by editing the arti x. cf g domain configuration file (in the
ArtixlnstallDirl ar ti x/ Version/ et c/ domai ns directory), as shown in EX.

Example 16: Artix Configuration for X.509 Certificate-Based
Authentication

Artix Configuration File
security_artix {

denos
{
hel | o_worl d
{
plugins:artix_security:shlib_name="it_security plugin";
bi ndi ng: arti x: server_request _interceptor_list=

"bus-security:security";

bi nding: client_binding |ist = ["Ors+POA Col oc",
"PQA Col oc", "OTS+@ CP+l I CP', "AQ CP+H I COP', "A P+l I CP_TLS'];

orb _plugins = ["xmfile |og_streant, "iiop_profile",
"giop", "iiop_tls", "soap", "http", "tunnel”, "ny", "ws_orb",
"fixed", "artix_security"];

plugi ns:is2_authorization: acti on_rol e_mappi ng =
“file:/lArtixinstallDirl arti x/ 2. 0/ denos/ secure_hel | o_worl d/http_
soap/ confi g/ hel | owor | d_acti on_rol e_nappi ng. xm ";

pol i ci es: asp: enabl e_aut hori zati on = "true";

pl ugi ns: asp: security_type = "CERT_SUBJECT";

pl ugi ns: asp: security | evel = "MESSAGE LEVEL";

pl ugi ns: asp: def aul t _password = " CertPassword";

pl ugi ns: asp: aut henti cati on_cache_si ze = "5";

pl ugi ns: asp: aut henti cati on_cache_ti neout = "10";

51

CHAPTER 3 | Security for HTTP-Compatible Bindings

52

The preceding extract from the domain configuration can be explained as
follows:

1.

The Artix server request interceptor list must include the
bus- securi ty: security interceptor, which provides part of the
functionality for the Artix security layer.

Note: The bus-security namespace prefix must be defined in the
application WSDL contract—see “HTTP Basic Authentication client
configuration” on page 45.

The orb_pl ugi ns list should include the arti x_security plug-in,
which is responsible for enabling authentication and authorization.

The action-role mapping file is used to apply access control rules to the
authenticated user. The file determines which actions (that is, WSDL
operations) can be invoked by an authenticated user, on the basis of
the roles assigned to that user.

See “Managing Access Control Lists” on page 137 for more details.

pol i ci es: asp: enabl e_aut hori zat i on variable must be set to t rue to
enable authorization.

The next two configuration variables, pl ugi ns: asp: security_type and
pl ugi ns: asp: security | evel, are used together to specify the type of
credentials authenticated on the server side. The particular
combination of settings shown here, CERT_SUBJECT and

MESSAGE LEVEL, selects X.509 certificate-based authentication.

In this case, the username is taken to be the common name (CN) from
the client certificate’s subject DN (for an explanation of X.509
certificate terminology, see “ASN.1 and Distinguished Names” on
page 359).

When certificate-based authentication is used with HTTPS, a default
password, CertPassword, must be supplied on the server side. This
password is then used in the aut hent i cat e() call to the Artix security
service.

The next pair of configuration variables configure the asp caching
mechanism. For more details, see “ASP configuration variables” on
page 34.

In this chapter

CHAPTER 4

Security for SOAP
Bindings

This chapter describes the security features that are specific
to the SOAP binding—for example, such as security
credentials that can be propagated in a SOAP header.

This chapter discusses the following topic:

Overview of SOAP Security page 54

53

CHAPTER 4 | Security for SOAP Bindings

Overview of SOAP Security

Overview Figure 11 gives an overview of security for a SOAP binding within the Artix
security framework. SOAP security consists of four different layers (SSL/TLS,
HTTP, SOAP, and ASP) and support is provided for several different types of
authentication. Figure 11 shows you how the different authentication types
are associated with the different security layers.

ARM

Action-role
mapping file

authorization

ASP security authentication

< |

WSSE UsernameToken —pf
WSSE Kerberos —p| SOAP
CORBA Principal —p!

Artix Security Service

HTTP Basic Authentication —| HTTP
X.509
Em— SSL/TLS
= User Data
Figure 11: Overview of Security for SOAP Bindings
Security layers As shown in Figure 11, the SOAP binding includes the following security
layers:
® SSL/TLS layer.
® HTTP layer.
® SOAP layer.

® ASP security layer.

54

SSL/TLS layer

HTTP layer

SOAP layer

ASP security layer

Authentication options

Overview of SOAP Security

The SSL/TLS layer provides the SOAP binding with message encryption,
message integrity and authentication using X.509 certificates. The
implementation of SSL/TLS that underlies HTTPS is based on the OpenSSL
(www.openssl.org) security toolkit.

To enable SSL/TLS for HTTP, you must edit the WSDL contract—see
“Securing HTTP Communications with SSL/TLS” on page 39.

The HTTP layer provides a means of sending username/password
credentials in a HTTP header (HTTP Basic Authentication). The HTTP layer
relies on SSL/TLS to prevent password snooping.

The SOAP layer can send various credentials (WSSE UsernameToken,
WSSE Kerberos and CORBA Principal) embedded in a SOAP message
header. The SOAP layer relies on SSL/TLS to prevent password snooping.

The ASP security layer implements a variety of security features for

non-CORBA bindings. The main features of the ASP security layer are, as

follows:

® Authentication—the ASP security layer calls the Artix security service
(which maintains a database of user data) to authenticate a user's
credentials. If authentication is successful, the Artix security service
returns a list of the user’s roles and realms.

® Authorization—the ASP security layer matches the user’s roles and
realms against an action-role mapping file to determine whether the
user has permission to invoke the relevant WSDL operation.

As shown in Figure 11 on page 54, the SOAP binding supports the following
authentication options:

® WSSE UsernameToken.

® WSSE Kerberos.

® CORBA Principal.

® HTTP Basic Authentication.

® X.509 certificate-based authentication.

55

http://www.openssl.org

CHAPTER 4 | Security for SOAP Bindings

WSSE UsernameToken

WSSE Kerberos

CORBA Principal

HTTP Basic Authentication

X.509 certificate-based
authentication

56

The Web service security extension (WSSE) UsernameToken is a
username/password combination that can be sent in a SOAP header. The
specification of WSSE UsernameToken is contained in the WSS
UsernameToken Profile 1.0 document from OASIS (www.oasis-open.org).

Currently, the WSSE UsernameToken can be set only by programming. See
“Propagating a Username/Password Token” on page 236.

The WSSE Kerberos specification is used to send a Kerberos security token
in a SOAP header. If you use Kerberos, you must also configure the Artix
security service to use the Kerberos adapter—see “Configuring the Kerberos
Adapter” on page 110.

Currently, the WSSE Kerberos token can be set only by programming. See
“Propagating a Kerberos Token” on page 241.

The CORBA Principal is a legacy feature originally defined in the early
versions of the CORBA GIOP specification. To facilitate interoperability with
early CORBA implementations, the Artix SOAP binding is also able to
propagate CORBA Principals. This feature is available only for SOAP over
HTTP and a SOAP header is used to propagate the CORBA Principal.

For details, see “Principal Propagation” on page 221.

HTTP Basic Authentication is used to propagate username/password
credentials in a HTTP header. This kind of authentication is available to any
HTTP-compatible binding.

For details, see “HTTP Basic Authentication” on page 45.

X.509 certificate-based authentication obtains credentials by extracting the
common name (CN) from a client certificate’s subject DN. This kind of
authentication is available to any HTTP-compatible binding.

For details, see “X.509 Certificate-Based Authentication with HTTPS” on
page 48.

http://www.oasis-open.org/committees/download.php/5074/oasis-200401-wss-username-token-profile-1.0.pdf
http://www.oasis-open.org/committees/download.php/5074/oasis-200401-wss-username-token-profile-1.0.pdf
www.oasis-open.org

In this chapter

CHAPTER 5

Security for
CORBA Bindings

Using IONA’s modular ART technology, you make a CORBA
binding secure by configuring it to load the relevant security
plug-ins. This section describes how to load and configure
security plug-ins to reach the appropriate level of security for
applications with a CORBA binding.

This chapter discusses the following topics:

Overview of CORBA Security page 58
Securing IIOP Communications with SSL/TLS page 60
Securing Two-Tier CORBA Systems with CSI page 66
Securing Three-Tier CORBA Systems with CSI page 72
X.509 Certificate-Based Authentication for CORBA Bindings page 78

57

CHAPTER 5 | Security for CORBA Bindings

Overview of CORBA Security

Overview There are three layers of security available for CORBA bindings: IIOP over
SSL/TLS (IIOP/TLS), which provides secure communication between client
and server; CSI, which provides a mechanism for propagating
username/password credentials; and the GSP plug-in, which is concerned
with higher-level security features such as authentication and authorization.

The following combinations are recommended:
® |IOP/TLS only—for a pure SSL/TLS security solution.

* |IOP/TLS, CSI, and GSP layers—for a highly scalable security solution,
based on username/password client authentication.

CORBA applications and the Artix ~ Figure 12 shows the main features of a secure CORBA application in the

security framework context of the Artix security framework.
- ARM Action-role
authorization L
mapping file
GSP security authentication
CORBA \l/
binding Artix Security Service

CSI authentication over transport —»|
CSl identity assertion —»| GIOP
CORBA Principal —»|

X.509

E— IIOP/TLS
1 User Data

Figure 12: A Secure CORBA Application within the Artix Security
Framework

58

Security plug-ins

IHOP/TLS plug-in

CSIv2 plug-in

GSP plug-in

Overview of CORBA Security

Within the Artix security framework, a CORBA application becomes fully
secure by loading the following plug-ins:

® |IOP/TLS plug-in

® CSIv2 plug-in

® GSP plug-in

The IIOP/TLS plug-in, iiop_tls, enables a CORBA application to transmit
and receive IIOP requests over a secure SSL/TLS connection. This plug-in
can be enabled independently of the other two plug-ins.

See “Securing I1I0P Communications with SSL/TLS” on page 60 for details
on how to enable IIOP/TLS in a CORBA application.

The CSIv2 plug-in, csi, provides a client authentication mechanism for
CORBA applications. The authentication mechanism is based on a
username and a password. When the CSIv2 plug-in is configured for use
with the Artix security framework, the username and password are
forwarded to a central Artix security service to be authenticated. This plug-in
is needed to support the Artix security framework.

Note: The IIOP/TLS plug-in also provides a client authentication
mechanism (based on SSL/TLS and X.509 certificates). The SSL/TLS and
CSlv2 authentication mechanisms are independent of each other and can
be used simultaneously.

The GSP plug-in, gsp, provides authorization by checking a user's roles
against the permissions stored in an action-role mapping file. This plug-in is
needed to support the Artix security framework.

59

CHAPTER 5 | Security for CORBA Bindings

Securing IIOP Communications with SSL/TLS

Overview This section describes how to configure a CORBA binding to use SSL/TLS
security. In this section, it is assumed that your initial configuration comes
from a secure location domain (that is, the arti x. cf g domain configuration
file has been modified to include arti x-secure. cf g).

WARNING: The default certificates used in the CORBA configuration
samples are for demonstration purposes only and are completely insecure.
You must generate your own custom certificates for use in your own
CORBA applications.

Sample client configuration For example, consider a secure SSL/TLS client whose configuration is
modelled on the denos. t1s. secure_client_w th_no_cert configuration.
Example 17 shows how to configure such a sample client.

Example 17: Sample SSL/TLS Client Configuration
Artix Configuration File
Ceneral configuration at root scope.

ny_secure_apps {
Common SSL/TLS confi guration settings.

1 orb_plugins = ["local | og_streant, "iiop_profile", "giop",
"iiop_tls"];
2 bi ndi ng: client_binding_list = ["A CP+EGM COP",

" OTS+TLS Col oc+PQA Col oc”, "TLS Col oc+PQA Col oc",

" OTS+PQA Col oc”, "PQA Col oc", "G CP+SHM O,

"CSl +OTS+A CP+l | CP_TLS', "OTS+d CP+ | CP_TLS",

"CSl +@ CP+l | CP_TLS', "G P+l 1 CP_TLS', "CSl+OTS+A CP+ | CP",
"OTS+E CP+l | CP", "CSI+Q CP+ 1 OP", "Q CP+ | OP'];

3 policies:trusted_ca |list_policy =
" ArtixInstallDir\ ar ti x\ Version\ denos\ secur e_hel | o_wor| d\ htt p_soa
p\certificates\tls\x509\trusted_ca |ists\ca_listl. pen;

4 pol i ci es: mechani sm pol i cy: prot ocol _version = "SSL V3";

60

Securing IIOP Communications with SSL/TLS

Example 17: Sample SSL/TLS Client Configuration

pol i ci es: mechani sm pol i cy: ci phersuites =
["RSA WTH RC4 128 SHA', "RSA WTH RC4 128 MX%"];

event log:filters = ["IT_ATLI _TLS=*", "IT_IICP=*",

"I T_I1OP_TLS=*", "IT_TLS=*"];

ny_client {
Specific SSL/TLS client configuration settings
princi pal _sponsor: use_princi pal _sponsor = "fal se";

policies:client_secure_invocation_policy:requires
["Confidentiality", "EstablishTrustlnTarget"];
policies:client_secure_invocation_policy:supports =
["Confidentiality", "Integrity", "DetectReplay",
"Det ect M sordering", "EstablishTrustlnTarget"];
IE

The preceding client configuration can be described as follows:

1. Make sure that the orb_pl ugi ns variable in this configuration scope
includes the iiop_tls plug-in.

Note: For fully secure applications, you should exc/ude the i i op
plug-in (insecure IOP) from the ORB plug-ins list. This renders the
application incapable of making insecure [IOP connections.

For semi-secure applications, however, you should inc/ude the i i op
plug-in before the iiop_tIs plug-in in the ORB plug-ins list.

If you plan to use the full Artix Security Framework, you should include
the gsp plug-in in the ORB plug-ins list as well—see “Securing
Two-Tier CORBA Systems with CSI” on page 66.

2. Make sure that the bi ndi ng: cl i ent _bi ndi ng_l i st variable includes
bindings with the 11 GP_TLS interceptor. You can use the value of the
bi ndi ng: cli ent_bi ndi ng_| i st shown here.

3. An SSL/TLS application needs a list of trusted CA certificates, which it
uses to determine whether or not to trust certificates received from
other SSL/TLS applications. You must, therefore, edit the

61

CHAPTER 5 | Security for CORBA Bindings

policies:trusted_ca_list_policy variable to point at a list of trusted
certificate authority (CA) certificates. See “Specifying Trusted CA
Certificates” on page 184.

Note: If using Schannel as the underlying SSL/TLS toolkit (Windows
only), the policies:trusted ca list_policy variable is ignored.
Within Schannel, the trusted root CA certificates are obtained from
the Windows certificate store.

The SSL/TLS mechanism policy specifies the default security protocol
version and the available cipher suites—see “Specifying [IOP/TLS
Cipher Suites” on page 210.

This line enables console logging for security-related events, which is
useful for debugging and testing. Because there is a performance
penalty associated with this option, you might want to comment out or
delete this line in a production system.

The SSL/TLS principal sponsor is a mechanism that can be used to
specify an application’s own X.509 certificate. Because this client
configuration does not use a certificate, the principal sponsor is
disabled by setting pri nci pal _sponsor : use_pri nci pal _sponsor to
fal se.

The following two lines set the required options and the supported
options for the client secure invocation policy. In this example, the
policy is set as follows:

. Required options—the options shown here ensure that the client
can open only secure SSL/TLS connections.

. Supported options—the options shown include all of the
association options, except for the Est abl i shTrust I nd i ent
option. The client cannot support Est abl i shTrust Ind i ent,
because it has no X.509 certificate.

Sample server configuration Generally speaking, it is rarely necessary to configure such a thing as a pure
server (that is, a server that never makes any requests of its own). Most real
servers are applications that act in both a server role and a client role.
Hence, the sample server described here is a hybrid of the following two
demonstration configurations:

62

g b w

Securing IIOP Communications with SSL/TLS

d denos. tls. secure_server_request_client_auth

® denos.tls.secure_client_with_cert

Example 18 shows how to configure such a sample server.
Example 18: Sample SSL/TLS Server Configuration

Artix Configuration File

.#. éneral configuration at root scope.

ny_secure_apps {
Common SSL/TLS configuration settings.

ny_server {
Specific SSL/TLS server configuration settings
policies:target_secure_invocation_policy:requires
["Confidentiality"];
policies:target _secure_invocation_policy:supports =
["EstablishTrustInQient", "Confidentiality", "Integrity",
"Det ect Repl ay", "DetectM sordering",
"Establ i shTrust|nTarget"];

princi pal _sponsor: use_princi pal _sponsor = "true";
princi pal _sponsor:auth_method_id = "pkcsl12 file";
princi pal _sponsor: auth_net hod_data =

["fil ename=CertsDir\ server_cert.pl2"];

Specific SSL/TLS client configuration settings
policies:client_secure_invocation_policy:requires =
["Confidentiality", "EstablishTrustlnTarget"];
policies:client_secure_invocation_policy:supports =
["Confidentiality", "Integrity", "DetectReplay",
"Detect M sordering”, "EstablishTrustIindient",
"Establ i shTrust| nTarget"];

}s
I

The preceding server configuration can be described as follows:

1. You can use the same common SSL/TLS settings here as described in
the preceding “Sample client configuration” on page 60

2. The following two lines set the required options and the supported
options for the target secure invocation policy. In this example, the
policy is set as follows:

63

CHAPTER 5 | Security for CORBA Bindings

64

. Required options—the options shown here ensure that the server
accepts only secure SSL/TLS connection attempts.

+ Supported options—all of the target association options are
supported.

A server must always be associated with an X.509 certificate. Hence,
this line enables the SSL/TLS principal sponsor, which specifies a
certificate for the application.

This line specifies that the X.509 certificate is contained in a
PKCS#12 file. For alternative methods, see “Specifying an
Application’s Own Certificate” on page 185.

Note: If using Schannel as the underlying SSL/TLS toolkit (Windows
only), the pri nci pal _sponsor : aut h_met hod_i d value must be
security | abel instead of pkcs12 file.

Replace the X.509 certificate, by editing the fi | enane option in the
princi pal _sponsor : aut h_net hod_dat a configuration variable to point
at a custom X.509 certificate. The fi | enane value should be initialized
with the location of a certificate file in PKCS#12 format—see
“Specifying an Application’s Own Certificate” on page 185 for more
details.

Note: If using Schannel as the underlying SSL/TLS toolkit (Windows
only), you would set the I abel option instead of the fi | enane option
in the pri nci pal _sponsor : aut h_net hod_dat a configuration variable.
The | abel specifies the common name (CN) from the application
certificate’s subject DN.

For details of how to specify the certificate’s pass phrase, see
“Certificate Pass Phrase for [IOP/TLS” on page 189.

The following two lines set the required options and the supported
options for the client secure invocation policy. In this example, the
policy is set as follows:

. Required options—the options shown here ensure that the

application can open only secure SSL/TLS connections to other
servers.

Mixed security configurations

Customizing SSL/TLS security
policies

Securing IIOP Communications with SSL/TLS

. Supported options—all of the client association options are
supported. In particular, the Est abl i shTrust I nQ i ent option is
supported when the application is in a client role, because the
application has an X.509 certificate.

Most realistic secure server configurations are mixed in the sense that they
include both server settings (for the server role), and client settings (for the
client role). When combining server and client security settings for an
application, you must ensure that the settings are consistent with each
other.

For example, consider the case where the server settings are secure and the
client settings are insecure. To configure this case, set up the server role as
described in “Sample server configuration” on page 62. Then configure the
client role by adding (or modifying) the following lines to the
ny_secure_apps. ny_server configuration scope:

orb_plugins = ["local |og_streant, "iiop_profile", "giop",
"iiop", "iiop_tls"];

poli cies: client_secure_i nvocation_policy:requires
["NoProtection"];

policies: client_secure_i nvocation_policy: supports
["NoProtection"];

The first line sets the ORB plug-ins list to make sure that the i i op plug-in
(enabling insecure 110P) is included. The NoPr ot ect i on association option,
which appears in the required and supported client secure invocation policy,
effectively disables security for the client role.

You can, optionally, customize the SSL/TLS security policies in various
ways. For details, see the following references:

® “Configuring IIOP/TLS Secure Associations” on page 195.
® “Configuring HTTPS and IIOP/TLS Authentication” on page 175.

65

CHAPTER 5 | Security for CORBA Bindings

Securing Two-Tier CORBA Systems with CSI

Overview This section describes how to secure a two-tier CORBA system using the
OMG’s Common Secure Interoperability specification version 2.0 (CSIv2).
The client supplies username/password authentication data which is
transmitted as CSI credentials and then authenticated on the server side.
The following configurations are described in detail:

® Client configuration.
® Target configuration.

Two-tier CORBA system Figure 13 shows a basic two-tier CORBA system using CSI credentials,
featuring a client and a target server.

Propagate

- Apply access
@ authentication @ control
token

Client | Request+ [ulpld] | 1oqet
Client 4
authentication . Retrieve user's
token @ aut hent i cat &() realms and roles

v

Artix Security
Service

Figure 13: Two-Tier CORBA System Using CSI Credentials

66

Securing Two-Tier CORBA Systems with CSI

Scenario description The scenario shown in Figure 13 can be described as follows:

Stage Description

1 | The user enters a username, password, and domain name on
the client side (user login).

Note: The domain name must match the value of the
policies:csi:auth_over_transport: server_domai n_nane
configuration variable set on the server side.

2 | When the client makes a remote invocation on the server, the
CSI username/password/domain authentication data is
transmitted to the target along with the invocation request.

3 | The server authenticates the received username and password
by calling out to the external Artix security service.

4 | If authentication is successful, the Artix security service returns
the user's realms and roles.

5 | The GSP security layer controls access to the target's IDL
interfaces by consulting an action-role mapping file to
determine what the user is allowed to do.

Client configuration The CORBA client from Example 13 on page 66 can be configured as
shown in Example 19.

Example 19: Configuration of a CORBA client Using CSI Credentials
Artix Configuration File
CGeneral configuration at root scope.

ny_secure_apps {
1 # Common SSL/TLS configuration settings.

Common Artix security framework configuration settings.

2 orb_plugins = ["local _| og_streant, "iiop_profile", "giop",
"iiop_tls", "ots", "gsp']:

67

CHAPTER 5 | Security for CORBA Bindings

68

Example 19: Configuration of a CORBA client Using CSI Credentials

bi ndi ng: client_binding_list = ["A CP+EGM CP",

" OTS+TLS_Col oc+POA Col oc”, "TLS Col oc+PQA Col oc",

" OTS+PQA_Col oc”, "PQA Col oc”, "G CP+SHVI OP",

"CSl +OTS+A OP+l | CP_TLS', "OTS+d CP+l | CP_TLS",

"CSl +@ CP+ | CP_TLS', "Q P+l I CP_TLS', "CSl+OTS+d CP+ | O,
"OTS+A CP+ | CP', "CSI+Q OP+ I CP', "Q OP+ I CP'];

bi ndi ng: server_bi nding_list = ["CSI +GSP+OrSs*, "CSl +GsP',

"Csl +ors', "Csl"];

ny_client {
Specific SSL/TLS configuration settings.

Specific Artix security framework settings.
pol i ci es: csi:auth_over_transport:client_supports =

["EstablishTrustInQient"];

princi pal _sponsor: csi: use_pri nci pal _sponsor = "true";
princi pal _sponsor: csi: aut h_method_i d = "GSSUPMech";
princi pal _sponsor: csi:auth_met hod _data = [];

The preceding client configuration can be explained as follows:

1.

The SSL/TLS configuration variables common to all of your applications
can be placed here—see “Securing I1I0P Communications with
SSL/TLS” on page 60 for details of the SSL/TLS configuration.

Make sure that the orb_pl ugi ns variable in this configuration scope
includes both the iiop_t1s and the gsp plug-ins in the order shown.
Make sure that the bi ndi ng: cl i ent _bi ndi ng_I i st variable includes
bindings with the csl interceptor. Your can use the value of the

bi ndi ng: cl i ent _bi ndi ng_l i st shown here.

Make sure that the bi ndi ng: server _bi ndi ng_I i st variable includes
bindings with both the CSI and GsP interceptors. Your can use the
value of the bi ndi ng: server _bi ndi ng_l i st shown here.

The SSL/TLS configuration variables specific to the CORBA client can
be placed here—see “Securing II0P Communications with SSL/TLS”
on page 60.

Target configuration

Securing Two-Tier CORBA Systems with CSI

6. This configuration setting specifies that the client supports sending
username/password authentication data to a server.

7. The next three lines specify that the client uses the CSI principal
sponsor to obtain the user's authentication data. With the configuration
as shown, the user would be prompted to enter the username and
password when the client application starts up.

The CORBA target server from Figure 13 on page 66 can be configured as
shown in Example 20.

Example 20: Configuration of a Second-Tier Target Server in the Artix
Security Framework

Artix Configuration File
CGeneral configuration at root scope.

ny_secure_apps {
Common SSL/TLS configuration settings.

Common Artix security framework configuration settings.

orb plugins =[..., "iiop_tls", "gsp", ...];
binding:client_binding list =[...];
bi ndi ng: server_binding_list =[...];

ny_two_tier_target {
Specific SSL/TLS configuration settings.

Specific Artix security framework settings.

policies:csi:auth_over_transport:target_supports =
["EstablishTrustIndient"];

policies:csi:auth_over_transport:target requires
["EstablishTrustIndient"];

pol i ci es: csi:auth_over_transport: server_donai n_name =
" CSIDomainName";

pl ugi ns: gsp: aut hori zati on_real m= "AuthzRealm";
pl ugi ns: i s2_aut hori zati on: acti on_rol e _nmappi ng =
"ActionRoleURL";

69

CHAPTER 5 | Security for CORBA Bindings

70

Example 20: Configuration of a Second-Tier Target Server in the Artix
Security Framework

Artix security framework client configuration settings.
pol i ci es:csi:auth_over_transport:client_supports =
["EstablishTrustInQient"];

princi pal _sponsor: csi: use_pri nci pal _sponsor = "true";
princi pal _sponsor: csi:auth_met hod_id = " GSSUPMech";
princi pal _sponsor: csi:auth_met hod _data = [];

I

The preceding target server configuration can be explained as follows:

1. The SSL/TLS configuration variables specific to the CORBA target
server can be placed here—see “Securing [IOP Communications with
SSL/TLS” on page 60.

2. This configuration setting specifies that the target server supports
receiving username/password authentication data from the client.

3. This configuration setting specifies that the target server requires the
client to send username/password authentication data.

4. The server_domai n_nane configuration variable sets the server's CSIv2
authentication domain name, CS/DomainName. The domain name
embedded in a received CSIv2 credential must match the value of the
server _donai n_nane variable on the server side.

5. This configuration setting specifies the Artix authorization realm,
AuthzRealm, to which this server belongs. For more details about Artix
authorization realms, see “Artix Authorization Realms” on page 127.

6. The action_rol e_mappi ng configuration variable specifies the location
of an action-role mapping that controls access to the IDL interfaces
implemented by the server. The file location is specified in an URL
format, for example:
file:///security adm n/action_rol e_mappi ng. xmi (UNIX) or
file:///c:/security admn/action_rol e mappi ng. xm (Windows).

For more details about the action-role mapping file, see “ACL File
Format” on page 139.

Securing Two-Tier CORBA Systems with CSI

7. You should also set secure client configuration variables in the server
configuration scope, because a secure server application usually
behaves as a secure client of the core CORBA services. For example,
almost all CORBA servers need to contact both the locator service and
the CORBA naming service.

Related administration tasks After securing your CORBA applications with the Artix security framework,
you might need to perform related administration tasks, for example:

® See “Managing Users, Roles and Domains” on page 123.
® See “ACL File Format” on page 139.

71

CHAPTER 5 | Security for CORBA Bindings

Securing Three-Tier CORBA Systems with CSI

Overview This section describes how to secure a three-tier CORBA system using
CSIv2. In this scenario there is a client, an intermediate server, and a target
server. The intermediate server is configured to propagate the client identity
when it invokes on the target server in the third tier. The following
configurations are described in detail:

® Intermediate configuration.

® Target configuration.

Three-tier CORBA system Figure 14 shows a basic three-tier CORBA system using CSIv2, featuring a
client, an intermediate server and a target server.

@ Set own identity Obtain user's
> - @ @ realms and roles

. \\V Propagate identity

[u/p/d] !

Client | Reavest+ [Wp/d] [niermediate | Reauest+ [u] | Target

Server \ "l Server
A
Client

@ Apply access
authentication Identity token control
token v

Artix Security
Service

Figure 14: Three-Tier CORBA System Using CSiv2

72

Scenario description

Client configuration

Intermediate configuration

Securing Three-Tier CORBA Systems with CSI

The second stage of the scenario shown in Figure 14 (intermediate server
invokes an operation on the target server) can be described as follows:

Stage Description

1 | The intermediate server sets its own identity by extracting the
user identity from the received username/password CSI
credentials. Hence, the intermediate server assumes the same
identity as the client.

2 | When the intermediate server makes a remote invocation on
the target server, CSI identity assertion is used to transmit the
user identity data to the target.

3 | The target server then obtains the user's realms and roles.

4 | The GSP security layer controls access to the target's IDL
interfaces by consulting an action-role mapping file to
determine what the user is allowed to do.

The client configuration for the three-tier scenario is identical to that of the
two-tier scenario, as shown in “Client configuration” on page 67.

The CORBA intermediate server from Figure 14 on page 72 can be
configured as shown in Example 21.

Example 21: Configuration of a Second-Tier Intermediate Server in the
Artix Security Framework

Artix Configuration File

CGeneral configuration at root scope.

ny_secure_apps {
Common SSL/TLS configuration settings.

Common Artix security framework configuration settings.

orb plugins =[..., "iiop_tls", "gsp", ...];
binding:client_binding_list =[...];
bi ndi ng: server_binding list =[...];

73

CHAPTER 5 | Security for CORBA Bindings

Example 21: Configuration of a Second-Tier Intermediate Server in the
Artix Security Framework

ny_three tier_internediate {
1 # Specific SSL/TLS configuration settings.

Specific Artix security framework settings.
2 policies:csi:attribute_service:client_supports =
["ldentityAssertion"];

3 pol i cies:csi:auth_over_transport:target_supports =
["EstablishTrustInQient"];

4 policies:csi:auth over _transport:target requires =
["EstablishTrustInQient"];

5 pol i ci es: csi:auth_over_transport: server_domai n_nane =
" CSIDomainName";

6 pl ugi ns: gsp: aut hori zati on_real m = "AuthzRealm";

7 pl ugi ns: i s2_aut hori zation: action_rol e _nmappi ng =
"ActionRoleURL";

8 # Artix security framework client configuration settings.

pol i ci es: csi:auth_over_transport:client_supports =
["EstablishTrustinQient"];

princi pal _sponsor: csi: use_pri nci pal _sponsor = "true";
princi pal _sponsor: csi:auth_met hod_id = " GSSUPMech";
princi pal _sponsor: csi:auth_met hod_data = [];

I

The preceding intermediate server configuration can be explained as follows:

1. The SSL/TLS configuration variables specific to the CORBA
intermediate server can be placed here—see “Securing [IOP
Communications with SSL/TLS” on page 60.

2. This configuration setting specifies that the intermediate server is
capable of propagating the identity it receives from a client. In other
words, the server is able to assume the identity of the client when
invoking operations on third-tier servers.

3. This configuration setting specifies that the intermediate server
supports receiving username/password authentication data from the
client.

74

Target configuration

Securing Three-Tier CORBA Systems with CSI

This configuration setting specifies that the intermediate server
requires the client to send username/password authentication data.

The ser ver _domai n_nane configuration variable sets the server's CSIv2
authentication domain name, CS/IDomainName. The domain name
embedded in a received CSIv2 credential must match the value of the
server _donai n_nane variable on the server side.

This configuration setting specifies the Artix authorization realm,
AuthzRealm, to which this server belongs. For more details about Artix
authorization realms, see “Artix Authorization Realms” on page 127.

This configuration setting specifies the location of an action-role
mapping that controls access to the IDL interfaces implemented by the
server. The file location is specified in an URL format, for example:
file:///security adm n/action_rol e mappi ng. xm (UNIX) or
file:///c:/security_adm n/action_rol e_mappi ng. xm (Windows).

For more details about the action-role mapping file, see “ACL File
Format” on page 139.

You should also set Artix security framework client configuration
variables in the intermediate server configuration scope, because a
secure server application usually behaves as a secure client of the core
CORBA services. For example, almost all CORBA servers need to
contact both the locator service and the CORBA naming service.

The CORBA target server from Figure 14 on page 72 can be configured as

shown in Example 22.

Example 22: Configuration of a Third-Tier Target Server Using CS/
Artix Configuration File

7.#. éeneral configuration at root scope.

ny_secure_apps {
Common SSL/TLS configuration settings.

Common Artix security framework configuration settings.

orb plugins =[..., "iiop_tls", "gsp", ...];
binding:client_binding list =[...];
bi ndi ng: server_binding_list =[...];

75

CHAPTER 5 | Security for CORBA Bindings

76

N =

Example 22: Configuration of a Third-Tier Target Server Using CS/

The

ny_three tier_target {
Specific SSL/TLS configuration settings.

policies:iiop _tls:target _secure_invocation_policy:requires
= ["Confidentiality", "DetectMsordering", "DetectReplay",
“Integrity", "EstablishTrustindient"];
policies:iiop_tls:certificate constraints policy =
[ConstraintStringl, ConstraintString2, ...1;

Specific Artix security framework settings.
policies:csi:attribute service:target_supports =
["IdentityAssertion"];

pl ugi ns: gsp: aut hori zati on_real m = "AuthzRealm";
pl ugi ns: i s2_aut hori zati on: acti on_rol e_mappi ng =
"ActionRoleURL";

Artix security framework client configuration settings.
policies:csi:auth over _transport:client_supports =
["EstablishTrustInQient"];

princi pal _sponsor: csi: use_princi pal _sponsor = "true";
princi pal _sponsor: csi: aut h_met hod_i d = "GSSUPMech";
princi pal _sponsor: csi:auth_net hod_data = [];

}

preceding target server configuration can be explained as follows:

The SSL/TLS configuration variables specific to the CORBA target
server can be placed here—see “Securing IIOP Communications with
SSL/TLS” on page 60.

It is recommended that the target server require its clients to
authenticate themselves using an X.509 certificate. For example, the
intermediate server (acting as a client of the target) would then be
required to send an X.509 certificate to the target during the SSL/TLS
handshake.

You can specify this option by including the Est abl i shTrust I nQ i ent
association option in the target secure invocation policy, as shown here
(thereby overriding the policy value set in the outer configuration
scope).

Related administration tasks

Securing Three-Tier CORBA Systems with CSI

In addition to the preceding step, it is also advisable to restrict access
to the target server by setting a certificate constraints policy, which
allows access only to those clients whose X.509 certificates match one
of the specified constraints—see “Applying Constraints to Certificates”
on page 193.

Note: The motivation for limiting access to the target server is that
clients of the target server obtain a special type of privilege:
propagated identities are granted access to the target server without
the target server performing authentication on the propagated
identities. Hence, the target server trusts the intermediate server to
do the authentication on its behalf.

This configuration setting specifies that the target server supports
receiving propagated user identities from the client.

This configuration setting specifies the Artix authorization realm,
AuthzRealm, to which this server belongs. For more details about Artix
authorization realms, see “Artix Authorization Realms” on page 127.
This configuration setting specifies the location of an action-role
mapping that controls access to the IDL interfaces implemented by the
server. The file location is specified in an URL format, for example:
file:///security_admn/action_rol e _mappi ng. xm .

For more details about the action-role mapping file, see “ACL File
Format” on page 139.

You should also set secure client configuration variables in the target
server configuration scope, because a secure server application usually
behaves as a secure client of the core CORBA services. For example,
almost all CORBA servers need to contact both the locator service and
the CORBA naming service.

After securing your CORBA applications with the Artix security framework,
you might need to perform related administration tasks, for example:

See “Managing Users, Roles and Domains” on page 123.
See “ACL File Format” on page 139.

77

CHAPTER 5 | Security for CORBA Bindings

X.509 Certificate-Based Authentication for
CORBA Bindings

Overview This section describes how to enable X.509 certificate authentication for
CORBA bindings, based on a simple two-tier client/server scenario. In this
scenario, the Artix security service authenticates the client’s certificate and
retrieves roles and realms based on the identity of the certificate subject.
When certificate-based authentication is enabled, the X.509 certificate is
effectively authenticated twice, as follows:
® SSL/TLS-level authentication—this authentication step occurs during
the SSL/TLS handshake and is governed by Artix configuration settings
and programmable SSL/TLS policies.

® GSP security-level authentication and authorization—this
authentication step occurs after the SSL/TLS handshake and is
performed by the Artix security service working in tandem with the gsp
plug-in.

78

X.509 Certificate-Based Authentication for CORBA Bindings

Certificate-based authentication Figure 15 shows an example of a two-tier system, where authentication of
scenario the client’s X.509 certificate is integrated with the Artix security service.

= \/ User login @ SSLTLS-level @ Apply access

; authentication control
Client Target
"

. Retrieve user's
@ aut henti cat e() @ realms and roles

X
o
<}
@

Artix Security Service

Check certificate

Figure 15: Overview of Certificate-Based Authentication

Scenario description The scenario shown in Figure 15 can be described as follows:

Stage Description

1 | When the client opens a connection to the server, the client

sends its X.509 certificate as part of the SSL/TLS handshake.

The server then performs SSL/TLS-level authentication,

checking the certificate as follows:

® The certificate is checked against the server's trusted CA
list to ensure that it is signed by a trusted certification
authority.

® |f a certificate constraints policy is set, the certificate is

checked to make sure it satisfies the specified constraints.

If a certificate validator policy is set (by programming),

the certificate is also checked by this policy.

79

CHAPTER 5 | Security for CORBA Bindings

Stage Description

2 | The server then performs security layer authentication by
calling aut hent i cat e() on the Artix security service, passing
the client’'s X.509 certificate as the argument.

3 | The Artix security service authenticates the client’'s X.509
certificate by checking it against a cached copy of the
certificate. The type of checking performed depends on the
particular third-party enterprise security service that is
plugged into the Artix security service.

4 | If authentication is successful, the Artix security service returns
the user’s realms and roles.

5 | The security layer controls access to the target's IDL interfaces
by consulting an action-role mapping file to determine what
the user is allowed to do.

Client configuration Example 23 shows a sample client configuration that you can use for the
security-level certificate-based authentication scenario (Figure 15 on
page 79).

Example 23: Client Configuration for Security-Level Certificate-Based
Authentication

Artix Configuration File
corba_cert_auth

{

80

orb_plugins = ["local | og_streant, "iiop_profile", "giop",

"“iiop_tls", "gsp"];

event _log:filters = ["IT_GSP=*", "IT_CSI=*", "IT_TLS=*",

"I T 11CP_TLS=*", "IT _ATLI2 TLS=*"];

bi ndi ng: client_binding list = ["G CP+EGM CP',

" OIS+PQA Col oc", "PQOA Col oc", "OTS+TLS Col oc+PQA Col oc",
"TLS Col oc+PQA Col oc", "d CP+SHM CP', "CS|+0OTS+d CP+l | OP',
"CSl +d CP+l | OP', "CSl +OTSs+d CP+l | CP_TLS",

"CSl+G CP+l | CP_TLS', "A CPHI I CP", "G CPH I CP_TLS'];

client_x509
{

Target configuration

X.509 Certificate-Based Authentication for CORBA Bindings

Example 23: Client Configuration for Security-Level Certificate-Based
Authentication

policies:iiop_tls:client_secure_invocation_policy:supports
["Integrity", "Confidentiality", "DetectReplay",

"Detect M sordering”, "EstablishTrustlnTarget",

"Establ i shTrustInQient"];

policies:iiop_tls:client_secure_invocation_policy:requires =
["Integrity", "Confidentiality", "DetectReplay",
"Det ect M sordering"];

princi pal _sponsor: use_princi pal _sponsor = "true";
princi pal _sponsor: auth _nethod_id = "pkcsl2 file";
princi pal _sponsor: aut h_net hod_data =
["fil ename=W\art\etc\tls\x509\certs\denos\bob. p12",
" passwor d=bobpass"] ;
b
ik

The preceding client configuration is a typical SSL/TLS configuration. The
only noteworthy feature is that the client must have an associated X.509
certificate. Hence, the pri nci pal _sponsor settings are initialized with the
location of an X.509 certificate (provided in the form of a PKCS#12 file).

For a discussion of these client SSL/TLS settings, see “Sample client
configuration” on page 60 and “Deploying Application Certificates” on
page 171.

Example 24 shows a sample server configuration that you can use for the
security-level certificate-based authentication scenario (Figure 15 on
page 79).

Example 24: Server Configuration for Security-Level Certificate-Based
Authentication

Artix Configuration File
corba_cert _auth

{
orb_plugins = ["local | og_streant, "iiop_profile", "giop",
"iioptls", "gsp'l;

event _log:filters = ["IT_GSP=*", "IT_CSl =", "IT_TLS=*",
"IT_IIOP_TLS=*", "IT_ATLI2_TLS=*"];

81

CHAPTER 5 | Security for CORBA Bindings

Example 24: Server Configuration for Security-Level Certificate-Based
Authentication

bi ndi ng: client_binding_list = ["Q CP+EGM O,
"OTS+PQA_Col oc", "PQA Col oc", "OIS+TLS Col oc+PQA Col oc",
"TLS Col oc+PQA Col oc*, "d CP+SHM CP*, "CSI+0TS+d CP+l | CP*,
"CSl+d CP+l | OP', " CSl +OTS+@ COP+l | CP_TLS",

"CSl +@ CP+l | CP_TLS', "ACPHI I CP", "Q CP+Hl | CP_TLS'];

server
{
pol i ci es: csi:auth_over_transport:authentication_service
= "com i ona. corba. security. csi.Authenticati onService";

princi pal _sponsor: use_pri nci pal _sponsor = "true";
princi pal _sponsor:auth_nethod id = "pkcsl2_file";
1 princi pal _sponsor: auth_net hod_data =

["fil ename=CertDint arget cert.pl2",
" passwor d=TargetCertPass"] ;

bi ndi ng: server_binding_list = ["CSI+GSP', "CSl",
"GP

initial_references: | S2Aut hori zati on: plugin =
"it_is2_authorization";

plugins:it_is2 authorization: dassName =
"com i ona. corba. security. authori zati on. | S2Aut hori zat i onPl ugl n

2 pl ugi ns: i s2_aut hori zati on: acti on_rol e_mappi ng =
“file://lPathToARMFile";

aut h_x509
{

pl ugi ns: gsp: enabl e_security_servi ce_cert_authentication =
“true";

policies:iiop_tls:target_secure_invocation_policy:supports =
[“Integrity", "Confidentiality", "DetectReplay",

"Det ect M sordering", "EstablishTrustlnTarget",
"EstablishTrustInQient"];

82

Related administration tasks

X.509 Certificate-Based Authentication for CORBA Bindings

Example 24: Server Configuration for Security-Level Certificate-Based
Authentication

IE

policies:iiop_tls:target_secure_invocation_policy:requires =
["Integrity", "Confidentiality", "DetectReplay",
"Det ect M sordering", "EstablishTrustindient"];
h
IE

The preceding server configuration can be explained as follows:

1.

As is normal for an SSL/TLS server, you must provide the server with
its own certificate, t arget _cert. p12. The simplest way to do this is to
specify the location of a PKCS#12 file using the principal sponsor.

This configuration setting specifies the location of an action-role
mapping file, which controls access to the server’s interfaces and
operations. See “ACL File Format” on page 139 for more details.

The pl ugi ns: gsp: enabl e_security_servi ce_cert_authentication
variable is the key to enabling security-level certificate-based
authentication. By setting this variable to t r ue, you cause the server to
perform certificate authentication in the GSP security layer.

The IIOP/TLS target secure invocation policy must require

Est abl i shTrust I nd i ent . Evidently, if the client does not provide a
certificate during the SSL/TLS handshake, there will be no certificate
available to perform the security layer authentication.

When using X.509 certificate-based authentication for CORBA bindings, it is
necessary to add the appropriate user data to your enterprise security
system (which is integrated with the Artix security service through an iSF
adapter), as follows:

File adapter (do not use in deployed systems)—see “Certificate-based
authentication for the file adapter” on page 133.

LDAP adapter—see “Certificate-based authentication for the LDAP
adapter” on page 135.

83

CHAPTER 5 | Security for CORBA Bindings

84

In this chapter

CHAPTER 6

Single Sign-0On

Single sign-on (SSO) is an Artix security framework feature
which is used to minimize the exposure of usernames and
passwords to snooping. After initially signing on, a client
communicates with other applications by passing an SSO
token in place of the original username and password.

Note: The SSO feature is unavailable in some editions of Artix. Please
check the conditions of your Artix license to see whether your installation
supports SSO.

This chapter discusses the following topics:

SSO and the Login Service page 86
Username/Password-Based SSO for SOAP Bindings page 89
SSO Sample Configuration for SOAP Bindings page 96

85

CHAPTER 6 | Single Sign-On

SSO and the Login Service

Overview There are two different implementations of the login service, depending on
the type of bindings you use in your application:

® SOAP binding.
®* CORBA Binding.

SOAP binding For SOAP bindings, SSO is implemented by the following elements of the

Artix security framework:

® Artix login service—a central service that authenticates
username/password combinations and returns SSO tokens. Clients
connect to this service using the HTTP/S protocol.

® Jogin_client plug-in—the | ogi n_cl i ent plug-in, which is loaded by
SOAP clients, is responsible for contacting the Artix login service to
obtain an SSO token.

® artix_security plug-in—on the server side, the arti x_securi ty plug-in
is responsible for parsing the received SSO credentials and
authenticating the SSO token with the Artix security service.

CORBA Binding For CORBA bindings, SSO is implemented by the following elements of the
Artix security framework:
® CORBA login service—a central service that authenticates
username/password combinations and generates SSO tokens. Clients
connect to this service using the IIOP/TLS protocol.
® GSP plug-in—the generic security plug-in is responsible for the
following:
+ On the client side—contacts the CORBA login service to obtain an
SSO token.
+ On the server side—sends a received SSO token to be
authenticated by the Artix security service.

86

SSO and the Login Service

Advantages of SSO SSO greatly increases the security of an Artix security framework system,
offering the following advantages:

Password visibility is restricted to the login service.

Clients use SSO tokens to communicate with servers.

Clients can be configured to use SSO with no code changes.

SSO tokens are configured to expire after a specified length of time.
When an SSO token expires, the Artix client automatically requests a
new token from the login service. No additional user code is required.

Login service Figure 16 shows an overview of a login service. The client Bus automatically
requests an SSO token by sending a username and a password to the login
service. If the username and password are successfully authenticated, the
login service returns an SSO token.

\%\/ ’ <t oken>
User login ;
/
H < l’/l . < Artix
Client |« Login [« Security
» Service » -
il Service

/
| ogi n(<user nane>, <passwor d>)

Figure 16: Client Requesting an SSO Token from the Login Service

SSO token The SSO token is a compact key that the Artix security service uses to
access a user's session details, which are stored in a cache.

87

CHAPTER 6 | Single Sign-On

SSO token expiry

Automatic token refresh

88

The Artix security service is configured to impose the following kinds of

timeout on an SSO token:

® SSO session timeout—this timeout places an absolute limit on the
lifetime of an SSO token. When the timeout is exceeded, the token
expires.

® SSO session idle timeout—this timeout places a limit on the amount
of time that elapses between authentication requests involving the SSO
token. If the central Artix security service receives no authentication
requests in this time, the token expires.

For more details, see “Configuring Single Sign-On Properties” on page 114.

In theory, the expiry of SSO tokens could prove a nuisance to client
applications, because servers will raise a security exception whenever an
SSO token expires. In practice, however, when SSO is enabled, the relevant
plug-in (I ogi n_ser vi ce for SOAP and gsp for CORBA) catches the exception
on the client side and contacts the login service again to refresh the SSO
token automatically. The plug-in then automatically retries the failed
operation invocation.

Username/Password-Based SSO for SOAP Bindings

Username/Password-Based SSO for SOAP

Bindings

Overview

Username/password
authentication without SSO

When using SOAP bindings, usernames and passwords can be transmitted
using one of the following mechanisms:

® WSSE UsernameToken.

¢ HTTP Basic Authentication.

® CORBA Principal (username only).

This section describes how to configure a client so that it transmits an SSO
token in place of a username and a password.

Figure 17 gives an overview of ordinary username/password-based
authentication without SSO. In this case, the username, <username>, and
password, <password>, are passed directly to the target server, which then
contacts the Artix security service to authenticate the username/password
combination.

usernane = <usernane>
User login password = <password>
\
\
\
N | Target
Iy
Authenticate username Retrieve user's
and password realms and roles
v

Artix Security
Service

Figure 17: Overview of Username/Password Authentication without SSO

89

CHAPTER 6 | Single Sign-On

Username/password Figure 18 gives an overview of username/password-based authentication
authentication with SSO when SSO is enabled.

username = _SSO TOKEN_
User login password = <t oken>

Client N - Target
3
<t oken> Retrieve user's
realms and roles
y
| ogi n(<user name>, <passwor d>) ! Artix
\ Login ¢ .
; Security
Service » .
Service

Figure 18: Overview of Username/Password Authentication with SSO

Prior to contacting the target server for the first time, the client Bus sends
the username, <username>, and password, <password>, to the login
server, getting an SSO token, <token>, in return. The client Bus then
includes a IONA-proprietary SOAP header (extension of WSSE
BinarySecurityToken) in the next request to the target server, sending the
special string, _SSO TCXKEN , instead of a username and the SSO token,
<token>, instead of a password. The target server's Bus contacts the Artix
security service to authenticate the username/password combination.

Client configuration Example 25 shows a typical domain configuration for an SSO SOAP client
that employs username/password authentication.

Example 25: SOAP Client Configuration for Username/Password-Based
SSO

artix.cfg Domain Configuration

1 plugins:login_client:wsdl _url="../../wsdl /| ogin_service.wsdl ";
plugins:login_client:shlib_name = "it_|login_client";

90

Username/Password-Based SSO for SOAP Bindings

Example 25: SOAP Client Configuration for Username/Password-Based

SSO
sso_soap_client {
2 orb_plugins = ["xmfile_|log_streant, "iiop_profile", "giop",
"iiop", "soap", "http", "login_client"];
3 bi nding: arti x: client_request _interceptor_list=

"login_client:login_client";
H

The preceding Artix configuration can be described as follows:

1. Theplugins:login_client:wsdl _url variable specifies the location of
the Artix login service WSDL contract. You must edit this setting, if you
store this contract at a different location.

The orb_pl ugi ns list must include the I ogi n_cl i ent plug-in.

The Artix client request interceptor list must include the

I ogin_client:login_client interceptor. The format of an entry in the
interceptor list is:

<namespace-prefix>: <interceptor-name>

which is the format used in the default interceptor list, for example:
login_client:login_client

The preceding format requires that the | ogi n_cl i ent namespace prefix
is defined in your application’s WSDL contract.

Target configuration Example 26 shows a typical domain configuration for an SSO SOAP target
server that accepts connections from clients that authenticate themselves
using username/password authentication.

Example 26: SOAP Target Configuration for Username/Password-Based
SSO

artix.cfg Domai n Configuration

sso_soap_target {
plugins:artix_security:shlib name = "it_security_pl ugin";
1 bi ndi ng: arti x: server_request _interceptor_list=
"bus-security: security";
bi ndi ng: client_binding |ist =["OIs+PQA Col oc", "PQA Col oc",
"OIS+t@ CP+l 1 OP', "A CPH I CP', "A CP+Hl I CP_TLS'];

91

CHAPTER 6 | Single Sign-On

Example 26: SOAP Target Configuration for Username/Password-Based

SSO
2 orb plugins = ["xmfile_|og_streant, "iiop_profile", "giop",
"iiop_tls", "soap", "http", "artix_security"];
3 pol i ci es: asp: enabl e_sso = "true";
4 pol i ci es: asp: enabl e_aut hori zation = "true";
pl ugi ns: asp: aut henti cati on_cache_si ze = "5";
pl ugi ns: asp: aut henti cati on_cache_timeout = "10";

pl ugi ns: i s2_aut hori zati on: acti on_rol e_mappi ng =
"file://C\artix_20/artix/ 2.0/ denos/ security/single_signon/et
c/ hel | owor| d_action_rol e_mappi ng. xm ";
5 pl ugi ns: asp: security_l evel = "REQUEST LEVEL";
IH

The preceding Artix configuration can be described as follows:
1. The bus-security: security interceptor must appear in the Artix

server interceptor list to enable the arti x_security plug-in
functionality.

Note: The bus-security namespace prefix must be defined in the
application’s WSDL contract—see “Application WSDL configuration”
on page 94.

2. The orb_pl ugi ns list must include the arti x_security plug-in.

3. The policies:asp: enabl e_sso variable must be set to t rue to enable
SSO on the target server.

4. You can enable SSO with or without authentication. In this example,
the authentication feature is enabled.

5. The security level is set to REQUEST_LEVEL, implying that the username
and password are extracted from the SOAP header. There is no need to
set the security type when SSO is enabled (hence,
pl ugi ns: asp: security type is omitted from this configuration).

92

Artix login service configuration

Username/Password-Based SSO for SOAP Bindings

Example 27 shows the domain configuration for a standalone Artix login
service. The clients of this login service authenticate themselves to the login
service using WSSE UsernameToken credentials.

Example 27: Artix Login Service Domain Configuration
artix.cfg Donain Configuration

sso_| ogi n_service {

pl ugi ns: arti x_security:shlib_nane = "it_security_pl ugi n";

bi ndi ng: arti x: server_request _interceptor_list=
"bus-security: security";

bi ndi ng: client_binding_|ist =["Ors+PQA Col oc", "PQA Col oc",
"OrS+@ CP+ I OP', "A CP+HI I CP', "A CP+l I CP_TLS'];

orb_plugins = ["xmfile_|og_streant, "iiop_profile", "giop",
"iiop_tls", "soap", "http", "artix_security",
"l ogi n_service"];

pl ugins: | ogi n_service:wsdl _url="../../wsdl /| ogi n_service.wsdl";
pl ugi ns: |1 ogi n_service: shlib_nane = "it_| ogi n_service";
pl ugi ns: asp: security_type = "USERNAME PASSWRD';
pl ugi ns: asp: security |evel = "REQUEST LEVEL";
ik

The preceding Artix configuration can be described as follows:

1. The bus-security: security interceptor must appear in the Artix
server interceptor list to enable the arti x_security plug-in
functionality.

2. The orb_pl ugins list must include the arti x_securi ty plug-in and the
| ogi n_ser vi ce plug-in.

3. The plugins:|ogin_service:wsdl _url variable specifies the location
of the Artix login service WSDL contract. You must edit this setting, if
you store this contract at a different location.

4. The security type and security level settings selected here
(USERNAMVE_PASSWIRD and REQUEST_LEVEL respectively) imply that the
login service reads the WSSE UsernameToken credentials from the
incoming client request messages.

You can change these settings to use different client credentials (for
example, USERNAME_PASSWORD and MESSAGE LEVEL for HTTP Basic

93

CHAPTER 6 | Single Sign-On

Authentication), but you must be careful to ensure that this matches
the kind of credentials sent by the client.

Application WSDL configuration If you are using SSO security, you must modify your application’s WSDL
contract by adding namespace definitions for bus- security and
I ogi n_client, as shown in Example 28.

Example 28: Additions to Application WSDL Required for SSO

Application WSDL Contr act

<?xm version="1.0" encodi ng="UTF-8"?>

<wsdl : defi nitions name="Hel | oWr | d"
t ar get Nanespace="ht t p: // wa. i ona. com ful | _security"
xm ns="ht t p: // schemas. xm soap. or g/ wsdl / "

xm ns: htt p-conf ="http://schemas. i ona. coni transports/ http/ conf
iguration"

xm ns: soap="ht t p: // schemas. xm soap. or g/ wsdl / soap/ "
xm ns:tns="http://ww: iona.com full_security"
xm ns: wsdl ="ht t p: // schenas. xm soap. or g/ wsdl /"
xm ns: xsd="htt p: / / www. wW3. or g/ 2001/ XM_Schena"
xm ns: bus-security="http://schenas. i ona. coni bus/ security"

xmns:login_client="http://schenas.iona.coni security/login_clien
£
>

</wsdl : defi ni ti ons>

The additional namespace definitions are used in the Artix domain
configuration as follows:

® bus-security is used as a prefix to identify the

bus- security: security interceptor in a server configuration.
login_client isused as a prefix to identify the
I ogin_client:login_client interceptor in a client configuration.

94

Username/Password-Based SSO for SOAP Bindings

Login service WSDL configuration Example 29 shows an extract from the login service WSDL contract (in the
directory, arti x/ Version/ demos/ securi t y/ si ngl e_si gnon/ wsdl) showing
details of the WSDL port settings.

Example 29: Extract from the Login Service WSDL Configuration

Login Service WBDL Contract
<definitions ... >

<servi ce name="Logi nService">
<port bi ndi ng="t ns: Logi nSer vi ceBi ndi ng"
nane="Logi nServi cePort ">
<soap: addr ess
| ocation="http://I| ocal host : 49675"/ >
<bus-security:security
enabl eSSO="f al se"
enabl eAut hori zati on="f al se"
aut henti cati onCacheSi ze="1"
aut henti cat i onCacheTi neout =" 1" />
</ port>
</ servi ce>
</ definitions>

Note the following points about the WSDL port settings:

® The login service listens on a fixed host and port,
http://1 ocal host: 4975. You will probably need to edit this setting
before deploying the login service in a real system.
However, you should not choose dynamic IP port allocation (for
example, using http://1 ocal host : 0), because the clients would not
be able to discover the value of the dynamically allocated port.

® You should not change the values of the attributes in the
<bus- securi ty: security> tag. The values shown in Example 29 are
essential for the correct functioning of the Artix login service.

WARNING: Example 29 shows a login service configuration with insecure
communications (HTTP). It is strongly recommended that you modify this
configuration to use TLS security (HTTPS).

Related administration tasks For details of how to configure SSO token timeouts, see “Configuring Single
Sign-On Properties” on page 114.

95

CHAPTER 6 | Single Sign-On

SSO Sample Configuration for SOAP Bindings

Overview This section provides SSO sample configurations for the SOAP binding

including configurations for a client, a server, and a standalone Artix login
service.

Client SSO configuration The secure_arti x. si ngl e_si gnon. cl i ent configuration scope from

Example 30 can be used to configure a SOAP SSO client. This client
configuration has the following characteristics:

® The SSO client loads the I ogi n_cl i ent plug-in, which is responsible

for contacting the HTTP login server to obtain an SSO token.

The client’'s SOAP and HTTP security settings are stored separately in
the client’s copy of the WSDL contract.

WARNING: It is strongly recommended that you configure the client's
WSDL contract to use TLS security (HTTPS).

Server SSO configuration The secure_arti x. si ngl e_si gnon. server configuration scope from

Example 30 can be used to configure a SOAP SSO server. This server
configuration has the following characteristics:

® The SSO server loads the arti x_securi ty plug-in, which provides the

implementation of SSO on the server side.

You can enable authorization while using SSO credentials (set
pol i ci es: asp: enabl e_aut hori zat i on to t rue).

WARNING: It is strongly recommended that you configure the server's
WSDL contract to use TLS security (HTTPS).

Artix login service configuration The secure_arti x. si ngl e_si gnon. sso_ser vi ce configuration scope from

Example 30 gives an example of a standalone Artix login service.

WARNING: It is strongly recommended that you configure the login
server's WSDL contract to use TLS security (HTTPS).

96

SSO Sample Configuration for SOAP Bindings

SSO configuration example Example 30 shows sample configurations for a SOAP SSO client and a
SOAP SSO server.

Example 30: SOAP SSO Client and Server Configuration Examples
secure_artix {
si ngl e_si gnon
{
initial references: | T _SecurityService:reference =
"corbal oc:iiops: 1. 2@ocal host:55349,it _iiops:1. 2@ ocal host : 55
349/ 1 T_Securi tyServi ce";

security_service

{
IE
client
{
plugins:login client:wsdl _url="../../wsdl/|ogin_service.wsdl";

plugins:login_client:shlib_nane = "it_login_client";

bi ndi ng: artix:client_request _interceptor_|ist=
"login_client:login_client";

orb_plugins = ["xmfile_|og_streant, "soap", "http",
"login_client"];

I

server
{
pl ugi ns: arti x_security:shlib_nane =
"it_security_plugin";
bi ndi ng: arti x: server_request _interceptor_|ist=
"bus-security: security";
bi ndi ng: client_binding |ist = ["Ors+POA Col oc",
"PQA Col oc", "OTS+A CP+ | CP*, "A CP+l I CP', "A CP+ | CP_TLS'];
orb_plugins = ["xmfile_|og_streant, "iiop_profile",
"giop", "iiop_tls", "soap", "http", "artix_security"];

pol i ci es: asp: enabl e_sso = "true";

pol i ci es: asp: enabl e_aut hori zati on = "true";

pl ugi ns: asp: aut henti cati on_cache_si ze = "5";

pl ugi ns: asp: aut henti cati on_cache_ti nmeout = "10";

plugi ns:is2_authori zation: acti on_rol e_mappi ng =
"file://C\artix_20/artix/2.0/denos/ security/singl e_signon/ et
c/ hel | owor | d_acti on_rol e_mappi ng. xm ";

97

CHAPTER 6 | Single Sign-On

Example 30: SOAP SSO Client and Server Configuration Examples

pl ugi ns: asp: security | evel = "REQJEST LEVEL";
iE

SSO_servi ce
{
pl ugi ns: artix_security:shlib_nane =
"it_security_plugin";
bi ndi ng: arti x: server_request _interceptor_list=
"bus-security:security";
bi ndi ng: client_binding |ist = ["Ors+POA Col oc",
"PQA Col oc", "OTS+t@ CP+l 1 CP', "A CP+l I CP", "A CP+l | CP_TLS'];
orb_plugins = ["xmfile_|og_streant, "iiop_profile",
"giop", "iiop_tls", "soap", "http", "artix_security",
"l ogi n_service"];

pl ugi ns: 1 ogi n_servi ce:wsdl _url="../../wsdl /| ogin_service.wsdl";
pl ugi ns: 1 ogi n_service:shlib_name = "it_| ogi n_service";
pl ugi ns: asp: security_type = "USERNAME PASSWRD';
pl ugi ns: asp: security | evel = "REQJEST LEVEL";

98

In this chapter

CHAPTER 7

Configuring the
Artix Security
Service

This chapter describes how to configure the properties of the
Artix security service and, in particular, how to configure a
variety of adapters that can integrate the Artix security service
with third-party enterprise security back-ends (for example,
LDAP and SiteMinder).

This chapter discusses the following topics:

Configuring the File Adapter page 100
Configuring the LDAP Adapter page 102
Configuring the SiteMinder Adapter page 108
Configuring the Kerberos Adapter page 110
Additional Security Configuration page 113

99

CHAPTER 7 | Configuring the Artix Security Service

Configuring the File Adapter

Overview

File locations

File adapter properties

100

The iSF file adapter enables you to store information about users, roles, and
realms in a flat file, a security information file. The file adapter is easy to
set up and configure, but is appropriate for demonstration purposes only.
This section describes how to set up and configure the iSF file adapter.

WARNING: The file adapter is provided for demonstration purposes only.
IONA does not support the use of the file adapter in a production
environment.

The following files configure the iSF file adapter:

® is2 properties file—the default location of the iS2 properties file is as
follows:

ArtixInstallDirl arti x/ 2. 0/ bi n/ i s2. properties

See “iS2 Properties File” on page 268 for details of how to customize
the default iS2 properties file location.

® Security information file—this file's location is specified by the
comiona.isp. adapter.file.paramfil enane property in the
i s2. properties file.

Example 31 shows the properties to set for a file adapter.
Example 31: Sample File Adapter Properties

comiona.isp.adapters=file

#H#

Deno File Adapter Properties

#t

HHHHH R

comiona.isp.adapter.file.class=comiona.security.is2adapter.fil
e. Fi | eAut hAdapt er

Configuring the File Adapter

Example 31: Sample File Adapter Properties

comiona.isp.adapter.file.param fil enanme=ArtixInstallDirl artix/ 2.0/
bi n/i s2_user_password_rol e_file.txt

HHHHHEHH R
CGeneral Artix security service Properties

... Ceneric properties not shown here ...
The necessary properties for a file adapter are described as follows:

1. Setcomiona.isp. adapters=file to instruct the Artix security service
to load the file adapter.

2. Thecomiona.isp.adapter.file.class property specifies the class
that implements the iSF file adapter.

3. Thecomiona.isp.adapter.file.paramfilename property specifies
the location of the security information file, which contains information
about users and roles.

4. (Optionally) You might also want to edit the general Artix security
service properties.

See “Additional Security Configuration” on page 113 for details.

101

CHAPTER 7 | Configuring the Artix Security Service

Configuring the LDAP Adapter

Overview The IONA security platform integrates with the Lightweight Directory Access
Protocol (LDAP) enterprise security infrastructure by using an LDAP adapter.
The LDAP adapter is configured in an i s2. properti es file. This section
discusses the following topics:

® Prerequisites

® File location.

® Minimal LDAP configuration.
® Basic LDAP properties.

® LDAP.param properties.

® LDAP server replicas.

® logging on to an LDAP server.

Prerequisites Before configuring the LDAP adapter, you must have an LDAP security
system installed and running on your system. LDAP is not a standard part of
Artix, but you can use the Artix security service's LDAP adapter with any
LDAP v.3 compatible system.

File location The following file configures the LDAP adapter:

® is2 properties file—the default location of the iS2 properties file is as
follows:

ArtixInstallDirl arti x/ 2. 0/i s2. properties

See “iS2 Properties File” on page 268 for details of how to customize
the default iS2 properties file location.

102

Minimal LDAP configuration

Configuring the LDAP Adapter

Example 32 shows the minimum set of iS2 properties that can be used to
configure an LDAP adapter.

Example 32: A Sample LDAP Adapter Configuration File

com i ona. i sp. adapt er s=LDAP

T S R R T

#

LDAP Adapter Properties

i

R

com i ona. i sp. adapt er. LDAP. cl ass=com i ona. securi ty. i s2adapt er. | da
p. LdapAdapt er

com i ona. i sp. adapt er. LDAP. par am host . 1=10. 81. 1. 400
com i ona. i sp. adapt er. LDAP. par am port . 1=389

com i ona. i sp. adapt er. LDAP. par am User NaneAt t r =ui d

com i ona. i sp. adapt er. LDAP. par am User BaseDN=dc=i ona, dc=com

com i ona. i sp. adapt er. LDAP. par am User Cbj ect A ass=or gani zat i onal Pe
rson

com i ona. i sp. adapt er. LDAP. par am User Sear chScope=SUB

com i ona. i sp. adapt er. LDAP. par am User Rol eDNAt t r =nsr ol edn
com i ona. i sp. adapt er. LDAP. par am Rol eNarreAt t r =cn

com i ona. i sp. adapt er. LDAP. par am G oupNarmeAt t r =cn

com i ona. i sp. adapt er. LDAP. par am G oup(hj ect A ass=gr oupof uni quena
nes

com i ona. i sp. adapt er. LDAP. par am G oupSear chScope=SUB

com i ona. i sp. adapt er. LDAP. par am G oupBaseDN=dc=i ona, dc=com

com i ona. i sp. adapt er. LDAP. par am Menber DNAL t r =uni queMenber

com i ona. i sp. adapt er. LDAP. par am ver si on=3

The necessary properties for an LDAP adapter are described as follows:

1. Setcomiona.isp. adapt er s=LDAP to instruct the IONA Security
Platform to load the LDAP adapter.

2. Thecomiona.isp.adapter.file.class property specifies the class
that implements the LDAP adapter.

103

CHAPTER 7 | Configuring the Artix Security Service

104

3. For each LDAP server replica, you must specify the host and port
where the LDAP server can be contacted. In this example, the host and
port parameters for the primary LDAP server, host. 1 and port. 1, are
specified.

4. These properties specify how the LDAP adapter finds a user name
within the LDAP directory schema. The properties are interpreted as

follows:

User NanmeAt t r The attribute type whose corresponding value
uniquely identifies the user.

User BaseDN The base DN of the tree in the LDAP directory
that stores user object class instances.

User (bj ect d ass The attribute type for the object class that
stores users.

User Sear chScope The user search scope specifies the search

depth relative to the user base DN in the
LDAP directory tree. Possible values are:
BASE, ONE, or SUB.

See “iS2 Properties File” on page 268 for more details.

5. The following properties specify how the adapter extracts a user’s role
from the LDAP directory schema:

User Rol eDNAt t r The attribute type that stores a user’s role DN.

Rol eNanreAt t r The attribute type that the LDAP server uses
to store the role name.

6. These properties specify how the LDAP adapter finds a group name
within the LDAP directory schema. The properties are interpreted as

follows:

Q oupNaneAt t r The attribute type whose corresponding
attribute value gives the name of the user
group.

Q@ oupBaseDN The base DN of the tree in the LDAP directory
that stores user groups.

QG oupQbj ect d ass The object class that applies to user group

entries in the LDAP directory structure.

Basic LDAP properties

Configuring the LDAP Adapter

Q oupSear chScope The group search scope specifies the search
depth relative to the group base DN in the
LDAP directory tree. Possible values are:
BASE, ONE, or SUB.

Menber DNAL t r The attribute type that is used to retrieve
LDAP group members.

See “iS2 Properties File” on page 268 for more details.

7. The LDAP version number can be either 2 or 3, corresponding to
LDAP v.2 or LDAP v.3 respectively.

The following properties must always be set as part of the LDAP adapter
configuration:

com i ona. i sp. adapt er s=LDAP
com i ona. i sp. adapt er. LDAP. cl ass=com i ona. securi ty. i s2adapter. | da
p. LdapAdapt er

In addition to these basic properties, you must also set a number of LDAP
parameters, which are prefixed by com i ona. i sp. adapt er . LDAP. par am

105

CHAPTER 7 | Configuring the Artix Security Service

LDAP.param properties

LDAP server replicas

106

Table 1 shows all of the LDAP adapter properties from the
com i ona. i sp. adapt er . LDAP. par amscope. Required properties are shown

in bold:
Table 1: LDAP Properties in the com.iona.isp.adapter.LDAP.param
Scope
LDAP Server Properties LDAP User/Role Configuration
Properties

host . </ndex> User NaneAt t r

port. <Index> User BaseDN

SSLEnabl ed. </ndex> User (j ect A ass

SSLCACert Dir. </ndex> User Sear chScope

SSLA i ent Cert Fi |l e. </ndex>
SSLd i ent Cert Passwor d. </ndex>
Pri nci pal User DN </ndex >

Pri nci pal User Passwor d. </ndex>

User Sear chFi | ter
User Rol eDNAL t r
Rol eNaneAt t r
User Cert At t r Name

LDAP Group/Member
Configuration Properties

Other LDAP Properties

G oupNaneAt t r

G oupChj ect d ass
Q@ oupSear chScope
G oupBaseDN
Menber DNAL t r
Menber Fi | ter

MaxConnect i onPool Si ze
versi on

Use@ oupAsRol e

Retri eveAut hl nfo
CacheSi ze

CacheTi neTolLi ve

The LDAP adapter is capable of failing over to one or more backup replicas
of the LDAP server. Hence, properties such as host . </ndex> and
port. <Index> include a replica index as part of the parameter name.

For example, host. 1 and port. 1 refer to the host and port of the primary
LDAP server, while host . 2 and port . 2 would refer to the host and port of an

LDAP backup server.

Logging on to an LDAP server

Secure connection to an LDAP
server

iS2 properties reference

Configuring the LDAP Adapter

The following properties can be used to configure login parameters for the
<Index> LDAP server replica:

Pri nci pal User DN </ndex>

Pri nci pal User Passwor d. </ndex>

The properties need only be set if the LDAP server is configured to require
username/password authentication.

The following properties can be used to configure SSL/TLS security for the
connection between the Artix security service and the </ndex> LDAP server
replica:

SSLEnabl ed. </ndex>

SSLCACertDir. </ndex>

SSLd i ent CertFil e. </ndex>

SSLd i ent Cert Password. </ndex>

The properties need only be set if the LDAP server requires SSL/TLS mutual
authentication.

For more details about the Artix security service properties, see “iS2
Configuration” on page 265.

107

CHAPTER 7 | Configuring the Artix Security Service

Configuring the SiteMinder Adapter

Overview

Prerequisites

File location

SiteMinder adapter properties

108

The SiteMinder adapter enables you to integrate the Artix security service
with SiteMinder, which is an enterprise security product from Netegrity. By
configuring the SiteMinder adapter, you ensure that any authentication
requests within the Artix Security Framework are delegated to SiteMinder.
This section describes how to set up and configure the SiteMinder adapter.

Ensure that the SiteMinder product is installed and configured on your
system. SiteMinder is not a standard part of Artix, but is available from
Netegrity at http://www.netegrity.com.

The following file configures the SiteMinder adapter:

® is2 properties file—the default location of the iS2 properties file is as
follows:

ArtixInstallDirl ar ti x/ 2. 0/ bi n/ i s2. properties

See “iS2 Properties File” on page 268 for details of how to customize
the default iS2 properties file location.

Example 33 shows the properties to set for the SiteMinder adapter.
Example 33: SiteMinder Adapter Properties

comiona.is

adapt er s=Si t eM nder

#H#

SiteM nder Adapter Properties

##t

HRHHH R

comiona.isp.adapter. SiteM nder. cl ass=com i ona. security.i s2adapt
er.smadapt er. S t eM nder Agent

comiona.isp. adapt er. Si t eM nder. par am Ser ver Addr ess=| ocal host

com iona. i sp. adapt er. Si t eM nder . par am Ser ver Aut hnPor t =400

com i ona. i sp. adapter. S teM nder. par am Agent Secr et =secr et

com iona. i sp. adapt er. Si t eM nder . par am Agent Nane=web

http://www.netegrity.com

Configuring the SiteMinder Adapter

Example 33: SiteMinder Adapter Properties

R
CGeneral Artix security service Properties

... Ceneric properties not shown here ...
The necessary properties for a SiteMinder adapter are described as follows:

1. Setcomiona.isp. adapt ers=Si t eM nder to instruct the Artix security
service to load the SiteMinder adapter.

2. The comiona.isp. adapter. SiteM nder. cl ass property specifies the
class that implements the SiteMinder adapter.

3. A SiteMinder adapter requires the following parameters:

Ser ver Addr ess Host address where SiteMinder is running.
Ser ver Aut hnPor t SiteMinder’s IP port number.

Agent Nane SiteMinder agent's name.

Agent Secr et SiteMinder agent's password.

4. (Optionally) You might also want to edit the general Artix security
service properties.
See “Additional Security Configuration” on page 113 for details.

109

CHAPTER 7 | Configuring the Artix Security Service

Configuring the Kerberos Adapter

Overview

File location

Kerberos adapter properties

110

The Kerberos adapter enables you to use the Kerberos Authentication
Service. By configuring the Kerberos adapter, you ensure that any
authentication requests within the Artix Security Framework are delegated to
Kerberos. This section describes how to set up and configure the Kerberos
adapter.

The following file configures the Kerberos adapter:

® is2. properties file—the default location of the iS2 properties file is as
follows:

ArtixlnstallDirl arti x/ 2. 0/ bi n/ i s2. properties

See “iS2 Properties File” on page 268 for details of how to customize the
default iS2 properties file location.

Example 34 shows the properties to set for the Kerberos adapter.
Example 34: Kerberos Adapter Properties

com i ona. i sp. adapt er s=kbr 5

TR HE

[z

Kerberos Adapter Properties

#

I T

com i ona. i sp. adapt er. kbr 5. cl ass=com i ona. securi ty. i s2adapt er . kbr
5. | S2Ker ber osAdapt er

com i ona. i sp. adapt er. kr b5. param j ava. securi ty. kr b5. r eal nFMYREALM
. COVPANY. QM

com i ona. i sp. adapt er . kr b5. param j ava. securi ty. kr b5. kdc=10. 65. 3. 7
4

com i ona. i sp. adapt er. kr b5. param j ava. security. aut h. | ogi n. confi g=
j aas. conf

com i ona. i sp. adapt er. kr b5. par am j avax. securi ty. aut h. useSubj ect Or
edsOnl y=f al se

Retrieving the user’s group
information

1

Configuring the Kerberos Adapter

Example 34: Kerberos Adapter Properties

B R R R
CGeneral Artix security service Properties
A R R R R
... Ceneric properties not shown here ...

The necessary properties for a Kerberos adapter are described as follows:

1. Setcomiona.isp. adapt ers=kbr5 to instruct the Artix security service
to load the Kerberos adapter.

2. The comiona.isp. adapt er. kbr 5. cl ass property specifies the class
that implements the Kerberos adapter.

3. A Kerberos adapter requires the following parameters:

java. security. kbr5.real m The Kerberos Realm Name.

j ava. security. kbr 5kdc The server name or IP address
of the Kerberos KDC server.

java. security.auth.login.config The configuration file for the

JAAS Login Module.

j avax. security. aut h. useSubj ect OredsOnl y A required JAAS Login Module
property. Always set to f al se.

4. (Optionally) You might also want to edit the general Artix security
service properties.

See “Additional Security Configuration” on page 113 for details.

Once the Kerberos token has been authenticated, the Kerberos adapter can
be configured to retrieve the user's group information and save it for future
authorization purposes.

Example 35 shows a sample configuration for the Kerberos adapter that
retrieve the user’'s group information.

Example 35: Kerberos Configuration to Retrieve User Group Information

com i ona. i sp. adapt er. kr b5. param Ret ri eveAut hl nf o=t r ue

111

CHAPTER 7 | Configuring the Artix Security Service

112

2

3.

comiona.isp. adapter.
NAMES

com i ona. i sp. adapt er.

comiona.isp. adapter.

com i ona. i sp. adapt er.

com i ona. i sp. adapt er.
i sign.pl2

com i ona. i sp. adapt er.

com i ona. i sp. adapt er.

kr b5.

kr b5.
kr b5.
kr b5.
kr b5.

kr b5.
kr b5.

Example 35: Kerberos Configuration to Retrieve User Group Information

par am host . 1=$ACTI VE_D RECTCRY_SERVER _

par am port. 1=389

par am SSLEnabl ed. 1=no

param SSLCACertDir. 1=d: /cert s/t est
param SSLd i ent Cert Fi | e. 1=d: / cert s/ ver

param SSLA i ent Cer t Passwor d. 1=net fi sh
param Pri nci pal User DN 1=cn=adm ni st r at

or, cn=user s, dc=bost on, dc=aner, dc=i ona, dc=com

com i ona. i sp. adapt er.
com i ona. i sp. adapt er.

com i ona. i sp. adapt er.
com i ona. i sp. adapt er.
i ona, dc=com
com i ona. i sp. adapt er.
com i ona. i sp. adapt er.
comiona.isp. adapter.
com i ona. i sp. adapt er.
com i ona. i sp. adapt er.
=i ona, dc=com
com i ona. i sp. adapt er.
com i ona. i sp. adapt er.
comiona.isp. adapter.
com i ona. i sp. adapt er.

kr b5.
kr b5.

kr b5.
kr b5.

kr b5.
kr b5.
kr b5.
kr b5.
kr b5.

kr b5.
kr b5.
kr b5.
kr b5.

param Pri nci pal User Passwor d. 1=or bi x
par am Connect Ti meout . 1=15

par am User NarmeAt t r =CN
par am User BaseDN=dc=bost on, dc=aner , dc=

par am ver si on=3

par am User Cbj ect d ass=Per son

par am G oupChj ect A ass=gr oup

par am @G oupSear chScope=SUB

par am G oupBaseDN=dc=bost on, dc=arer, dc

par am G oupNaneAt t r =CN

par am Menber DNAt t r =nenber Cf
par am MaxConnect i onPool Si ze=1
par am M nConnect i onPool Si ze=1

The properties to configure the Kerberos adapter to retrieve a user’s group
information are explained as follows:

1.
2.

Ret ri eveAut hl nf o=t r ue activates this feature.

Set the connection information needed to open an LDAP connection to

the Active Directory Server.

Note: If SSL needs to be enabled set
com i ona. i sp. adapt er . kr b5. par am SSLEnabl ed. 1=yes.

Server.

Tell the adapter how to construct a filter to search the Active Directory

Additional Security Configuration

Additional Security Configuration

Overview This section describes how to configure optional features of the Artix security
server, such as single sign-on and the authorization manager. These
features can be combined with any iSF adapter type.

In this section This section contains the following subsections:
Configuring Single Sign-On Properties page 114
Federating the Artix Security Service page 116
Configuring the Log4J Logging page 121

113

CHAPTER 7 | Configuring the Artix Security Service

Configuring Single Sign-On Properties

Overview

SSO tokens

SSO properties

114

A WN =

The IONA security framework provides an optional single sign-on (SSO)
feature. If you want to use SSO with your applications, you must configure
the Artix security service as described in this section. SSO offers the
following advantages:

® User credentials can easily be propagated between applications in the

form of an SSO token.

® Performance is optimized, because the authentication step only needs
to be performed once within a distributed system.

® Because the user's session is tracked centrally by the Artix security
service, it is possible to impose timeouts on the user sessions and
these timeouts are effective throughout the distributed system.

The Artix security service generates an SSO token in response to an
authentication operation. The SSO token is a compact key that the Artix
security service uses to access a user's session details, which are stored in a
cache.

Example 36 shows the iS2 properties needed for SSO:
Example 36: Single Sign-On Properties
1S2 Properties File

FHEHH T T
Single S gn Oh Session |Info

B R
i s2. sso. enabl ed=yes

i s2. ss0. sessi on. ti meout =6000

i s2. sso. sessi on. idl e. ti meout =300

i s2. sso. cache. si ze=10000

The SSO properties are described as follows:

1. Setting this property to yes enables single sign-on.

2. The SSO session timeout sets the lifesaving of SSO tokens, in units of
seconds. Once the specified time interval elapses, the token expires.

Additional Security Configuration

The SSO session idle timeout sets the maximum length of time for
which an SSO session can remain idle, in units of seconds. If the Artix
security service registers no activity against a particular session for this
amount of time, the session and its token expire.

The size of the SSO cache, in units of number of sessions.

115

CHAPTER 7 | Configuring the Artix Security Service

Federating the Artix Security Service

Overview

Federation is not clustering

Example federation scenario

116

Federation is meant to be used in deployment scenarios where there is more
than one instance of an Artix security service. By configuring the Artix
security service instances as a federation, the security services can talk to
each other and access each other's session caches. Federation frequently
becomes necessary when single sign-on (SSO) is used, because an SSO
token can be verified only by the security service instance that originally
generated it.

Federation is not the same thing as clustering. In a federated system, user
data is not replicated across different security service instances and there
are no fault tolerance features provided. Support for high availability and
fault tolerance is planned for a future Artix release.

Consider a simple federation scenario consisting of two security domains

(see Figure 19 on page 117), each with their own Artix security service

instances, as follows:

® LDAP security domain—consists of an Artix security service (with
is2.current.server.id property equal to 1) configured to store user
data in an LDAP database. The domain includes any Artix applications
that use this Artix security service (ID=1) to verify credentials.

In this domain, a login server is deployed which enables clients to use
single sign-on.

® Kerberos security domain—consists of an Artix security service (with
is2.current.server.id property equal to 2) configured to store user
data in a Kerberos database. The domain includes any Artix
applications that use this Artix security service (ID=2) to verify
credentials.

The two Artix security service instances are federated, using the
configuration described later in this section. With federation enabled, it is
possible for single sign-on clients to make invocations that cross security
domain boundaries.

Additional Security Configuration

Federation scenario Figure 19 shows a typical scenario that illustrates how iSF federation might
be used in the context of an Artix system.

LDAP Security Domain G Kerberos Security Domain

Client Target A Target B

®

Authenticate
SSO token

Authenticate
SSO token

A 4

Login - .
Senvice Security Service
ID=1

®

Security Service
ID=2

i
|
A 2

LDAP Kerberos
User data store User data store

Figure 19: An iSF Federation Scenario

117

CHAPTER 7 | Configuring the Artix Security Service

Federation scenario steps The federation scenario in Figure 19 can be described as follows:

Stage Description

1 | With single sign-on (SSO) enabled, the client calls out to the
login service, passing in the client's GSSUP credentials, u/ p/ d,
in order to obtain an SSO token, t.

2 | The login service delegates authentication to the Artix security
server (ID=1), which retrieves the user's account data from the
LDAP backend.

3 | The client invokes an operation on the Target A, belonging to
the LDAP security domain. The SSO token, t, is included in the
message.

4 | Target A passes the SSO token to the Artix security server
(ID=1) to be authenticated. If authentication is successful, the
operation is allowed to proceed.

5 | Subsequently, the client invokes an operation on the Target B,
belonging to the Kerberos security domain. The SSO token, t,
obtained in step 1 is included in the message.

6 | Target B passes the SSO token to the second Artix security
server (ID=2) to be authenticated.

7 | The second Artix security server examines the SSO token.
Because the SSO token is tagged with the first Artix security
server's ID (ID=1), verification of the token is delegated to the
first Artix security server. The second Artix security server opens
a HTTP or HTTPS connection to the first Artix security service
to verify the token.

Configuring the is2.properties files Each instance of the Artix security service should have its own
i s2. properties file. Within each i s2. properti es file, you should set the
following:

® is2. current.server.id—a unique ID for this Artix security service
instance,
® js2.cluster.properties.fil ename—a shared cluster file.

118

Configuring the cluster properties
file

Additional Security Configuration

For example, the first Artix security server instance from Figure 19 on
page 117 could be configured as follows:

1S2 Properties File, for Server |D=1

B R R
1 SF federation rel ated properties
B R R
is2.current.server.id=1

is2.cluster.properties.filename=C /is2 config/cluster.properties

And the second Artix security server instance from Figure 19 on page 117
could be configured as follows:

1S2 Properties File, for Server |D=2

B R R R R
1 SF federation rel ated properties
A R R
is2.current.server.id=2

is2.cluster.properties.filename=C /is2 config/cluster.properties

All the Artix security server instances within a federation should share a
cluster properties file. For example, Example 37 shows how to configure the
pair of embedded Artix security servers shown in Figure 19 on page 117.

Example 37: Sample Cluster Properties File

Auster Properties File (shared between Artix security servers)

com i ona. security. comon. securitylnstanceURL. 1=htt ps://| ocal host
: 8080/ i sp/ Aut hSer vi ce

comiona. security.common. cACertDir.1=C /i s2_config/ca certs

com i ona. security.comon. clientCertFil eNane. 1=C /i s2_confi g/ cert
s/ cert01. p12

com i ona. security. comon. cl i ent Cert Passwor d. 1=Passwor dFor 01

com i ona. security.common. securityl nstanceURL. 2=htt ps: //| ocal host
1 9000/ Aut hSer vi ce

comiona. security.common. cACertDir.2=C /i s2 _config/ca certs

com i ona. security.comon. client CertFil eNane. 2=C. /i s2_confi g/ cert
s/ cert02. p12

119

CHAPTER 7 | Configuring the Artix Security Service

120

Example 37: Sample Cluster Properties File

com i ona. security. common. cl i ent Cert Passwor d. 2=Passwor dFor 02

The iSF cluster properties are described as follows:

1.

This property instructs the Artix security service with an ID of 1 to
begin listening at the specified URL. The https: prefix indicates that
transport layer security (TLS) should be used.

Because this server is configured to use the HTTPS protocol, it is
necessary to specify a directory containing trusted CA certificates.
Because this server is configured to use the HTTPS protocol, you have
to specify the server's own X.509 certificate (in PKCS#12 format).
This property specifies the password that decrypts the private key for
the Artix security server's X.509 certificate.

This line and the following lines give the configuration of the Artix
security service with an ID of 2.

Additional Security Configuration

Configuring the Log4J Logging

Overview

log4j documentation

Enabling log4j logging

In the CLASSPATH

In the is2.properties file

log4j is a third-party toolkit from the Jakarta project,
http://jakarta.apache.org/log4j, that provides a flexible and efficient system
for capturing logging messages from an application. Because the Artix
security service's logging is based on log4j, it is possible to configure the
output of iSF logging using a standard log4] properties file.

For complete log4j documentation, see the following Web page:
http://jakarta.apache.org/log4j/docs/documentation.html

To enable log4j logging, you can specify the location of the log4| properties
file in either of the following ways:

® Inthe CLASSPATH.
® |n the is2.properties file.

You can specify the location of the log4j properties file by adding the file to
your CLASSPATH. For example, you could add an
/is2_configl/log4j.properties file to your CLASSPATH as follows:

Windows
set CLASSPATH=C \is2_config\l og4j. properties; %LASSPATHS

UNIX (Bourne shell)
export CLASSPATH-/ i s2_confi g/l og4j . properties: $CLASSPATH

You can specify the location of the log4j properties file in the
i s2. properties file as follows:

1S2 Properties File, for Server |D=1
R R T
| og4j Loggi ng

HHHHHEHHEHH R
| og4j . configuration=C /is2_config/log4j.properties

121

http://jakarta.apache.org/log4j/docs/documentation.html
http://jakarta.apache.org/log4j

CHAPTER 7 | Configuring the Artix Security Service

Configuring the log4j properties The following example shows how to configure the log4j properties to
file perform basic logging. In this example, the lowest level of logging is
switched on (DEBUG) and the output is sent to the console screen.

log4j Properties File
| 0g4j . r oot Cat egor y=DEBUG Al

Al is set to be a Consol eAppender .
| og4j . appender . Al=or g. apache. | og4j . Consol eAppender

Al uses PatternlLayout.

| og4j . appender . Al. | ayout =or g. apache. | og4j . Pat t er nLayout

| 0g4j . appender . Al. | ayout . Conversi onPattern=%4r [%] %5p % %
- Y%

122

In this chapter

CHAPTER 8

Managing Users,
Roles and
Jomains

The Artix security service provides a variety of adapters that
enable you to integrate the Artix Security Framework with
third-party enterprise security products. This allows you to
manage users and roles using a third-party enterprise security
product.

This chapter discusses the following topics:

Introduction to Domains and Realms page 124
Managing a File Security Domain page 132
Managing an LDAP Security Domain page 135
Managing a SiteMinder Security Domain page 136

123

CHAPTER 8 | Managing Users, Roles and Domains

Introduction to Domains and Realms

Overview This section introduces the concepts of an Artix security domain and an Artix
authorization realm, which are fundamental to the administration of the
Artix Security Framework. Within an Artix security domain, you can create
user accounts and within an Artix authorization realm you can assign roles

to users.
In this section This section contains the following subsections:
Artix security domains page 125
Artix Authorization Realms page 127

124

Introduction to Domains and Realms

Artix security domains

Overview This subsection introduces the concept of an Artix security domain.

Domain architecture Figure 20 shows the architecture of an Artix security domain. The Artix
security domain is identified with an enterprise security service that plugs
into the Artix security service through an iSF adapter. User data needed for
authentication, such as username and password, are stored within the
enterprise security service. The Artix security service provides a central
access point to enable authentication within the Artix security domain.

Artix Artix Artix

Server o Server Server
| I

|

| | |

! ! |
authenticate authenticate authenticate
I I
| | |
| | |
| I v

Artix Security Service

iSF Security Domain

Enterprise Security Service

User Data Store

1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
i \ ® i
| H |
| \ |
1 T :
1 \—/// 1
i i
i Janet E
1 1
1 1

1
E John i
1 1
1 1
1 1
1 1

Figure 20: Architecture of an Artix security domain

125

CHAPTER 8 | Managing Users, Roles and Domains

Artix security domain

Creating an Artix security domain

Creating a user account

126

An Artix security domain is a particular security system, or namespace
within a security system, designated to authenticate a user.

Here are some specific examples of Artix security domains:

® LDAP security domain—authentication provided by an LDAP security
backend, accessed through the Artix security service.

® SiteMinder security domain—authentication provided by a SiteMinder
security backend, accessed through the Artix security service.

Effectively, you create an Artix security domain by configuring the Artix
security service to link to an enterprise security service through an iSF
adapter (such as a SiteMinder adapter or an LDAP adapter). The enterprise
security service is the implementation of the Artix security domain.

User account data is stored in a third-party enterprise security service.
Hence, you should use the standard tools from the third-party enterprise
security product to create a user account.

For a simple example, see “Managing a File Security Domain” on page 132.

Introduction to Domains and Realms

Artix Authorization Realms

Overview

Artix authorization realm

Role-based access control

This subsection introduces the concept of an Artix authorization realm and
role-based access control, explaining how users, roles, realms, and servers
are interrelated.

An Artix authorization realm is a collection of secured resources that share a
common interpretation of role names. An authenticated user can have
different roles in different realms. When using a resource in realm R, only
the user's roles in realm R are applied to authorization decisions.

The Artix Security Framework supports a role-based access control (RBAC)
authorization scheme. Under RBAC, authorization is a two step process, as
follows:

1.

User-to-role mapping—every user is associated with a set of roles in
each realm (for example, guest, adni ni strator, and so on, in a realm,
Engi neer i ng). A user can belong to many different realms, having a
different set of roles in each realm.

The user-to-role assignments are managed centrally by the Artix
security service, which returns the set of realms and roles assigned to a
user when required.

Role-to-permission mapping (or action-role mapping)—in the RBAC
model, permissions are granted to roles, rather than directly to users.
The role-to-permission mapping is performed locally by a server, using
data stored in local access control list (ACL) files. For example, Artix
servers in the Artix security framework use an XML action-role mapping
file to control access to WSDL port types and operations.

127

CHAPTER 8 | Managing Users, Roles and Domains

Servers and realms From a server's perspective, an Artix authorization realm is a way of
grouping servers with similar authorization requirements. Figure 21 shows
two Artix authorization realms, Engi neeri ng and Fi nance, each containing a
collection of server applications.

IONAGIlobalRealm

Figure 21: Server View of Artix authorization realms

Adding a server to a realm To add an Artix server to a realm, add or modify the
pl ugi ns: asp: aut hori zat i on_r eal mconfiguration variable within the
server's configuration scope (in the arti x. cf g file).

For example, if your server’s configuration is defined in the ny_server _scope
scope, you can set the Artix authorization realm to Engi neer i ng as follows:

Artix configuration file

ny_server _scope {
pl ugi ns: asp: aut hori zat i on_real m = "Engi neeri ng";

Ik

128

Introduction to Domains and Realms

Roles and realms From the perspective of role-based authorization, an Artix authorization
realm acts as a namespace for roles. For example, Figure 22 shows two
Artix authorization realms, Engi neeri ng and Fi nance, each associated with
a set of roles.

IONAGIobalRealm
C T i
! Engineering Finance E
T e L
1
Eoo P .
1 1 ! | 1
' | ! H ' !
L L L
' | ! ' | '
' | ! ' | '
o L L
1 1
| ' 1 ' | |
| ' 1 | | |
1 1 1 1
- L L
P P o
! i

Figure 22: Role View of Artix authorization realms

Creating realms and roles Realms and roles are usually administered from within the enterprise
security system that is plugged into the Artix security service through an
adapter. Not every enterprise security system supports realms and roles,
however.

For example, in the case of a security file connected to a file adapter (a
demonstration adapter provided by IONA), a realm or role is implicitly
created whenever it is listed amongst a user’s realms or roles.

129

CHAPTER 8 | Managing Users, Roles and Domains

Assigning realms and roles to The assignment of realms and roles to users is administered from within the
users enterprise security system that is plugged into the Artix security service. For
example, Figure 23 shows how two users, Janet and John, are assigned
roles within the Engi neeri ng and Fi nance realms.
® Janet works in the engineering department as a developer, but
occasionally logs on to the Fi nance realm with guest permissions.
® John works as an accountant in finance, but also has guest
permissions with the Engi neeri ng realm.

iSF Security Domain (users)

IONAGIobalRealm

Engineering Finance

devel oper

Figure 23: Assignment of Realms and Roles to Users Janet and John

130

Introduction to Domains and Realms

Special realms and roles The following special realms and roles are supported by the Artix Security
Framework:

| ONAG obal Real mrealm—a special realm that encompasses every Artix
authorization realm. Roles defined within the | ONAQ obal Real mare
valid within every Artix authorization realm.

Unhaut hent i cat edUser Rol e—a special role that can be used to specify
actions accessible to an unauthenticated user (in an action-role
mapping file). An unauthenticated user is a remote user without
credentials (that is, where the client is not configured to send GSSUP
credentials).

Actions mapped to the Unaut hent i cat edUser Rol e role are also
accessible to authenticated users.

The Wnaut hent i cat edUser Rol e can be used only in action-role
mapping files.

131

CHAPTER 8 | Managing Users, Roles and Domains

Managing a File Security Domain

Overview

Location of file

Example

132

N =

The file security domain is active if the Artix security service has been
configured to use the iSF file adapter (see “Configuring the File Adapter” on
page 100). The main purpose of the iSF file adapter is to provide a
lightweight security domain for demonstration purposes. A realistic deployed
system, however, would use one of the other adapters (LDAP, SiteMinder,
or custom) instead.

WARNING: The file adapter is provided for demonstration purposes only.
IONA does not support the use of the file adapter in a production
environment.

The location of the security information file is specified by the
comiona.isp.adapter.file. paramfilenane property in the Artix security
service's i s2. properti es file.

Example 38 is an extract from a sample security information file that shows
you how to define users, realms, and roles in a file security domain.

Example 38: Sample Security Information File for an iSF File Domain
<?xm version="1.0" encodi ng="utf-8" ?>

<ns: securityl nfo xm ns: ns="ur n: ww xm bus- com si npl e-security">
<user s>
<user nane="| ONAAdm n" passwor d="adm n"
description="Default | ONA adm n user">

<real m name="| ONA" description="A| | CNA applications"/>
</ user >
<user name="adm n" password="adm n" description="Ad adm n
user; will not have the sane default privil eges as
| ONAAdmi . ">

<r eal m nane=" Cor por at " >

<rol e name="Adm ni strator"/>

</real n»
</ user >
<user nane="alice" password="dost 1234">

Managing a File Security Domain

Example 38: Sample Security Information File for an iSF File Domain

5 <r eal m nane="Fi nanci al s"
descri ption="Fi nanci al Departnent">
<rol e name="Manager" descri pti on="Departnent Manager" />
<rol e name="d erk"/>
</real n»
</ user >
<user nane="bob" passwor d="dost 1234">
<r eal m nane="Fi nanci al s" >
<rol e name="d erk"/>
</real n»
</ user >
</ user s>
</ ns: securityl nfo>

The <ns: securityl nf o> tag can contain a nested <user s> tag.
The <user s> tag contains a sequence of <user > tags.

Each <user > tag defines a single user. The <user > tag's name and
password attributes specify the user's username and password. Within
the scope of the <user > tag, you can list the realms and roles with
which the user is associated.

4. When a <real n» tag appears within the scope of a <user > tag, it
implicitly defines a realm and specifies that the user belongs to this
realm. A <real m» must have a name and can optionally have a
descri pti on attribute.

5. Arealm can optionally be associated with one or more roles by
including <r ol e> elements within the <real m» scope.

Certificate-based authentication When performing certificate-based authentication for the CORBA binding,
for the file adapter the file adapter compares the certificate to be authenticated with a cached
copy of the user’s certificate.

Note: This configuration step is not required for non-CORBA bindings.
Currently, the ASP security layer does not send the client’s X.509
certificate to the Artix security service.

133

CHAPTER 8 | Managing Users, Roles and Domains

To configure the file adapter to support X.509 certificate-based

authentication for the CORBA binding, perform the following steps:

1. Cache a copy of each user's certificate, CertFile. pem in a location that
is accessible to the file adapter.

2. Make the following type of entry for each user with a certificate:

Example 39: File Adapter Entry for Certificate-Based Authentication

<user name="CNfromSubjectDN" certifi cat e="CertFile. pemt
descri ption="User certificate">
<r eal m nanme="RealmName" >

<Ireal
</ user >
The user's name, CNfromSubjectDN, is derived from the certificate by
taking the Common Name (CN) from the subject DN of the X.509
certificate (for DN terminology, see “ASN.1 and Distinguished Names”

on page 359). The certifi cate attribute specifies the location of this
user's X.509 certificate, CertFile. pem

134

Managing an LDAP Security Domain

Managing an LDAP Security Domain

Overview

Configuring the LDAP adapter

Certificate-based authentication
for the LDAP adapter

The Lightweight Directory Access Protocol (LDAP) can serve as the basis of
a database that stores users, groups, and roles. There are many
implementations of LDAP and any of them can be integrated with the Artix
security service by configuring the Artix security service's LDAP adapter.

Please consult documentation from your third-party LDAP implementation
for detailed instructions on how to administer users and roles within LDAP.

A prerequisite for using LDAP within the Artix Security Framework is that
the Artix security service be configured to use the LDAP adapter.

See “Configuring the LDAP Adapter” on page 102.

When performing certificate-based authentication for CORBA bindings, the
LDAP adapter compares the certificate to be authenticated with a cached
copy of the user’s certificate.

Note: This configuration step is not required for non-CORBA bindings.
Currently, the ASP security layer does not send the client's X.509 to the
Artix security service.

To configure the LDAP adapter to support X.509 certificate-based

authentication, perform the following steps:

1. Cache a copy of each user's certificate, CertFile.pem, in a location that
is accessible to the LDAP adapter.

2. The user's name, CNfromSubjectDN, is derived from the certificate by
taking the Common Name (CN) from the subject DN of the X.509
certificate (for DN terminology, see “ASN.1 and Distinguished Names”
on page 359).

3. Make (or modify) an entry in your LDAP database with the username,
CNfromSubjectDN, and specify the location of the cached certificate.

135

CHAPTER 8 | Managing Users, Roles and Domains

Managing a SiteMinder Security Domain

Overview

Configuring the SiteMinder
adapter

References

136

SiteMinder is an enterprise security product from Netegrity, which allows
you to manage user data stored in a central database. The Artix security
service can communicate with the SiteMinder agent, using it to perform

authentication.

Please consult the Netegrity SiteMinder documentation for detailed
instructions on how to administer users and roles within the SiteMinder
product.

A prerequisite for using SiteMinder within the Artix Security Framework is
that the Artix security service be configured to use the SiteMinder adapter.

See “Configuring the SiteMinder Adapter” on page 108.

For more information on Netegrity SiteMinder, see the Netegrity Web site:
http://www.netegrity.com/

http://www.netegrity.com/

In this chapter

CHAPTER 9

Managing
Access Control
Lists

The Artix Security Framework defines access control lists
(ACLs) for mapping roles to resources.

This chapter discusses the following topics:

Overview of Artix ACL Files page 138
ACL File Format page 139
Generating ACL Files page 142
Deploying ACL Files page 145

137

CHAPTER 9 | Managing Access Control Lists

Overview of Artix ACL Files

Action-role mapping file The action-role mapping file is an XML file that specifies which user roles
have permission to perform specific actions on the server (that is, invoking
specific WSDL operations).

Deployment scenarios Artix supports the following deployment scenario for ACL files:
® |ocal ACL file.

Local ACL file In the local ACL file scenario, the action-role mapping file is stored on the
same host as the server application (see Figure 24). The application obtains
the action-role mapping data by reading the local ACL file.

Application

authentication

Security Layer

i

Artix Security Service

authorization

ARM

Action-role
mapping file

User Data

¢ |

Figure 24: Locally Deployed Action-Role Mapping ACL File

In this case, the location of the ACL file is specified by a setting in the
application’s arti x. cf g file.

138

ACL File Format

ACL File Format

Overview This subsection explains how to configure the action-role mapping ACL file
for Artix applications. Using an action-role mapping file, you can specify that
access to WSDL operations is restricted to specific roles.

Example WSDL For example, consider how to set the operation permissions for the WSDL
port type shown in Example 40.

Example 40: Sample WSDL for the ACL Example

<def i ni ti ons name="Hel | oWr | dServi ce"
t ar get Namespace="ht t p: // xm bus. coni Hel | oVr | d" ... >

<por t Type nane="Hel | oWr | dPor t Type" >
<oper ati on name="gr eet M&" >
<i nput message="tns: greet M&" name="greet "/ >
<out put nmessage="t ns: gr eet MeResponse"
nane="gr eet MeResponse" / >
</ oper at i on>
<oper ati on name="sayH ">
<i nput nessage="tns:sayH " name="sayH "/>
<out put message="t ns: sayH Response"
nane="sayH Response"/ >
</ oper at i on>
</ port Type>

</ defini ti ons>

Example action-role mapping Example 41 shows how you might configure an action-role mapping file for

the Hel | oVer | dPor t Type port type given in the preceding Example 40 on
page 139.

Example 41: Artix Action-Role Mapping Example

<?xm versi on="1.0" encodi ng="UTF- 8" ?>
<! DOCTYPE secur e- syst em SYSTEM "act i onr ol enappi ng. dt d" >
<secur e- syst en»

1 <acti on-r ol e- mappi ng>

2 <server - nanme>secur e_arti x. denos. hel | o_wor | d</ ser ver - nane>

139

CHAPTER 9 | Managing Access Control Lists

Example 41: Artix Action-Role Mapping Example
3 <i nterface>

<nanme>htt p: // xm bus. com Hel | oWr | d: Hel | oWr | dPort Type</ nanme>
<action-rol e>
5 <act i on- nane>sayH </ act i on- nane>
<r ol e- name>l ONAUser Rol e</ r ol e- nane>
</ action-rol e>
<action-rol e>
<act i on- nane>gr eet Me</ act i on- nanme>
<r ol e- narme>| ONAUser Rol e</ r ol e- nane>
</ action-rol e>
</interface>
</ acti on-r ol e- mappi ng>
</ secur e- syst en>

The preceding action-role mapping example can be explained as follows:

1. The <acti on-rol e- mappi ng> tag contains all of the permissions that
apply to a particular server application.

2. The <server - name> tag specifies the ORB name that is used by the
server in question. The value of this tag must match the ORB name
exactly. The ORB name is usually passed to an Artix server as the
value of the - CRBname command-line parameter.

Note: The ORB name also determines which configuration scopes
are read by the server.

3. The <interface>tag contains all of the access permissions for one
particular WSDL port type.

4. The <nane> tag identifies a WSDL port type in the format
NamespaceURI: PortTypeName. That is, the PortTypeName comes
from a tag, <port Type name="PortTypeName" >, defined in the
NamespaceURI namespace.

For example, in Example 40 on page 139 the <defini ti ons> tag
specifies the NamespaceUR!/ as htt p:// xm bus. coni Hel | oVr | d and
the PortTypeName is Hel | ovr | dPor t Type. Hence, the port type name
is identified as:

<nane>htt p: // xm bus. coni Hel | oWor | d: Hel | oWor | dPor t Type</ name>

140

Action-role mapping DTD

ACL File Format

5. The sayH action name corresponds to the sayH WSDL operation
name in the Hel | oWr | dPor t Type port type (from the <operat i on
nane="sayH "> tag).

The syntax of the action-role mapping file is defined by the action-role
mapping DTD. See “Action-Role Mapping DTD” on page 365 for details.

141

CHAPTER 9 | Managing Access Control Lists

Generating ACL Files

Overview

WSDL-to-ACL utility

142

Artix provides a command-line tool, wsdl t oacl , that enables you to generate
the prototype of an ACL file directly from a WSDL contract. You can use the
wsdl t oacl utility to assign a default role to all of the operations in WSDL
contract. Alternatively, if you require more fine-grained control over the role
assignments, you can define a role-properties file, which assigns roles to
individual operations.

The wsdl t oacl command-line utility has the following syntax:

wsdl toacl { -s server-name } WSDL-URL
[-i interface-name] [-r default-role-name]
[-d output-directory] [-o output-file]
[-props role-props-file] [-v] [-?]

Required arguments:

-s server-name The server's configuration scope from the Artix
domain configuration file (the same value as
specified to the - CRBnane argument when the Artix
server is started from the command line).

For example, the basi ¢/ hel | o_wor | d_soap_htt p
demonstration uses the
denos. hel | o_wor| d_soap_http server name.

WSDL-URL URL location of the WSDL file from which an ACL
is generated.

Optional arguments:

-i interface-name Generates output for a specific WSDL port type,
interface-name. If this option is omitted, output is
generated for all of the port types in the WSDL file.

-r default-role-name Specify the role name that will be assigned to all
operations by default. Default is | ONAUser Rol e.

The default role-name is not used for operations
listed in a role-properties file (see - props).

Example of generating an ACL file

Sample role-properties file

Sample generation command

Generating ACL Files

-d output-directory Specify an output directory for the generated ACL
file.

-0 output-file Specify the name of the generated ACL file. Default
is WSDLFileRoot- acl . xm , where WSDLFileRoot
is the root name of the WSDL file.

-props role-props-file Specifies a file containing a list of role-properties,
where a role-property associates an operation
name with a list of roles. Each line of the
role-properties file has the following format:

OperationName = Rolel, Role2, ...
-v Display version information for the utility.

-? Display usage summary for the wsdl t oacl utility.

As example of how to generate an ACL file from WSDL, consider the
hel | o_wor | d. wsdl WSDL file for the basi ¢/ hel | o_worl d_soap_http
demonstration, which is located in the following directory:

ArtixInstallDirl arti x/ Version/ denos/ basi ¢/ hel | o_wor| d_soap_http/etc

The HelloWorld WSDL contract defines a single port type, G eet er, and two
operations: greet Me and sayH . The server name (that is, configuration
scope) used by the HelloWorld server is demos. hel | o_wor| d_soap_ht t p.

For the HelloWorld WSDL contract, you can define a role-properties file,
rol e_properties. txt, that assigns the FooUser role to the greet Me
operation and the FooUser and Bar User roles to the sayH operation, as
follows:

greet M = FooUser
sayH = Foolser, BarUser

To generate an ACL file from the HelloWorld WSDL contract, using the
rol e_properties.txt role-properties file, enter the following at a
command-line prompt:

wsdl toacl -s denos. hel l o_world_soap_http hell o world.wsdl -props
rol e_properties. txt

143

CHAPTER 9 | Managing Access Control Lists

Sample ACL output The preceding wsdl t oacl command generates an ACL file,
hel I o_wor | d-acl . xm , whose contents are shown in Example 42.

Example 42: ACL File Generated from HelloWorld WSDL Contract

<?xm version="1.0" encodi ng="UTF-8"?>
<! DOCTYPE secur e- syst em SYSTEM "act i onr ol enappi ng. dt d" >
<secur e- syst en»
<acti on-rol e- mappi ng>
<ser ver - name>denos. hel | o_wor | d_soap_ht t p</ ser ver - name>
<i nterface>
<nane>ht t p: // wawv. i ona. cond hel | o_wor | d_soap_htt p: G eet er </ nane>
<action-rol e>
<act i on- nane>gr eet Me</ act i on- nanme>
<r ol e- name>Foolker </ r ol e- nane>
</ acti on-rol e>
<action-rol e>
<act i on- name>sayH </ act i on- name>
<r ol e- name>Foolker </ r ol e- nane>
<r ol e- nane>Bar User </ r ol e- nane>
</ action-rol e>
</interface>
</ acti on-rol e- rappi ng>
</ secur e- syst en»

144

Deploying ACL Files

Deploying ACL Files

Configuring a local ACL file To configure an application to load action-role mapping data from a local
file, edit the arti x. cf g configuration file, initializing the
pl ugi ns:is2_authori zation: acti on_rol e_nmappi ng configuration variable
with the ACL file location.
For example, an application with ORB name, ny_ser ver _scope, can be
initialized to load a local ACL file,

security_adm n/action_rol e_nappi ng. xni , using the following
configuration:

Artix Configuration File

orb_plugins = ["xmfile_ | og_streant, "iiop_profile", "giop",
"iiop_tls", "soap", "http", "artix_security"];

ny_server_scope {

pl ugi ns: i s2_aut hori zati on: acti on_rol e_mappi ng =
"file:///security_adm n/action_rol e_mappi ng. xm";

145

CHAPTER 9 | Managing Access Control Lists

146

In this chapter

CHAPTER 10

Managing
Certificates

TLS authentication uses X.509 certificates—a common,
secure and reliable method of authenticating your application
objects. This chapter explains how you can create X.509
certificates that identify your Artix applications.

This chapter contains the following sections:

What are X.509 Certificates? page 148
Certification Authorities page 150
Certificate Chaining page 153
PKCS#12 Files page 155
Creating Your Own Certificates page 157
Deploying Certificates page 164

147

CHAPTER 10 | Managing Certificates

What are X.509 Certificates?

Role of certificates An X.509 certificate binds a name to a public key value. The role of the
certificate is to associate a public key with the identity contained in the
X.509 certificate.

Integrity of the public key Authentication of a secure application depends on the integrity of the public
key value in the application’s certificate. If an impostor replaced the public
key with its own public key, it could impersonate the true application and
gain access to secure data.

To prevent this form of attack, all certificates must be signed by a
certification authority (CA). A CA is a trusted node that confirms the
integrity of the public key value in a certificate.

Digital signatures A CA signs a certificate by adding its digital signature to the certificate. A
digital signature is a message encoded with the CA's private key. The CA’s
public key is made available to applications by distributing a certificate for
the CA. Applications verify that certificates are validly signed by decoding
the CA’s digital signature with the CA’s public key.

WARNING: Most of the demonstration certificates supplied with Artix are
signed by the CA cacert. pem This CA is completely insecure because
anyone can access its private key. To secure your system, you must create
new certificates signed by a trusted CA. This chapter describes the set of
certificates required by an Artix application and shows you how to replace
the default certificates.

148

The contents of an X.509
certificate

Distinguished names

What are X.509 Certificates?

An X.509 certificate contains information about the certificate subject and
the certificate issuer (the CA that issued the certificate). A certificate is
encoded in Abstract Syntax Notation One (ASN.1), a standard syntax for
describing messages that can be sent or received on a network.

The role of a certificate is to associate an identity with a public key value. In
more detail, a certificate includes:

® X.509 version information.

® Aserial number that uniquely identifies the certificate.

® Asubject DN that identifies the certificate owner.

® The public key associated with the subject.

® Anssuer DN that identifies the CA that issued the certificate.

® The digital signature of the issuer.

® Information about the algorithm used to sign the certificate.

® Some optional X.509 v.3 extensions. For example, an extension exists
that distinguishes between CA certificates and end-entity certificates.

A distinguished name (DN) is a general purpose X.500 identifier that is
often used in the context of security.

See “ASN.1 and Distinguished Names” on page 359 for more details about
DNs.

149

CHAPTER 10 | Managing Certificates

Certification Authorities

Choice of CAs

In this section

150

A CA must be trusted to keep its private key secure. When setting up an
Artix system, it is important to choose a suitable CA, make the CA certificate
available to all applications, and then use the CA to sign certificates for your
applications.

There are two types of CA you can use:

® A commercial CA is a company that signs certificates for many
systems.

® A private CA is a trusted node that you set up and use to sign
certificates for your system only.

This section contains the following subsections:

Commercial Certification Authorities page 151

Private Certification Authorities page 152

Certification Authorities

Commercial Certification Authorities

Signing certificates There are several commercial CAs available. The mechanism for signing a
certificate using a commercial CA depends on which CA you choose.

Advantages of commercial CAs An advantage of commercial CAs is that they are often trusted by a large
number of people. If your applications are designed to be available to
systems external to your organization, use a commercial CA to sign your
certificates. If your applications are for use within an internal network, a
private CA might be appropriate.

Criteria for choosing a CA Before choosing a CA, you should consider the following criteria:

® What are the certificate-signing policies of the commercial CAs?

® Are your applications designed to be available on an internal network
only?

® What are the potential costs of setting up a private CA?

151

CHAPTER 10 | Managing Certificates

Private Certification Authorities

Choosing a CA software package

OpenSSL software package

Setting up a private CA using
OpenSSL

Choosing a host for a private
certification authority

Security precautions

152

If you wish to take responsibility for signing certificates for your system, set
up a private CA. To set up a private CA, you require access to a software
package that provides utilities for creating and signing certificates. Several
packages of this type are available.

One software package that allows you to set up a private CA is OpenSSL,
htt p: // wav. openssl . or g. OpenSSL is derived from SSLeay, an
implementation of SSL developed by Eric Young (eay@cryptsoft.com).
Complete license information can be found in “License Issues” on page 397.
The OpenSSL package includes basic command line utilities for generating
and signing certificates and these utilities are available with every
installation of Artix. Complete documentation for the OpenSSL command
line utilities is available from htt p: / / www. openssl . or g/ docs.

For instructions on how to set up a private CA, see “Creating Your Own
Certificates” on page 157.

Choosing a host is an important step in setting up a private CA. The level of
security associated with the CA host determines the level of trust associated
with certificates signed by the CA.

If you are setting up a CA for use in the development and testing of Artix
applications, use any host that the application developers can access.
However, when you create the CA certificate and private key, do not make
the CA private key available on hosts where security-critical applications
run.

If you are setting up a CA to sign certificates for applications that you are
going to deploy, make the CA host as secure as possible. For example, take
the following precautions to secure your CA:

® Do not connect the CA to a network.
® Restrict all access to the CA to a limited set of trusted users.
® Protect the CA from radio-frequency surveillance using an RF-shield.

Certificate Chaining

Certificate Chaining

Certificate chain A certificate chain is a sequence of certificates, where each certificate in
the chain is signed by the subsequent certificate.

Self-signed certificate The last certificate in the chain is normally a self-signed certificate—a
certificate that signs itself.

Example Figure 25 shows an example of a simple certificate chain.
Peer |_ Signs CA _ signs
Certificate | Certificate |

I

Figure 25: A Certificate Chain of Depth 2

Chain of trust The purpose of certificate chain is to establish a chain of trust from a peer
certificate to a trusted CA certificate. The CA vouches for the identity in the
peer certificate by signing it. If the CA is one that you trust (indicated by the
presence of a copy of the CA certificate in your root certificate directory), this
implies you can trust the signed peer certificate as well.

153

CHAPTER 10 | Managing Certificates

Certificates signed by multiple
CAs

Trusted CAs

Maximum chain length policy

154

A CA certificate can be signed by another CA. For example, an application
certificate may be signed by the CA for the finance department of IONA
Technologies, which in turn is signed by a self-signed commercial CA.
Figure 26 shows what this certificate chain looks like.

Finance Commercial
CA < CA <
Certificate Certificate

I

Peer | signs
Certificate |

signs signs

Figure 26: A Certificate Chain of Depth 3

An application can accept a signed certificate if the CA certificate for any CA
in the signing chain is available in the certificate file in the local root
certificate directory.

See “Deploying Trusted Certificate Authority Certificates” on page 166.

You can limit the length of certificate chains accepted by your CORBA
applications, with the maximum chain length policy. You can set a value for
the maximum length of a certificate chain with the
policies:iiop_tls:max_chain_|l ength_policy configuration variable for
IIOP/TLS.

PKCS#12 Files

PKCS#12 Files

Overview

Contents of a PKCS#12 file

Figure 27 shows the typical elements in a PKCS#12 file.

PKCS#12 File
X.509]
A
— Certificate Chain
X.509
CA
O—m <1 Private Key

Figure 27: Elements in a PKCS#12 File

A PKCS#12 file contains the following:

® An X.509 peer certificate (first in a chain).

® All the CA certificates in the certificate chain.
® A private key.

The file is encrypted with a pass phrase.

PKCS#12 is an industry-standard format and is used by browsers such as
Netscape and Internet Explorer.

Note: The same pass phrase is used both for the encryption of the private
key within the PKCS#12 file and for the encryption of the PKCS#12 file
overall. This condition (same pass phrase) is not officially part of the
PKCS#12 standard, but it is enforced by most Web browsers and by Artix.

155

CHAPTER 10 | Managing Certificates

Creating a PKCS#12 file

Viewing a PKCS#12 file

Importing and exporting
PKCS#12 files

156

To create a PKCS#12 file, see “Use the CA to Create Signed Certificates” on
page 161.

To view a PKCS#12 file, CertName. p12:

openssl pkcs12 -in CertName. p12

The generated PKCS#12 files can be imported into browsers such as IE or
Netscape. Exported PKCS#12 files from these browsers can be used in
Artix.

Note: Use OpenSSL v0.9.2 or later; Internet Explorer 5.0 or later;
Netscape 4.7 or later.

Creating Your Own Certificates

Creating Your Own Certificates

Overview This section describes the steps involved in setting up a CA and signing
certificates.
OpenSSL utilities The steps described in this section are based on the OpenSSL

command-line utilities from the OpenSSL project,

htt p: // wwn. openssl . or g—see “OpenSSL Utilities” on page 369. Further
documentation of the OpenSSL command-line utilities can be obtained from
htt p: // www. openssl . or g/ docs.

Sample CA directory structure For the purposes of illustration, the CA database is assumed to have the
following directory structure:
X509CAI ca
X509CA/ certs
X509CA/I newcerts
X509CA/ crl

Where X509CA is the parent directory of the CA database.

In this section This section contains the following subsections:
Set Up Your Own CA page 158
Use the CA to Create Signed Certificates page 161

157

CHAPTER 10 | Managing Certificates

Set Up Your Own CA

Substeps to perform

Step 1—Add the bin directory to
your PATH

Step 2—Create the CA directory
hierarchy

Step 3—Copy and edit the
openssl.cnf file

158

This section describes how to set up your own private CA. Before setting up
a CA for a real deployment, read the additional notes in “Choosing a host for
a private certification authority” on page 152.

To set up your own CA, perform the following substeps:

® Step 1—Add the bin directory to your PATH

® Step 2—Create the CA directory hierarchy

® Step 3—Copy and edit the openssl.cnf file

® Step 4—lInitialize the CA database

® Step 5—Create a self-signed CA certificate and private key

On the secure CA host, add the OpenSSL bi n directory to your path:
Windows

> set PATH=OpenSSLDir bi n; YATHY

UNIX

% PATH=OpenSSLDir/ bi n: $PATH export PATH

This step makes the openssl utility available from the command line.

Create a new directory, X509CA, to hold the new CA. This directory will be
used to hold all of the files associated with the CA. Under the X509CA
directory, create the following hierarchy of directories:

X509CA/ ca

X509CA/ certs

X509CA/I newcert s

X509CA/ crl

Copy the sample openssl . cnf from your OpenSSL installation to the
X509CA directory.

Edit the openssl . cnf to reflect the directory structure of the X509CA
directory and to identify the files used by the new CA.

Step 4—Initialize the CA database

Creating Your Own Certificates

Edit the [CA def aul t] section of the openssl! . cnf file to make it look like
the following:

R R
[CA default]

dir = X509CA # Were CA files are kept
certs = $dir/certs # Were issued certs are kept

crl_dir = $dir/crl # Where the issued crl are kept
database = $dir/index. t xt # Dat abase index file

new certs_dir = $dir/newcerts # Default place for new certs

certificate = $dir/ca/new ca.pem# The CA certificate

seri al = $dir/serial # The current serial nunber
crl = $dir/crl.pem # The current CRL
private_key = $dir/ca/ new ca_pk.pem # The private key

RANDFI LE = $dir/ca/.rand # Private random nunber file

x509_extensions = usr_cert # The extensions to add to the cert

You might like to edit other details of the OpenSSL configuration at this
point—for more details, see “The OpenSSL Configuration File” on page 379.

In the X509CA directory, initialize two files, serial and i ndex. t xt .
Windows
> echo 01 > serial

To create an empty file, i ndex. t xt , in Windows start a Windows Notepad at
the command line in the X509CA directory, as follows:

> not epad i ndex. t xt

In response to the dialog box with the text, Cannot find the text.txt
file. Do you want to create a new file?, click Yes, and close Notepad.

UNIX

% echo "01" > serial
% touch i ndex. t xt

These files are used by the CA to maintain its database of certificate files.

Note: The index.txt file must initially be completely empty, not even
containing white space.

159

CHAPTER 10 | Managing Certificates

Step 5—Create a self-signed CA
certificate and private key

160

Create a new self-signed CA certificate and private key:

openssl req -x509 -new -config
X509CA/ openssl . cnf -days 365 -out X509CA/ ca/ new _ca. pem
-keyout X509CA/ ca/ new_ca_pk. pem

The command prompts you for a pass phrase for the CA private key and
details of the CA distinguished name:

Usi ng configuration fromX509CA/ openssl . cnf

Cenerating a 512 bit RSA private key

I o o e

At

witing new private key to 'new ca_ pk. pem

Enter PEM pass phrase:

Verifying password - Enter PEM pass phrase:

You are about to be asked to enter information that will be
incorporated into your certificate request.

Wiat you are about to enter is what is called a D stingui shed
Name or a DN There are quite a few fields but you can |eave
some bl ank. For sone fields there will be a default val ue,

If you enter '.', the field will be left blank.

Country Narme (2 letter code) []:IE

State or Province Nane (full nane) []:Co. Dublin

Locality Nane (eg, city) []:Dublin

O gani zati on Name (eg, conpany) []:1ONA Technol ogi es PLC

O gani zational Wnit Nane (eg, section) []:Finance

Common Nane (eg, YOUR nane) []: Gordon Brown

Emai | Address []:gbrown@ ona. com

Note: The security of the CA depends on the security of the private key
file and private key pass phrase used in this step.

You should ensure that the file names and location of the CA certificate and
private key, new ca. pemand new ca_pk. pem are the same as the values
specified in openssl . cnf (see the preceding step).

You are now ready to sign certificates with your CA.

Creating Your Own Certificates

Use the CA to Create Signed Certificates

Substeps to perform

Step 1—Add the bin directory to
your PATH

Step 2—Create a certificate
signing request

If you have set up a private CA, as described in “Set Up Your Own CA” on
page 158, you are now ready to create and sign your own certificates.

To create and sign a certificate in PKCS#12 format, CertName. p12,
perform the following substeps:

® Step 1—Add the bin directory to your PATH
® Step 2—Create a certificate signing request
® Step 3—Sign the CSR

® Step 4—Concatenate the files

® Step 5—Create a PKCS#12 file

® Step 6—Repeat steps as required

If you have not already done so, add the OpenSSL bi n directory to your
path:

Windows

> set PATH=OpenSSLDir\ bi n; YATHY

UNIX

% PATH=OpenSSLDirl bi n: $PATH export PATH

This step makes the openssl utility available from the command line.

Create a new certificate signing request (CSR) for the CertName. p12
certificate:

openssl req -new -config X509CA/ openssl . cnf
-days 365 -out X509CA/ certs/ CertName_csr. pem - keyout
X509CA/ cert s/ CertName_pk. pem

This command prompts you for a pass phrase for the certificate’s private key
and information about the certificate’s distinguished name.

Some of the entries in the CSR distinguished name must match the values
in the CA certificate (specified in the CA Policy section of the openssl . cnf
file). The default openssl . cnf file requires the following entries to match:

® Country Name

® State or Province Name

® Organization Name

161

CHAPTER 10 | Managing Certificates

Step 3—Sign the CSR

162

The Common Name must be distinct for every certificate generated by
OpenSSL.

Usi ng configuration fromX509CA/ openssl . cnf

Cenerating a 512 bit RSA private key

At

At

witing new private key to ' X509CA/ certs/ CertName_pk. pem
Ent er PEM pass phrase:

Verifying password - Enter PEM pass phrase:

You are about to be asked to enter infornmation that will be
incorporated into your certificate request.

Wiat you are about to enter is what is called a D stingui shed
Nanme or a DN There are quite a few fields but you can | eave
some bl ank. For sone fields there will be a default val ue,

If you enter '.', the field will be left blank.

Country Narme (2 letter code) []:IE

State or Province Nane (full nanme) []:Co. Dublin

Locality Nane (eg, city) []:Dublin

O gani zati on Name (eg, conpany) []:1ONA Technol ogi es PLC
Organi zational Unit Name (eg, section) []:Systens

Conmon Nare (eg, YOUR nare) []:Artix

Emai | Address []:info@ona. com

Pl ease enter the following '"extra attributes
to be sent with your certificate request

A chal | enge password []: password

An optional conpany name []:1QONA

Sign the CSR using your CA:

openssl ca -config X509CA/ openssl . cnf -days 365 -in
X509CA/ certs/ CertName_csr. pem - out
X509CA/ cert s/ CertName. pem

This command requires the pass phrase for the private key associated with
the new ca. pemCA certificate:

Usi ng configuration fromX509CA/ openssl . cnf

Enter PEM pass phrase:

Check that the request matches the signature

Si gnat ure ok

The Subjects D stinguished Nane is as foll ows

count ryNane :PRINTABLE ' | E
stateQ Provi nceNane : PR NTABLE: ' Co. Dublin'
| ocal i t yNarre : PR NTABLE: ' Dubl i n'

Step 4—Concatenate the files

Step 5—Create a PKCS#12 file

Step 6—Repeat steps as required

Creating Your Own Certificates

or gani zat i onNarre : PRINTABLE: ' | ONA Technol ogi es PLC
or gani zati onal Uni t Name: PRI NTABLE: ' Syst ens'

conmonNarre :PRINTABLE ' Bank Server Certificate'
emai | Addr ess 1 ASSTRING ' i nfo@ona. com

Certificate is to be certified until My 24 13:06:57 2000 GVII (365
days)

Sign the certificate? [y/n]:y

1 out of 1 certificate requests certified, conmt? [y/n]y

Wite out database with 1 new entries

Data Base Updat ed

To sign the certificate successfully, you must enter the CA private key pass
phrase—see “Set Up Your Own CA” on page 158.

Concatenate the CA certificate file, CertName certificate file, and
CertName_pk. pemprivate key file as follows:

Windows

copy X509CA\ ca\ new ca. pem +
X509CA\ cert s\ CertName. pem +
X509CA\ cert s\ CertName_pk. pem
X509CA\ cert s\ CertName_1i st . pem

UNIX

cat X509CA/ cal new _ca. pem
X509CA/ cert s/ CertName. pem
X509CA/ cert s/ CertName_pk. pem >
X509CA/ cert s/ CertName_l i st . pem

Create a PKCS#12 file from the CertName _| i st . pemfile as follows:

openss| pkcsl12 -export -in X509CA/ certs/ CertName | i st. pem -out
X509CA/ cert s/ CertName. p12 -name "New cert"

Repeat steps 2 to b, creating a complete set of certificates for your system.
A minimum set of Artix certificates must include a set of certificates for the
secure Artix services.

163

CHAPTER 10 | Managing Certificates

Deploying Certificates

Overview

In this section

164

This section provides an overview of deploying X.509 certificates in a typical
secure Artix system, with detailed instructions on how to deploy certificates
for different parts of the Artix system.

This section contains the following subsections:

Overview of Certificate Deployment page 165
Deploying Trusted Certificate Authority Certificates page 166
Deploying Application Certificates page 171

Deploying Certificates

Overview of Certificate Deployment

Overview

Certificate deployment for HTTPS

Certificate deployment for
IIOP/TLS

Sample deployment directory
structure

Because the HTTPS and IIOP/TLS transports use different security
mechanisms, it is necessary to deploy certificates for each of these
transports independently, as follows:

® C(Certificate deployment for HTTPS.

® Certificate deployment for IOP/TLS.

Certificates used by the HTTPS transport must be in Privacy Enhanced Mail
(PEM) format. To specify certificates for the HTTPS transport, you must edit
your application’s WSDL contract.

Certificates used by the IIOP/TLS transport must be in PKCS#12 format. To
specify certificates for the [IOP/TLS transport, you must edit the Artix
configuration file, ArtixInstallDirl arti x/ 2. 0/ et ¢/ domai ns/ arti x. cf g.

For the purposes of illustration, the examples in this section deploy
certificates into the following sample directory structure:

X509Deploy/ trusted_ca_lists
X509Deployl cert's

Where X509Deploy is the parent directory for the deployed certificates.

165

CHAPTER 10 | Managing Certificates

Deploying Trusted Certificate Authority Certificates

Overview

Deploying for the HTTPS transport

166

This section how to deploy trusted root CA certificates for Artix applications.
In the current version of Artix, the procedure for deploying trusted CA
certificates depends on the type of transport, as follows:

Deploying for the HTTPS transport.
Deploying for the IIOP/TLS transport.

To deploy one or more trusted root CAs for the HTTPS transport in Artix,
perform the following steps:

1.

Assemble the collection of trusted CA certificates that you want to
deploy. The trusted CA certificates could be obtained from public CAs
or private CAs (for details of how to generate your own CA certificates,
see “Set Up Your Own CA” on page 158). The trusted CA certificates
should be in PEM format. All you need are the certificates
themselves—the private keys and passwords are not required.

Concatenate the CA certificates into a single CA list file. A CA list file
can be created using a simple file concatenation operation. For
example, if you have two CA certificate files, ca_cert 01. pemand
ca_cert02. pem you could combine them into a single CA list file,
ca_list01. pem with the following command:

Windows
copy X509CA\ca\ca_cert 01. pem +
X509CA\ ca\ ca_cert 02. pem
X509Deploy\trusted_ca_l i sts\ca_l ist01. pem
UNIX

cat X509CA/ cal ca_cert 01. pem X509CA/ cal ca_cert 02. pem >>
X509Deploy/ trusted_ca_l i sts/ca_list0l. pem

Edit the WSDL contract to specify the location of the CA list file. The
details of this step depend on whether you are deploying a trusted CA
list on the client side or on the server side:

Client side

Edit the client’s copy of the WSDL contract by adding (or modifying)
the Trust edRoot Certi fi cat es attribute in the <htt p-conf: cli ent >

Deploying Certificates

tag. For example, to specify X509CA/ ca/ ca_| i st 01. pemas the client’s
trusted CA certificate, modify the client's WSDL contract as follows:

<definitions

xm ns: http="http://schenas. iona. comtransports/http"

xm ns: htt p-conf="http://schemas. i ona. com t ransports/ http/co
nfiguration" ... >

<servi ce name="...">
<port binding="...">
<http-conf:client ...
Trust edRoot Certi fi cat es="X509CA/ cal ca_l i st 01. pent
/>

</ port >
</ servi ce>
Alternatively, set the
plugins: http:client:trusted root_certificates variable in the
Artix configuration file, as follows:

Artix Configuration File

SecureClientScope {

plugins:http:client:trusted_root_certificates="X509CA/ cal/c
a_| ist0l. pent

b

Server side

Edit the server's copy of the WSDL contract by adding (or modifying)
the Trust edRoot Certi fi cat es attribute in the <ntt p- conf: server>

167

CHAPTER 10 | Managing Certificates

tag. For example, to specify X509CA/ ca/ ca_l i st 01. pemas the
server's trusted CA certificate, modify the server's WSDL contract as
follows:

<defini tions
xm ns: http="http://schenas. i ona. com transports/http"

xm ns: htt p-conf="http://schemas. i ona. comi t ransports/ http/co
nfiguration" ... >

<service nane="...">
<port binding="...">

<http-conf:server ...
Tr ust edRoot Certi fi cat es="X509CA/ cal ca_l i st 01. pent
>
</ port >
</ servi ce>

Alternatively, set the

pl ugi ns: http: server:trusted root_certificates variable in the
Artix configuration file, as follows:

Artix Configuration File

SecureServerScope {
pl ugi ns: htt p: server:trusted root_certificates="X509CA/calc

a_| ist0l. pent
I
Deploying for the IIOP/TLS To deploy one or more trusted root CAs for the IIOP/TLS transport, perform
transport the following steps (the procedure for client and server applications is the
same):

1. Assemble the collection of trusted CA certificates that you want to
deploy. The trusted CA certificates could be obtained from public CAs
or private CAs (for details of how to generate your own CA certificates,
see “Set Up Your Own CA” on page 158). The trusted CA certificates
should be in PEM format. All you need are the certificates
themselves—the private keys and passwords are not required.

2. Organize the CA certificates into a collection of CA list files. For
example, you might create three CA list files as follows:

168

Deploying Certificates

X509Deploy/ trusted_ca_l i sts/ca_list01l. pem
X509Deploy/trusted_ca_|ists/ca_list02. pem
X509Deploy/ trusted_ca_l i sts/ca_l ist03. pem

Each CA list file consists of a concatenated list of CA certificates. A CA
list file can be created using a simple file concatenation operation. For
example, if you have two CA certificate files, ca_cert 01. pemand
ca_cert02. pem you could combine them into a single CA list file,
ca_list0l. pem with the following command:

Windows

copy X509CA\ca\ca_cert01. pem +
X509CA\ ca\ ca_cert 02. pem
X509Deploy\trusted_ca_lists\ca_list0l. pem
UNIX

cat X509CA/ cal ca_cert01. pem X509CA/ cal ca_cert 02. pem >>
X509Deploy/trusted_ca_lists/ca_list0l. pem

The CA certificates are organized as lists as a convenient way of
grouping related CA certificates together.

Edit the arti x. cf g file to specify which of the CA list files is used by
your application. The arti x. cf g file is located in the following
directory:

ArtixInstallDirl arti x/ 2. 0/ et c/ domai ns

To specify the CA list files, edit the value of the
policies:iiop_tls:trusted_ca_list_policy variable in your
application’s configuration scope in the arti x. cf g file.

For example, if your application picks up its configuration from the
SecureAppScope configuration scope and you want to include the CA
certificates from the ca_l i st 01. pemand ca_I i st 02. pemfiles, edit the
artix. cf g file as follows:

Artix configuration file.
SecureAppScope {
policies:iiop tls:trusted ca list _policy =

["X509Deployl trusted_ca_lists/ca_list0l. pent,
"X509Deploy/ trusted_ca_lists/ca_list02. pent];

169

CHAPTER 10 | Managing Certificates

The directory containing the trusted CA certificate lists (for example,
X509Deployl trusted_ca_l i sts/) should be a secure directory.

Note: If an application supports authentication of a peer, that is a client
supports Est abl i shTrust | nTar get , then a file containing trusted CA
certificates must be provided. If not, a NO RESOURCES exception is raised.

170

Deploying Certificates

Deploying Application Certificates

Overview

Certificate formats

Deploying for the HTTPS transport

This section describes how to deploy an Artix application’s own certificate.
In the current version of Artix, the procedure for deploying application
certificates depends on the type of transport, as follows:

® Deploying for the HTTPS transport.

® Deploying for the [IOP/TLS transport

The format used for application certificates depends on the type of

transport, as follows:

® HTTPS transport—uses the PEM format. This format consists of a
certificate file, CertName. pem containing an encrypted X.509
certificate chain, and a private key file, CertPrivKey. pem containing an
encrypted private key. Both PEM files are encrypted by the same
password (the private key password).

® JIOP/TLS transport—uses the PKCS#12 format. This format consists
of a single encrypted file, CertName. p12, that contains an X.509
certificate chain and a private key.

Note: Because Artix uses an IIOP/TLS connection to communicate with
the Artix security service, Artix applications that use HTTPS generally
require you to configure both HTTPS and [IOP/TLS.

To deploy an Artix application’s own certificate, CertName. pem with private
key, CertPrivKey. pem for the HTTPS transport, perform the following steps:
1. Copy the application certificate, CertName. pem and private key file,
CertPrivKey. pem to the certificates directory—for example,
X509Deploy! cert s/ appl i cati ons—on the deployment host.
The certificates directory should be a secure directory that is accessible
only to administrators and other privileged users.

2. Edit the WSDL contract to specify the location of the application

certificate file and private key file. The details of this step depend on
whether you are deploying an application certificate on the client side
or the server side:

171

CHAPTER 10 | Managing Certificates

Client side
Edit the client's copy of the WSDL contract by adding (or modifying)
the following highlighted attributes in the <ht t p- conf: cl i ent > tag:

<definitions
xm ns: http="http://schenas. iona. comtransports/http"
xm ns: http-conf="http://schenas.iona.comtransports/http/configuration" ... >

<servi ce name="...">
<port binding="...">
<soap: address ...>
<htt p-conf:client UseSecureSockets="true"
AientCertificate="X509Deploy/ certs/ appli cations/ CertName. pent
d i ent Pri vat ekey="X509Deploy/ cert s/ appl i cati ons/ CertPrivKey. pemt
d i ent Pri vat eKeyPasswor d="MyKeyPassword"
Tr ust edRoot Cer ti fi cat es="RootCertPath"
. >
</ port>
</ servi ce>

Alternatively, set the pl ugi ns: htt p: client:* variables in the Artix
configuration file, as follows:

Artix Configuration File

SecureClientScope {
pl ugi ns: http: client:use secure_sockets = "true";
pl ugi ns: http:client:trusted root certificates="RootCertPath"
plugins: http:client:client_certificate="X509Deploy/ certs/ appli cati ons/ CertName. pent
pl ugins: http:client:client_private_key="X509Deploy/ cert s/ appl i cati ons/ CertPrivKey. pent
pl ugins: http:client:client_private_key_password="MyKeyPassword"

172

Deploying Certificates

Server side
Edit the server's copy of the WSDL contract by adding (or modifying)
the following highlighted attributes in the <ht t p- conf : ser ver > tag:

<definitions
xm ns: htt p="http://schenmas. i ona. com transports/http"
xm ns: htt p-conf="http://schemas.iona. com transports/http/configuration" ... >

<servi ce name="...">
<port binding="...">
<soap: address ...>
<ht t p- conf : server UseSecureSocket s="true"
Server Certificate="X509Deploy/ cert s/ appl i cat i ons/ CertName. pent
Ser ver Pri vat ekey="X509Deploy/ cert s/ appl i cati ons/ CertPrivKey. pemt
Ser ver Pri vat eKeyPasswor d="MyKeyPassword"
Trust edRoot Cert i fi cat es=" RootCertPath"
/>
</ port>
</ servi ce>

Alternatively, set the pl ugi ns: ht t p: server: * variables in the Artix
configuration file, as follows:

Artix Configuration File
SecureServerScope {

pl ugi ns: htt p: server: use_secure_sockets = "true";

pl ugi ns: http: server:trusted_root_certificat es="RootCertPath"

pl ugi ns: htt p: server: server_certificate="X509Deploy/ cert s/ appl i cati ons/ CertName. pent
pl ugi ns: htt p: server: server_private_key="X509Deploy/ cert s/ appl i cati ons/ CertPrivKey. pemt
pl ugi ns: htt p: server: server_private_key passwor d="MyKeyPassword"

3. Protect the private key passwords.
Because the private key passwords in the WSDL contracts appear in
plaintext form, you must ensure that the WSDL contract files
themselves are not readable/writable by every user. Use the operating
system to restrict read/write access to trusted users only.
Additionally, to avoid revealing the server's security configuration to
clients, you should remove the <ht t p- conf : ser ver > tag from the client
copy of the WSDL contract.

173

CHAPTER 10 | Managing Certificates

Deploying for the IIOP/TLS To deploy an Artix application’s own certificate, CertName. p12, for the
transport IIOP/TLS transport, perform the following steps:
1. Copy the application certificate, CertName. p12, to the certificates
directory—for example, X509Deploy/ cert s/ appl i cat i ons—on the
deployment host.

The certificates directory should be a secure directory that is accessible
only to administrators and other privileged users.

2. Edit the arti x. cf g configuration file (usually
ArtixInstallDirl arti x/ 2. 0/ et ¢/ domai ns/ arti x. cf g). Given that your
application picks up its configuration from the SecureAppScope scope,
change the principal sponsor configuration to specify the
CertName. p12 certificate, as follows:

Artix configuration file
SecureAppScope {

princi pal _sponsor: use_princi pal _sponsor = "true";
princi pal _sponsor:auth_nethod_id = "pkcs12_file";
princi pal _sponsor: aut h_net hod_data =
["fil ename=X509Deploy/ cert s/ appl i cati ons/ CertName.
p12"];
I

3. By default, the application will prompt the user for the certificate pass
phrase as it starts up. To choose another option for providing the pass
phrase, see “Providing a Certificate Pass Phrase” on page 186.

174

CHAPTER 11

Configuring
HTTPS and
IHOP/TLS

Authentication

This chapter describes how to configure HTTPS and IIOP/TLS
authentication requirements for Artix applications.

In this chapter This chapter discusses the following topics:
Requiring Authentication page 176
Specifying Trusted CA Certificates page 184
Specifying an Application’s Own Certificate page 185
Providing a Certificate Pass Phrase page 186
Advanced IIOP/TLS Configuration Options page 191

175

CHAPTER 11 | Configuring HTTPS and IIOP/TLS Authentication

Requiring Authentication

Overview This section discusses how to specify the kind of authentication required,
whether mutual or target-only.

In this section There are two possible arrangements for a TLS secure association:
Target-Only Authentication page 177
Mutual Authentication page 181

176

Requiring Authentication

Target-Only Authentication

Overview When an application is configured for target-only authentication, the target
authenticates itself to the client but the client is not authentic to the target
object—see Figure 28.

A Secure Association
Client |1

=
» Server

Trusted CA Lists ‘ ‘

E— Authenticate -
‘ CA Cert List 1 Certificate Certfile

‘ CA Cert List 2

L

Figure 28: Target Authentication Only

Security handshake Prior to running the application, the client and server should be set up as

follows:

® Acertificate chain is associated with the server—the certificate chain is
provided in the form of a PEM file (for HTTPS) or a PKCS#12 file (for
[IOP/TLS). See “Specifying an Application’s Own Certificate” on
page 185.

® One or more lists of trusted certification authorities (CA) are made
available to the client—see “Deploying Trusted Certificate Authority
Certificates” on page 166.

During the security handshake, the server sends its certificate chain to the

client—see Figure 28. The client then searches its trusted CA lists to find a

CA certificate that matches one of the CA certificates in the server's
certificate chain.

177

CHAPTER 11 | Configuring HTTPS and IIOP/TLS Authentication

HTTPS example You configure target-only authentication for the HTTPS transport by omitting
a certificate on the client side. That is, the Qi ent Certi fi cat e attribute is
not set in the <htt p-conf: cl i ent > tag. For example, you could configure
the client side and the server side as follows:

Client side

Edit the client’s copy of the WSDL contract by adding (or modifying) the
following highlighted attributes in the <nhtt p- conf : cl i ent > tag:

<definitions
xm ns: http="http://schenas.iona. comtransports/http"
xm ns: http-conf="http://schenas.iona.comtransports/http/configuration" ... >

<servi ce name="...">
<port binding="...">
<soap: address ...>
<htt p-conf:client UseSecureSockets="true"
Tr ust edRoot Cert i fi cat es="RootCertPath"
. >
</ port>
</ servi ce>

Alternatively, instead of the <htt p-conf: cl i ent > security attributes, you
can set the following variables in the Artix configuration file, arti x. cf g:

Artix Configuration File
SecureClientScope {

plugi ns: http: client:use secure_sockets = "true";
pl ugi ns: http:client:trusted root certificates="RootCertPath"

178

Requiring Authentication

Server side

Edit the server’s copy of the WSDL contract by adding (or modifying) the
following highlighted attributes in the <ht t p- conf : ser ver > tag:

<definitions
xm ns: htt p="http://schenas. i ona. com transports/http"
xm ns: htt p-conf ="http://schemas. i ona. conitransports/http/configuration" ... >

<servi ce name="...">
<port binding="...">
<soap: address ...>
<ht t p- conf : server UseSecureSocket s="true"
Server Certificat e="X509Deploy/ cert s/ appl i cati ons/ CertName. pent
Ser ver Pri vat ekey="X509Deploy/ cert s/ appl i cati ons/ CertPrivKey. pemt
Ser ver Pri vat eKeyPasswor d="MyKeyPassword"
Trust edRoot Cert i fi cat es=" RootCertPath"
/>
</ port>
</ servi ce>

Alternatively, instead of the <ht t p- conf : ser ver > security attributes, you
can set the following variables in the Artix configuration file, arti x. cf g:

Artix Configuration File
SecureServerScope {
pl ugi ns: htt p: server: use_secure_sockets = "true";
pl ugi ns: htt p: server:trusted root certificates="RootCertPath"
pl ugi ns: htt p: server: server_certificate="X509Deploy/ cert s/ appl i cati ons/ CertName. pent

pl ugi ns: htt p: server: server _privat e_key="X509Deploy/ cert s/ appl i cati ons/ CertPrivKey. pemt
pl ugi ns: htt p: server: server_private_key_passwor d="MyKeyPassword"

179

CHAPTER 11 | Configuring HTTPS and IIOP/TLS Authentication

IIOP/TLS example The following extract from an arti x. cf g configuration file shows the
target-only configuration of an Artix client application, bank_client, and an
Artix server application, bank_ser ver , where the transport type is IIOP/TLS.

Artix Configuration File

policies:iiop_tls:nechani smpolicy: protocol version = "SSL V3";
policies:iiop_tls:mechani smpolicy:ciphersuites =
["RSA WTH RC4_128 SHA', "RSA WTH RC4_128 MX%"];

bank_server {
policies:iiop_tls:target _secure_invocation_policy:requires =
["Confidentiality"];
policies:iiop_tls:target _secure_invocation_policy:supports =
["Confidentiality", "Integrity", "DetectReplay",
"Det ect M sordering", "EstablishTrustlnTarget"];

IH
bank_client {

policies:iiop_tls:client_secure_invocation_policy:requires =
["Confidentiality", "EstablishTrustlnTarget"];
policies:iiop_tls:client_secure_invocation_policy:supports =
["Confidentiality", "Integrity", "DetectReplay",
"Det ect M sordering", "EstablishTrustlnTarget"];
I

180

Requiring Authentication

Mutual Authentication

Overview When an application is configured for mutual authentication, the target
authenticates itself to the client and the client authenticates itself to the
target. This scenario is illustrated in Figure 29. In this case, the server and
the client each require an X.509 certificate for the security handshake.

Trusted CA Lists

Client

|
|

Secure Association A

A
Client > Server [1]

Trusted CA Lists
4‘* E— Authenticate
‘ CA Cert List 1 Target Certfile

‘ CA Cert List 2

EEEEN
I

Figure 29: Mutual Authentication

181

CHAPTER 11 | Configuring HTTPS and IIOP/TLS Authentication

Security handshake

HTTPS example

IIOP/TLS example

182

Prior to running the application, the client and server should be set up as
follows:

® Both client and server have an associated certificate chain (PEM file or

PKCS#12 file)—see “Specifying an Application’s Own Certificate” on
page 185.

® Both client and server are configured with lists of trusted certification
authorities (CA)—see “Deploying Trusted Certificate Authority
Certificates” on page 166.

During the security handshake, the server sends its certificate chain to the
client, and the client sends its certificate chain to the server—see Figure 28.

To configure mutual authentication for the HTTPS transport, you should
deploy an application certificate both on the client side and on the server
side. For a detailed example, see the following reference:

®* “Deploying for the HTTPS transport” on page 171.

The following sample extract from an arti x. cf g configuration file shows the
configuration for mutual authentication of a client application,
secure_client_with_cert, and a server application,

secure_server_enforce_client_auth, where the transport type is
IIOP/TLS.

Artix Configuration File

policies:iiop_tls:mechani smpolicy:protocol version = "SSL V3",
policies:iiop_tls:nechani smpolicy:ciphersuites =
["RSA WTH RC4 128 SHA', "RSA WTH RC4 128 MX%"];

secure_server_enforce_client_auth
{
policies:iiop_tls:target _secure_invocation_policy:requires =
["EstablishTrustInQient", "Confidentiality"];
policies:iiop_tls:target_secure_invocation_policy:supports =
["EstablishTrustinQient", "Confidentiality", "Integrity",
"Det ect Repl ay", "DetectM sordering",
"Establ i shTrust | nTarget"];

Requiring Authentication

secure_client_with_cert

{
policies:iiop_tls:client_secure_invocation_policy:requires =
["Confidentiality", "EstablishTrustlnTarget"];
policies:iiop_tls:client_secure_invocation_policy:supports =
["Confidentiality", “Integrity", "DetectReplay",
"Det ect M sordering", "EstablishTrustlnQient",
"Establ i shTrust | nTarget"];
ik

183

CHAPTER 11 | Configuring HTTPS and IIOP/TLS Authentication

Specifying Trusted CA Certificates

Overview

Which applications need to
specify trusted CA certificates?

How to deploy trusted CA
certificates

184

When an application receives an X.509 certificate during an SSL/TLS
handshake, the application decides whether or not to trust the received
certificate by checking whether the issuer CA is one of a pre-defined set of
trusted CA certificates. If the received X.509 certificate is validly signed by
one of the application’s trusted CA certificates, the certificate is deemed
trustworthy; otherwise, it is rejected.

Any application that is likely to receive an X.509 certificate as part of an
HTTPS or IIOP/TLS handshake must specify a list of trusted CA certificates.
For example, this includes the following types of application:

® Al IOP/TLS or HTTPS clients.

® Any lIOP/TLS or HTTPS servers that support mutual authentication.

For more details about how to deploy trusted CA certificates, see the
following references:

® “Deploying for the HTTPS transport” on page 166.
® “Deploying for the IIOP/TLS transport” on page 168.

Specifying an Application’s Own Certificate

Specifying an Application’s Own Certificate

Overview To enable an Artix application to identify itself, it must be associated with an

X.509 certificate. The X.509 certificate is needed during an SSL/TLS
handshake, where it is used to authenticate the application to its peers. The
method you use to specify the certificate depends on the type of application:

® Security unaware—configuration only,

This section discusses how to specify a certificate by configuration only.

How to deploy an application For details about how to deploy an application’s own certificate, see the
certificate following reference:

“Deploying Application Certificates” on page 171.

185

CHAPTER 11 | Configuring HTTPS and IIOP/TLS Authentication

Providing a Certificate Pass Phrase

Overview If an application is configured to have an X.509 certificate, it is necessary to
provide a pass phrase as the application starts up. There are various ways of
providing the certificate pass phrase, depending on the particular type of
transport used.

In this section This section contains the following subsections:
Certificate Pass Phrase for HTTPS page 187
Certificate Pass Phrase for IIOP/TLS page 189

186

Providing a Certificate Pass Phrase

Certificate Pass Phrase for HTTPS

Overview For the HTTPS transport, there is just one option for specifying a certificate’s
pass phrase, as follows:

® Directly in the WSDL contract.

Directly in the WSDL contract For the HTTPS protocol, the same pass phrase is used to encrypt both the
certificate and the private key. You can specify the certificate pass phrase by
editing the WSDL contract as follows:

Client side

Edit the client’s copy of the WSDL contract by adding (or modifying) the
dientPrivat eKeyPasswor d attribute in the <ht t p- conf: cl i ent > tag:

<definitions
xm ns: http="http://schemas. i ona. com transports/http"
xm ns: htt p-conf ="http://schenmas. i ona. conitransports/http/configuration" ... >

<servi ce name="...">
<port binding="...">
<soap: address ...>
<http-conf:client ...
di ent Pri vat eKeyPasswor d="MyKeyPassword"
Trust edRoot Cert i fi cat es=" RootCertPath"
. >
</ port>
</ servi ce>

Alternatively, you can set the
plugins:http:client:client_private key password variable in the Artix
configuration file, arti x. cf g, as follows:

Artix Configuration File

SecureClientScope {
plugins: http:client:client_private_key password = "MyKeyPassword";

187

CHAPTER 11 | Configuring HTTPS and IIOP/TLS Authentication

Server side

Edit the server's copy of the WSDL contract by adding (or modifying) the
Ser ver Pri vat eKeyPasswor d attribute in the <ht t p-conf : ser ver > tag:

<definitions
xm ns: http="http://schenas. iona. comtransports/http"
xm ns: htt p-conf ="http://schemas. i ona. com transports/http/configuration" ... >

<servi ce name="...">
<port binding="...">
<soap: address ...>
<htt p- conf: server ...
Ser ver Pri vat eKeyPasswor d="MyKeyPassword"
Tr ust edRoot Cert i fi cat es="RootCertPath"
. 1>
</ port>
</ servi ce>

Alternatively, you can set the
pl ugi ns: htt p: server: server_private_key password variable in the Artix
configuration file, arti x. cf g, as follows:

Artix Configuration File

SecureServerScope {
pl ugi ns: htt p: server: server_private_key password = "MyKeyPassword";

1

188

Providing a Certificate Pass Phrase

Certificate Pass Phrase for IIOP/TLS

Overview

From a dialog prompt

In a password file

Once you have specified a PKCS#12 certificate, you must also provide its
pass phrase. The pass phrase is needed to decrypt the certificate’s private
key (which is used during the TLS security handshake to prove the
certificate’s authenticity).

For the IIOP/TLS transport, the pass phrase can be provided in one of the
following ways:

® From a dialog prompt.

® In a password file.

® Directly in configuration.

If the pass phrase is not specified in any other way, Artix will prompt the
user for the pass phrase as the application starts up. This approach is
suitable for persistent (that is, manually-launched) servers.

C+ + Applications
When a C++ application starts up, the user is prompted for the pass phrase
at the command line as follows:

Initializing the CRB
Enter password :

The pass phrase is stored in a password file whose location is specified in
the pri nci pal _sponsor: aut h_net hod_dat a configuration variable using the
passwor d_fil e option. In the following example, the SecureApp scope
configures the principal sponsor as follows:

Artix Configuration File
SecureApp {

princi pal _sponsor: use_princi pal _sponsor = "true";
princi pal _sponsor:auth_met hod_id = "pkcsl12 file";
princi pal _sponsor: aut h_net hod_data =
[fil enarre—X509Dep/oy/ certs/adm ni strator. pl2",
"password_fil e=X509Deploy/ certs/ admi ni strator. pw"];

189

CHAPTER 11 | Configuring HTTPS and IIOP/TLS Authentication

In this example, the pass phrase for the bank_server. p12 certificate is
stored in the admi ni strator. pwf file, which contains the following pass
phrase:

admi ni strat or pass

WARNING: Because the password file stores the pass phrase in plain text,
the password file should not be readable by anyone except the
administrator. For greater security, you could supply the pass phrase from
a dialog prompt instead.

Directly in configuration For a PKCS #12 file, the pass phrase can be specified directly in the
pri nci pal _sponsor : aut h_net hod_dat a configuration variable using the
passwor d option. For example, the bank_ser ver demonstration configures
the principal sponsor as follows:

Artix Configuration File
bank_server {

princi pal _sponsor: use_princi pal _sponsor = "true";

princi pal _sponsor:auth_nmethod_id = "pkcsl2 file";

princi pal _sponsor: aut h_net hod_data =
["fil ename=ASPInstallDir\ asp\ 6. 0\ et c\ t | s\ x509\ cer t s\ denos\ bank
_server.pl2", "password=bankserverpass"];

Ik

In this example, the pass phrase for the bank_server. p12 certificate is
bankser ver pass.

WARNING: Storing the pass phrase directly in configuration is not
recommended for deployed systems. The pass phrase is in plain text and
could be read by anyone.

190

Advanced IIOP/TLS Configuration Options

Advanced IIOP/TLS Configuration Options

Overview For added security, the IIOP/TLS transport allows you to apply extra
conditions on certificates. Before reading this section you might find it
helpful to consult “Managing Certificates” on page 147, which provides
some background information on the structure of certificates.

In this section This section discusses the following advanced IIOP/TLS configuration
options:
Setting a Maximum Certificate Chain Length page 192
Applying Constraints to Certificates page 193

191

CHAPTER 11 | Configuring HTTPS and IIOP/TLS Authentication

Setting a Maximum Certificate Chain Length

Max chain length policy

Example

Configuration variable

Default value

192

You can use the maximum chain length policy to enforce the maximum
length of certificate chains presented by a peer during handshaking.

A certificate chain is made up of a root CA at the top, an application
certificate at the bottom and any number of CA intermediaries in between.
The length that this policy applies to is the (inclusive) length of the chain
from the application certificate presented to the first signer in the chain that
appears in the list of trusted CA's (as specified in the

Trust edCALi st Pol i cy).

For example, a chain length of 2 mandates that the certificate of the
immediate signer of the peer application certificate presented must appear
in the list of trusted CA certificates.

You can specify the maximum length of certificate chains used in maximum
chain length policy with the pol i ci es:iiop_tls: max_chai n_| engt h_pol i cy
configuration variable. For example:

policies:iiop_tls:max_chain_length_policy = "4";

The default value is 2 (that is, the application certificate and its signer,
where the signer must appear in the list of trusted CA'’s.

Advanced IIOP/TLS Configuration Options

Applying Constraints to Certificates

Certificate constraints policy

Configuration variable

Constraint language

Example

You can use the certificate constraints policy to apply constraints to peer
X.509 certificates. These conditions are applied to the owner's distinguished
name (DN) on the first certificate (peer certificate) of the received certificate
chain. Distinguished names are made up of a number of distinct fields, the
most common being Organization Unit (OU) and Common Name (CN).

You can specify a list of constraints to be used by the certificate constraints
policy through the policies:iiop_tls:certificate_constraints_policy
configuration variable. For example:
policies:iiop_tls:certificate_constraints_policy =
[" CNEJohnny*, QU=[uni t 1| | T_SSL], O=l ONA, C=l rel and, ST=Dubl i n, L=Ea
rth*, " O\N=Paul *, QU=SSLTEAM O=I ONA, C=I r el and, ST=Dubl i n, L=Eart h",
" ONETheQmi pot ent One"] ;

These are the special characters and their meanings in the constraint list:

* Matches any text. For example:
an* matches ant and anger, but not aunt
[1 Grouping symbols.
| Choice symbol. For example:

OU[uni t1] I T_SSL] signifies that if the QUis unit1
or I T_SSL, the certificate is acceptable.

=, 1= Signify equality and inequality respectively.

This is an example list of constraints:
policies:iiop_tls:certificate_constraints_policy = [

"OUE[unit 1] 1 T_SSL], CN=St eve*, L=Dubl i n",
"OEI T_ART*, QU =l T_ARTt est er s, ON=[Jan| Donal], ST=
Bost on" ;
This constraint list specifies that a certificate is deemed acceptable if and
only if it satisfies one or more of the constraint patterns:

| f
The QUis unitl or IT_SSL
And

193

CHAPTER 11 | Configuring HTTPS and IIOP/TLS Authentication

Distinguished names

194

The ON begins with the text Steve
And
The location is Dublin
Then the certificate is acceptable
Else (noving on to the second constraint)
| f
The QU begins with the text IT_ART but isn't |T_ARTtesters
And
The common nane is either Donal or Jan
And
The State is Boston
Then the certificate is acceptable
QG herwi se the certificate is unacceptabl e.

The language is like a boolean OR, trying the constraints defined in each
line until the certificate satisfies one of the constraints. Only if the certificate
fails all constraints is the certificate deemed invalid.

Note that this setting can be sensitive about white space used within it. For
example, "ON =" might not be recognized, where " ON=" is recognized.

For more information on distinguished names, see “ASN.1 and
Distinguished Names” on page 359.

In this chapter

CHAPTER 12

Configuring
IOP/TLS Secure
Associations

The Artix IIOP/TLS transport layer offers additional
functionality that enables you to customize client-server
connections by specifying secure invocation policies and
security mechanism policies.

This chapter discusses the following topics:

Overview of Secure Associations page 196
Setting IIOP/TLS Association Options page 198
Specifying IIOP/TLS Cipher Suites page 210
Caching IIOP/TLS Sessions page 219

195

CHAPTER 12 | Configuring IIOP/TLS Secure Associations

Overview of Secure Associations

Secure association

TLS session

Colocation

Configuration overview

196

A secure association is a term that has its origins in the CORBA Security
Service and refers to any link between a client and a server that enables
invocations to be transmitted securely. In the present context, a secure
association is an [IOP/TLS connection augmented by a collection of security
policies that govern the behavior of the connection.

A TLS session is the TLS implementation of a secure client-server
association. The TLS session is accompanied by a session state that stores
the security characteristics of the association.

A TLS session underlies each secure association in Artix.

For colocated invocations, that is where the calling code and called code
share the same address space, Artix supports the establishment of colocated
secure associations. A special interceptor, TLS_Col oc, is provided by the
security plug-in to optimize the transmission of secure, colocated
invocations.

The security characteristics of an association can be configured through the

following CORBA policy types:

® Client secure invocation policy—enables you to specify the security
requirements on the client side by setting association options. See
“Choosing Client Behavior” on page 202 for details.

® Target secure invocation policy—enables you to specify the security
requirements on the server side by setting association options. See
“Choosing Target Behavior” on page 204 for details.

® Mechanism policy—enables you to specify the security mechanism
used by secure associations. In the case of TLS, you are required to
specify a list of cipher suites for your application. See “Specifying
IIOP/TLS Cipher Suites” on page 210 for details.

Overview of Secure Associations

Figure 30 illustrates all of the elements that configure a secure association.
The security characteristics of the client and the server can be configured
independently of each other.

_ A Secure Association A
Client Server 1]

I I
TCIient ConfigurationT rServer ConfigurationT
Client Invocation - . Target Invocation - .
" Association Options . Association Options
Policy Policy
Mechanism Policy Specified Cipher Suites ‘ Mechanism Policy Specified Cipher Suites ‘

Figure 30: Configuration of a Secure Association

197

CHAPTER 12 | Configuring IIOP/TLS Secure Associations

Setting IIOP/TLS Association Options

Overview This section explains the meaning of the various I1IOP/TLS association
options and describes how you can use the [IOP/TLS association options to
set client and server secure invocation policies for IIOP/TLS connections.

In this section The following subsections discuss the meaning of the settings and flags:
Secure Invocation Policies page 199
Association Options page 200
Choosing Client Behavior page 202
Choosing Target Behavior page 204
Hints for Setting Association Options page 206

198

Setting IIOP/TLS Association Options

Secure Invocation Policies

Secure invocation policies You can set the minimum security requirements for the applications in your
system with two types of security policy:
® Client secure invocation policy—specifies the client association
options.
® Target secure invocation policy—specifies the association options on a
target object.

These policies can only be set through configuration; they cannot be
specified programmatically by security-aware applications.

Configuration example For example, to specify that client authentication is required for IIOP/TLS
connections, you can set the following target secure invocation policy for
your server:

Artix Configuration File
secure_server_enforce_client_auth

{

policies:iiop tls:target secure_invocation_policy:requires
["EstablishTrustInQient", "Confidentiality"];

policies:iiop tls:target_secure_invocation_policy:supports =
["EstablishTrustInQient", "Confidentiality", "Integrity",
"Det ect Repl ay", "DetectM sordering",

"Establi shTrust|nTarget"];

/] Qher settings (not shown)...

IE

199

CHAPTER 12 | Configuring IIOP/TLS Secure Associations

Association Options

Available options

NoProtection

Integrity

Confidentiality

DetectReplay

DetectMisordering

200

You can use association options to configure [IOP/TLS secure associations.
They can be set for clients or servers where appropriate. These are the
available options:

® NoProtection

® Integrity

® (onfidentiality

® DetectRepl ay

® DetectMsordering

® EstablishTrust!nTarget
® EstablishTrustindient

Use the NoPr ot ect i on flag to set minimal protection.This means that
insecure bindings are supported, and (if the application supports something
other than NoPr ot ect i on) the target can accept secure and insecure
invocations.

Use the I ntegrity flag to indicate that your application supports
integrity-protected invocations. Setting this flag implies that your TLS cipher
suites support message digests (such as MD5, SHA1).

Use the Confidenti al ity flag if your application requires or supports at
least confidentiality-protected invocations. The object can support this
feature if the cipher suites specified by the Mechani snPol i cy support
confidentiality-protected invocations.

Use the Det ect Repl ay flag to indicate that your application supports or
requires replay detection on invocation messages. This is determined by
characteristics of the supported TLS cipher suites.

Use the Det ect M sorderi ng flag to indicate that your application supports
or requires error detection on fragments of invocation messages. This is
determined by characteristics of the supported TLS cipher suites.

EstablishTrustIinTarget

EstablishTrustinClient

Setting IIOP/TLS Association Options

The Est abl i shTrust I nTar get flag is set for client policies only. Use the flag
to indicate that your client supports or requires that the target authenticate
its identity to the client. This is determined by characteristics of the
supported TLS cipher suites. This is normally set for both client support s
and requi r es unless anonymous cipher suites are supported.

Use the Est abl i shTrust I nd i ent flag to indicate that your target object
requires the client to authenticate its privileges to the target. This option
cannot be required as a client policy.

If this option is supported on a client’s policy, it means that the client is
prepared to authenticate its privileges to the target. On a target policy, the
target supports having the client authenticate its privileges to the target.

201

CHAPTER 12 | Configuring IIOP/TLS Secure Associations

Choosing Client Behavior

Client secure invocation policy

IIOP/TLS configuration

Association options

Default value

Example

202

The client secure invocation policy type determines how a client handles
security issues.

You can set this policy for IIOP/TLS connections through the following

configuration variables:

policies:iiop_tls:client_secure_invocation_policy:requires
Specifies the minimum security features that the client requires to
establish an IIOP/TLS connection.

policies:iiop_tls:client_secure_invocation_policy:supports
Specifies the security features that the client is able to support on
IIOP/TLS connections.

In both cases, you provide the details of the security levels in the form of
Associ ati onQpt i on flags—see “Association Options” on page 200.

The default value for the client secure invocation policy is:
supports Integrity, Confidentiality, DetectReplay,
Det ect M sorderi ng, EstablishTrustlnTarget

requires Integrity, Confidentiality, DetectReplay,
Det ect M sorderi ng, EstablishTrust!nTarget

The following example shows some sample settings for the client secure
invocation policy:

Setting IIOP/TLS Association Options

Artix Configuration File
bank_client {

policies:iiop_tls:client_secure_invocation_policy:requires =
["Confidentiality", "EstablishTrustlnTarget"];

policies:iiop_tls:client_secure_invocation_policy:supports
["Confidentiality", "Integrity", "DetectReplay",
"Det ect M sordering", "EstablishTrustlnTarget"];
h

203

CHAPTER 12 | Configuring IIOP/TLS Secure Associations

Choosing Target Behavior

Target secure invocation policy

IIOP/TLS configuration

Association options

Default value

Example

204

The target secure invocation policy type operates in a similar way to the
client secure invocation policy type. It determines how a target handles
security issues.

You can set the target secure invocation policy for IIOP/TLS connections

through the following configuration variables:

policies:iiop_tls:target_secure_invocation_policy:requires
Specifies the minimum security features that your targets require,
before they accept an IIOP/TLS connection.

policies:iiop_tls:target_secure_invocation_policy:supports
Specifies the security features that your targets are able to support on
IIOP/TLS connections.

In both cases, you can provide the details of the security levels in the form of
Associ ati onQpt i on flags—see “Association Options” on page 200.

The default value for the target secure invocation policy is:
supports Integrity, Confidentiality, DetectReplay,
Det ect M sordering, EstablishTrustlnTarget

requires Integrity, Confidentiality, DetectReplay,
Det ect M sor deri ng

The following example shows some sample settings for the target secure
invocation policy:

Setting IIOP/TLS Association Options

Artix Configuration File

bank_server {

policies:iiop_tls:target_secure_invocation_policy:requires
["Confidentiality"];

policies:iiop_ tls:target_secure_invocation_policy:supports
["Confidentiality", "Integrity", "DetectReplay",
"Det ect M sorderi ng", "EstablishTrustlInTarget"];

205

CHAPTER 12 | Configuring IIOP/TLS Secure Associations

Hints for Setting Association Options

Overview

Rules of thumb

Types of association option

206

This section gives an overview of how association options can be used in
real applications.

The following rules of thumb should be kept in mind:

If an association option is required by a particular invocation policy, it
must also be supported by that invocation policy. It makes no sense to
require an association option without supporting it.

It is important to be aware that the secure invocation policies and the
security mechanism policy mutually interact with each other. That is,
the association options effective for a particular secure association
depend on the available cipher suites (see “Constraints Imposed on
Cipher Suites” on page 216).

The NoPr ot ect i on option must appear alone in a list of required
options. It does not make sense to require other security options in
addition to NoPr ot ect i on.

Association options can be categorized into the following different types, as
shown in Table 2.

Table 2: Description of Different Types of Association Option

Description Relevant Association Options

Request or require TLS peer
authentication.

EstablishTrustInTarget and
EstablishTrustInClient.

Quality of protection.

Confidentiality, Integrity,
DetectReplay, and
DetectMisordering.

Allow or require insecure
connections.

NoProtection.

EstablishTrustInTarget and

EstablishTrustinClient

Setting IIOP/TLS Association Options

These association options are used as follows:

Est abl i shTr ust | nTar get —determines whether a server sends its own
X.509 certificate to a client during the SSL/TLS handshake. In
practice, secure Orbix applications must enable

Est abl i shTrust I nTar get , because all of the cipher suites supported
by Orbix require it.

The Est abl i shTrust I nTar get association option should appear in all
of the configuration variables shown in the relevant row of Table 3.
Est abl i shTrust I nd i ent —determines whether a client sends its own
X.509 certificate to a server during the SSL/TLS handshake. The

Est abl i shTrust I nd i ent feature is optional and various combinations
of settings are possible involving this assocation option.

The Est abl i shTrust I nd i ent association option can appear in any of
the configuration variables shown in the relevant row of Table 3.

Table 3: Setting EstablishTrustInTarget and EstablishTrustInClient
Association Options

Association Option Client side—can appear in... Server side—can appear in...
Est abl i shTrust | nTar get pol i ci es: client_secure_invocation_pol polici es:target_secure_i nvoca
i cy:supports tion_policy: supports

pol i ci es: client_secure_invocation_pol
icy:requires

Establ i shTrust1nQ i ent

pol i ci es: client_secure_invocation_pol polici es:target_secure_i nvoca
i cy:supports tion_policy: supports

pol i ci es: target _secure_i nvoca
tion_policy:requires

Note: The SSL/TLS client authentication step can also be affected by the
pol i ci es: al | ow_unaut hent i cat ed_cl i ents_pol i cy configuration
variable. See “policies” on page 306.

207

CHAPTER 12 | Configuring IIOP/TLS Secure Associations

Confidentiality, Integrity,
DetectReplay, and
DetectMisordering

These association options can be considered together, because normally you
would require either all or none of these options. Most of the cipher suites
supported by Orbix support all of these association options, although there
are a couple of integrity-only ciphers that do not support Confidentiality
(see Table 7 on page 217). As a rule of thumb, if you want security you
generally would want all of these association options.

Table 4: Setting Quality of Protection Association Options

Association Options

Client side—can appear in... Server side—can appear in...

Confidentiality,
Integrity,

Det ect Repl ay, and
Det ect M sor deri ng

policies:client_secure_invocation_pol
icy:supports

policies:client_secure_invocation_pol
icy:requires

policies:target_secure_invoca
tion_policy: supports

pol i ci es: target _secure_invoca
tion_policy:requires

NoProtection

208

A typical secure application would list a// of these association options in al/
of the configuration variables shown in Table 4.

Note: Some of the sample configurations appearing in the generated
configuration file require Confi denti al i ty, but not the other qualities of
protection. In practice, however, the list of required association options is
implicitly extended to include the other qualities of protection, because the
cipher suites that support Confi denti al i ty also support the other
qualities of protection. This is an example of where the security
mechanism policy interacts with the secure invocation policies.

The NoPr ot ect i on association option is used for two distinct purposes:

® Disabling security selectively—security is disabled, either in the client
role or in the server role, if NoPr ot ecti on appears as the sole required
association option and as the sole supported association option in a
secure invocation policy. This mechanism is selective in the sense that
the client role and the server role can be independently configured as
either secure or insecure.

Note: In this case, the orb_pl ugi ns configuration variable should
include the i i op plug-in to enable insecure communication.

Setting IIOP/TLS Association Options

® Making an application semi-secure—an application is semi-secure,
either in the client role or in the server role, if NoPr ot ect i on appears as
the sole required association option and as a supported association
option along with other secure association options. The meaning of
semi-secure in this context is, as follows:

. Semi-secure client—the client will open either a secure or an
insecure connection, depending on the disposition of the server
(that is, depending on whether the server accepts only secure
connections or only insecure connections). If the server is
semi-secure, the type of connection opened depends on the order
of the bindings in the bi ndi ng: cl i ent _bi nding_l i st.

. Semi-secure server—the server accepts connections either from a
secure or an insecure client.

Note: In this case, the orb_pl ugi ns configuration variable should
include both the iiop_tIs plug-in and the ii op plug-in.

Table 5 shows the configuration variables in which the NoProt ect i on
association option can appear.

Table 5: Setting the NoProtection Association Option

Association Option Client side—can appear in... Server side—can appear in...
NoPr ot ecti on pol i ci es: client_secure_invocation_pol pol i ci es:target_secure_i nvoca
icy:supports tion_policy: supports
pol i ci es: client_secure_invocation_pol polici es:target_secure_i nvoca
icy:requires tion_policy:requires

209

CHAPTER 12 | Configuring IIOP/TLS Secure Associations

Specifying IIOP/TLS Cipher Suites

Overview

In this section

210

This section explains how to specify the list of cipher suites that are made
available to an application (client or server) for the purpose of establishing
IIOP/TLS secure associations. During a security handshake, the client
chooses a cipher suite that matches one of the cipher suites available to the
server. The cipher suite then determines the security algorithms that are
used for the secure association.

This section contains the following subsections:

Supported Cipher Suites page 211
Setting the Mechanism Policy page 214
Constraints Imposed on Cipher Suites page 216

Specifying IIOP/TLS Cipher Suites

Supported Cipher Suites

Artix cipher suites

Security algorithms

Key exchange algorithms

The following cipher suites are supported by Artix [IOP/TLS:

Null encryption, integrity-only ciphers:
RSA W TH NULL_MD6

RSA W TH NULL_SHA

Standard ciphers

RSA EXPCRT WTH RC4_40_MDX5

RSA W TH RCA_128 M®b

RSA WTH R4 128 SHA

RSA EXPCRT_W TH DES40_CBC SHA
RSA W TH DES CBC SHA

RSA_ W TH_3DES_EDE_CBC SHA

Each cipher suite specifies a set of three security algorithms, which are used
at various stages during the lifetime of a secure association:

Key exchange algorithm—used during the security handshake to
enable authentication and the exchange of a symmetric key for
subsequent communication. Must be a public key algorithm.
Encryption algorithm—used for the encryption of messages after the
secure association has been established. Must be a symmetric (private
key) encryption algorithm.

Secure hash algorithm—used for generating digital signatures. This
algorithm is needed to guarantee message integrity.

The following key exchange algorithms are supported by Artix [IOP/TLS:

RSA Rivest Shamir Adleman (RSA) public key encryption
using X.509v3 certificates. No restriction on the key size.
RSA_EXPCRT RSA public key encryption using X.509v3 certificates.

Key size restricted to 512 bits.

211

CHAPTER 12 | Configuring IIOP/TLS Secure Associations

Encryption algorithms

Secure hash algorithms

Cipher suite definitions

The following encryption algorithms are supported by Artix [IOP/TLS:

RCA_40

RC4_128
DES40_CBC

DES_CBC
3DES_EDE_CBC

A symmetric encryption algorithm developed by RSA
data security. Key size restricted to 40 bits.

RC4 with a 128-bit key.

Data encryption standard (DES) symmetric encryption.
Key size restricted to 40 bits.
DES with a 56-bit key.

Triple DES (encrypt, decrypt, encrypt) with an effective
key size of 168 bits.

The following secure hash algorithms are supported by Artix IIOP/TLS:

Mb

SHA

Message Digest 5 (MD5) hash algorithm. This algorithm
produces a 128-bit digest.

Secure hash algorithm (SHA). This algorithm produces a
160-bit digest, but is somewhat slower than MD5.

The Artix [IOP/TLS cipher suites are defined as follows:

Table 6: Cipher Suite Definitions
Cipher Suite Key Exchange Encryption Secure Hash Exportable?
Algorithm Algorithm Algorithm
RSA WTH NULL_M®5 RSA NULL M6 yes
RSA WTH NULL_SHA RSA NULL SHA yes
RSA EXPCRT_ W TH RC4_40_MXb RSA EXPCRT RC4_40 M6 yes
RSA WTH_RC4_128_MX»% RSA RCA_ 128 M6 no
RSA WTH RC4_ 128 SHA RSA RCA_ 128 SHA no
RSA _EXPCRT_W TH_DES40_CBC_SHA RSA_EXPORT DES40_CBC SHA yes
RSA W TH DES CBC SHA RSA DES CBC SHA no
RSA W TH 3DES_EDE CBC SHA RSA 3DES EDE CBC | SHA no

212

Specifying IIOP/TLS Cipher Suites

Reference For further details about cipher suites in the context of TLS, see RFC 2246
from the Internet Engineering Task Force (IETF). This document is available
from the IETF Web site: http://www.ietf.org.

213

http://www.ietf.org

CHAPTER 12 | Configuring IIOP/TLS Secure Associations

Setting the Mechanism Policy

Mechanism policy

The protocol_version
configuration variable

The cipher suites configuration
variable

214

To specify IIOP/TLS cipher suites, use the mechanism policy. The
mechanism policy is a client and server side security policy that determines

® Whether SSL or TLS is used, and
® Which specific cipher suites are to be used.

You can specify whether SSL or TLS is used with a transport protocol by
setting the pol i ci es:iiop_tls: mechani smpol i cy: protocol _version
configuration variable for IOP/TLS. For example:

Artix Configuration File
policies:iiop_tls:nechani smpolicy: protocol version = "SSL V3";

You can set the prot ocol _ver si on configuration variable to one of the
following alternatives:

TLS V1
ssL V3

And a special setting for interoperating with an application deployed on the
0S/390 platform (to work around a bug in IBM’s System/SSL toolkit):

SSL_V2v3

You can specify the cipher suites available to a transport protocol by setting
the policies:iiop_tls:mechani smpolicy: ci phersuites configuration
variable for IIOP/TLS. For example:

Artix Configuration File
policies:iiop_tls:nechani smpolicy:ciphersuites =
["RSA WTH NULL_MX%",
"RSA WTH NULL_SHA",
"RSA_EXPCRT_W TH _RC4_40_MX%",
"RSA WTH RC4_128_MX%"];

Cipher suite order

Valid cipher suites

Default values

Specifying IIOP/TLS Cipher Suites

The order of the entries in the mechanism policy’s cipher suites list is
important.

During a security handshake, the client sends a list of acceptable cipher
suites to the server. The server then chooses the first of these cipher suites
that it finds acceptable. The secure association is, therefore, more likely to
use those cipher suites that are near the beginning of the ci pher sui tes list.

You can specify any of the following cipher suites:
® Null encryption, integrity only ciphers:

RSA W TH_NULL_MDb,

RSA W TH NULL_SHA
® Standard ciphers

RSA_EXPCRT_W TH_RCA_40_MD5,
RSA WTH RC4_128 M5,

RSA WTH RCA_128_SHA,
RSA_EXPCRT_W TH_DES40_CBC_SHA,
RSA W TH DES_CBC SHA,

RSA W TH 3DES EDE CBC SHA

If no cipher suites are specified through configuration or application code,
the following apply:

RSA WTH RC4A_128 SHA,

RSA WTH RC4 128 M5,

RSA W TH_3DES_EDE_CBC SHA,

RSA W TH DES OBC SHA

215

CHAPTER 12 | Configuring IIOP/TLS Secure Associations

Constraints Imposed on Cipher Suites

Effective cipher suites

Required and supported
association options

216

Figure 31 shows that cipher suites initially specified in the configuration are
not necessarily made available to the application. Artix checks each cipher
suite for compatibility with the specified association options and, if
necessary, reduces the size of the list to produce a list of effective cipher
suites.

Association constrain Specified
Options Cipher Suites
yields ‘ ‘
Effective

Cipher Suites

Figure 31: Constraining the List of Cipher Suites

For example, in the context of the IIOP/TLS protocol the list of cipher suites

is affected by the following configuration options:

® Required association options—as listed in
policies:iiop_tls:client_secure_invocation_policy:requires on
the client side, or
policies:iiop_tls:target_secure_invocation_policy:requires on
the server side.

® Supported association options—as listed in
policies:iiop_tls:client_secure_invocation_policy:supports on
the client side, or
policies:iiop_tls:target_secure_invocation_policy: supports on
the server side.

Cipher suite compatibility table

Specifying IIOP/TLS Cipher Suites

Use Table 7 to determine whether or not a particular cipher suite is
compatible with your association options.

Table 7: Association Options Supported by Cipher Suites

Cipher Suite Supported Association Options

RSA WTH NULL_MX%B Integrity, DetectReplay,

Det ect M sor deri ng

RSA WTH NULL_SHA Integrity, DetectReplay,

Det ect M sorderi ng

RSA EXPCRT_W TH_RC4_40_MX% Integrity, DetectReplay,

Det ect M sordering, Confidentiality

RSA WTH RC4_128 MX»b Integrity, DetectReplay,

Det ect M sordering, Confidentiality

RSA WTH RC4_128 SHA Integrity, DetectReplay,

Det ect M sordering, Confidentiality

RSA EXPCRT_W TH_DESAO0_CBC_SHA Integrity, DetectReplay,

Det ect M sordering, Confidentiality

RSA WTH DES _CBC SHA Integrity, DetectReplay,

Det ect M sordering, Confidentiality

RSA W TH 3DES EDE CBC SHA Integrity, DetectReplay,

Det ect M sordering, Confidentiality

Determining compatibility

The following algorithm is applied to the initial list of cipher suites:

1. Forthe purposes of the algorithm, ignore the Est abl i shTrust I nd i ent
and Est abl i shTrust | nTar get association options. These options have
no effect on the list of cipher suites.

2. From the initial list, remove any cipher suite whose supported
association options (see Table 7) do not satisfy the configured required
association options.

3. From the remaining list, remove any cipher suite that supports an
option (see Table 7) not included in the configured supported
association options.

217

CHAPTER 12 | Configuring IIOP/TLS Secure Associations

No suitable cipher suites available

Example

218

If no suitable cipher suites are available as a result of incorrect
configuration, no communications will be possible and an exception will be
raised. Logging also provides more details on what went wrong.

For example, specifying a cipher suite such as RSA WTH RC4_128 M that
supports Confidentiality,|Integrity, DetectRepl ay, Det ect M sorderi ng,
Est abl i shTrust I nTarget (and optionally Est abl i shTrust I nQient) but
specifying a secure_i nvocat i on_pol i cy that supports only a subset of
those features results in that cipher suite being ignored.

Caching IIOP/TLS Sessions

Caching IIOP/TLS Sessions

Session caching policy

Configuration variable

Valid values

Default value

Configuration variable

Valid values

Default value

Configuration variable

Default value

You can use the IIOP/TLS session caching policy to control TLS session
caching and reuse for both the client side and the server side.

You can set the session caching policy with the
policies:iiop_tls:session_caching_policy or

pol i ci es: htt ps: sessi on_cachi ng_pol i cy configuration variables. For
example:

policies:iiop_tls:session_caching_policy = "CACHE CLI ENT";

You can apply the following values to the session caching policy:

CACHE_NONE,
CACHE_CLI ENT,
CACHE_SERVER
CACHE_SERVER AND_CLI ENT

The default value is CACHE_NONE.

plugins:atli_tls_tcp:session_cache validity period
This allows control over the period of time that SSL/TLS session caches
are valid for.

sessi on_cache_val i di ty_peri od is specified in seconds.

The default value is 1 day.

plugins:atli_tls_tcp: session_cache_size
sessi on_cache_si ze is the maximum number of SSL/TLS sessions that
are cached before sessions are flushed from the cache.

This defaults to no limit specified for C++.
This defaults to 100 for Java.

219

CHAPTER 12 | Configuring IIOP/TLS Secure Associations

220

In this chapter

CHAPTER 13

Principal
Propagation

Principal propagation is a compatibility feature of Artix that is
designed to facilitate interoperability with legacy Orbix
applications.

This chapter discusses the following topics:

Introduction to Principal Propagation page 222
Configuring page 223
Programming page 226
Interoperating with .NET page 229

221

CHAPTER 13 | Principal Propagation

Introduction to Principal Propagation

Overview

Supported bindings/transports

Interoperability

222

Artix principal propagation is a transport-neutral mechanism that can be
used to transmit a secure identity from a client to a server. It is not
recommended that you use this feature in new applications. Principal

propagation is provided primarily in order to facilitate interoperability with
legacy Orbix applications.

WARNING: By default, the principal is propagated across the wire in
plaintext. Hence, the principal is vulnerable to snooping. To protect
against this possibility, you should enable SSL for your application.

Support for principal propagation is limited to the following bindings and
transports:

CORBA binding—the principal is sent in a GIOP service context.
SOAP over HTTP—the principal is sent in a SOAP header.

L]
Note: If a CORBA call is colocated, the principal is not propagated unless

you remove the POA Col oc interceptor from the binding lists in the

arti x. cfg file. This has the effect of disabling the CORBA colocated
binding optimization.

The primary purpose of Artix principal propagation is to facilitate
interoperability with legacy Orbix applications, in particular for applications
running on the mainframe.

Because Artix uses standard mechanisms to propagate the principal, this
feature ought to be compatible with third-party products as well.

Configuring

Configuring

Overview This section describes how to configure Artix to use principal propagation.

The following aspects of configuration are described:
* CORBA.

® SOAP over HTTP.

® Routing.

Note: Principal configuration is not supported for any other bindings,
apart from CORBA and SOAP over HTTP.

CORBA To use principal propagation with a CORBA binding, you must set the

following configuration variables in your arti x. cf g file (located in the
ArtixinstallDirl arti x/ Version/ et ¢/ domai ns directory):

Example 43: Configuring Principal Propagation for a CORBA Binding

pol i ci es: gi op:interop_policy:send_principal = "true";
pol i ci es: gi op: i nterop_pol i cy: enabl e_pri nci pal _servi ce_context =
"true";

You can either add these settings to the global scope or to a specific
sub-scope (in which case you must specify the sub-scope to the - CRBnane
command line switch when running the Artix application).

SOAP over HTTP SOAP over HTTP requires no special configuration to support principal

propagation. The Artix SOAP binding will always add a principal header.
The following cases arise:

® Principal set explicitly—the specified principal is sent in the principal

header.

Principal not set—Artix reads the username from the operating system
and sends this username in the principal header.

223

CHAPTER 13 | Principal Propagation

224

If you want a SOAP server to authenticate a propagated principal using the
Artix security service, however, you do need to add some settings to the

server's configuration scope in your arti x. cf g file, as shown in
Example 44.

Example 44: Configuring Principal Authentication for SOAP

Security Layer Settings

pol i ci es: asp: enabl e_aut hori zati on = "true";

plugi ns:is2_authorization: action_rol e _mapping =
"file://C\artix/artix/ 1.2/ denos/ secure_hel | o_worl d/ http_soap
/ confi g/ hell oworl d_action_rol e_mappi ng. xm " ;

pl ugi ns: asp: aut hori zati on_real m= "1 ONAQ obal Real n;

pl ugi ns: asp: security_type = "PR NA PAL";
pl ugi ns: asp: def aul t _password = "defaul t _password";

Setting pl ugi ns: asp: security_type equal to PR NO PAL specifies that the
received principal serves as the username for the purpose of authentication.
The pl ugi ns: asp: def aul t _passwor d value serves as the password for the
purpose of authentication. This latter setting is necessary because, although
the Artix security service requires a password, there is no password
propagated with the principal.

WARNING: The procedure of supplying a default password for the
principal enables you to integrate principals with the Artix security service.
Users identified in this way, however, do not have the same status as
properly authenticated users. For security purposes, such users should

enjoy lesser privileges and be treated in the same way as unauthenticated
users.

The net effect of the configuration shown in Example 44 is that the SOAP

server performs authentication by contacting the central Artix security
service.

See also “Security Layer” on page 18 and “Configuring the Artix Security

Service” on page 99 for more details about configuring the Artix security
service.

Configuring

Routing If you are using the Artix routing feature, you need to modify the WSDL by
adding a <rout i ng: propagat el nput At t ri but e> tag, as shown in
Example 45.

Example 45: Configuring a Router to Support Principal Propagation
<definitions ... >

<routing: route name="route_from corba_to_soap">

<routing: source service="tns:client"
port="Corbadient"/>

<routing: destination service="tns: server"

port =" SoapSer ver"/ >

<routi ng: propagat el nput At tri but e name="Pri nci pal "/ >

</routing: rout e>
<definitions>

225

CHAPTER 13 | Principal Propagation

Programming

Overview This section describes how to program an Artix client and server to set
(client side) and get (server side) a principal value.

The code examples are written using the contexts API. For more details
about contexts, see Developing Artix Applications in C++.

Client example Example 46 shows how to set the principal prior to invoking an operation,
echoString(), on a proxy object, of M/Proxy type.

Example 46: Setting a Principal on the Client Side
Il C++

#i ncl ude <it_bus/bus. h>
#i ncl ude <it_bus/exception. h>
#include <it_cal/iostream h>

/1 Include header files related to the bus-security context
#i ncl ude <it_bus_pdk/ context. h>
#i ncl ude <it_bus_pdk/ context_attrs/context_constants. h>

| T_US| NG_NAVESPACE_STD

usi ng namespace | T_Context Attri butes;
usi ng namespace | T_Bus;

int
mai n(int argc, char* argv[])
{
try
{
| T _Bus::Bus_var bus = I T Bus::init(argc, argv);

Cont ext Regi stry* context_registry =
bus- >get _context _registry();

/] Cbtain a reference to the ContextQurrent

Cont ext Qurrent & context _current =
context _registry->get_current();

226

Programming

Example 46: Setting a Principal on the Client Side

}

// Cbtain a pointer to the Request Context Cont ai ner
Cont ext Cont ai ner* cont ext _cont ai ner =
context _current.request_contexts();

I/l Set the principal context val ue
I T Bus::String principal ("artix_user");
cont ext _cont ai ner->set_context _as_stri ng(
PRI NO PAL_QONTEXT_ATTR BUTE,
princi pal

)

/1 Invoke the renote operation, echoString()
M/Proxy echo_pr oxy;
echo_proxy. echoStri ng("Echo me!")

}
catch(| T_Bus: : Excepti on& e)
{
cout << endl << "Error : Unhexpected error occured!"
<< endl << e.nessage()
<< endl;
return -1;
}
return O;

The preceding code can be explained as follows:

1.

Call I T_Bus: : Cont ext Cont ai ner: : set_context_as_string() to
initialize the string value of the principal context. The

I T_Context Attributes:: PR NO PAL_CONTEXT _ATTR BUTE constant is a
QName constant, initialized with the context name of the
pre-registered principal context.

227

CHAPTER 13 | Principal Propagation

Server example

228

Example 47 shows how to read the principal on the server side, when the
servant is invoked by a client that uses principal propagation.

Example 47: Reading the Principal on the Server Side

/] C++
// in operation
voi d M/l npl::echoString(const | T Bus::String& inputString,
I T_Bus:: String& Response)

I T_THRON DECL((| T_Bus: : Excepti on))
{

Response = i nput Stri ng;

try {

I T_Bus::Bus_var bus = | T_Bus::Bus::create reference();

Cont ext Regi stry* context_registry =
bus->get _context_registry();

// otain a reference to the Context Qurrent
Cont ext Qurrent & context _current =
context_registry->get current();

// Cbtain a pointer to the Request Context Cont ai ner
Cont ext Cont ai ner* cont ext _cont ai ner =
context _current.request_contexts();

// Cotain a reference to the context
I T Bus::String & principal =
cont ext _cont ai ner->get _context _as_stri ng(
PRI NCl PAL_CONTEXT_ATTRI BUTE,
Dk

}
catch(1 T_Bus:: Exception& e) { ... }
}

The preceding server example can be explained as follows:

1. The I T Bus:: Context Container::get_context_as_string() function

returns the principal value that was extracted from the received request
message.

Interoperating with .NET

Interoperating with .NET

Overview If your Artix applications must interoperate with other Web service products,
for example .NET, you need to modify your WSDL contract in order to make
the principal header interoperable. This section describes the changes you
can make to a WSDL contract to facilitate interoperability with other Web
services platforms.

In this section This section contains the following subsections:
Explicitly Declaring the Principal Header page 230
Modifying the SOAP Header page 232

229

CHAPTER 13 | Principal Propagation

Explicitly Declaring the Principal Header

Overview Artix applications do not require any modifications to the WSDL contract in
order to use principal headers. An Artix service is inherently able to read a
user's principal from a received SOAP header.

In contrast to this, non-Artix services, for example, .NET services, require
the principal header to be declared explicitly in the WSDL contract.
Otherwise, the non-Artix services would be unable to access the principal.

Declaring the principal header in Example 48 shows the typical modifications you must make to a WSDL
WSDL contract in order to make the principal value accessible to non-Artix
applications.

Example 48: WSDL Declaration of the Principal Header

<definitions ... >
<t ypes>
<schena t ar get Nanmespace="TypeSchema" ... >
1 <el ement name="princi pal " type="xsd:string"/>
</ schenma>
</ type>
2 <message target Nanespace="htt p://schenas. i ona. coni security"
name="pri nci pal ">
3 <part el enent =" TypePrefix: princi pal " name="pri nci pal "/ >
</ message>
4 <binding ... xmns:sec="http://schenas.iona.con security">
5 <operation ...>
<i nput >
<soap: body ...>
6 <soap: header message="sec: pri nci pal "
part="principal " use="literal ">
</i nput >
</ oper at i on>
</ bi ndi ng>

</ definitions>

230

Interoperating with .NET

The preceding WSDL extract can be explained as follows:

1.

Declare a <pri nci pal > element in the type schema, which must be
declared to be of type, xsd: stri ng. In this example, the <pri nci pal >
element belongs to the TypeSchema namespace.

Add a new <nessage> element.

The <part > tag's el enent attribute is set equal to the QName of the
preceding pri nci pal element. Hence, in this example the TypePrefix
appearing in el ement =" TypePrefix: pri nci pal " must be a prefix
associated with the TypeSchema namespace.

Edit the binding, or bindings, for which you might need to access the
principal header. You should define a prefix for the

http://schemas. i ona. conf security namespace within the <bi ndi ng>
tag, which in this example is sec.

Edit each operation for which you might need to access the principal
header.

Add a <soap: header > tag to the operation’s input part, as shown.

231

CHAPTER 13 | Principal Propagation

Modifying the SOAP Header

Overview

Default SOAP header

Custom SOAP header

WSDL modifications

232

It is possible to change the default format of the principal header by making
appropriate modifications to the WSDL contract. It is usually not necessary
to modify the header format in this way, but in some cases it could facilitate
interoperability.

By default, when a client uses principal propagation with SOAP over HTTP,
the input message sent over the wire includes the following form of header:

<SQOAP- ENV: Header >
<sec: princi pal xmns:sec="http://schenas.iona.conisecurity"
xsi : type="xsd: string">ny_princi pal </ sec: pri nci pal >
</ SOAP- ENV: Header >

You can change the form of the SOAP header that is sent over the wire to
have the following custom format (replacing <sec: pri nci pal > by a custom
tag, <sec: PrincipalTag>):

<SQOAP- ENV: Header >
<sec: PrincipalTag xn ns: sec="htt p: // schemas. i ona. coni security"
xsi : type="xsd: string">ny_princi pal </ sec: PrincipalTag>
</ SOAP- ENV: Header >

To change the tag that is sent in the SOAP header to be PrincipalTag, you
can modify your WSDL contract as shown in Example 49.

Example 49: Customizing the Form of the Principal Header

<definitions ... >
<t ypes>
<schena t ar get Nanmespace="TypeSchema" ... >

<el enent nane="PrincipalTag" type="xsd:string"/>
</ schema>
</type>

<nessage target Nanespace="http://schenas. i ona. coni security"

Interoperating with .NET

Example 49: Customizing the Form of the Principal Header

nanme="pri nci pal ">
<part el ement =" TypePrefix: PrincipalTag" name="pri ncipal "/>
</ message>

<binding ... xmns:sec="http://schenas.iona.conisecurity">
<operation ...>
<i nput >
<soap: body ...>

<soap: header message="sec: pri nci pal "
part="principal " use="literal ">
</i nput >
</ oper at i on>
</ bi ndi ng>

</ definitions>

The preceding WSDL extract can be explained as follows:

1.

Modify the <pri nci pal > element in the type schema to give it an
arbitrary QName. In this example, the <PrincipalTag> element belongs
to the TypeSchema namespace.

The <part > tag's el enent attribute is set equal to the QName of the
preceding pri nci pal element. Hence, in this example the TypePrefix
appearing in el ement =" TypePrefix: PrincipalTag" must be a prefix
associated with the TypeSchema namespace.

The <soap: header > tag must be defined precisely as shown here. That
is, when writing or reading a principal header, Artix looks for the
princi pal part of the message with QName, pri nci pal , in the
namespace, http://schenas. i ona. coni security.

233

CHAPTER 13 | Principal Propagation

234

In this chapter

CHAPTER 14

Programming
Authentication

To ensure that Web services and Web service clients
developed using Artix can interoperate with the widest possible
array of Web services, Artix supports the WS Security
specification for propagating Kerberos security tokens and
username/password security tokens in SOAP message
headers. The security tokens are placed into the SOAP
message header using Artix APIs that format the tokens and
place them in the header correctly.

This chapter discusses the following topics:

Propagating a Username/Password Token page 236

Propagating a Kerberos Token page 241

235

CHAPTER 14 | Programming Authentication

Propagating a Username/Password Token

Overview

C++ Procedure

C++ Example

236

Many Web services use simple username/password authentication to ensure
that only preapproved clients an access them. Artix provides a simple client
side API for embedding the username and password into the SOAP message
header of requests in a WS Security compliant manner.

Embedding a username and password token into the SOAP header of a

request in Artix C++ requires you to do the following:

1. Make sure that your application makefile is configured to link with the
it_context_attribute library (it_context attribute.libon
Windows andit_context_attribute.soorit_context_attribute.so
on UNIX) which contains the bus-securi ty context stub code.

2. Get a reference to the current | T_Context Attri but es: : BusSecurity
context data type, using the Artix context API (see Developing Artix
Applications in C++).

3. Set the WsSEUser nameToken property on the BusSecuri ty context using
the set WeSEUser naneToken() method.

4. Set the WsSEPasswor dToken property on the BusSecuri ty context using
the set WsSEPasswor dToken() method.

Example 50 shows how to set the Web services username/password token
in a C++ client prior to invoking a remote operation.

Example 50: Setting a WS Username/Password Token in a C++ Client
/1 Ct+

#i ncl ude <it_bus/bus. h>

#i ncl ude <it_bus/exception. h>

#include <it_cal/iostream h>

I/ Include header files related to the bus-security context

#i ncl ude <it_bus_pdk/ context. h>
#incl ude <it_bus_pdk/ context_attrs/bus_security_ xsdTypes. h>

Propagating a Username/Password Token

Example 50: Setting a WS Username/Password Token in a C++ Client

| T_USI NG NAMESPACE _STD

usi ng namespace | T_ContextAttri butes;
usi ng nanespace | T_Bus;

int

mai n(int argc, char* argv[])

{
try
{

I T Bus::Bus_var bus = I T Bus::init(argc, argv);

Cont ext Regi stry* context _registry =
bus->get _context _registry();

I/l Oeate the bus-security context nane
const (Nane bus_security_ct x_name(

wn
’

"bus-security",
"http://schenss.iona. coni bus/ security_context"

IE

// (obtain a reference to the Context Current
Cont ext Qurrent & context_current =
context _registry->get current();

// (btain a pointer to the Request Context Contai ner
Cont ext Cont ai ner* cont ext _cont ai ner =
context _current.request_contexts();

/I Cbtain a reference to the context

AnyType& i nfo = cont ext _cont ai ner - >get _cont ext (
bus_security_ct x_nane,
true

IE

// Cast the context into a BusSecurity object
BusSecurity& bus_security_ctx =
dynam c_cast <BusSecurity& (info);

/] Set the W8 Usernanme and Password tokens

bus_security_ctx. set WeSEUser naneToken("arti x_user");
bus_security_ctx. set WeSEPasswor dToken("arti x");

237

CHAPTER 14 | Programming Authentication

Java Procedure

238

Example 50: Setting a WS Username/Password Token in a C++ Client

catch(1T_Bus:: Excepti on& e)

{
cout << endl << "Error : Unhexpected error occured!"
<< endl << e.nessage()
<< endl ;
return -1;
}
return O;

}

The preceding code can be explained as follows:

1. Thebus_security_ctx_name QName is initialized with the name of the
pre-registered bus-security context.

2. The | T_Bus:: Cont ext Cont ai ner: : get _cont ext () function is called
with its second parameter set to true, indicating that a context with
that name will be created if none already exists.

3. Cast the I T_Bus: : AnyType instance, i nf o, to its derived type,

I T_Context Attributes:: BusSecurity, which is the bus-security
context data type.

4. Use the BusSecurity API to set the WSSE username and password
tokens. After this point, any SOAP operations invoked from the current
thread will include the specified WSSE username and password in the
request message.

Embedding a username and password token into the SOAP header of a

request in Artix Java requires you to do the following:

1. Create a new com i ona. schenas. bus. security_cont ext.BusSecurity
context data object.

2. Set the WsSEUser nameToken property on the BusSecuri ty context using
the set WeSEUser naneToken() method.

3. Set the WsSEPasswor dToken property on the BusSecuri ty context using
the set WsSEPasswor dToken() method.

4. Set the bus-security context for the outgoing request message by
calling set Request Cont ext () on an | onaMessageCont ext object (see
Developing Artix Applications in Java).

Java Example

Propagating a Username/Password Token

Example 51 shows how to set the Web services username/password token
in a Java client prior to invoking a remote operation.

Example 51: Setting a WS Username/Password Token in a Java Client

/1l Java
inport javax.xnl.namespace. Q\arre;
inmport javax.xm.rpc.*;

inport comiona.j bus. Bus;

import com i ona. j bus. Cont ext Regi stry;

inport comiona.jbus. | onaMessageCont ext ;

i nport comiona. schenas. bus. security_cont ext. BusSecurity;
import com i ona. schenas. bus. security_cont ext. BusSecuritylLevel ;

I/ Set the BuSecurity Context

// Insert the followi ng lines of code prior to naking a
/1 W5-secured invocation:

BusSecurity security = new BusSecurity();
security. set WeSEUser naneToken(" user _test");
security. set WeSEPasswor dToken(" user _passwor d") ;

Q\ane SECUR TY_CONTEXT =
new Q\ane(
"http://schemas. i ona. coni bus/ security_context",
"bus-security"

JE

Cont ext Regi stry regi stry = bus. get Cont ext Regi stry();
| onaMessageCont ext contexti npl =
(1 onaMessageCont ext) regi stry. get Qurrent () ;
cont ext i npl . set Request Cont ext (SECURI TY_CONTEXT, security);

1. Create a new comi ona. schenas. bus. security _context.BusSecurity

object to hold the context data and initialize the WsSEUser nameToken
and WBSEPasswor dToken properties on this BusSecuri ty object.

2. Initialize the name of the bus-security context. Because the

bus-security context type is pre-registered by the Artix runtime (thus
fixing the context name) the bus-security name must be set to the
value shown here.

239

CHAPTER 14 | Programming Authentication

240

The comi ona. j bus. Cont ext Regi st ry object manages all of the
context objects for the application.

The comi ona. j bus. | onaMessageCont ext object returned from
getQurrent () holds all of the context data objects associated with the
current thread.

Call set Request Cont ext () to initialize the bus-security context for
outgoing request messages.

Propagating a Kerberos Token

Propagating a Kerberos Token

Overview

Acquiring a Kerberos Token

C++ embedding the Kerberos
token in the SOAP header

Using the Kerberos Authentication Service requires you to make a few
changes to your client code. First you need to acquire a valid Kerberos
token. Then you need to embed it into the SOAP message header of all the
request being made on the secure server.

To get a security token from the Kerberos Authentication Service is you must
use platform specific APls and then base64 encode the returned binary
token so that it can be placed into the SOAP header.

On UNIX platforms use the GSS APIs to contact Kerberos and get a token for
the service you wish to make requests upon. On Windows platforms use the
Microsoft Security Framework APIs to contact Kerberos and get a token for
the service you wish to contact.

Embedding a Kerberos token into the SOAP header of a request using the

Artix APIs requires you to do the following:

1. Make sure that your application makefile is configured to link with the
it_context_attribute library (it_context_attribute.libon
Windows andit_context_attribute.soorit_context_attribute.so
on UNIX) which contains the bus-security context stub code.

2. Get a reference to the current I T_Context Attribut es: : BusSecurity
context data type, using the Artix context API (see Developing Artix
Applications in C++).

3. Set the WsSEKer ber osv5SToken property on the BusSecurity context
using the set WsSEKer ber osv5SToken() method.

241

CHAPTER 14 | Programming Authentication

C++ Example Example 52 shows how to set the Kerberos token prior to invoking a remote
operation.

Example 52: Setting a Kerberos Token on the Client Side
/] C++

#i ncl ude <it_bus/ bus. h>
#i ncl ude <it_bus/exception. h>
#include <it_cal /i ostream h>

I/ Include header files related to the bus-security context
#i ncl ude <it_bus_pdk/ cont ext. h>

#include <it_bus_pdk/context_attrs/bus_security xsdTypes. h>

| T_US| NG_NAVESPACE_STD

usi ng namespace | T_Context Attri butes;
usi ng nanmespace | T_Bus;

int
mai n(int argc, char* argv[])
{
try
{
I T Bus::Bus_var bus = I T Bus::init(argc, argv);
Cont ext Regi stry* context_registry =
bus->get _context_registry();
I/l Create the bus-security context name
1 const QName bus_security_ct x_nane(

nwn

"bus-security",
"http://schenas.iona. coni bus/security_context"

JE

/I Cotain a reference to the Context Qurrent
Cont ext Qurrent & context _current =
context _registry->get_current();

// Cbtain a pointer to the Request Context Cont ai ner

Cont ext Cont ai ner* cont ext _cont ai ner =
context _current.request_contexts();

242

Propagating a Kerberos Token

Example 52: Setting a Kerberos Token on the Client Side

}

/I Cbtain a reference to the context

AnyType& i nfo = cont ext _cont ai ner - >get _cont ext (
bus_security_ct x_nane,
true

IE

// Cast the context into a BusSecurity object
BusSecurity& bus_security_ctx =
dynam c_cast <BusSecurity& (info);

/1l Set the Kerberos token
bus_security_ct x. set WESEKer ber osv5SToken(
ker beros_t oken_string

IE

}
catch(1 T_Bus: : Excepti on& e)
{
cout << endl << "Eror : Unhexpected error occured!"
<< endl << e.nessage()
<< endl;
return -1;
}
return O;

The preceding code can be explained as follows:

1.

The bus_security_ct x_name QName is initialized with the name of the
pre-registered bus-security context.

The I T_Bus: : Cont ext Cont ai ner: : get_cont ext () function is called
with its second parameter set to t rue, indicating that a context with
that name will be created if none already exists.

Cast the I T_Bus: : AnyType instance, i nf o, to its derived type,

I T _Context Attributes:: BusSecurity, which is the bus-security
context data type.

Use the BusSecurity API to set the WSSE Kerberos token,

ker ber os_t oken_st ri ng. The argument to

set BSEKer ber osv5SToken() is a base-64 encoded Kerberos token
received from a Kerberos server.

243

CHAPTER 14 | Programming Authentication

Java embedding the Kerberos
token in the SOAP header

Java Example

244

After this point, any SOAP operations invoked from the current thread
will include the specified Kerberos token in the request message.

Embedding a Kerberos token into the SOAP header of a request in Artix Java

requires you to do the following:

1. Create a new com i ona. schenas. bus. security_cont ext.BusSecurity
context data object.

2. Set the WsSEKer ber osv2SToken property on the BusSecuri ty context
using the set WsSEKer ber osv2SToken() method.

3. Set the bus-security context for the outgoing request message by
calling set Request Cont ext () on an | onaMessageCont ext object (see
Developing Artix Applications in Java).

Example 53 shows how to set the Kerberos token in a Java client prior to
invoking a remote operation.

Example 53: Setting a Kerberos Token in a Java Client

/1l Java
inport javax.xm .namespace. Q\arre;
inport javax.xm.rpc.*;

inport comi ona.j bus. Bus;

inport comi ona. jbus. Cont ext Regi stry;

inport comi ona.j bus. | onaMessageCont ext ;

i nport comiona. schenas. bus. security_cont ext.BusSecurity;
inport com i ona. schenas. bus. security cont ext.BusSecuritylLevel;

// Set the BuSecurity Context

// Insert the following lines of code prior to naking a
/1 W5-secured invocati on:

BusSecurity security = new BusSecurity();
securi ty. set WsSEKer ber osv5SToken(ker ber os_t oken_stri ng) ;

Q\ane SECUR TY_CONTEXT =
new Q\arre(
"http://schenas.iona. coni bus/ security_context",
"bus-security"

Propagating a Kerberos Token

Example 53: Setting a Kerberos Token in a Java Client

3 ContextRegistry registry = bus. get Cont ext Regi stry();
4 | onaMessageCont ext contextinpl =
(1 onaMessageCont ext) regi stry. get Qurrent () ;
5 contextinpl.set Request Cont ext (SECUR TY_CONTEXT, security);

1. Create a new comi ona. schenas. bus. security _context.BusSecurity
object to hold the context data and initialize the
\BSEKer ber osv2SToken on this BusSecuri ty object.

The argument to set WSSEKer ber osv5SToken() is a base-64 encoded
Kerberos token received from a Kerberos server.

2. Initialize the name of the bus-security context. Because the
bus-security context type is pre-registered by the Artix runtime (thus
fixing the context name) the bus-security name must be set to the
value shown here.

3. The comi ona. j bus. Cont ext Regi st ry object manages all of the
context objects for the application.

4. The comiona. | bus. | onaMessageCont ext object returned from
get Qurrent () holds all of the context data objects associated with the
current thread.

5. Call set Request Cont ext () to initialize the bus- security context for
outgoing request messages.

245

CHAPTER 14 | Programming Authentication

246

In this chapter

CHAPTER 15

Configuring the
Artix Security
Plug-1n

Artix allows you to configure a number of security features
directly from the Artix contract describing your system.

This chapter discusses the following topics:

The Artix Security Plug-In page 248
Configuring an Artix Configuration File page 250
Configuring a WSDL Contract page 252

247

CHAPTER 15 | Configuring the Artix Security Plug-In

The Artix Security Plug-In

Overview

Prerequisites

Load the artix_security plug-in

Define the bus-security
namespace

248

This section describes how to initialize the Artix security plug-in, which is
responsible for performing authentication and authorization for non-CORBA
bindings (CORBA bindings use the gsp plug-in).

The Artix security plug-in implements only a part of Artix security.
Specifically, it is not responsible for transmitting credentials, nor does it
implement any cryptographic algorithms.

Two prerequisites must be satisfied to use the arti x_security plug-in:

® Load the artix_security plug-in.

® Define the bus-security namespace.

Edit your application’s configuration scope in the arti x. cf g file so that it
includes the following configuration settings:

Artix Configuration File

orb_plugins = ["xmfile_|log_strean¥, "iiop_profile", "giop",
"iiop_tls", "soap", "http", "artix_security"];
plugins:artix_security:shlib_name = "it_security_pl ugin";

bi ndi ng: arti x: server_request _interceptor_list =
"bus-security:security";

The orb_pl ugi ns list for your application might differ from the one shown
here, but it should include the arti x_security entry.

The QName of the security interceptor, bus-securi ty: securi ty, that
appears in the bi ndi ng: arti x: server_request _i nterceptor_|ist setting
depends on the definition of the bus-security namespace in your

The Artix Security Plug-In

application’s WSDL contract. Therefore, you need to define the
bus- securi ty namespace in the <defi ni ti ons> element of your
application’s WSDL contract, as follows:

<definitions ...
xm ns="htt p: // schemas. xn soap. or g/ wsdl /"
xm ns: bus-security="http://schenas. i ona. con bus/ securi ty"
>

249

CHAPTER 15 | Configuring the Artix Security Plug-In

Configuring an Artix Configuration File

Overview You can tailor the behavior of the Artix security plug-in by setting
configuration variables in the Artix configuration file, arti x. cf g, as
described here. The settings in the configuration file are applied, by default,
to all the services and ports in your WSDL contract.

Namespace The XML namespace defining <bus- securi ty: securi ty> is
http://schenmas. i ona. conf bus/ security. You need to add the following
line to the definitions element of any WSDL contracts that use the Artix
security plug-in:

xm ns: bus-security="http://schenas. i ona. conl bus/ securi ty"

Artix security plug-in The complete set of Artix security plug-in variables, which are all optional,
configuration variables are listed and described in Table 8. These settings are applied by default to
all services and ports in the WSDL contract.

Table 8: The Artix Security Plug-In Configuration Variables

Configuration Variable Description

pol i ci es: asp: enabl e_security A boolean variable that enables the arti x_security
plug-in. When true, the plug-in is enabled; when
fal se, the plug-in is disabled. Default is t r ue.

pl ugi ns:is2_authorization: action_rol e_mapping | A variable that specifies the action-role mapping file
URL.

pol i ci es: asp: enabl e_aut hori zat i on A boolean variable that specifies whether Artix should
enable authorization using the Artix Security
Framework. Default is f al se.

pl ugi ns: asp: aut hent i cat i on_cache_si ze The maximum number of credentials stored in the
authentication cache. If exceeded, the oldest
credential in the cache is removed.

A value of -1 (the default) means unlimited size. A
value of O means disable the cache.

250

Table 8:

Configuring an Artix Configuration File

The Artix Security Plug-In Configuration Variables

Configuration Variable

Description

pl ugi ns:

asp:

aut henti cati on_cache_ti meout

The time (in seconds) after which a credential is
considered stale. Stale credentials are removed from
the cache and the server must re-authenticate with the
Artix security service on the next call from that user.

A value of -1 (the default) means an infinite time-out.
A value of O means disable the cache.

pl ugi ns:

asp:

security_type

This variable specifies the source of the user identity
that is sent to the Artix security service for
authentication. For a detailed description of the
allowed values, see pl ugi ns: asp: security_type.

pl ugi ns:

asp:

security_l evel

This variable specifies the level from which security
credentials are picked up. For a detailed description of
the allowed values, see

pl ugi ns: asp: security_| evel .

pl ugi ns:

asp:

aut hori zation_real m

This variable specifies the Artix authorization realm to
which an Artix server belongs. The value of this
variable determines which of a user’s roles are
considered when making an access control decision.

pl ugi ns:

asp:

def aul t _password

This variable specifies the password to use on the
server side when the securi t yType attribute is set to
either PRI NI PAL or CERT_SUBJECT.

251

CHAPTER 15 | Configuring the Artix Security Plug-In

Configuring a WSDL Contract

Overview Occasionally you will need finer grained control of your systems security
than is provided through the standard Artix and security configuration. Artix
provides the ability to control security on a per-port basis by describing the
service's security settings in the Artix contract that describes it. This is done
by using the <bus-security: security> extension in the <port > element
describing the service’s address and transport details.

Namespace The XML namespace defining <bus- securi ty: securi ty> is
http://schenmas. i ona. coni bus. You need to add the following line to the
<def i ni ti ons> element of any contracts that use the
<bus- security: security> element:

xm ns: bus-security="http://schenas. i ona. con bus/ securi ty"

<bus-security:security > The complete set of <bus- securi ty: security> attributes, which are all

attributes optional, are listed Table 9. Each attribute maps to an equivalent
configuration variable, as shown in the table. The attributes specified in the
WSDL contract override settings specified in the Artix configuration file,
artix. cfg.

Table 9: <bus-security:security> Attributes

<bus-security:security> Attribute Equivalent Configuration Variable
enabl eSecurity pol i ci es: asp: enabl e_security
i s2Aut hori zat i onAct i onRol eMappi ng pl ugi ns: i s2_authori zati on: acti on_rol e_mappi ng
enabl eAut hori zati on pol i ci es: asp: enabl e_aut hori zat i on
aut hent i cati onCacheSi ze pl ugi ns: asp: aut henti cati on_cache_si ze
aut hent i cat i onCacheTi neout pl ugi ns: asp: aut henti cati on_cache_t i meout
securityType pl ugi ns: asp: security_type
securitylLevel pl ugi ns: asp: security_l| evel

252

Configuring a WSDL Contract

Table 9: <bus-security:security> Attributes

<bus-security:security> Attribute Equivalent Configuration Variable
aut hori zati onReal m pl ugi ns: asp: aut hori zati on_real m
def aul t Passwor d pl ugi ns: asp: def aul t _passwor d
Enabling security for a service Example 54 shows how to enable security for the service

personal | nf oServi ce.
Example 54: Enabling Security in an Artix Contract

<definitions

xm ns: bus-security="http://schenas. i ona. coni bus/ security"
>

<servi ce name="personal | nf oServi ce">
<port nane="personal | nf oServi cePort" bi ndi ng="t ns: i nf 0SOAPBI ndi ng" >
<soap: address | ocation="http://| ocal host : 8080"/ >
<bus-security: security enabl eSecurity="true"
i s2Aut hori zat i onAct i onRol eMappi ng="file://c:/iona/artix/2.0/bin/action_role.xnm"
enabl eAut hori zati on="t r ue"
securitylLevel =" REQUEST LEVEL"
securityType="USERNAME PASSWRD'
aut hent i cati onCacheSi ze="5"
aut hent i cat i onCacheTi neout =" 10" />
</ port>
</ servi ce>
</ definitions>

The <bus-security: security> element in Example 54 configures
per sonal | nf oSer vi ce to use WS Security compliant username/password
authentication.

253

CHAPTER 15 | Configuring the Artix Security Plug-In

Disabling security for a service Example 55 shows how to disable security for the service wi dget Ser vi ce.
Example 55: Disabling Security in an Artix Contract

<definitions
xm ns: bus- securi ty="http://schenas. i ona. com bus/ security"
>

<servi ce name="w dget Servi ce">
<port name="wi dget Servi cePort" bi ndi ng="t ns: wi dget SOAPBI ndi ng" >
<soap: address | ocation="http://I| ocal host: 8080"/ >
<bus-security: security enabl eSecurity="fal se" />
</ port>
</ servi ce>
</ definitions>

Overriding specific security Example 56 shows how to specify that a particular service,

properties for a service ker ber osW dget Ser vi ce, is to use WS Security compliant Kerberos token for
authentication while the remaining services in the domain are using HTTPS
authentication.

Example 56: Changing Security Configuration in an Artix Contract

<definitions
xm ns: bus- security="http://schenas. i ona. con bus/ security"
>

<servi ce name="ker ber osW dget Servi ce" >
<port name="ker ber osW dget Servi cePort" bi ndi ng="t ns: wi dget SOAPBi ndi ng" >
<soap: address | ocation="http://I| ocal host: 8080"/ >
<bus-security: security securitylevel =" REQUJEST LEVEL"
securi tyType="KERBERCS' />
</ port >
</ servi ce>
</ definitions>

254

In this chapter

CHAPTER 16

Developing an ISF
Adapter

An iSF adapter is a replaceable component of the iSF server
module that enables you to integrate iSF with any third-party
enterprise security service. This chapter explains how to

develop and configure a custom iSF adapter implementation.

This chapter discusses the following topics:

iSF Security Architecture page 256
iSF Server Module Deployment Options page 260
iSF Adapter Overview page 261
Implementing the IS2Adapter Interface page 262
Deploying the Adapter page 272

255

CHAPTER 16 | Developing an iSF Adapter

iISF Security Architecture

Overview This section introduces the basic components and concepts of the iSF
security architecture, as follows:

® Architecture.

® iSF client.

® iSF client SDK.

® Artix Security Service.
® iSF adapter SDK.

® iSF adapter.

® Example adapters.

256

Architecture

iSF client

iSF Security Architecture

Figure 32 gives an overview of the Artix Security Service, showing how it fits
into the overall context of a secure system.

Java C/C++
application application
iSF client SDK iSF client SDK

Artix Security Service

iSF Server Module

iSF adapter SDK

iSF adapter

Third-party security service

Figure 32: Overview of the Artix Security Service

An iSF client is an application that communicates with the Artix Security
Service to perform authentication and authorization operations. The
following are possible examples of iSF client applications:

® CORBA servers.

® Artix servers.

® Any server that has a requirement to authenticate its clients.

Hence, an iSF client can also be a server. It is a client only with respect to
the Artix Security Service.

257

CHAPTER 16 | Developing an iSF Adapter

iSF client SDK

Artix Security Service

iSF server module

iSF adapter SDK

iSF adapter

258

The iSF client SDK is the programming interface that enables the iSF clients
to communicate (usually remotely) with the Artix Security Service.

Note: The iSF client SDK is only used internally. It is currently not
available as a public programming interface.

The Artix Security Service is a standalone process that acts a thin wrapper
layer around the iSF server module. On its own, the iSF server module is a
Java library which could be accessed only through local calls. By embedding
the iSF server module within the Artix Security Service, however, it becomes
possible to access the security service remotely.

The iSF server module is a broker that mediates between iSF clients, which
request the security service to perform security operations, and a third-party
security service, which is the ultimate repository for security data.

The iSF server module has the following special features:

®* A replaceable iSF adapter component that enables integration with a
third-party enterprise security service.
® Asingle sign-on feature with user session caching.

The iSF adapter SDK is the Java API that enables a developer to create a
custom iSF adapter that plugs into the iSF server module.

An iSF adapter is a replaceable component of the iSF server module that
enables you to integrate with any third-party enterprise security service. An
iSF adapter implementation provides access to a repository of authentication
data and (optionally) authorization data as well.

Example adapters

iSF Security Architecture

The following standard adapters are provided with Artix:
[)

Lightweight Directory Access Protocol (LDAP).

® File—a simple adapter implementation that stores authentication and
authorization data in a flat file.

WARNING: The file adapter is intended for demonstration purposes only.

It is not industrial strength and is not meant to be used in a production
environment.

259

CHAPTER 16 | Developing an iSF Adapter

ISF Server Module Deployment Options

Overview The iSF server module, which is fundamentally implemented as a Java
library, can be deployed in one of the following ways:

® CORBA service.

CORBA service The iSF server module can be deployed as a CORBA service (Artix Security
Service), as shown in Figure 33. This is the default deployment model for
the iSF server module in Artix. This deployment option has the advantage
that any number of distributed iSF clients can communicate with the iSF
server module over IOP/TLS.

With this type of deployment, the iSF server module is packaged as an
application plug-in to the Orbix generic server. The Artix Security Service
can be launched by the i t securi ty executable and basic configuration is
set in the i ona_servi ces. securi ty scope of the Artix configuration file.

Application

iSF client SDK

IIOP/TLS
CORBA Service

A4

IDL Interface

A 4

iSF Security Module

iSF adapter

Figure 33:/SF Server Module Deployed as a CORBA Service

260

iSF Adapter Overview

iISF Adapter Overview

Overview

Standard iSF adapters

Custom iSF adapters

Main elements of a custom iSF
adapter

Implementation of the ISF
Adapter Java interface

Configuration of the ISF adapter
using the iSF properties file

This section provides an overview of the iSF adapter architecture. The
modularity of the iSF server module design makes it relatively
straightforward to implement a custom iSF adapter written in Java.

IONA provides several ready-made adapters that are implemented with the
iSF adapter API. The following standard adapters are currently available:

® File adapter.
® LDAP adapter.

The iSF server module architecture also allows you to implement your own
custom iSF adapter and use it instead of a standard adapter.

The main elements of a custom iSF adapter are, as follows:
® |mplementation of the ISF Adapter Java interface.
® Configuration of the ISF adapter using the iSF properties file.

The only code that needs to be written to implement an iSF adapter is a
class to implement the | S2Adapt er Java interface. The adapter
implementation class should respond to authentication requests either by
checking a repository of user data or by forwarding the requests to a
third-party enterprise security service.

The iSF adapter is configured by setting Java properties in the

i s2. properties file. The i s2. properti es file stores two kinds of

configuration data for the iSF adapter:

® Configuration of the iSF server module to load the adapter—see
“Configuring iSF to Load the Adapter” on page 273.

® Configuration of the adapter itself—see “Setting the Adapter
Properties” on page 274.

261

CHAPTER 16 | Developing an iSF Adapter

Implementing the IS2Adapter Interface

Overview

Test user

iSF adapter example

262

The comiona. security. i s2adapt er package defines an | S2Adapt er Java
interface, which a developer must implement to create a custom iSF
adapter. The methods defined on the | SFAdapt er class are called by the iSF
server module in response to requests received from iSF clients.

This section describes a simple example implementation of the | S2Adapt er
interface, which is capable of authenticating a single test user with
hard-coded authorization properties.

The example adapter implementation described here permits authentication
of just a single user, test _user. The test user has the following
authentication data:

User nane: test_user
Passwor d: test_password

and the following authorization data:

® The user's global realm contains the Quest Rol e role.

® The user's EngReal mrealm contains the Engi neer Rol e role.

® The user's Fi nanceReal mrealm contains the Account ant Rol e role.

Example 57 shows a sample implementation of an iSF adapter class,
Exanpl eAdapt er, that permits authentication of a single user. The user's
username, password, and authorization are hard-coded. In a realistic
system, however, the user data would probably be retrieved from a database
or from a third-party enterprise security system.

Example 57: Sample ISF Adapter Implementation

inport comiona.security.azmgr. Aut hori zat i onManager ;
inport comiona. security.comon. Aut henti cat edPri nci pal ;

i mport comi ona. security. common. Real m

inport comiona. security.comon. Rol e;

inport comiona.security.is2adapter.|S2Adapter;

i nport comiona. security.is2adapter.| S2Adapt er Except i on;
inport java.util.Properties;

inport java.util.Arraylist;

import java.security.cert.X509Certificate;

Implementing the IS2Adapter Interface

Example 57: Sample ISF Adapter Implementation

i mport org. apache. | og4j . *;
inport java.util.ResourceBundl e;

inmport java.util.M ssingResourceException;
publ i c cl ass Exanpl eAdapter inplenents | S2Adapter {

public final static String EXAMPLE PRCPERTY =
"exanpl e_property";

public final static String ADAPTER NAME = " Exanpl eAdapt er";

1 private final static String MVBG EXAMPLE ADAPTER | NI Tl ALl ZED

="initialized";
private final static String MSG EXAMPLE ADAPTER CLCSED
= "cl osed";

private final static String MSG EXAVPLE ADAPTER AUTHENTI CATE

= "aut henti cate";

private final static String

MSG_EXAMPLE_ADAPTER AUTHENTI CATE REALM =

"aut henticate_real ni;

private final static String

MSG_EXAMPLE_ADAPTER AUTHENTI CATE K = "aut henti cat eok";
private final static String MBG EXAMPLE ADAPTER CGETAUTH NFO

= "getaut hi nf 0";

private final static String

MSG_EXAMPLE_ADAPTER GETAUTH NFO K = "get aut hi nf ook";

private ResourceBundl e _res_bundle = null;

2 private static Logger LOG =
Logger . get Logger (Exanpl eAdapt er . cl ass. get Nane()) ;

publ i ¢ Exanpl eAdapter() {

3 _res_bundl e = Resour ceBundl e. get Bundl e(" Exanpl eAdapter");
LOG set Resour ceBundl e(_res_bundl €) ;
}

4 public void initialize(Properties props)

t hrows | S2Adapt er Exception {

LOG | 7dl og(Priority. | NFO ADAPTER NAME + "." +
MBG_EXAMPLE_ADAPTER | NI Tl ALI ZED, nul |) ;

263

CHAPTER 16 | Developing an iSF Adapter

Example 57: Sample ISF Adapter Implementation

264

/] exanpl e property
String propVal = props.get Property(EXAMPLE PROPERTY) ;
LOG i nf o(propVal) ;

}

public void close() throws | S2Adapt er Exception {
LOG | 7dl og(Priority. | NFQ ADAPTER NAME + "." +

MBG_EXAMPLE_ADAPTER CLCSED, nul l);

}

publ i ¢ Aut henti catedPrinci pal authenticate(String usernane,
String password)
throws | S2Adapt er Exception {

LOG | 7dl og(Priority. | NFQ ADAPTER NAME + "." +
MBG_EXAMPLE_ADAPTER AUTHENTI CATE, new
bj ect []{user nane, password}, nul |);

Aut henti cat edPrinci pal ap = null;
try{
i f (usernare. equal s("test_user")
&% password. equal s("test _password")){
ap = get Aut hori zat i onl nf o(new
Aut hent i cat edPri nci pal (user nane)) ;
}
el se {
LOG | 7dl og(Priority. WARN, ADAPTER NAME + "." +
| S2Adapt er Except i on. WRONG_NAME_PASSWIRD, nul 1) ;
t hrow new | S2Adapt er Excepti on(_res_bundl e, thi s,
| S2Adapt er Except i on. WRONG_NAME_PASSWIRD, new
Chj ect []{usernane}) ;

}

} catch (Exception e) {
LOG | 7dl og(Priority. WARN, ADAPTER NAME + "." +
| S2Adapt er Except i on. AUTH_FAI LED, e) ;
t hr ow new | S2Adapt er Except i on(_res_bundl e, t hi s,
| S2Adapt er Except i on. AUTH FAI LED, new (bj ect []{user nane}, e);
}

LOG | 7dl og(Priority. WARN, ADAPTER NAME + "." +
MBG_EXAMPLE _ADAPTER AUTHENTI CATE CK, nul ') ;
return ap;

Implementing the IS2Adapter Interface

Example 57: Sample ISF Adapter Implementation

}

10 publ i c Authenti catedPrinci pal authenticate(String real mane,
String username, String password)
throws | S2Adapt er Excepti on {

LOG | 7dl og(Priority. | NFO ADAPTER NAME + "." +
MSG_EXAMPLE_ADAPTER AUTHENTI CATE_REALM new
(bj ect [] {real mane, user nane, password}, nul ') ;

Aut henti cat edPrinci pal ap = null;
try{
if (usernane. equal s("test_user")
&% password. equal s("test_password")){
11 Aut henti cat edPri nci pal principal = new
Aut hent i cat edPri nci pal (user nane) ;
princi pal . set Qurrent Real n{real mane) ;
ap = get Aut hori zati onl nfo(principal);
}
el se {
LOG | 7dl og(Priority. WARN, ADAPTER NAME + "." +
| S2Adapt er Except i on. WRONG_NAME_PASSWORD, nul |) ;
t hr ow new | S2Adapt er Excepti on(_res_bundl e, this,
| S2Adapt er Except i on. WRONG_NAME_PASSWORD, new
(bj ect[]{usernane});

}

} catch (Exception e) {
LOG | 7dl og(Priority. WARN, ADAPTER NAME + "." +
| S2Adapt er Except i on. AUTH_FAI LED, e) ;
t hrow new | S2Adapt er Excepti on(_res_bundl e, this,
| S2Adapt er Except i on. AUTH FAI LED, new (bj ect[] {user nane}, e);

}

LOG | 7dl og(Pri ority. WARN, ADAPTER NAME + "." +
MBG_EXAMPLE ADAPTER AUTHENTI CATE K, nul |) ;
return ap;

}

12 publ i ¢ Aut henti cat edPri nci pal aut henti cat e(X509Certificate
certificate)
throws | S2Adapt er Excepti on {
t hrow new | S2Adapt er Except i on(
_res_bundl e, this,
| S2Adapt er Except i on. NOT_| MPLEMENTED

265

CHAPTER 16 | Developing an iSF Adapter

Example 57: Sample ISF Adapter Implementation

)
}

13 publ i ¢ Aut henti catedPrinci pal authenticate(String real m

X509Certificate certificate)
throws | S2Adapt er Exception {

t hrow new | S2Adapt er Except i on(

_res_bundl e, this,

| S2Adapt er Except i on. NOT_| MPLEMENTED

)i
}

14 publ i c Authenti cat edPri nci pal
get Aut hori zat i onl nf o(Aut hent i cat edPri nci pal principal) throws
| S2Adapt er Except i on{

LOG | 7dl og(Priority.| NFO, ADAPTER NAME + "." +
MSG_EXAMPLE_ADAPTER GETAUTH NFQ new
Chj ect[]{principal.getUserl D)}, null);

Aut hent i cat edPri nci pal ap = null;
String usernane = principal . get Userl () ;
String real manme = principal . get Qurrent Real n() ;

try{
if (usernare. equal s("test_user")) {
15 ap = new Aut henti cat edPri nci pal (user nane) ;
16 ap. addRol e(new Rol e(" Quest Rol e", ""));

17 if (realmane == null || (realmmane != null &&
r eal mmane. equal s("EngReal ni')))
{
ap. addReal n{ new Real n{" EngReal ni', “"));
ap. addRol e(" EngReal ni', new
Rol e(" Engi neerRol e", ""));
}
18 if (realmane == null || (realmane != null &&
r eal mane. equal s("Fi nanceReal ni')))
{
ap. addReal n{ new Real n{" Fi nanceReal ni', ""));
ap. addRol e(" Fi nanceReal ni', new
Rol e(" Account ant Rol e", ""));
}
}

266

Implementing the IS2Adapter Interface

Example 57: Sample ISF Adapter Implementation

el se {

LOG | 7dl og(Priority. WARN, ADAPTER NAME + "." +
| S2Adapt er Except i on. USER NOT_EXI ST, new (bj ect [] {user nane},
null);

t hr ow new | S2Adapt er Excepti on(_res_bundl e, this,
| S2Adapt er Except i on. USER NOT_EXI ST, new Cbj ect [] {user nang}) ;

}

} catch (Exception e) {
LOG | 7dl og(Priority. WARN, ADAPTER NAME + "." +
| S2Adapt er Except i on. AUTH_FAI LED, e) ;
t hr ow new | S2Adapt er Excepti on(_res_bundl e, this,
| S2Adapt er Except i on. AUTH FAl LED, new (bj ect[]{user nane}, e);

}

LOG | 7dl og(Priority. WARN, ADAPTER NAME + "." +
MBG_EXAMPLE_ADAPTER GETAUTH NFO OK, nul |) ;
return ap;

}

19 publ i ¢ Aut henti cat edPri nci pal get Aut hori zationl nfo(String
usernane) throws | S2Adapt er Except i on{

/1 this method has been deprecated
t hr ow new | S2Adapt er Except i on(
_res_bundl e, this,
| S2Adapt er Except i on. NOT_| MPLEMENTED
)
}

20 publ i c Aut henti cat edPri nci pal getAuthori zationlnfo(String
real mane, String username) throws | S2Adapt er Except i on{

// this nethod has been deprecated
t hr ow new | S2Adapt er Except i on(
_res_bundle, this,
| S2Adapt er Except i on. NOT_| MPLEMENTED
)
}

21 public ArrayLi st getA | Users()
throws | S2Adapt er Excepti on {

267

CHAPTER 16 | Developing an iSF Adapter

Example 57: Sample ISF Adapter Implementation

t hrow new | S2Adapt er Except i on(
_res_bundl e, this,
| S2Adapt er Except i on. NOT_| MPLEMENTED
)i

22 publ i c void | ogout (Aut henti cat edPri nci pal ap) throws
| S2Adapt er Exception {

}
}

The preceding iSF adapter code can be explained as follows:

1. These lines list the keys to the messages from the adapter’s resource
bundle. The resource bundle stores messages used by the Log4J logger
and exceptions thrown in the adapter.

This line creates a Log4J logger.

This line loads the resource bundle for the adapter.
Theinitialize() method is called just after the adapter is loaded.
The properties passed to the i nitial i ze() method, props, are the
adapter properties that the iSF server module has read from the

i s2. properties file.

See “Setting the Adapter Properties” on page 274 for more details.

5. Theclose() method is called to shut down the adapter. This gives you
an opportunity to clean up and free resources used by the adapter.

6. This variant of the | S2Adapt er . aut hent i cat e() method is called
whenever an iSF client calls Aut hManager . aut hent i cat e() with
username and password parameters.

In this simple demonstration implementation, the aut henti cat e()
method recognizes only one user, test _user, with password,
test _password.

7. This line calls a Log4J method in order to log a localized and
parametrized message to indicate that the authenticate method has
been called with the specified username and password values. Since

268

10.

11.

12.

13.

14.

Implementing the IS2Adapter Interface

all the keys in the resource bundle begin with the adapter name, the
adapter name is prepended to the key. The | 7dl og() methodisused
becauseit automaticaly searchesthe resource beundlewhich was st previoudy by
theloggersset Resour ceBundl e() method.

If authentication is successful; that is, if the name and password
passed in match test _user and test_password, the

get Aut hori zat i onl nf o() method is called to obtain an

Aut hent i cat edPri nci pal object populated with a// of the user’s realms
and role

If authentication fails, an | S2Adapt er Except i on is raised with minor
code | S2Adapt er Except i on. WRCNG_NAME_PASSWIRD.

The resource bundle is passed to the exception as it accesses the
exception message from the bundle using the key,

Exanpl eAdapt er . w ongUser namePasswor d.

This variant of the | S2Adapt er . aut hent i cat e() method is called
whenever an iSF client calls Aut hManager . aut hent i cat e() with realm
name, username and password parameters.

This method differs from the preceding username/password
aut henti cat e() method in that only the authorization data for the
specified realm and the global realm are included in the return value.

If authentication is successful, the get Aut hori zat i onl nf o() method is
called to obtain an Aut hent i cat edPri nci pal object populated with the
authorization data from the specified realm and the global realm.

This variant of the | S2Adapt er . aut hent i cat e() method is called
whenever an iSF client calls Aut hManager . aut henti cat e() with an
X.5009 certificate parameter.

This variant of the | S2Adapt er . aut hent i cat e() method is called
whenever an iSF client calls Aut hManager . aut henti cat e() with a
realm name and an X.509 certificate parameter.

This method differs from the preceding certificate aut hent i cat e()
method in that only the authorization data for the specified realm and
the global realm are included in the return value.

This method should create an Aut hent i cat edPri nci pal object for the
user nare user. If a realm is not specified in the principal, the

Aut hent i cat edPri nci pal is populated with all realms and roles for this

269

CHAPTER 16 | Developing an iSF Adapter

270

15.

16.

17.

18.

19.

20.

21.

user. If a realm /s specified in the principal, the
Aut hent i cat edPri nci pal is populated with authorization data from
the specified realm and the global realm only.

This line creates a new Aut hent i cat edPri nci pal object for the
user nane user to hold the user's authorization data.

This line adds a Quest Rol e role to the global realm, | ONAG obal Real m
using the single-argument form of addRol e() . Roles added to the
global realm implicitly belong to every named realm as well.

This line checks if no realm is specified in the principal or if the realm,
EngReal m is specified. If either of these is true, the following lines add
the authorization realm, EngReal m to the Aut henti cat edPri nci pal
object and add the Engi neer Rol e role to the EngReal mauthorization
realm.

This line checks if no realm is specified in the principal or if the realm,
Fi nanceReal m is specified. If either of these is true, the following lines
add the authorization realm, Fi nanceReal m to the

Aut hent i cat edPri nci pal object and add the Account ant Rol e role to
the Fi nanceReal mauthorization realm.

Since SSO was introduced to Artix, this variant of the

| S2Adapt er . get Aut hori zati onl nfo() method has been deprecated.
The method

| S2Adapt er . get Aut hori zat i onl nf o(Aut hent i cat edPri nci pal
princi pal) should be used instead

Since SSO was introduced to Artix, this variant of the

| S2Adapt er . get Aut hori zat i onl nfo() method has also been
deprecated. The method

| S2Adapt er . get Aut hori zat i onl nf o(Aut hent i cat edPri nci pal
princi pal) should be used instead

The get Al | User s() method is currently not used by the iSF server
module during runtime. Hence, there is no need to implement this
method currently.

Implementing the IS2Adapter Interface

22. When the | ogout () method is called, you can perform cleanup and
release any resources associated with the specified user principal. The
iSF server module calls back on | S2Adapt er . | ogout () either in

response to a user calling Aut hManager . | ogout () explicitly or after an
SSO session has timed out.

271

CHAPTER 16 | Developing an iSF Adapter

Deploying the Adapter

Overview

In this section

272

This section explains how to deploy a custom iSF adapter.

This section contains the following subsections:

Configuring iSF to Load the Adapter page 273
Setting the Adapter Properties page 274
Loading the Adapter Class and Associated Resource Files page 275

Deploying the Adapter

Configuring iSF to Load the Adapter

Overview

Adapter name

Adapter class

Example adapter

You can configure the iSF server module to load a custom adapter by setting
the following properties in the iSF server module’s i s2. properti es file:

¢ Adapter name.
® Adapter class.

The iSF server module loads the adapter identified by the
com i ona. i sp. adapt ers property. Hence, to load a custom adapter,
Adapt er Nane, set the property as follows:

com i ona. i sp. adapt er s=Adapt er Nane

Note: In the current implementation, the iSF server module can load only
a single adapter at a time.

The name of the adapter class to be loaded is specified by the following
property setting:

com i ona. i sp. adapt er. Adapt er Nare. cl ass=Adapt er d ass

For example, the example adapter provided shown previously can be
configured to load by setting the following properties:

com i ona. i sp. adapt er s=exanpl e
com i ona. i sp. adapt er. exanpl e. cl ass=i sf adapt er . Exanpl eAdapt er

273

CHAPTER 16 | Developing an iSF Adapter

Setting the Adapter Properties

Overview

Adapter property name format

Truncation of property names

Example

Accessing properties from within
an iSF adapter

274

This subsection explains how you can set properties for a specific custom
adapter in the i s2. properti es file.

All configurable properties for a custom file adapter, Adapt er Nane, should
have the following format:

com i ona. i sp. adapt er. Adapt er Nane. par am Pr opert yName

Adapter property names are truncated before being passed to the iSF
adapter. That is, the com i ona. i spadapt er . Adapt er Narre. par amprefix is
stripped from each property name.

For example, given an adapter named Exanpl eAdapt er which has two

properties, host and port, these properties would be set as follows in the

i s2. properti es file:

com i ona. i sp. adapt er . exanpl e. param exanpl e_property="This is an
exanpl e property"

Before these properties are passed to the iSF adapter, the property names

are truncated as if they had been set as follows:

exanpl e_property="This is an exanpl e property"

The adapter properties are passed to the iSF adapter through the
comiona. security.is2adapter.| S2Adapter.initialize() callback
method. For example:

public void initialize(java.util.Properties props)
throws | S2Adapt er Excepti on {
/1 Access a property through its truncated nare.
String propVal = props. get Property("PropertyName")

Deploying the Adapter

Loading the Adapter Class and Associated Resource Files

Overview

CORBA service

You need to make appropriate modifications to your CLASSPATH to ensure
that the iSF server module can find your custom adapter class.

In all cases, the location of the file used to configure Log4j logging can be
set using the I og4j . confi gurati on property in the i s2. properti es file.

By default, the Artix Security Service uses the

secure_artix.full _security. security_service scope in your Orbix
configuration file (or configuration repository service). Modify the

pl ugi ns: j ava_ser ver : cl asspat h variable to include the directory
containing the compiled adapter class and the adapter’s resource bundle.
The pl ugi ns: j ava_ser ver : cl asspat h variable uses the value of the
SEQURI TY_CLASSPATH variable.

For example, if the adapter class and adapter resource bundle are located in
the Arti xlI nstal | Di r\ Exanpl eAdapt er directory, you should set the
SEQURI TY_CLASSPATH variable as follows:

Artix configuration file

SECQUR TY_CLASSPATH =
"Artixlnstall Dr\Exanpl eAdapter; Artixlnstall D r\lib\corba\sec
urity service\5. 1\security service-rt.jar";

275

CHAPTER 16 | Developing an iSF Adapter

276

In this chapter

Artix Security

APPENDIX A

This chapter describes variables used by the IONA Security
Framework. The Artix security infrastructure is highly

configurable.

This chapter discusses the following topics:

Applying Constraints to Certificates page 279
initial_references page 281
plugins:asp page 282
plugins:atli2_tls page 285
plugins:csi page 286
plugins:csi page 286
plugins:gsp page 287
plugins:http page 291
plugins:iiop_tls page 295
plugins:kdm page 299
plugins:kdm_adm page 301
plugins:login_client page 302
plugins:login_service page 303

277

APPENDIX A | Artix Security

278

plugins:schannel page 304
plugins:security page 305
policies page 306
policies:asp page 312
policies:csi page 313
policies:iiop_tls page 316
principal_sponsor page 326
principal_sponsor:csi page 330

Applying Constraints to Certificates

Applying Constraints to Certificates

Certificate constraints policy

Configuration variable

Constraint language

Example

You can use the Cert Const rai nt sPol i cy to apply constraints to peer X.509
certificates by the default Certifi cat eVal i dat or Pol i cy. These conditions
are applied to the owner’s distinguished name (DN) on the first certificate
(peer certificate) of the received certificate chain. Distinguished names are
made up of a number of distinct fields, the most common being
Organization Unit (OU) and Common Name (CN).

You can specify a list of constraints to be used by Cert Const rai nt sPol i cy
through the policies:iiop_tls:certificate_constraints_policy or
policies:https:certificate constraints_policy configuration variables.
For example:
policies:iiop_tls:certificate constraints_policy =
[" ONEJohnny*, QU=[uni t 1| | T_SSL], O=l ONA, C=l rel and, ST=Dubl i n, L=Ea
rth", " O\N=Paul *, QU=SSLTEAM O=I ONA, C=I r el and, ST=Dubl i n, L=Eart h",
" ON=TheOmi pot ent Cne"] ;

These are the special characters and their meanings in the constraint list:

* Matches any text. For example:
an* matches ant and anger, but not aunt
[1 Grouping symbols.
| Choice symbol. For example:

OU=[unit1] 1 T_SSL] signifies that if the QUis unit1
or I T_SSL, the certificate is acceptable.

=, 1= Signify equality and inequality respectively.

This is an example list of constraints:

policies:iiop_tls:certificate constraints_policy = [
"OU=[unitl] I T_SSL], ON=St eve*, L=Dubl i n",

"OEI T_ART*, QU =l T_ARTt est er s, ON=[Jan| Donal], ST=

Boston"];

279

APPENDIX A | Artix Security

Distinguished names

280

This constraint list specifies that a certificate is deemed acceptable if and
only if it satisfies one or more of the constraint patterns:

| f
The QUis unitl or IT_SSL
And
The ON begins with the text Steve
And
The location is Dublin
Then the certificate is acceptable
El se (moving on to the second constraint)
| f
The QU begins with the text IT_ART but isn't |T_ARTtesters
And
The common nane is either Donal or Jan
And
The State is Boston
Then the certificate is acceptable
QG herwi se the certificate is unacceptabl e.

The language is like a boolean OR, trying the constraints defined in each
line until the certificate satisfies one of the constraints. Only if the certificate
fails all constraints is the certificate deemed invalid.

Note that this setting can be sensitive about white space used within it. For
example, "ON =" might not be recognized, where "CN=" is recognized.

For more information on distinguished names, see the Security Guide.

initial_references

initial_references

IT_TLS_ Toolkit:plugin

The initial _references namespace contains the following configuration
variables:

® |T_TLS_ Toolkit:plugin

(Windows only.) This configuration variable enables you to specify the
underlying SSL/TLS toolkit to be used by Artix. It is used in conjunction with
the pl ugi ns: bal ti nore_t ool ki t: shlib_name and

pl ugi ns: schannel _t ool ki t: shl i b_nane configuration variables to
implement SSL/TLS toolkit replaceability.

The default is the Baltimore toolkit.

For example, to specify that an application should use the Schannel
SSL/TLS toolkit, you would set configuration variables as follows:

initial _references:|T_TLS Tool kit:plugin = "schannel _tool kit";
pl ugi ns: schannel _tool kit:shlib _name = "it_tls_schannel ";

281

APPENDIX A | Artix Security

plugins:asp

authentication_cache_size

The pl ugi ns: asp namespace contains the following variables:
® authentication_cache_size

® authentication_cache_timeout

® authorization_realm

® default_password

® security_type

® security_level

For SOAP bindings, the maximum number of credentials stored in the
authentication cache. If this size is exceeded the oldest credential in the
cache is removed.

A value of -1 (the default) means unlimited size. A value of 0 means disable
the cache.

authentication_cache_timeout

authorization_realm

282

For SOAP bindings, the time (in seconds) after which a credential is
considered stale. Stale credentials are removed from the cache and the
server must re-authenticate with the Artix security service on the next call
from that user.

A value of -1 (the default) means an infinite time-out. A value of 0 means
disable the cache.

Specifies the Artix authorization realm to which an Artix server belongs. The
value of this variable determines which of a user's roles are considered
when making an access control decision.

default_password

security type

plugins:asp

For example, consider a user that belongs to the ej b- devel oper and
cor ba- devel oper roles within the Engi neeri ng realm, and to the ordi nary
role within the Sal es realm. If you set pl ugi ns: asp: aut hori zati on_real m
to Sal es for a particular server, only the ordi nary role is considered when
making access control decisions (using the action-role mapping file).

The default is | ONAG obal Real m

When the pl ugi ns: asp: security_t ype variable is set to either PRI NO PAL or
CERT_SUBJECT, this variable specifies the password to use on the server side.
The pl ugi ns: asp: def aul t _passwor d variable is used to get around the
limitation that a PRI NO PAL identity and a CERT_SUBJECT are propagated
without an accompanying password.

When either the PRI NCI PAL or CERT_SUBJECT security type is selected, the
artix_security plug-in uses the received client principal together with the
password specified by pl ugi ns: asp: def aul t _passwor d to authenticate the
user through the Artix security service.

The default value is the string, def aul t _passwor d.

Specifies the source of the user identity that is sent to the Artix security
service for authentication. Because the Artix Security Framework supports
several different security mechanisms for propagating user identities, it is
necessary to specify which of the propagated identities is actually used for
the authentication step. The following options are currently supported by the
artix_security plug-in:

USERNAMVE_PASSWIRD Authenticate the username and password
propagated as WSDL message attributes. For
example, you can configure these values on the
client side using the User Nane and Password
attributes in the <htt p-conf: cli ent > tag in the
WSDL contract.

CERT_SUBJECT Authenticate the Common Name (CN) from the
client certificate’s subject DN.

283

APPENDIX A | Artix Security

ENCCDED_TOKEN
KERBERCS TCKEN

PR NG PAL

Reserved for future use.

Authenticate the Kerberos token. You must have
the Kerberos adapter configured to use this option.
For more information.

Authenticate the CORBA principal. This is needed
to support interoperability with legacy CORBA
applications. This options can be used in
combination with the

pl ugi ns: asp: def aul t _passwor d setting.

security level

Specifies the level from which security credentials are picked up. The
following options are supported by the arti x_security plug-in:

MESSAGE_LEVEL Get security information from the transport header. This

is the default.

REQUEST_LEVEL Get the security information from the message header.

284

plugins:atli2_tls

plugins:atli2_tls

use_jsse tk

The pl ugi ns: atli2_tls namespace contains the following variable:

® use jsse_tk

(Java only) Specifies whether or not to use the JSSE/JCE architecture with
the CORBA binding. If t rue, the CORBA binding uses the JSSE/JCE
architecture to implement SSL/TLS security; if f al se, the CORBA binding
uses the Baltimore SSL/TLS toolkit.

The default is f al se.

285

APPENDIX A | Artix Security

plugins:csi

ClassName

shlib_name

286

The pol i ci es: csi namespace includes variables that specify settings for
Common Secure Interoperability version 2 (CSIv2):

® QJdasshanme

® shlib_nane

A assNane specifies the Java class that implements the csi plugin. The
default setting is:

pl ugi ns: csi: A assNane = "com i ona. cor ba. security. csi.CSlI Pl ugin";
This configuration setting makes it possible for the Artix core to load the
plugin on demand. Internally, the Artix core uses a Java class loader to load
and instantiate the csi class. Plugin loading can be initiated either by
including the csi in the or b_pl ugi ns list, or by associating the plugin with
an initial reference.

shl i b_nane identifies the shared library (or DLL in Windows) containing the
csi plugin implementation.

pl ugi ns: csi:shlib_nane = "it_csi_prot";

The csi plug-in becomes associated with the it _csi _prot shared library,
where i t_csi _prot is the base name of the library. The library base name,
it_csi_prot, is expanded in a platform-dependent manner to obtain the full
name of the library file.

plugins:gsp

plugins:gsp

The pl ugi ns: gsp namespace includes variables that specify settings for the
Generic Security Plugin (GSP). This provides authorization by checking a
user's roles against the permissions stored in an action-role mapping file. It
includes the following:

d accept _asserted_aut hori zation_i nfo
d action_role_napping_file

® assert_authorization_info

d aut henti cati on_cache_si ze

d aut henti cati on_cache_ti nmeout

® authorization_ realm

® dasshane

® enabl e_authori zation

® enabl e_gssup_sso

d enabl e_user _i d_| oggi ng

® enabl e_x509_sso

® enforce_secure_conms_to_sso_server
d enabl e_security_service_cert_authentication
d sso_server_certificate_constraints

® use_client_| oad_bal anci ng

accept_asserted_authorization_info

If f al se, SAML data is not read from incoming connections. Default is t r ue.

action_role_mapping _file
Specifies the action-role mapping file URL. For example:

pl ugi ns: gsp: action_rol e_mapping file =
"file:///nylaction/rol e mappi ng";

287

APPENDIX A | Artix Security

assert_authorization_info

authentication_cache_size

If fal se, SAML data is not sent on outgoing connections. Default is t r ue.

The maximum number of credentials stored in the authentication cache. If
this size is exceeded the oldest credential in the cache is removed.

A value of -1 (the default) means unlimited size. A value of 0 means disable
the cache.

authentication_cache_timeout

authorization_realm

288

The time (in seconds) after which a credential is considered stale. Stale
credentials are removed from the cache and the server must re-authenticate
with the Artix security service on the next call from that user. The cache
timeout should be configured to be smaller than the timeout set in the

i s2. properti es file (by default, that setting is

i S2. sso. sessi on. ti meout =600).

A value of -1 (the default) means an infinite time-out. A value of 0 means
disable the cache.

aut hori zat i on_r eal mspecifies the iSF authorization realm to which a
server belongs. The value of this variable determines which of a user's roles
are considered when making an access control decision.

For example, consider a user that belongs to the ej b- devel oper and

cor ba- devel oper roles within the Engi neeri ng realm, and to the ordinary
role within the Sales realm. If you set pl ugi ns: gsp: aut hori zat i on_r eal mto
Sales for a particular server, only the ordinary role is considered when
making access control decisions (using the acti on-r ol e mapping file).

ClassName

enable_authorization

enable_gssup_sso

enable_user_id logging

plugins:gsp

d assNane specifies the Java class that implements the gsp plugin. This
configuration setting makes it possible for the Artix core to load the plugin
on demand. Internally, the Artix core uses a Java class loader to load and
instantiate the gsp class. Plugin loading can be initiated either by including
the csi in the orb_pl ugi ns list, or by associating the plugin with an initial
reference.

A boolean GSP policy that, when true, enables authorization using
action-role mapping ACLs in server.

Default is tr ue.

Enables SSO with a username and a password (that is, GSSUP) when set to
true.

A boolean variable that enables logging of user IDs on the server side.
Default is f al se.

Up until the release of Orbix 6.1 SP1, the GSP plug-in would log messages
containing user IDs. For example:

[junit] Fri, 28 May 2004 12:17:22.0000000 [SLEEPY: 3284]
(IT_CSI:205) | - Wser alice authenticated successfully.

In some cases, however, it might not be appropriate to expose user IDs in

the Orbix log. From Orbix 6.2 onward, the default behavior of the GSP

plug-in is changed, so that user IDs are not logged by default. To restore the

pre-Orbix 6.2 behavior and log user IDs, set this variable to tr ue.

289

APPENDIX A | Artix Security

enable_x509_sso

Enables certificate-based SSO when set to t rue.

enforce_secure_comms_to_sso_server

Enforces a secure SSL/TLS link between a client and the login service when
set to t rue. When this setting is true, the value of the SSL/TLS client secure
invocation policy does not affect the connection between the client and the
login service.

Default is t r ue.

enable_security service cert_authentication

A boolean GSP policy that enables X.509 certificate-based authentication
on the server side using the Artix security service.

Default is f al se.

sso_server_certificate_constraints

use_client_load_balancing

290

A special certificate constraints policy that applies only to the SSL/TLS
connection between the client and the SSO login server. For details of the
pattern constraint language, see “Applying Constraints to Certificates” on
page 279.

A boolean variable that enables load balancing over a cluster of security
services. If an application is deployed in a domain that uses security service
clustering, the application should be configured to use client load balancing
(in this context, client means a client of the Artix security service). See also
policies:iiop_tls:client_|oad_bal anci ng_nmechani sm

Default is f al se.

plugins:http

plugins:http

client:client_certificate

The pl ugi ns: ht t p namespace contains the following variables:
d client:client_certificate

d client:client_certificate_chain

® client:client_private key

d client:client_private_key password
d client:trusted_root_certificates

® client:use_secure_sockets

d server:server_certificate

d server:server_certificate _chain

® server:server_private key

d server:server_private_key password
d server:trusted_root_certificates

® server:use_secure_sockets

This variable specifies the full path to the PEM-encoded X.509 certificate
issued by the certificate authority for the client. For example:
plugins:http:client:client_certificate =

"c:\aspen\ x509\ cert s\ key. cert. pent
This setting is ignored if pl ugi ns: htt p: cl i ent: use_secur e_socket s is
fal se.

client:client_certificate_chain

(Optional) This variable specifies the full path to the PEM-encoded X.509
certificate chain for the client. For example:

plugins:http:client:client_certificate_chain =
"c:\aspen\ x509\ cert s\ key. cert. pent

This setting is ignored if pl ugi ns: htt p: cl i ent: use_secur e_socket s is
fal se.

291

APPENDIX A | Artix Security

client:client_private_key

This variable specifies a PEM file containing the client certificate’s encrypted
private key. This private key enables the client to respond to a challenge
from a server during an SSL/TLS handshake.

This setting is ignored if pl ugi ns: htt p: cli ent: use_secur e_socket s is
fal se.

client:client_private _key password

This variable specifies the password to decrypt the contents of the
client_private_ key file.

This setting is ignored if pl ugi ns: htt p: cl i ent: use_secur e_socket s is
fal se.

client:trusted_root_certificates

client:use_secure_sockets

292

This variable specifies the path to a file containing a concatenated list of CA
certificates in PEM format. The client uses this CA list during the TLS
handshake to verify that the server's certificate has been signed by a trusted
CA.

This setting is ignored if pl ugi ns: htt p: cl i ent: use_secur e_socket s is
fal se.

This variable specifies whether the client wants to open a HTTPS
connection (that is, HTTP running over SSL or TLS) or an insecure
connection (that is, plain HTTP).

Valid values are true, for HTTPS, and fal se, for HTTP. The default is
fal se.

server:server_certificate

plugins:http

This variable specifies the full path to the PEM-encoded X.509 certificate
issued by the certificate authority for the server. For example:

pl ugi ns: http: server:server_certificate =
"c:\aspen\ x509\ cert s\ key. cert. pent

This setting is ignored if pl ugi ns: ht t p: server: use_secur e_socket s is
fal se.

server:server_certificate_chain

server:server_private_ key

(Optional) This variable specifies the full path to the PEM-encoded X.509
certificate chain for the server. For example:

pl ugi ns: htt p: server:server_certificate_chain =
"c:\aspen\ x509\ cert s\ key. cert. pent

This setting is ignored if pl ugi ns: ht t p: server: use_secur e_socket s is
fal se.

This variable specifies a PEM file containing the server certificate’s
encrypted private key. This private key enables the server to respond to a
challenge from a client during an SSL/TLS handshake.

This setting is ignored if pl ugi ns: ht t p: server: use_secur e_socket s is
fal se.

server:server_private_key password

This variable specifies the password to decrypt the contents of the
server_private_key file.

This setting is ignored if pl ugi ns: ht t p: server: use_secur e_socket s is
fal se.

293

APPENDIX A | Artix Security

server:trusted_root_certificates

This variable specifies the path to a file containing a concatenated list of CA
certificates in PEM format. The server uses this CA list during the TLS
handshake to verify that the client’s certificate has been signed by a trusted
CA.

This setting is ignored if pl ugi ns: htt p: server: use_secur e_socket s is
fal se.

server:use_secure_sockets

This variable specifies whether the server accepts HTTPS connection
attempts (that is, HTTP running over SSL or TLS) or insecure connection
attempts (that is, plain HTTP) from a client.

Valid values are true, for HTTPS, and f al se, for HTTP. The default is
fal se.

294

plugins:iiop_tls

plugins:iiop tls

The pl ugi ns:iiop_tls namespace contains the following variables:

buffer_pool:recycle_segments
buffer_pool:segment_preallocation
buffer_pools:max_incoming_buffers_in_pool
buffer_pools:max_outgoing_buffers_in_pool
delay credential_gathering_until_handshake
enable_iiop_1_0_client_support
incoming_connections:hard_limit
incoming_connections:soft_limit
outgoing_connections:hard_limit
outgoing_connections:soft_limit
tcp_listener:reincarnate_attempts
tcp_listener:reincarnation_retry_backoff_ratio
tcp_listener:reincarnation_retry delay

buffer_pool:recycle_segments

(Java only) When this variable is set, the ii op_t|s plug-in reads this
variable's value instead of the
pl ugi ns:iiop: buffer_pool : recycl e_segnent s variable's value.

buffer_pool:segment_preallocation

(Java only) When this variable is set, the ii op_t|s plug-in reads this
variable's value instead of the

pl ugi ns:iiop: buffer_pool : segnent _preal | ocati on variable’s value.

295

APPENDIX A | Artix Security

buffer_pools:max_incoming_buffers_in_pool

(C++ only) When this variable is set, the i i op_t| s plug-in reads this
variable's value instead of the

pl ugi ns: i i op: buf fer_pool s: max_i ncomi ng_buf fers_i n_pool variable's
value.

buffer_pools:max_outgoing_buffers_in_pool

(C++ only) When this variable is set, the i i op_t| s plug-in reads this
variable's value instead of the

pl ugi ns: i i op: buf f er_pool s: max_out goi ng_buf fers_i n_pool variable's
value.

delay_credential_gathering_until_handshake

(Windows and Schannel only) This client configuration variable provides an
alternative to using the pri nci pal _sponsor variables to specify an
application’s own certificate. When this variable is set to t rue and

princi pal _sponsor: use_princi pal _sponsor is set to fal se, the client
delays sending its certificate to a server. The client will wait until the server
explicitly requests the client to send its credentials during the SSL/TLS
handshake.

This configuration variable can be used in conjunction with the
pl ugi ns: schannel : pronpt _with_credenti al _choi ce configuration variable.

enable_iiop 1 O client_support

This variable enables client-side interoperability of Artix SSL/TLS
applications with legacy 110P 1.0 SSL/TLS servers, which do not support
IIOP 1.1.

The default value is f al se. When set to t r ue, Artix SSL/TLS searches secure
target 1IOP 1.0 object references for legacy 110P 1.0 SSL/TLS tagged
component data, and attempts to connect on the specified port.

Note: This variable will not be necessary for most users.

296

plugins:iiop_tls

incoming_connections:hard_limit

Specifies the maximum number of incoming (server-side) connections
permitted to 1IOP. [IOP does not accept new connections above this limit.
Defaults to -1 (disabled).

When this variable is set, the iiop_t1s plug-in reads this variable's value
instead of the pl ugi ns: i i op: i ncom ng_connections: hard_| i mt variable's
value.

Please see the chapter on ACM in the CORBA Programmer’s Guide for
further details.

incoming_connections:soft_limit

Specifies the number of connections at which [IOP should begin closing
incoming (server-side) connections. Defaults to -1 (disabled).

When this variable is set, the iiop_t1s plug-in reads this variable's value
instead of the pl ugi ns: i i op:incom ng_connections: soft_|imt variable's
value.

Please see the chapter on ACM in the CORBA Programmer’s Guide for
further details.

outgoing_connections:hard_limit

When this variable is set, the iiop_t1s plug-in reads this variable's value
instead of the pl ugi ns: i i op: out goi ng_connections: hard_| i mt variable's
value.

outgoing_connections:soft_limit
When this variable is set, the iiop_t1s plug-in reads this variable's value

instead of the pl ugi ns: i i op: out goi ng_connections: soft_|imt variable's
value.

297

APPENDIX A | Artix Security

tcp_listener:reincarnate_attempts

(Windows only)

plugins:iiop_tls:tcp_listener:reincarnate_attenpts specifies the
number of times that a Listener recreates its listener socket after recieving a
SocketException.

Sometimes a network error may occur, which results in a listening socket
being closed. On Windows, you can configure the listener to attempt a
reincarnation, which enables new connections to be established. This
variable only affects Java and C+ + applications on Windows. Defaults to O
(no attempts).

tcp_listener:reincarnation_retry_backoff_ratio

(Windows only)
plugins:iiop_tls:tcp_listener:reincarnation_retry_del ay specifies a
delay between reincarnation attempts. Data type is | ong. Defaults to 0 (no
delay).

tcp_listener:reincarnation_retry_delay

298

(Windows only)

plugins:iiop_tls:tcp_listener:reincarnation_retry_ backoff_ratiosp
ecifies the degree to which delays between retries increase from one retry to
the next. Datatype is | ong. Defaults to 1

plugins:kdm

plugins:kdm

cert_constraints

The pl ugi ns: kdmnamespace contains the following variables:
® cert_constraints

® iop_tls:port

® checksums_optional

Specifies the list of certificate constraints for principals attempting to open a
connection to the KDM server plug-in. See “Applying Constraints to
Certificates” on page 279 for a description of the certificate constraint
syntax.

To protect the sensitive data stored within it, the KDM applies restrictions

on which entities are allowed talk to it. A security administrator should

choose certificate constraints that restrict access to the following principals:

® The locator service (requires read-only access).

® The kdm admplug-in, which is normally loaded into the itadmin utility
(requires read-write access).

All other principals should be blocked from access. For example, you might

define certificate constraints similar to the following:

pl ugi ns: kdm cert_constraints =
[" C=US, ST=Massachuset t s, O=ABi gBank*, CN=Secur e adni n*",
" C=US, ST=Bost on, O=ABi gBank*, CN=Cr bi x2000 Locat or Servi ce*"]

Your choice of certificate constraints will depend on the naming scheme for
your subject names.

299

APPENDIX A | Artix Security

iiop_tis:port

Specifies the well known IP port on which the KDM server listens for
incoming calls.

checksums_optional

When equal to f al se, the secure information associated with a server must
include a checksum; when equal to tr ue, the presence of a checksum is
optional. Default is f al se.

300

plugins:kdm_adm

plugins:kdm_adm

cert_constraints

The pl ugi ns: kdm admnamespace contains the following variable:

® cert_constraints

Specifies the list of certificate constraints that are applied when the KDM
administration plug-in authenticates the KDM server. See “Applying
Constraints to Certificates” on page 279 for a description of the certificate
constraint syntax.

The KDM administration plug-in requires protection against attack from
applications that try to impersonate the KDM server. A security
administrator should, therefore, choose certificate constraints that restrict
access to trusted KDM servers only. For example, you might define
certificate constraints similar to the following:
pl ugi ns: kdm adm cert_constraints =

[" C=US, ST=Massachuset t s, O=ABi gBank*, CN\N=I T_KDMVF"] ;
Your choice of certificate constraints will depend on the naming scheme for
your subject names.

301

APPENDIX A | Artix Security

plugins:login_client

wsdl_url

302

The pl ugi ns: 1 ogi n_cl i ent namespace contains the following variables:
® wsdl_url

Specifies the location of the login service WSDL to the | ogi n_cl i ent
plug-in. The value of this variable can either be a relative pathname or an
URL. The I ogi n_cl i ent requires access to the login service WSDL in order
to obtain details of the physical contract (for example, host and IP port).

plugins:login_service

plugins:login_service

The pl ugi ns: | ogi n_servi ce namespace contains the following variables:

® wsdl_url

wsdl_url

Specifies the location of the login service WSDL to the | ogi n_servi ce
plug-in. The value of this variable can either be a relative pathname or an
URL. The | ogi n_ser vi ce requires access to the login service WSDL in order
to obtain details of the physical contract (for example, host and IP port).

303

APPENDIX A | Artix Security

plugins:schannel

The pl ugi ns: schannel namespace contains the following variable:

® prompt_with_credential_choice

prompt_with_credential choice

(Windows and Schannel only) Setting both this variable and the
plugins:iiop_tls:delay credential _gathering_until_handshake
variable to true on the client side allows the user to choose which
credentials to use for the server connection. The choice of credentials
offered to the user is based on the trusted CAs sent to the client in an
SSL/TLS handshake message.

If pronpt _wi th_credential _choi ce is set to fal se, Artix chooses the first
certificate it finds in the certificate store that meets the applicable
constraints.

The certificate prompt can be replaced by implementing an IDL interface
and registering it with the ORB.

304

plugins:security

plugins:security

The pl ugi ns: securi ty namespace contains the following variable:
® share_credentials_across_orbs

share_credentials_across_orbs

Enables own security credentials to be shared across ORBs. Normally, when
you specify an own SSL/TLS credential (using the principal sponsor or the
principal authenticator), the credential is available only to the ORB that
created it. By setting the

pl ugi ns: security:share credential s_across_orbs variable to true,
however, the own SSL/TLS credentials created by one ORB are
automatically made available to any other ORBs that are configured to share
credentials.

See also pri nci pal _sponsor: csi : use_exi sting_credenti al s for details of
how to enable sharing of CSI credentials.

Default is f al se.

305

APPENDIX A | Artix Security

policies

The pol i ci es namespace defines the default CORBA policies for an ORB.
Many of these policies can also be set programmatically from within an
application. SSL/TLS-specific variables in the pol i ci es nhamespace include:

d al ow_unaut henti cated_clients_policy

d certificate_constraints_policy

® client_secure_invocation_policy:requires
client_secure_invocation_policy:supports
max_chai n_| engt h_pol i cy

mechani sm pol i cy: ci phersui tes

mechani sm pol i cy: prot ocol _versi on

sessi on_cachi ng_pol i cy

® session_caching

target _secure_i nvocation_policy:requires
target _secure_i nvocati on_policy: supports

trusted_ca_list_policy

allow_unauthenticated clients_policy

(Deprecated in favor of

policies:iiop_tls:allow unauthenticated clients_policy and
policies: https:all ow unaut henticated clients_policy.)

A generic variable that sets this policy both foriiop_tls and https. The
recommended alternative is to use the variables prefixed by

policies:iiop_tlsand policies:https instead, which take precedence
over this generic variable.

306

policies

certificate_constraints_policy

(Deprecated in favor of
policies:iiop_tls:certificate_constraints_policy and
policies:https:certificate_constraints_policy.)

A generic variable that sets this policy both foriiop_tls and https. The
recommended alternative is to use the variables prefixed by
policies:iiop_tlsandpolicies:https instead, which take precedence
over this generic variable.

client_secure_invocation_policy:requires

(Deprecated in favor of
policies:iiop_tls:client_secure_invocation_policy:requires and
policies:https:client_secure_invocation_policy:requires.)

A generic variable that sets this policy both foriiop_tIs and https. The
recommended alternative is to use the variables prefixed by
policies:iiop_tls and policies:https instead, which take precedence
over this generic variable.

client_secure_invocation_policy:supports

(Deprecated in favor of
policies:iiop_tls:client_secure_invocation_policy:supports and
policies: https:client_secure_invocation_policy: supports.)

A generic variable that sets this policy both foriiop_tIs and https. The
recommended alternative is to use the variables prefixed by
policies:iiop_tls and policies:https instead, which take precedence
over this generic variable.

307

APPENDIX A | Artix Security

max_chain_length_policy

(Deprecated in favor of pol i ci es:iiop_tls:max_chai n_I ength_policy and
pol i ci es: htt ps: max_chai n_| engt h_pol i cy.)

max_chai n_| engt h_pol i cy specifies the maximum certificate chain length
that an ORB will accept. The policy can also be set programmatically using
the I T_TLS API : : MaxChai nLengt hPol i cy CORBA policy. Default is 2.

Note: The nmax_chain_l engt h_pol i cy is not currently supported on the
0S/390 platform.

mechanism_policy:ciphersuites

308

(Deprecated in favor of

policies:iiop_tls:nechani smpolicy:ciphersuites and

pol i ci es: htt ps: mechani sm pol i cy: ci phersui tes.)

mechani sm pol i cy: ci pher sui t es specifies a list of cipher suites for the
default mechanism policy. One or more of the cipher suites shown in
Table 10 can be specified in this list.

Table 10: Mechanism Policy Cipher Suites

Null Encryption, Integrity Standard Ciphers
and Authentication Ciphers
RSA WTH NULL_MD% RSA EXPCRT_W TH RCA_40_M»%
RSA WTH NULL_SHA RSA WTH R4_128_M®%

RSA WTH RC4_128_SHA

RSA EXPCRT_W TH_DESA0_CBC_SHA

RSA W TH_DES_CBC SHA

RSA W TH 3DES EDE CBC SHA

policies

mechanism_policy:protocol_version

session_caching_policy

(Deprecated in favor of
policies:iiop_tls:nmechani smpolicy: protocol _version and
pol i ci es: ht t ps: mechani sm pol i cy: prot ocol _ver si on.)

mechani sm pol i cy: pr ot ocol _ver si on specifies the protocol version used by
a security capsule (ORB instance). It can be set to SSL_V3 or TLS V1. For
example:

pol i ci es: nechani sm pol i cy: prot ocol _versi on="TLS V1"

(Java only) sessi on_cachi ng_pol i cy specifies whether a Java ORB caches
the session information for secure associations when acting in a client role,
a server role, or both. The purpose of session caching is to enable closed
connections to be re-established quickly. The following values are
supported:

CACHE_NONE(default)

CACHE_CLI ENT

CACHE_SERVER

CACHE_SERVER AND CLI ENT

The policy can also be set programmatically using the
I T_TLS API : : Sessi onCachi ngPol i cy CORBA policy.

309

APPENDIX A | Artix Security

session_caching

(C++ only) sessi on_cachi ng specifies whether a C++ ORB caches the
session information for secure associations when acting in a client role, a
server role, or both. The purpose of session caching is to enable closed
connections to be re-established quickly. The following values are
supported:

CACHE_NONE(default)

CACHE_CLI ENT

CACHE_SERVER

CACHE_SERVER AND CLI ENT

The policy can also be set programmatically using the
I T_TLS API :: Sessi onCachi ngPol i cy CORBA policy.

target_secure_invocation_policy:requires

(Deprecated in favor of

policies:iiop_tls:target_secure_ invocation_policy:requires and
pol i ci es: https:target _secure_invocation_policy:requires.)

target _secure_i nvocation_pol i cy: requires specifies the minimum level
of security required by a server. The value of this variable is specified as a
list of association options.

Note: In accordance with CORBA security, this policy cannot be
downgraded programmatically by the application.

target_secure_invocation_policy:supports

310

(Deprecated in favor of
policies:iiop_tls:target_secure_invocation_policy:supports and
policies: https:target_secure_invocation_policy: supports.)

suppor t s specifies the maximum level of security supported by a server. The
value of this variable is specified as a list of association options. This policy
can be upgraded programmatically using either the QCP or the

Est abl i shTrust policies.

trusted_ca_list_policy

policies

(Deprecated in favor of policies:iiop_tls:trusted ca list_policy and
policies:https:trusted _ca |ist_policy.)

trusted_ca_list_policy specifies a list of filenames, each of which
contains a concatenated list of CA certificates in PEM format. The aggregate
of the CAs in all of the listed files is the set of trusted CAs.

For example, you might specify two files containing CA lists as follows:

policies:trusted ca list _policy =
["install _dir/asp/version/etc/tls/x509/calca_listl. pent,
"install_dir/asp/version/etc/tls/x509/cal/ca_list_extra.penm];

The purpose of having more than one file containing a CA list is for
administrative convenience. It enables you to group CAs into different lists
and to select a particular set of CAs for a security domain by choosing the
appropriate CA lists.

311

APPENDIX A | Artix Security

policies:asp

enable_authorization

enable_sso

312

The pol i ci es: asp hamespace contains the following variables:
® enable_authorization
® enable_sso

A boolean variable that specifies whether Artix should enable authorization
using the Artix Security Framework. Default is f al se.

A boolean variable that specifies whether Artix enables single-sign on (SSO)
on the server-side. Default is f al se.

policies:csi

policies:csi

The pol i ci es: csi namespace includes variables that specify settings for
Common Secure Interoperability version 2 (CSlv2):

d attribute_service: backward_t rust: enabl ed

d attribute_service:client_supports

® attribute_service:target_supports

d aut h_over _transport: aut henti cati on_service
d aut h_over _transport:client_supports

® auth_over_transport:server_donai n_name

d aut h_over _transport:target_requires

® auth_over_transport:target_supports

attribute_service:backward_trust:enabled

(Obsolete)

attribute_service:client_supports

attribute_service: client_supports is a client-side policy that specifies
the association options supported by the CSIv2 attribute service (principal
propagation). The only assocation option that can be specified is

I dentityAssertion. This policy is normally specified in an intermediate
server so that it propagates CSIv2 identity tokens to a target server. For
example:

policies:csi:attribute_service:client_supports =
["ldentityAssertion"];

313

APPENDIX A | Artix Security

attribute_service:target_supports

attribute_service:target _supports is a server-side policy that specifies
the association options supported by the CSIv2 attribute service (principal
propagation). The only assocation option that can be specified is

I dentityAssertion. For example:

policies:csi:attribute _service:target_supports =
["lIdentityAssertion"];

auth_over_transport:authentication_service

(Java CSI plug-in only) The name of a Java class that implements the

I T_CSl:: Aut henti cat eGSSUPOr edent i al s IDL interface. The authentication
service is implemented as a callback object that plugs into the CSIv2
framework on the server side. By replacing this class with a custom
implementation, you could potentially implement a new security technology
domain for CSIv2.

By default, if no value for this variable is specified, the Java CSI plug-in uses
a default authentication object that always returns f al se when the
aut hent i cat e() operation is called.

auth_over_transport:client_supports

314

auth_over_transport:client_supports is a client-side policy that specifies
the association options supported by CSlv2 authorization over transport.
The only assocation option that can be specified is

Establ i shTrustIndient. For example:

policies:csi:auth_over_transport:client_supports =
["EstablishTrustinQient"];

policies:csi

auth_over_transport:server_domain_name

The iSF security domain (CSIv2 authentication domain) to which this server
application belongs. The iSF security domains are administered within an
overall security technology domain.

The value of the server _domai n_nane variable will be embedded in the IORs
generated by the server. A CSlv2 client about to open a connection to this
server would check that the domain name in its own CSIv2 credentials
matches the domain name embedded in the IOR.

auth_over_transport:target_requires

auth_over_transport:target_requires is a server-side policy that
specifies the association options required for CSlv2 authorization over
transport. The only assocation option that can be specified is

Establ i shTrustInd ient. For example:

policies:csi:auth_over_transport:target_requires =
["EstablishTrustindient"];

auth_over_transport:target _supports

auth_over_transport:target_supports is a server-side policy that
specifies the association options supported by CSIv2 authorization over
transport. The only assocation option that can be specified is

Establ i shTrustIndient. For example:

policies:csi:auth_over_transport:target_supports =
["EstablishTrustindient"];

315

APPENDIX A | Artix Security

policies:iiop_tls

316

The policies:iiop_tls namespace contains variables used to set
IIOP-related policies for a secure environment. These setting affect the
i iop_tls plugin. It contains the following variables:

d al ow_unaut henti cated_clients_policy

d buf f er _si zes_pol i cy: defaul t _buf fer_si ze

® buffer_sizes_policy: max_buffer_size

d certificate_constraints_policy

d client_| oad_bal anci ng_nmechani sm

® client_secure_invocation_policy:requires

d client_secure_invocation_policy:supports

d client_version_policy

® connection_attenpts

d connection_retry_del ay

® nax_chain_l ength_policy

® nechani smpol i cy: ci phersuites

d mechani sm pol i cy: prot ocol _versi on

d server_address_node_pol i cy: | ocal _donai n

® server_address_node_policy: | ocal _host name

d server_address_node_pol i cy: port _range

d server_address_node_pol i cy: publ i sh_host nane
® server_version_policy

d sessi on_cachi ng_pol i cy

d target _secure_i nvocation_policy:requires

® target_secure_invocation_policy: supports

d tcp_options_policy: no_del ay

d tcp_options_policy:recv_buffer_size

® tcp_options_policy:send_buffer_size

® trusted ca list_policy

policies:iiop_tls

allow_unauthenticated_clients_policy

A boolean variable that specifies whether a server will allow a client to
establish a secure connection without sending a certificate. Default is f al se.

This configuration variable is applicable only in the special case where the
target secure invocation policy is set to require NoPr ot ect i on (a semi-secure
server).

buffer_sizes policy:default_buffer_size

When this policy is set, the iiop_tls plug-in reads this policy’s value
instead of the pol i ci es:iiop: buffer_sizes policy:default_buffer_size
policy’s value.

buf fer_si zes_pol i cy: defaul t _buf f er _si ze specifies, in bytes, the initial
size of the buffers allocated by IIOP. Defaults to 16000. This value must be
greater than 80 bytes, and must be evenly divisible by 8.

buffer_sizes_policy:max_buffer_size

When this policy is set, the iiop_tls plug-in reads this policy’s value
instead of the policies:iiop: buffer_sizes policy: max_buffer_size
policy’s value.

buf f er_si zes_pol i cy: max_buf f er _si ze specifies the maximum buffer size
permitted by IIOP, in kilobytes. Defaults to 512. A value of -1 indicates
unlimited size. If not unlimited, this value must be greater than 80.

certificate_constraints_policy

A list of constraints applied to peer certificates—see the discussion of
certificate constraints in the Artix security guide for the syntax of the pattern
constraint language. If a peer certificate fails to match any of the
constraints, the certificate validation step will fail.

The policy can also be set programmatically using the
I T_TLS API:: Cert Const rai ntsPol i cy CORBA policy. Default is no
constraints.

317

APPENDIX A | Artix Security

client_load_balancing_mechanism

Specifies the load balancing mechanism for the client of a security service
cluster (see also pl ugi ns: gsp: use_cl i ent _| oad_bal anci ng). In this
context, a client can also be an Artix server. This policy only affects
connections made using IORs that contain multiple addresses. The
iiop_tls plug-in load balances over the addresses embedded in the IOR.
The following mechanisms are supported:
® random—choose one of the addresses embedded in the IOR at random.
® sequential —choose the first address embedded in the IOR, moving
on to the next address in the list only if the previous address could not
be reached.

client_secure_invocation_policy:requires

Specifies the minimum level of security required by a client. The value of
this variable is specified as a list of association options—see the Artix
Security Guide for more details about association options.

In accordance with CORBA security, this policy cannot be downgraded
programmatically by the application.

client_secure_invocation_policy:supports

client_version_policy

318

Specifies the initial maximum level of security supported by a client. The
value of this variable is specified as a list of association options—see the
Artix Security Guide for more details about association options.

This policy can be upgraded programmatically using either the QCP or the
Est abl i shTrust policies.

client _versi on_pol i cy specifies the highest [IOP version used by clients. A
client uses the version of 1IOP specified by this variable, or the version
specified in the IOR profile, whichever is lower. Valid values for this variable
are: 1.0, 1.1, and 1. 2.

connection_attempts

connection_retry_delay

max_chain_length_policy

policies:iiop_tls

For example, the following file-based configuration entry sets the server IIOP
version to 1.1.

policies:iiop:server_version_policy="1.1";
The following i t adm n command set this variable:

itadmn variable nodify -type string -value "1.1"
policies:iiop:server_version_policy

connect i on_at t enpt s specifies the number of connection attempts used
when creating a connected socket using a Java application. Defaults to 5.

connection_retry_del ay specifies the delay, in seconds, between
connection attempts when using a Java application. Defaults to 2.

This policy overides pol i ci es: max_chai n_| engt h_pol i cy for the iiop_tls
plugin.
The maximum certificate chain length that an ORB will accept.

The policy can also be set programmatically using the
| T_TLS API : : MaxChai nLengt hPol i cy CORBA policy. Default is 2.

Note: The max_chai n_| engt h_pol i cy is not currently supported on the
0S/390 platform.

mechanism_policy:ciphersuites

This policy overides pol i ci es: mechani sm pol i cy: ci pher sui t es for the
iiop_tls plugin.

319

APPENDIX A | Artix Security

Specifies a list of cipher suites for the default mechanism policy. One or
more of the following cipher suites can be specified in this list:

Table 11: Mechanism Policy Cipher Suites

Null Encryption, Integrity Standard Ciphers
and Authentication Ciphers
RSA W TH NULL_MD%6 RSA_EXPCRT_W TH RC4_40_M*%
RSA WTH NULL_SHA RSA WTH RC4_128 MX%

RSA WTH RC4_128_SHA

RSA_EXPCRT W TH_DESA0_CBC SHA

RSA W TH_DES_CBC SHA

RSA W TH_3DES EDE CBC SHA

mechanism_policy:protocol_version

320

This policy overides pol i ci es: mechani sm pol i cy: pr ot ocol _ver si on for the
iiop_tls plugin.

Specifies the protocol version used by a security capsule (ORB instance).
Can be set to one of the following values:

TLS V1

SSL_V3

SSL_\2v3

The SSL_V2V3 value is a special setting that facilitates interoperability with
an Artix application deployed on the 0S/390 platform. Artix security on the
0S/390 platform is based on IBM’s System/SSL toolkit, which implements
SSL version 3, but does so by using SSL version 2 hellos as part of the
handshake. This form of handshake causes interoperability problems,
because applications on other platforms identify the handshake as an SSL
version 2 handshake. The misidentification of the SSL protocol version can
be avoided by setting the protocol version to be SSL_V2V3 in the non-0S/390
application (this bug also affects some old versions of Microsoft Internet
Explorer).

For example:

pol i ci es: mechani sm pol i cy: prot ocol _version = "SSL_V2V3";

policies:iiop_tls

server_address_mode_policy:local_domain
(Java only) When this policy is set, the i iop_tIs plug-in reads this policy’s

value instead of the
policies:iiop:server_address_node policy: | ocal _domai n policy’s value.

321

APPENDIX A | Artix Security

server_address_mode_policy:local_hostname

(Java only) When this policy is set, the i iop_tIs plug-in reads this policy’s
value instead of the

pol i ci es:iiop:server_address_nmode_pol i cy: | ocal _host nane policy’s
value.

server _address_node_pol i cy: | ocal _host nane specifies the hostname
advertised by the locator daemon, and listened on by server-side 110OP.

Some machines have multiple hostnames or IP addresses (for example,
those using multiple DNS aliases or multiple network cards). These
machines are often termed multi-homed hosts. The | ocal _host nare
variable supports these type of machines by enabling you to explicitly
specify the host that servers listen on and publish in their IORs.

For example, if you have a machine with two network addresses
(207. 45. 52. 34 and 207. 45. 52. 35), you can explicitly set this variable to
either address:

policies:iiop:server_address_node policy: | ocal _host nane =
"207. 45. 52. 34";

By default, the I ocal _host nane variable is unspecified. Servers use the
default hostname configured for the machine with the Orbix configuration
tool.

server_address_mode_policy:port_range

322

(Java only) When this policy is set, the i iop_tIs plug-in reads this policy’s
value instead of the

pol i ci es:iiop:server_address_mode_pol i cy: port_range policy’s value.
server _addr ess_node_pol i cy: port _range specifies the range of ports that
a server uses when there is no well-known addressing policy specified for
the port.

policies:iiop_tls

server_address_mode_policy:publish_hostname

server_version_policy

session_caching_policy

When this policy is set, the iiop_t1s plug-in reads this policy’s value
instead of the

policies:iiop:server_address_mode_pol i cy: publ i sh_host name policy’s
value.

server _addr ess_mode- pol i cy: publ i sh_host name specifes whether [10P
exports hostnames or IP addresses in published profiles. Defaults to f al se
(exports IP addresses, and does not export hostnames). To use hostnames
in object references, set this variable to true, as in the following file-based
configuration entry:

pol i ci es:iiop: server_address_node_pol i cy: publ i sh_host name=t r ue
The following i t admi n command is equivalent:

itadmn variable create -type bool -value true
policies:iiop:server_address_node_pol i cy: publ i sh_host nane

When this policy is set, the iiop_tls plug-in reads this policy’s value
instead of the pol i ci es: i i op: server_version_pol i cy policy’s value.
server _ver si on_pol i cy specifies the GIOP version published in [IOP

profiles. This variable takes a value of either 1. 1 or 1. 2. Orbix servers do not
publish [IOP 1.0 profiles. The default value is 1. 2.

This policy overides pol i ci es: sessi on_cachi ng_pol i cy(Java) and
pol i ci es: sessi on_cachi ng(C++) for the i i op_tls plugin.

323

APPENDIX A | Artix Security

target_secure_invocation_policy:requires

This policy overides
policies:target_secure_invocation_policy:requires fortheiiop tls
plugin.

Specifies the minimum level of security required by a server. The value of
this variable is specified as a list of association options—see the Artix
Security Guide for more details about association options.

In accordance with CORBA security, this policy cannot be downgraded
programmatically by the application.

target_secure_invocation_policy:supports

This policy overides

pol i ci es:target_secure_invocation_policy:supports fortheiiop tls
plugin.

Specifies the maximum level of security supported by a server. The value of
this variable is specified as a list of association options—see the Artix
Security Guide for more details about association options.

This policy can be upgraded programmatically using either the QP or the
Est abl i shTrust policies.

tcp_options_policy:no_delay

324

When this policy is set, the iiop_tls plug-in reads this policy’s value
instead of the policies:iiop:tcp_options_policy:no_del ay policy’s
value.

tcp_options_pol i cy: no_del ay specifies whether the TCP_NCDELAY option
should be set on connections. Defaults to f al se.

policies:iiop_tls

tcp_options_policy:recv_buffer_size

When this policy is set, the iiop_t1s plug-in reads this policy’s value
instead of the policies:iiop:tcp_options_policy:recv_buffer_size
policy’s value.

tcp_options_pol i cy: recv_buf f er _si ze specifies the size of the TCP
receive buffer. This variable can only be set to 0, which coresponds to using
the default size defined by the operating system.

tcp_options_policy:send_buffer_size

trusted_ca_list_policy

When this policy is set, the iiop_tls plug-in reads this policy’s value
instead of the policies:iiop:tcp_options_policy:send buffer_size
policy’s value.

tcp_options_policy: send_buf fer_si ze specifies the size of the TCP send
buffer. This variable can only be set to 0, which coresponds to using the
default size defined by the operating system.

This policy overides the pol i ci es: trusted_ca_list_policy for the
iiop_tls plugin.

Contains a list of filenames (or a single filename), each of which contains a
concatenated list of CA certificates in PEM format. The aggregate of the CAs
in all of the listed files is the set of trusted CAs.

For example, you might specify two files containing CA lists as follows:

policies:trusted_ca list_policy =
["ASPInstallDirl asp/ 6. 0/ et c/ t1 s/ x509/ ca/ ca_l i st 1. pent,
"ASPInstallDir/ asp/ 6. 0/ etc/ t1 s/ x509/ ca/ ca_l i st_extra. pemi];
The purpose of having more than one file containing a CA list is for
administrative convenience. It enables you to group CAs into different lists
and to select a particular set of CAs for a security domain by choosing the
appropriate CA lists.

325

APPENDIX A | Artix Security

principal_sponsor

The pri nci pal _sponsor namespace stores configuration information to be
used when obtaining credentials. the CORBA binding provides an
implementation of a principal sponsor that creates credentials for
applications automatically.

Use of the Pri nci pal Sponsor is disabled by default and can only be enabled
through configuration.

The Pri nci pal Sponsor represents an entry point into the secure system. It
must be activated and authenticate the user, before any application-specific
logic executes. This allows unmodified, security-unaware applications to
have Oredenti al s established transparently, prior to making invocations.

In this section The following variables are in this namespace:
d use_pri nci pal _sponsor
® auth_nethod_id
® auth_nethod_data
d cal | back_handl er: A assNane

® login_ attenpts

use_principal_sponsor

use_princi pal _sponsor specifies whether an attempt is made to obtain
credentials automatically. Defaults to f al se. If set to t rue, the following
princi pal _sponsor variables must contain data in order for anything to
actually happen.

326

auth_method_id

auth_method_data

principal_sponsor

aut h_rret hod_i d specifies the authentication method to be used. The
following authentication methods are available:

pkcs12 file
pkcs1l

security_l abel

The authentication method uses a PKCS#12 file.

Java only. The authentication data is provided by a
smart card.

Windows and Schannel only. The authentication
data is specified by supplying the common name
(CN) from an application certificate’s subject DN.

For example, you can select the pkcs12_fil e authentication method as

follows:

princi pal _sponsor: auth_nethod_id = "pkcsl12 file";

aut h_rret hod_dat a is a string array containing information to be interpreted
by the authentication method represented by the aut h_net hod_i d.

For the pkcs12_fi | e authentication method, the following authentication
data can be provided in aut h_net hod_dat a:

filename

passwor d

password file

A PKCS#12 file that contains a certificate chain and
private key—required.

A password for the private key—optional.

It is bad practice to supply the password from
configuration for deployed systems. If the password is not
supplied, the user is prompted for it.

The name of a file containing the password for the private
key—optional.

This option is not recommended for deployed systems.

327

APPENDIX A | Artix Security

328

For the pkcs11 (smart card) authentication method, the following
authentication data can be provided in aut h_ret hod_dat a:

provi der A name that identifies the underlying PKCS #11
toolkit used by Orbix to communicate with the smart
card.

The toolkit currently used by Orbix has the provider
name dkck132. dl | (from Baltimore).
sl ot The number of a particular slot on the smart card
(for example, 0) containing the user’s credentials.
pin A PIN to gain access to the smart card—optional.

It is bad practice to supply the PIN from
configuration for deployed systems. If the PIN is not
supplied, the user is prompted for it.

For the security_| abel authentication method on Windows, the following
authentication data can be provided in aut h_ret hod_dat a:

| abel (Windows and Schannel only.) The common name
(CN) from an application certificate’s subject DN

For example, to configure an application on Windows to use a certificate,
bob. p12, whose private key is encrypted with the bobpass password, set the
aut h_net hod_dat a as follows:

princi pal _sponsor: aut h_met hod_data =
["fil ename=c: \ user s\ bob\ bob. p12", " passwor d=bobpass"];

The following points apply to Java implementations:

® |f the file specified by fi | ename= is not found, it is searched for on the
classpath.

® The file specified by fi | ename= can be supplied with a URL instead of
an absolute file location.

® The mechanism for prompting for the password if the password is
supplied through passwor d= can be replaced with a custom
mechanism, as demonstrated by the I ogi n demo.

principal_sponsor

® There are two extra configuration variables available as part of the
princi pal _sponsor namespace, namely
princi pal _sponsor: cal | back_handl er and
princi pal _sponsor: | ogi n_attenpts. These are described below.

® These Java-specific features are available subject to change in future
releases; any changes that can arise probably come from customer
feedback on this area.

callback_handler:ClassName

login_attempts

cal | back_handl er : A assNane specifies the class name of an interface that
implements the interface comi ona. corba. t | s. aut h. Cal | backHandl er . This
variable is only used for Java clients.

| ogi n_at t enpt s specifies how many times a user is prompted for
authentication data (usually a password). It applies for both internal and
custom Cal | backHandl ers; if a Cal | backHandl er is supplied, it is invoked
upon up to I ogi n_at t enpt s times as long as the Pri nci pal Aut henti cat or
returns SecAut hFai | ure. This variable is only used by Java clients.

329

APPENDIX A | Artix Security

principal_sponsor:csi

use_existing_credentials

use_principal_sponsor

330

The princi pal _sponsor : csi hamespace stores configuration information to
be used when obtaining CSI (Common Secure Interoperability) credentials.
It includes the following:

d use_exi sting_credential s

d use_pri nci pal _sponsor
® auth_nethod_data

® auth_nethod_id

A boolean value that specifies whether ORBs that share credentials can also
share CSI credentials. If true, any CSI credentials loaded by one
credential-sharing ORB can be used by other credential-sharing ORBs
loaded after it; if f al se, CSI credentials are not shared.

This variable has no effect, unless the

pl ugi ns: security:share_credential s_across_orbs variable is also tr ue.

Default is f al se.

use_pri nci pal _sponsor is a boolean value that switches the CSI principal
sponsor on or off.

If set to t rue, the CSI principal sponsor is enabled; if f al se, the CSI
principal sponsor is disabled and the remaining pri nci pal _sponsor: csi
variables are ignored. Defaults to f al se.

auth_method_data

principal_sponsor:csi

aut h_ret hod_dat a is a string array containing information to be interpreted
by the authentication method represented by the aut h_net hod_i d.

For the GSSUPMech authentication method, the following authentication
data can be provided in aut h_net hod_dat a:

user nane

passwor d

domai n

The username for CSIv2 authorization. This is optional.
Authentication of CSIv2 usernames and passwords is
performed on the server side. The administration of
usernames depends on the particular security mechanism
that is plugged into the server side see

aut h_over_transport:authenti cation_service.

The password associated with username. This is optional. It is
bad practice to supply the password from configuration for
deployed systems. If the password is not supplied, the user is
prompted for it.

The CSIv2 authentication domain in which the
username/password pair is authenticated.

When the client is about to open a new connection, this
domain name is compared with the domain name embedded
in the relevant IOR (see

pol i ci es: csi:auth_over _transport:server_domai n_nane).
The domain names must match.

Note: If domai n is an empty string, it matches any target
domain. That is, an empty domain string is equivalent to a
wildcard.

If any of the preceding data are omitted, the user is prompted to enter
authentication data when the application starts up.

For example, to log on to a CSIv2 application as the admi ni strat or user in
the US- Sant ad ar a domain:

princi pal _sponsor: csi: aut h_met hod_data =
["username=adm ni strator", "domai n=US-Santad ara"];

331

APPENDIX A | Artix Security

auth_method_id

332

When the application is started, the user is prompted for the administrator
password.

Note: It is currently not possible to customize the login prompt associated
with the CSIv2 principal sponsor. As an alternative, you could implement
your own login GUI by programming and pass the user input directly to the
principal authenticator.

aut h_met hod_i d specifies a string that selects the authentication method to
be used by the CSI application. The following authentication method is
available:

GSSUPMech The Generic Security Service Username/Password
(GSSUP) mechanism.

For example, you can select the GSSUPMech authentication method as
follows:

princi pal _sponsor: csi:auth_met hod_id = " GSSUPMech”;

In this appendix

APPENDIX B

ISF Configuration

This appendix provides details of how to configure the Artix
security server.

This appendix contains the following sections:

Properties File Syntax page 334
iSF Properties File page 335
log4j Properties File page 356

333

CHAPTER B | iSF Configuration

Properties File Syntax

Overview

Property definitions

Specifying full pathnames

Specifying relative pathnames

334

The Artix security service uses standard Java property files for its
configuration. Some aspects of the Java properties file syntax are
summarized here for your convenience.

A property is defined with the following syntax:
<Pr oper t yName>=<Pr opert yVal ue>

The <PropertyName> is a compound identifier, with each component
delimited by the . (period) character. For example,

i s2.current. server.id. The <PropertyValue> is an arbitrary string,
including all of the characters up to the end of the line (embedded spaces
are allowed).

When setting a property equal to a filename, you normally specify a full
pathname, as follows:

UNIX
/ horre/ dat a/ securi tyl nfo. xm

Windows
D./ional/securitylnfo.xm
or, if using the backslash as a delimiter, it must be escaped as follows:

D\\iona\\securityl nfo. xn

If you specify a relative pathname when setting a property, the root directory
for this path must be added to the Artix security service's classpath. For
example, if you specify a relative pathname as follows:

UNIX

securi tyl nfo. xm

The security service's classpath must include the file's parent directory:

CLASSPATH = / hone/ dat a/ : <rest_of_classpath>

iSF Properties File

iISF Properties File

Overview

File location

An iSF properties file is used to store the properties that configure a specific
Artix security service instance. Generally, every Artix security service
instance should have its own iSF properties file. This section provides
descriptions of all the properties that can be specified in an iSF properties
file.

The default location of the iSF properties file is the following:
ArtixlnstallDirl arti x/ 2. 0/ bi n/i s2. properties

In general, the iSF properties file location is specified in the Artix
configuration by setting the i s2. properti es property in the
pl ugi ns: j ava_ser ver: syst em properti es property list.

For example, on UNIX the security server's property list is normally
initialized in the i ona_ser vi ces. securi ty configuration scope as follows:

Artix configuration file
i ona_services {
security {
pl ugi ns: j ava_server: system properties =
["org. omg. CCRBA ORBO ass=com i ona. corba. art. arti npl . ORBI npl ",
"or g. ong. CORBA. CRBSI ngl et ond ass=com i ona. corba. art.artinpl . O
RBSi ngl et on",
"i s2. properti es=ArtixInstallDirl arti x/ 2. 0/ bi n/is2. properties"];

}

335

CHAPTER B | iSF Configuration

List of properties The following properties can be specified in the iSF properties file:

com.iona.isp.adapters

Specifies the iSF adapter type to be loaded by the Artix security service at
runtime. Choosing a particular adapter type is equivalent to choosing an
Artix security domain. Currently, you can specify one of the following

adapter types:

d file

d LDAP
Si t eM nder
kr b5

For example, you can select the LDAP adapter as follows:

com i ona. i sp. adapt er s=LDAP

Note: The file adapter is intended for demonstration purposes only. Use
of the file adapter is not supported in production systems.

com.iona.isp.adapter.file.class

Specifies the Java class that implements the file adapter.

For example, the default implementation of the file adapter provided with
Artix is selected as follows:

comiona.isp.adapter.file.class=comiona.security.is2adapter.file.Fi|eAuthAdapter

com.iona.isp.adapter.file.param.filename

Specifies the name and location of a file that is used by the file adapter to
store user authentication data.

For example, you can specify the file, C. /i s2_confi g/ security_info.xni,
as follows:

comiona.isp.adapter.file.paramfilename=C /is2_ config/security_info.xn

336

iSF Properties File

com.iona.isp.adapter.file.params

Obsolete. This property was needed by earlier versions of the Artix security
service, but is now ignored.

com.iona.isp.adapter.LDAP.class

Specifies the Java class that implements the LDAP adapter.

For example, the default implementation of the LDAP adapter provided with
Artix is selected as follows:

com i ona. i sp. adapt er. LDAP. cl ass=com i ona. securi ty. i s2adapt er . | dap. LdapAdapt er

com.iona.isp.adapter.LDAP.param.CacheSize

Specifies the maximum LDAP cache size in units of bytes. This maximum
applies to the total LDAP cache size, including all LDAP connections
opened by this Artix security service instance.

Internally, the Artix security service uses a third-party toolkit (currently the
iPlanet SDK) to communicate with an LDAP server. The cache referred to
here is one that is maintained by the LDAP third-party toolkit. Data retrieved
from the LDAP server is temporarily stored in the cache in order to optimize
subsequent queries.

For example, you can specify a cache size of 1000 as follows:

com i ona. i sp. adapt er. LDAP. par am CacheS ze=1000

com.iona.isp.adapter.LDAP.param.CacheTimeToLive

Specifies the LDAP cache time to-live in units of seconds. For example, you
can specify a cache time to-live of one minute as follows:

com i ona. i sp. adapt er. LDAP. par am CacheTi meToLi ve=60

337

CHAPTER B | iSF Configuration

com.iona.isp.adapter.LDAP.param.GroupBaseDN

Specifies the base DN of the tree in the LDAP directory that stores user
groups.

For example, you could use the RDN sequence, DC=i ona, DC=com as a base
DN by setting this property as follows:

com i ona. i sp. adapt er. LDAP. par am G oupBaseDN=dc=i ona, dc=com

Note: The order of the RDNs is significant. The order should be based on
the LDAP schema configuration.

com.iona.isp.adapter.LDAP.param.GroupNameAttr

Specifies the attribute type whose corresponding attribute value gives the
name of the user group. The default is CN.

For example, you can use the common name, QN, attribute type to store the
user group’s name by setting this property as follows:

com i ona. i sp. adapt er. LDAP. par am G oupNaneAt t r=cn

com.iona.isp.adapter.LDAP.param.GroupObjectClass

Specifies the object class that applies to user group entries in the LDAP
directory structure. An object class defines the required and allowed
attributes of an entry. The default is gr oupCf Uni queNarres.

For example, to specify that all user group entries belong to the
gr oupCf Uni queNarres object class:

com i ona. i sp. adapt er . LDAP. par am G oupChj ect A ass=gr oupof uni quenanes

com.iona.isp.adapter.LDAP.param.GroupSearchScope
Specifies the group search scope. The search scope is the starting point of a

search and the depth from the base DN to which the search should occur.
This property can be set to one of the following values:

338

iSF Properties File

® BASE—Search a single entry (the base object).
® ONe—Search all entries immediately below the base DN.
® suB—Search all entries from a whole subtree of entries.

Default is SuUB.

For example:

com i ona. i sp. adapt er. LDAP. par am G oupSear chScope=SUB

com.iona.isp.adapter.LDAP.param.host. <c/uster_index>

For the <cluster_index> LDAP server replica, specifies the IP hostname
where the LDAP server is running. The <cluster_index> is 1 for the primary
server, 2 for the first failover replica, and so on.

For example, you could specify that the primary LDAP server is running on
host 10. 81. 1. 100 as follows:

com i ona. i sp. adapt er. LDAP. par am host . 1=10. 81. 1. 100

com.iona.isp.adapter.LDAP.param.MaxConnectionPoolSize

Specifies the maximum LDAP connection pool size for the Artix security
service (a strictly positive integer). The maximum connection pool size is the
maximum number of LDAP connections that would be opened and cached
by the Artix security service. The default is 1.

For example, to limit the Artix security service to open a maximum of 50
LDAP connections at a time:

com i ona. i sp. adapt er. LDAP. par am MaxConnect i onPool Si ze=50

com.iona.isp.adapter.LDAP.param.MemberDNAttr

Specifies which LDAP attribute is used to retrieve group members. The
LDAP adapter uses the Menber DNAt t r property to construct a query to find
out which groups a user belongs to.

339

CHAPTER B | iSF Configuration

The list of the user's groups is needed to determine the complete set of roles
assigned to the user. The LDAP adapter determines the complete set of roles
assigned to a user as follows:

1. The adapter retrieves the roles assigned directly to the user.

2. The adapter finds out which groups the user belongs to, and retrieves
all the roles assigned to those groups.

Default is uni queMenber .
For example, you can select the uni queMenber attribute as follows:

com i ona. i sp. adapt er. LDAP. par am Menber DNAL t r =uni queMenber

com.iona.isp.adapter.LDAP.param.MemberFilter

Specifies how to search for members in a group. The value specified for this
property must be an LDAP search filter (can be a custom filter).

com.iona.isp.adapter.LDAP.param.MinConnectionPoolSize

Specifies the minimum LDAP connection pool size for the Artix security
service. The minimum connection pool size specifies the number of LDAP
connections that are opened during initialization of the Artix security service.
The default is 1.

For example, to specify a minimum of 10 LDAP connections at a time:

com i ona. i sp. adapt er. LDAP. par am M nConnect i onPool Si ze=10

com.iona.isp.adapter.LDAP.param.port.<c/uster_index>

340

For the <cl ust er _i ndex> LDAP server replica, specifies the IP port where
the LDAP server is listening. The <cl ust er _i ndex> is 1 for the primary
server, 2 for the first failover replica, and so on. The default is 389.

For example, you could specify that the primary LDAP server is listening on
port 636 as follows:

com i ona. i sp. adapt er. LDAP. par am port . 1=636

iSF Properties File

com.iona.isp.adapter.LDAP.param.PrincipalUserDN.<c/uster_index>

For the <cl ust er _i ndex> LDAP server replica, specifies the username that
is used to login to the LDAP server (in distinguished name format). This
property need only be set if the LDAP server is configured to require
username/password authentication.

No default.

com.iona.isp.adapter.LDAP.param.PrincipalUserPassword. <c/uster_index>

For the <cl ust er _i ndex> LDAP server replica, specifies the password that is
used to login to the LDAP server. This property need only be set if the LDAP
server is configured to require username/password authentication.

No default.

WARNING: Because the password is stored in plaintext, you must ensure
that the i s2. properti es file is readable and writable only by users with
administrator privileges.

com.iona.isp.adapter.LDAP.param.RetrieveAuthlinfo

Specifies whether or not the Artix security service retrieves authorization
information from the LDAP server. This property selects one of the following
alternatives:

® yes—the Artix security service retrieves authorization information from
the LDAP server.

® no—the Artix security service retrieves authorization information from
the iS2 authorization manager..

Default is no.

For example, to use the LDAP server's authorization information:

com i ona. i sp. adapt er. LDAP. par am Ret ri eveAut hl nf o=yes

341

CHAPTER B | iSF Configuration

com.iona.isp.adapter.LDAP.param.RoleNameAttr

Specifies the attribute type that the LDAP server uses to store the role name.
The default is ON.

For example, you can specify the common name, QN, attribute type as
follows:

com i ona. i sp. adapt er. LDAP. par am Rol eNaneAt t r =cn

com.iona.isp.adapter.LDAP.param.SSLCACertDir. <c/uster index>

For the <cl ust er _i ndex> LDAP server replica, specifies the directory name
for trusted CA certificates. All certificate files in this directory are loaded and
set as trusted CA certificates, for the purpose of opening an SSL connection
to the LDAP server. The CA certificates can either be in DER-encoded X.509
format or in PEM-encoded X.509 format.

No default.

For example, to specify that the primary LDAP server uses the
d:/certs/test directory to store CA certificates:

comiona.isp. adapt er. LDAP. param SSLCACert D r. 1=d: /cert s/t est

com.iona.isp.adapter.LDAP.param.SSLClientCertFile.<c/uster index>

Specifies the client certificate file that is used to identify the Artix security
service to the <cl ust er _i ndex> LDAP server replica. This property is needed
only if the LDAP server requires SSL/TLS mutual authentication. The
certificate must be in PKCS#12 format.

No default.

342

iSF Properties File

com.iona.isp.adapter.LDAP.param.SSLClientCertPassword. <c/uster_index>

Specifies the password for the client certificate that identifies the Artix
security service to the <cl ust er _i ndex> LDAP server replica. This property
is needed only if the LDAP server requires SSL/TLS mutual authentication.

WARNING: Because the password is stored in plaintext, you must ensure

that the i s2. properti es file is readable and writable only by users with
administrator privileges.

com.iona.isp.adapter.LDAP.param.SSLEnabled. <ciuster index>

Enables SSL/TLS security for the connection between the Artix security

service and the <cl ust er _i ndex> LDAP server replica. The possible values
are yes or no. Default is no.

For example, to enable an SSL/TLS connection to the primary LDAP server:

com i ona. i sp. adapt er. LDAP. par am SSLEnabl ed. 1=yes

com.iona.isp.adapter.LDAP.param.UseGroupAsRole

Specifies whether a user’s groups should be treated as roles. The following
alternatives are available:

® yes—each group name is interpreted as a role name.

® no—for each of the user's groups, retrieve all roles assigned to the

group.

This option is useful for some older versions of LDAP, such as iPlanet 4.0,
that do not have the role concept.

Default is no.

For example:

com i ona. i sp. adapt er. LDAP. par am Use@ oupAsRol e=no

343

CHAPTER B | iSF Configuration

com.iona.isp.adapter.LDAP.param.UserBaseDN

Specifies the base DN (an ordered sequence of RDNs) of the tree in the
LDAP directory that stores user object class instances.

For example, you could use the RDN sequence, DC=i ona, DC=com as a base
DN by setting this property as follows:

com i ona. i sp. adapt er . LDAP. par am User BaseDN=dc=i ona, dc=com

com.iona.isp.adapter.LDAP.param.UserCertAttrName

Specifies the attribute type that stores a user certificate. The default is
user Certificate.

For example, you can explicitly specify the attribute type for storing user
certificates to be user Certi fi cat e as follows:

com i ona. i sp. adapt er. LDAP. par am User Cert At t r Nane=user Certificate

com.iona.isp.adapter.LDAP.param.UserNameAttr=uid

Specifies the attribute type whose corresponding value uniquely identifies
the user. This is the attribute used as the user’s login ID. The default is ui d.
For example:

com i ona. i sp. adapt er. LDAP. par am User NaneAt t r =ui d

com.iona.isp.adapter.LDAP.param.UserObjectClass

Specifies the attribute type for the object class that stores users. The default
is or gani zat i onal Per son.

For example:

com i ona. i sp. adapt er . LDAP. par am User Cbj ect d ass=or gani zat i onal Per son

344

iSF Properties File

com.iona.isp.adapter.LDAP.param.UserRoleDNAttr

Specifies the attribute type that stores a user’s role DN. The default is
nsRol eDn (from the Netscape LDAP directory schema).

For example:

com i ona. i sp. adapt er. LDAP. par am User Rol eDNAt t r =nsr ol edn

com.iona.isp.adapter.LDAP.param.UserSearchFilter

Custom filter for retrieving users. In the current version, $USER NAMES is the
only replaceable parameter supported. This parameter would be replaced
during runtime by the LDAP adapter with the current User's login ID. This
property uses the standard LDAP search filter syntax.

For example:

& ui d=$USER_NAMES) (obj ect cl ass=or gani zat i onal Per son)

com.iona.isp.adapter.LDAP.param.UserSearchScope

Specifies the user search scope. This property can be set to one of the
following values:

® BASE—Search a single entry (the base object).
® O\Ne—Search all entries immediately below the base DN.
® suB—Search all entries from a whole subtree of entries.

Default is SuB.
For example:

com i ona. i sp. adapt er. LDAP. par am User Sear chScope=SUB

345

CHAPTER B | iSF Configuration

com.iona.isp.adapter.LDAP.param.version

Specifies the LDAP protocol version that the Artix security service uses to
communicate with LDAP servers. The possible values are 2 (for LDAP v2,
http://www.ietf.org/rfc/rfc1777 .txt) or 3 (for LDAP v3,
http://www.ietf.org/rfc/rfc2251.txt). The default is 3.

For example, to select the LDAP protocol version 3:

com i ona. i sp. adapt er. LDAP. par am ver si on=3

com.iona.isp.adapter.LDAP.params

Obsolete. This property was needed by earlier versions of the Artix security
service, but is now ignored.

com.iona.isp.adapter.krb5.class

Specifies the Java class that implents the Kerberos adapter.

For example, the default implementation of the Kerberos adapter provided
with Artix is selected as follows:

com i ona. i sp. adapt er. kbr 5. cl ass=com i ona. security. i s2adapt er. kbr5. | S2Ker ber osAdapt er

com.iona.isp.adapter.krb5.param.ConnectTimeout. 1

Specifies the timeout interval for the connection to the Active Directory
Server.

com.iona.isp.adapter.krb5.param.GroupBaseDN

Specifies the base DN of the tree in the LDAP directory that stores user
groups.

346

http://www.ietf.org/rfc/rfc1777.txt
http://www.ietf.org/rfc/rfc2251.txt

iSF Properties File

For example, you could use the RDN sequence, DC=i ona, DC=com as a base
DN by setting this property as follows:

com i ona. i sp. adapt er. kr b5. par am G oupBaseDN=dc=i ona, dc=com

Note: The order of the RDNs is significant. The order should be
based on the LDAP schema configuration.

com.iona.isp.adapter.krb5.param.GroupNameAttr

Specifies the attribute type whose corresponding attribute value gives the
name of the user group. The default is O\

For example, you can use the common name, CN, attribute type to store the
user group’s name by setting this property as follows:

com i ona. i sp. adapt er. kr b5. param G oupNaneAt t r =cn

com.iona.isp.adapter.krb5.param.GroupObjectClass

Specifies the object class that applies to user group entries in the LDAP
directory structure. An object class defines the required and allowed
attributes of an entry. The default is gr oupf Uni queNanres.

For example, to specify that all user group entries belong to the
groupCtf Wi t ers object class:

com i ona. i sp. adapt er. kr b5. par am G oupChj ect A ass=gr ouptf Witers

com.iona.isp.adapter.krb5.param.GroupSearchScope

Specifies the group search scope. The search scope is the starting point of a
search and the depth from the base DN to which the search should occur.
This property can be set to one of the following values:

® BASE—Search a single entry (the base object).
ONE—Search all entries immediately below the base DN.
SuB—Search all entries from a whole subtree of entries.
Default is SUB.

347

CHAPTER B | iSF Configuration

For example, to search just the entries imediately bellow the base DN you
would use the following:

com i ona. i sp. adapt er. kr b5. par am G oupSear chScope=CONE

com.iona.isp.adapter.krb5.param.host.1

Specifies the server name or IP address of the Active Directory Server used
to retrieve a user's group information.

com.iona.isp.adapter.krb5.param.java.security.auth.login.config

Specifies the JAAS login module configuration file. For example, if your
JAAS login module configuration file is j aas. conf i g, your Artix security
service configuration would contain the following:

com i ona. i sp. adapt er. kr b5. param j ava. securi ty. aut h. | ogi n. confi g=j aas. conf

com.iona.isp.adapter.krb5.param.java.security.krb5.kdc

Specifies the server name or IP address of the Kerberos KDC server.

com.iona.isp.adapter.krb5.param.java.security.krb5.realm

Specifies the Kerberos Realm name.

For example, to specify that the Kerberos Realm is i s2. i ona. comwould
require an entry similar to:

com i ona. i sp. adapt er. kr b5. param j ava. securi ty. kr b5. r eal n¥i s2. i ona. com

com.iona.isp.adapter.krb5.param.javax.security.auth.useSubjectCredsOnly

This is a JAAS login module property that must be set to f al se when using
Artix.

348

iSF Properties File

com.iona.isp.adapter.krb5.param.MaxConnectionPoolSize

Specifies the maximum LDAP connection pool size for the Kerberos adapter
(a strictly positive integer). The maximum connection pool size is the
maximum number of LDAP connections that would be opened and cached
by the Kerberos adapter. The default is 1.

For example, to limit the Kerberos adapter to open a maximum of 50 LDAP
connections at a time:

com i ona. i sp. adapt er. kr b5. par am MaxConnect i onPool Si ze=50

com.iona.isp.adapter.krb5.params.MemberDNAttr

Specifies which LDAP attribute is used to retrieve group members. The
Kerberos adapter uses the Menber DNAt t r property to construct a query to
find out which groups a user belongs to.

The list of the user's groups is needed to determine the complete set of roles
assigned to the user. The LDAP adapter determines the complete set of roles
assigned to a user as follows:

1. The adapter retrieves the roles assigned directly to the user.

2. The adapter finds out which groups the user belongs to, and retrieves
all the roles assigned to those groups.

Default is uni queMenber .

For example, you can select the uni queMenber attribute as follows:

com i ona. i sp. adapt er. kr b5. par am Menber DNAL t r =uni queMenber

com.iona.isp.adapter.krb5.param.MinConnectionPoolSize

Specifies the minimum LDAP connection pool size for the Kerberos adapter.
The minimum connection pool size specifies the number of LDAP
connections that are opened during initialization of the Kerberos adapter.
The default is 1.

For example, to specify a minimum of 10 LDAP connections at a time:

com i ona. i sp. adapt er. kr b5. par am M nConnect i onPool Si ze=10

349

CHAPTER B | iSF Configuration

com.iona.isp.adapter.krb5.param.port.1

Specifies the port on which the Active Directory Server can be contacted.

com.iona.adapter.krb5.param.PrincipleUserDN.1

Specifies the username that is used to login to the Active Directory Server (in
distinguished name format). This property need only be set if the Active
Directory Server is configured to require username/password authentication.

com.iona.isp.adapter.krb5.param.PrincipalUserPassword.1

Specifies the password that is used to login to the Active Directory Server.
This property need only be set if the Active Directory Server is configured to
require username/password authentication.

WARNING: Because the password is stored in plaintext, you must ensure
that the i s2. properti es file is readable and writable only by users with
administrator privileges.

com.iona.isp.adapter.kbr5.param.RetrieveAuthinfo

Specifies if the user's group information needs to be retrieved from the
Active Directory Server. Default is f al se.

To insrtuct the Kerberos adapter to retrieve the user’s group information, use
the following:

com i ona. i sp. adapt er. kr b5. par am Ret ri eveAut hl nf o=t r ue

350

iSF Properties File

com.iona.isp.adapter.krb5.param.SSLCACertDir.1

Specifies the directory name for trusted CA certificates. All certificate files in
this directory are loaded and set as trusted CA certificates, for the purpose of
opening an SSL connection to the Active Directory Server. The CA
certificates can either be in DER-encoded X.509 format or in PEM-encoded
X.509 format.

For example, to specify that the Kerberos adapter uses the d: /certs/test
directory to store CA certificates:

com i ona. i sp. adapt er. kbr 5. param SSLCACert D r. 1=d: / cert s/ t est

com.iona.isp.adapter.krb5.param.SSLClientCertFile.1

Specifies the client certificate file that is used to identify the Artix security
service to the Active Directory Server. This property is needed only if the
Active Directory Server requires SSL/TLS mutual authentication. The
certificate must be in PKCS#12 format.

com.iona.isp.adapter.krb5.param.SSLClientCertPassword.1

Specifies the password for the client certificate that identifies the Artix
security service to the Active Directory Server. This property is needed only if
the Active Directory Server requires SSL/TLS mutual authentication.

WARNING: Because the password is stored in plaintext, you must ensure
that the i s2. properti es file is readable and writable only by users with
administrator privileges.

com.iona.isp.adapter.krb5.param.SSLEnabled.1

Specifies if SSL is needed to connect with the Active Directory Server. The
default is no.

To use SSL when contacting the Active Directory Server use the following:

com i ona. i sp. adapt er. kr b5. par am SSLEnabl ed. 1=yes

351

CHAPTER B | iSF Configuration

com.iona.isp.adapter.param.UserBaseDN

Specifies the base DN (an ordered sequence of RDNs) of the tree in the
active directory that stores user object class instances.

For example, you could use the RDN sequence, DC=i ona, DC=com as a base
DN by setting this property as follows:

com i ona. i sp. adapt er. kr b5. par am User BaseDN=dc=i ona, dc=com

com.iona.isp.adapter.krb5.param.UserNameAttr

Specifies the attribute type whose corresponding value uniquely identifies
the user. This is the attribute used as the user’s login ID. The default is ui d.

For example:

com i ona. i sp. adapt er. kr b5. par am User NaneAt t r =ui d

com.iona.isp.adapter.krb5.param.UserObjectClass

Specifies the attribute type for the object class that stores users. The default
is or gani zat i onal Per son.

For example to set the class to Person you would use the following:

com i ona. i sp. adapt er. kr b5. par am User Cbj ect A ass=Per son

com.iona.isp.adapter.krb5.param.version

352

Specifies the LDAP protocol version that the Kerberos adapter uses to
communicate with the Active Directory Server. The possible values are 2 (for
LDAP v2, http://www.ietf.org/rfc/rfc1777.txt) or 3 (for LDAP v3,
http://www.ietf.org/rfc/rfc2251.txt). The default is 3.

For example, to select the LDAP protocol version 3:

com i ona. i sp. adapt er. kr b5. par am ver si on=3

http://www.ietf.org/rfc/rfc1777.txt
http://www.ietf.org/rfc/rfc2251.txt

iSF Properties File

com.iona.isp.adapter.SiteMinder.class

Specifies the Java class that implements the SiteMinder adapter.

For example, the default implementation of the SiteMinder adapter provided
with Artix is selected as follows:

comiona.isp.adapter. SiteM nder. cl ass=com i ona. securi ty. i s2adapt er. snadapt er. Si t eM nder Agent

com.iona.isp.adapter.SiteMinder.param.AgentName

Specifies the SiteMinder agent’'s name.
For example:

com i ona. i sp. adapt er. Si t eM nder . par am Agent Name=web

com.iona.isp.adapter.SiteMinder.param.AgentSecret

Specifies the SiteMinder agent’s password.
For example:

com i ona. i sp. adapt er. Si t eM nder . par am Agent Secr et =secr et

com.iona.isp.adapter.SiteMinder.param.ServerAddress

Specifies the IP hostname where the SiteMinder server is running.
For example:

com i ona. i sp. adapt er. Si t eM nder . par am Ser ver Addr ess=l ocal host

com.iona.isp.adapter.SiteMinder.param.ServerAuthnPort

Specifies the IP port where the SiteMinder server is listening.
For example:

com i ona. i sp. adapt er. Si t eM nder . par am Ser ver Aut hnPor t =44442

353

CHAPTER B | iSF Configuration

com.iona.isp.adapter.SiteMinder.params

is2.sso.cache.size

is2.sso.enabled

Obsolete. This property was needed by earlier versions of the Artix security
service, but is now ignored.

Specifies the maximum cache size (number of user sessions) associated
with single sign-on (SSO) feature. The SSO caches user information,
including the user's group and role information. If the maximum cache size
is reached, the oldest sessions are deleted from the session cache.

No default.

For example:

i s2. sso. cache. si ze=1000

Enables the single sign-on (SSO) feature of the Artix security service. The
possible values are yes (enabled) and no (disabled).

Default is yes.
For example:

i s2. sso. enabl ed=yes

is2.sso.session.idle.timeout

354

Sets the session idle time-out in units of seconds for the single sign-on
(SSO) feature of the Artix security service. A zero value implies no time-out.

If a user logs on to the Artix Security Framework (supplying username and

password) with SSO enabled, the Artix security service returns an SSO token
for the user. The next time the user needs to access a resource, there is no
need to log on again because the SSO token can be used instead. However,

is2.sso.session.timeout

log4j.configuration

iSF Properties File

if no secure operations are performed using the SSO token for the length of
time specified in the idle time-out, the SSO token expires and the user must
log on again.

Default is 0 (no time-out).

For example:

i s2. sso. session.idl e.timeout =0

Sets the absolute session time-out in units of seconds for the single sign-on
(SSO) feature of the Artix security service. A zero value implies no time-out.

This is the maximum length of time since the time of the original user login
for which an SSO token remains valid. After this time interval elapses, the
session expires irrespective of whether the session has been active or idle.
The user must then login again.

Default is 0 (no time-out).

For example:

i s2. sso0. sessi on. ti meout =0

Specifies the log4j configuration filename. You can use the properties in this
file to customize the level of debugging output from the Artix security
service. See also “log4j Properties File” on page 356.

For example:

| 0g4j . configuration=d:/tenp/nyconfi g.txt

355

CHAPTER B | iSF Configuration

log4j Properties File

Overview The log4j properties file configures log4| logging for your Artix security
service. This section describes a minimal set of log4] properties that can be
used to configure basic logging.

log4j documentation For complete log4j documentation, see the following Web page:
http://jakarta.apache.org/log4j/docs/documentation.htmi

File location The location of the log4j properties file is specified by the
| og4j . configuration property in the iSF properties file. For ease of
administration, different Artix security service instances can optionally share
a common log4j properties file.

List of properties To give you some idea of the capabilities of log4j, the following is an
incomplete list of properties that can be specified in a log4j properties file:

log4j.appender. <AppenderHandle>

This property specifies a log4j appender class that directs
<AppenderHandle> logging messages to a particular destination. For
example, one of the following standard log4j appender classes could be
specified:

or g. apache. | og4j . Consol eAppender

® org. apache. | og4j . Fi | eAppender

org. apache. 1 og4j . Rol | i ngFi | eAppender
d org. apache. 1 og4j . Dai | yRol |'i ngFi | eAppender
® org. apache. | og4j . AsynchAppender

d org. apache. 1 og4j . Wi t er Appender

For example, to log messages to the console screen for the Al appender
handle:

| 0g4j . appender . Al=or g. apache. | og4j . Consol eAppender

356

http://jakarta.apache.org/log4j/docs/documentation.html

log4j Properties File

log4j.appender.<AppenderHandle>.layout

This property specifies a log4j layout class that is used to format
<AppenderHandle> logging messages. One of the following standard log4]
layout classes could be specified:

d or g. apache. | og4j . Patt er nLayout

d or g. apache. | og4j . HTM_Layout

® org. apache. | og4j . S npl eLayout

d or g. apache. | og4j . TTCCLayout

For example, to use the pattern layout class for log messages processed by
the A1 appender:

| 0g4j . appender . Al. | ayout =or g. apache. | og4j . Pat t er nLayout

logdj.appender. <AppenderHandle>.layout.ConversionPattern

This property is used only in conjunction with the

or g. apache. | og4j . Patt ernLayout class (when specified by the

| 0g4j . appender . <AppenderHandle>. | ayout property) to define the
format of a log message.

For example, you can specify a basic conversion pattern for the Al appender
as follows:

| og4j . appender . Al. | ayout . Conversi onPattern=%4r [%] %5p % % - %%

log4j.rootCategory

This property is used to specify the logging level of the root logger and to
associate the root logger with one or more appenders. The value of this
property is specified as a comma separated list as follows:

<Loglevel>, <AppenderHandleO1>, <AppenderHandleO2>, ...

The logging level, <LoglLevel>, can have one of the following values:
hd DEBUG
d I NFO

357

CHAPTER B | iSF Configuration

358

* WARN
®* ERCRR
® FATAL

An appender handle is an arbitrary identifier that associates a logger with a
particular logging destination.

For example, to select all messages at the DEBUG level and direct them to the
Al appender, you can set the property as follows:

| 0g4j . r oot Cat egor y=DEBUG Al

APPENDIX C

ASN.1 and
Distinguished
Names

The OSI Abstract Syntax Notation One (ASN.1) and X.500
Distinguished Names play an important role in the security
standards that define X.509 certificates and LDAP directories.

In this appendix This appendix contains the following section:

ASN.1 page 360

page 361

Distinguished Names

359

CHAPTER C | ASN.1 and Distinguished Names

ASN.1

Overview

BER

DER

References

360

The Abstract Syntax Notation One (ASN.1) was defined by the OSI
standards body in the early 1980s to provide a way of defining data types
and structures that is independent of any particular machine hardware or
programming language. In many ways, ASN.1 can be considered a
forerunner of the OMG’s IDL, because both languages are concerned with
defining platform-independent data types.

ASN.1 is important, because it is widely used in the definition of standards
(for example, SNMP, X.509, and LDAP). In particular, ASN.1 is ubiquitous
in the field of security standards—the formal definitions of X.509 certificates
and distinguished names are described using ASN.1 syntax. You do not
require detailed knowledge of ASN.1 syntax to use these security standards,
but you need to be aware that ASN.1 is used for the basic definitions of
most security-related data types.

The OSI's Basic Encoding Rules (BER) define how to translate an ASN.1
data type into a sequence of octets (binary representation). The role played
by BER with respect to ASN.1 is, therefore, similar to the role played by
GIOP with respect to the OMG IDL.

The OSI's Distinguished Encoding Rules (DER) are a specialization of the
BER. The DER consists of the BER plus some additional rules to ensure that
the encoding is unique (BER encodings are not).

You can read more about ASN.1 in the following standards documents:
® ASN.1 is defined in X.208.
® BERis defined in X.209.

Distinguished Names

Distinguished Names

Overview

String representation of DN

DN string example

Structure of a DN string

oID

Historically, distinguished names (DN) were defined as the primary keys in

an X.500 directory structure. In the meantime, however, DNs have come to

be used in many other contexts as general purpose identifiers. In the Artix

Security Framework, DNs occur in the following contexts:

® X.509 certificates—for example, one of the DNs in a certificate
identifies the owner of the certificate (the security principal).

® |LDAP—DNs are used to locate objects in an LDAP directory tree.

Although a DN is formally defined in ASN.1, there is also an LDAP standard
that defines a UTF-8 string representation of a DN (see RFC 2253). The
string representation provides a convenient basis for describing the structure
of a DN.

Note: The string representation of a DN does not provide a unique
representation of DER-encoded DN. Hence, a DN that is converted from
string format back to DER format does not always recover the original DER
encoding.

The following string is a typical example of a DN:
C=US, O=I ONA Technol ogi es, QJ=Engi neeri ng, ONFA. N Q her

A DN string is built up from the following basic elements:

* QID.

® Attribute types.
* AVA.

®* RDN.

An OBJECT IDENTIFIER (OID) is a sequence of bytes that uniquely
identifies a grammatical construct in ASN.1.

361

CHAPTER C | ASN.1 and Distinguished Names

Attribute types

The variety of attribute types that could appear in a DN is theoretically
open-ended, but in practice only a small subset of attribute types are used.
Table 12 shows a selection of the attribute types that you are most likely to

encounter:

Table 12: Commonly Used Attribute Types

String X.500 Attribute Type Size of Data Equivalent OID
Representation
C count r yNamre 2 .5.4.6
(@) or gani zat i onNane 1...64 .5.4.10
(0V] or gani zat i onal Uni t Nane 1...64 .5.4.11
CN comonNane 1...64 .5.4.3
ST st at eOr Provi nceNane 1...64 .5.4.8
L | ocal i t yNarre 1...64 .5.4.7
STREET st reet Address
DC domai nConponent
ub userid

AVA

362

An attribute value assertion (AVA) assigns an attribute value to an attribute
type. In the string representation, it has the following syntax:

<attr-type>=<attr-val ue>

For example:
CN=A. N Qher

Alternatively, you can use the equivalent OID to identify the attribute type in

the string representation (see Table 12). For example:

2.5.4.3=A° N Cher

RDN

Distinguished Names

A relative distinguished name (RDN) represents a single node of a DN (the
bit that appears between the commas in the string representation).
Technically, an RDN might contain more than one AVA (it is formally
defined as a set of AVAs); in practice, however, this almost never occurs. In
the string representation, an RDN has the following syntax:

<attr-type>=<attr-val ue>[+<attr-type>=<attr-val ue> ...]
Here is an example of a (very unlikely) multiple-value RDN:
QU=Eng1+0U=Eng2+0QJ=Eng3

Here is an example of a single-value RDN:

QU=Engi neeri ng

363

CHAPTER C | ASN.1 and Distinguished Names

364

APPENDIX D

Action-Role
Mapping DTD

This appendix presents the document type definition (DTD) for
the action-role mapping XML file.

DTD file The action-role mapping DTD is shown in Example 58.
Example 58:

<?xm versi on="1.0" encodi ng="UTF-8" 2>

<! ELEMENT act i on- nane (#PCDATA) >

<! ELEMENT rol e- name (#PCDATA) >

<! ELEMENT ser ver - name (#PCDATA) >

<! ELEMENT acti on-rol e- mappi ng (server-nane, interface+)>

<! ELEMENT nane (#PCDATA) >

<IELEMENT interface (nane, action-role+)>

<I ELEMENT action-rol e (acti on-nane, rol e-nanme+)>

<I ELEMENT al | ow unl i sted-i nterfaces (#PCDATA)>

<! ELEMENT secure-system (al | ow unli sted-interfaces*,
act i on-r ol e- mappi ng+) >

Action-role mapping elements The elements of the action-role mapping DTD can be described as follows:
<| ELEMENT acti on- name (#PCDATA) >
Specifies the action name to which permissions are assigned. The
interpretation of the action name depends on the type of application:

365

CHAPTER D | Action-Role Mapping DTD

+ CORBA server—for IDL operations, the action name corresponds
to the GIOP on-the-wire format of the operation name (usually the
same as it appears in IDL).

For IDL attributes, the accessor or modifier action name
corresponds to the GIOP on-the-wire format of the attribute
accessor or modifier. For example, an IDL attribute, f oo, would
have an accessor, _get_f oo, and a modifier, _set _f oo.

+ Artix server—for WSDL operations, the action name is equivalent
to a WSDL operation name; that is, the Qper at i onNane from a
tag, <operati on nane="Cper at i onNare" >.
<! ELEMENT action-role (action-nanme, role-nanme+t)>
Groups together a particular action and all of the roles permitted to
perform that action.
<! ELEMENT acti on-rol e-mappi ng (server-nane, interface+)>
Contains all of the permissions that apply to a particular server
application.
<! ELEMENT al | owunli sted-interfaces (#PCDATA) >
Specifies the default access permissions that apply to interfaces not
explicitly listed in the action-role mapping file. The element contents
can have the following values:

. t rue—for any interfaces not listed, access to all of the interfaces’
actions is allowed for all roles. If the remote user is
unauthenticated (in the sense that no credentials are sent by the
client), access is also allowed.

Note: However, if <al | ow unli st ed-interfaces>istrue and a

particular interface is listed, then only the actions explicitly listed

within that interface’s i nt er f ace element are accessible. Unlisted
actions from the listed interface are not accessible.

. f al se—for any interfaces not listed, access to all of the interfaces’
actions is denied for all roles. Unauthenticated users are also
denied access.

Default is f al se.

366

< ELEMENT interface (nanme, action-role+)>
In the case of a CORBA server, the i nt er f ace element contains all of
the access permissions for one particular IDL interface.

In the case of an Artix server, the i nt er f ace element contains all of the
access permissions for one particular WSDL port type.

<! ELEMENT nane (#PCDATA) >
Within the scope of an i nt er f ace element, identifies the interface (IDL
interface or WSDL port type) with which permissions are being
associated. The format of the interface name depends on the type of
application, as follows:

B CORBA server—the nane element identifies the IDL interface
using the interface’s OMG repository ID. The repository ID
normally consists of the characters I DL: followed by the fully
scoped name of the interface (using / instead of : : as the scoping
character), followed by the characters : 1. 0. Hence, the
Si npl e: : Si npl ebj ect IDL interface is identified by the
| DL: Si npl e/ Si npl eQj ect : 1. 0 repository ID.

Note: The form of the repository ID can also be affected by various
#pr agma directives appearing in the IDL file. A commonly used
directive is #pragma prefi x.

For example, the CosNam ng: : Nam ngCont ext interface in the naming
service module, which uses the omy. or g prefix, has the following
repository ID: | DL: ong. or g/ CosNam ng/ Nani ngCont ext : 1. 0

. Artix server—the name element contains a WSDL port type name,
specified in the following format:
NanespaceUR : Port TypeNane
The Por t TypeNane comes from a tag, <port Type
nane="Por t TypeNane" >, defined in the NamespaceUR namespace.
The NanespaceUR is usually defined in the <defi ni tions
t ar get Nanespace="NanmespaceUR " ... > tag of the WSDL
contract.
<! ELEMENT r ol e- nanme (#PCDATA) >
Specifies a role to which permission is granted. The role name can be
any role that belongs to the server's Artix authorization realm (for
CORBA bindings, the realm name is specified by the

367

CHAPTER D | Action-Role Mapping DTD

pl ugi ns: gsp: aut hori zat i on_r eal mconfiguration variable; for SOAP
bindings, the realm name is specified by the

pl ugi ns: asp: aut hori zat i on_r eal mconfiguration variable) or to the
| ONAQ obal Real mrealm. The roles themselves are defined in the
security server backend; for example, in a file adapter file or in an
LDAP backend.

<| ELEMENT secure-system (al | owunli sted-interfaces*,
acti on-rol e- mappi ng+) >

The outermost scope of an action-role mapping file groups together a
collection of acti on-r ol e- mappi ng elements.

<! ELEMENT ser ver - name (#PCDATA) >
The ser ver - nane element specifies the configuration scope (that is, the
ORB name) used by the server in question. This is normally the value
of the - CRBnane parameter passed to the server executable on the
command line.

368

APPENDIX E

OpenSSL Utilities

The openssl program consists of a large number of utilities that
have been combined into one program. This appendix
describes how you use the openssl program with Artix when
managing X.509 certificates and private keys.

In this appendix This appendix contains the following sections:
Using OpenSSL Utilities page 370
The OpenSSL Configuration File page 379

369

CHAPTER E | OpenSSL Utilities

Using OpenSSL Utilities

The OpenSSL package

Command syntax

The openssl utilities

The - hel p option

370

Orbix ships a version of the OpenSSL program that is available with Eric
Young's openssl package. OpenSSL is a publicly available implementation of
the SSL protocol. Consult “License Issues” on page 397 for information
about the copyright terms of OpenSSL.

Note: For complete documentation of the OpenSSL utilities, consult the
documentation at the OpenSSL web site ht t p: // www. openssl . or g/ docs.

An openssl command line takes the following form:
openss| utility arguments

For example:

openssl x509 -in Obi xCA -text

This appendix describes four openssl! utilities:

x509 Manipulates X.509 certificates.

req Creates and manipulates certificate signing requests, and self-signed
certificates.

rsa Manipulates RSA private keys.
ca Implements a Certification Authority (CA).

To get a list of the arguments associated with a particular command, use
the - hel p option as follows:

openssl utility -hel p
For example:
openssl x509 -hel p

Using OpenSSL Utilities

The x509 Utility

Purpose of the x509 utility In Orbix the x509 utility is mainly used for:

® Printing text details of certificates you wish to examine.

® Converting certificates to different formats.

Options The options supported by the openss| x509 utility are as follows:

-informarg

-outformarg

-keyformarg
-CAformarg
- CAkeyformarg
-in arg

-out arg
-serial

- hash

- subj ect

-i ssuer
-startdate

- enddat e

- dat es

- modul us
-fingerprint
- noout

-days arg

-signkey arg
- x509t or eq

-req

-CA arg

input format - default PEM

(one of DER NET or PEM

output fornmat - default PEM

(one of DER NET or PEM

private key format - default PEM
CA format - default PEM

CA key format - default PEM
input file - default stdin
output file - default stdout
print serial nunber val ue

print serial nunber val ue

print subject DN

print issuer DN

not Before field

not After field

both Before and After dates
print the RSA key nodul us

print the certificate fingerprint
no certificate output

How long till expiry of a signed certificate
def 30 days

self sign cert with arg
output a certification request object

input is a certificate request, sign and

out put

set the CA certificate, must be PEM fornmat

371

CHAPTER E | OpenSSL Utilities

Using the x509 utility

372

- CAkey arg - set the CA key, nust be PEMfornat. If m ssing
it is assumed to be in the CAfile

- CAcreat eseri al - create serial nunber file if it does not exist

- CAseri al - serial file

-text - print the certificate in text form

-C - print out C code forns

-md2/-md5/ -shal/ - digest to do an RSA sign with
-nmic2

To print the text details of an existing PEM-format X.509 certificate, use the
x509 utility as follows:

openssl x509 -in M/Cert.pem -inform PEM -t ext

To print the text details of an existing DER-format X.509 certificate, use the
x509 utility as follows:

openssl x509 -in M/Cert.der -informDER -text

To change a certificate from PEM format to DER format, use the x509 utility
as follows:

openssl x509 -in M/Cert.pem -inform PEM -out form DER - out
M/Cert . der

Using OpenSSL Utilities

The req Utility

Purpose of the x509 utility

Options

The req utility is used to generate a self-signed certificate or a certificate
signing request (CSR). A CSR contains details of a certificate to be issued by
a CA. When creating a CSR, the req command prompts you for the
necessary information from which a certificate request file and an encrypted
private key file are produced. The certificate request is then submitted to a
CA for signing.

If the - nodes (no DES) parameter is not supplied to r eq, you are prompted

for a pass phrase which will be used to protect the private key.

Note: It is important to specify a validity period (using the - days
parameter). If the certificate expires, applications that are using that
certificate will not be authenticated successfully.

The options supported by the openssl req utility are as follows:

-informarg
-outform
-in arg

-out arg
-text

- noout
-verify

- nodul us

- nodes

-key file
-keyformarg
-keyout arg
-newkey rsa:bits

-newkey dsa:file

-[digest]

-config file

input format - one of DER TXT PEM

arg output format - one of DER TXT PEM
inout file

output file

text formof request

do not out put REQ

verify signature on REQ

RSA nodul us

do not encrypt the output key

use the private key contained in file

key file fornat

file to send the key to

generate a new RSA key of ‘bits’ in size
generate a new DSA key, parameters taken from
CAin ‘file

Digest to sign with (nd5 shal, nmd2, ndc2)

request tenplate file

373

CHAPTER E | OpenSSL Utilities

Using the req Utility

374

- new new request

- x509 out put an x509 structure instead of a
certificate req. (Used for creating sel f signed
certificates)

- days nunber of days an x509 generated by -x509 is
valid for
-asnl- kl udge Qutput the ‘request’ in a format that is wong

but sone CA' s have been reported as requiring
[It is now al ways turned on but can be turned
of f with -no-asnl-kl udge]

To create a self-signed certificate with an expiry date a year from now, the
req utility can be used as follows to create the certificate CA cert. pemand
the corresponding encrypted private key file CA pk. pem

openssl req -config ss/_conf path_name -days 365

-out CA cert.pem-new -x509 -keyout CA pk.pem

This following command creates the certificate request M/Reg. pemand the
corresponding encrypted private key file M/Encr ypt edKey. pem

openssl req -config ss/_conf path _name - days 365
-out M/Req. pem - new - keyout M/Encrypt edkey. pem

Using OpenSSL Utilities

The rsa Utility

Purpose of the rsa utility

Options

Using the rsa Utility

The rsa command is a useful utility for examining and modifying RSA
private key files. Generally RSA keys are stored encrypted with a symmetric
algorithm using a user-supplied pass phrase. The OpenSSL req command
prompts the user for a pass phrase in order to encrypt the private key. By
default, req uses the triple DES algorithm. The r sa command can be used
to change the password that protects the private key and to convert the
format of the private key. Any rsa command that involves reading an
encrypted rsa private key will prompt for the PEM pass phrase used to
encrypt it.

The options supported by the openssl rsa utility are as follows:

-informarg input format - one of DER NET PEM

-outformarg output fornmat - one of DER NET PEM

-in arg inout file

-out arg output file

- des encrypt PEMoutput wth cbc des

- des3 encrypt PEMout put with ede cbc des using
168 bit key

-text print the key in text

- noout do not print key out

- nodul us print the RSA key nodul us

Converting a private key to PEM format from DER format involves using the
r sa utility as follows:

openssl rsa -informDER -in M/Key.der -outformPEM-out MKey. pem

Changing the pass phrase which is used to encrypt the private key involves
using the rsa utility as follows:

openssl rsa -informPEM-in M/Key. pem -out f orm PEM - out M/Key. pem
-des3

Removing encryption from the private key (which is not recommended)
involves using the rsa command utility as follows:

openssl rsa -informPEM-in M/Key. pem-outformPEM-out M/Key2. pem

375

CHAPTER E | OpenSSL Utilities

Note: Do not specify the same file for the -i n and - out parameters,
because this can corrupt the file.

376

Using OpenSSL Utilities

The ca Utility

Purpose of the ca utility

Creating a new CA

Options

You can use the ca utility create X.509 certificates by signing existing
signing requests. It is imperative that you check the details of a certificate
request before signing. Your organization should have a policy with respect
to the issuing of certificates.

The ca utility is used to sign certificate requests thereby creating a valid
X.509 certificate which can be returned to the request submitter. It can also
be used to generate Certificate Revocation Lists (CRLS). For information on
the ca - pol i cy and - nare options, refer to “The OpenSSL Configuration
File” on page 379.

To create a new CA using the openssl ca utility, two files (serial and
i ndex. t xt) need to be created in the location specified by the openssl|
configuration file that you are using.

The options supported by the openssl ca utility are as follows:

-ver bose - Talk al ot while doing things

-config file - Aconfig file

-nane arg - The particular CA definition to use

-gencrl - CGenerate a new CRL

-crldays days - Days is when the next CRL is due

-crlhours hours - Hours is when the next CRL is due

-days arg - nunber of days to certify the certificate for

-md arg - md to use, one of mi2, md5, sha or shal

-policy arg - The CA ‘policy’ to support

-keyfile arg - PEMprivate key file

-key arg - key to decode the private key if it is
encrypt ed

-cert - The CA certificate

-infile - The input PEMencoded certificate request(s)

-out file - Were to put the output file(s)

-outdir dir - Were to put output certificates

377

CHAPTER E | OpenSSL Utilities

-infiles.... - The last argunment, requests to process

-spkac file - File contains DN and signed public key and
chal | enge

- preserveDN - Do not re-order the DN

- bat ch - Do not ask questions

- msi e_hack - nsie nodifications to handle all thos

uni versal strings

Note: Most of the above parameters have default values as defined in
openssl . cnf.

Using the ca Utility Converting a private key to PEM format from DER format involves using the
ca utility as shown in the following example. To sign the supplied CSR
M/Reg. pemto be valid for 365 days and create a new X.509 certificate in
PEM format, use the ca utility as follows:

openssl ca -config ss/_conf path_name -days 365
-in M/Req. pem -out MyNewCert. pem

378

The OpenSSL Configuration File

The OpenSSL Configuration File

Overview A number of OpenSSL commands (for example, req and ca) take a - config
parameter that specifies the location of the openssl| configuration file. This
section provides a brief description of the format of the configuration file and
how it applies to the req and ca commands. An example configuration file is
listed at the end of this section.

Structure of openssl . cnf The openssl . cnf configuration file consists of a number of sections that
specify a series of default values that are used by the openssl commands.

In this section This section contains the following subsections:
[req] Variables page 380
[ca] Variables page 381
[policy] Variables page 382
Example openssl.cnf File page 383

379

CHAPTER E | OpenSSL Utilities

[req] Variables

Overview of the variables

def aul t _bi t s configuration
variable

def aul t _keyfil e configuration
variable

di stingui shed_nane
configuration variable

380

The req section contains the following variables:

default _bits = 1024

defaul t _keyfile = privkey. pem

di stingui shed_nane = req_di stingui shed_nane
attributes = reqg_attributes

The def aul t _bi t s variable is the default RSA key size that you wish to use.
Other possible values are 512, 2048, and 4096.

The def aul t _keyfi | e variable is the default name for the private key file
created by req.

The di sti ngui shed_name variable specifies the section in the configuration
file that defines the default values for components of the distinguished name
field. The req_attri but es variable specifies the section in the configuration
file that defines defaults for certificate request attributes.

The OpenSSL Configuration File

[ca] Variables

Choosing the CA section

Overview of the variables

You can configure the file openssl . cnf to support a number of CAs that
have different policies for signing CSRs. The - name parameter to the ca
command specifies which CA section to use. For example:

openssl ca -name MGCa ...

This command refers to the CA section [M/Ca] . If - nane is not supplied to
the ca command, the CA section used is the one indicated by the

def aul t _ca variable. In the “Example openssl.cnf File” on page 383, this is
set to CA defaul t (which is the name of another section listing the defaults
for a number of settings associated with the ca command). Multiple
different CAs can be supported in the configuration file, but there can be
only one default CA.

Possible [ca] variables include the following

dir: The location for the CA database
The database is a sinple text database containing the
following tab separated fi el ds:

st at us: A value of ‘R - revoked, ‘'E -expired or ‘V valid
i ssued date: Wien the certificate was certified

revoked date: Wien it was revoked, blank if not revoked

serial nunber: The certificate serial nunber

certificate: Were the certificate is |ocated

O\ The narme of the certificate

The serial nunber field should be unique, as should the CN/st at us
combination. The ca utility checks these at startup.

certs: This is where all the previously issued certificates are
kept

381

CHAPTER E | OpenSSL Utilities

[policy]l Variables

Choosing the policy section

Example policy section

The mat ch policy value

The optional policy value

The suppl i ed policy value

382

The policy variable specifies the default policy section to be used if the

- pol i cy argument is not supplied to the ca command. The CA policy section
of a configuration file identifies the requirements for the contents of a
certificate request which must be met before it is signed by the CA.

There are two policy sections defined in the “Example openssl.cnf File” on
page 383: pol i cy_mat ch and pol i cy_anyt hi ng.

The pol i cy_mat ch section of the example openssl . cnf file specifies the
order of the attributes in the generated certificate as follows:

count r yName

st at eQ Provi nceNare

or gani zat i onNamre

or gani zat i onal Uni t Name
commonNane

enai | Addr ess

Consider the following value:
countryName = match
This means that the country name must match the CA certificate.

Consider the following value:
organi sati onal Unit Name = opti onal
This means that the or gani sat i onal Uni t Nanme does not have to be present.

Consider the following value:
conmonNane = suppl i ed
This means that the commonNane must be supplied in the certificate request.

The OpenSSL Configuration File

Example openssl.cnf File

Listing

The following listing shows the contents of an example openssl . cnf
configuration file:

HHHEHH T
openssl exanpl e configuration file.

This is nostly used for generation of certificate requests.
T
[ca]

defaul t _ca= CA defaul t # The default ca section
T

[CAdefault]
dir=/opt/iona/ O bi xSSL1. Oc/certs # Wiere everything is kept

certs=$dir # Wiere the issued certs are kept
crl_dir= $dir/crl # Where the issued crl are kept
dat abase= $dir/index.txt # database index file
new certs_dir= $dir/newcerts # default place for new certs
certificate=$dir/CA Obi xCA # The CA certificate
serial= $dir/serial # The current serial nunber
cri=$dir/crl.pem# The current CRL

private_key= $dir/ CA O bi xCA pk # The private key
RANDFI LE= $dir/.rand # private random nunber file
defaul t _days= 365 # how long to certify for

default _crl_days= 30 # how | ong before next CRL
defaul t_nd= nd5 # whi ch message digest to use
preserve= no # keep passed DN ordering

A few different ways of specifying how closely the request
shoul d
conformto the details of the CA

pol i cy= pol i cy_nat ch
For the CA policy

[pol i cy_mat ch]

count ryName= nat ch

st at eQ Provi nceNane= nat ch

or gani zat i onNarme= nat ch

or gani zat i onal Uni t Name= opt i onal
conmonNarre= suppl i ed

383

CHAPTER E | OpenSSL Utilities

enai | Addr ess= opti onal

For the ‘anything’ policy
At this point intime, you nust list all acceptable ‘object’
types

[policy_anything]

countryName = opti onal

st at eQ Provi nceNanme= opt i onal

| ocal i t yNarme= opti onal

organi zati onNarme = opti onal
organi zat i onal Uni t Nanme = opti onal
comonNamre= suppl i ed

enai | Addr ess= opti onal

[req]

default_bits = 1024

def aul t _keyfile= privkey. pem

di sti ngui shed_nanme = req_di sti ngui shed_narme
attributes = req_attributes

[req_distingui shed_nane]

countryName= Country Nane (2 letter code)
countryNanme_nin= 2

countryName_nax = 2

stat eO Provi nceNane= State or Province Nane (full name)
I ocalityName = Locality Name (eg, city)

organi zati onName = QO gani zati on Nane (eg, conpany)
organi zati onal Uni t Name = Organi zational Unit Nanme (eg, section)
commonNarre = Common Name (eg. YOUR nane)
commonNane_nax = 64

enai | Address = Email Address

enai | Address_nax = 40

[reg_attributes]

chal | engePassword = A chal | enge password
chal | engePassword_nin = 4

chal | engePasswor d_nmax = 20

unst ruct ur edNane= An optional conpany name

384

C++ mapped classes

APPENDIX F

bus-security C+ +
Context Data

This appendix lists the bus-security C+ + context data types.
You can use these C+ + types in conjunction with the context
APl to set the security properties programatically.

Example 59 shows the context data types that are generated when the
bus- securi ty. xsd schema is mapped to C++.

Example 59: The bus-security C++ Context Data Types

[l Ct+
namespace | T_Context Attri butes
{
cl ass BusSecuritylLevel : public I T _Bus::AnyS npl eType
{
public:
BusSecuritylLevel ();
BusSecuritylLevel (const BusSecuritylevel & copy);
BusSecurityLevel (const | T Bus::String & val ue);
virtual ~BusSecuritylevel ();
voi d setval ue(const | T _Bus::String & val ue);
const |T_Bus::String & getval ue() const;
h

385

CHAPTER F | bus-security C++ Context Data

Example 59: The bus-security C++ Context Data Types

typedef |T_AutoPtr<BusSecuritylLevel > BusSecuritylevel Ptr;

cl ass BusSecurityType : public |IT_Bus::AnySi npl eType

{
publ i c:

BusSecurityType();
BusSecurityType(const BusSecurityType & copy);
BusSecurityType(const | T _Bus::String & val ue);
virtual ~BusSecurityType();
voi d setval ue(const | T Bus::String & val ue);
const | T Bus::String & getval ue() const;

IE

typedef |T_AutoPtr<BusSecurityType> BusSecurityTypePtr;

cl ass BusSecurity
public I T tExtensibilityE ementData,

public virtual |T_Bus:: Conpl exCont ent Conpl exType

{
publ i c:

BusSecurity();
BusSecurity(const BusSecurity & copy);
virtual ~BusSecurity();

IT Bus::String *
geti s2Aut hori zat i onAct i onRol eMappi ng() ;

const | T Bus::String *
geti s2Aut hori zat i onAct i onRol eMappi ng() const ;

voi d setis2Aut hori zati onAct i onRol eMappi ng(
const | T _Bus::String * val

)

voi d seti s2Aut hori zat i onAct i onRol eMappi ng(
const | T _Bus::String & val

JE

| T_Bus: : Bool ean * get enabl eSecurity();

const | T_Bus::Bool ean * getenabl eSecurity() const;

386

voi d set enabl eSecurity(const |T_Bus::Bool ean * val);
voi d set enabl eSecurity(const |T_Bus::Bool ean & val);

Example 59: The bus-security C+ + Context Data Types

| T_Bus: : Bool ean * get enabl eAut hori zation();

const | T_Bus:: Bool ean * getenabl eAut hori zati on() const;
voi d set enabl eAut hori zation(const | T _Bus:: Bool ean * val);
voi d set enabl eAut hori zati on(const | T_Bus:: Bool ean & val);

| T_Bus: : Bool ean * get enabl eSS) ;

const | T_Bus:: Bool ean * getenabl eSSQ() const;
voi d set enabl eSSQ(const | T_Bus: : Bool ean * val);
voi d set enabl eSSQ(const | T_Bus: : Bool ean & val);

BusSecuritylLevel * getsecuritylLevel ();

const BusSecuritylLevel * getsecuritylLevel () const;
voi d setsecuritylevel (const BusSecuritylLevel * val);
voi d setsecuritylevel (const BusSecuritylLevel & val);

BusSecurityType * getsecurity Type();

const BusSecurityType * getsecurity_Type() const;
voi d setsecurity Type(const BusSecurityType * val);
voi d setsecurity_Type(const BusSecurityType & val);

IT Bus::Int * getauthenticationCacheSi ze();

const |T_Bus::Int * getauthenticationCacheSi ze() const;
voi d setaut henti cati onCacheSi ze(const | T Bus::Int * val);
voi d setauthenticationCacheS ze(const I T Bus::Int & val);

I T Bus::Int * getauthenticationCacheTi neout ();
const | T Bus::Int * getauthenticationCacheTi meout ()
const ;
voi d set aut henti cati onCacheTi neout (
const | T Bus::Int * val
E
voi d set aut henti cati onCacheTi neout (
const | T Bus::Int & val
E

IT Bus::String * getauthorizati onReal n();

const | T _Bus::String * getauthorizati onReal n{) const;
voi d setaut hori zati onReal m{const | T _Bus::String * val);
voi d setaut hori zati onReal n{const | T Bus::String & val);

I T Bus::String * getdefaul t Password();

const | T Bus::String * getdefaul t Password() const;
voi d set def aul t Password(const | T Bus::String * val);
voi d set def aul t Password(const | T Bus::String & val);

387

CHAPTER F | bus-security C++ Context Data

388

Example 59: The bus-security C++ Context Data Types

I T Bus::String * getPrincipal ();

const | T _Bus::String * getPrincipal () const;
voi d setPrincipal (const IT Bus::String * val);
voi d setPrincipal (const | T Bus::String & val);

I T Bus::String * get WsSEKer ber osv5SToken() ;

const | T _Bus::String * get WSSEKer ber osv5SToken() const;
voi d set WBSEKer ber osv5SToken(const | T_Bus::String * val);
voi d set WESEKer ber osv5SToken(const | T _Bus::String & val);

I T Bus::String * get WsSEUser naneToken() ;

const | T Bus::String * get WsSEUser naneToken() const;
voi d set WeSEUser naneToken(const | T_Bus::String * val);
voi d set WeSEUser naneToken(const | T_Bus::String & val);

I T Bus::String * get WsSEPasswor dToken() ;

const | T _Bus::String * get WsSEPasswor dToken() const;
voi d set WASEPasswor dToken(const | T_Bus::String * val);
voi d set WSEPasswor dToken(const | T_Bus::String & val);

I T Bus::String * getUsername();

const | T _Bus::String * getUsernane() const;
voi d set Username(const | T Bus::String * val);
voi d set Usernane(const | T _Bus::String & val);

I T Bus::String * getPassword();

const | T Bus::String * getPassword() const;
voi d set Password(const | T Bus::String * val);
voi d set Password(const | T Bus::String & val);

I T Bus::String * get SSOroken();

const | T _Bus::String * get SSOToken() const;
voi d set SSOToken(const | T _Bus::String * val);
voi d set SSOToken(const | T Bus::String & val);

I T Bus::String * getCertificateSubject();

const | T Bus::String * getCertificateSubject() const;
voi d setCertificateSubject(const IT Bus::String * val);
void setCertificateSubject(const IT Bus::String & val);

I T Bus::String * getencoded_t oken();

const | T Bus::String * getencoded_t oken() const;
voi d setencoded_t oken(const | T Bus::String * val);
voi d setencoded_t oken(const | T Bus::String & val);

Example 59: The bus-security C+ + Context Data Types

I T_Bus:: Bool ean * getlsTransport O edential ();

const | T _Bus::Bool ean * getlsTransportQedential () const;
voi d setlsTransport Oedenti al (

const | T_Bus: :Bool ean * val
);

voi d setlsTransport Oedenti al (
const | T_Bus: : Bool ean & val

IE

h
typedef | T_Aut oPtr<BusSecurity> BusSecurityPtr;

389

CHAPTER F | bus-security C++ Context Data

390

Java BusSecurityLevel class

APPENDIX G

bus-security Java
Context Data

This appendix lists the bus-security Java context data types.
You can use these Java types in conjunction with the context
APl to set the security properties programatically.

The BusSecuri tyLevel type is used to set the securityLevel attribute of

the BusSecuri ty context. Example 60 shows the definition of the
BusSecuritylLevel class.

Example 60: The BusSecurityLevel Class

/1 Java
package com i ona. schenas. bus. security_cont ext;

inport java.util.*;
inport java.lang.String;

public class BusSecuritylLevel {
public static final String TARGET NAMESPACE =
"http://schenas. i ona. conl bus/ security_context";

public static final String _MESSAGE LEVEL = "MESSAGE LEVEL";
public static final

com i ona. schenas. bus. security_cont ext . BusSecuri t yLevel
MESSAGE LEVEL = new

com i ona. schenas. bus. security_cont ext . BusSecuri tylLevel (_MESSA
GE_LEVEL);

391

CHAPTER G | bus-security Java Context Data

Java BusSecurityType class

392

Example 60: The BusSecurityLevel Class

public static final String _REQUEST LEVEL = "REQUEST LEVEL";
public static final

com i ona. schenas. bus. security context.BusSecuritylLevel
REQUEST_LEVEL = new

com i ona. schenas. bus. security_context. BusSecuri tylLevel (_REQUE
ST_LEVEL) ;

public String getVal ue();

public static
com i ona. schenas. bus. security_context. BusSecuri tyLevel
fronval ue(String val ue);

public static
com i ona. schenas. bus. security context.BusSecuritylLevel

fronBtring(String val ue);

public String toString();

The BusSecuri t yType type is used to set the securi t yType attribute of the
BusSecurity context. Example 60 shows the definition of the
BusSecuri t yType class.

Example 61: The BusSecurityType Class

/1 Java
package com i ona. schenas. bus. security_cont ext;

inport java.util.*;
inport java.lang. String;

public class BusSecurityType {
public static final String TARGET NAMESPACE =
"http://schenmas. i ona. coni bus/ security_context";

public static final String _USERNAME PASSWRD =
" USERNAME_PASSWORD' ;

Example 61: The BusSecurityType Class

public static final
com i ona. schenas. bus. securi ty_cont ext. BusSecuri tyType
USERNAME_PASSWIRD = new
com i ona. schenas. bus. security cont ext.BusSecurityType(_ USERNA
ME_PASSWCRD) ;

public static final String PR NOPAL = "PRI N PAL";

public static final

com i ona. schenas. bus. securi ty_cont ext. BusSecuri tyType

PRI NG PAL = new

com i ona. schenas. bus. security_cont ext . BusSecuri t yType(_PR NJ
PAL);

public static final String _CERT_SUBJECT = " CERT_SUBJECT";
public static final

com i ona. schenas. bus. security cont ext.BusSecurityType
CERT_SUBJECT = new

com i ona. schenas. bus. security_cont ext . BusSecuri tyType(_CERT_S
UBJECT) ;

public static final String _ENOCODED TOKEN = "ENOCDED TCKEN';
public static final

com i ona. schenas. bus. security_cont ext. BusSecuri tyType

ENCCDED TCKEN = new

com i ona. schenas. bus. security_cont ext.BusSecurityType(_ENCCDE

D TCKEN);

public static final String KERBEROS TCKEN =

" KERBERCS_TCKEN';

public static final
com i ona. schenas. bus. security cont ext.BusSecurityType
KERBERCS TCKEN = new
com i ona. schenas. bus. security_cont ext . BusSecuri t yType(_KERBER
B _TOKEN) ;

public String getVal ue();

public static

com i ona. schenas. bus. security_cont ext. BusSecurityType
fronval ue(String val ue);

public static

com i ona. schenas. bus. security cont ext.BusSecurityType
fronBtring(String val ue);

393

CHAPTER G | bus-security Java Context Data

Java BusSecurity class

394

Example 61: The BusSecurityType Class

public String toString();

Example 62 shows the definition of the BusSecuri ty context data type that
are generated when the bus- securi ty. xsd schema is mapped to Java.

Example 62: The BusSecurity Context Data Type, Java

/1l Java
package com i ona. schenas. bus. security_context;

inport java.util.*;
inport java.lang.String;
inport java.l ang. Bool ean;

inport java.lang.|nteger;

public class BusSecurity extends
or g. xn soap. schenas. wsdl . cont ext . TExt ensi bi | i t yE ement {

public static final String TARGET NAMESPACE =
"http://schenas.iona. coni bus/ security_context";

public String getls2Aut hori zati onActi onRol eMappi ng();
public voi d set|s2Aut hori zati onActi onRol eMappi ng(String val);

publ i ¢ Bool ean i sEnabl eSecurity();
public void set Enabl eSecuri t y(Bool ean val) ;

publ i ¢ Bool ean i sEnabl eAut hori zati on();
public void set Enabl eAut hori zat i on(Bool ean val);

publ i ¢ Bool ean i sEnabl eSSQ() ;
public void set Enabl eSSQ(Bool ean val) ;

publ i c BusSecuritylLevel getSecuritylLevel ();
public void set Securitylevel (BusSecuritylLevel val);

publ i ¢ BusSecurityType get Security_Type();
public void set Security_Type(BusSecurityType val);

public Integer getAuthenticationCacheS ze();
public void set Aut hent i cat i onCacheSi ze(l nteger val);

Example 62: The BusSecurity Context Data Type, Java

public Integer getAuthenticationCacheTi neout ();
publ i c void set Aut hent i cat i onCacheTi neout (| nt eger val);

public String get Aut hori zationReal n{();
public void setAuthorizationReal n{(String val);

public String get Defaul t Password();
public void setDefaul tPassword(String val);

public String getPrincipal ();
public void setPrincipal (String val);

public String get WsSEKer ber osv5SToken() ;
public void set\WSSEKer ber osv5SToken(String val);

public String get WsSEUser naneToken() ;
public void set WsSEUser naneToken(String val);

public String get WsSEPasswor dToken() ;
public void set WsSEPasswordToken(String val);

public String getUsernane();
public void setUsernane(String val);

public String getPassword();
public void setPassword(String val);

public String get SSOToken();
public void setSSOToken(String val);

public String getCertifi cateSubject();
public void setCertificateSubject(String val);

public String get Encoded_t oken();
public void setEncoded_token(String val);

publ i ¢ Bool ean islsTransportCredential ();
publ i c void set| sTransport O edenti al (Bool ean val);

public String toString();

395

CHAPTER G | bus-security Java Context Data

396

APPENDIX H

License Issues

This appendix contains the text of licenses relevant to Artix.

In this appendix This appendix contains the following section:

OpenSSL License page 398

397

CHAPTER H | License Issues

OpenSSL License

Overview The licence agreement for the usage of the OpenSSL command line utility
shipped with Artix SSL/TLS is as follows:

LI CENSE | SSUES

The penSSL tool kit stays under a dual license, i.e. both the conditions of
the penSSL License and the original SSLeay |icense apply to the toolkit.
See below for the actual license texts. Actually both |icenses are BSD-style
pen Source licenses. In case of any license issues related to QoenSSL

pl ease contact openssl -core@penssl . org.

penSSL Li cense

* Copyright (c) 1998-1999 The (penSSL Project. Al rights reserved.
* Redistribution and use in source and binary forns, with or without
* nodification, are permtted provided that the fol |l owi ng conditions

* are met:

* 1. Redistributions of source code must retain the above copyri ght
* notice, this list of conditions and the follow ng disclainer.

* 2. Redistributions in binary formnust reproduce the above copyright

* notice, this list of conditions and the follow ng disclainer in
* the docunentation and/or other materials provided with the
* di stribution.

* 3. Al advertising naterials nmentioning features or use of this

* software nust display the foll owi ng acknow edgnent :

* "Thi s product includes software devel oped by the QpenSSL Proj ect
* for use in the penSSL Tool kit. (http://ww. openssl.org/)"

* 4, The names "(penSSL Tool kit" and "(penSSL Project” nust not be used to

* endorse or pronote products derived fromthis software wi thout
* prior witten pernission. For witten permssion, please contact
* openssl - core@penssl . org.

* 5. Products derived fromthis software nay not be called "QpenSSL"
* nor may "enSSL" appear in their names without prior witten
* perm ssion of the QpenSSL Proj ect.

398

OpenSSL License

* 6. Redistributions of any formwhatsoever nmust retain the follow ng
* acknow edgrrent :

* "Thi s product includes software devel oped by the enSSL Proj ect
* for use in the enSSL Tool kit (http://ww. openssl.org/)"

* TH'S SOFTWARE | S PROVI DED BY THE QpenSSL PRQJECT ""AS |S' AND ANY
* EXPRESSED CR | MPLI ED WARRANTI ES, | NCLUDING BUT NOT LIMTED TO THE
* | MPLI ED WARRANTI ES CF MERCHANTABI LI TY AND FI TNESS FCR A PARTI QULAR
* PURPCSE ARE DI SCLAIMED. I N NO EVENT SHALL THE QpenSSL PRQJIECT CR
* | TS CONTR BUTCRS BE LI ABLE FCR ANY DI RECT, | NDI RECT, | NC DENTAL,

* SPEA AL, EXEMPLARY, CR CONSEQUENTI AL DAMAGES (I NCLUDING BUT

* NOT LIMTED TO PROCUREMENT CF SUBSTI TUTE GOCDS CR SERMI CES;

* LOSS OF USE, DATA, OR PRCFI TS, CR BUSI NESS | NTERRUPTI QN

* HONEVER CAUSED AND ON ANY THECRY CF LIABILITY, WHETHER I N CONTRACT,
* STRICT LIABILITY, OR TCRT (I NCLUDI NG NEGLI GENCE CR OTHERW SE)

* ARISING IN ANY WAY QUT OF THE USE OF TH'S SCFTWARE, EVEN | F ADVI SED
* CF THE PCSSI Bl LI TY CF SUCH DAVACE

* This product includes cryptographic software witten by Eric Young
* (eay@ryptsoft.con). This product includes software witten by Tim
* Hudson (tj h@ryptsoft.con.

Original SSLeay License

/* Copyright (Q 1995-1998 Eric Young (eay@ryptsoft.con
* Al rights reserved.

* This package is an SSL inplenentation witten
* by Eric Young (eay@ryptsoft.con).
* The inplementation was witten so as to conformwi th Netscapes SSL.

* This library is free for commercial and non-comercial use as |long as
* the followi ng conditions are aheared to. The follow ng conditions

* apply to all code found in this distribution, be it the R4, RSA

* | hash, DES, etc., code; not just the SSL code. The SSL docunentation
* included with this distribution is covered by the sane copyright terns
* except that the holder is TimHudson (tjh@ryptsoft.con).

* Copyright remains Eric Young's, and as such any Copyright notices in

* the code are not to be renoved.

* |f this package is used in a product, Eric Young shoul d be given attribution
* as the author of the parts of the library used.

399

CHAPTER H | License Issues

This can be in the formof a textual message at programstartup or
in docunentation (online or textual) provided with the package.

Redi stribution and use in source and binary forns, with or w thout

nmodi fication, are pernitted provided that the fol |l owi ng conditions

are net:

1. Redistributions of source code nust retain the copyright
notice, this list of conditions and the follow ng disclainer.

2. Redistributions in binary formnust reproduce the above copyright
notice, this list of conditions and the follow ng disclaimer in the
docunentation and/ or other naterials provided with the distribution.

3. Al advertising materials nentioning features or use of this software
nust display the foll ow ng acknow edgenent :
"Thi s product includes cryptographic software witten by
Eric Young (eay@ryptsoft.com"
The word 'cryptographic' can be left out if the rouines fromthe library
bei ng used are not cryptographic related :-).

4. If you include any Wndows specific code (or a derivative thereof) from
the apps directory (application code) you rmust include an acknow edgenent:
"This product includes software witten by TimHudson (tjh@ryptsoft.com"

THS SCFTWARE |S PROVIDED BY ERC YOUNG ""AS IS' AND

ANY EXPRESS CR | MPLI ED WARRANTI ES, | NCLUDING BUT NOT LIMTED TO THE

| MPLI ED WARRANTI ES CF MERCHANTABI LI TY AND FI TNESS FOR A PARTI QLAR PURPCSE
ARE DI SCLAIMED. | N NO EVENT SHALL THE AUTHOR CR OONTR BUTCRS BE LI ABLE
FCR ANY DI RECT, | NDI RECT, | NG DENTAL, SPECI AL, EXEMPLARY, CR GCONSEQUENTI AL
DAMAGES (I NCLUDING BUT NOT LIMTED TQ PROCUREMENT OF SUBSTI TUTE GOCDS
OR SERVI CES; LCBS OF USE, DATA, OR PRCFITS, CR BUSI NESS | NTERRUPTI ON)
HONEVER CAUSED AND CN ANY THECRY CF LI ABILITY, WHETHER | N GONTRACT, STR CT
LIABILITY, OR TORT (I NCLUDI NG NEGLI GENCE CR OTHERW SE) AR SING | N ANY WAY
QUT CF THE USE CF TH S SCFTWARE, EVEN | F ADVI SED CF THE PCSSI BI LI TY CF
SUCH DANVAGE

The licence and distribution terns for any publically available version or
derivative of this code cannot be changed. i.e. this code cannot sinply be
copi ed and put under another distribution |icence

[including the G\U Public Licence.]

400

Index

Symbols
.NET

and principal propagation 229
<action-role-mapping> tag 140
<interface> tag 140
<name> tag 140
<realm> tag 133
<role> tag 133
<server-name> tag 140
<users> tag 133

A
access control
wsdltoacl utility 142
ACL
<action-role-mapping> tag 140
<interface> tag 140
<name> tag 140
<server-name> tag 140
action_role_mapping configuration variable 145
action-role mapping file 139
action-role mapping file, example 139
action-role mapping
and role-based access control 127
action_role_mapping configuration variable 70, 145
action-role mapping file
<action-role-mapping> tag 140
<interface> tag 140
<name> tag 140
<server-name> tag 140
CORBA
configuring 139
example 139
administration
OpenSSL command-line utilities 157
AgentSecret property 109
and iSF adapter properties 274
Artix security layer
and certificate-based authentication 48
Artix security plug-in
and security layer 31
authentication_cache_size configuration
variable 34

Artix security plug-in plug-in

authentication_cache_timeout configuration
variable 34

Artix security service

architecture 257
configuring 99
definition 258
features 258
federation of 116
file adapter 100
is2.properties file 100
LDAP adapter 102
LDAP adapter, properties 103
log4j logging 121
plugins:java_server:classpath configuration
variable 275
security infomation file 100
SiteMinder adapter, configuring 108
standalone deployment of 260
ASN.1 149, 359
attribute types 362
AVA 362
OID 361
RDN 363
ASP plug-in
caching of credentials 33
asp plug-in
default_password configuration value 224
security_type configuration variable 224
ASP security layer
and HTTP 37
and SOAP binding 55
association options
and cipher suite constraints 216
and mechanism policy 206
client secure invocation policy, default 202
compatibility with cipher suites 217
EstablishTrustInClient 62, 76
NoProtection 65
rules of thumb 206
SSL/TLS
Confidentiality 200
DetectMisordering 200

401

INDEX

DetectReplay 200
EstablishTrustinClient 201
EstablishTrustinTarget 201
Integrity 200
NoProtection 200

setting 198

target secure invocation policy, default 204

attribute value assertion 362
authenticate() method
in IS2Adapter 268
authentication
and security layer 31
caching of credentials 33
certificate-based 28
CSI 28
HTTP Basic Authentication 28
iSF
process of 67
own certificate, specifying 185
pass phrase
dialog prompt, C++ 189
in configuration 190
password file, from 189
SSL/TLS
mutual 181
target only 177
trusted CA list 184
authentication_cache_size configuration
variable 33, 34
authentication_cache_timeout configuration
variable 33, 34
authorization
and security layer 31
caching of credentials 33
role-based access control 127

roles
creating 129
special 131

authorization realm
adding a server 128
IONAGIobalRealm realm 131
iSF 127
iSF, setting in server 70
roles in 129
servers in 128
special 131
authorization realms
creating 129
AVA 362

402

B
backward trust 77
Baltimore toolkit
selecting for C++ applications 281
Basic Encoding Rules 360
BER 360
bus:security 252
bus-security:security interceptor 47, 92

C
CA 148
choosing a host 152
commercial CAs 151
index file 159
list of trusted 154
multiple CAs 154
private CAs 152
private key, creating 160
security precautions 152
See Alsocertificate authority
self-signed 160
serial file 159
trusted list 166, 184
381
CA, setting up 158
CACHE_CLIENT session caching value 219
CACHE_NONE session caching value 219
CACHE_SERVER_AND_CLIENT session caching
value 219
CACHE_SERVER session caching value 219
caching
authentication_cache_size configuration
variable 33, 34
authentication_cache_timeout configuration
variable 33, 34
CACHE_CLIENT session caching value 219
CACHE_NONE session caching value 219
CACHE_SERVER_AND_CLIENT session caching
value 219
CACHE_SERVER session caching value 219
of credentials 33
SSL/TLS
cache size 219
validity period 219
Caching sessions 219
CAs 158
ca utility 377
CertConstraintsPolicy 279

CertConstraintsPolicy policy 279
certificate authority
and certificate signing 148
certificate-based authentication 28
and HTTP 38
example scenario 48, 78
file adapter, configuring 133
LDAP adapter, configuring 135
certificate constraints policy
three-tier target server 77
certificate_constraints_policy variable 193, 279
Certificates
chain length 192
constraints 193, 279
certificates
CertConstraintsPolicy policy 279
chaining 153
constraint language 193, 279
constraints policy 77
contents of 149
creating and signing 161
deployment, 165
importing and exporting 156
length limit 154
own, specifying 185
pass phrase 189
peer 153
PKCS#12 file 155
public key 149
public key encryption 211
security handshake 177, 182
self-signed 153, 160
serial number 149
signing 148, 162
signing request 161
trusted CA list 166, 184
X.509 148
certificate signing request 161
common name 162
signing 162
chaining of certificates 153
ciper suites
order of 215
cipher suites
ciphersuites configuration variable 214
compatibility algorithm 217
compatibility with association options 217
default list 215
definitions 212

INDEX

effective 216
encryption algorithm 211
exportable 212
integrity-only ciphers 211
key exchange algorithm 211
mechanism policy 214
secure hash algorithm 211
secure hash algorithms 212
security algorithms 211
specifying 210
standard ciphers 211
ciphersuites configuration variable 214
client_binding_list configuration variable
iSF, client configuration 68
secure client 61
ClientCertificate attribute 42
ClientPrivateKey attribute 42
ClientPrivateKeyPassword attribute 42
client secure invocation policy 216
IIOP/TLS 202
ClientSecurelnvocationPolicy policy 199
client_version_policy
IIOP 318
close() method 268
cluster properties file 119
colocated invocations
and secure associations 196
colocation
incompatibility with principal propagation 222
com.iona.isp.adapters property 273
common names
uniqueness 162
Confidentiality association option 200
hints 208
Confidentiality option 200
configuration
and iSF standalone deployment 260
of the iSF adapter 273
plugins:java_server:classpath configuration
variable 275
Configuration file 379
connection_attempts 319
constraint language 193, 279
Constraints
for certificates 193, 279
CORBA
action-role mapping file 139
action-role mapping file, example 139
and iSF client SDK 258

403

INDEX

configuring principal propagation 223
intermediate server configuration 73
iSF, three-tier system 72
principal propagation 222
security, overview 58
SSL/TLS
client configuration 60
securing communications 60
server configuration 62
three-tier target server configuration 75
CORBA binding
CSI authorization over transport 28
CSl identity assertion 28
protocol layers 30
SSO overview 86
CORBA Principal 27, 56
CORBA security
CSIv2 plug-in 59
GSP plug-in 59
IIOP/TLS plug-in 59
(0]
authorization over transport 28
identity assertion 28
CSl interceptor 68
CSIv2
certificate constraints policy 77
principal sponsor
client configuration 69
CSIv2 plug-in
CORBA security 59
CSR 161

D
data encryption standard
see DES
default_password configuration value 224
DER 360
DES
symmetric encryption 212
DetectMisordering association option 200
hints 208
DetectMisordering option 200
DetectReplay association option 200
hints 208
DetectReplay option 200
Distinguished Encoding Rules 360
distinguished names
definition 361
DN

404

definition 361

string representation 361
domain name

ignored by iSF 67
domains

federating across 116

E
effective cipher suites
definition 216
enable_principal_service_context configuration
variable 223
encryption algorithm
RC4 212
encryption algorithms 211
DES 212
symmetric 212
triple DES 212
enterprise security service
and iSF security domains 125
EstablishTrustInClient association option 62, 201
hints 207
three-tier target server 76
EstablishTrustInClient option 201
EstablishTrustinTarget association option 201
hints 207
EstablishTrustinTarget option 201
exportable cipher suites 212

F

features, of the Artix security service 258
federation
and the Artix security service 116
cluster properties file 119
is2.cluster.properties.filename property 118
is2.current.server.id property 116
is2.properties file 118
file adapter 100
configuring certificate-based authentication 133
properties 100
file domain
<realm> tag 133
<users> tag 133
example 132
file location 132
managing 132

G
generic server 260
getAllUsers() method 270
getAuthorizationInfo() method 269
GroupBaseDN property 104
GroupNameAttr property 104
GroupObjectClass property 104
GroupSearchScope property 105
GSP plug-in
and security layer 31
and the login service 86
authentication_cache_size configuration
variable 33
authentication_cache_timeout configuration
variable 33
caching of credentials 33
CORBA security 59

H

HTTP
ASP security layer 37
security layers 36

HTTP Basic Authentication 28, 38
overview 45

HTTP-compatible binding
compatible bindings 37
overview 36
protocol layers 29

HTTPS
ciphersuites configuration variable 214
mutual authentication 41
target-only authentication 39

HTTPS security
overview 39

|
identity assertion 28
IIOP/TLS
ciphersuites configuration variable 214
IIOP/TLS plug-in
CORBA security 59
I1OP plug-in
and semi-secure clients 61
IIOP policies 316
client version 318
connection attempts 319
export hostnames 323
export IP addresses 323

INDEX

GIOP version in profiles 323
server hostname 322
TCP options
delay connections 324
receive buffer size 325
I1OP policy
ports 322
IIOP_TLS interceptor 61
index file 159
initialize() method 268, 274
Integrity association option 200
hints 208
integrity-only ciphers 211
Integrity option 200
interceptors
artix security 47
bus-security 92
login_client 91
interoperability
explicit principal header 230
0S/390, SSL/TLS 214
with .NET 229
with Orbix applications 222
invocation policies
interaction with mechanism policy 206
IONAGIlobalRealm 270
IONAGIobalRealm realm 131
IONAUserRole 142
is2.cluster.properties.filename property
and federation 118
is2.current.server.id property 116
is2.properties file 100
and federation 118
and iSF adapter configuration 261
IS2AdapterException class 269
IS2Adapter Java interface 261
implementing 262
iS2 adapters
file domain
managing 132
LDAP domain
managing 135
SiteMinder domain
managing 136
standard adapters 259
iSF
action_role_mapping configuration variable 70
and certificate-based authentication 78
authorization realm

405

INDEX

setting in server 70
client configuration
CSl interceptor 68
CORBA
three-tier system 72
three-tier target server configuration 75
two-tier scenario description 67
CORBA security 58
domain name, ignoring 67
intermediate server configuration 73
security domain
creating 126
server configuration
server_binding_list 68
server_domain_name configuration variable 70
three-tier scenario description 73
user account
creating 126
iSF adapter
adapter class property 273
and IONAGIlobalRealm 270
and the iSF architecture 258
authenticate() method 268
close() method 268
com.iona.isp.adapters property 273
configuring to load 273
custom adapter, main elements 261
example code 262
getAllUsers() method 270
getAuthorizationlnfo() method 269
initialize() method 268, 274
logout() method 271
overview 261
property format 274
property truncation 274
WRONG_NAME_PASSWORD minor
exception 269
iSF adapters
enterprise security service 125
iSF adapter SDK
and the iSF architetecture 258
iSF client
in iSF architecture 257
iSF client SDK 258
iSF server
plugins:java_server:classpath configuration
variable 275

406

J
J2EE

and iSF client SDK 258
JCE architecture

enabling 285

K
kdc property 111
Kerberos 110
token 27
Kerberos adapter
Kerberos KDC server 111
properties 110
Kerberos property
RetrieveAuthinfo 112
Kerberos Realm Name property 111
key exchange algorithms 211

L

LDAP adapter 102
basic properties 105
configuring certificate-based authentication 135
GroupBaseDN property 104
GroupNameAttr property 104
GroupObjectClass property 104, 105
LDAP server replicas 106
MemberDNAttr property 105
PrincipalUserDN property 107
PrincipalUserPassword property 107
properties 103
replica index 106
RoleNameAttr property 104
SSLCACertDir property 107
SSLClientCertFile property 107
SSLClientCertPassword property 107
SSLEnabled property 107
UserBaseDN property 104
UserNameAttr property 104
UserObjectClass property 104
UserRoleDNAttr property 104

LDAP domain
managing 135

Lightweight Directory Access Protocol
see LDAP

local_hostname 322

logdj 121
documentation 121
properties file 121

logging
in secure client 62
logdj 121
login_client:login_client interceptor 91
login_client plug-in 91
and the login service 86
login service
and single sign-on 86
standalone deployment 87
WSDL contract for 95
login_service plug-in
configuring 93
logout() method 271

M
max_chain_length_policy configuration variable 192
MD5 200, 212
mechamism policy
interaction with invocation policies 206
MechanismPolicy 200
mechanism policy 214
MemberDNAttr property 105
message attributes
and routing 225
message digest 5
see MD5
message digests 200
message fragments 200
MESSAGE_LEVEL security level 93
mixed configurations, SSL/TLS 65
multi-homed hosts, configure support for 322
multiple CAs 154
mutual authentication 181
HTTPS 41

N

namespace
plugins:csi 286
plugins:gsp 287
policies 306
policies:csi 313
policies:iiop_tls 315
principal_sponsor:csi 330
principle_sponsor 326
no_delay 324
NoProtection assocation option
rules of thumb 206
NoProtection association option 65, 200

INDEX

hints 208
semi-secure applications 209
NoProtection option 200

0

opage Abstract Syntax Notation One
see ASN.1 359
OpenSSL 152, 369
openSSL
configuration file 379
utilities 370
openSSL.cnf example file 383
OpenSSL command-line utilities 157
Orbix configuration file 260
-ORBname argument 142
orb_plugins configuration variable 61
client configuration 68
orb_plugins variable
and the NoProtection association option 208
semi-secure configuration 209
0S/390
interoperability with 214

P

pass phrase 189

dialog prompt, C++ 189

in configuration 190

password file, from 189
Password attribute 46
peer certificate 153
performance

caching of credentials 33
PKCS#12 files

creating 156, 161

definition 155

importing and exporting 156

pass phrase 189

viewing 156
plug-ins

CSIv2, in CORBA security 59

GSP, in CORBA security 59

IIOP 61

IIOP/TLS, in CORBA security 59
plugins:asp:default_password configuration

variable 50

plugins:asp:security level 284
plugins:asp:security_level configuration variable 47

407

INDEX

plugins:asp:security _type configuration variable 47
plugins:csi:ClassName 286
plugins:csi:shlib_name 286
plugins:gsp:authorization_realm 288
plugins:gsp:ClassName 289
plugins:iiop:tcp_listener:reincarnate_attempts 298
plugins:iiop:tcp_listener:reincarnation_retry _backoff
ratio 298
plugins:iiop:tcp_listener:reincarnation_retry_delay 2

plugins:iiop_tls:hfs_keyring file_password 319
plugins:iiop_tls:tcp_listener:reincarnation_retry _back
off ratio 298
plugins:iiop_tls:tcp_listener:reincarnation_retry dela
y 298
plugins:java_server:classpath configuration
variable 275
plugins:login_client:wsdl_url configuration
variable 91
plugins:login_service:wsdl_url configuration
variable 93
POA_Coloc interceptor 222
polices:max_chain_length_policy 308
policies
CertConstraintsPolicy 279
client secure invocation 216
ClientSecurelnvocationPolicy 199
[IOP/TLS
client secure invocation 202
target secure invocation 204
target secure invocation 216
TargetSecurelnvocationPolicy 199
policies:allow_unauthenticated_clients_policy 306
policies:asp:enable_authorization configuration
variable 47
policies:asp:enable_sso configuration variable 92
policies:certificate_constraints_policy 307
policies:csi:attribute_service:client_supports 313
policies:csi:attribute_service:target_supports 314
policies:csi:auth_over_transpor:target supports 315
policies:csi:auth_over_transport:client_supports 31
4
policies:csi:auth_over_transport:target requires 315
policies:iiop_tls:allow_unauthenticated_clients_polic
y 317
policies:iiop_tls:certificate_constraints_policy 317
policies:iiop_tls:client_secure_invocation_policy:requ
ires 318
policies:iiop_tls:client_secure_invocation_policy:sup

408

ports 318
policies:iiop_tls:client_version_policy 318
policies:iiop_tls:connection_attempts 319
policies:iiop_tls:connection_retry delay 319
policies:iiop_tls:max_chain_length _policy 319
policies:iiop_tls:mechanism_policy:ciphersuites 319
policies:iiop_tls:mechanism_policy:protocol_version

320
policies:iiop_tls:server_address_mode_policy:local_h

ostname 322
policies:iiop_tls:server_address_mode_policy:port _ra

nge 322
policies:iiop_tls:server_address_mode_policy:publish

_hostname 323
policies:iiop_tls:server_version_policy 323
policies:iiop_tls:session_caching_policy 323
policies:iiop_tls:target secure_invocation_policy:req

uires 324
policies:iiop_tls:target secure_invocation_policy:sup

ports 324
policies:iiop_tls:tcp_options:send_buffer_size 325
policies:iiop_tls:tcp_options_policy:no_delay 324
policies:iiop_tls:tcp_options_policy:recv_buffer_size

325
policies:iiop_tls:trusted ca_list_policy 325
policies:mechanism_policy:ciphersuites 308
policies:mechanism_policy:protocol_version 309
policies:session_caching_policy 309, 310
policies:target secure_invocation_policy:requires 31

0
policies:target secure_invocation_policy:supports 3

10
policies:trusted_ca_list_policy 311
382
Principal 27
principals

and colocation 222

configuring propagation 223

explicit principal header 230

from O/S username 223

interoperability 222

interoperating with .NET 229

overview 222

reading on the server side 228

routing configuration 225

setting on the client side 226
principal sponsor

CSlv2

client configuration 69

SSL/TLS
enabling 64

SSL/TLS, disabling 62
principal_sponsor:csi:auth_method_data 331
principal_sponsor:csi:use_principal_sponsor 330
principal_sponsor Namespace Variables 326
PrincipalUserDN property 107
PrincipalUserPassword property 107
principle_sponsor:auth_method_data 327
principle_sponsor:auth_method_id 327
principle_sponsor:callback_handler:ClassName 329
principle_sponsor:login_attempts 329
principle_sponsor:use_principle_sponsor 326
private key 160
propagatelnputAttribute WSDL tag 225
protocol version

interoperability with 0S/390 214
protocol_version configuration variable 214
public key encryption 211
public keys 149
publish_hostname 323

R
RC4 encryption 212
RDN 363
realm
see authorization realm
realm property 111
realms
IONAGIobalRealm, adding to 270
recv_buffer_size 325
relative distinguished name 363
Replay detection 200
380
REQUEST_LEVEL security level 92
req utility 373
req Utility command 373
Rivest Shamir Adleman
see RSA
role-based access control 127
example 130
RoleNameAttr property 104
role-properties file 143
roles
creating 129
special 131
root certificate directory 154
routing
and principal propagation 225

INDEX

RSA 211
symmetric encryption algorithm 212
RSA_EXPORT_WITH_DES40_CBC_SHA cipher
suite 211, 217
RSA_EXPORT _WITH_RC4 40 MD5 cipher
suite 211, 217
rsa utility 375
rsa Utility command 375
RSA_WITH_3DES_EDE_CBC_SHA cipher
suite 211, 217
RSA_WITH_DES_CBC_SHA cipher suite 211, 217
RSA_WITH_NULL_MD5 cipher suite 211, 217
RSA_WITH_NULL _SHA cipher suite 211, 217
RSA_WITH_RC4 128 MDS5 cipher suite 211, 217
RSA_WITH_RC4_128 SHA cipher suite 211, 217

S

Schannel toolkit

selecting for C++ applications 281
secure associations

client behavior 202

definition 196

TLS_Coloc interceptor 196
secure hash algorithms 211, 212
security algorithms

and cipher suites 211
security domain

creating 126
security domains

architecture 125

iSF 126
security handshake

cipher suites 210

SSUTLS 177,182
security infomation file 100
security layer

overview 31
security levels

MESSAGE_LEVEL 93

REQUEST LEVEL 92
security_type configuration variable 224
security types

USERNAME_PASSWORD 93
self-signed CA 160
self-signed certificate 153
semi-secure applications

and NoProtection 209
send_principal configuration variable 223
serial file 159

409

INDEX

serial number 149
ServerAddress property 109
ServerAuthnPort property 109
server_binding_list configuration variable 68
ServerCertificate attribute 44
server_domain_name configuration variable
iSF, ignored by 70
ServerPrivateKey attribute 44
ServerPrivateKeyPassword attribute 44
server_version_policy
IIOP 323
session_cache_size configuration variable 219
session_cache_validity period configuration
variable 219
session_caching_policy configuraion variable 219
session_caching_policy variable 219
session idle timeout
SSO 88
session timeout
SSO 88
SHA 212
SHA1 200
signing certificates 148
Single sign-on
and security layer 31
single sign-on
SSO token 28
token timeouts 88
SiteMinder adapter
AgentSecret property 109
configuring 108
properties 108
ServerAddress property 109
ServerAuthnPort property 109
SiteMinder domain
managing 136
SOAP
principal propagation 222
SOAP binding
ASP security layer 55
configuring principal propagation 223
protocol layers 30, 54
SOAP protocol layer 55
SSO overview 86
Specifying ciphersuites 210
SSL/TLS
association options
setting 198
caching validity period 219

410

cipher suites 210
client configuration 60
colocated invocations 196
encryption algorithm 211
[IOP_TLS interceptor 61
key exchange algorithm 211
logging 62
mechanism policy 214
mixed configurations 65
orb_plugins list 61
principal sponsor
disabling 62
enabling 64
protocol_version configuration variable 214
secure associations 196
secure hash algorithm 211
secure hash algorithms 212
securing communications 60
security handshake 177, 182
selecting a toolkit, C++ 281
semi-secure client
I1OP plug-in 61
server configuration 62
session cache size 219
TLS session 196
SSLCACertDir property 107
SSLClientCertFile property 107
SSLClientCertPassword property 107
SSLeay 152
SSLEnabled property 107
SSO
advantages 87
CORBA binding 86
login_client plug-in 91
login service WSDL 95
sample configurations 96
session idle timeout 88
session timeout 88
SOAP binding 86
username/password-based authentication 90
_SSO_TOKEN_ 90
SSO token 28
and the login service 86
automatic refresh 88
timeouts 88
standalone deployment 260
standard ciphers 211
symmetric encryption algorithms 212

T
Target
choosing behavior 204
target authentication 177
target-only authentication
HTTPS 39
target secure invocation policy 216
IIOP/TLS 204

TargetSecurelnvocationPolicy policy 199

TCP policies

delay connections 324

receive buffer size 325
three-tier scenario description 73
TLS

session caching 219
TLS_Coloc interceptor 196
TLS security

and HTTP 37
TLS session

definition 196
toolkit replaceability

enabling JCE architecture 285

selecting the toolkit, C++ 281
triple DES 212
truncation of property names 274
trusted CA list 166
trusted CA list policy 184
trusted CAs 154

TrustedRootCertificates attribute 40, 44

u

use_jsse_tk configuration variable 285

user account
creating 126
UserBaseDN property 104

username/password-based authentication

overview 89

SSO 90
UserName attribute 46
UserNameAttr property 104

USERNAME_PASSWORD security type 93

UserObjectClass property 104
UserRoleDNAttr property 104
UserSearchScope property
LDAP adapter
UserObjectClass property 104
UseSecureSockets attribute 40, 43
utilities

INDEX

wsdltoacl 142

\'}
Variables 380, 381, 382

W

Web service security extension

opage see WSSE 27
WRONG_NAME_PASSWORD minor exception 269
wsdltoacl utility 142

role-properties file 143
WSSE
Kerberos token 27
UsernameToken 27
WSSE Kerberos credentials 56
WSSE UsernameToken credentials 56
WSSEUsernameToken property 236, 238, 241,
244

X
X.500 359
X.509

public key encryption 211
X.509 certificate

definition 148
X.509 certificates 147
x509 utility 371

411

INDEX

412

	Artix Security Guide
	List of Tables
	List of Figures
	Preface
	1 Getting Started with Artix Security
	Security for SOAP Bindings
	Secure Hello World Example
	HTTPS Connection
	IIOP/TLS Connection
	Security Layer

	2 Introduction to the Artix Security Framework
	Artix Security Architecture
	Types of Security Credential
	Protocol Layers
	Security Layer
	Using Multiple Bindings

	Caching of Credentials

	3 Security for HTTP-Compatible Bindings
	Overview of HTTP Security
	Securing HTTP Communications with SSL/TLS
	HTTP Basic Authentication
	X.509 Certificate-Based Authentication with HTTPS

	4 Security for SOAP Bindings
	Overview of SOAP Security

	5 Security for CORBA Bindings
	Overview of CORBA Security
	Securing IIOP Communications with SSL/TLS
	Securing Two-Tier CORBA Systems with CSI
	Securing Three-Tier CORBA Systems with CSI
	X.509 Certificate-Based Authentication for CORBA Bindings

	6 Single Sign-On
	SSO and the Login Service
	Username/Password-Based SSO for SOAP Bindings
	SSO Sample Configuration for SOAP Bindings

	7 Configuring the Artix Security Service
	Configuring the File Adapter
	Configuring the LDAP Adapter
	Configuring the SiteMinder Adapter
	Configuring the Kerberos Adapter
	Additional Security Configuration
	Configuring Single Sign-On Properties
	Federating the Artix Security Service
	Configuring the Log4J Logging

	8 Managing Users, Roles and Domains
	Introduction to Domains and Realms
	Artix security domains
	Artix Authorization Realms

	Managing a File Security Domain
	Managing an LDAP Security Domain
	Managing a SiteMinder Security Domain

	9 Managing Access�Control Lists
	Overview of Artix ACL Files
	ACL File Format
	Generating ACL Files
	Deploying ACL Files

	10 Managing Certificates
	What are X.509 Certificates?
	Certification Authorities
	Commercial Certification Authorities
	Private Certification Authorities

	Certificate Chaining
	PKCS#12 Files
	Creating Your Own Certificates
	Set Up Your Own CA
	Use the CA to Create Signed Certificates

	Deploying Certificates
	Overview of Certificate Deployment
	Deploying Trusted Certificate Authority Certificates
	Deploying Application Certificates

	11 Configuring HTTPS and IIOP/TLS Authentication
	Requiring Authentication
	Target-Only Authentication
	Mutual Authentication

	Specifying Trusted CA Certificates
	Specifying an Application’s Own Certificate
	Providing a Certificate Pass Phrase
	Certificate Pass Phrase for HTTPS
	Certificate Pass Phrase for IIOP/TLS

	Advanced IIOP/TLS Configuration Options
	Setting a Maximum Certificate Chain Length
	Applying Constraints to Certificates

	12 Configuring IIOP/TLS Secure Associations
	Overview of Secure Associations
	Setting IIOP/TLS Association Options
	Secure Invocation Policies
	Association Options
	Choosing Client Behavior
	Choosing Target Behavior
	Hints for Setting Association Options

	Specifying IIOP/TLS Cipher Suites
	Supported Cipher Suites
	Setting the Mechanism Policy
	Constraints Imposed on Cipher Suites

	Caching IIOP/TLS Sessions

	13 Principal Propagation
	Introduction to Principal Propagation
	Configuring
	Programming
	Interoperating with .NET
	Explicitly Declaring the Principal Header
	Modifying the SOAP Header

	14 Programming Authentication
	Propagating a Username/Password Token
	Propagating a Kerberos Token

	15 Configuring the Artix Security Plug-In
	The Artix Security Plug-In
	Configuring an Artix Configuration File
	Configuring a WSDL Contract

	16 Developing an iSF Adapter
	iSF Security Architecture
	iSF Server Module Deployment Options
	iSF Adapter Overview
	Implementing the IS2Adapter Interface
	Deploying the Adapter
	Configuring iSF to Load the Adapter
	Setting the Adapter Properties
	Loading the Adapter Class and Associated Resource Files

	Appendix A Artix Security
	In this chapter
	Applying Constraints to Certificates
	Certificate constraints policy
	Configuration variable
	Constraint language
	Example
	Distinguished names

	initial_references
	IT_TLS_Toolkit:plugin

	plugins:asp
	authentication_cache_size
	authentication_cache_timeout
	authorization_realm
	default_password
	security_type
	security_level

	plugins:atli2_tls
	use_jsse_tk

	plugins:csi
	ClassName
	shlib_name

	plugins:gsp
	accept_asserted_authorization_info
	action_role_mapping_file
	assert_authorization_info
	authentication_cache_size
	authentication_cache_timeout
	authorization_realm
	ClassName
	enable_authorization
	enable_gssup_sso
	enable_user_id_logging
	enable_x509_sso
	enforce_secure_comms_to_sso_server
	enable_security_service_cert_authentication
	sso_server_certificate_constraints
	use_client_load_balancing

	plugins:http
	client:client_certificate
	client:client_certificate_chain
	client:client_private_key
	client:client_private_key_password
	client:trusted_root_certificates
	client:use_secure_sockets
	server:server_certificate
	server:server_certificate_chain
	server:server_private_key
	server:server_private_key_password
	server:trusted_root_certificates
	server:use_secure_sockets

	plugins:iiop_tls
	buffer_pool:recycle_segments
	buffer_pool:segment_preallocation
	buffer_pools:max_incoming_buffers_in_pool
	buffer_pools:max_outgoing_buffers_in_pool
	delay_credential_gathering_until_handshake
	enable_iiop_1_0_client_support
	incoming_connections:hard_limit
	incoming_connections:soft_limit
	outgoing_connections:hard_limit
	outgoing_connections:soft_limit
	tcp_listener:reincarnate_attempts
	tcp_listener:reincarnation_retry_backoff_ratio
	tcp_listener:reincarnation_retry_delay

	plugins:kdm
	cert_constraints
	iiop_tls:port
	checksums_optional

	plugins:kdm_adm
	cert_constraints

	plugins:login_client
	wsdl_url

	plugins:login_service
	wsdl_url

	plugins:schannel
	prompt_with_credential_choice

	plugins:security
	share_credentials_across_orbs

	policies
	allow_unauthenticated_clients_policy
	certificate_constraints_policy
	client_secure_invocation_policy:requires
	client_secure_invocation_policy:supports
	max_chain_length_policy
	mechanism_policy:ciphersuites
	mechanism_policy:protocol_version
	session_caching_policy
	session_caching
	target_secure_invocation_policy:requires
	target_secure_invocation_policy:supports
	trusted_ca_list_policy

	policies:asp
	enable_authorization
	enable_sso

	policies:csi
	attribute_service:backward_trust:enabled
	attribute_service:client_supports
	attribute_service:target_supports
	auth_over_transport:authentication_service
	auth_over_transport:client_supports
	auth_over_transport:server_domain_name
	auth_over_transport:target_requires
	auth_over_transport:target_supports

	policies:iiop_tls
	allow_unauthenticated_clients_policy
	buffer_sizes_policy:default_buffer_size
	buffer_sizes_policy:max_buffer_size
	certificate_constraints_policy
	client_load_balancing_mechanism
	client_secure_invocation_policy:requires
	client_secure_invocation_policy:supports
	client_version_policy
	connection_attempts
	connection_retry_delay
	max_chain_length_policy
	mechanism_policy:ciphersuites
	mechanism_policy:protocol_version
	server_address_mode_policy:local_domain
	server_address_mode_policy:local_hostname
	server_address_mode_policy:port_range
	server_address_mode_policy:publish_hostname
	server_version_policy
	session_caching_policy
	target_secure_invocation_policy:requires
	target_secure_invocation_policy:supports
	tcp_options_policy:no_delay
	tcp_options_policy:recv_buffer_size
	tcp_options_policy:send_buffer_size
	trusted_ca_list_policy

	principal_sponsor
	In this section
	use_principal_sponsor
	auth_method_id
	auth_method_data
	callback_handler:ClassName
	login_attempts

	principal_sponsor:csi
	use_existing_credentials
	use_principal_sponsor
	auth_method_data
	auth_method_id

	Appendix B iSF Configuration
	Properties File Syntax
	iSF Properties File
	com.iona.isp.adapters
	com.iona.isp.adapter.file.class
	com.iona.isp.adapter.file.param.filename
	com.iona.isp.adapter.file.params
	com.iona.isp.adapter.LDAP.class
	com.iona.isp.adapter.LDAP.param.CacheSize
	com.iona.isp.adapter.LDAP.param.CacheTimeToLive
	com.iona.isp.adapter.LDAP.param.GroupBaseDN
	com.iona.isp.adapter.LDAP.param.GroupNameAttr
	com.iona.isp.adapter.LDAP.param.GroupObjectClass
	com.iona.isp.adapter.LDAP.param.GroupSearchScope
	com.iona.isp.adapter.LDAP.param.host.<cluster_index>
	com.iona.isp.adapter.LDAP.param.MaxConnectionPoolSize
	com.iona.isp.adapter.LDAP.param.MemberDNAttr
	com.iona.isp.adapter.LDAP.param.MemberFilter
	com.iona.isp.adapter.LDAP.param.MinConnectionPoolSize
	com.iona.isp.adapter.LDAP.param.port.<cluster_index>
	com.iona.isp.adapter.LDAP.param.PrincipalUserDN.<cluster_index>
	com.iona.isp.adapter.LDAP.param.PrincipalUserPassword.<cluster_index>
	com.iona.isp.adapter.LDAP.param.RetrieveAuthInfo
	com.iona.isp.adapter.LDAP.param.RoleNameAttr
	com.iona.isp.adapter.LDAP.param.SSLCACertDir.<cluster_index>
	com.iona.isp.adapter.LDAP.param.SSLClientCertFile.<cluster_index>
	com.iona.isp.adapter.LDAP.param.SSLClientCertPassword.<cluster_index>
	com.iona.isp.adapter.LDAP.param.SSLEnabled.<cluster_index>
	com.iona.isp.adapter.LDAP.param.UseGroupAsRole
	com.iona.isp.adapter.LDAP.param.UserBaseDN
	com.iona.isp.adapter.LDAP.param.UserCertAttrName
	com.iona.isp.adapter.LDAP.param.UserNameAttr=uid
	com.iona.isp.adapter.LDAP.param.UserObjectClass
	com.iona.isp.adapter.LDAP.param.UserRoleDNAttr
	com.iona.isp.adapter.LDAP.param.UserSearchFilter
	com.iona.isp.adapter.LDAP.param.UserSearchScope
	com.iona.isp.adapter.LDAP.param.version
	com.iona.isp.adapter.LDAP.params
	com.iona.isp.adapter.krb5.class
	com.iona.isp.adapter.krb5.param.ConnectTimeout.1
	com.iona.isp.adapter.krb5.param.GroupBaseDN
	com.iona.isp.adapter.krb5.param.GroupNameAttr
	com.iona.isp.adapter.krb5.param.GroupObjectClass
	com.iona.isp.adapter.krb5.param.GroupSearchScope
	com.iona.isp.adapter.krb5.param.host.1
	com.iona.isp.adapter.krb5.param.java.security.auth.login.config
	com.iona.isp.adapter.krb5.param.java.security.krb5.kdc
	com.iona.isp.adapter.krb5.param.java.security.krb5.realm
	com.iona.isp.adapter.krb5.param.javax.security.auth.useSubjectCredsOnly
	com.iona.isp.adapter.krb5.param.MaxConnectionPoolSize
	com.iona.isp.adapter.krb5.params.MemberDNAttr
	com.iona.isp.adapter.krb5.param.MinConnectionPoolSize
	com.iona.isp.adapter.krb5.param.port.1
	com.iona.adapter.krb5.param.PrincipleUserDN.1
	com.iona.isp.adapter.krb5.param.PrincipalUserPassword.1
	com.iona.isp.adapter.kbr5.param.RetrieveAuthInfo
	com.iona.isp.adapter.krb5.param.SSLCACertDir.1
	com.iona.isp.adapter.krb5.param.SSLClientCertFile.1
	com.iona.isp.adapter.krb5.param.SSLClientCertPassword.1
	com.iona.isp.adapter.krb5.param.SSLEnabled.1
	com.iona.isp.adapter.param.UserBaseDN
	com.iona.isp.adapter.krb5.param.UserNameAttr
	com.iona.isp.adapter.krb5.param.UserObjectClass
	com.iona.isp.adapter.krb5.param.version
	com.iona.isp.adapter.SiteMinder.class
	com.iona.isp.adapter.SiteMinder.param.AgentName
	com.iona.isp.adapter.SiteMinder.param.AgentSecret
	com.iona.isp.adapter.SiteMinder.param.ServerAddress
	com.iona.isp.adapter.SiteMinder.param.ServerAuthnPort
	com.iona.isp.adapter.SiteMinder.params
	is2.sso.cache.size
	is2.sso.enabled
	is2.sso.session.idle.timeout
	is2.sso.session.timeout
	log4j.configuration
	log4j Properties File
	log4j.appender.<AppenderHandle>
	log4j.appender.<AppenderHandle>.layout
	log4j.appender.<AppenderHandle>.layout.ConversionPattern
	log4j.rootCategory

	Appendix C ASN.1 and Distinguished Names
	ASN.1
	Distinguished Names

	Appendix D Action-Role Mapping DTD
	Appendix E OpenSSL Utilities
	Using OpenSSL Utilities
	The x509 Utility
	The req Utility
	The rsa Utility
	The ca Utility

	The OpenSSL Configuration File
	[req] Variables
	[ca] Variables
	[policy] Variables
	Example openssl.cnf File

	Appendix F bus-security C++ Context Data
	Appendix G bus-security Java Context Data
	Appendix H License Issues
	OpenSSL License

	Index

