Artix:

Developing Artix Applications

in Java
Version 3.0, June 2005

Making Software Work Together™

IONA Technologies PLC and/or its subsidiaries may have patents, patent applications,
trademarks, copyrights, or other intellectual property rights covering subject matter in
this publication. Except as expressly provided in any written license agreement from
IONA Technologies PLC, the furnishing of this publication does not give you any license
to these patents, trademarks, copyrights, or other intellectual property. Any rights not
expressly granted herein are reserved.

IONA, IONA Technologies, the IONA logo, Orbix, Orbix Mainframe, Orbix Connect, Artix,
Artix Mainframe, Artix Mainframe Developer, Mobile Orchestrator, Orbix/E, Orbacus,
Enterprise Integrator, Adaptive Runtime Technology, and Making Software Work Together
are trademarks or registered trademarks of IONA Technologies PLC and/or its subsidiar-
ies.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries. CORBA is a trademark or registered trademark of the
Object Management Group, Inc. in the United States and other countries. All other
trademarks that appear herein are the property of their respective owners.

IONA Technologies PLC makes no warranty of any kind to this material including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose. IONA Technologies PLC shall not be liable for
errors contained herein, or for incidental or consequential damages in connection with the furnishing, perform-
ance or use of this material.

While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of
any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. IONA shall not be liable for errors contained herein, or for incidental or consequential dam-

ages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No
third-party intellectual property right liability is assumed with respect to the use of the information contained
herein. IONA Technologies PLC assumes no responsibility for errors or omissions contained in this publication.
This publication and features described herein are subject to change without notice.

Copyright © 1999-2005 I0ONA Technologies PLC. All rights reserved.

All products or services mentioned in this publication are covered by the trademarks, service marks, or product
names as designated by the companies that market those products.

Updated: 04-Nov-2005

Contents

List of Figures
List of Tables

Preface
What is Covered in this Book
Who Should Read this Book
How to Use this Book
Finding Your Way Around the Library
Searching the Artix Library
Online Help
Additional Resources
Document Conventions

Part | Fundamentals of Artix Programming

Chapter 1 Understanding the Artix Java Development Model
Separating Transport Details from Application Logic
Representing Services in Artix Contracts
Mapping from an Artix Contract to Java

Chapter 2 Developing Artix Enabled Clients and Servers
Generating Stub and Skeleton Code
Java Package Names
Developing a Server
Developing a Client
Building an Artix Application

Chapter 3 Things to Consider when Developing Artix Applications
Bootstrapping Service
Finding Initial References

Xi
xiii

XV
XV
XV
XV
Xvi
xviii
xviii
xviii

Xix

CONTENTS

Finding Contracts 33
Servant Registration 36
Static Servant Registration 37
Transient Servant Registration 38

Proxy Creation 40
Getting a Bus 42
Threading 43
Setting Client Connection Attributes Using the Stub Interface 47
Creating a Service Proxy Using UDDI 51
Class Loading 54
Chapter 4 Working with Artix Data Types 59
XMLSchema Elements 60
Using XMLSchema Simple Types 61
Atomic Type Mapping 62
Special Atomics Type Mappings 66
Defining Simple Types by Restriction 68

Using Enumerations 71

Using Lists 77

Using XMLSchema Unions 80

Using XMLSchema Complex Types 84
Sequence and All Complex Types 85
Choice Complex Types 90
Attributes 94
Nesting Complex Types 102
Deriving a Complex Type from a Simple Type 112
Deriving a Complex Type from a Complex Type 115
Occurrence Constraints 119

Using Model Groups 131

Using XMLSchema any Elements 136
SOAP Arrays 144
Holder Classes 147
Using SOAP with Attachments 151
Unsupported XMLSchema Constructs 156
Chapter 5 Using Exceptions 159
Describing User-defined Exceptions in an Artix Contract 160

How Artix Generates Java User-defined Exceptions 162

Working with User-defined Exceptions in Artix Applications

Working with CORBA Exceptions in Artix Applications

Mapping CORBA Exceptions to Artix Java Exceptions

Throwing CORBA Exceptions from Artix
Processing CORBA Exceptions

Chapter 6 Using Substitution Groups
Substitution Groups in XML Schema
Using Substitution Groups with Artix
Widget Vendor Example
Widget Server
Widget Client

Chapter 7 Working with Artix Type Factories
Introduction to Type Factories
Registering Type Factories
Getting Type Information From Type Factories

Chapter 8 Working with XMLSchema anyTypes
Introduction to Working with XMLSchema anyTypes
Setting anyType Values
Retrieving Data from anyTypes

Chapter 9 Using Artix References
Introduction to Working with References
Reference Basic Concepts
Creating References
Instantiating Service Proxies Using a Reference
Using References in a Factory Pattern
Bank Service Contract
Bank Service Implementation
Bank Service Client
Using References to Implement Callbacks
The Accounting Contract
The Accounting Client
The Accounting Server

CONTENTS

165
167
168
172
174

177
178
182
192
194
198

201
202
204
207

211
212
214
216

221
222
223
227
229
231
232
237
240
243
244
250
255

CONTENTS

Chapter 10 Using Native XML
Populating Artix Objects with XML
Converting Artix Objects Into XML
Converting References into XML

Chapter 11 Using Message Contexts
Understanding Message Contexts in Artix
Getting the Context Registry

Getting the Message Context for a Thread

Working with JAX-RPC Contexts

Working with Artix Message Contexts
Sending Header Information Using Contexts

Defining Context Data Types

Registering Context Types

SOAP Header Example

Chapter 12 Working with Transport Attributes
How Artix Stores Transport Attributes
Getting Transport Attributes from an Artix Context
Setting Configuration Attributes
Using the Standard Contexts
Using the Configuration Context
Setting HTTP Attributes
Client-side Configuration
Server-side Configuration
Setting the Server's Endpoint URL
Setting CORBA Attributes
Setting WebSphere MQ Attributes
Working with Connection Attributes
Working with MQ Message Descriptor Attributes
Setting JMS Attributes
Using JMS Message Headers and Properties
Using Client-side JMS Attributes
Using Server-side JMS Attributes
Setting JMS Broker Security Information
i18n Attributes

Vi

259
260
263
266

267
268
271
273
276
282
288
289
291
295

305
306
308
310
311
312
314
315
324
334
336
338
339
343
352
353
357
359
361
363

CONTENTS

Part Il Advanced Artix Programming

Chapter 13 The Artix Locator 369
Overview of the Locator 370
Registering Endpoints with the Locator 373
Reading a Reference from the Locator 374

Chapter 14 Using Sessions in Artix 379
Introduction to Session Management in Artix 380
Registering a Server with the Session Manager 383
Working with Sessions 385

Chapter 15 Using Persistent Datastores 391
Introduction to Artix Persistent Datastores 392
Creating a Persistent Datastore 397

Creating Persistent Maps 400
Creating Persistent Lists 404
Working with Data in a Persistent Datastore 406
Using Persistent Maps 407
Using Persistent Lists 411
Configuring Artix to Use Persistent Datastores 415

Chapter 16 Using Transactions in Artix 417
Introduction to Transactions in Artix 418
Selecting a Transaction Coordinator 426

Configuring OTS Lite 427
Configuring OTS Encina 430
Configuring WS-Atomic Transactions 434
Transaction API 438
Beginning and Ending Transactions 440
Managing Transactional Resources 445
Threading 451
Notification Handlers 456

Enlisting WebSphereMQ Transactions 458

vii

CONTENTS

Chapter 17 Using the Call Interface for Dynamic Invocations

DIl and the Call Interface
Building Invocations using the Call Interface
Printer Service Demo

Chapter 18 Developing Plug-Ins
Generating Plug-in Starting Point Code
Extending the BusPlugin Class
Implementing the BusPluglnFactory Interface
Configuring Artix to Load a Plug-in

Chapter 19 Writing Handlers

Handlers: An Introduction

Creating the Handler Plug-in

Creating a Handler Factory

Developing Request-Level Handlers

Developing Message-Level Handlers

Handling Errors and Exceptions
Handling Errors when Processing Requests
Handling Errors when Processing Responses
Throwing User Faults
Processing Fault Messages

Chapter 20 Manipulating Messages in a Handler
Working with Operation Parameters
Working with SOAP Messages
Manipulating Messages as a Binary Stream

Chapter 21 Developing Custom Artix Transports
Developing a Transport: The Big Picture
Making a Schema for the Transport Attributes
Developing and Registering the Transport Factory
Creating a Transport Factory
Transport Policies
Registering and Unregistering a Transport Factory
Developing the Client Transport
Developing the Server Transport

viii

461
462
464
466

469
470
471
474
476

479
480
485
488
492
495
498
499
501
502
504

507
508
513
516

519
520
522
526
527
530
533
535
543

Activating a Server Transport

Processing Requests

Shutting Down a Server Transport
Using your Custom Transport

Chapter 22 Configuring Artix Plug-Ins
Understanding Artix Configuration
Adding Custom Configuration for a Plug-in

Chapter 23 Using Artix Classloader Environments
Class Loading: An Overview
Artix’s Classloader Hierarchy
Using Artix’s Classloader Environment

Glossary

Index

CONTENTS

545
550
558
560

563
564
569

573
574
577
581

587

597

CONTENTS

List of Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26

SinglelnstanceServant

SerializedServant

PerlnvocationServant

Classloader Firewall

Overview of the Message Context Mechanism

Contexts Passed Along Request/Reply Chain

Artix Locator Overview

Steps to Read a Reference from the Locator

The Session Manager Plug-ins

: The Artix Persistence Mechanism

: Artix Service Cluster

: Artix Persistent Datastores

: One-Phase Commit Protocol

: Two-Phase Commit Protocol

: Propagating Transactions Across Multiple Services

: Coordinating Transactions Across Multiple Middlewares
: Overview of a Client-Server System that Uses OTS Lite
: Overview of a Client-Server System that Uses OTS Encina
: Overview of a Client-Server System that Uses WS-AT

: Overview of the Artix Transaction API

: Transaction Participants in a 2-Phase Commit Protocol
: Default Client Threading Model

: Detaching and Re-Attaching a Transaction to a Thread
: Attaching a Transaction to Multiple Threads

: Transferring a Transaction from One Thread to Another
: The Life of a Message

44

45

46

54
269
282
370
374
381
392
393
394
420
421
422
424
427
430
435
438
445
451
453
454
455
480

Xi

LIST OF FIGURES

Figure 27: Handler Levels

Figure 28: Classloader Chain

Figure 29: Default Classloader Hierarchy
Figure 30: Artix Bus Classloader Chain
Figure 31: Artix Plug-In Classloader Chain

Xii

481
575
575
577
579

List of Tables

Table 1:
Table 2:
Table 3:
Table 4:
Table 5:
Table 6:
Table 7:
Table 8:
Table 9:

discover-source values for the Classloader Firewall
Simple Schema Type to Primitive Java Type Mapping
simple Schema Type to Java Wrapper Class Mapping

List Type Facets
Group Children
Attributes for an any
MIME Type Mappings
FaultException Fields

Map from CORBA System Exceptions to Fault Categories
Table 10:
Table 11:
Table 12:
Table 13:
Table 14:
Table 15:
Table 16:
Table 17:
Table 18:
Table 19:
Table 20:
Table 21:
Table 22:
Table 23:
Table 24:
Table 25:
Table 26:

Completion Status Mapping
anyType Setter Methods for Primitive Types

Artix Context Properties

Configuration Context QNames
Configuration Context Classes

Outgoing HTTP Client Attributes

Incoming HTTP Client Attributes

Outgoing HTTP Server Attributes
Incoming HTTP Server Attributes

MQ Connection Attributes Context Properties
Transactional Values

MQ Message Attributes Context Properties
CorrelationStyle Values

Delivery Values

Format Values

ReportOption Values

Methods for Extracting Primitives from AnyType

55

62

67

77
131
136
151
168
169
171
214
217
276
308
309
316
322
325
330
339
341
343
346
347
348
350

xiii

LIST OF TABLES

Table 27:
Table 28:
Table 29:
Table 30:

Table 31

Xiv

JMS Header Attributes

Unsupported Service Methods
Unsupported ServiceFactory Methods
Configuration Map Properties

: SOAPMessageContext Methods
Table 32:
Table 33:
Table 34
Table 35:
Table 36:
Table 37:
Table 38:
Table 39:

SOAPMessage Elements

Method for Transport Factory
Transport Threading Models
Threading Resource Policy Values
ClientTransport Methods
ServerTransport Methods

activate() Responsibilities by Threading Policies
discover-source values for the Classloader Firewall

353
462
463
491
513
514
527
530
532
535
543
546
583

Preface

What is Covered in this Book

Developing Artix Applications in Java discusses the main aspects of

developing transport-independent services and service consumers using

Java stub and Java skeleton code generated by Artix. This book covers:

® how to access the Artix bus

® how to use generated data types

® how to create user defined exceptions

® how to access the header information for the transports supported by
Artix.

Who Should Read this Book

Developing Artix Applications in Java is intended for Artix Java
programmers. In addition to a knowledge of Java, this guide assumes that
the reader is familiar with the basics of WSDL and XML schemas. Some
knowledge of Artix concepts would be helpful, but is not required.

How to Use this Book

If you are new to using Artix to develop Java applications, Chapter 1
provides an overview of the benefits of using Artix and how Artix generates
Java code from an Artix contract.

If you are interested in the basics of writing an Artix-enabled service or
service consumer, Chapter 2 describes the basic steps to implement a
service, connect to the Artix bus, and create JAX-RPC compliant proxies
using Artix-generated code.

XV

PREFACE

XVi

Chapter 3 extends the discussion of building Artix applications. It includes
details about the threading model used by Java Artix applications, using
Artix specific methods for creating proxies, and class loading issues that
may be encountered when using Artix.

If you need help understanding how to work with the classes generated to
represent complex data types, Chapter 4 gives detailed description of how
all of the XMLSchema data types in an Artix contract are mapped into Java
code. It also contains details and examples on using the generated Java
code.

If you want to create user-defined exceptions, Chapter 5 explains how to
describe a user-defined exception in an Artix contract and how exceptions
are mapped into Java code by Artix.

The remainder of the book discusses advanced programming features of the
Artix Java APIs such as handlers, persistence, and transactions. The
chapters assume familiarity with the basic material covered in chapters 1
through 5. In addition, they assume a basic understanding of distributed
system development.

Finding Your Way Around the Library

The Artix library contains several books that provide assistance for any of the
tasks you are trying to perform. The Artix library is listed here, with a short
description of each book.

If you are new to Artix

You may be interested in reading:

® Release Notes contains release-specific information about Artix.

® |nstallation Guide describes the prerequisites for installing Artix and the
procedures for installing Artix on supported systems.

® Getting Started with Artix describes basic Artix and WSDL concepts.

To design and develop Artix solutions

Read one or more of the following:

® Designing Artix Solutions provides detailed information about
describing services in Artix contracts and using Artix services to solve
problems.

® Developing Artix Applications in C++ discusses the technical aspects
of programming applications using the C++ API.

http://www.iona.com/support/docs/artix/3.0/release_notes/index.htm
http://www.iona.com/support/docs/artix/3.0/install_guide/index.htm
http://www.iona.com/support/docs/artix/3.0/getting_started/index.htm
http://www.iona.com/support/docs/artix/3.0/design/index.htm
http://www.iona.com/support/docs/artix/3.0/prog_guide/index.htm

PREFACE

® Developing Artix Plug-ins with C++ discusses the technical aspects of
implementing plug-ins to the Artix bus using the C++ API.

® Developing Artix Applications in Java discusses the technical aspects
of programming applications using the Java API.

® Artix for CORBA provides detailed information on using Artix in a
CORBA environment.

® Artix for J2EE provides detailed information on using Artix to integrate
with J2EE applications.

® Artix Technical Use Cases provides a number of step-by-step examples
of building common Artix solutions.

To configure and manage your Artix solution

Read one or more of the following:

® Deploying and Managing Artix Solutions describes how to deploy
Artix-enabled systems, and provides detailed examples for a number of
typical use cases.

® Artix Configuration Guide explains how to configure your Artix
environment. It also provides reference information on Artix
configuration variables.

® |ONA Tivoli Integration Guide explains how to integrate Artix with IBM
Tivoli.

® |ONA BMC Patrol Integration Guide explains how to integrate Artix
with BMC Patrol.

® Artix Security Guide provides detailed information about using the
security features of Artix.

Reference material

In addition to the technical guides, the Artix library includes the following
reference manuals:

® Artix Command Line Reference

® Artix C++ API Reference

® Artix Java API Reference

Have you got the latest version?
The latest updates to the Artix documentation can be found at http://
www.iona.com/support/docs.

xvii

http://www.iona.com/support/docs/artix/3.0/plugin_guide/index.htm
http://www.iona.com/support/docs/artix/3.0/java_pguide/index.htm
http://www.iona.com/support/docs/artix/3.0/corba_ws/index.htm
http://www.iona.com/support/docs/artix/3.0/j2ee/index.htm
http://www.iona.com/support/docs/artix/3.0/cookbook/index.htm
http://www.iona.com/support/docs/artix/3.0/deploy/index.htm
http://www.iona.com/support/docs/artix/3.0/config_ref/index.htm
http://www.iona.com/support/docs/artix/3.0/tivoli/index.htm
http://www.iona.com/support/docs/artix/3.0/bmc/index.htm
http://www.iona.com/support/docs/artix/3.0/security_guide/index.htm
http://www.iona.com/support/docs/artix/3.0/command_ref/index.htm
http://www.iona.com/support/docs/artix/3.0/cpp_doc/index.html
http://www.iona.com/support/docs/artix/3.0/javadoc/index.html
http://www.iona.com/support/docs
http://www.iona.com/support/docs

PREFACE

Xviii

Compare the version dates on the web page for your product version with
the date printed on the copyright page of the PDF edition of the book you
are reading.

Searching the Artix Library

You can search the online documentation by using the Search box at the top
right of the documentation home page:

http://www.iona.com/support/docs

To search a particular library version, browse to the required index page,
and use the Search box at the top right. For example:

http://www.iona.com/support/docs/artix/3.0/index.xml

You can also search within a particular book. To search within an HTML
version of a book, use the Search box at the top left of the page. To search
within a PDF version of a book, in Adobe Acrobat, select Edit|Find, and
enter your search text.

Online Help

Artix Designer includes comprehensive online help, providing:

® Detailed step-by-step instructions on how to perform important tasks.
® Adescription of each screen.

® A comprehensive index, and glossary.

® Afull search feature.

® Context-sensitive help.

There are two ways that you can access the online help:

® Click the Help button on the Artix Designer panel, or

® Select Contents from the Help menu

Additional Resources

The IONA Knowledge Base contains helpful articles written by IONA experts
about Artix and other products.

The IONA Update Center contains the latest releases and patches for IONA
products.

If you need help with this or any other IONA product, go to IONA Online
Support.

Comments, corrections, and suggestions on IONA documentation can be
sent to docs-support@iona.com .

http://www.iona.com/support/docs
http://www.iona.com/support/docs/artix/3.0/index.xml
http://www.iona.com/support/knowledge_base/index.xml
http://www.iona.com/support/updates/index.xml
http://www.iona.com/support/index.xml
http://www.iona.com/support/index.xml

PREFACE

Document Conventions

Typographical conventions

This book uses the following typographical conventions:

Fi xed width

Fixed width italic

Italic

Bold

Fixed width (courier font) in normal text represents
portions of code and literal names of items such as
classes, functions, variables, and data structures. For
example, text might refer to the | T_Bus: : AnyType
class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#i ncl ude <stdi o. h>

Fixed width italic words or characters in code and
commands represent variable values you must

supply, such as arguments to commands or path
names for your particular system. For example:

% cd / user s/ Your User Nanme

Italic words in normal text represent emphasis and
introduce new terms.

Bold words in normal text represent graphical user
interface components such as menu commands and
dialog boxes. For example: the User Preferences
dialog.

Xix

PREFACE

Keying Conventions
This book uses the following keying conventions:

No prompt When a command’s format is the same for multiple
platforms, the command prompt is not shown.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

> The notation > represents the MS-DOS or Windows

command prompt.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

[1 Brackets enclose optional items in format and syntax
descriptions.

{} Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| In format and syntax descriptions, a vertical bar
separates items in a list of choices enclosed in {}
(braces).

In graphical user interface descriptions, a vertical bar
separates menu commands (for example, select
File| Open).

XX

Part |

Fundamentals of Artix

In this part This part contains the following chapters:
Understanding the Artix Java Development Model page 3
Developing Artix Enabled Clients and Servers page 11

Things to Consider when Developing Artix Applications page 29

Working with Artix Data Types page 59

Using Exceptions page 159
Using Substitution Groups page 177
Working with Artix Type Factories page 201
Working with XMLSchema anyTypes page 211
Using Native XML page 259
Using Artix References page 221

Using Message Contexts page 267

In this chapter

CHAPTER 1

Understanding the
Artix Java
Development
Model

The Artix Java development tools generate JAX-RPC compliant
Java code from WSDL-based Artix contracts. Using the
generated code, you can develop transport-independent
applications that take advantage of the Artix bus.

This chapter discusses the following topics:

Separating Transport Details from Application Logic page 4
Representing Services in Artix Contracts page 6
Mapping from an Artix Contract to Java page 8

CHAPTER 1 | Understanding the Artix Java Development Model

Separating Transport Details from Application

Logic

Overview

Dividing the logical and physical

One of the main benefits of using Artix to develop applications is that it
removes the network protocol details, message transport details, and
payload format details from the business of developing application logic.
Artix enables developers to write robust applications using standard Java
APIs and leaves the nitty-gritty of the messaging mechanics up to the
system administrators or system architects.

Unlike CORBA or J2EE, however, Artix does not provide this abstraction
from the transport details by limiting the types of messaging system the
application can work on. It makes the application capable of using any
number of transports and payload formats. In addition, Artix allows
applications in the same system to interoperate across multiple messaging
protocols.

Artix achieves this separation of the logical part of an application from the
physical details of how data is passed by describing applications using Web
Services Description Language (WSDL) as the basis for Artix contracts. Artix
contracts are XML documents that describe applications in two sections:

Logical:

The logical section of an Artix contract defines the abstract data types used
by the application, the logical operations exposed by the application, and
the messages passed by those operations.

Physical:

The physical section of an Artix contract defines how the messages used by
the application are mapped for transport across the network and how the
application’s port is configured. For example, the physical section of the
contract would be where it is made explicit that an application will use
SOAP over HTTP to expose its operations.

The Artix bus

Separating Transport Details from Application Logic

The Artix bus is a library that provides the layer of abstraction to liberate the
application logic from the transport once the code is generated. The bus
reads the transport details from the physical section of the Artix contract,
loads the appropriate payload and transport plug-ins, and handles the
mapping of the data onto and off the wire.

The bus also provides access to the message headers so you can add
payload-specific information to the data if you wish. In addition, it provides
access to the transport details to allow dynamic configuration of transports.

CHAPTER 1 | Understanding the Artix Java Development Model

Representing Services in Artix Contracts

Overview

Data types

Messages

Operations

Services, which are the operations exposed by an application, are described
in the logical section of an Artix contract using a port Type element. When
defining a service in an Artix contract, you break it down into three parts:
the complex data types used in the messages, the messages used by the
operations, and the collection of operations that make up the service.

Complex data types, such as arrays, structures, and enumerations, are
described in an Artix contract using XMLSchema. The descriptions are
contained within the WSDL t ypes element. The data type descriptions
represent the logical structure of the data. For example, an array of integers
could be described as shown in Example 1.

Example 1: Array Description

<conpl exType nane="ArrayCf | nt">
<sequence>
<el enent maxCccur s="unbounded" m nCccurs="0" nane="iten
type="xsd:int"/>
</ sequence>
</ conpl exType>

The described types are used to define the message parts used by the
service.

In an Artix contract messages represent the data passed to and received
from a remote system in the execution of an operation. Messages are
described using the message element and consist of one or more part
elements. Each message part represents an argument in an operation’s
parameter list or a piece of data returned as part of an exception.

In an Artix contract logical services are described using the port Type
element and consist of one or more oper at i on elements. Each operati on
element describes an operation that is to be exposed over the network.

Representing Services in Artix Contracts

Operations are defined by the messages which are passed to and from the
remote system when the operation is invoked. In an Artix contract, each
operation is allowed to have one input message, one output message, and
any number of fault messages. It does not need to have any of these
elements. An input message describes the parameter list passed into the
operation. An output message describes the return value, and the output
parameters of the operation. A fault message describes an exception that
the operation can throw. For example, a Java method with the signature

I ong nyQp(char c1, char c2), would be described as shown in Example 2.

Example 2: Operation Description

<nessage name="i nMessage" >
<part name="cl" type="xsd:char" />
<part name="c2" type="xsd:char" />
</ message>
<message nane="out Message">
<part name="returnVal" type="xsd:int" />
</ message>
<port Type nane="nyService">
<oper ati on name="ny" >
<i nput nessage="i nMessage" nane="in" />
<out put message="out Message" name="out" />
</ oper at i on>
</ por t Type>

CHAPTER 1 | Understanding the Artix Java Development Model

Mapping from an Artix Contract to Java

Overview

portTypes

Artix maps the WSDL-based Artix contract description of a service into Java
server skeletons and client stubs following the JAX-RPC specification. This
allows application developers to implement the service’s logic using
standard Java and be assured that the service will be interoperable with a
wide range of other services.

For each port Type element in an Artix contract, a Java interface that
extends j ava. r m . Renot e is generated. The name of the generated interface
is taken from the nane attribute of the port Type element. The interface’s
name will be identical to the port Type elements’s name unless the

port Type element’s name ends in Port Type. In this case, the Port Type will
be stripped off the interface’s name.

The generated interface will contain each of the operations of the port Type
to which the port Type element is bound. For example, the contract shown
in Example 3 will generate an interface, sport sCent er, containing one
operation, updat e.

Example 3: SportsCenter Port

<message nane="scor eRequest ">
<part name="t eanNane" type="xsd:string" />
</ message>
<nessage nane="scor eRepl y">
<part name="score" type="xsd:int" />
</ message>
<port Type nane="sport sCent er Port Type" >
<oper at i on nane="updat e" >
<i nput nessage="scor eRequest" nanme="request" />
<ouput nmessage="scoreRepl y" name="reply" />
</ operati on>
</ port Type>
<bi ndi ng nanme="scor eBi ndi ng" type="t ns: sport sCent er Port Type" >

<servi ce name="sportsService">
<port name="sportsCenterPort" bindi ng="tns: scoreBi ndi ng" >

Operations

Message parts

Mapping from an Artix Contract to Java

The generated Java interface is shown in Example 4.
Example 4: SportsCenter Interface

/1 Java
public interface sportsCenter extends java.rm . Renote
{
int update(String team\are)
throws java. rni . Renot eExcepti on;

Every operati on element in a contract generates a Java method within the
interface defined for the oper ati on element’s port Type. The generated
method’s name is taken from the oper ati on element’s nane attribute.

oper ati on elements with the same name attribute will generate overloaded
Java methods in the interface.

All generated Java methods throw a j ava. r m . Renot eExcept i on exception.
In addition, all faul t elements listed as part of the operation create an
exception to the generated Java method.

The message parts of the operation’s i nput and out put elements are
mapped as parameters in the generated method’s signature. The order of
the mapped parameters can be specified using the oper ati on element’s
par anet er O der attribute. If this attribute is used, it must list all of the parts
of the input message. The message parts listed in the par anet er O der
attribute will be placed in the generated method’s signature in the order
specified. Unlisted message parts will be placed in the method signature
according to the order the parts are specified in the message elements of the
contract. The first unlisted output message part is mapped to the generated
method’s return type. The parameter names are taken from the part
element’s name attribute. If the par amet er O der attribute is not specified,
input message parts are listed before output message parts. Message parts
that are listed in both the input and output messages are considered i nout
parameters and are listed only according to their position in the input
message.

All in-out and output message parts, except the part mapped to the return
value of the generated method, are passed using Java Hol der classes. For
the XML primitive types, the Java Holder class used is the standard Java
Hol der class, defined in j avax. xn . r pc. hol der s package, for the

CHAPTER 1 | Understanding the Artix Java Development Model

appropriate Java type. For complex types defined in the contract, the code
generator will generate the appropriate Hol der classes. For more

information on data type mapping, see “Working with Artix Data Types” on
page 59.

For example, the contract fragment shown in Example 5 would result in an
operation, final , with a return type of String and a parameter list that
contains two input parameters and two output parameters.

Example 5: SportsFinal Port

<nmessage nane="scor eRequest">
<part name="teanml" type="xsd:string" />
<part nane="teanR" type="xsd:string" />
</ message>
<nessage name="scor eRepl y">
<part name="wi nTean type="xsd:string" />
<part nanme="teamnlscore" type="xsd:int" />
<part name="teanPscore" type="xsd:int" />
</ message>
<port Type nane="sport sFi nal Port Type">
<oper ati on nanme="fi nal Score" >
<i nput nessage="scor eRequest" nanme="request" />
<ouput nessage="scoreRepl y" name="reply" />
</ operati on>
</ port Type>
<bi ndi ng name="scor eBi ndi ng" type="tns: sport sFi nal Port Type">

<servi ce name="sportsService">
<port name="sportsFinal Port" bi ndi ng="t ns: scor eBi ndi ng">

The generated Java interface is shown in Example 6.

Example 6: SportsFinal Interface

/1 Java
public interface sportsFinal extends java.rm .Renote
{

String final Score(String teaml, String tean®,
I nt Hol der teanilscore, |ntHolder teanRscore)
throws java.rm . Renot eExcepti on;

10

In this chapter

CHAPTER 2

Developing Artix
Enabled Clients
and Servers

Artix generates stub and skeleton code that provides a
developer with a simple model to develop
transport-independent applications.

This chapter discusses the following topics:

Generating Stub and Skeleton Code page 12
Java Package Names page 16
Developing a Server page 18
Developing a Client page 23
Building an Artix Application page 27

11

CHAPTER 2 | Developing Artix Enabled Clients and Servers

Generating Stub and Skeleton Code

Overview

Generated files

Generating code from the
command line

12

The Artix development tools include a utility to generate server skeleton and
client stub code from an Artix contract. In addition, Artix maps WSDL types
to Java classes using the mapping described in the JAX-RPC specification.

The Artix code generator produces a number of files from the Artix contract.

They are named according to the port name specified when the code was

generated. The files include:

® port TypeNane. j ava defines the Java interface that both the client and
server implement.

® port TypeNanel npl . j ava defines the class used to implement the
server.

® port TypeNaneServer. java is a simple main class for the server.

® port TypeNaneTypeFact ory. j ava defines the type factories used by
Artix to support the complex types used by the service.

® port TypeNaneDeno. j ava is a simple main class for a client.

In addition to these files, the code generator also creates a class for each
named schema type defined in the Artix contract. These files are named
according to the type name they are given in the contract and contain the
helper functions needed to use the data types. The naming convention for
the helper type functions conforms to the JAX-RPC specification. For more
information on using these generated data types see “Working with Artix
Data Types” on page 59.

You generate code at the command line using the command:

wsdl toj ava [-e service:port][-b binding][-i portType]

-d output_dir][-p [namespace=] package]
-impl][-server][-client][-plugin][-servlet]
-types][-call][-interface][-sanple][-all][-ant]
- dat ahandl er s] [- mer ge] [- depl oyabl €]

- nexcl ude nanespace[=package]]

- ni ncl ude nanespace[=package]][-L file][-ser]

-ql[-h][-VM artix-contract

— e ——

Generating Stub and Skeleton Code

You must specify the location of a valid Artix contract for the code generator
to work. The default behavior of wsdl t oj ava is to generate all of the java
code needed to develop a client and server. You can also supply the
following optional parameters to control the portions of the code generated:

-e service: port

-b binding

-i portType

-d output_dir

Specifies the name of the service, and optionally
the port, for which the tool will generate code.
The default is to use the first service listed in the
contract. Specifying multiple services results in
the generation of code for all the named
service/port combinations. If no port is given, all
ports defined in a service will be activated.

Specifies the name of the binding to use when
generating code. The default is to use the first
binding listed in the contract.

Specifies the name of a port Type for which code
will be generated. You can specify this flag for
each portType for which you want code
generated. The default is to use the first portType
in the contract.

Specifies the directory to which the generated
code is written. The default is the current working
directory.

-p [namespace=] package Specifies the name of the Java package to use for

-inpl

-server

-client

-plugin

the generated code. You can optionally map a
WSDL namespace to a particular package name if
your contract has more than one namespace.

Generates the skeleton class for implementing the
server defined by the contract.

Generates a simple main class for the server.

Generates only the Java interface and code
needed to implement the complex types defined
by the contract. This flag is equivalent to
specifying -interface -types.

Generate a bus plug-in with the appropriate
servant registration code for the generated service
implementation. When using this flag, the server
mainline does not include code for registering the
servant with the bus.

13

CHAPTER 2 | Developing Artix Enabled Clients and Servers

14

-servl et

-types

-call

-interface

-sanpl e

-all

-ant

- dat ahandl er s

- ner ge

- depl oyabl e

- nexcl ude
nanespace[=package]

- ni ncl ude
nanespace[=package]

-L file

Generates a bus plug-in with the additional
information needed to deploy it as a servlet.

Generates the code to implement the complex
types defined by the contract.

Generates a sample client the uses the Cal |
interface to invoke on the remote service. For
more information see “Using the Call Interface for
Dynamic Invocations” on page 461.

Generates the Java interface for the service.

Generates a sample client that can be used to test
your Java server.

Generates code for all portTypes in the contract.

Generate an ant build target for the generated
code.

When a service uses SOAP w/ attachments as its
payload format, generate code that uses

j avax..activati on. Dat aHandl er instead of the
standard Java classes specified in the JAX-RPC
specification. For more information see “Using
SOAP with Attachments” on page 151 and
Designing Artix Solutions.

Merge any user changes into the generated code.

Generate a deployment descriptor to deploy the
generated plug-in into an Artix container. For
more information see Deploying and Managing
Artix Solutions.

Instructs the code generator to skip the specified
XMLSchema namespace when generating code.
You can optionally specify a package name to use
for the types that are not generated.

Instructs the code generator to generate code for
the specified XMLSchema namespace. You can
optionally specify a package name to use for the
types in the specified namespace.

Specifies the location of your Artix license file. The
default behavior is to check
I T_PRODUCT_DiRetc\license.txt.

http://www.iona.com/support/docs/artix/3.0/design/index.htm
http://www.iona.com/support/docs/artix/3.0/deploy/index.htm
http://www.iona.com/support/docs/artix/3.0/deploy/index.htm

Warning messages

Generating Stub and Skeleton Code

- ser Specifies that the generated classes for data types
defined in the contract will be serializable (i.e.
they will implement j ava. i o. Seri al i zabl e).

-q Specifies that the tool runs in quiet mode. No
output will be shown on the console. This
includes error messages.

-h Specifies that the tool will display a usage
message.
-V Specifies that the tool runs in verbose mode.

If you generate code from a WSDL file that contains multiple port Type
elements, multiple bindings, multiple services, or multiple ports wsdl t oj ava
will generate a warning message informing you that it is using the first
instance of each to use for generating code. If you use the command line
flags to specify which instances to use, the warning message is not
displayed.

15

CHAPTER 2 | Developing Artix Enabled Clients and Servers

Java Package Names

Artix packages

Generated type packages

Java packages

16

The Artix bus object which provides the transport and payload format
independence in Artix is defined in the com i ona. j bus package. You will
need to import this package and all of its subpackages into all Artix Java
applications.

The generated types are generated into a single package which must be
imported for any methods using them. By default, the package name will be
mapped from the target namespace of the schema describing the types. The
default package name is created following the algorithm specified in the
JAXB specification. The mapping algorithm follows four basic steps:

1. Theleading http:// orurn:// are stripped off the namespace.

2. If the first string in the namespace is a valid internet domain, for
example it ends in . comor . gov, the leading waw. is stripped off the
string, and the two remaining components are flipped.

3. If the final string in the namespace ends with a file extension of the
pattern . xxx or . xx, the extension is stripped.

4. The remaining strings in the namespace are appended to the resulting
string and separated by dots.

5. All letters are made lowercase.

For example, the XML namespace
http:// wwv wi dget Vendor . coni t ypes/ wi dget Types. xsd would be mapped
to the Java package name com wi dget vendor . t ypes. wi dget t ypes.

Artix applications require a number of standard Java packages. These
include:

javax.xml.namespace.QName provides the functionality to work with the
XML QNames used to specify services.

javax.xml.rpc.* provides the APIs used to implement Artix Java clients. This
package is not needed by server code.

Java Package Names

java.io.* provides system input and output through data streams,
serialization and the file system.

java.net.* provides the classes need to for communicating over a network.
These classes are key to Artix applications that act as Web services.

17

CHAPTER 2 | Developing Artix Enabled Clients and Servers

Developing a Server

Overview

Generating the server
implementation class

Generated code

Completing the server
implementation

18

The Artix code generator generates server skeleton code and the
implementation shell that serves as the starting point for developing an
Artix-enabled server. The skeleton code hides the transport details, allowing
you to focus on business logic.

The Artix code generation utility, wsdl t oj ava, will generate an
implementation class for your server when passed the -i npl command flag.

Note: If your contract specifies any derived types or complex types you
will also need to generate the code for supporting those types by specifying
the -t ypes flag.

The implementation class code consists of two files:
PortName.java contains the interface the server implements.
PortNamelmpl.java contains the class definition for the server's

implementation class. It also contains empty shells for the methods that
implement the operations defined in the contract.

You must provide the logic for the operations specified in the contract that
defines the server. To do this you edit the empty methods provided in

Por t Narel npl . j ava. A generated implementation class for a contract
defining a service with two operations, sayH and greet Me, would resemble
Example 7. Only the code portions highlighted in bol d (in the bodies of the
greet Me() and sayH () methods) must be inserted by the programmer.

Example 7: Implementation of the HelloWorld PortType in the Server
/1l Java

inport java.net.?*;
inport java.rm.?*;

Writing the server main()

Developing a Server

Example 7: Implementation of the HelloWorld PortType in the Server

public class Hel |l oWrldl npl {

/**
* greet M
*
* @aram stringParan® (String)
* @eturn: String
*/
public String greetMe(String stringParand) {
Systemout. println("Hel |l oWrld. greetMe() called with
nessage: "+stringParanD);
return "Hello Artix User: "+stringParano;
}

/**

* sayH

* @eturn: String

*/

public String sayH () {
Systemout. println("Hell oWrld.sayH () called");
return "Qeetings fromthe Artix Hel loWrld Server";

The server mai n() of an Artix Java server must do three things before it can
service requests:

1.
2.
3.
4.

Initialize the Artix bus.

Create a servant for the service implementation.
Register the server implementation with the Artix bus.
Start the Artix bus.

You can use wsdl t oj ava to generate a server mai n() with the code to
perform these steps by using the - server flag. The mai n() shown in
Example 10 on page 21 was generated using wsdl t oj ava.

Initializing the bus

The Artix bus is initialized using comi ona. j bus. Bus. i ni t (). The method
has the following signature:

static Bus init(String args[]);

19

CHAPTER 2 | Developing Artix Enabled Clients and Servers

20

i nit() takes the args parameter passed into the main as a required
parameter. Optionally, you can also pass in a second string that specifies
the name of the configuration scope from which the bus instance will read
its runtime configuration.

This will create a bus instance to host your services, load the Artix
configuration information for your application, and load the required
plug-ins.

Before the bus can begin processing requests made on your server, you
must register the servant object that implements your server’s business logic
with the bus. Registering the implementation object’s servant with the bus
allows the bus to create instances of the implementation object to service
requests.

Creating a servant for your service implementation

Artix wraps service implementation objects in a Servant object that allows
the bus to manage the object. To create a comi ona. j bus. Servant for your
service implementation you create an instance of a Si ngl el nst anceSer vant
as shown in Example 8. The creator for a Si ngl el nst anceSer vant uses the
path of the WSDL file describing the service interface, an instance of your
implementation object, and an instance of an initialized Artix bus.

Example 8 shows the code to create a servant for the Hel | ovor | d service.

Example 8: Creating a Servant

/'l Java
Servant servant =
new Si ngl el nst anceSer vant (new Hel | oWr | dl npl (),
"./Hell oWrld. wsdl*, bus);

Completed server main()

Developing a Server

Registering a servant for the server implementation

After creating the servant, you register it with the bus so that it can begin
listening for requests. Servants are registered using the bus’

regi st er Servant () method. This registers the servant with a fixed address
that is read from the contract associated with the application. The signature
for regi st er Servant () is shown in Example 9.

Example 9: registerServant()

voi d regi sterServant (Servant servant,
Q\ane servi ceNane,
String port Nare)

t hrows BusException

In addition to the servant, r egi st er Servant () takes the service’s QName as
specified in the contract defining the service. You can also supply the name
of the WSDL port you on which you want the servant activated. If no port
name is given, the servant is activated on all ports.

Starting the bus

After the bus is initialized and the server implementation is registered with
it, the bus is ready to listen for requests and pass them to the server for
processing. To start the bus, you use the bus’ run() method. Once the bus
is started, it retains control of the process until it is shut down. The server's
mai n() will be blocked until run() returns.

Example 10 shows how the mai n() for a Java Artix server might look.
Example 10: Server main()

I/ Java
inport comiona.jbus. *;
inport javax.xm .namespace. Q\arre;

public class Server
{
public static void main(String args[])
throws Exception
{
// Initialize the Artix bus
Bus bus = Bus.init(args);

21

CHAPTER 2 | Developing Artix Enabled Clients and Servers

Example 10: Server main()

/! Register the Servant
Q\ane name = new Q\Nane("http://xm bus. coni Hel | oWor | d",
"Hel | oWor | dServi ce");
Servant servant =
new Si ngl el nst anceServant ("./Hel | oWr | d. wsdl ",
new Hel | oVWr | dl npl ());
bus. r egi st er Servant (servant, nane, "HelloWrldPort");

[/l Start the Bus
bus. run();

22

Developing a Client

Developing a Client

Overview

Initializing the bus

Instantiating a service proxy

Artix Java clients are implemented using dynamic proxies as described in
the JAX-RPC 1.1 specification. The interface used to create the proxy class
is defined in the generated file PortName.java. The only Artix-specific code
needed by an Artix Java client initializes and shuts down the Artix bus.

Client applications initialize the bus in the same manner as server
applications, by calling the bus’ i ni t () method. Client applications,
however, do not need to make a call to the bus’ run() method.

Artix Java clients use dynamic proxies, as described in the JAX-RPC
specification, to make requests on servers. Dynamic proxies are created
using the interface generated from your contract and the

j avax. xm . rpc. Servi ce interface. You need the Q\ane of the service for
which you are creating the proxy, the Q\ane of the endpoint with which the
proxy will contact the service, and the URL of the contract defining the
service. Once you have these three pieces of information, creating a
dynamic proxy requires three steps:

1. Obtain an instance of j avax. xn . r pc. Servi ceFact ory to create the
service.

Note: If your client is going to run inside of a J2EE container you
will need to set the JAX-RPC Servi ceFact ory property to use the
IONA Ser vi ceFact ory prior to getting the Servi ceFact ory object.
You do this with the following code:

System set Property("javax. xm . rpc. Servi ceFact ory",
“com i ona. j bus. JBusServi ceFactory");

2. Use the Servi ceFact ory to create a Servi ce instance for the service to
which the proxy will connect.

3. Use the Servi ce to instantiate the dynamic proxy.

23

CHAPTER 2 | Developing Artix Enabled Clients and Servers

Shutting the bus down

24

Obtaining a ServiceFactory instance

To obtain an instance of the Servi ceFact ory you call

Ser vi ceFact ory. newl nst ance() . This returns the Servi ceFact ory. Only
one is created per application and the same Servi ceFact ory is returned for
each successive call.

Creating a Service instance

A servi ce instance is created from the Servi ceFact ory using
createService(). createServi ce() takes two arguments:

® the URL of the contract defining the service.

® the service's Q\ane.

Creating the dynamic proxy
The dynamic proxy is created from the Servi ce using get Port () . get Port ()
takes two arguments:
* the Q\ane of the endpoint with which the proxy contacts the service.
® the name of the generated Java interface in Port Nane. j ava with
.cl ass appended. For example, if the generated interface’s name is
Hel | over | d, this argument would be Hel | oWrl d. cl ass.

get Port () returns an instance of j ava. rm . Renot e that must be cast to the
generated interface.

Unlike a server that must shut down the bus from a separate thread, clients
do not typically make a call to the bus’ run() method and can simply call

shut down() on the bus before the main thread exits. It is advisable to pass
true to shut down() to ensure that the bus is fully shutdown before exiting.

Developing a Client

Full client code An Artix Java client developed to access Hel | oWor | dSer vi ce will look
similar to Example 11.

Example 11: Client Code

/1 Java

inport java.util.*;
inport java.io.*;

inport java.net.?*;
inport java.rm.?*;

inport javax.xnl.nanespace. Q\ane;
inport javax.xm.rpc.*;

inport com i ona.j bus. Bus;

public class Hell owrl dd i ent

{

public static void main (String args[]) throws Exception

{

Bus bus = Bus.init(args);

\ane name = new Q\Nane("http://iona. cond Hel | oWor | d",
"Hel | oWor | dSer vi ce");

\arre port Name = new Q\ane("", " Hel | oWorl dPort");

String wsdl Path = "file:/./Hell oWrld. wsdl";
URL wadl Location = new Fil e(wsdl Pat h) .t oURL();

Servi ceFactory factory = Servi ceFactory. newl nstance();
Service service = factory. creat eServi ce(wsdl Locati on, nane);

Hel | oWorl d proxy = (Hel |l oWrl d)servi ce. get Port (port Nane,
Hel | oWor | d. cl ass) ;

String string_out;

string_out = proxy.sayH ();
Systemout. println(string_out);

bus. shut down(true);

}

25

CHAPTER 2 | Developing Artix Enabled Clients and Servers

26

The code does the following:

1.
2.
3.

The comi ona. j bus. Bus. i ni t () function initializes the bus.
Creates the service’s Q\ane.

Creates the Quane of the endpoint with which the proxy will contact the
service.

Creates the URL of the contract defining the service.

The newl nst ance() function returns the Servi ceFact ory.

The creat eSer vi ce() function instantiates the Servi ce from which the
dynamic proxy is created.

The get Port () function returns a dynamic proxy to the Hel I over 1 d
service. get Port () returns an instance of j ava. r mi . Renot e that must
be cast to the interface defining the service.

Makes a call on the proxy to request service.

Shuts down the bus.

Building an Artix Application

Building an Artix Application

Required jar files

Other jar files

Artix Java applications require that the following Artix jar files are in your
classpath:

b InstalIDir\lib\artix\java runtine\3.0\it_bus-api.jar
d InstalIDir\lib\artix\ws_common\3.0\it_wsdl.jar
[]

InstalIDir\lib\arti x\ws_common\ 3.0\it_ws_reflect.jar

d InstalIDir\lib\artix\ws_common\3.0\it_ws_reflect_types.jar
b Instal IDir\lib\common\ifc\1l. 1\ifc.jar
[]

Instal I Dir\lib\jaxrpc\jaxrpc\l. 1\jaxrpc-api.jar

If your application uses SOAP with attachments, you will also need to
include Instal 1D r/1ib/sun/activation/1.0.1/activation.jar on your
classpath.

If your application uses xsd: any, you will need to include
Instal I Dir/lib/ws_conmon/ 2. 1/saaj -api.jar on your classpath.

27

CHAPTER 2 | Developing Artix Enabled Clients and Servers

28

In this chapter

CHAPTER 3

Things to Consider
when Developing
Artix Applications

Several areas must be considered when programming complex
Artix applications.

This chapter discusses the following topics:

Bootstrapping Service page 30
Servant Registration page 36
Proxy Creation page 40
Getting a Bus page 42
Threading page 43

Setting Client Connection Attributes Using the Stub Interface page 47

Creating a Service Proxy Using UDDI page 51

Class Loading page 54

29

CHAPTER 3 | Things to Consider when Developing Artix Applications

Bootstrapping Service

Overview

In this section

30

When it comes to deploying applications in a real system, it is typically
inconvenient to hardcode the location of a contract in the application. It is
more practical to specify the location of basic resources, such as a contract,
at runtime—for example, by specifying the contract URL in configuration or
on the command line.

The Artix bootstrapping service simplifies the process of obtaining the
following kinds of basic resource: contracts and Artix references. The
process is divided into two independent steps:

1. Provide the basic resource—you can provide a contract or an Artix
reference in several different ways: by configuration, by specifying the
location on the command line, and so on.

2. Retrieve the basic resource—Java functions are provided to retrieve
WSDL ser vi ces and Artix references, based on the qualified name
(QName) of the resource.

This section discusses the following topics:

Finding Initial References page 31

Finding Contracts page 33

Bootstrapping Service

Finding Initial References

Overview

Example of finding an initial
reference

An Artix reference encapsulates the data required for creating a service proxy
to connect to an Artix endpoint (essentially, this data is identical to the data
contained in a WSDL ser vi ce element). Once an applicaiton has a
reference, it creates a servrice proxy by passing the reference to a proxy
constructor.

The Artix bootstrapping service provides an API function,

Bus. resol vel ni ti al Ref erence(), for finding initial references based on the
QName of a WSDL servi ce.

Given that the bus has already loaded and parsed either an Artix reference
(or a contract) containing a service called SOAPSer vi ce in the namespace,
http: // wwv i ona. cond hel | o_wor | d_soap_ht t p, you can initialize a service
proxy, proxy, as shown in Example 12.

Example 12: Finding an Initial Reference Using the Bootstrapping Service
Q\arre nanme = new
Q\ane(" http://ww i ona. cond hel | o_worl d_soap_http",
" SOAPSer vi ce") ;

Ref erence ref;

// Find the initial reference using the bootstrap service
ref = bus. resol vel nitial Ref erence(nane);

I/ Create a proxy and use it

QGeeterdient proxy = (Geeterdient)bus. eatedient (
ref,
QGeeterdient.class);

proxy. sayH () ;

31

CHAPTER 3 | Things to Consider when Developing Artix Applications

Options for bootstrapping
references

32

The bootstrapping service finds initial references from the following sources,
in order of priority:

1.

Collocated service—if the client code that calls

resol vel ni tial Ref erence() is collocated with (that is, in the same
process as) the required service, the resol vel ni ti al Ref erence()
function returns a reference to the collocated service. This assumes
that the client and server code are using the same bus instance.

References specified on the command line—you can provide an initial
reference by specifying on the command line the location of a file
containing an Artix reference. For example:

java bsServer -BUSinitial _reference ../../etc/hello_ref.xm

References specified in the configuration file—you can provide an
initial reference from the configuration file, either by specifying the
location of an Artix reference file or by specifying the literal value of an
Artix reference.

For more details, see Deploying and Managing Artix Solutions.
Service in a contract—the servi ce element in a contract contains
essentially the same data as an Artix reference. Hence, if a reference is
not specified using one of the other methods, Artix searches any loaded
contracts to find the specified service.

The sources of contracts are the same as on the server side. The
mechanism for bootstrapping references is, thus, effectively an
extension of the mechanism for bootstrapping contracts—see “Options
for bootstrapping WSDL” on page 34.

http://www.iona.com/support/docs/artix/3.0/deploy/index.htm

Bootstrapping Service

Finding Contracts

Overview

Example of finding a WSDL
contract

An Artix contract is required to:
® register a servant with the bus.
® create a service proxy using the JAX-RPC Ser vi ce interface.

Registering a servant with the bus associates an implementation
(represented by a servant object) with a particular WSDL ser vi ce. The
Servi ce interface uses the information in a WSDL ser vi ce to identify the
operations exposed by the service and to open the proper network
connection. The WSDL servi ce must, therefore, be available from one of
the contracts provided by the bootstrapping service.

The Artix bootstrapping service provides an APl function,

Bus. get Ser vi ceWsDL(), for retrieving the contract for a particular WSDL
servi ce. get Servi ceWsDL() takes the Q\ane of the service and returns a
string representing the location of the corresponding contract.

Given that the bus has already loaded and parsed a contract containing the
service, SOAPSer vi ce, in the namespace,

http: // www i ona. cond hel | o_wor | d_soap_ht t p, you can find the WSDL
servi ce element as shown in Example 13.

Example 13: Finding a WSDL Contract Using the Bootstrapping Service
Q\ane nane = new
Q\arre(" ht t p: // waw. i ona. cord hel | o_wor | d_soap_htt p",
" SOAPSer vi ce") ;

// Find the WBDL contract using the bootstrap service
String wsdl = bus. get Servi ceWsDL(nare) ;

33

CHAPTER 3 | Things to Consider when Developing Artix Applications

Options for bootstrapping WSDL

34

The bootstrapping service finds contracts from the following sources, in
order of priority:

1.

Contract specified on the command line—you can provide a contract
by specifying the location of the contract file on the command line. For
example:

java bsServer -BUSinitial _contract ../../etc/hello.wsdl

Contract specified in the configuration file—you can provide a
contract from the configuration file. For example:

Artix Configuration File

bus: gnarre_al i as: hel | o_servi ce =
"{http://ww:.iona.conlhello_world soap_http} SOAPSer vi ce";

bus:initial contract:url:hello_service =
"..l..letc/hello.wsdl";

This associates a nickname, hel | o_ser vi ce, with the QName for the
SQOAPSer vi ce service. The bus:initial _contract:url:hello_service
variable then specifies the location of the WSDL contract containing
this service.

For more details, see Deploying and Managing Artix Solutions.

Contract directory specified on the command line—you can provide a
contract by specifying a contract directory on the command line. When
the bootstrapping service looks for a particular WSDL ser vi ce, it

searches all of the WSDL files in the specified directory. For example:

java bsServer -BUSservice_contract_dir ../../etc/

For more details, see Deploying and Managing Artix Solutions.
Contract directory specified in the configuration file—you can provide
a contract by specifying a contract directory in the configuration file.
For example:

Artix Configuration File
bus:initial _contract_dir =[".", "../../etc"];

http://www.iona.com/support/docs/artix/3.0/deploy/index.htm
http://www.iona.com/support/docs/artix/3.0/deploy/index.htm

Bootstrapping Service

5. Stub WSDL shared library—the bootstrapping service can retrieve a
contract that has been embedded in a shared library.

Currently, this mechanism is not publicly supported. However, it is
used internally by the following Artix services: Locator Service, Session
Manager Service, Peer Manager, and Container Service.

References For more details about how to register servants, see “Servant Registration”
on page 36.

35

CHAPTER 3 | Things to Consider when Developing Artix Applications

Servant Registration

Overview

In this section

36

In order to make a service accessible to remote client’s, you must register its
associated servant with a bus instance. Once the servant is registered with
the bus instance the service is activated and begins listening for requests.
When a servant is instantiated in Java it is associated with the logical
portion of an Artix contract. It is a Java instance of the interfaced defined in
a WSDL port Type element. At this point, a Java servant has no knowledge
of the physical details of the service which it implements.

The servant is associated with the physical details of the service when it is
registered with an instance of the Artix bus. At this point the servant is tied
to the physical details defined by the WSDL port element defining the
message format and transport used by the service.

Artix provides two methods for registering a servant:

Static registration ties the servant to a port element in the physical contract
defining the service.

Transient registration ties the servant to a cloned port element.

This section discusses the following topics:

Static Servant Registration page 37

Transient Servant Registration page 38

Servant Registration

Static Servant Registration

Overview

Registering

Example

When a servant is registered as a static servant it is linked to a port element
that is read from the contract associated with the application. This means
that a static servant is restricted to using a service from the fixed collection
of services appearing in the contract.

Static servants are useful when a bus instance is only going to host a single
instance of a servant. They are also useful when using references and you do
not want to use the WSDL publishing plug-in because clients that have a
copy of the service’s contract have the servant’s port information.

You register a static servant using the bus’ regi st er Servant () method. The
signature for regi st er Servant () is shown in Example 14.

Example 14: registerServerFactory()

voi d regi st erServant (Servant servant,
Q\ane servi ceNane,
String portNare)

t hrows BusExcepti on

In addition to the servant instance, regi st er Servant () takes the service’s
QName as specified in the contract defining the service. You can also supply
the name of the WSDL port you on which you want the servant activated. If
no port name is given, the servant is activated on all ports. To register a
servant on more than one specific port, you can call r egi st er Servant ()
multiple times and specifying a different port name on each call.

Example 15 shows the code for registering a static servant.
Example 15: Registering a Static Servant

Q\ane name = new Q\Nane("http://whoDunlt.coni Sl ueth",
" Sl uet hServi ce");
Servant servant = new S ngl el nstanceServant ("./sl uet h. wsdl ",
new Sl uethl npl ());
bus. r egi st er Servant (servant, nane, “S uethHTTPPort");

37

CHAPTER 3 | Things to Consider when Developing Artix Applications

Transient Servant Registration

Overview

Supported transports

Service templates

38

When a servant is registered as a transient servant, Artix clones a service

definition from the physical contract associated with the application and

links the transient servant with the clone. This has the following effects:

® The transient servant’s physical details are based on an existing
servi ce element that appears in the contract.

® The transient servant’s service QName is replaced by a dynamically
generated, unique service QName.

® The transient servant’s addressing information is replaced such that
each address is unique per-clone and per-port.

Transient servants are useful if the bus is going to be hosting a number of

instances of a servant as when a service is a factory for other services.

While Artix will allow you to register any servant as transient, not all
transports support the notion of transience. Currently, the only transports
supported by Artix that can make use of transient servants are HTTP,
CORBA, and IIOP Tunnel.

When using transient servants in your application, your contract must

provide a service template for the servant. A service template is a WSDL

service from which your transient servants will be cloned. When creating the

service template for transient servants adhere to the following:

® The service template must come before any actual WSDL services
defined in the contract. If you place your service templates after your
actual WSDL service definitions, you may run into problems using the
router.

® The service must use one of the supported transports.

® The service must fully describe the properties of the transport being
used.

® The address specified for an HTTP service must be specified using
host _nane: 0.

Registering

Transient servant QNames

Example

Servant Registration

® The address specified for either a CORBA service or a IIOP service
must be i or: . Specifying any other address in the template will cause
the servants to have invalid IORs.

You register a transient servant using the bus’ r egi st er Tr ansi ent Ser vant ()
method. The signature of r egi st er Tr ansi ent Ser vant () is shown in
Example 16.

Example 16: registerTransientServant()

publ i c abstract Q\ame regi sterTransi ent Servant (Servant servant,
Q\ane servi ceNane)
t hrows BusExcepti on;

In addition to the servant instance, regi st er Transi ent Servant () takes the
service's QName as specified in the contract defining the service. Unlike
regi ster Servant (), regi ster Transi ent Servant () does not allow you to
specify a port name because the bus dynamically assigns a port to the
transient servant.

Because the newly created transient servant is cloned from the service
whose QName was supplied, the new servant has a different QName. The
transient servant's QName is returned when you invoke

regi st er Transi ent Servant () . The returned QName is the QName you use
when creating references for the transient servant or when destroying the
transient servant.

Example 17 shows the code for registering a transient servant.
Example 17: Registering a Transient Servant

Q\ane name = new Q\Nane("http://whoDunlt.coni Sl ueth",
" Sl uet hServi ce");
Servant servant = new S ngl el nstanceServant ("./sl uet h. wsdl ",
new Sl uethl npl ());
Q\ane transi ent Name = bus. r egi st er Tr ansi ent Ser vant (servant,
narre) ;

39

CHAPTER 3 | Things to Consider when Developing Artix Applications

Proxy Creation

Overview

createClient()

Example

40

While the Artix Java API's use dynamic proxies as specified by JAX-RPC,
you may not always be able to use the JAX-RPC specified method for
creating a service proxy. Artix provides a method for creating service proxies
that bypasses the steps outlined in the JAX-RPC specification.

You can create service proxies using the bus’ created i ent () method.
createdient () takes the URL of the service's contract, the QName of the
service, the name of the port the proxy will use to connect to the service,
and the Java A ass representing the service's remote interface and returns a
JAX-RPC style dynamic proxy for the service if it is successful.
createdient ()’s signature is shown in Example 18.

Example 18: Bus.createClient()
Renote Bus.createdient (URL wsdl rl, Q\ame servi ceNane,

String portName, O ass interfaced ass)
t hrows BusException

Example 19 shows the code for creating a service proxy using
createdient().

Example 19: Creating a Service Proxy using createClient()

Q\Bne name = new Q\Nane("http: //www buyst uf f. cont',
" Regi st er Servi ce");

String portName = new String("RegisterPort");

String wsdl Path = “file:/./resister.wsdl";
URL wsdl URL = new Fi | e(wsdl Pat h) .t oURL();

/1 Bus bus obtained earlier
Regi ster proxy = bus.createdient(wsdl URL, nane, portNane,
Regi ster. cl ass) ;

Proxy Creation

The code in Example 19 does the following:

1.

Creates the Q\ane for the service from the contract defining the
application. In this example, the service, Regi st er Ser vi ce, is defined
in the namespace htt p: \\ waw. buyst uf f. com

Creates a String to hold the name of the port element defining the
transport the proxy will use to contact the service. In this example, the
transport details are defined in a port element named Regi st er Port .
Creates a URL specifying where the service’s contract can be located. In
this example, the contract, regi st er. wsdl , is located in the client's
directory.

Calls created i ent () with the correct parameters to create a service
proxy for the Regi st er service.

41

CHAPTER 3 | Things to Consider when Developing Artix Applications

Getting a Bus

Overview

Inside a service implementation
object

From a client proxy

42

There are many instances where you need to get the default bus for an
application. These include working with contexts and generating references.
When you are in the mainline code of your application, you will have access
to the instance of the bus you initialized. However, inside the
implementation object of your service or in methods outside the scope of
your client application’s mainline you will need to perform additional steps
to get the bus.

If you are in a service's implementation object, you can use the code shown
in Example 20.

Example 20: Getting a Bus Reference Inside a Servant

com i ona. j bus. Bus bus = D spat chLocal s. get Qurrent Bus();

If you have a client proxy object, you can use the JAX-RPC St ub interface as
shown in Example 21.

Example 21: Getting a Bus Reference from a Client Proxy

Stub clientStub = (Stub)client;

com i ona. j bus. MessageCont ext context =

client Stub. _getProperty(comiona.]jbus. MessageCont ext . ARTI X_
MESSAGE_CONTEXT) ;

com i ona. j bus. Bus bus = cont ext. get TheBus();

Threading

Threading

Overview

Thread pool configuration

The Artix bus is a multi-threaded C++ application that uses a thread pool
to hand out threads. When using the Artix Java APIs, you can use the Artix
configuration file to control how the C++ core manages its threads. In
addition the Artix Java APIs provide three servant threading models to
handle requests from the bus. These models are:

® single-instance multithreaded

® serialized single-instance

® per-invocation

The bus's thread pool is configured in your applications configuration scope.
This configuration scope is specified in the main Artix configuration file.

There are three configuration variables that are used to configure the bus’
thread pool:

® thread_pool :initial_threads sets the number of initial threads in
each port's thread pool.

t hread_pool : | ow wat er _mar k sets the minimum number of threads in
each service's thread pool.

t hread_pool : hi gh_wat er _nmar k sets the maximum number of threads
allowed in each service's thread pool.

For a detailed discussion of Artix configuration see Deploying and Managing
Artix Solutions.

43

http://www.iona.com/support/docs/artix/3.0/deploy/index.htm
http://www.iona.com/support/docs/artix/3.0/deploy/index.htm

CHAPTER 3 | Things to Consider when Developing Artix Applications

Single-instance multithreaded The standard Artix servant is the Si ngl el nst anceServant . The

servant Si ngl el nst anceSer vant provides a multi-threaded, single instance usage
model to the user. This means that all invocation threads for a given port
access the same implementation object as shown in Figure 1 on page 44.
The Si ngl el nst anceSer vant provides no thread safety for the user code.

attach () /detach()thread

C++ Runtime Java
[Work Queue 1 Thread Pool1 !
: : : Servant :
| o Port1| —| R [R2[R3| [RN| >N ~ :
ED— Service ' :
| o4 Port2|—|R1|R2|R3 RN »W 7

H — Work Queue 2 Thread Pool 2 | !

Figure 1: SinglelnstanceServant

To instantiate a Si ngl el nst anceSer vant you need to provide the path of the
WSDL file describing the service interface, an instance of your
implementation object, and an instance of an initialized Artix bus.

Example 22 shows an example of instantiating a Si ngl el nst anceSer vant .

Example 22: Creating a SinglelnstnaceServant
/1 Java
Servant servant =

new Si ngl el nst anceSer vant (new Hel | ol npl (),
"./hello.wsdl ", bus);

44

Serialized single-instance servant

Threading

Artix provides a thread safe single-instance servant called a
SerializedServant. A Seri al i zedServant ensures that all invocations are
routed to a single implementation object in a serialized manner as shown in
Figure 2 on page 45. Using a Seri al i zedSer vant is equivalent to using a
Si ngl el nst anceServant whose target object is completely synchronized.

attach () /detach () thread

C++ Runtime Java
5 — Work Queue 1 Thread Pool1 | : 1
. | o4 Port1|—|Rl|R2|R3 RN *M servant |
5 L 2 |1 |
| O Service ! ! J_, |
- | ootz | R1[R2[R3| RN >IN |

Per-invocation servant

Work Queue 2

Figure 2: SerializedServant

To instantiate a Seri al i zedSer vant you need to provide the path of the
WSDL file describing the service interface, an instance of your
implementation object, and an instance of an initialized Artix bus.
Example 22 shows an example of instantiating a Seri al i zedSer vant .

Example 23: Creating a SerializedServant

/1 Java
Servant servant = new Serial i zedServant (new Hel | ol npl (),

"./hello.wsdl ", bus);

In addition to the multithreaded single instance servants, Artix provides a
per-invocation servant. This servant is implemented by the
Per | nvocat i onSer vant class. A Per | nvocat i onSer vant guarantees that a

45

CHAPTER 3 | Things to Consider when Developing Artix Applications

46

separate instance of the implementation object will be used for each
invocation as shown in Figure 3 on page 46. This ensures thread safety, but
does not allow the implementation object to have any statefull information.

attach () /detach () thread

Work Queue 2 Thread Pool 2 ! : destroy

C++ Runtime Java
— Work Queue 1 Thread Pool 1 ; : create :
by () Q |
o Port1|—|R1 |R2|R3| [RN —)M destroy !
~a O cheate ;
'O Service : X destroy .
: O (;create :
e ,
o— Port 2| —» | R1 | R2 |R3 RN M destroy |
! ~a O qereate '

Figure 3: PerinvocationServant

To use a Per | nvocat i onSer vant , your implementation object must either
have a no-argument constructor, or implement the d oneabl e interface and
provide a cl one() method. Like the other servants the

Per | nvocat i onSer vant needs the path of the WSDL file describing the
service interface, an instance of your implementation object, and an
instance of an initialized Artix bus when being instantiated. Example 24
shows the code for instantiating a Per | nvocat i onServant .

Example 24: Creating a PerlnvocationServant
I/ Java

Servant servant = new Perl nvocati onServant (new Hel | ol npl (),
“./hello.wsdl ", bus);

Setting Client Connection Attributes Using the Stub Interface

Setting Client Connection Attributes Using the

Stub Interface

Overview

The Stub interface

Getting a Stub object

The JAX-RPC specification lists four standard properties to which a service
proxy’s St ub interface provides access. Artix provides support for setting
three of them:

® Username
® Password
® Endpoint Address

Currently, Artix only supports setting these properties for HTTP connections.

As required by the JAX-RPC specification, all Artix proxies implement the
javax. xn . rpc. Stub interface. This interface provides access to a number
of low-level properties used in connecting the proxy to the service
implementation. To access these low-level properties the Stub interface has
two methods:

® getProperty() returns the value of the specified property.

® _setProperty() allows you to set the value of the specified property.

Because all Artix proxies implement the St ub interface, you can simply cast

an Artix proxy to a St ub object. Example 25 shows code getting a St ub
object from an Artix proxy.

Example 25: Casting a Client Proxy to a Stub

/1 Java
inport javax.xm.rpc.*;

Il client proxy, client, created earlier
Stub clientStub = (Stub) client;

47

CHAPTER 3 | Things to Consider when Developing Artix Applications

Setting the username property

Setting the password property

48

One of the standard properties specified in the JAX-RPC specification is the
javax. xm . rpc. security. aut h. user name property. It is used to set a
username for use in basic authentication systems. Artix uses this property to
set the HTTP transport’s User Nane property.

To set the username property using the client’s St ub interface do the
following:

1. Get a Stub object by casting your service proxy to a St ub as shown in
Example 25 on page 47.

2. Create a String containing the username for the value of the property.

3. Call _setProperty() on the Stub specifying St ub. USERNAME_PRCPERTY
as the property name and the String created in step 2 as the value of
the property.

Example 26 on page 48 shows code for setting the username for a client.
Example 26: Setting the Username Property on a Stub

/] Java
inport javax.xm.rpc*

/1 Service proxy, secdient, obtained earlier

Stub secStub = (Stub)secdient;

String userName = new String("Smart");

secSt ub. _set Property(St ub. USERNAME _PROPERTY, user Nane) ;

One of the standard properties specified in the JAX-RPC specification is the
javax. xm . rpc. security. aut h. password property. It is used to set a
password for use in basic authentication systems. Artix uses this property to
set the HTTP transport’s Passwor d property.

To set the username property using the client’s St ub interface do the
following:

1. Get a Stub object by casting your service proxy to a St ub as shown in
Example 25 on page 47.

2. Create a String containing the password for the value of the property.

Call _set Property() on the Stub specifying St ub. PASSWORD PRCPERTY
as the property name and the String created in step 2 as the value of
the property.

Setting the endpoint address

Setting Client Connection Attributes Using the Stub Interface

Example 27 on page 49 shows code for setting the password for a client.
Example 27: Setting the Password Property on a Stub

/1 Java
inport javax.xm.rpc*

I/ Service proxy, secdient, obtained earlier

Stub secStub = (Stub)secdient;

String password = new String("86");

secSt ub. _set Propert y(St ub. PASSWRD PROPERTY, password);

One of the standard properties specified in the JAX-RPC specification is the
javax. xm . rpc. servi ce. endpoi nt . addr ess property. It is used to set the
address for the target service. The property takes a St ri ng containing a valid
HTTP URL that points to a service implementing the interface supported by
the proxy.

You can only set this property before you invoke any of the service proxy's
methods. Once the proxy makes a request on the remote service an HTTP
service connection is established between the client and the service. Due to
the multi-threaded nature of the Artix bus and the nature of HTTP
connections, this connection cannot be broken and reassigned to a new
endpoint. Attempts to reset the endpoint address property after invoking one
of the proxy’s methods will be ignored.

To set the endpoint address property using the client’s St ub interface do the
following:

1. Get a Stub object by casting your service proxy to a St ub as shown in
Example 25 on page 47.

2. Create a String containing the target endpoint’s HTTP URL for the
value of the property.

3. Call _setProperty() on the Stub specifying St ub. ENDPQ T_PRCPERTY
as the property name and the String created in step 2 as the value of
the property.

Example 27 on page 49 shows code for setting the endpoint address
property for a client.

49

CHAPTER 3 | Things to Consider when Developing Artix Applications

Example 28: Setting the Endpoint Address Property on a Stub

/1 Java
inport javax.xm.rpc*

Il Service proxy, secdient, obtained earlier
Stub secStub = (Stub)secdient;
String endpt new
String("http://control.silencecone. net/9986");
secSt ub. _set Property(Stub. ENDPQ NT_PROPERTY, endpt);

50

Creating a Service Proxy Using UDDI

Creating a Service Proxy Using UDDI

Overview

UDDI queries

You can create a service proxy by dynamically locating existing web services'
endpoints through a UDDI service. When an application does not have a
pointer or reference to an instance of a running web service, Artix can take a
service description then query a UDDI registry for an available service
instance. The UDDI registry returns endpoint information that Artix uses to
create a service proxy to invoke upon a specific instance of the service.

Artix uses UDDI query strings that take the form of a URL. The syntax for a
UDDI URL is shown in Example 29. The syntax adheres to the rules for URL
syntax described in RFC2396 (Uniform Resource Identifiers (URI): Generic
Syntax).

Example 29: UDDI/ URL Syntax
uddi : UDDI Regi st r yEndpt URL?query

UDDI Regi st r yEndpt URL specifies the HTTP URL of the UDDI registry that
Artix is going to submit the query for a service endpoint. For example, you
could deploy a local UDDI registry at the address

http://1 ocal host : 9000/ uddi / i nqui r yapi .

query is a string that Artix uses to look-up services in the UDDI registry. The
query string specifies the UDDI attributes and their coresponding values to
use in selecting an appropriate service from the registry. If more than one
service in the registry match the query, Artix uses the first one found to
create the service proxy. For example to return a widget ordering service,
you could use the query string t nodel name=wi dget Vendor .

Note: Currently, only the t nodel nane attribute is supported by Artix.

Example 30 shows a complete UDDI URL.

Example 30: Artix UDDI! URL

uddi : http://1 ocal host : 9000/ uddi /i nqui r yapi ?t model nane=w dget s

51

http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc2396.txt

CHAPTER 3 | Things to Consider when Developing Artix Applications

Getting the service proxy

52

1

Using a UDDI registry to look up a service's endpoint information and using
the returned endpoint information to create a service proxy is simple in Artix.
The only change to your client application code is the path used to specify
your contract location when creating the Servi ce object or when calling
createdient().

In place of the location of an actual contract, you would use a UDDI URL to
locate the service’s contract. Artix will recognize the UDDI URL, query the
UDDI registry, retrieve the service’s endpoint information, and build the
service proxy under the covers. Example 31 shows an example of creating a
service proxy using UDDI.

Example 31: Creating a Service Proxy with UDDI

String query =
"uddi : http:/ /| ocal host: 9090/ uddi / i nqui r y?t nodel name=col | i e";

URL wsdl URL;
try
{
wsdl URL= new URL(query);
} catch (java. net. Ml f or nedURLExcepti on ex)

{
wsdl URL= new Fil e(query).toUR();

}

Q\Bne name = new Q\Nane("htt p: //dogLova. coni bor der Col | i es",
" SOAPAccess") ;

Servi ceFactory factory = Servi ceFact ory. new nst ance()
Service = factory. creat eServi ce(wsdl URL, nane);
Q\ane port = new Q\Nane("", "SQAPAccessPort");

Col lie proxy = (Collie)service.getPort(port, Collie.class);

The code in Example 31 does the following:

1. Builds a UDDI URL to query the UDDI registry hosted at
| ocal host : 9090 for services whose t model nane is col | i e.

2. Builds a Q\ane for the service proxy.

3. Gets an instance of the Servi ceFactory.

Configuring your application to
use UDDI support

Creating a Service Proxy Using UDDI

4. Instantiates a new Servi ce object using the endpoint information
returned from the UDDI registry.

5. Builds a q\ane for the port that will be used to access the service.
Creates the service proxy.

The Artix UDDI support is provided by an Artix plug-in. To use the UDDI
features, you must configure your application to load the Java version of the
UDDI plug-in. To configure you application to load the UDDI plug-in do the
following:

1. Open artix.cfg in any text editor.

2. Locate the scope for your application, or create a new one for it.

3. Addjava_uddi _proxy to the list of plug-ins in the j ava_pl ugi ns list.
4. Add java to the list of plug-ins in the or b_pl ugi ns list.

Example 32 shows a configuration fragment with the configuration to use
UDDI.

Example 32: UDD! Configuration

colliedient

{
orb_plugins = ["java", "xmfile_|og streant];
java_plugins = ["java_uddi _proxy"];

}

For more information on configuring Artix see Deploying and Managing Artix
Solutions.

53

http://www.iona.com/support/docs/artix/3.0/deploy/index.htm
http://www.iona.com/support/docs/artix/3.0/deploy/index.htm

CHAPTER 3 | Things to Consider when Developing Artix Applications

Class Loading

Overview

How the classloader firewall
works

54

There may be occasions where the jars provided with Artix conflict with the
jars used in your environment. In particular, you may be using different
versions of the Xerces XML parser and Log4J. To handle such situations,
Artix provides a classloader firewall that isolates the Artix runtime
classloader from the application classloader and the system classloader.
This allows the Artix runtime to load the jars it needs and your application to
load your versions of any jars that conflict.

The classloader firewall provides a mechanism for you to hide the
application classloader’s jar files from the Artix runtime. It does this by
exposing a simple mechanism for you to create a set of positive filters
defining what classes loaded by the application classloader are visible to the
Artix runtime’s classloader and specifying the location from which the Artix
runtime classloader will load its classes. Any classes not matched by a
positive filter are blocked from the Artix runtime’s classloader and will only
be loaded from the locations specified in the firewall’s configuration file.
Figure 4 shows how the classloader firewall blocks off the Artix runtime.

APPLICATION JVM Classes match the
positive filters

Classes blocked by the
firewall and loaded from
the configured set of jars

Classes loaded from
the system classpath

Figure 4: Classloader Firewall

Configuring the firewall
classloader

Defining class filters

Class Loading

For example, in most cases you would create a positive filter allowing all of
the J2SE classes into the Artix runtime. However, you would not create a
positive filter for the Xerces classes if your applications use a different
version of Xerces than Artix does. Artix will need to load its own Xerces
classes in order to operate.

To use the classloader firewall with an Artix Java application do the

following:

1. Create a file called arti x_ce. xm and place it in your application’s
classpath.

2. Usingthe artix_ce. xm file included with the Java firewall demo as a
template, define the filters to only allow the desired packages from the
Artix classloader to be visible to your application code.

3. Define the rules governing where the Artix classloader will look for
specific classes in the ce: | oader element of arti x_ce. xni .

The classloader firewall, if it finds an arti x_ce. xn file in the classpath,
assumes that all classes not specified by a positive filter are to be blocked
from the Artix runtime’s classloader. You define positive filters using one of
two ce: filter attributes: t ype="di scover" and type="pattern".

Using type="discover”
The discover filter type specifies that the classloader will discover the filters

from the location specified in the di scover - sour ce attribute. Table 1 shows
the values for di scover - sour ce.

Table 1: discover-source values for the Classloader Firewall

Value Meaning

jre Discover the filters need to load all of the classes for the
currently running JRE. It is highly recommended that this
filter is included in your arti x_ce. xm definition.

55

CHAPTER 3 | Things to Consider when Developing Artix Applications

Defining negative filters

56

Table 1: discover-source values for the Classloader Firewall

Value Meaning

jar Discover the filters to load all of the classes from the specified
jar file. Jar file locations can be given using relative or
absolute file names. For example to load all of the classes in
nyApp. j ar, you could define a filter like <ce: filter

type="di scover"

di scover-source="jar">. \nyApp.jar</ce:filter>.

jar-of Discover the filters needed to load specified resource. This
option makes it possible to discover the contents of jar files
which you know are reachable through the class loading
system, but which you do not know the actual location.
Resources can be classes, properties files, or HTML files. For
example to load the libraries for the EJBHome class, you could
use a filter like <ce: filter type="di scover"

di scover - sour ce="j ar - of " >j avax/ ej b/ EJBHon®. cl ass</ ce:
filter>.

Using type="pattern”

The pattern filter type directly specifies a package pattern to be allowed
through the firewall from the application’s classloader. The syntax for
specifying package patterns is similar to the syntax used in Java i nport
statements. For example, to specify that all classes from j avax. xni . r pc are
to be allowed through the firewall you could use a filter like <ce: filter
type="pattern">j avax. xm .rpc. *</ce: filter>. You could also drop the
asterisk(*) and use the filter <ce: fil ter

type="pattern">j avax. xnl .rpc. </ce:filter>.

Occasionally a positive filter will allow classes that you want blocked from
the Artix runtime classloader to be visible through the firewall. This is
particularly true with com i ona. j bus. The Artix runtime needs to share a
number of resources from this package with the application code, but it also
needs to ensure that some of its resources are loaded from the Artix jar files.

To solve this problem the classloader firewall allows you to define negative
filters. To define a negative filter you use a value of negat i ve- pat t er n for

the type attribute of the filter. This tells the firewall to block any resources
that match the pattern specified. For example, to block the system'’s

Specifying the location for loading
blocked resources

<ce: | oader >

Class Loading

JAX-RPC classes from being loaded into the Artix runtime you could define a
filter like <ce: filter
type="negative-pattern">comiona.jbus.jaxrpc.<\ce:filter>.

The location from which the Artix runtime classloader will load resources
blocked by the firewall are specified in the ce: | oader element of
artix_ce. xni . Inside the loader definition, you use a number of

ce: | ocat i on elements to specify the location of specific resources. These
locations can be either the relative or absolute pathnames of a jar file. You
can also specify a directory in which the classloader will search for the
required jar files.

For example, if all of your Artix specific jar files are stored in the location in
which they were installed you could use a loader element similar to
Example 33 to specify the proper Xerces and Log4J version to load into the
Artix runtime.

Example 33: Loader Definition to Load Xerces and Log4J

<ce:l oaction>C: \| ONA\| i b\ apache\ j akarta-1 0og4j\1.2. 6\l og4j . jar<\ce: | oacti on>
<ce:l ocation>C \| ONA\| i b\ apache\ xer ces\ 2. 5. O\ xer cesl npl . j ar<\ce: | ocati on>

</ ce: | oader >

Examples

For an example of using the Artix classloader firewall see the j ava_firewal |
demo in the denws\ basi ¢ folder of your Artix installation. The demo provides
an example of using the classloader firewall to shield the Artix runtime from
different versions of Xerces and Log4J.

57

CHAPTER 3 | Things to Consider when Developing Artix Applications

58

In this chapter

CHAPTER 4

Working with Artix
Data Types

Artix maps XMLSchema data types in an Artix contract into
Java data types. For XMLSchema simple types the mapping is
a one-to-one mapping to Java primitive types. For complex
types, Artix follows the JAX-RPC specification for mapping
complex types into Java objects.

This chapter discusses the following topics:

XMLSchema Elements page 60
Using XMLSchema Simple Types page 61
Using XMLSchema Complex Types page 84
Using XMLSchema any Elements page 136
SOAP Arrays page 144
Holder Classes page 147
Using SOAP with Attachments page 151
Unsupported XMLSchema Constructs page 156

59

CHAPTER 4 | Working with Artix Data Types

XMLSchema Elements

Schema elements

Java mapping

60

Elements in XMLSchema represent an instance of an element in an XML
document generated from the schema. At their most basic, an element
consists of a single el enent element. Global el ement elements have two
attributes:

® nane specifies the name of the element as it will appear in an XML
document.

® type specifies the type of the element. The type can be any
XMLSchema primitive type or any named complex type defined in the
contract.

In addition to name and t ype, global elements have one other commonly
used optional attributes: ni I 1 abl e. This attribute specifies if an element can
be left out of a document entirely. If ni I 1 abl e is set to true, the element
can be omitted from any document generated using the schema.

An element can also define its own type. Elements defined this way have an
in-line type definition. In-line types are specified using either a conpl exType
element or a si npl eType element. Once you specify if the type of data is
complex or simple, you can define any type of data needed using the tools
available for each type of data. In-line type definitions are discouraged,
because they are not reusable.

Artix does not generate special classes for el enent elements unless they
have an in-line type definition. For in-line type definitions Artix follows the
same rules for code generation as described for a type definition. The
mappings between XMLSchema types and Java classes is described in the
following sections of this chapter.

Because Artix does not generate classes specifically for elements some of
the attributes of XMLSchema elements are not supported. In particular, the
attribute "abst ract =t rue" is not recognized by Artix. If you specify that an
element is abstract and give it an in-line type definition, Artix will still
generate a class to support the defined type.

Using XMLSchema Simple Types

Using XMLSchema Simple Types

Overview Artix follows the JAX-RPC specification for mapping native XMLSchema
types into Java. In most cases, the mapping from an atomic XMLSchema
type is to a primitive Java type. However, some instances require a more
complex mapping.

In this section This section contains the following subsections:
Atomic Type Mapping page 62
Special Atomics Type Mappings page 66
Defining Simple Types by Restriction page 68
Using Enumerations page 71
Using Lists page 77
Using XMLSchema Unions page 80

61

CHAPTER 4 | Working with Artix Data Types

Atomic Type Mapping

Overview When a message part is described as being of one of the atomic
XMLSchema types, the generated parameter’s type will be of a
corresponding primitive Java type. For example, the message description
shown in Example 34 will cause a parameter, scor e, of type i nt to be
generated.

Example 34: Message Description Using a Simple Type
<message nane="scor eResponse" >

<part name="score" type="xsd:int" />
</ message>

Table of atomic type mappings The atomics type mappings are shown in Table 2.

Table 2: Simple Schema Type to Primitive Java Type Mapping

Schema Type Java Type
xsd: string java.lang. String
xsd: nornal i zedStri ng java.lang. String
xsd: i nt int
xsd: unsi gned! nt | ong
xsd: | ong | ong
xsd: unsi gnedLong j ava. mat h. Bi gl nt eger
xsd: short short
xsd: unsi gnedShor t int
xsd: f| oat f1 oat
xsd: doubl e doubl e
xsd: bool ean bool ean
xsd: byt e byt e

62

Using XMLSchema Simple Types

Table 2: Simple Schema Type to Primitive Java Type Mapping
Schema Type Java Type
xsd: unsi gnedByt e byte
xsd: i nt eger j ava. mat h. Bi gl nt eger
xsd: posi ti vel nt eger j ava. mat h. Bi gl nt eger
xsd: negat i vel nt eger j ava. mat h. Bi gl nt eger
xsd: nonPosi ti vel nt eger j ava. mat h. Bi gl nt eger
xsd: nonNegat i vel nt eger j ava. mat h. Bi gl nt eger
xsd: deci nal j ava. nat h. Bi gDeci nal
xsd: dat eTi me java. util . Cal endar
xsd: ti me java. util . Cal endar
xsd: dat e java. util . Cal andar
xsd: Q\Nane j avax. xm . nanespace. Q\ane
xsd: base64Bi nary byt e[]
xsd: hexBi nary byt e[]
xsd: | D java.lang. String
xsd: t oken java.lang. String
xsd: | anguage java.lang. String
xsd: Narre java.lang. String
xsd: NCNane java.lang. String
xsd: NVTCKEN java.lang. String
xsd: anySi npl eType java.lang. String
xsd: anyURl java.net. UR
xsd: gYear java.lang. String
xsd: ghont h java.lang. String

63

CHAPTER 4 | Working with Artix Data Types

64

Table 2: Simple Schema Type to Primitive Java Type Mapping
Schema Type Java Type
xsd: unsi gnedByt e byte
xsd: i nt eger j ava. mat h. Bi gl nt eger
xsd: posi ti vel nt eger j ava. mat h. Bi gl nt eger
xsd: negat i vel nt eger j ava. mat h. Bi gl nt eger
xsd: nonPosi ti vel nt eger j ava. mat h. Bi gl nt eger
xsd: nonNegat i vel nt eger j ava. mat h. Bi gl nt eger
xsd: deci nal j ava. nat h. Bi gDeci nal
xsd: dat eTi me java. util . Cal endar
xsd: ti me java. util . Cal endar
xsd: dat e java. util . Cal andar
xsd: Q\Nane j avax. xm . nanespace. Q\ane
xsd: base64Bi nary byt e[]
xsd: hexBi nary byt e[]
xsd: | D java.lang. String
xsd: t oken java.lang. String
xsd: | anguage java.lang. String
xsd: Narre java.lang. String
xsd: NCNane java.lang. String
xsd: NVTCKEN java.lang. String
xsd: anySi npl eType java.lang. String
xsd: anyURl java.net. UR
xsd: gYear java.lang. String
xsd: ghont h java.lang. String

Atomic type validation

Using XMLSchema Simple Types

Table 2: Simple Schema Type to Primitive Java Type Mapping

Schema Type Java Type
xsd: gDay java.lang. String
xsd: gYear Mont h java.lang. String
xsd: gont hDay java.lang. String

Artix Java validates XMLSchema atomic types when they are passed to the
bus for writing to the wire. This means that when you are working with data
elements that are mapped from XMLSchema atomics types you should take
care to ensure that they conform to the restrictions of the XMLSchema type.
For example, the Java APIs would allow you to set a value of - 10 into a data
element that is mapped to an xsd: posi ti vel nt eger . However, when the
bus attempted to write out the message containing that data element, the
bus would throw an exception.

65

CHAPTER 4 | Working with Artix Data Types

Special Atomics Type Mappings

Overview Mapping XMLSchema atomic types to Java primitives does not work for all
possible data descriptions in an Artix contract. Several cases require that an
XMLSchema atomics type is mapped to the Java primitive’s corresponding
wrapper type. These cases include:
® anelenent element with its ni | I abl e attribute set to t rue as shown in
Example 35.

Example 35: Nillable Element
<el enent nanme="finned" type="xsd: bool ean" nillable="true" />

® anelenent element with its m nCQccur s attribute set to 0 and its
maxQceur s attribute set to 1 or its maxCeceur s attribute not specified as
shown in Example 36.

Example 36: minOccurs set to Zero
<el enent nane="pl ane" type="xsd:string" m nQccurs="0" />

® anattribute element with its use attribute set to opti onal , or not
specified, and having neither its def aul t attribute nor its fi xed
attribute specified as shown in Example 37.

Example 37: Optional Attribute Description

<el enent nane="dat e" >
<conpl exType>
<sequence/ >
<attribute nane="cal Type" type="xsd:string"
use="optional " />
</ conpl exType>
</ el enent >

Mappings Table 3 shows how XMLSchema simple types are mapped into Java
wrapper classes in these special cases.

66

Usin

g XMLSchema Simple Types

Table 3: simple Schema Type to Java Wrapper Class Mapping

Schema Type Java Type

xsd: i nt java.l ang. I nt eger

xsd: | ong java. |l ang. Long

xsd: shor t java. |l ang. Short

xsd: f| oat java. | ang. Fl oat

xsd: doubl e java. | ang. Doubl e

xsd: bool ean j ava. | ang. Bool ean

xsd: byt e java.l ang. Byte

xsd: unsi gnedByt e java.l ang. Short

xsd: unsi gnedshor t java.l ang. I nt eger

xsd: unsi gnedl nt java. | ang. Long

xsd: unsi gnedLong java. mat h. Bi gl nt eger

67

CHAPTER 4 | Working with Artix Data Types

Defining Simple Types by Restriction

Overview

Procedure

Describing a simple type in
XMLSchema

68

XMLSchema allows you to create simple types by deriving a new type from
another primitive type or simple type. Simple types are described in the
t ype> section of an Artix contract using a si npl eType element.

The new types are described by restricting the base type with one or more of
a number of facets. These facets limit the possible valid values that can be
stored in the new type. For example, you could define a simple type, SSN,
which is a string of exactly 9 characters. Each of the primitive XMLSchema
types has their own set of optional facets. Artix does not enforce the use of
all the possible facets. However, to ensure interoperability, your service
should enforce any restrictions described in the contract.

To define your own simple type do the following:

1. Determine the base type for your new simple type.

2. Based on the available facets for the chosen base type, determine what
restrictions define the new type.

3. Using the syntax shown in this section, enter the appropriate
si npl eType element into the t ypes section of your contract.

Example 38 shows the syntax for describing a simple type.

Example 38: Simple Type Syntax

<si npl eType name="t ypeNare" >
<restriction base="baseType">
<facet val ue="val ue"/>
<facet val ue="val ue"/>

</restriction>
</ si npl eType>

The type description is enclosed in a si npl eType element and identified by
the value of the nane attribute. The base type from which the new simple
type is being defined is specified by the base attribute of the restriction

Mapping simple types to Java

Using XMLSchema Simple Types

element. Each facet element is specified within the restri cti on element.
The available facets and their valid setting depends on the base type. For
example, xsd: st ri ng has six facets including:

® length

® ninLength

® maxLength

® pattern

® whitespace

Example 39 shows an example of a simple type, SSN, which represents a
social security number. The resulting type will be a string of the form

XXX-XX-XXXX. <SSN>032- 43- 9876<SSN> is a valid value, but
<SSN>032439876</ SSN> is not valid.

Example 39: SSN Simple Type Description

<si npl eType nane="SSN'>
<restriction base="xsd: string">
<pattern val ue="\d{3}-\d{2}-\d{4}" />
</restriction>
</ si npl eType>

Artix maps user-defined simple types to the Java type of the simple type's
base type. So any message using the simple type SSN, shown in

Example 39, would be mapped to a Stri ng because the base type of SSNis
xsd: string. For example, the contract fragment shown in Example 40
would result in a Java method, credi t1nfo(), which took a parameter,
socNum of String.

Example 40: Credit Request with Simple Types

<nessage name="credit Request ">
<part name="socNun' type="SSN' />
</ message>

<port Type nane="credi t Agent ">
<operati on name="creditl|nfo">
<i nput nessage="t ns: credit Request" nane="credRec" />
<out put message="tns: creditReport" nane="credRep" />
</ oper at i on>
</ por t Type>

69

CHAPTER 4 | Working with Artix Data Types

Unenforced facets

Enforced facets

70

Because this mapping does not place any restrictions on the values placed a
variable that is mapped from a simple type and Artix does not enforce all
facets, you must ensure that your application logic enforces the restrictions
described in the contract for maximum interoperability.

Artix does not enforce the following facets:
® length

® mnLength

® naxLength

® pattern

® whiteSpace

® naxlnclusive
® naxExcl usive
® nininclusive
® ninExcl usive
® totalDgits

® fractionDigits

Artix enforces the following facets:
® enuneration

For more information on the enumeration facet, read “Using Enumerations”
on page 71.

Using XMLSchema Simple Types

Using Enumerations

Overview In XMLSchema, enumerations are described by derivation of a simple type
using the syntax shown in Example 41.

Example 41: Syntax for an Enumeration

<si npl eType name="Enuniane" >
<restriction base="Enunlype">
<enuner ati on val ue="CaselVval ue" />
<enuner ati on val ue="Case2Val ue" />

<enuner ati on val ue="CaseNval ue" />
</restriction>
</ si npl eType>

EnuniNarre specifies the name of the enumeration type. EnunType specifies
the type of the case values. CaseNval ue, where Nis any number one or
greater, specifies the value for each specific case of the enumeration. An
enumerated type can have any number of case values, but because it is
derived from a simple type, only one of the case values is valid at a time.

For example, an XML document with an element defined by the
enumeration wi dget Si ze, shown in Example 42, would be valid if it were
<wi dget Si ze>bi g</ wi dget Si ze>, but not if it were

<wi dget Si ze>bi g, nungo</ wi dget Si ze>.

Example 42: widgetSize Enumeration

<si npl eType name="wi dget Si ze" >
<restriction base="xsd:string">
<enuner ation val ue="bi g"/>
<enuner ation val ue="|arge"/>
<enuner ati on val ue="nmngo"/>
<enuner ati on val ue="gar gant uan"/>
</restriction>
</ si npl eType>

71

CHAPTER 4 | Working with Artix Data Types

Mapping to a Java class

72

Artix maps enumerations to a Java class whose name is taken from the
schema type's nane attribute. So Artix would generate a class, Wdget Si ze,
to represent the wi dget Si ze enumeration.

Note: If the enumeration is an anonymous type nested inside of a
complex type, the naming of the generated Java class follows the same
pattern as laid out in “Nesting with Anonymous Types” on page 107.

The generated class contains two static public data members for each
possible case value. One, _CaseNval ue, holds the data value of the
enumeration instance. The other, CaseNval ue, holds an instance of the class
associated with the data value. The generated class also contains four
public methods:

fromValue() returns the representative static instance of the class based on
the value specified. The specified value must be of the enumeration’s type
and be a valid value for the enumeration. If an invalid value is specified an
exception is thrown.

fromString() returns the representative static instance of the class based on
a string value. The value inside the string must be a valid value for the
enumeration or an exception will be thrown.

getValue() returns the value for the class instance on which it is called.

toString() returns a stringified representation of the class instance on which
it is called.

For example Artix would generate the class, Wdget Si ze, shown in
Example 43, to represent the enumeration, wi dget Si ze, shown in

Example 42 on page 71.

Example 43: WidgetSize Class

/1l Java
public class WdgetSi ze
{

public static final String TARGET _NAMESPACE =
"http://w dget Vendor . coni t ypes/ wi dget Types";

Using XMLSchema Simple Types

Example 43: WidgetSize Class

private final String _val;

public static final
public static final

public static final
public static final

public static final
public static final

public static final
public static final

String _big = "big";
Wdget Si ze big = new Wdget Si ze(_big);

String _large = "large";
Wdget Size | arge = new Wdget Si ze(_I| arge);

String _mungo = "mungo";
Wdget S ze nungo = new Wdget Si ze(_nungo) ;

String _gargantuan = "gargantuan”;
Wdget Si ze gar gantuan = new

W dget Si ze(_gar gant uan) ;

protected WdgetSi ze(String val ue)

{

_val = val ue;

}

public String getVal ue()

{

return _val;

IE

73

CHAPTER 4 | Working with Artix Data Types

Example 43: WidgetSize Class

public static WdgetSi ze fronVal ue(String val ue)

{
if (value.equal s("big"))

{
}

if (value.equals("large"))

{

return big;

return |arge;

if (val ue.equal s("nmungo"))

{
}

if (val ue. equal s("gargantuan"))

{
}

throw new || | egal Argunent Exception("Invalid enuneration
val ue: "+val ue);

return nmingo;

return gargant uan;

IE
public static WdgetSi ze fronBtring(String val ue)
{

if (value.equals("big"))

{

return big;

if (value.equals("large"))

{ return |arge;

i}f (val ue. equal s("mungo"))

{ return mungo;

?f (val ue. equal s("gargant uan"))
{ return gargant uan;

}

throw new I | | egal Argunent Exception("lnvalid enuneration
val ue: "+val ue);

}

74

Working with enumerations in
Java

Using XMLSchema Simple Types

Example 43: WidgetSize Class

public String toString()
{
return ""+ val;
}
}

Unlike the classes generated to represent complex types, the Java classes
generated to represent enumerations do not need to be specifically
instantiated, nor do they provide setter methods. Instead, you use the
fromval ue() or fronstring() methods on the class to get a reference to
one of the static members of the enumeration. Once you have the reference
to your desired member, you use the get Val ue() method on that member to
determine the value for the member.

If you were working with the wi dget Si ze enumeration, shown in

Example 42 on page 71, to build an ordering system, you would need a way
to enter the size of the widget you wanted to order and then store that
choice as part of the order. Example 44 shows a simple text entry method
for getting the proper member of the enumeration using f r onval ue(),

Example 44: Using fromValue() to Get a Member of an Enumeration

/1l Java
tenmp = new String();
W dget Si ze ordered_si ze;

/l Get the type of w dgets to order

Systemout . printl n("Wat size wdgets do you want?");
Systemout . println("Big");

Systemout. println("Large");

Systemout . print| n("Mingo");

Systemout . print| n("Gargant uan");

tenp = i nput Buffer.readLine();

ordered_si ze = Wdget Si ze. fronVal ue(tenp);

Because the value used to define the cases of the enumeration is a string,
fromval ue() takes a String and returns the member based on the value of
the string. In this example, fronstring() is interchangeable with

fronval ue() . However, if the value of the enumeration were integers,
fronval ue() would take anint.

75

76

CHAPTER 4 | Working with Artix Data Types

To print the bill you will need to display the size of the widgets ordered. To
get the value of the ordered widgets, you could use the get Val ue() method
to retrieve the value of the enumeration or you could use the t oSt ri ng()
method to return the value as a String. Example 45 uses get Val ue() to
return the value of the enumeration retrieved in Example 44 on page 75

Example 45: Using getValue()

I/ Java
String sizeVal = ordered_size. get Val ue();
Systemout. println("You ordered "+si zeVal +* sized wi dgets.");

Using XMLSchema Simple Types

Using Lists

Overview

Defining list types in XMLSchema

XMLSchema supports a mechanism for defining data types that are a list of
space separated simple types. An example of an element, si npl eLi st , using
a list type is shown in Example 46.

Example 46: List Type Example
<si npl eLi st >appl e orange kiwi mango |ermon |ime<\sinpl eLi st >

In Java code list types are mapped into arrays.

XMLSchema list types are simple types and as such are defined using a
si npl eType element. The most common syntax used to define a list type is
shown in Example 47.

Example 47: Syntax for List Types

<si npl eType name="1Ii st Type" >
<list itenType="atom cType">
<facet val ue="val ue"/>
<facet val ue="val ue"/>

</ I | -st >
</ si npl eType>
The value given for at om cType defines the type of the elements in the list. It

can only be one of the built in XMLSchema atomic types, like xsd:int or
xsd: string, or a user-defined simple type that is not a list.

In addition to defining the type of elements listed in the list type, you can
also use facets to further constrain the properties of the list type. Table 4
shows the facets used by list types.

Table 4: List Type Facets

Facet Effect

I ength Defines the number of elements in an instance of the
list type.

77

CHAPTER 4 | Working with Artix Data Types

Table 4: List Type Facets

Facet

Effect

m nLengt h

Defines the minimum number of elements allowed in
an instance of the list type.

nmaxLengt h

Defines the maximum number of elements allowed in
an instance of the list type.

enuner ati on

Defines the allowable values for elements in an
instance of the list type.

pattern

Defines the lexical form of the elements in an instance
of the list type. Patterns are defined using regular
expressions.

For example, the definition for the si npl eLi st element shown in
Example 46 on page 77, is shown in Example 48.

Example 48: Definition for simpleList

<si npl eType nanme="si npl eLi st Type" >
<list itenType="string"/>

</ si npl eType>

<el enent name="si npl eLi st" type="si npl eLi st Type"/>

In addition to the syntax shown in Example 47 on page 77 you can also
define a list type using the less common syntax shown in Example 49.

Example 49: Alternate Syntax for List Types

<si npl eType nanme="Ii st Type" >

<list>

<si npl eType>

<restriction base="at om cType">
<facet val ue="val ue"/>
<facet val ue="val ue"/>

</restriction>
</ si npl eType>

</list>

</ si npl eType>

78

Mapping of list types in Java

Using XMLSchema Simple Types

List types are mapped to Java arrays and do not cause a new class to be
generated to represent them. Instead, any message part that was specified
in the Artix contract as being of type Ii st Type or any element of another
complex type that was of type I i st Type in the Artix contract would be
mapped to an array of the type specified by the i t enType attribute.

For example, the list type, stri ngLi st, shown in Example 50 defines a list
of strings that must have at least two elements and no more than six
elements. The it enType attribute specifies the type of the list elements,
xsd: string. The facets m nLengt h and maxLengt h set the size constraints on
the list.

Example 50: Definition of stringList

<si npl eType name="stri ngLi st">
<list itenType="xsd:string">
<m nLengt h val ue="2" />
<maxLengt h val ue="6"/>
</list>
</ si npl eType>

Any message part of type st ri ngLi st and any complex type element of type
stringLi st would be mapped to String[]. So the contract fragment shown
in Example 51, would result in the generation a Java method

cel ebvasher () that took a parameter, badLang, of type String[].

Example 51: Operation Using a List

<nessage nane="badlLang">
<part name="statenent" type="stringList" />
</ message>
<port Type nane="censor">
<oper ati on name="cel ebWasher ">
<i nput nessage="badLang" nane="badLang" />
</ oper at i on>
</ por t Type>

79

CHAPTER 4 | Working with Artix Data Types

Using XMLSchema Unions

Overview

80

In XMLSchema, a union is a construct that allows you to describe a type
whose data can be of a number of simple types. For example, you could
define a type whose value could be either the integer 1 or the string first.

XMLSchema unions are simple types, defined using a si npl eType element.
They contain at least one uni on element that define the member types of
the union. The member types of the union are the valid types of data that
can be stored in an instance of the union. You define them using the
menber Types attribute of the uni on element. menber Types contains a list of
one or more defined simple type names. Example 52 shows the definition of
a union that can store either an integer or a string.

Example 52: Simple Union Type

<si npl eType nane="or der Nunni on" >
<uni on nenber Types="xsd: string xsd:int" />
</ si npl eType>

In addition to specifying named types to be a member type of a union, you
can also define anonymous simple types to be a member type of a union.
This is done by adding the anonymous type definition inside of the uni on
tag. Example 53 shows an example of a union containing an anonymous
member type restricting the possible values of a valid integer to 1 through
10.

Example 53: Union with an Anonymous Member Type

<si npl eType nanme="restri ct edO der Nunthi on" >
<uni on nenber Types="xsd: stri ng">
<si npl eType>
<restriction base="xsd:int">
<m nl ncl usi ve val ue="1" />
<max| ncl usi ve val ue="10" />
</restriction>
</ si npl eType>
</ uni on>
</ si npl eType>

Mapping to Java class

Using XMLSchema Simple Types

Artix maps unions to a Java class whose name is taken from the schema
type's nane attribute. So Artix would generate a class, O der Nurtbhi on, to
represent the or der Nununi on union.

Note: If the union contains an anonymous enumerated type, the nested
type will result in a generated class whose name begins with the name of
the union and ends with the name of the base simple type. See “Using
Enumerations” on page 71

The Java mapping of XMLSchema unions is very similar to that used in
mapping choice complex types. See “Choice Complex Types” on page 90.
The generated class would contain a getter method, a setter method and an
i sSet method for each member type in the union. For example,

or der Nununi on, shown in Example 52 on page 80, would result in the
generated class shown in Example 54.

Example 54: Java Class for a Union

publ i c cl ass O der Nunni on
{

private String _ discrinmnator;
private String string;
private int _int

public String getString()
{

return (String)string;

}

public setString(String val)
{

this.string = val;
__discrimnator = "string";

}

81

CHAPTER 4 | Working with Artix Data Types

Example 54: Java Class for a Union

publ i ¢ bool ean isSet String()
{

if(__discrimnator !'= null &%
__discrimnator. eqgaul s("string"))

{
}

return true;

return fal se;

}

public get_int()
{

return (int)_int;

}

public set_int(int val)

{
this. _int = val;
__discrimnator =" _int";

}

publ i ¢ bool ean isSet_int()
{

if(__discrimnator !=null & _discrimnator.eqaul s("__int"))

{
}

return true;

return fal se;

}

public toString()
{

Working with unions in Java When working with unions in Java it is important to remember that in
XMLSchema only one of the member types can be valid at a time. This
means that in an Artix Java application, while it is possible for both
elements of the generated class can have valid data in them, only the last
element on which set was called will be transmitted across the wire. For

82

Using XMLSchema Simple Types

example, if you called set _i nt () and then called set String(), both
elements in O der Nurbni on would have valid data, but the discriminator
would be set to the string member and that is the only value Artix will
consider valid. If you transmitted the object, the receiving application would
only receive the data stored in the string member.

Receiving union types in Artix is a little more complicated. When using
bindings that pass information as XML documents, like SOAP, Artix will
follow the validation rules described in the XMLSchema specification for
determining the value of the union. So, if the xsi : t ype is written by the
sending application, Artix will use that to determine the valid member
element of the union. If the xsi : t ype is not written by the sending
application, Artix will use the order in which the member types are specified
in the type definition to determine the valid member type. For example, if an
Artix application using a SOAP binding receives an element of type

Q der Nunbhni on and the xsi : t ype is not written out by the sending
application, the data will be treated as a string because xsd: stri ng is first
in the member type list.

83

CHAPTER 4 | Working with Artix Data Types

Using XMLSchema Complex Types

Overview Complex types are described in the t ypes section of an Artix contract.
Typically, they are described in XMLSchema using a conpl exType element.
In contrast to simple types, complex types can contain multiple elements
and have attributes.

Complex types are generated into Java objects according to the mapping
specified in the JAX-RPC specification. Each generated object has a default
constructor, methods for setting and getting values from the object, and a
method for stiringifying the object.

In this section This section contains the following subsections:
Sequence and All Complex Types page 85
Choice Complex Types page 90
Attributes page 94
Nesting Complex Types page 102
Deriving a Complex Type from a Simple Type page 112
Deriving a Complex Type from a Complex Type page 115
Occurrence Constraints page 119
Using Model Groups page 131

84

Using XMLSchema Complex Types

Sequence and All Complex Types

Overview

Mapping to Java

Complex types often describe basic structures that contain a number of
fields or elements. XMLSchema provides two mechanisms for describing a
structure. One method is to describe the structure inside of a sequence
element. The other is to describe the structure inside of an al | element.
Both methods of describing a structure result in the same generated Java
classes.

The difference between using sequence and al | is in how the elements of
the structure are passed on the wire. When a structure is described using
sequence, the elements are passed on the wire in the exact order they are
specified in the contract. When the structure is described using al | , the
elements of the structure can be passed on the wire in any order.

Note: You can define a complex type without using sequence, al I, or
choi ce. However, the type can only contain attributes.

A complex type described with sequence or with al | is mapped to a Java
class whose name is derived from the nane attribute of the conpl exType
element in the contract from which the type is generated. As specified in the
JAX-RPC specification, the generated class has a getter and setter method
for each element described in the type. The individual elements of the
complex type are mapped to private variables within the generated class.

The generated setter methods are named by prepending set onto the name
of the element as given in the contract. They take a single parameter of the
type of the element and have no return value. For example, if a complex
type contained the element shown in Example 55, the generated setter
method would have the signature voi d set Name(String val).

Example 55: Element Name Description
<conpl exType nane="Address" >
<al | >
<el enent name="Nane" type="xsd:string" />
</all>
</ conpl exType>

85

CHAPTER 4 | Working with Artix Data Types

The maxOccurs attribute

86

The generated getter methods are named by prepending get onto the name
of the element as given in the contract. They take no parameters and return
the value of the specified element. For example, the generated getter
method for the element described in Example 55 would have the signature
String get Nane().

Elements of xsd: bool ean are an exception to the above mapping. For
elements of type xsd: bool ean, the getter methods name is prepended with
is. For example if an element is defined as <el enent nane="i n"

t ype="xsd: bool ean /> the generated getter method would be bool ean
isin().

Note: If the name of the element begins with a lowercase letter, the
getter and setter methods will capitalize the first letter of the element
name before prepending get or set .

In addition to the getter and setter methods, Artix also generates a
toString() method for each complex type. The t oSt ri ng() method returns
a string containing a labeled list of the values for each element in the class.

Any elements whose naxCccur s attribute is set to a value greater than one or
set to unbounded, results in the generation of a Java array to contain the
value of the element. For example, the element described in Example 56
would result in the generation of a private variable, obser vedSpeed,of type
float[].

Example 56: E/lement with MaxOccurs Greater than One

<conpl exType nane="drugTest Resul t s">
<sequence>
<el enent name="obser vedSpeed" type="xsd: fl oat"
maxQccur s="unbounded"/ >

</ sequence>
</ conpl exType>

Using XMLSchema Complex Types

The getter and setter methods for obser vedSpeed are shown in Example 57.

Example 57:observedSpeed Getter and Setter Methods

/1 Java

public class drugTest Results

{

private float[] observedSpeed;

voi d set ChservedSpeed(float[] val);
float[] get ChservedSpeed();

Example Suppose you had a contract with the complex type, monst er St at s, shown in

Example 58.

Example 58: monsterStats Description

<conpl exType nane="nonst er St at s" >

<al | >
<el enent
<el enent
<el enent
<el enent
<el enent

</all>

nane="nane" type="xsd:string" />
nane="wei ght" type="xsd:|ong" />
name="origi n" type="xsd:string" />
name="strength" type="xsd:float" />
nanme="speci al At t ack" type="xsd: stri ng"
maxQceur s="3" />

</ conpl exType>

The Java class generated to support nonst er St at s would be similar to

Example 59.

87

CHAPTER 4 | Working with Artix Data Types

Example 59: monsterStats Java Class

/'l Java
public class nonsterStats
{

public static final String TARGET _NAMESPACE =
"http://nonst er Boot Canp. coni t ypes/ nonst er Types";

private String nare;

private |ong weight;

private String origin;

private float strength;
private String[] special Attack;

public void setName(String val)

{
nane=val ;
}
public String get Nane()
{
return nane;
}
public void set\Wight(long val)
{
wei ght =val ;
}
public | ong getWi ght ()
{
return wei ght;
}
public void setQigin(String val)
{
origi n=val ;
}
String getOrigin()
{
return origin;
}

88

Using XMLSchema Complex Types

Example 59: monsterStats Java Class

public void setStrength(float val)

{
strengt h=val ;
}
public float getStrength()
{
return strength;
}
public void set Speci al Attack(String[] val)
{
speci al Attack=val ;
}
public String[] getSpecial Attack()
{
return speci al Attack;
}
public String toString()
{
StringBuffer buffer = new StringBuffer();
if (nane !'= null) {
buf f er. append(" nane: "+nane+"\n");
}
if (weight !'= null) {
buf f er. append(“wei ght: " +wei ght +"\n");
}
if (origin!=null) {
buf f er. append(“origin: “+origin+"\n");
}
if (strength !'=null) {
buf f er. append(“strength: "+strength+'\n");
}
if (special Attack != null) {
buf f er. append(" speci al At tack: "+special Attack+"\n");
}
return buffer.toString();
}

89

CHAPTER 4 | Working with Artix Data Types

Choice Complex Types

Overview

Mapping to Java

20

XMLSchema allows you to describe a complex type that may contain any
one of a number of elements. This is done using a choi ce element as part of
the complex type description. When elements are contained within a choi ce
element, only one of the elements will be transmitted across the wire.

Like complex types described with a sequence element or with an al |
element, complex types described with a choi ce element are mapped to a
Java class with getter and setter methods for each possible element inside
the choi ce element. In addition, the generated Java class for a choi ce
complex type includes an additional element, _di scri ninat or, to hold the
discriminator and a method for each element to determine if it is the current
valid value for the choice. For each element in the choice, a method

i sSet el em nane() is generated. If the element is the currently valid value,
its i sSet method returns t rue. If not, the method returns f al se.

The discriminator is set in each of the complex type elements’ setter

methods. This means that while any of the elements in the Java object

representing the complex type may contain valid data, the discriminator

points to the last element whose value was set. As stated in the Web

services specification only the element to which the discriminator is set will

be placed on the wire by a server. For Artix developers this has two

implications:

1. Artix servers will only write out the value for the last element set on an
object representing a choi ce complex type.

2. When Artix clients receive an object representing a choi ce complex
type, only the element pointed to by the discriminator will contain valid
data.

Using XMLSchema Complex Types

Example Suppose you had a contract with the complex type, t errai nReport, shown
in Example 60.

Example 60: terrainReport Description

<conpl exType nanme="terrai nReport">
<choi ce>
<el enent name="water" type="xsd:float" />
<el enent name="pi er" type="xsd:short" />
<el enent name="street" type="xsd:long" />
</ choi ce>
</ conpl exType>

The Java class generated to represent t errai nReport would be similar to
Example 61.

Example 61: terrainReport Java Class

/1 Java
public class Terrai nReport
{

public static final String TARGET _NAMESPACE =
"http://d obeStrol | ers. coni';

private String _ discrinnator;
private float water;

private short pier;
private long street;

91

CHAPTER 4 | Working with Artix Data Types

Example 61: terrainReport Java Class

public void setVWater(float _v)
{

this. water=_v;
_discrimnator="water"’

}
public float getVWater()

{

return water;

}
publ i c bool ean i sSetWater ()
{

if(__discrimnator !'= null &%
__discrimnator. equal s("water")) {
return true;

}

return fal se;

}

public void setPier(short _v)
{
this. pier=_v;
_discrimnator="pier";
}
public short getPier()

{

return pier;

publ i c bool ean i sSetPier ()
{

if(__discrimnator !'= null &%
__discrimnator.equal s("pier")) {
return true;

}

return fal se;

}

92

Using XMLSchema Complex Types

Example 61: terrainReport Java Class

public void setStreet(long _v)
{
this.street=_v;
_discrimnator="street";
}
public long getStreet()
{

return street;

}
publ i c bool ean i sSet Street ()
{
if(__discrimnator !'= null &%
__discrimnator.equal s("street")) {
return true;

}
return fal se;
}
public void _set ToNoMenber ()
{
_discrimnator = null;
}
public String toString()
{
StringBuffer buffer = new StringBuffer();
if (water !'=null) {
buf f er. append(“water: "+water+"'\n");
}
if (pier '=null) {
buf f er. append("pier: "+pier+'\n");
}
if (street !'=null) {
buf f er. append(“street: "+street+"\n");
}
return buffer.toString();
}

93

CHAPTER 4 | Working with Artix Data Types

Attributes

Overview

Describing an attribute in
XMLSchema

94

Artix supports the use of attri but e elements and at t ri but e@ oup elements
within the scope of a conpl exType element. When defining structures for an
XML document attribute declarations provide a means of adding information
to be specified within the tag, not the value that the tag contains. For
example, when describing the XML element <val ue

currency="eur 0" >410<\ val ue> in XMLSchema currency would be
described using an attri but e element as shown in Example 62 on

page 95.

The attri but e oup element allows you to define a group of reusable
attributes that can be referenced by all complex types defined by the
schema. For example, if you are defining a series of elements that all use
the attributes cat agory and pubbat e, you could define an attribute group
with these attributes and reference them in all the elements that use them.
This is shown in Example 65 on page 96.

When describing data types for use in developing application logic,
attributes are treated as elements of a structure. For each attribute
declaration contained within a complex type description, an element is
generated in the class for the attribute along with the appropriate getter and
setter methods. The application code must respect the use attribute of the
attribute, but the generated Java code does not enforce this behavior.

An XMLSchema attri but e element has one required attribute and three
optional attributes. The nane attribute is required and identifies the
attribute. The use attribute specifies if the attribute is requi red, opti onal ,
or prohi bi ted. The type attribute specifies the type of value the attribute

Using XMLSchema Complex Types

can take. It is used when the attribute takes a value of a primitive type or of
a type that is predefined in the contract. Example 62 shows an attri bute
element defining an attribute, currency, whose value is a string.

Example 62: XMLSchema for value

<el enent name="val ue">
<conpl exType>
<xsd: si npl eCont ent >
<xsd: ext ensi on base="xsd: i nt eger ">
<xsd: attribute name="currency" type="xsd:string"
use="requi red"/>
</ xsd: ext ensi on>
</ xsd: si nmpl eCont ent >
</ xsd: conpl exType>
</ xsd: el enent >

If the type attribute is omitted from the at tri but e element, the format of
the data value must be described as part of the attri but e element.
Example 63 shows an attri but e element for an attribute, cat agory, that
can take the values aut obi ogr aphy, non-fiction, or fiction.

Example 63: Attribute with an In-Line Data Description

<attribute name="category" use="required">
<si npl eType>
<restriction base="xsd: string">
<enuner ati on val ue="aut obi ogr aphy" />
<enuner ation val ue="non-fiction"/>
<enuneration val ue="fiction"/>
</restriction>
</ si npl eType>
</attri bute>

95

CHAPTER 4 | Working with Artix Data Types

Example 64 shows an alternate description of the cat agory attribute using
the type attribute.

Example 64: Category Attribute Using the type Attribute

<si npl eType name="cat agoryType" >
<restriction base="xsd:string">
<enuner at i on val ue="aut obi ogr aphy" />
<enuneration val ue="non-fiction"/>
<enuneration val ue="fiction"/>
</restriction>
</ si npl eType>
<conpl exType nane="attri but ed">

<attribute nane="category" type="catagoryType" use="required">
</ conpl exType>

The def aul t /f i xed attribute can be used when the use attribute is set to
optional . When the defaul t attribute is given, the value of the generated
element is defaulted to the value specified. When the fi xed attribute is
given, the value of the generated element is set to the value specified and
cannot be changed. In the generated Java class, using the fi xed attribute
results in the generated element not having a setter method.

Describing an attribute group in Using an attribute group in a complex type definition is a two step process.
XMLSchema The first step is to define the attribute group itself. An attribute group is
defined using an at t ri but eG oup element with a number of at t ri but e child
elements. When defining an attribute group, at t ri but eQ oup requires a
nane attribute that defines the string used to refer to the attribute group. The
attribut e children elements define the members of the attribute group and
are specified as shown in “Describing an attribute in XMLSchema” on
page 94. Example 65 shows the description of the attribute group
cat al ogl ndeci es. The attribute group has two members. cat agory is of the
type defined in Example 64 on page 96. pubDat e is of the native
XMLSchema type dat eTi ne and is required.

Example 65: Attribute Group Definition
<attri but eG oup nane="cat al ogl ndi ces">
<attribute nane="catagory" type="catagoryType" />

<attribute nane="pubDate" type="dateTi ne" use="required" />
</attri buteG oup>

96

Mapping to Java

Using XMLSchema Complex Types

The second step is using an attribute group is to use the attribute group in
the definition of a complex type. You use attribute groups in complex type
definitions by using the at t ri but eG oup element with the ref attribute. The
value of the ref attribute is the name given the attribute group that you
want to use as part of the type definition. For example if you wanted to use
the attribute group cat al ogl ndeci es in the complex type dvdType, you
would use <at tri buteQ oup ref="cat al ogl ndeci es" /> as shown in
Example 66.

Example 66: Complex Type with an Attribute Group

<conpl exType nane="dvdType">
<sequence>
<el enent name="title" type="xsd:string" />
<el enent name="director" type="xsd:string" />
<el enent name="nunCopi es" type="xsd:int" />
</ sequence>
<attributeG oup ref="catal ogl ndeci es" />
</ conpl exType>

Attributes are mapped to elements in the generated Java class for a complex
type. For each at tri but e element in a complex type definition, a
corresponding element, along with getter and setter methods, will be added
to the generated Java class for the type. For example, a contract with the
complex type shown in Example 67 would generate a class with three sets
of getter/setter methods.

Example 67: techDoc Description

<conpl exType nane="t echDoc" >
<al | >
<el enent name="product" type="xsd:string" />
<el enent name="versi on" type="xsd: short" />
<al | >
<attribute name="useful | ness" type="xsd:float" use="optional"
defaul t="0.01" />
</ conpl exType>

97

CHAPTER 4 | Working with Artix Data Types

The Java class generated to represent it would be similar to Example 68.

Example 68: techDoc Java Class

/1 Java
public class TechDoc
{

public static final String TARGET _NAMESPACE =
"http://ww: docUSA or g/ usability";

private String product;
private short version;
private Fl oat usefull ness = new Fl oat (0. 01);

publ i c voi d setProduct (String val)
{

pr oduct =val ;

public String getProdcut ()
{

return product;

}

public void setVersion(short val)

{

ver si on=val ;

publ i c short getVersion()
{

return version;

}

public voi d setUseful | ness(Fl oat val)

{

usef ul | ness=val ;

public Float getUseful |l ness()
{

return useful |l ness;

}

98

Using XMLSchema Complex Types

Example 68: techDoc Java Class

public String toString()

{
StringBuffer buffer = new StringBuffer();

if (prudcut !'= null) {
buf f er. append(" product : "+product +*\ n");
}

if (version!=null) {
buf f er. append(" versi on: "+version+'\n");

if (usefullness !'=null) {
buf f er. append(" usef ul | ness: "+useful | ness+"\n");

}
return buffer.toString();

}
}

Attribute groups are mapped into Java as if the members of the group were
explicitly used in the type definition. If your attribute group has three
members, and it is used in a complex type, the generated class for that type
will include an element, along with the getter and setter methods, for each
member of the attribute group. For example, the complex type defined in
Example 66, Artix would generate a class that contained the members

cat agory and pubbDat e to support the members of the attribute group used
in the definition as shown in.

Example 69: dvdType Java Class

/'l Java
public class Dvd
{

private String title;
private String director;
private short numCopi es;
private Catagory catagory;
private Cal endar pubDat e;

99

CHAPTER 4 | Working with Artix Data Types

Example 69: dvdType Java Class

public void setTitle(String val)

{
title=val;
}
public String getTitle()
{
return title;
}
public void setDirector(String val)
{
di rector=val ;
}
public String getDi rector()
{
return director;
}

publ i c voi d set NunCopi es(short val)
{

nunCopi es=val ;

public short get NunmCopi es()
{

return nunCopi es;

}

publ i c voi d set Cat agory(Catagory val)
{

cat agor y=val ;

publ i ¢ Catagory get Catagory()
{

return catagory,

}

publ i c voi d setPubDat a(Cal endar val)

{
pubDat e=val ;

publ i ¢ Cal endar get PubDat e()

{
return pubDat e;

}

100

Using XMLSchema Complex Types

Example 69: dvdType Java Class

public String toString()
{

.
}

101

CHAPTER 4 | Working with Artix Data Types

Nesting Complex Types

Overview

Nesting with Named Types

102

XMLSchema allows you to define complex types that contain elements of a
complex type through a process called nesting. There are two ways of
nesting complex types:

® Nesting with Named Types

® Nesting with Anonymous Types

When you nest with a named type your element declaration is the same as
when the element was of a primitive type. The name of the complex type
that describes the element’s data is placed in the element’s t ype attribute as
shown in Example 70.

Example 70: Nesting with a Named Type

<conpl exType nane="t weet yBi rd">
<sequence>
<el enent name="caged" type="xsd: bool ean" />
<el enment nane="granny_proxi mty" type="xsd:int" />
</ sequence>
</ conpl exType>
<conpl exType nane="syl vester State">
<sequence>
<el ement name="hunger" type="xsd:int" />
<el enent name="food" type="tweetyBird" />
</ sequence>
</ conpl exType>

The complex type syl vest er St at e includes an element, f ood, of type
tweet yBi rd. The advantage of using named types is that t weet yBi rd can be
reused as either a standalone complex type or nested in another complex
type description.

Artix will generate a class for each of the named types. The type containing
the nested type will contain an element of the Java type generated for its
class. For example, the type defined in Example 70 will result in the
generation of two types:Tweet yBi rd and Syl vest er St at e. The generated
type Syl vest er St at e will contain an element food that is of type

Tweet yBi rd.

Example using named nested
types

Using XMLSchema Complex Types

If you had an application using the complex type shown in Example 70 on
page 102 your application would include two classes to support it,
Tweet yBi rd and Syl vester State.

Example 71 shows the generated Java class for t weet yBi rd.

Example 71: TweetyBird Class

/1 Java
public class TweetyBird
{

public static final String TARGET _NAMESPACE =
"http://toonville.org/foodst uf fs";

private bool ean caged;
private int granny_proximty;

publ i ¢ bool ean i sCaged()
{

return caged;

}

public voi d set Caged(bool ean val)
{

caged=val ;

}

public int get@anny_proxi mty()
{

return granny_proximty;

}

public void setGanny_proximty(int val)

{
granny_proxi mty=val ;

}

103

CHAPTER 4 | Working with Artix Data Types

Example 71: TweetyBird Class

public String toString()

{
StringBuffer buffer = new StringBuffer();

if (caged !'=null) {
buf f er. append(" caged: "+caged+'\n");

}
if (granny_proximty != null) {
buf f er. append(" granny_proxi mty: "+granny_proxi mty+"'\n");

return buffer.toString();

}
}

The generated class for syl vest er St at e, shown in Example 72, has one
element, f ood, that is an instance of Tweet yBi r d.

Example 72: SylvesterState Class

/] Java
public class Syl vesterState

{
public static final String TARGET _NAMESPACE =

"http://toonville.org/cats";

private int hunger;
private TweetyBird food,;

public int getHunger()
{

}

return hunger;

public voi d setHunger (int val)

{
}

hunger =val ;

104

Using XMLSchema Complex Types

Example 72: SylvesterState Class

public TweetyBird get Food()
{

return food;

}

public voi d setFood(TweetyBird val)
{
f ood=val ;

}

public String toString()
{
StringBuffer buffer = new StringBuffer();

if (caged != null) {

buf f er. append(" hunger: " +hunger+"\n");
}
if (granny_proximty !'= null) {

buf f er. append("f ood: "+f ood+"\n");

return buffer.toString();
}
}

When you set the value of Syl vest er St at e. f ood, you must pass a valid
Tweet yBi rd object to set Food() . Also, when you get the value of

Syl vest er St at e. f ood, you are returned a Tweet yBi r d object which has its
own getter and setter methods. Example 73 shows an example of using the
nested type syl vester Stat e in Java.

Example 73: Working with Nested Complex Types
/1l Java

Syl vesterState hunter = new Syl vesterState();
hunt er . set Hunger (25) ;

TweetyBird prey = new TweetyBird();

prey. set Caged(fal se);

prey. set G anny_proxi mty(0);

hunt er. set Food(prey);

105

CHAPTER 4 | Working with Artix Data Types

Example 73: Working with Nested Complex Types

4 Systemout. println("The cat is this hungry:
"+hunt er. get Hunger ()) ;
Systemout . println("The food i s caged:
"+hunt er. get Food() . i sCaged());

5 TweetyBird out Prey = hunter. get Food();
Systemout.println("Ganny is this many feet away:
"+out Prey. get G anny_proxi mty());

The code in Example 73 does the following:

1. Instantiates a new Syl vest er St at e object and sets its hunger element
to 25.

2. Instantiates a new Tweet yBi rd object and sets its values.
Sets the f ood element on hunter.

4. Prints out the value of the hunger element and the value of the f ood
element’s caged element.

5. Gets the food element, assigns it to out Prey then prints out the
granny_proxi nity element.

106

Nesting with Anonymous Types

Example using anonymous nested
types

Using XMLSchema Complex Types

When you nest with an anonymous type, the element declaration for the
nested complex type does not have a t ype attribute. Instead, the element’s
type description is provided as part of the element’s declaration.

Example 74 shows a description of syl vest er St at e using an anonymous

type.
Example 74: Nesting with an Anonymous Type

<conpl exType nanme="syl vester State">
<sequence>
<el enent name="hunger" type="xsd:int" />
<el enent nane="food" >
<conpl exType>
<sequence>
<el enent name="caged" type="xsd: bool ean" />
<el enent name="granny_proxi mty" type="xsd:int" />
</ sequence>
</ conpl exType>
</ el enent >
</ sequence>
</ conpl exType>

In this example, the f ood element of syl vest er St at e still contains a caged
sub-element and a granny_pr oxi m ty sub-element. However, the complex
type used to describe f ood cannot be re-used.

When you use anonymous nested complex types, Artix generates a single
class for the named complex type. The nested complex type is mapped to a
public class that is internal to the generated class. The internal class will be
given the name of the element for which it is generated. For example, the
type defined in Example 74 would result in the generated class

Syl vest er St at e. The generated class Syl vest er St at e contains a public
class named Syl vest er St at e. Food to represent the f ood element.

If you had an application using the complex type shown in Example 71 on
page 103 your application would include the class Syl vest er St at e to
support it.

107

CHAPTER 4 | Working with Artix Data Types

108

The generated class for syl vest er St at e, shown in Example 75, contains an
internal class Syl vest er St at e. Food. The element f ood is an instance of
Syl vest er St at e. Food.

Example 75: SylvesterState Class

package com i ona. schenas.t ypes. anoncat t ypes;
inport java.util.Arrays;

public class Syl vesterState

{
public static final String TARGET _NAMESPACE =

"http://schenas.iona. conitypes/ anonCat Types";

private int hunger;
private Food food,;

public int getHunger()

{
return hunger;
}
publ i c voi d setHunger(int val)
{
this. hunger = val;
}
publ i ¢ Food get Food()
{
return food;
}
publ i c voi d set Food(Food val)
{
this.food = val;
}

Using XMLSchema Complex Types

Example 75: SylvesterState Class

public String toString()

{

}

StringBuffer buffer = new StringBuffer();
buf f er. append(" hunger: "+hunger+'\n");
if (food !'= null)
{
buf f er. append("food: "+f ood+'\n");

}
return buffer.toString();

public static class Food

{

public static final String TARGET _NAMESPACE =

"http://schenas.iona. conitypes/ anonCat Types";

private bool ean caged;
private int granny_proximty;

publ i ¢ bool ean i sCaged()

{
return caged;
}
publ i c voi d set Caged(bool ean val)
{
this. caged = val ;
}
public int get@&anny_proxi mty()
{
return granny_proxi mty;
}
public void setGanny_proximty(int val)
{
this.granny_proximty = val;
}

109

CHAPTER 4 | Working with Artix Data Types

110

Example 75: SylvesterState Class

public String toString()

{
StringBuffer buffer = new StringBuffer();
buf f er. append(" caged: "+caged+'\n");

buf f er. append(" granny_proxi mty: "+granny_proximty+"\n");
return buffer.toString();

}
}
}

When you set the value of Syl vester Stat e. f ood, you must pass a valid
Syl vest er St at e. Food object to set Food() . Also, when you get the value of
Syl vest er Stat e. f ood, you are returned a Syl vest er St at e. Food object
which has its own getter and setter methods. Example 73 shows an
example of using the nested type syl vest er State in Java.

Example 76: Working with Nested Complex Types

/1 Java

Syl vester State hunter = new Syl vesterState();
hunt er . set Hunger (25) ;

Syl vest er Stat e. Food prey = new Syl vest er St at e. Food() ;
prey. set Caged(fal se);

prey.set G anny_proxi mty(0);
hunt er . set Food(prey) ;

Systemout. println("The cat is this hungry:
"+hunt er. get Hunger ()) ;

Systemout . println("The food is caged:
"+hunt er. get Food() . i sCaged());

Syl vest er St at e. Food out Prey = hunter. get Food() ;

Systemout.println("Ganny is this many feet away:
"+out Prey. get G anny_proxi mty());

The code in Example 73 does the following:

1. Instantiates a new Syl vest er St at e object and sets its hunger element
to 25.

2. Instantiates a new Syl vest er St at e. Food object and sets its values.

3. Sets the f ood element on hunt er.

Using XMLSchema Complex Types

Prints out the value of the hunger element and the value of the f ood
element’s caged element.

Gets the f ood element, assigns it to out Prey then prints out the
granny_proxi mty element.

111

CHAPTER 4 | Working with Artix Data Types

Deriving a Complex Type from a Simple Type

Overview

Java mapping

112

Artix supports derivation of a complex type from a simple type. A simple
type has, by definition, neither sub-elements nor attributes. Hence, one of
the main reasons for deriving a complex type from a simple type is to add
attributes to the simple type.

Example 77 shows an example of a complex type, i nter nati onal Pri ce,
derived by extension from the xsd: deci mal simple type to include a
currency attribute.

Example 77: Deriving a Complex Type from a Simple Type by Extension

<conpl exType nane="i nt ernational Pri ce">
<si npl eCont ent >
<ext ensi on base="xsd: deci mal ">
<attribute name="currency" type="xsd:string"/>
</ ext ensi on>
</ si npl eCont ent >
</ conpl exType>

The si npl eCont ent element indicates that the new type does not contain
any sub-elements and the ext ensi on element defines the derivation by
extension from xsd: deci nal .

A complex type derived from a simple type is mapped to a Java class. The
class will contain an element, val ue, of the simple type from which the
complex type is derived. The class will also have a get _val ue() and a

set _val ue() method. In addition, the generated class will have an element,
and the associated getter and setter methods, for each attribute that extends
the simple type.

Using XMLSchema Complex Types

Example 78 shows the generated Java class representing
i nternational Price class generated from Example 77.

Example 78:internationalPrice Java Class

/1 Java
public class International Price

{

}

public static final String TARGET _NAMESPACE =
"http://moneyTree. coni;

private String currency;
private java. math. Bi gDeci mal _val ue;

public String getQurrency()
{

return currency;

}

public void setCQurrency(String val)
{

currency = val;

}

public java. nat h. Bi gDeci mal get _val ue()

{

return _val ue;

}

public void set_val ue(java. mat h. Bi gDeci mal val)

{

_value = val;

}

public String toString()

{
StringBuffer buffer = new StringBuffer();

if (currency !'= null) {
buf f er. append("currency: "+currency+"\n");

if (_value !'=null) {
buf f er. append(" _val ue: "+ val ue+"\n");

}
return buffer.toString();

}

113

CHAPTER 4 | Working with Artix Data Types

The value of the currency attribute, which is added by extension, can be
accessed and modified using the get Qurrency() and set Qurrency()
methods. The simple type value (that is, the value enclosed between the
<international Price>and </international Pri ce>tags) can be accessed
and modified by the get _val ue() and set_val ue() methods.

114

Using XMLSchema Complex Types

Deriving a Complex Type from a Complex Type

Overview

Schema syntax

Extending a complex type

Using XMLSchema, you can derive new complex types by extending or
restricting other complex types using the conpl exCont ent element. When
generating the Java class to represent the derived complex type, Artix
extends the base type’s class. In this way, the Artix-generated Java code
preserves the inheritance hierarchy intended in the XMLSchema.

You derive complex types from other complex types by using the

conpl exCont ent element and either the ext ensi on or the restriction
element. The conpl exCont ent element specifies that the included data
description includes more than one field. The ext ensi on element and the
restriction element, which are part of the conpl exCont ent definition,
specifies the base type being modified to create the new type. The base type
is specified by the base attribute.

Within the ext ensi on element, you define the additional fields that make up
the new type. All elements that are allowed in a complex type description
are allowable as part of the new type’s definition. For example, you could
add an anonymous enumeration to the new type, or you could use the

choi ce element to specify that only one of the new fields is to be valid at a
time.

Example 79 shows an XMLSchema fragment that defines two complex
types, wi dget O der | nf o and wi dget - der Bi | | I nfo. wi dget OrderBi | | I nfo
is derived by extending wi dget Or der I nf o to include two new fields,

or der Nunber and ant Due.

Example 79: Deriving a Complex Type by Extension

<conpl exType nane="wi dget O der | nf 0" >
<sequence>
<el enent name="armount" type="xsd: deci nal />
<el enent name="or der_dat e" type="xsd: dateTi ne"/>
<el enent name="type" type="xsdl:w dget S ze"/>
<el enment nane="shi ppi ngAddr ess" type="xsd1l: Address"/>
</ sequence>
<attribute name="rush" type="xsd: Q\Nane" use="optional " />
</ conpl exType>

115

CHAPTER 4 | Working with Artix Data Types

Restricting a complex type

116

Example 79: Deriving a Complex Type by Extension

<conpl exType nane="wi dget OrderBi |l | | nfo">
<conpl exCont ent >
<ext ensi on base="xsd1: w dget O der | nf 0" >
<sequence>
<el enent name="ant Due" type="xsd: bool ean"/ >
<el enent name="or der Nunber" type="xsd: string"/>
</ sequence>
</ ext ensi on>
</ conpl exCont ent >
</ conpl exType>

Within the restri cti on element you must list all of the elements and
attributes of the base type. For each element you can add restrictive
attributes to the definition. For example, you could add a maxCceur s
attribute to an element to limit the number of times it can occur. You could
also use the fi xed attribute to force on or more of the elements to have
predetermined values.

Example 80 shows an example of defining a complex type by restricting
another complex type. The redefined type, wal | anal | aAddr ess, can only be
used for addresses in Walla Walla, Washington because the values forci ty,
state, and zi pCode have been fixed.

Example 80: Defining a Complex Type by Restriction

<conpl exType nane="Addr ess" >
<sequence>
<el ement name="nane" type="xsd:string"/>
<el enent name="street" type="xsd:short" naxQccurs="3"/>
<el enent name="city" type="xsd:string"/>
<el enent name="st ate" type="xsd:string"/>
<el enent name="zi pCode" type="xsd: string"/>
</ sequence>
</ conpl exType>

Generated Java code

Using XMLSchema Complex Types

Example 80: Defining a Complex Type by Restriction

<conpl exType nane="wal | aval | aAddr ess" >
<conpl exCont ent >
<restriction base="xsdl: Address" >
<sequence>
<el enent nanme="nane" type="xsd:string"/>
<el enent name="street" type="xsd:short" naxQccurs="3"/>
<el ement nanme="city" type="xsd:string"
fixed="Wallawalla"/>
<el enent name="state" type="xsd:string" fixed="WA" />
<el enent nane="zi pCode" type="xsd:string"fixed="99362" />
</ sequence>
</restriction>
</ conpl exCont ent >
</ conpl exType>

As with all complex types defined in a contract, Artix generates a class to
represent complex types derived from another complex type. When the
complex type is derived from another complex type, the generated class
extends the base class generated to support the base complex type in the
contract.

When the new complex type is derived by extension, the generated class will
include getter and setter methods for all of the added elements and
attributes. The new methods will be generated according to the same
mappings as all other elements.

When the new complex type is derived by restriction, the generated class
will have no new getter or setter methods. It will simply redefine the Artix
specific information needed to marshal and unmarshal the data.

Note: Artix does not enforce the restriction defined in the contract. It is up
to you to ensure that your application logic enforces them.

For example, the schema in Example 79 on page 115 would result in the
generation of two Java classes, W dget Or der I nf o and

Wdget Bi | | Orderlnfo. Wdget O derBil | I nfo would extend

W dget Or der | nf o because wi dget O der Bi | | I nf o is derived by extension
from wi dget O der | nf o. Example 81 shows the generated class for

wi dget OrderBi | | | nf o.

117

CHAPTER 4 | Working with Artix Data Types

Example 81: WidgetOrderBilllnfo

/'l Java
public class WdgetOderBilllnfo extends Wdget O derlnfo
{

public static final String TARGET _NAMESPACE =
"http://w dget Vendor . coni t ypes/ wi dget Types";

private bool ean ant Due;
private String order Nunber;

publ i ¢ bool ean i sAnt Due()

{
return amnt Due;
}
publ i c voi d set Am Due(bool ean val)
{
this.am Due = val;
}
public String getQ der Nunber ()
{
return order Nunber;
}
public void set O derNunber(String val)
{
thi s. order Nunber = val ;
}

public String toString()

{
StringBuffer buffer = new StringBuffer(super.toString());
buf f er. append("ant Due: "+ant Due+'\n");
if (orderNunber != null)

{
buf f er. append(" or der Nunber : " +or der Nunber +*\ n");

return buffer.toString();

118

Using XMLSchema Complex Types

Occurrence Constraints

Overview

The sequence element

XMLSchema allows you to specify the occurrence constraints on three
different XMLSchema elements that make up a complex type definition:
® The sequence element

® The choice element

® The element element

You can specify that a sequence of elements is to occur multiple times by
setting the element’s ni nQccur s and maxCeccur s attributes. The mi nQeceurs
attribute specifies the minimum number of times the sequence must occur
in an instance of the defined complex type. The maxCccur s attribute
specifies the upper limit for how many times the sequence can occur in an
instance of the defined complex type. Example 84 shows the definition of a
sequence type, Qul tur el nf o, with sequence occurrence constraints. The
choice type overall can be repeated O to 2 times.

Example 82: Sequence with Occurrence Constraints

<conpl exType nanme="CQul turel nfo">
<sequence m nQccurs="0" maxQccurs="2">
<el enent name="Nanme" type="string"/>
<el enent name="Lci d" type="int"/>
</ sequence>
</ conpl exType>

Mapping to Java

When a sequence with occurrence constraints is mapped into Java it looks

very similar to a vanilla sequence. Each element still has a getter and setter

methods. However, these methods all take an additional parameter, i ndex,

that specifies which instance of the sequence is being referenced. In

addition, Artix generates a new internal sequence, TypeNane_| nst er nal ,

and four new functions to cope with the multiple occurrences of the type:

® _setSize() allows you to specify how many times the sequence
occurs.

® _getSize() returns the number of time the sequence occurs.

119

CHAPTER 4 | Working with Artix Data Types

® set TypeNare_I nternal () allows to set an instance of the sequence
into one of the occurences.

® _get TypeNare_i nt ernal () returns the instance of the sequence stored
at the specified index.

Example 83 shows an outline of the Java class generated for the type

defined in Example 82.

Example 83: Java Class for Sequence with Occurrence Constraints

public class Qulturel nfo

{

private Qulturelnfo_Internal [] culturelnfo_lnternal;

public int _getSize() {
if (null !'=culturelnfo_Internal) {
return culturelnfo_lnternal.length;

}

return O;

120

Using XMLSchema Complex Types

Example 83:Java Class for Sequence with Occurrence Constraints

public void _setSize(int sz) {
Qul turel nfo.Qulturelnfo_Internal [] temp = new
Qul turel nfo.Qulturelnfo_Il nternal [sz];
if (null !'=culturelnfo_lnternal) {
if (sz <= culturelnfo_lnternal.length) {
for (int x = 0; x < sz; x++) {
tenp[x] = culturelnfo_Internal [X];

}
} else {
for (int x =0; x <culturelnfo_lnternal.length;
x++) {
tenp[x] = culturelnfo_Internal [X];
for (int x =culturelnfo_Internal.length; x < sz;
x++) {

tenp[X] = new
Qul turel nfo.Qulturelnfo_Internal ();

}

} else {
for (int x = 0; X < sz; x++) {
tenp[x] = new Qulturelnfo.Qulturelnfo_Internal ();

}
}
culturelnfo_Internal = tenp;
}
public void

_setQul turelnfo_lInternal (Qul turel nfo. Qulturel nfo_lnternal
val, int indx) {
this.culturelnfo_Internal [indx] = val;

}

public Qul turel nfo.Qulturel nfo_lnternal
_getQul turelnfo_Internal (int indx) {
return cul turelnfo_l nternal [indx];

}

public void set Nane(java.lang. String val, int indx) {
this.culturelnfo_lnternal [indx].setName(val);

}

121

CHAPTER 4 | Working with Artix Data Types

Example 83:Java Class for Sequence with Occurrence Constraints

public int getlLcid(int indx) {
return cul turelnfo_Internal [indx].getLcid();

}

public void setlLcid(int val, int indx) {
this.culturelnfo_lnternal [indx].setLcid(val);

}

public String toString() {
StringBuffer buffer = new StringBuffer();

if (culturelnfo_Internal != null) {
buf fer. append(“cul turelnfo_Internal : " +
java.util.Arrays. asLi st(cul turelnfo_Internal).toString() +
")
}

return buffer.toString();
}

public static class Qulturelnfo_Internal {

private String nane;
private int |cid;

public String get Name() {
return nane;

}

public void setNane(String val) {
this.nane = val;

}

public int getLcid() {
return |cid;

}

public void setLcid(int val) {
this.lcid = val;

}

122

The choice element

Using XMLSchema Complex Types

Example 83:Java Class for Sequence with Occurrence Constraints

public String toString() {
StringBuffer buffer = new StringBuffer();
if (name !'= null) {
buf f er. append(“nane : " + nane + "\n");
}
buf fer.append(“lcid : " + lcid + "\n");
return buffer.toString();

A choi ce type can also be defined with occurrence constraints.You specify
these occurrence constraints on an element by setting the element’s

m nQccur s and maxQceur s attributes. The mi nQccur s attribute specifies the
minimum number of times the choice must occur in an instance of the
defined complex type. The maxCccur s attribute specifies the upper limit for
how many times the choice type can occur in an instance of the defined
complex type. Example 84 shows the definition of a choice type, A ubEvent ,
with choice occurrence constraints. The choice type overall can be repeated
0 to unbounded times.

Example 84: Choice Occurrence Constraints

<conpl exType nane="d ubEvent ">
<choi ce m nCQccurs="0" naxQccur s="unbounded" >
<el enent name="Menber Nane" type="xsd: string"/>
<el enent name="Quest Name" type="xsd:string"/>
</ choi ce>
</ conpl exType>

Mapping to Java

When a choice type with occurrence constraints is mapped into Java it looks
very similar to a vanilla choice type. Each element still has a getter a setter
and an i sSet method. However, these methods all take an additional
parameter, i ndex, that specifies which instance of the choice type is being
referenced. In addition, Artix generates a new internal choice type,
TypeNare_l nst er nal , and four new functions to cope with the multiple
occurrences of the type:

123

CHAPTER 4 | Working with Artix Data Types

124

® setSize() allows you to specify how many times the choice type
occurs.

® _getSize() returns the number of occurences of the choice type.

® _set TypeNarme_l nternal () allows to set an instance of the choice type
into one of the occurences.

® _get TypeNare_i nternal () returns the instance of the choice type
stored at the specified index.

Example 85 shows an outline of the Java class generated for the type
defined in Example 84.

Example 85: Java Class for Choice with Occurrence Constraints

public class d ubEvent

{

private String _ discrininator;
private d ubEvent Internal[] clubEvent_Internal;

public int _getSi ze()

if (null !'= clubEvent_|nternal)
{
return cl ubEvent I nternal .| ength;
}
return O;

}

Using XMLSchema Complex Types

Example 85: Java Class for Choice with Occurrence Constraints

public void _setSize(int sz)

{
d ubEvent. d ubEvent _Internal [] tenp = new
d ubEvent . A ubEvent _| nternal [sz];

if (null '= clubEvent_|nternal)
{
if (sz <= clubEvent _|nternal.|ength)
{
for (int x = 0; X < sz; X++)
{
tenp[x] = cl ubEvent _Internal [X];
}
}
el se
{
for (int x = 0; x < clubEvent_Internal.length; x++)
{
tenp[x] = cl ubEvent _Internal [X];
}
for (int x = clubEvent_Internal.length; x < sz; x+t)
{
tenp[x] = new A ubEvent.d ubEvent _Internal ();
}
}
}
el se
{
for (int x = 0; X < sz; X++)
{
tenp[x] = new A ubEvent.d ubEvent _Internal ();
}
}
cl ubEvent _Internal = tenp;

}

public void _setd ubEvent_Internal (
d ubEvent . d ubEvent I nternal val,
int indx)
{
this.clubEvent _Internal [indx] = val;

}

125

CHAPTER 4 | Working with Artix Data Types

Example 85: Java Class for Choice with Occurrence Constraints

publ i c C ubEvent.d ubEvent _I nternal _getd ubEvent_I nternal (

int indx)

{

return cl ubEvent _Internal [indx];
}
public java.lang. String get Menber Narme(i nt i ndx)
{

return cl ubEvent _I nternal [indx] . get Menber Nare() ;
}
public voi d set Menber Nane(j ava. l ang. String val, int indx)
{

thi s. cl ubEvent _I nternal [i ndx] . set Menber Nane(val) ;
}
publ i c bool ean i sSet Menber Nane(i nt i ndx)
{

return cl ubEvent _Internal [indx].isSet Menber Nane();
}
public java.lang. String get Quest Nane(i nt i ndx)
{

return cl ubEvent _Internal [indx] . get Quest Nane();
}
public voi d set Quest Name(j ava. |l ang. String val, int indx)
{

thi s. cl ubEvent _|I nternal [i ndx] . set Quest Nane(val) ;
}
publ i c bool ean i sSet Quest Narre(i nt i ndx)
{

return cl ubEvent _Internal [indx].isSet Quest Nane();
}

126

Using XMLSchema Complex Types

Example 85: Java Class for Choice with Occurrence Constraints

public String toString() {
StringBuffer buffer = new StringBuffer();

if (clubEvent _Internal != null) {
buf f er. append("cl ubEvent _Internal : " +
java.util.Arrays. asLi st(clubEvent _Internal).toString() +
"\n");
}
if (_discrimnator !=null) {
buf fer. append("D scrimnator : " + _ discrininator +
"\n");

return buffer.toString();
}

public static class A ubEvent _Internal {
private String _ discrininator;

private String nenber Nane;
private String guest Nane;

public String get Menber Nane() {
return (String)nenber Nane;

}

public void set Menber Nane(String val) {
t hi s. menber Nane = val ;

__discrinmnator = "menber Nanme";
}
publ i ¢ bool ean i sSet Menber Nane() {
if(_discrimnpator !'= null &%
__di scrimnator. equal s("nenber Nane")) {
return true;
}
return fal se;
}

127

CHAPTER 4 | Working with Artix Data Types

Example 85: Java Class for Choice with Occurrence Constraints

public String get Qiest Namre() {
return (String)guest Nane;
}

public void set Quest Nane(String val) {
t hi s. guest Name = val ;
__discrimnator = "guest Narme";

}

publ i ¢ bool ean i sSet Quest Nare() {
if(_discrimnator != null &%
__discrininator.equal s("guest Narre")) {
return true;
}
return fal se;

}

public String tostring() {
StringBuffer buffer = new StringBuffer();
if (menberNane != null) {

buf f er. append("menber Nane : " + menber Nane +
"\n");
}
if (guestNanme != null) {
buf f er. append("guest Nane : " + guestNane + "\n");
}
if (_discrimnator !=null) {
buf fer. append("D scrimnator : " + _ discrimnator
+"\n");
return buffer.toString();
}
}
}
The element element You can set minimum and the maximum number of times that an element

in a complex type can occur. You specify these occurrence constraints on an
element by setting the element’s ni nQccur s and naxCecur s attributes. The
m nQccur s attribute specifies the minimum number of times the element
must occur. The maxCeccur s attribute specifies the upper limit for how many

128

Using XMLSchema Complex Types

times the element can occur. For example, if an element, | i ves, were to
occur at least twice and no more than nine times in a complex type it would
be described as shown in Example 86.

Example 86: Occurrence Constraints Setting

<conpl exType nane="houseCat " >
<al | >
<el enent name="nane" type="xsd:string" />
<el enent name="I|ives" type="xsd:short" m nCccurs="2"
maxQceur s="9" />
</all>
</ conpl exType>

Given the description in Example 86, a valid houseCat element would have
a single nane and at least two | i ves. However, a valid houseCat element
could not have more than nine i ves.

Note: When a sequence schema contains a single element definition and
this element defines occurrence constraints, it is treated as an array. See
“SOAP Arrays” on page 144.

Mapping to Java

When a complex type contains an element with its maxCccur s attribute set
to a value greater than one, the element is mapped to an array of the
corresponding Java type. Because XMLSchema requires that the maxCceur s
attribute of an element is set to a value equal to or greater than the value of
the element’s ni nCccur s, the code generator will generate a warning if the
m nCccur s attribute is set without a maxCeccur s attribute. So all valid
elements with an occurrence constraint will be mapped into an array.

Example

For example, the complex type, houseCat , shown in Example 86 will be
mapped to the Java class HouseCat shown in Example 87.

Example 87: HouseCat Java Class

/'l Java
public cl ass HouseCat
{

private String nane;
private short[] lives;

129

CHAPTER 4 | Working with Artix Data Types

Example 87: HouseCat Java Class

public void setName(String val)
{
name=val ;
{
public String get Nane()
{

return nane;

}

public void setLives(short[] val)
{
l'i ves=val ;
{
public short[] getLives()
{

return lives;

}

public String toString()

{
StringBuffer buffer = new StringBuffer();
if (nane !'= null)

{
}

if (lives !'=null)

{

buf f er. append(" nane: "+name+"\n");

buf fer. append("lives: "+l ives+'\n");

return buffer.toString();

}
}

The generated code does not force you to obey the min and the max
occurrence rules from the contract, but your application code should be sure
to obey the contract rules. Attempting to send too few or too many
occurrences of an element across the wire will create unpredictable results.

130

Using XMLSchema Complex Types

Using Model Groups

Overview XMLSchema model groups are a convenient shortcut that enables you to
reference a group of elements from a user-defined complex type.For
example, you could define a group of elements that are common to several
types in your application and then reference the group repeatedly. Model
groups are defined using the gr oup element and are similar to complex type
definitions. The mapping of model groups to Java is also similar to the
mapping for complex types.

Defining a model group in You define a model group in XMLSchema using the gr oup element with the

XMLSchema nane attribute. The value of nane is a string that is used to refer to the group
throughout the schema. group, like conpl exType, can have either sequence,
al |, or choi ce as its immediate child element. Table 5 shows how the
choice of child element affects the behavior of the elements in the group.

Table 5: Group Children

Child Effect

sequence All the members of the group must
be present and are transmitted in

the exact order they appear in the
definition.

all All of the members of the group
must appear no more than once
and their order in unimportant.

choi ce No more than one member of the
group can appear.

Inside the child element, you define the members of the group using

el enent elements. For each member of the group, you specify one el ement .
Group members can use any of the standard attributes for el enent including
m nQccur s and maxQceurs. So, if your group has three elements and one of

131

CHAPTER 4 | Working with Artix Data Types

Using a model group in a type
definition

132

them can occur up to three times, you would define a group with three
el enent elements, one of which would use maxCccur s="3". Example 88
shows a model group with three elements.

Example 88: Model Group

<group name="passenger">
<sequence>
<el enent name="nane" type="xsd:string" />
<el enent name="cl ubNun{ type="xsd:|ong" />
<el enent name="seat Pref" type="xsd:string" naxQccurs="3" />
</ sequence>
</ gr oup>

Once a model group has been defined, you can use it as part of a complex
type definition. To use a model group in a complex type definition, you use
the gr oup element with the ref attribute. The value of ref is the name given
to the group when it was defined. For example, to use the group defined in
Example 88 you would use <group ref="tns: passenger" /> as shown in

Example 89.

Example 89: Complex Type with a Model Group

<conpl exType nane="reservation">
<sequence>
<group ref="tns: passenger" />
<el enent name="origi n" type="xsd:string" />
<el enent name="destination" type="xsd:string" />
<el enent name="fl|tNunt type="xsd:|ong" />
</ sequence>
</ conpl exType>

When a model group is used in a type definition, the group becomes a
member of the type. So an instance of reservat i on would have four
members. The first of which would be passenger and have the members
defined by the group in Example 88 as shown in Example 90.

Example 90: /nstance of a Type with a Group

<r eservation>

Mapping to Java

Using XMLSchema Complex Types

Example 90: /nstance of a Type with a Group

<passenger >
<name>A. Snart </ nane>
<cl ubNun»99</ cl ubNun»
<seat Pr ef >i sl el</ seat Pref >
</ passenger >
<ori gi n>LAX</ ori gi n>
<dest i nat i on>FRA</ dest i nat i on>
<f | t Nun»34567</ f | t Nun»
</reservation>

Artix maps model groups to Java classes using the same mapping used for
complex types. For example, Artix would generate a Java class called
Passenger to represent the group passenger defined in Example 88 on
page 132. The generated class would have three members, one for each
member of the group, and the associated getter and setter methods as
shown in Example 91.

Example 91: Class for a Group

publ i c cl ass Passenger

{
private String nane;
private |ong cl ubNum
private String[] seatPref;

public String get Name()
{

return nane;

}

public void setNane(String val)
{

this.name = val;

}

133

CHAPTER 4 | Working with Artix Data Types

134

Example 91: Class for a Group

}

If the group definition used choi ce, the Artix generated class would also
include methods for determining which member of the group was valid. See
“Using XMLSchema Complex Types” on page 84 for a detailed discussion of

public | ong getd ubNum()
{

}

return cl ubNum

public voi d setd ubNun(l ong val)
{

this.clubNum= val;

}

public String[] getSeatPref()
{

return seatPref;

}
public void setSeatPref(String[] val)
{
this.seatPref = val;
}

the mapping.

When Artix encounters a group in a complex type definition it maps the
group to a class member of the type generated for the group’s definition. For
example, the generated class for reservation, defined in Example 89 on
page 132, would include a member of type Passenger as shown in

Example 92.

Example 92: Type with a Group

public class Reservation

{

private Passenger passenger;
private String origin;
private String destination;
private long fltNum

Using XMLSchema Complex Types

Example 92: Type with a Group

publ i c Passenger get Passenger ()

{
return passenger;
}
public voi d set Passenger (Passenger val)
{
this. passenger = val;
}
public String getQigin()
{
return origin;
}
public void setQigin(String val)
{
this.origin = val;
}

135

CHAPTER 4 | Working with Artix Data Types

Using XMLSchema any Elements

Overview

Describing an any in the contract

136

An XMLSchema any is a special element used to denote that an element’s
contents are undefined. An element defined using any can contain any XML
data. When mapped to Java, an any element is mapped to a SOAPE enent
as called for in the JAX-RPC specification.

Example 93 shows the syntax for defining an element as an any in an Artix
contract.

Example 93: Syntax of an any
<any [maxCccurs = max] [m nCccurs = mnj
[namespace = ((##any | ##other) | List of (anyUR |
(##t ar get Nanespace | ##l ocal)))]
[processContents = (lax | skip | strict)] />

Table 6 explains the details of the optional attributes.

Table 6: Attributes for an any

Attribute Explanation

maxCeceur s Specifies the maximum number of times the
element can occur. Default is 1.

m nCcecur s Specifies the minimum number of times the
element must occur. Default is 1.

Using XMLSchema any Elements

Table 6: Attributes for an any

Attribute

Explanation

nanmespace

Specifies how to determine the namespace to use
when validating the contents of the any. Valid
entries are:

##any(default) specifies that the contents of the
any can be from any namespace.

##other specifies that the contents of the any can
be from any namespace but the target namespace.

list of URIs specifies that the contents of the any

are from one of the listed namespaces in the space

delimited list. The list can contain two special

values:

® ## ocal which correspondes to an empty
namespace.

® st arget Namespace which corrensponds to the
tager namespace of the schema in which the
any is defined.

processCont ent s

Specifies how the contents of the any are validated.
Valid entries are:

strict(default) specifies that the contents of the any
must be a valid and well-formed XML document.

skip specifies that no validation is done on the
contents of the any. The only constraint is that it
must be a well-formed XML element.

lax specifies that if there is an XMLSchema
definition available to validate the contents of the
any, then it must be valid. If there is no
XMLSchema definition available, then validation is
skipped.

137

CHAPTER 4 | Working with Artix Data Types

Mapping to Java

138

Example 94 shows the definition of a type, wi | dCar d, that contains an any.
The contents of wi | dCar d can be defined in any, or no, namespace and the
validation of the contents is only performed if there is schema available.

Example 94: Complex Type with an any

<conpl exType nane="wi | dCar d">
<sequence>
<any nanmespace="##any" processContents="|ax" />
</ sequence>
</ conpl exType>

XMLSchema any elements are mapped to a Java element of type

j avax. xn . soap. SOAPE enent . The member is named _any and it is given
associated setter and getter methods. If a complex type contains more than
one any element the additional any elements are named _any_n, where n is
an integer starting at one. For example, if a complex type had two any
elements the generated Java type would have two

j avax. xni . soap. SQAPEl enent members, _any and _any_1.

Example 95 shows the Java class generated for the complex type wi | dCard,
shown in Example 94 on page 138.

Example 95: Generated Java Class with an any

/'l Java
inport java.util.*;
inport javax.xn .soap. SOAPH erent ;

public class WIdCard

{
public static final String TARGET _NAMESPACE =
"http://packageTracki ng. coni t ypes/ packageTypes";

private javax.xnl.soap. SOAPE enent _any;

publ i c javax. xm . soap. SOAPE enent get _any()
{

return _any;

}

Parsing an any

Using XMLSchema any Elements

Example 95: Generated Java Class with an any

public void set_any(javax. xm . soap. SOAPE enent val)

{

this._any = val;

}

public String toString()

{
StringBuffer buffer = new StringBuffer();
if (_Lany '=null) {

buf f er. append("_any: "+ any+'\n");

return buffer.toString();

}

}

If the mi nCccurs or maxQeeur s attribute of the any element are set, then the
Java element is mapped to an array of SOAPEl enent . For example, if the any
element in wi | dCar d had maxQccur s="4", the _any member of the generated
Java class would be a j avax. xni . soap. SOAPE enent [] .

The fact that an any element can hold any well-formed XML data makes it
very flexible. However, that flexibility requires that your application is
designed to handle all the possible contents of the any.

For most applications, the contents of the any will have a finite number of
forms and these are known at development time. For example, if your
application is retrieving student records from a college database it may
receive different records based on if the student is a graduate student or an
under graduate student. In cases where you know at development time the
possible contents of the any, you can query the any for the name of its root
element using SOAPE! erent . get El enent Name() and determine from the
returned j avax. xn . soap. Name how to process the contents.

Note: Because the contents of the any is an XML document made up
entirely of text, you do not necessarily need to determine the form of the
data. You can still extract the contents using the SOAPE enent 's methods.

139

CHAPTER 4 | Working with Artix Data Types

140

Example 96 shows code for querying the any in W1 dCard for its element
name. Once the element is determined, the application uses the local part of
the name to determine how to process the contents of the any.

Example 96: Determining the Contents of an any
I/ Java
inport java.util.*;

inport javax.xmn .soap.*;

W/ dCard dat aHol der;

// dient proxy, proxy, instantiated earlier
dat aHol der = proxy. get Record();
SQOAPH enent st udent Rec=dat aHol der . get _any();

/1 Get the root elenent name of the returned record
Nane recor dType = student Rec. get E ement Nane() ;

if (recordType. get Local Narme() . equal s("gradRec"))
{

I/ process the data as a graduate student record

if (recordType. get Local Nane() . equal s("ugradRec"))
{

}

Il process the data as a graduate student record

You can parse the XML content of the any using the

SQAPH enent . get Chi | dEI enent s() method. get Chi | dEl enent s() returns a
Java Iterator containing a list of j avax. xni . soap. Node elements
representing the nodes of the XML document contained in the any. These
nodes will in turn either be SOAPHE enent nodes or j avax. xni . soap. Text
nodes which will require further parsing.

Example 97 shows code for extracting the data from an any containing a
houseCat , defined in Example 86 on page 129.

Example 97: Parsing the Contents of an any
/1l Java
inport java.util.*;

inport javax.xm .soap.*;

W dCard dat aHol der;

Using XMLSchema any Elements

Example 97: Parsing the Contents of an any

// dient proxy, proxy, instantiated earlier
dat aHol der = proxy. get Cat () ;
SQOAPH enent cat Hol der = dat akbl der. get _any();

/1l Get the XM. node fromthe returned any
Iterator catlt = catHol der. get Chi | dEl erment s();

if (catlt.hasNext())
{

Systemout. println("The cat’s nane is
"+catlt.next().getValue());

}

el se

{
Systemout. println(" Ml forned houseCat: No el enents.");

return(-1);

}
if (catlt.hasNext())

for (Node index=catlt.next(); (catlt.hasNext());
i ndex=cat I t. next ())

{

Systemout . printl n("The cat |ived
"+ ndex. get Val ue() +"years");

}

el se

{
Systemout. println("Ml forned houseCat: No lives.");

return(-1);
}
}
The code in Example 97 does the following:
1. Gets the data and extracts the any from it.
2. Gets the children elements of the any.

3. Checks if there are any children elements. If there are, print the name.
If not, print an error message.

4. Checks if there are any more children elements. If there are, iterate
through the list and print the lives. If not, print an error message.

141

CHAPTER 4 | Working with Artix Data Types

Putting content into an any

142

To get the value of the nodes, the code uses the get Val ue() method of the
node. For a SOAPE enent node, get Val ue() returns the value of the element
if it has one, or it returns the value of the first child element that has one.
For example, if the SOAPEl ement contains the element <nanme>Joe</ nane>,
get Val ue() returns Joe. If the SOAPEI enent contains

<houseCat ><nane>Joe</ nane><| i ves>12</| i ves></ houseCat >, get Val ue()

returns Joe. For a Text node, get Val ue() returns the text stored in the
node.

When adding content into an any, you build up the XML document
contained in the any from scratch. The SOAPH enent provides a number of
methods for adding attributes and elements. It has methods for setting the
value of the contained elements.

Example 98 shows the code for creating an any element containing the XML
document <houseCat ><nane>Joe</ nane><l i ves>12</ | i ves></ houseCat >.

Example 98: Building an any

I/ Java
inport java.util.*;
inport javax.xn.soap.*;

SQOAPH enent Factory factory = SOAPH enent Fact ory. newl nst ance() ;
SQAPH enent anyContent = factory. create("houseCat");

SQOAPH enment tnp = anyCont ent. addChi | dEl enent (" nane") ;
t np. addText Node(" Joe") ;

tnp = anyCont ent . addChi | dEl enent ("1 i ves");
t np. addText Node("12");

W/ dCard dat aHol der = new W dCard();

dat aHol der . set _any();

The code in Example 98 does the following:

1. Gets an instance of the SOAPHE enent Fact ory.

2. Creates a new SOAPHE enent , using the factory, to hold the contents of
the any.

3. Adds the nane child element and set its value.
4. Adds the Iives child element and set its value.

Using XMLSchema any Elements

5. Creates a new W1 dCar d and set the any element to the newly created
SQAPE! errent .

More information For a detailed description of the classes used to represent and work with any
elements read the SOAP with Attachments API for Java™ (SAAJ) 1.2
specification.

143

CHAPTER 4 | Working with Artix Data Types

SOAP Arrays

Overview

Syntax of a SOAP Array

144

SOAP encoded arrays support the definition of multi-dimensional arrays,
sparse arrays, and partially transmitted arrays. They are mapped directly to
Java arrays of the base type used to define the array.

SOAP arrays can be described by deriving from the SOAP- ENC Array base
type using the wsdl : ar r ayType. The syntax for this is shown in Example 99.

Example 99: Syntax for a SOAP Array derived using wsdl:arrayType

<conpl exType nane="TypeNane">
<conpl exCont ent >
<restriction base="SOAP-ENC Array">
<attribute ref="SOAP- ENC arrayType"
wsdl : arrayType="H enent Type<Ar r ayBounds>"/ >
</restriction>
</ conpl exCont ent >
</ conpl exType>

Using this syntax, TypeNane specifies the name of the newly-defined array
type. El erment Type specifies the type of the elements in the array.
ArrayBounds specifies the number of dimensions in the array. To specify a
single dimension array you would use [] ; to specify a two-dimensional array
you would use either [1[] or[,].

You can also describe a SOAP Array using a simple element as described in
the SOAP 1.1 specification. The syntax for this is shown in Example 100.

Example 100:Syntax for a SOAP Array derived using an Element

<conpl exType nane="TypeNane">
<conpl exCont ent >
<restriction base="SOAP-ENC Array">
<sequence>
<el enent name="FHE enent Nane" type="FE enent Type"
maxCccur s="unbounded" / >
</ sequence>
</restriction>
</ conpl exCont ent >
</ conpl exType>

Java mapping

SOAP Arrays

When using this syntax, the element’s maxCccurs attribute must always be
set to unbounded.

SOAP arrays, like basic arrays, are mapped to Java arrays and do not cause
a new class to be generated to represent them. Instead, any message part
that was specified in the Artix contract as being of type ArrayType or any
element of another complex type that was of type ArrayType in the Artix
contract would be mapped to an array of the appropriate type.

For example, the SOAP Array, SOAPSt ri ngs, shown in Example 101 defines
a one-dimensional array of strings. The wsdl : arr ayType attribute specifies
the type of the array elements, xsd: st ri ng, and the number of dimensions,
[1 implying one dimension.

Example 101:Definition of a SOAP Array

<conpl exType nane="SOAPStri ngs">
<conpl exCont ent >
<restriction base="SOAP- ENC Array">
<attribute ref="SOAP-ENC arrayType"
wsdl : arrayType="xsd: string[]"/>
</restriction>
</ conpl exCont ent >
</ conpl exType>

Any message part of type SOAPSt ri ngs and any complex type element of
type SsoAPSt ri ngs would be mapped to String[]. So the contract fragment
shown in Example 102, would result in the generation a Java method

cel ebVasher () that took a parameter, badLang, of type String[].

Example 102:Operation Using an Array

<nessage name="badlLang">
<part name="statenent" type="SOAPStrings" />
</ message>
<por t Type nane="censor">
<oper ati on name="cel ebWasher ">
<i nput nessage="badlLang" nane="badlLang" />
</ oper at i on>
</ por t Type>

145

CHAPTER 4 | Working with Artix Data Types

Multi-dimensional arrays

Sparse and partially transmitted
arrays

146

Multi-dimensional arrays are also mapped to a Java array of the appropriate
type. In the case of a multi-dimensional array, the generated Java array
would have the same dimensions as the SOAP array. For example, if
SQAPSt ri ngs were mapped to a two-dimensional array, as shown in
Example 103, the mapping of cel ebVasher () would take a parameter,
badLang, of type String[][].

Example 103:Definition of a two-dimensional SOAP Array

<conpl exType nane="SOAPStri ngs">
<conpl exCont ent >
<restriction base="SOAP-ENC Array">
<attribute ref="SOAP- ENC arrayType"
wsdl : arrayType="xsd: string[][]"/>
</restriction>
</ conpl exCont ent >
</ conpl exType>

Sparse and partially transmitted arrays are simply special cases of how an
array is populated. A sparse array is an array where not all of the elements
are set. For example, if you had an array, i nt Array[], of 10 integers and
only filled inintArray[1], i ntArray[6], and i nt Array[9], it would be
considered a sparse array.

A partially transmitted array is an array where only a certain range of
elements are set. For example, if you had a two dimensional array,

hot Mat ri x[x] [y], and only put values in elements where 9 > x > 5 and 4
>y > 0, it would be considered a partially transmitted array.

Artix handles both of these cases automatically for you. However, due to
differences between Web service implementations, an Artix Java client may
receive a fully allocated array with only a few elements containing valid
data.

Holder Classes

Holder Classes

Overview

Working with holder classes

WSDL allows you to describe operations that have multiple output
parameters and operations that have in/out parameters. Because Java does
not support pass-by-reference, as C+ + does, the JAX-RPC 1.1 specification
prescribes the use of holder classes as a mechanism to support output and
infout parameters in Java. The holder classes for the Java primitives, and
their associated wrapper classes, are packaged in j avax. xm . r pc. hol der s.
The names of the holder classes start with a capital letter and end with the
Hol der postfix. The name of the holder class for | ong is LongHol der . For
primitive wrapper classes, W apper is placed after the class name and before
Hol der . For example, the holder class for Long is LongW apper Hol der .

For complex types, Artix generates holder classes to represent the complex
type when needed. The generated holder classes follows the same naming
convention as the primitive holder classes and implement the

j avax. xm . rpc. hol ders. Hol der interface. For example, the holder class for
a complex type, hand, would be HandHol der .

All holder classes provide the following:

® A public field named val ue of the mapped Java type. For example, a
HandHol der would have a val ue field of type Hand.

® A constructor that sets val ue to a default.

® A constructor that sets val ue to the value of the passed in parameter.

A holder class is used in the generated Java code when an operation
described in your Artix contract either has an output message with multiple
parts or when an operation’s input message and output message share a
part. For a part to be shared it must have the same name and type in both
messages. Example 104 shows an example of an operation that would
require holder classes in the generated Java code.

Example 104:Multiple Output Parts
<nessage nane="i ncom ngPackage" >

<part name="1D' type="xsd:long" />
</ message>

147

CHAPTER 4 | Working with Artix Data Types

148

Example 104:Multiple Output Parts

<nessage nane="out goi ngPackage" >
<part name="rerouted" type="xsd:bool ean" />

<part name="destination" type="xsd:string" />
</ message>

<port Type nane="portal ">
<operati on nane="router">

<i nput nessage="tns: i ncom ngPackage" nane="reci eved" />

<out put message="t ns: out goi ngPackage" nane="shi pped" />
</ operati on>

</ port Type>

Artix will use holder classes for the parameters of the Java method
generated to implement the operation, rout er, because the output message

has multiple parts. Example 105 shows the resulting Java method
signature.

Example 105:/nterface Using Holders

/] Java
inport java.net.*;
inport java.rm.?*;

public interface portal extends java.rm . Renote
{

publ i c bool ean router(long ID,

javax. xm . rpc. hol ders. Stri ngHol der desti nati on)
throws Renot eExcepti on;

}

The first part of the out goi ngPackage message, rer out ed, is mapped to a
boolean return value because it is the first part in the output message.
However, the second output message part, desti nati on, is mapped to a
holder class because it has to be mapped into the method’s parameter list.

Holder Classes

An example of an application that implements the port al interface might be
one that determines if a package has reached its final destination. The
rout er method would check to see if it need to be forwarded to a new
destination and reset the destination appropriately. Example 106 shows
how a server might implement the router method.

Example 106:Portal Implementation

/] Java
inport java.net.*;
inport java.rm.?*;

// The met hods bool ean bel ongsHere() and
/1 String getFinal Destination() are |eft
// for the reader to inplenent.

public class portal | npl
{

publ i c bool ean router(long ID,
javax. xm . rpc. hol ders. Stri ngHol der desti nati on)

{
i f (bel ongsHere(ID))
{
return fal se;

}

destination. val ue = getFi nal Destination(lD);
return true;

}

Example 107 shows a client calling rout er () on a portal service.
Example 107:Client Calling router()

/1 Java

StringHol der destination = new StringHol der();

long ID = 1232;
bool ean conti nui ng;

149

CHAPTER 4 | Working with Artix Data Types

Example 107:Client Calling router()

I/ proxy portal dient obtained earlier
continuing = portaldient.router(lID, destination);

if (continuing)
{
Systemout . print| n("Package "+l D" is going to
"+desti nati on. val ue);

150

Using SOAP with Attachments

Using SOAP with Attachments

Overview

JAX-RPC mappings

When a contract specifies that one or more of an operation’s messages are
being sent using SOAP with attachments, also called a MIME multi-part
related message, Artix treats the data being passed as an attachment
differently than it would normally. The JAX-RPC specification defines
specific Java data types to be used when using SOAP attachments. The data
mappings for the data passed as a SOAP attachment is derived from the
MIME type specified in the contract for the message part.

In addition, Artix support the use of j avax. act i vat i on. Dat aHandl er objects
for handling SOAP attachments. Dat aHandl er objects provide a generic
means of dealing with the data passed as a SOAP attachment. They also
allow you to directly access the stream representation of the data sent as a
SOAP attachment.

When Artix generates code for an operation that has one or more of its
message bound to a SOAP with attachment payload format, it inspects the
binding to see which parts of the bound message are being sent as
attachments. For the message parts that are to be sent as attachments, it
disregards the data type mappings described in previous sections and maps
the corresponding method parameter based on the MIME type specified for
the part in the contract. Table 7 shows the mappings for the supported
MIME types.

Table 7: MIME Type Mappings

MIME Type Java Type
i mage/ gi f@ java. awt . | rage
i mage/ j peg java. awt . | nage
text/plain java.lang. String
text/ xm javax. xmi . transf orm Sour ce
appl i cati on/ xm javax. xm . transf orm Sour ce
multipart/* javax.nmail.internet. M nmeMil ti part

151

CHAPTER 4 | Working with Artix Data Types

a. Artix only supports the decoding of images in the GIFF format. It does not
support the encoding of images into the GIFF format.

For example, the contract shown in Example 108 has one operation, st ore,
whose input message has three parts: a patient name, a patient ID number,
and a base64Bi nary buffer to hold an image. The input message is bound to
a SOAP message with attachments using the nmi ne: mul ti Part element.

Example 108:Using SOAP with Attachments

<?xm version="1.0" encodi ng="UTF- 8" ?>
<defi ni ti ons nane="XraySt or age"
t ar get Namespace="ht t p: // nedi St or. or g/ x- rays"
xm ns="http://schenas. xm soap. org/ wsdl / "
xm ns:tns="http://nedi Stor.org/x-rays"
xm ns: m me="ht t p: // schemas. xm soap. or g/ wsdl / m ne/ "
xm ns: soap="ht t p: // schemas. xm soap. or g/ wsdl / soap/ "
xm ns: xsd="ht t p: / / wan W3. or g/ 2001/ XM_Schema" >
<message name="st or Request ">
<part nane="patient Name" type="xsd:string" />
<part name="patient Nunber" type="xsd:int" />
<part name="xRay" type="xsd: base64B nary"/>
</ message>
<message nane="st or Response" >
<part name="success" type="xsd: bool ean"/>
</ message>
<por t Type nane="xRaySt or age" >
<oper ati on name="store">
<i nput nessage="t ns: st or Request" nane="st or Request "/ >
<out put message="t ns: st or Response" nane="st or Response"/>
</ oper at i on>
</ por t Type>
<bi ndi ng name="xRay$t or ageBi ndi ng" type="tns: xRaySt or age" >
<soap: bi ndi ng styl e="rpc"
transport="http://schenmas. xn soap. or g/ soap/ htt p"/>
<oper ati on name="store">
<soap: operati on soapAction="" style="rpc"/>

152

Using SOAP with Attachments

Example 108:Using SOAP with Attachments

<i nput nane="st or Request ">
<m ne: mul ti part Rel at ed>
<m ne: part name="bodyPart" >
<soap: body encodi ngStyl e="htt p://schenas. xm soap. or g/ soap/ encodi ng/ "
namespace="htt p: // nmedi St or. or g/ x-rays" use="encoded"/>
</ m ne: part >
<m ne: part name="i mageDat a" >
<m ne: content part="xRay" type="inage/jpeg"/>
</ m ne: part >
</ m ne: mul ti part Rel at ed>
</i nput >
<out put name="st or Response" >
<soap: body encodi ngStyl e="http://schenas. xn soap. or g/ soap/ encodi ng/ "
namespace="ur n: At t achrment Servi ce" use="encoded"/>
</ out put >
</ oper at i on>
</ bi ndi ng>
<servi ce name="xRaySt orageServi ce">
<port bi ndi ng="t ns: xRaySt or ageBi ndi ng" name="xRaySt or agePort ">
<soap: address | ocati on="http://| ocal host: 9000"/ >
</ port>
</ servi ce>
</ definitions>

The binding specifies that only one part of the message, the base64Bi nary
buffer, is to be passed as an attachment using the MIME type i nage/ j peg.
The other two parts of the message are to be passed in the SOAP body of
the message. If the operation were bound to a standard SOAP message, the

153

CHAPTER 4 | Working with Artix Data Types

Using DataHandler objects

154

generated method would have a Stri ng parameter, an i nt parameter, and a

byte[] parameter. Instead the operation, st ore, is mapped as shown in
Example 109.

Example 109:Java for SOAP with Attachments

/1 Java
package org. nedi stor. x_rays;

inport java.net.*;
inport java.rm.?*;

inport java.lang.String;
inport java.aw .| nage;

public class XRayStoragel npl inplenents java.rm . Renote
{
publ i ¢ bool ean store(String patient Nane,
int patientNunber,
java. awt . | mage xRay) {
/1 User code goes in here.
return fal se;

Artix also provides the option to map SOAP attachments to
j avax. act i vati on. Dat aHandl er objects. To have Artix map SOAP

attachments to Dat aHandl er objects, use the - dat ahandl ers flag when
running wsdl t oj ava.

When using Dat aHander objects, Artix maps all SOAP attachments to a
Dat aHandl er, so the contract in Example 108 on page 152 would result in

the operation shown in Example 110 as opposed to the one shown in

Example 109 on page 154.

Example 110:SOAP Attachments Using DataHandler Objects

/1l Java
package org. nedi stor. x_rays;

inport java.net.*;
inport java.rm.?*;

Using SOAP with Attachments

Example 110:SOAP Attachments Using DataHandler Objects

inport java.lang. String;
inport javax.activation. Dat aHandl er;

public class XRayStoragel npl inplenents java.rm . Renote
{

publ i c bool ean store(String patient Nane,
int patientNunber,
j avax. acti vati on. Dat aHandl er xRay)

/1 User code goes in here.
return fal se;

}
}

Using Dat aHandl er objects to manipulate SOAP attachments provides you
with greater control over the data being passed in the attachment. As
specified in the J2EE specification, Dat aHandl er objects have methods that
allow you to manipulate the attachment data as either an Qoj ect, an

I nput St ream or an Qut put Stream In addition, Dat aHandl er objects allow
you to query it for the MIME type for the data being passed in the
attachment. For more information on using Dat aHandl er objects see the
J2EE API documentation at
http://java.sun.com/j2ee/1.4/docs/api/index.html.

Note: When creating Dat aHandl er objects to be passed in a SOAP
attachment, ensure that the MIME type specified in the creator method
matches the MIME type specified in the contract.

155

http://java.sun.com/j2ee/1.4/docs/api/index.html

CHAPTER 4 | Working with Artix Data Types

Unsupported XMLSchema Constructs

Unsupported built-in types

Unsupported simpleType features

Unsupported complexType
features

Unsupported attributes for
element

Unsupported attributes for
attribute

156

The following XMLSchema types are currently not supported by Artix:
® xsd:duration

® xsd: NOTATI ON

® xsd: | DREF

® xsd: | DREFS

® xsd: ENTITY

® xsd: ENTITIES

The following are not supported when working with si npl eType:
® All facets except for enurer ati on
® Thefinal attribute

The following are not supported when working with conpl exType:
® The ni xed attribute

® Thefinal attribute

® The bl ock attribute

® The abstract attribute

® sinpleContent with restriction

The following attributes are not supported for el enent :

® final
® bl ock
® fixed

® default

® abstract

The following attributes are not supported for attri but e:
® global attributes

® ref

Unsupported group features

Other unsupported XMLSchema
elements

id attribute

fro

Unsupported XMLSchema Constructs

m

The following are not supported when working with gr oup:

mn
max

all

Qccurs on local groups
Qceurs on local groups
inside a group

The following XMLSchema elements are not supported:

xsd

xsd

xsd:
xsd:
xsd:
xsd:
xsd:
xsd:

xsd:

:redefine
:notation
anyAttribute
anySi npl eType
uni que

key

keyr ef

sel ect or
field

The i d attribute is not supported by Artix.

157

CHAPTER 4 | Working with Artix Data Types

158

In this chapter

CHAPTER 5

Using Exceptions

Artix supports the definition of user-defined exceptions using
the WSDL fault element. When mapped to Java, the fault
element is mapped to a throwable exception on the associated
Java method.

This chapter discusses the following topics:

Describing User-defined Exceptions in an Artix Contract page 160

How Artix Generates Java User-defined Exceptions page 162

Working with User-defined Exceptions in Artix Applications page 165

Working with CORBA Exceptions in Artix Applications page 167

159

CHAPTER 5 | Using Exceptions

Describing User-defined Exceptions in an Artix

Contract

Overview

Describing the exception message

160

Artix allows you to create user-defined exceptions that your service can
propagate back to its clients. As with any information that is exchanged
between a service and client in Artix, the exception must be described in the
Artix contract. Describing a user-defined exception in an Artix contract
involves the following:

® Describing the message that the exception will transmit.

® Associating the exception message to a specific operation.

® Describing how the exception message is bound to the payload format
used by the service.

This section will deal with the first two tasks involved in describing a

user-defined exception. The third task, describing the binding of the

exception to a payload format, is beyond the scope of this book. For

information on binding messages to specific payload formats in an Artix
contract read Designing Artix Solutions.

Messages to be passed in a user-defined exception are described in the
same manner as the messages used as input or output messages for an
operation. The message is described using the nessage element. There are
no restrictions on the data types that can be passed as part of an exception
message or on the number of parts the message can contain. Example 111

Note: When using SOAP as your payload format, you are restricted to
using only a single part in your exception messages.

shows a message description in an Artix contract.
Example 111:Message Description
<nessage nane="not Enoughl nvent ory">

<part name="num nventory" type="xsd:int" />
</ message

http://www.iona.com/support/docs/artix/3.0/design/index.htm

Associating the exception with an
operation

Describing User-defined Exceptions in an Artix Contract

For more information on describing a message in an Artix contract, read
Designing Artix Solutions.

Once you have described the message that will be transmitted for your
user-defined exception, you need to associate it with an operation in the
contract. To do this you add a f aul t element to the operation’s description.
A fault element takes the same attributes as the i nput elements and

out put elements. The message attribute specifies the message element
describing the data passed by the exception. The nane attribute specifies the
name by which the exception will be referenced in the binding section of the
contract.

Example 112 shows an operation description that uses the message
described in Example 111 on page 160 as a user-defined exception.

Example 112:0peration with a User-defined Exception

<oper at i on nane="get W dget s" >
<i nput nessage="t ns: wi dget S zeMessage" nanme="si ze" />
<out put nessage="tns: w dget Cost Message" nane="cost" />
<fault message="t ns: not Enoughl nvent ory" nane="not Enough" />
</ oper at i on>

The operation described in Example 112, get Wdget s, takes one argument
denoting the size of the widgets to get from inventory and returns a message
stating the cost of the widgets. If the operation cannot get enough widgets,
it throws an exception, containing the number of available widgets, back to
the client.

161

http://www.iona.com/support/docs/artix/3.0/design/index.htm

CHAPTER 5 | Using Exceptions

How Artix Generates Java User-defined

Exceptions

Overview

Mapping simple type exceptions

Mapping complex type exceptions

162

As specified in the JAX-RPC specification, fault messages describing a
user-defined exception in an Artix contract are mapped to a Java exception
class by the Artix code generator. The generated class extends the Java
Except i on class so that it can be thrown.

When your exception message is of a simple type, as shown in

Example 111 on page 160, the generated type will have one private data
member of the type specified in the contract’s message part to represent the
content of the message, a creation method that allows you to specify the
values of the data member, and the associated getter and setter methods for
the data member. In addition, the generated class will have a t oStri ng()
method.

The naming scheme for the generated exception class follows that for the
generated classes to represent a complex type. The name of the class will be
taken from the nane attribute of the exception’s message description and
will always start with a capital letter.

When your exception message is of a user defined complex type, Artix will
generate an exception class whose name will be the name of the complex
type used in the fault message postfixed with _Excepti on. For example, if
you had a fault defined as shown in Example 113, the generated exception
class would be named Nunmi nvent ory_Excepti on and would be located in
the same java package as the rest of the generated types.

Example 113:Complex Fault

<conpl exType nane="nuni nvent ory" >
<sequence>
<el enent name="nunieft" type="xsd:int" />
<el enent name="si ze" type="xsd:string" />
</ sequence>
</ conpl exType>

Example

How Artix Generates Java User-defined Exceptions

Example 113:Complex Fault

<nessage name="badSi ze">

<part name="errorlnfo" type="xsdl: num nventory" />
</ message>

<port Type nane="or der Wdget s">
<oper ati on name="pl aceW dget O der ">
<i nput nessage="t ns: wi dget O der" nane="order"/>
<out put message="tns:w dgetCQderBill" name="bill"/>

<fault nessage="tns: badSi ze" nane="si zeFaul t"/>
</ oper at i on>

</ por t Type>

The generated exception class will be the same as the one generated for the
complex type. The only difference being that the exception class extends

Excepti on and is throwable. See “Working with Artix Data Types” on
page 59.

Example 114 shows the generated exception class for the fault message in
Example 111 on page 160.

Example 114:Generated Java Class

/1 Java
inport java.util.*;

publ i c cl ass Not Enoughl nvent ory extends Excepti on

{

public static final String TARGET _NAMESPACE =
"http://w dget Vendor . coni wi dget O der For n';

private int num nventory;

publ i ¢ Not Enoughl nvent ory(int num nventory)
{
super () ;

this.num nventory = nuni nventory;

}

163

CHAPTER 5 | Using Exceptions

Example 114:Generated Java Class

public int get Num nventory()
{

}

return nuni nventory;

public void set Num nventory(int val)

{
}

nunm nventory = val;

public String toString()

{
StringBuffer buffer = new StringBuffer(super.toString());
if (size !=null)
{

buf f er. append(" num nvent ory: "-+num nvent ory+"\n");
}
return buffer.toString();
}
}

The TARGET_NAMESPACE member of the class is the target namespace
specified for the Artix contract. It will be the same for all classes generated
from a particular contract.

164

Working with User-defined Exceptions in Artix Applications

Working with User-defined Exceptions in Artix

Applications

Overview

Example

Because Artix generates a standard Java exception class for user-defined
exceptions, they are handled like any non-Artix exception in a Java
application. The implementation of the service can instantiate and throw
Artix user-defined exceptions if they encounter the need. The client invoking
the service, as long as it is a JAX-RPC compliant Java web service client or
an Artix C++ client, will catch Artix user-defined exceptions like any other
exception. Once the exception is caught, the client can inspect the contents
using the standard methods.

Example 115 shows how a server implementing the get W dget s operation,
shown in Example 112 on page 161, might instantiate and throw a
Not Enoughl nvent ory exception.

Example 115:Throwing a User-defined Exception
/1 Java

I/ checklnventory() is left for the reader to inplement
/! size and nuntrdered are paraneters passed into the operation
if (nunOrdered > checkl nventory(size))
{
t hr ow Not Enoughl nvent or y(checkl nvent or y(si ze)) ;

}

Example 116 shows how a client might catch and report the exception
thrown by the server.

Example 116:Catching a User-defined Exception
/1 Java

try

{

| ong cost = get Wdget s(size, nunCrdered);
}

165

CHAPTER 5 | Using Exceptions

Example 116:Catching a User-defined Exception

cat ch(Not Enoughl nvent ory nei)

Il get the value stored in the exception

int num nventory = nei.get Num nventory();

Systemout . println("The factory only has "-+num nvent ory+
' widgets of size "+sizet+'.");

166

Working with CORBA Exceptions in Artix Applications

Working with CORBA Exceptions in Artix

Applications

Overview

In this section

When integrating with CORBA services it is important to get an accurate
picture of the exceptions that are returned. It is also important to ensure that
proper CORBA exceptions are thrown back to the CORBA service. To make
this possible Artix uses a Java class called Faul t Except i on.

Faul t Except i on provides Artix Java applications access to basic CORBA
exception handling capabilities.

This section discusses the following topics:

Mapping CORBA Exceptions to Artix Java Exceptions page 168
Throwing CORBA Exceptions from Artix page 172
Processing CORBA Exceptions page 174

167

CHAPTER 5 | Using Exceptions

Mapping CORBA Exceptions to Artix Java Exceptions

Overview

FaultException fields

168

By default, remote invocations in Java return a Renot eExcept i on when the
remote service throws an exception. Artix can also return user-defined
exceptions to the client. However, when making remote invocations on
CORBA services, it is unlikely that the user has defined all of the possible
exceptions that can be thrown and Renot eExcept i on objects do not provides
enough detail to accurately determine the cause of the exception.

Artix services also have no way of throwing a CORBA exception back to
CORBA clients. Artix services typically can only throw Renot eExcepti on or a
user-defined exception. Native CORBA client code cannot do detailed error
handling with these exceptions. All the client code knows is that something
went wrong.

To fix this limitation, Artix uses a class called

com i ona. j bus. Faul t Except i on. Faul t Excepti on inherits from

Runt i meExcept i on and adds fields to hold the information needed to
support CORBA exceptions. Because they inherit from Runt i meExcept i on,
Faul t Except i on objects can be thrown by Artix code and will be processed
properly by the Artix runtime. You can also retirieve a Faul t Excepti on
object from the Renot eExcept i on object caught from a remove invocation.
From the Faul t Except i on object you can get details about the CORBA
exception.

Faul t Except i on objects have four relevant fields. These field are explained
in Table 8.

Table 8: FaultException Fields

Name Description
nessage The string used when creating the exception.
Cat agory The category of the exception. The category maps
to the CORBA exception types. See Table 9 on
page 169.
Conpl etionStatus | The status of the invocation. Maps to the CORBA
completion status. See Table 10 on page 171.

Working with CORBA Exceptions in Artix Applications

Table 8: FaultException Fields

Name Description

Sour ce The type of endpoint that threw the exception.
Values are:

b Faul t Sour ce. CLI ENT
b Faul t Sour ce. SERVER
® Faul t Sour ce. UNKNOM

CORBA Exceptions and Artix Fault Table 9 shows how each of the major CORBA system exceptions map to
Categories Artix fault categories.

Table 9: Map from CORBA System Exceptions to Fault Categories

CORBA System Exception Fault Category
CORBA: : BAD_CONTEXT Faul t Cat egory. | NTERNAL
CORBA: : BAD | N\V_CRDER Faul t Cat egory. | NTERNAL
CORBA: : BAD CPERATI ON Faul t Cat egor y. BAD CPERATI ON
CORBA: : BAD TYPECCDE Faul t Cat egory. MARSHAL ERRCR
CORBA: : BAD_ Q08 Faul t Cat egory. | NTERNAL
CCRBA: : OCDESET_| NOCOWPATI BLE Faul t Cat egor y. MARSHAL _ERRCR
CCRBA: : COW FAI LURE Faul t Cat egor y. CONNECTI ON_FAI LURE
CORBA: : DATA CONVERSI ON Faul t Cat egory. MARSHAL ERRCR
CORBA: : FREE_ MEM Faul t Cat egor y. MEMORY
CORBA : IMP_LIMT Faul t Cat egory. | NTERNAL
CCRBA : I NI TI ALI ZE Faul t Cat egor y. UNKNOAN
CORBA: : | NTERNAL Faul t Cat egory. | NTERNAL
CORBA: : | NTF_REPCS Faul t Cat egory. | NTERNAL
CORBA: : | NV_FLAG Faul t Cat egory. | NTERNAL

169

CHAPTER 5 | Using Exceptions

Table 9: Map from CORBA System Exceptions to Fault Categories

CORBA System Exception Fault Category

CORBA: : | NV_I DENT Faul t Cat egory. NOT_EXI ST

CORBA: : | \V_CBIREF Faul t Cat egory. | N\VALI D_REFERENCE

CORBA: : | N\V_PQLI CY Faul t Cat egory. | NTERNAL

CORBA: : | NVALI D_TRANSACTI ON Faul t Cat egory. | NTERNAL

CCORBA: : MARSHAL Faul t Cat egor y. MARSHAL ERROR

CORBA: : NO_| MPLEMENT Faul t Cat egory. NOT_| MPLEMENTED

CORBA: : NO_MEMCRY Faul t Cat egor y. MEMCRY

CORBA: : NO_PERM SSI ON Faul t Cat egory. NO_ PERM SSI ON

CORBA: : NO_RESOURCES Faul t Cat egory. | NTERNAL

CORBA: : NO_RESPONSE Faul t Cat egory. | NTERNAL

CCORBA: : (BJ_ADAPTER Faul t Cat egory. | NTERNAL

OORBA: : BJECT_NOT_EXI ST Faul t Cat egory. NOT_EXI ST

OORBA: : PERSI ST_STCRE Faul t Cat egory. | NTERNAL

CCRBA : REBI ND Faul t Cat egory. | NTERNAL

CORBA: : TI MEQUT Faul t Cat egory. TI MEQUT

CORBA: : TRANSACTI ON_MXDE Faul t Cat egory. | NTERNAL

CORBA: : TRANSACTI ON_REQU RED Faul t Cat egory. | NTERNAL

CCRBA: : TRANSACTI ON_RCLLEDBACK Faul t Cat egory. | NTERNAL

CCORBA: : TRANSACTI ON_UNAVAI LABLE Faul t Cat egory. | NTERNAL

QCRBA: : TRANS| ENT Faul t Cat egor y. TRANS| ENT
Completion status mapping Table 10 shows the mapping between CORBA completion status values and

fault completion status values.

170

Working with CORBA Exceptions in Artix Applications

Table 10: Completion Status Mapping

CORBA Completion Status Fault Completion Status
CORBA: : COMPLETED _YES Faul t Conpl et i onSt at us. YES
CORBA: : COMPLETED_NO Faul t Conpl et i onSt at us. NO
CORBA: : COWPLETED _NAYBE Faul t Conpl eti onSt at us. MAYBE

171

CHAPTER 5 | Using Exceptions

Throwing CORBA Exceptions from Artix

Overview

Instantiating a FaultException
object

Setting the FaultException
object’s fields

172

Simulating a CORBA exception from Artix Java code is a five step process:
1. Instantiate a Faul t Except i on object to hold the exception.

Set the exception’s category field.

Set the exception’s source field.

Set the exception’s completion status field.

S

Throw the exception.

The Faul t Except i on class’ creator method, shown in Example 117, takes a
single string that is placed in the message field of the new object.

Example 117:FaultException Creators
Faul t Excepti on(String nessage)

While it is good practice to populate the message field with a message
describing the nature of the exception, it is not required.

None of the fields in the newly instantiated Faul t Excepti on object will be
initialized. You will need to set values for each field independently.

Faul t Except i on objects have three setter methods, shown in Example 118,
to populate the fields used to support CORBA exceptions.

Example 118:FaultException Setter Methods
voi d set Cat egor y(Faul t Cat egory faul t Cat egory)

voi d set Conpl eti onSt at us(Faul t Conpl eti onStatus faul t Status)
voi d set Sour ce(Faul t Sour ce faul t Sour ce)

Throwing a FaultException

Example

Working with CORBA Exceptions in Artix Applications

The values used to set the categories are defined as enumerations, so the
easiest way to set the values is to use the a static instance of the
appropriate class. For example to set the source field to UNKNOM you could
use the code shown in Example 119.

Example 119:Setting the Source Field

f e. set Sour ce(Faul t Sour ce. UNKNOM) ;

The Faul t Excepti on class is a child of the Java Runt i meExcept i on class. It
can be thrown using the Java t hr ow method. The Artix runtime will process
the Faul t Except i on and create an appropriate fault message to place on the
wire.

The recipient of the exception will receive a fault message that is
appropriate for its binding. If the recipient is a native CORBA application it
will receive a completely populated CORBA system exception. An Artix
endpoint using a CORBA binding can decode the Faul t Except i on object if
needed. Endpoints using other bindings will not get the CORBA information.

Example 120 shows code for throwing a OCRBA: : TRANSI ENT exception from
an Artix service.

Example 120:Throwing a CORBA Exception from Artix

Faul t Exception fe = new Faul t Exception("Account has expired");
f e. set Cat egor y(Faul t Cat egory. NO PERM SSI ON) ;

f e. set Sour ce(Faul t Sour ce. SERVER) ;

f e. set Conpl eti onSt at us(Faul t Conpl eti onSt at us. NO ;

throw fe;

173

CHAPTER 5 | Using Exceptions

Processing CORBA Exceptions

Overview If your code may need to catch CORBA exceptions, you can do the
following:

1. Catch the Renot eExcepti on as normal.

2. Extract the chained cause of the Renot eExcept i on object using the
get Cause() method.

3. Check if the Thr owabl e object is an instance of the Faul t Excepti on
class.

If it is, cast the Thr owabl e object into a Faul t Except i on object.

5. Use the Faul t Except i on object’s get methods to extract the
information about the CORBA exception.

Getting exception details from a Faul t Except i on objects have three getter methods, shown in Example 121,
FaultException to retrieve the information about a CORBA exception.

Example 121:FaultException Getter Methods

Faul t Cat egory get Cat egor y()
Faul t Conpl et i onSt at us get Conpl eti onSt at us()
Faul t Sour ce get Sour ce()

174

Working with CORBA Exceptions in Artix Applications

Evaluating the exception data The values returned by the methods are instances of an enumeration, so the
easiest way to evaluate the values is to use the a static instance of the
appropriate class. For example to decide how to proceed based on the
completion status you could use the code shown in Example 122.

Example 122:Fvaluating the Completion Status

Faul t Conpl eti onStatus fcs = fe. get Conpl etionStatus();
if (fcs.value().equal s(FaultConpl eti onSt at us. YES)

/1 Cperation conpl et ed
}

el se

{
// Qperation not conpleted

}

Example Example 123 shows code for processing a CORBA exception in Artix.

Example 123:Processing a CORBA exception in Artix

try
{

dient client = (Aient)service.getPort(...);
client.sayH ();

}
catch (Renot eException re)

Throwabl e t = re. get Cause();

if (t instanceof FaultException)

{
Faul t Exception fe = (Faul t Exception) t;

Faul t Category fc = fe.getCategory();
if (fc.value().equal s(Faul t Cat egory. TRANSI ENT)

{
// a OORBA TRANSI ENT syst em excepti on

}

175

CHAPTER 5 | Using Exceptions

Example 123:Processing a CORBA exception in Artix

Faul t Conpl etionStatus fcs = fe. get Conpl eti onStatus();
if (fcs.value().equal s(FaultConpl eti onSt at us. YES)

/1 Cperation conpl et ed
}

Faul t Source fs = fe.get Source();
if (fs.value().equals(Faul t Source. UNKNOM)

/1 The exception was thrown by an unidentified endpoint

}
}

176

CHAPTER 6

Using Substitution
Groups

XMLSchema substitution groups allow you to define a group
of elements that can replace a top level, or head, element.

In this chapter This chapter discusses the following topics:

Substitution Groups in XML Schema page 178
Using Substitution Groups with Artix page 182
Widget Vendor Example page 192

177

CHAPTER 6 | Using Substitution Groups

Substitution Groups in XML Schema

Overview A substitution group is a feature of XML schema that allows you to specify
elements that can replace another element in documents generated from
that schema. The replaceable element is called the head element and must
be defined in the schema'’s global scope. The elements of the substitution
group must be of the same type as the head element or a type that is
derived from the head element’s type.

In essence, a substitution group allows you to build a collection of elements
that can be specified using a generic element. For example, if you are
building an ordering system for a company that sells three types of widgets
you may define a generic widget element that contains a set of common
data for all three widget types. Then you could define a substitution group
that contains a more specific set of data for each type of widget. In your
contract you could then specify the generic widget element as a message
part instead of defining a specific ordering operation for each type of widget.
When the actual message is built, the message can then contain any of the
elements of the substitution group.

Syntax Substitution groups are defined using the substi t uti onG oup attribute of
the XMLSchema el enent element. The value of the subst it uti onG oup
attribute is the name of the element that the element being defined can
replace. For example if your head element was wi dget , then by adding the
attribute substi t uti on@ oup="wi dget " to an element named woodW dget
would specify that anywhere wi dget was used, you could substitute
woodW dget . This is shown in Example 124.

Example 124:Using a Substitution Group
<el ement nanme="wi dget" type="xsd:string" />

<el enent name="woodW dget" type="xsd: string"
substi t uti onG oup="wi dget" />

Type restrictions The elements of a substitution group must be of a similar type to the head
element of the group. This means that all the elements of the group must be
of the same type as the head element or of a type derived from the head

178

Substitution Groups in XML Schema

element’s type. For example, if the head element is of type xsd: i nt all
members of the substitution group must be of type xsd: i nt or of type
derived from xsd: i nt. You could also define a substitution group similar to
the one shown in Example 125 where the elements of the substitution
group are of types derived from the head element’s type.

Example 125:Substitution Group with Complex Types

<conpl exType nane="w dget Type" >
<sequence>
<el enent name="shape" type="xsd:string" />
<el enent name="col or" type="xsd:string" />
</ sequence>
</ conpl exType>
<conpl exType nane="woodW dget Type" >
<conpl exCont ent >
<ext ensi on base="wi dget Type">
<sequence>
<el enent name="woodType" type="xsd:string" />
</ sequence>
</ ext ensi on>
</ conpl exCont ent >
</ conpl exType>
<conpl exType nane="pl asti cWdget Type">
<conpl exCont ent >
<ext ensi on base="wi dget Type" >
<sequence>
<el enent nanme="nol dProcess" type="xsd:string" />
</ sequence>
</ ext ensi on>
</ conpl exCont ent >
</ conpl exType>
<el ement name="wi dget" type="w dget Type" />
<el enent name="woodW dget" type="woodW dget Type"
substi tuti onG oup="wi dget" />
<el ement nanme="pl asti cWdget" type="pl asti cWdget Type"
substituti on@ oup="w dget" />
<conpl exType nane="part Type" >
<sequence>
<el enent ref="wi dget" />
</ sequence>
</ conpl exType>
<el enent name="part" type="part Type" />

179

CHAPTER 6 | Using Substitution Groups

Abstract head elements

180

The head element of the substitution group, wi dget , is defined as being of
type wi dget Type. Each element of the substitution group then extends
wi dget Type to include data specific to ordering the specific type of widget.

Based on the schema in Example 125 on page 179, the <part > elements in
Example 126 are valid.

Example 126: XML Document using a Substitution Group

<part>
<wi dget >
<shape>r ound</ shape>
<col or >bl ue</ col or >
</ wi dget >
</ part>
<part>
<pl asti cWdget >
<shape>r ound</ shape>
<col or >bl ue</ col or >
<nol dPr ocess>sandCast </ nol dPr ocess>
</ pl asti cWdget >
</ part >
<part>
<woodW dget >
<shape>r ound</ shape>
<col or >bl ue</ col or >
<woodType>el nmx/ woodType>
</ woodW dget >
</ part>

You can define an abstract head element that can never appear in a
document produced using your schema. Abstract head elements are similar
to abstract classes in Java in that they are used as the basis for defining
more specific implementations of a generic class. Abstract heads also
prevent the use of the generic element in the final product.

You declare an abstract head element using the abstract ="t rue" attribute
of el enent element as shown in Example 127. Using this schema, a valid
revi ewelement could contain either a posi ti veCorment element or a
negat i veComment element, but not a corment element.

Example 127:Abstract Head Definition

<el enent name="comment" type="xsd:string" abstract="true" />

Substitution Groups in XML Schema

Example 127:Abstract Head Definition

<el ement nanme="positi veComment " type="xsd: string"
substi t uti on@ oup="conment" />
<el enent name="negti veComrent" type="xsd: string
substi t uti on@ oup="conment" />
<el enment nane="revi ew'>
<conpl exCont ent >
<all >
<el ement nanme="cust Nane" type="xsd:string" />
<el enent name="i npressi on" ref="comment" />
</all>
</ conpl exCont ent >
</ el ement >

181

CHAPTER 6 | Using Substitution Groups

Using Substitution Groups with Artix

Overview

Using a substitution group as an
element of a complex type

182

Artix allows you to use substitution groups when defining Artix systems. The
bus properly validates messages that contain substitution groups provides a
Java mapping that makes using a substitution group easy. Artix maps
substitution groups into Java classes that extend the class used to represent
the head class. In addition, it adds special getter and setter methods to
complex types that reference members of substitution groups. Therefore,
your application code can reflect the element hierachy defined in the WSDL.

When you include the head element of a substitution group as an element in
a complex type, the Artix WSDL to Java code generator adds additional
methods to the generated class representing the complex type. These
methods are similar to the ones generated to support choi ce complex types.
They allow you to place one of the elements of the substitution group into
the object, query the object to determine which element of the substitution
group is present in the object, and get a type specific element of the
substitution group back from the object.

Slmilar to how Artix generates code for choi ce complex types, Artix
generates three methods for each element of a substitution group used in a
complex type. These methods are a setter method named set Menber Nane() ,
a getter method named get Menber Nane() , and a method to determine if the
element is the one being used by the object named i sSet Menber Nane() .
When setting a value into the object, you should use the element specific
methods to ensure that the Artix runtime handles the data correctly when
transmitting it across the wire.

Using Substitution Groups with Artix

For example, you could define a complex type named wi dget O der | nf o that
included an element defined using the widget element in Example 125 on
page 179. A possible definition wi dget Or der I nf o is shown in Example 128.

Example 128:Complex Type with a Substitution Group

<conpl exType nane="wi dget O der | nf 0" >
<sequence>
<el enent name="anount" type="xsd:int"/>
<el enent ref="xsdl:w dget"/>
<el enent name="shi ppi ngAddr ess" type="xsd1l: Address"/>
</ sequence>
<attribute name="rush" type="xsd: bool ean" use="optional" />
</ conpl exType>

Artix would generate the class shown in Example 129 to represent

wi dget Or der | nf 0. Unlike the other elements in the generated class, which
only have a getter and a setter method, the wi dget element results in the
generation of the methods set Wdget (), get Wdget (), i sSet Wdget (),

set WodW dget (), get WodW dget (), i sSet WbodW dget (),

set Pl asti cWdget (), get Pl asti cWdget (), and i sSet Pl asti cWdget () to
handle the substitution group. However, like all of the other elements, the
wi dget element only results in one member of the generated class. This
member, wi dget , is of the type generated for the head element of the
substitution group, W dget Type. This is possible because the types for each
member of the substitution group inherit from W dget Type.

While, due to the inheritance rules in Java, you could use the generic

set Wdget () and get Wdget () methods to place any one of the substitution
group elements into the object, it is not advisable. Artix relies on the
discriminator that is set in the type specific setter methods to ensure that

183

CHAPTER 6 | Using Substitution Groups

messages are generated properly when they are sent on the wire. So setting
a Pl asti cWdget using set Wdget () may produce unpredictable results in a
running system.

Example 129:Class for a Substitution Group

public class Wdget O derlnfo
{

private String _ discrimnator_w dget;

private int amount;

private Wdget Type wi dget;
private Address shi ppi ngAddr ess;
private Bool ean rush;

public int getAmount() {
return anount;

}

public void set Amount (i nt val) {
this.amount = val;

}

publ i ¢ Wdget Type get Wdget () {
return wdget;

}

public void set Wdget (Wdget Type val) {
this.wdget = val;
__discrimnator_w dget = "widget";

}

publ i ¢ bool ean i sSet Wdget () {
if(__discrimnator_widget !=null &%
__discrimnator_w dget.equal s("w dget")) {
return true;

}

return fal se;

184

Using Substitution Groups with Artix

Example 129:Class for a Substitution Group

publ i ¢ WodW dget Type get WwodW dget () {
return (WodW dget Type) w dget ;
}

publ i c voi d set WodW dget (WwodW dget Type val) {
this.wdget = val;
__discrimnmnator_wi dget = "woodWdget";

}

/**
* | sSet WodW dget
*
* @eturn: bool ean
*/
publ i ¢ bool ean i sSet WodW dget () {
if(__discrimnator_widget != null &&
__di scrimnat or_wi dget . equal s("woodWdget")) {
return true;
}
return fal se;

}

public Pl asticWdget Type get Pl asti cWdget () {
return (Pl asti cWdget Type)w dget ;
}

public void setP asti cWdget (Pl asti cWdget Type val) {
this.wdget = val;
__discrimnator_widget = "plasticWdget";

}

publ i ¢ bool ean isSet P asti cWdget () {
if(__discrimnator_widget != null &&
__discrininator_widget. equal s("pl asti cWdget")) {
return true;

}

return fal se;

185

CHAPTER 6 | Using Substitution Groups

Example 129:Class for a Substitution Group

publ i ¢ Address get Shi ppi ngAddress() {
return shi ppi ngAddr ess;

}

publ i c voi d set Shi ppi ngAddr ess(Address val) {
thi s. shi ppi ngAddress = val ;
}

publ i ¢ Bool ean i sRush() {
return rush;

}

publ i c void set Rush(Bool ean val) {
this.rush = val;

}

public String toString() {
StringBuffer buffer = new StringBuffer();

if (amount !'= null) {
buf f er. append("anmount : " +anount +"\ n");

if (wdget !'= null) {
buf f er. append("wi dget : "+wi dget +"\n");

}
if (shippingAddress != null) {
buf f er . append(" shi ppi ngAddr ess:
"+shi ppi ngAddr ess+"\ n") ;

}
if (rush !'=null) {
buf f er. append("rush: "+rush+'\n");

return buffer.toString();

}

If the head element of the substitution group is declared abstract, the
generated class will not include the methods to support the head element.
So in Example 129, get Wdget (), set Wdget (), and i sSet W dget () would
not be generated.

Using a substitution group as an ~ When you use a substitution group as part of an operation’s message, the
argument to an operation Artix WSDL to Java code generator generates the method for the operation
normally. The message part that is a substitution group results in a

186

Using Substitution Groups with Artix

parameter of the head element’s type. For example, you could define the
operation shown in Example 130 that uses the substitution group defined in
Example 125 on page 179.

Example 130:0peration with a Substitution Group

<nessage name="w dget Message" >
<part name="wi dget Part" el enent="xsd1: w dget" />
</ message>
<nessage name="numN dget s">
<part name="num nventory" type="xsd:int" />
</ message>
<port Type nane="or der Wdget s">
<oper ati on name="checkW dget s" >
<i nput nessage="t ns: wi dget Message" nane="request" />
<out put message="t ns: numN dgets" nane="response" />
</ oper at i on>
</ por t Type>

Artix would generate the interface shown in Example 131 to implement
or der Wdget s. You could invoke on this operation by passing any of the
valid elements of the widget substitution group as a parameter.

Example 131:orderWidgets Generated Code

public interface OrderWdgets extends java.rm . Renote

{
public int checkWdget s(

com wi dget vendor . t ypes. wi dget t ypes. W dget Type wi dget Part)
throws Renot eExcepti on;

}

Because Artix generates the same code for elements and types, Artix does
not enforce the abst ract attribute when you use the head element of a
substitution group as a message part. If you want to ensure that the

187

CHAPTER 6 | Using Substitution Groups

188

abstract attribute is enforced you should define a new element that
includes a reference to the substitution group’s head element and use that in
place of the head element. This is shown in Example 132.

Example 132:E/ement Referring to a Substitution Group

<types ...>

<el enent name="wi dget El enent ">
<conpl exType>
<sequence>
<el enent ref="xsdl:w dget" />
</ sequence>
</ conpl exType>
</ el enent >
</types>
<nessage nane="w dget Message" >
<part name="request" el enent ="xsdl: w dget El enent" />
</ message>
<nessage nane="numk dget s">
<part name="num nventory" type="xsd:int" />
</ message>
<port Type nane="or der Wdget s">
<oper ati on nane="checkW dget s">
<i nput nessage="t ns: wi dget Message" nane="request" />
<out put message="tns: num¥ dgets" nanme="response" />
</ operati on>
</ port Type>

Doing so will cause Artix to generate a new class for the element that
includes the appropriate methods for working with a substitution group. The
generated method will use the class generated for the new element. The
additional code generated to implement the contract fragment in

Example 132 is shown in Example 133. In this scenario, if the head
element is declared abstract the methods supporting it would not be
generated.

Using Substitution Groups with Artix

Example 133:Code for Element with a Substitution Group
public class Wdget E erment
{

private String _ discrininator_w dget;

private Wdget Type wi dget;

publ i c Wdget Type get Wdget ()

{
return w dget;
}
publ i c voi d set Wdget (W dget Type val)
{
this.wdget = val;
__discrininator_w dget = "wi dget";
}
publ i ¢ bool ean i sSet Wdget ()
{
if(__discrimpator_widget !'= null &&
__discrininator_widget. equal s("w dget")) {
return true;
}
return fal se;
}

189

CHAPTER 6 | Using Substitution Groups

Example 133:Code for Element with a Substitution Group

publ i ¢ WodW dget Type get VwodW dget ()

{
return (WodW dget Type)w dget ;
}
public voi d set \WodW dget (VWodW dget Type val)
{
this.wdget = val;
_ discrimnator_w dget = "woodW dget";
}
publ i ¢ bool ean i sSet VWodW dget ()
{
if(__discrimpnator_widget !'= null &&
__discrimnator_w dget. equal s("woodWdget")) {
return true;
}
return fal se;
}

190

Using Substitution Groups with Artix

Example 133:Code for Element with a Substitution Group

public Pl asticWdget Type get Pl asti cWdget ()
{

}

return (Pl asti cWdget Type)w dget ;

public void setP asti cWdget (Pl asti cWdget Type val)
{

this.wdget = val;

__discrinminator_wi dget = "plasticWdget";
}
publ i ¢ bool ean isSet Pl asti cWdget ()
{
if(__discrimnator_widget !=null &%
__discrininator_widget. equal s("plasti cWdget")) {
return true;
}
return fal se;
}

public String tosString() {
StringBuffer buffer = new StringBuffer();
if (widget !'= null) {
buf f er. append("wi dget : " +wi dget +"\n");
}
return buffer.toString();
}
}
public interface OrderWdgets extends java.rm . Renote
{
public int checkWdget s(
com wi dget vendor . t ypes. wi dget t ypes. Wdget B enent wi dget Part)
throws Renot eExcepti on;

}

191

CHAPTER 6 | Using Substitution Groups

Widget Vendor Example

Overview This section shows an example of substitution groups being used in Artix to
solve a real world application. A server and client are developed using the
wi dget substitution group defined in Example 125 on page 179. The
service offers two operations: checkW dget s and pl aceW dget Or der .
Example 134 shows the interface for the ordering service.

Example 134:Widget Ordering Interface

<nessage nane="wi dget O der ">
<part name="wi dget Order Formi' type="xsd1l: wi dget O der| nfo"/>
</ message>
<nessage nanme="w dget O derBill">
<part name="wi dget O der Conf or nati on"
type="xsdl: wi dget OrderBi || | nfo"/>
</ message>
<nessage nane="w dget Message" >
<part name="wi dget Part" el enent ="xsd1: w dget" />
</ message>
<nessage nane="numk dget s">
<part name="num nventory" type="xsd:int" />
</ message>
<port Type nane="or der Wdget s">
<oper at i on nane="pl aceW dget O der">
<i nput nmessage="t ns: wi dget O der" name="order"/>
<out put message="tns:w dgetCrderBill" nane="bill"/>
</ operati on>
<oper ati on nane="checkW dget s">
<i nput nessage="t ns: wi dget Message" nane="request" />
<out put message="tns: num¥ dgets" nane="response" />
</ operati on>
</ port Type>

The type wi dget O der For mis defined in Example 128 and
wi dget Order Bi | | | nf o extends wi dget O der For mto include one extra field to
hold the final cost of the order.

Note: Because the example is to demonstrate the use of substitution
groups, some of the business logic is not shown.

192

placeWidgetOrder

checkWidgets

In this section

Widget Vendor Example

pl aceW dget Or der takes a complex type containing the substituion group
and then returns a complex type that contains a complex type. This
operation demonstrates how one might go about using such a structure in a
Java implentation. Both the client and the server have to get and set
members of a substitution group.

checkWdget s is a simple operation that has a parameter that is a
substitution group. This operation demonstrates how to deal with individual
parameters that are members of a substitution group. The server must
properly determine which member of the substitution group was sent in the
request. The client must ensure that the parameter is a valid member of the
substitution group.

This section discusses the following topics:

Widget Server page 194

Widget Client page 198

193

CHAPTER 6 | Using Substitution Groups

Widget Server

Overview

/] Java

The widget server implements the operations defined by the or der Wdget s
interface shown in Example 134. The Artix WSDL to Java code generator
creates the implementation class shown in Example 135 for the interface.
Using this as a starting point, the following section implements each of the
defined operations. Note that some of the application logic is omitted for
clarity around the use of substitution groups.

Example 135:Widget Server Implementation Class

package com w dget vendor . wi dget or derf orm

i nport com wi dget vendor . t ypes. wi dgett ypes. Wdget O derBi | | | nf o;
i nport com wi dget vendor . t ypes. wi dget t ypes. Wdget O der | nf o;
i nport com wi dget vendor . t ypes. wi dget t ypes. W dget Type;

public class QO der Wdget sl npl

{

inpl enents java.rm . Renote

publ i c com wi dget vendor . t ypes. wi dget types. Wdget O derBi | | I nfo
pl aceW dget Or der (com wi dget vendor . t ypes. wi dget t ypes. W dget O der | nf o wi dget O der For m)

{

/1 User code goes in here.

return new com w dget vendor . t ypes. wi dgett ypes. Wdget OrderBi | | | nfo();

}

public int checkWdget s(com wi dget vendor . types. w dgettypes. Wdget Type w dget Part)

{

/1 User code goes in here.

return O;

}
}

placeWidgetOrder

194

pl aceW dget Or der () recieves an order in the form of a W dget O der | nf o
object, processes the order, and returns a bill to the client in the form of a
W dget OrderBi | | | nf o object. The orders can be for either a plain widget, a
plastic widget, or a wooden widget. The type of widget ordered is

Widget Vendor Example

determined by what type of object is stored in wi dget O der For nis wi dget
member. wi dget is a substitution group and can contain either a Wdget, a
WodW dget , or a Pl asti cWdget .

The best way to determine the type of object stored in wi dget Or der For nis
wi dget member is to use the i sSet el emane() methods. These methods are
generated by the Artix WSDL to Artix code generator to support the
identification of which element of a substitution group is being used and
return a boolean value. Using these methods, you can build a series of
if/then statements to determine what type of widget is being ordered and
process the order correctly. This is shown in Example 136.

Example 136:p/ace WidgetOrder()

/[Java
public Wdget OrderBilllnfo placeWdget O der (W dget O der | nfo
wi dget O der For m)

{
WdgetOderBillInfo bill = new Wdget OderBilllnfo()

// Copy the shipping address and the nunber of w dgets
/1 ordered fromw dget OrderFormto bill

int nunOrdered = w dget O der For m get Anount () ;

if (w dgetCderFormisSet Wdget ())
{
// Cet the widget data fromthe order form
W dget Type order = w dget O der For m get Wdget () ;

/1 Method buil dWdget () is left for you to inplenent
bui | dW dget (order, nunOrdered);

/1 Add the amount of the bill and the widget info to bill
bill.setWdget (order);

float amtDue = nunmOrdered * 0. 30;

bi | | . set Amount Due(ant Due) ;

195

CHAPTER 6 | Using Substitution Groups

Example 136:p/aceWidgetOrder()

el se if (wi dget Order Form i sSet WodW dget ())

{
[/l Get the widget data fromthe order form
VWodW dget Type order = wi dget O der For m get WbodW dget () ;

/1 Method buil dWbodWdget () is left for you to inpl enent
bui | dWbodW dget (or der, nuntr der ed) ;

/!l Add the armount of the bill and the widget info to bill
bi || . set WwodW dget (or der) ;

float antDue = nunOrdered * 0. 85;

bi || . set Anount Due(ant Due) ;

}
else if (widgetOrderFormisSetPlasticWdget())

{
[/l Get the widget data fromthe order form
Pl asti cWdget Type order = wi dget Or der For m get Pl asti cWdget ();

/1 Method buil dPl asticWdget() is left for you to inpl enent
bui | dPl asti cWdget (or der, nuntrdered);

/!l Add the amount of the bill and the widget info to bill
bi |l .setPlasti cWdget (order);

float am Due = nunOrdered * 0. 85;

bi || . set Anount Due(ant Due) ;

}

return bill;

}

Once you have determined which type of widget is in the order, you use the
type specific getter method to extract the proper element of the substitution
group in the order. To set the wi dget member of the bill you use the type
specific setter methods to ensure that when the client gets the bill back it
can use the i sSet el emNane() methods on the bill.

checkWidgets checkW dget s() gets a widget description as a Wdget Type, checks the
inventory of widgets, and returns the number of widgets in stock. Due to the
way Artix generates code, the fact that the operation is defined using a
substitution group head element does not imply that you need to use any
Artix specific APIs. In fact, you can implement checkW dget s() using
standard Java code.

196

Widget Vendor Example

Because all of the types defining the different members of the substitution
group for wi dget extend W dget Type, you can use i nst anceof to determine
what type of widget was passed in and simply cast the argument

wi dget Part into the more restrictive type if appropriate. Once you have the
proper type of object, you can check the inventory of the right kind of
widget.

A possible implementation is shown in Example 137.

Example 137:checkWidgets()

public int checkWdgets(Wdget Type wi dget Part)
{
if (wdgetPart instanceof Wdget Type)

{
return checkWdget | nvent or y(wi dget Type) ;

el se if (w dgetPart instanceof VWWodW dget Type)

{
WodW dget Type wi dget = (VWodW dget Type) wi dget Part ;
return checkVwodW dget | nvent ory(wi dget) ;

}

el se if (wdgetPart instanceof P asticWdgetType)

{
Pl asti cWdget Type wi dget = (Pl asti cWdget Type)w dget Part;
return checkP asti cWdget | nvent ory(w dget);

}

}

197

CHAPTER 6 | Using Substitution Groups

Widget Client

Overview

placeWidgetOrder

198

The widget client makes request on the widget server for orders or to check
inventory. To do so it must properly populate the data elements that are
defined using substitution groups. For example, to make an order the client
needs to use the type specific setter methods for the widget type it is
ordering.

To invoke pl aceW dget Order () the client needs to construct a widget order
that contains one element of the widget substitution group. When adding
the widget to the order, the client code should use the type specific setters
generated for each element of the substitution group to ensure that the Artix
runtime and the server can correctly process the order. For example, if an
order is being placed for a plastic widget, set Pl asti cWdget () should be
used to add the widget to the order.

Example 138 shows client code for setting the wi dget member of
W dget Order | nf o.

Example 138:Setting a Substitution Group Member

/1 Java

I nput St reanReader i nReader = new | nput St r eanReader (Systemiin);
Buf f er edReader reader = new Buff er edReader (i nReader) ;

Wdget O derlnfo order = new Wdget Orderlnfo();

Systemout. println();

Systemout . printl n("Wat col or widgets do you want to order?");
String color = reader.readLine();

Systemout. println();

Systemout . printl n("Wat shape wi dgets do you want to order?");
String shape = reader.readLine();

Widget Vendor Example

Example 138:Setting a Substitution Group Member

Syst em out .
Syst em out .
.printIn("1 - Normal");
Syst em out .
System out .
Syst em out .

Syst em out

println();
println("Wat type of w dgets do you want to order?");

println("2 - Wod");
printIn("3 - Pastic");
println("Selection [1-3]");

String selection = reader.readLi ne();
String trimred = selection.trin();
char wi dget Type = tri mred. char At (0);

swi tch (w dget Type)

W dget Type wi dget = new Wdget Type();
wi dget . set Col or (col or);

wi dget . set Shape(shape) ;

order. set Wdget (wi dget) ;

WodW dget Type woodW dget = new WodW dget Type() ;
woodW dget . set Col or (col or);
woodW dget . set Shape(shape) ;

Systemout . println();

Systemout . printl n("What type of wood are your wi dgets?");
String wood = reader.readLine();

woodW dget . set WbodType(wood) ;

or der . set WwodW dget (woodW dget) ;

{

case '1':
{

br eak;
}
case '2':
{

br eak;
}

199

CHAPTER 6 | Using Substitution Groups

Example 138:Setting a Substitution Group Member

case '3':

{
Pl asti cWdget Type pl asti cWdget = new Pl asti cWdget Type() ;
pl asti cWdget . set Col or (col or);
pl asti cW dget . set Shape(shape) ;

Systemout. println();

Systemout. printl n("Wat type of nold to use for your
w dgets?");

String nold = reader.readLine();

pl asti cW dget . set Mol dPr ocess(nol d) ;

or der. set Pl asti cWdget (pl asti cWdget);

br eak;
}
default :
Systemout. println("lnvai d Wdget Selection!!");
}
checkWidgets Because substitution groups are made up of elements that are either of the

same type or of element whose type inherits from the type of the head
element, the client can invoke checkWdget s() without using any special
Artix code. When developing the logical to invoke checkW dget s() you can
pass in any element of the widget substitution group and the server side
implementation should be able to handle it correctly.

The only caveat is that Artix does not enforce abstract="true". It is up to
you to ensure that your code does not pass in the head element in this case.
This is particularly important when working with services that were not
developed using Artix.

200

CHAPTER 7

Working with Artix
Type Factories

Artix uses generated type factories to support a number of
advanced features including XMLSchema anyType support
and message contexts.

In this chapter This chapter discusses the following topics:
Introduction to Type Factories page 202
Registering Type Factories page 204
Getting Type Information From Type Factories page 207

201

CHAPTER 7 | Working with Artix Type Factories

Introduction to Type Factories

What are type factories? Artix type factories are generated classes that allow the Artix bus to
dynamically create instances of user defined types. They are used to support
Artix functionality that manipulate data using generic Java Qbj ect instances
such as working with XMLSchema anyType instances, message contexts,
and SOAP headers.

Using type factories in your To use type factories in your Artix applications you need to do the following:
applications 1. Generate the type factories for all of the XMLSchema types and
XMLSchema elements used by your application.
2. Edit the WSDL path hard coded into the generated type factory to point
to the proper location of your application’s contract.
3. Register the type factories with the bus used by your application.
Once the type factories are registered with the bus, it will use the type
factories to create the proper holders for any data that needs them. In
addition, you can also use the functions on the type factories to get

information about the types used in your application or to dynamically
instantiate classes for your data types.

Generating type factories wsdl t oj ava automatically generates a type factory for all user-defined types
in a contract when it generates the code for them. The type factory class is
named by postfixing TypeFact ory onto the port type's name. For example if
you generated Java code for a port type named packageDepot , the generated
type factory class would be packageDepot TypeFact ory.

Additionally, you can pass wsdl t oj ava an XMLSchema document that
defines types used by your application and it will generate the classes and
type factory for the defined types.

Each contract or XMLSchema document results in one type factory that
supports all of the types and elements defined by it. The generated type
factory will also support all of the types and elements defined by any
imported XMLSchema documents. So, if your application only uses the
complex types defined in its own contract you will only need to register one

202

Java packages for type factory
support

Introduction to Type Factories

type factory. However, if your application uses types defined in a second
XMLSchema document, you will need to generate and register the type
factory for those types also.

The generated type factories have a hard coded WSDL path. The WSDL
path in the generated type factory is an absolute path that points to the
location of the document from which the type factory was generated. If you
plan to move your application, you will need to edit this hard coded path.

When using type factories you must import the package
com i ona. webservi ces. refl ect. types. TypeFactory.

203

CHAPTER 7 | Working with Artix Type Factories

Registering Type Factories

Overview

Procedure

Instantiating a type factory

204

Before the Artix bus can use the generated type factories, they must be
registered with the bus. This is done using the bus’ r egi st er TypeFact or y()
method.

To register type factories with an application’s bus do the following:

1. Get a reference to the application’s bus as shown in “Getting a Bus” on
page 42.

2. Instantiate the type factories you wish to register with the client proxy
as shown in “Instantiating a type factory” on page 204.

3. Register the type factories using regi st er TypeFact ory() on the Bus
object as shown in “Registering a type factory” on page 205.

The Artix Java code generator automatically generates a type factory for all
of the complex types and elements defined in a contract. The type factory
class is named by postfixing TypeFact ory onto the port type’s name. For
example if you generated Java code for a port type named packageDepot ,
the generated type factory class would be PackageDepot TypeFact ory.

You instantiate a type factory in the same manner as a typical Java object.
Its constructor takes no arguments. Example 139 shows the code to
instantiate the type factory for packageDepot .

Example 139:/nstantiating a TypeFactory

/1 Java
PackageDepot TypeFactory factory = new PackageDepot TypeFact ory();

Registering a type factory

Determining if type factories are
registered

Example

-

Registering Type Factories

You register a type factory with the bus using its r egi st er TypeFact or y()
method. regi st er TypeFact ory() takes an instance of a type factory as its
only argument. Example 140 shows code registering a type factory.

Example 140:Registering a Type Factory
/1 Java
/1 Bus bus and TypeFactory factory obtai ned above

bus. r egi st er TypeFact ory(factory);

To register multiple type factories with the bus, call r egi st er TypeFact or y()
with each additional type factory. Subsequent calls add new type factories
to the list of registered type factories.

You can get a hash table of the type factories registered with a bus using
get TypeFact or yMap() . The returned hash table contains the Q\ane for the
registered type factories and an ArraylLi st of TypeFact ory objects
containing all of the registered type factories. Example 141 shows code for
returning the hash table of registered type factories.

Example 141:Getting Hash Table of Registered Type Factories

/1 Java
HashMap fact Map = bus. get TypeFact or yMap() ;

Example 142 shows an example of registering two type factories,
packageDepot TypeFact ory and wi dget sTypeFact ory.

Example 142:Registering Type Factories

/1 Java
inport javax.xn.rpc.*;
inport comiona. webservices. reflect.types.*;

/] Start the bus and create the Artix client proxy

Bus bus = Bus.init();

packageDepot TypeFactory fact1 = new packageDepot TypeFact ory();
wi dget sTypeFactory facts = new wi dget sTypeFactory();

205

CHAPTER 7 | Working with Artix Type Factories

206

Example 142:Registering Type Factories

3 bus.registerTypeFactory(factl);
bus. r egi st er TypeFact ory(fact 2) ;

The code in Example 142 does the following:

1.
2.
3.

Initializes the bus.

Instantiates the type factory that will be registered.

Registers the type factories using r egi st er TypeFact ory() . The first
call registers the type factory for the types defined in the packageDepot
contract. The second call registers the factory for the types defined in
the wi dget s contract.

Getting Type Information From Type Factories

Getting Type Information From Type Factories

Overview

getSupportedNamespaces()

In most cases you will not need to do anything with the type factories once
they are registered. The bus automatically handles the creation of type
instances for dynamically created data.

However, you can use the type factory’s methods to get information about
the supported types or dynamically create instances of data types on your
own. TypeFact ory objects have five methods that provide access to the
types supported by the factory. They are:

® getSupportedNamespaces()
® getSchemaType()

* getJavaType()

® getJavaTypeForElement()

® getTypeResourcelocation()

get Suppor t edNarrespaces() returns an array of strings listing the
namespace URIs used in the schema for which the type factory was
generated. For example, if your type factory was generated from a contract
that contained the fragment shown in Example 143 a calling

get Suppor t edNarespaces() on the generated type factory would return an
array of strings containing a single entry:

ht t p: // packageTr acki ng. con packageTypes.

Example 143:WSDL Fragment

<?xm versi on="1.0" encodi ng="UTF- 8" ?>
<definitions ...>

207

CHAPTER 7 | Working with Artix Type Factories

Example 143:WSDL Fragment

<t ypes>
<schena
t ar get Nanespace="ht t p: / / packageTr acki ng. coni packageTypes"
xm ns="htt p: / / www, wW8. or g/ 2001/ XM-Schena"
xm ns: wsdl ="ht t p: // schemas. xm soap. or g/ wsdl / ">
<conpl exType nane="packagel nf 0" >
<sequence>
<el enent name="id" type="xsd:string" />
<any nanespace="##any" processContents="| ax"
maxQcecur s="4" />
<el enent name="si ze" type="xsdl: packageS ze"/>
<el enent name="shi ppi ngAddr ess" type="xsd1l: Addr ess"/>
</ sequence>
</ conpl exType>
</ scherma>
</ types>
<port Type name="packageDepot ">
</ port Type>
</definitions>
Example 144 shows code calling get Suppor t edNanespaces() .
Example 144:getSupportedNamespaces()

/1 Java

PackageDepot TypeFactory fact = new PackageDepot TypeFact ory();
String[] typeNanespaces = fact.get Support edNanespaces();

getSchemaType() get SchemaType() returns the QName of the schema type for which the
specified class is generated. It takes a A ass object for a generated type and
returns the QName given in the applications contract for the type which
resulted in the generated class.

For example, the contract fragment in Example 143 on page 207 would
cause a class called Packagel nf o to be generated to support the
XMLSchema complex type packagel nf o. Calling get SchemaType() on an

208

getJavaType()

Getting Type Information From Type Factories

instance of packageDepot TypeFact ory, as shown in Example 145, would
return a QName whose local part is packagel nf o and whose namespace
URI is ht t p: / / packageTr acki ng. conl packageTypes.

Example 145:getSchemaType()

/1l Java
/| PackageDepot TypeFactory fact obtained earlier
Q\ane typeNane = fact. get SchemaType(Packagel nf o. cl ass) ;

get JavaType() returns the Java d ass object generated to support the
specified XMLSchema type. It takes the QName of an XMLSchema type
defined using a t ype element in the contract from which the type factory
was generated as an argument. Using the QName, get JavaType() finds the

d ass object generated to support the XMLSchema type and returns an
instance of it.

For example, the code in Example 146 gets an instance of the generated
Packagel nf o object by passing get JavaType() the QName of the
packagel nf o XMLSchema type defined in Example 143 on page 207.

Example 146:get/avaType()
/[Java

Q\ane typeNane = new
Q\ane(" htt p: // packageTr acki ng. conl packageTypes",
"packagel nf 0") ;
/| PackageDepot TypeFactory, fact, obtained earlier
d ass typed ass = fact.getJavaType(typeNare) ;
Packagel nf o newPackage = typed ass. new nst ance();

The code in Example 146 does the following:

1. Creates the QName for the XMLSchema type.

2. Calls get JavaType() on the type factory to get the A ass object for the
XMLSchema type.

3. Uses the returned A ass object to create a new instance of

Packagel nf o.

209

CHAPTER 7 | Working with Artix Type Factories

getJavaTypeForElement()

getTypeResourceLocation()

210

get JavaTypeFor El enent () returns the Java d ass object generated to
support the specified XMLSchema element. It takes the QName of an
XMLSchema element defined using an el enent element in the contract from
which the type factory was generated as an argument. Using the QName,
get JavaTypeFor El enent () finds the A ass object generated to support the
XMLSchema element and returns an instance of it.

get TypeResour ceLocat i on() returns a string containing the location of the
contract, or XMLSchema document, for which the type factory was
generated.

In this chapter

CHAPTER 8

Working with
XMLSchema
anyTypes

The XMLSchema anyType allows you to place a value of any
valid XMLSchema primitive or named complex type into a
message. This flexibility, however, adds some complexity to
your applications.

This chapter discusses the following topics:

Introduction to Working with XMLSchema anyTypes page 212
Setting anyType Values page 214
Retrieving Data from anyTypes page 216

211

CHAPTER 8 | Working with XMLSchema anyTypes

Introduction to Working with XMLSchema

anyTypes

XMLSchema anyType

Artix and anyType

Artix binding support

Using anyType in Java

212

The XMLSchema anyType is the root type for all XMLSchema types. All of
the primitives are derivatives of this type as are all user defined complex
types. As a result, elements defined as being anyType can contain data in
the form of any of the XMLSchema primitives as well as any complex type
defined in a schema document.

In Artix, an anyType can assume the value of any complex type defined
within the t ypes section of an Artix contract. An anyType can also assume
the value of any XMLSchema primitive. For example, if your contract defines
the complex types j oeFri day, sanSpade, and m keHanmer , an anyType used
as a message part in an operation can assume the value of an element of
type sanBpade or an element of type xsd: i nt . However, it could not assume
the value of an element of type aceVent ur a because aceVent ur a was not
defined in the contract.

Artix supports the use of messages containing parts of anyType using
payload formats that have a corresponding native construct such as the
CORBA any. Currently Artix allows using anyType with the following payload
formats:

® SOAP
® Pure XML
®* CORBA

When working with interfaces that use anyType parts in it messages, you
need to do a few extra things in developing your application. First, you must
register the generated type factory classes with the application’s bus. See
“Registering Type Factories” on page 204.

When using data stored in an anyType, you can also query the object to
determine its actual type before inspecting the data. Retrieving data from an
anyType is discussed in “Retrieving Data from anyTypes” on page 216.

Introduction to Working with XMLSchema anyTypes

Java packages for anyType

When using anyType data and the type factories you must import the
support

following:
® comiona. webservices. refl ect.types. AnyType

® comiona.webservices. refl ect.types. TypeFact ory

213

CHAPTER 8 | Working with XMLSchema anyTypes

Setting anyType Values

Overview

Setting primitive data

In Artix Java xsd: anyType is mapped to

com i ona. webser vi ces. ref | ect . t ypes. AnyType. This class provides a
number of methods for setting the value of an AnyType object. There are
setter methods for each of the supported primitive types. In addition, there
is an overloaded setter method for storing complex types in an AnyType. This
method allows you to specify the Quane for the schema type definition of the
content along with the data or you can simply supply the data and Artix will
attempt to determine the data’'s schema type when the object is
transmitted.

The Artix AnyType class provides methods for storing primitive data in an
anyType. The setter methods for the primitive types are listed in Table 11.
These methods automatically set the data type identifier to the appropriate
schema type when they store the data.

Table 11: anyType Setter Methods for Primitive Types

Method Java Type XMLSchema Type
set Bool ean() bool ean bool ean
set Byt e() byt e byt e
set Short () short short
setlnt() int int
set Long() | ong | ong
set Fl oat () f1 oat f1 oat
set Doubl e() doubl e doubl e
set String() string string
set Short () short short
set UByt e() short ubyte
set UShort () int ushort

214

Setting anyType Values

Table 11: anyType Setter Methods for Primitive Types

Method Java Type XMLSchema Type
setUnt() | ong ui nt
set ULong() Bi gl nt eger ul ong
set Deci nal () Bi gDeci mal deci nal
Setting complex type data You set complex data into any AnyType using the set Type() method.

set Type() can be used in one of two ways. The first is to provide the Q\ane
of the XMLSchema type describing the data to store in the AnyType along
with the data. Using this method makes it easier to query the contents of
anyType objects that were created in the current application space because
Artix does not set the type identifier until after it sends the anyType across
the wire. Example 147 shows code for storing a wi dget Si ze in an anyType.

Example 147:Storing Complex Data and Specifying its Type

/1 Java

wi dget Si ze size = widgetSi ze. bi g;

Q\ane gn = new Q\ane("http://w dget Vendor. conit ypes/ ",
"w dget S ze");

AnyType aT =new AnyType();

aT. set Type(gn, size);

The other way is to simply provide the data value to store in the AnyType
and Artix will determine the XMLSchema type describing the data. From the
receiving end this method for storing data in an anyType is equivalent to the
first method because Artix identifies the contents schema type when it
transmits the data. However, the application that store the value will have
no way to determine the data type once the value is stored until it is used as
part of a remote invocation. Example 148 shows code for storing a

wi dget Si ze in an anyType without providing its Q\ane.

Example 148:Storing Complex Data without a QName
/1l Java
wi dget Si ze size = widgetSi ze. bi g;

AnyType aT =new AnyType();
aT. set Type(si ze) ;

215

CHAPTER 8 | Working with XMLSchema anyTypes

Retrieving Data from anyTypes

Overview

Determining the type of an
anyType

216

Because an anyType can assume the values of a number of different data
types, it is beneficial to be able to determine the type of the data stored in
an anyType before trying to use it. If you knew the value’s type you could

cast the value into the proper Java type and work with it using standard
Java methods.

Artix’s Java implementation of anyType provides a mechanism for querying
the object to determine the schema type of its value. The type identifier is
either set when the value is stored in the anyType or if the type is not

specified when the value is set, Artix sets it when the data is transported
through the bus.

You can also use the standard Java get A ass() method on the Java (j ect

returned from AnyType. get Coj ect () to get the Java class of the data stored
in the anyType.

The Artix Java AnyType provides a method, get SchemaTypeNane() , that
returns the Q\ane of the schema type of the data stored in the anyType.

Example 149 gets the schema type of an anyType and prints it out to the
console.

Example 149:Using getSchemaTypeName()

/1 Java
inport comiona. webservi ces.rel ect. types. *;

AnyType bl ackBox;

// dient proxy, proxy, instantiated previously
bl ackBox = proxy. newBox();
Q\ane schemaType = bl ackBox. get SchemaTypeNane() ;
Systemout. println("The type for blackBox is defined in "
+schemaType. get NamespaceUR ());
Systemout. println("bl ackBox is of type: "
+schemaType. get Local Part());

Extracting primitive types from an
anyType

Retrieving Data from anyTypes

The data stored in an Artix AnyType is a stored as a standard Java (oj ect,
so when the data is extracted you can use the standard get d ass() method
on the returned oj ect to determine its Java type.

The Artix AnyType provides specific methods for extracting primitive types.

Table 12 lists the getter methods for the supported primitive types and the
local part of the schema type name returned by get SchemaType() . All of the
primitive types have ht t p: / / ww. w3. or g/ 2001/ XM_Schema as their

namespace URI.

Table 12: Methods for Extracting Primitives from AnyType

Method Java Type Schema Type Name
get Bool ean() bool ean bool ean
get Byte() byt e byt e
get Short () short short
getlnt() int int
get Long() | ong | ong
get Fl oat () f1 oat fl oat
get Doubl e() doubl e doubl e
get String() String string
get UByt e() short unsi gnedByt e
get Ushort () int unsi gnedsShor t
getunt() | ong unsi gned! nt
get ULong() Bi gl nt eger unsi gnedLong
get Deci mal () Bi gDeci mal deci nal

217

CHAPTER 8 | Working with XMLSchema anyTypes

Extracting complex data from an
anyType

Example

218

The Artix AnyType provides a generic method, get Type(), that can be used
to extract complex data. get Type() returns the data stored in the anyType as
a Java Object that you can then cast to the proper Java type. Example 150
shows an example of retrieving a wi dget Si ze from an anyType.

Example 150:Extracting a Complex Type from an anyType

/1 Java
AnyType any;

// dient proxy, proxy, instantiated earlier
any = proxy.returnWdget();
wi dget Si ze size = (wi dget Si ze) any. get (hj ect () ;

If you had an application that processed orders for computers. It may be
that your ordering system could receive orders for laptops and desktops.
Because the laptops and desktops are configured differently you've decided
that the orders will be sent using anyType elements that the client then
processes. You defined the types, | apt opQr der and deskt opQr der, in the
namespace htt p: // nyAssenbl yLi ne. coni syst enTypes. Example 151
shows code for receiving the order from the server, querying the returned
AnyType to see what type of order it is, and then extracting the order from
the AnyType.

Example 151:Working with anyTypes

/1 Java

inport javax.xnl .namespace. Q\ane;

inport comiona.webservices.refl ect.types.*;

AnyType anyCr der;

// Qdient proxy, proxy, instantiated earlier
anyQrder = proxy. get Systentrder();

I/ Get the schema type of the returned order
Q\ane order Type = anyQ der . get SchenaType() ;

Retrieving Data from anyTypes

Example 151:Working with anyTypes

3 if (!(orderType. get NamespaceURl (). equal s(
"http://nyAssenbl yLi ne. coni syst enifypes"))

/1 handl e the fact that the schena type is fromthe w ong
/1 nanmespace.

}

4 if (orderType.getLocal Part().equal s("l aptopQder"))

{
LapTopCQrder order = (LapTopOrder)anyQr der. get Type();
bui | dLapt op(or der);

5 if (orderType. getlLocal Part().equal s("deskt opCrder™))
{

DeskTopOrder order = (DeskTopQr der)anyQr der. get Type();
bui | dDeskt op(order) ;
}
The code in Example 151 on page 218 does the following:
1. Populates anyQ der .
2. Queries anyQr der for its schema type information.
3. Checks the namespace of the returned type to ensure it correct.
4

Checks if anyQrder is a | apt opQrder . If so, cast anyQrder into a
| apt opCr der .

5. Checks if anyQrder is a deskt opQ der. If so, cast anyQrder into a
deskt opCr der .

219

CHAPTER 8 | Working with XMLSchema anyTypes

220

In this chapter

CHAPTER 9

Using Artix
References

An Artix reference is a handle to a particular Artix service
instance. Because they can be passed as message parts, Artix
references provide a convenient and flexible way of identifying
and locating specific services.

This chapter discusses the following topics:

Introduction to Working with References page 222
Using References in a Factory Pattern page 231
Using References to Implement Callbacks page 243

221

CHAPTER 9 | Using Artix References

Introduction to Working with References

Overview An Artix Reference is a Java object that fully describes a running Artix
service. Artix references have the following features:

They are a built-in Artix data type.

They can be passed as a parameter of an operation.

They can be used to create service proxies for a service described by a
particular reference.

They are the building blocks for the Artix locator and session manager.

They are transport neutral. An Artix reference can be used to represent
any Artix service.

In this section This section discusses the following topics:
Reference Basic Concepts page 223
Creating References page 227
Instantiating Service Proxies Using a Reference page 229

222

Introduction to Working with References

Reference Basic Concepts

Overview

Contents of an Artix reference

An Artix reference is a Java object, derived from an XMLSchema definition
shipped with Artix, that fully describes a running Artix service. It lists the
service's name, the service's contact information, and the service’s WSDL
location. The data contained in the reference provides an Artix client process
with the information needed to instantiate a service proxy to contact the
referenced service.

Using references provides you with the ability to generate servants on the fly
and pass a client a reference to the newly instantiated servant. It also
provides you the ability to write applications that require using a callback
mechanism. In addition, the Artix locator and the Artix session manager use
references to supply applications with pointers to the services which they
are looking-up.

An Artix reference encapsulates the following data:

® Service QName—the QName of the service with which the reference is
associated. The is the name of the service given in the contract
defining the service.
® WSDL location URL—the location of the service's contract. The WSDL
location URL in a reference services two distinct purposes:
. Service identification—the service is uniquely identified by the
combination a WSDL contract and a service QName.

+ WSDL back-up—the reference is fully self-describing.

Note: If you have loaded the WSDL publishing plug-in,

wsdl _publ i sh, on the server, the WSDL location URL will point to a
dynamically updated copy of the service’s contract. See “Accessing
WSDL from a reference” on page 224

® [List of ports—an unbounded sequence of port elements, each of which
contains the following data:

. Port name—the name given the port in the contract.

¢+ Binding QName—the qualified name of the binding with which
the port is associated.

223

CHAPTER 9 | Using Artix References

The schema definition of a
reference

Java mapping of a reference

Accessing WSDL from a reference

224

. Properties—a list of opaque properties, which makes the port
element arbitrarily extensible. The properties list is typically used
to hold transport-specific data and qualities of service. For
example, if the port uses the JMS transport the properties would
include attributes like nessageType and desti nati onStyl e.

Like all types in Artix, the reference is defined in XMLSchema. The
XMLSchema defining a reference is located in the schena folder of your Artix
Installation and is called r ef er ences. xsd. It can also be found on-line at
http://schemas.iona.com/references/references.xsd.

You will need to import the reference schema into the contract of any
application that uses references. It is required for Artix to properly generate
the Java code for operations using a reference as a parameter and for the
bus to properly marshal and unmarshal references passed between
endpoints.

In Java an Artix reference is mapped to a class called

com i ona. schenas. r ef er ences. Ref erence. This class is provided in the
libraries shipped with Artix. Your applications that use Artix references will
need to import this class.

An Artix reference contains a pointer to the contract defining the logical

service associated with the reference. By default, the reference’s WSDL

pointer points to the server's local copy of the service contract. However, if

the server process is configured to load the WSDL publishing plug-in, the

reference’'s WSDL pointer points to an HTTP port from which a client can

download a live copy of the service's contract.

Using the default provides a smaller footprint for your server process, but it

has two main drawbacks:

® Artix needs to be able to read the WSDL in order to instantiate a
service proxy for the referenced service and often the client will not
have access to the service’s local file system.

® The port definition for the service may not be complete because the
service dynamically sets its port attributes at runtime. In particular, a
transient servant’s on-disk port definition is always incomplete.

http://schemas.iona.com/references/references.xsd

References and the Artix router

Introduction to Working with References

Configuring your servers to load the WSDL publishing plug-in avoids these
drawbacks. The WSDL publishing plug-in provides a continually updated
version of a service’'s in-memory WSDL contract using an HTTP port.
Because the WSDL model is always updated, the reference will always point
to a complete contract with valid contact information for the service. Also,
because the WSDL is published over an available HTTP port, a client always
has access to the WSDL when it attempts to instantiate a service proxy.

For information on configuring a service to load the WSDL publish plug-in
see Deploying and Managing Artix Solutions.

When references are passed through the Artix router, the router creates a
service proxy for each reference. In this way it ensures that messages are
correctly delivered to the referenced service. However, this creates two
issues that must be considered:

Misconnected Proxies

Because transient servants are not associated with a fixed service, the router
must guess at which WSDL service was used as the service template to
create the servant. It chooses the first compatible WSDL service it
encounters in the router’'s contract. A compatible WSDL service is a service
that uses the same port Type element as the service template used to create
the transient servant.

If your contract contains a static WSDL service definition and a service
template that both use the same port Type element, the router will use the
first one listed in the contract. If the static service is first, the router will
create a proxy that connects to the servant defined by that service and not
the transient service that is referenced. The result will be that all messages
directed to the transient servant will be silently forwarded to the wrong
servant.

To avoid this situation place all service templates in your router’s contract
before the static WSDL services. This will ensure that the router will select
the service template and create a proxy for the transient servant.

Router bloat

Because the router cannot know when a proxy is no longer needed, it reaps
any of the proxies it creates. Because of this, a router that handles a large
number of references may get quite bloated. To solve this problem Artix

225

http://www.iona.com/support/docs/artix/3.0/deploy/index.htm

CHAPTER 9 | Using Artix References

includes a life-cycle service that allows you to configure a reaping schedule
for the router. For more information on using the life-cycle service see
Deploying and Managing Artix Solutions.

226

http://www.iona.com/support/docs/artix/3.0/deploy/index.htm

Introduction to Working with References

Creating References

Overview

Registering a servant

References are created by a bus using the creat eRef er ence() method.
Before a bus instance can create a reference for a service, the servant
implementing the service must be registered with the bus. The process for
creating a reference for a service involves three steps:

1. Get a handle to a bus as shown in “Getting a Bus” on page 42.
2. Register the servant with the bus.

3. Create a reference using the service’s Q\ane.

Registering a service with the bus is a two step process. The first step is to
create an Artix Servant instance for your service. Example 152 shows an
example of creating a Servant for the Wdget Loader service. The Servant
contsructor requires the path of the contract defining the service, an
instance of the service’s implementation class, and a bus instance.

Example 152:Creating a ServerFactoryBase

/[Java
Servant servant =
new Si ngl el nst anceServant ("./Wdgets. wsdl ",
new W dget Loader | npl (), bus);

The second step in registering a service with the bus is to register the
servant with a bus instance. Servants can be registered as either static or
transient. A static servant is registered using Bus. r egi st er Servant () and
has a fixed port address that is defined in its contract. A transient servant is
registered using Bus. r egi st er Tr ansi ent Servant () . A transient servant is a
clone of the service defined in the contract and each servant for a given
service will have a unique port number.

For a detailed discussion of registering servants, read “Servant Registration”
on page 36.

227

CHAPTER 9 | Using Artix References

Creating the reference

Example

228

Once you have registered a service with the bus, you can create a reference
for it using the Q\ane returned from the servant registration method.
References are created using the bus’ cr eat eRef erence() method.
Example 153 shows the signature for cr eat eRef er ence() .

Example 153:createReference()

/] Java
Ref erence cr eat eRef er ence(Q\are servi ce) ;

The method takes in the Quane of a registered service. The Q\ane of a
registered service is returned when you register the servant with the bus.
Keeping track of the registered service’s Q\ame when using references is
particularly important when working with transient servants. Because they
are clones of a service, each instance of a service registered with a transient
servant will have a unique Q\ane that is generated by the bus.

Example 154 shows the code for generating a reference for a static instance
of the A i ng service.

Example 154:Creating a Reference

/1 Java
inport comiona.jbus.*
inport com i ona. schenas. r ef er ences. Ref er ence;

/1 Initialize a default bus
Bus bus = Bus.init();

I/ Register the servant
Q\ne name = new Q\Nane("http://ww: static.com ding",
"dingService");

Servant servant = new Si ngl el nst anceServant (new d i ngl npl (),
"./cling. wsdl ",
bus) ;

Q\ane clingName = bus. regi ster Servant (servant, nare,

"dingPort");

I/ Cenerate the reference for the register ding Service
Ref erence clingRef = bus. creat eRef erence(cl i nghare) ;

Introduction to Working with References

Instantiating Service Proxies Using a Reference

Overview

Getting a bus

Creating a service

Example

One of the primary uses of a reference is to create a service proxy for
connecting to the referenced service. The bus provides a method,
createdient (), that takes a reference and returns a JAX-RPC style
dynamic proxy for the referenced service.

Typically, you will receive a reference inside of a service's implementation
object and will not have access to the bus which is hosting the current
servant. In order to get a handle for a servant’s default bus you would use
code similar to that shown in Example 155.

Example 155:Getting a Bus Reference Inside a Servant

com i ona.j bus. Bus bus = D spat chLocal s. get QurrentBus();

To create a service proxy from a reference, you need three things:

® abus

® areference

® the Java d ass representing the service's interface

You create service proxy from a reference by calling createQ i ent () on the
servant’s default bus. creat eQ i ent () takes a reference to a service and the
service's interface A ass as parameters. If the call is successful, it returns a
JAX-RPC style dynamic proxy for the service referenced. createdient()’s
signature is shown in Example 156.

Example 156:Bus.createClient()
Renot e Bus. created i ent (Ref erence ref,

d ass interfaced ass)
throws BusException

Example 157 shows the code for creating a service proxy for the Cling
service from a reference.

229

CHAPTER 9 | Using Artix References

Example 157:Getting a Bus Reference Inside a Servant

/1 Java
com i ona. j bus. Bus bus = D spat chLocal s. get QurrentBus();

/1 Reference clingRef obtained earlier
ding clingProxy = bus.createdient(clingRef, ding.class);

230

Using References in a Factory Pattern

Using References in a Factory Pattern

Overview

In this section

A common pattern for working with references is a factory pattern where
one object, a factory, creates references for other objects. For example, you
could develop a banking service that is responsible for creating and
managing accounts. It may have one operation, get _account, that returns
references to account objects that handle the more low level operations for
depositing or withdrawing money from an account. In this instance, your
bank implementation object is a factory for account objects.

This section discusses how such a banking service could be developed. The
examples used are loosely based on the transient servant demo supplied
with Artix. It is located in the

denos/ servant _managenent / t r ansi ent _sevant s folder of your Artix
installation.

The following topics are discussed in this section:

Bank Service Contract page 232
Bank Service Implementation page 237
Bank Service Client page 240

231

CHAPTER 9 | Using Artix References

Bank Service Contract

Overview

Importing the reference schema

232

The WSDL contract defining the Bank service has several key elements that
are required for defining a service that uses references in a factory pattern.
The first thing to notice is that the contract imports the XMLSchema
definition for Artix references. Also, it defines two interfaces: Bank and
Account . Bank defines an operation for returning references to an Account .
Also, both interfaces have fully described bindings and service definitions.

For detailed information about Artix contracts read Designing Artix
Solutions.

Any Artix service that uses references needs to include the XMLSchema
definition for an Artix reference in its contract. This can be dome in one of
two ways. The most common way is to use an i nport element to import the
XMLSchema definition that is provided with Artix. Example 158 shows a
WSDL fragment that imports the reference schema.

Example 158:/mporting the Reference Schema

<i mport nanespace="http://schemas. i ona. com r ef erences"
| ocation="/usr/| ocal /arti x/ schema/r ef er ences. xsd" />

The other way is to add the reference definition directly into the contract.
This is the method shown in the supplied transient servant demo.

You will also need to add an alias for the references namespace to the
definitions tag at the top of the contract as shown in Example 159.

Example 159:Reference Alias

xm ns: ref erence="htt p://schenas. i ona. con r ef er ences"

http://www.iona.com/support/docs/artix/3.0/design/index.htm
http://www.iona.com/support/docs/artix/3.0/design/index.htm

Messages with references

Bank interface

Account interface

Bank binding

Using References in a Factory Pattern

The Bank interface’s get _account operation returns a reference to an
Account . The message definition for the response of these operations have
one part, ret ur n, that is of type ref er ence: Ref er ence. Example 160 shows
the definition for a message that contains a reference.

Example 160:Message with a Reference
<nessage nane="bankResponse" >

<part name="return" type="reference: Ref erence" />
</ message>

The port Type element defining the Bank interface defines a single operation
named get _account . This operation takes a string as input and returns a
reference. Example 161 shows the port Type element for the Bank interface.

Example 161:Bank portType Element

<port Type nane="Bank">
<oper ati on name="get account ">
<i nput name="acct Nare" nessage="t ns: account Nane"/>
<out put nane="return" message="tns: bankResponse"/>
</ oper at i on>
</ por t Type>

The contract defining the service will also need to include a definition for the
Account interface. This interface can either be defined in a separate WSDL
fragment that is imported or it can be defined in the same contract as the
Bank interface. The transient servant demo defines the Account interface in
the same contract.

While an Artix reference can describe a service that uses any of the bindings
supported by Artix, they can only be sent using the SOAP binding or the
CORBA binding. When using the SOAP binding, you do not need to anything
special to send an Artix reference. The transient servant demo supplied with
Artix uses a SOAP binding.

233

CHAPTER 9 | Using Artix References

Account binding

Transport definitions

Complete bank contract

The CORBA binding maps an Artix reference into a generic CORBA Quj ect .
You can do some additional work to create typed CORBA references. For
details on how Artix references are mapped into a CORBA binding see the
CORBA appendix of Designing Artix Solutions.

You will also need to add a binding for the referenced service, which in this
case is the Account interface. The binding for the referenced service can be
any one of the supported Artix bindings. The transient servant demo
supplied with Artix uses a SOAP binding for the Account interface.

References can be sent over any transport that supports SOAP or CORBA
messages. However, because in this example the servants used to service
Account objects will be transient, the Account service must use either HTTP
or CORBA.

Example 162 shows the complete contract used for the code generated in
the following discussions about the factory pattern.

Example 162:Bank Service Contract

<?xm version="1.0" encodi ng="UTF- 8" ?>

<definitions xm ns="http://schemas. xm soap. or g/ wsdl /"
xm ns: soap="htt p: // schenmas. xm soap. or g/ wsdl / soap/ "
xm ns:tns="http://ww. i ona. conl bus/ denos/ bank"
xm ns: xsd="ht t p: // www. W8. or g/ 2001/ XM-Schena"
xm ns: htt p="http://schenas. i ona. con transports/http"
xm ns: ref erences="http://schenas. i ona. coni r ef er ences"
xm ns: bank="htt p: // wwv. i ona. coni bus/ denos/ bank"
t ar get Namespace="ht t p: / / ww. i ona. coni bus/ denos/ bank"

nane="BankSer vi ce" >

<i nport nanespace="htt p://schenas.i ona. coniref er ences"
| ocation="/usr/| ocal /arti x/ schema/r ef er ences. xsd" />

234

http://www.iona.com/support/docs/artix/3.0/design/index.htm

Using References in a Factory Pattern

Example 162:Bank Service Contract

<message nane="account Nane">
<part name="account_nane" type="xsd:string"/>
</ message>
<nessage nane="bankResponse" >
<part name="return" type="references: Ref erence"/>
</ message>
<nessage name="get bal ance"/>
<nessage name="get _bal anceResponse">
<part name="bal ance" type="xsd:float"/>
</ message>
<nessage nane="deposit">
<part name="addition" type="xsd:float"/>
</ message>
<nessage nane="deposi t Response" />
<port Type nane="Bank">
<oper ati on name="get _account ">
<i nput nanme="acct Namre" nessage="t ns: account Nane"/ >
<out put nane="return" message="t ns: bankResponse"/>
</ oper at i on>
</ por t Type>
<port Type nane="Account">
<oper ati on name="get _bal ance">
<i nput nane="get_bal ance" nessage="tns: get _bal ance"/>
<out put nane="get_bal anceResponse" nessage="tns: get _bal anceResponse"/ >
</ oper at i on>
<oper ati on name="deposit">
<i nput name="deposit" message="tns: deposit"/>
<out put nane="deposi t Response" message="t ns: deposi t Response"/ >
</ oper ati on>
</ por t Type>
<bi ndi ng name="BankBi ndi ng" type="tns: Bank">
<soap: bi ndi ng styl e="rpc" transport="http://schemas. xn soap. or g/ soap/ http"/>
<oper ati on name="get _account ">
<soap: oper ati on soapAction="http://wamv i ona. coni bus/ denos/ bank" style="rpc"/>
<i nput >
<soap: body use="literal" encodi ngStyl e="http://schenas. xm soap. or g/ soap/ encodi ng/ "
nanmespace="htt p: // waw i ona. com bus/ denmos/ bank"/ >
</i nput >
<out put >
<soap: body use="literal" encodi ngStyl e="http://schenas. xm soap. or g/ soap/ encodi ng/ "
nanespace="htt p: // wwv i ona. coni bus/ denos/ bank"/ >
</ out put >
</ oper at i on>
</ bi ndi ng>

235

CHAPTER 9 | Using Artix References

Example 162:Bank Service Contract

<bi ndi ng nanme="Account Bi ndi ng" type="t ns: Account ">
<soap: bi ndi ng styl e="rpc" transport="http://schemas. xn soap. or g/ soap/ http"/>
<oper ati on name="get _bal ance">
<soap: operati on soapAction="htt p://wmv i ona. conl bus/ denos/ bank" styl e="rpc"/>
<i nput >
<soap: body use="literal" encodi ngStyl e="http://schenas. xm soap. or g/ soap/ encodi ng/ "
nanespace="ht t p: // wwv. i ona. coni bus/ denos/ bank" / >
</i nput >
<out put >
<soap: body use="literal" encodi ngStyl e="http://schenas. xm soap. or g/ soap/ encodi ng/ "
nanespace="ht t p: // wwv. i ona. coni bus/ denos/ bank" / >
</ out put >
</ oper at i on>
<oper ati on name="deposit">
<soap: operati on soapAction="htt p://wamv i ona. coni bus/ denos/ bank" styl e="rpc"/>
<i nput >
<soap: body use="literal" encodi ngStyl e="http://schenas. xm soap. or g/ soap/ encodi ng/ "
namespace="htt p: // waw. i ona. coni bus/ denos/ bank"/ >
</i nput >
<out put >
<soap: body use="literal" encodi ngstyl e="http://schenas. xm soap. or g/ soap/ encodi ng/ "
namespace="htt p: // waw. i ona. coni bus/ denos/ bank"/ >
</ out put >
</ oper at i on>
</ bi ndi ng>
<servi ce name="BankServi ce">
<port name="BankPort" bi ndi ng="tns: BankBi ndi ng" >
<soap: address | ocati on="http://| ocal host : 0/ BankSer vi ce/ BankPort/" />
</ port>
</ servi ce>
<servi ce name="Account Servi ce">
<port nane="AccountPort" bi ndi ng="tns: Account Bi ndi ng">
<soap: address | ocati on="http://| ocal host: 0" />
</ port>
</ servi ce>
</ definitions>

236

Using References in a Factory Pattern

Bank Service Implementation

Overview

The bank service implementation
object

The bank service is the factory for accounts in this example. Its operation,
get _account , returns references to account objects. get _account create
accounts and registers them as transient servants. The accounts are
registered as transient servants to ensure that each new account has a
unique port definition and unique reference.

The Bank service defined in the contract will generated an implementation
object called Bankl npl . This object will contain one method,

get _account (), for which you will provide the logic. In addition, for this
example, Bankl npl has a global data member, account s, that stores a table
of the created accounts by their account name. The line declaring account s
is in bold because you need to add it to the generated file.

Example 163 shows the generated Bankl npl with account s added.
Example 163:Bankimpl

package com i ona. bus. denos. bank;

inport java.net.*;
inport java.rm.?*;

inport java.lang.String;
inport comiona. schenas. r ef erences. Ref erence;

/**

* com i ona. bus. denos. bank. Bankl npl
*/
public class Banklnpl inplements java.rm . Renote

{

Hasht abl e accounts = new Hasht abl e() ;

237

CHAPTER 9 | Using Artix References

get_account

238

Example 163:Bankimpl

[**

* get _account
*
* (@aram account_name (String)
* @eturn: comiona.schenas. references. Ref erence
*/
publi ¢ comi ona. schenas. r ef er ences. Ref er ence
get _account (String account _nane) {
I/ User code goes in here.
return new com i ona. schenas. r ef er ences. Ref er ence() ;

The get _account operation in the contract is mapped to the get _account ()
method in the bank service’'s implementation object. get _account () first
checks the table of accounts to see if one with the given name already
exists. If one does exist, it returns the reference to that account. If no
account with that name exists, it creates a new Account | npl object and
registers it as a transient servant with the bus.

The Account I npl object is registered as a transient servant because
transient servants are guaranteed to have a unique port definition in their
in-memory contract and that the reference created for each Account I npl
object will point to the correct Account | npl . When using static servants, all
references point to a single instance of the servant object.

Note: When working with transient servants, you should ensure that the
WSDL publishing plug-in is loaded into the server process.

Once the Account | npl object is registered with the bus, get _account ()
generates a reference for the new servant using bus. cr eat eRef er ence() .
This is the reference that is returned to the client. Using the returned
reference, the client will create a service proxy to access the new Account
object.

Example 164 shows the fully implemented get _account ().
Example 164:get account()

publ i c Reference get_account (String account _name)

{

Using References in a Factory Pattern

Example 164:get account()
Ref erence ref = (Reference)accounts. get (account _nane)
if (ref == null)
{
Account | npl acct = new Account | npl ();

com i ona. j bus. Bus bus = D spatchLocal s. get Qurrent Bus();

String contract = new String("./bank.wsdl");
Servant servant = new Si ngl el nst anceServant (acct, contract,
bus) ;

Q\ane name = new QNane("http://ww:. i ona. conl bus/ denos/ bank",
" Account Servi ce");
bus. regi st er Tr ansi ent Servant (servant, nare);

ref = bus. creat eRef er ence(nane) ;

account s. put (account _nane, ref);

}

return ref;
}
The code in Example 164 does the following:
1. Looks up the account name in the table of existing accounts.

2. Checks to see if an account was found. If a valid account was found
skip to step 9. If not, continue.

Creates a new Account I npl for a new account.

Gets the bus for this bank servant.

Creates a new Artix Servant for the new account.

Registers the new Servant as a transient servant with the bus.
Creates a reference for the newly registered transient servant.

Adds the new reference and account name to the table of accounts.

W X N O oW

Returns the reference to the client.

239

CHAPTER 9 | Using Artix References

Bank Service Client

Overview

Requirements for building the
client

Locating the Account service’s
contract

Client tasks

240

The client for the bank service requests accounts and then performs
operations on the returned accounts. In this case, the returned accounts are
also services implemented by remote Artix servants. Therefore, before the
client can invoke operations on the returned accounts, it must create service
proxies for them.

While Artix references are fully self-describing, your client code will still
require the generated interface for the Account service. This interface will be
generated into a file called Account . j ava by wsdl t oj ava.

Artix references contain a pointer to the contract for the referred service. As
discussed in “Accessing WSDL from a reference” on page 224, the WSDL
pointer in a reference can either point to the server process’ local copy of the
service contract or, if the WSDL publishing plug-in is loaded, to an HTTP
port where the in-memory copy of the contract can be obtained.

Because the Bank service registers the Accounts as transient servants, the
server's local copy of the contract will not have a valid <por t > definition any
of the Accounts. Therefore, you will need to ensure that the server process
has loaded the WSDL publishing plug-in.

The client main in this example does four things:

1. Creates a service proxy for the Bank.

2. Invokes get _account () on the Bank proxy.

3. Creates a service proxy for an Account using the returned reference.
4. Invokes operations in the Account proxy.

The first two things that the client does are typical Artix client programming
steps. Any Artix client will instantiate a service proxy using a known contract
and then invoke operations on the proxy. The third task of the client is, for
this discussion, the interesting task.

Using the reference returned from get _account (), the client will use the
Bus. creat ed i ent () method to create a service proxy for the Account. The
version of Bus. creat ed i ent () used to create a service proxy from a

Code for the client main()

Using References in a Factory Pattern

reference takes two parameters: an Artix reference and the interface class
for the referenced service. Example 165 shows the code for creating an
Account service proxy from a reference.

Example 165:Creating an Account Service Proxy

acct Proxy = bus. createdient (acct Ref, Account);

Example 166 shows the completed code for the bank client’s main line.

Example 166:Code for Bank Client

/1 Java

inport java.util.*;
inport java.io.*;

inport java.net.*;
inport java.rm.?*;

inport javax.xm .namespace. Q\arre;
inport javax.xm.rpc.*;

inport comiona.j bus. Bus;
inport comiona. schenas. ref erences. Ref erence;

public class Bankd i ent

{

public static void main (String args[]) throws Exception

{

Bus bus = Bus.init(args);

Q\arre narre = new QNane("http://ww. i ona. com bus/ denos/ bank",
"BankServi ce");
String portNanme = new String("BankPort");

String wsdl Path = "file:/./bank.wsdl";
URL wsdl URL = new Fi | e(wsdl Pat h) .t oURL();

Bank bankProxy = bus. created ient(wsdl URL, nane, portNane,
Bank. cl ass);

String account _nane;

Systemout . printl n("What is the name of the account?");
System i n. read(account _narre) ;

241

CHAPTER 9 | Using Artix References

Example 166:Code for Bank Client
7 Ref erence acct Ref = bankPr oxy. get _account (account _nane) ;
8 Account acct Proxy = bus. created ient(acctRef, Account.cl ass);

/1 1 nvoke operations on acct Proxy

}
}
The code in Example 166 does the following:
1. Initializes the bus.
Creates the Q\ane for the Bank service.
Sets the port name for the Bank service.

Sets the URL to the client’s copy of the Bank service contract.

o &~ wnN

Creates a service proxy for the Bank service using
bus.createdient().

o

Gets the name of the account.

Gets a reference to the desired account by invoking get _account () on
the Bank service proxy.

8. Uses the returned reference to create an Account service proxy using
bus.createdient().

242

Using References to Implement Callbacks

Using References to Implement Callbacks

Overview

In this section

Another common use for Artix references is to create callbacks from a server
to a client. When creating a callback, the client instantiates a servant object
and registers it, using an Artix reference, with the server. The server can
then create a service proxy for the client’s callback object and invoke its
operations to update the client.

For example, an accounts receivable system may need to notify its clients
that it is closing the daily books and is not accepting new transactions until
the operation is complete. In this case, the clients would have a callback
object with two operations, posti ng and done_post i ng. The server would
invoke posting to notify the client that it is not accepting new transactions.
When it was done closing the books, the server would then invoke
done_posti ng.

This section discusses the following topics:

The Accounting Contract page 244
The Accounting Client page 250
The Accounting Server page 255

243

CHAPTER 9 | Using Artix References

The Accounting Contract

Overview

Importing the reference schema

Messages with references

244

The contract for an application the uses a callback needs to include the
interface definition, binding definition, and service information for both the
service implemented by the server and the callback object implemented by
the client. When using callbacks the client essentially plays a dual role. It
implements a servant, like a server process, and makes requests on a
service.

Any Artix service that uses references needs to include the XMLSchema
definition for an Artix reference in its contract. This can be done in one of
two ways. The most common way is to use an i nport element to import the
XMLSchema definition that is provided with Artix. Example 158 shows a
WSDL fragment that imports the reference schema.

Example 167:/mporting the Reference Schema

<i nport nanespace="http://schenas.i ona. coniref erences"
| ocation="/usr/| ocal /artix/ schena/r ef erences. xsd" />

The other way is to add the reference definition directly into the contract.

You will also need to add an alias for the references namespace to the
definitions tag at the top of the contract as shown in Example 159.

Example 168:Reference Alias

xm ns: ref erence="htt p://schemas. i ona. con r ef er ences"

The Regi st er interface’s regi st er _cal | back operation sends a reference to
a Noti fy object. The message definition for the parameter of the operation
has one part, ref, that is of type ref er ence: Ref er ence. Example 160
shows the definition for a message that contains a reference.

Example 169:Message with a Reference
<message nane="regMessage">

<part name="ref" type="references: Reference" />
</ message>

The callback’s interface

Server interface

Using References to Implement Callbacks

The interface for the callback object can be as complex or simple as your
application requires. For this example, the callback object will only need
two operations. One to inform the client that the server is busy and one to
tell the client that the server is ready to receive new posts. Neither operation
needs input or output messages, but because WSDL requires at least one

i nput element or out put element the interface definition includes a dummy
input message.

Example 170 shows the port Type element defining the callback object’s
interface.

Example 170:Callback Interface

<nessage name="cal | backRequest" />
<port Type nane="Notify">
<oper ati on name="posti ng">
<i nput name="paranl nessage="tns: cal | backRequest" />
</ oper at i on>
<oper ati on name="done_posti ng">
<i nput name="paran! nessage="tns: cal | backRequest" />
</ oper at i on>
</ por t Type>

The server's interface needs one operation, regi st er _cal | back, to register
the client’s callback object and create a proxy for it. In addition to the
operation for registering the callback, the server can have any number of
operations defined for providing services to the clients. In this example, the
server has three operations: deposi t, wi t hdraw, and dai | yPost i ng. The
client shown in this example only invokes desposit and wi t hdr aw. An
administrative client invokes dai | yPost i ng.

245

CHAPTER 9 | Using Artix References

Example 171 shows the port Type element defining the server's interface.
Example 171:Server Interface

<port Type nane="Regi ster">
<oper ati on nane="regi ster_cal | back">
<i nput nane="parani nessage="tns: ref Message" />
</ operati on>
<oper ati on nane="deposit">
<i nput nane="anount" nessage="t ns: ant Message" />
<out put nane="return" message="tns: ant Message" />
</ operati on>
<oper ati on nanme="wi t hdraw'>
<i nput name="anount" nessage="t ns: ant Message" />
<out put nane="return" message="tns: ant Message" />
</ operati on>
<oper ati on nane="dai |l yPosti ng">
<i nput name="dat e" message="tns: dat eMessage" />
</ operati on>
</ port Type>

Bindings The callback object’s interface can be bound to any of the message formats
supported by Artix. Because the server's interface includes an operation that
has a reference as a parameter, it can only be bound to a SOAP message or
a CORBA message. In this example, both interfaces are bound to SOAP
messages.

Transport details Because both the callback object and the server are registered as static
servants, they can use any of the transports supported by Artix. In this
example, HTTP is used.

Contract Example 172 shows the complete contract used for the code generated in
the following discussions about callbacks.

246

Using References to Implement Callbacks

Example 172:Callback Contract

<?xm version="1.0" encodi ng="UTF-8"?>
<definitions xm ns="http://schemas. xm soap. or g/ wsdl / "
xm ns: soap="ht t p: // schemas. xm soap. or g/ wsdl / soap/ "
xm ns: tns="htt p: // ww i ona. coni bus/ denos/ cal | backs"
xm ns: xsd="ht t p: / / www W8. or g/ 2001/ XM-Schena"
xm ns: http="http://schemas. i ona. com transports/ http"
xm ns: ref erences="ht t p: // schenas. i ona. coni r ef er ences"
t ar get Nanespace="ht t p: // ww. i ona. coni bus/ denos/ cal | backs"
nane="BankSer vi ce" >
<i nport nanespace="htt p://schenas. i ona. conir ef er ences"
| ocati on="/usr/| ocal / arti x/ schema/ r ef er ences. xsd" />
<message nane="ant Message">
<part name="amount" type="xsd:float"/>
</ message>
<message nane="ant Response" >
<part name="return" type="xsd:float"/>
</ message>
<nessage name="r ef Message" >
<part name="ref" type="references: Ref erence"/>
</ message>
<nessage name="dat eMessage" >
<part name="date" type="xsd:string"/>
</ message>
<nmessage name="cal | backRequest" />
<port Type nanme="Notify">
<oper ati on name="posti ng">
<i nput name="paranl nessage="t ns: cal | backRequest" />
</ oper at i on>
<oper ati on name="done_posting">
<i nput name="paranl nessage="t ns: cal | backRequest" />
</ oper at i on>
</ por t Type>

247

CHAPTER 9 | Using Artix References

Example 172:Callback Contract

<port Type nane="Regi ster">
<oper ati on name="regi ster_cal | back">
<i nput name="paranl nessage="tns: ref Message" />
</ oper at i on>
<oper ati on name="deposit">
<i nput name="anount" nessage="t ns: ant Message" />
<out put name="return" message="tns: ant Response" />
</ oper at i on>
<oper ati on name="wi t hdraw'>
<i nput nane="anount" nessage="t ns: ant Message" />
<out put name="return" message="tns: ant Response" />
</ oper at i on>
<oper ati on name="dai | yPosti ng">
<i nput nane="dat e" message="t ns: dat eMessage" />
</ oper at i on>
</ por t Type>
<bi ndi ng narme="Noti f yBi ndi ng" type="tns: Notify">
<soap: bi ndi ng styl e="rpc" transport="http://schenas.xn soap. or g/ soap/ http"/>
<oper ati on name="posti ng">
<soap: operati on soapAction="htt p://wmv i ona. conl bus/ denos/ cal | backs" styl e="rpc"/>
<i nput >
<soap: body use="literal" encodi ngStyl e="http://schenas. xm soap. or g/ soap/ encodi ng/ "
nanespace="ht t p: // ww. i ona. conl bus/ denos/ cal | backs"/ >
</i nput >
</ oper at i on>
<oper ati on name="done_posti ng">
<soap: operati on soapAction="htt p://wam\ i ona. coni bus/ denos/ cal | baks" styl e="rpc"/>
<i nput >
<soap: body use="literal" encodi ngStyl e="http://schenas. xm soap. or g/ soap/ encodi ng/ "
namespace="ht t p: // waw. i ona. cond bus/ denos/ cal | backs"/ >
</i nput >
</ oper at i on>
</ bi ndi ng>
<bi ndi ng name="Regi st er Bi ndi ng" type="tns: Regi ster">
<soap: bi ndi ng styl e="rpc" transport="http://schemas. xn soap. or g/ soap/ http"/>
<oper ati on name="regi ster_cal | back">
<soap: operati on soapAction="htt p://wmv i ona. coni bus/ denos/ cal | backs" style="rpc"/>
<i nput >
<soap: body use="literal" encodi ngStyl e="http://schenas. xm soap. or g/ soap/ encodi ng/ "
namespace="htt p: // waw. i ona. cond bus/ denos/ cal | backs"/ >
</i nput >
</ oper at i on>

248

Using References to Implement Callbacks

Example 172:Callback Contract

<oper ati on name="deposit">
<soap: oper ati on soapAction="http://wmv i ona. conf bus/ denos/ cal | backs" styl e="rpc"/>
<i nput >
<soap: body use="literal" encodi ngStyl e="http://schenas. xm soap. or g/ soap/ encodi ng/ "
nanmespace="htt p: // wwv i ona. conl bus/ denos/ cal | backs" />
</i nput >
<out put >
<soap: body use="literal" encodi ngStyl e="http://schenas. xm soap. or g/ soap/ encodi ng/ "
namespace="htt p: // waw\ i ona. cond bus/ denos/ cal | backs" />
</ out put >
</ oper at i on>
<oper ati on name="wi t hdraw'>
<soap: oper ati on soapAction="http://wmv i ona. conf bus/ denos/ cal | backs" styl e="rpc"/>
<i nput >
<soap: body use="literal" encodi ngStyl e="http://schenas. xm soap. or g/ soap/ encodi ng/ "
namrespace="htt p: // ww\ i ona. cond bus/ denos/ cal | backs" />
</i nput >
<out put >
<soap: body use="literal" encodi ngStyl e="http://schenas. xm soap. or g/ soap/ encodi ng/ "
nanespace="htt p: // wwv i ona. conl bus/ denos/ cal | backs" />
</ out put >
</ oper at i on>
<oper ati on name="dai | yPosting">
<soap: oper at i on soapAction="http://wmv i ona. coni bus/ denos/ cal | backs" styl e="rpc"/>
<i nput >
<soap: body use="literal" encodi ngStyl e="http://schenas. xm soap. or g/ soap/ encodi ng/ "
namespace="htt p: // waw\ i ona. coni bus/ denos/ cal | backs" />
</i nput >
</ oper ati on>
</ bi ndi ng>
<servi ce name="Noti fyService">
<port name="NotifyPort" bindi ng="tns: NotifyBi ndi ng">
<soap: address | ocati on="http://| ocal host:0"/>
</ port >
</ servi ce>
<servi ce name="Regi sterServi ce">
<port name="Regi sterPort" bi ndi ng="t ns: Regi st er Bi ndi ng" >
<soap: address | ocati on="http://| ocal host: O/ Regi st er Servi ce/ Regi sterPort/"/>
</ port >
</ servi ce>
</ defini ti ons>

249

CHAPTER 9 | Using Artix References

The Accounting Client

Overview

Callback implementation

250

A client that has a callback object has two major parts to develop:

® The callback object’s implementation object.

® Theclient's mai n() that performs the clients work.

When using a callback, the client’s mai n() will perform one additional task

that is normally only performed in servers. It will instantiate a servant for the
callback object and register it with the bus.

The callback object for this example is very simple. It has one static
member, busy, that is set to 1 when posti ng() is invoked and set to 0 when
done_posting() is invoked. Using the instance of Noti fyl npl registered
with the bus in the client’s mai n(), you can check the value of busy to see if
the Regi st er service is doing its daily posting and not accepting new
requests.

To avoid thread conflicts, the callback object’'s methods are synchronized.
When the methods complete, they then notify all interested parties that
callback object has been modified. This notifies the client the status has
been updated and it can stop waiting for the server.

Example 173 shows the code for the callback object.
Example 173:Callback Object
package com i ona. bus. denos. cal | backs;

inport java.net.*;
inport java.rm.?*;

public class Notifylnpl inplenents java.rm . Renote

{
public int busy = 0;

Using References to Implement Callbacks

Example 173:Callback Object

public void posting()
{ synchroni ze(thi s)
{
busy = 1;
noti fyAll ();
}
}

public voi d done_posting()

{
synchroni ze(thi s)
{
busy = 0;
noti fyAll ();
}
}
}

The client main() The client mai n() in this example does six things:
1. Creates a service proxy for the Regi st er service.
2. Creates a servant for the callback object.

3. Registers the callback object’s servant with the bus so that it can
receive requests.

Registers the callback object with the Regi st er service.
5. Invokes operations on the Regi st er service.

Checks the callback object to see if the Regi st er service is posting.

251

CHAPTER 9 | Using Artix References

Example 174 shows the code for client mai n() .
Example 174:Callback Client Main()

/1 Java

inport java.util.*;
inport java.io.?*;

inport java.net.*;
inport java.rm.?*;

inport javax.xm .namespace. Q\arre;
inport javax.xm.rpc.*;

inport comi ona.j bus. Bus;
inport comiona. schenas. ref er ences. Ref er ence;

public class Registerdient

{
public static void main (String args[]) throws Exception
{
char op;
1 Bus bus = Bus.init(args);
2 Q\ane nanme = new
Q\ane(" htt p: // www. i ona. cond bus/ denos/ cal | backs",
"Regi st er Servi ce");
String portName = new String("RegisterPort");
String wsdl Path = "file:/./resister.wsdl";
URL wsdl URL = new Fi | e(wsdl Pat h) .t oURL();
Regi ster registerProxy = bus. created ient(wsdl URL, nane,
por t Nane,
Regi ster. cl ass);
3 Notifylmpl notify = new Notifylnpl();

String contract = new String("./register.wsdl");

4 Servant servant = new Singl el nst anceServant (notify, contract,
bus) ;

Q\ane noti fyNane = new

Q\ane("http: //ww. i ona. com bus/ denos/ cal | backs",
"NotifyService");

252

Using References to Implement Callbacks

Example 174:Callback Client Main()

5 bus. r egi st er Servant (servant, notifyNane);
6 Ref erence ref = bus. creat eRef erence(noti f yNane) ;
7 regi sterProxy. regi ster_cal | back(ref);

Fl oat amount;
float bal ance;

String tenp;
whi | e(true)
{
8 synchroni ze(noti fy)
{
9 whi | e(notify. busy == 1)
{
Systemout. printl n("The Server is posting. M ease
wait.");
10 notify.wait();
}
}
11 Systemout. println("Choose an option:");

Systemout . println("1) Deposit");
Systemout. printin("2) Wthdraw');
Systemout. println("3) Exit");
Systemi n. read(op);

swi t ch(op)

case '1':
Systemout . printl n("Anount to deposit?");
Systemin.read(tenp);
anount = new Fl oat (tenp);
bal ance = regi sterProxy. deposit (anmount. fl oat Val ue());
Systemout. printl n("New bal ance: "+bal ance);
br eak;

253

CHAPTER 9 | Using Artix References

Example 174:Callback Client Main()

case '2':
Systemout. println("Amount to w thdraw?");
Systemin.read(tenp);
anount = new Fl oat (tenp);
bal ance = regi st erProxy. wi t hdraw anount . f | oat Val ue());
Systemout. printl n("New bal ance: "+bal ance);
br eak;
Case '3':
return;

}

}
}
The code in Example 174 does the following:
Initializes a bus for the client.
Creates a proxy for the Regi st er service.
Creates an instance of Noti fyl npl to be the callback object.
Creates a servant to wrap the callback object.
Registers the servant with the bus.
Creates a reference for the callback object’s servant.

N o o s~ e

Registers the callback by invoking the Regi ster service's
regi ster_cal | back() operation.

8. Ensures that the callback object cannot be modified by other threads
before checking its state.

9. If the callback object’s busy flag is set to 1 the server is doing its daily
posting and the client needs to wait.

10. Waits on the callback object. When the server changes the value of
busy, this call will stop blocking and the flag can be checked again.

11. Makes requests on the Regi ster service.

254

Using References to Implement Callbacks

The Accounting Server

Overview

Server main()

Registerimpl

The server in this example also exhibits some hybrid behavior. The

regi ster_cal | back operation receives a reference to the client’s callback
object and creates a service proxy for it. In this example, the proxy is put

into an object-level data element and the dai | yPost i ng operation invokes
the proxy’s operations to inform the clients when the server is posting.

In this example, the server's mai n() is a standard Artix server mai n() . It
initializes a bus instance, registers a Servant that wraps an instance of
Regi ster I npl , and then calls Bus. run() . For a discussion of writing an Artix
server mai n() see “Developing a Server” on page 18.

The Accounting server’'s implementation object, as generated by

wsdl t o ava, is called Regi st er I npl . It has four methods:

regi ster_cal | back(), dai |l yPosting(), deposit (), and wi t hdraw() .
deposit () and wi t hdraw() perform data requests for the client and they are
left for you to implement.

For the discussion of callbacks, regi st er _cal | back() and dai | yPost i ng()
are of interest. regi st er _cal | back() is responsible for receiving the
callback object’s reference and instantiating a proxy for it. In this example,
the proxy is stored in the objects noti fy member. dai | yPosting() then
invokes the callback object’s operations to inform the client when the server
is busy.

Example 175 shows the completed Regi st er I npl class. The code in bold is
added to the generated class by the user.

Example 175:Registerimpl

package com i ona. bus. denwps. cal | backs;

inport java.net.?*;
inport java.rm.?*;

i nport com i ona. schenas. ref er ences. Ref erence;

i nport comi ona.j bus. *;
inport java.lang.String;

255

CHAPTER 9 | Using Artix References

Example 175:RegisterImpl

public class Registerlnpl inplenents java.rm . Renote

{
Noti fyl mpl notify;

public void register_cal | back(comi ona. schenas. ref er ences. Ref er ence ref)
{

com i ona. j bus. Bus bus = D spat chLocal s. get Qurrent Bus() ;

notify = bus.createdient(ref, Notify.class);

}
public float deposit(float ammount)
{
/1 User code goes in here.
return 0. O0f;
}

public float wthdrawfloat ammount) {
/] User code goes in here.
return 0. Of;

}

public void dail yPosting(String date)

{
notify. posting();

/1 User code goes in here.

noti fy. done_posting();
}
}

register_callback() regi ster_cal | back() does the following:
1. Gets a handle on the bus hosting this servant.

2. Creates a proxy for the callback object using the reference sent by the
client.

256

Using References to Implement Callbacks

dailyPosting() dai | yPosti ng() does the following:

1. Invokes the callback object’s post i ng operation to notify the client that
the server is busy.

2. Performs the tasks involved in closing the daily books and posting the
results. This logic is left to the user to implement.

3. When the daily posting tasks are complete, it invokes the callback
object’s done_post i ng operation to notify the client that the server is
ready to handle new requests.

257

CHAPTER 9 | Using Artix References

258

CHAPTER 10

Using Native XML

The Artix Java API provides a utility class that populates Artix
generated objects from an XML document. This utility class
will also convert Artix generated object back into a native XML

representation.
In this chapter This chapter discusses the following topics:
Populating Artix Objects with XML page 260
Converting Artix Objects Into XML page 263
Converting References into XML page 266

259

CHAPTER 10 | Using Native XML

Populating Artix Objects with XML

Overview

Populating an object generated
from an XMLSchema type

260

You may have instances where the data your application is using input that
is already in XML. For example, your data may stored in a database that
stores information as XML or you are working with a word processing
document stored in the Oasis Open Document format. The problem them
becomes how to populate the objects used in your application with the XML
data.

Artix solves this problem by providing the utility class
comiona.jbus.utils. XMWils. This class provides the overloaded static
method fromkXM_() for populating objects using XML data. It uses the
XMLSchema definitions of the data the objects store to parse the XML data
and populate the elements in the object.

If the object you are populating is generated to represent an XMLSchema
type, you can use the simple form of fronXM.() . The signature for this form
is shown in Example 176.

Example 176:fromXML() for Types

static hject fromXM.(String xnm, Q\ane nane,
d ass class, String path)

fromXM.() returns an bj ect that can be cast into the appropriate type. It
takes four arguments:
String xm Contains the XML data to populate the object.

Q\ane nane Specifies the QName of the XMLSchema type from which
the object was generated.

QA ass class Specifies the d ass object for the object to be populated.

String path Specifies the path to the contract or XMLSchema
document defining the data the object represents.

Populating an object generated
from an XMLSchema element

Populating Artix Objects with XML

If, for example, your application works with student records whose structure
is defined as an XMLSchema complex type called st udent Rec, and it reads
records from an XML database, the code for populating the object would be
similar to that shown in Example 177.

Example 177:Populating an Object from XML
FilelnputStreamfile = new Fil el nput Strean{"test.xm");

byte record[256] ;
file.read(record);

String xm Rec = new String(record);

Q\ane name = new Q\Nane("schenas. conitests/types",
"student Rec");

St udent Rec student = (Student Rec) XMWl . fromXM.(xm Rec, nane,
St udent Rec. cl ass,
"./grader.wsdl ");

The code in Example 177 does the following:

1. Opens a file containing XML data

Reads in a record from the file.

Converts the byte stream into a String.

Creates the QName for the type definition.

o~ DN

Uses the XM_U i | s class to populate a St udent Rec object with the XML
data read from the file.

If the XML data passed into f r omXM_() does not conform to the XMLSchema
definition for the type a Wi t eExcept i on will be thrown.

If the object you are populating is generated to represent an XMLSchema
element, you can use the more flexible form of fromXM.() . This form will
work with both XMLSchema types and XMLSchema elements. The signature
for this form is shown in Example 178.

Example 178:Five Argument form of fromXML()

static Chject fromXM.(String xm, Q\Nane el enent Nane,
Q\ane typeNane, dass class, String path)

261

CHAPTER 10 | Using Native XML

262

fromXM_() returns an Qoj ect that can be cast into the appropriate type. It
takes five arguments:

String xm Contains the XML data to populate the object.

Qane Specifies the QName of the XMLSchema element from
el enent Name which the object was generated.

Quare typeNare Specifies the QName of the XMLSchema type from which
the object was generated.

QA ass class Specifies the A ass object for the object to be populated.

String path Specifies the path to the contract or XMLSchema
document defining the data the object represents.

If your object represents an XMLSchema element, you would specify nul |
for t ypeNane. Conversely, if your object represents an XMLSchema type, you
would specify nul I for el enent Narre.

If we changed Example 177 so that st udent Rec was defined as an
XMLSchema element instead of a complex type, the code for populating the
object would be similar to that shown in Example 179.

Example 179:Populating an Object from XML
Filelnput Streamfile = new Fil el nput Strean{"test. xm");

byt e record[256] ;
file.read(record);

String xm Rec = new String(record);

Q\Bne name = new Q\Nane("schenas. conitests/types",
"student Rec");

St udent Rec student = (Student Rec) XMW | . fronXM.(xm Rec, nane,
nul |
St udent Rec. cl ass,
"./grader.wsdl ");

The code in Example 179 differs from the code in Example 177 in only one
way. The call to fromXM.() includes the extra parameter. In this case,
because st udent Rec is defined as an element it is nul I .

If the XML data passed into f ronXM_() does not conform to the XMLSchema
definition for the element a Wi t eExcepti on will be thrown.

Converting Artix Objects Into XML

Converting Artix Objects Into XML

Overview

Artix objects that represent an
XMLSchema type

Objects that represent an
XMLSchema type

All Artix generated objects have a t oStri ng() method that will produce a
stringified representation of the object. There are instances that you need to
recreate the XML data represented by the object. For example, you may
need to store the data in an XML database. Recreating the XML data
represented by an object can also be a useful debugging tool.

Artix solves this problem by providing the utility class
comiona.jbus.utils. XM.Wils. This class provides the overloaded static
method toXxM.() for converting objects into their XML form. It uses the
XMLSchema definitions of the XML data the objects represent. From the
XMLSchema definition, Artix can decompile the Java object and parse it into
valid XML data.

If the object you are converting into XML was generated by Artix to represent
an XMLSchema type you can use the simplest form of t oxM.() . The
signature for this form is shown in Example 180.

Example 180:Two Argument toXML()
static String toXM.(Chject obj, String path)

It returns a Stri ng containing the XML representation of the object and
takes two arguments.

(oj ect obj Specifies the object you are converting to XML. This
object must have been generated by the Artix Java code
generator because it uses Artix specific code for
determining the QName of the type which the object
represents.

String path Specifies the path to the contract or XMLSchema
document defining the data the object represents.

If you have an object, that was not generated by Artix, that represents an
XMLSchema type and you have access to the XMLSchema document that
defines the type, you can still convert it into XML. t oXM.() has a three

263

CHAPTER 10 | Using Native XML

Objects that represent an
XMLSchema element

264

argument form that allows you to specify the QName of the XMLSchema
type the object represents. The signature for this form is shown in
Example 181.

Example 181:Three Argument toXML()
static String toXM(Q\ane name, Cbject obj, String path)

It returns a Stri ng containing the XML representation of the object and
takes three arguments.

Q\ane nane Specifies the QName of the XMLSchema type
represented by the object.

bj ect obj Specifies the object you are converting to XML. This
object must have been generated by the Artix Java code
generator because it uses Artix specific code for
determining the QName of the type which the object
represents.

String path Specifies the path to the contract or XMLSchema
document defining the data the object represents.

If you have an object, that represents an XMLSchema element and you have
access to the XMLSchema document that defines the type, can convert it
into XML using the four argument form of t oXM.() . This form that allows you
to specify the QName of the XMLSchema element the object represents. It
also allows you to convert an object that represents an XMLSchema type by
specifying the type's QName. The signature for this form is shown in
Example 182.

Example 182:Four Argument toXML()

static String toXM.(Q\ane el enent Nane, Nane t ypeNane,
Cbj ect obj, String pth)

It returns a Stri ng containing the XML representation of the object and
takes four arguments.

Qane Specifies the QName of the XMLSchema element
el ement Nae represented by the object.

Quare typeNarme Specifies the QName of the XMLSchema type
represented by the object.

Converting Artix Objects Into XML

oj ect obj Specifies the object you are converting to XML. This
object must have been generated by the Artix Java code
generator because it uses Artix specific code for
determining the QName of the type which the object
represents.

String path Specifies the path to the contract or XMLSchema
document defining the data the object represents.

If your object represents an XMLSchema element, you would specify nul |
for t ypeNarne. Conversely, if your object represents an XMLSchema type, you
would specify nul | for el enent Nane.

265

CHAPTER 10 | Using Native XML

Converting References into XML

Overview Artix references are defined with in an Artix specific XMLSchema document
that is not always available to applications. Therefore, they contain enough
information to be self-describing. For converting them to and from XML,
XMW i |'s provides special methods.

Converting to XML To convert an Artix reference into XML, you use
XMW ils. referenceToXM.(). referenceToXM.() takes a single Ref er ence
object and returns a Stri ng object containing the XML representation of the
reference. If it cannot convert the reference it throws a Wit eExcepti on.

Converting from XML To convert the XML representation of an Artix reference into an Artix
Ref er ence object, you use XMWt i | . r ef er enceFr omXM.() .
ref erenceFromXM.() takes a String object containing the XML
representation of the reference and returns the Ref er ence object constructed
from the XML. If the supplied XML is not valid a ReadExcept i on is thrown.

266

CHAPTER 11

Using Message
Contexts

Artix implements and extends the JAX-RPC MessageContext
interface to allow users to manipulate metadata about
messages and transports.

In this chapter This chapter discusses the following topics:
Understanding Message Contexts in Artix page 268
Sending Header Information Using Contexts page 288

267

CHAPTER 11 | Using Message Contexts

Understanding

Overview

Contexts and the bus

268

Message Contexts in Artix

Artix implements the JAX-RPC MessageCont ext interface. JAX-RPC message
contexts are primarily used in writing handlers, but can also be used to store
metadata about messages or pass state information into or out of the
message handling chain. Generally, this metadata is not passed across the
wire with the message.

In addition, Artix extends the JAX-RPC message contexts to provide a
consistent, thread safe mechanism for passing additional information along
with request and reply messages. Currently, this mechanism can be used to
send SOAP headers and security information when using the SOAP binding.
This additional information can include SOAP headers, GIOP context
objects, transport attributes, and MIME type definitions.

Message contexts are bus objects that application level code can access. To
manage the Artix message contexts associated with it, a bus uses a context
registry that allows it to instantiate thread specific message contexts. Using
the message context, application code can access any of the properties set
by the application. Because the contexts are thread specific bus objects, any
changes made to a property stored in a context by a handler is reflected at
the application level.

Artix message contexts, because they hold information which is to be

written out on the wire, have a request context container and a reply context
container for the thread in which it is running. The reply context container

Understanding Message Contexts in Artix

stores information returned from a server and the request context container
stores information that is sent along with a request. This is shown in
Figure 5.

Context Registry

Thread X

——

Artix Message
Context Y &3

E Request Context

Artix Message

&5/ Context X

Reply Context Reply Context

© |Request Context

Figure 5: Overview of the Message Context Mechanism

Getting message contexts To access message contexts in your application do the following:
1. If you are using Artix message contexts, register the type factories for
the data stored in the contexts. See “Registering Type Factories” on
page 204.
2. Get a reference to the bus’ context registry.
Get the message context for the thread in which your application is
running from the context registry.

Working with message contexts Once you have gotten the message context, you can chose to use it as a
JAX-RPC message context, a SOAP message context, or an Artix message
context. Both the JAX-RPC interface and the Artix message context interface
will allow you to access all of the properties set for the active bus, but the
Artix message context simplifies the accessing Artix specific properties. The

269

CHAPTER 11 | Using Message Contexts

In this section

270

Artix message context interface is an extension of the JAX-RPC message
context interface, so all of the JAX-RPC message context methods are
available after you cast a JAX-RPC message context to an Artix message
context.

The SOAP message context, which is defined by the JAX-RPC specification,
is only available when using the Artix SOAP binding. It provides access to
messages in SOAP form. Using this context you can manipulate the
messages using the sOAPMessage APIs. For more information see, “Working
with SOAP Messages” on page 513.

This section discusses the following topics:

Getting the Context Registry page 271
Getting the Message Context for a Thread page 273
Working with JAX-RPC Contexts page 276
Working with Artix Message Contexts page 282

Understanding Message Contexts in Artix

Getting the Context Registry

Overview

Procedure

Example

The Context Registry is maintained by the bus. It contains an entry for all of
the Artix specific property types registered with the bus. It also instantiates
thread specific message contexts and hands out references to the proper
message context to requesting applications.

The Bus has a method, get Cont ext Regi st ry(), that returns a reference to
the bus instance’s context registry. The context registry is an object of type
Cont ext Regi stry. Example 183 shows the signature of

get Cont ext Regi st ry() . Because the context registry is specific to an
instantiated bus instance, you must call it on an initialized bus instance.

Example 183:getContextRegistry()
Cont ext Regi stry com i ona. j bus. Bus. get Cont ext Regi stry();

To get access to the context registry from your application code, do the
following:

1. Get a handle for the desired bus using one of the following methods as
shown in “Getting a Bus” on page 42.

2. Call get Cont ext Regi stry() on the returned bus to get a reference to
the context registry.

Example 184 shows an example of getting the context registry from within
the implementation object of an Artix service.

Example 184:Getting the Context Registry
inport java.net.?*;

inport java.rm.?*;

inport comiona.jbus.*;

public class Atherny

{

/1 get the bus

Cont ext Regi stry cont Reg = bus. get Cont ext Regi stry();

271

CHAPTER 11 | Using Message Contexts

Example 184:Getting the Context Registry

The code in Example 184 does the following:

1. Import the package comi ona. j bus so that it has access to the Artix
bus APIs.

2. Call get Cont ext Regi stry() on the default bus to get the default bus’
context registry.

272

Understanding Message Contexts in Artix

Getting the Message Context for a Thread

Overview

getCurrent()

To ensure thread safety, the context registry creates a Message Context
object for each thread. The message contexts maintained by the context
registry are passed as JAX-RPC MessageCont ext objects. These objects
provide access to properties stored in the contexts using the APIs defined in
the JAX-RPC specification.

Artix provides two means of getting the current message context for a
thread. If you have the context registry, you can use the registry’s

get Qurrent () method. If you do not have the context registry, you can use
the D spat chLocal s. get Qurrent Cont ext () method.

To manipulate Artix specific properties you must cast the returned
MessageCont ext into an | onaMessageCont ext object. Once the
MessageCont ext is cast to an | onaMessageCont ext it is an Artix message
context. The Artix message context APIs provide easy access to Artix specific
properties and track the context container for which each property is set.

Message contexts are passed out by the context registry using the registry’s
get Qurrent () method. get Current () returns the message context object for
the thread from which it is called. Message contexts are returned as
JAX-RPC MessageCont ext objects. Example 185 shows the signature for
getQurrent ().

Example 185:getCurrent()

j avax. xm . rpc. handl er . MessageCcont ext Cont ext Regi stry. getCurrent();

If you want to use the returned message context to work with Artix specific
context information you can cast it to an 1 onaMessageCont ext object. The
| onaMessageCont ext object is discussed in “Working with Artix Message
Contexts” on page 282.

273

CHAPTER 11 | Using Message Contexts

Example 186 shows how to get an message context from the context
registry.
Example 186:Getting a Message Context
inport java.net.*;
inport java.rm.?*;
inport javax.xm.rpc. handl ers.*;
1 inport comiona.jbus.*;
public class At herny
{
/1 get the bus

2 ContextRegistry contReg = def_bus. get Cont ext Regi stry();

3 MessageCont ext nmessCont cont Reg. get Qurrent () ;

The code in Example 186 does the following:

1. Import the package comi ona. j bus so that it has access to the Artix
bus APIs.

2. Call get Cont ext Resi stry() on the default bus to get the default bus
context registry.

i

3. Call getaurrent () on the context registry to get the Artix message
context for the application’s thread.

DispatchLocals Di spact Local s is a globally accessable interface that provides a simple
method for getting the current message context for a thread. Its
get Qur r ent MessageCont ext () method returns the message context object
for the thread from which it is called. Message contexts are returned as
JAX-RPC MessageCont ext objects. Example 187 shows the signature for
get Qur r ent MessageCont ext () .

Example 187:getCurrentMessageContext()

j avax. xm . rpc. handl er . MessageCcont ext get Qurr ent MessageCont ext () ;

274

Understanding Message Contexts in Artix

If you want to use the returned message context to work with Artix specific
context information you can cast it to an | onaMessageCont ext object. The
| onaMessageCont ext object is discussed in “Working with Artix Message
Contexts” on page 282.

Example 188 shows how to get an message context using the
D spat chLocal s interface.

Example 188:Getting a Message Context

inport java.net.?*;
inport java.rm.?*;
inport javax.xm.rpc.*

inport comiona.jbus. *;
public class Atherny

{

MessageCont ext nessCont =
Di spat chLocal s. get Qurrent MessageCont ext () ;

275

CHAPTER 11 | Using Message Contexts

Working with JAX-RPC Contexts

Overview

Artix context properties

276

A JAX-RPC message context is a container for properties that are shared
among the participants in applications message handling chain. They have
some predefined properties that are made available to handlers that run
below the application level. However, you can add any named property you
like to the context as long as the name does not conflict with one of the
predefined properties.

Properties set in the message context are only available at certain steps
along the message handling chain. Properties set in the context by handlers
are only available to handlers further down the processing chain and are
destroyed once the operation’s invocation completes. Properties set at the
application level are available globally and live for the duration of the
application.

JAX-RPC message contexts have methods to set a property in the context, to
get a property from the context, and to remove a property from the context.
They also have methods to determine what properties are set in the context.

Artix has a number of standard properties that it stores in the JAX-RPC
message context. These properties can all be accessed using the appropriate
constant from the com i ona. j bus. Cont ext Const ant s class. Table 13 lists
the context properties used by Artix.

Table 13: Artix Context Properties

Property Description

CPERATI ON_NAME Holds the name of the operation the
originated the message being processed.
See “Working with Operation Parameters”
on page 508.

SERVER _REQUEST CLASSES Holds an array of d ass objects
representing the classes of each part of the
current request message. See “Working
with Operation Parameters” on page 508.

Understanding Message Contexts in Artix

Table 13: Artix Context Properties

Property

Description

SERVER REQUEST VALUES

Holds an array of (bj ect objects
containing the data for each part in the
current request message. See “Working
with Operation Parameters” on page 508.

SERVER RESPONSE_CLASSES

Holds an array of d ass objects
representing the classes of each part of the
current response message. See “Working
with Operation Parameters” on page 508.

SERVER RESPONSE_VALUES

Holds an array of (bj ect objects
containing the data for each part in the
current response message. See “Working
with Operation Parameters” on page 508.

CLI ENT_REQUEST _CLASSES

Holds an array of d ass objects
representing the classes of each part of the
current request message. See “Working
with Operation Parameters” on page 508.

CLI ENT_REQUEST_VALUES

Holds an array of (bj ect objects
containing the data for each part in the
current request message. See “Working
with Operation Parameters” on page 508.

CLI ENT_RESPCNSE _(QLASSES

Holds an array of d ass objects
representing the classes of each part of the
current response message. See “Working
with Operation Parameters” on page 508.

CLI ENT_RESPONSE VALUES

Holds an array of (bj ect objects
containing the data for each part in the
current response message. See “Working
with Operation Parameters” on page 508.

Setting a property in the context Before a property exists in the message context it must be set using the
message context’s set Property() method. Example 189 shows the
signature for set Property() . The first parameter, nane, can be any string as

277

CHAPTER 11 | Using Message Contexts

278

long as it is unique among the properties set in the context. The second
parameter, val ue, can be any instantiated Java object. It becomes the value
of the property stored in the context.

Example 189:MessageContext.setProperty()
voi d setProperty(Sting name, Cbject val ue);

The scope of the property depends on where in the message handling chain
the property is set into the context. Properties set at the level from which the
operations are invoked they are global in scope and exist for the duration of
the process’ lifecycle or until they are explicitly removed from the message
context. Properties set by handlers are only available to handlers further
down the handler chain and expire once the operation’s invocation is
completed. For more information about handlers, see “Writing Handlers” on
page 479.

Example 190 shows the code for setting a property in the request context.
Example 190:Setting a Property in a Message Context

inport java.net.?*;

inport java.rm.?*;

inport comiona.jbus.*;

public class At herny

5/ get the bus

Cont ext Regi stry cont Reg = def _bus. get Cont ext Regi stry();
MessageCont ext context = cont Reg. getCQurrent();

bool ean i sEncryt ped = TRUE;

cont ext . set Property("i sEncrypted", isEncrypted);

Getting a property from the
context

Understanding Message Contexts in Artix

The code in Example 190 does the following:

1. Imports the package comi ona. j bus so that it has access to the Artix
bus APIs.

2. Calls get Cont ext Resi stry() on the default bus to get the default bus’
context registry.

3. Calls get current () on the context registry to get the message context
for the application’s thread.

Creates the an instance of the property’s class and set the values.
5. Sets the property by calling set Property().

You get a property’s value from the message context using its

get Property() method. Example 191 shows the signature for

get Property() . It takes a single parameter, nane, that is the name of the
property for which you want the value. If the property exists, it is returned. If
the property does not exist, nul | is returned.

Example 191:MessageContext.getProperty()
Chj ect get Property(String nane);

Example 192 shows the code for getting a SOAP header from the request
context.

Example 192:Getting a Property from the Message Context
inport java.net.?*;

inport java.rm.?*;

inport comiona.jbus. *;

public class Atherny

{

/1 get the bus

Cont ext Regi stry cont Reg = def _bus. get Cont ext Regi stry();
MessageCont ext context = cont Reg.getQurrent();

bool ean encrypt = (bool ean) cont ext . get Property("i sEncrypted");

279

CHAPTER 11 | Using Message Contexts

Removing a property from the
context

280

1

2

3

The code in Example 192 does the following:

1.

Imports the package comi ona. j bus so that it has access to the Artix
bus APIs.

Calls get Cont ext Resi stry() on the default bus to get the default bus’
context registry.

Calls get Qurrent () on the context registry to get the message context
for the application’s thread.

Gets the property by calling get Property() with the appropriate name.

If you wish to remove a property from the message context, you do so using
the message context’s renovePr operty() method. Example 193 shows the
signature for renovePr operty() . It takes a single parameter, nane, that
represents the name of the property you wish to remove.

Example 193:MessageContext.removeProperty()

voi d renoveProperty(String nane);

Example 194 shows the code for removing a property from the message
context.

Example 194:Removing a Property from a Message Context

inport java.net.*;
inport java.rm.?*;
inport comiona.jbus.*;

public class Atherny

{

I/ get the bus
Cont ext Regi stry cont Reg = def _bus. get Cont ext Regi stry();

MessageCont ext context = cont Reg. getCQurrent();

cont ext . renoveProperty("isEnctryted");

Determining what properties are
set

Understanding Message Contexts in Artix

The code in Example 194 does the following:

1. Calls get Cont ext Resi stry() on the default bus to get the default bus’
context registry.

2. Calls get Qurrent () on the context registry to get the message context
for the application’s thread.

3. Removes the property by calling r emovePr operty() .

The JAX-RPC MessageCont ext interface has two methods that allow you to
determine what properties are set in a context. cont ai nsProperty() takes
the name of a property, as a Stri ng, and returns true if the property is set
and false if the property is not. get PropertyNames() returns an | terat or
object with the names of all properties stored in the message context.

Example 195 shows the code for seeing if a property is set in the message
context.

Example 195:Querying a Property in the Message Context

inport java.net.*;
inport java.rm.?¥*;
inport comiona.jbus. *;

public class Atherny

{
I/ get the bus

Cont ext Regi stry cont Reg = def _bus. get Cont ext Regi stry();
MessageCont ext context = cont Reg.getQurrent();
if (context.containsProperty("isEnctryted"))

{
System out (" The property is set");

}

281

CHAPTER 11 | Using Message Contexts

Working with Artix Message Contexts

Overview Each Artix message context holds one Request Context Container and one
Reply Context Container. The request context container holds all of the
properties associated with messages that originate as service requests in a
proxy. The reply context container holds all of the properties associated with
messages that are created by services in response to a request. In both
instances, the properties in the context container are passed all the way
through the request and reply chain. For example, if A i ent makes a
request on Server A, Server Awould receive the properties set in the request
context from the client. If Ser ver Athen passes the request along to Server B,
Ser ver B also receives the request context sent by A i ent. The same is true
when using the Artix router. Figure 6 shows how context properties are
passed with messages.

Q CLIENT ! ServerA/Router\ll\ [EH ServerB

/: T

,’ ServerBProxy] /Y

Request Context P Reply Context

\ Reply Context

Figure 6: Contexts Passed Along Request/Reply Chain

The context containers hold the data for all of the contexts instantiated in
the Artix message context’s thread. Each context container can hold one
instance of a registered property type. Properties are instantiated separately
for the request context container and the reply context container. For

282

Setting a property

Understanding Message Contexts in Artix

instance, you can get a SOAP header property for the request context
container and leave the reply context container empty. In that case, the
SOAP header property would be included in all request messages sent from
the thread in which it was set.

Before you can get a property from one of the context containers, the
property must be set in that container. Properties are set in one of two ways.
The first is that the property is set by the sender of the message. For
example, if a client sends a request with a WS-Security header, the server's
request context container will have the WS-Security property set.

The second is to use the message context’s setter methods. The message
context has two setter methods: set Repl yCont ext () and

set Request Cont ext () . Example 196 shows the signature for these
methods.

Example 196:Methods for Setting a Property

voi d set Repl yCont ext (Q\ane name, bj ect val ue);
voi d set Request Cont ext (QNane narme, bj ect val ue);

The first parameter to these methods, nane, specifies the name of the
property you desire to set. The QNanme passed in must be a Q\ane of a
property that is registered with the context registry.

The second parameter, val ue, is data you are using to set the property. It
must be of the appropriate type for the property specified in nane.

To set a property do the following:

1. Create an instance of the object representing the property you want to
set.

2. Set the desired fields of the newly created property.
Call the appropriate setter method with the name of the property you
are setting and the property instance you created. For example, to set a
property into the reply context container, you would use
set Repl yCont ext () .

283

CHAPTER 11 | Using Message Contexts

Example 197 shows the code for setting a property in the request context.
Example 197:Setting a Property in an Artix Message Context

inport java.net.*;
inport java.rm.?*;
1 inport comiona.jbus.*;

public class At herny

{
I/ get the bus

2 ContextRegistry contReg = def_bus. get Cont ext Regi stry();

3 | onaMessageCont ext context =
(1 onaMessageCont ext) cont Reg. get Qurrent () ;

4 Musi cTagType tag = new Misi cTagType();
tag. set Arti st (" Mirphy");
tag. set Al bun(" Law');

5 Q\ame context Nane = new Q\Nane("http://records. com ",
"Musi cTags");

6 context. set Request Cont ext (cont ext Nane, tag);

The code in Example 197 does the following:

1. Imports the package com i ona. j bus so that it has access to the Artix
bus APlIs.

2. Calls get Cont ext Resi stry() on the default bus to get the default bus’
context registry.

3. Calls get Qurrent () on the context registry to get the message context
for the application’s thread and casts it to an Artix message context.

Creates the an instance of the property’s class and set the values.
5. Creates the QName for the property.

Sets the property by calling set Request Cont ext () with the appropriate
Quane and the newly created property object.

284

Getting a property

Understanding Message Contexts in Artix

Artix message contexts have two methods that allows you to get a property
from one of the context containers. These methods are get Repl yCont ext ()
and get Request Cont ext (). Example 198 shows the signature for these
methods.

Example 198:Methods for Getting a Property

(hj ect get Repl yCont ext (Q\ane nane) ;
Chj ect get Request Cont ext ((Q\Nane nane) ;

They take a single parameter, nane, that specifies the name of the property
you desire to get. The Q\ane passed in must be a Q\ane of a property that is
registered with the context registry. Artix has a number of preregistered
context types to support transport attributes. In addition, You can register
your own properties to use as SOAP headers or GIOP service contexts.

Example 199 shows the code for getting a property from the request
context.

Example 199:Getting a Property

inport java.net.?*;
inport java.rm.?*;
inport comiona.jbus. *;

public class Atherny

{
/1 get the bus
Cont ext Regi stry cont Reg = def _bus. get Cont ext Regi stry();

| onaMessageCont ext context =
(1 onaMessageCont ext) cont Reg. get Qurrent () ;

Q\ane ref Nanme = new Q\Nane("http://records. com ", "Misi cTags");

Musi cTagType tag =
(Musi cTagType) cont ext . get Request Cont ext (r ef Nane) ;

285

CHAPTER 11 | Using Message Contexts

Working with a property

Special Properties

286

The code in Example 199 does the following:

1. Imports the package com i ona. j bus so that it has access to the Artix
bus APIs.

2. Calls get Cont ext Resi stry() on the default bus to get the default bus’
context registry.

3. Calls getQurrent () on the context registry to get the message context
for the application’s thread and casts it to an Artix message context.

4. Creates the QName used to get the property from the context
container. This QName must be the same QName as the one with
which the property was registered.

5. Gets the customer SOAP header property by calling
get Request Cont ext () with the appropriate Q\ane.

Once you have gotten a property from the context container, you must first
cast the returned oj ect to the appropriate data type for the property. Each
property has its own associated data type. For example, in Example 199 the
custom SOAP header's data is of type header Type.

Once the property is cast into the appropriate type you can access its fields
using the methods defined for the type. Any changes made to the property
by your application change the copy stored in the context container and will
be propagated when the property is sent with a message.

Artix message contexts have two special properties for use by servers:

® oneway iS a bool ean property that specifies if a request requires a
response.

® correal ationl Dis stored as a | ong and specifies a unique identifier
that allows a server to correlate an incoming request with its
corresponding outgoing reply.

The oneway property is available in a server’'s Artix message context once a

message reaches the request-level interceptors. You can check its value

using 1 onaMessageCont ext . i sneway() . If the request is a oneway request,

meaning that it will not generate a reply, oneway is true. For requests that

require a response, oneway is f al se.

Understanding Message Contexts in Artix

Example 200 shows code for checking if a request is oneway.

Example 200:Seeing if a Request is Oneway

inport comiona.j bus. | onaMessageCont ext ;

Cont ext Regi stry cont Reg = bus. get Cont ext Regi stry();
| onaMessageCont ext context =

(1 onaMessageCont ext) cont Reg. get Qurrent () ;

if (context.isOeway())

{
}

Systemout. println("This is a oneway request.");

Example 200 does the following:

1.
2.
3.
4.

Imports the proper j bus package.
Gets the context registry.
Gets the Artix message context.

Determine if the request is oneway.

The correl ati onl D property is available at all levels of the server-side
messaging chain and is accessed using

| onaMessageCont ext . get Correl ati onl () . The value of the property is a
I ong that is specific to each request/reply pair. Using correl ati onl Dyou
could, for instance, write an interceptor that tracked the amount of time
required for a reply to be generated for each request.

287

CHAPTER 11 | Using Message Contexts

Sending Header Information Using Contexts

Overview Using the context mechanism, you can embed data in message headers that
are not part of the operation’s parameter list. This is useful in sending
metadata such as security tokens or session information that is not vital to
the logic involved in processing the request. Currently only SOAP headers
are supported.

The data sent in the message header is a custom context that you will need
to create and register with the Artix context container when you build your
application. How you define the data for the context and how you register
the context will depend on the payload format the application uses.

Note: If you change the payload format used by the application, your
code will continue to work. However, the header information stored in the
context will not be transmitted.

To send customer header information in a context you need to do the
following:

1. Define an XMLSchema for the data being stored in the header.
2. Generate the type factory and support code for the header data.

3. Register the type factory for the header data. See “Registering Type
Factories” on page 204.

4. Register the header data as a context.

Once the header data is registered as a context with Artix, it can be
accessed using the normal context mechanisms.

In this section This section discusses the following topics:
Defining Context Data Types page 289
Registering Context Types page 291
SOAP Header Example page 295

288

Sending Header Information Using Contexts

Defining Context Data Types

Overview

Defining a context schema

Contexts can store data of any XMLSchema type that is derived from
xsd: anyType. In other words, a context data type can be any primitive,
simple, or complex XMLSchema type.

When creating a context whose type is an XMLSchema primitive type or a
native XMLSchema simple type like xsd: nonNegat i vel nt eger , you do not
need to explicitly define the context's data type. However, if you are creating
a context whose type is a user-defined simple type or a complex type, you
need to define the data type in an XMLSchema document (XSD) or in the
types section of your contract and generate the appropriate type factories for
the data type.

It is usually more appropriate to define a context data type (or types) in a
separate schema file, rather than including the definition in the application’s
WSDL contract. This approach is more logical because contexts are
normally used to implement features independently of any particular WSDL
contract.

To define a complex context data type, Cont ext Dat aType, in the namespace,
Cont ext Dat alUR , you define a context schema following the outline shown
in Example 201.

Example 201:Outline of a Context Schema

<?xm versi on="1.0" encodi ng="UTF- 8" ?>
<xsd: schena
xm ns: xsd="ht t p: / / www. W3. or g/ 2001/ XM_-Schena"
t ar get Nanespace="Cont ext Dat aUR "
el enment For nDef aul t ="qual i fi ed"
at tri but eFor nDef aul t ="unqual i fi ed">
<xsd: conpl exType nanme="Cont ext Dat aType" >

</ xsd: conpl exType>
</ xsd: schema>

289

CHAPTER 11 | Using Message Contexts

Example

Generating Java code for a context
schema

290

For example, you could define the data for a header that contains two
elements. One element, ori gi nat or, is a string containing the name of the
message originator. The other element, ti meSt anp, is the date and time the
message was sent. The data type for this header, header | nf o, is shown in
Example 202.

Example 202:Header Context Data Definition

<?xm version="1.0" encodi ng="UTF- 8" ?>
<xsd: schena
xm ns: xsd="ht t p: // waw. w3. or g/ 2001/ XM_Schena"
t ar get Nanespace="htt p: // schenas. i ona. coni t ypes/ cont ext "
el ement For nDef aul t ="qual i fi ed"
attri but eFor nDef aul t ="unqual i fi ed">
<xsd: conpl exType name="header | nf 0" >
<xsd: sequence>
<xsd: el ement nane="origi nator" type="xsd:string"/>
<xsd: el ement nane="ti neStanp" type="xsd: dat eTi ne"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: schenma>

To generate the Java code for the context data type, Cont ext Type, from a
context schema file, Cont ext Schena. xsd, enter the following command at
the command line:

wsdl t oj ava Cont ext Schena. xsd

The WSDL-to-Java compiler will generate two Java classes:

® (ontext Type. j ava contains the class representing the data type.

® (ont ext TypeTypeFact ory. j ava contains the type factory needed to
instantiate the context data type.

These classes will need to be accessible to any applications that wish to

register and use a context of the defined type.

For more information on type factories see “Working with Artix Type
Factories” on page 201.

Sending Header Information Using Contexts

Registering Context Types

Overview

In this section

Registering a context to use as a
SOAP Header

Before you can use a context, you must register it with the bus’ context
registry using the registry’s r egi st er Cont ext () method. r egi st er Cont ext ()
require that you provide the Q\ane for the context and the Q\ane of the data
type stored in the context.

The main effect of registering a context is that the context registry adds a
type factory reference to its internal table. This type factory reference
enables the context registry to create context data instances whenever they
are needed.

This section discusses the following topics:

Registering a context to use as a SOAP Header page 291

Registering a context to use as a CORBA Header page 293

To register a context to be used as a SOAP header you need to provide the
name of the WSDL message part that is to be inserted into the SOAP
header. This information comes from the WSDL contract defining the
messages used by the application.

Example 203 shows the signature of the regi st er Cont ext () function used
to register a context to be used as a SOAP header.

Example 203:The registerContext() Function for SOAP Headers
voi d Cont ext Regi stry. regi st er Cont ext (QNane narme, Q\ane type,
Q\ane nessage_nane,

String part_nane);

regi st er Cont ext () takes the following arguments:

nane The qualified name used to represent the property.
type The qualified name of the property’s data type.

291

CHAPTER 11 | Using Message Contexts

message_name The qualified name of the WSDL message specified in the
soap: header element defining this SOAP header. If there
is no soap: header elements defined in the contract, this
can be any valid Q\ane.

part _nane The part name specified in the soap: header element
defining this SOAP header. If there is no soap: header
elements defined in the contract, this can be any valid
String.

For example, to register a SOAP header property of the type defined in
Example 202 on page 290 you would use code similar to Example 204.

Example 204:Registering a SOAP Header Property

1 /1l Artix servant, servant, obtained earlier
header | nf oTypeFact ory fact = new header| nf oTypeFact ory();
servant . regi st er TypeFactory(fact);

2 /1l Bus, bus, obtained earlier
Cont ext Regestry cont Reg = bus. get _context_registry();

3 // Create a Q\arre for the new property
Q\Bne nane = new Q\Nane("http://javaExanpl es. i ona. cont,
" SOAPHeader ") ;
4 /I CGreate a Q\Nane to hold the Q\ane of the property's data type

Q\ne type = new Q\ane("http://schemas. i ona. conitypes/ context",
"header | nfo");

5 /I Create a Q\ane for the nessage
Q\ane nessage = new Q\ane("htt p: //nyHeader. coni header "
"header _i nfo");

6 I/ Register the property
cont Reg. r egi st er Cont ext (nane, type, nessage, "header_part");
The code in Example 204 does the following:
1. Register the type factory for the header's data type.
2. Get a handle to the bus’ context registry.
3. Build the Q\ane by for the new property. This can be any valid Q\ane.

292

Registering a context to use as a
CORBA Header

Sending Header Information Using Contexts

4. Build the Q\ane that specifies the property’s data type. The values for
this are taken from the XSD defining the data type. The first argument
is the namespace under which the type is defined. The second
argument is the name of the complex type.

5. Build the Q\ane for the message defining the SOAP header. In this
example, the SOAP header is not defined in the WSDL contract so the
value is unimportant.

6. Register the property with the context registry. The value used for the
part name, header _part, can be any string.

To register a property to be used as a CORBA header you need to provide an
ID to be placed in the GIOP service context ID.

Example 205 shows the signature of the regi st er Cont ext () function used
to register a property to be used as a CORBA header.

Example 205:The registerContext() Function for CORBA Headers

voi d Cont ext Regi stry. regi ser Cont ext (Q\Narme nane, Q\Nane type,
long context _id);

This regi st er Cont ext () method takes the following arguments:

nane The qualified name used to represent the property.
type The qualified name of the property’s data type.
context_id The ID that tags the GIOP service context containing the

Artix context. In CORBA, the cont ext _i d corresponds to
a service context ID of I I OP: : Servi cel d type. For details
of GIOP service contexts, consult the OMG CORBA
specification.

For example, to register a CORBA header property of the type defined in
Example 202 on page 290 you would use code similar to Example 206.

Example 206:Registering a Property as a CORBA Header
// Artix servant, servant, obtained earlier

header | nf oTypeFactory fact = new header | nf oTypeFactory();
servant . r egi st er TypeFact ory(fact Array) ;

293

CHAPTER 11 | Using Message Contexts

Example 206:Registering a Property as a CORBA Header

2 /1 Bus, bus, obtained earlier
Cont ext Regestry cont Reg = bus. get Cont ext Regi stry();

3 Il Oreate a Q\ane for the new property
Q\Bne nane = new Q\Nane("http://javaExanpl es. i ona. cont,
" QCRBAHeader ") ;
4 /I Create a Q\ane to hold the Q\ane of the property's data type

Q\ane type = new Q\ane("http://schenas. i ona. con types/ context",
"header | nfo");

5 I/ Register the property
cont Reg. r egi st er Cont ext (nane, type, 1);
The code in Example 206 does the following:
1. Register the type factory for the header's data type.
2. Get a handle to the bus’ context registry.
3. Build the Q\ane for the new property. This can be any valid Q\are.
4

Build the Qnane that specifies the property’s data type. The values for
this are taken from the XSD defining the data type. The first argument
is the namespace under which the type is defined. The second
argument is the name of the complex type.

5. Register the property with the context registry.

294

Sending Header Information Using Contexts

SOAP Header Example

Overview

WSDL contract

The example in this section transmits a custom SOAP header between two
Artix processes. The SOAP header is defined in the WSDL contract for this
example to demonstrate how context registration relates to the WSDL
contract for SOAP headers.

The SOAP header data in this example is transmitted as follows:

1. The client registers the property, SOAPHeader I nf o, with the context
registry for its bus.

2. The client initializes the property instance.
The client invokes the sayH () operation on the server and the SOAP
header property is packaged into the request message's SOAP header.

4. When the server starts up, it registers the SQaPHeader I nf o property
with the context registry for its bus.

5. When the sayH () operation request arrives on the server side, the
SOAP header is extracted and put into the request context container as
a SAPHeader | nf o property.

6. The sayH () operation implementation extracts the property from the
request.

If the server in this example were not an Artix process, it would not need to

use the context mechanism to extract the SOAP header. It would have its
own method of handling the SOAP header.

Example 207 on page 296 shows the WSDL contract used to define the
service used in this example. It imports the XSD file, SOAPcont ext . xsd, that
defines the SOAP header property’s data type in Example 202 on page 290.
The sOAPHeader | nf o type is used to define the only part of the header Msg
message. In the SOAP binding for G eet er, G eet er SOAPBI ndi ng, the
definition of the input message includes a soap: header element that

295

CHAPTER 11 | Using Message Contexts

specifies that header Msg: header Part is to be placed in a SOAP header
when a request is made. Your application code will be responsible for
creating the property that populates the defined SOAP header.

Example 207:SOAP Header WSDL

<?xm version="1.0" encodi ng="UTF- 8" ?>
<definitions name="Hel | oWr| d" target Namespace="http://wmv. i ona. comi soapHeader"
xm ns="http://schenas. xm soap. org/ wsdl / "
xm ns: soap="ht t p: / / schemas. xm soap. or g/ wsdl / soap/ "
xm ns: ns1="http://schemas. i ona. coni t ypes/ cont ext "
xm ns: wsdl ="ht t p: // schemas. xm soap. or g/ wsdl / "
xm ns: xsd="ht t p: / / wan W3. or g/ 2001/ XM_Schena" >
<inport |ocation="file:/SOAPcont ext . xsd"
namespace="htt p: // schenas. i ona. coni t ypes/ cont ext "/ >
<t ypes>
<schera t ar get Namespace="htt p: // waw\ i ona. con cust om soap_header "
xm ns="ht t p: // waw. wW3. or g/ 2001/ XM_Schena" >
<el enent name="r esponseType" type="xsd:string"/>
<el enent name="r equest Type" type="xsd:string"/>
<el ement name="SQAPHeader | nf 0" type="ns1: header| nfo"/>
</ schena>
</ types>
<nessage nane="greet MeRequest ">
<part el enent ="request Type" name="ne"/>
</ message>
<nmessage nane="greet MeResponse" >
<part el enent ="r esponseType" nane="t heResponse"/>
</ message>
<nessage nane="header Msg" >
<part el ement =" SOAPHeader | nf 0" name="header Part" />
</ message>
<port Type nane="Q eeter">
<oper ati on name="gr eet M" >
<i nput nessage="gr eet MeRequest" name="gr eet MeRequest "/ >
<out put message="gr eet MeResponse" nanme="gr eet MeResponse"/ >
</ oper at i on>
</ por t Type>

296

Sending Header Information Using Contexts

Example 207:SOAP Header WSDL

<bi ndi ng name="Q eet er SOAPBi ndi ng" type="Qeeter">
<soap: bi ndi ng styl e="docunent" transport="http://schenas. xm soap. org/ soap/ http"/>
<oper ati on name="gr eet M" >
<soap: operation soapAction="" styl e="docunent"/>
<i nput nane="gr eet MRequest " >
<soap: body use="literal "/>
<soap: header use="literal" nessage="header Msg" part="headerPart" />
</i nput >
<out put name="gr eet MeResponse" >
<soap: body use="literal "/>
</ out put >
</ oper at i on>
</ bi ndi ng>
<servi ce nane="Q eet er Service">
<port bi ndi ng="@Q eet er SOAPBI ndi ng" nane="SoapPort">
<address | ocation="http://| ocal host: 9000"/ >
</ port>
</ servi ce>
</ definitions>

Generatingthe Javaclassesforthe Because the XSD file for the property’s data type is imported into the

property’s data type contract for the service wsdl t oj ava will automatically generate the
appropriate classes and type factories for SOAPHeader | nf o when you
generate the code for the service.

To generate the code for the service save the WSDL contract into a file
called soapHeader . wsdl and the XSD file for SOAPHeader | nf o into a file
called sQaPcont ext . xsd. Then run the following command:

wsdl t oj ava soapHeader . wsdl

The client The client in this example will send a SOAP header of type SOAPHeader | nf o
when it invokes the gr eet Me operation. To do this it must do four things:

1. Register the type factory for SOAPHeader I nf o.
Register a property of SQAPHeader I nf o type.
Create an instance of SOAPHeader I nf o.

Populate the instance with the appropriate data.

o &~ wnN

Set the SaPHeader | nf o property in the request context container.

297

CHAPTER 11 | Using Message Contexts

298

When the greet Me() method is invoked, the property will be inserted into
the SOAP message’s header element and sent to the server.

Example 208 on page 298 shows the code for the client.

Example 208:Client Code

inport java.util.*;
inport java.io.?*;

inport java.net.*;
inport java.rm.*;

inport javax.xm .namespace. Q\arre;
inport javax.xni.rpc.*;

inport comi ona.j bus. Bus;

public class Geeterdient

{

public static void main (String args[]) throws Exception

Bus bus = Bus.init(args);

Q\ane name = new Q\Nane("http://ww. i ona. conl soapHeader ",
"Q eet er Service");

Q\ane portNane = new Q\ane("","Qeeter");

String wsdl Path = "file:/./soapHeader.wsdl ";
URL wadl Location = new Fi |l e(wsdl Path).toURL();

Servi ceFactory factory = ServiceFactory. newl nst ance() ;
Servi ce service = factory. creat eServi ce(wsdl Locati on, nane);

Qeeter inpl = (Geeter)service. getPort (port Nare,
Qeeter.class);

SOAPHeader | nf oTypeFactory fact =
new SQAPHeader | nf oTypeFact ory();
bus. regi st er TypeFact ory(fact);
Cont ext Regestry cont Reg = bus. get Cont ext Regi stry();

Q\ane name = new Q\Nane("http://javaExanpl es. i ona. cont,
" SQAPHeader ") ;

10

11

12

Sending Header Information Using Contexts

Example 208:Client Code

}

Q\ane type =
new Q\ane("http://schenas. i ona. coni t ypes/ cont ext",
" SQAPHeader | nf 0") ;

Q\ane nessage = new Q\Nane("http://www. i ona. conl soapHeader "
"header M5sg") ;

cont Reg. r egi st er Cont ext (nane, type, nessage, "headerPart");
SQAPHeader | nf o header = new SOAPHeader | nfo() ;
header . set i gi nat or ("1 ONA Technol ogi es") ;

header . set Message("Artix is powerful !'");

| onaMessageCont ext context =
(1 onaMessageCont ext) cont Reg. get Qurrent () ;

cont ext . set Requext Cont ext (nane, header);
String string_out;

string_out = inpl.greetM("Chris");
Systemout . println(string out);

bus. shut down(true);

}

The code in Example 208 on page 298 does the following:

o ok wb

Initializes an instance of the bus.

Creates a proxy for the G eet er service.
Register the type factory for SOAPHeader | nf o.
Gets the context registry from the bus.

Builds the Q\are for the new property.

Builds the Q\are for the property’s data type. The values for this are

taken from the XSD defining the data type. The first argument is the

namespace under which the type is defined. The second argument is
the name of the complex type.

299

CHAPTER 11 | Using Message Contexts

The server main line

300

7. Builds the Q\are for the message defining the SOAP header. In this
example, the SOAP header is in the WSDL contract so the value is the
Quane for the message defined in the soap: header element of the
contract, htt p:// waw. i ona. coni soapHeader : header Msg.

8. Registers the property with the context registry. The value used for the
part name, header Part, is the part name specified in the contract's
soap: header element.

9. Instantiates an instance of the SOAP header property’s class,
SOAPHeader | nf o, and sets the fields.

10. Gets the Artix message context for the client.

11. Adds the SOAP header property to the request context container.

12. Invokes greet Me() . The SOAP header property is placed into the SOAP
header of the request and sent to the server.

The server must also register the SOAPHeader property with its context
registry in order to extract the SOAP header sent with the request. Because
the property only needs to be registered with the context registry once, it
makes sense to register it in the server main line before control is passed to
the bus.

Example 209 on page 300 shows the code for the server's main line.
Example 209:Server main()

inport comiona.jbus.*;
inport javax.xnl .namespace. Q\ane;

public class Server
{
public static void main(String args[])
throws Exception
{
I/ Initialize the Artix bus
Bus bus = Bus.init(args);

Sending Header Information Using Contexts

Example 209:Server main()

// Register the inplenentation object factory
Q\ane narme = new QNane("http://ww. i ona. con soapHeader ",
"Q eet er Service");
Servant servant =
new Si ngl el nst anceSer vant (" ./ soapHeader . wsdl ",
new Geeterlnpl());
bus. r egi st er Servant (servant, nane, "SoapPort");

SQAPHeader | nf oTypeFactory fact =
new SQAPHeader | nf oTypeFact ory();
bus. r egi st er TypeFact ory(fact);

Cont ext Regestry cont Reg = bus. get Cont ext Regi stry();

\arre propNane = new QName("http://javaExanpl es. i ona. cont',
" SOAPHeader ") ;

\are propType =
new Q\Nae("htt p://schenas. i ona. coni t ypes/ cont ext ",
" SOAPHeader | nf 0") ;

\are nessage = new Q\Nane("http: //www i ona. conl soapHeader "
"header Msg") ;

cont Reg. r egi st eCont ext (propNane, propType,
nessage, "headerPart");

[/l Start the Bus
bus. run();
}

}
The code in Example 209 on page 300 does the following:
1. Initializes an instance of the bus.
Registers the services implementation object with the bus.
Registers the type factory for SOAPHeader | nf o.
Gets the context registry from the bus.

o &~ wnN

Builds the Q\are for the new property.

301

CHAPTER 11 | Using Message Contexts

The implementation object

302

Builds the Q\arre for the property’s data type. The values for this are
taken from the XSD defining the data type. The first argument is the
namespace under which the type is defined. The second argument is
the name of the complex type.

Builds the Q\arre for the message defining the SOAP header. In this
example, the SOAP header is in the WSDL contract so the value is the
Quane for the message defined in the soap: header element of the
contract, htt p:// waw. i ona. con soapHeader : header Msg.

Registers the property with the context registry. The value used for the
part name, header Part, is the part name specified in the contract's
soap: header element.

Hands control over to the bus.

The service’s implementation object, G eeter I npl , gets the SOAP header
from the request message and prints the headers contents. To do this the
implementation object must get the SOAP header property from the request
context container. Getting the SOAP header property takes four steps:

1.
2.
3.
4.

Get a reference to the bus for the implementation object.
Get the bus’ context registry.
Get the thread’s Artix message context from the registry.

Get the SOAP header property from the request context container.

Example 210 shows the code for the G eet er I npl implementation object.

Example 210:/mplementation of the Greeter Service

inport java.net.*;
inport java.rm.?*;
inport javax.xnl .namespace. Q\ane;

inport comiona.jbus.*

public class Geeterlnpl

{

public String greet Me(String stringParam)

{

com i ona.j bus. Bus def _bus = D spatchLocal s. get Qurrent Bus();

Cont ext Regestry cont Reg = bus. get Cont ext Regi stry();

Sending Header Information Using Contexts

Example 210:/mplementation of the Greeter Service

}

| onaMessageCont ext context =
(1 onaMessageCont ext) cont Reg. get Qurrent () ;

Q\ane nanme = new Q\arre(" http://j avaExanpl es. i ona. cont',
" SOAPHeader ") ;

SQAPHeader | nf o header = (SOAPHeder | nf 0)
r eqCont ext . get Request Cont ext (nane) ;

Systemout. printl n("SOAP Header Crigi nator:
"+header.getQriginator());

Systemout. printl n("SOAP Header message:
"+header . get Message()) ;

return "Hello Artix User: "+stringParam
}

The code in Example 210 on page 302 does the following:

1.

2.
3.
4

o

Gets an instance of the bus.
Gets the context registry from the bus.
Gets the context current for the implementation object’s thread.

Builds the Q\arre for the SOAP header property. This Q\Nanme must be the
same as the Q\ane used when registering the property in the server
main.

Gets the SOAP header property from the request context container.
Prints out the information contained in the SOAP header.

Returns the results of the operation to the client.

303

CHAPTER 11 | Using Message Contexts

304

In this chapter

CHAPTER 12

Working with
Transport
Attributes

Using the Artix context mechanism, you can set many of the
the transport attributes at runtime.

This chapter discusses the following topics:

How Artix Stores Transport Attributes page 306
Getting Transport Attributes from an Artix Context page 308
Setting Configuration Attributes page 310
Setting HTTP Attributes page 314
Setting CORBA Attributes page 336
Setting WebSphere MQ Attributes page 338
Setting JMS Attributes page 352
i18n Attributes page 363

305

CHAPTER 12 | Working with Transport Attributes

How Artix Stores Transport Attributes

Overview

Initialization properties

Global transport attributes

Transport specific

306

Artix uses the context mechanism described in “Using Message Contexts” on
page 267 to store the properties used to configure the transport layer and
populate any headers used by the selected transport. Most of the properties
are stored in the normal Artix context containers. However, some properties
that are used in initializing the transport layer at start-up are stored in a
special context container.

Some transport attributes, such as JMS broker sign-on values or a server's
HTTP endpoint URL, are used by Artix when it is initializing the transport
layer. Therefore, they need to be specified before Artix it initializes the
transport layer for a service or a service proxy. These attributes are stored in
a special context container. When the bus initializes the transport layer, it
will check this special context container for any initialization properties.

For most transport properties such as HTTP keep-alive, WebSphere MQ
AccessMode, and Tib/RV cal | backLevel , the context objects containing the
transport’s properties are stored in the Artix request context container and
the Artix reply context container. Once you have retrieved the context object
from the proper context container, you can inspect the values of transport
headers and other transport related properties such as codeset conversion.
You can also dynamically set many of the values for outgoing messages
using the context APIs. For a full listing of all the possible port attributes for
each transport see Designing Artix Solutions.

Transport attributes are stored in built-in contexts. These contexts are
preregistered with the context container when the transport layer is
initialized. They are specific to the different transports. For example, if you
request the context for the HTTP port attributes from the context container,
the returned context will have methods for setting and examining HTTP
specific attributes. However, if the application is using another transport,
WebSphere MQ for example, the HTTP configuration context will not be
registered and you will be unable to get the HTTP configuration context from
the container.

http://www.iona.com/support/docs/artix/3.0/design/index.htm

How Artix Stores Transport Attributes

When are the attribute contexts All of the transport attributes have default values that are specified in either

populated the service's contract or in the service’s configuration. If you do not use the
contexts for overriding transport attributes, these are always used when
sending messages. However, when you get the transport attributes for an
outgoing message, the context will be empty. You will need to create an
instance of the context and set the values you want to override in the context
yourself.
When a message is received by the transport layer, the transport populates
the context with the attributes of the message it receives. For example, if
you are using HTTP the values of the incoming message’s HTTP header will
be used to populate the context. The context can then be inspected at any
point in the application’s code.

307

CHAPTER 12 | Working with Transport Attributes

Getting Transport Attributes from an Artix

Context

Overview

Getting a transport attribute
context

308

All of the contexts for holding transport attributes are handled using the
standard context mechanism. To get a transport attribute context do the

following:
1.
Context Registry” on page 271.
2.
3.
4.

Get the applications message context registry as shown in “Getting the

Get the message context for the current application as shown in

“Getting the Message Context for a Thread” on page 273.

Cast the message context to an Artix message context.
Get the desired context from the appropriate context container.

Once you have the context you can inspect it and set new values for any of
its properties.

You get an instance of a transport attribute context from an Artix message
context using the standard context APIs discussed in “Working with Artix
Message Contexts” on page 282. To make it easy to remember the names
used to access each context, Artix provides a helper class called

Cont ext Const ant s that has a static member for each configuration context.
The static member name for each configuration context is shown in
Table 14.

Table 14: Configuration Context QNames

Context

ContextConstants Member

HTTP Client Incoming Attributes

HTTP_CLI ENT_| NOOM NG_CONTEXTS

HTTP Client Outgoing Attributes

HTTP_CLI ENT_QUTGO NG CONTEXTS

HTTP Server Incoming Attributes

HTTP_SERVER | NOOM NG_CONTEXTS

HTTP Server Outgoing Attributes

HTTP_SERVER QUTGO NG CONTEXTS

CORBA Transport Attributes

CCRBA_QONTEXT_ATTRI BUTES

Getting Transport Attributes from an Artix Context

Table 14: Configuration Context QNames

Context ContextConstants Member

MQ Connection Attributes MQ_CONNECTI ON_ATTRI BUTES

MQ Outgoing Message Attributes MQ OUTGO NG MESSAGE ATTRI BUTES

MQ Incoming Message Attributes MQ | NOCOM NG MESSAGE_ATTR! BUTES

JMS Client Header Attributes JVB_ QLI ENT_OONTEXT

JMS Server Header Attributes JMB_SERVER CONTEXT

i18n Server Attributes | 18N_| NTERCEPTOR_SERVER QNAME
i18n Client Attributes 1 18N _| NTERCEPTCR CLI ENT_QNAME
Bus Security Attributes SECQUR TY_SERVER CQONTEXT

Once you have gotten the desired context from the Artix message context,
you will need to cast it to the appropriate class for the context. Table 15
lists the data types for each of the configuration contexts.

Table 15: Configuration Context Classes

Context

Class

HTTP Client Attributes

com i ona. schenas. transports. http. configuration. context.dient Type

HTTP ServerAttributes

com i ona. schenas. transports. http. confi guration. cont ext. Server Type

CORBA Attributes

com i ona. schenas. bi ndi ngs. cor ba. cont ext s. CORBAAt t ri but esType

MQ Connection Attributes

com i ona. schenas. transports. ng. cont ext . Monnect i onAt tri but esType

MQ Message Attributes

com i ona. schenas. transports. ng. cont ext . MMessageAt tri nut esType

JMS Client Header Attributes

com i ona. schenas. transports.jns. cont ext.JVMSA i ent Header sType

JMS Server Header Attributes

com i ona. schenas. transports. j ns. cont ext . JMSSer ver Header sType

i18n Server Attributes

com i ona. schenas. bus. i 18n. cont ext . Server Confi gurati on

i18n Client Attributes

com i ona. schenas. bus. i 18n. context . d i ent Confi gurati on

Bus Security Attributes

com i ona. schenas. bus. security_context. BusSecurity

309

CHAPTER 12 | Working with Transport Attributes

Setting Configuration Attributes

Overview Depending on the attributes that are being set, you will one of two methods
for setting the configuration information into the context container. For most
cases, you will use the standard context mechanism. For properties that
must be known before the bus initializes the transport layer, you will use the
specialized configuration context.

In this section This section discussed the following topics:
Using the Standard Contexts page 311
Using the Configuration Context page 312

310

Setting Configuration Attributes

Using the Standard Contexts

Durability of settings

Configuring clients

Configuring servers

When programmatically alter your application’s transport attributes, you
override any settings read from the application’s contract and the
application’s configuration file. The durability of this setting depends on
whether the application is a server or a client.

For servers, transport attribute settings are valid only for a single request.
After each request is processed and a reply is sent the settings revert back to
the settings specified in the contract.

For clients, the contexts used to programatically set transport attributes are
permanent. Once set, a value remains in place until it is explicitly changed.
So, if you change a client’s HTTP username attribute to @ eenDr agon, it will
be used in all future requests. Exceptions to this rule are noted when
applicable.

To override the default transport attributes on the client-side you set values
on the context in the request context container. The bus uses the values
from the request context container to override the default configuration on
the client’s transport before sending a request. If no values have been set in
the request context container the transport uses its default values.

The values in a client’s reply context are set by the Artix bus when a reply is

received by the transport layer. They can be checked by client code at any
point.

To override the default transport attributes on the server-side you set the
values on the contexts in the reply context container. The bus uses the
values from the reply context container to override the default configuration
on the server's transport before sending a reply. If no values have been set in
the reply context container the transport uses its default values.

The values in a server’'s request context are set by the Artix bus when a
request is received by the transport layer. The properties can be checked at
any point in the server's messaging chain and in the server’'s implementation
object.

311

CHAPTER 12 | Working with Transport Attributes

Using the Configuration Context

Overview

Available properties

Procedure

Getting the configuration context

312

There are a few transport attributes that need to be specified before the
transport layer of an Artix application is instantiated. For example when
using a secure JMS broker, your application need to know its username and
password before it attempts to connect to the JMS broker. To accomplish
this, you need to set these properties before the user level code is registered
with the bus. Artix uses a special context, called the configuration context,
to do this.

Currently, Artix supports two special port properties:

® HTTP Endpoint URL - specifies the URL on which the server can be
contacted.

® JMS Broker Connection Security Info - specifies the username and
password used by an application when connecting to the JMS broker.

To register a special port property do the following:

1. Get the configuration context from the context registry.

Get a copy of the desired property from the configuration context.
Set the appropriate values into the property.

If the application is a server, register the servant with the bus.

S

If the application is a client, instantiate the service proxy.

The configuration context is obtained directly from the context registry using
the get Confi gurati onCont ext () method shown in Example 211. It is
returned as a port specific Cont ext Cont ai ner object. To specify the port
with which the context container is associated you pass in the Q\ane of the

Setting properties in the
configuration context

Setting Configuration Attributes

service defining the port and the name of the port. You can also specify if
the bus will create an instance of the configuration context for the specified
port.

Example 211:getConfigurationContext()
Cont ext Cont ai ner get Confi gurati onCont ext (Q\arre ser vi ceNane,

String port Nane,
bool ean creat el f Not Found) ;

Once you have the context container for the configuration context, you can
set the desired port properties. Like a normal message context, the context
container has a get Cont ext () method for retrieving contexts from the
container and a set Cont ext () method for writing new contexts to the
container.

get Cont ext (), shown in Example 212, gets the instance of a context from
the container. The method can also create a new instance of the desired
context. The context is returned as a Java oj ect that can then be cast into
the appropriate data type. Once you have the context object, you can
manipulate any data set in it and the changes are propagated back to the
container.

Example 212:getContext()
Chj ect get Cont ext (Q\ane cont ext Narre, bool ean cr eat el f Not Found) ;

You can also use the set Cont ext () method, shown in Example 213, to set
a context into the context container. set Cont ext () takes an instance of the
context’s data type and the context name. The context instance is then use
to populate the context. All of the values set on the context instance become
the values used to configure your server port.

Example 213:setContext()

voi d set Cont ext (Q\ane cont ext Name, Cbj ect context);

313

CHAPTER 12 | Working with Transport Attributes

Setting HTTP Attributes

Overview

In this section

314

Artix uses four contexts to support the HTTP transport. Two contexts support
the server-side HTTP information. The server-side contexts are of type
comiona. schenas. transports. http. confi guration. cont ext. Server Type.
The other two contexts support the client-side HTTP information. The
client-side contexts are of type

com i ona. schenmas. transports. http. configuration. context.dient Type.

The information stored in the HTTP transport attribute contexts correlates to
the values passed in an HTTP header.

This section discusses the following topics:

Client-side Configuration page 315
Server-side Configuration page 324
Setting the Server's Endpoint URL page 334

Setting HTTP Attributes

Client-side Configuration

Overview HTTP clients have access to both the values being passed in the HTTP
header of the outgoing request and the values received in the HTTP header
of the response. The information for each header is stored in a separate
context.

Outgoing header information On the client-side, the outgoing context, HTTP_CLI ENT_QUTGO NG_CONTEXT, is
available in the client’s request context. Any changes made to values in the
outgoing context are placed in the request’'s HTTP header and propagated to
the server. For example, if you want to allow requests to be automatically
redirected you could set the Aut oRedi rect attribute to true in the client’s
outgoing context. Example 214 shows the code for setting the
Aut oRedi rect property for a client.

Example 214:Setting a Client’s AutoRedirect Property

1 inport comiona.schenas.transports. http.configuration.context.*;
inport comiona.j bus. Cont ext Const ant s;

2 ContextRegistry contReg = bus. get Cont ext Regi stry();
3 | onaMessageCont ext context =
(1 onaMessageCont ext) cont Reg. get Qurrent () ;

4 dientType httpAtribs =
(d i ent Type) cont ext . get Request Cont ext (Cont ext Const ant s. HTTP_C
LI ENT_QUTGO NG _CONTEXT, true);

5 httpAtribs. set Aut oRedirect (true);

/'l make proxy invocations

The code in Example 214 does the following:

1. Imports the package containing the HTTP client context type.
2. Gets the client’s context registry.

3. Gets the Artix context from the context registry.

315

CHAPTER 12 | Working with Transport Attributes

Outgoing client attributes

4. Gets the client’s outgoing HTTP context from the request context

container.

5. Sets the value of the Aut oRedi rect property to true.

Table 16 shows the attributes that are valid in the outgoing HTTP client

context.

Table 16: Outgoing HTTP Client Attributes

HTTP Attribute

Artix APls

Description

Accept

String getAccept ()
voi d setAccept(String val)

Specifies the MIME types the
client can handle in a response.

Accept - Encodi ng

String get Accept Encodi ng()
voi d set Accept Encodi ng(String val)

Specifies the types of content
encoding the client can handle in
a response. This property typically
refers to compression
mechanisms.

Accept - Language

String get Accept Language()
voi d set Accept Language(String val)

Specifies the language the client
prefers. Valid language tags
combine an ISO language code
and an ISO country code
separated by a hyphen. For
example, en- US.

Aut hori zati on

String getAut hori zati on()
voi d set Authori zation(String val)

Specifies the credentials that will
be used by the server to authorize
requests from the client.

Aut hori zat i onType

String get Aut hori zati onType()
voi d set Aut hori zat i onType(
String val)

Specifies the name of the
authentication scheme in use.

Aut oRedi r ect

Bool ean i sAut oRedi rect ()
voi d set Aut oRedi r ect (Bool ean val)

Specifies whether a request
should be automatically
redirected by the server. The
default is f al se to specify that
requests are not to be
automatically redirected.

316

Setting HTTP Attributes

Table 16: Outgoing HTTP Client Attributes

HTTP Attribute Artix APls Description
Br owser Type String get Browser Type() Specifies information about the
voi d set Browser Type(String val) browser from which the request
originates. This property is also
know as the user-agent.
Cache- Cont rol String get CacheControl () Specifies directives to caches

voi d set CacheControl (String val)

along the request/response path.
Valid values are:

no- cache: caches must revalidate
responses with the server. If
response header fields are given,
the restriction applies only to
those header fields.

no- st or e: caches must not store
any part of a request or its
response.

max- age: the max age, in
seconds, of an acceptible
response.

max- st al e: the client will accept
expired messages. If a value is
given, it specifies the how many
seconds after a response expires
that the it is still acceptable. If no
value is given, all stale responses
are acceptable.

m n-fresh: the response must
stay fresh for the given number of
seconds.

no- t ransf or m caches must not
modify the media type or the
content location of a response.

onl y-i f - cached: caches should
return only cached responses.

317

CHAPTER 12 | Working with Transport Attributes

Table 16: Outgoing HTTP Client Attributes

HTTP Attribute

Artix APls

Description

dientCertificate

String getQientCertificate()
void setdientCertificate(

String val)

Specifies the full path to the
PKCS12-encoded X509
certificate issued by the certificate
authority for the client.

AientCertificateChain

String getdientCertificateChain()

void setdientCertificateChai n(

String val)

Specifies the full path to the file
containing all of the certificates in
the chain.

dientPrivat eKey

String getdientPrivateKey()
voi d setdientPrivat eKey(

String val)

Specifies the full path to the
PKCS12-encoded private key that
corresponds to the X509
certificate specified by
dientCertificate.

dientPrivat eKeyPassword

String getdientPrivat eKeyPasswor d()

voi d setd i entPrivat eKeyPasswor d(

String val)

Specifies the password used to
decrypt the PKCS12-encoded
private key.

Connecti on

String get Connecti on()
voi d set Connection(String val)

Specifies whether a connection is
to be kept open after each
request/response transaction.

Valid values are:

cl ose: the connection is closed
after each transaction.

Keep- Al i ve: the client would like
the conneciton to remain open.
Servers do not have to honor this
request.

Cooki e

String get Cooki e()
voi d set Cooki e(String val)

Specifies a static cookie that is
sent along with a request.

Note: According to the HTTP
1.1 specification, HTTP cookies
must contain US-ASCII
characters.

Expi res

String get Expires()
voi d set Expires(String val)

Specifies the date after which
responses are considered stale.

318

Setting HTTP Attributes

Table 16: Outgoing HTTP Client Attributes

HTTP Attribute Artix APls Description
Host String get Host () Specifies the Internet host and
voi d setHost(String val) port number of the service for
which the request is targeted.
Passwor d String get Password() Specifies the password to use in
voi d set Password(String val) username/password
authentication.
Pr agna String get Pragma() Specifies implementation-specific

voi d setPragma(String val)

directives that might apply to any
recipient along the
request/response chain.

Pr oxy- Aut hori zat i on

String get ProxyAut hroi zation()
voi d set ProxyAut henti cati on(
String val)

Specifies the credentials used to
perform validation at a proxy
server along the request/response
chain. If the proxy uses
username/password validation,
this value is not used.

Pr oxyAut hori zat i onType

String get ProxyAut hori zati onType()
voi d set ProxyAut hori zati onType(
String val)

Specifies the type of
authentication used by proxy
servers along the
request/response chain.

Pr oxyPasswor d String get ProxyPasswor d() Specifies the password used by
void set ProxyPassword(String val) proxy servers for authentication if
username/password
authentication is in use.
Pr oxySer ver String get ProxyServer () Specifies the URL of the proxy

voi d set ProxyServer(String val)

server, if one exists, along the
request/response chain.

Note: Artix does not support the
existence of more than one proxy
server along the request/response
chain.

319

CHAPTER 12 | Working with Transport Attributes

Table 16: QOutgoing HTTP Client Attributes

HTTP Attribute

Artix APls

Description

ProxyUser Nane

String get ProxyUser nane()
voi d set ProxyUser Nane(String val)

Specifies the username used by
proxy servers for authentication if
username/password
authentication is in use.

Reci eveTi neout

I nt eger get Reci eveTi neout ()
voi d set Reci eveTi meout (| nt eger val)

Specifies the number of
milliseconds the client will wait to
receive a response from a server
before timing out. The default is
3000.

voi d set ServerDate(String val)

Ref erer String getReferer() Specifies the entity that referred
void setReferer(String val) the client to the target server.
Send- Ti meout I nt eger get SendTi meout () Specifies the number of
voi d set SendTi meout (I nt eger val) milliseconds the client will
continue trying to send a request
to the server before timing out.
Ser ver Dat e String get Server Date() Specifies the time setting for the

server. When this value is set, the
client will use it as the base time
from which to calculate message
expiration. The client defaults to

using its internal system clock.

Trusted Root Certificate

String get Trust edRoot Certi ficates()
voi d set Trust edRoot Certi fi cat es(
String val)

Specifies the full path to the
PKCS12-encoded X509
certificate for the certificate
authority.

User nane

String get User Narre()
voi d setUser Narre(String val)

Specifies the username used for
authentication when the server
uses username/password
authentication.

320

Setting HTTP Attributes

Table 16: Outgoing HTTP Client Attributes

HTTP Attribute Artix APls Description
Use Secure Sockets Bool ean i sUseSecur eSocket s() Specifies the client wants to use a
voi d set UseSecur eSocket s(secure connection. Secure HTTP

Bool ean val) | connections are also referred to as
HTTPS.

Valid values are true and f al se.

Note: If the contract specifies
HTTPS, this value is always t r ue.

Incoming header

The client’s incoming context, HTTP_CLI ENT_I NOOM NG_OONTEXT, is available
in the client’s reply context after a response from the server has been
received by the transport layer. The values stored in this context are for
informational purposes only. For example, if you need to check the MIME
type of the data returned in the request, you would read it from the client’s
incoming context as shown in Example 215.

Example 215:Reading the Content Type in an HTTP Client

inport comiona.schenas.transports. http.configuration.context.*;
inport com i ona.j bus. Cont ext Const ant s;

/1 make proxy invocation

Cont ext Regi stry cont Reg = bus. get Cont ext Regi stry();
| onaMessageCont ext context =
(1 onaMessageCont ext) cont Reg. get Qurrent () ;

dientType httpAtribs =
(d i ent Type) cont ext . get Repl yCont ext (Cont ext Const ants. HTTP_CLI
ENT_| NCOM NG_CONTEXT, true);

String content Type = httpAttribs. get Content Type();

The code in Example 215 does the following:
1. Imports the package containing the HTTP client context type.
2. Makes an invocation on the proxy.

321

CHAPTER 12 | Working with Transport Attributes

Incoming client attributes

3. Gets the client’s context registry.
Gets the Artix context from the context registry.

5. Gets the client’s incoming HTTP context from the reply context
container.

6. Gets the value of the Cont ext Type property.

Table 17 shows the attributes that are valid in the incoming HTTP client
context.

Table 17: Incoming HTTP Client Attributes

HTTP Attribute

Artix APIs Description

Cont ent - Encodi ng

String get Cont ent Encodi ng() Specifies the type of special
encoding, if any, the server used
to package the response.

Cont ent - Language

String get Cont ent Language() Specifies the language the server
used in writing the response.
Valid language tags combine an
ISO language code and an ISO
country code separated by a
hyphen. For example, en- Us.

Cont ent - Locat i on String get Content Locati on() Specifies the URL where the
resource being sent in a response
is located.

Cont ent - Type String get Content Type() Specifies the MIME type of the
data in the response.

ETag String get ETag() Specifies the entity tag in the
response header.

HTTPRepl y String get HTTPRepl y() Specifies the type of reply being

sent back by the server. For
example, if a request is fulfilled a
server will reply with oK.

HTTPRepl yCode

I nt eger get HTTPRepl yCode() Specifies an integer code
associated with the server's reply.
For example, 200 means & and
404 means Not Found.

322

Setting HTTP Attributes

Table 17: Incoming HTTP Client Attributes

HTTP Attribute

Artix APIs

Description

Last - Modi fi ed

String getLast Modified()

Specifies the date and time at
which the server believes a
resource was last modified.

Pr oxy- Aut henti cat e

String get ProxyAut henticate()

Specifies a challenge that
indicates the authentication
scheme and parameters
applicable to the proxy for this
Request-URI.

Redi r ect URL String get Redirect URL() Specifies the URL to which client
requests should be redirected.
This is issued by a server when it
is not appropriate for the request.
Ser ver Type String get Server Type() Specifies the type of server

responded to the client. Values
take the form
pr ogr am narre/ ver si on.

WWV Aut hent i cat e

String get WWAut henti cati on()

Specifies at least one challenge
that indicates the authentication
scheme(s) and parameters
applicable to the Request-URI.

323

CHAPTER 12 | Working with Transport Attributes

Server-side Configuration

Overview HTTP servers have access to both the values being passed in the HTTP
header of the outgoing response and the values received in the HTTP header
of the request. The information for each header is stored in a separate
context.

Outgoing header On the server-side, the outgoing context, HTTP_SERVER QUTGO NG_CONTEXT,
is available in the server's reply context container. Any changes made to
values in the outgoing context are placed in the reply’s HTTP header and
propagated to the client. For example, if you want to inform the client that it
needs to redirect it's request to a different server, you could set the
Redi r ect URL attribute in the server's outgoing context to the URL of an
appropriate server. Example 216 shows the code for setting the
Redi rect URL attribute for a server.

Example 216:Setting a Server’s RedirectURL Attribute

1 inport comiona.schenas.transports. http.configuration.context.*;
inport comi ona.j bus. Cont ext Const ant s;

2 ContextRegistry cont Reg = bus. get Cont ext Regi stry();
3 | onaMessageCont ext context =
(I onaMessageCont ext) cont Reg. get Qurrent () ;

4 dientType httpAiribs =
(d i ent Type) cont ext . get Repl yCont ext (Cont ext Const ant s. HTTP_SER
VER QUTGO NG_OONTEXT, true);

5 httpAtribs.setRedirect URL("http:\\ww not ne. or g\ askt hi sguy") ;

The code in Example 216 does the following:

1. Imports the package containing the HTTP server context type.
2. Gets the server's context registry.

3. Gets the Artix context from the context registry.

4

Gets the server's outgoing HTTP context from the reply context
container.

324

Outgoing server attributes

Setting HTTP Attributes

5. Sets the value of the Redi rect URL property to the URL of the server

who can satisfy the request.

Table 18 shows the attributes that are valid in the outgoing HTTP server

context.

Table 18: Outgoing HTTP Server Attributes

HTTP Attribute

Artix APIs

Description

Cache- Cont r ol

String get CacheControl ()
voi d set CacheControl (String val)

Specifies directives to caches
along the request/response path.

Valid values are:

no- cache: caches must revalidate
responses with the server. If
response header fields are given,
the restriction applies only to
those header fields.

publ i c: any cache can store the
response.

privat e: public caches cannot
store the response. If response
header fields are given, the
restriction applies only to those
header fields.

no- st or e: caches must not store
any part of the response or the
request.

no- t ransf or m caches must not
modify the media type or the
content location of a response.

325

CHAPTER 12 | Working with Transport Attributes

Table 18: Outgoing HTTP Server Attributes

HTTP Attribute

Artix APls

Description

nust - reval i dat e: caches must
revalidate responses that have
expired with the server before the
response can be used.

pr oxy-reval i dat e: means the
same as nust -reval i dat e, but it
can only be enforced on shared
caches. You must set the public
directive when using this
directive.

max- age: the max age, in
seconds, of an acceptible
response.

s- maxage: means the same as
max- age, but it can only be
enforced on shared caches. When
set it overides the value of

max- age. You must use the

pr oxy-reval i dat e directive when
using this directive.

Cont ent - Encodi ng

String get Cont ent Encodi ng()
voi d set Cont ext Encodi ng(String val)

Specifies the type of special
encoding, if any, the server uses
to package a response.

Cont ent - Language

String get Cont ent Language()
voi d set Cont ent Language(String val)

Specifies the language used to
write a response. Valid language
tags combine an ISO language
code and an ISO country code
separated by a hyphen. For
example, en- US.

Cont ent - Locat i on

String get GontentLocati on()
voi d set Content Location(String val)

Specifies the URL where the
resource being sent in a response
is located.

Cont ent - Type

String get Content Type()
voi d set Content Type(String val)

Specifies the MIME type of the
data in the response.

326

Setting HTTP Attributes

Table 18: Outgoing HTTP Server Attributes

HTTP Attribute Artix APls Description
ETag String get ETag() Specifies the entity tag in the
voi d setETag(String val) response header.
Expi res String get Expires() Specifies the date after which the

voi d set Expires(String val)

response is considered stale.

Honor KeepAl i ve

Bool ean i sHonor KeepAl i ve()
voi d set Honor KeepAl i ve(Bool ean val)

Specifies if the server is going to
honor a client’s keep-alive
request.

HTTPRepl y String get HTTPRepl y() Specifies the type of response the
voi d set HTTPRepl y(String val) server is issuing. For example, if
the request is fulfilled the server
will reply with oK.
HTTPRepl yCode I nteger get HTTPRepl yCode() Specifies an integer code

voi d set HTTPRepl yCode(| nt eger val)

associated with the response. For
example, 200 means CK and 404
means Not Found.

Last - Modi fi ed

String getLast Mdified()
voi d set Last Modi fied(String val)

Specifies the date and time at
which the server believes a
resource was last modified.

Pragma

String getPragma()
voi d setPragma(String val)

Specifies implementation-specific
directives that might apply to any
recipient along the
request/response chain.

Pr oxy- Aut hori zat i on

String get ProxyAut hroi zati on()
voi d set ProxyAut henti cati on(
String val)

Specifies the credentials used to
perform validation at a proxy
server along the request/response
chain. If the proxy uses
username/password validation,
this value is not used.

Pr oxyAut hori zat i onType

String get ProxyAut hori zationType()
voi d set ProxyAut hori zati onType(
String val)

Specifies the type of
authentication used by proxy
servers along the
request/response chain.

327

CHAPTER 12 | Working with Transport Attributes

Table 18: Outgoing HTTP Server Attributes

HTTP Attribute

Artix APls

Description

Pr oxyPasswor d

String get ProxyPassword()
voi d set ProxyPassword(String val)

Specifies the password used by
proxy servers for authentication if
username/password
authentication is in use.

Pr oxySer ver

String getProxyServer ()
voi d set ProxyServer(String val)

Specifies the URL of the proxy
server, if one exists, along the
request/response chain.

Note: Artix does not support the
existence of more than one proxy
server along the request/response
chain.

ProxyUser Nane

String get ProxyUser nane()
voi d set ProxyUser Nane(String val)

Specifies the username used by
proxy servers for authentication if
username/password
authentication is in use.

Reci eve- Ti neout

I nt eger get Reci eveTi neout ()
voi d set Reci eveTi neout (I nt eger val)

Specifies the number of
milliseconds the server will wait
to receive a request before timing
out. The default is 3000.

voi d set SendTi meout (| nt eger val)

Redi rect URL String get Redirect URL() Specifies the URL to which the
voi d setRedirect URL(String val) request should be redirected.
Send- Ti meout I nt eger get SendTi meout () Specifies the number of

milliseconds the server will
continue trying to send a response
before timing out. The default is
3000.

ServerCertificate

String getServerCertificate()
voi d setServerCertificate(String
val)

Specifies the full path to the X509
certificate issued by the certificate
authority for the server.

ServerCertificateChain

String getServerCertificateChain()
voi d set ServerCertificat eChai n(
String val)

Specifies the full path to the file
containing all of the certificates in
the chain.

328

Setting HTTP Attributes

Table 18: Outgoing HTTP Server Attributes

HTTP Attribute

Artix APIs

Description

Server Type

String get Server Type()
voi d set Server Type(String val)

Specifies the type of server
responded to the client. Values
take the form

pr ogr am narre/ ver si on.

Server Pri vat eKey

String get ServerPrivat ekey()

voi d set ServerPrivateKey(String val)

Specifies the full path to the
PKCS12-encoded private key that
corresponds to the X509
certificate specified by
ServerCertificate.

Server Pri vat eKeyPasswor d

String get Server Pri vat eKeyPasswor d()

voi d get Server Pri vat eKeyPasswor d(

String val)

Specifies the password used to
decrypt the PKCS12-encoded
private key.

Trusted Root Certificate

String get TrustedRoot Certifi cates()

voi d set Trust edRoot Certi fi cat es(

String val)

Specifies the full path to the
PKCS12-encoded X509
certificate for the certificate
authority.

UseSecur eSocket s

Bool ean i sUseSecur eSocket s()
voi d set UseSecur eSocket s(Bool ean
val)

Specifies the server wants to use
a secure connection. Secure
HTTP connections are also
referred to as HTTPS.

Note: If the contract specifies
HTTPS, this value is always t r ue.

WWV Aut hent i cat e

String get WWAut henti cati on()

voi d set WY unt henti cation(String

val)

Specifies at least one challenge
that indicates the authentication
scheme(s) and parameters
applicable to the Request-URI.

Incoming header

The server’s incoming context, HTTP_SERVER | NOOM NG_CONTEXT, is available
in the server's request context container after a request from client has been
received by the transport layer. The values stored in this context are for

329

CHAPTER 12 | Working with Transport Attributes

informational purposes only. For example, if you need to check the MIME
type of the data the client can accept in the response, you would read it
from the server's incoming context as shown in Example 217.

Example 217:Reading the Accept Attribute in an HTTP Server

1 inport comiona.schenmas.transports. http.configuration.context.*;
inport comi ona.j bus. Cont ext Const ant s;

2 ContextRegistry contReg = bus. get Cont ext Regi stry();
3 | onaMessageCont ext context =
(I onaMessageCont ext) cont Reg. get Qurrent () ;

4 dientType httpAiribs =
(d i ent Type) cont ext . get Request Cont ext (Cont ext Const ant s. HTTP_S
ERVER | NOOM NG _CONTEXT, true);

5 String content Type = httpAttribs. get Accept();

The code in Example 217 does the following:

1. Imports the package containing the HTTP server context type.
2. Gets the server's context registry.

3. Gets the Artix context from the context registry.

4

Gets the server’s incoming HTTP context from the reply context
container.

5. Gets the value of the Accept attribute.

Incoming server attributes Table 17 shows the attributes that are valid in the incoming HTTP server
context.

Table 19: Incoming HTTP Server Attributes

HTTP Attribute Artix APls Description

Accept String get Accept () Specifies the MIME types the
client can handle in a response.

330

Setting HTTP Attributes

Table 19: Incoming HTTP Server Attributes

HTTP Attribute

Artix APIs

Description

Accept - Encodi ng

String get Accept Encodi ng()

Specifies the types of content
encoding the client can handle in
a response. This property typically
refers to compression
mechanisms.

Accept - Language

String get Accept Language()

Specifies the language preferred
by the client. Valid language tags
combine an ISO language code
and an ISO country code
separated by a hyphen. For
example, en- US.

Aut hori zati on

String getAut horization()

Specifies the credentials that will
be used by the server to authorize
requests from the client.

Aut hori zat i onType

String getAut hori zati onType()

Specifies the name of the
authentication scheme in use.

Aut oRedi r ect Bool ean i sAut oRedi rect () Specifies whether the server
should automatically redirect the
request.

Br owser Type String get Browser Type() Specifies information about the

browser from which the request
originates. This property is also
know as the user-agent.

Certificate |ssuer

String getCertificatel ssuer()

Specifies the value stored in the
I ssuer field of the client's X509
certificate.

Certificate Key S ze

Integer getCertificateKeyS ze()

Specifies the size, in bytes, of the
public key included in the client’s
x509 certificate.

Certificate Valid Not
After

String getCertificateNot After()

Specifies the date and time after
which the client’'s X509 certificate
is invalid.

331

CHAPTER 12 | Working with Transport Attributes

Table 19: Incoming HTTP Server Attributes

HTTP Attribute

Artix APls

Description

Certificate Valid Not
Bef ore

String

get Certificat eNot Bef or e()

Specifies the date and time before
which the client’s X509 certificate
is invalid.

Certificate Subject

String

get CertificateSubject()

Specifies the value of the Subj ect
field in the client’s X509
certificate.

Connecti on

String

get Connecti on()

Specifies whether a connection is
to be kept open after each
request/response transaction.

Cooki e

String

get Cooki e()

Specifies a static cookie that is
sent along with a request.

Note: According to the HTTP
1.1 specification, HTTP cookies
must contain US-ASCII
characters.

Host

String

get Host ()

Specifies the Internet host and
port number of the resource being
requested.

HTTPVer si on

String

get HTTPVer si on()

Specifies the version of the HTTP
transport in use. Currently, this is
always setto 1.1.

| f-Mdified-Since

String

get | f Modi fi edSi nce()

If the requested resource has not
been modified since the time
specified, the server should issue
a 304 (not modified) response
without any message body.

Met hod

String

get Met hod()

Specifies the value of the METHD
token sent in the request. Valid
values and their meanings are
given in the HTTP 1.1
specification.

Passw od

String

get Passwor d()

Specifies the password the client
wishes to use for authentication.

332

Setting HTTP Attributes

Table 19: Incoming HTTP Server Attributes

HTTP Attribute

Artix APIs

Description

Pr oxy- Aut henti cat e

String get ProxyAut henticate()

Specifies a challenge that
indicates the authentication
scheme and parameters
applicable to the proxy for this
Request-URI.

Ref er er

String get Referer()

Specifies the entity that referred
the client.

String get URL()

Specifies the value of the
Request-URI sent in the request.
The valid values for this property
are described in the HTTP 1.1
specification.

User nane

String get User Narre()

Specifies the username the client
wishes to use for authentication.

333

CHAPTER 12 | Working with Transport Attributes

Setting the Server’s Endpoint URL

Overview

Getting the property

Example

334

Because the server’s endpoint URL must be known before the transport
layer is initialized by the bus, you must use the specialized configuration
context to set it. For more information on using the configuration context see
“Using the Configuration Context” on page 312.

To access the HTTP endpoint URL property for an HTTP server, you use the
Cont ext Const ant s member HTTP_SERVER QUTGO NG OONTEXTS. You are
returned a Ser ver Type object that has two relevant methods:

® setURL() sets a String representing the URL of the server.

® getURL() returns a String representing the URL of the server.

Example 218 shows how to set the HTTP Endpoint URL programatically.
Example 218:Setting the HTTP Endpoint URL
Cont ext Regi stry regi stry = bus. get Cont ext Regi stry();

Qe name = new Q\Nane("http: //ww. i ona. conl confi g_cont ext",
" SOAPSer vi ce") ;

Cont ext Contai ner contain = regi stry. get Confi gurati onCont ext (
nane,
" SoapPort",
true);

Server Type httpConf = (Server Type)cont ai ner. get Cont ext (
Cont ext Const ant s. HTTP_SERVER QUTGO NG_CONTEXTS,

true);

htt pConf . set URL("http://1 ocal host: 63278/ confi g_context_test");

bus. r egi st er Servant (servant, gnane, portNane);

Setting HTTP Attributes

The code in Example 218 does the following:
Get the context registry.

Create the service’'s Q\anre.

Get the configuration context container.
Get the server's outgoing HTTP context.
Set the endpoint URL property.

o ok Wb

Register the servant.

335

CHAPTER 12 | Working with Transport Attributes

Setting CORBA Attributes

Overview

Retrieving the CORBA principle

336

The CORBA transport does not support programmatic configuration. It also
does not provide access to any of the settings that are used to establish the
connection. Artix does, however, provide access to the CORBA principle by
way of the context mechanism. The CORBA principle is manipulated as a
String by the Java contexts.

Generally, you would only be inspecting the CORBA principle of an incoming
message. This means that in an Artix server, you would get the CORBA
context from the Artix request context container. In an Artix client, you
would get the CORBA context from the Artix reply context container.

Example 219 shows the code for getting the CORBA principle in a server.
Example 219:Getting the CORBA Principle from a Client’s Request

inport comiona. schenas. bi ndi ngs. cor ba. cont exts. *;
inport comi ona.j bus. Cont ext Const ant s;

Cont ext Regi stry cont Reg = bus. get Cont ext Regi stry();
| onaMessageCont ext context =
(I onaMessageCont ext) cont Reg. get Qurrent () ;

CORBAAL t ri but esType CCRBAALTi bs =
(CCRBAAL t ri but esType) cont ext . get Request Cont ext (Cont ext Const an
ts. CCRBA CONTEXT_ATTRI BUTES, true);

String CORBAPrinci ple = CORBAALri bs. get Principle();

The code in Example 219 does the following:

1. Imports the package containing the CORBA context type.
Gets the server's context registry.

Gets the Artix context from the context registry.

Gets the server's CORBA context from the request context container.

S

Gets the principle.

Setting the CORBA principle

Setting CORBA Attributes

The CORBA principle is typically used for interoperability with older CORBA
servers to set security information. In most cases, you would set the CORBA
principle in a client’s request message using the client’s request context.
You can also set the CORBA principle in a server’s reply message using the
server's reply context.

Example 220 shows the code for setting the CORBA principle for a client
request.

Example 220:Setting the CORBA Principle for a Client’s Request

inport comiona. schenas. bi ndi ngs. cor ba. cont exts. *;
inport comiona.j bus. Cont ext Const ant s;

Cont ext Regi stry cont Reg = bus. get Cont ext Regi stry();
| onaMessageCont ext context =
(1 onaMessageCont ext) cont Reg. get Qurrent () ;

CORBAAL t ri but esType CORBAALTi bs =
(CCRBAAL t i but esType) cont ext . get Request Cont ext (Cont ext Const an
ts. CORBA CONTEXT_ATTR BUTES, true);

String username = new String("Fred");
CORBAALTi bs. set Pri nci pl e(user nane) ;

// Make invocation on proxy

The code in Example 219 does the following:

1. Imports the package containing the CORBA context type.
Gets the client’s context registry.

Gets the Artix context from the context registry.

Gets the CORBA context from the request context container.

Creates a new String to hold the value to set into the CORBA
principle.

o~ DN

o

Sets the principle.
Make the invocation on the proxy.

337

CHAPTER 12 | Working with Transport Attributes

Setting WebSphere MQ Attributes

Overview When working with WebSphere MQ, your applications can access
information about the WebSphere MQ connection that is in use and
information contained in the WebSphere MQ message descriptor. The MQ
connection attributes context contains information about the queues and
queue managers that your application uses for send and receiving
messages. On the client-side, you can set this information on a
per-invocation basis. The MQ message attributes context allows you to
inspect and set a number of the properties stored in the WebSphere MQ
message descriptor.

In this section This section discusses the following topics:
Working with Connection Attributes page 339
Working with MQ Message Descriptor Attributes page 343

338

Setting WebSphere MQ Attributes

Working with Connection Attributes

Overview

The WebSphere MQ transport provides information about the queues to
which your application send and receives messages. This information is
stored in the MQ connection attributes context and is accessed using

Cont ext Const ant s. MQ CONNECTI CN_ATTRI BUTES. The data is returned in an
MXonnet i onAt t ri but esCont ext Type object. Table 20 describes the
attributes stored in the MQ connection attributes context.

Table 20: MQ Connection Attributes Context Properties

Attribute

Artix APls

Description

AliasQueueName

String get Al i asQueueNane()
voi d set Al i asQueueNarme(String val)

Specifies the remote queue to
which a server will put replies if
its queue manager is not on the
same host as the client’s local
queue manager.

ConnectionName

String get Connect i onNare()
voi d set Conneci tonName(String val)

Specifies the name of the
connection by which the adapter
connects to the queue.

ModelQueueName

String get Model QueueNarre()
voi d set Model QueueNarme(String val)

Specifies the name of the queue
to be used as a model for
creating dynamic queues.

voi d set Repl yQueueManager (String val)

QueueManager String get QueueManager () Specifies the name of the queue
voi d set QueueManager (String val) manager.
QueueName String get QueueNane() Specifies the name of the
voi d set QueueNanme(String val) message queue.
ReplyQueueManager | String get Repl yQueueManager () Specifies the name of the reply

gueue manager. This setting is
ignored by WebSphere MQ
servers when the client specifies
the Repl yToQwr in the request
message’'s message descriptor.

339

CHAPTER 12 | Working with Transport Attributes

Table 20: MQ Connection Attributes Context Properties

Attribute

Artix APIs

Description

ReplyQueueName

String get Repl yQueueNarre()
voi d set Repl yQueueNanme(String val)

Specifies the name of the queue
where response messages are
received. This setting is ignored
by WebSphere MQ servers when
the client specifies the Repl yToQ
in the request message'’s
message descriptor.

Transactional

Transacti onType get Transacti onal ()
voi d set Transacti onal (Transacti onType val)

Specifies how messages
participate in transactions and
what role WebSphere MQ plays
in the transactions. For
information on setting
Transactional see “Setting the
Transactional attribute” on
page 341.

Example

340

On the client-side you can control the connection to which requests are
direct by setting the MQ connection attributes in the client’s request context
before each invocation. The connection attributes are returned to the
defaults specified in the client’s contract after each invocation.

Example 221 shows code for specifying the queue and queue manager to

use when making a request.

Example 221:Setting the Client’s QueueManager and QueueName

1 inport comiona.schenas. transports. ng. context.*;
inport comi ona.j bus. Cont ext Const ant s;

2 ContextRegistry contReg = bus. get Cont ext Regi stry();

3 | onaMessageCont ext context =

(1 onaMessageCont ext) cont Reg. get Qurrent () ;

4 MXonnectionAttribut esType connect

(MXonnecti onAt tri but esType) cont ext . get Request Cont ext (Cont ext
Const ant s. M) CONNECTI ON_ATTR! BUTES, true);

Setting the Transactional attribute

Setting WebSphere MQ Attributes

Example 221:Setting the Client’s QueueManager and QueueName

connect . set QueueManager (" Bl oggy") ;
connect . set QueueNane(" Tal kBack");

/1 Make invocation on proxy

The code in Example 221 does the following:

1. Imports the package containing the MQ connection attributes context
type.

2. Gets the client’s context registry.
Gets the Artix context from the context registry.

4. Gets the MQ connection attributes context from the request context
container.

5. Sets the queue manager attribute.
6. Sets the queue name attribute.
7. Makes the invocation on the proxy.

On the server-side you cannot change any of the connection attributes
programmatically.

The transactional attribute is set using a

com i ona. schenas. t ranspor t s. ng. cont ext . Transact i onType object.
Transact i onType is a WSDL enumeration whose values are described in
Table 21.

Table 21: Transactional Values

Value

Artix API for Setting Description

none set Transact i onal (Transact i onType. frongt ri ng(" none")) The messages are not part

of a transaction. No rollback
actions will be taken if
errors occur.

i nternal set Transact i onal (Transact i onType. fronString("internal ")) The messages are part of a

transaction with
WebSphere MQ serving as
the transaction manager.

341

CHAPTER 12 | Working with Transport Attributes

Table 21: Transactional Values

Value Artix API for Setting Description

xa set Transacti onal (Tr ansacti onType. fronStri ng("xa")) The messages are part of a
transaction with
WebSphere MQ serving as
the resource manager.

Example 222 shows code for setting a client’s connection to use XA style
transactionality for a request.

Example 222:Setting the Client’s Transactionality Attribute

1 inport comiona.schenas. transports. ng. context.*;
inport comi ona.j bus. Cont ext Const ant s;

2 ContextRegistry cont Reg = bus. get Cont ext Regi stry();
3 |l onaMessageCont ext context =
(1 onaMessageCont ext) cont Reg. get Qurrent () ;

4 MXonnectionAttribut esType connect =
(MXonnecti onAt tri but esType) cont ext . get Request Cont ext (Cont ext
Const ant s. MQ CONNECTI ON_ATTRI BUTES, true);

5 connect. set Transacti onal (Transacti onType. fronBtri ng("xa"));
6 // Make invocation on proxy

The code in Example 221 does the following:

1. Imports the package containing the MQ connection attributes context
type.

2. Gets the client’s context registry.
Gets the Artix context from the context registry.

4. Gets the MQ connection attributes context from the request context
container.

5. Sets the transactional attribute.
6. Makes the invocation on the proxy.

For more information about working with Artix enumerated types, see
“Using Enumerations” on page 71.

342

Setting WebSphere MQ Attributes

Working with MQ Message Descriptor Attributes

Overview

The Artix WebSphere MQ transport breaks its support for MQ message
descriptor attributes across two contexts. One context, accessed using

Cont ext Const ant s. MQ | NOOM NG _MESSAGE ATTRI BUTES, contains the MQ
message descriptor attributes for the last message received by the
application. For a client, this means that it contains the attributes for the
last response received from the server and the context is accessed through
the client’s reply context container. For a server, this means that the
incoming message attributes context contains the descriptor attributes for
the request being processed and it is accessed through the server’s request
context container. The incoming message properties can be read at any
point in the processing of the message once the transport layer has passed it
to the messaging chain.

The second context, accessed using

Cont ext Const ant s. MY OUTGO NG_MESSAGE ATTRI BUTES, allows you to set
the values of the attributes in the MQ message descriptor for the next
message being sent across the wire. For clients, this means that it affects
the values of the next request being made and the context is accessed
through the client’s request context. For server’s, this means that the
outgoing message attributes context affects the values of the current
response’s MQ message descriptor and it is accessed through the server’s
reply context container. You can set the values of the outgoing message
attributes at any point in an application’s message chain before it the
message is handed off to the transport layer.

Both the incoming message attributes context and the outgoing message
attributes context are returned using as an

com i ona. schenas. transpor ts. ng. cont ext . MvessageAt tri but esType
object. Table 22 describes the attributes stored in the MQ message
attributes context.

Table 22: MQ Message Attributes Context Properties

Attribute

Artix APls Description

AccountingToken

String get Account i ngToken() Specifies the value for the MQ
voi d set Account i ngToken(String val) message decscriptor's

Account i ngToken field.

343

CHAPTER 12 | Working with Transport Attributes

Table 22: MQ Message Attributes Context Properties

Attribute

Artix APIs

Description

ApplicationData

String getApplicati onData()
voi d set ApplicationData(String val)

Specifies any
application-specific information
that needs to be set in the
message descriptor.

ApplicationldData

String getApplicationl dData()
voi d set ApplicationldData(String val)

Specifies the value of the MQ
message descriptor’s

Appl | denti tyDat a field. It is
only valid for MQ clients.

ApplicationOriginData

String getApplicationCigi nData()
voi d set ApplicationCriginData(String val)

Specifies the value of the MQ
message descriptor’s
Appl Ori gi nDat a field.

BackoutCount

I nt eger get Backout Count ()

Specifies the number of times
the message has been
previously returned by the
MXGET call as part of a unit of
work, and subsequently backed
out.

Convert

Bool ean i sConvert ()
voi d set Convert (Bool ean val)

Specifies if the messages in the
queue needs to be converted to
the system'’s native encoding.

Correlationld

byte[] getCorrelationld()
voi d setCorrel ationl d(byte[] val)

Specifies the value for the MQ
message descriptor's Correl I d
field.

CorrelationStyle

Correl ationStyl eType get Correl ationStyl e()
voi d
setCorrel ati onStyl e(Correl ati onStyl eType
val)

Specifies how WebSphere MQ
matches both the message
identifier and the correlation
identifier to select a particular
message to be retrieved from
the queue. For information on
how to set CorrelationStyle, see
“Setting the CorrelationStyle
attribute” on page 346.

344

Setting WebSphere MQ Attributes

Table 22: MQ Message Attributes Context Properties

Attribute Artix APIs Description
Delivery Del i veryType get Del i very() Specifies the value of the MQ
voi d setDelivery(DeliveryType val) message descriptor's
Per si st ence field. For
information on setting Delivery,
see “Setting the Delivery
attribute” on page 347.
Format For mat Type get For mat () Specifies the value of the MQ
voi d set For nat (For mat Type val) message descriptor's For nat
field. For information on setting
Format, see “Setting the Format
attribute” on page 348.
Messageld byte[] get Messagel d() Specifies the value for the MQ
voi d set Messagel d(byte[] val) message descriptor's Mgl d
field.
ReportOption Report Qpt i onType get Report Qpt i on() Specifies the value of the MQ

voi d set Report Qopti on(Report Qpti onType val)

message descriptor’'s Report
field. For information on setting
ReportOption, see “Setting the
ReportOption attribute” on
page 350.

Userldentifier

String get Userldentifier()
voi d setUserldentifier(String val)

Specifies the value for the MQ
message descriptor's
Userldentifier field.

345

CHAPTER 12 | Working with Transport Attributes

Setting the CorrelationStyle

The CorrelationStyle attribute is set using a

attribute com i ona. schenas. transports. ny. cont ext . Corr eal at oi nStyl eType
object. Correl ationStyl eType is a WSDL enumeration whose values are
described in Table 23.
Table 23: CorrelationStyle Values
Value Artix API for Setting Description
messagel d set Correl ationStyl e(Use the message ID as the
Correl ati onStyl eType. fronst ri ng(" messagel d*) value for the message’s
) Correl I d.
correl ationld set Correl ati onStyl e(Use the message’s
Correl ationStyl eType. fronstring("correl ationld") Correlationld as the value
) for the message’s
Correl I d.
messagel d copy | setCorrel ationStyle(Use the message ID as the

Correl ati onStyl eType. fronSt ri ng(" messagel d_copy") value for the message’s

)

Msgl d.

346

Example 223 shows code for setting a request message descriptor’s
CorrelationStyle message Id.

Example 223:Setting the Client’s CorrelationStyle Attribute

inport comiona.schenas. transports. ng. context. *;
inport comi ona. j bus. Cont ext Const ant s;

Cont ext Regi stry cont Reg = bus. get Cont ext Regi stry();
| onaMessageCont ext context =
(I onaMessageCont ext) cont Reg. get Qurrent () ;

MMessageAttri but esType desc =
(MMessageAt tri but esType) cont ext . get Request Cont ext (Cont ext Con
stants. M) QUTGO NG_MESSAGE _ATTR BUTES, true);

connect . set Correl ati onSt yl e(
Correl ati onStyl eType. fronBtri ng(" messagel d")

DE

/1 Make invocation on proxy

Setting WebSphere MQ Attributes

The code in Example 223 does the following:

1. Imports the package containing the MQ connection attributes context
type.

2. Gets the client’s context registry.
Gets the Artix context from the context registry.

4. Gets the MQ connection attributes context from the request context
container.

5. Sets the correlation style attribute.
6. Makes the invocation on the proxy.

For more information about working with Artix enumerated types, see
“Using Enumerations” on page 71.

Setting the Delivery attribute The Delivery attribute is set using a
com i ona. schenas. transpor t s. ng. cont ext . Del i ver yType object.
Del i veryType is @ WSDL enumeration whose values are described in
Table 24.

Table 24: Delivery Values

Value Artix API for Setting Description
persi st ent set Del i very(Del i veryType. fronString("persistent")) Sets the Persi st ence field
to MQPER_PERS| STENT.
not persi stent set Del i ver y(Sets the Persi st ence field
Del vi eryType. fronBtri ng("not _persistent") to MPER_NOT_PERS| STENT.

)

Example 224 shows code for setting a request message descriptor's
Per si st ence field to MGPER_PERSI STENT.

Example 224:Setting the Client’s Delivery Attribute

1 inport comiona. schenas.transports. ng. cont ext.*;
inport com i ona.j bus. Cont ext Const ant s;

2 ContextRegistry contReg = bus. get Cont ext Regi stry();

347

CHAPTER 12 | Working with Transport Attributes

Setting the Format attribute

Example 224:Setting the Client’s Delivery Attribute

3 1

onaMessageCont ext cont ext =
(1 onaMessageCont ext) cont Reg. get Qurrent () ;

4 MMessageAttributesType desc =

(MQMessageAt tri but esType) cont ext . get Request Cont ext (Cont ext Con
stants. M) QUTGO NG_MESSACE ATTR BUTES, true);

5 connect.setDelivery(DeliveryType.fronString("persistent"));

6 /

/ Make invocation on proxy

The code in Example 224 does the following:

1.

5.
6.

Imports the package containing the MQ connection attributes context
type.

Gets the client’s context registry.

Gets the Artix context from the context registry.

Gets the MQ connection attributes context from the request context
container.

Sets the delivery attribute.
Makes the invocation on the proxy.

For more information about working with Artix enumerated types, see
“Using Enumerations” on page 71.

The Format attribute is set using a

com i ona. schenas. t ransport s. ng. cont ext . For mat Type object.
For mat Type is a WSDL enumeration whose values are described in
Table 25.

Table 25: Format Values

Value Artix API for Setting Description
none set For mat (For mat Type. fronBtri ng("none")) Sets the For mat field to
MFMT_NONE.
string set For mat (For mat Type. fronBtring("string")) Sets the Format field to
MJFMI_STR NG

348

Setting WebSphere MQ Attributes

Table 25: Format Values

Value Artix API for Setting Description

uni code set For mat (For nat Type. fron8tri ng("uni code")) Sets the Fornat field to
MJFFMI_STR NG

event set For mat (For mat Type. fronstri ng("event")) Sets the Format field to
MFMT_EVENT.

pr ogr ammabl e set For mat (Sets the Format field to

command For mat Type. fronStri ng(" progr anmabl e_comrand") MFMI_PCF.
)

Example 225 shows code for setting a request message descriptor’'s For mat
field to MOPER_STR NG

Example 225:Setting the Client’s Format Attribute

inport comiona. schenas. transports. ng. cont ext . *;
inport comiona.j bus. Cont ext Const ant s;

Cont ext Regi stry cont Reg = bus. get Cont ext Regi stry();
| onaMessageCont ext context =
(1 onaMessageCont ext) cont Reg. get Qurrent () ;

MQVessageAt tri but esType desc =
(MMessageAt tri but esType) cont ext . get Request Cont ext (Cont ext Con
stants. M) QUTAO NG_MESSAGE ATTRI BUTES, true);

connect . set For nmat (For mat Type. fronBtring(“string"));

/1 Make invocation on proxy

The code in Example 225 does the following:

1. Imports the package containing the MQ connection attributes context
type.

2. Gets the client’s context registry.
Gets the Artix context from the context registry.

4. Gets the MQ connection attributes context from the request context
container.

5. Sets the format attribute.

349

CHAPTER 12 | Working with Transport Attributes

6. Makes the invocation on the proxy.

For more information about working with Artix enumerated types, see
“Using Enumerations” on page 71.

Setting the ReportOption attribute The ReportOption attribute is set using a

com i ona. schenas. t ransports. ny. cont ext . Repor t Opt i onType object.
Report Qpt i onType is a WSDL enumeration whose values are described in
Table 26.

Table 26: ReportOption Values

Value Artix API for Setting Description
coa set Report Qpt i on(Report Qpti on. fronString("coa")) Set the message
descriptor’s Report field to
MORO_QOA.
cod set Report Qpt i on(Report Qpti on. fronstring("cod")) Set the message
descriptor’s Report field to
MQRO_OCD.
exception set Repor t Qpt i on(Set the message
Report Qpt i on. fronString("exception”) descriptor’s Report field to
) MZRO_EXCEPTI ON.
expi ration set Report Qpt i on(Set the message
Report Qpti on. fronString("expiration") descriptor’s Report field to
) MRO_EXPI RATI ON.
di scard set Report Qpti on(Report Qption. fronBtring("di scard") Set the message
) descriptor’s Report field to
MQRO Dl SCARD MSG.

350

Example 226 shows code for setting a request message descriptor's Report
field to MQRO DI SCARD MBG

Example 226:Setting the Client’s ReportOption Attribute

1 inport comiona.schenas. transports. ng.context.*;
inport comi ona.j bus. Cont ext Const ant s;

2 ContextRegistry contRReg = bus. get Cont ext Regi stry();

Setting WebSphere MQ Attributes

Example 226:Setting the Client’s ReportOption Attribute

| onaMessageCont ext context =
(1 onaMessageCont ext) cont Reg. get Qurrent () ;

MQVessageAt tri but esType desc =
(MMessageAt tri but esType) cont ext . get Request Cont ext (Cont ext Con
stants. M) QUTAO NG_MESSAGE ATTRI BUTES, true);

connect . set Report Qpt i on(Report Qpt i onType. fronstri ng("di scard"));

/1 Make invocation on proxy

The code in Example 226 does the following:

1. Imports the package containing the MQ connection attributes context
type.

2. Gets the client’s context registry.
Gets the Artix context from the context registry.

4. Gets the MQ connection attributes context from the request context
container.

5. Sets the report option attribute.
6. Makes the invocation on the proxy.

For more information about working with Artix enumerated types, see
“Using Enumerations” on page 71.

351

CHAPTER 12 | Working with Transport Attributes

Setting JMS Attributes

Overview

In this section

352

When using JMS, Artix splits the JMS transport information into three
contexts:

® one for JMS clients.
® one for JMS servers.

® one to register JMS enabled Artix applications with a secure JMS
broker.

The JMS server context and the JMS client context provide access to the
JMS message header attributes. It includes information about message
expiration, message persistence, message correlation, and when the
message was created. In addition, the JMS header contexts enable you to
set optional properties into the JMS header for use with message selectors.

Both the JMS server context and the JMS client context provide access to
specific properties that alter the behavior of the transport. For instance the
JMS client context allows you to specify a timeout value for messages.

This section discusses the following topics:

Using JMS Message Headers and Properties page 353
Using Client-side JMS Attributes page 357
Using Server-side JMS Attributes page 359
Setting JMS Broker Security Information page 361

Setting JMS Attributes

Using JMS Message Headers and Properties

Overview

Standard JMS attributes available
from the context

A JMS message is composed of three sections:

® a JMS header containing a number of standard properties effecting ho

a message is handled.

® agroup of name/value properties that specify optional information

about the message.
® the message body.

Using the context mechanism, Artix allows you to inspect all members of the
JMS header. It also allows you to set the values for members that are not set
by the JMS broker. In addition, the context mechanism provides you with a
way to set properties into the properties group of the JMS message.

Table 27 shows the JMS header attributes available for both the JMS client
context and the JMS server context. Not all of the JMS header attributes are
settable. For those that are settable, both the getter and the setter methods

are shown.

Table 27: JMS Header Attributes

JMS Header Attribute

Artix API

Description

JMSCorrelationID

String get JMSCorrel ationl ()

Specifies the message’s
correlation ID.

JMSDeliveryMode

I nt eger get JMBDel i ver yMode()
voi d set JMsDel i ver yMode(| nteger val)

Specifies if the message is
persistent or non-persistent. Valid
values are PERSI TENT and
NON_PERS| STENT. The default is
PERS| STENT.

JMSExpiration

Long get JVBEXpi ration()

Specifies the time at which the
message expires. An expiration of
0 means that the message never
expires.

JMSMessagelD

String get JMsMessagel M)

Specifies the unique ID assigned
to the message by the JMS
broker.

353

CHAPTER 12 | Working with Transport Attributes

Table 27: JMS Header Attributes

JMS Header Attribute Artix API Description
JMSPriority Integer getJMBPriority() Specifies the relative priority of
voi d set JMSPriority(Integer val) the message. Valid values are 0-9.

0 is the lowest priority. The
default priority is 4.

Optional Properties JNVBPr opert yType[] get Property() Specifies any number of

voi d set Property(JVSPropertyType[] val) user-defined properties that are

used in conjunction with JMS
message selectors.

JMSRedelivered Bool ean i sJMBRedel i ver ed() Specifies if the JMS broker

believes that this message has
already been delivered, but not
acknowledged.

JMSTimestamp Long get JMBTi meSt anp() Specifies the time at which the
message was handed off to the
JMS broker.

JMSType String get IMSType() Specifies the type of the message.

Some JMS implementations use
this field to specify templates for

messages.
Time To Live Long get Ti meToLi ve() Specifies the number of
voi d set Ti meToLi ve(Long val) milliseconds the message will

remain active in the JMS
destination to which it is
delivered. The default value is
unlimited.

Creating optional JMS header
properties

354

A part of the JMS header is set aside for optional properties. These
properties include a few standard properties that are prefixed with JMSX.
JMS vendors also use the properties section of the JMS message to specify
vendor-specific information. The properties section can also be used as a
place to store user-defined properties that can be used for message selection
among other things.

Setting JMS Attributes

The JMS properties are stored in the JMS header as name value pairs. In
Artix JMS properties are created in

com i ona. schenas. transports. j ns. cont ext . JVMSPr oper yType objects.
JMBPr operty objects have two members and getter and setter methods for
each member. The name member specifies the name by which the property
will be referred. It can be any string value. The val ue member stores the
data of the property and can also be any string value.

Properties are set into the JMS header using the outbound JMS context’s
set Property() method. set Property() takes an array of properties, so you
can create as many user-defined properties as you wish.

Example 227 shows how to create a set of user-defined properties and set
them on a client request’s JMS message.

Example 227:Creating User-Defined Properties and Setting Them into a
JMS Header

inport comiona. schenas. transports.j ns. context.*;
inport comiona.j bus. Cont ext Const ant s;

JNVSPropertyType[] props = new JNMSPropertyType[2] ;

props[0] = new JMSPropert Type();

props[0] . set Narre(" User nane") ;

props[0] .setValue("Hint");

props[1] = new JMSPropert Type();

props[1] . set Narre(" Passwor d") ;

props[1] . set Val ue(" More");

Cont ext Regi stry cont Reg = bus. get Cont ext Regi stry();

| onaMessageCont ext context =

(1 onaMessageCont ext) cont Reg. get Qurrent () ;

JMBA i ent Header sType header =
(JMBA i ent Header sType) cont ext . get Request Cont ext (Cont ext Const a
nts. JM5_CLI ENT_CONTEXT, true);

header . set Property(props);

/1 Make invocation on proxy

355

CHAPTER 12 | Working with Transport Attributes

356

The code in Example 227 does the following:

1.

W XN O oW

Imports the package containing the JMS context types.

Creates an array of two JMBPr opert yType objects to hold the
user-defined properties.

Sets the name/value pair for the first property.

Sets the name/value pair for the second property.

Gets the client’s context registry.

Gets the Artix context from the context registry.

Gets the JMS context from the request context container.
Sets the user-defined properties into the JMS context.
Makes an invocation on the proxy.

Setting JMS Attributes

Using Client-side JMS Attributes

Overview

Timeout

Setting the client attributes

When working with JMS clients you get the JMS header information using
the JMS client context which is accessed using the JM5_CLI ENT_QONTEXT
tag. The JMS client context information is returned as a

JMBA i ent Header s Type object. The JMS client context has all of the
standard JMS header attributes plus an additional Ti nreQut attribute.

The Ti neout attribute specifies the value passed into the JMS message
consumer’s r eci eve() method. The time-out value is specified as a Long
and determines how long, in milliseconds, the message consumer will wait
for a message to arrive before timing out. Example 228 shows the methods
for accessing the Ti neQut value on a JMBA i ent Header sType object.

Example 228:Methods for Accessing the TimeOut Value

Long get Ti meQut ();
voi d set Ti meCQut (Long ti meout);

Most of the attributes in the JMS header are populated by the JMS broker
and are provided simply for informational purposes. However, when making
requests you can add any number of user-defined properties to the header
as shown in “Creating optional JMS header properties” on page 354. In
addition, you can set the message's JMDel i ver yMode, the message’s
JMBPriority, the message’s time to live, and the time-out interval used to
wait for a response. To set these properties, you use the JMS client context
from the client’s request context container at any point along the messaging
chain before the message is handed off to the transport layer. The settable
attributes are valid for one request and are reset once the request is sent to
the JMS broker.

To set the user settable JMS client attributes do the following:

1. Get the application’s message context.

2. Get the JMS client context from the request context container.
3. Set the desired property values on the JMS client context.

357

CHAPTER 12 | Working with Transport Attributes

Example 229 shows the code for setting the JMS client attributes for a
request.

Example 229:Setting a Request’s JMS Header Attributes

inport comiona. schenas. transports.jns. context.*;
inport comi ona.j bus. Cont ext Const ant s;

1 | ONAMessageCont ext cont = (1 ONAMessageCont ext)
Di spat chLocal s. get Cur r ent MessageCont ext () ;

2 JIMBA i ent Header sType header = (JMBA i ent Header sType)
cont . get Requst Cont ext (Cont ext Const ant s. JM5_CLI ENT_CONTEXT,
true);

3 header. set JIMBDel i ver yMode(" NON_PERS| STENT") ;
header . set IMSPri ority(new I nteger(7));
header . set Ti neToLi ve(new Long(120000)) ;
header . set Ti meQut (new Long(3000)) ;

/1 Make invocation on proxy

Inspecting the client attributes To inspect the JMS header values of a response message, you get the JMS
client context from the client’s reply context container. The values in the
context are valid for the last response received from the server. They are

available once the transport layer passes the message up the messaging
chain.

Example 230 shows code for checking the JMSCor rel at i onl D of a response.
Example 230:Checking a Responses JMSCorrelation/D

inport comiona. schenas. transports.jns.context.*;
inport comi ona.j bus. Cont ext Const ant s;

/1 Make invocation on proxy

| ONAMessageCont ext cont = (1 ONAMessageCont ext)
D spat chLocal s. get Curr ent MessageCont ext () ;

JMBA i ent Header sType header = (JMBA i ent Header sType)
cont . get Repl yCont ext (Cont ext Const ant s. JM5_CLI ENT_CONTEXT,

true);

String corrl D = header. get JMSCorreal tionl () ;

358

Setting JMS Attributes

Using Server-side JMS Attributes

Overview

CommitMessage

Setting server attributes

When working with JMS servers you get the JMS header information using
the JMS server context which is accessed using the JM5_SERVER CONTEXT
tag. The JMS client context information is returned as a

JMBSer ver Header s Type object. The JMS server context contains all of the
JMS header attributes plus an additional boolean attribute called

Conmi t Message.

Commi t Message specifies if a message that is part of a transaction should be
commited if an exception is thrown. The default behavior of JMS is to
rollback the message and continue to retry a message that is part of a
transaction. Setting Commi t Message to true before you send the message
forces JMS to commit the message regardless of the result of the
transmission.

As with the JMS header properties on the client-side, the server can only
change a few of the values in the JMS header. It can add user-defined
properties to the response’s JMS header as shown in “Creating optional JMS
header properties” on page 354. From the server you can also set a
response’s delivery mode, priority, and time to live. To set these properties,
you use the JMS server context from the server’s reply context container.
The values are valid only for the active response and are reset each time the
servant is invoked.

Example 231 shows the code for setting the JMS header attributes for a
response.

Example 231:Setting a Response’s JMS Header Attributes

inport comiona. schenas. transports.j ns. context.*;
inport com i ona.j bus. Cont ext Const ant s;

| ONAMessageCont ext cont = (1 ONAMessageCont ext)
D spat chLocal s. get Cur r ent MessageCont ext () ;

359

CHAPTER 12 | Working with Transport Attributes

Inspecting server attributes

360

Example 231:Setting a Response’s JMS Header Attributes

JMVBSer ver Header sType header = (JMSSer ver Header sType)
cont . get Repl yCont ext (Cont ext Const ant s. JM5_SERVER CONTEXT,
true);

header . set JMSDel i ver yMode(" NON_PERS| STENT") ;
header . set IMBPriority(new I nteger(1));
header . set Ti meToLi ve(new Long(3000));

header . set Conm t Message(Bool ean. TRUE) ;

To inspect the JMS header values of a request message, you get the JMS
server context from the server's request context container. Example 230
shows code for checking a request’s JVBRedi | ver ed flag.

Example 232:Checking a Request’s JMSRedlivered Flag

inport comiona. schenas. transports.jns.context.*;
inport comi ona. j bus. Cont ext Const ant s;

// Make invocation on proxy

| ONAMessageCont ext cont = (1 ONAMessageCont ext)
Di spat chLocal s. get Cur r ent MessageCont ext () ;

JMVBSer ver Header sType header = (JMSSer ver Header sType)
cont . get ResponseCont ext (Cont ext Const ant s. JM5_SERVER CONTEXT,
true);

if (header.isJMsRedel i vered())
{

Systemout.println("This is a redelivered nmessage.");

}

Setting JMS Attributes

Setting JMS Broker Security Information

Overview

Getting the JMS broker
connection info

Example

1

2

When using a secure JMS broker, your applications will need to register with
the JMS broker using a username and password. These are set using the
JMS broker connection security property. You need to set this property for
both JMS client applications and JMS server applications.

Because the username and password used to connect to the JMS broker
must be known before the JMS transport is initialized, you need to set the
property in the special configuration context that is made available before
Artix registers any user level code with the bus. For more information on
using the configuration context see “Using the Configuration Context” on
page 312.

To set the JMS broker connection security information property you use the

Cont ext Const ant s member JM5_CCNNECTI ON_SEQURI TY_I NFO. You are

returned a JMsConnect i onSecuri tyl nf oType object that has four methods:

® setsernane() sets a String representing the username used when
connecting to the JMS broker.

® getsernane() returns a String representing username used when
connecting to the JMS broker.

® setPassword() sets a String representing the password used when
connecting to the JMS broker.

® getPassword() returns a String representing the password used when
connecting to the JMS broker.

Example 233 shows how to set the JMS broker connection properties on an
Artix JMS client.

Example 233:Setting the JMS Connection Info
Cont ext Regi stry regi stry = bus. get Cont ext Regi stry();

Q\ane name = new QNane("http://ww. i ona. cond confi g_context",
" SQAPSer vi ce") ;

361

CHAPTER 12 | Working with Transport Attributes

362

Example 233:Setting the JMS Connection Info

Cont ext Cont ai ner cnt = registry. get Confi gurati onCont ext (nane,
" SoapPort",
true);

JMBConnect i onSecuri tyl nfoType info =
(JMsConnect i onSecuri t yl nf oType) cont ai ner. get Cont ext (
Cont ext Const ant s. JM5_CONNECTI ON_SECUR TY_| NFQ
true);

i nf 0. set User nane(" george") ;
i nf 0. set Passwor d(" bosco") ;

Q\ane servNane = new Q\ane("http://buystuff.cont, "Register");
String portName = new String("RegisterPort");
String wsdl Path = "file:/./resister.wsdl";
URL wsdl URL = new Fi | e(wsdl Pat h).toURL();
Regi ster proxy = bus. createdient(wsdl UR,, servNane,
port Nane, Register.class);

The code in Example 233 does the following:
Get the context registry.

Create the service’'s Quanre.

Get the configuration context container.
Get the client’'s JMS connection info.

Set the username and password.

o ok Wb

Register the servant.

i18n Attributes

i118n Attributes

Overview

Configuring Artix to use the i18n
interceptor

Setting up i18n on a client

Artix has two contexts to configure codeset conversion when using the i18n
interceptor. One context configures the client and the other configures the
server. The i18n interceptor is used when working in an environment where
codeset conversion is required, but the transports in use do not support it. It
is a message-level interceptor and is invoked just before the transport layer
is handed the message.

The i18n interceptor can also be set up using port extensors in your
application’s contract. For information on setting up the i18n interceptor
using port extensors see the chapter on services in Designing Artix Solutions.

Before your application can use the i18n interceptor for code conversion you
must configure the Artix bus to load the required plug-ins and add the
interceptor to the appropriate message interceptor lists. To configure your
application to use the i18n interceptor do the following:
1. If your application includes a service proxy that needs to use codeset
conversion, add "i 18n- cont ext : | 18nl nt er cept or Fact ory" to the
bi ndi ng: arti x: cli ent_nessage_i nterceptor_|ist variable for your
application.
2. If your application includes a service that needs to use codeset
conversion, add "i 18n-cont ext : | 18nl nt er cept or Fact ory" to the
bi ndi ng: arti x: server_nessage_i nterceptor _| i st variable for your
application.
3. Add"ii18n_interceptor" to the list of plug-ins to load in the
or b_pl ugi ns variable for your application.

For more information on configuring Artix see Deploying and Managing Artix
Solutions.

In a client the only attributes in the i18n context that alter how the i18n
interceptor works are the client local codeset and the client outbound
codeset in the client’s request context. The client inbound codeset defaults
to the value of the outbound codeset and the client-side interceptor does not
read its value from the context.

363

http://www.iona.com/support/docs/artix/3.0/design/index.htm
http://www.iona.com/support/docs/artix/3.0/deploy/index.htm
http://www.iona.com/support/docs/artix/3.0/deploy/index.htm

CHAPTER 12 | Working with Transport Attributes

Setting up i18n on a server

364

To configure a client for codeset conversion using the i18n interceptor do
the following:

1. Get the client's message context.
2. Getthe i18n client request context.
3. Set the local codeset property.

4. Set the outbound codeset property.

Example 234 shows the code for configuring a client for codeset conversion.
Example 234:Client i18n Properties

/1l Java
| ONAMessageCont ext nessCont =
(1 ONAMessageCont ext) D spat chLocal s. get Qur r ent MessageCont ext () ;

com i ona. schenas. bus. i 18n. cont ext . d i ent Confi gurati on i 18nConfi g
= (comi ona. schenas. bus. i 18n. cont ext . d i ent Conf i gur ati on)
messCont . get Request Cont ext (

Cont ext Wi ls. 118N | NTERCEPTCR CLI ENT_QNAME, true);

i 18nConfi g. set Local CodeSet ("Lati n-1");
i 18nConfi g. set Qut boundCodeSet (" UTF- 16") ;

In a server the only attributes in the i18n context that alter how the i18n
interceptor works are the server local codeset and the server outbound
codeset in the server's reply context. The server-side interceptor does not
read the server inbound codeset from the context.

To configure a server for codeset conversion using the i18n interceptor do
the following:

1. Get the server's message context.
2. Getthe il8n server reply context.
3. Set the local codeset property.

4. Set the outbound codeset property.

Example 235 shows the code for configuring a server for codeset
conversion.

Example 235:Server i18n Properties

/1 Java

Hw

i18n Attributes

Example 235:Server i18n Properties

| ONAMessageCont ext messCont =
(1 ONAMessageCont ext) D spat chLocal s. get Qur r ent MessageCont ext () ;

com i ona. schenas. bus. i 18n. cont ext . Server Confi gurati on i 18nConfi g
= (com i ona. schenas. bus. i 18n. cont ext . Ser ver Confi gur at i on)
messCont . get Repl yCGont ext (

Gontext Wil s. | 18N | NTERCEPTCR CLI ENT_CNAME, true);

i 18nConfi g. set Local CodeSet (" UTF- 16") ;
i 18nConfi g. set Qut boundCodeSet (" LATI N-1");

365

CHAPTER 12 | Working with Transport Attributes

366

Part ||

Advanced Artix
Programming

In this part This part contains the following chapters:
The Artix Locator page 369
Using Sessions in Artix page 379
Using Persistent Datastores page 391
Using Transactions in Artix page 417
Using the Call Interface for Dynamic Invocations page 461
Developing Plug-Ins page 469
Writing Handlers page 479
Manipulating Messages in a Handler page 507
Developing Custom Artix Transports page 519
Configuring Artix Plug-Ins page 563
Using Artix Classloader Environments page 573

In this chapter

CHAPTER 13

The Artix Locator

The Artix locator is a central repository for storing references
to Artix endpoints. If you set up your Artix servers to register
their endpoints with the locator, you can code your clients to
open server connections by retrieving endpoint references
from the locator.

This chapter discusses the following topics:

Overview of the Locator page 370
Registering Endpoints with the Locator page 373
Reading a Reference from the Locator page 374

369

CHAPTER 13 | The Artix Locator

Overview of the Locator

Overview

370

The Artix locator is a service which can optionally be deployed for the

following purposes:

® Repository of endpoint references—endpoint references stored in the
locator enable clients to establish connections to Artix services.

® load balancing—if multiple service instances are registered against a
single service name, the locator load balances over the different service

instances randomly or using a round-robin algorithm.

Figure 7 gives a general overview of the locator architecture.

STAND-ALONE
LOCATOR

L 2
|| ©

Endpoint Service A
Manager
Plug-in

Client
LocatorService
Plug-in

(])
=

a0

Figure 7: Artix Locator Overview

Endpoint Service B
Manager
Plug-in

€ ©
%EM

Endpoint @
Manager

Plug-in

Service C

Locator service

Endpoint definition

Registering endpoints

Looking up references

Overview of the Locator

There are two basic options for deploying the locator service, as follows:

® Standalone deployment—the locator is deployed as an independent
server process (as shown in Figure 7). This approach is described in
detail in Deploying and Managing Artix Solutions. Sample source code
for such a standalone locator service is provided in the
denos/ advanced/ | ocat or demo.

® Embedded deployment—the locator is deployed by embedding it
within another Artix server process. This approach is possible because
the locator is implemented as a plug-in, which can be loaded into any
Artix application.

An Artix endpoint is a particular WSDL service (identified by a service name)
in a particular bus instance (identified by a WSDL location URL). Hence, it
is possible to have endpoints with the same service type and service name,
as long as they are registered with different bus instances. A WSDL location
URL and a service name together identify an endpoint.

A server that loads the locator’s endpoint manager plug-in automatically
registers its endpoints with the locator in order to make them accessible to
Artix clients. When a server registers an endpoint in the locator, it creates an
entry in the locator that associates a service name with an Artix reference for
that endpoint.

An Artix client looks up a reference in the locator in order to find an endpoint
associated with a particular service. After retrieving the reference from the
locator, the client can then establish a remote connection to the relevant
server by instantiating a client proxy object. This procedure is independent
of the type of binding or transport protocol.

371

http://www.iona.com/support/docs/artix/3.0/deploy/index.htm

CHAPTER 13 | The Artix Locator

Load balancing with the locator

372

If multiple endpoints are registered against a single service name in the
locator, the locator's default behavior is to use a round-robin algorithm to
pick one of the endpoints. Hence, the locator effectively load balances a
service over all of its associated endpoints.

In addition to using a round-robin load balancing algorithm, the locator also
supports the randomly selecting one of the registered endpoints from the list
of registered services. When the locator is configured to use persistent
registration data, it automatically switches to random load balancing. You
can also configure the locator to always use random load balancing by
setting the pl ugi ns: | ocat or : sel ecti on_net hod configuration variable to
random

For example, Figure 7 on page 370 shows Servi ce A with two endpoints

registered against it. When the Artix client looks up a reference for Servi ce
A it obtains a reference to whichever endpoint is next in the sequence.

Registering Endpoints with the Locator

Registering Endpoints with the Locator

Overview

Configuring a server to register
endpoints

References

To register a server's endpoints with the locator, you must configure the
server to load a specific set of plug-ins. Once the appropriate plug-ins are
loaded, the server will automatically register every endpoint that it creates.

A server that is to register its endpoints with the locator must be configured
to include the soap, http, and | ocat or _endpoi nt plug-ins, as shown in
Example 236.

Example 236:Server Configuration Scope for Using the Locator

Artix Configuration File (artix.cfg)

| ocat ed_ser ver

{
orb_plugins = ["xmfile_|og streant, "soap", "at_http",
"| ocat or _endpoi nt"];
bus:initial _contract:url:locator="../wsdl/|ocator.wsdl";

iE

It must also specify where the locator instance’s contract can be found. This
information is specified using the bus:initial _contract_url: | ocat or
configuration variable. The default location of the contract is

arti x/ Versi on/ wsdl /| ocat or. wsdl . The default contract sets up the
locator to start on a system determined port.

When running the server, remember to select the appropriate configuration
scope by passing it as the - CRBnane command-line parameter.

For more details about configuring a server to register endpoints, see the
following references:
® The chapter on using the locator in Deploying and Managing Artix
Solutions.
® Thelocator demonstration in
arti x/ Ver si on/ dermos/ advanced/ | ocat or .

373

http://www.iona.com/support/docs/artix/3.0/deploy/index.htm
http://www.iona.com/support/docs/artix/3.0/deploy/index.htm

CHAPTER 13 | The Artix Locator

Reading a Reference from the Locator

Overview After the target server has started up and registered its endpoints with the
locator, an Artix client can then lookup the server's endpoints using the
locator. The client can then connect to the target server by creating a service
proxy using the reference from the locator. Figure 8 shows an outline of how
a client connects to a server in this way.

¥

Ea—R/BAar

SOAPHTTP Service WSDL Location/
SOAPHTTP Service

lookup_endpoint()

Create locator proxy
? Create service proxy

916 | oo
Invoke operation Endpoint

I Manager
Service Service A Plug-in
Proxy

<

Locator
Proxy

Figure 8: Steps to Read a Reference from the Locator

Programming steps The main programming steps needed to read a reference from the locator,
as shown in Figure 8, are as follows:

1. Construct a locator service proxy.

2. Use the locator proxy to invoke | ookup_r ef er ence() .

374

Reading a Reference from the Locator

3. Use the reference returned from | ookup_r ef er ence() to construct a
proxy to the service.

4. Invoke an operation using the created service proxy.

Example Example 237 shows an example of the code for an Artix client that retrieves
a reference to a Si npl eSer vi ce service from the Artix locator.

Example 237:Reading a Reference from the Locator Service

/1 Java

inport java.util.*;
inport java.io.*;

inport java.net.?*;
inport java.rm.?*;

inport javax.xnl.nanespace. Q\ane;
inport javax.xm.rpc.*;

inport com i ona.j bus. Bus;
inport comiona. schenas. r ef erences. Ref erence;
inport comiona.ws.|ocator.*;

public class SinpleServicedient

{

public static void main (String args[]) throws Exception

{
1 Bus bus = Bus.init(args);
2 \ane name = new Q\Nane("http://ws.iona.conil ocator",

"Locat or Servi ce");
3 Q\bne | ookup_name = new Q\anme("http://wamv i ona. cond bus/ t ests",
" SOAPHTTPSer vi ce") ;

4 Q\ane portNane = new Q\anme("", "Locat or Servi cePort");

375

CHAPTER 13 | The Artix Locator

Example 237:Reading a Reference from the Locator Service

5 /1 Build the Locator Service Proxy
String wsdl Path = "file:/../wsdl /| ocator.wsdl ";
URL wadl Location = new Fi |l e(wsdl Pat h).toURL();

Servi ceFactory factory = Servi ceFact ory. newl nst ance() ;
Servi ce service = factory. creat eServi ce(wsdl Locati on, nane);

Locat or Servi ce | ocator =
(Locat or Servi ce) servi ce. get Port (port Nane,
Locat or Servi ce. cl ass) ;

6 / /'l nvoke | ookup_endpoi nt ()
Reference sinp_ref = |ocator.|ookup_endpoi nt (| ookup_nane) ;
7 /1 Build a proxy to the target service fromthe reference

S npl eService sinple client =
(Si npl eServi ce) bus. created i ent (si np_ref,
Si mpl eSer vi ce. cl ass) ;

8 String greeting = "Qeetings froma located client";
String resul t;
result = sinple_client.say_hello(greeting);
Systemout. println("say_hell o method returned: “"+result);
}
}

The code in Example 237 can be explained as follows:

1. You should ensure that the client picks up the correct configuration by
passing the appropriate value of the - CRBnane parameter.

2. This line constructs a QName, nane, that identifies the <servi ce
name="_Locat or Ser vi ce" > tag from the locator contract.

3. This line constructs a QName, | ookup_nane, that identifies the
SOAPHTTPSer vi ce service from the Si npl eSer vi ce contract.

4. This port name refers to the <port nane="Locat or Servi cePort" ...>
tag in the locator contract.

5. The locator service proxy is created by using the standard JAX-RPC
method for creating a dynamic proxy. For details see “Developing a
Client” on page 23.

6. The | ookup_endpoi nt () operation is invoked on the locator to find an
endpoint of SOAPHTTPSer vi ce type.

376

Reading a Reference from the Locator

The Si npl eSer vi ce reference returned from the locator, si np_ref, is
then passed to the bus’ created i ent () proxy constructor. The
created i ent () proxy constructor takes Ref er ence type and the class
of the proxy to be created as its arguments.

You can now use the simple client proxy to make invocations on the
remote Artix server.

377

CHAPTER 13 | The Artix Locator

378

In this chapter

CHAPTER 14

Using Sessions In

Artix

The Artix Session Manager helps you manage service

resources.

This chapter discusses the following topics:

Introduction to Session Management in Artix page 380
Registering a Server with the Session Manager page 383
Working with Sessions page 385

379

CHAPTER 14 | Using Sessions in Artix

Introduction to Session Management in Artix

Overview

380

The Artix session manager is a group of ART plug-ins that work together to
provide you control over the number of concurrent clients accessing a group
of services and how long each client can use the services in the group before
having to check back with the session manager. The two main session
manager plug-ins are:

Session Manager Service Plug-in (sessi on_nanager _ser vi ce) is the central
service plug-in. It accepts and tracks service registration, hands out session
to clients, and accepts or denies session renewal.

Session Manager Endpoint Plug-in (sessi on_endpoi nt _manager) is the
portion of the session manager that resides in a registered service. It
registers its location with the service plug-in and accepts or rejects client
requests based on the validity of their session headers.

The session manager also has a pluggable policy callback mechanism that
allows you to implement your own session management policies. Artix
session manager includes a simple policy callback plug-in,

sm si npl e_pol i cy, that provides control over the allowable duration for a
session and the maximum number of concurrent sessions allowed for each

group.

How do the plug-ins interact?

Introduction to Session Management in Artix

Figure 9 shows a diagram of how the session manager plug-ins are
deployed in an Artix System. As you can see the session manager service
plug-in and the policy callback plug-in are both deployed into the same
process. While in this example, they are deployed into a standalone service,
they can be deployed in any Artix process. The session manager service
plug-in and the policy plug-in interact to ensure that the session manager
does not hand out sessions that violate the policies established by the policy

plug-in.

Figure 9: The Session Manager Plug-ins

The endpoint manager plug-ins are deployed into the server processes
which contain session managed services. A process can host two services,
like Service C and Service D in Figure 9, but the process will have only one
endpoint manager. The endpoint manager plug-ins are in constant
communication with the session manager service plug-in to report on

381

CHAPTER 14 | Using Sessions in Artix

What are sessions?

What are groups?

382

endpoint health, to receive information on new sessions that have been
granted to the managed services, and to check on the health of the session
manager service.

The session manager controls access to services by handing out sessions to
clients who request access to the services. A session is a pass that provides
access to the services in a specific group for a specific time.

For example if a client application wants to use the services in the SM Deno
group, it would ask the session manager for a session with the SM Deno
group. The session manager would then check and see if the SM Deno group
had an available session, and if so it would return a session id and the list of
SM Deno service references to the client. The session manager would then
notify the endpoint managers in the SM Deno group that a new session had
been issued, the new session’s id, and the duration for which the session is
valid. When the client then makes requests on the services in the SM Deno
group, it must include the session information as part of the request. The
endpoint manager for the services then check the session information to
ensure it is valid. If it is, the request is accepted. If it is not, the request is
rejected.

If the client wants to continue using the SM Deno services beyond the
duration of its lease, the client will have to ask the session manager to
renew its session before the session expires. Once a client’s session has
expired, it will have to request a new one.

The Artix session manager does not pass out sessions for each individual
service that is registered with it. Instead, services are registered as part of a
group, and sessions are handed out for the group. A group is a collection of
services that are managed as one unit by the session manager. While the
session manager does not specify that the services in a group be related, it
is recommended that the endpoints have some relationship.

A service's group affiliation is controlled by the configuration scope under
which it is run. To change a service’s group, you edit the value for

pl ugi ns: sessi on_endpoi nt _manager : def aul t _gr oup in the process’
configuration scope. For more information on Artix configuration see
Deploying and Managing Artix Solutions.

../deploy/index.htm

Registering a Server with the Session Manager

Registering a Server with the Session Manager

Overview

Configuring the server

Services that wish to be managed by the session manager must register with
a running session manager. To do this the servers instantiating these
services must load the session manager endpoint plug-in and properly
configure themselves. They do not require any special application code.
Once registered with a session manager, the services will only accept

requests containing a valid session header. All clients wishing to access the
services must be written to support session managed services.

Any server hosting services that are to be managed by the session manager
must load the following plug-ins in addition to the transport and payload
plug-ins it requires:

® soap

® at_http

® sessi on_endpoi nt _nanager

sessi on_endpoi nt _nmanager allows the server to register with a running
session manager.

The server's configuration also needs to set the following configuration
variables:

bus:initial_contract:url:sessionmanager points to the contract describing
the contact information for the session manager that will be managing the
services.

bus:initial_contract:url:sessionendpointmanager points to the contract
describing the contact information for the endpoint manager for this server.
This enables the session manager to contact the service to with updated
state information.

plugins:session_endpoint_manager:default_group specifies the default
group name for the services instantiated by the server.

383

CHAPTER 14 | Using Sessions in Artix

Example 238 shows the configuration scope of a server that hosts services
managed by the session manager.

Example 238:Server Configuration Scope

denos {
sessi on_nmanagerent {
server {
orb_plugins = ["xmfile_|og_streant, "session_endpoint_manager"];

Registration

384

This is the WBDL File that the Session Endpoi nt Manager used to contact the
Sessi on Manager Servi ce.

bus:initial _contract:url:sessionmanager = "../../etc/session-nanager.wsdl ";
bus:initial _contract:url:sessionendpoi nt manager = "../../sessi on-manager.wsdl ";
pl ugi ns: sessi on_endpoi nt _nanager : def aul t _group = " SM Deno";

A server loaded into the denos. sessi on_managenent . server configuration
scope will be managed by the session manager at the location specified in
sessi on- manager . wsdl and by default all services instantiated by the server
will belong to the session manager group SM Deno.

For more information on Artix configuration see Deploying and Managing
Artix Solutions.

In the server's configuration scope specify the endpoint manager plug-in to
read the correct Artix contract for the endpoint manager by setting
bus:initial_contract: url:sessi onendpoi nt manager to point to the copy
of sessi on- manager . wsdl containing the address for this instance of the
endpoint manager. It is recommended that you use the default

sessi on- manager . wsdl shipped with Artix and not specify dedicated ports
for your endpoint manager.

Once a properly configured server starts up, it automatically registers with
the session manager specified by the contract pointed to by
bus:initial _contract:url:sessi onmanager.

Working with Sessions

Working with Sessions

Overview

Demonstration code

Implementing a session client

Registering the session manager’s
type factory

Clients wishing to make requests from session managed services must be
designed explicitly to interact with the Artix session manager and pass
session headers to the session managed services.

The examples in this section are based on the demonstration code located in
the following directory:

ArtixInstallDirl ar ti x/ Version/ denos/ advanced/ sessi on_nanagenent

There are nine steps a client takes when making requests on a session
managed service. They are:

1. Register the type factory for the session manager's context data.
2. Instantiate a proxy for the session management service.

3. Start a session for the desired service’s group using the session
manager proxy.

Obtain the list of endpoints available in the group.

Create a service proxy from one of the endpoints in the group.

Build a session header containing the session ID to pass to the service.
Invoke requests on the endpoint using the proxy.

Renew the session as needed.

e A

End the session using the session manager proxy when finished with
the services.

Artix uses the context mechanism to pass session information between the
session manager, clients, and services. Therefore you must register the
session manager’s type factory with the bus before making any calls on the
session manager or session managed services.

385

CHAPTER 14 | Using Sessions in Artix

Example 239 shows the code for registering the session manager’s type
factory.

Example 239:Registering the Session Manager’s Type Factory
// bus obtained earlier

bus. r egi st er TypeFact or y(new
com i ona. ws. sessi onmanager . Sessi onManager TypeFact ory());

Instantiating a session manager Before a client can request a session from the session manager, it must

proxy create a proxy to forward requests to the running session manager. To do
this the client creates an instance of Sessi onManager Qi ent using the
session manager's contract name, sessi on- manager . wsdl .

Example 240 shows how to instantiate a session manager proxy.

Example 240:/nstantiating a Session Manager Proxy

Q\ane name = new Q\Nane("http://ws. i ona. com sessi onnanager ",
" Sessi onManager Ser vi ce") ;

Q\ane portNane = new Q\ane("", "Sessi onManagerPort");

URL wsdl Location = nul | ;

try
{
wsdl Locati on = new URL(wsdl Pat h);
}
catch (java. net. Mal f or mredURLExcepti on ex)
{
wsdl Locati on = new Fi | e(wsdl Pat h).toURL();
}

Servi ceFactory factory = Servi ceFactory. newl nst ance();
Service service = factory. creat eServi ce(wsdl Location, nane);
Sessi onManager sessi onMyr =

(Sessi onManager) ser vi ce. get Por t (por t Nane,

Sessi onManager . cl ass) ;

For more information on instantiating Artix proxies, see the “Proxy Creation”
on page 40.

386

Start a session

Get a list of endpoints in the group

Working with Sessions

After instantiating a session manager proxy, a client can then start a session
for the desired service’s group using the session manager's
begi n_sessi on() method. begi n_sessi on() has the following signature:

Sessi onl nfo begi n_sessi on(String endpoi nt _group,
Bi gl nteger preferred_renew tinmeout);

The begi n_sessi on() function takes the following input parameters:

® endpoi nt _gr oup—the endpoint group name, which corresponds to the
default group name set in the server's configuration scope as described
in “Configuring the server” on page 383.

® preferred_renew timeout —the preferred session duration in seconds.
If the specified duration is less than the value specified by the session
manager’s m n_sessi on_t i meout configuration setting, it will be set to
the configured minimum value. If the specified duration is higher than
the value specified by the session manager’'s max_sessi on_t i meout
configuration setting, it will be set the configured max value.

And returns the following:
® Sessionl nf o—a sequence complex type that contains the session id,
sessi on_i d, and the actual assigned session duration, renew t i meout .

Example 241 shows the client code to begin a session for SM Deno.
Example 241:Beginning a Session

Sessi onl nfo sessionlnfo = null;
String _endpoi nt_group = "SM Deno";
Bi gl nteger _preferred renew ti neout = new
Java. mat h. Bi gl nt eger ("20");
sessi onl nfo = sessi onMyr . begi n_sessi on(_endpoi nt _gr oup,
_preferred_renew ti neout);

The session manager hands out sessions for a group of services, so in order
to get an individual service upon which to make requests a client needs to
get a list of the services in the session’s group. The session manager proxy’s
get _al | _endpoi nt s() method returns a list of all endpoints registered to the
specified group. get _al | _endpoi nt s() has the following signature:

Endpoi nt Li st get_al | _endpoi nt s(Sessi onl d session_id);

387

CHAPTER 14 | Using Sessions in Artix

Create a proxy for the requested
service

388

The get _al | _endpoi nts() function takes the following input parameter:

® session_i d—the session ID for which you are requesting services

(obtained in the previous step).
And returns the following output:

® endpoi nt s—the list of services available. If the group has no services,

the list will be empty.
Example 242 shows how to get the list of services for a group.
Example 242:Retrieving the List of Services in a Group
Endpoi nt Li st endptLi st = null;
endpt Li st =
sessi onMyr. get _al | _endpoi nt s(sessi onl nf 0. get Sessi on_i d());

System out. printl| n(" bt ai ned endpoi nts...");
System out. println(endpointList.toString());

The client can use any of the services returned by get _al | _endpoi nts() to
instantiate a service proxy.

Because the session manager simply returns the services in the order the
services registered with the session manager, the clients are responsible for
circulating through the list or else they will all make requests on only one
service in the group. Also, because the session manager does not force all
members of a group to implement the same interface, you might need to
have your clients check each service to see if it implements the correct
interface by checking the reference’s service name as shown in

Example 243.

Example 243:Checking the Service Reference for its Interface

Ref erence[] references = endpoi nt Li st. get Endpoi nt () ;
if (references[0].get_service_nane() ==
Q\are("", "Qaj agService", "http://qgajags. coml))

{

// instantiate a Qaj agService usi ng endpoi nt

}
el se

{

/1 do sonething el se

}

Create a session header

Make requests on service proxy

Working with Sessions

Example 244 shows the client code for creating a G eeterd i ent proxy
from an endpoint reference.

Example 244:/nstantiate a Proxy Server
Ref erence[] references = endpoi nt Li st. get Endpoi nt () ;

Qeeter greeter = (Qeeter)bus.createdient(references[0],
Qeeter.class);

Services that are being managed by the session manager will only accept
requests that include a valid session header. Example 245 shows how to
send the session ID in a header by initializing the sessi onl DCont ext header
context. For more details about the context APl used in this example, see
“Using Message Contexts” on page 267.

Example 245:/nitialize the sessionIDContext Header Context

Cont ext Regi stry regi stry = bus. get Cont ext Regi stry();

Q\ane princi pal @ xNane = new Q\Nane("", "Sessionld");
Q\ane princi pal & xType = new

Q\ane("http://ws.iona. com sessi onmanager”, "Sessionld");
Q\ane princi pal MessageNane = new

Q\ane("http://ws.iona. com sessi onmanager”, "", "");
String principal Part Name = "id";

regi stry.regi sterContext (princi pal & xNane,
princi pal & xType,
princi pal MessageNarre,
pri nci pal Part Nare) ;

Sessi onl d sessionld = sessi onl nfo. get Session_id();
| onaMessageCont ext context | npl =

(1 onaMessageCont ext) regi stry. getCurrent () ;
cont ext | npl . set Request Cont ext (pri nci pal & xName, sessi onl d);

Once the session information is added to the proxy’s port information, the
client can invoke operations on the endpoint as it would a non-managed
service. If the endpoint rejects the request because the client’s session is not
valid, an exception is raised.

389

CHAPTER 14 | Using Sessions in Artix

Renewing a session

End the session

390

If a client is going to use a session for a longer than the duration the session
was granted, the client will need to renew its session or the session will
timeout. A session is renewed using the session manager proxy’s
renew_sessi on() method. renew sessi on() has the following signature:

Bi gl nt eger renew sessi on(Sessi onl nf o session_i nfo);

The renew sessi on() function takes the following input parameter:

® session_i nf o—a sequence complex type that contains the session id,
sessi on_i d, and the preferred session duration, renew ti meout .

And the following output parameter
® Biglnteger—the actual assigned session duration, in seconds.

If the renewal is unsuccessful, an exception is raised.

When a client is finished with a session managed service, it should explicitly
end its session. This will ensure that the session will be freed up
immediately. A session is ended using the session manager proxy’s
end_sessi on() method. end_sessi on() has the following signature:

voi d end_sessi on(Sessi onl d);
Example 246 shows how to end a session.
Example 246:Ending a Session

sessi onMyr . end_sessi on(sessi onl d);

In this chapter

CHAPTER 15

Using Persistent

Datastores

Artix provides a persistence mechanism, built on top of
Berkeley DB, which you can use to persist data when using
Artix. With this mechanism, you can make your services highly

available.

This chapter discusses the following topics:

Introduction to Artix Persistent Datastores page 392
Creating a Persistent Datastore page 397
Working with Data in a Persistent Datastore page 406
Configuring Artix to Use Persistent Datastores page 415

391

CHAPTER 15 | Using Persistent Datastores

Introduction to Artix Persistent Datastores

Overview

392

In many enterprise services it is imperative that data does not get lost when
a service goes down. There are also many instances where an enterprise
service must always be available. To address these usecases, Artix has an
integrated persistence mechanism. This mechanism, which is built using
Berkeley DB, provides a Java API for storing data in persistent datastores as
shown in Figure 10.

DB S
Layer Datastore
.
Persistent Service Hard Drive

Figure 10: The Artix Persistence Mechanism

In addition, the persistence mechanism provides the backbone for creating
highly available services. Services that are implemented using persistent
datastores can be configured and deployed in a highly available cluster as
shown in Figure 11. The Berkeley DB layer will seamlessly set up a
master/slave relationship between members of the cluster to ensure that the

Introduction to Artix Persistent Datastores

service remains available and the slaves have the latest data from the
master. To use write-forwarding from the slaves, you need to do a bit of
extra coding.

Figure 11: Artix Service Cluster

For more information on deploying your service as a highly available cluster
see Deploying and Managing Artix Applications.

How Artix datastores are Artix persistent datastores are hash tables stored in a Berkeley DB database.
structured The hash table stores pairs of items as shown in Figure 12.The first item is
a key and the second item is the data. Both the key, which is used to locate

393

../deploy/index.htm

CHAPTER 15 | Using Persistent Datastores

Developing a service with
persistent datastores

394

entries in the datastore, and the data can be any Java object. The objects

can either be stored as serialized data, or, if they are generated by Artix, as
XML data.

Service

keyl datal

key2 data2

key3 data3

key4 datad

keyN dataN
Hard Drive

Figure 12: Artix Persistent Datastores

Developing a service that uses Artix based persistent datastores is a simple
process. To create a persistent datastore and work with the data it contains
you will need to do the following:

1. Create a database manager object.

2. Create one or more persistent datastores using the provided templates.

3. Use the persistent datastore object to add or remove data from the
persistent datastore.

4. Close the persistent datastore.

5. Close the database manager.

The APIs deal exclusively with creating datastores and manipulating the
data stored in them. The underlying Berkeley DB layer automatically creates
a new database instance for the service’s datastores and initializes all of the
database connections. The Berkeley DB layer's behavior can be configured

Packages

Types of Persistent datastores

Persistent map templates

Persistent list templates

Introduction to Artix Persistent Datastores

to specify the location of the database and the name of the Berkeley DB’s
environment file. By default the database and environment files are created
in the directory from which the service is started.

To use persistent datastores in an Artix application you will need to import
the following packages:

com.iona.jbus.db contains the classes for configuring the database layer
and handling exceptions thrown by the database layer.

com.iona.jbus.db.collections contains the template classes from which you
instantiate instances of Artix datastores.

Artix provides two different types of persistent datastores. You can choose
persistent datastores the are implementations of j ava. uti | . Map or you can
choose datastores that are implementations of j ava. util . Li st. Both types
of datastore use the database layer to automatically persist data.

The key difference between the two types of datastores is how they handle
the keys in the hash table. Using persistent maps, you get to specify the key
values. When you use persistent lists, the key values of the hash table are
handled by the database layer. They are always a sequential series of
integers.

There are four templates for using persistent maps:

® Persistent Map is the base class for all persistent maps. It allows you
to store data in any format for which you have a data handler. The
most common use is to store both key values and data values as XML.

® sSerial Persistent Map allows both the key values and the data values
to be any serializable Java object.

® StringSerial Persi stent Map allows key valuess to be java String
objects and the data values to be any serializable Java object.

® sStringXM.Persi stent Map allows key values to be Java Stri ng objects
and the data values to be an Artix generated Java object that will be
stored as XML.

There are two persistent list templates:

395

CHAPTER 15 | Using Persistent Datastores

® PersistentList is the base class for all persistent lists. It allows you to
store data in any format for which you have a data handler. The most
common use is to store data values as XML.

® Serial PersistentList allows you to store any serializeable Java
object.

396

Creating a Persistent Datastore

Creating a Persistent Datastore

Overview Artix persistent datastores are instances of one of the persistent datastore
templates listed in “Types of Persistent datastores” on page 395. The first
step in creating a persistent datastore is to consider what data is going to be
stored in the datastore and in what format you want it stored. For example,
if you are storing a complex type defined in one of your contracts, you do not
care what the key values are, and want to be able to access the data as XML
that can be read by an Artix C+ + service, then you may want to make your
datastore an instance of Persi stent Li st. If you want the data to be keyed
using strings and want it accessible to a Java application, you may want to
make your datastore an instance of Stri ngSeri al Per si st ent Map.

In this section This section contains subsections discussing the following topics:
Creating Persistent Maps page 400
Creating Persistent Lists page 404
Procedure To create a persistent datastore you need to do four things:

1. Determine what type of datastore you want to create.

2. Instantiate a Dat abaseManager object to hold the database
configuration.

3. If the datastore you want to create stores Artix generated datatypes as
XML, create an XM.Dat aHand! er for each type.

4. Instantiate an instance of the persistent datastore template for the type
of datastore is most appropriate for your application.

397

CHAPTER 15 | Using Persistent Datastores

Instantiating a DatabaseManager

Closing the DatabaseManager

Creating an XMLDataHandler

398

To instantiate an instance of a Dat abaseManager object for your service you
pass an instance of the active bus into its constructor as shown in
Example 247.

Example 247:/nstantiating a DatabaseManager

inport comiona.jbus. *;
inport comiona.jbus. db. *;

Bus bus = Bus.init(args);
Dat abaseManager ngr = new Dat abaseManager (bus) ;

When the database manager is instantiated, Artix initiates the database
layer. The database manager is used when creating persistent datastores. It
also provides a method for releasing database locks when using iterators
created by datastores created with it.

When your application is done accessing persistent data, you need to invoke
the database manager’s cl ose() method. This releases any resources used
in maintaining the connection to the underlying database and ensures that it
is left in a stable state.

WARNING: This must be done before the server is shutdown.

An XML.Dat aHandl er object provides the database layer with the information

needed to convert an object into an XML document. To create an

XM.Dat aHandl er object for an Artix generated class you need the following

things:

® The Qwane of the root element of the XML representation of the data in
the datastore.

® The Quane of the XMLSchema type that defines the class.

® The d ass object for the class.

® The location of the contract in which the type is defined.

Example 248 shows an example of creating an XM.Dat aHandl er object for
the wi dget O der | nf o type defined in Example 79 on page 115.

Creating a Persistent Datastore

Example 248:Creating an XMLDataHandler

Q\ane typeNane = new Q\ane("htt p: //wi dgets. coni wi dget Types",
"wi dget O der I nf0");
String wsdl Path = "file:/../w dgets.wsdl";

XM_Dat aHandl er handl er = new XM.Dat aHandl er (nul |, typeNane,

W dget Order | nf 0. cl ass,
wsdl Pat h) ;

399

CHAPTER 15 | Using Persistent Datastores

Creating Persistent Maps

Overview

Creating a generic PersistentMap

400

All of the persistent datastore templates that implement j ava. uti | . Map

extend from the superclass Per si st ent Map. They also share two

instantiation parameters:

® id - specifies the name of the datastore. It can be any string value. If a
datastore matching the id already exists, the database layer will
connect to that datastore. If the datastore does not exist, the database
layer will create a new datastore.

® manager - specifies the database manager that provides the connection
to the database layer.

Each of the templates that extend Per si st ent Map have additional

parameters that are required to instantiate them. The following blocks
describe each.

To create a generic Per si st ent Map you need to pass in the id of your map,
the database manager, and two Dat ahandl er objects. The first is for the key
value and the second one is for the data value. If you chose not to use the
supplied XM.Dat aHand! er objects you can create your own custom data
handlers by extending the com i ona. j bus. db. col | ect i ons. Dat aHandl er
interface.

The most common use for a generic persistent map is to store Artix
generated objects that are defined in XMLSchema as XML. This is done by
passing in an XM.Dat aHand! er for both the key and the data. When an
object is placed into the map both the key and the data are converted into
XML based on their schema definitions. The XML representations are then
written into the persistent store.

Note: If you want to share a persistent datastore between a Java service
and a C++ service, you will need to use a persistent map that stores data
as XML.

When using this type of persistent map both your key and data must be
Artix generated objects and the service must have access to the XMLSchema
definitions of the types. Objects not defined in an accessible XMLSchema
will cause an exception to be thrown.

Creating a Persistent Datastore

Example 249 shows how to instantiate a Per si st ent Map that stores objects
as XML. The id of the created datastore is wi dget _t abl e.

Example 249:/nstantiating a PersistentMap for storing XML
i nport comi ona.j bus. db. col | ecti ons. *;
String wsdl Path = "file:/../widgets.wsdl";

\arre keyNarre = new QNane("htt p: //wi dgets. comi wi dget Types", "order|D");
\ane dat aNane = new Q\ane("http://wi dgets. coml wi dget Types", "wi dget O derlnfo");

XM_Dat aHandl er keyHandl er = new XM.Dat aHandl er (nul |, keyNarme, OrderlD.cl ass, wsdl Pat h);
XM_Dat aHandl er dat aHandl er = new XM.Dat aHandl er (nul |, dat aNarmre, Wdget Or der | nf 0. cl ass, wsdl Pat h);

/| Dat abaseManager ngr obtained earlier
Per si st ent Map wi dget Map = new Per si st ent Map("wi dget _tabl e", ngr, keyHandl er, dataHander);

Creating a SerialPersistentMap A Seri al Persi st ent Map is the most flexible of the persistent datastore
templates. It allows you to use any serializable Java object for both the key
and data in your map. To create an instance of a Seri al Per si st ent Map, you
pass in the id of the database you wish to create, the database manager for
the datastore, and the d ass objects for both the key and the data to be
stored in the map.

The only restriction on the type of data that can be stored in a

Seri al Per si st ent Map is that the objects must be serializable. All native
Java objects are serializable. However, Java atomic types, such as | ong, are
not serializable. Also, object generated by Artix are not, be default
serializable. To make Artix generated objects serializable use the -ser flag
when using wsdl t oj ava.

Example 250 shows how to instantiate a Seri al Per si st ent Map that uses
I nt eger objects as keys and | net 6Addr ess objects as data. The id of the
created datastore is host _i pv6_t abl e.

Example 250:/nstantiating a SerialPersistentMap
i mport com i ona.j bus. db. col | ecti ons. *;
/| Dat abaseManager ngr obtained earlier

Seri al Persi stent Map i pMap = new Seri al Persi st ent Map("host _i pv6_t abl e*, ngr, Integer.class,
| net 6Addr ess. cl ass) ;

401

CHAPTER 15 | Using Persistent Datastores

Creating a
StringSerialPersistentMap

A StringSeri al Persi st ent Map allows you to store any serializable Java
object as data but it requires that the key values be strings. To create an
instance of a Stri ngSeri al Persi st ent Map, you pass in the id of the
database you wish to create, the database manager for the datastore, and
the A ass objects for the data to be stored in the map.

Example 251 shows how to instantiate a Stri ngSeri al Per si st ent Map that
stores Fl oat objects as data. The id of the created datastore is f1 oat _t abl e.

Example 251:/nstantiating a StringSerialPersistentMap

inport comi ona.jbus. db. col | ecti ons. *;

/| Dat abaseManager ngr obtained earlier
StringSerial PersistentMap fl oat Map = new StringSeri al Persi stent Map("fl oat _tabl e", nor,

Fl oat. cl ass) ;

Creating a
StringXMLPersistentMap

A StringXM.Persi st ent Map uses strings as the key values and the XML
representation of an Artix generated object that is defined in XMLSchema as
the data. When an object is placed into the map the data is converted into
XML based on their schema definitions. The XML representation is then
written into the persistent store.

When using this type of map the data must be an Artix generated object and
the service must have access to the XMLSchema definitions of the type the
object represents. Objects not defined in an accessible XMLSchema will
cause an exception to be thrown.

To create a Stri ngXM.Per si st ent Map you need to pass in the id of your
map, the database manager, and an XM.Dat ahandl er object for the data
value.

Example 252 shows how to instantiate a St ri ngXM_Per si st ent Map. The id
of the created datastore is wi dget _t abl e.

Example 252:/nstantiating a StringXMLPersistentMap

inport comi ona.j bus. db. col | ecti ons. *;

String wsdl Path = “file:/../widgets.wsdl ";

\are dat aNanme = new Q\ane("http://w dgets. com wi dget Types", "wi dget Orderlnfo");

402

Creating a Persistent Datastore

Example 252:/nstantiating a StringXMLPersistentMap

XM_Dat aHandl er dat aHandl er = new XM.Dat aHandl er (nul |, dat aNarre, Wdget Or der | nf o. cl ass, wsdl Pat h);

/| Dat abaseManager ngr obtained earlier
Stri ngXM_Per si st ent Map wi dget Map = new Stri ngXM_Per si st ent Map("“wi dget _tabl e", ngr, dataHandl er);

403

CHAPTER 15 | Using Persistent Datastores

Creating Persistent Lists

Overview

Creating a generic PersistentList

404

The two persistent datastore templates that implement j ava. uti |l . Li st

extend from the superclass Per si st ent Li st. They also share two

instantiation parameters:

® id - specifies the name of the datastore. It can be any string value. If a
datastore matching the id already exists, the database layer will
connect to that datastore. If the datastore does not exist, the database
layer will create a new datastore.

® manager - specifies the database manager that provides the connection
to the database layer.

Each of the templates that extend Persi st ent Li st have additional

parameters that are required to instantiate them. The following blocks
describe each.

To create a generic Persi stent Li st you need to pass in the id of your list,
the database manager, and a Dat ahandl er object for the data value. The
most common use for a generic persistent list is to store Artix generated
objects that are defined in XMLSchema as XML. This is done by passing in
an XM.Dat aHandl er for the data elements data handler. When an object is
placed into the list it is converted into XML based on its schema definition.
The XML representations are then written into the persistent store.

Note: If you want to share a persistent datastore between a Java service
and a C++ service, you will need to use a persistent list that stores data
as XML.

If you chose not to use the supplied XM.Dat aHand! er object you can create
your own custom data handler by extending the
com i ona. j bus. db. col | ecti ons. Dat aHandl er interface.

When using this type of persistent list both your data must be Artix
generated objects and the service must have access to the XMLSchema
definitions of the type. Objects not defined in an accessible XMLSchema will
cause an exception to be thrown.

Creating a Persistent Datastore

Example 253 shows how to instantiate a Persi st ent Li st that stores
objects as XML. The id of the created datastore is wi dget _|i st .

Example 253:/nstantiating a PersistentList for storing XML

i nport comi ona.j bus. db. col | ecti ons. *;

String wsdl Path = “file:/../widgets.wsdl";

\arre keyNarre = new QNane("htt p: //wi dgets. comi wi dget Types", "order|D");
\ane dat aNane = new Q\ane("http://wi dgets. coml wi dget Types", "wi dget O derlnfo");

XM_Dat aHandl er dat aHandl er = new XM.Dat aHandl er (nul |, dat aNarre, Wdget O der | nf 0. cl ass, wsdl Pat h);

/| Dat abaseManager ngr obtained earlier
Persi stentLi st w dgetList = new PersistentList("w dget_table", myr, dataHander);

Creating a SerialPersistentList

A Seri al Persi stent Li st allows you to store any serializable Java object. To
create an instance of a Seri al Persi stentLi st, you pass in the id of the
database you wish to create, the database manager for the datastore, and
the A ass objects for the data to be stored in the list.

The only restriction on the type of data that can be stored in a

Seri al Persi st ent Li st is that the objects must be serializable. All native
Java objects are serializable. However, Java atomic types, such as | ong, are
not serializable. Also, object generated by Artix are not, be default
serializable. To make Artix generated objects serializable use the -ser flag
when using wsdl t oj ava.

Example 254 shows how to instantiate a Seri al Persi st ent Li st that stores
Fl oat objects as data. The id of the created datastore is f1 oat _| i st.

Example 254:/Instantiating a SerialPersistentList

i nport comi ona.j bus. db. col | ecti ons. *;

/| Dat abaseManager ngr obtained earlier
Serial PersistentList floatList = new Serial PersistentList("float_table", ngr, F oat.class);

405

CHAPTER 15 | Using Persistent Datastores

Working with Data in a Persistent Datastore

Overview

In this section

406

Artix persistent datastores are implemented using the standard Java
interfaces java. util.Mp and java. util. List. The Artix implementations
are built on top of Berkeley DB to provide persistence so they have a few
Artix specific behaviors. They implement all of the defined methods for both
interfaces. In addition, they have a method for closing the datastore when
the application is finished with it.

This section discusses the following topics:

Using Persistent Maps page 407

Using Persistent Lists page 411

Working with Data in a Persistent Datastore

Using Persistent Maps

Overview

Adding data to a map

Artix persistent maps implement j ava. util. Map using Berkeley DB to

provide persistence. To manipulate the data in a persistent map you use the

standard methods defined for a Map object. However, because the maps are

persistent there are a things to consider when using them:

® lterator objects are implemented using Berkeley DB cursors that
aquires a read lock on the datastore. This lock is not realeased until the
Iterator object is closed by the database manager.

® When your application is finished working with a persistent map it
must close the map or the database layer may leave the data in an
unusable state.

Maps have two methods for inserting data. The one most likely to be used is
put (). put () takes two objects as parameters:

® The first object is the key.

® The second object is the data.

When using Seri al Per si st ent Map maps you must be sure that both the key
and the data objects are of the class you specified when creating the map.
When using StringSeri al Per si st ent Map maps, you must ensure that the
key is a String object and that the data is of the class you specified when
creating the map. The XML style persistent maps do not have this restriction
because the objects are converted to XML representations.

Example 255 shows the code for adding an entry to a
StringSeri al Persi stent Map using put ().

Example 255:Putting an Element in a Persistent Map
inport comiona.jbus.db.collections.*;

/| Dat abaseManager ngr obtained earlier
StringSeri al Persi stent Map fl oat Map = new

StringSeri al Persi stent Map(“fl oat_table", ngr, Float.class);

Fl oat data = new Fl oat (0. 314) ;
float Map. put (“first", data);

407

CHAPTER 15 | Using Persistent Datastores

Removing data from a map

Getting an entry from a map

408

The other way to add data to a persistent map is to use the put Al I ()
method. put Al I () takes a Map object as a parameter and copies all of the
values from the map parameter into the current map. If any values in the
current map have the same key as a value in the map being copied, the
copied values overwrite them.

You remove entries from a persistent map using the renove() method.
renove() takes a key value and returns the data value associated with the
key. renove() deletes the data value associated with the key from the map.

When using persistent maps that use serialized objects as key values, you
must be sure to specify the proper class of object for the key. When using
persistent maps that use Stri ng objects as keys, you must ensure that the
value used in a String object.

Example 256 shows code for removing an object from a map.
Example 256:Removing an Element from a Persistent Map
f1 oat Map. remove("“first");

In addition to using renove() to delete a single entry from a persistent map,
you can also clear all of the entries in a persistent map by invoking its
cl ear () method.

To retrieve an entry from a persistent map you can use the get () method.
get () takes a kay value as a parameter and returns the data value
associated with the key. If the key does not exist in the map get () returns
null.

When using persistent maps that use serialized objects as key values, you
must be sure to specify the proper class of object for the key. When using
persistent maps that use Stri ng objects as keys, you must ensure that the
value used in a String object.

Example 257 shows code for getting an object from a map.
Example 257:Getting an Element from a Persistent Map

float Map. get ("“first");

Searching through the map

Closing a persistent map

Working with Data in a Persistent Datastore

If you wish to search through all of the data values in a persistent map you
will need to use one the two methods that return the data values in a form
that provides access to an I terator object:

® entrySet() returns the values stored in the map as a j ava. util . Set

object.

® val ues() returns the values stored in the map as a
java.util.Coll ection object.

Both the Set object and the Col | ecti on object support the i terat or ()
method. i terator () returns an Iterator object that can be used to iterate
through the values in the map. Any changes made to values using either the
Set object, the Col | ecti on object, or the I t erat or object are reflected in
the values stored in the original persistent map.

The returned I terat or object is implemented using Berkeley DB cursors.
When the Iterat or object is created the database layer creates a read lock
on the underlying datastore. This read lock is held until the 1t erat or object
is closed by the database manager using the database manager's static
closelterator() method. closel terator() takes the Iterator object to
be closed as a parameter.

Example 258 shows code for iterating through a map.
Example 258:/terating through a Persistent Map

Iterator iter = floatMap.entrySet().iterator();

while (iter.hasNext())
{

Map.entry entry = (Map. Entry)iter. next();

Systemout. println(entry.getkKey() + ' ' + entry.getValue());
}

Dat abaseManager . cl osel terator(iter);

When you are finished working with a persistent map, your application
needs to invoke the persistent map’s cl ose() method. cl ose() informs the
database layer to release any resources used to maintain the connection to
the physical representation of the datastore and flushes any buffered writes
to the physical disk.

409

CHAPTER 15 | Using Persistent Datastores

Other operations

410

Example 259 shows code for closing a persistent map.
Example 259:Closing a Persistent Map

f 1 oat Map. cl ose();

Artix persistent maps implement all of the methods of the j ava. util. Map
interface. These methods provide means for querying the list to see if it
contains a specific key values or specific data values. They also provide a
means for seeing if the map has any data stored in it. For a full list of all the
methods available see the Java 1.4.2 APl documentation for j ava. uti | . Map
(http://java.sun.com/j2se/1.4.2/docs/api/java/util/Map.html).

Note: Artix persistent maps throw an unsupported exception when
invoking the si ze() method.

http://java.sun.com/j2se/1.4.2/docs/api/java/util/Map.html

Working with Data in a Persistent Datastore

Using Persistent Lists

Overview

Adding data to a list

Artix persistent lists implement j ava. uti | . Li st using Berkeley DB to
provide persistence. To manipulate the data in a persistent list you use the
standard methods defined for a Li st object. However, because the lists are
persistent there are a things to consider when using them:

Iterator objects are implemented using Berkeley DB cursors that
aquires a read lock on the datastore. This lock is not realeased until the
Iterator object is closed by the database manager.

When your application is finished working with a persistent list it must
close the list or the database layer may leave the data in an unusable
state.

Lists have four methods that can be used to add data:

add(bj ect obj) adds the specified to the end of the list.

add(int index, (bject obj) adds the specified object to the specified
position in the list and shifts all existing elements that fall after the new
object are forward one element.

addAl | (Col | ection col) adds the objects stored in the specified

Col | ecti on object to the end of the list.

addAl | (int index, Collection col) adds the object stored in the
specified in the Col | ecti on object to the list starting at the specifed
position. The elements that fall after the newly inserted objects are are
shifted forward in the list.

When using a Seri al Persi stent Li st you need to ensure that all of the
objects being added to the list are of the class specified when the list was
created.

411

CHAPTER 15 | Using Persistent Datastores

Removing data from a list

Getting an element from a list

412

Example 260 shows an example of adding an element to the end of a
persistent list.

Example 260:Adding an Element to a Persistent List
inport comiona.jbus. db. col | ections. *;

/| Dat abaseManager ngr obtained earli er

Serial PersistentList floatList = new

Serial PersistentList("float_table", mygr, F oat.class);

Fl oat data = new Fl oat (0. 314) ;
floatList.add(data);

Lists have four methods for removing data:

® clear() deletes all of the entries from the list.

® renove(int index) removes the entry specified by the index. The
elements that come after the removed element are shifted back by one.

® renove((oj ect obj) removes the specified object from the list. The
elements that come after the removed element are shifted back by one.

® renove(Col | ection col) removes all of the elements in the collection
from the list. The remaining elements are adjusted to remove any gaps.

Example 261 shows an example of removing an element from a persistent
list.

Example 261:Removing an Element from a Persistent List

floatList.renmove(3);

To retrieve a single element from a persistent list you use the get () method.
get () takes an integer value and returns the entry stored at the specified
position in the list.

Example 261 shows an example of getting an element from a persistent list.
Example 262:Getting an Element from a Persistent List

floatList.get(3);

Searching through the elements of
a list

Working with Data in a Persistent Datastore

If you wish to search through all of the elements in a persistent list you will

need to use one the three methods that return an 1terator object:

® iterator() returns anIterator object to access the entries in their
proper order.

® Jistlterator() returns ajava. util.Listlterator object to access
the entries.
® listlterator(int index) returnsajava.util.Listlterator object

to access the entries. The Li st Iterator object starts from the
specified position in the list.

Both the It erat or object and the Li st It eraor object provide the means for
iterating through the elements of the list and remove elements from the list.
The Li stlterator object allows you the additional capabilities of traversing
the list in both directions and modifying elements in the list. Any changes
made to elements using either the Li st It erat or object are reflected in the
values stored in the original persistent list.

The I'terator object and the ListIterator object are implemented using
Berkeley DB cursors. When the I terat or object or Li stiterator object is
created the database layer creates a read lock on the underlying datastore.
This read lock is held until the iterator is closed by the database manager
using the database manager’s static cl osel t erat or () method.
closelterator() takes the iterator to be closed as a parameter.

Example 263 shows code for iterating through a list.
Example 263:/terating through a Persistent List

Iterator iter = floatlist.iterator();

while (iter.hasNext())
{

Float entry = (Float)iter.next();
Systemout. println(Fl oat.fl oatVal ue());

}

Dat abaseManager . cl osel terator(iter);

413

CHAPTER 15 | Using Persistent Datastores

Closing a persistent list

Other operations

414

When you are finished working with a persistent list, your application needs
to invoke the persistent list's cl ose() method. cl ose() informs the
database layer to release any resources used to maintain the connection to
the physical representation of the datastore and flushes any buffered writes
to the physical disk.

Example 259 shows code for closing a persistent list.
Example 264:Closing a Persistent List

f 1 oat Map. cl ose();

Artix persistent lists implement all of the methods of the j ava. uti I . Li st
interface. These methods provide means for querying the list to see if it
contains a specific object. They also provide a means for seeing if the list
has any data stored in it and for converting the data into an array. For a full
list of all the methods available see the Java 1.4.2 APl documentation for
java.util.List
(http://java.sun.com/j2se/1.4.2/docs/api/java/util/List.html).

Note: Artix persistent lists throw an unsupported exception when
invoking the si ze() method.

http://java.sun.com/j2se/1.4.2/docs/api/java/util/List.html

Configuring Artix to Use Persistent Datastores

Configuring Artix to Use Persistent Datastores

Overview

Database layer configuration

Example

Artix will automatically create all of the artifacts needed to use persistent
datastores without adding any configuration to your Artix environment.
However, Artix can be configured to control the location and name of the
Berkeley DB artifacts used by the database layer.

Also, if you intend to deploy a service as a highly available cluster, that is all
done in Artix configuration.

The database layer is configured using two configuration variables:

® plugins:artix: db: env_nane specifies the filename for the Berkeley

DB environment file. It can be any string and can have any file
extension.

® plugins:artix: db: horre specifies the directory where Berkeley DB
stores all the files for the service databases. Each service should have a
dedicated folder for its data stores. This is especially important for
replicated services.

Example 265 shows a configuration fragment for a service using persistent
datastores.

Example 265:Persistent Datastore Configuration
Artix Configuration File
foo_service {

pl ugi ns: arti x: db: env_nane = "nyDB. env";

pl ugi ns: arti x: db: home = "/etc/dbs/foo_service";

IE

415

CHAPTER 15 | Using Persistent Datastores

416

CHAPTER 16

Using
Transactions In
Artix

Artix combines a technology neutral APl and pluggable
transaction manager support to facilitate transactions over a
wide range of transports.

In this chapter This chapter discusses the following topics:
Introduction to Transactions in Artix page 418
Selecting a Transaction Coordinator page 426
Transaction API page 438
Beginning and Ending Transactions page 440
Managing Transactional Resources page 445
Threading page 451
Notification Handlers page 456
Enlisting WebSphereMQ Transactions page 458

417

CHAPTER 16 | Using Transactions in Artix

Introduction to Transactions in Artix

Overview

Supported transaction systems

Supported topologies

418

To maintain the loosely coupled and technology-neutral nature of a service
oriented architecture, Artix provides a technology-neutral Java API for
developing clients that request transacted services and for developing
transactional Artix services. In addition, Artix’s pluggable architecture allows
you to use a number of underlying transaction management
implementations to fit the topology of your service environment.

Using Artix’s pluggable framework, you can replace the underlying

transaction system used by Artix. Currently, Artix provides support for the

transaction systems:

® WS-AtomicTransactions—A light weight transaction management
system based on the WS-AT specification. It supports the distributed
two-phase commit protocol.

® OTS Lite—A CORBA based transaction system that provides one-phase
commit.

® OTS Encina—A CORBA based transaction system that provides
one-phase and two-phase commit.

Artix supports distributed transactions using the following combinations of
protocols and transaction managers:

® SOAP over any transport using WS-AtomicTransactions.
® CORBA using the WS-Coordination service.

Note: When the WS-Coordination service is used to coordinate CORBA
transactions an OTS transaction context is used instead of a
WS-AtomicTransactions context.

® CORBA using OTS Encina or OTS Light.

Client-side transaction support

Server-side transaction support

Introduction to Transactions in Artix

® SOAP over any transport using OTS Encina or OTS Light.

Note: When OTS is used as the transaction service in conjunction with
SOAP messages the following conditions hold true:

® The transaction contexts are WS-AT compliant.

® OTS assumes the role of the coordinator as specifies in the
WS-Coordination specification.

® Communication between all of the OTS coordinators use [IOP.

Transaction demarcation functions can be used on the client side to initiate
and terminate a transaction. While the transaction is active, all of the
operations called from the current thread are included in the transaction and
the operations’ request headers will include a transaction context.

On the server side, Artix provides an API that enables you to implement
transaction participants. A transaction participant, also know as a
transaction resource, is responsible for maintaining data integrity during a
transaction. It is responsible for ensuring that any data modified as part of
the transaction can be safely committed or rolled-back depending on the
outcome of the transaction. The transaction participants enforce the ACID
transaction properties (Atomicity, Consistency, Integrity, and Durability).
You only need to implement a transaction participant if your server
maintains its own datastore. If your server interacts with a database system
that has its own transaction resource manager, you can enlist that resource
to maintain the ACID transaction properties.

419

CHAPTER 16 | Using Transactions in Artix

One-phase commit

Artix supports the one-phase commit (1PC) protocol for transactions. This
protocol can be used if there is only one resource participating in the
transaction. The 1PC protocol essentially delegates the transaction
completion to the single resource manager. Figure 13 shows a schematic
overview of the 1PC protocol for a simple client-server system.

Artix ! beginTransaction() ! SAm-X
_ L : ervice
Client ¢ invoke . @) <
N B < Resource
* invoke ' Transaction

. @ q System

Two-phase commit

420

Figure 13: One-Phase Commit Protocol

The 1PC protocol progresses through the following stages:

1. The client calls begi n_transacti on() to initiate the transaction.

2. Within the transaction, the client calls one or more WSDL operations
on the remote server.

3. Theclient calls commi t _transaction() orrol | aback_t ransacti on()
to end the transaction.

4. The transaction system sends a notification to the server instructing it
to perform a 1PC commit or roll-back the transaction.

The two-phase commit (2PC) protocol enables multiple resources to

participate in a transaction. In order to preserve the essential properties of a

transaction involving multiple distributed resources, it is necessary to use a

more elaborate algorithm. The 2PC algorithm consists of the following two

phases:

® Prepare phase—the transaction system notifies all of the participants
to prepare the transaction. The participants prepare the transaction by
saving the information that would be required to redo or undo the
changes made during the transaction. At the end of this phase, the
participants vote whether to commit or roll back the transaction.

Introduction to Transactions in Artix

Commit (or rollback) phase—if all of the participants vote to commit
the transaction, the transaction system notifies the participants to
commit the changes. On the other hand, if one or more participants
vote to roll back the transaction, the transaction system notifies the
participants to roll back the changes.

Figure 14 shows a schematic overview of the 2PC protocol for a client and
two remote servers.

Artix
Client

! beginTransaction()

1 invoke

\
' invoke L
\

Artix
@ > Service
< Resource
- t Transaction
: System
! & Art|_x
' I\ Service
:@ < Resource
(R » Transaction

@ -------- » System

Figure 14: Two-Phase Commit Protocol

The 2PC protocol progresses through the following stages:

1.
2.
3.

The client calls begi n_transacti on() to initiate the transaction.
Within the transaction, the client calls one or more WSDL operations.

The client calls conmit _transaction() orrol | back_transaction() to
end the transaction.

The transaction system performs the prepare phase by polling all of the
remote transaction participants.

The transaction system performs the commit or rollback phase by
sending a notification to all of the remote transaction participants.

421

CHAPTER 16 | Using Transactions in Artix

Transaction propagation When an Artix server is involved in a transaction, it will automatically
propagate the transaction context if it makes requests on another server.
Therefore, the next service in the chain will be coordinated as part of the
original transaction. When properly configured, Artix will propagate SOAP
transactions over CORBA and vice versa.

Consider the scenario depicted in Figure 15.

client server 1 server 2 server 3
1. begin transaction
. SOAP . SOAP . CORBA
2. invoke HTTP 3. invoke VS » 4. invoke
5. end transaction
Transaction Transaction Transaction Transaction
System System System System
A A A

5. commit/roll-back

Figure 15: Propagating Transactions Across Multiple Services

Requests flow through the system as listed below:
A client initiates a transaction.

It invokes an operation on server 1.

Server 1 invokes an operation on server 2.
Server 2 invokes an operation on server 3.

Client ends the transaction.

o ok wbd

Any transactional resources enlisted in servers 1, 2, & 3 are informed if
they should commit the transaction or roll it back.

In this scenario, Artix automatically propagates the transaction context from
server 1 to server 2. Artix propagates the context even though the transport
is changed. Artix also propagates the transaction context along to server 3
even though the binding is changed.

422

Combining middlewares inside a
transaction

Introduction to Transactions in Artix

All operation flow through the three servers is executed as part of the same
transaction. During a transport or binding change, if necessary, an
alternative transaction coordinator may be interposed as a subordinate to
the original transaction coordinator in use when the client initiated the
transaction. However, the client’s coordinator is responsible for coordinating
when the transaction is committed or rolled back.

WARNING: Bindings other than SOAP and CORBA do not support
transaction contexts. If an intermediate server makes a request using a
binding that does not support transaction contexts, any transactional
processing that takes place as part of the request is not part of the
transaction.

Artix also enlists MQ in transactions when the MQ transactional setting is
activated. This means that any request sent over MQ as part of a transaction
is executed as a local transaction. If any of the local MQ transactions fail,
the MQ transaction manager will vote to roll back the transaction. For more
information see “Enlisting WebSphereMQ Transactions” on page 458.

An Artix endpoint can be configured to coordinate transactions that include
request made over a number of different transports. For example, if you
were developing a system that handles direct deposits for your employees,
you may be faced with a situation where the personnel records are stored in
an Websphere MQ system, your company’s bank uses a CORBA based
system, and the employee’s bank uses a Tuxedo system. To ensure the
integrity of the employee’s data you need to be able to invoke operations on
all three systems within a transaction as shown in Figure 16. For your client
to work, you would need to deploy it with both an OTS Encina transaction

423

CHAPTER 16 | Using Transactions in Artix

system and a WS-Atomic Transactions transaction system. The OTS Encina
system will handle the CORBA service and the WS-Atomic Transactions
system will handle the SOAP systems.

server 1

SOAP
MQ
client
1. begin transactio Transaction < server 2
i System
2. invoke
CORBA

3. invoke >
4. invoke
5. end tra%\ server 3

Transaction
System

SOAP
Tuxedo

Transaction
System

Transaction
System

5. commit/roll-back

T

424

Figure 16: Coordinating Transactions Across Multiple Middlewares

In this scenario, the following happens:

1.

The client begins the transaction and creates a transaction context to
be sent out with each request.

The client makes a request on service 1.

i. The client's transaction system adds a WS-AT transaction context
in the SOAP header.

Service 1 reads the WS-AT transaction context.

Introduction to Transactions in Artix

iii. Service 1's transaction system enlists with the client’s WS-Atomic
Transactions coordinator.

3. The client makes a request on service 2.

i. The client’s transaction system includes the transaction context in
the CORBA request.

ii. Service 2 sees that it is part of a transaction.

iii. Service 2's transaction system enlists with the client's OTS
Encina transaction coordinator.

4. The client makes a request on service 3 and adds a WS-AT transaction
context in the SOAP header.

i. Theclient’s transaction system adds a WS-AT transaction context
in the SOAP header.

ii. Service 3 reads the WS-AT transaction context.

iii. Service 3's transaction system enlists with the client’'s WS-Atomic
Transactions coordinator.

5. The client ends the transaction.

The client’s transaction system informs all of the enlisted services to either
commit or roll-back.

425

CHAPTER 16 | Using Transactions in Artix

Selecting a Transaction Coordinator

Overview

In this section

426

Artix’s plug-in architecture coupled with Artix’s transaction system agnostic
API allows you to choose between a number of different transaction system
implementations. You can choose the transaction system that provides the
best match for your services. For example, if the majority of your services
are SOAP-based, you would probably select the WS-AT transaction system
because it is a commonly used standard in developing Web services.

This section describes how to configure an application to use each of the
transaction systems supported by Artix.

This section contains the following subsections:

Configuring OTS Lite page 427
Configuring OTS Encina page 430
Configuring WS-Atomic Transactions page 434

Selecting a Transaction Coordinator

Configuring OTS Lite

Overview

Limitations of using OTS-Lite

OTS Lite is a lightweight, CORBA based transaction manager. It is subject to
the following restrictions:

® it only supports the 1PC protocol.
® it lets you register only one resource.

OTS Lite allows applications that only access a single transactional resource
to use the OTS APIs without incurring a large overhead, but allows them to
migrate easily to the more powerful 2PC protocol by switching to the full
OTS Encina transaction system.

Like many of the features provided by Artix, OTS Lite is implemented as a
plug-in that is loaded when the endpoint is started. To use OTS Lite, you
need to configure your endpoints to load the generic OTS plug-in. In
addition, your client endpoint needs to load the OTS Lite plug-in. Figure 17
shows a client-server deployment that uses the OTS Lite plug-in.

Artix .
Client Artix
Service
< Resource
OTS
OTS
OTS Lite

Figure 17: Overview of a Client-Server System that Uses OTS Lite

Because OTS-Lite can only enlist a single resource, it is not a viable choice
when in a system where transaction contexts must cross between
middleware boundaries. This is because the OTS transaction manager
automatically enlists the WS-AT transaction manager when a transaction

427

CHAPTER 16 | Using Transactions in Artix

Default transaction provider

Loading the OTS plug-in

Loading the OTS Lite plug-in

428

crosses from an OTS transaction system to a WS-AT transaction system.
Because the WS-AT transaction manager will most likely need to enlist a
resource, OTS-Lite will not suffice.

OTS-Lite is also insufficient when transactions are propagated across
multiple services, including the Artix router. Each transactional service will
have its own transaction manager and as the transaction is propagated
beyond the second tier, the transaction managers are each enlisted as
resources by the originating transaction manager. Therefore, as soon as a
transaction is propagated beyond the first service, OTS-Lite would become
unable to enlist the additional transaction managers.

The following variable specifies the default transaction system used by an
Artix client or server:

pl ugi ns: bus: def aul t _t x_provi der: pl ugi n

To select the CORBA OTS transaction system, you must initialize this
configuration variable with the value, ots_t x_provi der.

In order to use the CORBA OTS transaction system, the OTS plug-in must be
loaded both by the client and by the server. To load the OTS plug-in, include
the ot s plug-in name in the or b_pl ugi ns list. For example:

ots_lite client_or_server {
pl ugi ns: bus: defaul t _tx_provider:plugin = "ots_tx_provider";
orb plugins =[..., "ots"];

IE

The OTS Lite plug-in, which is capable of managing 1PC transactions, is
required for any endpoints that make service requests. You can load the OTS
Lite plug-in in one of the following ways:

Sample configuration

Selecting a Transaction Coordinator

® Dynamic loading—configure Artix to load the ots_Iite plug-in
dynamically, if it is required. For this approach, you need to configure
the i nitial _references: Transacti onFact ory: pl ugi n variable as
follows:

ots_lite_client_or_server {
pl ugi ns: bus: def aul t _t x_provi der: pl ugi n= "ot s_t x_provi der";
orb_plugins =[..., "ots"];
initial _references: Transacti onFactory:plugin = "ots_lite";

B

This style of configuration has the advantage that the OTS Lite plug-in
is loaded only if it is actually needed.
® Explicit loading—Iload the ots_lite plug-in by adding it to the list of
orb_pl ugi ns, as follows:
ots_ lite client {
pl ugi ns: bus: def aul t _t x_provi der: pl ugi n= "ot s_t x_provi der";

orb_plugins = [..., "ots", "ots_lite"];

}

The following example shows a sample configuration for using the OTS Lite
transaction manager:

Basic configuration for transaction plug-ins (shared library
nanmes and so on) included in the global configuration scope.
... (not shown)

ots_lite client_or_server {
pl ugi ns: bus: def aul t _t x_provi der: pl ugi n= "ot s_t x_provi der";
orb_plugins = ["xnmfile_|og_strean, "iiop_profile", "giop",
"iiop", "ots"];
initial _references: TransactionFactory:plugin = "ots_lite";

iE

429

CHAPTER 16 | Using Transactions in Artix

Configuring OTS Encina

Overview

Artix
Client

0TS

OTS Encina

Default transaction provider

430

The Encina OTS Transaction Manager provides full recoverable 2PC
transaction coordination implemented on top of the industry proven Encina
Toolkit from IBM/Transarc. Encina supports both 1PC and 2PC protocols
and allows you to register multiple resources. Like the OTS Lite transaction

manager, it is CORBA based and exposes the OTS APls.

The OTS Encina transaction system is implemented as a plug-in that is
loaded when the endpoint is started. To use OTS Encina, you need to
configure your endpoints to load the generic OTS plug-in. In addition, your
client endpoint needs to load the OTS Encina plug-in. Figure 18 shows a

client/server deployment that uses the OTS Encina plug-in.

> Artix
Service

0TS

A

Iq Arth
Service

0TS

A

Resource

Resource

Figure 18: Overview of a Client-Server System that Uses OTS Encina

The following variable specifies the default transaction system used by an

Artix client or server:

pl ugi ns: bus: def aul t _t x_pr ovi der: pl ugi n

Selecting a Transaction Coordinator

To select the CORBA OTS transaction system, you must initialize this
configuration variable with the value, ots_t x_pr ovi der.

Loading the OTS plug-in For applications that use the CORBA OTS transaction system, the OTS
plug-in must be loaded both by the client and by the server. To load the OTS
plug-in, include the ot s plug-in name in the or b_pl ugi ns list. For example:

Artix Configuration File

ots_encina_client_or_server {
pl ugi ns: bus: defaul t _tx_provider:plugin = "ots_tx_provider";
orb plugins =[..., "ots"];

iE

Loading the OTS Encina plug-in The OTS Encina plug-in, which is capable of managing 1PC and 2PC
transactions, is required for any endpoint that makes service requests. You
can load the OTS Encina plug-in in one of the following ways:
® Dynamic loading—configure Artix to load the ot s_enci na plug-in

dynamically, if it is required. For this approach, you need to configure
the i nitial _references: Transacti onFact ory: pl ugi n variable as
follows:

Artix Configuration File

ots_encina_client_or_server {
pl ugi ns: bus: def aul t _t x_provi der: pl ugi n="ots_tx_provi der";
orb_plugins = [..., "ots"];
initial_references: Transacti onFact ory: pl ugi n="ot s_enci na";

o

This style of configuration has the advantage that the OTS Encina
plug-in is loaded only if it is actually needed.

® Explicit loading—Ioad the ot s_enci na plug-in by adding it to the list of
orb_pl ugi ns, as follows:

Artix Configuration File

ots_lite_client {
pl ugi ns: bus: def aul t _t x_provi der: pl ugi n= "ot s_t x_provi der";
orb_plugins = [..., "ots", "ots_encina"];

}

431

CHAPTER 16 | Using Transactions in Artix

Sample configuration

432

()¢, e Y

Example 266 shows a complete configuration for using the OTS Encina
transaction manager:

Example 266:Sample Configuration for OTS Encina Plug-In

Artix Configuration File
ots_lite client_or_server {

IE

pl ugi ns: bus: def aul t _t x_provi der: pl ugi n= "ot s_t x_provi der";
orb plugins =[..., "ots"];

initial_references: Transacti onFactory: plugin = "ots_enci na";
pl ugi ns: ot s_enci na: di rect _persi stence = "true";
plugins:ots_encina:initial _disk ="../../log/encina.log";

pl ugi ns: ots_enci na:initial_disk_size = "1";
pl ugi ns: ots_enci na:restart _file =

"../..llog/encina_restart"”;

pl ugi ns: ot s_enci na: backup_restart_file =

"../../loglencina_restart.bak";

Boil erplate configuration settings for OIS Enci na:

(you shoul d never need to change these)

pl ugi ns: ot s_enci na: shl i b_name = "it_ots_enci na";

pl ugi ns: ot s_enci na_adm shl i b_nane = "it_ots_enci na_adni;
pl ugi ns: ot s_enci na_adm grammar _db =

"ots_enci na_adm grammar. t xt";

pl ugi ns: ot s_enci na_adm hel p_db = "ots_enci na_adm hel p. txt";

The preceding configuration can be described as follows:

1.

These two lines configure Artix to use the CORBA OTS transaction
system and load the OTS plug-in.

This line configures Artix to load the ot s_enci na plug-in dynamically, if
it is needed by the application (typically needed on the client side).
Configuring Encina to use direct persistence means that the Encina
transaction manager service listens on a fixed IP port.

The pl ugi ns: ot s_enci na: i ni tial _di sk variable specifies the path for
the initial file used by the Encina OTS for its transaction logs.

If this file does not exist when you start the client, Encina OTS
automatically creates it (cold start).

Selecting a Transaction Coordinator

The pl ugi ns: ot s_enci na: i ni tial _di sk_si ze variable specifies the
size of the initial file used by the Encina OTS for its transaction logs.
Defaults to 2.

The pl ugi ns: ots_enci na: restart _fil e variable specifies the path for
the restart file, which Encina OTS uses to locate its transaction logs.
If this file does not exist when you start the client, Encina OTS
automatically creates it (cold start).

The pl ugi ns: ot s_enci na: backup_restart_fil e variable specifies the
path for the backup restart file, which Encina OTS uses to locate its
transaction logs.

If this file does not exist when you start the client, Encina OTS
automatically creates it (cold start).

The settings in the next few lines specify the basic configuration of the
OTS Encina plug-in. It should not be necessary ever to change the
values of these configuration settings.

433

CHAPTER 16 | Using Transactions in Artix

Configuring WS-Atomic Transactions

Overview

434

The WS-Atomic Transactions (WS-AT) transaction system is IONA’s

implementation of the WS-Atomic Transactions specification

(ftp://www6.software.ibm.com/software/developetr/library/WS-AtomicTransa

ction.pdf). It uses SOAP headers to transmit transaction contexts between

the participants in a transaction. The WS-AT transaction system supports

the 2PC protocol and allows you to register multiple resources.

The WS-AT transaction system is implemented as a group of plug-ins:

® WS-AT plug-in - This plug-in is responsible for creating a WS-AT
transaction context, registering it with the transaction coordinator, and
adding the WS-AT transaction context to the SOAP headers of
transactional requests. It is also responsible for reading the transaction
context from incoming requests and interacting with the transaction
coordinator.

® WS-Coordinator plug-in - This plug-in coordinates the resources
enlisted in a transaction. It coordinates the voting of the resources and
the implementation of the votes outcome.

All clients and services that use the WS-AT transaction system to coordinate
transactional flows must load the WS-AT plug-in. Without it, they will not be
able to handle the WS-AT transaction context that is required. Only clients
that start transactions need to be able to access the features of the
WS-Coordination plug-in. The clients can either directly load the

ftp://www6.software.ibm.com/software/developer/library/WS-AtomicTransaction.pdf
ftp://www6.software.ibm.com/software/developer/library/WS-AtomicTransaction.pdf

Selecting a Transaction Coordinator

WS-Coordination plug-in as shown in Figure 19. An alternative approach is
to load the WS-Coordination plug-in into an instance of the Artix container
service and run as a standalone service.

» Artix
Service
Artix < Resource
Client WS-AT
WS-AT
WS-Coordination
N Artix
Service
< Resource
WS-AT

Figure 19: Overview of a Client-Server System that Uses WS-AT

Default transaction provider The following variable specifies the default transaction system used by an
Artix client or server:

pl ugi ns: bus: def aul t _t x_pr ovi der: pl ugi n

To select the WS-AT transaction system, you must initialize this
configuration variable with the value, wsat _t x_pr ovi der .

435

CHAPTER 16 | Using Transactions in Artix

Plug-ins for WS-AT

Sample configuration

436

The division of the WS-AT transaction system into separate plug-ins reflects
the fact that the WS-AT specification has two distinct parts:
WS-AtomicTransactions and WS-Coordination.

The following plug-ins are required to support the WS-AT transaction
system:

® wsat_protocol plug-in—implements the WS-Atomic Transactions
specification. It is required by all endpoints that use WS-AT
transactions. This plug-in enables an Artix executable to receive and
transmit WS-AT transaction contexts.

ws_coor di nati on_ser vi ce plug-in—implements the WS-Coordination
specification(ftp://www6.software.ibm.com/software/developer/library/
WS-Coordination.pdf). An instance of this plug-in is required to be
running and it must be accessable by endpoints that make service
requests. This plug-in coordinates the two-phase commit protocol.
coor di nat or _st ub_wsdl plug-in—allows a transactional service to
interact with the WS-Coordination plug-in.

Example 267shows a complete configuration for using the WS-AT
transaction manager:

Example 267:Sample Configuration for WS-AtomicTransactions

Artix Configuration File
ws_atom c_transactions {

client
{
1 orb_plugins = ["l ocal _| og_streant,
"ws_coor di nati on_service"];
2 pl ugi ns: bus: defaul t _t x_provi der: pl ugi n ="wsat _t x_provi der";
IE
server
{
3 orb plugins = ["local | og_streant, "wsat_protocol ",
"coor di nat or _stub_wsdl "] ;
}

ftp://www6.software.ibm.com/software/developer/library/WS-Coordination.pdf
ftp://www6.software.ibm.com/software/developer/library/WS-Coordination.pdf

Selecting a Transaction Coordinator

The preceding configuration can be described as follows:

1.

The ws_coor di nati on_ser vi ce plug-in is needed only on the client
side. Artix does not support auto-loading of this plug-in.

The ws_coor di nati on_ser vi ce plug-in implicitly loads the

wsat _prot ocol plug-in as well. Hence, it is unnecessary to include
wsat _protocol plug-in in the or b_pl ugi ns list on the client side.

This line specifies that WS-AT is the default transaction provider. This
implies that whenever a client initiates a transaction (for example, by
calling begi n_transaction()), Artix creates a new WS-AT transaction
by default.

The server needs to load the wsat _prot ocol plug-in, in order to
process incoming atomic transactions coordination contexts and to
propagate transaction contexts. The coor di nat or _st ub_wsdl plug-in
enables the server to talk to the WS-Coordination service on the client
side.

437

CHAPTER 16 | Using Transactions in Artix

Transaction API

Overview

com.iona.jbus.Bus

Figure 20 shows an overview of the main classes that make up the Artix
transaction API. The Artix transaction API is designed to function as a
generic wrapper for a wide variety of specific transaction systems. As long as
you use the Artix APls, you will be able to switch between any of the
transaction systems supported by Artix.

getTransactionSystem()

com.iona.jbus.transactions.TransactionSystem

getTransactionManager()
v

com.iona.jbus.transactions.TransactionManager

com.iona.jbus.transactions. TransactionParticipant

com.iona.jbus.transactions.TransactionNotificationHandler

Figure 20: Overview of the Artix Transaction AP/

Accessing the transaction system To access the Artix transaction system, call the get Tr ansaci onSyst en()

438

method on the bus. The returned
com i ona. j bus. transacti on. Transact i onSyst emobject provides the
starting point for accessing all aspects of Artix transactions.

The signature of Bus. get Transact i onSyst en() is shown in Example 268.
Example 268:Signature for getTransactionSystem()

Transacti onSyst em get Tr ansact i onSyst en{) throws BusExcepti on;

TransactionSystem class

TransactionManager class

TransactionParticipant interface

TransactionNotificationHandler
interface

Transaction API

The Transact i onSyst emclass provides the basic methods needed for
transaction demarcation (begi nTransacti on(), commi t Transact i on() and
rol I backTransact i on()). For more details see “Beginning and Ending
Transactions” on page 440.

In addition to providing access the transaction demarcation method the
Transact i onSyst emobject provides two other methods:
® get Transacti onManager () returns a
comi ona. j bus. transacti on. Tr ansact i onManager object that
provides access to some of the more advanced transaction features.
® withinTransaction() returns true if it is called within an active
transaction.

The Transact i onManager class provides advanced transaction functionality.
The most important method it provides is enl i st (), which enables you to
implement a transactional resource by enlisting a transaction participant
object. It also provides methods for attaching and detaching threads from a
transaction. See “Threading” on page 451.

The comiona. j bus. transacti on. Transacti onParti ci pant interface is
used to create transactional resources. An implementation of

Transact i onParti ci pant acts as the resource manager for the datastore
involved in the transaction. It receives callbacks from the transaction
manager that are used to coordinate the commit or rollback steps with other
transaction participants. For more details, see “Managing Transactional
Resources” on page 445.

The comi ona. j bus. transacati on. Transact i onNot i fi cat i onHandl er
interface is used to create objects that receive notification callbacks from the
transaction manager whenever a transaction is either committed or rolled
back.

439

CHAPTER 16 | Using Transactions in Artix

Beginning and Ending Transactions

Overview

Procedure

Getting the transaction system

440

The functions for beginning, committing, and rolling back a transaction are
collectively referred to as transaction demarcation functions. Within a given
thread, any Artix operations invoked after the transaction begin and before
the transaction commit, or rollback, are associated with the transaction.
The transaction demarcation functions are typically the only functions that
you need on the client side.

When an endpoint needs to enclose a group of operations inside a
transaction, the following steps are taken:

1. Get an instance of the Transact i onSyst emfrom the bus.

2. Begin the transaction by calling
Transact i onSyst em begi nTransati on() .

3. Invoke the operations that make up the transaction.

4. If all operations are completed successfully, commit the transaction by
calling Tr ansact i onSyst em commi t Transact i on() .

5. If there is a problem during the transaction, roll-back the transaction
by calling Transact i onSyst em r ol | backTr ansacti on() .

In order to work with transactions you must first get access to the
transaction system. This is done by calling the bus’ get Tr ansact i onSyt en()
method. get Tr ansaci t onSyst en{) returns a Tr ansact i onSyst emobject that
provides the methods needed to being and end transactions. Example 269
shows code for getting access to the transaction system.

Example 269:Getting Access to the Transaction System

inport comi ona.j bus. Bus;
inport comiona.jbus.transaction.*;

Bus bus = Bus.init(args);
Transacti onSyst em t xSyst em = bus. get Tr ansact i onSyst en{) ;

Beginning a transaction

Ending a transaction

Beginning and Ending Transactions

You start a transaction using the Transact i onSyst em begi nTr ansact i on()
method. begi nTransact i on() takes no arguments and doesn’t have a return
value. begi nTransacti on() can throw the following exceptions:

® Transacti onAl readyAct i veExcepti on is thrown if

begi nTransacti on() is called inside an active transaction.
Transact i onSyst entnavai | abl eExcept i on is thrown if the transaction

system cannot be loaded. This usually points to a configuration
problem.

Once begi nTransact i on() has been called all requests will include a
transaction context and they will be managed as one atomic transaction
until the transaction is concluded.

Example 270 shows code for starting a transaction.

Example 270:Starting a Transaction

try
{
t xSyst em begi nTransacti on() ;
}
catch (Transacti onSyst enbnavi al abl eExcept i on)
{
/1 handl e the exception

}

There are two ways to end a transaction. The most common is to commit it
using Tr ansact i onSyst em conmi t Transat i on() . When a transaction is
committed, the transaction manager instructs all of the enlisted resources to
make the changes that occurred in processing the transaction permanent.
Because instructing the transaction manager to commit a transaction does
not ensure that the transaction will actually be committed,

commi t Transaci t on() can returns a boolean value specifying if the commit
was successful. commi t Transact i on() takes a boolean argument that
specifies if heuristic decisions should be reported during the commit
protocol.

Note: Heuristic decisions are not supported by all transaction systems.

441

CHAPTER 16 | Using Transactions in Artix

Other transaction functions

442

The other way to end a transaction is to roll-back the transaction by calling
Transact i onSyst emrol | backTransacti on() . When a transaction is rolled
back, the transaction manager instructs all the enlisted resources to erase
any changes made during the processing of the transaction. All of the data is
returned to its original state. Transactions are typically rolled back when an
error occurs while the transaction is being processed.

Example 271 shows code for committing a transaction.
Example 271:Committing a Transaction

try
{
t xSyst em conm t Transacti on() ;

}

catch (Transacti onSyst enbhavi al abl eExcept i on)

/1 handl e the exception

}

In addition to the demarcation functions, the Transact i onSyst emclass also
provides the following functions:

® withinTransaction()—returns true if the current thread is associated

with a transaction; otherwise, f al se.

get Tr ansact i onManager () —returns an instance of a
Transact i onManager object.

Example

[

Beginning and Ending Transactions

Example 272 shows an Artix client that invokes a series of operations as an
atomic transaction. The client invokes on single service called Dat a. Dat a
provides a read and a wri t e function.

Example 272:Transactional Client Example

inport java.util.*;
inport java.io.*;

inport java.net.*;
inport java.rm.*;

inport javax.xm .namespace. Q\arre;
inport javax.xn.rpc.*;

inport comiona.j bus. Bus;
inport comiona.jbus.transaction. *;

public class Transaction dient

{

public static void main(String args[]) throws Exception

{

Bus bus = Bus.init(args);

String servi ceName = "DataServi ce";

String wsdl Nanme = "soap_t x_deno. wsdl ";

\ane servi ceQ\amre = new QNane("http://transacti on_deno",

servi ceNane) ;

\arre port QNane = new QNarre("", "Dat aSQAPPort");

Data client = null;

URL wadl Location = new URL(wsdl Nane) ;

Servi ceFactory factory = Servi ceFactory. new nstance();

Service service = factory. creat eServi ce(wsdl Locat i on,
servi ceQ\ane) ;

client = (Data)service.getPort(portQ\ane, Dat a. cl ass) ;

Transact i onSyst em t xSyst em = bus. get Tr ansact i onSyst en{) ;

t xSyst em begi nTransacti on() ;

443

CHAPTER 16 | Using Transactions in Artix

Example 272:Transactional Client Example

5 try
{
int value = client.read();
Systemout. println("value: " + val ue);
Systemout. println("lncrenenting the val ue");
client.wite(value + 1);
Systemout. printl n("New val ues are");
int value2 = client.read();
Systemout. println("value: " + value2);
}
6 catch (Trowabl e T)
{
Systemout. println("rolling back transaction...");
t xSystemrol | backTransati on();
Systemexit(1);

}

7 Systemout. println("commtting transaction...");
bool ean result = txSystem conmt Transaction(true);
if (result)

{
Systemout . println("Transacti on conmtted!");
}
el se
{
Systemout. printl n("Transaction *not* Conmtted!!");
}

}
}
The code in Example 272 does the following:
Initializes the bus.
Creates a proxy for the Dat a service.
Gets the transaction system.
Begins a transaction.
Invokes operations on the service.

o ok Wb

Rolls back the transaction if an exception is thrown while invoking
operations on the service.

7. Commits the transaction if all of the operations succeeded.

444

Managing Transactional Resources

Managing Transactional Resources

Overview

Participants in a 2-phase commit

An Java based Artix service that wants to use a transactional resource such
as a database, it needs to implement a transaction participant. A
transaction participant is an object that interfaces between the transaction
manager and a persistent resource. The role of the transaction participant is
to receive instructions from the transaction manager, which tell the
participant whether to make pending changes permanent or whether to
abort the current transaction and return the resource to its previous
consistent state.

Figure 21 shows an example of a two-phase commit involving two
transaction participant instances. Any operations meant to be transactional
should start by creating a transaction participant object and enlisting it with
the transaction manager.

v

ransactionParticipant

Artix
Client

beginTransaction()
invoke

A~ Artix » Resource
& Service ﬁ@
) T

@_, Transaction -
System !

invoke

Service

-y TransactionParticipant

e
]
o »| Resource
¥ Artix :)Q
L > enlist

R » Transaction
@ - System

Figure 21: Transaction Participants in a 2-Phase Commit Protocol

445

CHAPTER 16 | Using Transactions in Artix

As shown in Figure 21, the transaction participants participate in a

two-phase commit as follows:

1. The client calls begi nTransacti on() to initiate a distributed
transaction.

2. Within the transaction, the client invokes operations on Server A and
on Server B. In order to participate in the distributed transaction, the
servant code creates a new transaction participant and enlists it with
the transaction manager.

3. Theclient calls commi t Transact i on() to make permanent any changes
caused during the transaction.

4. The transaction system performs the prepare phase by calling
prepare() on all of the transaction participants.

5. The transaction system performs the commit or rollback phase by
calling commi t () orrol | back() on all of the transaction participants.

6. When the transaction is finished, the transaction manager
automatically deletes the associated transaction participant instances.

Implementing a transaction To create a transaction participant, define a class that implements the
participant comiona.jbus. transaciton. Transacti onPartici pant interface.

446

Managing Transactional Resources

Example 273 shows the Transacti onParti ci pant interface.

Example 273:The TransactionParticipant Interface

package comi ona. | bus. transaction;

i nport comiona.jbus. BusExcepti on;

public interface TransactionParti ci pant

{

voi d comm t ChePhase() throws BusExcepti on;

Vot eQut cone prepare();

voi d commit();

voi d rol | back();

voi d set Transact i onManager (Tr ansact i onManager txManager);

String preferredTransacti onManager () ;

}
1PC callback function The following function is called during a one-phase commit:
® comm t hePhase() —makes permanent any changes associated with
the current transaction.
2PC callback functions The following functions are called during a two-phase commit:

pr epar e() —called during phase one of a two-phase commit. Before
returning, this function should write a recovery log to persistent
storage. The recovery log should contain whatever data would be
necessary to restore the system to a consistent state, in the event that
the server crashes before the transaction is finished.

Note: In some transaction systems, such as OTS Encina, the
transaction manager will not call prepare() if it knows that
transaction will be rolled back.

The prepare() function also votes on whether to commit or roll back
the transaction overall, by returning one of the following vote
outcomes:

447

CHAPTER 16 | Using Transactions in Artix

. Vot eQut cone. VOTE_CONMM T—vote to commit the transaction.

¢ Vot eQut come. VOTE_ROLLBACK—Vote to roll back the transaction.
For example, you would return VOTE_ROLLBACK, if an error
occurred while attempting to write the recovery log.

. Vot eQut cone. VOTE_READONLY—explicitly request not to be
included in the commit phase of the 2PC protocol.

® commt ()—called during phase two of a two-phase commit, if the
transaction outcome was successful overall. The implementation of
this function should make permanent any changes associated with the
current transaction.

® roll back()—called during phase two of a two-phase commit, if the
transaction must be aborted. The implementation of this function
should undo any changes associated with the current transaction,
returning the system to the state it was in before.

Getting the transaction manager After the transaction participant is enlisted by a transaction manager
instance, the transaction system calls back to pass a transaction manager to
the participant. The following functions are relevant to this callback
behavior:
® preferredTransacti onManager () —called just after the participant is

enlisted. The return value is a string that tells the transaction system
what type of transaction manager the participant requires. The
following return strings are supported:

. DEFAULT_TRANSACTI ON_TYPE—no preference; use the current

default.

. OT'S_TRANSACTI ON_TYPE—prefer the OTSTr ansact i onVanager
interface.

¢ WBAT_TRANSACTI ON_TYPE—prefer the WBATTr ansact i onManager
interface.

® set Transact i onVanager () —called after the
pref err edTr ansact i onManager () call. The transaction system calls
set Transact i onManager () to pass a transaction manager of the
preferred type to the participant. If the type of transaction manager
requested by the participant differs from the one currently in use, Artix
uses interposition to simulate the preferred transaction manager type.

448

Enlisting a transaction participant

Managing Transactional Resources

Example 274 shows an example of how to enlist a participant instance in a
transaction. You must enlist a participant at the start of any transactional
WSDL operation. Example 274 shows a sample implementation of an
operation, wi te(), which is called in the context of a transaction.

Example 274:Example of Enlisting a Transactional Participant

public void wite(int value) throws Exception

{

}

Bus bus = Di spat chLocal s. get Current Bus() ;
Transact i onSyst em t xSyst em = bus. get Transact i onSyst en() ;

if (txSystemwithinTransaction())

{

TxPartici pant partici pant = new TxParti cipant(this);

Transact i onManager txMinager =
t xSyst em get Tr ansact i onManager (Tr ansact i onSyst em DEFAULT_TRAN
SACTI ON_TYPE) ;

t xManager . enl i st (partici pant, true);

mval ue = val ue;
}
el se
{
Systemout . println("No transaction");
t hr ow new BusExcepti on("lnvocation not in transaction");

}

The preceding code example can be explained as follows:

1.

D spat chLocal s. get Qurrent Bus() is a standard function that returns
a reference to the current thread’s bus instance.

write() requires a transaction. If it is not called in the context of a
transaction, it raises an exception back to the client.

The TXParti ci pant class is an implementation of the

Transact i onParti ci pant interface.

The participant is enlisted in the transaction, ensuring that the
participant receives callbacks either to commit or rollback any
changes.

449

CHAPTER 16 | Using Transactions in Artix

The second parameter is a boolean flag that specifies the kind of

participant:

+ true indicates a durable participant, which participates in all
phases of the transaction.

. f al se indicates a volatile participant, which is only guaranteed to
participate in the prepare phase of the 2PC protocol. There is no
guarantee that a volatile participant will participate in the commit
phase.

450

Threading

Threading

Overview

Default client threading model

beginTransaction()

}

Artix supports a threading API that enables you to change the thread affinity
of a given transaction. Using the att achThread() and det achThread()
methods, you can flexibly re-assign threads to a transaction if the underlying
transaction system supports it.

Figure 22 shows the default threading model for transaction. When you call
begi nTransact i on(), Artix creates a new transaction and attaches it to the
current thread. So long as the transaction remains attached, any WSDL
operations called from the current thread become part of the transaction.
When you end the transaction using either commi t Tr ansact i on() or

rol | backTransaction(), the transaction is deleted.

commitTransaction()

}

Thread X W

Transaction identifiers

Transaction Scope

Figure 22: Default Client Threading Model

A transaction identifier is an opaque identifier of type
comiona.j bus.transaction. Transactionl dentifier that uniquely
identifies a transaction.

451

CHAPTER 16 | Using Transactions in Artix

Controlling thread affinity

452

On the client side, thread affinity is controlled by the Tr ansact i onManager
methods shown in Example 275.

Example 275:Functions for Controlling Thread Affinity

public class Transacti onManager

{

}

public Transactionl dentifier detachThread();

publ i ¢ bool ean attachThread(Transactionldentifier
transacti onl dentifier)

throws | nvalidTransactionl dentifierException

public Transactionldentifier getTransactionldentifier()

These functions can be explained as follows:

det achThread() detachs the transaction from the current thread. After
the call to det achThr ead() , WSDL operations called from the current
thread do not participate in the transaction. The returned transaction
identifier can be used to re-attach the transaction to the current thread
at a later stage.

attachThread() attachs the specifies transaction to the current thread.
get Transactionl dentifier() returns the identifier of the transaction
that is attached to the current thread. If no transaction is attached, it
returns NULL.

Threading

Detaching and re-attaching a Figure 23 shows how to use the det achThread() and att achThr ead()
functions to suspend temporarily the association between a transaction and
a thread. This can be useful if, in the midst of a transaction, you need to

perform some non-transactional tasks.

transaction to a thread

beginTransaction() detachThread() attachThread() CommiIransaction()

Transaction Scope

Figure 23: Detaching and Re-Attaching a Transaction to a Thread

453

CHAPTER 16 | Using Transactions in Artix

Figure 24 shows how to use the get Transacti onldentifier() and
attachThread() functions to associate a transaction with multiple threads.
The get Transact i onl denti fier() function is called from within the thread
that initiated the transaction. The transaction ID can then be passed to the
other threads, Y and Z, enabling them to attach the transaction.

Attaching a transaction to multiple
threads

beginTransaction() id = getTransactionldentifer() commitTransaction()

Transaction Scope

Thread Y mmm

Thread Z

attachThread(id) attachThread(id)

Figure 24: Attaching a Transaction to Multiple Threads

Note: Some transaction systems do not allow you to associate multiple
threads with a transaction. In this case, an attachThread() call returns
fal se if you attempt to attach a second thread to the transaction.

Figure 25 shows how to use the det achThread() and att achThread()
functions to transfer a transaction from thread X to thread Y. The transaction
ID returned from the det achThread() call must be passed to thread Y,
enabling it to attach the transaction.

Transferring a transaction from
one thread to another

454

Threading

id = detachThread()

Transaction Scope

attachThread(id) commitTransaction()

beginTransaction()

Figure 25: Transferring a Transaction from One Thread to Another

Note: Some transaction systems do not allow you to transfer a
transaction from one thread to another. In this case, at t achThr ead()
returns f al se unless you are re-attaching the original thread to the
transaction.

455

CHAPTER 16 | Using Transactions in Artix

Notification Handlers

Overview

Implementing a notification
handler

Notification callback functions

456

A notification handler is an object that records the outcome of a
transaction. For example, you might use a notification handler to log
transaction outcomes or to synchronize other events with a transaction.

To implement a notification handler, implement the
comiona. j bus. transacti on. Transacti onNot i fi cati onHandl er interface.

Example 276 shows the Transacti onNot i fi cati onHandl er interface. These
operations will only be called if an appropriate notification mechanism is
available in the underlying transaction system.

Example 276:The TransactionNotificationHandler Interface

package comi ona. | bus.transaction;

public interface Transacti onNoti ficati onHandl er

{ void coomitlnitiated(Transactionldentifier transactionld);

void committed();

voi d aborted();
}

The following notification handler functions receive callbacks from the

transaction manager:

® commtlnitiated()—informs the handler that a commit has been
initiated. This function is called before any participants are prepared.

Note: WS-AT does not support this notification point.

® comm tted() —informs the handler that the transaction completed
successfully.

® aborted()—informs the handler that the transaction did not complete
successfully and was aborted.

Notification Handlers

Enlisting a notification handler To use a notification handler, you must enlist it with a Transact i onManager
object while there is a current transaction. You can enlist a notification
handler at any time prior to the termination of the transaction.

Example 277 shows how to enlist a sample notification handler,
Noti ficati onHandl erl npl .

Example 277:Example of Enlisting a Notification Handler

Bus bus = D spatchLocal s. get Qurrent Bus();
Transact i onSyst em t xSyst em = bus. get Tr ansact i onSyst en{) ;

if (txSystemwi thinTransaction())

{
Noti fi cati onHandl er | npl not Handl er = new
Noti fi cati onHandl er | npl ;

Transact i onManager txManager =
t xSyst em get Tr ansact i onManager (Tr ansact i onSyst em DEFAULT_TRAN
SACTI ON_TYPE) ;

t xManager . enl i st For Not i fi cati on(not Handl er);
}

457

CHAPTER 16 | Using Transactions in Artix

Enlisting WebSphereMQ Transactions

Overview This section describes how WebSphere MQ transactions can be enlisted as
part of an Artix transaction. WebSphere MQ transactions differ in several
important respects from Artix transactions:

® MQ transactions are managed by a transaction manager that is internal
to WebSphere MQ.

® MQ transactions are enabled by setting the relevant attributes of a
WSDL port in the WSDL contract.

When a request containing a transaction context is passed over a
transactional MQ queue, the MQ transaction manager is automatically
enlisted in the global transaction. This means that MQ fails to deliver a
message that is part of the transaction, the MQ transaction manager will
vote for the entire transaction to be rolled back.

Client configuration To enable transactional semantics for a client using the MQ transport, you
should define a WSDL port as shown in Example 278.

Example 278:WSDL Port Configuration for Oneway Client Over MQ

<wsdl : servi ce nanme="M¥ervice">
<wsdl : port bi ndi ng="tns: Bi ndi ngNane" nane="Port Narre" >
<mg:client ...
Transacti onal ="i nternal "
Del i very="persi stent"
UsageStyl e="peer"/ >

</ wsdl : port >
</wsdl : servi ce>

To enable transactions, you must set the Transacti onal attribute to
i nternal and the Deli very attribute to persistent.

458

Enlisting WebSphereMQ Transactions

Server configuration To enable transactional semantics for a server using the MQ transport, you
should define a WSDL port as shown in Example 279.

Example 279:WSDL Port Configuration for Oneway Server Over MQ

<wsdl : servi ce name="MXer vi ce" >
<wsdl : port bi ndi ng="t ns: Bi ndi ngNarme" name="Por t Nane" >

<ny: server ...
Transacti onal ="i nternal "
Del i very="persistent"
UsageStyl e="peer"/>
</wsdl : port>
</ wsdl : servi ce>

To enable transactions, you must set the Transacti onal attribute to
i nternal and the Delivery attribute to persistent.

459

CHAPTER 16 | Using Transactions in Artix

460

In this chapter

CHAPTER 17

Jsing the Call
nterface for
Dynamic
nvocations

The JAX-RPC Call interface allows you to make invocations on
remote services for which you only have a WSDL description.

This chapter discusses the following topics:

DIl and the Call Interface page 462
Building Invocations using the Call Interface page 464
Printer Service Demo page 466

461

CHAPTER 17 | Using the Call Interface for Dynamic Invocations

DIl and the Call Interface

What is DII?

The Call interface

Artix DIl support

462

DIl stands for Dynamic Invocation Interface. DIl provides a mechanism by
which you can invoke on remote services without having the stubs statically
linked into your application code. Using DII, you query a service for a
description of its interface, use that description to dynamically build the
proper invocation interface, and then use the dynamic interface to invoke on
the service. This is useful if your application cannot always be sure of the
exact structure of the request message or must dynamically request services
from a repository of some sort.

The JAX-RPC specification defines the Cal | interface to support DIl. Using
the cal | interface, Artix developers can invoke on remote services without
needing to have access to the service’s generated interface. To invoke on a
remote service using the Cal I interface, you need to get a copy of the
remote service’s WSDL contract, a description of the message expected by
the service, and any message the service may return. With this information
you build, at runtime, the interface needed to invoke on the remote service
and receive a response.

Artix supports the majority of the functions specified in sections 8.2.4-8.2.8
of the JAX-RPC specification. The limitations are listed below.

® Artix does not support the j avax. xm . r pc. sessi on. mai nt ai n standard
property.

® The methods listed in Table 28 are not supported by the Artix
implementation of the Servi ce interface.

Table 28: Unsupported Service Methods

Method Signature

TypeMappi ngRegi stry get TypeMappi ngRegi stry();

Handl er Regi stry get Handl er Regi stry();

Renote getPort(dass intfc) throws ServiceException;

DIl and the Call Interface

Table 28: Unsupported Service Methods

Method Signature

Iterator getPorts() throws ServiceException;

® The methods listed in Table 29 are not supported by the Artix
implementation of the Servi ceFact ory interface.

Table 29: Unsupported ServiceFactory Methods

Method Signature

Servi ce createServi ce(@ane gnane) throws Servi ceExcepti on;

Servi ce | oadService(d ass cl assl) throws ServiceException;

Servi ce | oadService(URL url, dass classl, Properties props)
throws ServiceException;

Servi ce | oadService(URL url, Q\ame gname, Properties props)
throws ServiceExcepti on;

463

CHAPTER 17 | Using the Call Interface for Dynamic Invocations

Building Invocations using the Call Interface

Overview

Procedure

464

Using a dynamic proxy to invoke on a remote service requires you to
discover the name of the remote service's operation that you wish to invoke.
It also requires you to carefully construct the parameter list for the
operation. There are several ways to get this information. They range from
giving the client application some foreknowledge of the possible operations
it will invoke to parsing the services WSDL to recreate the operation.

Applications that use the cal I interface to dynamically invoke on remote
services also need to have knowledge of the types used by the services from
which they request services. The application making the dynamic invocation
must register the type factories for any complex types used by the remote
services on which it will invoke. For more information on type factories see
“Working with Artix Type Factories” on page 201.

To make a dynamic service invocation using the Cal | interface do the

following:

1. Register the type factories for the complex types the application may
use in building a dynamic invocation. See “Registering Type Factories”
on page 204.

2. Obtain a copy of the remote service’s WSDL contract.

Create a Servi ceFact ory instance using
Servi ceFact ory. newl nst ance() .

4. Using the location of the remote service’s WSDL contract and service
name, create a new Ser vi ce instance from the factory.

5. Using the QName of the port element defining the service and the
name of the operation to be invoked, create a Cal I instance from the
service.

6. Create the input parameters required to invoke the operation and store
them in an oject[].

Note: Only in and inout parameters are included in the Qbj ect[]
used to invoke on the service. Do not include out parameters.

Building Invocations using the Call Interface

Invoke the remote service using the Cal | instance’s i nvoke() method.
Note: For oneway operations you can use i nvokeeViay() .

Unpack any output parameters from the operation using the Cal |
instance’s get Qut put Par anet er s() method.

Note: get Qut put Par anet er s() can return either a Map or a Li st.

465

CHAPTER 17 | Using the Call Interface for Dynamic Invocations

Printer Service Demo

Overview

466

One use of dynamic invocations is in situations where you cannot be sure or
the exact requirements of an operation. This can occur when a service may
be fulfilled by a number of service providers. Each service provider may
provide a service, such as document printing, but may have different
operation signatures and require different information to fulfill the service
request.

The application outlined below asks a service repository for an available
printing service. The service repository can return two types of printing
service: Laser and I nkJet. The print () operation supported by a Laser
printing service takes three arguments:

Byte[] dataBuff The data to be printed.

bool ean dupl ex Specifies whether to use double sided printing.

| ong nunPage Specifies the number of pages to print per side.

The print () operation supported by an I nkJet printing service takes two
arguments:

Byte[] dataBuff The data to be printed.

bool ean draft Specifies the print quality.

Both printing services return a cost for the printing. They also have one

output parameter, nungheet s, that specifies the number of sheets used to
print the job.

The application uses the Cal I interface to invoke on the returned printing
service. For purposes of demonstrating the use of the Call interface, the
application is designed to not need to parse the returned WSDL contract to
determine how to construct the invocation.

Printer Service Demo

Application code Example 280 shows the code for creating a print request and invoking on
the returned print service.

Example 280:Dynamic Invocation using the Call Interface
/1 Java

inport javax.xm.rpc.*;
inport java.net.*
inport comiona. webservices. reflect.types.*;

Chject[] args = null;
1 Bus bus = Bus.init();

2 Q\anme nane = new QNane("http://ww printers. cont,
"Regi steryService");

String portName = "Regi steryPort";

String wsdl Path = "file:/./printresistery.wsdl";

URL wsdl URL = new Fi |l e(wsdl Pat h).toURL();

Regi ster printReg = (Register)bus.createdient(wsdl UL, nane,
por t Nane,
Regi stery. cl ass);

3 String printerType;
UR Hol der tenmpUR;
Q\aneHol der tenpNane = new Q\armeHol der ();
printReg. getPrinter(printerType, tenmpURL, tenpNane);

URL printerURL = tenpURL. val ue. t oURL() ;
Q\ane printer Nane = t enpNane. val ue;
4 if (printerType.equal s("Laser"))
{
bool ean dupl ex = true;
| ong nunPages = 2;
/1l byte[] dataBuff obtained earlier
args = new (bj ect[]{dataBuff, dupl ex, nunPages};
}
5 elseif (printerType.equal s("lnkJet"))

bool ean draft = fal se;

/1l byte[] dataBuff obtained earlier

args = new (bj ect[]{dataBuff, draft};
}

el se Systemexit(1);

6 ServiceFactory factory = Servi ceFactory. new nst ance();

467

CHAPTER 17 | Using the Call Interface for Dynamic Invocations

What does the code do?

468

7

10

11
12

Example 280:Dynamic Invocation using the Call Interface

Service printService = factory. createService(printer URL,
printer Nane) ;

String portName = nane. get Local Part().concat ("Port");
Q\Bne port = new Q\ane("", portNane);
Call printCall = printService.createCall(port, "print");

float cost = printCall.invoke(args);

Map outs = printCall. get Qut put Paraneters();
| ong nunBheets = outs. get (" nuntheets");

Systemout. println("Your print job costs "+cost+" and used "+
nunstheet s+' sheets of paper.");

The code in Example 280 does the following:

1. Initialize the Artix bus.

2. Create a proxy for the print service registry.

3. Request a printing service from the print service registry.
4

If the type of printing service returned is Laser, build the three
argument list.

5. If the type of printing service returned is i nkJet, build the two
argument list.

Get a new Servi ceFactory.

Using the WSDL location and the service name returned from the print
service registry, create a new Ser vi ce.

8. Build the QName for the port defining the print service’s endpoint.
9. Using the port name and the operation name, print, create a Cal | .
10. Invoke the print request using the argument list created above.
11. Get the output parameters as a Map.

12. Extract nunsheet s from the Map.

Overview

In this chapter

CHAPTER 18

Developing
Plug-Ins

Plug-Ins can perform a number of tasks including registering
servants or implementing handlers.

Developing and loading an Artix plug-in requires you to perform three tasks:

1. Extend the BusPl ugl n class to implement your plug-in's application
logic.

2. Implement the BusP ugl nFact ory interface.

3. Configure Artix to use the plug-in.

This chapter discusses the following topics:

Generating Plug-in Starting Point Code page 470
Extending the BusPluglIn Class page 471
Implementing the BusPlugInFactory Interface page 474
Configuring Artix to Load a Plug-in page 476

469

CHAPTER 18 | Developing Plug-Ins

Generating Plug-in Starting Point Code

Overview Using the wsdl t oj ava tool you can generate the code needed to implement
a service defined by an Artix contract as a plug-in. In addition to the
skeleton code generated for the service, wsl dt oj ava will also generate a
plug-in class that registers your servant and a plug-in factory to instantiate
your plug-in.

Using wsdltojava If you are planning on implementing a service as an Artix plug-in, you can
use wsdl t oj ava with the - pl ugi n flag to generate the additional plug-in
classes needed. The - pl ugi n flag instructs the code generator to generate
the following additional classes:
® port TypeNaneSer vi cePl ugi n extends BusPl ugl n and includes code to
register the appropriate servant with the bus in buslnit().

® port TypeNaneSer vi cePl ugi nFact ory extends BusPl ugl nFact ory and
includes the code to instantiate the generated plug-in class for your
service.

In addition, the generated server mainline, port TypeNaneSer ver . j ava, only

includes code for initializing and starting the Artix bus. It contains comments
about how to configure the service to load the plug-in at start up.

When not to use this wsdl t oj ava - pl ugi n only works when you have a service defined in a
contract. For this reason it is not usefull for building plug-ins that load
handlers or implement a transport. Neither handlers or transports are
defined in a contract.

You could use plug-in starting code generated for a service as a starting
point, but you would have to completely rewrite the body of businit () in
the generated plug-in class. You would also have to modify the code that
instantiated the plug-in in the generated plug-in factory.

470

Extending the BusPlugin Class

Extending the BusPlugin Class

Overview The BusP! ugl n class is the base class for all Artix plug-ins. It provides a
method, get Bus(), that returns the bus with which the plug-in is
associated. In addition, it has two abstract classes that you must
implement:
® A constructor for your class.
® The buslnit() method called by the bus to initialize the plug-in.
® The busShut down() method called by the bus when it is shutting down

to allow the plug-in to perform any clean-up it needs before being
destroyed.

Implementing the constructor The constructor for your plug-in has two requirements:
1. Its first argument must be a bus instance.
2. It must call super () with the passed in bus reference.

Example 281 shows a constructor for a plug-in called BankPl ugl n. It simply
calls super () on the bus instance. It could, however, have performed some
logging operations or initialized resources.

Example 281:BusPlugin constructor

/1 Java
publ i c class BankPl ugl n ext ends BusPl ugln

{
publ i ¢ BankPl ugl n(Bus bus)

{
}

super (bus) ;

buslnit() busl ni t () is called by every bus that loads your plug-in. Inside busl ni t (),
you perform all of the initialization needed for your plug-in to perform its job.
For example, if your plug-in implemented a service defined in WSDL you

471

CHAPTER 18 | Developing Plug-Ins

busShutdown()

472

would create and register the servant in busli nit (). If your plug-in
implemented a handler, you would register your handler factory in
buslnit().

Example 282 shows a busl nit () method used in implementing the bank
service as a plug-in.

Example 282:businit()

/'l Java

inport comiona.jbus. *;

inport comiona.jbus. servants. *;
inport javax.xn .namespace. Q\ane;

inport java.net.*;
inport java.io.*;

public class BankPl ugl n ext ends BusP ugl n

{
private Banklnpl bank;

public void buslnit() throws BusException
{
Bus bus = getBus();
\arre gnane = new Q\arre(" htt p: // waw i ona. cond bus/ denos/ bank",
"BankServi ce");
bank = new Bankl npl ();
Servant servant = new Si ngl el nst anceSer vant (bank,
"./bank.wsdl ", bus);
bus. regi st er Servant (servant, gname, "BankPort");

busShut down() is called on the plug-in by the bus when the bus is shutting
down. Once busShut down() completes, the bus calls dest r ot BusPl ugl n()
on the plug-in factory object. This is good place to release instance specific
resources used by the plug-in or to do other house keeping. For example,
the bank plug-in may need to force the account objects it created to finish
any running transactions and flush their information to the permanent store
before shutting down as shown as shown in Example 283.

Extending the BusPlugin Class

Example 283:busShutdown()

/'l Java

inport comiona.jbus.*;

inport comiona.jbus. servants.*;

inport comiona. schenas. r ef er ences. Ref er ence;

inport javax.xm .namespace. Q\arre;
inport java.net.?*;
inport java.io.*;

publ i c cl ass BankPl ugl n ext ends BusPl ugln

{
private Bankl npl bank;

publi c void busShut down() throws BusException
{
Account acct Proxy;
Ref erence ref;
Bus bus = getBus()
Iterator it = bank.accounts.values().interator();

whi | e(it.hasNext())

{
ref = (Reference)it.next();
acct Proxy = bus.createdient(ref, Account.class);
acct Proxy. cl oseDown() ;

}

}
}

473

CHAPTER 18 | Developing Plug-Ins

Implementing the BusPluginFactory Interface

Overview The BusPI ugl nFact or y interface provides the methods used by the Artix bus
to manage a plug-in implementation. It has two methods you must
implement:
® createBusPl ugl n() creates instances of the plug-in and its associated

resources and associate them with particular bus instances.
® destroyBusPl ugl n() destorys plug-in instances and frees the resources
associated with them.

createBusPlugin() creat eBusPl ugl n() is called by a bus instance when it loads a plug-in. In
most instances, creat eBusPl ugl n() will simply instaniate an instance of
your plug-in object and return it. However, you can use this method to
initialize any global resources used by the plug-in.

Example 284 shows the signature for cr eat eBusPl ugl n() .
Example 284:createBusPlugin()

publ i ¢ BusP ugl n createBusPl ugl n(Bus bus) throws BusException;

destroyBusPlugln() dest royBusP! ugl n() is called by a bus instance when it is shutting down
and releasing its resources. In most instances, this method does not need to
do anything. However, if you created any global resources for your plug-in
this would be a convinient place to free them.

Example 285 shows the signature for dest r oyBusPl ugl n() .
Example 285:destroyBusPlugin()

public voi d destroyBusPl ugl n(BusPl ugl n pl ugin);

Example For example, the BusPl ugl nFact ory implementation for a plug-in
BankPl ugl n would look similar to Example 286.

474

Implementing the BusPlugInFactory Interface

Example 286:BankPluginFactory

/1 Java
inport comiona.jbus.*;

publ i c cl ass BankPl ugl nFactory i npl enents BusPl ugl nFact ory
{
publ i ¢ BusPl ugl n createBusP ugl n(Bus bus) throws BusException
{
return new BankP ugl n(bus);

}

public voi d destroyBusPl ugl n(BusPl ugl n pl ugi n)
throws BusException

{
}

475

CHAPTER 18 | Developing Plug-Ins

Configuring Artix to Load a Plug-in

Overview

Specifying a plug-in’s factory class

476

All Java based plug-in have some common configuration entries that are
required so that the bus can load the plug-in. These entries include:

® specifying the plug-in’s factory class.

® |oading the Java plug-in loader.

® adding the plug-in to the list of Java plug-ins to load.

In addition, there is an optional variable that specifies the classloader
environment, if any, used by the plug-in.

To load a plug-in the bus needs to know which factory class is used to
create instances of the plug-in’s implementation. You specify the name of a
plug-in's factory class using the variable pl ugi ns: pl ugi n_nane: cl assnane.
It takes a single string that is the name of the plug-in's factory class. You
can place this variable in either an application specific scope or in the global
scope. It is often better to place it in the global scope so that all applications
in the configuration domain have access to the information.

Note: The name you give the plug-in in this variable must match the
name you intend to use when listing the plug-in in the list of Java plug-ins
to be loaded.

For example, if you created a plug-in to filter junk messages and called its
factory class JunkPI ugi nFact ory, you would add the configuration line
shown in Example 287 to the global scope of your Artix configuration file.
When configuring an application to load this plug-in, you would refer to it as
j unk.

Example 287:Configuring a Plug-in Factory Class

pl ugi ns: j unk: cl assnane="JunkPl ugi nFact ory";

Loading the Java plug-in loader

Listing the Java plug-ins to be
loaded by an application

Specifying a classloading
environment

Configuring Artix to Load a Plug-in

Java plug-ins require that a special Java plug-in loader be used by the bus.
You need to add this plug-in loader to the or b_pl ugi ns list of any
application that uses Java plug-ins as shown in Example 288.

Example 288:The Java Plug-in Loader in orb_plugins

orb_plugins=[..., "java"];

Unlike C++ plug-ins which are listed in an application’s or b_pl ugi ns list,
Artix Java plug-ins are listed in a separate configuration variable called

j ava_pl ugi ns. j ava_pl ugi ns is a list of comma separated plug-in names.
The plug-in names used in the list must correspond to the name given the
plug-in when specifying its factory class. For example to load the junk
message plug-in configured in Example 287, you would use the
configuration fragment shown in Example 289.

Example 289:Loading a Java Plug-in

orb_pl ugi ns=["java"];
java_pl ugi ns=["j unk"];

If you want your plug-in to use an Artix classloader environment, you specify
the classloading environment using the pl ugi ns: pl ugi n_name: CE_Nane
variable. The CE name is specified as a unique string.

In addition, you need to specify the location of the XML file describing the
classloader environment. This is done with the ce: ce_name: Fi | eNane
variable. ce_nane is the CE name used when configuring the plug-in.

Example 290 shows a configuration fragment for loading the junk message
plug-in using a classloader environment.

Example 290:Using a Classloader Environment

pl ugi ns: j unk: CE_Nane="j unk_ce";
ce:junk_ce: Fil eName="\artix_ces\junk_ce.xm";

For more information on using classloaders see “Using Artix Classloader
Environments” on page 573.

477

CHAPTER 18 | Developing Plug-Ins

478

CHAPTER 19

Writing Handlers

Using the JAX-RPC Handler mechanism, developers can
access and manipulate messages as they pass along the
delivery chain.

In this chapter This chapter discusses the following topics:
Handlers: An Introduction page 480
Creating the Handler Plug-in page 485
Creating a Handler Factory page 488
Developing Request-Level Handlers page 492
Developing Message-Level Handlers page 495
Handling Errors and Exceptions page 498

479

CHAPTER 19 | Writing Handlers

Handlers: An Introduction

Overview When a service proxy invokes an operation on a service, the operations
parameters are passed to the Artix bus where they are built into a message
and placed on the wire. When the message is received by the service, the
Artix bus reads the message from the wire, reconstructs the message, and
then passes the operation parameters to the application code responsible for
implementing the operation. When the service is finished processing the
request, the reply message undergoes a similar chain of events on its trip to
the server. This is shown in Figure 26.

[
Q CLIENT SERVER |_J

Y N

Y
Y

(Application Code

> »
L >
= =1
D D
= =
[——] [——]
- < -
-« -

-

Binding Transport Transport Binding

< Application Code E}%WD
ﬁ}{-‘

Figure 26: The Life of a Message

You can write handlers that work with a message at each stop along its
path. For example, if you wanted to compress a message before sending it
on the wire, you could write a handler that takes the message data from the

480

Handler levels

Proxy

Handlers: An Introduction

binding and compresses it before the transport puts the message on the
wire. Likewise, you could write a handler that takes the message from the
transport and decompresses it before passing it on to the binding.

The JAX-RPC specification outlines a mechanism for developers to write
custom handlers using the Handl er interface. Using the handler
mechanism, you can intercept and work with message data at four points
along the request message’s life cycle and at four points along the reply
message’s life cycle. Both requests and replies can be handled at the client
request level, the client message level, the server message level, and the
server request level. These levels are shown in Figure 27.

Request-Level Message-Level
Handlers Handlers

) K 2
—< > <

Y

2 € | K]

ES
s B | sl =

Binding Transport

‘S

A

=
=
o=

Transport

12| K [€+— K K

26

= | P P — P < P—

Message-Level Binding Request-Level
Handlers Handlers

Figure 27: Handler Levels

On the client side of an application, you can write handlers to process
requests as they pass from the application to the binding and to process
responses as they passes from the binding to the application. These are
called request-level handlers. You can also write handlers to process

481

CHAPTER 19 | Writing Handlers

Implementing a handler

482

requests as they pass from the binding to the transport and to process
responses as they pass from the transport to the binding. These are called
message-level handlers.

On the server side of an application the direction of the message flow is
reversed, but the levels stay the same. For example, a request-level handler
on the server side would work with requests as they pass from the binding
to the application and a message-level handler would process with
responses as they passed from the binding to the transport.

Handlers are developed as Artix plug-ins. This allows you to develop a
handler once and reuse it in any Artix Java application. Writing a plug-in
requires that you implement the BusP! ugl nFact ory interface and extend the
BusPI ugl n class to initialize the handlers. For details on the plug-in
interfaces see “Developing Plug-Ins” on page 469.

To write a handler, you implement the JAX-RPC Handl er interface and the
Handl er Fact ory interface. To make implementing these interfaces easier,
Artix supplies a Generi cHandl er class and a Generi cHandl er Fact ory class
that you can extend to write your handlers. These generic classes provide
idle implementations of all of the methods for the interfaces. By extending
them you only to provide implementations for the methods needed by your
handler.

Your Handl er implementation contains the logic for the handler you are
writing. The Handl er interface has two methods that process messages:
handl eRequest () and handl eResponse() . handl eRequest () is invoked
when a request message is passing through the handler. handl eResponse()
in invoked when a response message is passing through the handler. These
methods are invoked in both request level handlers and message level
handlers.

A Handl er Fact ory implementation is responsible for instantiating bus
specific instances of one or more handlers. The Handl er Fact ory interface
has four methods for instantiating handlers: get d i ent MessageHandl er (),
get di ent Request Handl er (), get Server MessageHandl er (), and

get Ser ver Request Handl er () . As the method names imply, each method is
used to instantiate a handler for use at a specific point in the messaging
chain. For example, get A i ent MessageHandl er () would be called by the
bus to instantiate a client-side message-level handler. Each method in a
factory can instantiate one handler. However, a factory can be developed to

Configuring Artix to use handlers

Example

Handlers: An Introduction

instantiate four handlers because the bus will only call the factory method
needed to instantiate the handler configured to be used at a particular point
in the message chain.

Before your applications can use handlers, you must configure them to load
the handlers at the appropriate points in the message chain. This is done by
adding the following configuration variables into the application’s
configuration scope:

binding:artix:client_message_interceptor_list is an ordered list of handler
names specifying the message-level handlers for a client.

binding:artix:client_request_interceptor_list is an ordered list of handler
names specifying the request-level handlers for a client.

binding:artix:server_message_interceptor_list is an ordered list of handler
names specifying the message-level handlers for a server.

binding:artix:server_request_interceptor_list is an ordered list of handler
names specifying the request-level handlers for a server.

Note: A handler's name is the String used in the creation of the handler
factory object.

The handlers are placed in the list in the order they will be invoked on the
message as it passes through the messaging chain. For example, if the
server request interceptor list was specified as " Freeze+Dry", a message
would be passed into the handler Freeze as it left the binding. Once Freeze
processed the message, it would be passed into Dry for more processing.
Dry would then pass the message along to the application code. For more
information on configuring Artix applications see Deploying and Managing
Artix Applications.

Example 291 shows the configuration for an application that uses both
client and server handlers.

483

http://www.iona.com/support/docs/artix/3.0/deploy/index.htm
http://www.iona.com/support/docs/artix/3.0/deploy/index.htm

CHAPTER 19 | Writing Handlers

Example 291:Configuration with Handlers

java_i nterceptors

{
pl ugi ns: first_hand: cl assnane="Fi r st Handl er P ugl nFact ory" ;
pl ugi ns: second_hand: cl assname=" SecondhandI er Pl ugl nFact ory";
java_plugins = ["first_handl er", "second_hand"];
orb_plugins = ["xmfile_|og_streant, "java"];

client

{

bi ndi ng: arti x: client_request_interceptor_list
"first Hand+secondHand";

bi ndi ng: arti x: cl i ent _message_i nterceptor_list =
"first Hand+secondHand";

override config settings for client here

}

server

{
bi ndi ng: arti x: server_request _interceptor_list=
"secondHand+f i r st Hand";
bi ndi ng: arti x: server_message_i nterceptor_list =
"secondHand+f i r st Hand";

override config settings for server here

}

484

Creating the Handler Plug-in

Creating the Handler Plug-in

Overview

Procedure

The plug-in

Artix handlers need to be hosted in a plug-in. Creating a plug-in for your
handlers follows the same pattern as creating any other Java plug-in. The
difference is that in BusPI ugi n. busl ni t () you register the handler factories
used to instantiate your handlers.

To create a plug-in for your handlers do the following:

1. Implement a BusPl ugi nFact ory to load the plug-in that implements
your handler. See “Implementing the BusPlugInFactory Interface” on
page 474.

2. Extend BusPl ugi n to load your handler using the bus’
regi st er Handl er Fact ory() method.

If you wish to have a single plug-in load multiple handlers, make multiple
calls to regi st er Handl er Fact ory() .

The implementation of busl nit () in your plug-in registers the handler
factories for the handlers used by the application. Handler factory
registration is done using the bus’ r egi st er Handl er Fact ory() method. The
signature for r egi st er Handl er Fact ory() is shown in Example 292.

Example 292:registerHandlerFactory()
voi d regi st er Handl er Fact or y(Handl er Factory factory);

regi st er Handl er Fact ory() takes an instance of the handler factory for your
handler. Subsequent calls to regi st er Handl er Fact ory() add to the list of
registered handler factories. So, if you need to register multiple handler
factories you simply call r egi st er Handl er Fact ory() with an instance of
each handler factory to be registered.

485

CHAPTER 19 | Writing Handlers

Example Example 293 shows a the plug-in code for a handler.
Example 293:Handler Plug-In
/] Java
1 inport comiona.jbus.*;

public class Handl er Pl ugl n ext ends BusP ugl n

{
2 publ i ¢ Handl er Pl ugi n(Bus bus)
{
super (bus) ;
}
3 public void buslnit() throws BusException
{
try
{
4 Bus bus = getBus();
5 bus. r egi st er Handl er Fact ory(new fi r st HandFact ory());
bus. r egi st er Handl er Fact or y(new secondHandFact ory2());
}
catch (Exception ex)
{
t hr ow new BusExcepti on(ex) ;
}
}
6 publ i c voi d busShut down() throws BusException
{
}
}

The code in Example 293 does the following:

1. Imports the Artix bus APIs.

Implements a constructor for the plug-in class.
Implements busl ni t () to register the handler factory.
Gets the plug-in’s bus.

SUEE N

Registers the handlers’ factories with the bus using
regi sterHandl er Factory() .

486

Creating the Handler Plug-in

6. Implements busShut down() .

487

CHAPTER 19 | Writing Handlers

Creating a Handler Factory

Overview The bus calls the methods provided by the Handl er Fact ory you register in
the handler plug-in. You need to implement a Handl er Fact ory for each set
of handlers you need. The Handl er Fact ory interface has four methods:

® getdientRequest Handl er () creates a client-side, request-level
handler.

® get Server Request Handl er () creates a server-side, request-level
handler.

® getdient MessageHandl er () creates a client-side, message-level
handler.

® get Server MessageHand! er () creates a server-side, message-level
handler.

If all four methods are implemented, one Handl er Fact ory can instantiate
one of each type of handler.

The GenericHandlerFactory The easiest way to develop your handler factory is to extend the
Generi cHandl er Fact ory included with Artix. The Generi cHandl er Fact ory
implements all of the methods in the Handl er Fact ory interface. You only
need to override the methods needed for your handlers and provide a
constructor for your handler factory.

Implementing the methods When using the Generi cHandl er Fact ory as a base class, you only need to
implement the methods that relate to your application. For example if your
application only uses a server-side, message-level handler, you only need to
implement get Ser ver MessageHand| er () . If, however, your application also
uses a client-side. message-level handler, you will also need to implement
get d i ent MessgeHandl er ().

488

Example

Creating a Handler Factory

The signatures for the Handl er Fact ory methods are shown in Example 294.
They take a single Handl er | nf o object and return an instance of the class
Handl er | nf o.

Example 294:Handler Factory Methods

publ i c Handl erl nfo get d i ent Request Handl er (Handl er | nf o i nf 0)
publ i c Handl er | nf o get Server Request Handl er (Handl er | nf o i nf 0)
public Handl erlnfo getd i ent MessageHandl er (Handl er | nf o i nf 0)
publ i ¢ Handl er | nf o get Server MessageHand! er (Handl er | nf o i nf 0)

The factory methods need to supply the A ass that implements your
handler. For example if your client-side handler is implemented by a class
called fi rst HandRequest Handl er, you need to set the returned
HandlerInfo’s Hander A ass field to fi r st Handd i ent Request Handl er . cl ass
by invoking set Handl er d ass() on the Handl er I nf o object.

Example 295 shows code for implementing a handler factory.
Example 295:Handler Factory For Request Level Handlers

/[Java

inport comiona.jbus.*;

inport comiona.jbus. servants. *;
inport javax.xm .namespace. Q\arre;

inport java.net.?*;
inport java.io.*;

inport javax.xm.rpc. handler.*;

public class firstHandFactory extends CenericHandl er Fact ory

{
public fristHandFactory()

{
super (new String("firstHand"));

}

publi c Handl erl nfo getd i ent Request Handl er (Handl er | nf o i nf 0)
{
i nf o. set Handl er d ass(first Handd i ent Request Handl er. cl ass) ;
return info;

}

489

CHAPTER 19 | Writing Handlers

HandlerInfo

490

Example 295:Handler Factory For Request Level Handlers

publ i c Handl er | nf o get Ser ver Request Handl er (Handl er | nf o)
{

i nf 0. set Handl er A ass(secondHandSer ver Request Handl er . cl ass) ;
return info;
}
}

The code in Example 295 does the following:

1. Extends GenericHandl er Factory.

2. Implements a constructor for the handler factory. The string set is the
string used by the bus to reference the handler factory. It is also the
value which is used in the configuration file to refer to the handler
factory.

3. Overrides get A i ent Request Handl er ().

4. Sets the Handl er A ass property to the class of the handler that will
process client requests.

The Handl er | nf o passed into the method contains the following
information:

® The current bus
® The QName of the service for which the handler is being created
® The name of the port for which the handler is being created

To retrieve this information you first need to get the configuration map from
the HandlerInfo object as shown in Example 296.

Example 296:Getting a Configuration Map from a HandlerInfo
inport java.util.Mp;

Map confi g = info. get Handl er Config();

Creating a Handler Factory

To access the properties stored in the configuration map use the Artix
handler constants shown in Table 30.

Table 30: Configuration Map Properties

Property Description

Handl er Cont ant s. BUS Returns the current bus.

Handl er Const ant s. SERVI CE_NAME Returns the QName of the service
for which the handler is being
created.

Handl er Const ant s. PCRT_NAVE Returns the name of the port
through which messages for this
handler will pass.

Example 297 shows code for getting all of the properties from a
Handl er I nf o object.

Example 297:Getting Configuration Information From a Handlerinfo

inport java.util.Mp;
inport comiona.jbus.*;
inport comiona.j bus. Handl er Const ant s;

Map config = info. get Handl er Confi g();

Bus bus = (Bus)config. get (Handl er Const ant s. BUS) ;

Q\ane serv = (\ane) confi g. get (Handl er Const ant s. SERVI CE_NAME) ;
String port = (String)config.get(Handl er Const ant s. PORT_NAVE) ;

491

CHAPTER 19 | Writing Handlers

Developing Request-Level Handlers

Overview Request-level handlers process messages as they pass between your
application code and the binding that formats the message that is being sent
on the wire. On the client side, request messages are processed immediately
after the application invokes a remote method on its service proxy and
before the binding formats the message. Responses are processed after the
message is decoded by the binding and before the data is returned to the
client application code. On the server side, requests are processed as they
pass from the binding to the service implementation. Replies are processed
as they pass from the server implementation to the binding.

Currently, handlers at the request level can access the following pieces of
data:
® The name of the invoked operation
® The parameters of the invoked operation
® The application’s message context
® Any Artix-specific context information that is set using the
| onaMessageCont ext
® The message’s SOAP headers
® The message’s security properties
For example, your application could have a client side handler that added a
custom SOAP header to its requests for authorization purposes. The server

could then use a handler to read the SOAP header and perform the
authorization before the request gets to the service implementation.

Procedure To develop a request-level handler you need to do the following:

1. Implement a BusPl ugi n to load your handler. See “Creating the
Handler Plug-in” on page 485.

2. Implement the request-level handler methods in your Handl er Fact ory
so the bus can instantiate your handler. See “Creating a Handler
Factory” on page 488.

3. Implement a Handl er to host the logic used by your handler.

4. Configure your application to load the handler plug-in.

492

The handler implementation

Developing Request-Level Handlers

5. Configure your application to include the handler in the request
handler chain. See Deploying and Managing Artix Solutions.

The easiest way to develop your handler logic is to extend the

com i ona. j bus. j axr pc. handl ers. Generi cHandl er class supplied with
Artix. The Generi cHandl er class provides implementations for all of the
methods in the JAX-RPC Handl er interface, so all you need to do is override
the methods your handler requires. You can also implement the JAX-RPC
Handl er interface if you desire.

The Handl er interface has two methods that are used to process messages:
handl eRequest () and handl eResponse() . handl eRequest () processes
request messages and handl eResponse() processes reply messages. The
bus will call these methods at the appropriate place in the messaging chain
to process the message data. It is important to remember where in the
messaging chain the handler is called. For example, a handler that reads a
SOAP header from a request in the server will not work if it is placed in the
client request chain.

The signatures for handl eRequest () and handl eResponse() are shown in
Example 298. Both methods have a MessageCont ext as an argument. For
information on using the message contexts see “Using Message Contexts”
on page 267. The return value should reflect the state of the message
processing. If the message is successfully processed return true. If not,
return f al se.

Example 298:handleRequest() and handleResponse()

bool ean handl eRequest (MessageCont ext cont ext);
bool ean handl eResponse(MessageCont ext cont ext);

At the request-level, your handler can access the generic message context or
the Artix specific context. Because the properties of the generic message
context do not effect the message as it passes through the messaging chain,
it is more likely that your handler will use the Artix specific message context.
Properties set into the Artix specific message context at the request-level will
be propagated down the message chain and effect how the message is
formatted and transmitted. For example, security properties and SOAP
headers manipulated in a client request-level handler will change the
properties that are sent to the server. On the return side of the messaging

493

http://www.iona.com/support/docs/artix/3.0/deploy/index.htm

CHAPTER 19 | Writing Handlers

chain, such as in a server request handler or a client response handler, the
request-level is the level in which the SOAP header and security properties
are made available.

Example Example 299 shows the code for a client request-level handler that sets a
SOAP header on the request and reads the SOAP header returned with the
response.

Example 299:Client Request Level Handler

/'l Java

inport comi ona.j bus. | onaMessageCont ext ;
inport comi ona.j bus. Cont ext Excepti on;

com i ona. j bus. j axr pc. handl ers. Generi cHandl er;

inport javax.xm .namespace. Q\arre;

public class enmod i ent Request Handl er ext ends Generi cHandl er
{
publ i ¢ bool ean handl eRequest (MessageCont ext cont ext)
{
| onaMessageCont ext nycont ext = (| onaMessageCont ext) cont ext;
Q\ane princi pal @ xNane = new Q\ane("", " SOAPHeader | nfo");
SQAPHeader | nf o request | nfo = new SQAPHeader | nf o() ;
requestinfo.setCriginator("dient");
request | nfo. set Message(“Hello fromdient!");
nycont ext . set Request Cont ext (pri nci pal & xNane, r equest | nf 0) ;

return true;

}

publ i c bool ean handl eResponse(MessageCont ext cont ext)
{
| onaMessageCont ext nycont ext = (| onaMessageCont ext) cont ext ;
Q\ane ct xName = new Q\Nane("", " SOAPHeader|nfo");
SQAPHeader I nfo replylnfo =
(SQAPHeader | nf 0) nycont ext . get Repl yCont ext (ct xNarre) ;
Systemout. printl n("Header from Server: ");

Systemout.printin("Ciginator - " +
replylnfo.getQiginator());
System out. pri ntl n(" Message - " + replyl nfo. get Message());

return true;
}
}

494

Developing Message-Level Handlers

Developing Message-Level Handlers

Overview

Procedure

The handler implementation

Message-level handlers process messages as they pass between the binding
and the transport. On the client side, request messages are processed after
the binding formats the message and before the transport writes it to the
wire. Responses are processed after the message is read off of the wire and
before it is decoded by the binding. On the server side, requests are
processed after the message is read off of the wire and before it is decoded
by the binding. Replies are processed as they pass from the binding to the
transport.

Handlers at the message level have access to the raw message stream that
is being written out the wire. This data has been formatted into the
appropriate message type specified by the binding. Message-level handlers
can also access the applications message context. For example, your
application could have a client-side handler that compresses the message
data to enhance network performance. The server could then use a handler
to decompress the message data before it is sent to the binding for
decoding.

To develop a message-level handler you need to do the following:

1. Implement a BusPl ugi n to load your handlers. See “Creating the
Handler Plug-in” on page 485.

2. Implement the message-level methods in your Handl er Fact ory so the
bus can instantiate your handler. See “Creating a Handler Factory” on
page 488.

3. Implement a Handl er to host the logic used by your handler.
Configure your application to load the handler plug-in.

5. Configure your application to include the handler in the handler chain.
See Deploying and Managing Artix Solutions.

The easiest way to develop your handler logic is to extend the
Gener i cHandl er class supplied with Artix. The Generi cHandl er class
provides implementations for all of the methods in the JAX-RPC Handl er

495

http://www.iona.com/support/docs/artix/3.0/deploy/index.htm

CHAPTER 19 | Writing Handlers

Example

496

interface, so all you need to do is override the methods your handler
requires. You can also implement the JAX-RPC Handl er interface if you
desire.

The Handl er interface has two methods that are used to process messages:
handl eRequest () and handl eResponse() . handl eRequest () processes
request messages and handl eResponse() processes reply messages. The
bus will call these methods at the appropriate place in the messaging chain
to process the message data. It is important to remember where in the
messaging chain the handler is called. For example, a handler that
compresses a request in the client will cause unpredictable results if it is
placed in the server message chain.

The signatures for handl eRequest () and handl eResponse() are shown in
Example 300. Both methods have a MessageCont ext as an argument. For
information on using the message contexts see “Using Message Contexts”
on page 267. The return value should reflect the state of the message
processing. If the message is successfully processed return true. If not,
return f al se.

Example 300:handleRequest() and handleResponse()

bool ean handl eRequest (MessageCont ext cont ext);
bool ean handl eResponse(MessageCont ext context);

At the message level, your handler can access both the generic message
context and a special StreanMessageCont ext that provides access to the
raw message data that is to be written onto the wire. For more information
on using the stream message context, see “Manipulating Messages as a
Binary Stream” on page 516. In addition, if you are using the SOAP binding,
you can access the SOAP message context. For more information on
working with the SOAP message context, see “Working with SOAP
Messages” on page 513. Because the properties of the generic message
context do not effect the message as it passes through the messaging chain,
it is more likely that your message-level handlers will use either the raw
message data or the SOAP message context.

Example 301 shows the code for a client message-level handler that adds a
string onto the end of a SOAP request before sending it to the server and
removes an additional string from the end of the SOAP response before

Developing Message-Level Handlers

passing the SOAP message to the binding. The complete code for this demo

can be found in the custom interceptor demo included in your Artix
installation.

Example 301:Client Message-Level Handler

/1l Java
inport comiona.jbus.*;
com i ona. j bus. j axr pc. handl ers. Generi cHandl er;

inport java.io.*;
inport javax.xnl.nanespace. Q\ane;

public class firstHandd i ent MessageHand| er ext ends

Gener i cHandl er
{
publ i ¢ bool ean handl eRequest (MessageCont ext cont ext)
{
St reanmiessageCont ext snt = (StreanmMessageCont ext) cont ext ;
I nput Streamins = snt. getl nput Strean();
ins = new Test | nput St rean(i ns,
Test | nput Stream CLI ENT_TO SERVER) ;
snt. set | nput Strean(i ns) ;
return true;

}

publ i c bool ean handl eResponse(MessageCont ext cont ext)
{
St reamessageCont ext snt = (St reamMessageCont ext) cont ext ;
I nput Streamins = snt. getl nput Strean();

i ns. mar k(1000) ;

byte bytes[] = new
byt e[Test | nput St ream SERVER TO CLI ENT. | engt h] ;

i ns. read(bytes);

String s = new String(bytes);

Systemout. println("Got string: "+s);

return true;

}

497

CHAPTER 19 | Writing Handlers

Handling Errors and Exceptions

Overview Java handlers have three ways of generating errors when processing a
message:
® throw a runtime exception.
® throw a user-exception that is wrapped in a runtime exception.
® populate the message context with an error message and return false.
The behavior of the handler depends on if the message being processed is a

request or a response. The resulting behavior also depends on if the handler
is implemented on the client-side or the server-side of an application.

In this section This section discusses the following topics:
Handling Errors when Processing Requests page 499
Handling Errors when Processing Responses page 501
Throwing User Faults page 502
Processing Fault Messages page 504

498

Handling Errors and Exceptions

Handling Errors when Processing Requests

Overview As requests are passed down the messaging chain, they are processed by
each handler's handl eRequest () method. Regardless of where on the
messaging chain a request is, an error will prevent the request from making
it to the service implementation.

Client-side If an exception is thrown at any point in the client's request processing
chain, it is returned immediately to the client. All handlers in the messaging
chain are skipped and no message processing is done.

If handl eRequest () returns f al se, the handler is responsible for populating
the response buffer with an appropriate fault message. Artix then invokes
the handler’s response chain starting from the handler that created the fault
condition. The fault message will be processed as if it were a normal
response and each handler’'s handl eResponse() method will process it.

Server-side Error processing on the server-side is more complicated. The behavior of the
service depends on where in the messaging chain the error condition is
encountered.

At the message-level, throwing an exception will cause the messaging chain
to stop processing the message. The bus will the create a fault message
containing the exception, place it in the response buffer, and return the fault
to the client. The response message is passed back down the handler chain
and precessed by each message handler’s handl eFaul t () method.

If a message-level request handler returns f al se, you must ensure that an
appropriate response message is created and placed in the response buffer.
A return of f al se from a message-level request handler will cause the bus to
stop processing the request and return the message in the response buffer to
the client. The response handler sequence is followed starting from the
handler that created the error condition. The messages are processed
through the handl eResponse() method.

At the request-level, throwing an exception will cause the messaging chain
to stop processing the message. The bus will then send the response back
down the message chain starting from the handler that generated the

499

CHAPTER 19 | Writing Handlers

exception. However, instead of calling handl eResponse() on each handler,
the bus will call handl eFaul t () . In this instance, the servant will never be
invoked.

Returning f al se will cause the messaging chain to stop processing the
request and forward the request straight to the servant for processing.

500

Handling Errors and Exceptions

Handling Errors when Processing Responses

Overview

Server-side

As responses are passed down the messaging chain, they are processed by
each handler’s handl eResponse() method. At this point in the
request/response chain, it is expected that the response buffer is already
populated. However, the contents of the request buffer is not fixed.

On the server-side, request-level handlers can safely throw runtime
exceptions. The exception will stop the further processing of handlers along
the server's message chain. The exception will be immediately sent to the
client as a fault message. As the fault message is passed back down the
message handler chain it is processed by each handler's handl eFaul t ()
method.

At the message-level, throwing an exception will cause the messaging chain
to stop processing the message. The bus will the create a fault message
containing the exception, place it in the response buffer, and return the fault
to the client. The response message is passed back down the handler chain
and precessed by each message handler’'s handl eFaul t () method.

Server-side response handlers that return f al se, at both the request-level
and the message-level, have no effect on message processing. Regardless of
the return value from handl eResponse() , the server will continue to send
the message along the messaging chain. The message will pass through all
of the handlers in the chain.

501

CHAPTER 19 | Writing Handlers

Throwing User Faults

Overview In cases where you want to pass a user defined exception back to the client
application, you can wrap the user defined exception in a runtime exception
and send it back to the client. Artix will catch the runtime exception and
inspect its contents. If the runtime exception contains a user defined fault,
then Artix passes the user defined fault up the messaging chain. If not, Artix
just passes the runtime exception up the messaging chain.

Procedure To throw a user defined fault from a message handler do the following:

1. Ensure that your service definition, in the service’s contract, includes a
fault message. See “Describing User-defined Exceptions in an Artix
Contract” on page 160.

2. Create an instance of the user defined fault you want to throw. See
“Working with User-defined Exceptions in Artix Applications” on
page 165.

3. Throw a Runt i meExcept i on using the created instance of your user
defined fault as the parameter to the constructor.

When the Artix client transport layer receives the exception it will discover
that it contains a user defined exception, remove it from the

Runt i meExcept i on wrapper, and pass the user defined exception up the
messaging chain. As the message is passed up the messaging chain it will
be processed by t he handl eFaul t () method of the message handlers.

Example If you had a service that could return a user defined fault called Pi ed its
contract would contain a fragment similar to Example 302.

Example 302:Service Definition with a Fault

<nessage name="pi ed">
<part name="flavor" type="xsd:string" />
</ message>

502

Handling Errors and Exceptions

Example 302:Service Definition with a Fault

<port Type nane="br ai nServi ce">
<oper ati on name="t oni ght">
<i nput nessage="t ns: nar ket Dat a" nanme="pl an" />
<out put message="t ns: wor | dDom ni ati on" nane="goal " />
<fault nessage="t ns: pi ed" name="pi nky" />
</ oper ati on>
</ por t Type>

The contract fragment in Example 302 would cause Artix to generate a Java
class called Pi ed that extended the class Excepti on. Pi ed would contain a
single member variable called f| avor . Because Pi ed extends Excepti on, it
inherits from Thr owabl e which means it can be used as an argument the
Runt i meExcept i on object’s constructor.

If you wanted to throw a pied exception from a message handler, you would
use code similar to Example 303.

Example 303:Throwing a User Defined Exception in a MessageHandler

publ i c cl ass cageBreak extends GenericHandl er

{

publ i ¢ bool ean handl eRequest (MessageCont ext cont ext)

{

Pi ed userFault = new Pi ed("bananaQreant);
t hr ow Renot eException(user Faul t);

return true;

}

503

CHAPTER 19 | Writing Handlers

Processing Fault Messages

Overview

Implementing the fault handler

Reading the contents of the
exception

504

Fault messages are processed by the handl eFaul t () method of a handler. It
is implemented in the same manner as the other message handler
functions.

Like handl eRequest () and handl eResponse(), handl eFaul t () receives a
generic MessageCont ext as a parameter. Its signature is shown in
Example 304.

Example 304:handleFault()
publ i ¢ bool ean handl eFaul t (MessageCont ext cont ext)

The information available from the MessageCont ext depends on where in
the messaging chain the handler is placed. At the request-level, the fault
handler can access any information in the generic MessageCont ext and any
information in the | ONAMessageCont ext . For information on using the

| CNAMessageCont ext , see “Using Message Contexts” on page 267.

At the message-level, the fault handler can access the SOAPMessageCont ext ,
if the service uses a SOAP payload format, or the St reanMessageCont ext .
For information on using the SOAPMessageCont ext or the

St reanMessageCont ext , see “Manipulating Messages in a Handler” on
page 507.

Server-side request-level message handlers can access the contents of an
exception thrown by the servant in handl eFaul t () in much the same way
that they access the information about an operation in handl eResponse() .
You call the get Properti es() method on the context using

Cont ext Const ant s. SERVER_RESPONSE_EXCEPTI ON as the property name. The
property is returned as a generic Java object that needs to be cast into either
the actual class of the specific exception or one of the generic subclasses
used to create the exception.

Handling Errors and Exceptions

Example 305 shows code for getting an exception in handl eFaul t () .

Example 305:Accessing an Exception

handl eFaul t (MessageCont ext cont ext)

Thr owabl e ex = (Throwabl e) cont ext . get Pr opert y(Cont ext Const ant s. SERVER_RESPONSE _EXCEPTI ON) ;

/I process the exception

Return values

Throwing exceptions

handl eFaul t () returns a boolean value. If handl eFaul t () returns true, the
message continues along the massaging chain as normal. If handl eFaul t ()
returns f al se, the bus stops processing the message and returns it directly
to the client. In the case where handl eFaul t () returns f al se, it is the
handler's responsibility to ensure that the response message contains an
appropriate message.

If handl eFaul t () throws an exception, the exception is returned directly to
the client. If the exception is thrown while in the server-side messaging
chain, the client-side messaging chain will process the returned fault
message normally. If the exception is thrown while in the client-side
messaging chain, the exception is immediately returned to the user code.

505

CHAPTER 19 | Writing Handlers

506

Overview

In this chapter

CHAPTER 20

Manipulating
Messages In a
Handler

One function of a handler may be to modify messages as they
pass between the application level code and the wire.

Handlers often need to have a fine grained access to the messages they
process. Artix provides access to the message details in the handlers in
several ways. Request-level handlers can access the parameters passed as
part of an operation invocation. Message-level handlers can access the
message information as raw stream data using the St r eamvessageCont ext .
In addition, if your application uses a SOAP binding, your message-level
handlers can also access message data using the JAXM SOAP APIs through
the soaPMessageCont ext .

This chapter discusses the following topics:

Working with Operation Parameters page 508
Working with SOAP Messages page 513
Manipulating Messages as a Binary Stream page 516

507

CHAPTER 20 | Manipulating Messages in a Handler

Working with Operation Parameters

Overview

Getting the operation name

508

Request-level handlers in Artix have access to the name of the operation
which generated the message and the message parts, which represent the
operation parameters, of both the request message and the response
message. You can use this information to determine how a message is to be
processed. You can also change the values of the message parts as they are
passed along the message chain.

You get the name of the operation from which the message being processed
originated through the generic message context. It is stored in a property
accessed using the Artix constant Cont ext Const ant s. GPERATI ON_NAME. The
returned value is a Stri ng containing the operation name as listed in the
Artix contract.

WARNING: Changing this value can produce unpredictable results.

For example, if you have a contract with the interface defined in
Example 306 the operation name returned from the context would be
f orward.

Example 306:E£xample Port Type

<nessage name="travel Request ">
<part name="date" type="xsd:string"/>
</ message>
<nessage name="travel Response" >
<part name="arrived" type="xsd: bool ean"/>
</ message>
<port Type nane="tardi s">
<oper ati on nane="f orward" >
<i nput nessage="travel Request" nane="request"/>
<out put message="travel Response" narme="out cone"/>
</ operati on>
</ port Type>

Message part context properties

Working with Operation Parameters

Example 307 shows the code for getting the operation name from the
message context.

Example 307:Getting the Operation Name
inport comi ona.j bus. Cont ext Const ant s;

publ i c cl ass Server Request Handl er extends Generi cHandl er

{

publ i ¢ bool ean handl eRequest (MessageCont ext cont ext)

{
String opName = (String)
cont ext . get Propert y(Cont ext Const ant s. CPERATI ON_NAVE) ;

Artix uses four separate context properties for storing message parts:

® (LI ENT_REQUEST_VALLES holds the message parts for an outbound
request on the client-side of the messaging chain.

® SERVER REQUEST_VALUES holds the message parts for an inbound
request on the server-side of the messaging chain.

® SERVER RESPONSE_VALUES holds the message parts for an outbound
response on the server-side.

® (LI ENT_RESPONSE_VALUES holds the message parts for an inbound
response on the client-side.

The values are stored as an array of generic Java bj ect objects that can be

cast back into their proper types for manipulation. The returned array

contains values for all parts in the message that are set. If a message part is
ni 11 abl e, it will not be included in the returned array if was not populated.

In addition to storing message parts, Artix also stores a list of each parts

Java class. This list is an array of A ass objects and it contains information

on all of the possible parts in a message. There are also four context

properties for storing the message parts’ class list:

® (LI ENT_REQUEST_CLASSES holds the class information for the message
parts of an outbound request on the client-side of the messaging chain.

® SERVER REQUEST_QLASSES holds the class information for the message
parts of an inbound request on the server-side of the messaging chain.

509

CHAPTER 20 | Manipulating Messages in a Handler

Accessing the message parts

Working with the message parts

Working with message part class
information

510

® SERVER RESPONSE CLASSES holds the class information for the message
parts of an outbound response on the server-side.

® (LI ENT_RESPONSE_CLASSES holds the class information for the message
parts of an inbound response on the client-side.

You can access the parts of a message using the get Properti es() method
on the generic message context in request-level handlers. While, you can
pass in any of the message part property identifiers into get Properties(),
only the message parts appropriate to the position in the message chain
have valid values. For example, if your handler is a server-side response
handler, only the properties SERVER RESPONSE_CLASSES and

SERVER RESPONSE_VALUES have data. If you try to access any of the other
message part properties, get Properti es() will return NULL.

Artix returns the message parts as an array of Java (bj ect objects when you
request the message part values. The returned array contains all of the
non-nill message parts. If a message part is ni | | abl e and not set, there will
not be a place holder in the returned array of objects.

To inspect or change any of the message parts, you can cast it to the
appropriate type and work with it as you would normally. All changes made
to the value of a message part are immediately reflected in the message.

The only restriction to manipulating message parts in Java handlers is that
you cannot add or remove a message parts. This also means that you
cannot change the value of a nill message part.

Artix returns message part class information as an array of A ass objects.
The returned array has an entry for every part specified in the WSDL
description of the message. If a message part is nillable and not set by the
operation, the message part’s class information will still be returned.

You should not change any of the values in the returned array. It is only
stored for information purposes. For instance you could compare the list of
parts to the list of classes to determine if a message part is not set.

Example

Working with Operation Parameters

If you were developing an ordering system for kayak paddles for a
manufacturer in Europe that takes orders from retailers in the United States,
you may need to convert the paddle lengths from inches to centimeters. The
interface for such an ordering system is shown in Example 308.

Example 308:Paddle Ordering Interface

<nessage name="order" >
<part name="am" type="xsd:int" />
<part name="length" type="xsd:int" />
</ message>
<nessage name="bill">
<part name="amt Due" type="xsd:float" />
</ message>
<port Type nane="suppl yPaddl es" >
<oper ati on nare="or der Paddl es" >
<i nput nessage="tns:order" nane="order" />
<out put message="tns:bill" name="bill" />
</ oper at i on>
</ por t Type>

Example 309 shows s server-side request handler that converts the | engt h
part of an incoming request from inches to centimeters.

Example 309:Changing the Value of Message Parts

inport javax.xm.rpc. handl er.CGeneri cHandl er;
inport javax.xm.rpc. handl er. MessageCont ext ;
inport javax.xnl.nanespace. Q\ane;

inport comiona.j bus. Cont ext Const ant s;

publ i c cl ass Server Request Handl er extends Generi cHandl er

{

publ i ¢ bool ean handl eRequest (MessageCont ext cont ext)

{
oj ect[] parts = ((oject[])
cont ext . get Propert y(Cont ext Const ant s. SERVER REQUEST_VALUES) ;

int length = (int)parts[1];
parts[1] = length * 2.54;

return true;

511

CHAPTER 20 | Manipulating Messages in a Handler

512

The code in Example 309 does the following:

1.
2.

Gets the server request message parts from the message context.

Gets the | engt h part of the message. As shown in Example 308 on
page 511, I engt h is the second part in the request.

Converts the I engt h part from inches to centimeters.
Returns t rue to continue message processing.

Working with SOAP Messages

Working with SOAP Messages

Overview

SOAPMessageContext

Message-level handlers in Artix can, if they are used by application with a
SOAP binding, access and modify the SOAP message being sent between
the participating services. Using the SOAPMessageCont ext class, developers
can get the message being passed as a j avax. xn . soap. SOAPMessage object
and manipulate the message using the standard Java APlIs.

SOAPMessageCont ext extends the generic MessageCont ext class that is
passed into all message handlers. It is only available in message-level
handlers for applications that have a SOAP binding. If your application is not
using a SOAP binding and you attempt to use the SOAPMessageCont ext you
will get an exception.

SOAPMessageCont ext has two methods that allow you to retrieve and modify
the contents of the SOAP message being processed by a handler. They are
described in Table 31.

Table 31: SOAPMessageContext Methods

Signature Description

SOAPMessage get Message() Returns the sOaPMessage
contained in the context.

voi d set Message(SOAPMessage nessage) | Sets the SOAPMessage
contained in the context to
the message specified.

513

CHAPTER 20 | Manipulating Messages in a Handler

SOAPMessage

514

Once you have the sOaPMessageCont ext , you can use it to manipulate the
SOAP message using the SOAPMessage APls. The SOAPMessage
implementation in Artix conforms to the SOAP with Attachments API for
Java (SAA)J 1.2 specification. Using this API, you can access all parts of
the SOAP message elements. These are listed in Table 32.

Table 32: SOAPMessage Elements

Element Description

SOAPPar t Contains routing and identification
information for the message. All
SOAPMessages must have a valid
SQAPPart .

SOAPEnvel ope Contained inside of the SOAPPart .
By default, this object contains an
empty SOAPHeader and an empty

SQAPBody .

SQAPBody Contains the data passed in the
SOAP message. All data must be
XML data.

SOAPHeader An optional element of the SOAP

message that contains XML data.
This element provides a container
for additional information such as
security information.

At t achnent Par t Optional elements of a SOAP
message that can contain binary
data such as images or word
processing documents.

For more information on the SOAPMessage APIs see the SAAJ 1.2
specification or the publicly available J2EE APl documentation.

Working with SOAP Messages

Example Example 310 shows an example of using the SOAPMessageCont ext to add
an attachment to a SOAP message.

Example 310:Using the SOAPContext

/1 Java
bool ean handl eRequest (MessageCont ext cont ext)

SOAPMessageCont ext SOQAPcont ext = (SOAPMessageCont ext) cont ext ;

SOAPMessage nessage = SQAPcont ext . get Message() ;

Java. awt . | nage i mage = getPicture();

Attachnment Part i magePart = nessage. creat eAt t achment Part (i nage,
"imglgif");

nmessage. addAt t achnent Part (i magePart) ;

nmessage. saveChanges() ;

SQOAPcont ext . set Message(nessage) ;

The code in Example 310 does the following:

{
1
2
3
4
5
6
7

}

1.

2.

4,

5.

6.

7.

Gets the sOAPMessageCont ext by casting the passed in
MessageCont ext .

Gets the soaPMessage stored in the context.
Gets the image to store in the SOAP message.

Note: You are left to implement the get Pi ct ure() method.

Creates a new At t achnent Part to store the image.

Adds the new At t achment Part to the message.

Updates the message’s data.

Sets the modified message back into the SOAPMessageCont ext .

515

CHAPTER 20 | Manipulating Messages in a Handler

Manipulating Messages as a Binary Stream

Overview

Getting the
StreamMessageContext

Getting message streams

516

While the sOAPMessageCont ext provides a more convenient means of
accessing the contents of a message, it only works when the service is using
a SOAP payload format. If your service does not use a SOAP payload format
or you cannot be sure what payload format your service is going to use, you
can access the contents of messages using the St r eanMessageCont ext .

The StreamMessageCont ext returns the contents of a message as either a
Java I nput Streamor a Java Qut put St ream Using these binary streams, you
can then manipulate the contents of the message as needed. It is important
to remember, however, that the service receiving the message can accept
the alterations made to the message.

To get a StreanMessageCont ext you cast the MessageCont ext passed into
the handler method as shown in Example 311.

Example 311:Getting a StreamMessageContext

/1 Java
bool ean handl eResponse(MessageCont ext cont ext)
{

St reaniessageCont ext nyQ x = (StreanMessageCont ext) cont ext ;

The streanMessageCont ext has methods for getting and setting the input
and output streams used by the transport as shown in Example 312. While
St reamvessageCont ext provides methods for getting the output stream, you
should always work with the input stream provided. Artix will ensure that
data from the input stream is the data that gets propagated through the
message chain.

Example 312:StreamMessageContext

package comi ona.j bus;

Manipulating Messages as a Binary Stream

Example 312:StreamMessageContext

inport javax.xni.rpc. handl er. MessageCont ext ;
inport java.io.lnputStream
inport java.io.QutputStream

public interface StreanMessageContext extends MessageCont ext
{
public static final String | NPUT_STREAM PROPERTY =
" St r eamivessageCont ext . | nput Streant';
public static final String QUTPUT_STREAM PRCPERTY =
" St r eamivessageCont ext . Qut put St reant';

public I nputStream getlnput Streang);

public void setlnputStrean(l nputStreami ns);
publ i ¢ Qut put Stream get Qut put Streang);

public void setQutput Strean{Qut put Stream out);

517

CHAPTER 20 | Manipulating Messages in a Handler

Example Example 313 shows code for adding a string to the end of a message.
Example 313:Using StreamMessageContext
cl ass Test | nput Stream ext ends | nput Stream
{

I nput Streami n;
Byt eArrayl nput St ream bi n;

Test I nput Strean{ ! nput Streami 2, byte bytes[])

{
in=i2;
bi n = new Byt eArrayl nput St r ean{ byt es) ;
}
public int read() throws |CException
{
if (bin!=null)
{
int i = bin.read();
if (i ==-1) bin=null;
else return i;
}

return in.read();
}
}

bool ean handl eResponse(MessageCont ext cont ext)

{
String nessage = "San D nmas H gh School Football Rules!";
byte bytes[] = nessage.getBytes();

St reaniessageCont ext snt = (StreaniMessageCont ext) cont ext ;
I nput Stream i ns = snt. get | nput Strean() ;

ins = new Test | nput Strean(ins, bytes);

snt. set | nput St rean(i ns) ;

518

CHAPTER 21

Developing
Custom Artix
Transports

Artix provides a number of standard transport plug-ins.
However, your applications my use a custom transport that is
not provided. Using the Artix plug-in mechanism, developing
custom transports in Java is a straightforward procedure.

In this chapter This chapter discusses the following topics:
Developing a Transport: The Big Picture page 520
Making a Schema for the Transport Attributes page 522
Developing and Registering the Transport Factory page 526
Developing the Client Transport page 535
Developing the Server Transport page 543
Using your Custom Transport page 560

519

CHAPTER 21 | Developing Custom Artix Transports

Developing a Transport: The Big Picture

Overview

What does a transport do?

The transport WSDL definition

Procedure

520

All of the transports used by Artix are implemented as plug-ins that are
loaded based on cues from an application’s Artix contract. The
implementation of transports in plug-ins makes it easy to develop custom
Artix transports. This is useful in situations where you have applications that
use a homegrown transport.

Artix transports are responsible for reading data from and writing data to an
Artix endpoint. A transport first establishes a connection with the target
endpoints and then waits to perform work. When reading data from the
wire, a transport plug-in reads the raw binary data, decodes any transport
specific header information, and passes the message to the binding as a
binary buffer. When writing data to the wire, a transport plug-in receives a
formatted message from the binding as a binary buffer, adds any transport
specific headers, and sends the binary data to the target endpoint.

Every transport requires some piece of information from the user before it
can connect two endpoints. In the simplest case, the only information
needed is the address where messages are sent and received. More complex
transports may require more information such as persistence and security
settings. In all cases, this information is supplied in an application’s Artix
contract. Transport configuration is supplied inside the WSDL port element
that defines an endpoint.

For each Transport used by Artix there is a corresponding XMLSchema
document describing the WSDL extension element that defines the transport
attributes. When designing a custom transport, you will also need to define
the transport attributes in an XMLSchema document.

To develop a custom Artix transport you need to do the following:

1. Make an XMLSchema document defining the attributes needed to
define an endpoint for your transport.

2. Extend the Transport Fact ory class.

3. Implement an Artix plug-in that registers your transport factory.

Developing a Transport: The Big Picture

Implement the Qi ent Transport interface as shown in “Developing the
Client Transport” on page 535.
Implement the Server Transport interface as shown in “Developing the
Server Transport” on page 543.

521

CHAPTER 21 | Developing Custom Artix Transports

Making a Schema for the Transport Attributes

Overview

Transport namespace

522

Like most parts of Artix, transport endpoints are defined by an application’s
contract. The transports, other than SOAP/HTTP, are defined using an
XMLSchema document that defines an extension to WSDL. When you
create a custom transport you must also define the WSDL extensions for
defining an endpoint for the newly developed transport. The XMLSchema
document defining your transport’s attributes will also be specify the
namespace identifying your transport so that Artix can load it dynamically.

The namespace you assign to a transport is important for two reasons. First
it allows you to validate your endpoint definition against the XMLSchema
you develop to define its WSDL extensions. Second, and more important, it
informs Artix to load your transport at runtime. When Artix parses an
application’s contract it decides what transport and binding plug-ins to load
based on the namespaces used in the contract’s port elements and their
corresponding xni ns entries in the contract’s defi ni ti on element.

For example, when using the Artix [IOP tunnel transport you include

xm ns:iiop="http://schemas.iona. contransports/iiop_tunnel" inthe
contract’s defi ni ti on element. When defining the endpoint you use the
servi ce element shown in Example 314.

Example 314:Endpoint Definition

<servi ce nanme="I|1CPservice">
<port name="|1CPport" bi ndi ng="tns: || CPbi ndi ng">
<iiop:address location="file:///objref.ior" />
<iiop:policy persistent="true" />
</ port >
</ servi ce>

When parsing the port element, Artix would resolve the i i op tag to the
namespace specified in the defi ni ti on element and then know to load the
[IOP tunnel transport plug-in. For more information on how to specify the
configuration for a transport see, “Using your Custom Transport” on

page 560.

Defining the transport attributes

Making a Schema for the Transport Attributes

When writing the XMLSchema for your transport’s attributes you specify the
transport’'s namespace as the target namespace. This is done using the

t ar get Nanespace attribute of the XMLSchema document’s scherma element,
as shown in Example 315.

Example 315:Specifying the Transport’s Namespace

<xs: schema
t ar get Namespace="ht t p: / / wi dget Vendor . coni t r anspor t / socket "
xm ns: xs="ht t p: / / wav. wW3. or g/ 2001/ XM_Schena"
xm ns: sock="ht tp: //w dget Vendor . coni t ransport/ socket "
xm ns: wsdl ="ht t p: // schenmas. xm soap. or g/ wsdl /"
el enent For nDef aul t ="qual i fi ed"
attri but eFor nDef aul t ="unqual i fi ed">

When defining an endpoint that uses the transport defined with the
statement in Example 315, your contract needs to include

xm ns: sock="ht t p: / / wi dget Vendor . con t r asnport/socket" in its
definition element. The port element defining the endpoint’s attributes
would contain elements prefixed sock to specify that they used the custom
transport.

Transport attributes are defined as WSDL extensibility elements according to

the WSDL 1.1 specification. To properly define your transport’s attributes as

WSDL extensions your XMLSchema definition must conform to the following

rules:

1. It must import the WSDL 1.1 XMLSchema document defined in the
namespace http://schemas. xni soap. or g/ wsdl / .

2. All the elements that define attributes to be listed in the Artix contract
must be of a type that extends the abstract
wsdl : t Ext ensi bi | i t yEl enent type.
Beyond these two restrictions your transport’s attributes can be as complex
or as simple as needed to fully define an endpoint. For example, the 110P
tunnel transport has a single required element to specify the endpoint’s
address. However, the MQ transport has two elements each of which can
take a number of attributes to define an endpoint.

523

CHAPTER 21 | Developing Custom Artix Transports

Example Example 316 shows an example of an XMLSchema document for a
transport that uses a single element, sock: addr ess, to define an endpoint.

Example 316:Sample Transport XMLSchema

<xsd: schema

t ar get Nanespace="ht t p: / / wi dget Vendor . coni t r ansport / socket "

xm ns: xsd="ht t p: // waw. w3. or g/ 2001/ XM_Schena"

xm ns: sock="ht t p: // wi dget Vendor . coni tr ansport/ socket "

xm ns: wsdl ="htt p: //schemas. xni soap. or g/ wsdl / "

el ement For nDef aul t ="qual i fi ed"

attri but eFor nDef aul t ="unqual i fi ed">

<xsd: i nport namespace="http://schemas. xm soap. org/wsdl /"/>

<xsd: conpl exType nane="addr essType" >

<xsd: conpl exCont ent >
<xsd: ext ensi on base="wsdl : t Extensi bi | i t yEl ement ">
<xsd:attribute name="host" type="xsd: string"
use="requi red">
<xsd:attribute name="port" type="xsd:string"
use="required">
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el ement nane="address" type="sock: addressType"/>
</ xsd: schenma>

Example 316 does the following:

1. Defines the target namespace for the transport’s attributes.

2. Imports the WSDL XMLSchema definition.

3. Defines a complex type, addr essType, that extends
wsdl : t Extensi bil i tyE ement and has one required attribute,
| ocati on.

4. Defines the element addr ess.

When you wanted to define an endpoint for the transport defined in

Example 316 you would include

xm ns: sock="ht t p: / / wi dget Vendor . coni t r ansport/socket" in the

contract’s defini ti on element and a servi ce element similar to
Example 317.

524

Making a Schema for the Transport Attributes

Example 317:Socket Endpoint Definition

<servi ce name="wi dget Socket Servi ce">
<port name="w dget Socket Port > bi ndi ng="t ns: wi dget SOAPbi ndi ng" >
<sock: addr ess host ="1| ocal host" port="8090" />
</ port >
</ servi ce>

525

CHAPTER 21 | Developing Custom Artix Transports

Developing and Registering the Transport

Factory

Overview

In this section

526

Transports are created and managed by the bus, so each transport must
have a transport factory. You create a transport factory by extending
Transport Fact ory. The transport factory is responsible for creating any
resources needed by the transport and setting the threading model used by
the transport.

Transports are loaded by the Artix bus using the plug-in mechanism. So to

use a transport you must write a plug-in that instantiates a transport factory
for your transport. The plug-in must also register the transport factory with

the bus. For a detailed discussion of implementing a plug-in see “Developing
Plug-Ins” on page 469.

This section discusses the following topics:

Creating a Transport Factory page 527
Transport Policies page 530
Registering and Unregistering a Transport Factory page 533

Developing and Registering the Transport Factory

Creating a Transport Factory

Overview Transports are managed by the bus using a transport factory. The transport
factory allows the bus to create transport instances, to initialize the
transport with the desired policies, and to eventually shutdown the
transport. You create a transport factory for your transport by extending the
abstract comi ona. j bus. Transport Fact ory class.

TransportFactory methods Transpor t Fact ory has six methods that must be implemented. These are
explained in Table 33.

Table 33: Method for Transport Factory

Method Function

QientTransport createdientTransport() This method is responsible for instantiating
an instance of your i ent Tr anspor t
implementation. In addition, you can
initialize any resources needed by your client
transport.

voi d destroydientTransport(dientTransport transport) | This method is responsible for cleaning up
any resources used by your
dient Transport implementation.

Thr eadi ngMbdel get A i ent Thr eadi nghbdel () This method is responsible for specifying the
threading model used by your client
transport. For details about the available
threading models see “Transport threading
models” on page 530.

Server Transport creat eServer Transport () This method is responsible for instantiating
an instance of your Server Tr anspor t
implementation. In addition, you can
initialize any resources needed by your
server transport.

voi d destroyServer Transport (Server Transport transport) | This method is responsible for cleaning up
any resources used by your
Ser ver Transport implementation.

527

CHAPTER 21 | Developing Custom Artix Transports

Table 33: Method for Transport Factory

Method Function

Server Transpor t Pol i ci es get Server Tr anspor t Pol i ci es() This method is responsible for specifying the
threading model used by your server
transport, who supplies threads to the
transport, and if the transport can support
concurrent requests. For details about the
available threading models see “Transport
Policies” on page 530.

Example Example 318 shows a transport factory for a custom transport.
Example 318:SocketTransportFactory

inport comi ona.j bus. *;

publ i c cl ass Socket Transport Fact ory extends Transport Factory

{

private final ServerTransportPolicies serverPolicies = new DenoServer Transport Pol i ci es();

public AientTransport created ient Transport ()

{
return new Socket d i ent Transport();
}
public void destroydientTransport(dient Transport transport)
{
}
publ i c Threadi ngMbdel get d i ent Thr eadi nghbdel ()
{
return Threadi nghbdel . MLLTI _THREADED;
}
publ i c Server Transport createServer Transport ()
{
return new Socket Server Transport();
}
publ i c voi d destroyServerTransport (Server Transport transport)
{
}

528

Developing and Registering the Transport Factory

Example 318:SocketTransportFactory

publ i c Server Transport Polici es get Server Transpor t Pol i ci es()

{
return serverPol i cies;
}
private class DenoServer Transport Pol i ci es inpl ements Server Tr ansport Pol i ci es
{
public voi d set Threadi ngResour cesPol i cy(Ser ver Tr anspor t Thr eadi ngResour cesPol i cy pol i cy)
{
}

publ i ¢ Server Transport Thr eadi ngResour cesPol i cy get Thr eadi ngResour cesPol i cy()
{

}

return Server Tr anspor t Thr eadi ngResour cesPol i cy. ARTI X_DRI VEN

public voi d set Messagi ngPort Thr eadi ngPol i cy(Thr eadi nghbdel pol i cy)

{
}

publ i ¢ Threadi nghvbdel get Messagi ngPort Thr eadi ngPol i cy()
{

}

return Threadi nghdel . MULTI _THREADED,

public voi d set Requi resConcurrent D spat chPol i cy(Bool ean requi resConcurrent D spat ch)

{

}
publ i ¢ Bool ean get Requi r esConcurrent Di spat chPol i cy()
{
return Bool ean. TRUE
}
}

}

529

CHAPTER 21 | Developing Custom Artix Transports

Transport Policies

Overview Both client and server transports have policies that are used to control how
the bus manages the transport and how the transport handles messages.
Client transports have only one policy. The policy controls its threading
model. This policy is set in the transport factory’s
get d i ent Thr eadi ngMbdel () method.

Server transports on the other hand, have three policies that need to be set.
One policy, the threading policy uses the same values as the client
transport. The other policies determine who controls the threads used by the
transport, if the transport is able to optimize its calls to the messaging
chain, and if the transport requires all calls to be handled synchronously or
asynchronously.

Transport threading models Artix transports can use one of the three threading models listed in
Table 34.

Table 34: Transport Threading Models

Threading Model Behavior

MULTI _I NSTNACE A new instance of the transport will be created for
each thread that uses this particular type of
transport.

MULTI _THREADED One instance of the transport is created by the bus
and all threads that use this particular type of
transport use the same instance. When writing
transports with this threading model, you are
responsible for ensuring that the code is thread
safe.

SI NGLE_THREADED One instance of the transport is created and only
one thread can access the instance.

530

Server transport policies

Message port threading policy

Threading resource policy

Developing and Registering the Transport Factory

You establish the server transport’s policies in the transport factory’s

get Server Transport Pol i ci es() method. get Server Transport Pol i ci es()
returns an instance of the comi ona. j bus. Server Transport Pol i ci es
interface. As shown in Example 318, you need to implement this interface
for a custom transport.

Server Transpor t Pol i ci es has getter and setter methods for each of the
server transport policies. You only need to provide implementaitons for the
getter methods of the interface. For each policy, the value returned in the
getter method is the value that the bus will use to set-up the transport. So
the transport in Example 318 has the following policy settings:

® Message port threading policy is MULTI _THREADED.

® Threading resource policy is ARTI X_DR VEN.

® Requires concurrent dispatch policy is true.

The message port threading policy determines the threading model used by
the server transport. It is set in

Ser ver Transpor t Pol i ci es. get MessagePor t Thr eadi ngPol i cy() . It takes the
same values as the client transport threading model. For more information
see, “Transport threading models” on page 530.

The threading resource policy determines from where the threads used by
the server transport are provided. It is set in

Server Transpor t Pol i ci es. get Thr eadi ngResour cePol i cy() . Server
transports can either use threads provided by the bus from an Artix
managed thread pool, it can directly access the bus’ work queue thread, or
it can manage its own thread pool.

531

CHAPTER 21 | Developing Custom Artix Transports

Requires concurrent dispatch
policy

532

Artix includes a static class called
com i ona. j bus. Server Tr anspor t Thr eadi ngResour cesPol i cy that contains
the values for the threading resource policy. Table 35 explains these values.

Table 35: Threading Resource Policy Values

Policy Value Description

ARTI X_DR VEN Artix provides the transport with threads for
processing requests. When using this setting, you
may need to implement the run() method of the
Server Transport class depending on the setting
of the message port threading policy.

USES_WORKQUEUE Artix provides the transport with one of its work
queues. The work queue will then process the
incoming requests asynchronously.

TRANSPCRT_DRI VEN | The transport is responsible for providing its own
thread pool. It is also fully responsible for
processing all incoming requests and ensuring that
responses are returned to the client.

The requires concurrent dispatch policy specifies if the transport can handle
concurrent requests. The setting is used by Artix to determine what
optimizations can be made when processing requests. It is set using

Ser ver Transport Pol i ci es. get Requi resConcur r ent Dsi pat chPol i cy() .

Setting the requires concurrent dispatch policy to t rue informs Artix that
multiple threads can call the transport’s di spat ch() method at one time.
Setting it to fal se will inform Artix that the transport can process only one
di spat ch() call at a time.

Developing and Registering the Transport Factory

Registering and Unregistering a Transport Factory

Register the transport factory

Unregister the transport factory

Example

You must register the transport factory for your transport with the bus before
it can be used. You register the transport factory in the busl ni t () method of
the plug-in that loads your transport. The method for registering a transport
factory with the bus is bus. regi st er Transpor t Fact ory() .

regi ster Transpor t Fact ory() takes two arguments. The first is the
namespace under which the transport will be registered. The second is an
instance of the transport’s transport factory.

When your transport is no longer needed, it should be unregistered by the
transport plug-in’s busShut down() method. You unregister a transport using
the bus. der egi st er Transpor t Fact ory() . der egi st er Tr anspor t Fact or y()
takes the namespace of the transport to be unregistered as its only
argument.

Example 319 shows a transport plug-in that registers and unregisters a
transport factory with the bus.

Example 319:Transport Plug-in

inport comiona.jbus. *;
inport comiona.jbus. servants. *;
inport javax.xm .namespace. Q\arre;

inport java.net.*;
inport java.io.*;

publ i c cl ass DenoTransport Pl ugl n ext ends BusPl ugl n

{
publ i ¢ DenoTransport P ugl n(Bus bus)

{
super (bus) ;

}

533

CHAPTER 21 | Developing Custom Artix Transports

Example 319:Transport Plug-in

public void buslnit() throws BusException
{

Transport Factory factory = new Socket Transport Fact ory();
get Bus() . regi ster Transpor t Fact or y(
“http://w dget Vendor . coni t ranspor t/ socket ",
factory);

}

publ i c voi d busShut down() throws BusException

{
get Bus() . der egi st er Transpor t Fact or y(
"http://w dget Vendor . coni transport/socket");

}

For more information on plug-in development see “Developing Plug-Ins” on
page 469.

534

Developing the Client Transport

Developing the Client Transport

Overview

The client transport is invoked by client proxies. It is responsible for writing
requests to a server and for passing the response, if one is expected, back to
the proxy’s binding. Requests are received from the binding, or the last
request-level handler if any exists, as a stream whose contents are placed
on the wire for transmission. Responses are read from the wire into a stream
that is passed back up through the messaging chain.

You create a client transport by implementing the
comiona.jbus.dient Transport interface. dient Transport has six
methods that need to be implemented. describes them.

Table 36: ClientTransport Methods

Method

Description

initialize()

Parses the Artix contract to get the initial
configuration for the endpoint and initializes any
resources needed by the client transport.

connect ()

Establishes the connection between the transport
and the physical hardware responsible for
carrying the message.

di sconnect ()

Disables the connection and releases any system
resources used by the connection.

get Qut put St reamn()

Creates an output stream to which outgoing data
written.

i nvoke() Writes information out to the network and waits
for a response from the server.
i nvokeOneway() Performs similar duties to i nvoke() but it is

called when the operation is defined as a oneway
operation in the endpoints contract. It writes the
request out to the network, but does not wait for
a response.

535

CHAPTER 21 | Developing Custom Artix Transports

Initializing a client transport

536

Theinitialize() method of the client transport is responsible for
initializing any resources needed by the transport and for determining the
transports initial settings. The signature for i ni tialize() is shown in
Example 320.

Example 320:initialize()

void initialize(String wsdl Path, Q\ane servi ceNane,
String wsdl Port Nane)
t hrons BusExcepti on;

It takes three parameters: wsdl Pat h is the absolute path to the Artix contract
containing the transport details to be used in configuring the connection.
servi ceNane is the Q\ane of the service containing the definition for the
endpoint. wedl Por t Nane is the name of the port defining the details of the
endpoint.

The transport details of an endpoint are specified using a port element in an
application’s Artix contract and your client transport will need to parse the
contract to get the information defined in this <por t > element. The elements
in which the transport details are placed should correspond to the elements
defined in the previous step. You can parse the Artix contract for these
elements using any XML parsing API at your disposal.

For example, the custom transport demo shipped with Artix creates a DOM
for the Artix contract and parses the DOM using standard Java APls. The
demo parses the contract in following steps:

1. Find the servi ce element with the service name specified by
servi ceNane.

Find the port element specified by wsdl Port Narre.
Get the addr ess element from the port.
Get the value for the port attribute.

S

Get the value for the host attribute.

Your transport will also need to perform steps one and two to get the port
element defining the specifics for the endpoint. However, the rest of the
parsing will be determined by the structure of the elements you defined to
contain the description of an endpoint using your transport.

Developing the Client Transport

Example 321 shows the initialize() method for the custom transport
demo.

Example 321:/nitialization Method for Custom Transport

public void initialize(String wsdl Path, Q\ane servi ceNarre,
String wsdl Port Name) throws BusException

{
1 try
{
Docunent Bui | der Factory factory =
Docurrent Bui | der Fact ory. newl nst ance() ;
fact ory. set NanespaceAwar e(true) ;
Docunent Bui | der bui | der = factory. newDocunent Bui | der () ;
File file = new Fil e(new UR (wsdl Path));
Docunent wsdl = buil der. parse(file);
2 NodeLi st nodes =
wsdl . get B enent sByTagNameNS(" ht t p: // schemas. xm soap. or g/ wsdl /
", "service");

El ement serviceH = null;

for(int i =0; i < nodes.getlLength(); ++i)

{
servi ceEl = (H enent)nodes.iteni);
String nane = servicelH .getAttribute("nane");
i f (servi ceNane. get Local Part (). equal s(nane))

{

}
}

br eak;

537

CHAPTER 21 | Developing Custom Artix Transports

Example 321:/nitialization Method for Custom Transport

3 nodes =
servi ceH . get H enent sByTagNameNS(" ht t p: / / schemas. xm soap. or g/
wsdl /", "port");

Henent portE = null;

for(int i =0; i < nodes.getlLength(); ++)
{
portEH = (E erment)nodes.iten(i);
String nane = portE .getAttribute("nane");
i f (wsdl Port Narre. equal s(nane))

{
br eak;
}
}
4 nodes =
port B . get B enent sByTagNameNS(" ht t p: // schenas. i ona. cond t r ansp
orts/socket", "address");

H enent addressEl = (E enent)nodes.iten(0);

5 String port = addressH .getAttribute("port");
[/l mportnumis defined el sewhere in this class.
m portnum = (new I nteger(port)).intVal ue();

6 I/l mhost is defined el sewhere in this class.

m host = addressH .get Attribute("host");

}

cat ch(Excepti on ex)

{
t hr ow new BusExcepti on(ex);

}

}

The code in Example 321 does the following:

1. Loads the application’s contract into the DOM.

2. Finds the correct servi ce element.

3. Finds the correct port element.

4. Finds the addr ess element that defines the connection information for
a port using the custom transport.

5. Sets the transport’s port number to the value set in the port attribute.

538

Making and breaking connections
in a transport

Developing the Client Transport

6. Sets the transport’s hostname to the value set in the host attribute.

Client transport connections are made when the bus invokes the transport’s
connect () method. Its signature is shown in Example 322. connect () is
called immediately after i nitialize() and is only called once per transport
instance.

Example 322:connect()
voi d connect () throws BusException

Client transport connections are broken when the bus invokes the
transport’s di sconnect () method. Its signature is shown in Example 323.
di sconnect () is called just before the bus destroys the resources used by
the transport’s plug-in.

Example 323:disconnect()

voi d di sconnect () throws BusException

Example 324 shows code for making and breaking a socket connection.
Example 324:Making and Breaking a Socket Connection

public void connect () throws BusException

{
try
{
/1 msocket is defined el sewhere in this class.
nySocket = Socket Channel . open() ;
nySocket . connect (new | net Socket Addr ess(m host, m portnun));
nySocket . fi ni shConnect () ;
}
cat ch(1 CException i oex)
{
t hrow new BusExcepti on(i oex);
}
}

539

CHAPTER 21 | Developing Custom Artix Transports

Getting an output stream

540

Example 324:Making and Breaking a Socket Connection

public void disconnect() throws BusException

{
try
{

}
cat ch(| CExcepti on i oex)

{

}
}

nySocket . cl ose();

t hr ow new BusExcepti on(i oex) ;

When a client proxy invokes an operation, the bus passes the request
message down the messaging chain until it reaches the client transport. At
this point, Artix needs a Java Qut put St r eamto use for writing the request
out to the wire. The client transport’s get Qut put St rean{) method is
responsible for instantiating the output stream to which the request is
written. So, when creating your transport you will need to create the
appropriate type of stream for your transport. For example, the custom
transport demo creates socket streams to read and write data.

get Qut put Strean(), shown in Example 325, is called imediately before the
bus calls i nvoke() or i nvokeneway().Once get Qut put St rean() returns,
the bus writes the request message into the returned output stream and
then calls the proper invocation method on the transport.

Example 325:getOutputStream()

Qut put St r eam get Qut put St r ean{ MessageCont ext cont ext)
throws Transport Excepti on;

Invoking an operation

Developing the Client Transport

Example 326 shows the get Qut put Strean() implementation in custom
transport demo.

Example 326:Custom Transport Demo getOutputStream()

private static final String CLI ENT_TRANSPCRT_CONTEXT_KEY =
Denod i ent Transport . cl ass. get Nane() + ". SOCKET";

publ i c Qut put Stream get Qut put St r ean{ MessageCont ext cont ext)
throws Transport Exception
{

try {
Socket socket = new Socket (m_host, m portnun);

cont ext . set Propert y(CLI ENT_TRANSPCRT_CONTEXT_KEY, socket);
return socket. get Qut put Strean();

} catch (I CException ioex) {
t hrow new Tr ansport Excepti on(i oex) ;

After writing the request, the bus calls either the client transport’s i nvoke()
method or the client transport’s i nvokeneway() method depending upon
how the operation is defined in the application’s contract.

The bus calls i nvoke() when the operation definition in the application’s
contract has both an input message and an output message. If the operation
is defined as a oneway operation, meaning that it only has an input
message, then the bus calls i nvokeneway() .

Both operations receive the Qut put St reamto which the bus wrote the
request and the MessageCont ext object associated with the invocation.
Depending on the type of output stream used, invoke() and invokeOneway()
may need to push the request out to the wire. For example, a transport the
uses Byt eAr r ayQut put St r eamoutput streams will need to push the data to
the wire. However, if the transport uses a socket output stream, like the
custom transport demo, the data is pushed to the wire as soon as it is
written into the output stream.

Note: For information on accessing information in a message context, see
“Using Message Contexts” on page 267.

541

CHAPTER 21 | Developing Custom Artix Transports

542

The difference between the operations is that i nvoke() waits for a response
to be returned and passes the response back the bus as a Java

I nput Buf fer. i nvokeOneway() simply returns after pushing the message to
the wire.

The signatures for i nvoke() and i nvokeneway() are shown in
Example 327.

Example 327:/nvoking Operations From the Transport

I nput St ream i nvoke(Qut put St ream r equest, MessageCont ext cont ext)
throws Transport Exception

voi d i nvokeCneway(Qut put St ream request, MessageCont ext cont ext)
throws Transport Exception

Example 328 shows he implementation of i nvoke() used in the custom
transport demo. The code gets the socket created for the invocation in
get Qut put Strean() . It then gets the response from the socket as an

I nput St ream

Example 328:invoke() for a Socket Transport

publ i c I nput Stream i nvoke(Qut put Stream r equest,
MessageCont ext cont ext)

throws Transport Exception

{

try {
final Socket socket =

(Socket) cont ext . get Propert y(CLI ENT_TRANSPCRT_CONTEXT_KEY) ;
socket . shut downQut put () ;

/lclose the socket when done
return new Filterlnput Strean{socket.getlnputStrean()) {
public void close() throws |CException {
super . cl ose();
socket . cl ose();
}
IE
} catch (I CException ioex) {
t hrow new Tr ansport Excepti on(i oex) ;
}
}

Developing the Server Transport

Developing the Server Transport

Overview

The server transport is responsible for reading requests from the wire,
passing it to the server binding, and then writing the replies back to the wire
for delivery. Requests are read from the wire using input streams that are
passed on to any request-level handlers and then to the binding. Replies are
returned to the transport as an output stream that is then placed back on

the wire.

You create a server transport by implementing the
com i ona. j bus. Server Transport interface. Server Transport has six
methods as shown in Table 37.

Table 37: ServerTransport Methods

Method

Description

activate()

Parses the Artix contract to get the initial
configuration for the endpoint and initializes any
resources needed by the server transport. If the
transport's message port threading policy is
MULTI _I NSTANCE and the transport’s threading
resource policy is ARTI X_DR VEN, activate() is
also responsible for request processing.

run()

Reads requests off of the wire and dispatches
them to the transport callback object. The
callback object then passed the message up the
messaging chain.

get Qut put St rean()

Creates the output stream to which the bus
writes responses.

post D spat ch()

Called by the transport callback object after it
writes the response to the output stream.
Depending on the type of output stream used,
post Di spact h() may have to push the response
to the wire. post D spat ch() can also be used to
clean up any resources used in processing the
request.

543

CHAPTER 21 | Developing Custom Artix Transports

In this section

544

Table 37: ServerTransport Methods

Method Description

deacti vat e() Stops the transport listener and allows any
requests that are already in process to complete.

shut down() Disables the connection and releases any system
resources used by the connection.

Depending on the server transport policies set for the transport, you do not
need to implement all of the methods. At a minimum, you will need to
provide implementations for acti vat e(), get Qut put St rean(),

deacti vat e(), and shut down() .

This section discusses the following topics:

Activating a Server Transport page 545
Processing Requests page 550
Shutting Down a Server Transport page 558

Developing the Server Transport

Activating a Server Transport

Overview

activate()

Contract parsing

The activate() method of the server transport is responsible for initializing
any resources needed by the transport and for determining the transports
initial settings. Depending on the threading policies set on the transport,
acti vat e() may also have other responsibilities such as request processing.

The signature for acti vat e() is shown in Example 320.
Example 329:activate()

voi d activate(String wsdl Path, Q\ame service, String port,
Transport Cal | back cal | back, WrkQueue queue)
throws Transport Exception

acti vat e() takes five parameters: wsdl Pat h is the absolute path to the Artix
contract containing the transport details to be used in configuring the
connection. servi ceNarre is the Q\ane of the service containing the definition
for the endpoint. port is the name of the port defining the details of the
endpoint. cal | back is a reference to a bus managed callback object that
passes the request up the message chain and returns the output stream
containing the reply. queue is the Artix Wor kQueue that will be used by the
transport to process requests if the threading resource policy is set to
USES_ WRKQUELE.

Note: You do not need to implement the callback object because it is
implemented and managed by the bus. However, your transport does need
to maintain a handle to the callback object to pass requests up the
message chain.

The transport details of an endpoint are specified using a port element in an
application’s Artix contract and your client transport will need to parse the
contract to get the information defined in this port element. The elements in
which the transport details are placed should correspond to the elements
defined in the previous step. You can parse the Artix contract for these
elements using any XML parsing API at your disposal.

545

CHAPTER 21 | Developing Custom Artix Transports

Threading policies and activate()

For example, the custom transport demo shipped with Artix creates a DOM
for the Artix contract and parses the DOM using standard Java APls. The
demo parses the contract in following steps:

1. Find the servi ce element with the service name specified by
servi ceNane.

Find the port element specified by wsdl Por t Narre.
Get the addr ess element from the port.
Get the value for the port attribute.

o &~ wnN

Get the value for the host attribute.

Your transport will also need to perform steps one and two to get the port
element defining the specifics for the endpoint. However, the rest of the
parsing will be determined by the structure of the elements you defined to
contain the description of an endpoint using your transport.

The threading policies set on the server transport will determine, to some
extent, how you code activate(). In all cases, activate() will need to
parse the contract and set-up the transport’s resources. However, the
threading policy settings determine what acti vat e() needs to do after the
transport resources are set-up.

Table 38 shows what acti vat e() needs to do for all combinations of
message port threading policy settings and threading resource policy
settings.

Table 38: activate() Responsibilities by Threading Policies

Message Port Thread Policy

Threading Resource Policy activate() Responsibilities

MULTI _THREADED

USES WIRKQUELE activate() spawns a new thread

MULTI _| NSTANCE

to host the Wor kQueue provided by
USES_WERKQUELE the queue parameter. The new

S| NGLE_THREADED

USES_WRKQUELE thread processes requests.

MULTI _THREADED

ARTI X_DR VEN activate() can exit once the
transport’s resources are set-up.

MULTI _| NSTANCE

ARTI X_DR VEN activate() must block and
process requests from the wire.

546

Developing the Server Transport

Table 38: activate() Responsibilities by Threading Policies

Message Port Thread Policy

Threading Resource Policy activate() Responsibilities

S| NGLE_THREADED

ARTI X_DR VEN activate() can exit once the

transport’s resources are set-up.

MULTI _THREADED

TRANSPCRT_DR! VEN activate() creates the threads

MULTI _| NSTANCE

used by the transport to process

TRANSPCRT_DRI VEN requests and hands control off to

S| NGLE_THREADED

TRANSPORT_DRI VEN them.

Notifying the bus

Example

Once the server transport is activated, the transport needs to inform the bus
that the transport is going to begin dispatching messages. The transport
callback object’s t ransport Act i vat ed() method notifies the bus that the
transport is active and ready to begin dispatching messages up the message
chain. transport Act i vat ed() must be called before you begin dispatching
messages.

Example 330 shows the acti vat e() method for the custom server transport
demo. The transport used in the custom transport demo uses the

MUTLI _THREADED message port threading policy and the ARTI X DR VEN
threading resource policy. Therefore, it does not use the Wr kQueue passed
into it and does not block.

Example 330:Activation Method for Custom Server Transport

/'l Java
inport comiona.jbus*;

publ i c cl ass Socket Server Transport i npl enents Server Transport

{
private TransportCal | back theCal | back;

private Server Socket server Socket ;

public void activate(String wsdl Path, Q\ame servi ceNane,

String wsdl Port Nane,

Transport Cal | back cal | back, WrkQueue queue)
throws Transport Exception

{

547

CHAPTER 21 | Developing Custom Artix Transports

548

Example 330:Activation Method for Custom Server Transport
t heCal | back = cal | back;

try

Docurent Bui | der Factory factory =

Docurrent Bui | der Fact ory. newl nst ance() ;

factory. set NanespaceAwar e(true);

Docunent Bui | der bui | der = factory. newDocunent Bui | der () ;
File file = new Fil e(new UR (wsdl Pat h));

Docunent wsdl = buil der. parse(file);

NodeLi st nodes =
wsdl . get El enent sByTagNameNS(" ht t p: / / schenmas. xm soap. or g/ wsdl /
", "service");

E ement serviceBE = null;

for(int i = 0; i < nodes.getlLength(); ++)
{
serviceH = (E enent)nodes.iten(i);
String nane = serviceH .getAttribute("nane");
i f (servi ceNane. get Local Part (). equal s(nane))
{
br eak;
}
}

nodes =
servi ceH . get H enent sByTagNanmeNS(" ht t p: / / schemas. xm soap. or g/
wsdl /", "port");

Henent portE = null;

for(int i = 0; i < nodes.getlLength(); ++)
{

portEH = (E erment)nodes.iten(i);

String nane = portE .getAttribute("nane");

i f (wsdl Port Narre. equal s(nane))

{

br eak;

}

}

Developing the Server Transport

Example 330:Activation Method for Custom Server Transport

}

nodes =

port Bl . get El ement sByTagNaneNS(" ht t p: // schenas. i ona. coni t r ansp
orts/socket", "address");

El enent addressBE = (E erent)nodes.iten(0);

String port = addressH .getAttribute("port");
int portnum= (new I nteger(port)).intVal ue();

String host = addressH .getAttribute("host");

server Socket = new Server Socket (portnum O,
| net Addr ess. get ByNane(host)) ;

theCal | back. transport Activated();

cat ch(Excepti on ex)

{
}

t hrow new Transport Excepti on(ex) ;

The code in Example 321 does the following:

1.

o~ wnN

L o N o

Saves a handle to the transport callback in a private data member.
Loads the application’s contract into the DOM.

Finds the correct servi ce element.

Finds the correct port element.

Finds the addr ess element that defines the connection information for
a port using the custom transport.

Sets the transport’s port number to the value set in the port attribute.
Sets the transport’s hostname to the value set in the host attribute.
Creates a Ser ver Socket to connect to the endpoint.

Notifies the bus that the transport is active and ready to dispatch
messages.

549

CHAPTER 21 | Developing Custom Artix Transports

Processing Requests

Overview

Dispatching messages to the
messaging chain

550

Server transport process requests by reading the data off of the wire,
dispatching the request to the transport callback object in an input stream,
and then writing the response to the wire. Which method is responsible for
reading the request from the wire and dispatching the request to the
transport callback object depends on the transport's policy settings. For
example, in a mulit-instance transport with a thread resource policy of

ARTI X_DR VEN, reading the request and dispatching the request to the
transport callback would be handled in act i vat e() . However, in a transport
with a thread resource policy of USES WRKQUEUE, the message reading is
done in a Wrkl t emobject.

The method responsible for writing the response to the wire depends on the
type of output stream used to write the response. If you use an output
stream that automatically writes the message to the wire, such as a socket
output stream or a file output stream, the request is put on the wire when
the transport callback puts the message into the output stream. However, if
your transport uses an output stream type that does not write to the wire,
such as a Byt eArrayQut put St r eam post Di spat ch() will need to push the
response to the wire. See “Writing the response” on page 554.

Server transports use a callback mechanism to pass messages to the
messaging chain. The Transport Cal | back object provided to activate() is
used to dispatch requests to the messaging chain and return the responses.
The Transport Cal | back object has one method di spat ch() that takes an
input stream containing a request message and the active MessageCont ext
object as input parameters. The signature for di spat ch() is shown in
Example 331.

Example 331:TransportCalback.dispatch()
voi d di spat ch(l nput Stream request, MessageCont ext ctx);

When the message chain returns the response to the transport callback
object, the transport callback object calls get Qut put St rean{) on the server
transport to get an output stream. The transport callback object writes the
response into the returned output stream and then calls post D spat ch() on
the server transport. See “Writing the response” on page 554.

Reading requests with a
USES_WORKQUEUE threading
resource policy

Developing the Server Transport

When a transport’s threading resource policy is set to USES_WRKQUEUE, you
implement a thread to read requests off of the wire and place them on the
Wor kQueue. The requests are dispatched to the messaging chain by a

Wor ki t emobject that you implement.

The first step is to extend the Thr ead class for your transport. In the thread’s
run() method, three things need to happen.

1. Requests are read into an input stream.
2. The stream is packed into a Wr kI t emobject.

3. The Wrkl temis placed onto the work queue using the work queue’s
enqueue() method.

Example 332 shows a thread for a server transport with a threading
resource policy of USES WORKQUELE.

Example 332:Server Transport Thread

cl ass denoLi st ener Thread extends Thread
{
private final WrkQueue theQueue;
private final Socket theSocket;
private final TransportCall back theCal |l back;

public |istenerThread(Wr kQueue wor kQueue,
Ser ver Socket server Socket ,
Transport Cal | back cal | back)
{
t heQueue = wor kQueue;
t heSocket = server Socket . accept ();
t heCal | back = cal | back;

}

public void run()

while (true)

{
I nput Stream request = theSocket . get | nout Streamn();
Wrkltemitem= new demoWr ki t en{request, theCallback);
t heQueue. enqueue(item -1);

}

}
}

551

CHAPTER 21 | Developing Custom Artix Transports

The second thing you need to do is implement the com i ona. j bus. Vor kit em
interface for your transport. Wr ki t emhas two methods: execut e() and
destroy().

execut e() is called when the work queue processes this work item. In
execut e(), your work item needs to dispatch the request message to the
messaging chain using the transport callback’s di spat ch() method.

destroy() is called by the work queue when the work item is finished being
processed. It is is responsible for cleaning up any resources used by the
work item.

Example 333 shows a work item for a server transport.
Example 333:Transport Work Item

inport comi ona.j bus. BusExcepti on;
inport comiona.jbus. Wrkltem

public class demoWrkltem i npl ements Wrkltem
{
private final TransportCall back theCal | back;
private final ByteBuffer theMessage;

publ i ¢ denoWr ki t en{ | nput St r eam message,
Transport Cal | back cal | back)
{
theMessage = nessage;
theCal | back = cal | back;

}

public voi d execute() throws BusException

{
MessageCont ext context = theCal | back. get Current Cont ext () ;
t heCal | back. di spat ch(request Buf, context);

}

public void destroy() throws BusException

{

}

}

Reading requests with a When a transport’s threading resource policy is set to ARTI X_DR VEN and its
ARTIX_DRIVEN threading message port threading policy is set to MLTI _THREADED, run() is
resource policy responsible for pulling requests off of the wire and dispatching them to the

552

Developing the Server Transport

messaging chain. run() is called once per thread that uses the transport
and must loop for as long as the connection is open. Inside the loop, run()
reads requests off of the wire and passes the requests up the messaging
chain using the transport callback’s di spat ch() method.

When a transport’s threading resource policy is set to ARTI X_DR VEN and its
message port threading policy is set to MULTI _I NSTANCE, acti vat e() is
responsible for pulling requests off of the wire and dispatching them to the
transport callback method. In this case, acti vat () must block by looping
as long as the connection is open. Inside the loop, acti vate() reads
requests off the wire and dispatching them to the messaging chain.

Example 334 shows the code for implementing run() for a multi-threaded
transport.

Example 334:run() for a Custom Server Transport

/'l Java
inport iona.comjbus.*;

publ i c cl ass Socket Server Transport i npl enents Server Transport

{

public void run() throws TransportException
{

try

{

++connect i onCount ;
whil e (!serverSocket.isd osed())
{

Socket socket;

synchr oni zed(ser ver Socket)

{ if (!serverSocket.isd osed())
{ socket = server Socket . accept();
} el se
{
br eak;
}
}

MessageCont ext di spat chCont ext =
theCal | back. get Qurrent Context () ;

553

CHAPTER 21 | Developing Custom Artix Transports

Reading requests with a
TRANSPORT_DRIVEN threading
resource policy

Writing the response

554

Example 334:run() for a Custom Server Transport

di spat chCont ext . set Pr opert y(SERVER_TRANSPCRT_CONTEXT_KEY,
socket) ;

t heCal | back. di spat ch(socket . get | nput Strean(),
di spat chCont ext) ;

}
} catch (Exception ex)

{

t hr ow new Tr ansport Excepti on(ex) ;
}
}

}
The code in Example 334 does the following:
Loop for as long as the socket opened in acti vat e() remain open.
Synchronizes access to the socket to ensure thread safety.
Blocks until a socket channel is accepted.
Gets the message context.
Stores the socket in the message context for later use.

o ok wb

Dispatches the request to the transport callback object.

When the threading resource policy is set to TRANSPORT_DR VEN, your
transport is responsible for implementing its own threads for processing
messages. The implementation details would be similar to implementing a
transport with the USES_WIRKQUELE threading resource policy. In your
thread’s run(), you would pull messages off of the wire and dispatch them
to the messaging chain using the transport callback object. Where the
response were written to the wire would depend on the type of output
streams used and how your transport pushes data to the wire.

When the message chain returns a response to the transport callback
object, the transport callback object does the following:

1. Invokes get Qut put Strean() on the server transport to get an
appropriate output steam for writing the response.

2. Writes the response into the returned output stream.

Developing the Server Transport

3. Invokes post D spat ch() on the server transport to allow for any post
processing that need to be done.

4. Closes the output stream.

You are responsible for providing implementations of get Qut put St r eant()
and post D spat ch() for your server transport.

get Qut put Strean(), as shown in Example 335, takes a message context as
a parameter and returns a Java Qut put St reaminto which the transport
callback object will write the response.

Example 335:ServerTransport.getOutputStream()

publ i c Qut put Stream get Qut put St r ean{ MessageCont ext ct x)
throws Transport Excepti on;

Example 336 shows the implementation of get Qut put Strean() used in the
custom transport demo. It creates a socket output stream using a socket
stored in the request’s message context. The resulting output stream
provides a direct connection to the client who made the request.

Example 336:Socket Transport Server Side getOutputStream()

publ i c Qut put St ream get Qut put St r ean{ MessageCont ext ct x)
throws Transport Exception
{
try
{
Socket socket =
(Socket) ct x. get Pr oper t y(SERVER_TRANSPCRT_CONTEXT_KEY) ;
return socket. get Qut put Strean();
} catch (Exception ex)
{
t hrow new Transport Excepti on(ex) ;
}
}

555

CHAPTER 21 | Developing Custom Artix Transports

Using message contexts

556

post D spat ch() is called by the transport callback object after the response
is written to the output stream. It is used to do any post-processing and
clean-up required after a request is fully processed. As shown in

Example 337, post Di spat ch() takes the Qut put St reamcontaining the
response and the request’s message context.

Example 337:postDispatch()

public void post D spat ch(Qut put St ream request,
MessageCont ext ct x)
throws Transport Excepti on;

shows the implementation of post Di spat ch() used in the custom transport
demo. Because this transport uses socket streams, post Di spat ch() does
not need to do anything to with the output stream. The response was
delivered when the transport callback object wrote it to the output stream.
However, if your transport uses some other mechanism for pushing the
response to the wire, post D spat ch() would be the method to place that
logic.

Example 338:Custom Transport postDispatch()

publ i c voi d post D spat ch(Qut put St ream r equest,
MessageCont ext ct x)
throws Transport Exception
{
try
{
Socket socket =
(Socket) ct x. get Proper t y(SERVER_TRANSPORT_CONTEXT_KEY) ;
socket . cl ose();
} catch (Exception ex)
{
throw new Tr ansport Except i on(ex) ;
}
}

If your transport uses a header block to pass transport information, like the
header used by JMS, that the application code may be interested in, you
can pass this information up the messaging chain using the Artix message
context mechanism.

Developing the Server Transport

To get access to the application’s message context, you use the

get Qurrent Cont ext () method of the transport callback object.

get Qurrent Cont ext () returns a JAX-RPC MessageCont ext object. To pass
custom header information back to the application level, you will need to
cast the JAX-RPC message context to an | onaMessageCont ext object and
set the appropriate context properties. The transport callback will
automatically pass the context information up the messaging chain where
the handlers and application level code can access it.

For more information on using contexts see “Using Message Contexts” on
page 267.

557

CHAPTER 21 | Developing Custom Artix Transports

Shutting Down a Server Transport

Overview

Shutting down a transport using a
TRANSPORT_DRIVEN threading
resource policy

Notifying the bus

Example

558

When the bus shuts a servant down it calls shut down() on the transports
used by that servant. shut down() is responsible for closing any open
connections used by the transport and cleaning up the resources used by
the transport.

When your transport uses the TRANSPORT_DR VEN threading resource policy,
Artix does not automatically clean up the transport’s threads. Your

shut down() implementation must clean-up all of the threads spawned by
the transport.

When the transport has finished cleaning up its resources and is ready to be
fully shutdown, it need to notify the bus that it can no longer send or receive
messages. The transport callback’s t r anspor t Shut downConpl et e() method
notifies the bus when the transport is done shutting itself down and cannot
accept any more messages. Typically this is the last thing your server will do
before shut down() exits.

Example 339 shows the code used to disconnect a socket server transport.
The code simply loops through all of the open sockets and closes them.
Once the sockets are closed the loop in connect () is broken and it will exit.

Example 339:Disconnecting a Custom Server Transport

/1 Java
inport iona.comjbus. *;

public class Socket Server Transport inpl enents Server Tr anspor t

{

Developing the Server Transport

Example 339:Disconnecting a Custom Server Transport

public void disconnect () throws Exception

{

i f(--connectionCount <=0)

{

m SSChannel . cl ose() ;

}

m cal | back. t ranspor t Shut downConpl et e() ;

}
}

559

CHAPTER 21 | Developing Custom Artix Transports

Using your Custom Transport

Overview

Adding the transport to an Artix
contract

560

To use a custom transport you need to add the appropriate entries in you
application’s contract and add some configuration to your Artix configuration
file. The entries in the application’s contract inform the bus that your
application uses the transport and describes how the endpoint is to be
established. The configuration information tells Artix how to load the plug-in
that implements the transport.

To make an application use your custom transport, you must create an
endpoint that is defined as using the custom transport in the application’s
contract. You add an endpoint description to a contract in two steps:

1. Add an XML namespace declaration to the defi ni ti on element of the
contract so that the contract can include elements defined by the
schema defining your transport.

2. Add a service element and port element to describe an endpoint that
uses your transport to the contract.

Example 340 shows a fragment from a contract that uses the custom socket
transport defined in this chapter. Notice that the namespace declaration for
the socket transport,

xm ns: sock="ht t p: / / wi dget Vendor . coni t r anspor t/ socket ", uses the
target namespace from the schema definition of defining the WSDL
extensions for describing a the transport.

Example 340:Contract using a Custom Transport

<?xm version="1.0" encodi ng="UTF-8"?>

<definitions nane="wi dget Socket Vendor "
t ar get Nanespace="ht t p: / / schenas. i ona. coni wi dget Vendor "
xm ns="ht t p: // schemas. xm soap. or g/ wsdl / "
xm ns: tns="http://schenas. i ona. conml wi dget Vendor "
xm ns: xsd="ht t p: / / www W3. or g/ 2001/ XM_Scherma"
xm ns: sock="htt p: // w dget Vendor . coni t ransport / socket "
xm ns: soap="htt p: // schemas. xm soap. or g/ wsdl / soap/ ">

Configuring Artix to load the
transport

Using your Custom Transport

Example 340:Contract using a Custom Transport

<servi ce nanme="wi dget Servi ce">
<port bi ndi ng="tns: w dget SOAPBi ndi ng" nane="wi dget Port ">
<sock: address host ="| ocal host" port="8080"/>
</ port>
</ servi ce>
</ definitions>

For more information on defining endpoints in an Artix contract see
Designing Artix Solutions.

To use a custom transport plug-in, you must make three modifications to
the application’s configuration:

1. Add the Java plug-in to your application’s or b_pl ugi ns list.

2. Specify the namespace for the transport plug-in in the global scope of
the Artix configuration file.

3. Specify the plug-in factory for the plug-in that implements the plug-in.

Specifying the namespace for a transport plug-in

The bus identifies which transport plug-ins to load based on the endpoints
defined in an application’s contract. To do this the bus looks through its
configuration for a namespace match and then loads the specified plug-in.
The namespaces are specified using variables pre-fixed with namespace and
have the syntax shown in Example 341.

Example 341:Specifying a Transport Namespace
nanmespace: xm _namespace: pl ugi n="pl ugi n_nare" ;

xni _namespace is the target namespace in the XMLSchema used to define
your transport’s attributes. pl ugi n_nane is the name by which the plug-in is
configured in the Artix configuration file. For example to specify the
namespace for the socket transport implemented in this chapter you would
use a configuration entry similar to Example 342.

Example 342:Socket Transport Namespace Specification

nanmespace: htt p: //wi dget Vendor . coni t ransport/ socket : pl ugi n="sock"

pl ugi n: sock: cl assname="Socket Pl ugi nFact ory";

561

http://www.iona.com/support/docs/artix/3.0/design/index.htm

CHAPTER 21 | Developing Custom Artix Transports

For more information on configuring Artix plug-ins see “Configuring Artix
Plug-Ins” on page 563.

562

CHAPTER 22

Configuring Artix
Plug-Ins

Artix plug-ins can use the Artix runtime configuration file to
receive configuration information.

In this chapter This chapter discusses the following topics:
Understanding Artix Configuration page 564
Adding Custom Configuration for a Plug-in page 569

563

CHAPTER 22 | Configuring Artix Plug-Ins

Understanding Artix Configuration

Overview

In this section

564

Artix is built upon IONA’s Adaptive Runtime architecture (ART). Runtime
behaviors are established through common and application-specific
configuration settings that are applied during application startup. As a
result, the same application code may be run—and may exhibit different
capabilities—in different configuration environments.

This section discusses the following:

Configuration domains page 565
Configuration scopes page 565
Specifying configuration scopes page 566
Configuration namespaces page 567
Configuration variables page 567
Configuration data types page 568

Configuration domains

Configuration scopes

Understanding Artix Configuration

An Artix configuration domain is a collection of configuration information in
an Artix runtime environment. This information consists of configuration
variables and their values. A default Artix configuration is provided when
Artix is installed. The default configuration file is located in:

Windows % T_PRCODUCT D R artix\artix_version\etc\domains\artix.c
fg

UNIX $I T_PRCDUCT_Dli R artix/artix_version/etc/domai ns/artix. cf
g

You can also manually create new Artix configuration domains to
compartmentalize your applications. These new configuration domains can
import information from other configuration domains using a #i ncl ude
statement in your configuration. This provides a convenient way of
compartmentalizing your application specific configuration from the global
Artix configuration information contained in the default domain.

An Artix configuration domain is subdivided into configuration scopes.
These are typically organized into a hierarchy of scopes, whose
fully-qualified names map directly to ORB names. By organizing
configuration variables into various scopes, you can provide different
settings for individual services, or common settings for groups of services.

Applications read their configuration information from a given scope based
on the ORB name passed into the application’s bus. i nit () call.
Application-specific configuration variables either override default values
assigned to common configuration variables, or establish new configuration
variables.

A configuration scope may include nested configuration scopes.
Configuration variables set within nested configuration scopes take
precedence over values set in enclosing configuration scopes.

565

CHAPTER 22 | Configuring Artix Plug-Ins

Specifying configuration scopes

566

Example 343 shows the nested configuration scope dero. In each nested
scope, or b_pl ugi ns is redefined so that an application starting up in one
scope will load a different set of plug-ins from one starting in another scope.
In addition, each scope sets application-specific configuration variables.

Example 343:Demo Configuration Scope

deno
{
fm _plugin
{
orb_plugins = ["local _|og_streant];
IE
tel co
{
orb_plugins = ["xm _|l og_streanf, “"router"];
pl ugi ns: tunnel :iiop:port = "55002";
poa: MyTunnel : di rect _persistent = "true";
poa: MyTunnel : wel | _known_address = "pl ugi ns: t unnel ";
server
{
orb_plugins = ["local _| og_streant, "iiop_profile",
“giop", "iiop”, "ots"];
pl ugi ns: tunnel : poa_narme = "M/Tunnel ";
s
b
}

To make an Artix process run under a particular configuration scope, you
specify that scope using the - CRBnane parameter. Configuration scope
names are specified using the format scope. subscope.

For example, the scope for the telco server demo shown in Example 343 is
specified as deno. t el co. server. During process initialization, Artix
searches for a configuration scope with the same name as the - CRBnane
parameter.

There are two ways of supplying the - CRBnane parameter to an Artix
process:

® Pass the argument on the command line.
® Specify the ORBname as the third parameter to bus.init().

Configuration namespaces

Configuration variables

Understanding Artix Configuration

For example, to start an Artix process using the configuration specified in the
deno. ti brv scope, you could start the process use the following syntax:

<processNane> [appl i cati on paraneters] -CORBnanme deno.tibrv

Alternately, you could use the following code fragment to initialize the Artix
bus:

bus.init (argc, argv, “deno.tibrv”);

If a corresponding scope is not located, the process starts under the highest
level scope that matches the specified scope name. If there are no scopes
that correspond to the CRBnane parameter, the Artix process runs under the
global scope. For example, if the nested ti brv scope does not exist, the
Artix process uses the configuration specified in the deno scope; if the dermo
scope does not exist, the process runs under the default global scope.

Most configuration variables are organized within namespaces, which group
related variables. Namespaces can be nested, and are delimited by colons
(:). For example, configuration variables that control the behavior of a
plug-in begin with pl ugi ns: followed by the name of the plug-in for which
the variable is being set. For example, to specify the port on which the Artix
standalone service starts, set the following variable:

pl ugi ns: arti x_service:ii op: port

To set the location of the routing plug-in's contract, set the following
variable:

pl ugi ns: rout i ng: wsdl _url

Configuration data is stored in variables that are defined within each
namespace. In some instances, variables in different namespaces share the
same variable names.

Variables can also be reset several times within successive layers of a
configuration scope. Configuration variables set in narrower configuration
scopes override variable settings in wider scopes. For example, a
conpany. oper at i ons. or b_pl ugi ns variable would override a

567

CHAPTER 22 | Configuring Artix Plug-Ins

Configuration data types

568

conpany. or b_pl ugi ns variable. Plug-ins specified at the conpany scope
would apply to all processes in that scope, except those processes that
belong specifically to the conpany. oper ati ons scope and its child scopes.

Each configuration variable has an associated data type that determines the
variable's value.

Data types can be categorized into two types:
® Primitive types
® Constructed types

Primitive types
There are three primitive types: bool ean, doubl e, and | ong,.

Constructed types
Artix supports two constructed types: string and Confi gLi st (a sequence
of strings).

® In an Artix configuration file, the stri ng character set is ASCII.

The Confi gLi st type is simply a sequence of stri ng types. For
example:

orb_plugins = ["local _| og_strean, "iiop_profile",
"giop","iiop"];

Adding Custom Configuration for a Plug-in

Adding Custom Configuration for a Plug-in

Overview

Variable scoping

Variable naming

Supported variable types

Artix provides an API that allows you to access the Artix configuration
mechanism from with in Java plug-ins. This APl makes it easy to place any
configuration information required by a custom plug-in into the standard
Artix configuration file.

The configuration APIs search for configuration variables using fully qualified
variable names similar to the ones used in the common configuration
elements. This means that your custom variables are subject to the same
scoping rules as common configuration elements. So, variables in local
scopes override variables set in more global scopes.

For consistency, it is recommended that you make your configuration
variable names consistent with the naming scheme applied to standard Artix
configuration elements. So, the variables for your plug-ins would also use
the syntax shown in Example 344.

Example 344:Plug-in Variable Syntax
pl ugi ns: pl ugi n_nane: var _nane=val ue;

pl ugi n_name is the name used to refer to the plug-in throughout the
configuration file. var _name is the name of the configuration variable and
val ue is the value of the variable.

The Artix configuration APIs allow you to use either string configuration
variables or list configuration variables. Example 345 shows a variable with
a string value.

Example 345:String Value

pl ugi ns: j unk: j unkyard="\ et c\ j unkyar d";

569

CHAPTER 22 | Configuring Artix Plug-Ins

Example 346 shows a variable with a list value.
Example 346:List Value

plugins:junk:filters=["spanf, "adult", "blacklist"];

Getting the configuration The bus provides access to the configuration using get Confi gurati on().
get Confi guration() returns a Confi gur ai t on object that provides access to
the application’s configuration.

Example 347 shows code for getting the configuration in a plug-in.
Example 347:Getting Access to Configuration Details

/1 Java
inport comiona.jbus. *;

public void buslnit() throws BusException
{
Bus bus = getBus();

Configuration config=bus. get Configuration();

}

The code in Example 347 does the following:
1. Gets a reference to the plug-ins bus.
2. Gets the bus’ configuration information.

Reading string values To read a configuration variable with a string value you use the
Confi guration object’s get String() method. The signature for
get String() is shown in Example 348. If it finds the specified variable, it
returns the value as a string. If it does not find the variable, it returns a null
string.

Example 348:getString()

String getString(String nane);

570

Reading list values

Adding Custom Configuration for a Plug-in

Example 349 shows the code for reading the variable
pl ugi ns. j unk. j unkyard.

Example 349:Reading a String Value

/1l Java
String junkyard = config.getString("plugins:junk:junkyard");

To read a configuration variable with a list value you use the Conf i gurati on
object’s get Li st () method. The signature for get Li st () is shown in
Example 348. If it finds the specified variable, it returns the entries in the
list as an array of strings. If it does not find the variable, it returns a null
array.

Example 350:getString()
String[] getlist(String nane);

Example 349 shows the code for reading the variable
pl ugins.junk. filters and printing out the values.

Example 351:Reading a String Value

/'l Java
String[] filterList = config.getList("plugins:junk:filters");

for (int i =0; 1 <filterList.length ; ++)
{

Systemout ("Filter: "+ilterList[i]);
}

571

CHAPTER 22 | Configuring Artix Plug-Ins

572

In this chapter

CHAPTER 23

Using Artix
Classloader
Environments

Artix Classloader Environments provide an easily configurable
mechanism for overcoming some of the shortcomings in Java’s
default class loading scheme. In particular, they give you finer
control over which classes are loaded by each classloader in
an application’s classloader chain.

This chapter discusses the following topics:

Class Loading: An Overview page 574
Artix’s Classloader Hierarchy page 577
Using Artix’s Classloader Environment page 581

573

CHAPTER 23 | Using Artix Classloader Environments

Class Loading: An Overview

Introduction

When are classes loaded?

Classloader chaining

574

One of Java's most important features is that compiled Java applications are
platform independent. Unlike, C+ + applications, for instance, a Java
application can be built on a Windows system and run without modification
on a UNIX system.

Part of the mechanism used to allow this platform independence is the way
the Java Virtual Machine, or JVM, loads the binary data that makes up a
Java application. Java binary code is stored, at its most atomic state, as a
class file that stores the binary code for a Java d ass object. When the JVM
needs to create an instance of a 4 ass object it loads the class’ binary
representation using a classloader. The classloader reads in the binary data,
transforms the data into usable machine code, and creates a generic
java.l ang. 4 ass object for the class.

To enhance the performance of the JVM, classloaders only load a class the
first time it is needed and then cache the data in case it is needed again.
Classloaders are also split into a hierachical structure to provide a level of
security for the JVM. This hierarchical structure prevents classloaders in the
application space from loading corrupt versions of core Java classes.

Any of the following events can trigger a class to be loaded:

® The creation of a new instance of a class.

® The dependency of one class on another class. For example, if class
Foo has a member of class Bar, then Bar will need to be loaded along
with Foo.

® Anexplicit call to a classloader’s | oadd ass() method.

Classloaders link together to form a chain where each classloader holds a
link to the classloader that created it. When a classloader attempts to load a
class, it first checks its local cache. If the class is not in the local cache, the
classloader then checks with its parent classloader to find the class. Finally,
if the class has not been loaded by any of the existing classloaders, the
classloader loads the class from an external source.

Default classloader hierachy

Class Loading: An Overview

So, if your application has three classloaders, A, B, and C as shown in
Figure 28, classloader C will always check with classloaders A and B before
loading a class from an external source. For example, if class c3 has a
dependency on class al, it will not need to be loaded because it is supplied

by classloader A.

Classloader A

T

Classloader B

A

Classloader C

Figure 28: Classloader Chain

The JVM provides a default classloader hierachy to supply a minimal
guarantee that the JVM'’s core classes do not get corrupted or overwritten by
application specific class implementations. The JVM's classloader hierachy
consists of three levels as shown in Figure 29.

Bootstrap Classloader

$IAVA HOMB\jre\lib\rt.jar

T

Extension Classloader

$JAVA HOME\jre\lib\ext*.jar

A

System Classloader

$CLASSPATH

Figure 29: Default Classloader Hierarchy

575

CHAPTER 23 | Using Artix Classloader Environments

Limitations of classloaders

576

The bootstrap classloader is responsible for loading the core Java classes
such as j ava. | ang. oj ect . The extension classloader then loads any
runtime extension classes such as the ones that provide localization support.
Finally, the system classloader loads the remainder of the classes needed by
an application.

While the design of the class loading system is effective in ensuring that the
core Java classes are not hijacked and isolating user defined classes based
on where they are loaded, it does not address two key issues. These are:

® Using multiple versions of the same library in a single application.
® Classes becoming inaccessible.

In large applications where some of the core functionality is provided by
vendor supplied libraries, you may run into a situation where multiple
versions of a core library, such as Xerces or log4j, are desired. For example,
the vendor supplied libraries may use Xerces 1.0 while your application
code uses Xerces 2.0. In this instance, the first version of the library loaded
will be the version used.

It is also possible for classes to become inaccessible because it is possible
for a class may have dependencies on classes that are only available to a
classloader further down the classloader chain. Because the classloader
mechanism only checks up the chain, the dependencies cannot be resolved.

Artix’s Classloader Hierarchy

Artix’s Classloader Hierarchy

Overview

Why use the added classloaders?

You can configure Artix to add two additional layers to the default
classloader hierachy used by the JVM when the bus or any Artix plug-in is
loaded. The first is a firewall classloader that can be configured to block
access to classes loaded by classloaders higher up the chain. The second is
a classloader that can be configured to load all of the classes needed by the
bus or the plug-in from a specific set of resources, including URLs. This is
shown in Figure 30.

Bootstrap Classloader $IAVA HOME\jrellib\rt.jar

?

Extension Classloader
A

$JAVA HOME\jre\lib\ext*.jar

System Classloader $CLASSPATH

Bus Classloader
Firewall

?

Bus Classloader

Path configured by user

Figure 30: Artix Bus Classloader Chain

Adding these two classloaders solves both of the problems of Java's
classloader system. It solves the problem of using multiple versions of a
library by blocking the bus’, or the plug-in's, classloader from classes loaded
by other classloaders and directing the bus’, or the plug-in’s, classloader to
load only the version of the classes in its path. It solves the problem of

577

CHAPTER 23 | Using Artix Classloader Environments

Where do plug-ins fit into the
hierarchy?

578

inaccessible classes in much the same way. Because the bus, or the
plug-in, has a dedicated classloader, all of the classes needed by it are
accessible.

In addition, the Artix classloader environment’s dedicated classloader
removes an application’s dependency in listing all of the required classes in
the CLASSPATH. You can specify where the classes to be loaded by the Artix
classloader are located. The location of the resources used by the dedicated
classloader can be specified using absolute paths or valid URLs. Thus you
can load classes over the web or from a central repository if needed.

If a plug-in is configured to use the optional Artix classloaders, the parent
classloader of the plug-in’s firewall classloader will be the classloader that
loaded the bus as shown in Figure 31. If the bus is loaded by the system
classloader, then the plug-in's firewall classloader will block classes from
the system classloader and above. If the bus is configured to use the Artix

Classloader chaining

Artix’s Classloader Hierarchy

classloading environment, the bus’ classloader becomes the parent
classloader for the plug-in. In this instance, the plug-in will only have access
to the classes that are allowed through the bus’ classloader firewall.

Default Classloader

Bus Classloader
Firewall

T

Bus Classloader

Plug-In1 Classloader Plug-In2 Classloader
Firewall Firewall
Plug-In1 Classloader Plug-In2 Classloader

Figure 31: Artix Plug-In Classloader Chain

If the bus blocks a system class from the plug-ins, it create problems for the
plug-ins. Therefore you must be careful when creating the rules for what is
allowed through the bus’ classloader firewall. Optionally, you can also use
the plug-in's classloader to load the needed classes from the system.
However, these loaded classes will not inherit from the class instances
loaded by other plug-ins or components that are loaded by the system
classloader.

If you are using multiple plug-ins that are configured to use the Artix
classloader environment, or the bus itself is using the Artix classloader
environment, you can specify the order in which the classloaders are placed
into the classloader hieracrchy. The bus’ classloader will always be the

579

CHAPTER 23 | Using Artix Classloader Environments

580

parent of the first plug-in loaded, but the order in which the plug-in's
classloaders are placed into the hierarchy can be specified in the classloader
configuration files.

By default, all of the plug-in classloaders are children of the classloader that
loaded the Artix bus. However, inside the each plug-in’s classloader
configuration you can specify which classloader will be the current
classloader's parent. This can be useful if you have a number of plug-ins
that share common set or restrictions or that need a particular chain of
inheritance to remain intact.

Using Artix’s Classloader Environment

Using Artix’s Classloader Environment

Overview

Creating the CE file

The Artix classloader environment provides a powerful mechanism for
controlling what classes are used by the Artix bus and the plug-ins that
make up your applications. However, it is easy to configure. You simply add
the appropriate configuration information the Artix configuration file to tell
your code to use the Artix classloader environment. Then you configure the
classloader firewall and resource locations in a CE file that is written in XML.

The Artix classloader environment is configured using CE files. Each plug-in
that uses the Artix classloader environment will have a CE file that defines
the parent of its classloader in the classloader hierarchy, the filters used by
its classloader firewall, and where the its classloader looks for resources.

CE files are written in XML and use a small number of elements to define
the environments behavior. Each CE file has four parts. The first part is
common to all CE files and should appear in all CE files you create. It
defines the encoding style used, the type of XML document being specified,
and a namespace shortcut. The entries for this section are shown in
Example 352.

Example 352:CE File Preamble

<?xm version="1.0" encodi ng="UTF-8"?>

<! DOCTYPE ce: cl assl oader - envi ronnent PUBLIC "-//1 ONA//DID | ONA d assl oadi ng Envi ronment 2. 0/ / EN'
"http://ww. i ona. com dt ds/ cl assl oader - envi ronnent _2_0. dtd">

<ce: cl assl oader - envi ronnent xnmi ns: ce="http://ww:. i ona. cond ns/ cl assl oader - envi r onrment "

| ogl evel ="i nfo">

The second section is contained in the ce: envi ronnent element of the
document. This element is the only child of the top-level

ce: cl assl oader - envi ronnent element. This section specifies the
classloader environment’s name using the name attribute of ce: envi r onnent

581

CHAPTER 23 | Using Artix Classloader Environments

Chaining classloaders

582

as shown in Example 353. In addition, you can use the optional parent
attribute to define the classloader's parent as discussed in “Chaining
classloaders” on page 582.

Example 353:Naming a Classloader Environment

<ce: cl assl oader - envi r onment >
<ce: envi ronment nane="sifter_ce">

</ ce: envi r onnent >
</ ce: cl assl oader - envi r onnment >

The third section of the CE file defines the filters used by the classloader
firewall. It consists of both positive and negative filter definitions defined
inside of the ce: firewal | element. ce: firewall is the first child of

ce: envi ronnment and has one or more ce: fil ter child elements. Defining
firewall filters is described in “Configuring the classloader firewall” on
page 583.

The forth section of the CE file defines the locations where the plug-in
classloader searches for the resources it needs. This section is contained in
the ce: | oader element, which is also a child of ce: envi ronment . The
resource locations are specified in a ce: | ocati on element, a ce: url
element, and two other elements as described in “Specifying the locations
for the classloader” on page 584.

You chain a CE by setting the par ent attribute in the ce: envi r onrrent
element. The possible settings are:

® Attribute not set.
If the parent attribute is not set, the classloader responsible for loading
the bus is the parent of the plug-in’s classloader firewall.

® parent="Parent CENane"
The classloader whose name is Par ent CENanre is the parent of the
plug-in’s classloader firewall. If the specified classloader does not exist,
the bus’ classloader is used.

® parent="systemcl assl oader"

The system classloader is the parent of the plug-in’s classloader
firewall.

Configuring the classloader
firewall

Using Artix’s Classloader Environment

The classloader firewall assumes that all classes not specified by a positive
filter are to be blocked from the Artix runtime’s classloader. You define
positive filters using one of the two ce: filter element’s attributes:
type="di scover" and type="pattern".

Using type="discover”
The discover filter type specifies that the classloader will discover the filters

from the location specified in the di scover - sour ce attribute. Table 39
shows the values for di scover - sour ce.

Table 39: discover-source values for the Classloader Firewall

Value Meaning

jre Discover the filters need to load all of the classes for the
currently running JRE. It is highly recommended that this
filter is included in your firewall definition.

jar Discover the filters to load all of the classes from the specified
jar file. Jar file locations can be given using relative or
absolute file names. For example to load all of the classes in
nyApp. j ar, you could define a filter like <ce: filter

type="di scover"

di scover-source="jar"> \nyApp.jar</ce:filter>.

j ar-of Discover the filters needed to load specified resources. This
option makes it possible to discover the contents of jar files
that you know are reachable through the class loading
system, but that you do not know the actual location.
Resources can be classes, properties files, or HTML files. For
example to load the libraries for the EJBHone class, you could
use a filter like <ce: filter type="discover"

di scover - sour ce="j ar - of " >j avax/ ej b/ EJBHone. cl ass</ ce:
filter>.

Using type="pattern”

The pattern filter type directly specifies a package pattern to be allowed
through the firewall from the application’s classloader. The syntax for
specifying package patterns is similar to the syntax used in Java i nport
statements. For example, to specify that all classes from j avax. xni . r pc are
to be allowed through the firewall you could use a filter like <ce: filter

583

CHAPTER 23 | Using Artix Classloader Environments

Specifying the locations for the
classloader

584

type="pattern">j avax. xm .rpc.*</ce: filter>. You could also drop the
asterisk(*) and use the filter <ce: fil ter
type="pattern">j avax. xnl .rpc. </ce:filter>.

Negative filters

Occasionally a positive filter will allow classes that you want blocked from
the Artix runtime classloader to be visible through the firewall. This is
particularly true with the package com i ona. j bus. The Artix runtime needs
to share a number of resources from this package with the application code,
but it also needs to ensure that some of its resources are loaded from the
Artix jar files.

To solve this problem the classloader firewall allows you to define negative
filters. To define a negative filter you use a value of negat i ve- patt er n for
the type attribute of the filter. This tells the firewall to block any resources
that match the pattern specified. For example, to block the system'’s
JAX-RPC classes from being loaded into the Artix runtime you could define a
filter like <ce: filter

type="negati ve- pattern">comiona.jbus.jaxrpc.<\ce:filter>.

The ce: | oader element in the CE file specifies where the classloader will
look for the resources it needs. These resources can be located on the local
machine, on a networked machine, or even on the Web. You can specify
their location using either pathnames or URLs.

To specify a resource’s location using a pathname you use the ce: | ocati on
element. Pathnames can be either absolute or relative. In addition they can
include system variables. For example, the resource definition in

Example 354 will use the value of LI B to resolve the specified path.

Example 354:Resource Location Using a Variable
<ce: | ocati on>$(LI B)\ xni - api s. j ar</ ce: | ocati on>

To specify a resource’s location using a URL you use the ce: url element.
The classloader will use the URL to locate the classes specified.

In addition to ce: | ocat i on and ce: url you can use two special elements to
include resources:

ce:inherit-parent-locations specifies that the classloader will also use the
resources defined in its parent classloader.

Example

Using Artix’s Classloader Environment

ce:tools-tar specifies that the current JDK's t ool s. j ar is a resource for the
classloader.

Example 355 shows a sample CE file.

Example 355:Simple CE File

<?xm version="1.0" encodi ng="UTF-8"?>

<! DOCTYPE ce: cl assl oader - envi ronnent PUBLIC "-//1 ONA//DID | ONA d assl oadi ng Envi ronment 2. 0/ / EN'
"http://ww:. iona. com dtds/cl assl oader - envi ronnent _2_0. dtd">

<ce: cl assl oader - envi ronnent xnmi ns: ce="http://ww:. i ona. cond ns/ cl assl oader - envi r onrment "
| ogl evel ="i nfo">

<ce: cl assl oader - envi r onnent >

<ce: envi
<ce: firewal
<ce:filter
<ce:filter
<ce:filter
<ce:filter
<ce:filter
<ce:filter
<ce:filter
<ce:filter
<ce:filter
<ce:filter
<ce:filter
<ce:filter
<ce:filter

ronnent name="sifter_ce">

>
type="di scover" di scover-source="jre"/>
type="negati ve-pattern">comiona.jbus.jns.</ce:filter>
type="negati ve-pattern">comiona.jbus.runtine.</ce:filter>
type="negati ve- pattern“>comiona. j bus. types.</ce:filter>
type="negati ve- pattern">comiona.jbus. jaxrpc.</ce:filter>
type="negati ve-pattern">comiona.jbus.ntv.</ce:filter>
type="negati ve-pattern“>comiona.jbus. util.</ce:filter>
type="pattern">comiona.jbus.</ce:filter>
type="pattern">comiona.jbus.servants.</ce:filter>
type="pattern">com iona. webservices.refl ect.types. </ce:filter>
type="pattern">com iona. schenas. r ef erences</ce: fil ter>
type="pattern">j avax. xm .rpc.</ce:filter>
type="pattern">j avax. xnl . nanespace. Q\ane</ce: filter>

</ce:firewal | >
<ce: | oader >

<ce
<ce
<ce
<ce
<ce
<ce
<ce
<ce

</ ce: | oader >

:locati
:locati
:locati
:locati
:locati
:locati
:locati
:locati

on>/usr/ional/artix/|ib/apache/jakarta-1o0g4j/1.2.6/10g4j.jar</ce:location>
on>/ usr/ional artix/|ib/apache/ xerces/ 2.5. 0/ xercesl npl . j ar</ce: | ocati on>
on>/usr/iona/artix/lib/artix/java_runtime/3.0/it_bus.jar</ce:location>
on>/usr/ionalartix/lib/artix/ws_comron/3.0/it_wsdl .jar</ce:location>
on>/usr/iona/artix/lib/artix/ws_comron/ 3.0/ saaj -api . j ar</ce: | ocati on>
on>/usr/iona/artix/lib/artix/ws_common/3.0/it_saaj.jar</ce:location>
on>/usr/iona/artix/lib/artix/ws_common/3.0/it_ws_reflect.jar</ce:location>
on>/usr/iona/artix/lib/comon/ifc/1l. 1/ifc.jar</ce:location>

</ ce: envi r onnent >
</ ce: cl assl oader - envi r onment >

585

CHAPTER 23 | Using Artix Classloader Environments

Configuring your applications

586

2
3

To configure the plug-ins in your application to use the Artix classloader
environment you need to modify the application’s configuration scope in the
Artix configuration file, arti x. cfg. For each plug-in that will use the Artix
classloader environment you need to add two configuration variables:

plugins:pl ugi n_name:CE_Name specifies the name of the classloader that
the plug-in specified will use to load. The CE name is defined in the
classloader’s configuration file.

ce:ce_nane:FileName specifies the name of the classloader’s configuration

file. ce_name must match the name specified in the plug-in’'s CE name
configuration.

For example, if your application loads a plug-in called si fter that uses the
Artix classloader environment and the classloader environment is configured
using a file called si fter_ce. xm , then your application’s configuration
would look similar to Example 356.

Example 356:Configuring a Plug-In to use the Classloader Environment

#artix.cfg

pl ugi nApp

{

orb_plugins=[...,"java"];
java_plugins=["sifter"];

pl ugi ns: si fter: cl assname="sifter Factory";

pl ugi ns: sifter: CE_ Nane="si fter_ce";
ce:sifter_ce:FileName="..\etc\sifter_ce.xm";

The entries in Example 356 do the following:

1. Configures the application to load the Java plug-in sifter.

2. Specifies that sifter uses a classloader environment named si fter_ce.
3. Specifies that the file defining si ft er _ce is located at

..\etc\sifter_ce. xni.

For more information on configuring Artix applications to use plug-ins see

“Configuring Artix Plug-Ins” on page 563 and Deploying and Managing Artix
Applications.

http://www.iona.com/support/docs/artix/3.0/deploy/index.htm
http://www.iona.com/support/docs/artix/3.0/deploy/index.htm

Glossary

anyType
anyType is the root type for all XMLSchema types. All of the primitive types
are derivatives of this type, as are all user defined complex types.

Artix message context

An Artix message context is a special message context that is used by Artix
to store and transmit transport details and message header information. They
contain two context containers. One for storing data about requests and one
for storing data about replies. For more details see “Working with Artix
Message Contexts” on page 282.

Artix reference

An Artix reference is a Java object that fully describes a running Artix service.
References can be passed between Artix endpoints as operation parameters
and are used extensively by the Artix locator. For more details see “Using Artix
References” on page 221.

Binding
A binding maps an operation’s messages to a payload format. Bindings are
defined using the WSDL bi ndi ng element. See also Payload format.

Bus
See Service Bus.

Choice complex type

A choice complex type is an XMLSchema construct defined by using a choi ce
element to constrain the possible elements in a complex type. When using a
choice complex type only one of the elements defined in the complex type
can be valid at a time. For more details see “Choice Complex Types” on
page 90.

Classloader firewall

The classloader firewall provides a user configurable way to block the Artix
Java runtime from classes on a system'’s classpath. For more details see “Class
Loading” on page 54.

587

CHAPTER 24 |

588

Contract

An Artix contract is a WSDL file that defines the interface and all connection
information for that interface.

A contract contains two components: /ogical and physical. The logical
component defines things that are independent of the underlying transport
and wire format such as abstract definitions of the data used and the
interface.

The physical component defines the wire format, middleware transport, and
service groupings, as well as the mapping between the operations defined in
the interface and the wire formats, and the buffer layout for fixed formats
and extensors.

Discriminator

A discriminator is a data element created to support the mapping of a choice
complex type to a Java object. The discriminator element identifies the valid
element in a choice complex type. See also Choice complex type.

Dynamic proxy

A dynamic proxy is a Java construct introduced in version 1.3 by Sun
Micosystems. As specified by the JAX-RPC specification, Artix uses a dynamic
proxy to connect to remote services. For more information, go to
http://java.sun.com/reference/docs/index.htmi.

Embedded deployment

An embedded deployment is a deployment mode in which an application
creates an endpoint, either by invoking Artix APIs directly, or by compiling
and linking Artix-generated stubs and skeletons to connect client and server
to the service bus.

Endpoint

The runtime incarnation of a service defined in an Artix contract. When using
the Artix Java APIs, an endpoint is activated when you register a servant with
the Artix bus. See also Service.

http://java.sun.com/reference/docs/index.html

Facet

A facet is a rule used in the derivation of user defined simple types. Common
facetsincludel ength, pattern,total Digits,andfractionDi gits. For more
details see “Defining Simple Types by Restriction” on page 68.

Factory pattern

The factory pattern is a usage pattern where one service creates and manages
instances of another service. Typically, the factory service returns references
to the services it creates. For more details see “Using References in a Factory
Pattern” on page 231.

Fault message

A fault message is the WSDL construct used to define error messages, or
exceptions, passed between a service and its clients. They are defined using
afaul t elementina WSDL contract. For more details see “Using Exceptions”
on page 159.

Handler

Hanl der is the Java interface that a developer must implement to create a
handler. It has has methods for processing both request and response
messages. Artix provides a Generi cHandl er class to provide a template for
implemeting handlers. See also “Writing Handlers” on page 479.

Input message

An input message is the WSDL construct for defining the messages that are
sent from a client to a service and are specified using an i nput element in a
WSDL contract. When mapped into Java, the parts of the input message are
mapped into a method’s parameter list.

Interface

An interface defines the operations offered by a service. Interfaces are defined
in an Artix contract using the WSDL port Type element. When mapped to
Java, an interface results in the generation of an object with methods for each
of the operations defined in the interface. See also Operation.

589

CHAPTER 24 |

590

Java API for XML-Based RPC(JAX-RPC)

JAX-RPC is the Java specification upon which Artix based it Java APl and
data type mappings. For more information go to
http://java.sun.com/xml/jaxrpc/overview.html.

List type

A list type is a data type defined as consisting of a space separated list of
primitive type elements. For example, “1 2 3 4 5" is a valid value for a list
type. They are defined using an xsd: I i st element. For more details see “Using
Lists” on page 77.

Logical contract

The logical contract defines components that are independent of the
underlying transport and wire format. These include the type definitions and
the interface definitions. WSDL elements found in the logical contract include:
port Type, oper ati on, message, t ype, and i nport .

Message

In Artix, a message is any data passed between two endpoints. Messages are
defined in an Artix contract using the WSDL message element and are used
for the input, output, and fault messages that define an operation. After a
message has been associated with an operation, it can be bound to any
payload format supported by Artix. See also Fault message, Input message,
and Output message.

Message-level handler
A message-level handler is a handler that processes messages between the
Artix binding to the Artix transport. See “Writing Handlers” on page 479.

Message context

A message context is a bus container used by applications to store metadata
properties. These properties store information about the message being sent
went an operation is invoked. Artix uses the message context to store headers
and transport information. See also Artix message context and “Using Message
Contexts” on page 267.

http://java.sun.com/xml/jaxrpc/overview.html

Operation

An operation defines a specific interaction between a service and a client. It
is defined in an Artix contract using the WSDL oper at i on element. Its
definition must include at least one input or output message. When mapped
into Java, an operation generates a method on the object representing the
interface in which it is defined.

Output message

An output message is the WSDL construct for defining the messages that are
sent from a service to a client and are specified using an out put element in
a WSDL contract. When mapped into Java, the parts of the output message
are mapped as described in the JAX-RPC specification.

Payload format

A payload format is how data is packaged to be sent on the wire. Examples
of payload formats supported by Artix include SOAP, TibMsg, and fixed record
length data. Data is bound to a payload format in an Artix contract using the
WSDL bi ndi ng element.

Physical contract

The physical contract defines the bindings and transport details used by the
endpoints defined by an Artix contract. WSDL elements found in the physical
contract include: bi ndi ng, service, and port.

Plug-in

A plug-in is a module that Artix loads at runtime to provide a set of features.
All of the bindings and transports supported by Artix are implemented as
plug-ins. In addition, handlers are implemented as plug-ins.

Reply
Arreply is the message returned by a service to a client in response to a request
from the client. See also Output message.

Request

A request is a message sent from a client to a service asking for the service
to do work. See also Input message.

591

CHAPTER 24 |

592

Request-level handler

A request-level handler is a handler that processes messages between the
Artix binding and the user’s application code. See “Writing Handlers” on
page 479.

Response
See Reply.

Servant

A servant is a Java object that wraps the implementation object generated
from an interface. The servant wrapper enables the bus to associate the
implementation object with the physical details specified in its contract’s
service definition and to manage the object.

Service

A service is the contract definition of an Artix endpoint. It combines the logical
definition of an interface, the binding of the interface’s operations to a payload
format, and the transport details used to expose the interface. A service is
defined using a WSDL port element.

Service Bus

The infrastructure that allows service providers and service consumers to
interact in a distributed environment. Handles the delivery of messages
between different middleware systems. Also known as an Enterprise Service
Bus.

Service proxy
A service proxy is a proxy created by an Artix client to connect to a remote
service. See also Dynamic proxy.

Service template

A service template is a WSDL service definition that serves as the model for
the clones created for a transient reference. They must fully define all of the
details, except the address, of the transport used by the transient servant. The
address provided in the service template must be a wildcard value.

Standalone deployment
Standalone deployment is a deployment mode in which an Artix instance runs
independently of the endpoints it is integrating.

Static servant

A static servant is a servant whose physical details are linked to a port
definition in the contract associated with the application. For more details see
“Static Servant Registration” on page 37.

Stub interface

Artix service proxies implement the j avax. xni . r pc. St ub interface. The Stub
interface provides access to a number of low-level properties used to connect
the proxy to a remote service. These properties can be used to get the Artix
bus from client applications and set HTTP connection properties.

Transient servant

A transient servant is a servant whose physical details are cloned from a port
definition in the contract associated with the application. For more details see
“Transient Servant Registration” on page 38.

Transport

A transport is the network protocol, such as HTTP or lIOP, that is used by an
endpoint. The transport details for an endpoint are defined inside of the WSDL
port element defining the endpoint.

Type factory

A type factory is a Java class generated to support the use of XMLSchema
anyTypes and SOAP headers in Java.

Web Service Definition Language(WSDL)
WSDL is an XML format for describing network services as a set of endpoints.
Artix uses WSDL as the syntax for its contracts.

In WSDL, the abstract definition of endpoints and messages is separated
from their concrete network deployment or data binding formats. This allows
the reuse of abstract definitions: messages, which are abstract descriptions
of the data being exchanged, and port types which are abstract collections
of operations. The concrete protocol and data format specifications for a

593

CHAPTER 24 |

594

particular port type constitutes a reusable binding. A port is defined by

associating a network address with a reusable binding, and a collection of

ports define a service. Hence, a WSDL document uses the following

elements in the definition of network services:

® Types -- a container for data type definitions using some type system
(such as XMLSchema).

® Message -- an abstract, typed definition of the data being
communicated.

® Operation -- an abstract definition of an action supported by the
service.

® Port Type -- an abstract set of operations supported by one or more
endpoints.

® Binding -- a concrete protocol and data format specification for a
particular port type.

® Port -- a single endpoint defined as a combination of a binding and a
network address.

® Service -- a collection of related endpoints.

For more information go to http://www.w3.org/TR/wsdl.

WSDL binding element
See Binding and Payload format.

WSDL fault element
See Fault message.

WSDL message element
See Message.

WSDL operation element
See Operation.

WSDL port element
See Service.

WSDL portType element
See Interface.

http://www.w3.org/TR/wsdl

WSDL service element
A WSDL servi ce element is a collection of WSDL port elements.

XMLSchema
XMLSchema is a language specification by the W3C that defines an XML
meta-language for defining the contents and structure of XML documents. It

is used as the native type system for Artix. For more information go to
http://www.w3.org/XML/Schema.

595

http://www.w3.org/XML/Schema

CHAPTER 24 |

596

Index

A
activate() 543, 545, 553
Adaptive Runtime architecture 564
AnyType
getBoolean() 217
getByte() 217
getDecimal() 217
getDouble() 217
getFloat() 217
getint() 217
getlong() 217
getSchemaTypeName() 216
getShort() 217
getString() 217
getType() 218
getUByte() 217
getUInt() 217
getULong() 217
getUShort() 217
setBoolean() 214
setByte() 214
setDecimal() 215
setDouble() 214
setFloat() 214
setint() 214
setlong() 214
setShort() 214
setString() 214
setType() 215
setUByte() 214
setUInt() 215
setULong() 215
setUShort() 214
anyType 212
arrayType attribute 145
ART 564
Artix bus 5
initializing 19, 23
starting 21
ARTIX_DRIVEN 532, 546
Artix locator
overview 369
atomic types

XMLSchema 62
attachThread() 452

B

begin_session() 387
beginTransaction() 441
binding name
specifying to code generator 13
Bus
createClient() 40
createReference() 227
deregisterTransportFactory() 533
getTypeFactoryMap() 205
init() 19, 23
registerTransportFactory() 533
registerTypeFactory() 205
run() 21, 23
shutdown() 24
bus
getConfiguration() 570
registerHandlerFactory() 485
Bus.getTransacionSystem() 438
BusPlugln 471
BusPlugIn.buslInit() 471
BusPlugIn.busShutdown() 472
BusPlugin.getBus() 471
BusPluglinFactory 474

BusPlugInFactory().createBusPlugin() 474

C

ce:ce_name:FileName 477
choice type
occurrence constraints 123
client
developing 23
client proxy
instantiating 23
client stub code 12
ClientTransport 527
getOutputStream() 540
initialize() 536
ClientType 314

INDEX

code generation 12
from the command line 12
impl flag 18

SERVER_RESPONSE_CLASSES 510
SERVER_RESPONSE_EXCEPTION 504
SERVER_RESPONSE_VALUES 509

server flag 19
types flag 18
code generator
command-line 12
files generated 12
com.iona.jbus.db 395
com.iona.jbus.db.collections 395
com.iona.jbus.Servant 20
com.iona.jbus.utils. XMLUtils 260, 263
com.iona.jbus package 16
com.iona.webservices.reflect.types.AnyType 213
com.iona.webservices.reflect.types.TypeFactory 20
3,213
commit() 448
commitOnePhase() 447
commitTransation() 441
complex choice type
receiving 90
transmitting 90
complex types
attribute groups 94
attributes 94
derivation by extension 115
derivation by restriction 112
deriving from simple 112
description in XMLSchema 84
mapping to Java 84
Configuration
getlist() 571
getString() 570
configuration
data type 568
domain 565
namespace 567
-ORBname switch 373
scope 565
variables 567
constructed types 568
ContextConstants 276, 308
CLIENT_REQUEST_CLASSES 509
CLIENT_REQUEST VALUES 509
CLIENT_RESPONSE_CLASSES 510
CLIENT_RESPONSE_VALUES 509
OPERATION_NAME 508
SERVER_REQUEST_CLASSES 509
SERVER_REQUEST _VALUES 509

598

ContextContainer 312
getContext() 313
setContext() 313

ContextRegistry 271
getConfigurationContext() 312

context registry 271

contexts
stub files, generating 290
type factories for 291

contract type descriptions 84

correlationID 287

CorrelationStyleType 346

createClient() 40, 52, 229, 377

createClientTransport() 527

createReference() 227, 228

createServerTransport() 527

createService() 24

creating a dynamic proxy 24

creating a Service instance 24

creating a service proxy
from UDDI 52

D
DataBaseManager

close() 398
DatabaseManager 398

closelterator() 409, 413
deactivate() 544
Delivery attribute 458
DeliveryType 347
deregisterTransportFactory() 533
destroyClientTransport() 527
destroyServerTransport() 527
detachThread() 452
developing a server 18
dynamic proxies 23
dynamic proxy

instantiating 23

E
endpoints 371
registering with the locator 373
end_session() 390
exceptions
associating to an operation 161

describing in a contract 160

F

facets 68

FaultException 168
Catagory 168
CompletionStatus 168
message 168
Source 169

fault message 7

FormatType 348

fractionDigits facet 70

fromString() 72

fromValue() 72

fromXML() 261

G

generated getter method 86
generated setter method 85
generated types

getter method 86

setter method 85
GenericHandler 482, 493, 495
GenericHandlerFactory 482, 488
get_all_endpoints() 387
getBoolean() 217
getByte() 217
getClass() 216
getClientMessageHandler() 488
getClientRequestHandler() 488
getClientThreadingModel() 527, 530
getConfigurationContext() 312
getContextRegistry() 271
getCorrelationID() 287
getCurrent() 273
getDecimal() 217
getDouble() 217
getFloat() 217
getint() 217
getJavaType() 209
getJavaTypeForElement() 210
getlong() 217
getMessagePortThreadingPolicy() 531
getProperties() 510
getReplyContext() 285
getRequestContext() 285
getRequiresRequiresDispatchPolicy() 532
getSchemaType() 208

INDEX

getSchemaTypeName() 216
getServerMessageHandler() 488
getServerRequestHandler() 488
getServerTransportPolicies() 528, 531
getServiceWSDL() 33

getShort() 217

getString() 217
getSupportedNamespaces() 207
getThreadingResourcePolicy() 531
getTransacionSystem() 438
getTransactionldentifier() 452
getTransactionManager() 439
getType() 218
getTypeFactoryMap() 205
getTypeResourcelLocation() 210
getUByte() 217

getUInt() 217

getULong() 217

getUShort() 217

getValue() 72

H
handleFault() 504
Handler 493, 495
handleFault() 504
handleRequest() 493, 496
handleResponse() 493, 496
HandlerConstants.PORT_NAME 491
HandlerConstants.SERVICE_NAME 491
HandlerContants.BUS 491
handleRequest() 493, 496, 499
handleResponse() 493, 496, 501
HandlerFactory 488
getClientMessageHandler() 488
getClientRequestHandler() 488
getServerMessageHandler() 488
getServerRequestHandler() 488
Handlerinfo 490
setHandlerClass() 489
http plug-in 373

|
init() 19, 23
-ORBname parameter 376
initialize() 536
initializing the bus
client side 23
server side 19

599

INDEX

input message 7

InputStream 516

instantiating a client proxy 23
IONAMessageContext 493, 504
lonaMessageContext 273, 275
isOneway() 286

itemType 77

itemType attribute 79

J

java.io.* package 17
java.net.* package 17
java.rmi.Remote 8
java.rmi.RemoteException exception 9
java.util.Collection 409
java.util.Listlterator 413
java.util.Set 409
Java Exception class 162
Java Holder class 9
java_plugins 53, 477
java_uddi_proxy 53
javax.activation.DataHandler 154
javax.xml.namespace.QName package 16
javax.xml.rpc.* package 16
javax.xml.rpc.holders 147
javax.xml.rpc.holders.Holder interface 147
javax.xml.rpc.holders package 9
javax.xml.rpc.security.auth.password 48
javax.xml.rpc.security.auth.username 48
javax.xml.rpc.service.endpoint.address 49
javax.xml.rpc.ServiceFactory 23
javax.xml.rpc.Service interface 23
javax.xml.soap.Name 139
javax.xml.soap.Node 140
javax.xml.soap.SOAPElement 138
javax.xml.soap.Text 140
JMS

using a secure connection 361
JMS_CLIENT_CONTEXT 357
JMSClientHeadersType 357
JMSClientHeadersType:TimeOut 357
JMS header properties

inspecting request values 360

inspecting response values 358

setting request values 357

setting response values 359
JMSProperyType 355
JMS_SERVER_CONTEXT 359
JMSServerHeadersType 359

600

L
length facet 70
list types 77
load balancing
with the locator 370
locator
embedded deployment 371
load balancing 370, 372
reading a reference from 374
registering endpoints 373
standalone deployment 371
locator, Artix 369
locator_endpoint plug-in 373
logical contract 4

M

maxExclusive facet 70
maxlInclusive facet 70
maxLength facet 70
MessageContext 273, 274, 493, 496, 504, 541
getProperties() 504
getProperty() 279
removeProperty() 280
setProperty() 277
message context 273
message parts
client request 509
client response 509
server request 509
server response 509
message part sharing 147

message port threading policy 531, 543, 552, 553

MULTI_INSTANCE 553

MULTI_THREADED 552
MIME multi-part related message 151
minExclusive facet 70
minInclusive facet 70
minLength facet 70
MQConnetionAttributesContextType 339
MQ_INCOMING_MESSAGE_ATTRIBUTES 343
MQMessageAttributesType 343
MQ_OUTGOING_MESSAGE_ATTRIBUTES 343
MQ transactions

Delivery attribute 458

Transactional attribute 458
Multi-dimensional arrays 146

o

obtaining a ServiceFactory 24
occurrence constraints
choice type 123
on 128
oneway 286
operation name
getting in handler 508
-ORBname, parameter to IT_Bus::init() 376
-ORBname command-line parameter 373
-ORBname parameter 566
orb_plugins 53
output message 7
OutputStream 516

P
partially transmitted arrays
SOAP arrays
partially transmitted 146
pattern facet 70
PerlnvocationServant 45
PersistentList 396
add(int index, Object obj) 411
add(Object obj) 411
addAll(Collection col) 411
addAll(int index, Collection col) 411
clear() 412
close() 414
get() 412
iterator() 413
listlterator() 413
listlterator(int index) 413
remove(Collection col) 412
remove(int index) 412
remove(Object obj) 412
PersistentMap 395
clear() 408
close() 409
entrySet() 409
get() 408
put() 407
putAll() 408
remove() 408
values() 409
physical contract 4
plug-ins
http 373
locator_endpoint 373

INDEX

soap 373
plugins:artix:db:env_name 415
plugins:artix:db:home 415
plugins:plugin_name:CE_Name 477
plugins:plugin_name:classname 476
plugins:sm_simple_policy:max_session_timeout 38
7

plugins:sm_simple_policy:min_session_timeout 387
port name
specifying to code generator 13
ports
and endpoints 371
portType 13
postDispatch() 543
prepare() 447
primitive types 568
Java 62
proxies
constructor for references 377

R

receiving choice types 90
references
constructor for client proxies 377
looking up in the locator 371
reading from the locator 374
registerContext() for CORBA 293
registerContext() for SOAP 291
registerHandlerFactory() 485
registering a servant instance 21
registerServant() 21, 37
registerTransientServant() 39
registerTransportFactory() 533
registerTypeFactory() 205
renew_session() 390
reply context container 282
ReportOptionType 350
request context container 282
required java packages 16
requires concurrent dispatch policy 532
rollback() 448
rollbackTransaction() 442
run() 21, 23, 543, 552

S

sequence complex types 85
SerializedServant 45
SerialPersistentList 396

601

INDEX

creating 405 setULong() 215
SerialPersistentMap 395 setUShort() 214
creating 401 shutdown() 24, 544, 558
server shutting down the bus 24
developing 18 SinglelnstanceServant 44
implementation class 18 skeleton code
main() function 19 generating with wsdltojava 13
server skeleton code 12 SOAP arrays
ServerTransport 527, 543 sparse 146
activate() 543, 545, 553 syntax 144
deactivate() 544 SOAPElement.getChildElements() 140
getOutputStream() 543, 550, 555 SOAPElement.getElementName() 139
postDispatch() 543, 550, 556 SOAP-ENC:Array type 144
run() 543, 552 SOAPMessage 513
shutdown() 544, 558 AttachmentPart 514
ServerTransportPolicies 531 message elements 514
getMessagePortThreadingPolicy() 531 SOAPBody 514
getRequiresConcurrentDispatchPolicy() 532 SOAPEnvelope 514
getThreadingResourcePolicy() 531 SOAPHeader 514
server transport policies SOAPPart 514
message port threading policy 531, 543, 552, SOAPMessageContext 496, 504, 507, 513
553 getMessage() 513
requires concurrent dispatch policy 532 setMessage() 513
threading resource policy 531, 543, 545, 552, soap plug-in 373
553 SOAP with attachments 151
ServerTransportThreadingResourcesPolicy 532 sparse arrays 146
ServerType 314 static servant 37
Service 52 StreamMessageContext 496, 504, 507, 516
Service.getPort() 24 StringSerialPersistentMap 395
ServiceFactory.newlInstance() 24 creating 402
service name StringXMLPersistentMap 395
specifying to code generator 13 creating 402
SessionManagerClient 386 Stub._getProperty() 47
setBoolean() 214 Stub._setProperty() 47
setByte() 214 Stub interface 47
setDecimal() 215
setDouble() 214 T
setfloat() 214 ThreadingModel 527

setHandlerClass() 489

setint() 214 ThreadingResourcePolicy

ARTIX_DRIVEN 543, 546, 552, 553

setlong() 214 TRANSPORT DRIVEN 547

setReplyContext() 283 USES WORKQUEUE 545, 546
setgre]questgr{ztext() 283 threading resource policy 531, 543, 545, 552, 553
setShort() ARTIX DRIVEN 532

setString() 214 artix driven 543

setTransactionManager() 448 TRANSPORT DRIVEN 532

setType() 215
setUByte() 214
setUInt() 215

USES_WORKQUEUE 532
use workqueue 545
thread_pool:high_water_mark 43

602

thread_pool:initial_threads 43
thread_pool:low_water_mark 43
toString() 72, 86, 162
totalDigits facet 70
Transactional attribute 458
TransactionAlreadyActiveException 441
TransactionManager 439
attachThread() 452
detachThread() 452
getTransactionldentifier() 452
TransactionNotificationHandler 439
TransactionParticipant 439, 446
commit() 448
commitOnePhase() 447
prepare() 447
rollback() 448
setTransactionManager() 448
TransactionSystem 438
beginTransaction() 441
commitTransation() 441
getTransactionManager() 439
rollbackTransaction() 442
TransactionSystemUnavailableException 441
TransactionType 341
transient servant 38
transmitting choice types 90
transportActivated() 547
TransportCallback
dispatch() 550
getCurrentContext() 557
TRANSPORT_DRIVEN 532, 547
TransportFactory 526, 527
createClientTransport() 527
createServerTransport() 527
destroyClientTransport() 527
destroyServerTransport() 527
getClientThreadingModel() 527, 530
getServerTransportPolicies() 528, 531
transportShutdownComplete() 558
type derivation
by extension 112, 115
by restriction 112
type factories 202
and contexts 291
generating 202
instantiating 204
registering 205
TypeFactory
getJavaType() 209

INDEX

getJavaTypeForElement() 210
getSchemaType() 208
getSupportedNamespaces() 207
getTypeResourcelLocation() 210

U

uDDI
building queries 51
configuring your applicaiton to use 53
looking up services 52

UDDI URL 51

USES_WORKQUEUE 532, 546

\'}

VoteOutcome.VOTE_CONMMIT 448
VoteOutcome.VOTE_READONLY 448
VoteOutcome.VOTE_ROLLBACK 448

w
whiteSpace facet 70
wsdl:arrayType 144
wsdl:arrayType attribute 145
WSDL fault element 9, 161
message attribute 161
WSDL input element 9
WSDL message element 6, 9, 160
name attribute 162
WSDL operation element 6, 9
name attribute 9
parameterOrder attribute 9
WSDL output element 9
WSDL part element 6
WSDL port element
name attribute 8
WSDL portType element 6, 8
wsdltojava 12, 18
command-line switches 12
-datahandlers 154
files generated 12
-ser flag 401, 405
XML schemas, generating from 290
WSDL types element 6, 84, 212
wsldtojava 470

X
XMLDataHandler 398
XMLSchema all element 85, 131

603

INDEX

XMLSchema attribute element 66, 94
default attribute 66, 96
fixed attribute 66, 96
name attribute 94
type attribute 94
use attribute 66, 94
XMLSchema attributeGroup element 94
name attribute 96
XMLSchema choice element 90, 131
maxOccurs attribute 123
minOccurs attribute 123
XMLSchema complexContent element 115
XMLSchema complexType element 84
name attribute 85
XMLSchema element element 66, 131
maxOccurs attribute 66, 86, 128, 131, 145
minOccurs attribute 66, 128, 131
nillable attribute 66
type attribute 102
XMLSchema extension element 112, 115
base attribute 115
XMLSchema facets 68
XMLSchema group element 131
name attribute 131
ref attribute 132
XMLSchema restriction element 68, 115
base attribute 68, 115
XMLSchema sequence element 85, 131
maxQOccurs attribute 119
minOccurs attribute 119
XMLSchema simpleContent element 112
XMLSchema simpleType element 68
name attribute 68, 72, 81
XMLSchema union element 80
memberTypes attributes 80
XMLShema attributeGroup element
ref attribute 97
XMLUtil
referenceFromXML() 266
XMLUtils 260, 263
fromXML() 260
referenceToXML() 266
toXML() 263
xsd:anyType 212
and context types 289
xsd:list 77

604

	Developing Artix Applications in Java
	List of Figures
	List of Tables
	Preface
	What is Covered in this Book
	Who Should Read this Book
	How to Use this Book
	Finding Your Way Around the Library
	Searching the Artix Library
	Online Help
	Additional Resources
	Document Conventions

	Fundamentals of Artix Programming
	Understanding the Artix Java Development Model
	Separating Transport Details from Application Logic
	Representing Services in Artix Contracts
	Mapping from an Artix Contract to Java

	Developing Artix Enabled Clients and Servers
	Generating Stub and Skeleton Code
	Java Package Names
	Developing a Server
	Developing a Client
	Building an Artix Application

	Things to Consider when Developing Artix Applications
	Bootstrapping Service
	Finding Initial References
	Finding Contracts

	Servant Registration
	Static Servant Registration
	Transient Servant Registration

	Proxy Creation
	Getting a Bus
	Threading
	Setting Client Connection Attributes Using the Stub Interface
	Creating a Service Proxy Using UDDI
	Class Loading

	Working with Artix Data Types
	XMLSchema Elements
	Using XMLSchema Simple Types
	Atomic Type Mapping
	Special Atomics Type Mappings
	Defining Simple Types by Restriction
	Using Enumerations
	Using Lists
	Using XMLSchema Unions

	Using XMLSchema Complex Types
	Sequence and All Complex Types
	Choice Complex Types
	Attributes
	Nesting Complex Types
	Deriving a Complex Type from a Simple Type
	Deriving a Complex Type from a Complex Type
	Occurrence Constraints
	Using Model Groups

	Using XMLSchema any Elements
	SOAP Arrays
	Holder Classes
	Using SOAP with Attachments
	Unsupported XMLSchema Constructs

	Using Exceptions
	Describing User-defined Exceptions in an Artix Contract
	How Artix Generates Java User-defined Exceptions
	Working with User-defined Exceptions in Artix Applications
	Working with CORBA Exceptions in Artix Applications
	Mapping CORBA Exceptions to Artix Java Exceptions
	Throwing CORBA Exceptions from Artix
	Processing CORBA Exceptions

	Using Substitution Groups
	Substitution Groups in XML Schema
	Using Substitution Groups with Artix
	Widget Vendor Example
	Widget Server
	Widget Client

	Working with Artix Type Factories
	Introduction to Type Factories
	Registering Type Factories
	Getting Type Information From Type Factories

	Working with XMLSchema anyTypes
	Introduction to Working with XMLSchema anyTypes
	Setting anyType Values
	Retrieving Data from anyTypes

	Using Artix References
	Introduction to Working with References
	Reference Basic Concepts
	Creating References
	Instantiating Service Proxies Using a Reference

	Using References in a Factory Pattern
	Bank Service Contract
	Bank Service Implementation
	Bank Service Client

	Using References to Implement Callbacks
	The Accounting Contract
	The Accounting Client
	The Accounting Server

	Using Native XML
	Populating Artix Objects with XML
	Converting Artix Objects Into XML
	Converting References into XML

	Using Message Contexts
	Understanding Message Contexts in Artix
	Getting the Context Registry
	Getting the Message Context for a Thread
	Working with JAX-RPC Contexts
	Working with Artix Message Contexts

	Sending Header Information Using Contexts
	Defining Context Data Types
	Registering Context Types
	SOAP Header Example

	Working with Transport Attributes
	How Artix Stores Transport Attributes
	Getting Transport Attributes from an Artix Context
	Setting Configuration Attributes
	Using the Standard Contexts
	Using the Configuration Context

	Setting HTTP Attributes
	Client-side Configuration
	Server-side Configuration
	Setting the Server’s Endpoint URL

	Setting CORBA Attributes
	Setting WebSphere MQ Attributes
	Working with Connection Attributes
	Working with MQ Message Descriptor Attributes

	Setting JMS Attributes
	Using JMS Message Headers and Properties
	Using Client-side JMS Attributes
	Using Server-side JMS Attributes
	Setting JMS Broker Security Information

	i18n Attributes

	Advanced Artix Programming
	The Artix Locator
	Overview of the Locator
	Registering Endpoints with the Locator
	Reading a Reference from the Locator

	Using Sessions in Artix
	Introduction to Session Management in Artix
	Registering a Server with the Session Manager
	Working with Sessions

	Using Persistent Datastores
	Introduction to Artix Persistent Datastores
	Creating a Persistent Datastore
	Creating Persistent Maps
	Creating Persistent Lists

	Working with Data in a Persistent Datastore
	Using Persistent Maps
	Using Persistent Lists

	Configuring Artix to Use Persistent Datastores

	Using Transactions in Artix
	Introduction to Transactions in Artix
	Selecting a Transaction Coordinator
	Configuring OTS Lite
	Configuring OTS Encina
	Configuring WS-Atomic Transactions

	Transaction API
	Beginning and Ending Transactions
	Managing Transactional Resources
	Threading
	Notification Handlers
	Enlisting WebSphereMQ Transactions

	Using the Call Interface for Dynamic Invocations
	DII and the Call Interface
	Building Invocations using the Call Interface
	Printer Service Demo

	Developing Plug-Ins
	Generating Plug-in Starting Point Code
	Extending the BusPlugIn Class
	Implementing the BusPlugInFactory Interface
	Configuring Artix to Load a Plug-in

	Writing Handlers
	Handlers: An Introduction
	Creating the Handler Plug-in
	Creating a Handler Factory
	Developing Request-Level Handlers
	Developing Message-Level Handlers
	Handling Errors and Exceptions
	Handling Errors when Processing Requests
	Handling Errors when Processing Responses
	Throwing User Faults
	Processing Fault Messages

	Manipulating Messages in a Handler
	Working with Operation Parameters
	Working with SOAP Messages
	Manipulating Messages as a Binary Stream

	Developing Custom Artix Transports
	Developing a Transport: The Big Picture
	Making a Schema for the Transport Attributes
	Developing and Registering the Transport Factory
	Creating a Transport Factory
	Transport Policies
	Registering and Unregistering a Transport Factory

	Developing the Client Transport
	Developing the Server Transport
	Activating a Server Transport
	Processing Requests
	Shutting Down a Server Transport

	Using your Custom Transport

	Configuring Artix Plug-Ins
	Understanding Artix Configuration
	Adding Custom Configuration for a Plug-in

	Using Artix Classloader Environments
	Class Loading: An Overview
	Artix’s Classloader Hierarchy
	Using Artix’s Classloader Environment

	Glossary
	Index

