
Technical Use Cases
Version 3.0, October 2005

IONA Technologies PLC and/or its subsidiaries may have patents, patent applications,
trademarks, copyrights, or other intellectual property rights covering subject matter in
this publication. Except as expressly provided in any written license agreement from
IONA Technologies PLC, the furnishing of this publication does not give you any license
to these patents, trademarks, copyrights, or other intellectual property. Any rights not
expressly granted herein are reserved.
IONA, IONA Technologies, the IONA logo, Orbix, Orbix Mainframe, Orbix Connect, Artix,
Artix Mainframe, Artix Mainframe Developer, Mobile Orchestrator, Orbix/E, Orbacus,
Enterprise Integrator, Adaptive Runtime Technology, and Making Software Work
Together are trademarks or registered trademarks of IONA Technologies PLC and/or its
subsidiaries.
Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries. CORBA is a trademark or registered trademark of the
Object Management Group, Inc. in the United States and other countries. All other
trademarks that appear herein are the property of their respective owners.
IONA Technologies PLC makes no warranty of any kind to this material including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose. IONA Technologies PLC shall not be liable for
errors contained herein, or for incidental or consequential damages in connection with the furnishing, perform-
ance or use of this material.

While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of
any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. IONA shall not be liable for errors contained herein, or for incidental or consequential dam-
ages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No
third-party intellectual property right liability is assumed with respect to the use of the information contained
herein. IONA Technologies PLC assumes no responsibility for errors or omissions contained in this publication.
This publication and features described herein are subject to change without notice.

Copyright © 1999-2005 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this publication are covered by the trademarks, service marks, or product
names as designated by the companies that market those products.

Updated: 11-Nov-2005

Contents

Preface vii

What is Covered in this Book vii
Who Should Read this Book vii
Finding Your Way Around the Library vii
Searching the Artix Library ix
Online Help ix
Additional Resources x
Document Conventions x

Chapter 1 Building a Client for a Web Service 1
Importing WSDL into Artix 2
Building the Client 4

Building a C++ Client 5
Building a Java Client 9

Configuring Artix to Deploy the Client 14

Chapter 2 Building a Web Service 15
Defining a Service in WSDL 16

Creating a WSDL Contract 17
Defining the Data Used by the Service 18
Defining the Messages Used by the Service 22
Defining the Service�s Interface 23
Defining the Payload Format 25
Defining the Service�s Endpoint Information 26

Building the Service 27
Building a C++ Service 28
Building a Java Service 30

Configuring Artix to Deploy the Service 33

Chapter 3 Web Service Enabling Backend Services 35
Describing a Service in WSDL 37

Starting with CORBA IDL 38
Starting with a COBOL Copybook 40
iii

CONTENTS
Starting with a Java Class 43
Defining the Service�s Endpoint Information 45

Defining a SOAP/HTTP Endpoint 49
Configuring and Deploying a Switching Service 52

Chapter 4 Using Artix with .NET 55
Building a .NET Client for an Artix Service 56
Building an Artix Client for a .NET Service 59
Using Artix to Bridge from a Backend Service to .NET 61
Using Artix Services from .NET clients 63

Using the Artix Locator 64
Using the Artix Session Manager 68

Chapter 5 Using Artix with WebSphere MQ 75
Artix and MQ on a Single Computer 77
Client and Server on Different MQ Servers 78
Client on MQ Client and Server on MQ Server 81
Using a Remote MQ Server 83
Using a Remote MQ Server from Full MQ Installations 85

Chapter 6 Writing XSLT Scripts for the Artix Transformer 87
The XSLT Script Template 89
Transforming a Sequence into a String 91
Modifying a Simple Sequence 93
Working with Nested Input Sequences 96
Working with Attributes in an Input Message 99
Working with Attributes in the Output Message 102
Working with Nested Sequences in an Output Message 105
Using Multiple Templates in a Script 108

Chapter 7 Using Artix Security with Non-Artix Clients 111

Chapter 8 Using Unmapped SOAP Message Elements 117
Unmapped XML Data and xsd:any 118
When Only One Side Uses Unmapped XML Data 121

Glossary 127
 iv

CONTENTS
Index 137
v

CONTENTS
 vi

Preface
What is Covered in this Book
This book covers a number of typical cases where Artix can be used to solve
a problem. The use cases progress from the simplest, such as developing a
client or a server, to more involved use cases, such as integrating
transactional services involving different middlewares.

For each use case, there is a brief description of the scenario, followed by a
presentation of the step by step procedure. Most steps in the process
provide links to related sections of the Artix documentation library. These
links provide you with detailed information about what is happening at each
step.

Who Should Read this Book
This guide is intended for all users of Artix. This guide assumes that you
have a working knowledge of the middleware transports used to implement
the Artix system. It also assumes that you are familiar with basic software
design concepts, and that you have a basic understanding of WSDL.

Finding Your Way Around the Library
The Artix library contains several books that provide assistance for any of the
tasks you are trying to perform. The Artix library is listed here, with a short
description of each book.

If you are new to Artix

You may be interested in reading:

� Release Notes contains release-specific information about Artix.

� Installation Guide describes the prerequisites for installing Artix and the
procedures for installing Artix on supported systems.
vii

http://www.iona.com/support/docs/artix/3.0/release_notes/index.htm
http://www.iona.com/support/docs/artix/3.0/install_guide/index.htm

PREFACE
� Getting Started with Artix describes basic Artix and WSDL concepts.

To design and develop Artix solutions

Read one or more of the following:

� Designing Artix Solutions provides detailed information about
describing services in Artix contracts and using Artix services to solve
problems.

� Developing Artix Applications in C++ discusses the technical aspects
of programming applications using the C++ API.

� Developing Artix Plug-ins with C++ discusses the technical aspects of
implementing plug-ins to the Artix bus using the C++ API.

� Developing Artix Applications in Java discusses the technical aspects
of programming applications using the Java API.

� Artix for CORBA provides detailed information on using Artix in a
CORBA environment.

� Artix for J2EE provides detailed information on using Artix to integrate
with J2EE applications.

� Artix Technical Use Cases provides a number of step-by-step examples
of building common Artix solutions.

To configure and manage your Artix solution

Read one or more of the following:

� Deploying and Managing Artix Solutions describes how to deploy
Artix-enabled systems, and provides detailed examples for a number of
typical use cases.

� Artix Configuration Guide explains how to configure your Artix
environment. It also provides reference information on Artix
configuration variables.

� IONA Tivoli Integration Guide explains how to integrate Artix with IBM
Tivoli.

� IONA BMC Patrol Integration Guide explains how to integrate Artix
with BMC Patrol.

� Artix Security Guide provides detailed information about using the
security features of Artix.
 viii

http://www.iona.com/support/docs/artix/3.0/getting_started/index.htm
http://www.iona.com/support/docs/artix/3.0/design/index.htm
http://www.iona.com/support/docs/artix/3.0/prog_guide/index.htm
http://www.iona.com/support/docs/artix/3.0/plugin_guide/index.htm
http://www.iona.com/support/docs/artix/3.0/java_pguide/index.htm
http://www.iona.com/support/docs/artix/3.0/corba_ws/index.htm
http://www.iona.com/support/docs/artix/3.0/j2ee/index.htm
http://www.iona.com/support/docs/artix/3.0/cookbook/index.htm
http://www.iona.com/support/docs/artix/3.0/deploy/index.htm
http://www.iona.com/support/docs/artix/3.0/config_ref/index.htm
http://www.iona.com/support/docs/artix/3.0/tivoli/index.htm
http://www.iona.com/support/docs/artix/3.0/bmc/index.htm
http://www.iona.com/support/docs/artix/3.0/security_guide/index.htm

PREFACE
Reference material

In addition to the technical guides, the Artix library includes the following
reference manuals:

� Artix Command Line Reference

� Artix C++ API Reference

� Artix Java API Reference

Have you got the latest version?

The latest updates to the Artix documentation can be found at http://
www.iona.com/support/docs.

Compare the version dates on the web page for your product version with
the date printed on the copyright page of the PDF edition of the book you
are reading.

Searching the Artix Library
You can search the online documentation by using the Search box at the top
right of the documentation home page:

http://www.iona.com/support/docs

To search a particular library version, browse to the required index page,
and use the Search box at the top right. For example:

http://www.iona.com/support/docs/artix/3.0/index.xml

You can also search within a particular book. To search within an HTML
version of a book, use the Search box at the top left of the page. To search
within a PDF version of a book, in Adobe Acrobat, select Edit|Find, and
enter your search text.

Online Help
Artix Designer includes comprehensive online help, providing:

� Detailed step-by-step instructions on how to perform important tasks.

� A description of each screen.

� A comprehensive index, and glossary.

� A full search feature.

� Context-sensitive help.

There are two ways that you can access the online help:

� Click the Help button on the Artix Designer panel, or

� Select Contents from the Help menu
ix

http://www.iona.com/support/docs
http://www.iona.com/support/docs/artix/3.0/index.xml
http://www.iona.com/support/docs/artix/3.0/command_ref/index.htm
http://www.iona.com/support/docs/artix/3.0/cpp_doc/index.html
http://www.iona.com/support/docs/artix/3.0/javadoc/index.html
http://www.iona.com/support/docs
http://www.iona.com/support/docs

PREFACE
Additional Resources
The IONA Knowledge Base contains helpful articles written by IONA experts
about Artix and other products.

The IONA Update Center contains the latest releases and patches for IONA
products.

If you need help with this or any other IONA product, go to IONA Online
Support.

Comments, corrections, and suggestions on IONA documentation can be
sent to .

Document Conventions
Typographical conventions

This book uses the following typographical conventions:

Fixed width Fixed width (courier font) in normal text represents
portions of code and literal names of items such as
classes, functions, variables, and data structures. For
example, text might refer to the IT_Bus::AnyType
class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#include <stdio.h>

Fixed width italic Fixed width italic words or characters in code and
commands represent variable values you must
supply, such as arguments to commands or path
names for your particular system. For example:

% cd /users/YourUserName

Italic Italic words in normal text represent emphasis and
introduce new terms.

Bold Bold words in normal text represent graphical user
interface components such as menu commands and
dialog boxes. For example: the User Preferences
dialog.
 x

http://www.iona.com/support/knowledge_base/index.xml
http://www.iona.com/support/updates/index.xml
http://www.iona.com/support/index.xml
http://www.iona.com/support/index.xml

PREFACE
Keying Conventions

This book uses the following keying conventions:

No prompt When a command�s format is the same for multiple
platforms, the command prompt is not shown.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

> The notation > represents the MS-DOS or Windows
command prompt.

...

.

.

.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

[] Brackets enclose optional items in format and syntax
descriptions.

{} Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| In format and syntax descriptions, a vertical bar
separates items in a list of choices enclosed in {}
(braces).

In graphical user interface descriptions, a vertical bar
separates menu commands (for example, select
File|Open).
xi

PREFACE
 xii

CHAPTER 1

Building a Client
for a Web Service
Artix makes building a Web service client simple.

Overview The most basic use for Artix is to build a client to consume a preexisting
Web service. In this case, you are creating a client for running Web service
whose WSDL contract is available to you. Using the service�s contract, Artix
can generate the stub code needed to create a Web service proxy for your
client. It can even generate a sample client for you. Using the generated
code, you simply need to finish the client�s business logic and build the
client with the Artix libraries.

Building a Web service client with Artix involves three steps:

1. Importing your service�s WSDL contract into Artix.

2. Building the client application using either C++ or Java.

3. Configuring the Artix runtime to deploy the client application.

In this chapter This chapter discusses the following topics:

Importing WSDL into Artix page 2

Building the Client page 4

Configuring Artix to Deploy the Client page 14
1

CHAPTER 1 | Building a Client for a Web Service
Importing WSDL into Artix

Overview If you are using the Artix command-line tools you do not need to do anything
to get your files into an Artix design environment. However, if you intend to
use Artix�s Eclipse-based design environment, called Artix Designer, you
must create a project in Eclipse and import the contract from which you
intend to build the client. The advantage of using Artix Designer is that it
provides you with an integrated workspace for editing contracts, generating
code, editing code, and building runtime artifacts.

Starting the designer On Windows platforms you start the Designer using the Start menu
shortcut. If you installed Artix using the default settings, the shortcut for
starting Artix Designer is under Start|Iona Artix 3.0|Iona Artix 3.0|Artix
Designer. You can also use the start_eclipse script located under
InstallDir\artix\3.0\eclipse.

On Linux platforms, start the Designer using the supplied start_eclipse
script. The script is located in InstallDir/artix/3.0/eclipse.

When you first start Artix Designer, you are prompted to select a workspace.
The workspace is the root folder into which all of your Eclipse projects are
stored. You can either accept the recommended default or enter a new
workspace.

Creating a project for your client Once Artix Designer is started, create an Artix project to build your Web
service client. To create a new project and import a contract, do the
following:

1. Create a new Basic Web Services Project using the New Project
wizard.

2. Select File|New|Other from the Eclipse tool bar to open the New
wizard.

3. Under IONA Artix Designer select WSDL File.

4. Click Next.

5. From the WSDL File window click Advanced to open the file selection
panel.
 2

Importing WSDL into Artix
6. Select Link to file in the file system to make the file selection box
available.

7. Click Browse to open a file selection dialog.

8. Browse to the location of the contract you want to import and select it.

9. Enter a name for the contract in the File name box.

10. Click Finish to importing the contract.

The Designer creates a new resource under the selected project that is a
shortcut to the original WSDL file on your file system. In addition, it opens
the new resource for editing.
3

CHAPTER 1 | Building a Client for a Web Service
Building the Client

Overview Using a WSDL contract, the Artix code generation tools generate most of the
code you need to implement a Web service client. They generate the stub
code needed to instantiate a proxy for the service and generate classes for
all of the complex types defined in the contract. In general, coding a client
using the Artix generated code uses standard C++ or Java APIs.

You will need to use a few Artix-specific APIs to instantiate the Artix bus and
to access some of Artix�s more advanced features. If you are programming in
C++, you will need some Artix-specific code for instantiating your client
proxy. In addition, some of the types generated by Artix have Artix-specific
methods for manipulating them.

The Artix Java interface adheres to the JAX-RPC specification. Thus,
working in Java is more standardized. However, Artix does provide some
convenience APIs for building client proxies. In addition, using some of the
more advanced features require the use of Artix-specific code.

In this section This section discusses the following topics:

Building a C++ Client page 5

Building a Java Client page 9
 4

Building the Client
Building a C++ Client

Overview Building a client using the Artix C++ APIs is a four step process. First you
generate the stub code from the WSDL contract. Using the generated code
as a base, you add the code for initializing the Artix bus and a service proxy.
Then you add the business logic to your client. Once the client is fully
coded, you need to make the C++ application.

Generating code from Artix
Designer

To generate C++ code for a Web service client from within the Designer, do
the following:

1. Create a new code generation profile for you client application.

2. Fill in the information for your project on the General tab.

3. Select the Generation tab to bring up the code generation options
panel.

4. Under Generation Type, select Application.

5. Under Application Type, select Client.

6. Under Development Language, select C++.

7. Select any services you want to use under Optional Services.

8. Enter a C++ Namespace and a C++ Declaration Specification.

9. Select Generate a makefile if you want to create a platform specific
makefile.

10. Click Apply to save the settings.

11. Select the WSDL Details tab to bring up the WSDL service details
panel.

12. From the table, select the service/port combination for which you want
to generate code.

13. To generate a sample client click in the Sample column to change the
No to Yes.

14. To generate code click Run.
5

CHAPTER 1 | Building a Client for a Web Service
The generated code is located under the outputs\applications folder of your
project. The generated code, along with the Artix configuration file and start
scripts for the application, is placed in a folder with the name you entered
for the code generation profile. Underneath the application�s root directory,
your C++ code is placed into the src folder.

Generating code from the
command line

To generate Artix C++ code for a Web service client, do the following:

1. Set up the Artix environment using the following command�

2. In the directory where the desired WSDL contract is stored, invoke
wsdltocpp as shown below.

This will generate C++ classes for all of the complex types defined in
your WSDL contract, the C++ stubs for your client, a sample client
main(), and a make file for the generated code.

For more information on the wsdltocpp tool see Developing Artix
Applications in C++.

Initializing the client To create a C++ main() for an Artix client, do the following:

1. In the same directory as the generated C++ code, create a new C++
file to hold the main().

2. Add the following include statements.

3. Add an include statement for the generated header file for your proxy
object.

4. Specify that the main is in the same namespace as the generated C++
objects.

ArtixDir/bin/artix_env

wsdltocpp -client -sample -m NAKE wsdl_file.wsdl

Note: If you are on a UNIX system substitute MAKE for NMAKE. This
will generate a UNIX make file.

#include <it_bus/bus.h>
#include <it_bus/exception.h>
 6

../prog_guide/index.htm
../prog_guide/index.htm

Building the Client
5. Specify that the main also uses the IT_Bus namespace.

6. If you intend to use any of the complex types defined in the WSDL in
your client, add an include statement for the objects the types were
generated into.

7. Initialize an instance of the Artix bus using the following command:

8. Instantiate an instance of your client proxy using one of the three
provided constructors:

♦ portTypeNameClient() instantiates a default client proxy that
uses the first <service> and <port> listed in the application�s
contract. The contract must reside in the same directory from
which the application is run.

♦ portTypeNameClient(wsdlPath) instantiates a default client
proxy using the contract specified by wsdlPath.

♦ portTypeNameClient(wsdlPath, service, port) instantiates a
client proxy using the service description specified by the
combination of service and port from the specified contract.

IT_Bus::init(argc, argv);
7

CHAPTER 1 | Building a Client for a Web Service
At this point the code for a client main() will look similar to Example 1.

For more information on instantiating C++ proxies see Developing Artix
Applications in C++.

Adding the client�s business logic Once the Artix bus is initialized and the proxy is created, all that remains to
create a fully functional Web service client is the client�s business logic. The
code for the client�s business logic can be any valid C++ code.

For more information on working with Artix generated types see Developing
Artix Applications in C++.

Example 1: Started C++ Client Main

#include <it_bus/bus.h>
#include <it_bus/exception.h>
#include <it_cal/iostream.h>

#include "orderWidgetsClient.h"

IT_USING_NAMESPACE_STD

using namespace COM_WIDGETVENDOR_WIDGETORDERFORM;
using namespace IT_Bus;

int main(int argc, char* argv[])
{
 IT_Bus::init(argc, argv);

 orderWidgetsClient client("../widgets.wsdl");

 return 0;
}

 8

../prog_guide/index.htm
../prog_guide/index.htm
../prog_guide/index.htm
../prog_guide/index.htm

Building the Client
Building a Java Client

Overview Building a client using the Artix Java APIs is a four step process. First you
generate the stub code from the WSDL contract. Using the generated code
as a base, you add the code for initializing the Artix bus and a service proxy.
Then you add the business logic to your client. Once the client is fully
coded, you need to build the Java application.

Generating code from the
Designer

Generating Java code from within Artix Designer allows you to have a
unified environment for editing your contract, editing your code, and
debugging your application. It will not overwrite changes to your
implementation code if you need to regenerate your stubs.

To generate Java code for a Web service client from within the Designer, do
the following:

1. Create a new code generation profile for you client application.

2. Fill in the information for your project on the General tab.

3. Select the Generation tab to bring up the code generation options
panel.

4. Under Generation Type, select Application.

5. Under Application Type, select Client.

6. Under Development Language, select Java.

7. Select any services you want to deploy under Optional Services.

8. Deselect Override namespace as package name if you want to use the
namespaces from the contract as the package names.

9. Click Apply.

10. Select the WSDL Details tab to bring up the WSDL service details
panel.

11. From the table, select the service/port combination for which you want
to generate code.

12. To generate a sample client click in the Sample column to change the
No to Yes.

13. To generate code click Run.
9

CHAPTER 1 | Building a Client for a Web Service
When you are returned to the main Designer screen, you will notice that two
new items have been added to your project's resource tree. The bin folder
contains the compiled Java classes for your newly generated application.
The .classpath file is used by the Eclipse framework to control the classpath
used by the project at runtime.

The generated code is located under the outputs\applications folder of your
project. The generated code, along with the Artix configuration file and start
scripts for the application, is placed in a folder with the name you entered
for the code generation profile. Underneath the application�s root directory,
your Java code is placed into the src folder and is placed into folders that
reflect the package structure of the classes.

Generating code from the
command line

To generate Artix Java code for a Web service client, do the following:

1. Set up the Artix environment using the following command�

2. In the directory where the desired WSDL contract is stored, invoke
wsdltojava as shown below.

This will generate the Java classes for all of the complex types defined
in your WSDL contract, the Java interface for your client, and an ant
build target for the generated code.

The generated Java code will be placed in a directory and package structure
reflecting the namespaces specified in your contract. For example, if the
target namespace of the contract is widgetVendor.com/widgetOrderForm,
the code for the Java interface will be placed in
com/widgetVendor/widgetOrderForm and it will be placed in the Java
package com.widgetVendor.widgetOrderForm. The generated types are
placed in a directory and package structure based on the target namespace
of the schema in which they are defined.

For more information on the javatowsdl tool, see Developing Artix
Applications in Java.

ArtixDir/bin/artix_env

wsdltojava -client -ant wsdl_file.wsdl
 10

../java_pguide/index.htm
../java_pguide/index.htm

Building the Client
Initializing the client To create a Java main() for an Artix client do the following:

1. In the same directory as the generated Java interface, create a new
Java class to hold the main().

2. Specify that the class is in the same package as the generated Java
interface.

3. Add the following import statements to your new class.

4. Add the following Artix specific import statement to your class:

com.iona.jbus.Bus contains the classes used to implement the Artix
bus.

5. If you intend to use any of the complex types defined in the WSDL in
your client, add an import statement for the package the types were
generated into.

6. Initialize an instance of the Artix bus using the following command:

7. If you intend to use anyType elements, contexts, substitution groups, or
SOAP headers, you need to register the generated type factory with the
bus.

8. Edit the WSDL path in the generated type factory to contain the correct
path to the client�s contract.

9. Instantiate a new JAX-RPC ServiceFactory object using
ServiceFactory.newInstance().

10. Instantiate a new JAX-RPC Service object using the ServiceFactory
object�s createService() method.

import java.rmi.RemoteException;
import java.io.*;
import java.net.URL;
import javax.xml.namespace.QName;
import javax.xml.rpc.Service;
import javax.xml.rpc.ServiceFactory;

import com.iona.jbus.Bus;

Bus bus = Bus.init(args);
11

CHAPTER 1 | Building a Client for a Web Service
createService() requires the URL of the service�s WSDL contract and
the QName of the service�s definition in the WSDL contract.

11. Create a JAX-RPC dynamic service proxy using the Service object�s
getPort() method.

getPort() requires the QName of the service�s port definition in the
WSDL contract and the class for the service�s interface. The returned
port needs to be cast into the appropraite type before it can be used.

12. At the end of the main() add the following line to ensure that the bus is
properly shut down.

At this point your client�s main() should look similar to Example 2.

bus.shutdown(true);

Example 2: Started Java Artix main()

package com.widgetvendor.widgetorderform;

import java.rmi.RemoteException;
import java.util.ArrayList;
import java.io.*;
import java.net.URL;

import javax.xml.namespace.QName;
import javax.xml.rpc.Service;
import javax.xml.rpc.ServiceFactory;

import com.iona.jbus.Bus;

import com.widgetvendor.types.widgettypes.*;

public class OrderWidgetsClient
{
 public static void main (String args[]) throws Exception
 {
 Bus bus = Bus.init(args);

 ServiceFactory factory = ServiceFactory.newInstance();
 12

Building the Client
For more information about creating dynamic service proxies see Developing
Artix Applications with Java.

Adding the client�s business logic Once the Artix bus is initialized and the service proxy is created, all that
remains to create a fully functional Web service client is the client�s business
logic. The code for the client�s business logic can be any valid Java code.
The only requirement is that bus.shutdown() must be called before the
client exits.

For more information on working with Artix generated types see Developing
Artix Applications with Java.

Building the client You build the client using the standard Java compiler. You need to ensure
that the following jars are on your classpath:

� installdir\lib\artix\java_runtime\3.0\it_bus-api.jar

� installdir\lib\artix\ws_common\3.0\it_wsdl.jar

� installdir\lib\artix\ws_common\3.0\it_ws_reflect.jar

� installdir\lib\artix\ws_common\3.0\it_ws_reflect_types.jar

� installdir\lib\common\ifc\1.1\ifc.jar

� installdir\lib\jaxrpc\jaxrpc\1.1\jaxrpc-api.jar

For more information on building a Java Artix application see Developing
Artix Applications with Java.

 QName name = new QName("http://widgetVendor.com/widgetOrderForm", "orderWidgetsService");

 String wsdlPath = "file:../widgets.wsdl";
 wsdlLocation = new URL(wsdlPath);

 Service service = factory.createService(wsdlLocation,name);

 QName portName = new QName("","widgetOrderPort");
 OrderWidgets impl = (OrderWidgets)service.getPort(portName, OrderWidgets.class);

 bus.shutdown(true);
 }
}

Example 2: Started Java Artix main()
13

../java_pguide/index.htm
../java_pguide/index.htm
../java_pguide/index.htm
../java_pguide/index.htm
../java_pguide/index.htm
../java_pguide/index.htm

CHAPTER 1 | Building a Client for a Web Service
Configuring Artix to Deploy the Client

Overview Once your client is built you need to configure the Artix runtime to launch
the appropriate services to support the client. You also need to ensure that
your client is started with the appropriate runtime flags to load the Artix
runtime correctly.

Configuring the Artix runtime The Artix runtime configuration is stored in a text file that is stored in the etc
directory of your Artix installation. This file is typically called artix.cfg. It
contains settings that control what plug-ins the Artix bus loads, the logging
level, and other advanced features.

For basic clients you do not need to edit artix.cfg. However if you need
logging functionality, you will need to edit this file. For information on
enabling logging see Deploying and Managing Artix Solutions.

Loading the runtime configuration To ensure that the Artix runtime is loaded do the following:

1. Open a command window.

2. Go to the bin directory of your Artix installation.

3. Run artix_env.
 14

../deploy/index.htm

CHAPTER 2

Building a Web
Service
Artix makes building a Web service simple.

Overview Artix provides the tools to generate the skeleton code needed to quickly
develop a Web service. The generated code allows you to use standard
APIs, in either C++ or Java, to write the logic for your service.

Building a Web service with Artix involves three steps:

1. Defining your service in a WSDL contract.

2. Building the service implementation using either C++ or Java.

3. Configuring the Artix runtime to deploy the service.

In this chapter This chapter discusses the following topics:

Defining a Service in WSDL page 16

Building the Service page 27

Configuring Artix to Deploy the Service page 33
15

CHAPTER 2 | Building a Web Service
Defining a Service in WSDL

Overview The first step in building a Web service is getting a WSDL contract that
defines the service and its physical endpoint details. Often, this contract is
provided for the service developer. However, developers do need to build
some contracts from scratch or modify existing contract. This section
outlines the steps to build a contract using the Artix designer. It provides
details on adding a few of the more advanced data types using the Designer.

In this section This section discusses the following topics:

Creating a WSDL Contract page 17

Defining the Data Used by the Service page 18

Defining the Messages Used by the Service page 22

Defining the Service�s Interface page 23

Defining the Payload Format page 25

Defining the Service�s Endpoint Information page 26
 16

Defining a Service in WSDL
Creating a WSDL Contract

Overview The Artix designer groups all of the resources used to build an Artix
application in a project. Once, you have created an Artix project, you can
then build a WSDL contract for your service.

Starting the designer On Windows platforms you start the Designer using the Start menu
shortcut. If you installed Artix using the default settings the shortcut for
starting the Designer is under Start|Iona Artix 3.0|Iona Artix 3.0|Artix
Designer. You can also use the start_eclipse script located under
InstallDir\artix\3.0\eclipse\.

On Linux platforms, start the Designer using the supplied start_eclipse
script. The script is located in InstallDir/artix/3.0/eclipse.

When you first start Artix Designer, you are prompted to select a workspace.
The workspace is the root folder into which all of your Eclipse projects are
stored. You can either accept the recommended default or enter a new
workspace.

If you do not wish to see this dialog at start-up, place a check in the box
labeled Use this as the default and do not ask again. Once you select this
option, the Designer always opens in the specified workspace. Once the
Designer is running, you can change workspaces using File|Switch
Workspace....

Creating a project for your service Once the designer is started, you need to create an Artix project to build your
Web service. To create an Artix project and a new contract for your service,
complete the following steps:

1. Create a new Basic Web Services Project using the Eclipse new
project wizard.

2. Using the Eclipse new resource wizard, select WSDL File from the
IONA Artix Designer folder.

3. Click Next>.

4. Enter a new for the new contract in the File Name field.

5. Click Finish.
17

CHAPTER 2 | Building a Web Service
Defining the Data Used by the Service

Overview In a WSDL contract the data types used by the service are defined using
XMLSchema. The type definitions are placed in the contract using the type
element. The Artix design environment provides wizards for defining many of
the XMLSchema constructs used to define data type. It also has an XML
source editor for entering XMLSchema contracts not supported by the
designer.

For more information on defining types, see Designing Artix Solutions.

Adding a simpleType To add a simple type to your contract using the designer�s wizards do the
following:

1. Place the editor into diagram view.

2. RIght-click the Types node in the element tree.

3. Select New Type... from the pop-up menu.

4. Select at least one resource from the list to act as a source of
predefined types.

All of the predefined types in the selected resources will be made
available to you later in the process, as well as the native XMLSchema
types. The resources will also be imported to the target resource using
WSDL import elements.

5. Click Next>.

6. Enter a name for the new type.

7. Enter the target namespace for the new type�s XMLSchema.

8. Under Kind, select simpleType.

9. Click Next>.

10. Chose a base type for the new type from the Base Type drop-down list.

11. Add the desired facets for your type.

12. Click Finish.

Note: Artix only supports the enumeration facet.
 18

../design/index.htm

Defining a Service in WSDL
Adding a complexType To add a new complexType using Artix designer�s diagram view do the
following:

1. Right-click the Types node to activate the pop-up menu.

2. Select New Type... from the pop-up menu.

3. Select at least one resource from the list to act as a source of
predefined types.

All of the predefined types in the selected resources will be made
available to you later in the process, as well as the native XMLSchema
types. The resources will also be imported to the target resource using
WSDL import elements.

4. Click Next>.

5. Enter a name for the new type.

6. Enter the target namespace for the new type�s XMLSchema.

You can either enter a new target namespace manually or, if your
resource has multiple schema namespaces defined within it, you can
select one of the existing namespaces from the drop-down list.

7. Under Kind, select complexType.

8. Click Next>.

9. Select what type of structure you want to add using the Group Type
drop-down list.

10. Select the type of the element you want to add to the structure from
the Type drop-down list.

11. Enter a name for the new element.

12. Specify the desired attributes for the element.

13. Click Add to save the element to the Element List table.

14. If you need to edit an element definition:

i. Select the element from the Element List table.

ii. Make any changes you desire.

iii. Click Update to save the changes.

15. Repeat steps 10 through 14 until you have finished adding elements to
the structure.

16. Click Next>.
19

CHAPTER 2 | Building a Web Service
17. Select the type of the attribute you want to add to the structure from
the Type drop-down list.

18. Enter a name for the new attribute.

19. If the attribute must be present in every instance of this type, place a
check in the Required check box.

20. Click Add to save the attribute to the Attribute List table.

21. If you need to edit an attribute definition:

i. Select the attribute from the Attribute List table.

ii. Make any changes you desire.

iii. Click Update to save the changes.

22. Repeat steps 17 through 21 until you have finished adding attributes to
the structure.

23. Click Finish.

Adding an element To add an element do the following:

1. Right-click the Types node.

2. Select New Type... from the pop-up menu.

3. Select at least one resource from the list to act as a source of
predefined types.

All of the predefined types in the selected resources will be made
available to you later in the process, as well as the native XMLSchema
types. The resources will also be imported to the target resource using
WSDL import elements.

4. Click Next>

5. Enter a name for the new type.

6. Enter the target namespace for the new type�s XMLSchema.

You can either enter a new target namespace manually or, if your
resource has multiple schema namespaces defined within it, you can
select one of the existing namespaces from the drop-down list.

7. Under Kind, select Element.

8. Click Next>.

9. If the new element is nilable, place a check in the Nilable check box.

10. Select how you intend to define the type of the element.
 20

Defining a Service in WSDL
11. Click Finish.

Editing Types in the designer�s
source view

You can also directly edit the XML source for the types. The designer does
not provide wizards for a number of the XMLSchema constructs supported
by Artix including:

� substitution groups

� attribute groups

� lists

� unions

When you save the contract after editing it in source view the designer
validates the XML. If it is not valid, the Designer will place errors in the
Eclipse Problems window.
21

CHAPTER 2 | Building a Web Service
Defining the Messages Used by the Service

Overview Once you have defined the data types used by the service, you need to
define how that data is organized into the message used by the service to
accept requests and send out responses. This is done using message
elements. The designer provides you with wizards for defining a message
and adding the WSDL to your contract. You can also edit the XML source in
the designer�s source view.

For more information on messages see Designing Artix Solutions.

Adding a message To add a message to your contract do the following:

1. Right-click the Message node.

2. Select New Message....

3. Select at least one resource from the list to act as a source of data
types.

All of the types defined in the selected resources, as well as the native
XMLSchema types, will be made available for you to use in defining
messages. The resources will also be imported to the target resource
using WSDL import elements.

4. Click Next>.

5. Enter a name for the message.

6. Click Next>.

7. Enter a name for the message part.

8. Select a data type from the Type drop-down list.

9. Click Add to save the new part to the Part List table.

10. If you need to edit a part definition:

i. Select the part from the Part List table.

ii. Make any changes you desire.

iii. Click Update to save the changes.

11. Repeat steps 7 through 10 until you have finished adding parts to the
message.

12. Click Finish.
 22

../design/index.htm

Defining a Service in WSDL
Defining the Service�s Interface

Overview The operations provided by the service are defined in the contract�s
portType element. The designer provides you with wizards for defining
operations and adding the WSDL to your contract. You can also edit the
XML source in the designer�s source view.

For more information on defining an interface see Designing Artix Solutions.

Adding a portType The add a new interface to your contract do the following:

1. Right-click the Port Types.

2. Select New Port Type....

3. Select at least one resource from the list to act as a source of
messages.

All of the messages defined in the selected resources will be made
available for you to use in defining the interface�s operations. The
resources will also be imported to the target resource using WSDL
import elements.

4. Click Next>.

5. Enter a name for the new interface.

6. Click Next>.

7. Enter a name for the new operation.

8. Select an operation style from the Style drop-down list.

9. Click Next>.

10. Select a message type for the new operation message from the Type
drop-down list.

11. Select the global message that defines the data passed by this
operation message from the Message drop-down list.

12. Enter a name for the operation message.

13. Click Add to add the message to the Operation Messages table.

14. If you need to edit an operation message:

i. Select the part from the Operation Messages table.

ii. Make any changes you desire.
23

../design/index.htm

CHAPTER 2 | Building a Web Service
iii. Click Update to save the changes.

15. Repeat steps 10 through 14 until all of the operational messages have
been specified.

16. Click Finish.

Adding an operation to a port type To add a new operation to a port type do the following:

1. Right-click the port type to which you want to add the operation.

2. Select New Operation....

3. Enter a name for the new operation.

4. Select an operation style from the Style drop-down list.

5. Click Next>.

6. Select a message type for the new operation message from the Type
drop-down list.

7. Select the message that defines the data passed by this operation
message from the Message drop-down list.

8. Enter a name for the operation message.

9. Click Add to add the message to the Operation Messages table.

10. Repeat steps 10 through 14 until all of the operational messages have
been specified.

11. Click Finish.
 24

Defining a Service in WSDL
Defining the Payload Format

Overview After defining the logical structure of your service and the data it uses, you
must now define the concrete representation of the data that will be passed
on the wire. This is done in the binding element of a contract. Web services
typically use SOAP as the payload format.

For more information on defining a payload format see Designing Artix
Solutions.

Adding a SOAP binding using the
designer

To add a SOAP binding do the following:

1. Alt-click the Bindings.

2. Select New Binding....

3. Select at least one contract from the list to act as a source for
interfaces.

All of the interfaces in the selected contracts will be made available to
you later. The contracts will also be imported to the target resource
using WSDL import elements.

4. Click Next>.

5. Select SOAP.

6. Click Next>.

7. Select the interface which is being mapped to this SOAP binding from
the Port Type drop-down list.

8. Enter a name for the binding.

9. Select a style for the SOAP elements from the Style drop-down list.

10. Select a value for the SOAP use attribute from the Use drop-down list.

11. Click Finish.
25

../design/index.htm
../design/index.htm

CHAPTER 2 | Building a Web Service
Defining the Service�s Endpoint Information

Overview The final piece of information needed to fully define a service is the network
transport the service uses and its network address. This information is
provided in the contract�s service element. Web services typically use
HTTP as their transport.

For more information on defining a service endpoint see Designing Artix
Solutions.

Adding an HTTP port using the
designer

To add an HTTP port to your contract from the designer�s diagram view do
the following:

1. Alt-click the Services.

2. Select New Service....

3. Select at least one resource from the list to act as a source of bindings.

All of the bindings defined in the selected contracts will be made
available for you to use in defining a service. The contracts will be
imported to contract using WSDL import elements.

4. Click Next>.

5. Enter a name for the new service.

6. Click Next>.

7. Enter a name for the new port.

8. Select a binding to be exposed by this port from the Binding
drop-down list.

9. Click Next>.

10. Select soap from the Transport Type drop-down list.

11. Enter the HTTP address for the port in the location field of the Address
table.

12. Enter values for any of the optional configuration settings you desire.

13. Click Finish.
 26

../design/index.htm
../design/index.htm

Building the Service
Building the Service

Overview Using a WSDL contract, the Artix code generation tools generate most of the
code you need to implement a Web service. They generate the skeleton code
needed to host your service implementation. In addition, they generate
classes for all of the complex types defined in the contract. In general,
coding a Web service using the Artix generated code uses standard C++ or
Java APIs.

You will need to use a few Artix specific APIs to start the Artix bus and to
access some of Artix�s more advanced features. In addition, some of the
types generated by Artix have Artix specific methods for manipulating them.

The Artix Java interface adheres to the JAX-RPC specification. Working in
Java, is therefore, more standardized.

In this section This section discusses the following topics:

Building a C++ Service page 28

Building a Java Service page 30
27

CHAPTER 2 | Building a Web Service
Building a C++ Service

Overview Building a Web service using the Artix C++ APIs is a four step process.
First you generate the skeleton code from the WSDL contract. Using the
generated code as a base, you add the code for starting the Artix bus. Then
you implement the service�s business logic. Once the service is fully coded,
you need to make the C++ application.

Generating code To generate Artix C++ code for a Web service do the following:

1. Set up the Artix environment using the following command�

2. In the directory where the desired WSDL contract is stored, invoke
wsdltocpp as shown below.

This will generate C++ classes for all of the complex types defined in
your WSDL contract, the C++ skeletons for your service, a make file
for the generated code and a sample main() for your service.

For more information on the wsdltocpp tool see Developing Artix
Applications with C++.

Writing the server main() If you used the -sample flag when generating your code, the server�s main()
is mostly written for you. The code for the main() is generated into a file
called portTypeNameServerSample.cxx. You will need to do the following to
complete the main():

1. Uncomment the #include statement for the server�s impl. This line
looks similar to the following.

ArtixDir/bin/artix_env

wsdltocpp -server -impl -sample -m NMAKE wsdl_file.wsdl

Note: If you are on a UNIX system substitute MAKE for NMAKE. This
will generate a UNIX make file.

\\#include "orderWidgetsImpl.h"
 28

../prog_guide/index.htm
../prog_guide/index.htm

Building the Service
2. Uncomment the using statement for the types used by the server. This
line looks similar to the following.

3. Uncomment the line of code that instantiates the impl object for your
service. This line looks similar to the following.

4. Uncomment the lines of code the register the servant with the bus.
They will look similar to the following.

5. Edit the second parameter of the register_servant() call to point to
the location of the server�s contract.

For more information on writing a C++ server main() see Developing Artix
Applications with C++.

Implementing the service The Artix code generator generates a shell implementation class named for
the <portType> element defining the interface in the WSDL contract. The
class name is generated by appending Impl on the value of the name
attribute in the <portType> element that defines the interface. For example,
if the vale of the <portType> element�s name attribute is orderWidgets, the
generated implementation class would be orderWidgetsImpl.

The generated class will have one method for each operation defined in the
WSDL contract. The parameter list for each method will be generated as
described in Developing Artix Applications in C++.

You can implement the methods using standard C++ methods. In addition,
Artix provides a number of proprietary APIs for using advanced Artix
functionality and working with the generated data types.

//using namespace COM_WIDGETVENDOR_WIDGETORDERFORM;

// orderWidgetsImpl servant(bus);

// bus->register_servant(
// servant,
// "../widgets.wsdl",
// service_name
//);
29

../prog_guide/index.htm
../prog_guide/index.htm
../prog_guide/index.htm

CHAPTER 2 | Building a Web Service
Building a Java Service

Overview Building a Web service using the Artix Java APIs is a four step process. First
you generate the skeleton code from the WSDL contract. Using the
generated code as a base, you add the code for starting the Artix bus and
registering your service�s servant implementation. Then you implement the
service�s business logic. Once the service is fully coded, you need to build
the Java application.

Generating code To generate Artix Java code for a Web service do the following:

1. Set up the Artix environment using the following command�

2. In the directory where the desired WSDL contract is stored, invoke
wsdltojava as shown below.

This will generate the Java classes for all of the complex types defined
in your WSDL contract, the Java interface for your service, a shell
object for your implementation object, a simple main class for the
service, and an ant build target for the generated code.

The generated Java code will be placed in a directory and package structure
reflecting the namespaces specified in your contract. For example if the
target namespace of the contract is widgetVendor.com/widgetOrderForm,
the code for the Java interface will be placed in
com/widgetVendor/widgetOrderForm and it will be placed in the Java
package com.widgetVendor.widgetOrderForm. The generated types are
placed in a directory and package structure based on the target namespace
of the schema in which they are defined.

For more information on the javatowsdl tool, see Developing Artix
Applications in Java.

For more information on how Java package names are generated, see
Developing Artix Applications in Java.

ArtixDir/bin/artix_env

wsdltojava -server -impl -ant wsdl_file.wsdl
 30

../java_pguide/index.htm
../java_pguide/index.htm
../java_pguide/index.htm

Building the Service
Starting the Artix bus The Artix code generator creates a class the contains a main() for starting
the Artix bus and registering a simple servant. This file is named based on
the interface for which the code was generated. The code generator takes
the value of the name attribute in the WSDL <portType> element that defines
the interface and appends Server to it. For example, if the <portType>
element defining the interface is named orderWidgets, the generated server
main class will be named OrderWidgetsServer.java.

For simple cases, this class can be used without modification. However,
most cases will require that you make some changes to this file so that type
factories are registered, the server points to the proper WSDL contract, and
the proper type of servant is registered with the bus.

You can make the following changes to the generated main() class:

1. If your service uses anyType elements, contexts, SOAP headers, or
substitution groups uncomment the line that registers the type
factories.

The line of code for registering type factories will look like the
following:

2. Edit the WSDL path in the generated type factory to point to the proper
location for your WSDL file.

The line containing the WSDL path is similar to the following:

3. Edit the line for creating the servant to contain the proper path to the
WSDL file. The WSDL path is the second parameter.

The line containing the servant instantiation is similar to the following:

4. If you want to use one of the other servant threading models, change
the SingleInstanceServant to one of the alternative Servant types.

bus.registerTypeFactory(new
 com.widgetvendor.widgetorderform.OrderWidgetsTypeFactory()
);

private static String wsdlLocation = "../widgets.wsdl";

Servant servant = new SingleInstanceServant(
 new com.widgetvendor.widgetorderform.OrderWidgetsImpl(),
 "file:../widgets.wsdl",
 bus);
31

CHAPTER 2 | Building a Web Service
For more information see Developing Artix Applications with Java.

Implementing the service The Artix code generator generates a shell implementation class named for
the <portType> element defining the interface in the WSDL contract. The
class name is generated by appending Impl on the value of the name
attribute in the <portType> element that defines the interface. For example,
if the vale of the <portType> element�s name attribute is orderWidgets, the
generated implementation class would be OrderWidgetsImpl.

The generated class will have one method for each operation defined in the
WSDL contract. The parameter list for each method will be generated as
described in Developing Artix Applications in Java. If the operation has a
return value, the generated method will contain a return statement the
returns a dummy value. If the operation has no return value, it is left empty.

You can implement the methods using standard Java methods. In addition,
Artix supports the use of JAX-RPC MessageContext objects and provides a
number of proprietary APIs for using advanced Artix functionality.

For more information on working with Artix generated types see Developing
Aritx Applications with Java.

Building the service You build the service using the standard Java compiler. You need to ensure
that the following jars are on your classpath:

� installdir\lib\artix\java_runtime\3.0\it_bus-api.jar

� installdir\lib\artix\ws_common\3.0\it_wsdl.jar

� installdir\lib\artix\ws_common\3.0\it_ws_reflect.jar

� installdir\lib\artix\ws_common\3.0\it_ws_reflect_types.jar

� installdir\lib\common\ifc\1.1\ifc.jar

� installdir\lib\jaxrpc\jaxrpc\1.1\jaxrpc-api.jar

For more information on building a Java Artix application see Developing
Aritx Applications with Java.
 32

../java_pguide/index.htm
../java_pguide/index.htm
../java_pguide/index.htm
../java_pguide/index.htm
../java_pguide/index.htm
../java_pguide/index.htm

Configuring Artix to Deploy the Service
Configuring Artix to Deploy the Service

Overview Once your service is built you need to configure the Artix runtime to launch
the appropriate services to support the service. You also need to ensure that
your service is started with the appropriate runtime flags to load the Artix
runtime correctly.

Configuring the Artix runtime The Artix runtime configuration is stored in a text file that is stored in the etc
directory of your Artix installation. This file is typically called artix.cfg. It
contains settings that control what plug-ins the Artix bus loads, the logging
level, and other advanced features.

For basic services you do not need to edit artix.cfg. However if you need
logging functionality, you will need to edit this file. For information on
enabling logging see Deploying and Managing Artix Solutions.

Loading the runtime configuration To ensure that the Artix runtime is loaded do the following:

1. Open a command window.

2. Go to the bin directory of your Artix installation.

3. Run artix_env.

Starting the service If you are not using logging, you simply launch the application as you would
any other application.
33

../deploy/index.htm

CHAPTER 2 | Building a Web Service
 34

CHAPTER 3

Web Service
Enabling Backend
Services
Artix allows you to quickly expose backend services, that use
a variety of middlewares, as Web services. Often, you do not
need to write any new code.

Overview Artix provides the tools to define a backend service in WSDL and then
expose it as a Web service. In most cases, there is no additional coding
needed. The Artix bus does all of the work.

Exposing a backend service as a Web service with Artix involves the
following steps:

1. Creating a WSDL description of your service.

2. Defining a SOAP/HTTP endpoint for your service.

3. Configuring the Artix runtime to deploy the switching service.

In this chapter This chapter discusses the following topics:

Describing a Service in WSDL page 37

Defining a SOAP/HTTP Endpoint page 49
35

CHAPTER 3 | Web Service Enabling Backend Services
Configuring and Deploying a Switching Service page 52
 36

Describing a Service in WSDL
Describing a Service in WSDL

Overview The first step in web service enabling an existing system with Artix is to
describe the system in an Artix contract. Artix contracts are WSDL
documents that describe a service�s operations on two levels. The first is the
abstract level where the data and messages exchanged by the service are
described using XMLSchema. The second level is the concrete level where
the messages and data are bound to a concrete format and the service�s
communication details are defined.

For detailed discussion about how WSDL documents see Designing Artix
Solutions.

In this section This section discusses the following topics:

Starting with CORBA IDL page 38

Starting with a COBOL Copybook page 40

Starting with a Java Class page 43

Defining the Service�s Endpoint Information page 45
37

../design/index.htm
../design/index.htm

CHAPTER 3 | Web Service Enabling Backend Services
Starting with CORBA IDL

Overview If your backend service is implemented using CORBA, it probably has an
IDL definition that is accessible. Artix can import a CORBA IDL file and
generate a WSDL document representing the CORBA service. The generated
WSDL document will have all of the types, messages, and interfaces defined
by the IDL represented. In addition, it will have a CORBA payload format
definitions and a section defining how the XMLSchema types are mapped to
the original CORBA types.

When Artix generates a WSDL document from CORBA IDL, it also adds a
definition for a CORBA endpoint to the contract. This endpoint definition is
incomplete. To complete the definition of the service�s endpoint see
�Defining the Service�s Endpoint Information� on page 45.

You can generate WSDL from IDL using either the Artix designer or the
idltowsdl command line tool.

Using Artix desinger To use an IDL file as the basis for a contract:

1. Create a project for your switch.

2. From the File menu, select New|Other to open the New window.

3. Select WSDL From IDL from the IONA Artix Designer folder.

4. Click Next>.

5. Select the folder where you want to store the WSDL file.

6. Type the name of contract in the File name field.

7. Click Next>.

8. Enter the pathname for the IDL file.

9. Under Object Reference select the method you will use to specify the
CORBA service�s object reference.

Using a Naming Service

i. Enter the corbaloc for the naming service that holds the reference
to the CORBA service you wish to access and click Browse... to
open the naming service browser.

ii. Select the service you wish to expose from the browser.
 38

Describing a Service in WSDL
iii. The radio button under Object Reference will change to IOR or
CORBA URL and the service�s IOR will be placed in the text box.

Using an IOR or CORBA URL

Enter either a stringified CORBA IOR, a corbaname URL, or a corbaloc URL
into the text box.

Using an IOR from a File

Use the Browse button to locate the name of a file that contains the
stringified IOR of the CORBA service or enter the name of the file in the text
box.

10. Click Finish.

Using idltowsdl To create a WSDL file from CORBA IDL do the following:

1. From the bin directory of your Artix installation, source the Artix
environment by running artix_env.

2. Find the IDL file for the service you want to expose.

3. Run idltowsdl as shown below.

For more information on the idltowsdl tool see Designing Artix Solutions.

idltowsdl idlfile
39

../design/index.htm

CHAPTER 3 | Web Service Enabling Backend Services
Starting with a COBOL Copybook

Overview Many backend services are written in COBOL and the data used by these
systems is defined in a COBOL copybook. Artix can import a COBOL
copybook and generate a WSDL document defining the service. The
resulting WSDL document will have definitions for the types, messages, and
an interface for a service based on the COBOL copybook. In addition, it will
contain a payload format definition that enables the service to communicate
using fixed format data.

If your service uses another payload format you can change the payload
format definition. For information on defining new payload formats see
Designing Artix Solutions.

Artix does not add any endpoint information when generating WSDL from a
COBOL copybook. To add endpoint information see �Defining the Service�s
Endpoint Information� on page 45.

You can generate WSDL from a COBOL copybook using either the Artix
Designer or the coboltowsdl command line tool.

Using Artix designer To add a contract containing a fixed binding from a COBOL copybook:

1. From the File menu, select New|Other.

2. Select WSDL From DataSet from the IONA Artix Designer folder.

3. Click Next>.

4. Select the folder where you want to store the WSDL file.

5. Enter a name for the contract.

6. Click Next>.

7. Select Fixed from a COBOL Copybook.

8. Click Next>.

9. Enter the name for the generated binding element in the Binding
Name field.

10. Enter the name for the generated portType element in the Port Type
Name field.

11. Enter the namesapce for the generated contract�s target namespace in
the Target Namespace field.
 40

../design/index.htm

Describing a Service in WSDL
12. Enter the namspace you wish to use as the target namespace for the
generated contract�s schema element in the Schema Namespace field.

13. Place a check in the Create message parts with elements check box if
you want to generate a contract where the message parts are defined
using element elements.

14. Select the justification value to use in the generated fixed binding from
the Justification drop-down list.

15. Enter the character encoding you wish to use for the generated fixed
binding in the Encoding field.

16. Enter the character to use for padding on the wire in the Padding field.

17. Click Next>.

18. Click Add to add a new operation to the table.

19. Select the new operation from the table.

20. Click Edit to bring up the operation editing table.

21. Enter a name for the operation.

22. Select what type of operation you want to define from the Style
drop-down list.

23. Enter a discriminator string for the operation in the Discriminator field.

24. Select one of the messages from tree on the left to bring up the
message editing table.

25. Enter a name for the message.

26. Select the type of message from the Type drop-down list.

27. Enter the desired attributes for the message.

28. Click Import COBOL Copybook to bring up a file browser.

29. Select the copybook that defines the message from the file browser.

30. Repeat steps 24 through 29 for each message in the operation.

31. Repeat steps 18 through 30 for each operation in the service you are
defining.

32. Click Finish.
41

CHAPTER 3 | Web Service Enabling Backend Services
Using coboltowsdl To create a WSDL document from a COBOL copy book using coboltowsdl do
the following:

1. From the bin directory of your Artix installation, source the Artix
environment by running artix_env.

2. Find the COBOL copybook file for the service you want to expose.

3. Run coboltowsdl as shown below.

♦ bindingName is the name of the generated fixed data binding in
the resulting WSDL document.

♦ operationName is the name of the generated operation in the
resulting WSDL document.

♦ inputName is the name of the generated input message in the
resulting WSDL document.

♦ inputCopybook is the name of the COBOL copybook that contains
the data definitions for the input message.

♦ outputName is the name of the generated output message in the
resulting WSDL document.

♦ outputCopybook is the name of the COBOL copybook that
contains the data definitions for the output message.

For more information on the coboltowsdl tool see Designing Artix Solutions.

coboltowsdl -b bindingName -op operationName
 -im inputName:inputCopybook
 [-om outputName:outputCopybook]
 42

../design/index.htm

Describing a Service in WSDL
Starting with a Java Class

Overview Artix can import compiled Java classes and generate WSDL documents
representing the types, messages, and interfaces used by the Java methods
defined in the class. The mapping used to generate WSDL from Java is
based on the JAX-RPC 1.1 specification.

Using Artix designer The Artix designer can only create contracts from class files that are part of
an Eclipse Java project in the same workspace as your Artix project. To
create a contract from a Java class using the Artix designer do the following:

1. From the File menu, select New|Other to open the New window.

2. Select WSDL From Java from the IONA Artix Designer folder.

3. Click Next>.

4. Select the folder where you want to store the WSDL file.

5. Enter a name for the contract.

6. Click Next>.

7. Click Browse... to open the Java class browser.

8. Enter a search string to locate the class you wish to import in the
Select a class to use field.

9. Select the desired class from the list of types in the Matching types:
list.

10. Click OK.

11. If you do not want to use the default values in the generated contract,
place a check in the WSDL settings check box if you do not want Artix
to use default values in the generated contract and specify the desired
values.

12. Click Finish.

Using javatowsdl To generate WDSL from a compiled Java class do the following:

1. From the bin directory of your Artix installation, source the Artix
environment by running artix_env.

2. Find the Java class file for the service you want to expose.
43

CHAPTER 3 | Web Service Enabling Backend Services
3. Run javatowsdl as shown below.

For more information on the javatowsdl tool see Designing Artix Solutions.

javatowsdl className
 44

../design/index.htm

Describing a Service in WSDL
Defining the Service�s Endpoint Information

Overview Once you have your service defined logically and have added the proper
message format binding, you need to define the physical transport details
that expose the service as an endpoint. Depending on the transport used by
your service, the endpoint details can be as simple as specifying an HTTP
port or as complicated as specifying the JMS topics used to send and
receive messages. Artix uses a number of proprietary WSDL extensions to
define endpoint details for a service.

To define an endpoint you need to create two WSDL elements:

1. A <service> element that contains a list of endpoints.

2. A <port> element that contains the details for a specific endpoint.

Defining a CORBA endpoint To add a CORBA endpoint to your contract do the following:

1. Alt-click the Services node to activate the pop-up menu.

2. Select New Service....

3. Select at least one resource from the list to act as a source of bindings.

4. Click Next>.

5. Enter a name for the new service.

6. Click Next>.

7. Enter a name for the new port.

8. Select a CORBA binding to be exposed by this port.

9. Click Next>.

10. Enter a valid CORBA address in the location field of the Address table.

11. Set any desired POA policies in the Policy table.

12. Click Finish.

Defining a WebsphereMQ
endpoint

To add a WebsphereMQ endpoint to your contract do the following:

1. Alt-click the Services node to activate the pop-up menu.

2. Select New Service....

3. Select at least one resource from the list to act as a source of bindings.

4. Click Next>.
45

CHAPTER 3 | Web Service Enabling Backend Services
5. Enter a name for the new service.

6. Click Next>.

7. Enter a name for the new port.

8. Select a binding to be exposed by this port.

9. Click Next>.

10. Select mq from the Transport Type drop-down list.

11. If you are adding a port for an MQ client, enter valid names in the
QueueName field and the QueueManager field of the Client table.

12. If you are adding a port for an MQ client that will be getting responses
from its server, enter valid names in the ReplyQueueName field and
the ReplyQueueManager field of the Client table.

13. If you are adding a port for an MQ server, enter valid names in the
QueueName field and the QueueManager field of the Server table.

14. Edit any of the remaining optional attributes.

15. Click Finish.

Defining a Tuxedo endpoint To add a Tuxedo endpoint to your contract do the following:

1. Alt-click the Services node to activate the pop-up menu.

2. Select New Service....

3. Select at least one resource from the list to act as a source of bindings.

4. Click Next>.

5. Enter a name for the new service.

6. Click Next>.

7. Enter a name for the new port.

8. Select a binding to be exposed by this port.

9. Click Next>.

10. Select tuxedo from the Transport Type drop-down list.

11. Click the Add button under the Services table to add a Tuxedo service
to the table.

12. Click in the Attribute column to edit the service�s name.

13. With the service selected in the Service table, click the Add button
under the Operations table.
 46

Describing a Service in WSDL
14. Select one of the operations from the window that pops up.

15. Click OK to return to editing the transport properties.

16. Repeat steps 13 through 15 until you have added all of the desired
operations for the service.

17. Repeat steps 11 through 16 until you have added all of the desired
Tuxedo services to the port.

18. Click Finish.

Defining a Tibco endpoint To add a Tibco/RV endpoint to your contract do the following:

1. Alt-click the Services node to activate the pop-up menu.

2. Select New Service....

3. Select at least one resource from the list to act as a source of bindings.

4. Click Next>.

5. Enter a name for the new service.

6. Click Next>.

7. Enter a name for the new port.

8. Select a binding to be exposed by this port.

9. Click Next>.

10. Select tibrv from the Transport Type drop-down list.

11. Specify the name of the subject to which the server listens in the
serverSubject field.

12. Set any desired optional attributes.

13. Click Finish.

Defining a JMS endpoint To add a JMS endpoint to your contract do the following:

1. Alt-click the Services node to activate the pop-up menu.

2. Select New Service....

3. Select at least one resource from the list to act as a source of bindings.

4. Click Next>.

5. Enter a name for the new service.

6. Click Next>.

7. Enter a name for the new port.
47

CHAPTER 3 | Web Service Enabling Backend Services
8. Select a binding to be exposed by this port.

9. Click Next>.

10. Select jms from the Transport Type drop-down list.

11. Set the required port properties.

12. Click Finish.
 48

Defining a SOAP/HTTP Endpoint
Defining a SOAP/HTTP Endpoint

Overview In order to expose a service as a Web service you need to create an endpoint
that exposes your service using SOAP as its message format and HTTP as its
network transport. You also need to create a logical connection, or route,
between your service�s native endpoint and the SOAP/HTTP endpoint. Artix
uses this route to determine how to translate the messages between your
service�s native format and SOAP.

Adding a SOAP/HTTP endpoint and connecting it your service�s native
interface is a three step process:

1. Create a SOAP binding for your service.

2. Define an HTTP endpoint to expose your service using SOAP.

3. Define the route that connects your service�s native endpoint to the
new SOAP/HTTP endpoint.

Defining a SOAP binding for your
service

To add a SOAP binding from the designer�s diagram view do the following:

1. Alt-click the Bindings node to activate the pop-up window.

2. Select New Binding....

3. Select at least one contract from the list to act as a source for
interfaces.

4. Click Next>.

5. Select SOAP.

6. Click Next>.

7. Select the interface which is being mapped to this SOAP binding.

8. Enter a name for the binding.

9. Select a style for the SOAP elements from the Style drop-down list.

10. Select a value for the SOAP use attribute from the Use drop-down list.

11. Click Finish.
49

CHAPTER 3 | Web Service Enabling Backend Services
Using the command line In addition to the designer, Artix provides a command line tool, wsdltosoap,
that will create a SOAP payload binding for a specified port type in a WSDL
document. You execute wsdltosoap as shown below.

portType specifies the name of the port type for which to generate the SOAP
binding. namespace specifies the namespace used for the generated SOAP
binding.

For more information about using the wsdltosoap tool see Designing Artix
Solutions.

Defining an HTTP endpoint for
your service

To add HTTP endpoint to your contract do the following:

1. Right-click the Services node to activate the pop-up menu.

2. Select New Service....

3. Select at least one resource from the list to act as a source of bindings.

4. Click Next>.

5. Enter a name for the new service.

6. Click Next>.

7. Enter a name for the new port.

8. Select a binding to be exposed by this port.

9. Click Next>.

10. Select soap from the Transport Type drop-down list.

11. Enter the HTTP address for the port in the location field of the Address
table.

12. Enter values for any of the optional configuration settings you desire.

13. Click Finish.

Defining the connection between
the native endpoint and the Web
service endpoint

Once you have the SOAP binding and HTTP endpoint for your service
defined, you need to create a logical pathway, or route, between your
service�s native endpoint and the Web service endpoint. To add this route do
the following:

1. Right-click the Routes node to activate the pop-up menu.

2. Select New Route....

wsdltosoap -i portType -n namespace wsdl_file
 50

../design/index.htm
../design/index.htm

Defining a SOAP/HTTP Endpoint
3. Select at least one contract from the list to act as a source of services
between which to route.

4. Click Next>.

5. Enter a name for the new route.

6. Select the interface that is bound to the service that will be the source
endpoint for the route from the Port Type drop-down list.

7. Select one service from the Source Endpoint table to be the source
endpoint for the route.

8. Select Single from Destination Preferences.

9. Select the endpoint that you want to be destinations from the
Destination Endpoints table.

10. Click Next>.

11. Select at least one operation to use in the route.

12. Click Next>.

13. Define an attribute routing rule.

14. Click Add.

15. Repeat steps 13 and 14 until you have added all of the desired
attribute routing rules.

16. Click Finish.

For more information about defining a route see Designing Artix Solutions.
51

../design/index.htm

CHAPTER 3 | Web Service Enabling Backend Services
Configuring and Deploying a Switching
Service

Overview Once you have created an Artix contract defining your service and added a
SOAP/HTTP endpoint to it, you need to deploy the Artix process that will
enable your backend service to be seen as a Web service to other
applications. This Artix process uses the logical pathway, or route, you
defined to translate the SOAP/HTTP message sent to your service and
forward them to the actual backend service in its native format.

Configuring and deploying this Artix service is a simple procedure that
involves editing a simple text file. It is done in four steps:

1. Create a configuration domain for your process.

2. Specify which plug-ins Artix needs to load.

3. Configure the routing plug-in to locate your Artix contract.

4. Deploy the Artix container with the new configuration information.

Creating a configuration domain To create a new configuration domain for your new Web service do the
following:

1. In the folder install_dir/artix/3.0/etc/domians, create a new file
called domain_name.cfg. domain_name can be any valid file name as
long as it is unique among the other files in the same folder.

2. Open the file in any text editor.

3. Add the following line to import the default configuration settings.

4. Create scope in your new domain by adding the following to the file.
scope_name can be any string value that does not contain spaces or
back slashes(\).

include "artix.cfg";

scope_name
{
}

 52

Configuring and Deploying a Switching Service
Specifying the plug-ins to load The Artix process that handles routing is implemented as a plug-in, so you
need to configure Artix to load it when it starts up. In addition, you may
want to load one of the logging plug-ins to provide logging information.

To specify the plug-ins loaded by Artix at start-up do the following:

1. Open your new configuration file in any text editor.

2. Inside of the scope you created for the process add the following line.

3. Inside of the brackets of the orb_plugins line add "routing".

4. If you want to load a logging plug-in, add "xml_log_stream" to the
beginning of the orb_plugins list and separate it from the routing entry
by a comma.

Specifying the location of the
contract

The last piece of configuration needed for a switch is to tell the routing
plug-in where its contract is located. To specify the location of the contract
do the following:

1. Open your new configuration in any text editor.

2. Inside the scope you created for the process add the following line.
wsdl_location is the location of the contract containing the routing
rules for your Web service enabled service.

Deploying the Artix container The easiest way to run a switching process is to launch it inside of the Artix
container. To launch the Artix container with a specific configuration use the
following command.

scope_name specifies the name of the scope you created in your conguration
domain. domain_name specifies the name of the domain you created.

orb_plugins=[]

plugins:routing:wsdl_url="wsdl_location";

start it_container -ORBname scope_name -ORBdomain_name domain_name
53

CHAPTER 3 | Web Service Enabling Backend Services
Example Example 3 shows an example of a configuration domain, widgets.cfg, that
contains the information to launch a switching process.

To launch the Artix container using the configuration shown in Example 3
you would use the following command.

Example 3: Sample Routing Configuration

include "artix.cfg";

corba_ws
{
 orb_plugins = ["xmlfile_log_stream", "routing"];

 plugins:routing:wsdl_url="widgets.wsdl";
};

start it_container -ORBname corba_ws -ORBdomain_name widgets
 54

CHAPTER 4

Using Artix with
.NET
Artix easily integrates with .NET applications.

Overview Microsoft .NET is one of the more popular methods for developing web
service. Artix clients and Artix servers that use SOAP over HTTP can directly
access .NET applications. This also means that you can use Artix to bridge
between a .NET application and any backend service that uses a transport
supported by Artix. In addition, .NET applications can interact with the Artix
locator and the Artix session manager.

In this chapter This chapter discusses the following topics:

Building a .NET Client for an Artix Service page 56

Building an Artix Client for a .NET Service page 59

Using Artix to Bridge from a Backend Service to .NET page 61

Using Artix Services from .NET clients page 63
55

CHAPTER 4 | Using Artix with .NET
Building a .NET Client for an Artix Service

Overview If you have a service that was developed using Artix and you want to access
it using client�s written in .NET, the process is straight forward if the Artix
service exposes a SOAP/HTTP endpoint. Visual Studio can import the
service�s contract from either a running instance of the service or from a
local copy of the service�s contract. Once the contract is imported, you can
develop the client using C#.

If your .NET clients need to communicate with services that use protocols
other than SOAP/HTTP, Artix can be used as a bridge. This is shown in
�Using Artix to Bridge from a Backend Service to .NET� on page 61. If you
want your clients to directly interact with services that use protocols other
than SOAP/HTTP, you need to use Artix Connect.

Contract limitations .NET can read most of the proprietary extensions Artix uses for transport
configuration. However, .NET does not recognize, or make use of, any of the
Artix contract elements under the http-conf namespace. This means that
any client-side transport configuration stored in the contract will not be
used. If it is required, you must be sure to set it up for your client using the
appropriate .NET methods.
 56

Building a .NET Client for an Artix Service
Procedure To create a .NET client for a service developed using Artix do the following:

1. Create a new empty C# project in Visual Studio.

2. Add a new Web Reference to your project to bring up the Web
Reference browser shown in Figure 1.

3. In the Address field of the browser, type in the location of the service�s
contract.

♦ If the service is deployed and has the Artix WSDL publishing
plug-in configured, you can enter the address of the running
service to get the service�s contract.

♦ If you have a copy of the service�s contract stored on an
accessible file system, you can enter the full path name of the
contract.

4. Once the contract is loaded, click the Add Reference button to add the
service to your project.

5. Add a new C# class to your project.

Figure 1: Browsing For a Web Reference in Visual Studio
57

CHAPTER 4 | Using Artix with .NET
6. When developing your client, you instantiate a proxy using the name of
the service definition in the imported contract.

When Visual Studio builds your client, it will automatically generate the
proxy code needed to invoke on the running Artix service.

Example Example 4 shows the .NET code for a client that works with the Artix
HelloWorldService. In this case, the contract was imported into the same
namespace as the client.

Example 4: .NET Client for Working with HelloWorldService

using System;

namespace HelloWorldClient
{
 class Client
 {
 static void Main(string[] args)
 {
 HelloWorldService service = new HelloWorldService();

 string str_out, str_in;

 str_out = service.sayHi();
 Console.WriteLine("sayHi method returned: " + str_out);

 str_in = "Early Adopter";
 str_out = service.greetMe(str_in);
 Console.WriteLine("greetMe method returned: " + str_out);
 }
 }
}

 58

Building an Artix Client for a .NET Service
Building an Artix Client for a .NET Service

Overview .NET services publish standard WSDL contracts that Artix can use to
generate a service proxy. Once you have the WSDL contract defining the
.NET service, writing a client using Artix follows the same pattern as writing
any other Artix client.

Procedure To build an Artix client for a .NET service do the following:

1. Get the WSDL for the .NET service by entering it�s URL appended with
?wsdl into a Web browser.

For example, if you are running the .NET HelloWorld service shipped
as part of the .NET integration demo you would enter
http://localhost/HelloWorld_doclit/HelloWorldService.asmx?wsd
59

CHAPTER 4 | Using Artix with .NET
l into your browser to display the service�s WSDL. The result is shown
in Figure 2.

2. Save the WSDL document to your local system using your browser�s
File|Save As option.

3. If you are using the Artix Designer, import the .NET service�s WSDL
into an Artix project.

4. Generate client code stubs as you would for any Artix client.

5. Develop your client using standard Artix APIs.

Figure 2: .NET Service WSDL in a Browser
 60

Using Artix to Bridge from a Backend Service to .NET
Using Artix to Bridge from a Backend Service
to .NET

Overview In situations where you want to build .NET clients that can access services
that are provided by backend servers that do not have a native SOAP/HTTP
interface, you can use Artix as a bridge as shown in Figure 3. This use case
is very similar to the use case described in �Web Service Enabling Backend
Services� on page 35. The major difference is that you will use .NET to
develop the client, as described in �Building a .NET Client for an Artix
Service� on page 56.

Procedure To build a bridge between a backend service and .NET clients using Artix,
do the following:

1. Create an Artix contract describing you backend service as described in
�Describing a Service in WSDL� on page 37.

2. Add a SOAP\HTTP endpoint definition to the service contract as
described in �Defining a SOAP/HTTP Endpoint� on page 49.

Figure 3: Artix Bridge Between .NET and a JMS Service

C#
Client

Router
Artix

HTTP JMS

Request
Queue

Reply
Queue

JMS
Server
61

CHAPTER 4 | Using Artix with .NET
3. Deploy an Artix switch as described in �Configuring and Deploying a
Switching Service� on page 52.

4. Create a new empty C# project in Visual Studio.

5. Add a new Web Reference to your project to bring up the Web
Reference browser.

6. In the Address field of the browser, type in the location of the service�s
contract.

♦ If the switch is deployed and has the Artix WSDL publishing
plug-in configured, you can enter the address of the running
switch to get its contract.

♦ If you have a copy of the switch�s contract stored on an accessible
file system, you can enter the full path name of the contract.

7. Once the contract is loaded, click the Add Reference button to add the
service to your project.

8. Add a new C# class to your project.

9. When developing your client, you instantiate a proxy using the name of
the SOAP\HTTP endpoint definition in the imported contract.

When Visual Studio builds your client, it will automatically generate the
proxy code needed to invoke on the backend service using the Artix switch
as an intermediary.

Note: If you want to be able to access the contract from the running
switch, add wsdl_publish to the switch�s orb_plugins list.
 62

Using Artix Services from .NET clients
Using Artix Services from .NET clients

Overview Because both the Artix locator and the Artix session manager communicate
using SOAP/HTTP, they can be accessed by .NET clients. You could even
download their contracts to generate proxies for them. However, the data
returned by the Artix services are complex types that are not natively
understood by .NET. To overcome this problem, Artix provides a helper
library that contains the following:

� A proxy class for the locator.

� A class for representing Artix References.

� A helper class for extracting the SOAP address from an Artix Reference.

� A proxy class for the session manager.

In this section This section discusses the following topics:

Using the Artix Locator page 64

Using the Artix Session Manager page 68
63

CHAPTER 4 | Using Artix with .NET
Using the Artix Locator

Overview The Artix locator is a light-weight service for discovering the contact
information of a deployed Artix service. While only services developed with
Artix can register with the Artix locator, .NET clients can query the Artix
locator for services using one of two methods:

� Use a copy of the locator service contract supplied with Artix and the
XMLSchema definition of an Artix reference, you can build a locator
service proxy in .NET and write the logic to dig the appropriate
information from the returned Artix reference.

� Use the Bus.Services.dll library provided with Artix to access the
locator and decifer the returned Artix reference.

It is recommended that you use the later method for ease of development
and to protect your applications from changes in the Artix reference
XMLSchema definition.

For more information on the Artix locator see Deploying and Managing Artix
Solutions.

What you need before starting Before starting to develop a client that uses the Artix locator to look-up live
instances of an Artix service you need the following things:

� The HTTP address of the locator you are going to use.

� A locally accessible copy of a contract defining the service you desire to
ultimately invoke upon.

Procedure To use the Artix locator to discover the location of a deployed Artix service
from a .NET client do the following:

1. Create a new project in Visual Studio.

2. Right-click the folder for you new project and select Add Reference
from the pop-up menu.
 64

../deploy/index.htm
../deploy/index.htm

Using Artix Services from .NET clients
3. You will see a window similar to that shown in Figure 4.

4. Click Browse.

5. In the file selection window browse to your Artix installation and select
utils\.NET\Bus.Services.dll.

6. Click OK to return to the Visual Studio editing area.

7. Right-click the folder for you new project and select Add Web
Reference from the pop-up menu.

8. In the Address field of the browser, enter the full pathname of the
contract for the service on which you are going to make requests.

9. Add a new C# class to your project.

10. Add the statement using Bus.Services; after the statement using
System;.

11. Create a service proxy for the Artix locator by instantiating an instance
of the Bus.Services.Locator class as shown in Example 5.

Figure 4: Add Reference Window

Example 5: Instantiating a Locator Proxy in .NET

Locator l = new Locator("http://localhost:8080");
65

CHAPTER 4 | Using Artix with .NET
The string parameter of the constructor is the HTTP address of a
deployed Artix locator.

12. Create a QName representing the name of the service you wish to
locate using an instance of the System.Xml.XmlQualifiedName class as
shown in Example 6.

13. Invoke the lookup_endpoint() method on the locator proxy as shown
in Example 7.

lookup_endpoint() takes the QName of the desired service as a
parameter and returns an Artix reference if an instance of the specified
service is registered with the locator instance. Artix references are
implemented in the .NET Bus.Services.Reference class.

14. Create a .NET proxy for the service on which you are going to make
requests as you would normally.

15. Change the value of the proxy�s .Url member to the SOAP address
contained in the Artix reference returned from the locator as shown in
Example 8.

The Bus.Services.ReferenceHelper.GetSoapAddress() method
extracts the SOAP address from an Artix reference and returns it as a
string.

16. Make requests on the service as you would normally.

Example 6: Creating a .NET QName

XmlQualifiedName service = new XmlQualifiedName(
 "HelloWorldService",
 "http://www.iona.com/hello_world_soap_http"
);

Example 7: Looking Up and Endpoint Reference.

Reference ref = l.lookup_endpoint(service);

Example 8: Changing the URL of a .NET Service Proxy to Use a Reference

pxy.Url = ReferenceHelper.GetSoapAddress(ref);
 66

Using Artix Services from .NET clients
Example Example 9 shows the code for a .NET client that looks up the HelloWorld
service from a locator deployed at localhost:8080.

Example 9: .NET Client Using the Artix Locator

using System;
using Bus.Services;

namespace HelloWorldClient
{
 class Client
 {
 static void Main(string[] args)
 {
 Locator l = new Locator("http://localhost:8080");

 XmlQualifiedName service = new XmlQualifiedName(
 "HelloWorldService",
 "http://www.iona.com/hello_world_soap_http");

 Reference ref = l.lookup_endpoint(service);

 HelloWorldService proxy = new HelloWorldService();
 proxy.Url = ReferenceHelper.GetSoapAddress(ref);

 string str_out, str_in;

 str_out = proxy.sayHi();
 Console.WriteLine("sayHi method returned: " + str_out);

 str_in = "Early Adopter";
 str_out = proxy.greetMe(str_in);
 Console.WriteLine("greetMe method returned: " + str_out);
 }
 }
}

67

CHAPTER 4 | Using Artix with .NET
Using the Artix Session Manager

Overview The Artix session manager is a light-weight service that manages the
number of concurrent clients that access a group of services. As with the
Artix locator, only Artix services can register with a session manager.
However, .NET clients can use the session manager to make requests on
managed services using the Bus.Services.dll library.

Working with the Artix session manager is slightly trickier than working with
the Artix locator. This is because the Artix session manager uses SOAP
headers to pass session tokens between clients and services. The session
manager also has a number of methods for managing active sessions.

The helper classes included in the Bus.Services library simplify working
with the session manager by providing native .NET calls to access the
session manager. They also handle session renewal and attaching session
headers to outgoing requests.

For more information on the Artix session manager see Deploying and
Managing Artix Solutions.

What you need before starting Before starting to develop a client that uses the Artix session manager you
need the following things:

� The means for contacting a deployed Artix session manager. This can
be one of the following:

♦ An Artix reference

♦ An HTTP address

♦ A local copy of a contract

� A locally accessible copy of a contract defining the service you desire to
ultimately invoke upon.

� Microsoft�s WSE 2.0 SP3

Procedure To develop a .NET client that uses the Artix session manager do the
following:

1. Create a new project in Visual Studio.

2. Right-click the folder for your new project and select WSE 2.0
Properties.
 68

../deploy/index.htm
../deploy/index.htm

Using Artix Services from .NET clients
3. On the General tab of the properties dialog, check the Enable this
project for Web service enhancements box.

4. Right-click the folder for your new project and select Add Reference
from the pop-up menu.

5. Click Browse on Add Reference window.

6. In the file selection window browse to your Artix installation and select
utils\.NET\Bus.Services.dll.

7. Click OK to return to the Visual Studio editing area.

8. Add an application configuration file to the project containing the XML
shown in Example 10.

9. Right-click the folder for your new project and select Add Web
Reference from the pop-up menu.

10. In the Address field of the browser, enter the full pathname of the
contract for the service on which you are going to make requests.

11. Click Add Reference to return to the Visual Studio editing area.

12. Add a new C# class to your project.

13. Add the statement using Bus.Services; after the statement using
System;.

Example 10:Application Configuration File

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.web>
 <webServices>
 <soapExtensionTypes>
 <add type="Bus.Services.SessionIdExtension,Bus.Services"
 priority="1"
 group="0" />
 </soapExtensionTypes>
 </webServices>
 </system.web>
</configuration>
69

CHAPTER 4 | Using Artix with .NET
14. Create a service proxy for the Artix session manager by instantiating an
instance of the Bus.Services.SessionManager class as shown in
Example 11.

The constructor�s parameter is the HTTP address of a deployed session
manager.

The SessionManager class has constructors that take the following:

♦ an Artix reference

♦ ServiceDescription containing the path to the session
manager�s contract.

15. Create a new Artix session by instantiating an instance of
Bus.Services.Session as shown in Example 12.

The constructor takes three parameters:

♦ An instantiated SessionManager object.

♦ A string identifying the group for which the client wants a session.

♦ The default timeout value, in seconds, for the session.

Once the session is created, the session will automatically attempt to
renew itself until the session is closed. The client does not need to
worry about renewing the session.

Example 11: Instantiating a Locator Proxy in .NET

SessionManager sm = new SessionManager("http://localhost:8080");

Example 12:Creating a new Session

Session s = new Session(sm, "theGroup", 60);

Note: If you want your client to manually renew the session, you
can use sm.DoAutomaticSessionRenew(false) to turn off automatic
session renewal. To renew a session programatically call
renewSession() on the Session object.
 70

Using Artix Services from .NET clients
16. Get a list of the references for the endpoints that are in the session�s
group using SessionManager.get_all_endpoints() as shown in
Example 13.

get_all_endpoints() takes the session ID of the session and returns
an array of Artix references. Each entry in the array contains the
endpoint of one member of the group for which the session was
requested.

17. Create a .NET proxy for the service on which you are going to make
requests using the contructor with Wse apended to it as shown in
Example 14.

18. Change the value of the proxy�s .Url member to the SOAP address of
one of the Artix reference returned from the session manager as shown
in Example 8.

How you determine which member of the returned array contains the
desired endpoint is an implementation detail beyond the scope of this
discussion.

19. Create a SessionFilter object as shown in Example 16.

Example 13:Getting the References for the Managed Endpoints

Reference[] ref = sm.get_all_endpoints(s.GetSessionId());

Example 14:Creating a WSE Enabled Proxy.

SOAPServiceWse pxy = new SOAPServiceWse();

Example 15:Changing the URL of a .NET Service Proxy to Use a Reference

pxy.Url = ReferenceHelper.GetSoapAddress(ref[0]);

Example 16:Creating a SessionFilter

Bus.Services.SessionFilter sFilter = new
Bus.Services.SessionFilter(s);
71

CHAPTER 4 | Using Artix with .NET
20. Instruct the proxy to include the session header in all of its requests by
adding a SessionFilter to the proxy�s output pipeline as shown in
Example 17.

Once you have called this method on the proxy all requests made by
the proxy will contain an Artix session header. The session manager
uses the session header to validate the client�s requests against the list
of valid sessions.

21. Make requests on the service as you would normally.

22. When you are done with the service, end the session by calling
endSession() on the Session object.

Example 17:Setting a Proxy�s Session Header

pxy.Pipeline.OutputFilters.Add(sFilter);
 72

Using Artix Services from .NET clients
Example Example 18 shows the code for a .NET client that makes requests on a
HelloWorld service that is managed by a session manager deployed at
localhost:8080.

Example 18: .NET Client Using the Artix Session Manager

using System;
using Bus.Services;

namespace HelloWorldClient
{
 class Client
 {
 static void Main(string[] args)
 {
 SessionManager sm = new

SessionManager("http://localhost:8080");

 Session s = new Session(sm, "theGroup", 60);

 SOAPService proxy = new SOAPService();
 Reference[] r = sm.get_all_endpoints(s.GetSessionId());
 proxy.Url = ReferenceHelper.GetSoapAddress(r[0]);

 proxy.SetSession(s);

 string str_out, str_in;

 str_out = proxy.sayHi();
 Console.WriteLine("sayHi method returned: " + str_out);

 str_in = "Early Adopter";
 str_out = proxy.greetMe(str_in);
 Console.WriteLine("greetMe method returned: " + str_out);

 s.EndSession();
 }
 }
}

73

CHAPTER 4 | Using Artix with .NET
 74

CHAPTER 5

Using Artix with
WebSphere MQ
To make Artix an WebSphere MQ interoperate you must
properly set up your environment.

Overview When working with Artix and WebSphere MQ, there are five deployment
scenarios:

1. Artix client and server are on the same host computer as a full
WebSphere MQ installation.

2. Artix client and server are on different host computers and each host
has a full WebSphere MQ installation.

3. The Artix client is installed on a host computer with a client
WebSphere MQ. The Artix server is installed on a computer with a full
WebSphere MQ installation.

4. Artix client and server are installed on a host computer with a client
WebSphere MQ installation. A full WebSphere MQ installation is on a
remote host computer. The remote WebSphere MQ installation
manages the messages to and from the client and server processes.

5. Artix client and server processes are installed on a host computer with
have a full WebSphere MQ installation. A full WebSphere MQ
installation is on remote host computer. The remote WebSphere MQ
installation manages the messages to and from the client or server
process.
75

CHAPTER 5 | Using Artix with WebSphere MQ
The following discussions are based on using WebSphere MQ and Artix
installed on Windows computers. In order to successfully deploy any of the
scenarios involving multiple computers, log into each of the computers with
the same username and password.

In this chapter This chapter discusses the following topics:

Artix and MQ on a Single Computer page 77

Client and Server on Different MQ Servers page 78

Client on MQ Client and Server on MQ Server page 81

Using a Remote MQ Server page 83

Using a Remote MQ Server from Full MQ Installations page 85
 76

Artix and MQ on a Single Computer
Artix and MQ on a Single Computer

Overview In this scenario, all of the parts of your Artix solution are on a single
computer. The Artix client and server are deployed onto a computer that has
a full Websphere MQ installation. Both the client and server use a common
queue manager and pair of local queues.

WebSphere MQ Setup To set up the WebSphere MQ environment do the following:

1. Create a queue manager.

2. Create a local queue of normal usage to be used as the request queue.

3. Create a local queue of normal usage to be used as the response
queue.

Contract In the contract fragment shown in Example 19, the <mq:client> and the
<mq:server> elements include attributes that configure the transport.

Example 19:Contract for a Simple Websphere MQ Integration

<service name="MQService">
 <port binding="tns:Greeter_SOAPBinding" name="SoapPort">
 <mq:client QueueManager="MY_DEF_QM"
 QueueName="HW_REQUEST"
 ReplyQueueManager="MY_DEF_QM"
 ReplyQueueName="HW_REPLY"
 AccessMode="send"
 CorrelationStyle="correlationId" />
 <mq:server QueueManager="MY_DEF_QM"
 QueueName="HW_REQUEST"
 ReplyQueueManager="MY_DEF_QM"
 ReplyQueueName="HW_REPLY"
 AccessMode="receive"
 CorrelationStyle="correlationId" />
 </port>
</service>
77

CHAPTER 5 | Using Artix with WebSphere MQ
Client and Server on Different MQ Servers

Overview This scenario requires a more extensive configuration of the WebSphere MQ
installations. In each installation, a queue manager contains both local and
remote queues. The client and server interact with the local queues while
the remote queues are responsible for passing messages between the two
WebSphere MQ installations. The contract contains entries for both local
and remote queues.

Client WebSphere MQ setup To set up the Websphere MQ environment on the Artix client�s host do the
following:

1. Create a queue manager.

2. Create a local queue of usage transmission.

3. Create a local queue of usage normal to be the response queue.

4. Create a remote queue to reference the local queue on which the server
will receive requests.

5. Create a remote queue to reference the remote queue on which the
server will post replies.

6. Create a receiver channel to receive replies from the server.

Note: The name of the queue manager should be a different name
on each host.

Queue Name OutgoingRequest

Remote Queue Name IncomingRequest

Remote Queue Manager Name server queue manager

Transmission Queue Name local transmission queue

Queue Name ServerReplyQueue

Remote Queue Name OutgoingReply

Remote Queue Manager Name server queue manager

Transmission Queue Name local transmission queue

Channel Name CHANNEL_S_C
 78

Client and Server on Different MQ Servers
7. Create a sender channel to send requests to the server.

Server WebSphere MQ setup To set up the WebSphere MQ environment on the Artix server�s host
computer do the following:

1. Create a queue manager.

2. Create a local queue of usage transmission.

3. Create a local queue of usage normal to receive requests from the
client.

4. Create a remote queue to refer to the local queue on which the client
will receive replies.

5. Create a receiver channel to receive requests from the client.

6. Create a sender channel to send replies to the client.

Transmission Protocol TCP/IP

Channel Name CHANNEL_C_S

Transmission Protocol TCP/IP

Connection Name hostname of server

Transmission Queue local transmission queue

Queue Name OutgoingReply

Remote Queue Name IncomingReply

Remote Queue Manager Name client�s queue manager

Transmission Queue Name local transmission queue

Channel Name CHANNEL_C_S

Transmission Protocol TCP/IP

Channel Name CHANNEL_S_C

Transmission Protocol TCP/IP

Connection Name hostname of client computer

Transmission Queue local transmission queue
79

CHAPTER 5 | Using Artix with WebSphere MQ
Contract In the contract fragment shown in Example 20, the <mq:client> and the
<mq:server> elements include attributes that configure the transport.

The client transport is configured to use the WebSphere MQ installation on
the computer that hosts the client application. The server transport is
configured to use the WebSphere MQ installation on the computer that
hosts the server application. The additional transport attribute,
AliasQueueName, is required in the <mq:client> element. This attribute
insures that the server process uses its remote queue, OutgoingReply, and
queue manager, QMgrS, when posting the response. Without this entry, the
server would attempt to post the response to the reply queue identified in
the MQ message header. The MQ message header content is derived from
the information in the <mq:client> element.

Example 20:Contract for Remote WebSphere MQ Set Up

<wsdl:service name="MQService">
 <wsdl:port binding="tns:Greeter_SOAPBinding" name="SoapPort">
 <mq:client AccessMode="send"
 QueueManager="QMgrC"
 QueueName="OutgoingRequest"
 ReplyQueueManager="QMgrC"
 ReplyQueueName="IncomingReply"
 CorrelationStyle="correlationId"
 AliasQueueName="ServerReplyQueue" />
 <mq:server AccessMode="receive"
 QueueManager="QMgrS"
 QueueName="IncomingRequest"
 ReplyQueueManager="QMgrS"
 ReplyQueueName="OutgoingReply"
 CorrelationStyle="correlationId" />
 </wsdl:port>
</wsdl:service>
 80

Client on MQ Client and Server on MQ Server
Client on MQ Client and Server on MQ Server

Overview This scenario requires a queue manager and two local queues. In addition, a
Server Transport Channel must be defined for the queue manager.

On the client�s host there is a client WebSphere MQ installation. There are
no queue managers or queues configured on this host. Before running the
Artix client application, the MQSERVER environment variable must be set. This
variable identifies the Server Transport Channel, the computer hosting the
full installation of WebSphere MQ, and the TCP/IP port used by the queue
manager listener.

On the server�s host, there is a full WebSphere MQ installation.

WebSphere MQ client setup Install the client WebSphere MQ application on the computer that will run
the Artix client application. The installation process places the WebSphere
MQ libraries onto the system path. Prior to running the client application,
the environment variable MQSERVER must be set in the command window.

WebSphere MQ server setup To set up the WebSphere MQ environment on the server�s host computer do
the following:

1. Create a queue manager.

2. Create a local queue of usage normal onto which the requests will be
placed.

3. Create a local queue of usage normal onto which the responses will be
placed.

4. Create a server connection channel.

Operation When you are ready to start-up your application do the following:

1. Start the queue manager on the WebSphere MA server.

2. Start the Artix server.

Channel Name CONNECT1

Protocol Type TCP/IP
81

CHAPTER 5 | Using Artix with WebSphere MQ
3. Start the Artix client.

i. Open a command window.

ii. Set the environment variable:

iii. Run the client executable.

Contract In the contract fragment shown in Example 21 the <mq:client> and the
<mq:server> elements include the attributes that configure the transport.

 set MQSERVER=CONNECT1/TCP/server_hostname

Example 21:Port Settings for a Client and Server

 <service name="MQService">
 <port binding="tns:Greeter_SOAPBinding" name="MQPort">
 <mq:client QueueManager="MY_DEF_QM"
 QueueName="HW_REQUEST"
 ReplyQueueManager="MY_DEF_QM"
 ReplyQueueName="HW_REPLY"
 AccessMode="send"
 CorrelationStyle="correlationId" />
 <mq:server QueueManager="MY_DEF_QM"
 QueueName="HW_REQUEST"
 ReplyQueueManager="MY_DEF_QM"
 ReplyQueueName="HW_REPLY"
 AccessMode="receive"
 CorrelationStyle="correlationId" />
 </port>
</service>
 82

Using a Remote MQ Server
Using a Remote MQ Server

Overview This scenario is similar to scenario described in �Client on MQ Client and
Server on MQ Server� on page 81 with the exception that the computer
hosting the server process is not the same computer on which the
WebSphere MQ is installed. The Artix client and the Artix server are run on
remote computers. They can be on either the same computer or on different
computers.

The computer(s) used to run the Artix processes must have a client
WebSphere MQ installation. There are no queue managers or queues
configured on this computer. Before running the Artix processes, the
MQSERVER environment variable must be set. This variable identifies the
Server Transport Channel, the computer hosting the full installation of
WebSphere MQ, and the TCP/IP port used by the queue manager listener.

Remote system set up Install the client WebSphere MQ application on the computer that will run
the Artix client and/or the Artix server applications. The installation process
places the WebSphere MQ libraries onto the system path. Prior to running
the Artix applications, the environment variable MQSERVER must be set in the
command window.

WebSphere MQ server set up To set up the system on which the WebSphere MQ queue manager will run
do the following:

1. Create a queue manager.

2. Create a local queue of usage normal onto which the requests will be
placed.

3. Create a local queue of usage normal onto which the responses will be
placed.

4. Create a server connection channel.

Channel Name CONNECT1

Protocol Type TCP/IP
83

CHAPTER 5 | Using Artix with WebSphere MQ
Operation When you are ready to start-up your application do the following:

1. Start the queue manager.

2. Start the server.

i. Open a command window.

ii. Set the environment variable:

iii. Run the server process.

3. Start the client.

i. Open a command window.

ii. Set the environment variable:

iii. Run the client process.

Contract In the contract fragment shown in Example 22 the <mq:client> and the
<mq:server> elements include attributes that configure the transport.

 set MQSERVER=CONNECT1/TCP/MQ_hostname

 set MQSERVER=CONNECT1/TCP/MQ_hostname

Example 22:Contract for a Remote WebSphere MQ Server

<service name="MQService">
 <port binding="tns:Greeter_SOAPBinding" name="SoapPort">
 <mq:client QueueManager="MY_DEF_QM"
 QueueName="HW_REQUEST"
 ReplyQueueManager="MY_DEF_QM"
 ReplyQueueName="HW_REPLY"
 AccessMode="send"
 CorrelationStyle="correlationId" />
 <mq:server QueueManager="MY_DEF_QM"
 QueueName="HW_REQUEST"
 ReplyQueueManager="MY_DEF_QM"
 ReplyQueueName="HW_REPLY"
 AccessMode="receive"
 CorrelationStyle="correlationId" />
 </port>
</service>
 84

Using a Remote MQ Server from Full MQ Installations
Using a Remote MQ Server from Full MQ
Installations

Overview This scenario is similar to the one described in �Using a Remote MQ Server�
on page 83 with the exception that the computer(s) hosting the client or
server process also has a full WebSphere MQ installation. However, there
are no queue managers or queues configured on this host.

Additional set up The only difference in the set up is that you need to specify an additional
MQ port attribute for any of the Artix applications running on a system with
a full WebSphere MQ installation. The Server_Client="client" attribute
setting informs the Artix runtime that it needs to load the Websphere MQ
client libraries instead of the Websphere MQ server libraries.

Contract In the contract fragment shown in Example 23 the <mq:client> and the
<mq:server> elements include attributes that configure the transport.

Example 23:using Artix on a Full MQ Installation

<service name="MQService">
 <port binding="tns:Greeter_SOAPBinding" name="SoapPort">
 <mq:client QueueManager="MY_DEF_QM"
 QueueName="HW_REQUEST"
 ReplyQueueManager="MY_DEF_QM"
 ReplyQueueName="HW_REPLY"
 AccessMode="send"
 CorrelationStyle="correlationId"
 Server_Client="client" />
 <mq:server QueueManager="MY_DEF_QM"
 QueueName="HW_REQUEST"
 ReplyQueueManager="MY_DEF_QM"
 ReplyQueueName="HW_REPLY"
 AccessMode="receive"
 CorrelationStyle="correlationId"
 Server_Client="client" />
 </port>
</service>
85

CHAPTER 5 | Using Artix with WebSphere MQ
 86

CHAPTER 6

Writing XSLT
Scripts for the
Artix Transformer
The Artix transformer is a light weight service that uses XSLT
scripts to transform messages sent from Artix endpoints.

Overview The transformer uses a WSDL file, which describes the source message and
the target message, to create in-memory XML representations of the input
and output data. Then, using an XSLT script that describes the mapping of
the input message to output message the transformer creates the output
message.

Since you do not have a printout of the in-memory XML representations,
writing the XSLT script file appears to be a difficult task. However, you have
two sources of information that will guide you: the WSDL file and the
content of the SOAP message body.

In this chapter This chapter discusses the following topics:

Note: The SOAP message body is only used as a crutch in developing
your XSLT scripts. The Artix transformer can work with any of the bindings
and transports supported by Artix.
87

CHAPTER 6 | Writing XSLT Scripts for the Artix Transformer
The XSLT Script Template page 89

Transforming a Sequence into a String page 91

Modifying a Simple Sequence page 93

Working with Nested Input Sequences page 96

Working with Attributes in an Input Message page 99

Working with Attributes in the Output Message page 102

Working with Nested Sequences in an Output Message page 105

Using Multiple Templates in a Script page 108
 88

The XSLT Script Template
The XSLT Script Template

Overview It is probably not apparent from the transformation demo that ships with
Artix that there is a common format to all XSLT scripts. This is due to the
fact that the incoming and outgoing messages include a single part. The
in-memory XML representations of these messages, all of the content that
you need to manipulate will be included as child elements under the
element that corresponds to the message part. Therefore, it is fairly
straightforward to set up the basic content of the XSLT script.

Sections of the script There are three areas of interest in an XSLT script:

1. This area identifies the node from which to begin the transformation.
When using the transformer, the root node �/� is used as the starting
point to indicate that processing should begin from the beginning of the
in-memory representation.

2. This area describes the syntax of the transformed message. It is always
contained in a message element. The trick in writing this part of the
script is determining what elements to place as children to the
message element. The name of the children of the message element is
determined by the name attribute of the part elements of the WSDL
message element specified as the input message of the invoked
operation. If you examine the WSDL documents in this chapter, you
will note that the transformer_reply element corresponds to the value
of the name attribute for the part within the operation�s output
message. That is, for the portType transformer, the operation
transformer_operation has an output message of type
transformer_reply_message. The part within this message is named
transformer_reply, and this becomes the value for the name of the
element defining the reply message�s content. The element contains a
single apply-templates element.

3. This section contains the processing directives that describes the
output for a template match. The primary question is what value to
assign to the match attribute of the template element. This value is
derived from the name attribute of the part within the operation�s input
89

CHAPTER 6 | Writing XSLT Scripts for the Artix Transformer
message. That is, for the portType transformer, the operation
transformer_operation has an input message of type
client_request_message. The part within this message is named
client_request, and this becomes the value for the match attribute of
the opening template tag that delimits the transformation commands.

The template Example 24 shows the template for the XSLT scripts used later in the
chapter.

Example 24:XSLT Script Template

<?xml version="1.0"?>
<xsl:transform version="1.0"
 xmlns:out="http://www.iona.com/xslt"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

1 <xsl:template match="/">
2 <message>

 <transformer_reply>
 <xsl:apply-templates/>
 </transformer_reply>
 </message>
 </xsl:template>

3 <xsl:template match="client_request">
 . . .
 </xsl:template>
</xs1:transform>
 90

Transforming a Sequence into a String
Transforming a Sequence into a String

Overview In this example, the input data is in a sequence that includes two members
and the output data is a simple string.

The contract The logical section of the WSDL file is shown in Example 25.

Example 25:Contract Fragment for Sequence to String

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="client"
 targetNamespace="http://www.iona.com/xslt"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:http-conf=
 "http://schemas.iona.com/transports/http/configuration"
 xmlns:ns1="http://www.iona.com/xslt/corba/typemap/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://www.iona.com/xslt"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <types>
 <schema targetNamespace="http://www.iona.com/xslt"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <element name="client_request_type"
 type="tns:complex_request_type"/>
 <element name="transformer_reply_type" type="xsd:string"/>
 <complexType name="complex_request_type">
 <sequence>
 <element name="first_name" type="xsd:string"/>
 <element name="last_name" type="xsd:string"/>
 </sequence>
 </complexType>
 </schema>
 </types>
 <message name="client_request_message">
 <part element="tns:client_request_type"
 name="client_request"/>
 </message>
91

CHAPTER 6 | Writing XSLT Scripts for the Artix Transformer
The XSLT script Example 26 shows an XSLT script that simply concatenates the first and
last name values from the incoming data into the output data string.

Note the correspondence between the bold type font in the WSDL document
and XSLT script. If you were to examine the content of the SOAP body, you
would see that the strings corresponding to the first and last names are
simply contained in the first_name and last_name elements, which is why
first_name and last_name were specified as the values of the select
attributes.

 <message name="transformer_reply_message">
 <part element="tns:transformer_reply_type"
 name="transformer_reply"/>
 </message>
 <portType name="transformer">
 <operation name="transformer_operation">
 <input message="tns:client_request_message"
 name="transformer_operationRequest"/>
 <output message="tns:transformer_reply_message"
 name="transformer_operationResponse"/>
 </operation>
 </portType>

Example 25:Contract Fragment for Sequence to String

Example 26:Simple XSLT Script

<?xml version="1.0"?>
<xsl:transform version="1.0"
 xmlns:out="http://www.iona.com/xslt"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:template match="/">
 <message>
 <transformer_reply>
 <xsl:apply-templates/>
 </transformer_reply>
 </message>
 </xsl:template>
 <xsl:template match="client_request">
 <xsl:value-of select="first_name"/>
 <xsl:text> </xsl:text>
 <xsl:value-of select="last_name"/>
 </xsl:template>
</xsl:transform>
 92

Modifying a Simple Sequence
Modifying a Simple Sequence

Overview In this example, both the input and output data are sequences. However,
the output sequence contains one fewer member. The transformation
involves mapping one member of the input data into a corresponding
member in the output data, and mapping the concatenation of the other two
input data members into the second member in the output sequence.

The contract The logical section of the WSDL file is shown in Example 27.

Example 27:Contract Fragment for Modifying a Sequence

<types>
 <schema targetNamespace="http://www.iona.com/xslt"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <element name="client_request_type"
 type="tns:complex_request_type"/>
 <element name="transformer_reply_type"
 type="tns:complex_response_type"/>
 <complexType name="complex_request_type">
 <sequence>
 <element name="first_name" type="xsd:string"/>
 <element name="last_name" type="xsd:string"/>
 <element name="postal_code" type="xsd:string"/>
 </sequence>
 </complexType>
 <complexType name="complex_response_type">
 <sequence>
 <element maxOccurs="1" minOccurs="1"
 name="zipcode" type="xsd:string"/>
 <element maxOccurs="1" minOccurs="1"
 name="full_name" type="xsd:string"/>
 </sequence>
 </complexType>
 </schema>
</types>
 <message name="client_request_message">
 <part element="tns:client_request_type"
 name="client_request"/>
 </message>
93

CHAPTER 6 | Writing XSLT Scripts for the Artix Transformer
The script The XSLT script shown in Example 28 copies the value of the postal_code
element of the input message into the zipcode element the output message.
It then performs the same concatenation as in the first example.

 <message name="transformer_reply_message">
 <part element="tns:transformer_reply_type"
 name="transformer_reply"/>
 </message>
 <portType name="transformer">
 <operation name="transformer_operation">
 <input message="tns:client_request_message"
 name="transformer_operationRequest"/>
 <output message="tns:transformer_reply_message"
 name="transformer_operationResponse"/>
 </operation>
 </portType>

Example 27:Contract Fragment for Modifying a Sequence

Example 28:Sequence to Sequence XSLT Script

<?xml version="1.0"?>
<xsl:transform version="1.0"
 xmlns:out="http://www.iona.com/xslt"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:template match="/">
 <message>
 <transformer_reply>
 <xsl:apply-templates/>
 </transformer_reply>
 </message>
 </xsl:template>
 <xsl:template match="client_request">
 <zipcode>
 <xsl:value-of select="postal_code"/>
 </zipcode>
 <full_name>
 <xsl:value-of select="first_name"/>
 <xsl:text> </xsl:text>
 <xsl:value-of select="last_name"/>
 </full_name>
 </xsl:template>
</xsl:transform>
 94

Modifying a Simple Sequence
Unlike the previous example where the output message was a single
element, the output message in this example contains multiple elements. To
specify the extra complexity, the script specifies processing directives for
each of the elements contained in the output message.

These processing instructions may appear confusing because there are
elements derived from the content of the output message and select
attributes that reference content from the input message. This is because
the transformer processes the directives in the following way:

1. Create the opening tag for a zipcode element in the output message.

2. Find the 1st instance of a postal_code element in the input message
and place its value inside the zipcode element.

3. Create the closing tag for a zipcode element in the output message.

4. Create the opening tag for a full_name element in the output message.

5. Find the 1st instance of a first_name element in the input message
and place its value inside the ful_name element.

6. Place a space after the first name.

7. Find the 1st instance of a last_name element in the input message and
place its value after the space.

8. Create the closing tag for a full_name element in the output message.
95

CHAPTER 6 | Writing XSLT Scripts for the Artix Transformer
Working with Nested Input Sequences

Overview In this example, the input data is a sequence that includes two child
sequences. The output data is a sequence with two members.

The contract The logical section of the WSDL file is shown in Example 29.

Example 29:Contract Fragment for Nested Input Sequences

<types>
 <schema targetNamespace="http://www.iona.com/xslt"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <element name="client_request_type"
 type="tns:complex_request_type"/>
 <element name="transformer_reply_type"
 type="tns:complex_response_type"/>
 <complexType name="name_type">
 <sequence>
 <element name="first_name" type="xsd:string"/>
 <element name="last_name" type="xsd:string"/>
 </sequence>
 </complexType>
 <complexType name="specifics_type">
 <sequence>
 <element name="age" type="xsd:string"/>
 <element name="postal_code" type="xsd:string"/>
 </sequence>
 </complexType>
 <complexType name="complex_request_type">
 <sequence>
 <element maxOccurs="1" minOccurs="1"
 name="individual"
 type="tns:name_type"/>
 <element maxOccurs="1" minOccurs="1"
 name="personal_details"
 type="tns:specifics_type"/>
 </sequence>
 </complexType>
 96

Working with Nested Input Sequences
The XSLT script The XSLT script for this example, shown in Example 30, is very similar to
the script in Example 28. The major difference is that you access the input
data by referencing the nested sequences. For example, to match the
postal_code element you use the expression
personal_deatils/postal_code.

 <complexType name="complex_response_type">
 <sequence>
 <element maxOccurs="1" minOccurs="1"
 name="zipcode" type="xsd:string"/>
 <element maxOccurs="1" minOccurs="1"
 name="full_name" type="xsd:string"/>
 </sequence>
 </complexType>
 </schema>
</types>
 <message name="client_request_message">
 <part element="tns:client_request_type"
 name="client_request"/>
 </message>
 <message name="transformer_reply_message">
 <part element="tns:transformer_reply_type"
 name="transformer_reply"/>
 </message>
 <portType name="transformer">
 <operation name="transformer_operation">
 <input message="tns:client_request_message"
 name="transformer_operationRequest"/>
 <output message="tns:transformer_reply_message"
 name="transformer_operationResponse"/>
 </operation>
 </portType>

Example 29:Contract Fragment for Nested Input Sequences

Example 30:XSLT Script for a Nested Input Sequence

<?xml version="1.0"?>
<xsl:transform version="1.0"
 xmlns:ns1="http://www.iona.com/xslt"
 xmlns:out="http://www.iona.com/xslt"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:template match="/">
97

CHAPTER 6 | Writing XSLT Scripts for the Artix Transformer
 <message>
 <transformer_reply>
 <xsl:apply-templates/>
 </transformer_reply>
 </message>
 </xsl:template>
 <xsl:template match="client_request">
 <zipcode>
 <xsl:value-of select="personal_details/postal_code"/>
 </zipcode>
 <full_name>
 <xsl:value-of select="individual/first_name"/>
 <xsl:text> </xsl:text>
 <xsl:value-of select="individual/last_name"/>
 </full_name>
 </xsl:template>
</xsl:transform>

Example 30:XSLT Script for a Nested Input Sequence
 98

Working with Attributes in an Input Message
Working with Attributes in an Input Message

Overview In this example, the input message is a sequence with two child sequences.
One of the child sequences includes an attribute. In this transformation, the
important concept is how the attribute is accessed in the processing
instructions. The value of the attribute is placed into one of the members of
the output sequence.

The contract The logical section of the WSDL file is shown in Example 31.

Example 31:Contract Fragment for Input Sequences with Attributes

<types>
 <schema targetNamespace="http://www.iona.com/xslt"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <element name="client_request_type"
 type="tns:complex_request_type"/>
 <element name="transformer_reply_type"
 type="tns:complex_response_type"/>
 <complexType name="name_type">
 <sequence>
 <element name="first_name" type="xsd:string"/>
 <element name="last_name" type="xsd:string"/>
 </sequence>
 </complexType>
 <complexType name="specifics_type">
 <sequence>
 <element name="age" type="xsd:string"/>
 <element name="postal_code" type="xsd:string"/>
 </sequence>
 <attribute name="sex" type="xsd:string"/>
 </complexType>
99

CHAPTER 6 | Writing XSLT Scripts for the Artix Transformer
 <complexType name="complex_request_type">
 <sequence>
 <element maxOccurs="1" minOccurs="1"
 name="individual"
 type="tns:name_type"/>
 <element maxOccurs="1" minOccurs="1"
 name="personal_details"
 type="tns:specifics_type"/>
 </sequence>
 </complexType>
 <complexType name="complex_response_type">
 <sequence>
 <element maxOccurs="1" minOccurs="1"
 name="sex" type="xsd:string"/>
 <element maxOccurs="1" minOccurs="1"
 name="full_name" type="xsd:string"/>
 </sequence>
 </complexType>
 </schema>
</types>
<message name="client_request_message">
 <part element="tns:client_request_type"
 name="client_request"/>
</message>
<message name="transformer_reply_message">
 <part element="tns:transformer_reply_type"
 name="transformer_reply"/>
</message>
<portType name="transformer">
 <operation name="transformer_operation">
 <input message="tns:client_request_message"
 name="transformer_operationRequest"/>
 <output message="tns:transformer_reply_message"
 name="transformer_operationResponse"/>
 </operation>
</portType>

Example 31:Contract Fragment for Input Sequences with Attributes
 100

Working with Attributes in an Input Message
The XSLT Script While the syntax for accessing the members of the nested sequence in the
XSLT script shown Example 32 looks similar to the syntax used in
Example 30, notice the @ used when referencing the sex attribute. The @
specifies that the value to be matched in an attribute, not an element.

Example 32:XSLT Script for Accessing Attributes

<?xml version="1.0"?>
<xsl:transform version="1.0"
 xmlns:ns1="http://www.iona.com/xslt"
 xmlns:out="http://www.iona.com/xslt"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:template match="/">
 <message>
 <transformer_reply>
 <xsl:apply-templates/>
 </transformer_reply>
 </message>
 </xsl:template>
 <xsl:template match="client_request">
 <sex>
 <xsl:value-of select="personal_details/@sex"/>
 </sex>
 <full_name>
 <xsl:value-of select="individual/first_name"/>
 <xsl:text> </xsl:text>
 <xsl:value-of select="individual/last_name"/>
 </full_name>
 </xsl:template>
</xsl:transform>
101

CHAPTER 6 | Writing XSLT Scripts for the Artix Transformer
Working with Attributes in the Output
Message

Overview In this example, the output message includes a sequence, with one
member, and an attribute, which contains data that was in an attribute
within the input message. The important concept in this example is how the
processing instructions define the attribute in the output message.

The contract The logical section of the WSDL file is shown in Example 33.

Example 33:Contract Fragment for Output Sequences with Attributes

<types>
 <schema targetNamespace="http://www.iona.com/xslt"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <element name="client_request_type"
 type="tns:complex_request_type"/>
 <element name="transformer_reply_type"
 type="tns:complex_response_type"/>
 <complexType name="name_type">
 <sequence>
 <element name="first_name" type="xsd:string"/>
 <element name="last_name" type="xsd:string"/>
 </sequence>
 </complexType>
 <complexType name="specifics_type">
 <sequence>
 <element name="age" type="xsd:string"/>
 <element name="postal_code" type="xsd:string"/>
 </sequence>
 <attribute name="sex" type="xsd:string"/>
 </complexType>
 102

Working with Attributes in the Output Message
 <complexType name="complex_request_type">
 <sequence>
 <element maxOccurs="1" minOccurs="1"
 name="individual"
 type="tns:name_type"/>
 <element maxOccurs="1" minOccurs="1"
 name="personal_details"
 type="tns:specifics_type"/>
 </sequence>
 </complexType>
 <complexType name="complex_response_type">
 <sequence>
 <element maxOccurs="1" minOccurs="1"
 name="full_name" type="xsd:string"/>
 </sequence>
 <attribute name="sex" type="xsd:string"/>
 </complexType>
 </schema>
</types>
<message name="client_request_message">
 <part element="tns:client_request_type"
 name="client_request"/>
</message>
<message name="transformer_reply_message">
 <part element="tns:transformer_reply_type"
 name="transformer_reply"/>
</message>
<portType name="transformer">
 <operation name="transformer_operation">
 <input message="tns:client_request_message"
 name="transformer_operationRequest"/>
 <output message="tns:transformer_reply_message"
 name="transformer_operationResponse"/>
 </operation>
</portType>

Example 33:Contract Fragment for Output Sequences with Attributes
103

CHAPTER 6 | Writing XSLT Scripts for the Artix Transformer
The XSLT Script Example 34 shows an XSLT script that places the sex attribute from the
input message into the sex attribute of the output message. This is done
using the xsl:attribute directive.

Example 34:Placing an Attribute in an Output Message

<?xml version="1.0"?>
<xsl:transform version="1.0"
 xmlns:ns1="http://www.iona.com/xslt"
 xmlns:out="http://www.iona.com/xslt"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:template match="/">
 <message>
 <transformer_reply>
 <xsl:apply-templates/>
 </transformer_reply>
 </message>
 </xsl:template>
 <xsl:template match="client_request">
 <xsl:attribute name="sex">
 <xsl:value-of select="personal_details/@sex"/>
 </xsl:attribute>
 <full_name>
 <xsl:value-of select="individual/first_name"/>
 <xsl:text> </xsl:text>
 <xsl:value-of select="individual/last_name"/>
 </full_name>
 </xsl:template>
</xsl:transform>
 104

Working with Nested Sequences in an Output Message
Working with Nested Sequences in an Output
Message

Overview In this example, the output message includes an attribute and a sequence
that itself contains a sequence.

The contract The logical section of the WSDL file is shown in Example 35.

Example 35:Contract Fragment for Nested Output Sequences

<types>
 <schema targetNamespace="http://www.iona.com/xslt"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <element name="client_request_type"
 type="tns:complex_request_type"/>
 <element name="transformer_reply_type"
 type="tns:complex_response_type"/>
 <complexType name="name_type">
 <sequence>
 <element name="first_name" type="xsd:string"/>
 <element name="last_name" type="xsd:string"/>
 </sequence>
 </complexType>
 <complexType name="specifics_type">
 <sequence>
 <element name="age" type="xsd:string"/>
 <element name="postal_code" type="xsd:string"/>
 </sequence>
 <attribute name="sex" type="xsd:string"/>
 </complexType>
 <complexType name="complex_request_type">
 <sequence>
 <element maxOccurs="1" minOccurs="1"
 name="individual"
 type="tns:name_type"/>
 <element maxOccurs="1" minOccurs="1"
 name="personal_details"
 type="tns:specifics_type"/>
 </sequence>
 </complexType>
105

CHAPTER 6 | Writing XSLT Scripts for the Artix Transformer
The XSLT script Unlike in the previous examples, the XSLT script required to create the
output message, shown in Example 36, must now include tags to create the
first_name and last_name elements derived from the nested sequence.

 <complexType name="complex_response_type">
 <sequence>
 <element maxOccurs="1" minOccurs="1"
 name="full_name" type="tns:name_type"/>
 </sequence>
 <attribute name="sex" type="xsd:string"/>
 </complexType>
 </schema>
</types>
<message name="client_request_message">
 <part element="tns:client_request_type"
 name="client_request"/>
</message>
<message name="transformer_reply_message">
 <part element="tns:transformer_reply_type"
 name="transformer_reply"/>
</message>
<portType name="transformer">
 <operation name="transformer_operation">
 <input message="tns:client_request_message"
 name="transformer_operationRequest"/>
 <output message="tns:transformer_reply_message"
 name="transformer_operationResponse"/>
 </operation>
</portType>

Example 35:Contract Fragment for Nested Output Sequences

Example 36:Creating a Nested Output Sequence

<?xml version="1.0"?>
<xsl:transform version="1.0"
 xmlns:ns1="http://www.iona.com/xslt"
 xmlns:out="http://www.iona.com/xslt"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 106

Working with Nested Sequences in an Output Message
 <xsl:template match="/">
 <message>
 <transformer_reply>
 <xsl:apply-templates/>
 </transformer_reply>
 </message>
 </xsl:template>
 <xsl:template match="client_request">
 <xsl:attribute name="sex">
 <xsl:value-of select="personal_details/@sex"/>
 </xsl:attribute>
 <full_name>
 <first_name>
 <xsl:value-of select="individual/first_name"/>
 </first_name>
 <last_name>
 <xsl:value-of select="individual/last_name"/>
 </last_name>
 </full_name>
 </xsl:template>
</xsl:transform>

Example 36:Creating a Nested Output Sequence
107

CHAPTER 6 | Writing XSLT Scripts for the Artix Transformer
Using Multiple Templates in a Script
You can see processing instructions can get quite complex. It would be
helpful if one set of processing instructions could call other sets of
processing instructions. You can do this by splitting the processing
instructions into templates that process sections of the input data.

The XSLT script Example 37 shows one way of separating the directives used in
Example 36.

Example 37:XSLT Script With Multiple Templates

<?xml version="1.0"?>
<xsl:transform version="1.0"
 xmlns:ns1="http://www.iona.com/xslt"
 xmlns:out="http://www.iona.com/xslt"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:template match="/">
 <message>
 <transformer_reply>
 <xsl:apply-templates/>
 </transformer_reply>
 </message>
 </xsl:template>
 <xsl:template match="client_request">
 <xsl:apply-templates select="personal_details"/>
 <xsl:apply-templates select="individual"/>
 </xsl:template>
 <xsl:template match="personal_details">
 <xsl:attribute name="sex">
 <xsl:value-of select="@sex"/>
 </xsl:attribute>
 </xsl:template>
 108

Using Multiple Templates in a Script
 <xsl:template match="individual">
 <full_name>
 <first_name>
 <xsl:value-of select="first_name"/>
 </first_name>
 <last_name>
 <xsl:value-of select="last_name"/>
 </last_name>
 </full_name>
 </xsl:template>
</xsl:transform>

Example 37:XSLT Script With Multiple Templates
109

CHAPTER 6 | Writing XSLT Scripts for the Artix Transformer
 110

CHAPTER 7

Using Artix
Security with
Non-Artix Clients
The Artix iSF uses a security token based on open standards
for authentication and can be used with any Web services
client that can pass a valid token.

Overview Interoperability is one of the major features of a service-oriented approach to
software design. Artix ensures interoperabilty on the security front by using
WS-Security tokens for authentication. The WS-Security standard
(http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message
-security-1.0.pdf) specifies a token that is packaged in a SOAP header. A
secure Artix server will accept a valid WS-Security token from any source
and use it to authenticate requests.

WS-Security tokens The XMLSchema definition for the WS-Security token can be found at
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-sec
ext-1.0.xsd. The token can contain the following types of tokens:

� username/password

� base 64 binary encoded Kerberos tickets

� base 64 binary encoded X.509 certificates
111

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd

CHAPTER 7 | Using Artix Security with Non-Artix Clients
� URI to security tokens stored at a remote location
 112

Adding the token to requests The WS-Security token must be added as a SOAP header on all requests
that are made on a secure Artix service. In order for an Artix service to use
the token the header must be formatted so that:

1. The namespace for the token definition is specified as
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssec

urity-secext-1.0.xsd.

2. The header element is named wsse:Security.

3. The elements used inside the WS-Security token are supported by
Artix. For more information on the types of tokens supported by Artix
see the Artix Security Guide.

Example 38 shows the required format of the WS-Security token SOAP
header.

The process by which you add a SOAP header to a message depends on the
Web service platform you are using.

Example To create an Axis client that makes requests on a secure Artix service is
fairly straightforward. Axis implements the JAX-RPC standard and uses the
SAAJ APIs for manipulating SOAP messages. This example shows code for
adding a username/password WS-Security token using an Axis client.

Example 38:WS-Security token SOAP Header

<?xml version="1.0" encoding="utf-8"?>
<S11:Envelope xmlns:S11="..."
 xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">
 <S11:Header>
 <wsse:Security

xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd
">

 ...
 </wsse:Security>
 </S11:Header>
 <S11:Body wsu:Id="MsgBody">
 ...
 </S11:Body>
</S11:Envelope>
113

http://www.iona.com/support/docs/artix/3.0/security_guide/index.htm

CHAPTER 7 | Using Artix Security with Non-Artix Clients
Because the WS-Security token needs to be attached to every request sent
to a secure Artix service, it is most effective to implement the code for
adding the token to the SOAP head as a Handler that is added to the client�s
Hander chain. Example 39 shows the code for implementing such a
Handler.

Example 39:WS-Security Handler

import javax.xml.rpc.handler.HandlerInfo;
import javax.xml.rpc.handler.MessageContext;
import javax.xml.rpc.handler.soap.SOAPMessageContext;
import javax.xml.soap.Name;
import javax.xml.soap.SOAPElement;
import javax.xml.soap.SOAPEnvelope;
import javax.xml.soap.SOAPException;
import javax.xml.soap.SOAPHeader;
import javax.xml.soap.SOAPMessage;
import javax.xml.soap.SOAPPart;

public class WSSEUsernamePasswordHandler implements Handler
{

1 private static final String WSSE_URI =
"http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wsse
curity-secext-1.0.xsd";

 ...
 public boolean handleRequest(MessageContext context)
 {

2 String username = (String)
context.getProperty(javax.xml.rpc.Stub.USERNAME_PROPERTY);

 String password = (String)
context.getProperty(javax.xml.rpc.Stub.PASSWORD_PROPERTY);

 try
 {

3 SOAPMessageContext smc = (SOAPMessageContext)context;
4 SOAPMessage msg = smc.getMessage();
5 SOAPPart sp = msg.getSOAPPart();
6 SOAPEnvelope se = sp.getEnvelope();
7 SOAPHeader sh = se.getHeader();

8 Name name = se.createName("Security", "wsse", WSSE_URI);
9 SOAPElement wsseSecurity = sh.addChildElement(name);
 114

The code in Example 39 does the following:

1. Set a private variable to the WS-Security token�s namespace.

2. Get the username and password from the MessageContext.

3. Cast the MessageContext into a SOAPMessgeContext.

4. Get the SOAPMessage from the SOAPMessageContext.

5. Get the SOAPPart from the SOAPMessage.

6. Get the SOAPEnvelope from the SOAPPart.

7. Get the SOAPHeader from the SOAPEnvelope.

8. Create the name for your the token�s SOAP header element using
SOAPEnvelope.createName().

10 SOAPElement usernameToken =
wsseSecurity.addChildElement("UsernameToken", "wsse");

11 SOAPElement usernameElement =
usernameToken.addChildElement("Username", "wsse");

12 usernameElement.addTextNode(username);

13 SOAPElement passwordElement =
usernameToken.addChildElement("Password", "wsse");

14 passwordElement.addTextNode(password);
 }
 catch (SOAPException e)
 {
 System.out.println(e);
 }

 return true;
 }
 ...
}

Example 39:WS-Security Handler

Note: In this example, the username and password are stored using
Stub properties.

Note: The name of the SOAP header element should result in
wsse:Security and have the proper namespace declaration.
115

CHAPTER 7 | Using Artix Security with Non-Artix Clients
9. Add a new SOAPElement to the SOAP message header using
SOAPHeader.addChildElement().

10. Add a wsse:UsernameToken child element to the SOAPElement added to
the SOAP header.

11. Add a wsse:Username child element to the wsse:UsernameToken
element.

12. Set the value of the wsse:Username element to the username retrieved
from the Stub properties.

13. Add a wsse:Password child element to the wsse:UsernameToken
element.

14. Set the value of the wsse:Password element to the password retrieved
from the Stub properties.

Example 40 shows the client code for setting the username and password
on the Stub.

Example 40:Client Setting Username and Password

// Java
CISOAPStub = (CISOAPStub) new

CI_ServiceLocator().getSOAPOverHTTPDocLiteral();

CISOAPStub._setProperty(javax.xml.rpc.Stub.USERNAME_PROPERTY,
 "Adie");
CISOAPStub._setProperty(javax.xml.rpc.Stub.PASSWORD_PROPERTY,
 "Baby");
 116

CHAPTER 8

Using Unmapped
SOAP Message
Elements
You can place XML content that is not mapped into an Artix
generated class into your SOAP messages.

Overview You may want to include XML elements that do not have a corresponding
Artix generated class in a SOAP message. For example, your application
deals directly with XML data and you do not want the overhead of
converting the XML data into a Java object and then converting back into
XML in to be inserted into a SOAP message. This can be done using and
xsd:any type.

In this chapter This chapter discusses the following topics:

Unmapped XML Data and xsd:any page 118

When Only One Side Uses Unmapped XML Data page 121
117

CHAPTER 8 | Using Unmapped SOAP Message Elements
Unmapped XML Data and xsd:any

Overview The xsd:any type is an XMLSchema element that defines elements that can
contain undefined XML data. The JAX-RPC specification dictates that the
xsd:any type be represented by an instance of a class that implements the
javax.xml.soap.SOAPElement interface. The SOAPElement interface
implements the org.w3c.dom.Node interface and offers a similar API as an
object implementing the org.w3c.dom.Document interface for manipulating
its content.

Therefore, if you want to use XML data that is not defined in an Artix
contract you can do the following:

1. Manipulate the data in a document object.

2. Use the document to populate an instance of an object implementing
SOAPElement

3. Pass the data in an operation that uses an xsd:any as a parameter.

You can find a nice introduction to this topic at
http://www-106.ibm.com/developerworks/library/ws-xsdany.html.
 118

http://www-106.ibm.com/developerworks/library/ws-xsdany.html

Unmapped XML Data and xsd:any
Using xsd:any in a contract The contract fragment shown in Example 41 illustrates how the xsd:any
type can be used within a message part.

unmappedType is declared with a single element of xsd:any. When converted
into Java code, the generated UnmappedType class, derived from the
unmappedType type definition, will have a member variable of type
SOAPElement, called _any, to represents the xsd:any element in the contract
definition as shown in Example 42.

Example 41: xsd:any in a Contract

<types>
 <schema targetNamespace="http://www.iona.com/artix/wsdl"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <complexType name="unmappedType">
 <sequence>
 <xsd:any namespace="##other"
 processContents="skip"/>
 </sequence>
 </complexType>
 <element name="request" type="tns:requestType"/>
 </schema>
</types>
<message name="sayHiRequest">
 <part element="tns:request" name="request"/>
</message>

Example 42:Generated Class Using xsd:any

import javax.xml.soap.SOAPElement;

public class UnmappedType
{
 private SOAPElement _any;

 public SOAPElement get_any() {
 return _any;
 }
119

CHAPTER 8 | Using Unmapped SOAP Message Elements
An operation that uses the sayHiRequest message will have a parameter of
type UnmappedType.

Code for working with raw XML You have several approaches obtaining the XML data that represents your
unmapped message content. The application might create a document
object directly, or it might initialize a document object from a file containing
XML content. How you manipulate the content of the document object is
managed through the DOM APIs.

Once you have a document object, you must transfer its contents into a
SOAPElement instance. Unfortunately neither the DOM nor the SOAPElement
interface defines an API that will perform this task. You must handle this as
part of your application.

Fortunately, Artix includes a class,
com.iona.webservices.saaj.util.SAAJUtils, that you can use to transfer
content between DOM and SOAPElement objects. As shown in Example 43,
this class will also create and populate a SOAPElement instance with the
content obtained from an XML file.

 public void set_any(SOAPElement val) {
 this._any = val;
 }
...
}

Example 42:Generated Class Using xsd:any

Example 43:Creating a SOAPElement from an XML File

import javax.xml.soap.SOAPElement;
import javax.xml.soap.SOAPFactory;
import java.io.File;
import java.io.FileInputStream;
import org.xml.sax.InputSource;
import com.iona.webservices.saaj.util.SAAJUtils;

File file = new File("Test.xml");
SOAPElement element = null;

InputSource source = new InputSource(new FileInputStream(file));
SOAPFactory factory = SOAPFactory.newInstance();
element = SAAJUtils.parseSOAPElement(factory, source);
 120

When Only One Side Uses Unmapped XML Data
When Only One Side Uses Unmapped XML
Data

Overview If only one side of an application is implemented to use unmapped XML
data, Artix can handle it. For example, your client application might work
with raw XML data and sends as unmapped XML. However, your server is
written to expect mapped data that Artix can convert into a Java object that
represents the elements in the message. For Artix to handle this situation,
you must write separate contracts for the client and the server applications.
The client-side contract will represent the message content as unmapped
data while the server-side contract will provide a type mapping that
corresponds to the unmapped message content.

This section will examine an example of such a usecase.

The XML File A file, employee.xml, includes an employee record. The client application
will use the SAAJUtils class to convert the content of this file into a
SOAPElement and then send the content of the SOAPElement as the message.

The file includes the content shown in Example 44.

Client contract In this simple example, the client�s contract contains two type definitions:

� a complex type that contains the xsd:any.

� an element that wraps the complex type.

The target namespace and the type names used in the client�s contract must
match the names used in the server�s contract. If they are different the
messages will not be marshalled properly.

The rest of the client�s contract contains simple messages, a SOAP
(doc/literal) binding, and a service/port definition.

Example 44:XML Content

<?xml version='1.0' encoding='utf-8'?>
<employee><fname>Henry</fname><lname>James</lname></employee>
121

CHAPTER 8 | Using Unmapped SOAP Message Elements
Example 45 shows a contract for a client that uses unmapped XML data.

Example 45:Contract for a Client Sending Unmapped XML Data

<definitions name="soapelement.wsdl"
 targetNamespace="http://www.iona.com/artix/wsdl"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://www.iona.com/artix/wsdl"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<types>
 <schema targetNamespace="http://www.iona.com/artix/wsdl"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <complexType name="requestType">
 <sequence>
 <any namespace="##other" processContents="skip"/>
 </sequence>
 </complexType>
 <element name="request" type="tns:requestType"/>
 </schema>
</types>
<message name="sayHiResponse"/>
<message name="sayHiRequest">
 <part element="tns:request" name="request"/>
</message>
<portType name="Greeter">
 <operation name="sayHi">
 <input message="tns:sayHiRequest" name="sayHiRequest"/>
 <output message="tns:sayHiResponse" name="sayHiResponse"/>
 </operation>
</portType>
<binding name="Greeter_SOAPBinding" type="tns:Greeter">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="sayHi">
 <soap:operation soapAction="" style="document"/>
 <input name="sayHiRequest">
 <soap:body use="literal"/>
 </input>
 <output name="sayHiResponse">
 <soap:body use="literal"/>
 </output>
 </operation>
</binding>
 122

When Only One Side Uses Unmapped XML Data
Client application After you generate Java from the contract, the client application includes
three files whose names are derived from the name assigned to the port
type, and a fourth file corresponding to the complex type requestType.
Since the xsd:any wrapped by requestType will be implemented by an
instance of SOAPElement, no code is generated for the type wrapped within
RequestType. You need to add code to the file containing the client
mainline.

The method sayHi() requires an argument of type RequestType. This
argument must be initialized with a SOAPElement instance that contains the
content of the file employee.xml. You can create the SOAPElement instance
by using the code in Example 43. Just be certain to provide the correct path
to employee.xml.

In the mainline code, where sayHi() is called, you will need to set the
SOAPElement instance into the method argument as shown in Example 46.

That�s all there is to sending unmapped data as a SOAP message, although
in a more complex application, your client code might would be responsible
for transferring data from a document into the SOAPElement.

Server contract In writing this file, it is essential that the target namespaces in both the
opening definitions and schema tags be the same as the corresponding
target namespaces assigned in the client�s contract. The namespace is
included in the message content and if the client and server processes are
not working with the same namespace, the message will not be compatible
across the applications.

<service name="SOAPService">
 <port binding="tns:Greeter_SOAPBinding" name="SoapPort">
 <soap:address location="http://localhost:9000"/>
 </port>
</service>
</definitions>

Example 45:Contract for a Client Sending Unmapped XML Data

Example 46:Setting the SOAPElement Instance

RequestType request = new RequestType();
request.set_any(element);
impl.sayHi(_request);
123

CHAPTER 8 | Using Unmapped SOAP Message Elements
The types section of this WSDL file includes three type definitions:

� an XMLSchema description of the data in employee.xml.

� a redefinition of requestType using the new complex type in place of
the xsd:any type.

� a duplicate of the element used to wrap the unmapped XML data in
the client�s contract.

The remainder of contract is virtually identical to the client�s contract as
shown in Example 47.

Example 47:Server Contract

<definitions name="soap"
 targetNamespace="http://www.iona.com/artix/wsdl"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:xsd1="http://www.iona.com/artix/wsdl"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<types>
 <schema targetNamespace="http://www.iona.com/artix/wsdl"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <complexType name="employee">
 <sequence>
 <element maxOccurs="1" minOccurs="1" name="fname"
 type="xsd:string"/>
 <element maxOccurs="1" minOccurs="1" name="lname"
 type="xsd:string"/>
 </sequence>
 </complexType>
 <complexType name="requestType">
 <sequence>
 <element maxOccurs="1" minOccurs="1" ref="xsd1:employee"/>
 </sequence>
 </complexType>
 <element name="request" type="xsd1:requestType"/>
 </schema>
</types>
 124

When Only One Side Uses Unmapped XML Data
Server application After you generate Java code from the server�s contract, the server
application will include four files whose names are derived from the name
assigned to the port type, and two files corresponding to the complex types
employee and requestType. You need to add code to the file containing the
servant implementation class.

The parameter to the sayHi() method is an instance of RequestType as it
was in the client. However, RequestType does not contain a member
variable of SOAPElement. It contains a member variable of Employee.
Employee is the class generated using the XMLSchema description of the

<message name="sayHiResponse"/>
<message name="sayHiRequest">
 <part element="xsd1:request" name="request"/>
</message>
<portType name="Greeter">
 <operation name="sayHi">
 <input message="xsd1:sayHiRequest" name="sayHiRequest"/>
 <output message="xsd1:sayHiResponse" name="sayHiResponse"/>
 </operation>
</portType>
<binding name="Greeter_SOAPBinding" type="xsd1:Greeter">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="sayHi">
 <soap:operation soapAction="" style="document"/>
 <input name="sayHiRequest">
 <soap:body use="literal"/>
 </input>
 <output name="sayHiResponse">
 <soap:body use="literal"/>
 </output>
 </operation>
</binding>
<service name="SOAPService">
 <port binding="xsd1:Greeter_SOAPBinding" name="SoapPort">
 <soap:address location="http://localhost:9000"/>
 </port>
</service>
</definitions>

Example 47:Server Contract
125

CHAPTER 8 | Using Unmapped SOAP Message Elements
XML data. When you extract the encapsulated Employee object using the
code show in Example 48, its contents should match the contents of the
original employee.xml file.

Example 48:Getting the Employee Object

Employee e = request.getEmployee();
 126

Glossary
A anyType

anyType is the root type for all XML Schema types. All of the primitive types
are derivatives of this type, as are all user defined complex types.

Artix message context
An Artix message context is a special message context that is used by Artix
to store and transmit transport details and message header information. They
contain two context containers. One for storing data about requests and one
for storing data about replys.

Artix reference
An Artix reference is a Java object that fully describes a running Artix service.
References can be passed between Artix endpoints as operation parameters
and are used extensively by the Artix locator.

B Binding
A binding maps an operation�s messages to a payload format. Bindings are
defined using the WSDL <binding> element.

Bus
See Service Bus.

C Choice complex type
A choice complex type is an XMLSchema construct defined by using a
<choice> element to constrain the possible elements in a complex type. When
using a choice complex type only one of the elements defined in the complex
type can be valid at a time.

Classloader firewall
The classloader firewall provides a user configurable way to block the Artix
Java runtime from classes on a system�s classpath.

Contract
An Artix contract is a WSDL file that defines the interface and all connection
information for that interface.
127

CHAPTER 9 |
A contract contains two components: logical and physical. The logical
component defines things that are independent of the underlying transport
and wire format such as abstract definitions of the data used and the
interface.

The physical component defines the wire format, middleware transport, and
service groupings, as well as the mapping between the operations defined in
the interface and the wire formats, and the buffer layout for fixed formats
and extensors.

D Discriminator
A discriminator is a data element created to support the mapping of a choice
complex type to a Java object. The discriminator element identifies the valid
element in a choice complex type. See also Choice complex type.

Dynamic proxy
A dynamic proxy is a Java construct introduced in version 1.3 by Sun
Micosystems. As specified by the JAX-RPC specification, Artix uses a dynamic
proxy to connect to remote services. For more information, go to
http://java.sun.com/reference/docs/index.html.

E Embedded deployment
An embedded deployment is a deployment mode in which an application
creates an endpoint, either by invoking Artix APIs directly, or by compiling
and linking Artix-generated stubs and skeletons to connect client and server
to the service bus.

Endpoint
The runtime incarnation of a service defined in an Artix contract. When using
the Artix Java APIs, an endpoint is activated when you register a servant with
the Artix bus. See also Service.

F Facet
A facet is a rule used in the derivation of user defined simple types. Common
facets include length, pattern, totalDigits, and fractionDigits.
 128

http://java.sun.com/reference/docs/index.html

Factory pattern
The factory pattern is a usage pattern where one service creates and manages
instances of another service. Typically, the factory service returns references
to the services it creates.

Fault message
A fault message is the WSDL construct used to define error messages, or
exceptions, passed between a service and its clients. They are defined using
a <fault> element in a WSDL contract.

H Handler
Hanlder is the Java interface that a developer must implement to create a
message handler. It has has methods for processing both request and
response messages. Artix provides a GenericHandler class to provide a
template for implemeting message handlers.

I Input message
An input message is the WSDL construct for defining the messages that are
sent from a client to a service and are specified using an <input> element in
a WSDL contract. When mapped into Java, the parts of the input message
are mapped into a method�s parameter list.

Interface
An interface defines the operations offered by a service. Interfaces are defined
in an Artix contract using the WSDL <portType> element. When mapped to
Java, an interface results in the generation of an object with methods for each
of the operations defined in the interface. See also Operation.

J JAX-RPC
JAX-RPC (Java API for XML-Based RPC) is the Java specification upon which
Artix based it Java API and data type mappings. For more information go to
http://java.sun.com/xml/jaxrpc/overview.html.

L List type
A list type is a data type defined as consisting of a space separated list of
primitive type elements. For example, "1 2 3 4 5" is a valid value for a list
type. They are defined using a <xsd:list> element.
129

http://java.sun.com/xml/jaxrpc/overview.html

CHAPTER 9 |
Logical contract
The logical contract defines components that are independent of the
underlying transport and wire format. These include the type definitions and
the interface definitions. WSDL elements found in the logical contract include:
<portType>, <operation>, <message>, <type>, and <import>.

M Message
In Artix, a message is any data passed between two endpoints. Messages are
defined in an Artix contract using the WSDL <message> element and are used
for the input, output, and fault messages that define an operation. After a
message has been associated with an operation, it can be bound to any
payload format supported by Artix. See also Fault message, Input message,
and Output message.

Message-level handler
A message-level handler is a message handler that processes messages
between the Artix binding to the Artix transport.

Message context
A message context is a bus container used by applications to store metadata
properties. These properties store information about the message being sent
went an operation is invoked. Artix uses the message context to store headers
and transport information. See also Artix message context.

Message handler
A message handler is a Java class responsible for intercepting a message
along the message chain and performing some processing on the raw message
data. See also Handler.

O Operation
An operation defines a specific interaction between a service and a client. It
is defined in an Artix contract using the WSDL <operation> element. Its
definition must include at least one input or output message. When mapped
into Java, an operation generates a method on the object representing the
interface in which it is defined.
 130

Output message
An output message is the WSDL construct for defining the messages that are
sent from a service to a client and are specified using an <output> element
in a WSDL contract. When mapped into Java, the parts of the output message
are mapped as described in the JAX-RPC specification.

P Payload format
A payload format is how data is packaged to be sent on the wire. Examples
of payload formats supported by Artix include SOAP, TibMsg, and fixed record
length data. Data is bound to a payload format in an Artix contract using the
WSDL <binding> element.

Physical contract
The physical contract defines the bindings and transport details used by the
endpoints defined by an Artix contract. WSDL elements found in the physical
contract include: <binding>, <service>, and <port>.

Plug-in
A plug-in is a module that Artix loads at runtime to provide a set of features.
All of the bindings and transports supported by Artix are implemented as
plug-ins. In addition, message handlers are implemented as plug-ins.

R Reply
A reply is the message returned by a service to a client in response to a request
from the client. See also Output message.

Request
A request is a message sent from a client to a service asking for the service
to do work. See also Input message.

Request-level handler
A request-level handler is a message handler that processes messages
between the Artix binding and the user�s application code.

Response
See Reply.
131

CHAPTER 9 |
S Servant
A servant is a Java object that wraps the implementation object generated
from an interface. The servant wrapper enables the bus to associate the
implementation object with the physical details specified in its contract�s
service definition and to manage the object.

Service
A service is the contract definition of an Artix endpoint. It combines the logical
definition of an interface, the binding of the interface�s operations to a payload
format, and the transport details used to expose the interface. A service is
defined using a WSDL <port> element.

Service Bus
The infrastructure that allows service providers and service consumers to
interact in a distributed environment. Handles the delivery of messages
between different middleware systems. Also known as an Enterprise Service
Bus.

Service proxy
A service proxy is a proxy created by an Artix client to connect to a remote
service. See also Dynamic proxy.

Service template
A service template is a WSDL service definition that serves as the model for
the clones created for a transient reference. They must fully define all of the
details, except the address, of the transport used by the transient servant. The
address provided in the service template must be a wildcard value.

Standalone deployment
Standalone deployment is a deployment mode in which an Artix instance runs
independently of the endpoints it is integrating.

Static servant
A static servant is a servant whose physical details are linked to a <port>
definition in the contract associated with the application.
 132

Stub interface
Artix service proxies implement the javax.xml.rpc.Stub interface. The Stub
interface provides access to a number of low-level properties used to connect
the proxy to a remote service. These properties can be used to get the Artix
bus from client applications and set HTTP connection properties.

T Transient servant
A transient servant is a servant whose physical details are cloned from a
<port> definition in the contract associated with the application.

Transport
A transport is the network protocol, such as HTTP or IIOP, that is used by an
endpoint. The transport details for an endpoint are defined inside of the WSDL
<port> element defining the endpoint.

Type factory
A type factory is a Java class generated to support the use of XMLSchema
anyTypes and SOAP headers in Java.

W WSDL
WSDL (Web Services Description Language) is an XML format for describing
network services as a set of endpoints. Artix uses WSDL as the syntax for its
contracts.

In WSDL, the abstract definition of endpoints and messages is separated
from their concrete network deployment or data binding formats. This allows
the reuse of abstract definitions: messages, which are abstract descriptions
of the data being exchanged, and port types which are abstract collections
of operations. The concrete protocol and data format specifications for a
particular port type constitutes a reusable binding. A port is defined by
associating a network address with a reusable binding, and a collection of
ports define a service. Hence, a WSDL document uses the following
elements in the definition of network services:

� Types -- a container for data type definitions using some type system
(such as XMLSchema).

� Message -- an abstract, typed definition of the data being
communicated.
133

CHAPTER 9 |
� Operation -- an abstract definition of an action supported by the
service.

� Port Type -- an abstract set of operations supported by one or more
endpoints.

� Binding -- a concrete protocol and data format specification for a
particular port type.

� Port -- a single endpoint defined as a combination of a binding and a
network address.

� Service -- a collection of related endpoints.

For more information go to http://www.w3.org/TR/wsdl.

WSDL <binding>
See Binding and Payload format.

WSDL <fault>
See Fault message.

WSDL <message>
See Message.

WSDL <operation>
See Operation.

WSDL <port>
See Service.

WSDL <portType>
See Interface.

WSDL <service>
A WSDL <service> element is a collection of WSDL <port> elements.
 134

http://www.w3.org/TR/wsdl

X XML Schema
XML Schema is a language specification by the W3C that defines an XML
meta-language for defining the contents and structure of XML documents. It
is used as the native type system for Artix. For more information go to
http://www.w3.org/XML/Schema.
135

http://www.w3.org/XML/Schema

CHAPTER 9 |
 136

Index

C
C++

generating from the designer 5
generating with wsdltocpp 6

C++ client
adding business logic 8
generating code 6
intantiating a proxy 7
writing a main() 6

C++ server
generating code 28
implementing the servant 29
writing main() 28

client
adding business logic 8, 13
configuration 14
generating C++ code 6
generating Java code 10
instantiating a Java proxy 11
intantiating a C++ proxy 7
required Java classes 13
steps for building 1
writing a C++ main() 6
writing a Java main() 11

coboltowsdl 42
com.iona.webservices.saaj.util.SAAJUtils 120
complexType

adding with the designer 19
configuration

contract locations 53
creating 52
plug-ins 53

container
deploying 53

copybook
converting to WSDL 42
importing 40

CORBA
defining an endpoint 45

D
designer

adding a CORBA endpoint 45
adding a JMS endpoint 47
adding a message 22
adding an HTTP endpoint 50
adding an HTTP port 26
adding an interface 23
adding an MQ endpoint 45
adding an operation 24
adding a portType 23
adding a route 50
adding a SOAP binding 25, 49
adding a Tibco endpoint 47
adding a Tuxedo endpoint 46
adding unsupported types 21
creating a project 2, 17
defining a complexType 19
defining an element 20
defining a simpleType 18
importing a copybook 40
importing IDL 38
importing Java 43
starting 2, 17
using source view 21

E
element

adding with the designer 20
endpoint

CORBA 45
defining 45
HTTP 50
JMS 47
MQ 45
Tibco 47
Tuxedo 46

H
HTTP

adding an endpoint 50

I
IDL

converting to WSDL 39
137

INDEX
idltowsdl 38
importing IDL

idltowsdl 39
using the designer 38

interface
adding an operation 24
adding with the designer 23

IOR
from a file 39
from a naming service 38

J
Java

converting to WSDL 43
generating from the designer 9
generating with wsdltojava 10

Java client
adding business logic 13
generating code 10
initializing the bus 11
instantiating a proxy 11
registering type factories 11
required classes 13
writing a main() 11

Java server
generating code 30
implementing a servant 32
registering type factories 31
required classes 32
writing the main() 31

javax.xml.soap.SOAPElement 118
JMS

adding an endpoint 47

M
message

adding with the designer 22
MQ

adding an endpoint 45
deployment scenarios 75

O
operation

adding with the designer 24
org.w3c.dom.Document 118
org.w3c.dom.Node 118
 138
P
payload format

SOAP 25, 49, 50
portType

adding an operation 24
adding with the designer 23

R
routing

adding a route 50

S
server

configuring 33
creating a project 17
generating C++ 28
generating Java code 30
implementing a C++ servant 29
implementing a Java servant 32
registering Java type factories 31
required Java classes 32
steps for building 15
writing a C++ main() 28
writing a Java main() 31

service enabling 35
simpleType

adding with the designer 18
SOAP

adding a binding 49, 50

T
Tibco

adding an endpoint 47
transports

HTTP
adding 26

Tuxedo
adding an endpoint 46

W
wsdltocpp 6, 28
wsdltojava 10, 30, 43
wsdltosoap 50

X
XML

Artix code 120

INDEX
using 118
XMLSchema

complexType
adding 19

constructs without wizards 21
editing 21
element

adding 20
simpleType

adding 18
139

INDEX
 140

	Technical Use Cases
	Preface
	What is Covered in this Book
	Who Should Read this Book
	Finding Your Way Around the Library
	Searching the Artix Library
	Online Help
	Additional Resources
	Document Conventions

	Building a Client for a Web Service
	Importing WSDL into Artix
	Building the Client
	Building a C++ Client
	Building a Java Client

	Configuring Artix to Deploy the Client

	Building a Web Service
	Defining a Service in WSDL
	Creating a WSDL Contract
	Defining the Data Used by the Service
	Defining the Messages Used by the Service
	Defining the Service’s Interface
	Defining the Payload Format
	Defining the Service’s Endpoint Information

	Building the Service
	Building a C++ Service
	Building a Java Service

	Configuring Artix to Deploy the Service

	Web Service Enabling Backend Services
	Describing a Service in WSDL
	Starting with CORBA IDL
	Starting with a COBOL Copybook
	Starting with a Java Class
	Defining the Service’s Endpoint Information

	Defining a SOAP/HTTP Endpoint
	Configuring and Deploying a Switching Service

	Using Artix with .NET
	Building a .NET Client for an Artix Service
	Building an Artix Client for a .NET Service
	Using Artix to Bridge from a Backend Service to .NET
	Using Artix Services from .NET clients
	Using the Artix Locator
	Using the Artix Session Manager

	Using Artix with WebSphere MQ
	Artix and MQ on a Single Computer
	Client and Server on Different MQ Servers
	Client on MQ Client and Server on MQ Server
	Using a Remote MQ Server
	Using a Remote MQ Server from Full MQ Installations

	Writing XSLT Scripts for the Artix Transformer
	The XSLT Script Template
	Transforming a Sequence into a String
	Modifying a Simple Sequence
	Working with Nested Input Sequences
	Working with Attributes in an Input Message
	Working with Attributes in the Output Message
	Working with Nested Sequences in an Output Message
	Using Multiple Templates in a Script

	Using Artix Security with Non-Artix Clients
	Using Unmapped SOAP Message Elements
	Unmapped XML Data and xsd:any
	When Only One Side Uses Unmapped XML Data

	Glossary
	Index

