
Deploying and Managing
Artix Solutions
Version 3.0, June 2005

IONA Technologies PLC and/or its subsidiaries may have patents, patent applications,
trademarks, copyrights, or other intellectual property rights covering subject matter in
this publication. Except as expressly provided in any written license agreement from
IONA Technologies PLC, the furnishing of this publication does not give you any license
to these patents, trademarks, copyrights, or other intellectual property. Any rights not
expressly granted herein are reserved.
IONA, IONA Technologies, the IONA logo, Orbix, Orbix Mainframe, Orbix Connect, Artix,
Artix Mainframe, Artix Mainframe Developer, Mobile Orchestrator, Orbix/E, Orbacus,
Enterprise Integrator, Adaptive Runtime Technology, and Making Software Work Together
are trademarks or registered trademarks of IONA Technologies PLC and/or its subsidiar-
ies.
Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries. CORBA is a trademark or registered trademark of the
Object Management Group, Inc. in the United States and other countries. All other
trademarks that appear herein are the property of their respective owners.

While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of
any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. IONA shall not be liable for errors contained herein, or for incidental or consequential dam-
ages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No
third-party intellectual property right liability is assumed with respect to the use of the information contained
herein. IONA Technologies PLC assumes no responsibility for errors or omissions contained in this publication.
This publication and features described herein are subject to change without notice.

Copyright © 2005 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this publication are covered by the trademarks, service marks, or product
names as designated by the companies that market those products."

Updated: 08-Nov-2005

Contents

List of Tables vii

List of Figures ix

Preface xi
What is Covered in this Book xi
Who Should Read this Book xi
How to Use this Book xii
Finding Your Way Around the Library xiii
Searching the Artix Library xiv
Online Help xv
Additional Resources xv
Document Conventions xvi

Part I Introduction

Chapter 1 Introduction to Artix 3
What is Artix? 4
Artix Concepts 7

Chapter 2 Deploying Artix Solutions: An Overview 9
Artix Deployment Modes 10
Embedded Application 11
Standalone Switching Service 13
Artix Locator 15
Artix Session Manager 17
iii

CONTENTS
Part II Using Artix Services

Chapter 3 Artix Container 23
Introduction to the Artix Container 24
Generating a Plug-in and Deployment Descriptor 28
Running the Artix Container Server 33
Running the Artix Container Administration Client 36
Deploying Services on Restart 42
Running the Container as a Windows Service 46

Chapter 4 Artix Locator 51
Overview of the Artix Locator 52
Deploying the Locator 56
Registering a Server with the Locator 60
Obtaining References from the Locator 63
Load Balancing 66
Fault Tolerance 67

Chapter 5 Artix Session Manager 69
Introduction to Artix Session Management 70
Deploying the Session Manager 75
Registering a Server with the Session Manager 80
Configuring the Simple Policy Plug-in 82
Fault Tolerance 84

Chapter 6 Artix Switches 85
The Artix Switch 86
Configuring a Switch 89

Chapter 7 Deploying a Service Chain 91
The Artix Chain Builder 92
Configuring the Artix Chain Builder 94

Chapter 8 Deploying the Artix Transformer 99
The Artix Transformer 100
Standalone Deployment 103
 iv

CONTENTS
Deployment as Part of a Chain 106

Chapter 9 Artix High Availability 111
Introduction 112
Setting up a Persistent Database 115
Configuring Persistent Services for High Availability 117
Configuring Locator High Availability 121
Configuring Client-Side High Availability 125

Chapter 10 Artix Bootstrapping Service 131
Introduction 132
Bootstrapping Servers and Clients 134
Bootstrapping WSDL Contracts 137
Bootstrapping Artix References 143
Bootstrapping Well-Known Artix Services 149

Part III Integrating Artix

Chapter 11 Embedding Artix in a BEA Tuxedo Container 153
Introduction 154
Embedding an Artix Process in a Tuxedo Container 155

Chapter 12 Enterprise Performance Logging 157
Enterprise Management Integration 158
Configuring Performance Logging 160
Performance Logging Message Formats 165

Chapter 13 Artix CA-WSDM Integration 169
Artix CA WSDM Observer 170
Configuring a CA WSDM Observer 172

Chapter 14 Locating Services with UDDI 175
Introduction to UDDI 176
Configuring UDDI Proxy 179
Configuring a jUDDI Repository 180
v

CONTENTS
Glossary 181

Index 185
 vi

List of Tables

Table 1: Required Arguments to wsdd 31

Table 2: Optional Arguments to wsdd 31

Table 3: Artix Service Configuration 95

Table 4: Configuration for Hosting the Artix Chain Builder 97

Table 5: Artix Endpoint Configuration 103

Table 6: Performance Logging Plug-ins 160

Table 7: Artix log message arguments 165

Table 8: Orbix log message arguments 166

Table 9: Simple life cycle message formats arguments 167
vii

LIST OF TABLES
 viii

List of Figures

Figure 1: Artix Message Transporting 5

Figure 2: Embedded Artix Deployment 11

Figure 3: Standalone Artix Deployment 13

Figure 4: Standalone Artix Locator 15

Figure 5: Embedded Artix Locator 16

Figure 6: Standalone Artix Session Manager 17

Figure 7: Embedded Artix Session Manager 18

Figure 8: Artix Container Architecture 25

Figure 9: Installed Windows Service 49

Figure 10: Service Properties 50

Figure 11: The Locator Plug-ins 53

Figure 12: Locator Load Balancing 54

Figure 13: The Session Manager Plug-ins 72

Figure 14: Using Multiple Artix Switches 87

Figure 15: Using a Single Artix Switch 88

Figure 16: Chaining Four Servers to Form a Single Service 92

Figure 17: Artix Transformer Deployed as a Servant 101

Figure 18: Artix Transformer Loaded by Client 101

Figure 19: Artix Transformer Deployed with the Chain Builder 102

Figure 20: Artix Master Slave Replication 112

Figure 21: Overview of an Artix and IBM Tivoli Integration 159

Figure 22: CA WSDM Observer Architecture 170
ix

LIST OF FIGURES
 x

Preface
What is Covered in this Book
Deploying and Managing Artix Solutions explains how to deploy and
manage Artix services in a runtime environment. It presents different
approaches to deployment topography, and the merits of each. This book
also provides detailed descriptions of the specific tasks involved in
configuring and launching Artix applications and services.

This book does not discuss the specifics of the different middleware and
messaging products that Artix interacts with. Any discussion about the
features of specific middleware products or transports relates to how Artix
interacts with these features. It is assumed that you have a working
knowledge of the specific middleware products and transports you are
using.

Who Should Read this Book
The main audience of Deploying and Managing Artix Solutions is Artix
system administrators. However, anyone involved in designing a large scale
Artix solution will find the general discussions about Artix deployment
topographies and Artix services useful.

Knowledge of specific middleware or messaging transports is not required to
understand the general topics discussed in this book. However, if you are
using this book as a guide to deploying runtime systems, you should have a
working knowledge of the middleware transports that you intend to use in
your Artix solutions.

When deploying Artix in a distributed architecture with other middleware,
please see the documentation for that middleware product. You may require
access to an administrator. For example, a Tuxedo administrator is required
to complete a Tuxedo distributed architecture.
xi

PREFACE
How to Use this Book
Part I, Introduction

If you are new to Artix, Chapter 1 and Chapter 2 provide a high-level
overview of using Artix to solve integration projects, and how Artix fits into a
software environment.

Part II, Using Artix Services

If you are using Artix services, you may want to read one or more of the
following:

• Chapter 3 explains how to use the Artix container to deploy and
manage Artix Web services.

• Chapter 4 explains how to use the Artix locator service to find
references to Artix servers.

• Chapter 5 explains how to use the Artix session manager.

• Chapter 6 explains how to use Artix switches to bridge between
non-Artix enabled applications.

• Chapter 7 explains how to use an Artix service chain.

• Chapter 8 explains how to use the Artix transformer service.

• Chapter 9 explains how to configure high availability (for example,
server-side replication and client-side failover).

• Chapter 10 explains how to use the Artix bootstrapping service to
locate Artix WSDL contracts and references.

Part III, Integrating Artix

If you are integrating Artix with other products, you may want to read one or
more of the following:

• Chapter 11 describes how to deploy Artix into a BEA Tuxedo
environment.

Note: The session manager is unavailable in some editions of Artix.
Please check the conditions of your Artix license to see whether your
installation supports the session manager.

Note: Tuxedo integration is unavailable in some editions of Artix.
Please check the conditions of your Artix license to see whether your
installation supports Tuxedo integration.
 xii

PREFACE
• Chapter 12 explains how integrate Artix with Enterprise Management
Systems (for example, IBM Tivoli and BMC Patrol).

• Chapter 13 explains how integrate Artix with Computer Associates
Web Services Distributed Management (WSDM) software.

• Chapter 14 explains how to use Universal Description, Discovery and
Integration (UDDI).

Finding Your Way Around the Library
The Artix library contains several books that provide assistance for any of the
tasks you are trying to perform. The Artix library is listed here, with a short
description of each book.

If you are new to Artix

You may be interested in reading:

• Release Notes contains release-specific information about Artix.

• Installation Guide describes the prerequisites for installing Artix and the
procedures for installing Artix on supported systems.

• Getting Started with Artix describes basic Artix and WSDL concepts.

To design and develop Artix solutions

Read one or more of the following:

• Designing Artix Solutions provides detailed information about
describing services in Artix contracts and using Artix services to solve
problems.

• Developing Artix Applications in C++ discusses the technical aspects
of programming applications using the C++ API.

• Developing Artix Plug-ins with C++ discusses the technical aspects of
implementing plug-ins to the Artix bus using the C++ API.

• Developing Artix Applications in Java discusses the technical aspects
of programming applications using the Java API.

• Artix for CORBA provides detailed information on using Artix in a
CORBA environment.

• Artix for J2EE provides detailed information on using Artix to integrate
with J2EE applications.

• Artix Technical Use Cases provides a number of step-by-step examples
of building common Artix solutions.
xiii

http://www.iona.com/support/docs/artix/3.0/release_notes/index.htm
http://www.iona.com/support/docs/artix/3.0/install_guide/index.htm
http://www.iona.com/support/docs/artix/3.0/getting_started/index.htm
http://www.iona.com/support/docs/artix/3.0/design/index.htm
http://www.iona.com/support/docs/artix/3.0/prog_guide/index.htm
http://www.iona.com/support/docs/artix/3.0/plugin_guide/index.htm
http://www.iona.com/support/docs/artix/3.0/java_pguide/index.htm
http://www.iona.com/support/docs/artix/3.0/corba_ws/index.htm
http://www.iona.com/support/docs/artix/3.0/j2ee/index.htm
http://www.iona.com/support/docs/artix/3.0/cookbook/index.htm

PREFACE
To configure and manage your Artix solution

Read one or more of the following:

• Deploying and Managing Artix Solutions describes how to deploy
Artix-enabled systems, and provides detailed examples for a number of
typical use cases.

• Artix Configuration Guide explains how to configure your Artix
environment. It also provides reference information on Artix
configuration variables.

• IONA Tivoli Integration Guide explains how to integrate Artix with IBM
Tivoli.

• IONA BMC Patrol Integration Guide explains how to integrate Artix
with BMC Patrol.

• Artix Security Guide provides detailed information about using the
security features of Artix.

Reference material

In addition to the technical guides, the Artix library includes the following
reference manuals:

• Artix Command Line Reference

• Artix C++ API Reference

• Artix Java API Reference

Have you got the latest version?

The latest updates to the Artix documentation can be found at http://
www.iona.com/support/docs.

Compare the version dates on the web page for your product version with
the date printed on the copyright page of the PDF edition of the book you
are reading.

Searching the Artix Library
You can search the online documentation by using the Search box at the top
right of the documentation home page:

http://www.iona.com/support/docs

To search a particular library version, browse to the required index page,
and use the Search box at the top right. For example:

http://www.iona.com/support/docs/artix/3.0/index.xml
 xiv

http://www.iona.com/support/docs/artix/3.0/deploy/index.htm
http://www.iona.com/support/docs/artix/3.0/config_ref/index.htm
http://www.iona.com/support/docs/artix/3.0/tivoli/index.htm
http://www.iona.com/support/docs/artix/3.0/bmc/index.htm
http://www.iona.com/support/docs/artix/3.0/security_guide/index.htm
http://www.iona.com/support/docs/artix/3.0/command_ref/index.htm
http://www.iona.com/support/docs/artix/3.0/cpp_doc/index.html
http://www.iona.com/support/docs/artix/3.0/javadoc/index.html
http://www.iona.com/support/docs
http://www.iona.com/support/docs
http://www.iona.com/support/docs
http://www.iona.com/support/docs/artix/3.0/index.xml

PREFACE
You can also search within a particular book. To search within an HTML
version of a book, use the Search box at the top left of the page. To search
within a PDF version of a book, in Adobe Acrobat, select Edit|Find, and
enter your search text.

Online Help
Artix Designer includes comprehensive online help, providing:

• Detailed step-by-step instructions on how to perform important tasks.

• A description of each screen.

• A comprehensive index, and glossary.

• A full search feature.

• Context-sensitive help.

There are two ways that you can access the online help:

• Click the Help button on the Artix Designer panel, or

• Select Contents from the Help menu

Additional Resources
The IONA Knowledge Base contains helpful articles written by IONA experts
about Artix and other products.

The IONA Update Center contains the latest releases and patches for IONA
products.

If you need help with this or any other IONA product, go to IONA Online
Support.

Comments, corrections, and suggestions on IONA documentation can be
sent to .
xv

http://www.iona.com/support/knowledge_base/index.xml
http://www.iona.com/support/updates/index.xml
http://www.iona.com/support/index.xml
http://www.iona.com/support/index.xml

PREFACE
Document Conventions
Typographical conventions

This book uses the following typographical conventions:

Fixed width Fixed width (courier font) in normal text represents
portions of code and literal names of items such as
classes, functions, variables, and data structures. For
example, text might refer to the IT_Bus::AnyType
class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#include <stdio.h>

Fixed width italic Fixed width italic words or characters in code and
commands represent variable values you must
supply, such as arguments to commands or path
names for your particular system. For example:

% cd /users/YourUserName

Italic Italic words in normal text represent emphasis and
introduce new terms.

Bold Bold words in normal text represent graphical user
interface components such as menu commands and
dialog boxes. For example: the User Preferences
dialog.
 xvi

PREFACE
Keying Conventions

This book uses the following keying conventions:

No prompt When a command’s format is the same for multiple
platforms, the command prompt is not shown.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

> The notation > represents the MS-DOS or Windows
command prompt.

...

.

.

.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

[] Brackets enclose optional items in format and syntax
descriptions.

{} Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| In format and syntax descriptions, a vertical bar
separates items in a list of choices enclosed in {}
(braces).

In graphical user interface descriptions, a vertical bar
separates menu commands (for example, select
File|Open).
xvii

PREFACE
 xviii

Part I
Introduction

In this part This part contains the following chapters:

Introduction to Artix page 3

Deploying Artix Solutions: An Overview page 9

CHAPTER 1

Introduction to
Artix
Artix enables you to deploy integration solutions that are
middleware-neutral.

In this chapter This chapter contains the following sections:

What is Artix? page 4

Artix Concepts page 7
3

CHAPTER 1 | Introduction to Artix
What is Artix?

Overview Artix provides a middleware connectivity solution that minimizes
invasiveness and prevents an organization from being locked into any one
middleware transport. For example, Artix can be used to connect a BEA
Tuxedo™ server to a CORBA client. Artix transparently handles the message
mapping and transformation between them. The Tuxedo server is unaware
that its client is using CORBA. For example, with Artix handling the
communication, the client could be changed to an IBM WebSphere MQ™
client without modifying the server.

Scalable infrastructure Artix also provides a great deal of configurability because it is built on
IONA’s Adaptive Runtime architecture (ART). All of Artix’s transport and
payload format support is encapsulated in individual plug-ins as are all of
the services provided with Artix. This allows Artix to be scaled to fit any
environment.

Artix message transporting Artix shields applications from the details of the transports used by
applications that they are communicating with, by providing on-the-wire
message transformation and mapping. Unlike the approach taken by
Enterprise Application Integration (EAI) products, Artix does not use an
intermediate canonical format; it transforms the messages only once.
 4

What is Artix?
Figure 1 shows a high-level view of how a message passes through Artix.
The approach taken by Artix provides a high-level of throughput by avoiding
the overhead of making two transformations for each message.

Figure 1: Artix Message Transporting
5

CHAPTER 1 | Introduction to Artix
Supported message transports Artix supports the following message transports:

• HTTP

• BEA Tuxedo

• IBM WebSphere MQ

• Sonic MQ

• IIOP

• TIBCO Rendezvous™

• IIOP Tunnel

Supported payload formats Artix can automatically transform between the following payload formats:

• G2++

• FML (Tuxedo format)

• GIOP (CORBA format)

• FRL (Fixed Record Length)

• VRL (Variable Record Length)

• SOAP

• TibrvMsg (TIBCO Rendezvous format)
 6

Artix Concepts
Artix Concepts

Overview This section explains some of the high-level concepts behind Artix. For
example, Artix contracts, and their components, and Artix deployment
modes. For more detailed information on Artix, see Getting Started with
Artix.

Artix contracts An Artix contract is a WSDL file that defines an interface, and all
connection-related information for that interface. Contracts are written using
a superset of the standard Web Service Definition Language (WSDL).
Following the procedure described by W3C, IONA has extended WSDL to
support Artix’s advanced functionality, and use of transports and formats
other than HTTP and SOAP.

An Artix contract consists of two parts:

Logical

The logical portion of the contract defines the namespaces, messages, and
operations that the SAP exposes. This part of the contract is independent of
the underlying transports and wire formats. It fully specifies the data
structures and possible operation/interaction with the interface. It consists of
the <message>, <operation>, and <portType> WSDL tags.

Physical

The physical portion of the contract defines the transports, wire formats,
and routing information used to deliver messages to and from SAPs, over
the bus. This portion of the contract also defines which messages use each
of the defined transports and bindings. The physical portion of the contract
consists of the standard <binding>, <port>, and <operation> WSDL tags.
It is also the portion of the contract that may contain IONA WSDL
extensions.
7

CHAPTER 1 | Introduction to Artix
Deployment modes Applications that use Artix can be deployed in one of two ways:

Embedded mode

In embedded mode, an application is modified to invoke Artix functions
directly and locally, as opposed to invoking a standalone Artix service. This
approach is the most invasive to the application, but also provides the
highest performance. Embedded mode requires linking the application with
Artix-generated stubs and skeletons to connect client and server
(respectively) to Artix.

Standalone mode

In standalone mode, Artix runs as a separate process invoked as a service.
In this deployment mode, Artix provides a zero-touch integration solution on
the application side. When designing a system, you simply generate and
deploy the Artix contracts that specify each endpoint. Because a standalone
switch is not linked directly with the applications that use it (as in
embedded mode), a contract for standalone mode deployment must specify
routing information. This is the least efficient of the two modes.

For more detailed information on Artix deployment modes, see Chapter 2.

Advanced Features Artix also supports the following advanced functionality:

• Message routing based on the operation or port, or port characteristics.

• Transaction support over Tuxedo, WebSphere MQ, and CORBA.

• SSL and TLS support.

• Security support for Tuxedo and WebSphere MQ.

• Deployment with Orbix or higher and Tuxedo.

• Session management.

• Location services.

• High availability (server-side replication and client-side failover).

• Enterprise Management System integration BMC Patrol, IBM Tivoli,
and CA WSDM.

• Integration with Computer Associates Web Services Distributed
Management (WSDM) software.
 8

CHAPTER 2

Deploying Artix
Solutions: An
Overview
Artix can be deployed in a number of ways depending on the
complexity of your project and your system architecture.

In this chapter This chapter includes the following sections:

Artix Deployment Modes page 10

Embedded Application page 11

Standalone Switching Service page 13

Artix Locator page 15

Artix Session Manager page 17
9

CHAPTER 2 | Deploying Artix Solutions: An Overview
Artix Deployment Modes

Overview All Artix components have two basic deployment modes:

• Embedded mode

• Standalone mode

Embedded mode Embedded mode links Artix functionality directly into an application. The
application invokes Artix functions directly and locally. Embedded mode
requires linking the application with Artix-generated stubs and skeletons.

Standalone mode Standalone mode places Artix functionality outside of the application space
and runs it as a separate process invoked as a service. In standalone mode,
Artix is completely described by an Artix contract that specifies which
services are to be connected, what transports are in use, and how the
services are linked.

These deployment modes can be combined in a number of ways to fit the
needs of your applications and environment. For example, you can deploy
the Artix session manager and an Artix router in standalone mode while
embedding the Artix bus in your client and server applications. Or you could
embed all of the Artix components into a server application.
 10

Embedded Application
Embedded Application

Overview The most basic deployment of Artix is an application with Artix embedded
inside. In this scenario, the application can use one of the transports
supported by Artix, and the Artix bus is deployed within the application
itself. The application gets all of its configuration information from the Artix
configuration file and the Artix contract describing the applications interface.

Embedded configuration Figure 2 shows an application with Artix embedded in it. Artix retrieves its
configuration information from two places.

First, when the application first initializes the Artix bus, Artix pulls
information about what plug-ins need to be loaded and other runtime
information from one of the scopes in the Artix configuration file. Then when
the application then registers a servant or instantiates a proxy object, Artix
reads in the transport information from the Artix contract describing the
application’s interfaces.

Figure 2: Embedded Artix Deployment
11

CHAPTER 2 | Deploying Artix Solutions: An Overview
Why use this pattern This pattern is the most common deployment pattern when deploying a
Web service or developing a client application that needs to access a
back-end server running on one of the transports Artix supports. Its
simplicity makes it easy to configure and deploy. Also, its configuration can
be easily modified.

Deploying a simple embedded
application

To deploy an application with Artix embedded in it, you would do the
following:

1. Ensure that the system’s runtime environment has been properly set up
to run Artix applications.

2. Optionally, you can edit the Artix configuration file to create a custom
configuration scope for the application. This enables you to control
which plug-ins are loaded, the logging level and location, and other
runtime features of the bus.

3. Edit the Artix contract for the application to ensure that the transport
details are correct for your system.

4. Place the application’s contract in the directory where the application
will look for it. Typically, this is the same directory as the executable.

5. Run the application with the correct command line arguments.
 12

Standalone Switching Service
Standalone Switching Service

Overview When using Artix as a bridge between applications running on different
transports, Artix will often be deployed as a standalone switching service, as
shown in Figure 3. When deployed in this scenario, Artix will use at least
two transports and route between two or more applications.

Standalone configuration Similar to when Artix is deployed as an embedded piece of an application,
Artix loads its configuration from two places. The bus gets its runtime
configuration from the Artix configuration file. The transports get their
configuration information from the Artix contract describing the interfaces
being integrated.

However, both the configuration information and the contract describing the
interfaces are more complicated. Artix needs to load more plug-ins to act as
a switch. The routing plug-in also needs to be configured to load a contract
with the required routing rules, and a control process will need to be
configured to ensure that the switch can be shutdown gracefully. The Artix
contract will have multiple transport configuration and routing information
about how messages are passed through the switch.

Figure 3: Standalone Artix Deployment
13

CHAPTER 2 | Deploying Artix Solutions: An Overview
Deploying a standalone switch Artix is configured for the standalone switching service by default. To deploy
Artix as a standalone switching service, do the following:

1. Ensure that the system’s runtime environment has been properly set up
to run Artix applications. See the Artix Configuration Guide.

2. If you are using the switching service as a router, you must add the
routing plug-in to the orb_plugins list, and configure the location of
the WSDL used by the router.

3. Ensure that the Artix contract that describes the your integration
contains the correct and routing extensor details (for example, the
routing source and destination).

4. Place your application’s contract in the directory where the application
looks for it. Alternatively, your configuration must specify the location
of the router's WSDL relative to where you are running the router.

5. Run the switching service in the Artix container.

For more detailed information, see Chapter 6.
 14

../config_ref/index.htm

Artix Locator
Artix Locator

Overview The Artix locator can be deployed as either a standalone service or an
embedded service. The locator differs from Artix applications in that it does
not redirect messages and it has a predefined contract.

Standalone locator Figure 4 shows how system using the Artix locator in standalone mode
would look. The locator uses its own contract to configure and advertise on
which port it can be contacted. Both the application and the Artix service
share a common Artix configuration file. However, they do not share a
configuration scope. This style of deploying the locator is beneficial because
it does not place additional load on the application. It is best suited for
locators that service a number of server processes.

Embedded locator Figure 5 shows a system in which the Artix locator is embedded in an
application. The application still requires two contracts. One for the
application and one for the locator. However, when the Artix locator is
embedded within an application the application and the locator share a
configuration scope.

Figure 4: Standalone Artix Locator
15

CHAPTER 2 | Deploying Artix Solutions: An Overview
This style of deployment limits the number of separate processes that need
to be deployed on a system. It is useful when the locator instance is only
going to be servicing the application that it is embedded in.

Deploying a standalone Artix
locator

To deploy a standalone Artix locator, complete the following steps:

1. Build a standalone Artix locator. This is discussed in Developing Artix
Applications with C++.

2. Edit your Artix configuration file to include a configuration scope for
your standalone locator.

3. In the locator’s configuration scope, ensure that the locator loads the
required plug-ins.

4. In the locator’s configuration scope, specify the location of the contract
for this instance of the locator service.

These steps are discussed in more detail in “Artix Locator” on page 51.

Deploying the Artix locator
embedded in an application

To deploy the Artix locator embedded in an application, complete the
following steps:

1. Edit your application’s configuration scope to specify that the locator
plug-ins are loaded at runtime.

2. In the application’s configuration scope, specify the location of the
contract for locator service instance used by this application.

These steps are discussed in more detail in “Artix Locator” on page 51.

Figure 5: Embedded Artix Locator
 16

http://www.iona.com/support/docs/artix/3.0/prog_guide/index.htm
http://www.iona.com/support/docs/artix/3.0/prog_guide/index.htm

Artix Session Manager
Artix Session Manager

Overview The Artix session manager enables Web services to engage in statefull
communication. It can be deployed as either a standalone service or an
embedded service. The session manager, like the Artix locator, has a
predefined contract and service specific configuration information.

Standalone session manager Figure 4 shows a system using the Artix session manager in standalone
mode. The session manager uses its own contract to configure and advertise
how it can be contacted and how its interface is configured.

In addition to the standalone session manager, your application loads an
endpoint manager plug-in which also requires a contract defining the
interface between the application and the session manager. Both the
application and the session manager share a common Artix configuration
file.

The standalone session manager instance and the application have separate
configuration scopes. However, the configuration information for the
endpoint manager is placed in the application’s configuration scope. This
style of deploying the session manager is best suited for scenarios where the
session manager manages a number of endpoints.

Figure 6: Standalone Artix Session Manager
17

CHAPTER 2 | Deploying Artix Solutions: An Overview
Embedded session manager Figure 5 shows a system in which the Artix session manager is embedded
within an application. The application still requires three contracts. One for
the application, one for the session manager, and one for the endpoint
manager. However, when the Artix session manager is embedded within an
application, the application and the session manager share a configuration
scope. This style of deployment limits the number of separate processes that
need to be deployed on a system and is useful when the session manger is
only servicing the application in which it is embedded.

Deploying a standalone Artix
session manager

To deploy a standalone Artix session manager, complete the following steps:

1. Build a standalone Artix session manager. This is discussed in
Developing Artix Applications with C++.

2. Edit your Artix configuration to include a configuration scope for your
standalone session manager.

3. In the session manager’s configuration scope, ensure that the session
manager loads the required plug-ins.

4. In the session manager’s configuration scope, specify the location of
the contract for this instance of the session management service.

Figure 7: Embedded Artix Session Manager
 18

http://www.iona.com/support/docs/artix/3.0/prog_guide/index.htm

Artix Session Manager
5. In the application’s configuration scope, edit the orb_plugins list to
include the required plug-ins for the endpoint manager.

6. In the application’s configuration scope, specify the location of the
contract for this instance of the endpoint manager.

These steps are discussed in more detail in “Artix Session Manager” on
page 69.

Deploying an embedded Artix
session manager

To deploy the Artix session manager embedded in an application, complete
the following steps:

1. Edit your application’s configuration scope to specify that the session
manager’s plug-ins are loaded at runtime.

2. Edit your application’s configuration scope to specify that the endpoint
manager’s plug-ins are loaded at runtime.

3. In the application’s configuration scope, specify the location of the
contract for session manager instance used by this application.

4. In the application’s configuration scope, specify the location of the
contract for this instance of the endpoint manager.

These steps are discussed in more detail in “Artix Session Manager” on
page 69.
19

CHAPTER 2 | Deploying Artix Solutions: An Overview
 20

Part II
Using Artix Services

In this part This part contains the following chapters:

Artix Container page 23

Artix Switches page 85

Artix Locator page 51

Artix Session Manager page 69

Deploying a Service Chain page 91

Deploying the Artix Transformer page 99

Artix High Availability page 111

Artix Bootstrapping Service page 131

CHAPTER 3

Artix Container
The Artix container enables you to deploy and manage your
services dynamically. For example, you can deploy a new
service into a running container, or perform runtime tasks such
as start, stop, and list existing services in a container. Artix
containers can be used to host C++ or Java services.

In this chapter This chapter discusses the following topics:

Introduction to the Artix Container page 24

Generating a Plug-in and Deployment Descriptor page 28

Running the Artix Container Server page 33

Running the Artix Container Administration Client page 36

Deploying Services on Restart page 42

Running the Container as a Windows Service page 46
23

CHAPTER 3 | Artix Container
Introduction to the Artix Container

Overview The Artix container provides a consistent mechanism for deploying and
managing Artix services. This section provides an overview the Artix
container architecture and its main components.

Artix plug-ins You can write Artix Web service implementations as C++ or Java plug-ins.
An Artix plug-in is a code library that can be loaded into an Artix application
at runtime.

Artix provides a platform-independent framework for loading plug-ins
dynamically, based on the dynamic linking capabilities of modern operating
systems (using shared libraries, DLLs, and Java classes).

Benefits Writing your application as an Artix plug-in means that you need to write
less code, and that you can deploy your services into an Artix container.
When you deploy your service into a container, this eliminates the need to
write your own C++ or Java server mainline. Instead, you can deploy your
service by simply passing the location of a generated deployment descriptor
to the Artix container’s administration client. This provides a powerful
programming model where the code is location independent.

In addition, an Artix container retains information about the services that it
deploys. This enables the container to reload services dynamically when it
restarts.

Main components The Artix container architecture includes the following main components:

• Artix container server

• Artix container service

• Artix deployment descriptor

• Artix container administration client
 24

Introduction to the Artix Container
How it works Figure 8 shows how the main Artix container components interact. An Artix
container service is deployed into an Artix container server. When an Artix
container service is running, you can then use an Artix container
administration client to communicate with it at runtime. This client enables
you to deploy and manage your services dynamically.

An Artix container service can be run inside any Artix bus. Because it is
implemented as an Artix plug-in, it can be loaded into any application. The
recommended use it to deploy it into an Artix container server, as shown in
Figure 8.

Artix container server The Artix container server is a simple Artix application that hosts the
container service. It consists of a server mainline that initializes a bus and
loads the Artix container service, which enables you to remotely deploy and
manage your applications.

You can run the Artix container server using the it_container command. If
your application requires some configuration, you can start the Artix
container server with a configuration scope. For more details, see “Running
the Artix Container Server” on page 33.

Figure 8: Artix Container Architecture
25

CHAPTER 3 | Artix Container
Artix deployment descriptor When deploying an application into an Artix container, you must pass in a
generated Artix deployment descriptor. This is a simple XML file that
specifies the details such as:

• Service name.

• Plug-in that implements the service.

• Whether the plug-in is C++ or Java.

You can generate a C++ or Java deployment descriptor by using Artix code
generation commands. For more details, see “Generating a Plug-in and
Deployment Descriptor” on page 28.

Artix container service The Artix container service is a remote interface that supports the following
operations:

• List all services in the application.

• Stop a running service.

• Start a dormant service.

• Remove a service.

• Deploy a new service.

• Get a reference to a service.

• Get the WSDL for a service.

• Get the URL to a service’s WSDL.

• Shut down the container service.

When the Artix container service deploys a new service, it loads the
appropriate plug-ins, sets up and activates your service.

The Artix container service assumes that the plug-ins are available in your
application environment, so you must ensure that they are in the expected
library path. The Artix container service supports C++ and Java
applications, provided that they are compiled into plug-ins.

The Artix container service has a WSDL-based interface and so can be used
with any binding or transport.
 26

Introduction to the Artix Container
Artix container administration
client

Because the Artix container service has a WSDL-based interface with a
SOAP/HTTP binding, you can communicate with it using any client. Artix
provides a command-line tool that uses the Artix container stub code, and
which enables you to manage the container service easily. The Artix
container administration client currently supports SOAP/HTTP only.

You can run the Artix container administration client using the
it_container_admin command. This client makes all the container service
operations available through simple command-line options. For more
details, see “Running the Artix Container Administration Client” on page 36.

Artix container demos The following demos in your Artix installation show basic use of the Artix
container:

• ...\demos\advanced\container\deploy_plugin

This shows how starting with a .wsdl file, you can use the wsdltocpp
or wsdltojava command-line tool to generate a C++ or Java plug-in
and deployment descriptor. It then shows how to deploy the plug-in
into the Artix container.

• ...\demos\advanced\container\deploy_routes

This shows how routes are simply advanced services that happen to be
implemented by the router plug-in, and whose implementation is just a
proxy to a different service. It shows how you can dynamically deploy
and manage routes in the Artix container.

Several other advanced Artix demos also use the Artix container, for
example:

• ...\demos\advanced\containersecure_container

• ...\demos\advanced\locator

• ...\demos\advanced\session_management

• ...\demos\routing
27

CHAPTER 3 | Artix Container
Generating a Plug-in and Deployment
Descriptor

Overview Artix services are implemented by C++ or Java plug-ins. When you want to
deploy a service into an Artix container, the first step is to generate a plug-in
from a .wsdl file.

For a C++ service, this generates a dynamic library (Windows), or shared
library (UNIX). For a Java service, this generates the Java classes required
to implement the plug-in. An XML deployment descriptor is also generated
for both C++ and Java service. You can generate a plug-in and deployment
descriptor using any of the following commands:

• wsdltocpp

• wsdltojava

• wsdd

Using wsdltocpp To generate a C++ plug-in library and a deployment descriptor for a
specified .wsdl file, use the following command:

The -plugin and -deployable options are the most important. -plugin
generates a new plug-in, and -deployable generates a corresponding
deployment descriptor.

The generated plug-in can have an optional name (in this case,
it_simple_service_cpp_bus_plugin). If a name is specified, the generated
plug-in library uses this name. The name is ignored if the .wsdl file contains
more than one service definition. If no plug-in name is set or ignored, the
plug-in name takes the following format: ServiceNamePortTypeName.

In this example, -impl generates the skeleton code for implementing the
server defined by the WSDL. -server generates code for a server sample
implementation, and -m generates a makefile. For more details on using the
wsdltocpp command, see the Artix Command Line Reference.

wsdltocpp -n deploy_plugin -impl -server -m NMAKE:library
-plugin:it_simple_service_cpp_bus_plugin -deployable simple_service.wsdl
 28

Generating a Plug-in and Deployment Descriptor
C++ deployment descriptor

The deployment descriptor generated for the example C++ service is as
follows:

The type element tells the Artix container that this is a C++ service.

Using wsdltojava To generate a Java plug-in library and a deployment descriptor for a
specified .wsdl file, use the following command:

The -plugin and deployable options are the most important. -plugin
generates a new plug-in, and -deployable generates a corresponding
deployment descriptor.

The generated plug-in can have an optional name (in this case,
it_simple_service_java_bus_plugin). In contrast to C++, the name
assigned using the -plugin entry only becomes the name of the plugin (as
identified in the deployment descriptor). The name of the Java class that
implements the plugin factory is derived from the port type name in the
WSDL file.

In this example, -impl generates the skeleton class for implementing the
server defined by the WSDL. -server generates code for a server sample
implementation, and -ant generates an Ant build.xml file. For more details
on using the wsdltojava command, see the Artix Command Line
Reference.

<?xml version="1.0" encoding="utf-8"?>
<m1:deploymentDescriptor xmlns:m1="http://schemas.iona.com/deploy">
 <service xmlns:servicens
 ="http://www.iona.com/bus/tests">servicens:SimpleServiceService</service>
 <plugin>
 <name>it_simple_service_cpp_bus_plugin</name>
 <type>Cxx</type>
 </plugin>
</m1:deploymentDescriptor>

wsdltojava -impl -server -ant -plugin:it_simple_service_java_bus_plugin
-deployable simple_service.wsdl
29

CHAPTER 3 | Artix Container
Java deployment descriptor

The deployment descriptor generated for the example Java service is as
follows:

The type element tells the Artix container that this is a Java service.

Using wsdd For more complex deployment descriptors, you can use the Web services
deployment descriptor (wsdd) command as an alternative to wsdltocpp and
wsdltojava.

The descriptors generated by wsdltocpp and wsdltojava do not include all
the possible information that descriptors can have—for example,
provider_namespace (see the advanced/container/deploy_routes demo).

The following example uses the wsdd command:

The full syntax of the wsdd command is as follows:

<?xml version="1.0" encoding="utf-8"?>
<m1:deploymentDescriptor xmlns:m1="http://schemas.iona.com/deploy">
 <service xmlns:servicens
 ="http://www.iona.com/bus/tests">servicens:SimpleServiceService</service>
 <plugin>
 <name>it_simple_service_java_bus_plugin</name>
 <type>Java</type>
 <implementation>com.iona.bus.tests.SimpleServiceServicePluginFactory</implementation>
 </plugin>
</m1:deploymentDescriptor>

wsdd -service {http://www.iona.com/test}CustomService
-pluginName testplugin -pluginType Cxx

wsdd -service QName -pluginName PluginName -pluginType Cxx|Java
[-pluginImpl Library/ClassName] [-pluginDir Dir] [-wsdlurl
WsdlLocation] [-provider ProviderNamespace] [-file
OutputFile] [-d OutputDir] [-h] [-v] [-verbose] [-quiet]
 30

Generating a Plug-in and Deployment Descriptor
The following arguments are required:

The following arguments are optional:

Table 1: Required Arguments to wsdd

-service QName Specifies the name of a service to be
deployed.

-pluginName PluginName Specifies the name that a plug-in is
registered as.

-pluginType Cxx|Java Specifies the name of a plug-in type.

Table 2: Optional Arguments to wsdd

-pluginImpl

Library/ClassName

Specifies either a library name (.dll/.so)
for a C++ plug-in, or a class name of the
plug-in factory for Java plug-ins

-pluginDir Dir Specifies the location where plug-in
library/classes are located. This option, if
specified, has no effect on deployment.

-wsdlurl WsdlLocation Specifies a URL to a service WSDL.

-provider
ProviderNamespace

Specifies the provider namespace. Used in
the container/deploy_routes demo. For
example, this can be used by plug-ins to
provide servant implementations for more
than one service.

-file OutputFile Specifies the name of the generated
descriptor file. The default is
deployserviceLocalName. For example, if
-service

{http://www.iona.com/test}CustomServic

e is used, it is deployCustomService.xml

-d OutputDir The location where a descriptor should be
generated.

-h[elp] Displays detailed help information for each
option.
31

CHAPTER 3 | Artix Container
Adding business logic For both C++ and Java applications, you must still add your business logic
code to the servant implementation class.

The supplied Artix demos include a fully implemented servant file instead of
the generated file.

Artix deployment descriptors As well as hosting user-defined services, an Artix container can be used to
host IONA services such as the locator. The following is an example
generated deployment descriptor for the locator service:

For details on deploying the locator in the container, see the Artix Locator
Guide.

-v[ersion] Displays the version of the tool.

-verbose Displays output in verbose mode.

-quiet Displays output in quiet mode.

Table 2: Optional Arguments to wsdd

<?xml version="1.0" encoding="utf-8"?>
<m1:deploymentDescriptor xmlns:m1="http://schemas.iona.com/deploy">
 <service xmlns:servicens
 ="http://www.iona.com/bus/tests">servicens:SimpleServiceService</service>
 <plugin>
 <name>it_simple_service_java_bus_plugin</name>
 <type>Java</type>
 <implementation>com.iona.bus.tests.SimpleServiceServicePluginFactory</implementation>
 </plugin>
</m1:deploymentDescriptor>
 32

Running the Artix Container Server
Running the Artix Container Server

Overview The Artix container server is an Artix server mainline that initializes an Artix
bus, and loads the Artix container service.

As well as hosting your own service plugins, the Artix container server can
also be used to host well-known Artix services, such as the locator, session
manager, router, and so on. You can run as many instances of the Artix
container server as your applications require.

Using the it_container command To run an Artix container server, use the it_container command. This has
the following syntax:

it_container [-s[ervice] Options] [-d[aemon]] [-p[ort]
PortNumber] [-publish [-file Filename]] [-deploy
DeploymentDescriptor] [-deployfolder] [-v[ersion]] [-h[elp]]

-s[ervice] On Windows, runs the container server as a
Windows service. Without this parameter, it
runs in foreground. See “Running the
Container as a Windows Service” on page 46.

-d[aemon] On UNIX, runs the container server as a
daemon in the background. Without this
parameter, it runs in the foreground.

-p[ort] PortNumber Specifies the port number for the container
service.

-publish [-file Filename] Specifies the location to export the container
service URL. By default, this is
/ContainerService.url. You can override
the default using -file.

-deploy Descriptor Deploys a service using a specified
deployment descriptor (for example, at
startup). This is instead of deploying with the
container service (see “Using the
it_container_admin command” on page 36).
33

CHAPTER 3 | Artix Container
Running the container server in
the background

On UNIX, to run a container server in the background, use the it_container
-daemon command.

If the -daemon option is not specified, the container server runs in the
foreground of the active command window. This option does not apply on
Windows.

Publishing the container service
URL in a file

To publish a container service URL, use the -publish option, for example:

The -publish option tells the container server to publish the container
service URL in a local file. This URL can then be later retrieved by the
it_container_admin command, which uses it to contact the container
service, and initialize a container service client proxy.

By default, a ContainerService.url file is created in the local directory.
Use the -file option to override this behavior.

Running the container server on a
specified port

To run a container server on a specific port, specify the -port option, for
example:

This port is used for the container service. This is also the port for the
wsdl_publish plug-in. The container administrative client uses
wsdl_publish to get contracts for the container service and for all other
services hosted by the container.

-deployfolder Path Specifies the location of a local folder to store
deployment descriptors. This enables
redeployment of existing services on restart
(see “Deploying Services on Restart” on
page 42).

-v[ersion] Prints version information and exits.

-h[elp] Prints usage summary and exits.

it_container -publish -file
my_directory/my_container_service.url

it_container -port 1111
it_container -port 2222
 34

Running the Artix Container Server
This port number can then be used by a container service administration
client when contacting the container server, for example:

Specifying configuration to the
container server

You can run it_container without any configuration. This is sufficient for
many simple applications. However, if your application requires additional
settings, you can start it_container with command-line configuration.

For simple applications, the container server loads any plug-ins that you
need to instantiate your service, so you do not normally need to configure a
plug-ins list, or any other configuration. However, some advanced features
may involve launching it_container with command-line configuration.

The following example is from the ..demos\advanced\locator demo and
shows running the locator service in the container server:

In this example, the locator service picks up specific configuration from its
demo.locator.service scope. For more details, see the demos for the
locator, session manager, and router.

it_container_admin -port 1111

it_container -ORBname demo.locator.service -ORBdomain_name
locator -ORBconfig_domains_dir ../../etc -publish -file
../../etc/ContainerService.url
35

CHAPTER 3 | Artix Container
Running the Artix Container Administration
Client

Overview This section explains how to use the Artix container administration client to
perform tasks such as deploying a generated plug-in into the Artix container
server, and retrieving a service URL. It explains the full syntax of the
it_container_admin command, which is used to control the Artix container
administration client.

Using the it_container_admin
command

The full syntax for the it_container_admin command is as follows:

-deploy -file dd.xml Deploys a new service into the container
server. This involves loading a plug-in
that contains the service
implementation. You must specify an
Artix deployment descriptor using the
-file option.

-listservices Displays all services in the application.
Shows the state of each service (for
example, active, de-activated, or
shutting down).

-startservice -service
{Namespace}LocalPart

Restarts the specified service that is
visible but dormant, or that has been
previously stopped.

-stopservice -service
{Namespace}LocalPart

Stops the specified running service.

-removeservice -service
{Namespace}LocalPart

Removes and undeploys all trace of the
specified service from the application.

-publishreference -service
{Namespace}LocalPart
[-file Filename]

Gets a reference to the specified service.
The -file option publishes the reference
to a local file. This can then be used to
initialize a client application.
 36

Running the Artix Container Administration Client
-publishwsdl -service
{Namespace}LocalPart
[-file Filename]

Gets the WSDL for the specified service.
The -file option publishes the WSDL to
a local file. This can then be used to
initialize a client application.

-publishurl -service
{Namespace}LocalPart
[-file Filename]

Gets a HTTP URL for the specified
service from which you can then
download the WSDL. The -file option
publishes the URL to a local file. This
can then be used to initialize a client
application.

-shutdown [-soft] Shuts down the entire application. The
-soft option shuts down gracefully.

-port ContainerPort Contacts the container server on the
specified port. See “Running the
container server on a specified port” on
page 34. This can be used with other
options instead of -container.

-host ContainerHostname Contacts the container server on the
specified host. Defaults to localhost if
unspecified. The -host option is for use
with -port only.

-container File.url Runs the specified container service.
This can be used with other options
instead of -port and -host.

Note: By default, it_container_admin looks in the local directory for the
ContainerService.url file. If this file is not local, use the -container
option, or the -port and -host options, to contact the container.
37

CHAPTER 3 | Artix Container
Deploying the generated plug-in To deploy a generated plug-in into the container server, use the -deploy
option, for example:

The -file option specifies a generated deployment descriptor. This lists the
service that this plug-in can provide, the plug-in name, and plug-in type. In
this example, the portable C++ plug-in library name is expected to be the
same as the plug-in name. The library is expected to be located in the
../plugin directory.

When a container service loads the plug-in, it registers a servant for the
service that is described in the deployment descriptor.

Getting service WSDL To get the WSDL for a deployed service from the container, use the
-publishwsdl option, for example:

The -publishurl option gets the service’s WSDL contract. The -file option
publishes the URL to a local file. When the client runs, it reads the
published WSDL from the local file, and uses it to initialize a client stub,
and communicate with a deployed service.

Using the -publishreference, -publishwsdl, and -publishurl options
means that you can write WSDL contracts without hard-coded ports, and
that your clients will still be able to call against them.

Example 1 shows output from the -publishwsdl command that is written to
the specified file.

it_container_admin -deploy -file
../plugin/deploySimpleServiceService.xml

it_container_admin -publishwsdl -service
{http://www.iona.com/bus/demos}WellWisherService -file
my_service
 38

Running the Artix Container Administration Client

Example 1: Published WSDL Output

<?xml version='1.0' encoding='utf-8'?>
<definitions name="wellwisher" targetNamespace="http://www.iona.com/demos/wellwisher"

xmlns="http://schemas.xmlsoap.org/wsdl/" xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://www.iona.com/demos/wellwisher"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<types xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://www.iona.com/demos/wellwisher"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <schema targetNamespace="http://www.iona.com/demos/wellwisher"
xmlns="http://www.w3.org/2001/XMLSchema" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

 <element name="responseType" type="xsd:string"/>
 </schema>
</types>

<message name="sayGoodbyeRequest"></message>
<message name="sayGoodByeResponse">
<part element="tns:responseType" name="theResponse"></part>
</message>

<portType name="WellWisher">
<operation name="saySoLong">
<input message="tns:sayGoodbyeRequest" name="saySoLongRequest"></input>
<output message="tns:sayGoodByeResponse" name="saySoLongResponse"></output>
</operation>
</portType>

<binding name="WellWisher_SOAPBinding" type="tns:WellWisher">
<soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http">
</soap:binding>
<operation name="saySoLong">
<soap:operation style="document">
</soap:operation>
<input name="saySoLongRequest">
<soap:body use="literal">
</soap:body>
</input>
<output name="saySoLongResponse">
<soap:body use="literal">
</soap:body>
</output>
</operation>
</binding>
39

CHAPTER 3 | Artix Container
Getting a service URL To get a URL for a deployed service from the container service, use the
-publishurl option, for example:

The -publishurl option gets a URL to the service’s WSDL contract. The
-file option publishes the URL to a local file. When the client runs, it reads
the published WSDL URL from the local file, and uses it to initialize a client
stub, and then communicate with a deployed service.

Listing deployed services To display a list of the services in your application, use the -listservices
option, for example:

This example shows the output listed under the it_container_admin
-listservices command. The ACTIVATED state indicates that both services
are running. In this example, the -port option is used to contact a container
server that was already started on port 2222.

<service name="WellWisherService">
<port binding="tns:WellWisher_SOAPBinding" name="WellWisherPort">
<soap:address location="http://10.2.4.52:2223/wellwisher">
</soap:address>
</port>
</service>
</definitions>

Example 1: Published WSDL Output

it_container_admin -publishurl -service
{http://www.iona.com/bus/tests}SimpleServiceService -file
my_service

it_container_admin -port 2222 -listservices
{http://www.iona.com/demos/wellwisher}WellWisherService ACTIVATED
{http://www.iona.com/demos/greeter}GreeterService ACTIVATED
 40

Running the Artix Container Administration Client
Stopping deployed services To stop a currently deployed service, use the -stopservice option, for
example:

This following example shows the output from -listservices after the
service has been stopped.

The WellWisherService is now listed as DEACTIVATED.

Specifying configuration to the
administration client

You can run it_container_admin without any configuration. This is
sufficient for most simple applications. However, if your application requires
additional settings, you can start it_container_admin with command-line
configuration.

For simple applications, the container service loads any plug-ins that you
need to instantiate your service, so you do not normally need to configure a
plug-ins list, or any other configuration. However, some advanced features
may involve launching it_container_admin with command-line
configuration.

The following example shows shutting down the locator service using the
it_container_admin -shutdown option:

For more details, see the demos for the locator, session manager, and
router.

it_container_admin -port 2222 -stopservice -service
{http://www.iona.com/demos/wellwisher}WellWisherService

it_container_admin -port 2222 -listservices
{http://www.iona.com/demos/wellwisher}WellWisherService DEACTIVATED
{http://www.iona.com/demos/greeter}GreeterService ACTIVATED

it_container_admin -ORBdomain_name locator -ORBconfig_domains_dir
../../etc -container ../../etc/ContainerService.url -shutdown
41

CHAPTER 3 | Artix Container
Deploying Services on Restart

Overview The Artix container can be configured to retain information about the
services that it has deployed. This enables it to reload services automatically
on restart. This ability to remember deployed services is known as
persistent deployment.

To enable persistent deployment, you must configure the container to use a
local folder to store deployment descriptors. These descriptors specify what
the container should deploy at startup. The container ensures that this folder
accurately reflects what is deployed in case of a restart.

How it works To reload services that have been deployed by the container service before
shutdown, the container persists all deployment descriptors when
processing new deployment requests. The container needs to know the
location of a local folder where deployment descriptor files are saved to, and
where to read them from on restart.

The container finds the location of this folder from either:

• A command-line argument passed to the container.

• A configuration variable in a configuration file.

At startup, the container looks in the configured deployment folder and
deploys the contents of the folder. It deploys all services that it finds in the
folder where possible. If any deployment fails, the container fails to start.

Note: Command-line arguments take precedence over configuration
variables.
 42

Deploying Services on Restart
Persistent deployment modes You can configure the deployment descriptor folder for either read/write or
read-only deployment.

Dynamic read/write deployment

In this case, the container adds and removes files from the deployment
folder dynamically as services are deployed or removed from the container.
When a call to deploy a service is made, a descriptor file is added to the
folder. When a call to remove a service is made, a descriptor file is removed,
and the service is not redeployed upon restart.

Read-only deployment

The deployment descriptor folder can also be used as a read-only
initialization folder that predeploys the same required set of services after
every restart.

When a deployment folder is read-only, the container predeploys the same
set of services on restart. No deployment descriptors are removed from, or
saved into, a read only deployment folder by the container.

By making a deployment folder read-only, you can share deployment
descriptors between multiple container instances. In this scenario, you can
enable a single container instance to modify the contents of this folder, and
all container instances are affected after restart.

Enabling dynamic read/write
deployment

You can enable a read/write deployment folder using the following
command-line arguments:

Alternatively, you can set the following variable in a configuration file:

This means that the ../etc folder is used for predeploying services and
persisting new descriptors.

it_container -deployfolder ../etc

plugins:container:deployfolder="../etc";
43

CHAPTER 3 | Artix Container
Enabling read-only deployment You can enable a read-only deployment folder using the following
command-line arguments:

Alternatively, you can set the following variables in a configuration file:

This means that the ../etc folder is used for predeploying services only.

Predeploying a service on startup The it_container command also provides a -deploy argument, which can
be used to predeploy a single service on startup, for example:

The -deploy and -deployfolder arguments can be used together, for
example:

This means that MyService identified by deployMyService.xml, and all
services identified by descriptors in the ../etc folder, are deployed. The
deployMyService.xml that is specified using the -deploy argument is not
copied into a deployment folder. If you wish to copy a descriptor to the
deployment folder, use the following command:

Naming conventions The Artix container uses the following format when persisting deployment
descriptors into files:

You should follow the same pattern when generating custom descriptors
where possible. The container expects that all files in the deployment folder
that have the .xml extension are valid deployment descriptors.

it_container -deployfolder -readonly ../etc

plugins:container:deployfolder="../etc";
plugins:container:deployfolder:readonly="true";

it_container -deploy deployCORBAService.xml

it_container -deploy deployMyService.xml -deployfolder ../etc

it_container_admin -deploy -file deployMyService.xml
-deployfolder -deployfolder ../etc

deployLocalServiceName.xml
 44

Deploying Services on Restart
By default, deployment descriptors generated by Artix tools use the name of
the service’s local part. If you have two services with the same local part but
different namespaces, you should use the wsdd -file option to avoid the
name clashing. For more details, see “Using wsdd” on page 30.

Removing a service When using a read/write deployment folder, you can remove a service by
calling it_container_admin -removeservice on a running container. For
example:

Alternatively, you can remove the deployment descriptor file from the folder.
Both of these approaches ensure that the container does not reload the
service at startup.

When using a read-only folder, removing a service using -removeservice
does not prevent it from being redeployed after a restart. Only removing a
descriptor file from the folder prevents it from being redeployed.

Warnings and exceptions It is possible that using different descriptors might lead to the container
attempting to deploy the same service twice.

In this case, the container logs a warning message and proceeds with
deploying other services. An exception is thrown if an attempt to deploy the
same service is made from an administration console.

Further information For a working example of persistent deployment, see the following Artix
demo:

.../demos/advanced/container/deploy_plugin

it_container_admin -removeservice -service
{http://www.iona.com/bus/tests}SimpleServiceService

Note: Copying or removing files from the deployment folder has no
impact if the container is already running. The container cannot react to
these events. The contents of the folder is read once at startup. This only
applies to services that are started using deployment descriptors.
45

CHAPTER 3 | Artix Container
Running the Container as a Windows Service

Overview On Windows, you can install instances of the Artix container server as a
Windows service. By default, this means that the installed container will
start up when your system restarts.

This feature also enables you to manage the container using the Windows
service controls. For example, you can start or stop a container using the
Windows Control Panel, or Windows net commands, such as net stop
ServiceName.

Format of service names When a container is installed as a Windows service, the container name
takes the following format in the Windows registry:

For example, if you call your service test_service, the name generated by
the install command that appears in the registry is:

This name is stored under the following entry in the registry:

Setting your environment
variables

Before installing the Artix container as a Windows service, you must ensure
that your system environment variables have been set correctly, and that
your machine has rebooted. These steps can be performed either when
installing Artix, or at any time prior to installing the container as a Windows
service.

Your environment variables enable the container to find all the information it
needs on restart. They must be set as follows:

ITArtixContainer ServiceName

ITArtixContainer test_service

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services
 46

Running the Container as a Windows Service
Environment
Variable

Setting

IT_PRODUCT_DIR Your Artix installation directory (for example,
c:\iona).

Note: This is needed only if your PATH specifies
%IT_PRODUCT_DIR%, instead of the full path to any
Artix directories.

PATH Should include the following:

• Any C++ plug-ins that will be deployed by
the container.

• InstallDir\bin and
InstallDir\artix\3.0\bin.

• The JRE libraries, JDKInstallDir\jre\bin
and JDKInstallDir\jre\bin\server.

CLASSPATH Should include the following:

• Any Java plug-ins that will be deployed by
the container. If the plug-in is packaged in a
JAR, you must list the .jar file. If .class
files are used, only the directory needs to be
listed.

• The Artix runtime JAR,
InstallDir\artix\3.0\lib\artix-rt.jar

• InstallDir\etc and
InstallDir\artix\3.0\etc.

• Your JDK/JRE runtime JAR (for example,
JDKInstallDir\jre\lib\rt.jar).

Note: If you used Microsoft Visual C++ 7.1 to create your service
plug-in, include the following in your PATH, in this order:

InstallDir\bin\vc71;InstallDir\bin;InstallDir\artix\3.0\bin\vc71
;InstallDir\artix\3.0\bin
47

CHAPTER 3 | Artix Container
Installing a container To install a container as a Windows service, use the it_container
-service install command:

These parameters are described as follows:

In addition to the -service install parameters, the following
it_container parameters also apply:

it_container -service install [-ORBParamName [ParamValue]]
-displayname Name -svcName ServiceName

-ORBParamName Represents zero or more -ORBParamName command-line
options (for example, -ORBlicense_file). These
specify the location of the Artix license file, domain
name, configuration directory, or ORB name.

These values must be specified either as command-line
parameters or environment variables. However,
specifying on the command line allows easier
deployment of multiple it_container instances as
multiple Windows services.

-displayname Specifies the name that is displayed in the Windows
Services dialog (select Start|Settings|Control
Panel|Application Tools|Services). The -displayname
parameter is required.

-svcName Specifies the service name that is listed in the Windows
registry (select Start|Run, and type regedit). The
-svcName parameter is required.

-port Specifies the port that the container will run on (see
“Running the container server on a specified port” on
page 34). This parameter is required.

-deployfolder Specifies a local folder to store deployment descriptors.
This enables redeployment on startup (see “Deploying
Services on Restart” on page 42). This parameter is
optional.
 48

Running the Container as a Windows Service
Example command

The following example shows all the parameters needed to install a
container instance as a Windows service:

If you do not set your license file, domain name, and configuration directory,
as environment variables, you must set them as -ORBParamName entries (the
recommended approach). The -ORBname parameter is optional.

Example service

The installed Windows service is listed in the Services dialog, as shown in
Figure 9.

it_container -service install -ORBlicense_file c:\InstallDir\etc\licenses.txt
-ORBconfig_dir c:\InstallDir\artix\3.0\etc -ORBdomain_name artix
-displayName "My Test Service" -svcName my_test_service -port 2222
-deployfolder C:\deployed_files

Figure 9: Installed Windows Service
49

CHAPTER 3 | Artix Container
Clicking on My Test Service displays the properties shown in Figure 10.

After running the it_container -service install command, you must
start the services manually. However, when your computer is restarted, the
installed services are configured to restart automatically.

Uninstalling a container To uninstall a container as a Windows service, use the it_container
uninstall command.

For example:

Figure 10: Service Properties

it_container -service uninstall -svcName ServiceName

it_container -service uninstall -svcName my_artix_test
 50

CHAPTER 4

Artix Locator
The Artix locator service is a service endpoint registry. It
enables Artix servers to publish their references for dynamic
lookup by Artix clients.

In this chapter This chapter discusses the following topics:

Overview of the Artix Locator page 52

Deploying the Locator page 56

Registering a Server with the Locator page 60

Obtaining References from the Locator page 63

Load Balancing page 66

Fault Tolerance page 67
51

CHAPTER 4 | Artix Locator
Overview of the Artix Locator

Overview A system with many servers can not afford the overhead of manually
propagating each server’s contact information to the clients that need to
contact them. Given the large number of clients and the distributed nature
of enterprise deployments, the time required to propagate contact details,
and the room for error, are too great. Over time, hardware upgrades,
machine failures, or site reconfiguration will require you to move servers and
repeat the exercise of propagating the server’s information to all clients.

The Artix locator service isolates clients from changes in a server’s contact
information. The Artix WSDL contract defines how the client contacts the
server, and contains the address of the Artix locator. The locator provides
the client with a reference to the server. Servers are automatically registered
with the locator when they start-up.

Locator service components The Artix locator’s functionality is built into two plug-ins:

Locator Service Plug-in
(service_locator)

This is the central service plug-in. It
accepts service registrations, performs
service look-ups, hands out references to
clients who request them, and controls
the load balancing of service groups.

Locator Endpoint Manager
Plug-in (locator_endpoint)

This is the portion of the locator that
resides in a registered service. It registers
its location with the locator service
plug-in, and monitors the health of the
locator service plug-in to ensure fault
tolerance.
 52

Overview of the Artix Locator
How do the plug-ins interact? Figure 11 shows an overview of how the locator plug-ins are deployed in an
Artix system. In this example, the locator service plug-in is deployed in a
standalone service, however, it can be deployed in any Artix process.

The locator endpoint manager plug-ins are deployed in the server processes
that contain services registered with the locator. A server process can host
two services, (for example, Service C and Service D in Figure 11), but the
process can have only one endpoint manager. The endpoint manager
plug-ins are in constant communication with the locator service plug-in to
report on endpoint health, and to check on the health of the locator service.

Figure 11: The Locator Plug-ins
53

CHAPTER 4 | Artix Locator
Load balancing The locator also provides load balancing functionality. When a group of
services register with the locator using the same service name, the locator
considers the services as a single service and uses a round-robin load
balance algorithm to hand out references to the separate instances.

Figure 12 shows a simplified example. When each client makes a request
for widget_service (using the locator), the locator cycles through the pool
of registered widget_service instances. For example, when client4 makes
a request, the locator starts handing out references from the top of the pool
(widget_service a).

Figure 12: Locator Load Balancing
 54

Overview of the Artix Locator

In addition, services can also implement their own load balancing internally
by using calls to the Artix locator service that temporarily remove them from
the pool of active references.

Note: The client must first contact the locator to resolve a reference, and
use that reference to instantiate a proxy (see “Obtaining References from
the Locator” on page 63). For simplicity, this is not shown the diagram.
55

CHAPTER 4 | Artix Locator
Deploying the Locator

Overview The Artix locator is implemented using Artix plug-ins. This means that any
Artix application can host the locator service by loading the
service_locator plug-in. However, it is recommended that you deploy the
locator using the Artix container. For information on the Artix container, see
Chapter 3.

Configuring the locator to run in
the container

To configure the locator to run in the Artix container, ensure that the
service_locator plug-in is included in the locator’s configuration scope, for
example:

The service_locator plug-in implements the locator service functionality.

The soap and at_http plug-ins are loaded automatically when the process
parses the locator’s WSDL contract. The iiop_profile, giop, and iiop
plugins are not required when you are using the Artix container, or an Artix
process.

Configuring a dynamic port By default, the locator is configured to deploy on a dynamic port. In the
default locator WSDL contract, the addressing information is as follows:

locator_demo {
 ...
 locator{
 orb_plugins = ["xmlfile_log_stream", "service_locator"];
 };

Example 2: Locator Service on Dynamic Port

<service name="LocatorService">
 <port binding="ls:LocatorServiceBinding" name="LocatorServicePort">
 <soap:address

location="http://localhost:0/services/locator/LocatorService"/>
 </port>
</service>
 56

Deploying the Locator
The highlighted part shows the address. The localhost:0 port means that
when you activate the locator service, the operating system assigns a port
dynamically on startup.

Configuring a fixed port There are two ways of deploying the locator on a well-known fixed port. You
can either edit the default locator.wsdl contract, or you can create a new
locator.wsdl contract for your application.

Editing the default locator contract

To edit the default locator.wsdl contract, perform the following steps:

1. Open the locator.wsdl contract in any text editor. This is in the
following directory:

2. Edit the soap:address attribute at the bottom of the contract to specify
the correct address. Example 3 shows a modified locator service
contract entry. The highlighted part has been modified to point to the
desired address.

Creating a new locator contract

To create a new locator.wsdl contract, perform the following steps:

1. Copy the default locator.wsdl contract to another location, and open
it in any text editor.

2. Edit the soap:address attribute at the bottom of the contract to specify
the correct address. Example 3 shows a modified locator service
contract entry. The highlighted part has been modified to point to the
desired address.

InstallDir\artix\3.0\wsdl\locator.wsdl

Example 3: Locator Service on Fixed Port

<service name="LocatorService">
 <port name="LocatorServicePort" binding="ls:LocatorServiceBinding">
 <soap:address

location="http://localhost:8080/services/locator/LocatorService"/>
 </port>
</service>
57

CHAPTER 4 | Artix Locator
3. In your configuration file, in the application’s scope, add a new
bus:initial_contract:url:locator variable that points to your
edited WSDL contract. For example:

The default bus:initial_contract:url:locator variable is in the
global scope, which ensures that every application has access to the
contract. Specifying a new contract in your application scope overrides
the global locator contract for your application.

When the locator has been correctly configured, it can be started like any
other application. The only difference is that the session manager must be
started before any servers that need to register with it.

Deploying the locator in the
container

The locator can be started in the Artix container, just like any other
application. To deploy the default locator in the container, perform the
following steps:

1. Run the locator in the Artix container, for example:

2. Ask the container to publish the live version of the locator WSDL that
you use to initialize your clients. For example:

This retrieves the locator's activated WSDL contract. This is the
contract in which 0 ports are dynamically updated with the actual port
that the service runs on. In this example, it_container_admin writes
the contract to the locator-activated.wsdl file in the etc
subdirectory

3. Finally, you must ensure that your clients use the updated WSDL file at
runtime.

bus:initial_contract:url:locator = "c:\myapp/wsdl/locator.wsdl";

it_container -ORBname demo.locator.service -ORBdomain_name
locator -ORBconfig_domains_dir ../../etc -publish

it_container_admin -container ../../etc/ContainerService.url
-publishwsdl -service
{http://ws.iona.com/locator}LocatorService -file
..\..\etc\locator-activated.wsdl
 58

Deploying the Locator
Deploying the locator in the
container on a fixed port

Alternatively, you can use the -port option to specify that the container runs
a service on a fixed port. For example:

In this example, any services that run in the container, and have default
contracts with a port of 0, will not use port 9000.

You can manually update the WSDL used by your client to 9000, or you can
publish the WSDL from the container using it_container_admin with the
-publishwsdl option, shown in “Deploying the locator in the container” on
page 58.

Shutting down the locator To shut down the locator, use the Artix container’s shutdown option, for
example:

it_container -port 9000 -ORBname demo.locator.service
-ORBdomain_name locator -ORBconfig_domains_dir ../../etc
-publish

Note: Instead of using the container to deploy the locator, you can also
do this by creating a custom Artix service mainline. For details, see
Developing Artix Applications with C++.

it_container_admin -ORBdomain_name locator -ORBconfig_domains_dir
../../etc -container ../../etc/ContainerService.url -shutdown
59

http://www.iona.com/support/docs/artix/3.0/prog_guide/index.htm

CHAPTER 4 | Artix Locator
Registering a Server with the Locator

Overview A server does not need to have its implementation changed to work with the
Artix locator. All that is required is that the server be configured to load the
correct plug-ins, and to reference the correct locator contract.

If you require more fine-grained control, you can filter the service endpoints
that are registered.

Configuring the server Any server that wishes to register itself with the locator must load the
locator_endpoint plug-in. The locator_endpoint plug-in enables the
server to register with the running locator. The following shows the
configuration scope of a server that registers with the locator service.

my_server provides its services using SOAP over IIOP, so in addition to the
locator plug-in, it loads these plug-ins transparently.

Using a copy of locator.wsdl

If you are using a copy of the default locator contract to specify a fixed port,
the server configuration must also specify the location of the contract. For
example:

This is not necessary if you are using a dynamic port, or have updated the
default contract with a fixed port. The global
bus:initial_contract:url:locator setting is used instead.

For more details, see the Artix Configuration Guide.

my_server
{
 orb_plugins = ["xmlfile_log_stream", "locator_endpoint"];
 };

bus:initial_contract:url:locator="c:\my_server/locator.wsdl";
 60

../config_ref/index.htm

Registering a Server with the Locator
Filtering service endpoints By default, any service activated in an Artix bus that loads the
locator_endpoint plug-in is automatically registered in the locator.

However, you may not want every service registered or exposed to the
locator. Artix enables you to filter the endpoints that are registered by the
locator endpoint manager. You can do this by explicitly including or
excluding endpoints.

Excluding endpoints to be
registered

If there are a small number of endpoints that you want to be filtered, you
can explicitly exclude those endpoints from the locator.

For example, if you do not want to register the container service, but want to
register all the endpoints that are activated in that container, use the
following setting:

For more details, see the located_router demo.

Including endpoints to be
registered

If you have a small number of endpoints that you want to be added, and
want to filter out all others, you can use the filter that lists the included
endpoints.

For example, if you only want to register the session manager, but not any of
the endpoints that it manages, use the following setting:

For more details, see the located_sessions demo.

plugins:locator_endpoint:exclude_endpoints =
["{http://ws.iona.com/container}ContainerService"];

plugins:locator_endpoint:include_endpoints =
["{http://ws.iona.com/sessionmanager}SessionManagerService"];

Note: Combining the exclude and include configuration variables is
ambiguous. If you do this, the application will fail to initialize.
61

CHAPTER 4 | Artix Locator
Filtering endpoints using
wildcards

When filtering endpoints, you can also wildcard your service names. This
enables you to filter based on a specified namespace.

You can specify that all services defined in a particular namespace should
be included. For example:

Alternatively, you can use the following setting to exclude all services
defined in a particular namespace:

Server registration When a properly configured server starts up, it automatically registers with
the locator that is specified by the contract pointed to by
bus:initial_contract:url:locator.

You can register multiple instances of the same server with a locator. The
locator generates a pool of references for the server type. When clients make
a request for a server, the locator supplies references from this pool using a
round-robin algorithm. For more information on load balancing see “Load
Balancing” on page 66.

plugins:locator_endpoint:include_endpoints =
["{http://www.sample.com/finance}*"];

plugins:locator_endpoint:exclude_endpoints =
["{http://www.sample.com/finance}*"];
 62

Obtaining References from the Locator
Obtaining References from the Locator

Overview Unlike servers, clients must be specifically written to work with the Artix
locator. There are three steps a client must take to obtain a server reference
from the Artix locator:

1. Instantiate a proxy for the locator service.

2. Look up the desired server’s endpoint using the locator service proxy.

3. Create a proxy for the desired server using the returned endpoint.

The examples shown in this section are C++. For Java examples, see
Developing Artix Applications in Java.

Instantiating a locator service
proxy

Before a client can invoke any of the look up methods on the locator service,
it must create a proxy to forward requests to the running locator. To do this,
the client creates an instance of LocatorServiceClient using the locator
service QName.

Example 4 shows how to instantiate a locator service proxy. The parameters
used to create the locator service’s QName (LocatorService and
http://ws.iona.com/locator) should never be modified.

Example 4: Instantiating a Locator Service Proxy

// C++
QName ls_service_name(
 "",
 "LocatorService",
 "http://ws.iona.com/locator");

Reference locator_ref;

if (!bus->resolve_initial_reference(ls_service_name,locator_ref))
{
 // error handling here
}

locator_client = new LocatorServiceClient(locator_ref);
63

http://www.iona.com/support/docs/artix/3.0/java_pguide/index.htm

CHAPTER 4 | Artix Locator
Example 4 uses the resolve_initial_reference() method. This is the
recommend way of instantiating a locator service proxy. This approach is
location independent, so the client is not concerned about the specific
location details of the WSDL contract.

Alternatively, you can hard code the filename, for example:

However, specifying the filename is less flexible and scalable than using
resolve_initial_reference(), and requires more information, for
example:

• The locator service contract name (locator.wsdl).

• The locator service QName.

• The port name used in the locator service contract,
LocatorServicePort.

For more information on Artix proxy constructors, see Developing Artix
Applications with C++ or Developing Artix Applications in Java.

Looking up a server’s endpoint After instantiating a locator service proxy, a client can then look up servers
using the proxy’s lookup_endpoint() method. This method has the
following signature:

// C++
QName locator_service_name("", "LocatorService",
 "http://ws.iona.com/locator");
locator_proxy = new LocatorServiceClient("locator.wsdl",
 locator_service_name,
 "LocatorServicePort");

//C++
void lookup_endpoint(
 const IT_Bus::QName &service_qname,
 IT_Bus::Reference &service_endpoint

service_qname Contains the input QName of the server that the client
is looking up.

service_endpoint Contains the reference to the server that is output. If
the locator cannot find a registered instance of the
requested server, lookup_endpoint() returns an
endpointNotExistFault exception.
 64

http://www.iona.com/support/docs/artix/3.0/prog_guide/index.htm
http://www.iona.com/support/docs/artix/3.0/prog_guide/index.htm
http://www.iona.com/support/docs/artix/3.0/java_pguide/index.htm

Obtaining References from the Locator
For example:

Creating a server proxy The client uses the reference returned in the output parameter of
lookup_endpoint() to instantiate a server proxy for making requests on the
requested server. To instantiate the proxy, use the correct proxy class for the
server you have requested and pass the return value of the returned
service_endpoint to the proxy class’ constructor.

For example, the client code for creating a proxy server from the results of
the look up performed in “Looking up a server’s endpoint” is as follows:.

Further information The code examples in this section are from the
SimpleServiceClientSample.cxx file in the following directory:

InstallDir\artix\3.0\demos\advanced\locator\cxx\client

For more information on writing Artix client code, see Developing Artix
Applications with C++.

//C++
locator_client->lookup_endpoint(service_name,endpoint);

// C++
SimpleServiceClient simple_client(endpoint);
65

http://www.iona.com/support/docs/artix/3.0/prog_guide/index.htm
http://www.iona.com/support/docs/artix/3.0/prog_guide/index.htm

CHAPTER 4 | Artix Locator
Load Balancing

Overview The Artix locator provides a lightweight mechanism for balancing workloads
among a group of servers. When a number of servers with the same service
name register with the Artix locator, it automatically creates a list of the
references and hands out the references to clients using a round-robin
algorithm. This process is invisible to both the clients and the servers.

Starting to load balance When the locator is deployed and your servers are properly configured, you
must bring up a number of instances of the same service. This can be
accomplished by one of the following methods depending on your system
topology:

• Create an Artix contract with a number of ports for the same service
and have each server instance start up on a different port.

• Create a number of copies of the Artix contract defining the service,
change the port information so each copy has a separate port address,
and then bring up each server instance using a different copy of the
Artix contract.

As each server starts up, it automatically registers with the locator. The
locator recognizes that the servers all have the same service name specified
in their Artix contracts and creates a list of references for these server
instances.

As clients make requests for the service, the locator cycles through the list of
server instances to hand out references.

Note: The locator determines if it is part of a group using the name
specified in the <service> tag of the server’s Artix contract. If you are
using the Artix locator to load balance, your services should be associated
with the same binding and logical interface.
 66

Fault Tolerance
Fault Tolerance

Overview Enterprise deployments demand that applications can cleanly recover from
occasional failures. The Artix locator is designed to recover from the two
most common failures faced by a look-up service:

• Failure of a registered endpoint.

• Failure of the look-up service.

Endpoint failure When an endpoint gracefully shuts down, it notifies the locator that it is no
longer available. The locator removes the endpoint from its list so it cannot
give a client a reference to a dead endpoint. However, when an endpoint
fails unexpectedly, it can not notify the locator, and the locator can
unknowingly give a client an invalid reference causing the failure to cascade.

To decrease the risk of passing invalid references to clients, the locator
service occasionally pings all of its registered endpoints to see if they are still
running. If an endpoint does not respond to a ping, the locator removes that
endpoint’s reference.

You can adjust the interval between locator service pings by setting the
plugins:locator:peer_timeout configuration variable. The default setting
is 4 seconds. For more information, see the Artix Configuration Guide.

Service failure When the locator service fails, all the references to the registered endpoints
are lost and the active endpoints are no longer registered with the locator. If
the locator misses its ping interval, the endpoints periodically attempt to
reregister with the locator until they are successful. This ensures that the
active endpoints reregister with the locator when it restarts.

You can adjust the interval at which the endpoint pings the locator by
setting the plugins:session_endpoint_manager:peer_timeout
configuration variable. The default setting is 4 seconds. For more
information, see the Artix Configuration Guide.
67

CHAPTER 4 | Artix Locator
Replicating the locator Replicating the locator service involves specifying the same configuration
used for any other Artix service. There are also some additional configuration
variables apply to the locator.

For full details of all the configuration steps, see Chapter 9.
 68

CHAPTER 5

Artix Session
Manager
The Artix session manager enables you to manage service
resources (for example, how clients access a group of services).

In this chapter This chapter discusses the following topics:

Introduction to Artix Session Management page 70

Deploying the Session Manager page 75

Registering a Server with the Session Manager page 80

Configuring the Simple Policy Plug-in page 82

Fault Tolerance page 84
69

CHAPTER 5 | Artix Session Manager
Introduction to Artix Session Management

Overview The Artix session manager is a group of plug-ins that work together to
manage the number of concurrent clients that access a group of services.
This enables you to control how long each client can use the services in the
group before having to check back with the session manager.

The two main session manager plug-ins are:

The session manager also includes a simple policy plug-in:

In addition, the Artix session manager has a pluggable policy callback
mechanism that enables you to implement your own session management
policies.

Note: The Artix session manager is not available in all editions of Artix.
Please check the conditions of your Artix license to see whether your
installation supports the Artix session manager.

Session manager service plug-in
(session_manager_service)

This is the central service plug-in. It
accepts and tracks service registration,
hands out sessions to clients, and accepts
or denies session renewal.

Session manager endpoint
plug-in
(session_endpoint_manager)

This is the portion of the session manager
that resides in a registered service. It
registers its location with the service
plug-in, and accepts or rejects client
requests based on the validity of their
session headers. This provides control
over the allowable duration for a session
and the maximum number of concurrent
sessions allowed for each group.

Session manager simple policy
plug-in (sm_simple_policy)

This provides control over the allowable
duration for a session and the maximum
number of concurrent sessions allowed for
each group.
 70

Introduction to Artix Session Management
How do the plug-ins interact? Figure 13 shows how the session manager plug-ins are deployed in an Artix
system. The session manager service plug-in and the policy callback plug-in
are both deployed into the same Artix bus process.

In this example, while these plug-ins are deployed into a standalone service,
they can be deployed in any Artix process. The session manager service
plug-in and the policy plug-in interact to ensure that the session manager
does not hand out sessions that violate the policies established by the policy
plug-in. The simple policy plug-in makes all the decisions on which sessions
are permitted. The session manager service queries this policy on all
decisions. Artix provides a default implementation in the simple policy
plug-in. However, you can also write your own policy plug-in.

The endpoint manager plug-ins are deployed into the server processes that
contain session managed services. A process can host two services (for
example, Service C and Service D in Figure 13), but the process can have
only one endpoint manager. The endpoint manager plug-ins are in constant
communication with the session manager service plug-in to report on
endpoint health. They also receive information on new sessions that have
been granted to the managed services, and check on the health of the
session manager service.

71

CHAPTER 5 | Artix Session Manager
Figure 13: The Session Manager Plug-ins
 72

Introduction to Artix Session Management
What are sessions? The session manager controls access to services by handing out sessions to
clients who request access to the services. A session is a pass that provides
access to the services in a specific group for a specific time.

For example, the following process is used when a client application wants
to use the services in a group named sales:

1. The client application asks the session manager for a session with the
sales group.

2. The session manager checks and see if the sales group has an
available session, and if so, it returns a session ID and the list of sales
service references to the client.

3. The session manager notifies the endpoint managers in the sales
group that a new session has been issued. It also supplies a new
session ID, and a duration for which the session is valid.

4. When the client makes requests on the services in the sales group, it
must include the session information as part of the request.

5. The endpoint manager for the services checks the session information
to ensure it is valid. If it is, the request is accepted. If it is not, the
request is rejected.

6. If the client wants to continue using the sales services beyond the
duration of its lease, the client must ask the session manager to renew
its session before the session expires.

7. Finally, when a client’s session has expired, it must request a new one.
73

CHAPTER 5 | Artix Session Manager
What are groups? The Artix session manager does not pass out sessions for each individual
service that is registered with it. Instead, services are registered as part of a
group, and sessions are handed out for the group. A group is a collection of
services that are managed as one unit by the session manager. While the
session manager does not specify that the services in a group must be
related, it is recommended that the endpoints have some relationship.

A service’s group affiliation is controlled by the configuration scope in which
it is run. To change a service’s group, edit the following value in the process
configuration scope:

This specifies the default group name for the services instantiated by the
server.

plugins:session_endpoint_manager:default_group
 74

Deploying the Session Manager
Deploying the Session Manager

Overview The Artix session manager is implemented using Artix plug-ins. This means
that any Artix application can host the session manager’s core functionality
by loading the session_manager_service plug-in. However, it is
recommended that you deploy the session manager using the Artix
container. For information on the Artix container, see Chapter 3.

This section describes how to specify configuration for the Artix session
manager. You may also need to create a copy of session-manager.wsdl.
This is the contract that describes the session manager and contains the
session manager’s contact information.

Configuring the session manager
service to run in the container

To configure the session manager service to run in the Artix container,
ensure that the session_manager_service plug-in is included in the session
manager service configuration scope, for example:

The session_manager_service plug-in implements the session manager
service functionality.

The soap and at_http plug-ins are loaded automatically when the process
parses the session manager’s WSDL contract. The iiop_profile, giop, and
iiop plugins are not required when you are using the Artix container, or an
Artix process.

If no policy plug-in is specified, the sm_simple_policy plug-in is loaded
automatically by the session manager service. If you wish to customize
settings for this policy, see “Configuring the Simple Policy Plug-in” on
page 82.

session_management {
 ...
 sm_service{
 orb_plugins = ["xmlfile_log_stream", "session_manager_service"];
 ...
 };
75

CHAPTER 5 | Artix Session Manager
Configuring a dynamic port By default, the session manager is configured to deploy on a dynamic port.
In the default session manager WSDL contract, the addressing information
is as follows:

The highlighted part shows the address. The localhost:0 port means that
when you activate the session manager service, the operating system
assigns a port dynamically on startup.

Because the port is assigned dynamically, you must ensure that your clients
obtain a reference to the updated contract when it is assigned a port. For
details of using the Artix locator to do this, see “Obtaining References from
the Locator” on page 63.

Configuring a fixed port There are two ways of deploying the session manager on a well-known fixed
port. You can either edit the default session-manager.wsdl contract, or you
can create a new session-manager.wsdl contract for your application.

Editing the default session manager contract

To edit the default session-manager.wsdl contract, perform the following
steps:

1. Open the session-manager.wsdl contract in any text editor. This is
located as follows:

2. Edit the soap:address attribute at the bottom of the contract to specify
the correct address. Example 6 shows a modified session manager
service contract entry. The highlighted part has been modified to point
to the desired address.

Example 5: Session Manager Service on Dynamic Port

<service name="SessionManagerService">
 <port name="SessionManagerPort" binding="sm:SessionManagerBinding">
 <soap:address

location="http://localhost:0/services/sessionManagement/sessionMa
nagerService"/>

 </port>
</service>

InstallDir\artix\3.0\wsdl\session-manager.wsdl
 76

Deploying the Session Manager
Creating a new session manager contract

To create a new session-manager.wsdl contract, perform the following
steps:

1. Copy the default session-manager.wsdl contract to another location,
and open it in any text editor.

2. Edit the soap:address attribute at the bottom of the contract to specify
the correct address. Example 6 shows a modified session manager
service contract entry. The highlighted part has been modified to point
to the desired address.

3. In your configuration file, in the application’s scope, add a new
bus:initial_contract:url:sessionmanager variable that points to
your edited WSDL contract. For example:

The default bus:initial_contract:url:sessionmanager variable is in
the global scope, which ensures that every application has access to
the contract. Specifying an a new contract in your application scope
overrides the global session manager contract for your application.

When the session manager has been correctly configured, it can be started
like any other application. The only difference is that the session manager
must be started before any servers that need to register with it.

Example 6: Session Manager Service on Fixed Port

<service name="SessionManagerService">
 <port name="SessionManagerPort" binding="sm:SessionManagerBinding">
 <soap:address

location="http://localhost:8080/services/sessionManagement/session
ManagerService"/>

 </port>
</service>

bus:initial_contract:url:sessionmanager =
"c:\myapp/wsdl/session-manager .wsdl";
77

CHAPTER 5 | Artix Session Manager
Deploying the session manager in
the container

The session manager can be started in the Artix container like any other
application. To deploy the default session manager in the container, perform
the following steps:

1. Run the session manager in the Artix container, for example:

2. Ask the container to publish the live version of the session manager
WSDL that you use to initialize your clients. For example:

This retrieves the session manager's activated WSDL contract. This is
the contract in which 0 ports are dynamically updated with the actual
port that the service runs on. In this example, it_container_admin
writes the contract to the sessionmanager-activated.wsdl file in the
etc subdirectory

3. Finally, you must ensure that your clients use the updated WSDL file at
runtime.

Deploying the session manager in
the container on a fixed port

Alternatively, you can use the -port option to specify that the container runs
a service on a fixed port. For example:

In this example, any services that run in the container, and have default
contracts with a port of 0, will not use port 9000.

it_container -ORBname demos.session_management.sm_service
-ORBdomain_name session_management -ORBconfig_domains_dir
../../etc -publish

it_container_admin -container ../../etc/ContainerService.url
-publishwsdl -service
{http://ws.iona.com/sessionmanager}SessionManagerService
-file ..\..\etc\sessionmanager-activated.wsdl

it_container -port 9000 -ORBname demo.sessionmanager.service
-ORBdomain_name session_management -ORBconfig_domains_dir
../../etc -publish
 78

Deploying the Session Manager
You can manually update the WSDL used by your client to 9000, or you can
publish the WSDL from the container using it_container_admin with the
-publishwsdl option, shown in “Deploying the session manager in the
container” on page 78.

Shutting down the session
manager

To shut down the session manager, use the Artix container’s shutdown
option, for example:

Note: Instead of using the container to deploy the session manager, you
can also do this by creating a custom Artix service mainline. For details,
see Developing Artix Applications with C++.

it_container_admin -shutdown
79

http://www.iona.com/support/docs/artix/3.0/prog_guide/index.htm

CHAPTER 5 | Artix Session Manager
Registering a Server with the Session Manager

Overview Services that wish to be managed by the session manager must register with
a running session manager. Servers instantiating these services must load
the session_endpoint_manager plug-in and correctly configure themselves.
They do not require any special application code.

When registered with a session manager, the services only accept requests
that contain a valid session header. All clients wishing to access the services
must be written to support session managed services.

Configuring the server Any server hosting services that are to be managed by the session manager
must load the session_endpoint_manager plug-in. The
session_endpoint_manager enables the server to register with a running
session manager.

Example 7 shows the configuration scope of a server that hosts services
managed by the session manager.

In this example, a server loaded into the acme_server configuration scope is
managed by the session manager at the location specified in your
session-manager.wsdl contract. Its endpoint manager comes up at the
address specified in session-manager.wsdl. In this example, by default, all
services instantiated by the server belongs to the acme_group session
manager group.

Example 7: Server Configuration Scope

acme_server
{
 orb_plugins = ["xmlfile_log_stream", "session_endpoint_manager"];

 plugins:session_endpoint_manager:default_group="acme_group";
 };
 80

Registering a Server with the Session Manager
Using a copy of session-manager.wsdl

If you are using a copy of the default session manager contract to specify a
fixed port, your server configuration must also specify the location of the
contract. For example:

This is not necessary if you are using a dynamic port, or have updated the
default contract with a fixed port. The global
bus:initial_contract:url:locator setting is used instead.

Server registration When a properly configured server starts up, it automatically registers with
the session manager specified by the contract pointed to by
bus:initial_contract:url:sessionmanager.

bus:initial_contract:url:sessionmanager =
"c:\myapp/wsdl/session-manager .wsdl";
81

CHAPTER 5 | Artix Session Manager
Configuring the Simple Policy Plug-in

Overview The Artix session manager provides a simple policy callback plug-in
(sm_simple_policy). This enables you to control the allowable duration for a
session, and the maximum number of concurrent sessions allowed for each
group.

In addition, the session manager has a pluggable policy callback
mechanism that enables you to implement your own session management
policies.

Session properties The simple policy plug-in provides default values for the following session
properties:

• Maximum number of concurrent sessions in a given group (default is
1).

• Maximum allowed timeout for a session (default is 600 seconds).

• Minimum allowed timeout for a session (default is 5 seconds).

You can override these defaults using the following configuration variables:

All values must be non-negative. You must configure the
max_session_timeout to be greater than or equal to min_session_timeout.
A value of 0 means an unlimited timeout.

plugins:sm_simple_policy:max_concurrent_sessions
plugins:sm_simple_policy:min_session_timeout
plugins:sm_simple_policy:max_session_timeout
 82

Configuring the Simple Policy Plug-in
Further information For more information on working with sessions, see Developing Artix
Applications with C++. This explains how to perform tasks such as the
following:

• Instantiate a proxy for the session management service.

• Start a session for a service's group using the session manager proxy.

• Obtain the list of endpoints available in the group.

• Create a service proxy from one of the endpoints in the group.

• Build a session header to pass to the service.

• Invoke requests on the endpoint using the proxy.

• Renew the session as needed.

• End the session using the session manager proxy.
83

http://www.iona.com/support/docs/artix/3.0/prog_guide/index.htm
http://www.iona.com/support/docs/artix/3.0/prog_guide/index.htm

CHAPTER 5 | Artix Session Manager
Fault Tolerance

Overview Enterprise deployments demand that applications can cleanly recover from
occasional failures. The Artix session manager is designed to recover from
the two most common failures:

• Failure of a registered endpoint.

• Failure of the session manager itself.

Endpoint failure When an endpoint gracefully shuts down, it notifies the session manager
that it is no longer available. The session manager removes the endpoint
from its list so it can not give a client a reference to a dead endpoint.
However, when an endpoint fails unexpectedly, it cannot notify the session
manager and the session manager can unknowingly give a client an invalid
reference causing the failure to cascade.

To decrease the risk of passing invalid references to clients, the session
manager occasionally pings all of its registered endpoint managers to see if
they are still running. If an endpoint manager does not respond to a ping,
the session manager removes that endpoint manager’s references.

You can adjust the interval between session manager pings by setting the
plugins:session_manager:peer_timeout configuration variable. The
default setting is 4 seconds. For more information, see the Artix
Configuration Guide.

Service failure If the session manager fails, all of the references to the registered services
are lost and the active services are no longer be registered. After the session
manager misses its ping interval, the endpoint managers periodically
attempt to reregister with the session manager until they are successful.
This ensures that the active services reregister with the session manager
when it restarts.

You can adjust the interval between the endpoint manager’s pings of the
session manager by setting the configuration variable
plugins:session_endpoint_manager:peer_timeout. The default setting is
4 seconds. For more information, see the Artix Configuration Guide.
 84

CHAPTER 6

Artix Switches
An Artix switch acts as a bridge between non-Artix enabled
applications. The Artix standalone service performs transport
switching, message routing, and middleware bridging.

In this chapter This chapter discusses the following topics:

The Artix Switch page 86

Configuring a Switch page 89
85

CHAPTER 6 | Artix Switches
The Artix Switch

Overview Artix switches are a minimally invasive means of connecting applications
that use different communication transports and message formats. It does
not require that any Artix-specific code be compiled or linked into existing
applications. A switch is created by loading the Artix routing plug-in into the
Artix container server. For more information on the Artix container server,
see Chapter 3.

How it works An Artix switch is a routing daemon that listens for traffic on access points
specified in an Artix contract. It re-directs messages based on the routing
rules that you provide, and performs any transport switching and message
formatting needed for the receiving application. Neither application is aware
that its messages are being intercepted by Artix and no application
development is required.

The switch’s behavior is controlled by a combination of an Artix contract and
the Artix configuration file.

For more information on Artix contracts see Designing Artix Solutions. For
more information on configuring the Artix runtime, see the Artix
Configuration Guide.

Note: Artix requires that services being integrated use equivalent
message layouts. For example, a service expecting a long cannot be sent a
float.
 86

../config_ref/index.htm
../config_ref/index.htm

The Artix Switch
Deployment patterns Artix switched can be deployed in a number of ways. Two common
deployment patterns are:

• Deploying multiple switches—each bridging between two applications.

• Deploying one switch to bridge between all applications in a domain.

Deploying multiple switches—each bridging between two applications.

This approach simplifies designing integration solutions and provides faster
processing of each message (shown in Figure 14). Using this approach, the
Artix contract describing the interaction of the applications is simpler
because it contains only the logical interfaces shared by the two
applications, the bindings for each payload format, and the routing rules.

Because most applications use only one network transport, the number of
ports is minimal and the routing rules are simple. Keeping the contract
simple also enhances the performance of each switch because it has less
processing to do. In this approach, each switch’s resource usage can also be
limited by tailoring its configuration to optimize the switch for the integration
task for which it is responsible.

Figure 14: Using Multiple Artix Switches
87

CHAPTER 6 | Artix Switches
Deploying one switch to bridge between all applications in a domain. This
approach limits the number of external services required in your deployment
environment (shown in Figure 15). This can simplify monitoring and
installation of deployments. It also reduces the number of moving parts in
an integration solution.

Figure 15: Using a Single Artix Switch
 88

Configuring a Switch
Configuring a Switch

Overview Because Artix’s routing functionality is implemented as a plug-in, you can
make any Artix application a switch by adding routing rules to its contract
and adding the routing plug-in to its orb_plugins list. To deploy a switch
that does not require any modifications to existing applications, you can
deploy a switch using the Artix container server (it_container). For more
information, see Chapter 3.

orb_plugins list An Artix switch must include the routing plug-in name in its orb_plugins
list:

In addition, if one of the transports used by the client or server is IIOP, the
following plug-ins are also required:

• iiop_profile

• iiop

• giop

Plug-ins related to all bindings, and all transports other than IIOP, are not
required. These are loaded automatically when the routing plug-in parses
the WSDL file.

Switch plug-in settings You need to add configuration information to point the switch to the
contract, or contracts, that contain the routing information it is to use. This
is done with the plugins:routing:wsdl variable. This variable specifies the
contracts the switch will parse for routing rules. The contract names are
relative to the location from which the Artix switch is started.

For example, if a switch’s configuration contained the following entry:

WARNING: The routing plug-in must always be the last plug-in listed in
orb_plugins.

plugins:routing:wsdl=["route1.wsdl", "../route2.wsdl",
 "/artix/routes/route3"];
89

CHAPTER 6 | Artix Switches
The switch would expect that route1.wsdl was located in the directory in
which it was started and route2.wsdl was located one directory level
higher.
 90

CHAPTER 7

Deploying a
Service Chain
Artix provides a chain builder that enables you to create a
series of services to invoke as part of a larger process.

In this chapter This chapter includes the following sections:

The Artix Chain Builder page 92

Configuring the Artix Chain Builder page 94
91

CHAPTER 7 | Deploying a Service Chain
The Artix Chain Builder

Overview The Artix chain builder enables you to link together a series of services into a
multi-part process. This is useful if you have processes that require a set
order of steps to complete, or if you wish to link together a number of
smaller service modules into a complex service.

Chaining services together For example, you may have four services that you wish to combine to
service requests from a single client. You can deploy a service chain like the
one shown in Figure 16.

Figure 16: Chaining Four Servers to Form a Single Service
 92

The Artix Chain Builder
In this scenario, the client makes a single request and the chain builder
dispatches the request along the chain starting at Server1. The chain
builder takes the response from Server1 and passes that to the next
endpoint in the chain, Server2. This continues until the end of the chain is
reached at Server4. The chain builder then returns the finished response to
the client.

The chain builder is implemented as an Artix plug-in so it can be deployed
into any Artix process. The decision about which process that you deploy it
in depends on the complexity of your system, and also how you choose to
allocate resources for your system.

Assumptions To make the discussion of deploying the chain builder as straightforward as
possible, this chapter assumes that you are deploying it into an instance of
the Artix container server. However, the configuration steps for configuring
and deploying a chain builder are the same no matter which process you
choose to deploy it in.
93

CHAPTER 7 | Deploying a Service Chain
Configuring the Artix Chain Builder

Overview To configure the Artix chain builder, complete the following steps:

1. Add the chain builder’s plug-in to the process’ orb_plugins list.

2. Configure all the services that are a part of the chain.

3. Configure the chain so that it knows what servants to instantiate and
the service chain for each operation implemented by the servant.

Adding the chain builder in the
orb_plugins list

Configuring the application to load the chain builder’s plug-in requires
adding it to the application’s orb_plugins list. The plug-in name for the
chain builder is ws_chain. Example 8 shows an orb_plugins list for a
process hosting the chain builder.

Configuring the services in the
chain

Each service that is a part of the chain, and the client that makes requests
through the chain service, must be configured in the chain builder’s
configuration scope. For example, you must supply the service name and
the location of its contract.

This provides the chain builder with the necessary information to instantiate
a servant that the client can make requests against. It also supplies the
information needed to make calls to the services that make up the chain.

Example 8: Plug-in List for Using a Web Service Chain

orb_plugins={"ws_chain", "xml_log_stream"};
 94

Configuring the Artix Chain Builder
To configure the services in the chain, use the configuration variables in
Table 3.

Configuring the service chains The chain builder requires you to provide the following details

• A list of services that are clients to the chain builder.

• A list of operations that each client can invoke.

• Service chains for each operation that the clients can invoke.

Specifying the servant list

The first configuration setting tells the chain builder how many servants to
instantiate, the interfaces that the servants must support, and the physical
details of how the servants are contacted. You specify this using the
plugins:chain:servant_list variable. This takes a list of service names
from the list of Artix services that you defined earlier in the configuration
scope.

Specifying the operation list

The second part of the chain builder’s configuration is a list of the operations
that each client to the chain builder can invoke. You specify this using
plugins:chain:endpoint:operation_list where endpoint refers to one of
the endpoints in the chain’s service list.

Table 3: Artix Service Configuration

Variable Function

bus:qname_alias:service Specifies a service name using the
following syntax:

{service_qname}service_name

For example:

{http://www.mycorp.com}my_service

bus:initial_contract:url:service Specifies the location of the contract
describing this service. The default is the
current working directory.
95

CHAPTER 7 | Deploying a Service Chain
plugins:chain:endpoint:operation_list takes a list of the operations that
are defined in <operation> tags in the endpoint’s contract. You must list all
of the operations for the endpoint or an exception will be thrown at runtime.
You must also be sure to enter a list of operations for each endpoint
specified in the chain’s service list.

Specifying the service chain

The third piece of the chain builder’s configuration is to specify a service
chain for every operation defined in the endpoints listed in
plugins:chain:servant_list. This is specified using the
plugins:chain:endpoint:operation:service_chain configuration variable.
The syntax for entering the service chains is shown in Example 9.

For each entry, the syntax is as follows:

Example 9: Entering a Service Chain

plugins:chain:endpoint:operation:service_chain=["op1@endpt1", "op2@endpt2", ..., "opN@endptN"];

endpoint Specifies the name of an endpoint from the chain builder’s
servant list

operation Specifies one of the operations defined by an operation entry
in the endpoints contract. The entries in the list refer to
operations implemented by other endpoints defined in the
configuration.

opN Specifies one of the operations defined by an operation entry
in the contract defining the service specified by endptN. The
operations in the service chain are invoked in the order
specified. The final result is returned back to the chain
builder which then responds to the client.
 96

Configuring the Artix Chain Builder
Instantiating proxy services The chain invokes on other services, and for this reason, it instantiates proxy
services. It can instantiate proxies when the chain servant starts (the
default), or later, when a call is made. The following configuration variable
specifies to instantiate proxy services when a call is made:

This defaults to false, which means that proxies are instantiated when the
chain servant starts. However, you might not be able to instantiate proxies
when the chain servant is started because the servant to call has not
started. For example, this applies when using the Artix locator or UDDI.

Configuration example Example 4 shows the contents of a configuration scope for a process that
hosts the chain builder.

plugins:chain:init_on_first_call ="true";

Table 4: Configuration for Hosting the Artix Chain Builder

colaboration {
 orb_plugins = ["ws_chain"];

 bus:qname_alias:customer= "{http://needs.com}POC";
 bus:initial_contract:url:customer = "order.wsdl";

 bus:qname_alias:pm = "{http://ORBSrUs.com}prioritize";
 bus:initial_contract:url:pm = "manager.wsdl";

 bus:qname_alias:designer = "{http://ORBSrUs.com}design";
 bus:initial_contract:url:designer = "designer.wsdl";

 bus:qname_alias:builder = "{http://ORBSrUs.com}produce";
 bus:initial_contract:url:builder = "engineer.wsdl";

 plugins:chain:servant_list = ["customer"];

 plugins:chain:customer:requestSolution:service_chain =
 ["estimatePriority@pm", "makeSpecification@designer",
 "buildORB@builder"];
};
97

CHAPTER 7 | Deploying a Service Chain
Configuration guidelines When Web services are chained, the following rules must be obeyed:

• The input type of the chain service (in this example, customer) must
match the input of the first service in the chain (pm).

• The output type of a previous service in the chain must match the
input type of the next service in the chain.

• The output type of the last service in the chain must match the output
of the chain service.

• One configuration entry must exist for each operation in the portType
of the chain service (for example, customer). This simple example
shows only one entry, and the portType for the customer endpoint has
only one operation (requestSolution).

• The chain service can invoke only on services that have one port.

• Finally, not all operations must be configured in the chain, only those
that are invoked upon. This means that no check is made when all
operations are mapped to a chain. If a client invokes on an unmapped
operation, the chain service throws a FaultException.
 98

CHAPTER 8

Deploying the
Artix Transformer
Artix provides an XSLT transformer service that can be
configured to run as a servant process that replaces an Artix
server.

In this chapter This chapter discusses the following topics:

The Artix Transformer page 100

Standalone Deployment page 103

Deployment as Part of a Chain page 106
99

CHAPTER 8 | Deploying the Artix Transformer
The Artix Transformer

Overview The Artix transformer provides a means of processing messages without
writing application code. The transformer processes messages based on
XSLT scripts and returns the result to the requesting application. XSLT
stands for Extensible Stylesheet Language Transformations.

These XLST scripts can perform message transformations, such as
concatenating two string fields, reordering the fields of a complex type, and
truncating values to a given number of decimal places. XSLT scripts can also
be used to validate data before passing it onto a Web service for processing,
and a number of other applications.

Deployment Patterns The Artix transformer is implemented as an Artix plug-in. Therefore, it can
be loaded into any Artix process. This makes it extremely flexible in how it
can be deployed in your environment. If the speed of calls or security is an
issue, the transformer can be loaded directly into an application. If you need
to spread resources across a number of machines, the transformer plug-in
can be loaded in a separate process.

There are two main patterns for deploying the Artix Transformer:

• Standalone deployment

• Deployment as part of a chain

Standalone deployment The first pattern is to deploy the transformer by itself. This is useful if your
application is doing basic data manipulation that can be described in an
XSLT script. The transformer replaces the server process and saves you the
cost of developing server application code. This style of deployment can also
be useful for performing data validation before passing requests to a server
for processing.
 100

The Artix Transformer
The most straightforward way to deploy the transformer is to deploy it as a
separate servant process hosted by the Artix container server. When
deployed in this way the transformer receives requests from a client,
processes the message based on supplied XSLT scripts, and replies with the
results of the script. In this configuration, shown Figure 17, the transformer
becomes the server process in the Artix solution.

You can modify the deployment pattern shown in Figure 17 by eliminating
the Artix container server and having your client directly load the
transformer’s plug-in as shown in Figure 18. This saves the overhead of
making calls outside of the client process to reach the transformer However,
it can reduce the overall efficiency of your system if the transformer requires
a large amount of resources to perform its work.

Figure 17: Artix Transformer Deployed as a Servant

Figure 18: Artix Transformer Loaded by Client
101

CHAPTER 8 | Deploying the Artix Transformer
Deployment as part of a chain The second pattern is to deploy the Artix transformer as part of a Web
service chain controlled by the Web Service Chain Builder. This deployment
is useful if you need to connect legacy clients to updated servers whose
interfaces may have changed or are connecting applications that have
different interfaces. It can also be useful for a range of applications where
data transformation is needed as part of a larger set of business logic.

Figure 19 shows an example of this type of deployment where the
transformer and the chain builder are both hosted by the Artix container
server. The chain builder directs the requests to the transformer which
transforms messages. When the transformer returns the processed data, the
chain builder then passes it onto the server. In this example, the server
returns the results to the client without further processing, but the results
can also be passed back through the transformer. Neither the client nor the
server need to be aware of the processing.

You could modify this deployment pattern in a number of ways, depending
on how you allocate resources. For example, you can configure the client
process to load the chain builder and the transformer. You can also load the
chain builder and the transformer into separate processes.

Figure 19: Artix Transformer Deployed with the Chain Builder
 102

Standalone Deployment
Standalone Deployment

Overview To deploy an instance of the Artix transformer you must first decide what
process is hosting the transformer’s plug-in. You must then add the
following to the process configuration scope:

• The transformer plug-in, xslt.

• An Artix endpoint configuration to represent the transformer.

• The transformer’s configuration information.

Updating the orb_plugins list Configuring the application to load the transformer requires adding it to the
application’s orb_plugins list. The plug-in name for the transformer is xslt.
Example 10 shows an orb_plugins list for a process hosting the
transformer.

Adding an Artix endpoint
definition

The transformer is defined as a generic Artix endpoint. To instantiate it as a
servant, Artix must know the following details:

• The location of the Artix contract that defines the transformer’s
endpoint.

• The interface that the endpoint implements.

• The physical details of its instantiation.

This information is configured using the configuration variables in the
artix:endpoint namespace. These variables are described in Table 5.

Example 10:Plug-in List for Using XSLT

orb_plugins={"xslt", "xml_log_stream"};

Table 5: Artix Endpoint Configuration

Variable Function

artix:endpoint:endpoint_list Specifies a list of the endpoints and their names for
the current configuration scope.

artix:endpoint:endpoint_name:wsdl_location Specifies the location of the contract describing this
endpoint.
103

CHAPTER 8 | Deploying the Artix Transformer
Configuring the transformer Configuring the transformer involves two steps that enable it to instantiate
itself as a servant process and perform its work.

• Configuring the list of servants.

• Configuring the list of scripts.

Configuring the list of servants

The name of the endpoints that will be brought up as transformer servants is
specified in plugins:xslt:servant_list. The endpoint identifier is one of
the endpoints defined in artix:endpoint:endpoint_list entry. The
transformer uses the endpoint’s configuration information to instantiate the
appropriate servants

Configuring the list of scripts

The list of the XSLT scripts that each servant uses to process requests is
specified in plugins:xslt:endpoint_name:operation_map. Each endpoint
specified in the servant list has a corresponding operation map entry. The
operation map is specified as a list using the syntax shown in Example 11.

artix:endpoint:endpoint_name:wsdl_port Specifies the port that this endpoint can be
contacted on. Use the following syntax:

[{service_qname}]service_name[/port_name]

For example:

{http://www.mycorp.com}my_service/my_port

Table 5: Artix Endpoint Configuration

Variable Function

Note: artix:endpoint:endpoint_list must be specified in the same
configuration scope.

Example 11:Operation Map Syntax

plugins:xslt:endpoint_name:operantion_map = ["wsdlOp1@filename1"
, "wsdlOp2@filename2", ..., "wsdlOpN@filenameN"];
 104

Standalone Deployment
Each entry in the map specifies a logical operation that is defined in the
service’s contract by an operation element, and the XSLT script to run
when a request is made on the operation. You must specify an XSLT script
for every operation defined for the endpoint. If you do not, the transformer
raises an exception when the unmapped operation is invoked.

Configuration example Example 12 shows the configuration scope of an Artix application,
transformer, that loads the Artix Transformer to process messages. The
transformer is configured as an Artix endpoint named hannibal and the
transformer uses the endpoint information to instantiate a servant to handle
requests.

Example 12:Configuration for Using the Artix Transformer

transformer
{
orb_plugins = ["local_log_stream","xslt"];

artix:endpoint:endpoint_list = ["hannibal"];

artix:endpoint:hannibal:wsdl_location = "transformer.wsdl";
artix:endpoint:hannibal:wsdl_port = "{http://transformer.com/xslt}WhiteHat/WhitePort";

plugins:xslt:servant_list=["hannibal"]
plugins:xslt:hannibal:operation_map = ["op1@../script/op1.xsl", "op2@../script/op2.xsl",

"op3@../script/op3.xsl"]
}

105

CHAPTER 8 | Deploying the Artix Transformer
Deployment as Part of a Chain

Overview Deploying the Artix Transformer as part of Web service chain allows you to
use it as part of an integration solution without needing to necessarily
modify your applications. The Artix Web Service Chain Builder facilitates the
placement of the transformer into a series of Web service calls managed by
Artix.

The plug-in architecture of the transformer and the chain builder allow for
you to deploy this type of solution in a variety of ways depending on what is
the best fit for your particular solution. The most straightforward way to
deploy this type of solution is to deploy both the transformer and the chain
builder into the same process. This is the deployment that will be used to
outline the steps for configuring the transformer to be deployed as part of a
Web service chain. In general, you will need to complete all of the same
steps regardless of how you choose to deploy your solution.

Procedure To deploy the transformer as part of a Web service chain you need to
complete the following steps:

1. Modify your process’s configuration scope to load the transformer and
the chain builder.

2. Configure Artix endpoints for each of the applications that will be part
of the chain.

3. Configure an Artix endpoint to represent the transformer.

4. Configure the transformer.

5. Configure the service chain to include the transformer at the
appropriate place in the chain.
 106

Deployment as Part of a Chain
Updating the orb_plugins list Configuring the application to load the transformer plug-in and the chain
builder plug-in requires adding them to the process’s orb_plugins list. The
plug-in name for the transformer is xslt and the plug-in name for the chain
builder is ws_chain. Example 13 shows an orb_plugins list for a process
hosting the transformer and the chain builder.

Configuring the endpoints in the
chain

The Artix Web Service Chain Builder uses generic Artix endpoints to
represent all of the applications in a chain, including the transformer.
Table 5 on page 103 shows the configuration variables used to configure a
generic Artix endpoint.

Configuring the transformer The transformer requires the same configuration information regardless of
how it is deployed. You must provide it with the name of the endpoints it
will instantiate from the list of endpoints and provide each instantiation with
an operation map. For more information about providing this information
see “Configuring the transformer” on page 104.

Placing the transformer in the
chain

The chain builder instantiates a servant for each endpoint specified in its
servant list. Each servant can have a multiple operations. For each operation
that will be involved in a Web service chain, you need to specify a list of
endpoints and their operations that make up the chain. This list is specified
using plugins:chain:endpoint_name:operation_name:service_chain.

To include the transformer in one of the chains, you add the appropriate
operation and endpoint names for the transformer at the appropriate place
in the service chain.

For more information on configuring the chain builder see “Deploying a
Service Chain” on page 91.

Example 13: Loading the Artix Transformer as Part of a Chain

orb_plugins={"xslt", "ws_chain", "xml_log_stream"};
107

CHAPTER 8 | Deploying the Artix Transformer
Specifying an XSLT trace filter You can use the plugins:xslt:endpoint_name:trace_filter variable to
trace and debug the output of the XSLT engine. This configuration variable
is optional. For example:

These settings are described as follows:

Configuration example Example 14 shows a configuration scope that contains configuration
information for deploying the transformer as part of a Web service chain.

plugins:xslt:endpoint_name:trace_filter =
"INPUT+TEMPLATE+ELEMENT+GENERATE+SELECT";

INPUT Traces the XML input passed to the XSLT engine.

TEMPLATE Traces template matches in the XSLT script.

ELEMENT Traces element generation.

GENERATE Traces generation of text and attributes.

SELECT Traces node selections in the XSLT script.

Example 14:Configuring the Artix Transformer in a Web Service Chain

transformer
{
 orb_plugins = ["ws_chain", "xslt"];

 event_log:filters = ["*=FATAL+ERROR+WARNING", "IT_XSLT=*"];

 bus:qname_alias:oldClient = "{http://bank.com}ATM";
 bus:initial_contract:url:oldClient = "bank.wsdl";

 bus:qname_alias:newServer = "{http://bank.com}newATM";
 bus:initial_contract:url:newServer = "bank.wsdl";

 artix:endpoint:endpoint_list = ["transformer"];

 artix:endpoint:transformer:wsdl_location = "bank.wsdl";
 artix:endpoint:transformer:wsdl_port =

"{http://bank.com}transformer/transformer_port";

 plugins:xslt:servant_list = ["transformer"];
 plugins:xslt:transformer:operation_map =

["transform@transformer.xsl"];
 108

Deployment as Part of a Chain
 plugins:chain:servant_list = ["oldClient"];
 plugins:chain:oldClient:client_operation:service_chain =

["transform@transformer", "withdraw@newServer"];
};

Example 14:Configuring the Artix Transformer in a Web Service Chain

Note: Even though a list of servants can be specified, only one servant is
currently supported in a process.
109

CHAPTER 8 | Deploying the Artix Transformer
 110

CHAPTER 9

Artix High
Availability
Artix uses Berkeley DB high availability to provide support for
replicated services. This chapter explains how to configure
high availability in Artix.

In this chapter This chapter discusses the following topics:

Introduction page 112

Setting up a Persistent Database page 115

Configuring Persistent Services for High Availability page 117

Configuring Locator High Availability page 121

Configuring Client-Side High Availability page 125
111

CHAPTER 9 | Artix High Availability
Introduction

Overview Scalable and reliable Artix applications require high availability to avoid any
single point of failure in a distributed system. You can protect your system
from single points of failure using replicated services.

A replicated service is comprised of multiple instances, or replicas, of the
same service; and together, these act as a single logical service. Clients
invoke requests on the replicated service, and Artix routes the requests to
one of the member replicas. The routing to a replica is transparent to the
client.

How it works Artix high availability support is built on Berkeley DB, and uses the Berkeley
DB replication features. Berkeley DB has a master-slave replica model
where a single replica is designated the master, and can process both read
and write operations from clients. All other replicas are slaves and can only
process read operations. Slave replicas automatically forward write requests
to master replicas.

Figure 20: Artix Master Slave Replication
 112

Introduction
Electing a master Using Artix high availability, when members of a replicated cluster start up,
they all start up as slaves. When the cluster members start up and start
talking to each other, they hold an election to select a master.

Election protocol

The protocol for selecting a master is as follows:

1. For an election to succeed, a majority of votes must be cast. This
means that for a group of three replicas, two replicas must cast votes.
For a group of four, three replicas must cast votes; for a group of five,
three must cast votes, and so on.

2. If a slave exists with a more up-to-date database than the other slaves,
it wins the election.

3. If all the slaves have equivalent databases, the election result is based
on the configured priority for each slave. The slave with the highest
priority wins.

After the election

When a master is selected, elections stop. However, if the slaves lose
contact with the master, the remaining slaves hold a new election for
master. If a slave can not get a majority of votes, nobody is promoted.

At this point, the database remains as a slave, and keeps holding elections
until a master can be found. If this is the first time for the database to start
up, it blocks until the first election succeeds, and it can create a database
environment on disk.

If this is not the first time that it has started up, it starts as a slave (using the
database files already on disk from its previous run), and continues holding
elections in the background anyway.

If a high availability cluster is configured to have 5 members and a network
partition separates two slaves from the rest of the cluster, neither of the
separated slaves can be promoted to master because neither can get 3
votes.

Note: Because voting is done by majority, it is recommended that high
availability clusters have an odd number of members. The recommended
minimum number of replicas is three.
113

CHAPTER 9 | Artix High Availability
Request forwarding Slave replicas automatically forward write requests to the master replica in a
cluster. Because slaves have read-only access to the underlying Berkeley DB
infrastructure, only the master can make updates to the database. This
feature works as follows:

1. When a replicated server starts up, it loads the request_forwarder
plug-in.

2. When the client invokes on the server, the request_forwarder plug-in
checks if it should forward the operation, and where to forward it to.
The server programmer indicates which operations are write operations
using an API.

3. If the server is running as a slave, it tries to forward any write
operations to the master. If no master is available, an exception is
thrown to the client, indicating that the operation cannot be processed.

Because the forwarding works as an interceptor within a plug-in, there is
minimal code impact to the user. No servant code is impacted.

Setting up replication You can configure replication settings in an Artix configuration file (see
“Setting up a Persistent Database” on page 115, and “Configuring
Persistent Services for High Availability” on page 117).

Replication is supported for C++ and Java service development, and by the
Artix locator (see “Configuring Locator High Availability” on page 121).

Note: Write request forwarding is currently (as of Artix 3.0.2) not
supported by the CORBA binding, or by Java applications.
 114

Setting up a Persistent Database
Setting up a Persistent Database

Overview To enable a service able to take advantage of high availability, it needs to
work with a persistent database. This section explains how to set up an
persistent database in Artix.

Using the Persistence API Artix provides set of C++ and Java APIs for manipulating persistent data.
For example, the C++ API uses the PersistentMap template class. This
class stores data as name value pairs. This API is defined in
it_bus_pdk\persistent_map.h.

This API enables you to perform tasks such as the following:

• Creating a PersistentMap database.

• Inserting data into a PersistentMap.

• Getting data from a PersistentMap.

• Removing data from a PersistentMap.

For more details, see the Developing Artix Applications with C++. For
details of the Java implementation, see Developing Artix Applications in
Java.

Configuring your database
environment

Services that use persistent databases need some basic configuration to set
up Berkeley DB (for example, the database filename). This information is
stored in the following configuration variables:

plugins:artix:db:env_name Specifies the filename for the Berkeley
DB environment file, which is used to
store PersistentMaps. Defaults to
db_env.

Note: Each replica in a group must
use the same name.
115

http://www.iona.com/support/docs/artix/3.0/prog_guide/index.htm
http://www.iona.com/support/docs/artix/3.0/java_pguide/index.htm
http://www.iona.com/support/docs/artix/3.0/java_pguide/index.htm

CHAPTER 9 | Artix High Availability
Example

The following example shows how these variables are used in an Artix
configuration file:

Further information For detailed information on the Berkeley DB database environment, see
http://www.sleepycat.com/

Artix ships Berkeley DB 4.2.52. Alternatively, you can download and build
Berkeley DB to obtain additional administration tools (for example, db_dump,
db_verify, db_recover, db_stat).

plugins:artix:db:home Specifies the directory where Berkeley
DB stores all the files for the service
databases. Each service should have a
dedicated folder for its data stores. This
is especially important for replicated
services. Defaults to "." (current
working directory).

It is recommended that you set this
variable to a specific directory.

persist_service {
 plugins:artix:db:env_name = “myDB.env”;
 plugins:artix:db:home = “/etc/dbs/persisting_service”;
…
};
 116

http://www.sleepycat.com/

Configuring Persistent Services for High Availability
Configuring Persistent Services for High
Availability

Overview For a service to participate in a high availability cluster, it must first be
designed to use persistent maps (“Setting up a Persistent Database” on
page 115). However, services that use persistent maps are not replicated
automatically; you must configure your service to be replicated.

Configuring a service for
replication

To replicate a service, you must add a replication list to your configuration,
and then add scopes for each replicated instance of your service. Typically,
you would create a scope for your replica cluster, and then create
sub-scopes for each replica. This avoids duplicating configuration settings
that are common to all replicas, and separates the cluster from any other
services configured in your domain.

Specifying a replication list To specify a cluster of replicas, use the following configuration variable:

This takes a list of replicas specified using the following syntax:

For example, the following entry configures a cluster of three replicas spread
across machines named jimi, noel, and mitch.

plugins:artix:db:replicas

ReplicaName=HostName:PortNum

plugins:artix:db:replicas=[“rep1=jimi:2000”, “rep2=mitch:3000”,
“rep3=noel:4000”];
117

CHAPTER 9 | Artix High Availability
Specifying your orb_plugins list Because IIOP is used for communication between replicas, you must include
the following plug-ins in your replica’s orb_plugins list:

• iiop_profile

• giop

• iiop

In addition, to enable automatic forwarding of write requests from slave to
master replicas, include the request_forwarder plug-in. You must also
specify this plug-in as a server request interceptor. The following example
shows the required configuration:

This configuration is loaded when the replica service starts up.

Specifying replica priorities In each of the sub-scopes for the replicas, you must give each replica a
priority, and configure the IIOP connection used by the replicas to conduct
elections. This involves the following configuration variables:

orb_plugins = ["xmlfile_log_stream", "request_forwarder",
"local_log_stream", "iiop_profile", "giop", "iiop"];

binding:artix:server_request_interceptor_list= "request_forwarder";

Note: To enable forwarding of write requests, programmers must have
already specified in the server code which operations can write to the
database. For details, see “Forwarding write requests” on page 129.

plugins:artix:db:priority Specifies the replica priority. The higher
the priority the more likely the replica is
to be elected as master. You should set
this variable if you are using replication.

There is no guarantee that the replica
with the highest priority is elected
master. The first consideration for
electing a master is who has the most
current database.

Note: Setting a replica priority to 0
means that the replica is never elected
master.
 118

Configuring Persistent Services for High Availability
Configuration example

The following example shows how these replication variables are used in an
Artix configuration file:

plugins:artix:db:replica_name Specifies which replica in the
plugins:artix:db:replicas list that
this configuration refers to.

plugins:artix:db:iiop:port Specifies the IIOP port the replica starts
on. This entry must match the
corresponding entry in the replica list.

ha_cluster{
 plugins:artix:db:env_name = “myCluster.env”;
 plugins:artix:db:replicas = [“rep1=jimi:2000”,

“rep2=mitch:3000”, “rep3=noel:4000”];

 rep1{
 plugins:artix:db:home = “/etc/dbs/replica_1”;
 plugins:artix:db:replica_name = “rep1”;
 plugins:artix:db:priority = 80;
 plugins:artix:db:iiop:port = 2000;
 };

 rep2{
 plugins:artix:db:home = “/etc/dbs/replica_2”;
 plugins:artix:db:replica_name = “rep2”;
 plugins:artix:db:priority = 20;
 plugins:artix:db:iiop:port = 3000;
 };

 rep3{
 plugins:artix:db:home = “/etc/dbs/replica_2”;
 plugins:artix:db:replica_name = “rep3”;
 plugins:artix:db:priority = 0;
 plugins:artix:db:iiop:port = 4000;
 };
};
119

CHAPTER 9 | Artix High Availability
Configuration guidelines

You should observe the following:

• Ensure that each replica has its own dedicated home directory for its
database files (for example, /etc/dbs/replica_1).

• It is not required that the value of the replica_name and the containing
scope have the same name, but this is good practice.

• The configured replica_name for each replica must match the name of
the WSDL port used for that service in a WSDL file. For example, the
following WSDL fragment uses WSDL port names that match the
replica names in “Configuration example” on page 119:

• Finally, all replicas must be represented by separate WSDL ports in the
same WSDL service.

Configuring request forward
logging

Optionally, you can also specify to output logging from the
request_forwarder plug-in.

To do this, specify the following logging subsystem in your event log filter:

 <wsdl:service name="SOAPService">
 <wsdl:port binding="tns:Greeter_SOAPBinding" name="rep1">
 <soap:address location="http://jimi:9551/SOAPService/rep1"/>
 </wsdl:port>
 <wsdl:port binding="tns:Greeter_SOAPBinding" name="rep2">
 <soap:address location="http://mitch:9552/SOAPService/rep2"/>
 </wsdl:port>
 <wsdl:port binding="tns:Greeter_SOAPBinding" name="rep3">
 <soap:address location="http://noel:9553/SOAPService/rep3"/>
 </wsdl:port>
 </wsdl:service>

Note: Currently (as of Artix 3.0.2), automatic forwarding of write requests
only occurs for one service/port combination per bus.

event_log:filters =
["IT_BUS.SERVICE.REQUEST_FORWARDER=INFO_LOW+WARN+ERROR+FATAL"];
 120

Configuring Locator High Availability
Configuring Locator High Availability

Overview The Artix locator supports replication like any other Artix service. Replicating
the locator involves specifying the same configuration that you would use for
any other Artix service. However, there are some additional configuration
variables that also apply to the locator.

Setting locator persistence To enable persistence in the locator, set the following variable:

This specifies if the locator uses a persistent database to store references.
This defaults to false, which means that the locator uses an in-memory
map to store references.

When replicating the locator, you must set persist_data to true. If you do
not, replication is not enabled.

Setting load balancing When persist_data is set to true, the load balancing behavior of the
locator changes. By default, the locator uses a round robin method to hand
out references to services that are registered with multiple endpoints.
Setting persist_data to true causes the locator to switch from round robin
to random load balancing.

You can change the default behavior of the locator to always use random
load balancing by setting the following configuration variable:

plugins:locator:persist_data="true";

plugins:locator:selection_method = “random”;
121

CHAPTER 9 | Artix High Availability
Setting a locator WSDL port To enable forwarding of write requests from a slave to a master locator, you
must set a locator WSDL port for each locator replica. This allows the
locator to specify the WSDL port that it uses when registering its own
servant.

To set a locator WSDL port, set the following configuration variable for each
locator replica, for example:

Configuration example The following example shows the configuration required for a cluster of three
locator replicas.

plugins:locator:wsdl_port=Locator1;

Example 15:Settings for Locator High Availability

service {
...
bus:initial_contract:url:locator = "../../../etc/locator.wsdl";

orb_plugins = ["local_log_stream", "wsdl_publish", "request_forwarder",
"service_locator", "iiop_profile", "giop", "iiop"];

binding:artix:server_request_interceptor_list= "request_forwarder";

plugins:locator:persist_data = "true";
plugins:artix:db:env_name = "locator";

plugins:artix:db:replicas = ["Locator1=localhost:7876",
"Locator2=localhost:7877", "Locator3=localhost:7878"];

one {
 plugins:locator:wsdl_port = "Locator1";
 plugins:artix:db:replica_name = "Locator1";
 plugins:artix:db:priority = "100";
 plugins:artix:db:home = "one_db";
 plugins:artix:db:iiop:port = "7876";
};
 122

Configuring Locator High Availability
Using multiple locator replica
groups

A highly available locator consists of a group of locators, one of which is
active. The rest are replicas, which are used only when the active locator
becomes unavailable. The locator group is represented by a locator WSDL
file that contains multiple endpoints—one for each locator. When the
ha_conf plug-in is loaded by Artix clients, it uses this WSDL file to resolve
and connect to a locator. It tries the first endpoint, and if this does not yield
a valid connection, it tries the second endpoint, and so on.

Using the ha_conf plugin, Artix client applications can fail over between
locators in the same replica group. However, if you are using two separate
replica locator groups, you will want your clients to try one group first, and
then the other. In this case, you can use one of the following approaches to
fail over between two separate replica locator groups:

Combine the two groups

You can combine two groups by taking the locator endpoints from the
second replica group's WSDL file, and adding them to the list of endpoints in
the first replica group's WSDL file. You now have a single WSDL file that
contains all the locator endpoints. The ha_conf plug-in will try to contact
locators in the order specified in this WSDL file.

two{
 plugins:locator:wsdl_port = "Locator2";
 plugins:artix:db:replica_name = "Locator2";
 plugins:artix:db:priority = "75";
 plugins:artix:db:home = "two_db";
 plugins:artix:db:iiop:port = "7877";
};

three{
 plugins:locator:wsdl_port = "Locator3";
 plugins:artix:db:replica_name = "Locator3";
 plugins:artix:db:priority = "0";
 plugins:artix:db:home = "three_db";
 plugins:artix:db:iiop:port = "7878";
};

Example 15:Settings for Locator High Availability
123

CHAPTER 9 | Artix High Availability
Change the configured contract

First, set your Artix configuration so that group1.wsdl is the first replica
group's WSDL file, for example:

bus:initial_contract:url:locator = "group1.wsdl";

Then if a connection cannot be made to any endpoint from this file, change
the configured WSDL file to group2.wsdl, re-initialize the bus, and try again.

In this way, by using an extra try/catch statement in the client, you can
achieve failover between two replica locator groups.

Further information For a working example of Artix locator high availability, see the
...advanced/high_availability_locator demo.
 124

Configuring Client-Side High Availability
Configuring Client-Side High Availability

Overview When you have implemented a highly available service using a group of
replica servers, a suitably configured client can talk to the master replica. In
the event that the master replica fails, one of the other replicas takes over as
master, and the client fails over to one of the other replicas.

As far as the client application logic is concerned, there is no discernible
interruption to the service. This section shows how to configure the client to
use high availability features. It also explains the impact on the server.

Configuration steps In most cases, configuring high availability on the client side consists of two
steps:

• Create a service contract that specifies the replica group.

• Configure the client to use the high availability service.

Specifying the replica group Before your client can contact the replicas in a replica group, you must tell
the client how to contact each replica in the group. You can do this by
writing the WSDL contract for your service in a particular way.

Example 16 shows the hello_world.wsdl contract from the
...\advanced\high_availability_persistent_servers demo.

Example 16:Specifying a Replica Group in a Contract

?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions name="HelloWorld" targetNamespace="http://www.iona.com/hello_world_soap_http"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:http-conf="http://schemas.iona.com/transports/http/configuration"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://www.iona.com/hello_world_soap_http"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
125

CHAPTER 9 | Artix High Availability
In Example 16, the SOAPService service contains three ports, all of the
same port type. The contract specifies fixed port numbers for the endpoints.
By convention, you should ensure that the first port specified by the service
corresponds to the master server.

 <wsdl:types>
 <schema targetNamespace="http://www.iona.com/hello_world_soap_http"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <element name="responseType" type="xsd:boolean"/>
 <element name="requestType" type="xsd:string"/>
 <element name="overwrite_if_needed" type="xsd:boolean"/>
 </schema>
 </wsdl:types>
 ...
 <wsdl:service name="SOAPService">
 <wsdl:port binding="tns:Greeter_SOAPBinding" name="Server1">
 <soap:address location="http://localhost:9551/SOAPService/Server1"/>
 </wsdl:port>
 <wsdl:port binding="tns:Greeter_SOAPBinding" name="Server2">
 <soap:address location="http://localhost:9552/SOAPService/Server2"/>
 </wsdl:port>
 <wsdl:port binding="tns:Greeter_SOAPBinding" name="Server3">
 <soap:address location="http://localhost:9553/SOAPService/Server3"/>
 </wsdl:port>
 </wsdl:service>

</wsdl:definitions>

Example 16:Specifying a Replica Group in a Contract
 126

Configuring Client-Side High Availability
Configuring the client to use high
availability

To configure your client for high availability, perform the following steps:

1. In your client scope, add the high availability plug-in (ha_conf) to the
orb_plugins list. For example:

2. Configure the client so that the Artix bus can resolve the service
contract. You can do this by specifying the following configuration in
the client scope:

Alternatively, you can achieve the same effect by using the
-BUSservice_contract command line parameter as follows:

For more details on configuring initial contracts, see Chapter 10.

Impact on the server In Example 16, the contract specifies three separate ports in the same
service named SOAPService. The implication is that each port is
implemented by a different process, and if one of these processes fails, the
client switches to one of the others.

client {
 orb_plugins = [...,"ha_conf"];
};

client {
 bus:qname_alias:soap_service = "{http://www.iona.com/hello_world_soap_http}SOAPService";
 bus:initial_contract:url:soap_service = "../../etc/hello_world.wsdl";
};

myclient -BUSservice_contract ../../etc/hello_world.wsdl
127

CHAPTER 9 | Artix High Availability
Because the servers use the same contract, the server-side code must be
written so the server can be instructed to instantiate a particular port.
Example 17 shows some relevant code. Depending on which argument the
server is started with (1, 2, or 3), it instantiates either Server1, Server2 or
Server3.

Example 17:Server Code Chooses which Port to Instantiate

//C++
String cfg_scope = "demos.high_availability_persistent_servers.server.";
String wsdl_url = "../../etc/hello_world.wsdl";
String server_number = argv[1];
String service_name = "SOAPService";
String port_name = "Server";

if (server_number == "1")
{
 cfg_scope += "one";
 port_name += "1";
}
else if (server_number == "2")
{
 cfg_scope += "two";
 port_name += "2";
}
else if (server_number == "3")
{
 cfg_scope += "three";
 port_name += "3";
}

else
{
 cerr << "Error: you must pass 1, 2 or 3 as a command line argument" <<

endl;
 return -1;
}

 IT_Bus::Bus_var bus = IT_Bus::init(argc, argv, cfg_scope.c_str());

 IT_Bus::QName service_qname(
 "",
 service_name,
 "http://www.iona.com/hello_world_soap_http"
);
 128

Configuring Client-Side High Availability
Forwarding write requests When a client sends a write request to a slave replica, the slave must
forward the write request to the master replica. The server programmer
must use the mark_as_write_operations() method specify which WSDL
operations can write to the database.

For a detailed example, see Developing Artix Applications with C++ and
Developing Artix Applications in Java.

GreeterImpl servant(bus, service_qname, port_name, wsdl_url);

 bus->register_servant(
 servant,
 wsdl_url,
 service_qname,
 port_name
);

 cout << "Server Ready" << endl;
 IT_Bus::run();
}
catch (const IT_Bus::Exception& e)
{
 cerr << "Error occurred: " << e.message() << endl;
 return -1;
}
catch (...)
{
cerr << "Unknown exception!" << endl;
return -1;
}
return 0;

Example 17:Server Code Chooses which Port to Instantiate

// C++
void
mark_as_write_operations(
 IT_Vector<IT_Bus::String> operations,
 const IT_Bus::QName& service,
 const IT_Bus::String& port,
 const IT_Bus::String& wsdl_url
) IT_THROW_DECL((DBException));
129

../prog_guide/index.htm

http://www.iona.com/support/docs/artix/3.0/java_pguide/index.htm

CHAPTER 9 | Artix High Availability
Server-side state Client-side failover can be used with both stateful and stateless servers. If
your servers are stateful, server-side high availability must be enabled for
the servers. But this has no impact on the client configuration.

If your servers are stateless, no server-side configuration is necessary.
However, your servers can share state using some other mechanism (for
example, a shared database). In this case, client-side failover can still be
used.

Further details For working examples of high availability in Artix, see the following demos:

• ...advanced/high_availability_persistent_servers

• ...advanced/high_availability_locator
 130

CHAPTER 10

Artix
Bootstrapping
Service
Artix enables you to bootstrap WSDL contracts and Artix
references to server and client applications. This avoids
hard-coding contracts in your applications. This chapter
explains the benefits, and shows how to use different
bootstrapping mechanisms.

In this chapter This chapter discusses the following topics:

Introduction page 132

Bootstrapping Servers and Clients page 134

Bootstrapping WSDL Contracts page 137

Bootstrapping Artix References page 143

Bootstrapping Well-Known Artix Services page 149
131

CHAPTER 10 | Artix Bootstrapping Service
Introduction

Overview Bootstrapping in Artix refers to enabling client and server applications to find
WSDL service contracts and references.

This section introduces the Artix bootstrapping service and explains reasons
for using it. It shows the benefits of using bootstrapping instead of hard
coding WSDL into your client and server applications.

Hard coding WSDL in servers Hard coding WSDL in servers limits the portability of your application, and
can make it more difficult to develop and deploy.

For example, you have developed a Web service application that includes a
client and a service implemented in a server process. When you first write
the application, you have a local copy of the WSDL, and you have hard
coded the WSDL location into your application.

Example C++ server

Example Java server

QName service_qname("", "SOAPService",
http://www.iona.com/hello_world_soap_http);

HelloWorldImpl servant(bus);
 bus->register_servant(
 "../../etc/hello.wsdl",
 service_qname
);

QName serviceQName = new
QName("http://www.iona.com/hello_world_soap_http",
"SOAPService");

Servant servant = new SingleInstanceServant(new SoapImpl(),
"../../etc/hello.wsdl", bus);

 bus.registerServant(servant,serviceQName,"SoapPort");
 132

Introduction
Hard coding WSDL in clients Similarly, you have also hard-coded your client with the location of your
local WSDL:

Example C++ client

Example Java client

Deploying your application However, when your application is no longer a demo, and you want to
deploy it in multiple locations, your hard-coded application may make this
difficult. For example, if your client is no longer run from the same directory
or machine as the server.

To solve this problem, the Artix bootstrapping core service enables you to
write code that is location independent, and therefore easy to distribute and
deploy.

HelloWorldClient proxy("../../etc/hello.wsdl");
proxy.sayHello();

QName serviceQName = new
QName("http://www.iona.com/hello_world_soap_http", "SOAPService");

URL wsdlLocation = null;
 try {
 wsdlLocation = new URL("../../etc/hello.wsdl");
 } catch (java.net.MalformedURLException ex) {
 wsdlLocation = new File(wsdlPath).toURL();
 }

Soap impl =
(Soap)bus.createClient(wsdlLocation,serviceQName,portName,Soap.class);

String returnVal = impl.sayHi();

Note: For simplicity, this example uses the Artix bus helper to create
proxies. You can also use JAXRPC.

Note: Artix bootstrapping is designed for WSDL-based services. It does
not provide mechanisms for resolving local objects. For details of how to
do this, see Developing Artix Applications with C++ and Developing Artix
Applications in Java.
133

http://www.iona.com/support/docs/artix/3.0/java_pguide/index.htm
http://www.iona.com/support/docs/artix/3.0/java_pguide/index.htm
../prog_guide/index.htm

CHAPTER 10 | Artix Bootstrapping Service
Bootstrapping Servers and Clients

Overview Artix bootstrapping service addresses two main use case scenarios:

• Enabling server applications to find WSDL.

• Enabling client applications to find references.

Artix provides support for both of these use cases in C++ and Java.

Enabling servers to find WSDL When you want to activate your service in a mainline or a plug-in, you
should not hard code the WSDL location. Instead, use the Artix
bootstrapping API to decouple the bootstrapping of WSDL from your
application logic.

C++ example

The C++ bootstrapping API is as follows:

You can change your old hard-coded application to use this API. Your C++
server becomes:

/**
 * Return pointer to object that corresponds to in-memory
 * representation of a specified service.
 * @param QName of the desired service.
 * @return pointer to IT_WSDL::WSDLService.
 */
 virtual IT_WSDL::WSDLService*
 get_service_contract(
 const QName& service_name
) IT_THROW_DECL((Exception)) = 0;

QName service_qname("", "SOAPService",
http://www.iona.com/hello_world_soap_http);

HelloWorldImpl servant(bus);
WSDLService* contract =
 bus->get_service_contract(service_qname);
bus->register_servant(
 *contract,
 servant
);
 134

Bootstrapping Servers and Clients
For simplicity, this example does not show any error handling. For details,
see Developing Artix Applications with C++.

Java example

The Java bootstrapping API is as follows:

Your Java server becomes:

The bootstrapping of your server to a specific WSDL contract is not
addressed in your application code. This is specified at runtime instead. The
available bootstrapping options are explained in “Bootstrapping WSDL
Contracts” on page 137.

Enabling clients to find references When you want to initialize your client proxies in your applications, you
should no longer depend on local WSDL files or static stub code information
to properly instantiate a proxy. Instead, use the Artix bus API to decouple
the bootstrapping of client references from your application logic.

C++ example

The C++ bootstrapping API is as follows:

/**
 * Obtains the WSDL URL associated with a Service.
 * @param serviceName The QName of the Service.
 * @return String The URL of the WSDL.
 * @throws BusException If the URL cannot be found.
 */
public abstract String getServiceWSDL(QName serviceName) throws

BusException;

QName serviceQName = new
QName("http://www.iona.com/hello_world_soap_http", "SOAPService");

String hwWsdl = bus.getServiceWSDL(serviceQName);

Servant servant = new SingleInstanceServant(new SoapImpl(), hwWsdl, bus);
bus.registerServant(servant,serviceQName,"SoapPort");

virtual IT_Bus::Boolean
resolve_initial_reference(
 const QName & service_name,
 Reference & endpoint_reference
) IT_THROW_DECL((Exception)) = 0;
135

http://www.iona.com/support/docs/artix/3.0/prog_guide/index.htm

CHAPTER 10 | Artix Bootstrapping Service
You can change your old hard-coded client application as follows:

Java example

The Java bootstrapping API is as follows:

You can change your old hard-coded Java client as follows:

The bootstrapping of your client to a specific Artix reference is not addressed
in your application code. This is specified at runtime instead. The available
bootstrapping options are explained in “Bootstrapping Artix References” on
page 143.

QName service_qname("", "SOAPService",
http://www.iona.com/hello_world_soap_http);

Reference result;
bus->resolve_initial_reference(
 service_qname, result
);

HelloWorldClient proxy(result);
proxy.sayHello();

/*** Resolve a Reference object that refers to the specified service.
* @param serviceName The name of the service.
* @return Reference An object that can be sent over the wire to refer
* to the given service. Return null if no object found.
* @throws BusException If there is an error resolving a Reference. */

public abstract Reference resolveInitialReference(QName serviceName)
throws BusException;

QName serviceQName = new
QName("http://www.iona.com/hello_world_soap_http",
"SOAPService");

Reference ref = bus.resolveInitialReference(serviceQName);

Soap impl = (Soap)bus.createClient(ref,Soap.class);
String returnVal = impl.sayHi();

Note: This Java code could use the JAXRPC programming model for
creating proxies which is more portable.
 136

Bootstrapping WSDL Contracts
Bootstrapping WSDL Contracts

Overview When your application calls the Artix bus to find a WSDL contract for a
service, the Artix bus uses several available bootstrapping resolver
mechanisms to find the requested WSDL. The Artix core tries each of these
in turn until it finds an appropriate contract, and returns the first result. If a
resolver mechanism is configured with a bad contract URL, no others are
called.

Bootstrapping WSDL is a two-step process:

1. You must first use the C++ or Java API to resolve the WSDL (see
“Enabling servers to find WSDL” on page 134).

2. You must then use one of the bootstrapping resolver mechanisms to
configure the WSDL at runtime. This is explained in this section.

WSDL bootstrapping mechanisms The possible ways of bootstrapping WSDL at runtime are as follows:

1. Command line.

2. Artix configuration file.

3. Well-known directory.

4. Stub WSDL shared library.

These are listed in order of priority, which means that if you configure more
than one, those higher up in the list override those lower down. See “Order
of precedence for bootstrapping WSDL” on page 141.

Configuring WSDL on the
command line

You can configure WSDL by passing URLs as parameters to your application
at startup. WSDL URLs passed at application startup take precedence over
settings in a configuration file. The syntax for passing in WSDL to any Artix
application is:

For example, assuming your application is using WSDL bootstrapping API,
you can avoid configuration files by starting your application as follows:

-BUSservice_contract url

./server -BUSservice_contract ../../etc/hello.wsdl
137

CHAPTER 10 | Artix Bootstrapping Service
This means that the Artix bus parses the URLs that you pass into it on
startup. It finds any services that are in this WSDL, and caches them for any
users that want WSDL for any of those services.

Parsing WSDL on demand

If you do not want the Artix bus to parse the document until it is needed,
you can specify what services are contained in the WSDL, which results in
the URL being parsed only on demand. The syntax for this is:

For example, the application would be started as follows:

Specifying the WSDL URL on startup enables the Artix bus to avoid parsing
the WSDL until it is requested.

Configuring WSDL in a
configuration file

You can also configure the location of your WSDL in an Artix configuration
file, using the following configuration variable syntax.

These variables are described as follows:

• bus:qname_alias:service-name enables you to assign an alias or
shorthand version of a service QName. You can then use the short
version of the service name in other configuration variables. The syntax
for the service Qname is "{namespace}localpart".

• bus:initial_contract:url:service-name uses the alias defined
using bus:qname_alias to configure the location of the WSDL contract.
The WSDL location syntax is "url". This can be any valid URL, it does
not have to be a local file.

The following example configures a service named SimpleService, defined
in the http://www.iona.com/bus/tests namespace:

-BUSservice_contract {namespace}localpart@url

./server -BUSservice_contract
{http://www.iona.com/demos}HelloWorldService@../../etc/hello.wsdl

bus:qname_alias:service-name = "{namespace}localpart";
bus:initial_contract:url:service-name = "url";

bus:qname_alias:simple_service = "{http://www.iona.com/bus/tests}SimpleService";
bus:initial_contract:url:simple_service = "../../etc/simple_service.wsdl";
 138

Bootstrapping WSDL Contracts
Configuring WSDL in a
well-known directory

You can also configure an Artix application to search in a well-known
directory when it needs to find WSDL. This enables you to configure
multiple documents without explicitly configuring every document on the
command line, or using bus:initial_contract configuration. If you specify
a well-known directory, you only need to copy the WSDL documents into
this directory before the application needs them.

You can configure the directory location in a configuration file or by passing
a command-line parameters to your C++ or Java application.

Configuring a WSDL directory in a configuration file

To set the directory in configuration, use the following variable:

The value "." means use the directory from where the application was
started. The specified value is a list of directories, which enables you to
specify multiple directories.

Configuring a WSDL directory using command-line parameters

If you do not wish to use a configuration file, you can configure the WSDL
directory using command line parameters. The command line overrides any
settings in a file. The syntax is as follows:

For example, to configure Artix to look in the current directory, and in the
"../../etc" directory, use the following command:

Configuring multiple WSDL directories

You can configure multiple well-known directories for your application to
search. However, it is not recommended that you put too many files in the
directory.

The more files you put in the directory, the longer it may take to find the
contract that you are looking for. The directory search is optimized to first do
a quick file scan to see if any of the files potentially contain the target
service requested. The documents are not properly parsed unless a match
has been found.

bus:initial_contract_dir=["."];

-BUSservice_contract_dir directory

server -BUSservice_contract_dir . -BUSservice_contract_dir ../../etc/
139

CHAPTER 10 | Artix Bootstrapping Service
If you use multiple directories, the ordering makes a difference if both
directories contain the same service definitions. The resolver mechanisms
search the directories in the order that they are configured in.

You can add WSDL documents to the well-known directories after the
application has started. The file must only be present in the directory before
the application requests it.

Bootstrapping in a stub WSDL
shared library

It is also possible to encode a WSDL document inside a C++ shared library.
Just like in Java, where resources are added to a .jar file, Artix can embed
a WSDL document inside a shared library. This enables you to resolve
WSDL contracts for Artix services without using a file system or any remote
calls.

When a WSDL document is encoded inside a shared library, this is called a
stub WSDL shared library. Artix provides stub WSDL shared libraries for the
following Artix services:

• Locator

• Session manager

• Peer manager

• Container

This means that you can deploy these services into environments without
using any other resources like WSDL documents. Artix does not provide
APIs to enable you to encode your own documents into stub libraries.

Stub WSDL shared libraries are the last bootstrapping mechanisms to be
called. If you configure any others, the stub WSDL shared library is not
used.

All the Artix stub WSDL libraries contain WSDL endpoints with SOAP HTTP
port addresses of 0. This means that if these versions are used to activate a
service, the endpoint is instantiated on a dynamic port. This is the
recommended approach for internal services like the container and peer
manager.
 140

Bootstrapping WSDL Contracts
Order of precedence for
bootstrapping WSDL

Because there are several available options for bootstrapping WSDL to an
application, the bootstrapping service searches each resolver mechanism in
turn for a suitable document. It returns the first successful result to the user.

The order of precedence for bootstrapping WSDL is as follows:

1. Contract passed on the command line.

2. Contract specified in a configuration file.

3. Well-known directory passed on the command line.

4. Well-known directory specified in a configuration file.

5. Stub WSDL shared library.

Example

You have four WSDL contracts that contain a definition for a service named
SimpleService:

1. Configure the following in your configuration file:

2. Start your server as follows:

The contract in one/simple.wsdl is returned to the application because
WSDL configured using -BUSservice_contract takes precedence over all
other sources.

one/simple.wsdl
two/simple.wsdl
three/simple.wsdl
four/simple.wsdl

bus:qname_alias:simple_service =
"{http://www.iona.com/bus/tests}SimpleService";

bus:initial_contract:url:simple_service = "two/simple.wsdl";
bus:initial_contract_dir=["four"];

server -BUSservice_contract_dir three -BUSservice_contract one/simple.wsdl
141

CHAPTER 10 | Artix Bootstrapping Service
If you start your server as follows:

The contract in two/simple.wsdl is returned to the application because the
order that the bootstrapping resolver mechanisms are called in means that
the contract specified in a configuration file is the first successful one.

Bootstrapping standard Artix
services

For details of bootstrapping WSDL for standard Artix services such as the
locator or session manager, see “Bootstrapping Well-Known Artix Services”
on page 149.

server
 142

Bootstrapping Artix References
Bootstrapping Artix References

Overview An Artix reference is an object that encapsulates the endpoint and contract
information for a particular WSDL service. A serialized Artix reference is an
XML document that refers to a running service instance, and contains a URL
pointer to where the service's WSDL can be retrieved. You can serialize a
reference to any service by deploying it into the Artix container and calling
it_container_admin -publishreference. Alternatively, you can use APIs
to publish a reference directly.

When your client application uses the Artix bus to look up a reference using
the service QName, it calls the bootstrapping service. Bootstrapping
references works the same way as bootstrapping WSDL, and you have
several options for configuring the reference that the client uses. Like with
WSDL contracts, Artix tries each bootstrapping mechanism in turn until it
gets a successful result or an error. If any of these return null, the core tries
the next one. If you have a badly configured reference, the bootstrapping
mechanism returns an error or exception.

Bootstrapping references is a two-step process:

1. You must first use the C++ or Java API to resolve the reference (see
“Enabling clients to find references” on page 135).

2. You must then use one of the resolver mechanisms to configure the
reference at runtime. This is explained in this section.

For details of how to use the Artix container to publish references for a
client, see Chapter 3.

Reference bootstrapping
mechanisms

The possible ways of configuring references at runtime are as follows:

1. Colocated service.

2. C++ programmatic configuration.

3. Command line

4. Configuration file.

5. WDSL contract.
143

CHAPTER 10 | Artix Bootstrapping Service
These are listed in order of precedence, so if you configure more than one,
those higher up in the list override those lower down. The bootstrapping
service searches each in turn for a suitable match and returns the first
successful result.

Using a colocated service The most convenient place to find a reference to a service that a client has
requested is in the local Artix bus. When the activated service is colocated
(available locally in the same process), the client can easily find a local
reference to invoke. In this case, the client’s resolve_initial_reference()
function returns a reference to the colocated service.

This is the first bootstrapping mechanism that the runtime checks. You can
expect resolution to always succeed for services that are activated locally.

Configuring references in C++
code

In C++, you can register an initial reference programmatically using the
Artix bus. You can register a reference in one C++ plug-in that would
enable another plug-in (Java or C++) to resolve that reference using the
bus API.

The bootstrapping service checks the bus for local services, so it would be
unusual for an application to require the programmatic configuration unless
it uses multiple buses. You can not programmatically configure a reference
in one bus and have it resolved in another.

In addition, you can not activate a service in one bus, and have it resolved in
another. If you wish a client in one bus to use a reference from an active
service in another bus you should programmatically register the reference
from one bus to the next.
 144

Bootstrapping Artix References
For example:

Configuring references on the
command line

You can also pass in reference URLs as parameters to the application on
startup. Reference URLs passed to the application on startup take
precedence over settings in a configuration file. The syntax for passing in a
reference to any Artix application is:

For example, assuming your application is using the bootstrapping API, you
could avoid configuration files by starting your application as follows:

This means that the Artix bus parses the URLs passed into it on startup. It
caches them for any users that request references of this type at runtime.

Parsing references on demand

If you do not want to parse the reference XML until it is needed, you can
specify the service name that the reference maps to. This means that the
XML is not parsed until it is first requested. The syntax for this is

QName service_qname("", "SOAPService",
http://www.iona.com/hello_world_soap_http);

// Activate the service on bus one
HelloWorldImpl servant(bus_one);

WSDLService* contract =

bus_one->get_service_contract(service_qname);

bus_one->register_servant(
 *contract,
 servant
);

Service_var service = bus_one->get_service(service_qname);

// Register the service reference on bus two
bus_two->register_initial_reference(service->get_reference());

-BUSinitial_reference url

./server -BUSinitial_reference ../../etc/hello.xml

-BUSinitial_reference {namespace}localpart@url
145

CHAPTER 10 | Artix Bootstrapping Service
For example, the application is started as follows:

Configuring references in a
configuration file

You can also configure a reference in a configuration file. The reference must
be serialized in an XML format. You can use a configuration variable syntax
to configure the URL or contents of a serialized reference.

Format of a serialized XML reference

The following shows an example contents of a serialized reference:

Configuring serialized reference URLs

You can also configure the location of your WSDL in an Artix configuration
file, using the following configuration variable syntax.

./server -BUSinitial_reference
{http://www.iona.com/demos}HelloWorldService@../../etc/hello.xml

<?xml version='1.0' encoding='utf-8'?>
<m1:reference service="m2:AccountService"
 wsdlLocation="file:./bank.wsdl"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:m1="http://www.iona.com/bus"
 xmlns:m2="http://www.iona.com/bus/tests"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <port name="AccountPort" binding="m2:AccountBinding">
 <m3:address xsi:type="m3:tAddress"
 location="http://localhost:999/AccountService/AccountPort/"
 xmlns:m3="http://schemas.xmlsoap.org/wsdl/soap/">
 </m3:address>
 </port>
</m1:reference>

bus:qname_alias:service-name = "{namespace}localpart";
bus:initial_references:url:service-name = "url";
 146

Bootstrapping Artix References
These variables are described as follows:

• bus:qname_alias:service-name enables you to assign an alias or
shorthand version of a service QName. You can then use the short
version of the service name in other configuration variables. The syntax
for the service Qname is "{namespace}localpart".

• bus:initial_contract:url:service-name uses the alias defined
using bus:qname_alias to configure the location of the reference. The
XML location syntax is "url". The URL value can be any valid URL, it
does not have to be a local file, but under most circumstances the
reference is local.

The following example configures a service named SimpleService, defined
in the http://www.iona.com/bus/tests namespace:

Configuring inline references

Instead of configuring a URL, you can also inline the reference XML in a
configuration file. This is similar to configuring CORBA initial references in
Orbix, and it effectively hard codes the addressing. This should only be used
for static services where you do not expect anything to change (for example,
details such as the endpoint address and transport information).

The following is an example inline reference:

The reference appears on one line in an XML document.

bus:qname_alias:simple_service = "{http://www.iona.com/bus/tests}SimpleService";
bus:initial_contract:url:simple_service = "../../etc/simple_service.xml";

bus:qname_alias:simple_service = "{http://www.iona.com/bus/tests}SimpleService";
bus:initial_references:inline:simple_service = "<?xml version='1.0' encoding='utf-8'?>";
147

CHAPTER 10 | Artix Bootstrapping Service
Configuring references using
WSDL

Artix reference bootstrapping is built on its WSDL bootstrapping. When
bootstrapping a reference, you can use all the options available for
bootstrapping WSDL. When you locate a WSDL document that contains the
wsdl:service you are looking for, you can convert it to a reference and
return it to the client.

If Artix fails to find a suitable reference using the reference bootstrapping
mechanisms, it falls back to those used for WSDL. This is useful in certain
scenarios. For example, when you only want to configure well-known Artix
services (such as the locator). If you configure the WSDL, both the service
and the client can benefit from a single configuration source and bootstrap
successfully.

Implications of resolving references using WSDL

When no references are found, the bootstrapping mechanisms for references
call those used for WSDL. This means that you can rely on WSDL to
configure client references.

However, the default WSDL contracts for well-known Artix services have
SOAP/HTTP endpoints with a port of zero. For example:

If you resolve a reference with a port of zero, you get an error when you try
to invoke the proxy created from the reference. The exception says that the
address is invalid.

These contracts with ports of zero are intended for use by servers rather
than clients, and enable servers to run on a dynamic port. Therefore, in
general, your client should not rely these contracts. If the server is using this
type of contract, you should publish the activated form of the contract,
which contains the port assigned dynamically at startup. Your client can
then bootstrap this activated version of the contract instead.

Further information For more detailed information on Artix references, see Developing Artix
Applications with C++, or Developing Artix Applications in Java.

<service name="LocatorService">
 <port binding="ls:LocatorServiceBinding" name="LocatorServicePort">
 <soap:address location="http://localhost:0/services/locator/LocatorService"/>
 </port>
</service>
 148

http://www.iona.com/support/docs/artix/3.0/prog_guide/index.htm
http://www.iona.com/support/docs/artix/3.0/prog_guide/index.htm
http://www.iona.com/support/docs/artix/3.0/java_pguide/index.htm

Bootstrapping Well-Known Artix Services
Bootstrapping Well-Known Artix Services

Overview Artix includes WSDL contracts for all its well-known services. This section
shows the default bootstrapping provided for these services.

Pre-configured WSDL Artix provides pre-configured aliases and WSDL locations for all of its
services. By default, the Artix configuration file (artix.cfg) includes the
following entries:

In your application, if you resolve the WSDL or a reference for any of these
services, by default, the WSDL from these values is used. Most of these
services are configured to use a port of zero. If you do not want to use the
default WSDL for any of these services, you must override the default.

Well known Services QName aliases
bus:qname_alias:container = "{http://ws.iona.com/container}ContainerService";
bus:qname_alias:locator = "{http://ws.iona.com/locator}LocatorService";
bus:qname_alias:peermanager = "{http://ws.iona.com/peer_manager}PeerManagerService";
bus:qname_alias:sessionmanager = "{http://ws.iona.com/sessionmanager}SessionManagerService";
bus:qname_alias:sessionendpointmanager =

"{http://ws.iona.com/sessionmanager}SessionEndpointManagerService";
bus:qname_alias:uddi_inquire = "{http://www.iona.com/uddi_over_artix}UDDI_InquireService";
bus:qname_alias:uddi_publish = "{http://www.iona.com/uddi_over_artix}UDDI_PublishService";
bus:qname_alias:login_service = "{http://ws.iona.com/login_service}LoginService";

bus:initial_contract:url:container = "install_root/artix/3.0/wsdl/container.wsdl";
bus:initial_contract:url:locator = "install_root/artix/3.0/wsdl/locator.wsdl";
bus:initial_contract:url:peermanager = "install_root/artix/3.0/wsdl/peer-manager.wsdl";
bus:initial_contract:url:sessionmanager =

"install_root/artix/3.0/wsdl/session-manager.wsdl";
bus:initial_contract:url:sessionendpointmanager =

"install_root/artix/3.0wsdl/session-manager.wsdl";
bus:initial_contract:url:uddi_inquire = "install_root/artix/3.0/wsdl/uddi/uddi_v2.wsdl";
bus:initial_contract:url:uddi_publish = "install_root/artix/3.0/wsdl/uddi/uddi_v2.wsdl";
bus:initial_contract:url:login_service = "install_root/artix/3.0/wsdl/login_service.wsdl";
149

CHAPTER 10 | Artix Bootstrapping Service
Further information For more details on the configuration variables for bootstrapping Artix
services, see the Artix Configuration Guide.

For more examples of bootstrapping in Artix applications, see the following
demos:

• ..demos\basic\bootstrap

• ..demos\advanced\container\deploy_plugin

• ..demos\advanced\container\deploy_routes

• ..demos\advanced\locator

• ..demos\advanced\locator_list_endpoints
 150

Part III
Integrating Artix

In this part This part contains the following chapters:

Further information For more details on using Artix other middleware environments, see Artix for
CORBA and Artix for Java.

Embedding Artix in a BEA Tuxedo Container page 153

Enterprise Performance Logging page 157

Artix CA-WSDM Integration page 169

Locating Services with UDDI page 175

http://www.iona.com/support/docs/artix/3.0/corba_ws/index.htm
http://www.iona.com/support/docs/artix/3.0/corba_ws/index.html
http://www.iona.com/support/docs/artix/3.0/corba_ws/index.html
http://www.iona.com/support/docs/artix/3.0/j2ee/index.htm

CHAPTER 11

Embedding Artix
in a BEA Tuxedo
Container
Artix can be run and managed by BEA Tuxedo like a native
Tuxedo application.

In this chapter This chapter includes the following sections:

Introduction page 154

Embedding an Artix Process in a Tuxedo Container page 155
153

CHAPTER 11 | Embedding Artix in a BEA Tuxedo Container
Introduction

Overview To enable Artix to interact with native BEA Tuxedo applications, you must
embed Artix in the Tuxedo container.

At a minimum, this involves adding information about Artix in your Tuxedo
configuration file, and registering your Artix processes with the Tuxedo
bulletin board.

In addition, you can also enable to Tuxedo bring up your Artix process as a
Tuxedo server when running tmboot.

This chapter explains these steps in detail.

Note: BEA Tuxedo integration is unavailable in some editions of Artix.
Please check the conditions of your Artix license to see whether your
installation supports Tuxedo integration.
 154

Embedding an Artix Process in a Tuxedo Container
Embedding an Artix Process in a Tuxedo
Container

Procedure To embed an Artix process in a Tuxedo container, complete the following
steps:

1. Ensure that your environment is correctly configured for Tuxedo.

2. You can add the Tuxedo plug-in, tuxedo, to your Artix process’s
orb_plugins list.

However, the tuxedo plug-in is loaded transparently when the process
parses the WSDL file.

3. Set plugins:tuxedo:server to true in your Artix configuration scope.

4. Ensure that the executable for your Artix process is placed in the
directory specified in the APPDIR entry of your Tuxedo configuration.

5. Edit your Tuxedo configuration’s SERVERS section to include an entry for
your Artix process.

For example, if the executable of your Artix process is ringo, add the
following entry in the SERVERS section:

This associates ringo with the Tuxedo group called BEATLES in your
configuration and assigns ringo a server ID of 1. You can modify the
server’s properties as needed.

Note: A Tuxedo administrator is required to complete a Tuxedo
distributed architecture. When deploying Artix in a distributed architecture
with other middleware, please also see the documentation for those
middleware products.

orb_plugins=[... "tuxedo"];

ringo SVRGRP=BEATLES SVRID=1
155

CHAPTER 11 | Embedding Artix in a BEA Tuxedo Container
6. Edit your Tuxedo configuration’s SERVICES section to include an entry
for your Artix process.

While standard Tuxedo servers only require a SERVICES entry if you are
setting optional runtime properties, Artix servers in the Tuxedo
container require an entry, even if no optional runtime properties are
being set. The name entered for the Artix process is the name specified
in the serviceName attribute of the Tuxedo port defined in the Artix
contract for the process.

For example, given the port definition shown in Example 18, the
SERVICES entry would be personalInfoService.

7. If you made the Tuxedo configuration changes in the ASCII version of
the configuration, UBBCONFIG, reload the TUXCONFIG with tmload.

When you have configured Tuxedo, it manages your Artix process as if it
were a regular Tuxedo server.

Example 18:Sample Service Entry

<service name="personalInfoService">
 <port name="tuxInfoPort" binding="tns:personalInfoBinding">
 <tuxedo:server>
 <tuxedo:service name="personalInfoService"/>
 </tuxedo:server>
 </port>
</service>
 156

CHAPTER 12

Enterprise
Performance
Logging
IONA’s performance logging plug-ins enable Artix to integrate
effectively with third-party Enterprise Management Systems
(EMS).

In this chapter This chapter contains the following sections:

Enterprise Management Integration page 158

Configuring Performance Logging page 160

Performance Logging Message Formats page 165
157

CHAPTER 12 | Enterprise Performance Logging
Enterprise Management Integration

Overview IONA’s performance logging plug-ins enable both Artix and Orbix to integrate
effectively with Enterprise Management Systems (EMS), such as IBM
Tivoli™, HP OpenView™, CA Unicenter™, or BMC Patrol™. The
performance logging plug-ins can also be used in isolation or as part of a
bespoke solution.

Enterprise Management Systems enable system administrators and
production operators to monitor enterprise-critical applications from a single
management console. This enables them to quickly recognize the root cause
of problems that may occur, and take remedial action (for example, if a
machine is running out of disk space).

Performance logging When performance logging is configured, you can see how each Artix server
is responding to load. The performance logging plug-ins log this data to file
or syslog. Your EMS (for example, IBM Tivoli) can read the performance
data from these logs, and use it to initiate appropriate actions, (for example,
issue a restart to a server that has become unresponsive, or start a new
replica for an overloaded cluster).

Example EMS integration Figure 21 shows an overview of the IONA and IBM Tivoli integration at
work. In this example, a restart command is issued to an unresponsive
server.

In Figure 21, the performance log files indicate a problem. The IONA Tivoli
Provider uses the log file interpreter to read the logs. The provider sees when
a threshold is exceeded and fires an event. The event causes a task to be
activated in the Tivoli Task Library. This task restarts the appropriate server.

This chapter explains how to manually configure the performance logging
plug-ins. It also explains the format of the performance logging messages.

For details on how to integrate your EMS environment with Artix, see the
IONA guide for your EMS. For example, the IONA Tivoli Integration Guide or
IONA BMC Patrol Integration Guide.
 158

Enterprise Management Integration
Figure 21: Overview of an Artix and IBM Tivoli Integration
159

CHAPTER 12 | Enterprise Performance Logging
Configuring Performance Logging

Overview This section explains how to manually configure performance logging. This
section includes the following:

• “Performance logging plug-ins”.

• “Monitoring Artix requests”.

• “Logging to a file or syslog”.

• “Logging to a syslog daemon”.

• “Monitoring clusters”.

• “Configuring a server ID”.

• “Configuring a client ID”.

• “Configuring with the GUI”.

Performance logging plug-ins The performance logging component includes the following plug-ins:

Note: You can also use the Artix Designer GUI tool to configure
performance logging automatically. However, manual configuration gives
you more fine-grained control.

Table 6: Performance Logging Plug-ins

Plug-in Description

Response monitor Monitors response times of requests as they
pass through the Artix binding chains.
Performs the same function for Artix as the
response time logger does for Orbix.

Collector Periodically collects data from the response
monitor plug-in and logs the results.
 160

Configuring Performance Logging
Monitoring Artix requests You can use performance logging to monitor Artix server and client requests.

To monitor both client and server requests, add the bus_response_monitor
plug-in to the orb_plugins list in the global configuration scope. For
example:

To configure performance logging on the client side only, specify this setting
in a client scope only.

Logging to a file or syslog You can configure the collector plug-in to log data either to a file or to
syslog. The configuration settings depends on whether your application is
written in C++ or Java.

C++ configuration

The following example configuration for a C++ application results in
performance data being logged to
/var/log/my_app/perf_logs/treasury_app.log every 90 seconds:

If you do not specify the response time period, it defaults to 60 seconds.

Java configuration

Configuring the Java collector plug-in is slightly different from the C++
collector) because the Java collector plug-in makes use of Apache Log4J.
Instead of setting plugins:it_response_time_collector:filename, you set
the plugins:it_response_time_collector:log_properties to use Log4J,
for example:

orb_plugins = ["xmlfile_log_stream", "soap", "at_http",
"bus_response_monitor"];

plugins:it_response_time_collector:period = "90";
plugins:it_response_time_collector:filename =
"/var/log/my_app/perf_logs/treasury_app.log";

plugins:it_response_time_collector:log_properties = ["log4j.rootCategory=INFO, A1",
"log4j.appender.A1=com.iona.management.logging.log4jappender.TimeBasedRollingFileAppender",
"log4j.appender.A1.File="/var/log/my_app/perf_logs/treasury_app.log",
"log4j.appender.A1.MaxFileSize=512KB",
"log4j.appender.A1.layout=org.apache.log4j.PatternLayout",
"log4j.appender.A1.layout.ConversionPattern=%d{ISO8601} %-80m %n"
];
161

CHAPTER 12 | Enterprise Performance Logging
Logging to a syslog daemon You can configure the collector to log to a syslog daemon or Windows event
log, as follows:

The syslog_appid enables you to specify your application name that is
prepended to all syslog messages. If you do not specify this, it defaults to
iona.

Monitoring clusters You can configure your EMS to monitor a cluster of servers. You can do this
by configuring multiple servers to log to the same file. If the servers are
running on different hosts, the log file location must be on an NFS mounted
or shared directory.

Alternatively, you can use syslogd as a mechanism for monitoring a cluster.
You can do this by choosing one syslogd to act as the central logging server
for the cluster. For example, say you decide to use a host named teddy as
your central log server. You must edit the /etc/syslog.conf file on each
host that is running a server replica, and add a line such as the following:

Some syslog daemons will not accept log messages from other hosts by
default. In this case, it may be necessary to restart the syslogd on teddy
with a special flag to allow remote log messages.

You should consult the man pages on your system to determine if this is
necessary and what flags to use.

plugins:it_response_time_collector:system_logging_enabled = "true";
plugins:it_response_time_collector:syslog_appID = "treasury";

Substitute the name of your log server
 user.info @teddy
 162

Configuring Performance Logging
Configuring a server ID You can configure a server ID that will be reported in your log messages.
This server ID is particularly useful in the case where the server is a replica
that forms part of a cluster.

In a cluster, the server ID enables management tools to recognize log
messages from different replica instances. You can configure a server ID as
follows:

This setting is optional; and if omitted, the server ID defaults to the ORB
name of the server. In a cluster, each replica must have this value set to a
unique value to enable sensible analysis of the generated performance logs.

Configuring a client ID You can also configure a client ID that will be reported in your log messages.
Specify this using the client-id configuration variable, for example:

This setting enables management tools to recognize log messages from
client applications. This setting is optional; and if omitted, it is assumed that
that a server is being monitored.

Configuration example The following simple example configuration file is from the management
demo supplied in your Artix installation:

plugins:it_response_time_collector:server-id = "Locator-1";

plugins:it_response_time_collector:client-id = "my_client_app";

include "../../../../../etc/domains/artix.cfg";

demos {

 management

 {

 orb_plugins = ["xmlfile_log_stream", "soap", "at_http",
 "bus_response_monitor"];
163

CHAPTER 12 | Enterprise Performance Logging
In this example, the bus_response_monitor plug-in and
plugins:it_response_time_collector:period are set in the global scope.
This specifies these settings for both the client and server applications.

Configuring with the GUI The Artix Designer GUI tool automatically generates performance logging
configuration for the Artix services. The generated server-id defaults to the
following format:

DomainName_ServiceName_Hostname (for example, artix_locator_myhost)

For details on how to automatically generate performance logging, see the
IONA Tivoli Integration Guide or IONA BMC Patrol Integration Guide.

 plugins:it_response_time_collector:period = "5";

 client {

 plugins:it_response_time_collector:client-id=
 "management-demo-client";

 plugins:it_response_time_collector:filename=
 "management_demo_client.log";
 };

 server {

 plugins:it_response_time_collector:server-id=
 "management-demo-server";

 plugins:it_response_time_collector:filename=
 "management_demo_server.log";
 };
 };
};
 164

Performance Logging Message Formats
Performance Logging Message Formats

Overview This section describes the performance logging message formats used by
IONA products. It includes the following:

• “Artix log message format”.

• “Orbix log message format”.

• “Simple life cycle message formats”.

Artix log message format Performance data is logged in a well-defined format. For Artix applications,
this format is as follows:

YYYY-MM-DD HH:MM:SS server=ServerID [namespace=nnn service=sss
port=ppp operation=name] count=n avg=n max=n min=n int=n oph=n

Table 7: Artix log message arguments

Argument Description

server The server ID of the process that is logging the
message.

namespace The Artix namespace.

service The Artix service.

port The Artix port.

operation The name of the operation for CORBA
invocations or the URI for requests on servlets.

count The number of operations of invoked (IIOP).

or

The number of times this operation or URI was
logged during the last interval (HTTP).

avg The average response time (milliseconds) for
this operation or URI during the last interval.
165

CHAPTER 12 | Enterprise Performance Logging
The combination of namespace, service and port above denote a unique
Artix endpoint.

Orbix log message format The format for Orbix log messages is as follows:

max The longest response time (milliseconds) for
this operation or URI during the last interval.

min The shortest response time (milliseconds) for
this operation or URI during the last interval.

int The number of milliseconds taken to gather the
statistics in this log file.

oph Operations per hour.

Table 7: Artix log message arguments

Argument Description

YYYY-MM-DD HH:MM:SS server=ServerID [operation=Name] count=n
avg=n max=n min=n int=n oph=n

Table 8: Orbix log message arguments

Argument Description

server The server ID of the process that is logging the
message.

operation The name of the operation for CORBA invocations or
the URI for requests on servlets.

count The number of operations of invoked (IIOP).

or

The number of times this operation or URI was
logged during the last interval (HTTP).

avg The average response time (milliseconds) for this
operation or URI during the last interval.

max The longest response time (milliseconds) for this
operation or URI during the last interval.
 166

Performance Logging Message Formats
Simple life cycle message formats The server will also log simple life cycle messages. All servers share the
following common format.

min The shortest response time (milliseconds) for this
operation or URI during the last interval.

int The number of milliseconds taken to gather the
statistics in this log file.

oph Operations per hour.

Table 8: Orbix log message arguments

Argument Description

YYYY-MM-DD HH:MM:SS server=ServerID status=CurrentStatus

Table 9: Simple life cycle message formats arguments

Argument Description

server The server ID of the process that is logging the
message.

status A text string describing the last known status of
the server (for example, starting_up, running,
shutting_down).
167

CHAPTER 12 | Enterprise Performance Logging
 168

CHAPTER 13

Artix CA-WSDM
Integration
Artix provides support for integration with Computer
Associates Web Services Distributed Management
(CA-WSDM). This chapter provides an introduction, and shows
how to configure CA-WSDM integration in Artix applications.

In this chapter This chapter includes the following sections:

Artix CA WSDM Observer page 170

Configuring a CA WSDM Observer page 172
169

CHAPTER 13 | Artix CA-WSDM Integration
Artix CA WSDM Observer

Overview An Artix CA WSDM observer is a plug-in interceptor that integrates Artix
with Computer Associates Web Services Distributed Management (WSDM)
software. This section gives an architectural overview and lists the observed
data.

Artix CA WSDM Observer An Artix CA WSDM observer interceptor can sit on the client side or server
side as shown in Figure 22.

A CA WSDM observer operates as follows:

• Collects information about messages sent to observed services over any
supported transports at both the server and client request interceptor
level. It asynchronously reports this information to a CA WSDM service
using SOAP over HTTP.

Figure 22: CA WSDM Observer Architecture
 170

Artix CA WSDM Observer
• Automatically registers all services it observes with CA WSDM by
sending a service QName and a list of QNames of operations supported
by a corresponding portType interface. This enables a CA WSDM
operator to create service groups.

• Periodically polls a CA WSDM service for configuration updates. For
example, CA WSDM transaction monitors can be enabled, which
enable an operator to look at the raw input and output messages. The
operator can check if it took an operation longer to complete its
request, or if its request or response size was larger than expected.

Observed data An Artix CA WSDM observer reports the following data to a CA WSDM
service about any service operation:

• Operation name and namespace.

• Request and response size.

• Operation duration.

• Operation timestamp.

• Operation transaction identifier.

• Service port endpoint address.

• Client address (where the request came from).

• Request and response messages (if duration, request/response size
monitors are enabled).

• User fault exception details.

Note: Some data may not be reported if it is not available at a request
interceptor level for a given transport. For example, request and response
size, or raw messages for CORBA services.
171

CHAPTER 13 | Artix CA-WSDM Integration
Configuring a CA WSDM Observer

Overview You can enable an Artix CA WSDM Observer by adding a plug-in to your in
orb_plug-ins list in your server or client scopes. All other CA WSDM
configuration variables are optional. This section explains how to set all
available options.

Setting the orb_plugins list The CA WSDM Observer plug-in name is ca_wsdm_observer. To enable a CA
WSDM observer, add this plug-in to your orb_plugins list in your server or
client scope. For example:

Both client and server use the same endpoint, so specifying both gives more
coarse-grained data. Typically, you would use either client or server only.

Specifying a minimum queue size The minimum queue size specifies how many service request records must
be available in a queue before a report is sent to a WSDM service. For
example:

The default is 5. You should set this variable if your load is expected to be
large. If this variable is too low, the observer may send reports too
frequently, and if it is too high, the memory footprint may increase
significantly.

Artix configuration file

my_client_scope {
 orb_plugins = [..., "ca_wsdm_observer"];
 ...
};

plugins:ca_wsdm_observer:min_queue_size = "6";
 172

Configuring a CA WSDM Observer
Specifying a report wait time The report wait time specifies how often reports should be sent in seconds.
For example:

This variable is an alternative to min_queue_size, which instead specifies
the frequency of reports on a time basis. This variable should be used with
max_queue_size.

Specifying a maximum queue size The maximum queue size specifies the maximum number of service request
records that the observer queue can hold. For example:

The default is 500. New records are dropped when the queue size reaches
this value. If report_wait_time is not set, this variable is ignored. In this
case, reports are sent as soon as the queue size is equal to max_queue_size.

Automatically registering services You can also specify whether the observer automatically registers observed
services with a WSDM service. The default is:

If you have a large number of observed services, the runtime performance
might be decreased because of equally large register service requests sent to
a WSDM service.

You can set this variable to false and manually import service details from
WSDL definitions into a WSDM console. However, this only works for
SOAP-HTTP non-transient services. This is because WSDM can not import
non-SOAP services described in WSDL, while Artix does not publish WSDL
for transient services.

plugins:ca_wsdm_observer:report_wait_time = 10;

plugins:ca_wsdm_observer:max_queue_size = "600";

plugins:ca_wsdm_observer:auto_register = "true";
173

CHAPTER 13 | Artix CA-WSDM Integration
Specifying a handler type A handler type specifies a value that identifies an Artix observer to a WSDM
service. It should be above 200. The default is:

In addition, if you change the default, you must also update the following
file with the new handler type:

Entries in this file take a format of observertype.X=ArtixObserver, where X
is the handler type value. The default entry is:

observertype.217=ArtixObserver

Specifying a configuration
updates

To specify how often, in seconds, the observer should poll a WSDM service
for configuration updates, use the following variable:

The default is 180 seconds (3 minutes). Configuration updates tell the
observer whether transaction monitors have been enabled. If so, the
observer copies input/output raw messages, and reports them to a WSDM
service if duration or request/response size thresholds have been exceeded.

Further information For a detailed example, see the CA WSDM demo in the following directory:

InstallDir\artix\3.0\demos\integration\ca_wsdm

For more information on CA WSDM, see the Computer Associates website
(http://www.ca.com).

plugins:ca_wsdm_observer:handler_type = "217";

WSDM-Install-Dir/server/default/conf/WsdmSOMMA_Basic.properties

plugins:ca_wsdm_observer:config_poll_time
 174

http://www.ca.com/

CHAPTER 14

Locating Services
with UDDI
Artix provides support for Universal Description, Discovery and
Integration (UDDI). This chapter explains the basics, and
shows how to configure UDDI proxy support in Artix
applications. It also shows how to configure jUDDI repository
settings.

In this chapter This chapter includes the following sections:

Introduction to UDDI page 176

Configuring UDDI Proxy page 179

Configuring a jUDDI Repository page 180
175

CHAPTER 14 | Locating Services with UDDI
Introduction to UDDI

Overview A Universal Description, Discovery and Integration (UDDI) registry is a form
of database that enables you to store and retrieve Web services endpoints. It
is particularly useful as a means of making Web services available on the
Internet.

Instead of making your WSDL contract available to clients in the form of a
file, you can publish the WSDL contract to a UDDI registry. Clients can then
query the UDDI registry and retrieve the WSDL contract at runtime.

Publishing WSDL to UDDI You can publish your WSDL contract either to a local UDDI registry or to a
public UDDI registry, such as http://uddi.ibm.com or
http://uddi.microsoft.com.

To publish your WSDL contract, navigate to one of the public UDDI Web
sites and follow the instructions there.

A list of public UDDI registries is available from WSINDEX
(http://www.wsindex.org/UDDI/Registries/index.html)

Artix UDDI URL format Artix uses UDDI query strings that take the form of a URL. The syntax for a

UDDI URL is as follows:

uddi:UDDIRegistryEndpointURL?QueryString

The UDDI URL is built from the following components:

• UDDIRegistryEndpointURL—the endpoint address of a UDDI registry.
This could either be a local UDDI registry (for example,
http://localhost:9000/services/uddi/inquiry) or a public UDDI
registry on the Internet (for example,
http://uddi.ibm.com/ubr/inquiryapi for IBM’s UDDI registry).
 176

http://www.wsindex.org/UDDI/Registries/index.html
http://www.wsindex.org/UDDI/Registries/index.html
http://uddi.microsoft.com
http://uddi.ibm.com

Introduction to UDDI
• QueryString—a combination of attributes used to query the UDDI
database for the Web service endpoint data. Currently, Artix only
supports the tmodelname attribute. An example of a query string is:

Within a query component, the characters ;, /, ?, :, @, &, =, +, ,, and $
are reserved.

Examples of valid UDDI URLs

Initializing a client proxy with
UDDI

To initialize a client proxy with UDDI, simply pass a valid UDDI URL string
to the proxy constructor.

For example, if you have a local UDDI registry,
http://localhost:9000/services/uddi/inquiry, where you have
registered the WSDL contract from the HelloWorld demonstration, you can
initialize the GreeterClient proxy as follows:

C++

tmodelname=helloworld

uddi:http://localhost:9000/services/uddi/inquiry?tmodelname=helloworld
uddi:http://uddi.ibm.com/ubr/inquiryapi?tmodelname=helloworld

// C++
...
IT_Bus::Bus_var bus = IT_Bus::init(argc, argv);

// Instantiate an instance of the proxy
GreeterClient hw("uddi:http://localhost:9000/services/uddi/inquiry?tmodelname=helloworld");

String string_out;

// Invoke sayHi operation
hw.sayHi(string_out);
177

CHAPTER 14 | Locating Services with UDDI
Java

//Java
String wsdlPath = "uddi:http://localhost:9000/services/uddi/inquiry?tmodelname=helloworld";
...........
Bus bus = Bus.init((String[])orbArgs.toArray(new String[orbArgs.size()]));
QName name = new QName("http://www.iona.com/hello_world_soap_http","SOAPService");
QName portName = new QName("","SoapPort");
URL wsdlLocation = null;
try {
 wsdlLocation = new URL(wsdlPath);
} catch (java.net.MalformedURLException ex) {
 wsdlLocation = new File(wsdlPath).toURL();
}

ServiceFactory factory = ServiceFactory.newInstance();
Service service = factory.createService(wsdlLocation,name);
Soap impl = (Soap)service.getPort(portName,Soap.class);
 178

Configuring UDDI Proxy
Configuring UDDI Proxy

Overview Artix UDDI proxy service can be used by applications to query endpoint
information from a UDDI repository. This section explains how to configure
UDDI proxy support for both C++ and Java client applications.

C++ configuration To configure an Artix C++ application for UDDI proxy support, add
uddi_proxy to the application’s orb_plugins list. For example:

Java configuration To configure an Artix Java application for UDDI proxy support, perform the
following steps:

1. Add java to the application’s orb_plugins list.

2. Add java_uddi_proxy to the application’s java_plugins list. For
example:

Artix configuration file

my_application_scope {
 orb_plugins = [..., "uddi_proxy"];
 ...
};

Artix Configuration File

my_application_scope {
 orb_plugins = [..., "java", ...];

 java_plugins=["java_uddi_proxy"];
 ...
};
179

CHAPTER 14 | Locating Services with UDDI
Configuring a jUDDI Repository

Overview The Artix demos use an open source UDDI repository implementation
named jUDDI. These demos use the HSQLDB database to store UDDI
information. For convenience, this is configured to run in file (embedded)
mode by default.

Setting jUDDI properties You can configure jUDDI properties, such as your database settings, in your
juddi.properties file. This file is located in the following directory:

For example, the HSQLDB database settings in the default
juddi.properties file are as follows:

If you want change your database to MySQL, uncomment all the mysql
settings, and use the following instead:

Further information For more details, see: http://ws.apache.org/juddi/.

InstallDir\artix\3.0\demos\integration\juddi\artix_server\etc

hsqldb
juddi.useConnectionPool=true
juddi.jdbcDriver=org.hsqldb.jdbcDriver
juddi.jdbcURL=jdbc:hsqldb:etc/juddi_db
juddi.jdbcUser=sa
juddi.jdbcPassword=
juddi.jdbcMaxActive=10
juddi.jdbcMaxIdle=10

mysql
juddi.useConnectionPool=true
juddi.jdbcDriver=com.mysql.jdbc.Driver
juddi.jdbcURL=jdbc:mysql://10.129.9.101:3306/juddi
juddi.jdbcUser=root
juddi.jdbcPassword=
juddi.jdbcMaxActive=10
juddi.jdbcMaxIdle=10
 180

http://ws.apache.org/juddi/

Glossary
A Artix Designer

A suite of GUI tools for creating, managing, and deploying Artix integration
solutions.

B Binding
A binding associates a specific transport/protocol and data format with the
operations defined in a <portType>.

Bus
See Service Bus.

Bridge
A usage mode in which Artix is used to integrate applications using different
payload formats.

C Collection
A group of related WSDL contracts that can be deployed as one or more
physical entities such as Java, C++, or CORBA based applications. It can
also be deployed as a switch process.

Connection
An established communication link between any two Artix endpoints.

Contract
An Artix contract is a WSDL file that defines the interface and all
connection-related information for that interface. A contract contains two
components: logical and physical. The logical contract defines things that are
independent of the underlying transport and wire format, and is specified in
the <portType>, <operation>, <message>, <type>, and <schema> WSDL tags.

The physical contract defines the payload format, middleware transport, and
service groupings, and the mappings between these things and portType
‘operations.’ The physical contract is specified in the <port>, <binding> and
<service> WSDL tags.
181

GLOSSARY
Contract Editor
A GUI tool used for editing Artix contracts. It provides several wizards for
adding services, transports, and bindings to an Artix contract.

D Deployment Mode
One of two ways in which an Artix application can be deployed: embedded
and standalone. An embedded-mode Artix application is linked with
Artix-generated stubs and skeletons to connect client and server to the service
bus. A standalone application runs as a separate process in the form of a
daemon.

E Embedded Mode
Operational mode in which an application creates an Artix endpoint, either
by invoking Artix APIs directly, or by compiling and linking Artix-generated
stubs and skeletons to connect client and server to the service bus.

Endpoint
The runtime deployment of one or more contracts, where one or more
transports and its marshalling is defined, and at least one contract results in
a generated stub or skeleton (thus an endpoint can be compiled into an
application). Contrast with Service.

H Host
The network node on which a particular service resides.

M Marshalling Format
A marshalling format controls the layout of a message to be delivered over a
transport. A marshalling format is bound to a transport in the WSDL definition
of a Port and its binding. A binding can also be specified in a logical contract
portType, which allows for a logical contract to have multiple bindings and
thus multiple wire message formats for the same contract.

P Payload Format
The on-the-wire structure of a message over a given transport. A payload
format is associated with a port (transport) in the WSDL using the binding
definition.
 182

Protocol
A protocol is a transport whose format is defined by an open standard.

R Routing
The redirection of a message from one WSDL binding to another. Routing
rules are specified in a contract and apply to both endpoints and standalone
services. Artix supports port-based routing and operation-based routing
defined in WSDL contracts. Content-based routing is supported at the
application level.

Router
A usage mode in which Artix redirects messages based on rules defined in an
Artix contract.

S Servant
An Artix servant is an object (Java or C++) that implements the service and
port operations specified in a WSDL file

Server
An Artix server is a process in which one or more Artix servants may be created
registered to process incoming operation requests through an Artix bus object.

Service
An Artix service includes a collection of ports, each of which implements a
set of operations. Each port can be associated with a particular transport
through a binding. A service has no compile-time dependencies. It can be
dynamically configured by deploying one or more contracts on it.

Service Bus
Handles the interaction between clients and services. Enables services to
activate. Enables clients to make invocations on services in a distributed
environment.

The middleware used by the client or service is independent of the bus. The
bus is a pluggable middleware-neutral service invocation framework. The
middleware used is defined by WSDL.
183

GLOSSARY
Standalone Mode
An Artix instance running independently of either of the applications it is
integrating. This provides a minimally invasive integration solution and is fully
described by an Artix contract.

Switch
A usage mode in which Artix connects applications using two different
transport mechanisms.

System
A collection of services and transports.

T Transport
An on-the-wire format for messages.

Transport Plug-in
A plug-in module that provides wire-level interoperation with a specific type
of middleware. When configured with a given transport plug-in, Artix will
interoperate with the specified middleware at a remote location or in another
process. The transport is specified in the <port> element of a contract.

U UDDI
Universal Description, Discovery, and Integration.
 184

Index

A
Adaptive Runtime architecture 4
advanced functionality 8
Apache Log4J, configuration 161
ART 4
artix:endpoint 103
artix:endpoint:endpoint_list 103
artix:endpoint:endpoint_name:wsdl_location 103
artix:endpoint:endpoint_name:wsdl_port 104
Artix bootstrapping service 132
Artix bus 11
Artix CA WSDM observer 170
Artix chain builder 92
Artix container 23
Artix contracts 7
Artix high availability 112
Artix locator 15
Artix reference 143
Artix session manager 17
Artix standalone service 85
Artix transformer 100
avg 165

B
Berkeley DB 111
binding:artix:server_request_interceptor_list 118
bootstrapping service 132
bus:initial_contract:url:locator 58, 60
bus:initial_contract:url:service-name 138
bus:initial_contract:url:sessionmanager 77
bus:initial_contract_dir 139
bus:initial_references:url:service-name 146
bus:qname_alias:service-name 138, 146
-BUSinitial_reference 145
bus_response_monitor 161
-BUSservice_contract 137
-BUSservice_contract_dir 139

C
C++ configuration 161
CA-WSDM 169
ca_wsdm_observer 172
CLASSPATH 47
client-id 163
cluster 113
collection 181
Collector 160
colocated service 144
configuration updates 174
-container 37
container 23

administration client 27
persistent deployment 42
server 25
service 26
Windows service 46

ContainerService.url 34
count 165

D
-d 31
-daemon 33
-deploy 33, 36, 38
-deployfolder 43, 48
deployment descriptor 26, 28
-displayname 48
dynamic port 56, 76
dynamic read/write deployment 43

E
election protocol 113
Embedded mode 8, 10
EMS, definition 158
endpointNotExistFault 64
Enterprise Management Systems 158
event_log:filters 120

F
fault tolerance 67
-file 31, 36
fixed port 57, 76, 78

G
giop 89
185

INDEX
H
ha_conf 127
handler type 174
hard coded WSDL 132
-help 31, 34
high availability 112

clients 125
locator 121

-host 37
HSQLDB database 180

I
IBM Tivoli integration 158
iiop 89
iiop_profile 89
inline references 147
int 166
IONA Tivoli Provider 158
it 36
ITArtixContainer 46
it_container 25, 33, 58, 78
it_container_admin 27, 36
IT_PRODUCT_DIR 47

J
Java configuration 161
java_plugins 179
java_uddi_proxy 179
jUDDI 180
juddi.properties 180

L
life cycle message formats 167
-listservices 36, 40, 41
load balancing 54, 66
locator 15
locator, load balancing 121
locator.wsdl 57
locator_endpoint 52, 60
LocatorServiceClient 63
LocatorServicePort 64
locator WSDL port 122
Log4J, configuration 161
log file interpreter 158
logging 120
logging message formats 165
logical portion 7
log_properties 161
 186
lookup_endpoint() 64

M
mark_as_write_operations() 129
master-slave replication 112
max 166
maximum queue size 173
message transports 6
min 166
minimum queue size 172
MySQL 180

N
namespace 165
naming conventions 44

O
operation 165
oph 166
-ORBconfig_dir 49
-ORBdomain_name 49
-ORBlicense_file 49
-ORBname 49
orb_plugins 94, 103, 107, 161

P
PATH 47
payload formats 6
performance logging 158
persistent database 115
persistent deployment 42
PersistentMap 115
physical portion 7
-pluginDir 31
-pluginImpl 31
-pluginName 31
plugins:artix:db:env_name 115
plugins:artix:db:home 116
plugins:artix:db:iiop:port 119
plugins:artix:db:priority 118
plugins:artix:db:replica_name 119
plugins:artix:db:replicas 117
plugins:ca_wsdm_observer:auto_register 173
plugins:ca_wsdm_observer:config_poll_time 174
plugins:ca_wsdm_observer:handler_type 174
plugins:ca_wsdm_observer:max_queue_size 173
plugins:ca_wsdm_observer:min_queue_size 172

INDEX
plugins:ca_wsdm_observer:report_wait_time 173
plugins:chain:endpoint:operation:service_chain 96
plugins:chain:endpoint:operation_list 95
plugins:chain:endpoint_name:operation_name:servic

e_chain 107
plugins:chain:init_on_first_call 97
plugins:chain:servant_list 95
plugins:container:deployfolder 43
plugins:container:deployfolder:readonly 44
plugins:it_response_time_collector:client-id 163
plugins:it_response_time_collector:filename 161
plugins:it_response_time_collector:log_properties 1

61
plugins:it_response_time_collector:period 161
plugins:it_response_time_collector:server-id 163
plugins:it_response_time_collector:syslog_appID 16

2
plugins:it_response_time_collector:system_logging_e

nabled 162
plugins:locator:peer_timeout 67
plugins:locator:persist_data 121
plugins:locator:selection_method 121
plugins:locator:wsdl_port 122
plugins:locator_endpoint:exclude_endpoints 61, 62
plugins:locator_endpoint:include_endpoints 61
plugins:session_endpoint_manager:default_group 7

4, 80
plugins:session_endpoint_manager:peer_timout 67,

84
plugins:session_manager:peer_timeout 84
plugins:sm_simple_policy:max_concurrent_sessions

82
plugins:sm_simple_policy:max_session_timeout 82
plugins:sm_simple_policy:min_session_timeout 82
plugins:xslt:endpoint_name:operation_map 104
plugins:xslt:endpoint_name:trace_filter 108
plugins:xslt:servant_list 104
-pluginType 31
-port 33, 37, 48
port 165
precedence, bootstrapping references 144
precedence, bootstrapping WSDL 141
programmatic configuration 144
-provider 31
-publish 33
-publishreference 36, 38
-publishurl 37, 38, 40
-publishwsdl 37, 38
Q
QueryString 177
-quiet 32

R
read-only deployment 43
references, location 134
-removeservice 36
replica group 125
replica priorities 118
replicas, minimum number 113
replicated services 112
report wait time 173
request_forwarder 114
resolve_initial_reference() 64, 144
Response monitor 160
running 167

S
serialized XML reference 146
server ID 165, 167
server ID, configuring 163
-service 31, 36
service 165
service bus 11
service_endpoint 64
service groups 171
-service install 48
service_locator 52, 56
service_qname 64
Services dialog 49
-service uninstall 50
session_endpoint_manager 70
session manager 17
session-manager.wsdl 76
session-manager-endpoint.wsdl 80
session_manager_service 70, 75
session-manager-service.wsdl 80
-shutdown 37, 41
shutdown 79
shutting_down 167
sm_simple_policy 70, 82
soap:address 57, 76
standalone mode 8, 10
standalone switching service 13, 85
starting_up 167
-startservice 36
stateless servers 130
187

INDEX
status 167
-stopservice 36, 41
stub WSDL shared library 140
-svcName 48
switching service 13, 85

T
Tivoli integration 158
Tivoli Task Library 158
tmodelname 177
transformer 100
transports 6

U
UDDI 175
uddi_proxy 179
UDDIRegistryEndpointURL 176

V
-verbose 32
-version 32, 34

W
Web Service Definition Language 7
Windows service 46
ws_chain 94
wsdd 30
WSDL 7
WSDL, location 134
WSDL port, locator 122
wsdltocpp 28
wsdltojava 29
-wsdlurl 31

X
XML reference 146
XSLT service 99
 188

	Deploying and Managing Artix Solutions
	List of Tables
	List of Figures
	Preface
	What is Covered in this Book
	Who Should Read this Book
	How to Use this Book
	Finding Your Way Around the Library
	Searching the Artix Library
	Online Help
	Additional Resources
	Document Conventions

	Part I
	Introduction to Artix
	What is Artix?
	Artix Concepts

	Deploying Artix Solutions: An Overview
	Artix Deployment Modes
	Embedded Application
	Standalone Switching Service
	Artix Locator
	Artix Session Manager

	Part II
	Artix Container
	Introduction to the Artix Container
	Generating a Plug-in and Deployment Descriptor
	Running the Artix Container Server
	Running the Artix Container Administration Client
	Deploying Services on Restart
	Running the Container as a Windows Service

	Artix Locator
	Overview of the Artix Locator
	Deploying the Locator
	Registering a Server with the Locator
	Obtaining References from the Locator
	Load Balancing
	Fault Tolerance

	Artix Session Manager
	Introduction to Artix Session Management
	Deploying the Session Manager
	Registering a Server with the Session Manager
	Configuring the Simple Policy Plug-in
	Fault Tolerance

	Artix Switches
	The Artix Switch
	Configuring a Switch

	Deploying a Service Chain
	The Artix Chain Builder
	Configuring the Artix Chain Builder

	Deploying the Artix Transformer
	The Artix Transformer
	Standalone Deployment
	Deployment as Part of a Chain

	Artix High Availability
	Introduction
	Setting up a Persistent Database
	Configuring Persistent Services for High Availability
	Configuring Locator High Availability
	Configuring Client-Side High Availability

	Artix Bootstrapping Service
	Introduction
	Bootstrapping Servers and Clients
	Bootstrapping WSDL Contracts
	Bootstrapping Artix References
	Bootstrapping Well-Known Artix Services

	Part III
	Embedding Artix in a BEA Tuxedo Container
	Introduction
	Embedding an Artix Process in a Tuxedo Container

	Enterprise Performance Logging
	Enterprise Management Integration
	Configuring Performance Logging
	Performance Logging Message Formats

	Artix CA-WSDM Integration
	Artix CA WSDM Observer
	Configuring a CA WSDM Observer

	Locating Services with UDDI
	Introduction to UDDI
	Configuring UDDI Proxy
	Configuring a jUDDI Repository

	Glossary
	Index

