IONA

Artix:

Developing Artix Applications

in C++
Version 4.0, March 2006

Making Software Work Together™

IONA Technologies PLC and/or its subsidiaries may have patents, patent applications,
trademarks, copyrights, or other intellectual property rights covering subject matter in
this publication. Except as expressly provided in any written license agreement from
IONA Technologies PLC, the furnishing of this publication does not give you any license
to these patents, trademarks, copyrights, or other intellectual property. Any rights not
expressly granted herein are reserved.

IONA, IONA Technologies, the IONA logo, Orbix, Orbix Mainframe, Orbix Connect, Artix,
Artix Mainframe, Artix Mainframe Developer, Mobile Orchestrator, Orbix/E, Orbacus,
Enterprise Integrator, Adaptive Runtime Technology, and Making Software Work Together
are trademarks or registered trademarks of IONA Technologies PLC and/or its subsidiar-
ies.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries. CORBA is a trademark or registered trademark of the
Object Management Group, Inc. in the United States and other countries. All other
trademarks that appear herein are the property of their respective owners.

While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of
any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. IONA shall not be liable for errors contained herein, or for incidental or consequential dam-
ages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photo- copying, recording or otherwise, without prior written consent of IONA Technologies PLC. No
third-party intellectual property right liability is assumed with respect to the use of the information contained
herein. IONA Technologies PLC assumes no responsibility for errors or omissions contained in this publication.
This publication and features described herein are subject to change without notice.

Copyright © 2003-2006 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this publication are covered by the trademarks, service marks, or product
names as designated by the companies that market those products.

Updated: 12-May-2006

Contents

List of Tables

Preface
What is Covered in this Book
Who Should Read this Book
The Artix Library
Getting the Latest Version
Searching the Artix Library
Artix Online Help
Artix Glossary
Additional Resources
Document Conventions

Chapter 1 Getting Started with Artix Programming
The Hello World Application
Prerequisites
Define a WSDL Contract
Develop a Service Plug-In
Develop a Client
Run the Application
Adding Configuration to the Application

Chapter 2 Server Programming
Programming with the Container Model
Container Architecture
Multiple Services in a Container
Service with Multiple Ports
Transient Servants
Implementing a Servant Class
Implementing the Plug-In Class
Implementing the Service Activator Class
Programming with the Standalone Model
How Services Locate WSDL Contracts

CONTENTS

Registering Static Servants
Registering Transient Servants

Chapter 3 Client Programming
Programming with Client Proxies
What is a Client Proxy?
Initializing Proxies from References
Other Ways of Initializing Proxies
Implementing a Client
Programming with Initial References
Obtaining Initial References
Overriding a HTTP Address in a Client

Chapter 4 Artix Programming Considerations

Operations and Parameters

RPC/Literal Style

Document/Literal Wrapped Style
Exceptions

System Exceptions

User-Defined Exceptions
Memory Management

Managing Parameters

Assignment and Copying

Deallocating

Smart Pointers
Multi-Threading

Client Threading Issues

Servant Threading Models

Setting the Servant Threading Model

Thread Pool Configuration
Converting with to_string() and from_string()
Locating Services with UDDI
Compiling and Linking an Artix Application
Building Artix Stub Libraries on Windows

Chapter 5 Endpoint References
Introduction to Endpoint References
Using References in WSDL

56
61

69
70
71
76
80
82
86
89
92

95
96
97

101
106
107
112
117
118
123
125
126
130
131
132
135
138
141
147
149
151

153
154
157

Programming with References
Creating References
Resolving References

The WSDL Publish Plug-In

Migration Scenarios

Chapter 6 Callbacks
Overview of Artix Callbacks
Callback WSDL Contract
Client Implementation
Server Implementation
Routing and Callbacks

Chapter 7 Artix Contexts

Introduction to Contexts
Request, Reply and Configuration Contexts
Header Contexts
Registering Contexts

Reading and Writing Context Data
Getting a Context Instance
Reading and Writing Basic Types
Reading and Writing User-Defined Types
Reading and Writing Custom Types
Durability of Context Settings

Context Example
HTTP-Conf Schema
Setting a Request Context on the Client Side
Setting a Configuration Context on the Server Side

Header Context Example
Custom SOAP Header Demonstration
SOAP Header Context Schema
Declaring the SOAP Header Explicitly
Client Main Function
Server Main Function
Service Implementation

Header Contexts in Three-Tier Systems

Chapter 8 Working with Transport Attributes

CONTENTS

163
le4
169
171
176

179
180
184
187
191
195

199
200
201
204
206
212
213
219
221
223
226
227
228
232
235
238
239
241
244
247
252
255
258

261

CONTENTS

How Artix Stores Transport Attributes
Getting and Setting Transport Attributes
Setting HTTP Attributes
Client-side Configuration
Server-side Configuration
Setting the Server's Endpoint URL
Setting CORBA Attributes
Setting WebSphere MQ Attributes
Working with Connection Attributes

Working with MQ Message Descriptor Attributes

Setting FTP Attributes
Setting FTP Connection Policies
Setting the Connection Credentials
Setting the Naming Policies

Setting i18n Attributes

Setting WS-A and WS-RM Attributes
Setting the WS-A ReplyTo Endpoint
Setting WS-RM Attributes

Chapter 9 Artix Data Types
Including and Importing Schema Definitions
Simple Types
Atomic Types
String Type
NormalizedString and Token Types
QName Type
Date and Time Types
Duration Type
Decimal Type
Integer Types
Binary Types
Deriving Simple Types by Restriction
List Type
Union Type
Holder Types
Unsupported Simple Types
Complex Types
Sequence Complex Types
Choice Complex Types

Vi

262
264
274
275
288
301
304
305
306
311
322
323
327
330
331
334
335
337

343
344
347
348
350
355
360
362
364
370
372
375
382
385
387
392
394
395
396
399

CONTENTS

All Complex Types 403
Attributes 406
Attribute Groups 410
Nesting Complex Types 413
Deriving a Complex Type from a Simple Type 417
Deriving a Complex Type from a Complex Type 420
Arrays 430
Model Group Definitions 435
Wildcarding Types 440
anyAttribute Type 441
anyURI Type 445
anyType Type 447
any Type 452
Occurrence Constraints 460
Element Occurrence Constraints 461
Sequence Occurrence Constraints 466
Choice Occurrence Constraints 470
Any Occurrence Constraints 474
Nillable Types 479
Introduction to Nillable Types 480
Nillable Atomic Types 482
Nillable User-Defined Types 486
Nested Atomic Type Nillable Elements 489
Nested User-Defined Nillable Elements 493
Nillable Elements of an Array 498
Substitution Groups 501
SOAP Arrays 511
Introduction to SOAP Arrays 512
Multi-Dimensional Arrays 516
Sparse Arrays 519
Partially Transmitted Arrays 522
IT_Vector Template Class 523
Introduction to IT_Vector 524
Summary of IT_Vector Operations 527
IT_HashMap Template Class 530
Introduction to IT_HashMap 531
Summary of IT_HashMap Operations 532

Unsupported XML Schema Constructs in Artix 535

vii

CONTENTS

Chapter 10 Artix IDL to C++ Mapping
Introduction to IDL Mapping
IDL Basic Type Mapping
IDL Complex Type Mapping
IDL Module and Interface Mapping

Chapter 11 Reflection

Introduction to Reflection
The IT_Bus::Var Template Type

Reflection API

Overview of the Reflection API

IT Reflect:
IT Reflect:
IT Reflect:
IT Reflect:
IT Reflect:
IT Reflect:
IT Reflect::
IT Reflect:
IT Reflect:

:Value<T>

:All

:Sequence
:Choice
:SimpleContent
:ComplexContent

ElementList

:SimpleTypeList

Nillable

Reflection Example
Print an IT_Bus::AnyType
Print Atomic and Simple Types
Print Sequence, Choice and All Types
Print SimpleContent Types
Print ComplexContent Types
Print Multiple Occurrences
Print Nillables

Chapter 12 Persistent Maps
Introduction to Persistent Maps
Creating a Persistent Map
Inserting, Extracting and Removing Data
Handling Exceptions
Supporting High Availability
Configuration Example

Chapter 13 Default Servants

viii

537
538
540
542
551

557
558
561
565
566
568
572
575
578
582
584
587
589
590
593
594
599
604
607
609
612
614

617
618
621
625
629
632
635

637

Introduction to Default Servants
Functions Defined on IT_Bus::Service
The Server Address Context
Implementing a Factory
Implementing a Default Servant

Appendix A WSDL-to-C++ Compiler Utility
Generating Stubs and Starting Point Code

Index

CONTENTS

638
641
643
645
649

653
654

659

CONTENTS

List of Tables

Table 1:
Table 2:
Table 3:
Table 4:
Table 5:
Table 6:
Table 7:
Table 8:
Table 9:

Table 10:
Table 11:
Table 12:
Table 13:
Table 14:
Table 15:
Table 16:
Table 17:
Table 18:
Table 19:
Table 20:
Table 21:
Table 22:
Table 23:
Table 24
Table 25:
Table 26:

Artix Import Libraries for Linking with an Application
Details for HTTP Client Outgoing Context

Details for HTTP Client Incoming Context

Details for HTTP Server Outgoing Context

Details for HTTP Server Incoming Context

Details for CORBA Transport Context

Details for Principal Context

Details for MQ Connection Attributes Context
Details for MQ Outgoing Message Attributes Context
Details for MQ Incoming Message Attributes Context
Details for FTP Connection Policy Context

Details for FTP Connection Credentials Context
Details for I18N Server Attributes Context

Details for I18N Client Attributes Context

Details for Bus Security Attributes Context

Details for HTTP Endpoint URL Context

Details for Server Address Context

Details for Server Operation Context

Outgoing HTTP Client Attributes

Incoming HTTP Client Attributes

Outgoing HTTP Server Attributes

Incoming HTTP Server Attributes

MQ Connection Attributes Context Properties

MQ Transactional Values

MQ Message Attributes Context Properties
CorrelationStyle Values

149
265
265
266
266
267
267
268
268
269
269
270
271
271
272
272
273
273
276
285
290
298
306
309
312
314

Xi

LIST OF TABLES

Table 27:
Table 28:
Table 29:
Table 30:
Table 31:
Table 32:
Table 33:
Table 34:
Table 35:
Table 36:
Table 37:
Table 38:
Table 39:
Table 40:
Table 41:
Table 42:
Table 43:
Table 44
Table 45:
Table 46:
Table 47:
Table 48:
Table 49:
Table 50:
Table 51:
Table 52:
Table 53:
Table 54:
Table 55:

Xii

Delivery Values

Format Values

ReportOption Values

ConnectionMode Values

Simple Schema Type to Simple Bus Type Mapping

IANA Character Set Names

Description of token and Types Derived from token
Validity Testing Functions for Normalized Strings and Tokens
Member Fields of IT_Bus::DateTime

Member Fields Supported by Other Date and Time Types
Accessors and Modifier Functions for Duration Class

Operators Supported by IT_Bus::Decimal
Unlimited Precision Integer Types

Operators Supported by the Integer Types
Schema to Bus Mapping for the Binary Types
List of Artix Holder Types

Nillable Atomic Types

Member Functions Not Defined in IT_Vector
Member Types Defined in IT_Vector<T>
Iterator Member Functions of IT_Vector<T>
Element Access Operations for IT_Vector<T>
Stack Operations for IT_Vector<T>

List Operations for IT_Vector<T>

Other Operations for IT_Vector<T>

Member Functions Not Defined in IT_Vector
Member Types Defined in IT_HashMap<T>
Iterator Member Functions of IT_HashMap<T>
Element Access Operations for IT_HashMap<T>

316
317
319
323
348
351
355
358
362
363
366
368
370
372
372
375
393
482
524
527
528
528
528
529
529
531
532
533
533

Table 56:
Table 57:
Table 58:
Table 59:
Table 60:
Table 61:
Table 62:

Map Operations for IT_HashMap<T>

List Operations for IT_HashMap<T>

Other Operations for IT_HashMap<T>

Artix Mapping of IDL Basic Types to C++

Basic IT_Bus::Var<T> Operations

Non-Atomic Built-In Types Supported by Reflection
Effect of nillable, minOccurs and maxOccurs Settings

LIST OF TABLES

533
533
534
540
562
570
590

Xiii

LIST OF TABLES

Xiv

Preface

What is Covered in this Book

This book covers the information needed to develop applications using the
Artix C++ API.

Who Should Read this Book

This guide is intended for Artix C++ programmers. In addition to a
knowledge of C++, this guide assumes that the reader is familiar with
WSDL and XML schemas.

The Artix Library

The Artix documentation library is organized in the following sections:
® QGetting Started

® Designing and Developing Artix Solutions

® Configuring and Deploying Artix Solutions

® Using Artix Services

® Integrating Artix Solutions

® Integrating with Enterprise Management Systems

® Reference Documentation

Getting Started

The books in this section provide you with a background for working with

Artix. They describe many of the concepts and technologies used by Artix.

They include:

® Release Notes contains release-specific information about Artix.

® |nstallation Guide describes the prerequisites for installing Artix and the
procedures for installing Artix on supported systems.

XV

../release_notes/index.htm
../install_guide/index.htm

PREFACE

Xvi

Getting Started with Artix describes basic Artix and WSDL concepts.
Using Artix Designer describes how to use Artix Designer to build Artix
solutions.

Artix Technical Use Cases provides a number of step-by-step examples
of building common Artix solutions.

Designing and Developing Artix Solutions

The books in this section go into greater depth about using Artix to solve
real-world problems. They describe how Artix uses WSDL to define services,
and how to use the Artix APIs to build new services. They include:

Building Service-Oriented Architectures with Artix provides an overview
of service-oriented architectures and describes how they can be
implemented using Artix.

Understanding Artix Contracts describes the components of an Artix
contract. Special attention is paid to the WSDL extensions used to
define Artix-specific payload formats and transports.

Developing Artix Applications in C++ discusses the technical aspects
of programming applications using the C++ API.

Developing Advanced Artix Plug-ins in C++ discusses the technical
aspects of implementing advanced plug-ins (for example, interceptors)
using the C++ APL.

Developing Artix Applications in Java discusses the technical aspects
of programming applications using the Java API.

Configuring and Deploying Artix Solutions
This section includes:

Configuring and Deploying Artix Solutions discusses how to configure
and deploy Artix-enabled systems, and provides examples of typical
use cases.

Using Artix Services

The books in this section describe how to use the services provided with

Artix:

Artix Locator Guide discusses how to use the Artix locator.
Artix Session Manager Guide discusses how to use the Artix session
manager.

../getting_started/index.htm
../designer/index.htm
../cookbook/index.htm
../soa/index.htm
../contract/index.htm
../prog_guide/index.htm
../plugin_guide/index.htm
../java_pguide/index.htm
../deploy/index.htm
../locator_guide/index.htm
../session_mgr/index.htm

PREFACE

® Artix Transactions Guide, C++ explains how to enable Artix C++
applications to participate in transacted operations.

® Artix Transactions Guide, Java explains how to enable Artix Java
applications to participate in transacted operations.

® Artix Security Guide explains how to use the security features of Artix.

Integrating Artix Solutions

The books in this section describe how to integrate Artix solutions with other
middleware technologies:

® Artix for CORBA provides information on using Artix in a CORBA
environment.

® Artix for J2EE provides information on using Artix to integrate with
J2EE applications.

For details on integrating with Microsoft's .NET technology, see the
documentation for Artix Connect.

Integrating with Enterprise Management Systems

The books in this section describe how to integrate Artix solutions with a
range of enterprise management systems. They include:

® |BM Tivoli Integration Guide explains how to integrate Artix with IBM
Tivoli.

® BMC Patrol Integration Guide explains how to integrate Artix with BMC
Patrol.

® CA WSDM Integration Guide explains how to integrate Artix with CA
WSDM.

Reference Documentation

These books provide detailed reference information about specific Artix
APIls, WSDL extensions, configuration variables, command-line tools, and
terminology. The reference documentation includes:

® Artix Command Line Reference
® Artix Configuration Reference

® Artix WSDL Extension Reference
® Artix Java API Reference

® Artix C++ API Reference

® Artix .NET API Reference

® Artix Glossary

xvii

../transactions_cxx/index.htm
../transactions_java/index.htm
../security/index.htm
../corba_ws/index.htm
../j2ee/index.htm
../tivoli/index.htm
../bmc/index.htm
../ca_wsdm/index.htm
../command_ref/index.htm
../config_ref/index.htm
../wsdl_ref/index.htm
../javadoc/index.html
../cppdoc/index.html
../ndoc/index.html
../glossary/index.htm

PREFACE

xviii

Getting the Latest Version

The latest updates to the Artix documentation can be found at http://
www.iona.com/support/docs.

Compare the version dates on the web page for your product version with
the date printed on the copyright page of the PDF edition of the book you
are reading.

Searching the Artix Library

You can search the online documentation by using the Search box at the top
right of the documentation home page:

http://www.iona.com/support/docs

To search a particular library version, browse to the required index page,
and use the Search box at the top right, for example:
http://www.iona.com/support/docs/artix/4.0/index.xml

You can also search within a particular book. To search within a HTML
version of a book, use the Search box at the top left of the page. To search

within a PDF version of a book, in Adobe Acrobat, select Edit|Find, and
enter your search text.

Artix Online Help

Artix Designer and the Artix Management Console include comprehensive

online help, providing:

® Step-by-step instructions on how to perform important tasks

® Afull search feature

® Context-sensitive help for each screen

There are two ways that you can access the online help:

® Select Help|Help Contents from the menu bar. Sections on Artix
Designer and the Artix Management Console appear in the contents
panel of the Eclipse help browser.

® Press F1 for context-sensitive help.

In addition, there are a number of cheat sheets that guide you through the

most important functionality in Artix Designer. To access these, select
Help |Cheat Sheets.

http://www.iona.com/support/docs
http://www.iona.com/support/docs/artix/4.0/index.xml
http://www.iona.com/support/docs
http://www.iona.com/support/docs

PREFACE

Artix Glossary
The Artix Glossary provides a comprehensive reference of Artix terminology.
It provides quick definitions of the main Artix components and concepts. All
terms are defined in the context of the development and deployment of Web
services using Artix.

Additional Resources

The IONA Knowledge Base (http://www.iona.com/support/knowledge_base/
index.xml) contains helpful articles written by IONA experts about Artix and
other products.

The IONA Update Center (http://www.iona.com/support/updates/index.xml)
contains the latest releases and patches for IONA products.

If you need help with this or any other IONA product, go to IONA Online
Support (http://www.iona.com/support/index.xml).

Comments, corrections, and suggestions on IONA documentation can be
sent to docs-support@iona.com .

Xix

http://www.iona.com/support/kb/index.jspa
http://www.iona.com/support/updates/index.xml
http://www.iona.com/support/index.xml
http://www.iona.com/support/index.xml
../glossary/index.htm

PREFACE

Document Conventions

Typographical conventions
This book uses the following typographical conventions:

Fi xed width

Fixed width italic

Italic

Bold

XX

Fixed width (courier font) in normal text represents
portions of code and literal names of items such as
classes, functions, variables, and data structures. For
example, text might refer to the | T_Bus: : AnyType
class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#i ncl ude <stdio. h>

Fixed width italic words or characters in code and
commands represent variable values you must
supply, such as arguments to commands or path
names for your particular system. For example:

% cd [/ user s/ Your User Nane

Italic words in normal text represent emphasis and
introduce new terms.

Bold words in normal text represent graphical user
interface components such as menu commands and
dialog boxes. For example: the User Preferences
dialog.

Keying Conventions

PREFACE

This book uses the following keying conventions:

No prompt

%

{1

When a command’s format is the same for multiple
platforms, the command prompt is not shown.

A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

The notation > represents the MS-DOS or Windows
command prompt.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

Brackets enclose optional items in format and syntax
descriptions.

Braces enclose a list from which you must choose an
item in format and syntax descriptions.

In format and syntax descriptions, a vertical bar
separates items in a list of choices enclosed in {}
(braces).

In graphical user interface descriptions, a vertical bar
separates menu commands (for example, select
File| Open).

XXi

PREFACE

XXii

In this chapter

CHAPTER 1

Getting Started

with Artix

Programming

This chapter shows you how to rapidly build and deploy a
complete client/server application using the Artix

command-line tools.

This chapter discusses the following topics:

The Hello World Application page 2
Prerequisites page 5
Define a WSDL Contract page 6
Develop a Service Plug-In page 11
Develop a Client page 14
Run the Application page 17
Adding Configuration to the Application page 18

CHAPTER 1 | Getting Started with Artix Programming

The Hello World Application

Overview Figure 1 provides a brief overview of the Hello World application, a simple
two-tier client/server application, on which the rest of this chapter is based.
The communication protocol for this example is SOAP over HTTP.

The server exposes a service, Hel | oWr | dSOAPSer vi ce, which listens on a
single HTTP port for incoming invocation requests.

The client obtains the connection details for the Hel | oVr | dSOAPSer vi ce by
reading a local copy of the Hello World WSDL contract. The client then calls

the two operations, sayH and greet M, that are supported by the Hello
World service.

Figure 1: The Hello World Application

Client Server
Container
Service Plug-In
Servant /

SOAP Service I e v

sayH Request | 77p por \ !
} + ! Hello

1 1
! ! © _>© ' World
sayH Reply e ec—m—————————— [J .

=
% -
]
2

WSDL contract

Server

The Hello World Application

The Web Services Description Language (WSDL) contract provides the
foundation for the Hello World distributed application. The contract contains
all of the information needed by a Web services client, including a detailed
description of the Hello World Web service and details of the operations
supported by the service. The WSDL contract contains the following main
sections:
® WSDL port type—describes the interface for the Hello World service,
including all of the WSDL operations supported by the service. The

Hello World port type is named G eet er and contains the following

operations:

+ sayH —requests the server to send a message of greeting (the
operation returns a string).

. gr eet Me—sends the user's name to the server and requests the
server to send a personalized greeting (the operation takes a
single string argument and returns a string).

® WSDL binding—describes how operation request and reply messages
are to be encoded. For example, the Hello World application encodes
messages in a SOAP format.

Artix provides tools to generate the WSDL binding automatically.

® WSDL service and port—provides connection data and properties for a
particular transport. For transports based on the Internet Protocol, you
can specify the service’'s hostname and IP port. For example, the Hello

World service uses the HTTP transport and the connection data is

specified in the form of a HTTP URL.

The server provides the implementation of the Hello World Web service. In
particular, it provides a servant class that implements the sayH and

greet M WSDL operations.

The preferred approach for building and deploying an Artix server is to use

the container model. The Artix container model is based on the idea that the
server can be broken up into the following parts:

® Artix container.

® Service plug-in.

CHAPTER 1 | Getting Started with Artix Programming

Artix container

Service plug-in

Client

The Artix container is an executable, i t _cont ai ner, that provides a basic
environment for Web services to run in. Service implementations are loaded
into the container as plug-ins. Artix exploits the dynamic loading capabilities
of modern operating systems to load service plug-ins as shared libraries or
DLLs.

A service plug-in is an Artix plug-in that contains the implementation of one
or more servant classes. Typically, a servant class is responsible for
implementing the operations from a single WSDL port type. Implementing a
servant class in C+ + is equivalent to implementing a Web service.

The client is a standalone executable that invokes the sayH and greet Me
operations from the Hello World service.

The key artifact on the client side is the client proxy class, which provides
an interface mapped from the G eet er port type. By calling functions on a
client proxy object, a client can initiate remote procedure calls on the
corresponding operations in the remote Web service.

Prerequisites

Prerequisites

Overview

Basic environment variables

Path variable

Artix environment script

C++ compiler

Before attempting to build and run the Hello World application, check that
the following prerequisites are satisified:

® Basic environment variables.
® Path variable.

® Artix environment script.

® C++ compiler.

Ensure that the following basic environment variables are set:

| T_PRCDUCT_DIR The absolute pathname of the Artix install
directory.

I T_LI CENSE FI LE The absolute pathname of the Artix license file,
licenses. txt.

JAVA HOVE The root directory of Sun’s J2SE Java platform

(also known as JDK). Check the Artix installation
guide for details of the correct J2SE version.

Make sure that the Java bi n directory—%AVA HOVE% bi n on Windows and
$IAVA_HOME bi n on UNIX—is on your path.

Artix provides a script, artix_env. bat or artix_env. sh, in

Artixlnstal I Dir/artix/Version/bin, that sets a variety of environment
variables (not just the basic ones mentioned here). If your user account is
not configured to run this script, you might have to run it manually.

Depending on what compiler you use and what platform you are running on,
it might be necessary to run the arti x_env script with particular
command-line switches. For details, see the Artix Installation Guide.

Make sure that your environment is configured to use the correct version of
C++ compiler. In general, it is necessary to use precisely the right compiler
version, as specified in the Artix Installation Guide. In the case of Windows,
two compiler version are supported: VC++ 6.0 and 7.1.

CHAPTER 1 | Getting Started with Artix Programming

Define a WSDL Contract

Overview

Example directories

Define the logical contract

This section assumes that you already have the logical part of the contract
(that is, the WSDL port type and associated type definitions) and shows you
how to proceed to generate the rest of the contract (WSDL binding and
WSDL service) using the Artix command-line tools. In particular, this section
describes how to define a WSDL contract for the Hello World application.

To define a Hello World WSDL contract, perform the following steps:
1. Example directories.

2. Define the logical contract.

3. Add a SOAP binding to the contract.

4. Add a HTTP endpoint to the contract.

First of all, you need to create a few directories to hold the files associated
with the Hello World example. In a convenient location of your choosing,
create the following directories:

Arti xExanpl eDi r

Arti xExanpleDir/etc

Arti xExanpl eDir/client
Arti xExanpl eDir/ server

Where Arti xExanpl eD r is the root of your example directory tree.

The logical part of a WSDL contract is the part that contains the WSDL port
type definitions, along with the requisite definitions of any associated
message types and XML schema types.

Define a WSDL Contract

If you are defining a logical contract from scratch, you can either use the
Artix Designer (enter start _ecl i pse at the command line) or write the
contract directly (assuming you are sufficiently familiar with the syntax for
XML schemas and WSDL contracts). For the Hello World example, use the
logical contract from Example 1.

Example 1: Logical Contract for the Hello World Example

<?xm version="1.0" encodi ng="UTF- 8" ?>
<wsdl : definitions name="Hel | oWbr| d" target Nanespace="htt p://ww. i ona. cond hel | o_wor| d_soap_ht t p"

xm ns="ht t p: // schenas. xn soap. or g/ wsdl / "
xm ns: htt p- conf ="htt p: // schemas. i ona. coni t ransport s/ htt p/ confi gur ati on"
xm ns: soap="ht t p: / / schenas. xm soap. or g/ wsdl / soap/ "
xmns:tns="http://ww iona.com hel | o_world_soap_http"
xm ns: wsdl ="ht t p: / / schemas. xm soap. or g/ wsdl /"
xm ns: xsd="ht t p: / / wsv. W3. or g/ 2001/ XM_Schena" >
<wsdl : types>
<schema t ar get Namespace="ht t p: // www. i ona. coni hel | o_wor| d_soap_htt p"
xm ns="ht t p: // waww. wW3. or g/ 2001/ XM_Scherma" >
<el enent nanme="responseType" type="xsd:string"/>
<el enent name="r equest Type" type="xsd:string"/>
</ schena>
</wsdl : t ypes>
<wsdl : nessage name="sayH Request"/>
<wsdl : nessage nane="sayH Response" >
<wsdl : part el ement ="t ns: responseType" nane="t heResponse"/ >
</ wsdl : message>
<wsdl : nessage nane="gr eet MeRequest ">
<wsdl : part el ement ="t ns: r equest Type" nane="ne"/>
</ wsdl : message>
<wsdl : nessage nane="gr eet MeResponse" >
<wsdl : part el ement ="t ns: responseType" nane="t heResponse"/ >
</ wsdl : message>

<wsdl : port Type nane="QG eeter">
<wsdl : oper ati on nane="sayH ">
<wsdl : i nput nessage="t ns: sayH Request " nane="sayH Request"/>
<wsdl : out put nmessage="t ns: sayH Response" name="sayH Response"/>
</ wsdl : oper at i on>
<wsdl : oper ati on name="gr eet ">
<wsdl : i nput nessage="t ns: gr eet MeRequest " name="gr eet MeRequest "/ >

<wsdl : out put nmessage="t ns: gr eet MeResponse"” nane="gr eet MeResponse"/ >

</ wsdl : oper ati on>
</wsdl : port Type>

</ wsdl : def i ni ti ons>

CHAPTER 1 | Getting Started with Artix Programming

Add a SOAP binding to the
contract

Where the Hello World contract defines a single port type, G eet er, having
two operations, sayH () and greet Me(). The sayH () operation returns a
string. The gr eet Me() operation takes a single string argument and returns a
string.

Using your favorite text editor, copy the WSDL contract from Example 1 on
page 7 into the following file:

Arti xExanpl eDir/etc/ _hell o_worl d. wsdl

The SOAP binding describes the encoding of request and reply messages in
the SOAP protocol. By adding a SOAP binding for the G eet er port type
from Example 1 on page 7, you make it possible to invoke Greet er’s
operations using a SOAP protocol. Note that the SOAP binding describes
only how the messages are encoded, it does not describe how to send the
messages to and from the remote service (that is the responsibility of the
transport).

To add a SOAP binding to the contract, change directory to
Arti xExanpl eDi r/ et ¢ and enter the following command:

wsdl tosoap -i Geeter
-b G eet er SOAPBI ndi ng
_hel'l o_wor | d. wsdl

In this example, the wsdl t osoap command takes the following switches:
-i PortType WSDL port type for which to generate a binding.

-b Binding Name of the newly generated binding.

This command generates a new file, _hel | o_wor | d- soap. wsdl , which
contains the SOAP binding shown in Example 2.

Example 2: SOAP Binding for the Greeter Port Type

<?xm version="1.0" encodi ng="UTF- 8" ?>

<definitions ... >

<bi ndi ng nane="Q eet er SOAPBI ndi ng" type="tns: Geeter">
<soap: bi ndi ng styl e="docunent" transport="http://schenas. xm soap. or g/ soap/ http"/>
<operation name="sayH ">
<soap: oper ati on soapAction="" styl e="docurent"/>
<i nput nanme="sayH Request ">
<soap: body use="literal"/>

Define a WSDL Contract

Example 2: SOAP Binding for the Greeter Port Type

</i nput >
<out put nane="sayH Response" >
<soap: body use="literal"/>
</ out put >
</ oper at i on>
<oper ati on name="gr eet M" >
<soap: oper ati on soapAction="" styl e="docunent"/>
<i nput nanme="gr eet MeRequest " >
<soap: body use="literal"/>
</i nput >
<out put name="gr eet MeResponse" >
<soap: body use="literal"/>
</ out put >
</ oper at i on>

</ bi ndi ng>
</ definitions>

Add a HTTP endpoint to the To enable you to invoke G eet er’s operations over SOAP/HTTP, you must

contract

add a HTTP endpoint to the contract. A typical HTTP endpoint consists of a
servi ce element containing a single port element. In the port element, you
can indicate that the transport protocol is HTTP and you can provide the
relevant properties for the HTTP endpoint.

To add a HTTP endpoint to the contract, change directory to
Arti xExanpl eDi r/ et ¢ and enter the following command:

wsdl t oservi ce -b G eet er SOAPBI ndi ng
-e Hel | oWor | dSQAPSer vi ce
-t HTTPPort
-transport http
-a http://1ocal host: 4444
-0 hell o_worl d. wsdl
_hell o_wor | d- soap. wsdl

In this example, the wsdl t oser vi ce command takes the following switches:

-b Binding Binding for which an endpoint is to be generated.
-e Servi ceNanme The name of the new WSDL service.

-t Port Nane The name of the new WSDL port.

-transport http Specifies that this is a HTTP endpoint.

-a Locat i onURL The location URL for the new endpoint.

CHAPTER 1 | Getting Started with Artix Programming

-0 QutputFile The name of the output file containing the updated
WSDL contract.

This command generates a new file, hel | o_wor| d. wsdl , which contains the
HTTP endpoint shown in Example 3.

Example 3: HTTP Endpoint for the Greeter Port Type

<?xm version="1.0" encodi ng="UTF- 8" ?>
<definitions ... >

<servi ce nane="Hel | oWr | dSOAPSer vi ce" >
<port bindi ng="t ns: G eet er SOAPBi ndi ng" name="HTTPPort ">
<http: address | ocation="http://I|ocal host: 4444"/ >
</ port >
</ servi ce>
</ defi ni ti ons>

10

Develop a Service Plug-In

Develop a Service Plug-In

Overview

Generate service code from the
WSDL contract

To develop a service plug-in for the Hello World WSDL application, perform
the following steps:

1. Generate service code from the WSDL contract.
2. Edit the servant class.

3. Compile the service plug-in.

Artix has a built-in code generator that can automatically generate most of
the code required for a simple service plug-in.

To generate service plug-in code from the Hello World WSDL contract, open
a command prompt, change directory to Arti xExanpl eDi r/ server, and
enter the following command (for your respective platform):

Windows

wsdl tocpp -i G eeter
-e Hel |l oWor | dSOAPSer vi ce
-server
-i npl
-m NVAKE: | i brary
-plugin:it_hello world
- depl oyabl e
..\etc\hel | o_worl d. wsdl

UNIX

wsdl tocpp -i G eeter
-e Hel | oWor | dSOAPSer vi ce
-server
- i npl
-mWN X |ibrary
-plugin:it_hello world
- depl oyabl e
../etc/hell o_worl d. wsdl

In this example, the wsdl t ocpp command takes the following switches:

-i Port Type The port type for which code is to be generated.

11

CHAPTER 1 | Getting Started with Artix Programming

Edit the servant class

12

-e Servi ceNane The WSDL service associated with the port type.
- server Generate server skeleton code.
-inpl Provide an outline implementation of the G eet er

servant class.

-m[NMAKE] UNL X : | i brary Generate a makefile that builds the service
plug-in library (for Windows and UNIX
respectively).

- pl ugi n: Li bNane Generate the code required for a plug-in library,
using Li bNare as the root name of the library.

- depl oyabl e Generate a deployment descriptor file for the
service plug-in.

The preceding command generates all of the files needed to build and
deploy the Hello World service plug-in. The plug-in is packaged in the form
of a shared library or DLL.

The generated G eet er I npl servant class is the class that actually
implements the Greet er port type. In order to implement the Hello World
service, all that you need to do is to implement the relevant functions in this
class. An outline implementation of the G eet er | npl class is provided in the
Geeterlnpl.cxx file.

To complete the implementation of the G eeter | npl servant class, open the
G eeter | npl . cxx file with your favorite text editor and edit the sayH () and
greet Me() functions as shown in Example 4.

Example 4: Sample Implementations of sayHi() and greetMe()
/] C++

voi d

Qeeterlnpl::sayH (

IT Bus::String & heResponse
) | T_THRONDEQ.((!| T_Bus: : Excepti on))

{
std::cout << "Qeeterlnpl::sayH () called." << std::endl;
theResponse = "Greetings fromthe Artix Hel |l oWrld service.";
}
voi d

Develop a Service Plug-In

Example 4: Sample Implementations of sayHi() and greetMe()

Qeeterlnpl::greet Me(

const | T Bus::String &re,

I T _Bus::String & heResponse
) | T_THROWNDECL((I T_Bus: : Excepti on))
{

std::cout << "Qeeterlnpl::greetMe() called." << std::endl;
theResponse = "Hello " + ne;

}

Edit the sayH () and greet Me() functions, replacing the function bodies
with the lines of code highlighted in bold font.

Compile the service plug-in To compile the service plug-in, enter the following at a command prompt:

Windows

nnake al |

UNIX

make al |

Note: It is essential to specify al | as the make target, because the
default target does not generate the dependencies file.

13

CHAPTER 1 | Getting Started with Artix Programming

Develop a Client

Overview

Generate client code from the
WSDL contract

14

To develop a client for the Hello World WSDL application, perform the
following steps:

1. Generate client code from the WSDL contract.
2. Edit the client main() function.

3. Compile the client.

To generate client code from the Hello World WSDL contract, open a
command prompt, change directory to Arti xExanpl eDi r/cl i ent, and enter
the following command (for your respective platform):

Windows

wsdl tocpp -i Qeeter
-e Hel | oWor | dSQAPSer vi ce
-client
-sanpl e
-m NVAKE: execut abl e
..\etc\hell o_worl d. wsdl

UNIX

wsdl tocpp -i QGeeter
-e Hel | oWr | dSQAPSer vi ce
-client
-sanpl e
-m UN X execut abl e
../letc/hello_world. wsdl

In this example, the wsdl t ocpp command takes the following switches:

-i Port Type The port type for which code is to be generated.
-e Servi ceNane The WSDL service associated with the port type.
-client Generate client stub code.

-sanpl e Provide an outline implementation of the client’s

mai n() function.

Edit the client main() function

Develop a Client

-m Generate a makefile that builds the client
[NVAKE] UN X : execut abl eexecutable (for Windows and UNIX respectively).

The preceding command generates all of the files needed to build a client of
the Hello World service. The client is implemented as a standalone
executable.

An outline implementation of the client mai n() function is provided in the
generated G eet er A i ent Sanpl e. cxx file.
To complete the implementation of the client, open the

G eeterdi ent Sanpl e. cxx file with your favorite text editor and edit the

mai n() function as shown in Example 5, adding the lines of code shown in
bold font.

Example 5: Client main() function for Hello World Application

/] C++

try

{
/*
* ((eate an instance of the web service client
*/

I T Bus::init(argc, argv);
Geeterdient client;

I T Bus::String theResponse;
client.sayH (theResponse);

cout << "sayH () returned: \"" << theResponse << "\"" <<
endl ;

I T Bus::String me = "Your Nane";
client.greet M(ne, theResponse);

cout << "greetMg() returned: \"" << theResponse << "\"" <<
endl ;

}
cat ch(l T_Bus: : Excepti on& e)

15

CHAPTER 1 | Getting Started with Artix Programming

Compile the client

16

The additional lines of code invoke the sayH () and greet Me() operations
on the Hel | oWr | dSQAPSer vi ce service. The client code performs the
following steps:

1.

Initialize an Artix Bus instance—the call to | T_Bus: :init() initializes
an Artix Bus object (of I T_Bus: : Bus type), which provides the basic
Artix functionality.

Create a client proxy instance—a client proxy is an object that
encapsulates the information required to contact a remote WSDL
service. In this example, the G eeterd i ent class is the proxy for the
Hel | oWr | dSQAPSer vi ce service.

If you call the default constructor (as here), the client proxy is
constructed with default values for the WSDL contract location, service
name, and port name (the defaults are hard-coded in the client stub
file, G eeterdient. cxx).

Invoke the sayH () and greet Me() operations on the remote

Hel | oVr | dSQAPSer vi ce service—you can invoke the remote G eet er
operations by calling the sayH () and greet Me() operations on the
client proxy, client.

To compile the service plug-in, enter the following at a command prompt:

Windows

nnake all

UNIX
make al |

Run the Application

Run the Application

Overview

Run the container and load the
service plug-in

Run the client

To run the Hello World WSDL application, perform the following steps:
1. Run the container and load the service plug-in.
2. Run the client.

To run the container and load the Hello World service plug-in, open a
command prompt, change directory to Arti xExanpl eDi r/ server, and enter
the following command:

i t_container -publish -depl oy depl oyHel | oWr | dSQAPSer vi ce. xm

After issuing this command, the Artix container starts up and the
Hel | oWbr | dSQAPSer vi ce is activated. You should see the following output
logged to the console screen:

IONA Artix container server starting
IONA Artix container server ready

See Configuring and Deploying Artix Solutions for more details on running
the Artix container.

To run the sample client, open a command prompt, change directory to
Arti xExanpl eDi r/ client, and enter the following command:

Qeeterdient
You should see the following output logged to the console screen:

Geeterdient
sayH () returned: "Geetings fromthe Artix Hel |l owrld service."
greet Me() returned: "Hell o Your Nane"

17

CHAPTER 1 | Getting Started with Artix Programming

Adding Configuration to the Application

The Artix configuration file

Default configuration file

Sample configuration for Hello
World

18

The Artix configuration file, Arti xConfi g. cf g, is a local file that contains
configuration settings for Artix applications. It is primarily used for settings
that do not belong in a WSDL contract (although there is some overlap
between WSDL contract settings and Artix configuration file settings).

For more details about Artix configuration files, see Configuring and
Deploying Artix Solutions.

Artix provides default configuration files, which are located in the

Artixlnstal | Dir/artix/ Version/ etc/ domai ns directory. The default

configuration files are, as follows:

® artix. cf g—suitable for non-secure applications. Artix is configured to
use this configuration file by default.

® artix-secure. cf g—suitable for secure applications. You need to
configure Artix explicitly to use this configuration file.

Example 6 shows an example of a configuration file that can be used for the
Hello World appliction.

Example 6: Sample Configuration for the Hello World Application

Artix Configuration File
include "ArtixlnstallDir\artix\ Version\etc\donains\artix.cfg";

artix_exanpl e {
client {
orb plugins = ["xmfile_|og_strean];

b
server {

orb plugins = ["xmfile_|og_strean];

bus:initial _contract_dir = ["ArtixExanpleDir\etc"];
b

Adding Configuration to the Application

The preceding configuration can be described as follows:

1.

The arti x. cf g file is the default configuration file provided with Artix.
It contains many default configuration settings, which are needed by
all Artix applications.

You should include the arti x. cf g file in your own Artix configuration
file by invoking the i ncl ude directive, as shown. You need to edit the
pathname from this example to match the actual location of arti x. cf g
in your Artix installation.

The configuration scope, arti x_exanpl e. cl i ent, contains the settings
specific to the Hello World client.

The or b_pl ugi ns list specifies the set of Artix plug-ins to load at
program start-up time. Additional plug-ins can be loaded later on, if
needed, through the dynamic loading capability of the Artix plug-in
framework.

In the current example, just the XML logging plug-in,

xm file_log_stream is loaded at program start-up time.

Note: The maijority of Artix plug-ins are loaded dynamically, in the
course of parsing a WSDL contract.

For example, if a WSDL contract has a port that uses the HTTP
transport protocol, Artix automatically loads the at _htt p plug-in to
enable support for HTTP.

The configuration scope, arti x_exanpl e. server, contains the settings
specific to the Hello World service plug-in.

The bus:initial _contract_dir configuration variable gives the
location of a directory containing WSDL contracts. Artix searches this
directory to locate the service plug-in's WSDL contract.

Artix provides a variety of other ways to specify the location of the
service's WSDL contract—for more details, see “Options for providing
WSDL contracts” on page 54.

19

CHAPTER 1 | Getting Started with Artix Programming

Command-line switches for To run an Artix program with a configuration other than the default, you can
configuration supply the following command-line switches to the Artix executable:

- CRBconfi g_domai ns_di r Domai nDir Look for the Artix configuration file in
the directory, Domai nDir.

- CRBdomai n_nare Donai nNane The name of the Artix configuration
file is Domai nNane. cf g.

-CRBnare Conf i gScope Initialize the Artix Bus instance with
the settings from the Confi gScope
configuration scope in the
Domai nNarre. cf g configuration file

These command-line switches can be supplied to the Artix container
executable, i t _cont ai ner, or any standalone Artix executable (assuming the
mai n() function was implemented to pass command-line arguments to the
I T_Bus: :init() function).

Running the application with Using the preceding configuration command-line switches, you can
configuration switches customize the configuration for the Hello World service plug-in and client.
For example, to run the Hello World application with a customized
configuration, do the following:
1. Copy the sample configuration from Example 6 on page 18 into the
text file, Arti xExanpl eDi r/ etc/ hel l o_worl d.cfg,

2. Open a command prompt, change directory to
Arti xExanpl eDi r/ server, and enter the following command:

it_contai ner -CRBnane artix_exanpl e. server
-ORBconfig_donmains_dir ../etc
- ORBdonai n_nane hel l o_world
-publ i sh -depl oy depl oyHel | oWor | dSQAPSer vi ce. xmi

3. Open another command prompt, change directory to
Arti xExanpl eDir/ client, and enter the following command:

Qeeterdient -CRBnane artix_exanpl e. client
-ORBconfig_domains_dir ../etc
- ORBdonai n_nane hel l o_world

20

Environment variables for
configuration

Adding Configuration to the Application

Instead of supplying the - ORBconf i g_domai ns_di r and the - CRBdomai n_nane
switches at the command line, you can specify the Artix configuration file
location using the following environment variables:

| T_CONFI G DOVAI NS DI R Environment variable that specifies the directory
in which the Artix configuration file is located.

| T_DOVAI N_NAMVE Environment variable that specifies the domain
name, Domai nNane, from which the name of the
Artix configuration file, Domai nNane. cf g, is
derived.

There is no environment variable corresponding to the - CRBnane
command-line switch. Hence, the - CRBnarre command-line switch still
needs to be supplied to the command, even if the preceding environment
variables are set.

See Configuring and Deploying Artix Solutions for more details on
environment variables.

21

CHAPTER 1 | Getting Started with Artix Programming

22

In this chapter

Server
Programming

CHAPTER 2

This chapter describes how to develop an Artix server, which
can be based either on the container model or on the
standalone model. In many cases, the bulk of the server code
can be generated by the Artix WSDL-to-C++ compiler,
leaving the programmer to implement just the servant classes.

This chapter discusses the following topics:

Programming with the Container Model page 24
Implementing a Servant Class page 37
Implementing the Plug-In Class page 42
Implementing the Service Activator Class page 46
Programming with the Standalone Model page 50
How Services Locate WSDL Contracts page 53
Registering Static Servants page 56
Registering Transient Servants page 61

23

CHAPTER 2 | Server Programming

Programming with the Container Model

Overview The Artix container model is a way of building and deploying Artix servers,
which is based on the idea that an Artix server can be divided into two
pieces: a container piece and a service plug-in (or plug-ins). The container
piece is a standard executable, i t_cont ai ner, which is the same for all Artix
servers. The service plug-in is a shared library or DLL, which must be
implemented by an Artix server programmer.

This section provides a general overview of the container architecture and
how it affects server-side programming. In this model, the programmer can
focus on implementing service plug-ins instead of implementing standalone
server executables.

In this section This section contains the following subsections:
Container Architecture page 25
Multiple Services in a Container page 28
Service with Multiple Ports page 31
Transient Servants page 33

24

Programming with the Container Model

Container Architecture

Overview

Figure 2 shows an overview of the Artix container architecture, which shows
how a service plug-in fits into the container model. The server programmer
is responsible for implementing a service plug-in, which is deployed by
loading it into the Artix container.

Figure 2: Architecture of the Artix Container

Container Service

’ Ny i
E Container Port ! Container
o— .
:_ _________________ _,: Service Plug-In
Servant /
Service A " X\

od
=1
el
>&
5

Ni----L-9

o)
o
3

E)
=
9
(o

The basic elements of the Artix container architecture are:
® Container.

® Artix configuration file.

® Service plug-in.

® Servant.

® WSDL contract.

25

CHAPTER 2 | Server Programming

Container

Artix configuration file

26

The Artix container provides a convenient model for deploying Artix services,

removing the need for much of the boilerplate code that would otherwise

appear in the mai n() function of a traditional stand-alone server. As shown

in Figure 2, a WSDL service deployed using the container model, consists of

the following major components:

® (Container executable—the container is an executable, i t _cont ai ner,
capable of loading service plug-ins.

® Service plug-ins—plug-ins are packaged either as shared libraries or
DLLs, depending on the platform. The plug-ins are loaded into the
container using the dynamic linking capabilities of the operating
system.

An added benefit of deploying services in a container is that the container

supports elementary operations for administering services, as follows:

® Deploy new services to the container.

® List all services in the container.

® Stop a specified service.

® Start a specified service.

® Publish a URL, a reference, or a WSDL contract for a specified service.

These operations are supported by a dedicated WSDL port which provides

access to the container service. To administer the container, Artix provides

a command-line utility, i t _cont ai ner _admi n. For details, see Configuring
and Deploying Artix Solutions.

The Artix configuration file provides general-purpose configuration data for
the container process (see “Adding Configuration to the Application” on
page 18 for details on configuration). You can specify which configuration
scope applies to the container by passing the - CRBnane command-line
switch when you launch the container, where the argument to the - CRBnane
switch is the Bus ID.

Note: For each container process, it is possible to specify a single Bus ID
and only one Bus instance is created. That is, service plug-ins that load
into a container cannot be configured independently. In view of this
limitation, only related service plug-ins should be loaded into the same
container instance. The Artix container is not an application server.

Service plug-in

Servant

WSDL contract

Programming with the Container Model

A service plug-in is a component that contains the implementation of one or

more WSDL services. It consists of the following:

® Shared library or DLL—a dynamically loadable library that contains the
code for the service plug-in.

® Shared library dependencies file—a dependencies file that lists the
Artix plug-ins on which this plug-in depends (can be empty).

® Deployment descriptor file—an XML file that is passed to the Artix
container in order to deploy the service plug-in.

® WSDL contract (or contracts)—the contract for the WSDL services
provided by the plug-in.

A servant is a C++ class that implements operations from a WSDL port
type (or, sometimes, from multiple port types).

It is important to understand that a servant is not identical to a service. The
separation of the implementation from the service permits greater flexibility
in the way services are implemented. For example, in some cases a service
is implemented by multiple servants; in other cases, multiple services are
implemented by a single servant.

A servant is not associated with a service until it is registered. See
“Registering Static Servants” on page 56 and “Registering Transient
Servants” on page 61.

A service plug-in is always associated with a WSDL contract (in some cases,
with multiple WSDL contracts). The WSDL contract describes the interfaces
(WSDL port types) for all of the services deployed in the plug-in.

The WSDL contract must be made available to the container through one of
the mechanisms described in “How Services Locate WSDL Contracts” on
page 53.

27

CHAPTER 2 | Server Programming

Multiple Services in a Container

Overview

28

’

Container Service

Consider the case where you have two services, service A and service B,
that you want to deploy into the same container. Figure 3 shows two
alternative approaches to deploying these services. In the first approach
(Figure 3 (a)), each service is deployed separately in its own plug-in. In the
second approach (Figure 3 (b)), the services are deployed together in a
single plug-in. Generally, if the services are closely related, it makes sense to
deploy them in a single plug-in (as shown in Figure 3 (b)). Deploying the
services as a single plug-in makes it easier for the two services to interact
with each other and to share common data.

Figure 3: Multiple Services in Separate (a) or Common (b) Plug-In

(a) (b)

Container Service

’

Container Port E Container ! Container Port ‘: Container
O— 1 1 O— 1
! :\ ;
ServiceA _______ I — ServiceA .. I —
Port E Pl i Port E
-0 || -0
poA : :
""""""""" i it TTTTTTTTTTTTTTTTToITTTTTTTTTT Common
ServiceB I —— ServiceB .. I D Plug-In
Port i _— i Port E
-0 || -0
1 1 1

Separate plug-ins for each service

Common plug-in for all services

Programming with the Container Model

Generating separate plug-ins for each service is the default model of
deployment, which you get if you use wsdl t ocpp to generate the service
plug-in.

Example 7 shows the implementation of the bus_i ni t () function in a
service plug-in, Servi ce_A Pl ugl n, that registers just a single service,
Service A. The bus_init () function for the other service, Service B, is

implemented in a similar way in a separate plug-in class,
Servi ce_B Plugln.

Example 7: One Service Registered in each Plug-in

[l C++

voi d

Service_A Plugln::bus_init(
) | T_THROW DECL((Excepti on))

{
WBDL Ser vi ce* wsdl _service =
get _bus()->get _servi ce_contract (mservi ce_A gnane) ;
get _bus() - >regi st er_servant (
m servant _A,
*wsdl _servi ce_A
DE
}

Typically a more efficient solution, if you want to deploy a number of closely
related services, is to combine the different services in a single service
plug-in.

Example 8 shows the implementation of the bus_i ni t () function for a

common plug-in, which combines the registration of both Service A and
Service B.

Example 8: Multiple Services Registered in a Plug-In

[l Ct+

voi d

ComonPl ugl n: : bus_i ni t (

) | T_THRON DECL((Exception))
{

WBDL Ser vi ce* wsdl _service_A =

29

CHAPTER 2 | Server Programming

Example 8: Multiple Services Registered in a Plug-In

get _bus()->get_service_contract(mservi ce_A gnane);

get _bus() ->regi st er_servant (
m servant _A
*wsdl _service_A

)

WBDLSer vi ce* wsdl _service_B =
get _bus()->get _servi ce_contract (mservi ce_B gnane);

get _bus() ->regi st er_servant (
m servant _B,
*wsdl _service B

)

30

Programming with the Container Model

Service with Multiple Ports

Overview

Container Service

(a)

Consider the case where a single service, service A, exposes two different
WSDL ports. For example, one of the ports might accept only insecure
connections while the other port accepts only secure connections.

Figure 4 shows two different approaches to activating the ports. In the first
approach (Figure 4 (a)), a single servant object is registered against both
ports, so that request messages from both ports are directed to the same
servant object. In the second approach (Figure 4 (b)), each port is registered
against a different servant object. The second approach (servant for each
port) is useful in cases where you need to fine-tune the servant
implementation for each of the WSDL ports. For example, if one of the ports
is insecure, you might want to implement a corresponding servant object
that restricts access to sensitive resources.

Figure 4: Multi-Port Service Registered against a Single Servant (a), or
Multiple Servants (b)

(b)

Container Service

! Container Port ‘: Container ! Container Port ‘: Container
L. L o— |

Service A | Service A ___| R IO
:I Port , :I Port 1
] i 1]
e O
! Q i Plug-in : i Plug-in
i Port A , A
| 1 1
| o T | |
' ! \)

31

CHAPTER 2 | Server Programming

Activating all ports together

Activating ports individually

32

If you activate a service's ports together, you associate all of the ports with a
single servant object. For details of how to program this approach, see
“Activate all ports together” on page 58.

If you activate a service’s ports individually, you can optionally associate
each of the WSDL ports with a different servant object. For details of how to
program this approach, see “Activate ports individually” on page 59.

Programming with the Container Model

Transient Servants

Overview

Artix allows you to generate an unlimited number of services from a single
template by taking advantage of transient servants. This feature is useful for
those cases where Artix bridges into a technology domain that maps
services to object instances. Because it is usual to allow an unlimited
number of objects of a particular type, it follows that this kind of bridge can
work only if Artix allows an unlimited number of services of a particular
type.

Figure 5 shows an example of how transient servants could be used in a
bank application. The Bank service creates and provides access to an
unlimited number of Account objects. Each Account object is accessed
through a unique service (for example, Account 1, Account 2, and Account 3).
These Account services are created dynamically by registering servants as
transient.

Figure 5: Transient Servants for an Account Service

Container Service

! Container Port ‘: Container
1 1
1 1
1 U

\ .

i Bank Port E |
: o — Q | Plug-In
1 1

Account 3
STTTTTT T T I N
! — —1 |
Actount2 | e Q [~ Transient
’ Vol |_{—— Servants
[
Actount 1 —> —

syl ——f-<

Account Port -

!
|
|
' |
|
\

33

CHAPTER 2 | Server Programming

Factory pattern The need for transient servants commonly arises when implementing the

factory pattern, which is a common object-oriented design pattern. At a

mininum, the factory pattern involves two interfaces, as follows:

® Creator—an interface that provides operations for creating and finding
objects of a particular type (the products). In the current example, the
Bank port type plays the role of a creator interface.

® Product—an interface for the objects produced by the creator. In the
current example, the Account port type plays the role of a product
interface.

The following WSDL fragment shows the outline of a Bank port type and an
Account port type, which together exemplify a factory design pattern:

<definitions xm ns="http://schemas. xm soap. or g/ wsdl /"

>

<nessage nane="creat e_account">
<part name="account_name" type="xsd:string"/>
</ message>
<nmessage nane="cr eat e_account Response" >
<part name="return" type="wsa: Endpoi nt Ref erenceType"/>
</ message>

<port Type nane="Bank">
<oper ati on name="cr eate_account ">
<i nput name="create_account" message="tns: create_account"/>
<out put name="cr eat e_account Response" message="t ns: cr eat e_account Response"/ >
</ oper ati on>
</ port Type>

<port Type name="Account">

</ por t Type>

</ definitions>

34

The Bank port type exposes a cr eat e_account operation, which creates a
new account with a specified name and returns a reference to the newly
created Account object. The returned reference is represented by the
wsa: Endpoi nt Ref er enceType type.

References

Template service

Programming with the Container Model

An endpoint reference is an XML schema type that encapsulates the
information required to connect to an Artix service. Essentially, a reference
contains the same information as is contained in a WSDL ser vi ce element.

For more details about the endpoint reference type, see “Endpoint
References” on page 153.

A noteworthy feature of the factory pattern is that the creator (of Bank type)
can create an unlimited number of products (of Account type). Because
each account instance needs to be represented by a WSDL service, this
implies that Artix needs the capability to generate an unlimited number of
WSDL services for the accounts. This requirement, however, is at odds with
the standard approach to defining Web services, where a fixed number of
WSDL services are defined explicitly in the WSDL contract.

To give you the ability to define an unlimited number of WSDL services,
Artix lets you define a template service in the WSDL contract. A template
service is defined using the same syntax as a regular service. The only
additional condition that a template service must obey is that the endpoint
address should conform to a placeholder format (for details, see “SOAP
template service” on page 63 and “CORBA template service” on page 63).
For example, the following WSDL fragment shows a template service for

accounts services. In this case, the placeholder format for the HTTP address
is http://1ocal host: 0.

<definitions xmns="http://schenas. xn soap. org/ wsdl /"

.

<servi ce name="Account Servi ce">
<port name="AccountPort" bi ndi ng="t ns: Account Bi ndi ng" >

</ servi ce>
</ definitions>

<soap: address | ocation="http://| ocal host: 0" />
<ht t p- conf : server Honor KeepAl i ve="fal se"/>
<http-conf:client Connection="cl ose"/>

</ port >

At runtime, Artix modifies the in-memory copy of this WSDL service by
replacing the placeholder address, http://1 ocal host: 0, with a URL that
has a specific host and port. The server then listens for operation
invocations on that host and port.

35

CHAPTER 2 | Server Programming

Cloned services

36

When you register a servant object as a transient servant, Artix implicitly

clones a new service from the template service and associates the newly

cloned service with the transient servant. Artix generates a cloned service

from the template service by copying the template service and then making

the following changes:

® The service QName is replaced by a unique identifier (that is, unique
for every cloned service).

® The placeholder address is replaced by an active endpoint address that
is unique for every cloned service.

For example, in the case of a HTTP port, the placeholder address,
http://1 ocal host: 0, is replaced by a real IP address with a specific
host and port. A unique identifier is then appended to this URL to give
the address of the cloned endpoint.

Implementing a Servant Class

Implementing a Servant Class

Overview

The main task required of an Artix server programmer is the implementation
of one or more servant classes. A servant class provides the implementation
of a WSDL service. Because the servant member functions are generated
from a particular WSDL port type, a given servant class can implement only
WSDL services that have the same WSDL port type.

Figure 6 shows the class hierarchy for a typical servant implementation
class, Port Typel npl .

Figure 6: Class Hierarchy for the Servant Implementation Class

| T_Bus: : Servant Port Type

Port TypeSer ver

i

Por t Typel npl

The following classes appear in this hierarchy:

I T_Bus: : Servant class—is the base class for all servant types. It
declares a few standard member functions.

Por t Type class—an abstract class generated from the WSDL port type
named Por t Type. This class contains a function corresponding to each
of the WSDL operations in the Port Type port type.

Por t TypeSer ver class—the server skeleton class, which is generated
by the wsdl t ocpp utility when the -server switch is supplied. The
skeleton class includes code for dispatching the operations in the
Por t Type port type.

Por t Typel npl class—the servant class, which provides the
implementation of the Port Type port type.

You must implement this class in order to implement a WSDL service.

37

CHAPTER 2 | Server Programming

Generating the servant class

38

To generate an outline implementation of the servant class, invoke the
wsdl t ocpp command as follows:

wsdl tocpp -i port_type
-e web_servi ce_nane

- server
-inpl

-m [NVAKE| UNL X : |'i brary
- pl ugi n[: pl ugi n_nane]

- depl oyabl e

WsDLContract Fi | e

In this example, the last item on the command line, WsDLCont ract Fi | e, is
the path name (or possibly URL) of the WSDL contract. The switches shown
in the preceding command have the following meaning:

-i port_type

Specifies the name of the port type for which the tool
will generate code.

-e web_servi ce_nane Specifies the name of the service for which the tool

[:port_list]

- server

- i npl

-m{NVAKE | UN X}

;[executabl e |
l'i brary]

-plugin
[: pl ugi n_nane]

will generate code.

Generates stub code for a server (cannot be combined
with the - cli ent switch).

Generates an outline implementation of the servant
class.

Used in combination with -i npl to generate a
makefile for the specified platform (NVAKE for
Windows or UN X for UNIX). You can specify that the
generated makefile builds an executable, by
appending : execut abl e, or a library, by appending
:library. For example, the options, -inpl -m
NVAKE: execut abl e, would generate a Windows
makefile to build an executable.

Generates a service plug-in. You can optionally
specify the plug-in name by appending : pl ugi n_narne
to this option. If no plug-in name is specified, the
default name is <Ser vi ceName><Por t TypeNane>. The
service name, <Ser vi ceNarre>, is specified by the -e
option.

Implementing the constructor

Implementing WSDL operations

Implementing a Servant Class

- depl oyabl e (Used with - pl ugi n.) Generates a deployment
descriptor file, depl oy<Ser vi ceNarme>. xm , which is
needed to deploy a plug-in into the Artix container.

You can implement any kind of constructor you like for the servant
implementation class. There is, however, one condition that must always be
fulfilled: one of the arguments to the Port Typel npl () constructor must be of
type | T_Bus: : Bus_ptr and the bus argument must be passed into the base
constructor, Port TypeServer ().

For example, you can implement a simple constructor for the Bank port type,
as follows:

Il C++
Bankl npl : : Bankl npl (1 T_Bus:: Bus_ptr bus) : BankServer (bus)
{

}

For every operation belonging to a particular port type in the WSDL contract,

the wsdl t ocpp compiler generates a corresponding member function in the

servant class. The C++ function signatures are derived from the WSDL

operation definitions, as follows:

® First come the parameters corresponding to the input messages,

® Next come the parameters corresponding to the input/output messages
(messages sent both to and from a service),

® And finally come the parameters corresponding to the output
messages.

None of the messages are represented as a return value in C++. Hence,

C+ + functions corresponding to WSDL operations always return the voi d

type. For more details about mapping WSDL operations to C++ functions,

see “Operations and Parameters” on page 96.

39

CHAPTER 2 | Server Programming

Implementing runtime callbacks

40

For example, the creat e_account operation in the Bank port type maps to
the following C++ member function:

/] C++
voi d
Bankl npl : : cr eat e_account (
const | T Bus::String &ccount _nane,
W6_Addr essi ng: : Endpoi nt Ref er enceType & return
) | T_THRONDEQ.((!| T_Bus: : Excepti on))
{

}

The account _nane string parameter corresponds to an input message and
the _return parameter, of Ws_Addr essi ng: : Endpoi nt Ref er enceType type,
corresponds to an output message. The

V& Addr essi ng: : Endpoi nt Ref er enceType type enables a reference to a
WSDL service to be transmitted over the wire. A reference encapsulates the
location information for a particular WSDL service. For more details about
references, see “Endpoint References” on page 153.

There are some standard functions that the servant class inherits from

I T_Bus: : Servant. You can optionally override these functions to receive
callback notifications from the Artix runtime when certain events occur. The
following callback functions are inherited from 1 T_Bus: : Servant :

/] C++
I/ Servant functions inherited from| T Bus:: Servant.
voi d activated(l T Bus::Port& port);

voi d deactivated(lT_Bus::Porté& port);

I T_Bus:: Servant* clone() const;

Whenever a WSDL port is activated or deactivated, Artix calls act i vat ed()
or deact i vat ed() , respectively, to notify the servant of this event. If you do
not implement these functions, the server skeleton code provides default
implementations, which do nothing. These functions are typically only
needed by advanced applications.

Calling Bus APIs

Implementing a Servant Class

The cl one() function gets called by the Artix runtime to create a new
servant instance. An implementation of the cl one() function is required to
support certain threading policies on the server side. For more details see
“Servant Threading Models” on page 132.

The servant application code can also access a variety of Artix APIs through
the Bus object. The Bus object can be conveniently accessed by calling the
get _bus() member function, which is implemented by the

I T_Bus: : Servant base class:

/] Ct+
virtual Bus_ptr get_bus() const;

One of the most common reasons for accessing the Bus instance, is in order
to write to or read from an Artix context. Artix contexts provide a mechanism
for accessing data in message headers or for fine-tuning Artix behavior by
setting policies programatically. For more information about Artix contexts,
see “Artix Contexts” on page 199.

41

CHAPTER 2 | Server Programming

Implementing the Plug-In Class

Overview

Plug-in functions

Summary of container
programming

42

The service plug-in class provides the entry point for initializing and shutting
down the plug-in. For very simple applications, you can use the default,
generated implementation of the plug-in class. For most applications,
however, you will probably need to make some modifications to the plug-in
class.

The service plug-in class essentially provides a programmer with two hooks:
® bus_init()—a function called as the plug-in initializes.
® bus_shut down() —a function called as the plug-in shuts down.

The primary purpose of the bus_i ni t () function is to let you register servant
objects. By registering a servant object, you create an association between
the servant object and a particular WSDL service, such that requests
received by the WSDL service are invoked on the servant object. If you are
using service activators, however, you would typically delegate servant
registration to the service activators.

The bus_shut down() function enables you to perform clean-up tasks as the
Bus and the plug-in are shutting down.

The following points summarize how to program an Artix server in the

container programming model:

® Thebus_init() and bus_shut down() functions in the plug-in class
take the place of a mai n() function.

® The plug-in class is primarily used for registering service activators and
for registering and deregistering servants (in bus_i nit () and
bus_shut down() respectively).

® There is no need to call either the I T_Bus: :init () function or the
| T_Bus: : Bus: : shut down() function. The container looks after
initializing and shutting down the Bus object.

® Call get _bus() to get the I T_Bus: : Bus instance.

® Instead of hard-coding the location of a WSDL contract, you can find a
contract using the | T_Bus: : Bus: : get _servi ce_contract () function.

Generating the plug-in class

Plug-in constructor

Implementing the Plug-In Class

To generate a default implementation of the service plug-in class, invoke the
wsdl t ocpp command as follows:

wsdl tocpp -i port_type
-e web_service_name
-server
-i npl
-m[NVAKE| UIN X : |i brary
- pl ugi n[: pl ugi n_nane]
- depl oyabl e
WeDLContractFi | e

In this example, the last item on the command line, WsDLCont ract Fi | e, is
the path name (or possibly URL) of the WSDL contract. The switches shown
in the preceding command are explained in “Generating the servant class”
on page 38.

The wsdl t ocpp utility with the - pl ugi n switch generates the following files
containing a default implementation of the service plug-in class:
<web_servi ce_nane><port _type>Pl ugl n. h

<web_servi ce_name><port _t ype>Pl ugl n. cxx

Where <web_ser vi ce_nane> is the WSDL service specified by the - e switch
of the wsdl t ocpp command and <port_t ype> is the port type specified by
the -i switch.

The plug-in constructor is called as the plug-in is loaded. This is a
convenient place to create basic objects that the plug-in needs.

Example 9 shows an example of a constructor for the BankSer vi ce plug-in.
This constructor creates a service activator instance, m servi ce_activat or,
that is responsible for activating the BankSer vi ce service and a QName
instance, m servi ce_gnane, that holds the name of the BankSer vi ce
service.

Example 9: Sample Plug-In Constructor for the Bank Service Plug-In
Il C++
BankSer vant BusPl ugl n: : BankSer vant BusPl ugl n(
Bus_ptr bus
) | T_THROW DECL((Excepti on))

BusP! ugl n(bus) ,

43

CHAPTER 2 | Server Programming

bus_init() function

44

Example 9: Sample Plug-In Constructor for the Bank Service Plug-In
m servi ce_activator(0),
m servi ce_gname("", "BankService",

"http://ww i ona. com bus/ demos/ bank™)

/1 conpl ete

The bus_i ni t () function is called either during Bus initialization or just after
the plug-in is loaded. The bus_i ni t () function is the place to put the code
that registers servants with the Bus. If the plug-in uses service activators,
the bus_i ni t () function should register the service activators with the Bus
and then delegate servant registration to the service activators.

Example 10 shows an implementation of bus_i ni t () that registers a service
activator object against the BankSer vi ce service. The code then explicitly
calls acti vat e_servi ce() on the service activator instance, which has the
effect of registering a Bank servant with the Bus

Example 10: Sample Implementation of bus_init()

/] C++
voi d
Q eet er Servant BusPl ugl n: : bus_i ni t (
) | T_THROWDECQL((Excepti on))
{
try
{
m servi ce_acti vator
= new | T_Bus_Servi ces: : Servi ceActivatorlnpl (get_bus());

if (O == mservice_activator.get())
{
String error("Failed to initialize
Servi ceActivator");
error += " for service, ";
error += mservice_gnane.to_string();
t hr ow Exception(error);

}

Servi ceActivator::register_sa(
get _bus(),
m servi ce_gnare,
m servi ce_activator. get ()

bus_shutdown() function

Implementing the Plug-In Class

Example 10: Sample Implementation of bus_init()
E

m servi ce_acti vator->acti vat e_servi ce(m servi ce_gnane) ;

}
catch (const | T Bus::Exception & ex)
{
t hrow Exception(ex);
}

The bus_shut down() function is called when the Bus instance is shut down
(that is, when the container calls | T Bus: : Bus: : shut down()).

Example 11 shows an implementation of bus_shut down() that deactivates

the BankService service, which results in de-registration of the Bank
servant.

Example 11: Sample Implementation of bus_shutdown()

Il C++
voi d
Q@ eet er Ser vant BusPl ugl n: : bus_shut down(
) | T_THROW DECL((Excepti on))
{
m servi ce_acti vat or->deacti vat e_ser vi ce(
m servi ce_gname
DE

45

CHAPTER 2 | Server Programming

Implementing the Service Activator Class

Overview The service activator class provides the entry point for creating, registering
and deregistering servants. In general, this class is used to manage the
lifecycle of an Artix service. If the relevant member functions of the service
activator class are properly implemented, it should be possible to deactivate
and then re-activate a service without needing to shut down the entire
service plug-in.

Service activator functions The service plug-in class provides two functions that control the lifecycle of
an Artix service, as follows:

® activate_service()—a function called either from within bus_i ni t ()

or whenever the i t _cont ai ner_adm n -depl oy command is executed.

The purpose of the act i vat e_servi ce() function is to perform all of
the housekeeping tasks necessary to start up an Artix service, including
the creation of a servant object and the registration of that servant
object with the Bus.

® deactivate_service()—a function called either from within
bus_shut down() or whenever the it _cont ai ner _adnin
-renoveser vi ce command is executed.

The purpose of the deacti vat e_ser vi ce() function is to perform all of
the housekeeping tasks necessary to shut down an Artix service,
including deregistration of the service and deletion of the associated
servant object.

Related container administration The lifecycle functions provided by the service activator class are closely
commands related to the following i t _cont ai ner _adm n commands:
® it_container_admn -depl oy—the effect of issuing this command
depends on whether this is the first or subsequent deployment, as
follows:

+ First deployment—Iload and initialize the service plug-in. The
container calls bus_i ni t (), which is normally programmed to call
activate_service() for each of the WSDL services.

46

Generating the service activator
class

activate_service() function

Implementing the Service Activator Class

+ Subsequent deployment (re-deploy)—activate any inactive
services. The container calls acti vat e_servi ce() on each of the
registered service activators, but only if the service is currently
inactive. The container does not call bus_i ni t () in this case.

Note: Artix does not currently provide an administration command
that re-activates a single service at a time. The - depl oy command
re-activates all of the inactive services from the specified plug-in.

it_container_admn -renoveservi ce—de-activate a specific service.
When you issue the -r enoveser vi ce command, the container calls
deacti vat e_service(), but only if the specified service is currently
active.

For more details about the i t _cont ai ner _adni n command-line utility, see
Configuring and Deploying Artix Solutions.

The service activator class is generated by the wsdl t ocpp command at the
same time as the plug-in class. For details of how to generate a default
implementation of the service activator class and the plug-in class, see
“Generating the plug-in class” on page 43.

The wsdl t ocpp utility generates the following files containing a default
implementation of the service activator class:

<port_type> service_activator_inpl.h
<port_type> service_activator_inpl.cxx

Where <port _type> is the port type specified to wsdl t ocpp by the -i switch.

The acti vat e_servi ce() function is called either from the body of the
bus_i ni t () function or whenever the i t _cont ai ner_adm n -depl oy
command is issued. The acti vat e_servi ce() function is the appropriate
place to put the code that creates and registers servants.

Example 12 shows an implementation of act i vat e_servi ce() that registers
a Bank servant, thereby associating it with the BankSer vi ce WSDL service.

Example 12: Sample Implementation of activate_service()
Il C++

voi d
Servi ceActivatorlnpl::activate_service(

47

CHAPTER 2 | Server Programming

Example 12: Sample Implementation of activate_service()

const | T_Bus:: Q\ane& servi ce_nane
) | T_THRONDEQ.((I T_Bus: : Excepti on))
{
if (minpl==0) {
minpl = new COM | ONA BANK: : Bankl npl (
m bus. get ()
)
}

I T_WADL: : WBDLSer vi ce* wsdl _service =
m bus- >get _servi ce_contract (servi ce_nane) ;

if (wsdl _service !'= 0)

{

m bus- >r egi st er _ser vant (

*mi npl,
*wsdl _servi ce

}

In this example, it is assumed that the service activator instance was
registered as shown in Example 10 on page 44—that is, the service
activator instance is registered only against the BankSer vi ce service. Hence,
it follows that the acti vat e_servi ce() function shown in Example 12 will
only be called when ser vi ce_nane equals the BankSer vi ce QName.

Advanced applications might choose to register a service activator instance
against several different services. In that case, you would need to examine
the service QName, ser vi ce_nane, in order to decide which servant to
activate.

48

deactivate_service() function

Implementing the Service Activator Class

The deact i vat e_servi ce() function is called either from the body of the
bus_shut down() function or whenever the

i t_container_admn -renoveservi ce command is issued.

Example 13 shows an implementation of deact i vat e_servi ce() that

deregisters and deletes the Bank servant that was registered by
activate_service().

Example 13: Sample Implementation of deactivate_service()

/] C++

voi d

Servi ceActivatorlnpl :: deactivate_servi ce(
const | T_Bus:: Q\ane& servi ce_nane

)

m bus- >r enove_ser vi ce(servi ce_nane) ;
del ete minpl;
minpl = 0;

49

CHAPTER 2 | Server Programming

Programming with the Standalone Model

Overview

Generating the standalone server

50

If you prefer not to deploy your Artix server using the container model, you
can opt for the standalone model instead. In the standalone model, you are
responsible for writing the server's mai n() function directly. Instead of
building a plug-in, the servant code and mai n() function are linked together
and built as a standalone executable.

The standalone model is simpler than the container model in some respects,
but it has the disadvantage that you cannot monitor a standalone executable
using the Artix management console.

To generate an outline implementation of a standalone server, invoke the
wsdl t ocpp command as follows:

wsdl tocpp -i port_type
-e web_servi ce_name
-sanpl e
-inpl
-m [NVAKE| N X] : execut abl e
WBDLContractFil e

In this example, the last item on the command line, WsDLCont ract Fi | e, is
the path name (or possibly URL) of the WSDL contract. The switches shown
in the preceding command have the following meaning:

-i port_type Specifies the name of the port type for which the tool
will generate code.

-e web_servi ce_nane Specifies the name of the service for which the tool

[:port_list] will generate code.

-sanpl e Generates code for a server main function and a client
main function.

-inpl Generates an outline implementation of the servant
class.

Sample main() function

Programming with the Standalone Model

-m{NVAKE | UIN X} Used in combination with -i npl to generate a
:[executabl e | makefile for the specified platform (NVAKE for
library] Windows or N X for UNIX). You can specify that the

generated makefile builds an executable, by
appending : execut abl e, or a library, by appending
:library. For example, the options, -inpl -m
NVAKE: execut abl e, would generate a Windows
makefile to build an executable.

Example 14 shows the basic outline of a server mai n() function. In this
example, the mai n() function registers a single G eet er I npl servant against
the Hel | oVr | dSQAPSer vi ce service.

Example 14: Sample main() Function for Standalone Server
[l Ct+

#i ncl ude <it_bus/ bus. h>

#i ncl ude <it_bus/exception. h>

#include <it_bus/faul t_exception. h>

#i nclude <it_cal /i ostream h>

| T_USI NG NAMESPACE_STD

#include "Geeterlnpl.h"

usi ng namespace COM | ONA HELLO WORLD SQAP_HTTPR;
usi ng nanespace | T_Bus;

int main(int argc, char* argv[])

{
cout << " Qeeter service" << endl;
try
{
I T Bus::Bus_var bus = I T Bus::init(argc, argv);
QG eeterlnpl servant (bus);
I T_Bus:: Q\anme service_nane_0("", "HelloWr| dSQAPServi ce",

"http://ww.iona.com hell o_world_soap_http");
bus- >r egi st er _ser vant (

servant,
"..letc/hello_world. wsdl",

51

CHAPTER 2 | Server Programming

52

Example 14: Sample main() Function for Standalone Server

}

servi ce_nanme_0

)

bus->run() ;

}

catch(1 T_Bus: : Excepti on& e)

{
cout << "Error occurred: " << e.nessage() << endl;
return -1;

}

return O;

The preceding code example can be explained as follows:

1.

When writing the server mai n() function, you need to initialize the Artix
Bus explicitly by calling the I T_Bus: :ini t () function.

It is important also to pass the command line arguments to the

I T_Bus: :init() function, otherwise the server would not respond to
the standard Artix command-line options.

This example creates a single servant object, of G eeter I npl type, and
registers this servant against the Hel | oWr | dSOAPSer vi ce service. Artix
supports many different options for registering servant options—for
more details, see “Registering Static Servants” on page 56 and
“Registering Transient Servants” on page 61.

Call I T_Bus: : Bus: : run() to send the main thread to sleep. This allows

the background threads to continue processing incoming request
messages.

How Services Locate WSDL Contracts

How Services Locate WSDL Contracts

Overview

Example of finding a WSDL
contract

For all but the simplest applications, it is recommended that you do not
hard-code the location of a WSDL contract into your service code. In place
of hard-coding the contract location, Artix supports a mechanism for
locating WSDL contracts based on the service QName. If you supply Artix
with a service QName, Artix will then find and parse the corresponding
WSDL contract.

This approach to locating WSDL contracts consists of two steps:

1. In the application code, call I T_Bus: : Bus: : get _servi ce_contract ()
with a service QName argument for the WSDL service that you want to
find.

2. Using the supported location mechanisms (see “Options for providing
WSDL contracts” on page 54 for details), Artix searches the available
WSDL contracts to find one that contains the requested WSDL service.

Example 15 shows how to find a WSDL service element, SOAPSer vi ce, in
the namespace, http: // waw. i ona. coni hel | o_wor | d_soap_http , and
register a servant against it, given that the Bus has access to the WSDL
contract containing the service.

Example 15: Finding a WSDL Contract Using get_service_contract()

[l Ct+
| T_Bus: : Q\anme servi ce_gnane(

", "SOAPService", "http://wwviona.con hell o_world_soap http"
)

/1 Find the WBDL cont r act
I T_WBDL: : WBDL Ser vi ce* wsdl _servi ce = bus->get _service_contract (
servi ce_gnane

)

I/ Register the servant
bus- >r egi st er _servant (
servant,
*wsdl _service

)

53

CHAPTER 2 | Server Programming

Options for providing WSDL Artix finds WSDL contracts from the following sources, in order of priority:

contracts 1.

54

Contract specified on the command line—you can provide a WSDL
contract by specifying the location of the WSDL contract file on the
command line. For example:

it_container -BUSservice contract ../../etc/hello_world.wsdl
-ORBnane arti x_exanpl e. server
-depl oy depl oyHel | oWor | dSQAPSer vi ce. xni

Contract specified in the configuration file—you can provide a WSDL
contract from the configuration file. For example:

Artix Configuration File

bus: gnarme_al i as: hel | o_servi ce =

"{http://wmiona.con hello_world soap_http}Hel | oWr | dSQAPS
ervice";

bus:initial _contract:url:hello_service =
“..l..letc/hello.wsdl";

The first line of this example associates a nickname, hel | o_servi ce,
with the QName for the Hel | oWr | dSQAPSer vi ce service. The
bus:initial _contract:url:hello_service variable then specifies the
location of the WSDL contract containing this service.

For more details, see Configuring and Deploying Artix Solutions.
Contract directory specified on the command line—you can provide a
WSDL contract by specifying a contract directory on the command line.
When Artix looks for a particular WSDL service, it searches all of the
WSDL files in the specified directory. For example:

it_container -BUSservice contract_dir ../../etc/
-CRBnane arti x_exanpl e. server
-depl oy depl oyHel | oWor | dSQAPSer vi ce. xni

For more details, see Configuring and Deploying Artix Solutions.

Contract directory specified in the configuration file—you can provide
WSDL contracts by specifying a list of contract directories in the
configuration file. For example:

Artix Configuration File
bus:initial contract_dir =[".", "../../etc"];

How Services Locate WSDL Contracts

5. Stub WSDL shared library—Artix can retrieve WSDL that has been
embedded in a shared library.

Currently, this mechanism is not publicly supported. However, it is
used internally by the following Artix services: LocatorService,
SessionManagerService, PeerManager, and ContainerService.

References For more details about how to register servants, see “Registering Static
Servants” on page 56 and “Registering Transient Servants” on page 61.

55

CHAPTER 2 | Server Programming

Registering Static Servants

Overview Initially, when a servant object is created, it is associated with a particular
logical contract (that is, WSDL port type), but has no association with any
physical contract (that is, WSDL service). The link between a servant
instance and a physical contract must be established explicitly by
registering the servant.

Figure 7 illustrates the effect of registering a static servant: registration
establishes an association between a servant instance and a part of the
WSDL model that represents a particular WSDL service.

Figure 7: Relationship between a Static Servant and a WSDL Contract

WSDL Contract

<port Type>
</ port Type>
L. — logical contract

static servant

<service>
<port>
“—> S — physical contract
</ port>

</ servi ce>

| T_Bus: : Servant | T_WBDL: : WeDL Ser vi ce

Static servant The defining characteristic of a static servant is that, when registered, it is
associated with a service appearing explicitly in the original WSDL contract.
This implies that a static servant is restricted to using a service from the
fixed collection of services appearing in the WSDL contract.

56

Registering Static Servants

IT_Bus::Bus registration The | T_Bus: : Bus class defines the functions in Example 16 to manage the
functions registration of static servants:

Example 16: The IT_Bus::Bus Static Servant Registration AP/

Il C++
voi d
regi ster_servant (
I T_Bus:: Servant & servant,
| T_WBDL: : WeDLSer vi ce & wsdl _servi ce,
const | T Bus::String & port_nane = | T_BUS ALL_PCRTS

) | T_THRONDECL((I T_Bus: : Exception)) 0; -

voi d
regi ster_servant (

| T_Bus:: Servant & servant,

const | T Bus::String & wsdl _| ocati on,

const | T_Bus:: Q\ane & servi ce_nane,

const | T Bus::String & port_name = | T_BUS ALL_PORTS
) | T_THROWN DECL((Exception)) = 0;

I T _Bus:: Service_ptr
add_ser vi ce(
| T_WBDL: : WBDLServi ce & wsdl _service
) | T_THRONDECL((IT_Bus:: Exception)) = 0;

I T_Bus:: Service ptr

add_ser vi ce(
const | T Bus::String & wsdl _| ocati on,
const | T_Bus:: Q\ane & service_nane

) | T_THRON DECL((Exception)) = 0;

virtual |T_WBDL:: WBDLSer vi ce*
get _servi ce_contract (
const Q\ane& servi ce_nane
) | T_THROWN DECL((Exception)) = 0;

I T_Bus:: Service ptr
get _servi ce(
const | T_Bus:: Q\ane & servi ce_nane

);

voi d
renove_servi ce(
const Q\ane & service_name

)

57

CHAPTER 2 | Server Programming

IT_Bus::Service registration
function

Activating a static servant

Activate all ports together

58

In addition to the registration functions in I T_Bus: : Bus, the
I T_Bus: : Servi ce class also supports a regi ster_servant () function. The

I T_Bus: : Service: :regi ster_servant () function enables you to activate
ports individually.

Example 17:The IT_Bus::Service register_servant() Function

Il C++
voi d
regi ster_servant (
I T_Bus:: Servant & servant,
const | T _Bus::String & port_to_register
)i

There are different approaches to activating a static servant, depending on
whether you want to activate ports together or individually. The following
approaches are supported:

® Activate all ports together.
® Activate ports individually.

To activate all ports together, registration is a single step process. You add
the service to the Bus and activate all of its ports by calling
| T_Bus: : Bus: : regi ster_servant (). For example:

/] C++
Pl ugl nl npl : : Pl ugl nl npl (
Bus_ptr bus

) | T_THROWDECQL((Excepti on))

BusPl ugl n(bus),
m bank_servant (bus),
m servi ce_gname("", "BankService",
"http://ww: i ona. coml bus/ denos/ bank")
{
/1 conpl ete

}

voi d

Pl ugl nl npl : : bus_init(

) | T_THROWDECQL((Excepti on))
{

Activate ports individually

}

voi d

Registering Static Servants

| T_WBDL: : WBDLSer vi ce* wsdl _service =
get _bus()->get _servi ce_contract (mservi ce_gnane);

bus- >r egi st er_servant (
m bank_servant,
*wsdl _servi ce

Pl ugl nl npl : : bus_shut down(

)
{

}

I T_THRON DECL((Exception))

get _bus() - >r enove_ser vi ce(m servi ce_gnane) ;

In this case, all the service's ports dispatch their invocations to the same
servant object, m bank_servant .

To activate ports individually, registration is a two-step process. First you
add a service to the Bus, then you activate individual ports. For example:

Il C++
Pl ugl nl npl : : Pl ugl nl npl (

Bus_ptr bus

) | T_THRON DECL((Excepti on))

{
}

voi d

BusP! ugl n(bus) ,

m cor ba_ser vant (bus),

m soap_ser vant (bus),

m servi ce_gname("", "BankService",

"http://ww. i ona. con bus/ demos/ bank")

/1 conplete

Pl ugl nl npl : : bus_ini t (

)
{

I T_THRON DECL((Exception))

| T_WBDL: : WBDLSer vi ce* wsdl _service =
get _bus()->get _servi ce_contract (mservi ce_gnane);

| T_Bus: : Service_var bank_service =
get _bus()->add_servi ce(*wsdl _servi ce);

59

CHAPTER 2 | Server Programming

Default threading model

60

bank_ser vi ce- >r egi st er _ser vant (m cor ba_servant, " QORBAPort ") ;
bank_servi ce- >regi st er_servant (m soap_servant, "SOAPPort");

}

voi d

Pl ugl nl npl : : bus_shut down(

) | T_THROWN DECQL((Exception))
{

}

get _bus() - >renove_servi ce(m servi ce_gnane) ;

In this case, each port can be programmed to dispatch invocations to
distinct servant objects. For example, invocations arriving at the CCRBAPor t
port are dispatched to the corba_servant servant instance. Whereas,
invocations arriving at the SOAPPort port are dispatched to the
soap_servant servant instance.

The default threading model for a registered servant is multi-threaded. That
is, the servant is liable to have its operations invoked simultaneously by
multiple threads. With this model, it is essential to ensure that your servant
code is reentrant and thread-safe. Alternatively, you can select another
threading model when registering the servant.

See “Servant Threading Models” on page 132 for more information.

Registering Transient Servants

Registering Transient Servants

Overview

In contrast to a static servant, a transient servant is not limited to using
services that appear explicitly in the WSDL contract. A transient servant
creates a new service every time it is registered by cloning from an existing
service (that is, a template service) in the WSDL contract. This behavior is
useful in cases where you require an unlimited number of services of a
particular kind.

For example, consider the WSDL contract for the

denos/ servant _managenment / t r ansi ent _ser vant s demonstration, which
has a Bank port type and an Account port type. In this case, you require an
unlimited number of Account services to represent customer accounts.

Figure 8 illustrates the effect of registering a transient servant. Registration
establishes an association between a servant instance and a cloned service.

Figure 8: Relationship between a Transient Servant and a WSDL Contract

WSDL Contract

<port Type>
</ port Type>
L. logical contract

<service>
<port>
</ port>

</ servi ce>

M1

clone service

transient servant ~

<service>
<port>
«—> . physical contract
</port>
/] </ servi ce>

N

| T_Bus: : Servant | T_WBDL: : WBDL Ser vi ce

61

CHAPTER 2 | Server Programming

Supported protocols Artix currently supports transient servants for the following transports:
® HTTP
* CORBA
® Tunnel
Template service A prerequisite for creating transient services is that you define a template

service in the WSDL contract. A template service is distinguished by having
a port address that is a placeholder (otherwise, the template is like an
ordinary servi ce element).

For example, the placeholder for a HTTP port address is any URL of the
form htt p: // Host nane: Port (or htt ps://Host name: Port for a secure
service).

Transient servant registration When a transient servant is registered, the following steps are implicitly
performed by the | T_Bus: : Bus instance (see Figure 8):
1. A new WSDL service is cloned from an existing service in the WSDL
contract. The cloned service has the following characteristics:
+ The cloned service is based on an existing ser vi ce element that
appears in the WSDL contract.
. The clone’s service QName is replaced by a dynamically
generated, unique service QName.
+ The clone’s addressing information is replaced such that each
address is unique per-clone and per-port.

2. The transient servant becomes associated with the newly cloned
service.

Examples of transient services Transient services are currently supported by the HTTP, CORBA and Tunnel
transports. For example, you could define the following kinds of template:

® SOAP template service.
® CORBA template service.

62

SOAP template service

CORBA template service

Registering Transient Servants

Example 18 shows an example of a SOAP service that could be used as a
template for cloning transient SOAP services.

Example 18: Example of a HTTP Template Service

<servi ce name="Servi ceNane" >
<port nare="PortNane" bi ndi ng="Bi ndi ngNane" >
<soap: address | ocati on="http://Iocal host:0" />

</ port >
</ servi ce>

The SOAP template service has the following features:

® The Servi ceNane and Por t Nane are the same as the values passed to
the I T_Bus: : Bus: :register_transi ent_servant () function in the
application code.

® Thelocation attribute of <soap: addr ess> must be initialized with a
placeholder URL, htt p: // Host nane: Port . If the URL has the special
form, http://1ocal host: 0, Artix substitutes the actual host name and
a dynamically allocated IP port.

Example 19 shows an example of a CORBA service that could be used as a
template for cloning transient CORBA services.

Example 19: Example of a CORBA Template Service

<servi ce nane="Servi ceNane" >
<port nare="PortNane" bi ndi ng="Bi ndi ngNane" >
<cor ba: address | ocation="ior:" />
</ port >
</ servi ce>

The CORBA template service has the following features:

® The Servi ceNane and Por t Nane are the same as the values passed to
the I T_Bus: : Bus: :register_transi ent_servant () function in the
application code.

® Thelocation attribute of <cor ba: addr ess> must be initialized with the
i or: placeholder IOR.

63

CHAPTER 2 | Server Programming

Reuse of IP ports

IT_Bus::Bus transient registration
functions

64

To avoid over-use of IP ports, cloned services are designed to use the same
IP ports as the template service.

The I T_Bus: : Bus class defines the functions in Example 20 to manage the
registration of transient servants.

Example 20: The IT_Bus::Bus Transient Servant Registration APl

Il C++
I T _Bus:: Service_ptr
regi ster_transi ent _servant (
I T Bus::Servant & servant,
I T_WBDL: : WeDLSer vi ce & wsdl _servi ce,
const | T _Bus::String & port_name = | T_BUS ALL_PCORTS

) | T_THRONDEQL((I T_Bus: : Exception)) = 0;

I T _Bus:: Service_ptr
regi ster_transi ent_servant (

I T_Bus:: Servant & servant,

const | T Bus::String & wsdl _| ocati on,

const | T_Bus:: Q\ane & service_nane,

const | T _Bus::String & port_name = | T_BUS ALL_PCORTS
) | T_THRONDEQ ((Exception)) = 0;

I T _Bus:: Service_ptr
add_transi ent _servi ce(
I T_WADL: : WBDLServi ce & wsdl _service
) | T_THRONDEQ ((I T_Bus: : Exception)) = 0;

I T_Bus:: Service_ptr

add_transi ent _servi ce(
const | T Bus::String & wsdl _| ocati on,
const | T_Bus:: Q\ane & service_name

) | T_THRONDECQ ((Exception)) = 0;

virtual | T _WBDL:: WBDLSer vi ce*
get _servi ce_contract (
const Q\ane& servi ce_nane
) | T_THROWDEQL((Exception)) = 0;

I T _Bus:: Service_ptr
get _servi ce(
const | T_Bus:: Q\ane & service_nane

)

IT_Bus::Service registration
function

Activating a transient servant

Activate all ports together

Registering Transient Servants

Example 20: The IT_Bus::Bus Transient Servant Registration AP/

voi d
remove_ser vi ce(
const | T_Bus:: Q\ane & service_nane

)

In addition to the registration functions in I T_Bus: : Bus, the
I T_Bus: : Servi ce class also supports a regi st er _servant () function. The

I T_Bus: : Service: :regi ster_servant () function enables you to activate
ports individually.

Example 21: The IT_Bus::Service register_servant() Function

Il C++
voi d
regi ster_servant (
I T_Bus:: Servant & servant,

const | T Bus::String & port_to_register
)i

There are several different approaches to activating a transient servant,
depending on whether you want to activate ports together or individually
and depending on whether you want to specify the WSDL contract directly

or use the get _servi ce_contract () function. The following approaches are
supported:

Activate all ports together.

® Activate ports individually.

Registration is a single step process. You add the transient service to the
Bus and activate all of its ports by calling

I T_Bus::Bus::register_transient_servant (). For example:

Example 22: Activating All Ports Together for a Transient Servant

[l C++
voi d
Bankl npl : : creat e_account (
const | T Bus::String &ccount _nane,

65

CHAPTER 2 | Server Programming

Example 22: Activating All Ports Together for a Transient Servant

WS _Addr essi ng: : Endpoi nt Ref er enceType & return
) | T_THRONDEQ.((I T_Bus: : Excepti on))

{
/!l Find the account data for the account_nane account and
/] create a servant, account_servant, to represent it.
/1 (not shown)
Il Register account_servant as a transient servant and
[l return a reference to it.
I T_Bus:: Q\ane tenpl ate_servi ce_nane("", "Account Service",
"http://ww i ona. com bus/ denmos/ bank") ;
| T_WBDL: : WeDLSer vi ce* wsdl _t enpl ate_service =
get _bus()->get_service_contract (tenpl at e_servi ce_nane) ;
| T_Bus:: Service_var cloned_service =
get _bus()->regi ster_transi ent _servant (
account _servant,
*wsdl _t enpl at e_servi ce
)i
get _bus() - >popul at e_endpoi nt _r ef er ence(
cl oned_ser vi ce- >get _wsdl _servi ce(),
_return
IE
}

In this case, all the service’s ports dispatch their invocations to the same
servant object, account _servant .

Note that the | T_WsDL: : WsDLSer vi ce object passed to

regi ster_transi ent _service(), wsdl _t enpl at e_servi ce, represents the
template service, whereas the | T_Bus: : Servi ce object returned by

regi ster_transi ent _servi ce() represents the cloned service. When
generating the endpoint reference for the transient service (by calling
popul at e_endpoi nt _ref erence()), you must generate the reference from
the cloned service, not from the template service.

66

Activate ports individually

Registering Transient Servants

Registration is a two-step process. First you add a transient service to the
Bus (thereby cloning the service), and then you activate individual ports. For
example:

Example 23: Activating Ports Individually for a Transient Servant

[l Ct+
voi d
Bankl npl : : creat e_account (
const | T_Bus:: String &uccount _nane,
W5_Addr essi ng: : Endpoi nt Ref erenceType & return
) | T_THROWNDECL((I T_Bus: : Exception))

{
// Find the account data for the account_nane account and
/] create two servants: corba_servant and soap_servant.
/1 These servants provide distinct inplenmentations of the
/1l Account service, for the CORBA and SOAP protocol s
/] respectively.
/1 (not shown)
// Register account_servant as a transient servant and
[l return a reference to it.
| T_Bus:: Q\are tenpl ate_service _nane("", "Account Service",
"http://ww:. i ona. com bus/ denos/ bank") ;
I T_WBDL: : WADLSer vi ce* wsdl _tenpl ate_service =
get _bus()->get _servi ce_contract (tenpl ate_servi ce_nane);
| T_Bus:: Service_var cloned_service =
get _bus()->add_t ransi ent _servi ce(*wsdl _tenpl ate_servi ce);
cl oned_ser vi ce- >regi st er _servant (cor ba_servant , " CCRBAPort ") ;
cl oned_servi ce- >regi ster_servant (soap_servant, "SQAPPort");
get _bus() - >popul at e_endpoi nt _r ef er ence(
cl oned_servi ce- >get _wsdl _servi ce(),
_return
DE
}

67

CHAPTER 2 | Server Programming

Default threading model

68

In this case, each port can be programmed to dispatch invocations to
distinct servant objects. For example, invocations arriving at the CCRBAPor t
port are dispatched to the corba_servant servant instance. Whereas,
invocations arriving at the SOAPPort port are dispatched to the
soap_servant servant instance.

The default threading model for a registered servant is multi-threaded. That
is, the servant is liable to have its operations invoked simultaneously by
multiple threads. With this model, it is essential to ensure that your servant
code is reentrant and thread-safe. Alternatively, you can select another
threading model when registering the servant.

See “Servant Threading Models” on page 132 for more information.

In this chapter

CHAPTER 3

Client
Programming

This chapter describes how to develop an Artix client. The key
concepts that a client programmer needs to understand are
references, which encapsulate the location of a remote
service, and client proxies, which enable you to invoke WSDL
operations.

This chapter discusses the following topics:

Programming with Client Proxies page 70
Implementing a Client page 82
Programming with Initial References page 86
Obtaining Initial References page 89
Overriding a HTTP Address in a Client page 92

69

CHAPTER 3 | Client Programming

Programming with Client Proxies

Overview Client proxies are the basic objects needed for Web services programming
on the client side. A client proxy is a C++ object that provides a Remote
Procedure Call (RPC) interface to a local or remote Web service. Each proxy
instance represents a connection to a particular service endpoint and the
proxy’s member functions provide programmatic access to the service’s

WSDL operations.
In this section This section contains the following subsections:
What is a Client Proxy? page 71
Initializing Proxies from References page 76
Other Ways of Initializing Proxies page 80

70

Programming with Client Proxies

What is a Client Proxy?

Overview

A client proxy is a C++ object that exposes member functions that
correspond to WSDL operations from a specific WSDL port type. By calling
the C++ functions exposed by the proxy, a client can invoke the
corresponding operations on a Web service, either locally or remotely.

Figure 9 illustrates the role of a client proxy in a distributed Web services
application. In this example, the client proxy represents a G eet er port type,
which supports the sayH WSDL operation. When the client calls the

sayH () function on the proxy, the proxy converts this call into a request
message, which is transmitted to the server port. The server then converts
the request message to a sayH () function call on a servant object. The
return values from the sayH () call are transmitted back to the client in a
reply message.

Figure 9: Role of a Client Proxy in a Distributed Application

Client Server

Container

sayH ()

l SOAP Service
@ sayI H Request : HTTP Port E
| | ° —»O:

sayI H Reply e ~'I

Proxy Object

’

71

CHAPTER 3 | Client Programming

Client proxy features Artix client proxies provide the following advantages to the client

programmer:

® location invariance—calls can be made either on local or remote
services. The syntax and semantics are the same in either case.

® Protocol invariance—the syntax of client calls is independent of the
underlying binding and transport protocol.

® Distributed exception handling—exceptions raised in a remote server
are automatically propagated back to the client and raised as local
exceptions.

Greeter WSDL port type The interface for a client proxy is defined by a WSDL port type. The port

type defines a collection of operations which are mapped to C++ functions
by the WSDL-to-C+ + compiler. For example, Example 24 shows the
G eet er port type, which defines two WSDL operations, sayH and gr eet Me.

Example 24: Greeter WSDL Port Type

<?xm version="1.0" encodi ng="UTF- 8" ?>
<definitions nanme="Hel | oWrl d"

72

t ar get Namespace="ht t p: / / waww. i ona. coni hel | o_wor| d_soap_ht t p"
xm ns="htt p: // schemas. xm soap. or g/ wsdl / "
xm ns: htt p="http: //schenmas. xm soap. or g/ wsdl / htt p/ "
xm ns: htt p- conf="ht t p: // schenas. i ona. com t ransport s/ htt p/ confi gurati on"
xm ns: soap="ht t p: // schemas. xm soap. or g/ wsdl / soap/ "
xm ns: tns="http://wmn i ona. coni hel | o_wor| d_soap_htt p"
xm ns: wsdl ="ht t p: // schenas. xm soap. or g/ wsdl / "
xm ns: xsd="ht t p: / / www. W3. or g/ 2001/ XM_Schena" >
<t ypes>
<schera t ar get Namespace="ht t p: // www. i ona. coni hel | o_wor | d_soap_htt p"
xm ns="ht t p: // waw wW3. or g/ 2001/ XM_Schera"
xm ns: wsdl ="ht t p: // schemas. xm soap. or g/ wsdl /" >
<el enent name="r esponseType" type="xsd:string"/>
<el ement name="r equest Type" type="xsd:string"/>
</ schenma>
</ types>
<nmessage nane="sayH Request"/>
<nessage nane="sayH Response">
<part el enent="t ns: responseType" name="t heResponse"/>
</ message>
<nmessage nane="gr eet MeRequest ">
<part el enent ="t ns: request Type" nane="me"/>

Programming with Client Proxies

Example 24: Greeter WSDL Port Type

</ message>
<message nane="gr eet MeResponse" >

<part el enent ="t ns: responseType" nanme="t heResponse"/>
</ message>

<port Type nane="Q eeter">
<oper ati on nane="sayH ">
<i nput nessage="t ns: sayH Request" name="sayH Request"/>

<out put message="t ns: sayH Response" nane="sayH Response"/>
</ oper at i on>

<oper ati on name="gr eet M" >
<i nput nessage="t ns: gr eet MeRequest " name="gr eet MeRequest "/ >

<out put nessage="t ns: gr eet MeResponse" nane="gr eet MeResponse"/ >
</ oper at i on>

</ por t Type>

</ definitions>

Greeter proxy class To generate a proxy class, run the WSDL-to-C++ compiler with the

appropriate options (see “Generating client stub code” on page 82 for
details). The proxy class implementation is contained in the client stub
files. For example, compiling the G eet er port type generates the following
stub files:

Geeter.h
Geeterdient.h
Geeterdient. cxx

The generated proxy class, G eeterdi ent, is shown in Example 25.

Example 25: Generated GreeterClient Proxy Class

Il C++
1 nanespace COM | ONA HELLO WRLD SOAP_HTTP
{
2 class Qeeterdient : public Geeter, public
I T_Bus::dient ProxyBase
{
publ i c:
3 // Constructors and Destructor

/1 (not shown)

73

CHAPTER 3 | Client Programming

WSDL services for the proxy

74

Example 25: Generated GreeterClient Proxy Class

}

virtual void
sayH (
I T Bus::String & heResponse
) | T_THRONDECL((I T _Bus:: Exception));

virtual void
gr eet Me(
const | T _Bus::String &re,
I T Bus::String & heResponse
) | T_THRONDECL((I T _Bus:: Exception));

The preceding code example can be explained as follows:

1.

By default, the C++ namespace enclosing the proxy class is derived
from the target namespace of the corresponding WSDL port type. For
example, the G eeter port type is defined with the target namespace,
http://wwmv i ona. conf hel | o_wor | d_soap_ht t p, which translates to
the C++ namespace, COM | ONA HELLO WRLD SQAP_HTTP. It is also
possible to override the default namespace name.

In general, a proxy class generated from the Port TypeNane port type
maps to a C++ class, Port TypeNaned i ent . For example, the G eet er
port type maps to the C++ class, Geeterdient.

In general, you must specify the protocol and connection details when
initializing a client proxy instance. The proxy class itself is completely
protocol-independent.

The proxy constructors are not shown here—for a discussion of proxy
constructors, see “Initializing Proxies from References” on page 76 and
“Other Ways of Initializing Proxies” on page 80.

The proxy class includes C++ member functions that correspond to
each of the WSDL operations defined in the G eet er port type.

Apart from representing a WSDL port type, each instance of a client proxy

encapsulates specific protocol and connection details, which correspond to
the information in a WSDL service element. Thus, a WSDL service element
effectively represents the state of a proxy object.

Programming with Client Proxies

Example 26 shows a WSDL service with a single port. In this case, the
Hel | oWbr | dSQAPSer vi ce service unambiguously represents a single
endpoint.

Example 26: WSDL Service with Single Port

<defini tions
tar get Nanespace="htt p: // wav. i ona. conf hel | o_wor| d_soap_ht t p"
>

<servi ce name="Hel | oWor | dSQAPSer vi ce" >
<port bi ndi ng="t ns: G eet er SOAPBI ndi ng" name="HTTPPort" >
<http: address | ocation="http://| ocal host : 4444"/ >
</ port>
</ servi ce>
</ defini ti ons>

Example 27 shows a WSDL service with multiple ports. In this case, the
Mul ti Port Servi ce service represents two different endpoints. In order to
choose which endpoint to connect to, you must use a form of proxy
constructor that lets you specify the port name. See “Initializing Proxies from
References” on page 76 and “Other Ways of Initializing Proxies” on page 80
for details.

Example 27: WSDL Service with Multiple Ports

<defini tions
tar get Nanespace="htt p: // wawv. i ona. conf hel | o_wor| d_soap_ht t p"
>

<servi ce name="Mil ti Port Servi ce">
<port bi ndi ng="t ns: G eet er SOAPBi ndi ng" name="HITPPort ">
<htt p: address | ocation="http://I ocal host: 3333"/ >
</ port>

<port bi ndi ng="t ns: G eet erd CPBi ndi ng" name="11CPPort">
<cor ba: addr ess
location="file:../../hello_world_ service.ior"/>
</ port>
</ servi ce>
</ defini ti ons>

75

CHAPTER 3 | Client Programming

Initializing Proxies from References

Overview

Proxy constructors with a
reference argument

Constructor with a reference
argument

76

Typically, the cleanest way to initialize a client proxy is by constructing it
from an endpoint reference. A reference object encapsulates all of the
information needed to open a connection to a particular service. By using
references in your client program, it is relatively easy to avoid hard-coding
details such as the location of a WSDL contract file.

This subsection describes both how to use references to initialize proxies
and how to obtain the references themselves.

To initialize a proxy from a reference, the G eeterd i ent class defines the
constructors shown in Example 28.

Example 28: Proxy Constructors with a Reference Argument

Qeeterdient(

const W5 _Addr essi ng: : Endpoi nt Ref er enceType & epr _ref
)

QGeeterdient(
const W5_Addressi ng: : Endpoi nt Ref er enceType& epr _ref,

const | T _Bus::String& wsdl _| ocati on,
const | T_Bus:: Q\Nane& servi ce_nane,
const |T_Bus::String& port _nane

The first constructor takes one argument representing an endpoint reference,
V\&_Addr essi ng: : Endpoi nt Ref er enceType. The endpoint reference contains
complete service and port details, including addressing information,
enabling the client proxy to open a connection to a remote service. This form
of constructor is suitable for a reference that contains details of just a single
WSDL port.

For a detailed discussion of endpoint references, see “Endpoint References”
on page 153.

Constructor with reference
argument and contract details

Obtaining a reference

Initial reference mechanism

Programming with Client Proxies

The second constructor takes additional arguments—wsdl _| ocat i on,

servi ce_nane, and port_nanme—that can provide additional information

about the endpoint. This constructor is useful in the following cases:

® The endpoint reference contains multiple ports—in this case you can
use the port_name argument to specify which port the client connects
to, while leaving the wsdl _| ocati on and ser vi ce_nane arguments
empty.
For example, to initialize a proxy that connects to the CORBAPort port
from the mul ti _port_epr endpoint reference:

[l Cr+
Accountdient* proxy = new Accountd i ent (
mul ti_port_epr,
I T_Bus:: String:: EMPTY,
| T_Bus: : Q\ane: : EMPTY_QNAME,
" CORBAPort *
)5

® The endpoint reference lacks metadata—when a reference originates
from a non-Artix service, sometimes it might contain just an URL (the
endpoint address) and provide no other details about the endpoint. In
this case, you can supply the missing endpoint details from a WSDL
contract, by specifying the WSDL contract location, wsdl _I ocat i on,
the service QName, servi ce_nane, and port name, port _nane, for the
endpoint.

You can obtain an endpoint reference from one of the following sources:
® Initial reference mechanism.

® Return value from a WSDL operation.

® Artix locator.

The Artix initial reference mechanism provides a layer of abstraction for
obtaining references. The client programmer requests a reference to a
particular WSDL service, by passing the service’s QName to the

I T _Bus::Bus::resolve_ initial _references() function. The source of the

77

CHAPTER 3 | Client Programming

Return value from a WSDL
operation

<definitions ... >

WSDL service description is determined independently of this function call.
For example, the location of a file containing a WSDL service might be
provided as a command-line argument to the client executable.

The function for obtaining an initial reference has the following signature:

/] C++
/1 In | T_Bus::Bus
virtual |T_Bus::Bool ean resol ve initial_reference(
const | T_Bus:: Q\ane & service_nane,
W5 _Addr essi ng: : Endpoi nt Ref er enceType & endpoi nt _r ef er ence
) | T_THROWDEQ.((Exception)) = 0;

For more details, see “Programming with Initial References” on page 86.

Endpoint references can be passed as parameters in WSDL operations.
Hence, a common way of obtaining a reference is as a return value from a
WSDL operation.

For example, consider a Bank service that manages customer accounts. The
Bank service could provide a WSDL operation, get _account, that returns a
reference to an Account service. You could define the get _account operation
as follows:

<message nane="get_account">
<part name="account_name" type="xsd:string"/>

</ message>

<message nane="get_account Response" >
<part name="return" type="wsa: Endpoi nt Ref er enceType"/>

</ message>

<port Type nane="Bank">

<oper ati on nanme="get account">
<i nput name="get account" nessage="tns: get_account"/>
<out put nane="get _account Response" nessage="t ns: get _account Response"/ >

</ oper ati on>

</ por t Type>
</ definitions>

78

Artix locator

Programming with Client Proxies

In the Bank proxy class, the get _account operation would map to a C++
function, get _account (), as follows:

/] C++
voi d get _account (

const | T_Bus:: String &ccount _nane,

W5_Addr essi ng: : Endpoi nt Ref erenceType & return
) | T_THRONDECL((I T_Bus: : Exception));

The return value from get _account () is represented by the
V\S_Addr essi ng: : Endpoi nt Ref er enceType type. For more details, see
“Endpoint References” on page 153.

The Artix locator is a dedicated service for storing and retrieving references.
The mechanism for retrieving references from the locator consists essentially
of calling a WSDL operation that returns a reference. For more details about
the Artix locator service, see the Artix Locator Guide.

79

CHAPTER 3 | Client Programming

Other Ways of Initializing Proxies

Overview

Other proxy constructors

Constructor with no arguments

Constructor with WSDL URL
argument

80

Instead of initializing a proxy using an endpoint reference, you can specify
the proxy’s connection information explicitly: WSDL location URL, service
QName, and port name. This way of initializing a proxy is useful, if you need
to provide the proxy’s connection information in a customized manner.

Besides the constructors with reference arguments (see Example 28 on
page 76), the G eeterdient class defines the constructors shown in
Example 29.

Example 29: Other Proxy Constructors
QGeeterdient();

Qeeterdient(
const | T _Bus::String & wsdl
)i

QGeeterdient(
const | T Bus::String & wsdl,
const | T _Bus:: Q\ane & service_nane,
const | T _Bus::String & port_name

)

When using the constructor with no arguments, the client requires that the
contract defining its behavior be located in the same directory as the
executable. The client uses the service name specified at code generation
time using the - e flag.

If the specified service has multiple WSDL ports, the client proxy connects
by default to the first port in the wsdl : servi ce element.

The second constructor takes one argument that allows you to specify the
URL of the contract defining the client’s behavior. The client uses the
service specified at code generation time using the - e flag.

In particular, the wsdl argument could be a file: URL or a uddi : URL (for
details of how to use UDDI, see “Locating Services with UDDI"” on
page 147).

Constructor with WSDL URL,
service, and port arguments

Programming with Client Proxies

The fourth constructor provides you with the most flexibility in determining
how the client connects to its server. It takes three arguments:

wsdl

servi ce_name

port _name

Specifies the URL of the contract defining the client’s
behavior.

Specifies the QName of the service, defined in the
contract with a <ser vi ce> tag, to use when connecting to
the server.

Specifies the name of the port, defined in the contract
with a <port > tag, to use when connecting to the server.
The port name given must be defined in the specified
<servi ce> tag.

If you don’t want to specify the port name, you can leave
this argument blank by passing | T_Bus: : Stri ng: : EVPTY.
In this case, the client proxy connects to the first port in
the wedl : servi ce element.

The ability to specify the port name in the constructor is useful for WSDL
services that contain multiple ports—for example, see Example 27 on
page 75. This argument enables you to pick one of the ports explicitly,
instead of defaulting to the first port in the servi ce element.

81

CHAPTER 3 | Client Programming

Implementing a Client

Overview

Generating client stub code

82

The stub code for a client implementation of the service defined by the
contract is contained in the files Port TypeNared i ent . h and

Por t TypeNaned i ent . cxx. You should never make any modifications to the
generated code in these files.

To access the operations defined in the port type, the client initializes the
Artix bus, instantiates an object of the generated client proxy class,

Por t TypeNamed i ent , and makes function calls on the object. When the
client is finished, it then shuts down the bus.

To generate client stub code from the Hello World WSDL contract,
hel 1 o_wor | d. wsdl , enter the following command (for your respective
platform):

Windows

wsdl tocpp -i QG eeter
-e Hel | oWor| dSOAPSer vi ce
-client
-sanpl e
- m NMAKE: execut abl e
hel | o_wor | d. wsdl

UNIX

wsdl tocpp -i Qeeter
-e Hel | oWr | dSQAPSer vi ce
-client
-sanpl e
-m UN X execut abl e
hel | o_wor | d. wsdl

The -client switch ensures that client stub code is generated. For full
details of the wsdl t ocpp switches, see “Generating code from the command
line” on page 655.

Initializing the Bus

Invoking the operations

Full client code

Implementing a Client

Client applications initialize the Bus, by calling I T_Bus: :init (). You should
always pass the command-line arguments from main() to I T_Bus::init().
This ensures that you can use standard Artix switches at the command-line
(for example, - CRBnare Busl D to specify the Bus ID at the command line).

To invoke the operations offered by the service, the client calls the member
functions of the client proxy object. The generated client proxy class
contains one member function for each operation defined in the contract.
The generated functions all return void. Any response messages are passed
by reference as a parameter to the function. For example, the greet Me
operation defined in Example 24 on page 72 generates a function with the
following signature:

voi d greet Mg(
const | T Bus::String & ne,
IT Bus::String & var_return
) | T_THRONDECL((! T_Bus: : Exception));

A client developed to access the service defined by the
Hel | oWbr | dSQAPSer vi ce contract will look similar to Example 30.

Example 30: Sample Hello World Client

Il C++

#i ncl ude <it_bus/ bus. h>

#i ncl ude <it_bus/exception. h>
#i nclude <it_cal /i ostream h>

#include "G eeterdient.h"
I T_USI NG NAMESPACE_STD

usi ng namespace COM | ONA HELLO WORLD SQAP_HTTPR;
usi ng nanespace | T_Bus;

int

mai n(
int argc,
char* argv[]

83

CHAPTER 3 | Client Programming

Example 30: Sample Hello World Client
cout << " Qeeterdient" << endl;

try
{
/*
* ((eate an instance of the web service client
*/
4 I T Bus::init(argc, argv);

5 Geeterdient client;

// Sanpl e invocation calls.
/1l
I T _Bus:: String theResponse;
6 client.sayH (t heResponse) ;
cout << "sayH () returned: \"" << theResponse << "\""
<< endl ;

I T Bus::String me = " Your Nane";

client.greet Me(ne, theResponse);

cout << "greetMe() returned: \"" << theResponse << "\""
<< endl ;

}
7 catch(1 T_Bus: : Excepti on& e)

{

cout << endl << "Error : Unexpected error occured!"
<< endl << e.nessage()
<< endl ;

return -1;

}

return O;

}

The preceding code can be explained as follows:

1. The Port Nanmed i ent . h header includes the definitions for the client
proxy class.

2. The I T_USI NG NAMESPACE STD preprocessor macro expands to the
following line of code:

[l C++
usi ng namespace std;

84

Implementing a Client

The std namespace scopes entities from the C++ Standard Template
Library. For example, using this namespace lets you write cout and
cin, instead of std:: cout and std::cin.

The COVLI ONA HELLO WORLD SQAP_HTTP namespace contains the client
proxy class, G eeterdient. See “Greeter proxy class” on page 73.
The I T_Bus: :init() static function initializes the bus. You should
always pass in the command line arguments (ar gc and ar gv) to
init().

This line instantiates the proxy class using the no-argument form of the
proxy client constructor. When this client is deployed, a copy of the
contract defining its behavior must be deployed in the same directory
as the client executable.

In a real application, however, it would be better to initialize the client
proxy from an initial reference. See “Programming with Initial
References” on page 86.

Invoke the sayH () operation on the client proxy.

Catch any exceptions thrown by the bus. It is essential to enclose
remote operation invocations within a try/catch block which catches
the exception types derived from | T_Bus: : Except i on.

85

CHAPTER 3 | Client Programming

Programming with Initial References

Overview

Order of precedence for initial
reference sources

86

Artix provides an API function, | T_Bus: :resol ve_initial _references(),
for finding endpoint references based on the service QName.

The initial reference mechanism abstracts the procedure for obtaining
endpoint references. Using this approach, a programmer needs to know only
the name of a service in order to create a proxy. The endpoint details could
actually be provided from configuration, from the command-line, by
programming, or by some other method. The client programmer does not
have to worry about the precise source of the endpoint reference.

Artix finds initial references from the following sources, in order of priority:

1.

Colocated service—if the client code that calls

resol ve_initial _reference() is colocated with (that is, in the same
process as) the required service, the resol ve_i ni tial _reference()
function returns a reference to the colocated service. This assumes that
the client and server code are using the same Bus instance.

References registered using regi ster_initial _reference() —you
can register a reference explicitly by calling the

IT Bus::Bus::register_initial _reference() function on a Bus
instance.

References specified on the command line—you can provide an initial
reference by specifying on the command line the location of a file
containing an endpoint reference. For example:

Geeterdient -CRBnane Busl D
-BUSinitial _reference ../../etc/hello_ref.xm

References specified in the configuration file—you can provide an
initial reference from the configuration file, either by specifying the
location of an endpoint reference file or by specifying the literal value of
an endpoint reference.

For more details, see Configuring and Deploying Artix Solutions.

Example of programming with an
initial reference

Programming with Initial References

5. Service in a WSDL contract—the ser vi ce element in a WSDL contract
contains essentially the same data as an endpoint reference. Hence, if
a reference is not specified using one of the other methods, Artix
searches any loaded WSDL contracts to find the specified service.

The sources of WSDL contracts are the same as on the server side. The
mechanism for finding references is, thus, effectively an extension of
the mechanism for finding WSDL contracts—see “How Services Locate
WSDL Contracts” on page 53.

Given that the Bus has already loaded and parsed the details of a service
called Hel | ovr | dSQAPSer vi ce in the namespace,

http: // ww i ona. cond hel | o_wor | d_soap_ht t p, you can initialize a client
proxy, proxy, as follows:

Example 31: Resolving an Initial Reference

Il C++
| T_Bus: : Q\Nane servi ce_gnane(
", "Hel | oWr | dSQAPSer vi ce",
"http://ww iona.com hell o_world_soap_http"
IE
W5_Addr essi ng: : Endpoi nt Ref er enceType ref;

/1 Find the initial reference using the bootstrap service
bus->resol ve_initial _reference(

servi ce_gnarre,

ref

IE
/Il Create a proxy and use it

Qeeterdient proxy(ref);
proxy. sayH () ;

87

CHAPTER 3 | Client Programming

Abbreviated constructor for initial
references

88

To simplify the steps required to create a proxy from an initial reference,
Artix provides a special constructor that initializes a proxy from a service
QName in a single step. The constructor has the following form (for a
Geeterdient proxy):

Qeeterdient(
const | T_Bus:: Q\ane servi ce_nane,
const | T Bus::String& port_name = | T _Bus:: String:: EMPTY,
I T _Bus::Bus_ptr bus = 0

)i

With this constructor, you can initialize a proxy from an initial reference
using the code fragment shown in Example 32.

Example 32: Resolving an Initial Reference with a Special Constructor

Il C++
I T_Bus: : Q\ane servi ce_gnane(
", "Hel | oWor | dSQAPSer vi ce",
"http://ww iona.com hel | o_world_soap_http"

)

// Create a proxy and use it
QGeeterdient proxy(service_gnane);
proxy. sayH ();

Where the proxy constructor implicitly looks up the initial reference based
on the specified service QName, ser vi ce_gnare.

Obtaining Initial References

Obtaining Initial References

Overview

Options for obtaining initial
references

Access local WSDL contract

Given that you have programmed your client to use initial references, as
described in the previous section, you then need provide those initial
references at runtime. This section describes how to obtain the initial
references needed by the client and how to pass the initial references to the
client through its command-line arguments.

Some of the possible options for obtaining initial references are, as follows:
® Access local WSDL contract.

® Obtain reference from a container.

® Obtain WSDL contract from a container.

® Obtain WSDL location URL from a container.

If a WSDL service uses a statically allocated port (where the IP port is
specified explicitly in the original WSDL contract), the client can obtain the
endpoint reference from a local copy of the WSDL contract. When using the
initial references API, you can specify the location of the WSDL contract
using the command-line switch, - BUSser vi ce_contract WSDLFi | e, where
VBDLFi | e is @ WSDL contract that provides initial references for the client.
For example, you can run the Greeter client as follows:

QGeeterdient -CORBnane Busl D - BUSservice_contract WBDLFi |l e

89

CHAPTER 3 | Client Programming

Obtain reference from a container

Obtain WSDL contract from a
container

90

You can obtain an endpoint reference directly from an Artix container, after
the container has started up. Use the i t _cont ai ner _admi n utility to retrieve
the endpoint reference and store it in a file, as follows:

it_contai ner_adm n -container ContainerURLFile
- publ i shr ef er ence
-servi ce {Nanespace} Local Part
-file ReferenceFile

Where Cont ai ner URLFi | e is a file that contains the URL for the container
service (to get this URL file, start i t _cont ai ner with the - publ i sh option).
The service QName is specified by an open brace, {, followed by the target
namespace, Nanespace, followed by a close brace, }, followed by the local
part of the service’s name, Local Part . For example, the QName for the

Hel | oWor | dSOAPSer vi ce service (see Example 26 on page 75) would be
specified as follows:

{http://wwv iona.conhell o_world_soap_http}Hel | oWr | dSOAPSer vi ce

Given that the reference has been stored in the file, Ref er enceFil e, and
assuming that the client has access to the file system where this file is
stored, you can run the Greeter client as follows:

Qeeterdient -CRBname Busl D -BUSinitial _reference ReferenceFile

You can obtain a WSDL contract directly from an Artix container, after the
container has started up. Use the i t _cont ai ner _adni n utility to retrieve the
WSDL contract and store it in a file, as follows:

it_container_adnin -contai ner ContainerURLFile
- publ i shwsdl
-servi ce {Namespace} Local Part
-file WBDLFi |l e

Given that the WSDL contract has been stored in the file, WsDLFi | e, and
assuming that the client has access to the file system where this file is
stored, you can run the Greeter client as follows:

Geeterdient -ORBnane Busl D -BUSservi ce_contract WBDLFil e

Obtaining Initial References

Obtain WSDL location URL from

You can provide the client with a URL from which the client can download
a container

an up-to-date copy of the WSDL contract. Use the i t _cont ai ner _adnin
utility to retrieve the WSDL location URL and store it in a file, as follows:

it_container_admn -container Container URLFi | e
- publ i shurl

-servi ce {Nanespace} Local Part
-file WBDL_URLFi |l e

Given that the URL has been stored in the file, WeDL_URLFi | e, and assuming

that the client has access to the file system where this file is stored, you can
run the Greeter client as follows:

QGeeterdient -CORBnane Busl D -BUSservi ce_contract WBDL_URLFi | e

91

CHAPTER 3 | Client Programming

Overriding a HTTP Address in a Client

Overview

HTTP address in a WSDL contract

92

Usually, client applications obtain the HTTP address for a remote Web
service by parsing the port element of a WSDL contract. Sometimes,
however, you might need to specify the HTTP address by programming,
thereby overriding the value from the WSDL port element.

This section describes how to program an Artix client to override the HTTP
address, by setting the HTTP_ENDPQO NT_URL context value.

Example 33 shows how to specify the HTTP address in a WSDL contract for
a SOAP/HTTP service. The | ocat i on attribute in the soap: addr ess element
specifies that the SOAPSer vi ce service is running on the | ocal host host and
listening on IP port 9000. By default, clients will use this address,

http://1 ocal host: 9000, to contact the remote SOAPSer vi ce. It is possible,
however, to override this address by programming.

Example 33: HTTP Address Specified in a WSDL Contract

<wsdl : defini tions name="Hel | oWr| d"
t ar get Namespace="ht t p: / / www. i ona. conf hel | o_wor | d_soap_ht t p"
R
<wsdl : servi ce name="SOAPServi ce">
<wsdl : port bi ndi ng="t ns: & eet er _SOAPBi ndi ng"
name="SoapPort ">
<soap: address | ocati on="http://| ocal host : 9000"/ >
<http-conf:client/>
<ht t p- conf: server/ >
</ wsdl : port >
</ wsdl : servi ce>
</wsdl : defini ti ons>

HTTP_ENDPOINT_URL context

How to override the HTTP address

Overriding a HTTP Address in a Client

You can use the HTTP_ENDPQO NT_URL context to program the HTTP address
that a client uses to contact a Web service, thereby overriding the value
configured in the WSDL contract. The mechanism for setting the
HTTP_ENDPQA NT_URL value is based on Artix contexts (see “Artix Contexts” on
page 199). The programming steps for overriding the HTTP address are as
follows:
1. Obtain a reference to a request context container (of
| T_Bus: : Cont ext Cont ai ner type).
2. Use the request context container to set the HTTP_ENDPO NT_URL
context.

3. Create a client proxy and invoke an operation on the proxy.
For the first invocation, Artix takes the address in the
HTTP_ENDPQ NT_URL context and uses it to establish a connection to the
remote service. Subsequent invocations on the proxy continue to send
requests to the same endpoint address.

4. After the first invocation on the proxy, Artix clears the
HTTP_ENDPQ NT_URL context. Hence, subsequent client proxies created

in this thread revert to using the HTTP address configured in the WSDL
contract.

Example 34 shows how to override the HTTP address to contact a
SQAPSer vi ce service running on the host, your host, and IP port, 5432.

Example 34: Using HTTP_ENDPOINT _URL to Override a HTTP Address
Il C++
#i ncl ude <it_bus_pdk/ cont ext . h>

#i ncl ude <it_bus_pdk/ cont ext _attrs/context_constants. h>

usi ng namespace | T_Bus;
usi ng namespace | T_ContextAttri butes;

Cont ext Regi stry* context_registry =
bus->get _context_registry();

Cont ext Qurrent & context_current =
context _registry->get_current();

Cont ext Cont ai ner* request_contexts =

93

CHAPTER 3 | Client Programming

94

Example 34: Using HTTP_ENDPOINT _URL to Override a HTTP Address
context_current.request _contexts();

I T_Bus: : AnyType* any_string = request _contexts->get _cont ext (
I T ContextAttributes:: HTTP_ENDPQO NT_URL,
true

)
I T _Bus::StringHol der* str_hol der =
dynam c_cast <I T_Bus: : Stri ngHol der *>(any_stri ng) ;

str_hol der->set ("http://yourhost : 5432");

/1 Open a connection to the SOAPServi ce service at your host: 5432.
QGeeterdient hw
hw sayH ("Hello Wrld!l");

The steps for obtaining a reference to a request context follow a standard
pattern. For full details about how to program with contexts, see “Artix
Contexts” on page 199.

In this chapter

CHAPTER 4

Artix Programming

Considerations

Several areas must be considered when programming complex

Artix applications.

This chapter discusses the following topics:

Operations and Parameters page 96

Exceptions page 106
Memory Management page 117
Multi-Threading page 130
Converting with to_string() and from_string() page 141
Locating Services with UDDI page 147
Compiling and Linking an Artix Application page 149
Building Artix Stub Libraries on Windows page 151

95

CHAPTER 4 | Artix Programming Considerations

Operations and Parameters

Overview This section describes how to declare a WSDL operation and how the
operation and its parameters are mapped to C++ by the Artix
WSDL-to-C++ compiler.

In this section This section contains the following subsections:
RPC/Literal Style page 97
Document/Literal Wrapped Style page 101

96

Operations and Parameters

RPC/Literal Style

Overview

Parameter direction in WSDL

How to declare WSDL operations
in RPC/literal style

This subsection describes the RPC/literal style for defining WSDL operations
and parameters. The RPC binding style is distinguished by the fact that it
uses multi-part messages (one part for each parameter).

For example, the request message for an operation with three input
parameters might be defined as follows:

<message nane="oper at i onRequest ">
<part name="X" type="X Type"/>
<part name="Y" type="Y Type"/>
<part name="Z" type="Z Type"l>
</ message>

WSDL operation parameters can be sent either as input parameters (that is,

in the client-to-server direction or as output parameters (that is, in the

server-to-client direction). Hence, the following kinds of parameter can be

defined:

® in parameter—declared as an input parameter, but not as an output
parameter.

® out parameter—declared as an output parameter, but not as an input
parameter.

® jnout parameter—declared both as an input and as an output
parameter.

You can declare a WSDL operation in RPC/literal style as follows:

1. Declare a multi-part input message, including all of the in and inout
parameters for the new operation (for example, the t est Par ans
message in Example 35 on page 98).

2. Declare a multi-part output message, including all of the out and inout
parameters for the operation (for example, the t est Par ansResponse
message in Example 35 on page 98).

3. Within the scope of <port Type>, declare a single operation which
includes a single input message and a single output message.

97

CHAPTER 4 | Artix Programming Considerations

WSDL declaration of testParams Example 35 shows an example of a simple operation, t est Par ans, which
takes two input parameters, i nint and i nout I nt, and two output
parameters, i nout I nt and out Fl oat .

Example 35: WSDL Declaration of the testParams Operation

<?xm version="1.0" encodi ng="UTF- 8" ?>
<definitions ...>

<message name="t est Par ans" >
<part name="inlnt" type="xsd:int"/>
<part nane="inoutlnt" type="xsd:int"/>
</ message>
<message nane="t est Par ansResponse" >
<part nane="inoutlnt" type="xsd:int"/>
<part name="out Fl oat" type="xsd:float"/>
</ message>

<port Type nane="BasePort Type" >
<oper ati on nane="t est Par ans" >
<i nput nessage="t ns:t est Parans" name="t est Par ans"/>
<out put nessage="t ns: t est Par ansResponse"
name="t est Par ansResponse"/ >
</ oper at i on>

</ definitions>

C++ mapping of testParams Example 36 shows how the preceding WSDL t est Par ans operation (from
Example 35 on page 98) maps to C++.

Example 36: C++ Mapping of the testParams Operation

[l C++
voi d t est Par ans(
const |IT_Bus::Int inlnt,
IT Bus::Int & inoutlnt,
I T Bus:: F oat & outFl oat
) | T_THRONDEQ.((I T_Bus: : Exception));

98

Operations and Parameters

Mapped parameters When the t est Par ans WSDL operation maps to C++, the resulting
test Parans() C++ function signature starts with the in and inout

parameters, followed by the out parameters. The parameters are mapped as
follows:

® in parameters—are passed by value and declared const .
® inout parameters—are passed by reference.
® out parameters—are passed by reference.

WSDL declaration of Example 37 shows an example of an operation, t est Rever sePar ans, whose
testReverseParams parameters are listed in the opposite order to that of the preceding
t est Par ans operation.

Example 37: WSDL Declaration of the testReverseParams Operation

<?xm versi on="1.0" encodi ng="UTF-8" 2>
<definitions ...>

<message name="t est Rever sePar ans" >
<part name="inoutlnt" type="xsd:int"/>
<part name="inlnt" type="xsd:int"/>

</ message>

<message nane="t est Rever sePar ansResponse" >
<part name="outFl oat" type="xsd:float"/>
<part name="inoutlnt" type="xsd:int"/>

</ message>

<por t Type nane="BasePort Type" >
<oper ati on name="t est Rever sePar ans" >
<out put nmessage="t ns: t est Rever sePar ansResponse”
name="t est Rever sePar ansResponse"/ >
<i nput nessage="t ns:t est Rever sePar ans"
nanme="t est Rever sePar ans"/ >
</ oper at i on>

</ definitions>

99

CHAPTER 4 | Artix Programming Considerations

C++ mapping of
testReverseParams

Order of in, inout and out
parameters

100

Example 38 shows how the preceding WSDL t est Rever sePar ans operation
(from Example 37 on page 99) maps to C++.

Example 38: C++ Mapping of the testReverseParams Operation

Il C++
voi d t est Rever sePar ans(
IT Bus::Int & i nout | nt

const IT_Bus::Int inlnt,
IT Bus::Float & outFl oat,
) | T_THRONDECQL((I T_Bus: : Exception));

In C++, the order of the in and inout parameters in the function signature is
the same as the order of the parts in the input message. The order of the out

parameters in the function signature is the same as the order of the parts in
the output message.

Note: The parameter order is not affected by the relative order of the
<i nput > and <out put > tags in the declaration of <oper ati on>. In the
mapped C+ + signature, the in and inout parameters always appear
before the out parameters.

Operations and Parameters

Document/Literal Wrapped Style

Overview

Request message format

This subsection describes the document/literal wrapped style for defining
WSDL operations and parameters. The document/literal wrapped style is
distinguished by the fact that it uses single-part messages. The single part is
defined as a schema element which contains a sequence of elements, one
for each parameter.

The request message for an operation with three input parameters might be
defined as follows:

<t ypes>
<schenma>
<el ement nane="Cper at i onNane" >
<conpl exType>
<sequence>
<el enent name="X" type="X_Type"/>
<el ement nane="Y" type="Y Type"/>
<el enent nane="Z" type="Z Type"/>
</ sequence>
</ conpl exType>
</ el errent >
</ schema>
</types>
<nessage nane="oper at i onRequest ">

<part name="paraneters" el ement ="OperationName"/ >
</ nessage>

The request message in document/literal wrapped style must obey the
following conventions:

® The single element that wraps the input parameters must have the

same name as the WSDL operation, Qper at i onNarre.

® The single part must have the name, par aneters.

101

CHAPTER 4 | Artix Programming Considerations

Reply message format The reply message for an operation with three output parameters might be
defined as follows:

<types>
<schema>
<el enent name="Qper at i onNaneResul t ">
<conpl exType>
<sequence>
<el enent name="Z" type="Z Type"/>
<el enent name="A" type="A_Type"/>
<el enent name="B" type="B_Type"/>
</ sequence>
</ conpl exType>
</ el ement >
</ schema>
</types>

<message nane="operati onRepl y">
<part name="paraneters" el ement ="OperationNameResul t"/>
</ message>

The reply message in document/literal wrapped style must obey the

following conventions:

® The single element that wraps the output parameters must have the
form, Qper at i onNaneResul t .

® The single part must have the name, paranet ers.

How to declare WSDL operations You can declare a WSDL operation in document/literal wrapped style as
in document/literal wrapped style follows:

1. In the <schema> section of the WSDL, define an element (the input
part wrapping element) as a sequence type containing elements for
each of the in and inout parameters (for example, the t est Par ans
element in Example 39 on page 103).

2. In the <schema> section of the WSDL, define another element (the
output part wrapping element) as a sequence type containing
elements for each of the inout and out parameters (for example, the
test ParansResul t element in Example 39 on page 103).

3. Declare a single-part input message, including all of the in and inout
parameters for the new operation (for example, the t est Par ans
message in Example 39 on page 103).

102

WSDL declaration of testParams
in document/literal wrapped style

Operations and Parameters

4. Declare a single-part output message, including all of the out and inout
parameters for the operation (for example, the t est Par amsResul t
message in Example 39 on page 103).

5. Within the scope of <port Type>, declare a single operation which
includes a single input message and a single output message.

Example 35 shows an example of a simple operation, t est Par ans, which
takes two input parameters, i nint and i nout I nt, and two output
parameters, i nout I nt and out Fl oat .

Example 39: testParams Operation in Document/Literal Wrapped Style

<?xm version="1.0" encodi ng="UTF- 8" ?>
<definitions ... >
<wsdl : t ypes>
<schema t ar get Nanespace=". ..
xm ns="ht t p: / / waw. W3. or g/ 2001/ XM_Schera" >
<el enent name="t est Par ans" >
<conpl exType>
<sequence>
<el ement name="inlnt" type="xsd:int"/>
<el ement nane="inoutlnt" type="xsd:int"/>
</ sequence>
</ conpl exType>
</ el emrent >
<el enent nanme="t est Par ansResul t " >
<conpl exType>
<sequence>
<el enent name="inoutlnt" type="xsd:int"/>
<el enent nane="out Fl oat "

"

type="xsd: float"/>
</ sequence>
</ conpl exType>
</ el emrent >
</ schena>
</wsdl : t ypes>
<nmessage nane="t est Parans" >
<part name="paraneters" el ement="tns:testParans"/>
</ message>
<message hane="t est ParansResul t" >
<part name="parameters" el ement="tns:testParansResult"/>
</ message>
<wsdl : port Type nane="BasePort Type">
<wsdl : operati on nanme="t est Par ans" >

103

CHAPTER 4 | Artix Programming Considerations

C+ + default mapping of
testParams

104

Example 39: testParams Operation in Document/Literal Wrapped Style

<wsdl ;i nput message="t ns: t est Par ans"
name="t est Par ans"/ >
<wsdl : out put message="tns:t est Par ansResul t "

name="t est Par ansResul t "/ >
</ wsdl : operati on>
</ wsdl : port Type>

</ definitions>

The Artix WSDL-to-C++ compiler automatically detects when you use
document/literal wrapped style (as long as the WSDL obeys the conventions
described here). If document/literal wrapped style is detected, the
WSDL-to-C++ compiler (by default) unwraps the operation parameters to
generate a normal function signature in C++.

For example, Example 40 shows how the preceding WSDL t est Par ans
operation (from Example 39 on page 103) maps to C++.

Example 40: C++ Mapping of the testParams Operation

[l C++
voi d t est Par ans(
const IT Bus::Int inlnt,
IT Bus::Int & inoutlnt,
I T Bus::F oat & outFl oat
) | T_THRONDEQ.((I T_Bus: : Exception));

C++ mapping of testParams
using -wrapped flag

Operations and Parameters

If you want to disable the auto-unwrapping feature of the WSDL-to-C+ +
compiler, you can do so by running wsdl t ocpp with the - wr apped flag. For
example, assuming that the WSDL from Example 39 on page 103 is stored
in the t est _par ans. wsdl file, you can generate C++ without
auto-unwrapping by entering the following at the command line:

wsdl t ocpp -w apped test_parans. wsdl

Example 41 shows the result of mapping the WSDL t est Par ans operation
to C++ with the -wr apped flag:

Example 41: C++ Mapping Using the -wrapped Flag

/] C++
virtual void
t est Par ans(
const testParans ¶neters,
t est ParansResul t ¶neters_1
) | T_THRONDECL((I T_Bus: : Exception));

105

CHAPTER 4 | Artix Programming Considerations

Exceptions

Overview

In this section

106

Artix provides a variety of built-in exceptions, which can alert users to
problems with network connectivity, parameter marshalling, and so on. In
addition, Artix allows users to define their own exceptions, which can be
propagated across the network by declaring fault exceptions in WSDL.

This section contains the following subsections:

System Exceptions page 107

User-Defined Exceptions page 112

Exceptions

System Exceptions

Overview

IT_Bus::FaultException attributes

When an error occurs during an operation invocation, Artix throws an
exception of | T_Bus: : Faul t Except i on type (which inherits from the

| T_Bus: : Except i on base class). The I T_Bus: : Faul t Except i on member
functions enable you to access a considerable amount of information about
the exception.

A Faul t Except i on instance has several attributes that provided detailed
information about the exception. The following Faul t Except i on attributes
are available:

® description—a human-readable string that summarizes the error.

® category—a formal category that indicates what kind of error occurred.
The following categories are supported:

L4

L4

L4

L4

L4

I T_Bus: : Faul t Cat egory: :
| T_Bus: : Faul t Cat egory: :

I T_Bus::
| T_Bus::
I T_Bus::
| T_Bus::
I T_Bus::
| T_Bus:
I T_Bus::
| T_Bus::
| T_Bus::
| T_Bus::
| T_Bus::
| T_Bus::

I T_Bus: : Faul t Cat egory: :

Faul t Cat egory: :
Faul t Cat egory: :
Faul t Cat egory: :
Faul t Cat egory: :
Faul t Cat egory: :
:Faul t Category: :
Faul t Cat egory: :
Faul t Cat egory: :
Faul t Cat egory: :
Faul t Cat egory: :
Faul t Cat egory: :
Faul t Cat egory: :

NO_PERM SSI ON
CONNECTI ON_FAI LURE
MARSHAL_ERRCR
NOT_EXI ST

TRANS! ENT

UNKNOVWN

TI MECUT

VERSI ON_ERRCR
NOT_UNDERSTOCD
VEMORY

BAD_CPERATI ON

| NTERNAL

| NVALI D_REFERENCE
NOT_| MPLEMENTED

LI CENSE

® source—indicates whether the error occurred on the client side or on
the server side. The following values are supported:

| T_Bus: : Faul t Sour ce: : QLI ENT

L4

107

CHAPTER 4 | Artix Programming Considerations

. | T_Bus: : Faul t Sour ce: : SERVER
. | T_Bus: : Faul t Sour ce: : UNKNOM

® completion status—indicates whether or not the operation completed
its work on the server side. The following values are supported:

. | T_Bus:: Conpl etionStatus: : YES
. I T_Bus: : Conpl eti onSt at us: : NO
. | T_Bus: : Conpl eti onSt at us: : MAYBE

IT_Bus::FaultException class Example 42 shows the definition of the I T_Bus: : Faul t Except i on class.
This is the class you must catch to handle an Artix system exception.
Accessor and modifier functions are provided for all of the Faul t Excepti on
attributes.

Example 42: The FaultException Class

Il C++
namespace | T_Bus
{
class | T_BUS APl Faul t Exception :
publ i ¢ SequenceConpl exType,
publ i ¢ Exception,
publ i ¢ Ret hr onabl e<Faul t Except i on>

publ i c:
Faul t Except i on(
const Faul t Cat egory: : Cat egory category,
const String & namespace_uri,
const String & code
JE
Faul t Excepti on();
const Faul t Category & get_category() const;
Faul t Category & get_category();
voi d set_category(const FaultCategory & val);
const String & get_nanespace_uri () const;
String & get_namespace_uri();

voi d set _nanespace_uri (const String & val);

const String & get _code() const;

108

IT_Bus::FaultCategory class

Exceptions

Example 42: The FaultException Class

String & get_code();
voi d set_code(const String & val);

const String & get_detail () const;
String & get_detail ();
voi d set_detail (const String & val);

const Faul t Source & get_source() const;
Faul t Source & get _source();
voi d set_source(const Faul t Source & val);

const Faul t Conpl eti onStatus & get_conpl eti on_st at us()
const ;
Faul t Conpl eti onSt at us & get _conpl eti on_status();
voi d set _conpl eti on_st at us(
const Faul t Conpl eti onStatus & val
);

const String & get_description() const;
String & get_description();
voi d set _description(const String & val);

const String & get_server_id() const;
String & get_server_id();
voi d set_server_id(const String & val);

private:

Example 43 shows the definition of the | T_Bus: : Faul t Cat egory class. This
class provides the functions, get _val ue() and set_val ue(), to access or
modify the fault category.

Example 43: The FaultCategory Class

Il C++
nanmespace | T_Bus

{
class | T_BUS APl FaultCategory : public AnyS npl eType

{
publ i c:

109

CHAPTER 4 | Artix Programming Considerations

Example 43: The FaultCategory Class

enum Cat egory

{

}s

NO_PERM SSI O\,
CONNECTI ON_FAI LURE,
MARSHAL ERRCR
NOT_EXI ST,

TRANS! ENT,

UNKNOAK,

TI MEQUT,

VERS| ON_ERRCR
NOT_UNDERSTOCD,
NEMCRY,

BAD CPERATI ON,

| NTERNAL,

| NVALI D_REFERENCE,
NOT_| MPLEMENTED,

LI CENSE

Faul t Cat egory() ;
Faul t Cat egor y(const Category val ue);

voi d set_val ue(const Category val ue);
Cat egory get _val ue() const;

IT_Bus::FaultSource class

Example 44 shows the definition of the I T_Bus: : Faul t Sour ce class. This

class provides the functions, get _val ue() and set_val ue(), to access or
modify the fault source.

Example 44: The FaultSource Class

/] C++

nanespace | T_Bus

{

class | T_BUS APl Faul t Source :

{

publ i c AnySi npl eType

publ i c:
enum Sour ce

{

110

CLI ENT,

Exceptions

Example 44: The FaultSource Class

SERVER,
UNKNOAN

b

Faul t Sour ce() ;
Faul t Sour ce(const Source val ue);

voi d set_val ue(const Source val ue);
Sour ce get_val ue() const;

IT_Bus::FaultCompletionStatus

Example 45 shows the definition of the | T_Bus: : Faul t Conpl et i onSt at us
class

class. This class provides the functions, get _val ue() and set _val ue(), to
access or modify the fault completion status.

Example 45: The FaultCompletionStatus Class

/] C++
nanmespace | T_Bus
{
class | T_BUS APl Faul t Conpl eti onStatus :
{
publ i c:
enum Conpl eti onSt at us

{

publ i ¢ AnySi npl eType

YES,
NO
MAYBE

b

Faul t Conpl eti onSt at us() ;
Faul t Conpl eti onSt at us(const Conpl eti onSt at us val ue) ;

voi d set _val ue(const Conpl etionStatus val ue);
Conpl eti onStat us get _val ue() const;

111

CHAPTER 4 | Artix Programming Considerations

User-Defined Exceptions

Overview

FaultException class

Declaring a fault in WSDL

112

Artix supports user-defined exceptions, which propagate from one Artix
application to another. To define a user exception, you must declare the
exception as a fault in WSDL. The WSDL-to-C++ compiler then generates
the stub code that you need to raise and catch the exception.

User exceptions are derived from the | T_Bus: : User Faul t Except i on class,
which is defined in <it_bus/user_fault_exception. h>. The
I T_Bus: : User Faul t Except i on class extends | T_Bus: : Excepti on.

Example 46 shows an example of a WSDL fault which can be raised on the
echol nt eger operation. The format of the fault message is specified by the
t ns: Sanpl eFaul t message.

Example 46: Declaration of the faultMessage Fault

<?xm version="1.0" encodi ng="UTF- 8" ?>
<definitions target Nanespace="http://wwm i ona. com userfaul t"
xm ns="http://schenas. xn soap. org/wsdl /" ... >
<t ypes>
<schena t ar get Nanespace="htt p: // ww\. i ona. com user faul t"
xm ns="ht t p: // waww, w3. or g/ 2001/ XM_Scherma"
xm ns: wsdl ="ht t p: // schenas. xm soap. or g/ wsdl /">
<el enent nanme="ny_excepti onE erment "
type="tns: ny_excepti onType"/>
<conpl exType nane="ny_excepti onType" >
<sequence>
<el enent name="Error Msg" type="xsd:string"/>
<el enent name="Error| D' type="xsd:int"/>
</ sequence>
</ conpl exType>
</ schema>
</ types>
<message nhane="request Message"/ >
<message hane="responseMessage"/ >
<nessage name="faul t Message" >
<part el ement="tns: ny_excepti onE enent"
nane="ny_exceptionDetail s"/>
</ message>

C++ mapping of user fault

Exceptions

Example 46: Declaration of the faultMessage Fault

<por t Type nane="Recei ver">
<oper ati on name="pi nghe" >
<i nput message="t ns: request Message"
nane="pi hgMeRequest "/ >
<out put message="t ns: r esponseMessage”
name="pi ngMeResponse" / >
<fault nessage="tns: faul t Message"
name="pi ngMeFaul t"/ >
</ oper at i on>
</ port Type>

</ definitions>

The preceding WSDL extract can be explained as follows:

1. If the fault is to hold more than one piece of data, you must declare a
complex type for the fault data (in this case, ny_except i onType holds
an error message string, Error Msg, and an error ID, Error | D).

2. Declare a message for the fault, containing just a single part. The
WSDL specification allows only single-part messages in a fault—
multi-part messages are not allowed.

3. The <faul t > tag must be added to the scope of the operation (or
operations) which can raise this particular type of fault.

Note: There is no limit to the number of <f aul t > tags that can be
included in an oper ati on element.

When the user fault is mapped to C++, two classes are generated to
represent the exception.

The first class, f aul t MessageExcept i on, represents the fault message,
faul t Message. This class, which inherits from

| T_Bus: : User Faul t Except i on, is the class that you actually throw and
catch as an exception in C++. Example 47 shows the definition of the
f aul t MessageExcept i on class.

Example 47: The faultMessageException Class

/] C++
namespace userfaul t

113

CHAPTER 4 | Artix Programming Considerations

Example 47: The faultMessageException Class

{
cl ass faul t MessageExcepti on

public | T Bus:: UserFaul t Exception,
public

I T_Bus: : Ret hr onabl e<userfaul t: : f aul t MessageExcept i on>
{
publ i c:

f aul t MessageException();

virtual const |T Bus::Q\anme &
get _nessage_nane() const;

ny_excepti onType & get ny_exceptionDetail s();
const ny_exceptionType & getny_exceptionDetail s() const;

voi d setny_exceptionDetail s(const ny_exceptionType &
val);

private:

I

The get _nessage_name() function returns the name of the user exception.
The f aul t MessageExcept i on class declares functions, get Part Narme() and
set Part Nane() , for accessing and modifying the message part (there is only
one part in the message). For example, the get ny_except i onDet ai | s()
function returns a reference to a ny_except i onType object.

The second class, ny_except i onType, represents the exception data.
Example 48 shows the definition of the ny_except i onType class. This class

provides accessor and modifier functions for the ErrorMsg and Error I D
exception members.

Example 48: The my_exceptionType Class
/Il C++

namespace userfaul t

{

cl ass ny_excepti onType : public |T_Bus:: SequenceConpl exType
{
publ i c:

114

Exceptions

Example 48: The my_exceptionType Class

ny_excepti onType();

IT Bus::String & get Error Msg() ;
const | T _Bus::String & getErrorMsg() const;
voi d setErrorMsg(const | T Bus::String & val);

I T _Bus::Int getErrorl () ;
const | T Bus::Int getErrorl) const;
void setErrorlD(const | T Bus::Int val);

private:
IE
ik
Raising a fault exception in a Example 49 shows how to raise the f aul t MessageExcept i on exception in
server the server code. This implementation of pi ngMe always throws the user

exception, f aul t MessageExcept i on.
Example 49: Raising a faultMessageException in the Server

Il C++
voi d
Recei ver | npl : : pi ngMe() | T_THRONDECL((| T_Bus: : Excepti on))
{
I/ Initialize an instance of the ny_exceptionType
ny_excepti onType exception_details;

/] Set ErrorMsg and Errorl D
exception_details. setError Msg("pi ngMe: No inplementation");
exception_details.setErrorlD(555);

/1 Now set exception details into fault MssageExcepti on
faul t MessageExcepti on t he_excepti on;
t he_exception. set ny_exceptionDetai | s(exception_details);

/1l Throw the exception
throw t he_excepti on;

115

CHAPTER 4 | Artix Programming Considerations

Catching a fault exception in a Example 50 shows how to catch the f aul t MessageExcept i on exception on

client the client side. The client uses the proxy instance, cli ent, to call the pi ngMe
operation remotely.

Example 50: Catching faultMessageException in the Client

Il C++

/1l Create an instance of the web service client
IT Bus::init(argc, argv);

try
{

Receiverdient client;

client.pingMe ();

}
catch (const fault MessageExcepti on& ex)
{
ny_except i onType exception_details
= ex. get ny_exceptionDetails();
/1 Now di splay the details of the exception
cout << "Exception Message:
<< exception_details.getErrorMg() << endl;
cout << "Exception | D
<< exception_details.getErrorl D) << endl;
}

116

Memory Management

Memory Management

Overview This section discusses the memory management rules for Artix types,
particularly for generated complex types.

In this section This section contains the following subsections:
Managing Parameters page 118
Assignment and Copying page 123
Deallocating page 125
Smart Pointers page 126

117

CHAPTER 4 | Artix Programming Considerations

Managing Parameters

Overview This subsection discusses the guidelines for managing the memory for
parameters of complex type. In Artix, memory management of parameters is
relatively straightforward, because the Artix C++ mapping passes
parameters by reference.

Note: If you use pointer types to reference operation parameters, see
“Smart Pointers” on page 126 for advice on memory management.

Memory management rules There are just two important memory management rules to remember when
writing an Artix client or server:

1. The client is responsible for deallocating parameters.

2. If the server needs to keep a copy of parameter data, it must make a
copy of the parameter. In general, parameters are deallocated as soon
as an operation returns.

WSDL example Example 51 shows an example of a WSDL operation, t est SeqPar ans, with
three parameters, i nSeq, i nout Seq, and out Seq, of sequence type,
xsdl: SequenceType.

Example 51: WSDL Example with in, inout and out Parameters

<?xm version="1.0" encodi ng="UTF- 8" ?>
<definitions ... >
<t ypes>
<schema t ar get Nanespace="ht t p: / / soapi nt er op. or g/ xsd"
xm ns="ht t p: // waww, w3. or g/ 2001/ XM_Schenma"
xm ns: wsdl ="ht t p: // schemas. xm soap. or g/ wsdl /" >
<conpl exType nane="SequenceType" >
<sequence>
<el enent name="var Fl oat" type="xsd:float"/>
<el enent name="varlnt" type="xsd:int"/>
<el ement nane="var String" type="xsd:string"/>
</ sequence>
</ conpl exType>

</ schema>

118

Client example

Memory Management

Example 51: WSDL Example with in, inout and out Parameters
</types>

<message nane="t est SeqPar ans" >
<part name="inSeq" type="xsdl: SequenceType"/>
<part name="i nout Seq" type="xsdl: SequenceType"/>
</ message>
<message nane="t est SeqPar ansResponse" >
<part name="i nout Seq" type="xsdl: SequenceType"/>

<part name="out Seq" type="xsdl: SequenceType"/>
</ message>

<por t Type nane="BasePort Type" >
<oper ati on name="t est SeqPar ans" >
<i nput nessage="tns:t est SeqPar ans"
name="t est SeqPar ans"/ >
<out put nmessage="t ns: t est SeqPar ansResponse"
name="t est SeqPar ansResponse"/ >
</ oper at i on>

</ port Type>

</ definitions>

Example 52 shows how to allocate, initialize, and deallocate parameters
when calling the t est SeqPar ans operation.

Example 52: Client Calling the testSeqParams Operation

Il C++
try
{
IT Bus::init(argc, argv);

Based i ent bc;

/l Alocate all parameters
SequenceType i nSeq, inoutSeq, out Seq;

// Initialize in and inout paraneters

i nSeq. setvarFl oat ((1 T_Bus:: Fl oat) 1.234);

i nSeq. setvar | nt (54321) ;

i nSeq. setvarString("One, two, three");

i nout Seq. set var Fl oat ((1 T_Bus:: Fl oat) 4.321);

119

CHAPTER 4 | Artix Programming Considerations

Server example

120

Example 52: Client Calling the testSeqParams Operation

i nout Seq. set var | nt (12345) ;
i nout Seq. setvar String("Four, five, six");

[/l Call the 'testSeqParans' operation
bc. t est SeqPar ans(i nSeq, i nout Seq, out Seq);

/1l End of scope:
// Inplicit deallocation of inSeq, inoutSeq, and out Seq.

}
cat ch(| T_Bus: : Excepti on& €)
{
cout << endl << "Caught Unexpected Exception:
<< endl << e.nmessage()
<< endl ;
return -1;
}

The preceding client example can be explained as follows:

1. This line creates an instance of the client proxy, bc, which is used to
invoke the WSDL operations.

2. You must allocate memory for all kinds of parameter, in, inout, and
out. In this example, the parameters are created on the stack.

3. You initialize only the in and inout parameters. The server will initialize
the out parameters.

4. ltis the responsibility of the client to deallocate all kinds of parameter.

In this example, the parameters are all deallocated at the end of the
current scope, because they have been allocated on the stack.

Example 53 shows how the parameters are used on the server side, in the
C++ implementation of the t est SeqPar ans operation.

Example 53: Server Calling the testSeqParams Operation

Il C++

voi d

Basel npl : : t est SeqPar ans(
const SequenceType & i nSeq,
SequenceType & i hout Seq,
SequenceType & out Seq

) | T_THRONDECQL((I T_Bus: : Excepti on))

Memory Management

Example 53: Server Calling the testSeqParams Operation

{

}

cout << "Basel npl ::test SegParans call ed" << endl;

/1 Print inSeq

cout << "inSeq.varFloat =" << inSeq.getvarF oat() << endl;
cout << "inSeq.varlnt =" << inSeqg.getvarlnt() << endl;
cout << "inSeg.varString =" << inSeqg.getvarString() << endl;
/1 (Qptionally) Copy in/inout paraneters

/1l

/1 Print and change i nout Seq
cout << "inoutSeq.varF oat ="

<< i nout Seq. get var Fl oat () << endl ;
cout << "inout Seq. var | nt ="

<< inout Seq. getvarlnt() << endl;
cout << "inoutSeq.varString ="

<< i nout Seq. getvar String() << endl;
i nout Seq. set var Fl oat (2. 0) ;
i nout Seq. setvarlnt(2);
i nout Seq. set var Stri ng(" Two");

/1 Initialize outSeq

out Seq. set var Fl oat (3. 0) ;

out Seq. setvarlnt(3);

out Seq. setvarString("Three");

The preceding server example can be explained as follows:

1.

The server programmer has read-only access to the in parameters (they
are declared const in the operation signature).

If you want to access data from in or inout parameters after the
operation returns, you must copy them (deep copy). It would be an
error to use the & operator to obtain a pointer to the parameter data,
because the Artix server stub deallocates the parameters as soon as
the operation returns.

See “Assignment and Copying” on page 123 for details of how to copy
Artix data types.

You have read/write access to the inout parameters.

121

CHAPTER 4 | Artix Programming Considerations

4. You should initialize each of the out parameters (otherwise they will be
returned with default initial values).

122

Memory Management

Assignment and Copying

Overview The WSDL-to-C+ + compiler generates copy constructors and assignment
operators for all complex types.

Copy constructor The WSDL-to-C++ compiler generates a copy constructor for complex
types. For example, the SequenceType type declared in Example 51 on
page 118 has the following copy constructor:

/1 C++
SequenceType(const SequenceType& copy);

This enables you to initialize SequenceType data as follows:

Il C++

SequenceType ori gi nal ;

original . setvarFl oat (1. 23);
original.setvarlnt(321);
original.setvarString("One, two, three.");

SequenceType copy_1(original);
SequenceType copy_2 = original;

Assignment operator The WSDL-to-C+ + compiler generates an assignment operator for complex
types. For example, the generated assignment operator enables you to
assign a SequenceType instance as follows:

Il C++

SequenceType ori gi nal ;

original . setvarFl oat (1.23);
original.setvarlnt(321);
original.setvarString("One, two, three.");

SequenceType assign_t o;

assign_to = original;

123

CHAPTER 4 | Artix Programming Considerations

Recursive copying In WSDL, complex types can be nested inside each other to an arbitrary
degree. When such a nested complex type is mapped to C++ by Artix, the
copy constructor and assignment operators are designed to copy the nested
members recursively (deep copy).

124

Memory Management

Deallocating

Using delete In C++, if you allocate a complex type on the heap (that is, using pointers
and new), you can generally delete the data instance using the del ete
operator. It is usually better, however, to use smart pointers in this
context—see “Smart Pointers” on page 126.

Recursive deallocation The Artix C+ + types are designed to support recursive deallocation.

That is, if you have an instance, T, of a complex type which has other
complex types nested inside it, the entire memory for the complex type
including its nested members would be deallocated when you delete T. This
works for complex types nested to an arbitrary degree.

125

CHAPTER 4 | Artix Programming Considerations

Smart Pointers

Overview

What is a smart pointer?

Artix smart pointers

126

To help you avoid memory leaks when using pointers, the WSDL-to-C+ +
compiler generates a smart pointer class, Conpl exTypePt r, for every
generated complex type, Conpl exType. The following aspects of smart
pointers are discussed here:

® What is a smart pointer?

® Artix smart pointers.

® Client example using simple pointers.
® Client example using smart pointers.

A smart pointer class is a C+ + class that overloads the * (dereferencing)
and - > (member access) operators, in order to imitate the syntax of an
ordinary C++ pointer.

Artix smart pointers are defined using a template class, | T_Aut oPt r <T>,
which has the same API as the standard auto pointer template,

aut o_pt r <T>, from the C++ standard template library. If the standard
library is supported on the platform, I T_Aut oPt r is simply a typedef of
std::auto_ptr.

For example, the SequenceTypePtr smart pointer class is defined by the
following generated typedef:

/] C++
typedef | T_Aut oPtr<SequenceType> SequenceTypePtr;

The key feature that makes this pointer type smart is that the destructor
always deletes the memory the pointer is pointing at. This feature ensures
that you cannot leak memory when it is referenced by a smart pointer.

Client example using simple
pointers

Memory Management

Example 54 shows how to call the t est SeqPar ans operation using
parameters that are allocated on the heap and referenced by simple
pointers

Example 54: Client Calling testSeqParams Using Simple Pointers

/] C++
try

{
I T Bus::init(argc, argv);

Based i ent bc;

/l Alocate all parameters

SequenceType *i nSeqP = new SequenceType();
SequenceType *inout SeqP = new SequenceType();
SequenceType *out SeqP = new SequenceType();

/] Initialize in and inout paraneters

i nSeqP- >set var Fl oat ((| T_Bus: : Fl oat) 1.234);

i nSegP- >set var | nt (54321) ;

i nSegP->setvar String("Cne, two, three");

i nout SeqP- >set var Fl oat ((| T_Bus: : Fl oat) 4.321);
i nout SeqP- >set var | nt (12345) ;

i nout SeqP- >set var Stri ng("Four, five, six");

/] Call the 'testSeqParans' operation
bc. t est SegPar ans(*i nSegP, *i nout SeqP, *out SeqP);

/1 End of scope:
del ete i nSeqgP;
del et e i nout SegP;
del et e out SeqP;

}
cat ch(l T_Bus: : Excepti on& e)
{
cout << endl << "Caught Unexpected Excepti on:
<< endl << e.nmessage()
<< endl ;
return -1;
}

127

CHAPTER 4 | Artix Programming Considerations

The preceding client example can be explained as follows:
1. The parameters are allocated on the heap.

2. Before you reach the end of the current scope, you must explicitly
delete the parameters or the memory will be leaked.

Client example using smart Example 55 shows how to call the t est SeqPar ans operation using
pointers parameters that are allocated on the heap and referenced by smart pointers

Example 55: Client Calling testSeqParams Using Smart Pointers

Il G+
try

{
IT Bus::init(argc, argv);

Based i ent bc;

I/l Allocate all paraneters

1 SequenceTypePtr i nSegP(new SequenceType());
SequenceTypePtr i nout SeqP(new SequenceType());
SequenceTypePtr out SegP(new SequenceType());

// Initialize in and i nout paraneters

i nSeqP->set var F oat ((I T_Bus: : Fl oat) 1.234);

i nSeqP- >set var | nt (54321) ;

i nSegP->setvar String("Cne, two, three");

i nout SeqP- >set var Fl oat ((1 T_Bus: : Fl oat) 4.321);
i nout SeqP- >set var | nt (12345) ;

i nout SeqP- >set var Stri ng("Four, five, six");

[/l Call the 'testSeqParans' operation
bc. t est SegPar ans(*i nSegP, *i nout SeqP, *out SeqP);

2 /! End of scope:
/] Paranmeter data automatically deallocated by snart pointers
}
cat ch(| T_Bus: : Excepti on& €)
{
cout << endl << "Caught Unexpected Excepti on:
<< endl << e.message()
<< endl ;
return -1;
}

128

Memory Management

The preceding client example can be explained as follows:

1. The parameters are allocated on the heap, using smart pointers of
SequenceTypePtr type.

2. In this case, there is no need to deallocate the parameter data
explicitly. The smart pointers, i nSegP, i nout SeqP, and out SeqP,
automatically delete the memory they are pointing at when they go out
of scope.

129

CHAPTER 4 | Artix Programming Considerations

Multi-Threading

Overview This section provides an overview of threading in Artix and describes the
issues affecting multi-threaded clients and servers in Artix.

In this section This section contains the following subsections:
Client Threading Issues page 131
Servant Threading Models page 132
Setting the Servant Threading Model page 135
Thread Pool Configuration page 138

130

Multi-Threading

Client Threading Issues

Client threading

The runtime library is thread-safe, in that multi-threaded applications may
safely use the library from multiple threads simultaneously.

Moreover, the client stub code is thread-safe by default. That is, you can
safely share a single proxy instance amongst multiple threads. The Artix
stub code uses mutex locks to protect the proxy instance from concurrent
access by multiple threads.

Note: Versions of Artix prior to 4.0 are not thread-safe by default. In
these older Artix versions, it was possible to enable thread-safe proxies by
calling the | T_Bus: : Port:: set_t hreadi ng_nodel () function. For
backward compatibility reasons, the set _t hr eadi ng_nodel () function is
still available in Artix 4.0, but it has no effect.

131

CHAPTER 4 | Artix Programming Considerations

Servant Threading Models

Overview Artix supports a variety of different threading models on the server side. The
threading model that applies to a particular service can be specified by
programming (see “Setting the Servant Threading Model” on page 135).
This subsection provides an overview of each of the servant threading
models in Artix, as follows:
¢ Multi-threaded.
® Serialized.
® Per-port.
® PerThread.
® Perlnvocation.

Default threading model The default threading model is multi-threaded.

Multi-threaded The multi-threaded threading model implies that a single instance is
created and shared on multiple threads. The servant object must expect to
be called from multiple threads simultaneously.

Figure 10 shows an outline of the multi-threaded threading model. In this
case, the threads all share the same servant instance.

Figure 10: Outline of the Multi-Threaded Threading Model

- Work Queue 1 Thread pool for port 1

o— Portl |—+»|RL|[R2|R3| .. |RN |7
\Servant

O— Service
Work Queue 2 Thread pool for port 2 /

Oo—— Port2 |— | Rl | R2| R3| .. | RN |~y

132

Serialized

o0

Per-port

0—

Multi-Threading

The Seri al i zed threading model implies that access to the servant is
serialized (implemented using mutex locks). The servant object can be
called from no more than one thread at a time.

Figure 11 shows an outline of the Seri al i zed threading model. In this case,
the threads all share the same servant instance, but access is serialized.

Figure 11: Outline of the Serialized Threading Model

I Work Queue 1 %/
o— Portl |—»|RL|R2|R3| .. |RN|—7
S NVAVAVAY, Servant
. 21
Service
Work Queue 2 Thread pool for port 2
o— Port2 |—»|RL|R2|R3| .. |RN|—, VAV
The per-port threading model implies that a servant instance is created per
port. Each servant object must expect to be called from multiple threads
simultaneously, because each port has an associated thread pool.
Figure 12 shows an outline of the Per Port threading model. In this case,
the threads in a thread pool share the same servant instance.
Figure 12: Outline of the Per-Port Threading Model
. Work Queue 1 Thread pool for port 1 Servant
B 4 W —
o—— Portl —» | R1 R2 R3 RN m >
Service
Work Queue 2 Thread pool for port 2
o—1 Port2 |— | RL|R2|R3| .. |RN [~ WW\»O

NSNS

133

CHAPTER 4 | Artix Programming Considerations

PerThread

The Per Thr ead threading model implies that a servant instance is created
per thread. This allows the servant objects to use thread-local storage,
resources with thread affinity (like MQ), and reduces synchronization
overhead.

Figure 13 shows an outline of the Per Thr ead threading model. An Artix
service can have multiple ports, and each of the ports is served by a work
queue that stores the incoming requests. A pool of threads is reserved for
each port, and each thread in the pool is associated with a distinct servant
instance.

Figure 13: Outline of the PerThread Threading Model

Servant

Work Queue 1 Thread pool for port 1 O

o—— Portl

o— Service

— | RL|R2|R3| .. |RN /'W

o—— Port2

Work Queue 2 Thread pool for port 2 O

— | R1|R2|R3| .. |RN \W

Perlnvocation

134

The Per I nvocat i on threading model implies that a servant instance is
created for every invocation. In this case, the servant implementation does
not need to be thread-safe, because a servant can be called from no more
than one thread at a time.

The relationship between threads and servants is similar to the case of the
Per Thr ead threading model (see Figure 13 on page 134). There is a
difference in servant lifecycle management, however. Each thread is
associated with a servant for the duration of an operation invocation. At the
end of the invocation, the servant instance is destroyed.

Multi-Threading

Setting the Servant Threading Model

Overview

How to set a per-port threading
model

Wrapper servants

Some of the servant threading models are implemented using wrapper
servant classes, which work by overriding the default behavior of a servant’s
di spat ch() function. Exceptions to this pattern are the default
multi-threaded model and the per-port threading model. This section
describes how to program the various servant threading models.

The per-port threading model can be enabled by employing the two-step
style of servant registration (see “Activating a static servant” on page 58 or
“Activating a transient servant” on page 65). For example, you could register
distinct servants, cor ba_servant and soap_ser vant , against distinct ports,
OCRBAPort and SOAPPor t, using the following code example:

/] C++
I T_Bus: : Q\ane service_nanme("", "BankService",
"http://ww. i ona. con bus/ denmos/ bank") ;

| T_Bus: : Servi ce_var bank_service =

bus- >add_servi ce("bank. wsdl ", servi ce_name);
bank_ser vi ce->regi ster_servant (corba_servant, "CCORBAPort");
bank_servi ce->regi st er_servant (soap_servant, "SOAPPort");

The only wrapper servant function that you need is a constructor.
Example 56 shows the constructors for each of the wrapper servant classes.

Example 56: Constructors for the Wrapper Servant Classes

[l Ct+
I T _Bus:: SerializedServant (I T_Bus:: Servant & servant);

| T_Bus: : Per Thr eadSer vant (1 T_Bus: : Servant & servant);

| T_Bus: : Perl nvocati onServant (1 T_Bus: : Servant & servant);

135

CHAPTER 4 | Artix Programming Considerations

How to set a threading model
using wrapper servants

Step 1—Implement the servant
clone() function (if required)

Step 2—Register the wrapper
servant

136

To register a servant with a Seri al i zed, Per Thr ead or Per I nvocat i on
threading model, perform the following steps:

® Step 1—Implement the servant clone() function (if required).

® Step 2—Register the wrapper servant.

If you intend to use a Per Thr ead or Per | nvocat i on threading model, you
must implement the cl one() function in your servant class. The cl one()
function will be called automatically whenever the threading model
demands a new servant instance. Example 57 shows the default
implementation of the cl one() function for the servant class, Port Typel npl .

Example 57: Default Implementation of the clone() Function
Il C++

I T_Bus: : Servant *

Port Typel npl : : cl one() const

{

}

return new Port Typel npl (get _bus());

To register a wrapper servant, you must pass the original servant object to a
wrapper servant constructor and then pass the wrapper servant to the

regi ster_servant () function (or the regi ster_transi ent_servant ()
function in the case of transient servants).

For example, Example 58 shows how the main function of the bank server
example can be modified to register the Bankl npl servant with a Per Thr ead
threading model.

Example 58: Registering a Servant with a PerThread Threading Model
/] C++
try {

IT Bus::Bus_var bus = I T Bus::init(argc, (char **)argv);

Bankl npl ny_bank(bus);
I T_Bus: : Per Thr eadSer vant per _t hread_bank(ny_bank) ;

Q\ane service_name("", "BankService",
"http://ww i ona. coni bus/ denos/ bank") ;

Multi-Threading

Example 58: Registering a Servant with a PerThread Threading Model

bus- >r egi st er_servant (
per _t hread_bank,
"../wsdl /bank. wsdl ",
servi ce_nane

DE
I T_Bus::run();

bus- >r enove_ser vi ce(servi ce_nane) ;

}
catch (1T _Bus::Exception&e) { ... }
The preceding C++ code can be described as follows:

1. In this step, the Bankl npl servant is wrapped by a new
| T_Bus: : Per Thr eadSer vant instance.

2. When it comes to registering, you must register the wrapper servant,
per _t hread_bank, instead of the original servant, ny_bank.

137

CHAPTER 4 | Artix Programming Considerations

Thread Pool Configuration

Thread pool settings The thread pool for each port is controlled by the following parameters
(which can be set in the configuration):
® nitial threads—the number of threads initially created for each port.
® [ow water mark—the size of the dynamically allocated pool of threads
will not fall below this level.
® High water mark—the size of the dynamically allocated pool of threads
will not rise above this level.

Thread pools are configured by adding to or editing the settings in the
Artixlnstal | Dir/artix/ Version/etc/domai ns/ arti x. cfg configuration
file. In the following examples, it is assumed that the Artix application
specifies its configuration scope to be sanpl e_confi g.

Note: You can specify the configuration scope at the command line by
passing the switch - CRBnane Confi gScopeNane to the Artix executable.
Command-line arguments are normally passed to I T_Bus: :init().

Thread pool configuration levels Thread pools can be configured at several levels, where the more specific
configuration settings take precedence over the less specific, as follows:

® Global level.
® Service name level.
® Qualified service name level.

138

Global level

Service name level

Multi-Threading

The variables shown in Example 59 can be used to configure thread pools at
the global level; that is, these settings would apply to all services by default.

Example 59: Thread Pool Settings at the Global Level
Artix configuration file
sanpl e_config {

Thread pool settings at gl obal

| evel
thread pool:initial threads = "3";
thread_pool :low water_mark = "5";
thread_pool : hi gh_water_mark = "10";

I

The default settings are as follows:

thread pool :initial _threads = "2";
thread_pool : 1 ow water_nmark = "5";
thread_pool : hi gh_water_mark = "25";

To configure thread pools at the service name level (that is, overriding the

global settings for a specific service only), set the following configuration
variables:

thread pool :initial _threads: Servi ceNane
t hread_pool : | ow wat er _nar k: Ser vi ceNarre
thread_pool : hi gh_wat er _nar k: Ser vi ceNane

Where Servi ceNane is the name of the particular service to configure, as it
appears in the WSDL <servi ce name="Ser vi ceNane" > tag.

For example, the settings in Example 60 show how to configure the thread
pool for a service named Sessi onManager .

Example 60: Thread Pool Settings at the Service Name Level
Artix configuration file
sanpl e_config {
;.fil ;I'hread pool settings at Service nane | evel
thread_pool :initial_threads: Sessi onManager

t hread_pool : | ow wat er _nar k: Sessi onManager
t hread_pool : hi gh_wat er _mar k: Sessi onManager = "10";

1o
1=

139

CHAPTER 4 | Artix Programming Considerations

Qualified service name level

140

Occasionally, if the service names from two different namespaces clash, it
might be necessary to identify a service by its fully-qualified service name.
To configure thread pools at the qualified service name level, set the
following configuration variables:

thread_pool :initial_threads: NamespaceUR : Servi ceNane

thread_pool : | ow wat er _nar k: NanmespaceURl : Servi ceNane

t hread_pool : hi gh_wat er _mar k: NanespaceUR : Ser vi ceNanme

Where NanespaceUR! is the namespace URI in which Servi ceNane is
defined.

For example, the settings in Example 61 show how to configure the thread
pool for a service named Sessi onManager in the http://ny. tnsl/
namespace URI.

Example 61: Thread Pool Settings at the Qualified Service Name Level
Artix configuration file
sanpl e_config {

Thread pool settings at Service nane |evel
thread _pool :initial _threads: http://ny.tnsl/: Sessi onManager =

Lr
thread_pool : | ow wat er_mark: http://ny.tnsl/: Sessi onManager =
"g-

thread_pool : hi gh_wat er _mark: http://ny.tnsl/: Sessi onManager =

"10";

Converting with to_string() and from_string()

Converting with to_string() and from_string()

Overview

Header files

Library

Demonstration

Example struct

This section describes how you can use the << operator, the
I T Bus::to_string() function and the I T_Bus::fromstring() function to
convert Artix data types to and from a string format.

The following header files must be included in your source code to access
the string conversion APls:

® <it_bus/to_string.h>

® <it_bus/fromstring. h>

To use the string conversion functions and operators, link your application
with the following library:

® it_bus_xni.lib, on Windows platforms,
® libit_bus_xm[.a][.so], on UNIX platforms.

The following demonstration gives an example of how to use the Artix string
conversion functions, to_string() and fromstring():

Artixlnstall Dir/artix/Version/denos/ basic/to_string

Example 62 shows the definition of an XML schema type, Si npl eStruct ,
which is used by the string conversion examples in this section.

Example 62: Schema Definition of a SimpleStruct Type

<?xm versi on="1.0" encodi ng="UTF- 8" ?>

<schena
t ar get Namespace="ht t p: // schenas. i ona. coni t est s/ t ype_t est"
xm ns="ht t p: / / waw. w3. or g/ 2001/ XM_Schena"
xm ns: tns="http://schenas. i ona. conitests/type_test">

<conpl exType name="Si npl eStruct" >
<sequence>
<el ement name="varFl oat" type="float"/>
<el enent name="varlInt" type="int"/>
<el enent name="var String" type="string"/>

141

CHAPTER 4 | Artix Programming Considerations

Example 62: Schema Definition of a SimpleStruct Type

</ sequence>

<attribute name="varAttrString" type="string"/>

</ conpl exType>

</ schena>

operator< <() By including the <i t _bus/to_string. h> header file and linking with the
it_bus_xm library, you can use the << operator to print out any Artix data
type in a string format (assuming that the stub code for this data type is

already linked with your application).

Example using << The following code example shows how to print a simple struct,
first_struct, as a string using the << stream operator:

/] C++

#include <it_bus/to_string. h>

int main(int argc, char** argv)

{
Si npl eSt ruct

first_struct.
first_struct.
first_struct.

cout << endl
<< endl

}

first_struct;

set var Stri ng(" goodbye") ;
setvarlnt (121);

setvar Fl oat (3. 14) ;

<< "Print using operator<<"
<< first_struct << endl;

The preceding code produces the following output:

Print using operator<<

<?xm version='"1.0" encodi ng="utf-8"' ?><to_string
xm ns: xsi ="htt p: // www. wW3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: xsd="ht t p: // ww. W3. or g/ 2001/ XM_Schena" ><var Fl oat >3. 1400
00105e0</ var F oat ><var | nt >121</ var | nt ><var St ri ng>goodbye</ var

String></to_string>

In the stringified output, the element name defaults to <t o_stri ng>.

142

to_string()

Converting with to_string() and from_string()

Example 63 shows the signature of the | T_Bus::to_string() function, as
defined in the <it_bus/to_string. h> header.

Example 63: Signature of the IT_Bus::to_string() Function

[l Ct+
nanespace | T_Bus
{
String | T_BUS XM__API
to_string(
const AnyType& dat a,
const QNane& el enent _nanme=defaul t _to_string_el ement _nane

}

You can convert any Artix data type to a string, | T_Bus: : Stri ng, by passing
it as the first argument in to_string() (I T_Bus: : AnyType is the base class

for all Artix data types). The resulting string has the following general
format:

<?xm version='1.0" encoding="utf-8" 2>
<H enent Nare

xm ns: xsi ="htt p: / / wawn W8. or g/ 2001/ XM_Schema- i nst ance"
xm ns: xsd="ht t p: / / w W3. or g/ 2001/ XM_Schema" >

</ B enment Nane>

Where the El ement Nare has one of the following values:

® |f the second parameter of t o_string() is defaulted, the B enent Nane
isto_string.

If the second parameter of t o_string() is a simple string, say f oo, the
ElementName is f oo.

If the second parameter of t o_string() is an I T_Bus:: Q\ane, say
Quane("", "foo", "http://xn.iona. com|DDtest"), the

B enent Narre is mil: f oo, where mi is the prefix associated with the
http://xm .iona.conm | D test namespace URI.

143

CHAPTER 4 | Artix Programming Considerations

Example using to_string()

from_string()

144

The following code example shows how to convert a simple struct,
second_st ruct, to a string using the to_string() function:

[l C++

#include <it_bus/to_string. h>

int main(int argc, char** argv)

{

}

Sinpl eStruct first_struct;
second_struct. setvarString("hello");
second_struct. setvarlnt(2);
second_struct. setvarH oat (1. 1);

String resulting xm = I T _Bus::to_string(
second_struct,

Qwane("", "foo", "http://xm.iona.com | DDtest")
)i

cout << endl << "Resulting XM String:"
<< endl << resulting_xm.c_str() << endl;

The preceding code produces the following output:

Resulting XM. String:

<?xm version='"1.0" encodi ng="utf-8" ?><nl:foo

xmns: m="http://xn.iona. com | DD test"
xm ns: xsi ="htt p: // www wW3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: xsd="ht t p: // ww. W3. or g/ 2001/ XM_Schena" ><var Fl oat >1. 1000

00024e0</ var Fl oat ><var | nt >2</ var | nt ><var Stri ng>hel | o</var Stri
ng></ m: f oo>

In the stringified output, the element name is defined as m.: f oo.

Example 64 shows the signature of the I T_Bus: : from string() function,
as defined in the <it _bus/from string. h> header.

Example 64: Signature of the IT_Bus::from_string() Function

/] C++
nanmespace | T_Bus

voi d | T_BUS XM__API

Example using from_string()

Converting with to_string() and from_string()

Example 64: Signature of the IT_Bus::from_string() Function

fromstring(
const String & data,
AnyType & result,
const Q\ane &
el ement _nane=def aul t_from stri ng_el ement _nane

}

You can initialize an Artix data type from an XML element in string format
using the fromstring() conversion function. Pass the XML string as the
first argument, dat a, and the data type to initialize as the second parameter,
result.

The following code example shows how to convert an XML string,
original _xm, to a simple struct, si npl e_struct, using the from string()
function:

Il C++
#include <it_bus/fromstring. h>

int main(int argc, char** argv)

{
String original _xm = "<?xnm version='1.0'
encodi ng='utf-8' ?><to_string
xm ns: xsi =\"http: //wwwv w3. or g/ 2001/ XM_Schena- i nst ance\ "
xm ns: xsd=\"ht t p: / / waw W3. or g/ 2001/ XM_Schera\ " ><var Fl oat >1. 10
0000024e0</ var Fl oat ><var | nt >2</ var | nt ><var Stri ng>hel | o</ var St
ring></to_string>";

Sinpl eStruct sinple struct;
I T Bus::fromstring(original _xm, sinple_struct);

cout << endl << "Qutput val ues of S npleStruct CH type using
accessor nethods. "

<< endl <<" Sinpl eStruct popul ated with the follow ng
val ues: "
<< endl << " SinpleStruct::varString = " <<
sinple struct.getvarString().c_str()
< endl << " SinpleStruct::varlnt =" <<

si npl e_struct. getvarlnt()

145

CHAPTER 4 | Artix Programming Considerations

<< endl << " SinpleStruct::varFloat =" <<
si npl e_struct. getvarFl oat () << endl;

146

Locating Services with UDDI

Locating Services with UDDI

Overview A Universal Description, Discovery and Integration (UDDI) registry is a form
of database that enables you to store and retrieve Web services endpoints. It
is particularly useful as a means of making Web services available on the
Internet. Instead of making your WSDL contract available to clients in the
form of a file, you can publish the WSDL contract to a UDDI registry. Clients
can then query the UDDI registry and retrieve the WSDL contract at
runtime.

Publishing WSDL to UDDI You can publish your WSDL contract either to a local UDDI registry or to a
public UDDI registry, such as http: //uddi . i bm comfrom IBM or
http://uddi . ncrosoft.com from Microsoft. To publish your WSDL
contract, navigate to one of the public UDDI Web sites and follow the
instructions there.

A list of public UDDI registries is available from WSINDEX
(http://www.wsindex.org/UDDI/Registries/index.html).

UDDI URL format Artix uses UDDI query strings that take the form of a URL:

uddi : <UDDI Regi st r yEndpoi nt URL>?<Quer yStri ng>

The UDDI URL is built up from the following components:

® UDD Regi st ryEndpoi nt URL—the endpoint address of a UDDI registry.
This could either be a local UDDI registry (for example,
http: //1 ocal host : 9000/ ser vi ces/ uddi /i nqui ry) or a public UDDI
registry on the Internet (for example,
http: //uddi . i bm coni ubr/inqui ryapi for IBM’s UDDI registry).

® QueryString—a combination of attributes that is used to query the
UDDI database for the Web service endpoint data. Currently, Artix only
supports the t nodel nane attribute. An example of a query string is:

t nodel nane=hel | owor | d

Within a query component, the characters;,/,?2,:, @& =,+,,,and $
are reserved.

147

http://www.wsindex.org/UDDI/Registries/index.html
http://www.wsindex.org/UDDI/Registries/index.html
http://www.wsindex.org/UDDI/Registries/index.html

CHAPTER 4 | Artix Programming Considerations

Initializing a client proxy with
UDDI

/] C++

Examples of valid UDDI URLs

uddi : ht t p: // | ocal host : 9000/ ser vi ces/ uddi / i nqui r y?t nodel name=hel | o
wor | d

uddi : ht t p: //uddi . i bm cond ubr/i nqui r yapi ?t model nane=hel | owor| d

To initialize a client proxy with UDDI, pass a valid UDDI URL string to the
proxy constructor. For example, if you have a local UDDI registry,
http://1 ocal host: 9000/ servi ces/ uddi /i nqui ry, where you have
registered the WSDL contract from the Hel | oWr | d demonstration (this
contract is in

InstallDr/artix/ Version/ denos/ basi ¢/ hel | o_wor | d_soap_http/etc),
you can initialize the G eeterQ i ent proxy as follows:

I T Bus::Bus_var bus = I T Bus::init(argc, argv);

// Instantiate an instance of the proxy
Geeterdient hw("uddi:http://I ocal host: 9000/ servi ces/ uddi /i nqui r y?t nodel nanme=hel | owor | d") ;

String string_out;
/1l I nvoke sayH operation

hw sayH (string_out);

Configuration

148

To configure an Artix client to support UDDI, you must add uddi _pr oxy to
the application’s or b_pl ugi ns list (for the C+ + plug-in). For example:

Artix Configuration File

ny_appl i cati on_scope {
orb_plugins = [..., "uddi _proxy"];

I

Compiling and Linking an Artix Application

Compiling and Linking an Artix Application

Compiler Requirements

Linker Requirements

An application built using Artix requires a number of IONA-supplied C++
header files in order to compile. The directory containing these include files
must be added to the include path for the compiler, so that when the
compiler processes the generated files, it is able to find the necessary
included infrastructure header files.

The following include path directives should be given to the compiler:

-1"$(1 T_PRODUCT_DI R)\artix\ $(1 T_PRODUCT_VER)\ i ncl ude"

A number of Artix libraries are required to link with an application built using
Artix. The following directives should be given to the linker:

-L"$(I T_PRODUCT_DIR)\artix\$(1 T_PRODUCT_VER\Iib" it_bus.lib it_afc.libit_art.libit_ifc.lib

Table 1 shows the libraries that are required for linking an Artix application

and their function.

Table 1: Artix Import Libraries for Linking with an Application
Windows Libraries UNIX Libraries Description

it_bus.lib I'i bit_bus. so The Bus library provides the functionality required to
l'ibit_bus. sl access the Artix bus. Required for all applications that use
libit_bus.a Artix functionality.

it_afc.lib libit_afc.so The Artix foundation classes provide Artix specific data
libit_afc. sl type extensions such as | T_Bus: : Fl oat , etc. Required for
libit_afc.a all applications that use Artix functionality.

it_ifc.lib libit_ifc.so The IONA foundation classes provide IONA specific data
libit_ifc.sl types and exceptions.
libit_ifc.a

it_art.lib libit_art.so The ART library provides advanced programming
libit_art.sl functionality that requires access to the Artix
libit_art.a infrastructure and the underlying ORB.

149

CHAPTER 4 | Artix Programming Considerations

Runtime Requirements

150

The following directories need to be in the path, either by copying them into
a location already in the path, or by adding their locations to the path. The
following lists the required libraries and their location in the distribution files
(all paths are relative to the root directory of the distribution):

"$(1 T_PRCDUCT DI R\ artix\ $(1 T_PRODUCT_VER)\ bi n"
and
"$(1 T_PRCDUCT_DI R)\ bi n"

On some UNIX platforms you also have to update the SH.I B_PATH or
LD LI BRARY_PATH variables to include the Artix shared library directory.

Building Artix Stub Libraries on Windows

Building Artix Stub Libraries on Windows

Overview

Generating stubs with declaration
specifiers

Compiling stubs with declaration
specifiers

The Artix WSDL-to-C+ + compiler features an option, - decl spec, that
simplifies the process of building Dynamic Linking Libraries (DLLs) on the
Windows platform. The - decl spec option defines a macro that
automatically inserts export declarations into the stub header files.

To generate Artix stubs with declaration specifiers, use the - decl spec option
to the WSDL-to-C++ compiler, as follows:

wsdl t ocpp -decl spec MY_DECQL_SPEC BaseSer vi ce. wsdl

In this example, the - decl spec option would add the following preprocessor
macro definition to the top of the generated header files:

f 1defined(MY_DECL_SPEC)

f defined(MY_DECL_SPEC EXPCRT)

#define MY_DECL_SPEC | T_DECLSPEC EXPCRT

#el se

#define MY_DECL_SPEC | T_DECLSPEC | MPCRT

#endi f

#endi f

Where the | T_DEQLSPEC EXPCRT macro is defined as _decl spec(dl | export)
and the | T_DECLSPEC | MPCRT macro is _decl spec(dl |inport).

Each class in the header file is declared as follows:
class MY_DECL_SPEC d assNane { ... };

If you are about to package your stubs in a DLL library, compile your C++
stub files, St ubFi | e. cxx, with a command like the following:

cl -DW_DECLSPEC EXPCRT ... StubFile.cxx
By setting the Mv_DECQLSPEC EXPCRT macro on the command line,

_decl spec(dl | export) declarations are inserted in front of the public class

declarations in the stub. This ensures that applications will be able to
import the public definitions from the stub DLL.

151

CHAPTER 4 | Artix Programming Considerations

152

CHAPTER 5

Endpoint
References

References provide a convenient and flexible way of
identifying and locating specific services.

In this chapter This chapter discusses the following topics:
Introduction to Endpoint References page 154
Using References in WSDL page 157
Programming with References page 163
The WSDL Publish Plug-In page 171
Migration Scenarios page 176

153

CHAPTER 5 | Endpoint References

Introduction to Endpoint References

Overview

XML representation of a reference

C+ + representation of a
reference

154

An endpoint reference is an object that encapsulates addressing information
for a particular WSDL service. Essentially, a reference encapsulates all of
the information that is required to open a connection to an endpoint.
References have the following features:

®* A reference encapsulates the data from a wsdl : servi ce element.

References can be sent across the wire as parameters of or as return
values from operations.

References can be passed to client proxy constructors, enabling a
client to open a connection to a remote endpoint.

References are protocol and transport neutral.

Note: In versions of Artix prior to 4.0, references were represented by the
proprietary type, | T_Bus: : Ref er ence. Since version 4.0, however, Artix
complies with the WS-Addressing standard for endpoint references. For

details of migration issues around references, see “Migration Scenarios” on
page 176.

Note: You cannot use references with rpc-encoded bindings, because
references contain attributes, which are not compatible with rpc-encoding.

An endpoint reference is represented by the wsa: Endpoi nt Ref er enceType
type from the following WS-Addressing schema:

Artixlnstall Dir/artix/Version/ schermas/ wsaddr essi ng. xsd

The WS-Addressing schema is also available online at:
http://www.w3.0rg/2005/08/addressing/ws-addr.xsd

The XML representation is used when marshaling or unmarshaling a
reference as a WSDL operation parameter.

In C++, an endpoint reference is represented by an instance of the
W5_Addr essi ng: : Endpoi nt Ref er enceType class.

http://www.w3.org/2005/08/addressing/ws-addr.xsd

Contents of an endpoint reference

Introduction to Endpoint References

Generally, the on-the-wire XML representation of an endpoint reference has
the following form (where wsa: Endpoi nt Ref er ence is an element of
wsa: Endpoi nt Ref er enceType type):

<wsa: Endpoi nt Ref er ence>
<wsa: Addr ess>xs: anyURl </ wsa: Addr ess>
<wsa: Ref er encePar anet er s>xs: any* </ wsa: Ref er encePar anet er s> ?
<wsa: Met adat a>xs: any*</ wsa: Met adat a> ?

</ wsa: Endpoi nt Ref er ence>

An endpoint reference encapsulates the following data:

® wsa: Address—gives the URI of the endpoint, in whichever format is
appropriate for the transport in question. This element must be
present.

Note: Because Artix supports references with multiple endpoints
(that is, WSDL ports), the wsa: Addr ess element, which supports only
one endpoint, is often superceded by the wsa: Met adat a element,
which supports multiple endpoints. If both are present, the

wsa: Met at dat a element takes precedence.

® wsa: Ref er encePar anet er s—an optional list of additional parameters
that might be needed for establishing a connection to the endpoint (or
endpoints).

® wsa: Met adat a—an optional element that contains a fragment from the
WSDL contract describing the endpoint (or endpoints).
The wsa: Met adat a element contains connection information for one or
more endpoints (wsdl : port elements). In Artix, the wsa: Met adat a
element is more important than the wsa: Addr ess element, because
Artix servers typically need to define multiple endpoints for each
service.

155

CHAPTER 5 | Endpoint References

The Bank example

156

Figure 14 shows an overview of the Bank example, illustrating how the
Bank service uses references to give a client access to a specific account.

Figure 14: Using Bank to Obtain a Reference to an Account

Client Server
Bank proxy @ get _account () Bank servant
,@
Fef orence
Account proxy @ @ get_bal ance() Account servant -
O_
____________ Account DB

The preceding Bank example can be explained as follows:

1.

The client calls get _account () on the BankSer vi ce service to obtain a
reference to a particular account, AccNarre.

The BankSer vi ce creates a reference to the AccName account and
returns this reference in the response to get _account ().

The client uses the returned reference to initialize an Account d i ent
proxy.

The client invokes operations on the Account service through the
Account d i ent proxy.

Using References in WSDL

Using References in WSDL

Overview

The WS-Adressing XML schema

WS-Addressing namespace URI

Endpoint reference type

To use endpoint references in WSDL—that is, to declare operation
parameters or return values to be endpoint references—perform the
following steps:
1. Define the wsa namespace prefix in the <defi ni ti ons> tag at the start
of the contract—for example, by setting
xm ns: wsa="htt p: / / ww. W3. or g/ 2005/ 08/ addr essi ng" .
Import the WS-Addressing schema using an xsd: i nport element.

Declare the relevant parameters and return values to be of
wsa: Endpoi nt Ref er enceType type.

The WS-Addressing schema is stored in the following file:
Artixlnstal I Dir/artix/Version/ schemas/ wsaddr essi ng. xsd
The schema is also available online at:
http://www.w3.0rg/2005/08/addressing/ws-addr.xsd

The endpoint reference type is defined in the following target namespace:

ht t p: // www. w3. or g/ 2005/ 08/ addr essi ng
To access the WS-Addressing types in a WSDL contract file, you should
introduce a namespace prefix in the <defi ni ti ons> tag, as follows:

<definitions xmns="..."
xn ns: wsa="htt p: / / waw. W8. or g/ 2005/ 08/ addr essi ng"
.>

The WS-Addressing schema defines an endpoint reference type for use
within WSDL contracts. The endpoint reference type is, as follows:
WBAPr ef i x: Endpoi nt Ref er enceType

Where WsAPr ef i x is associated with the
htt p: // wwn. w3. or g/ 2005/ 08/ addr essi ng namespace URI:

157

http://www.w3.org/2005/08/addressing/ws-addr.xsd

CHAPTER 5 | Endpoint References

The Bank WSDL contract

158

Example 65 shows the WSDL contract for the Bank example that is
described in this section. There are two port types in this contract, Bank and
Account . For each of the two port types there is a SOAP binding,

BankBi ndi ng and Account Bi ndi ng.

Example 65: Bank WSDL Contract

<?xm version="1.0" encodi ng="UTF- 8" ?>
<definitions xm ns="http://schenas. xn soap. org/ wsdl /"
xm ns: soap="htt p: // schemas. xm soap. or g/ wsdl / soap/ "
xm ns:tns="http://ww: i ona. con bus/ denos/ bank"
xm ns: xsd="ht t p: / / waww. w3. or g/ 2001/ XM_Schena"
xm ns: xsd1="htt p:// soapi nt er op. or g/ xsd"
xm ns: stub="htt p://schemas. i ona. com t r ansport s/ st ub"
xm ns: http="http://schemas. i ona. com transports/http"
xm ns: htt p-conf ="htt p://schenas. i ona. con transports/http/configu
ration"
xm ns: fixed="http://schenas. i ona. coni bi ndi ngs/ fi xed"
xmns:iiop="http://schenas.iona.conmtransports/iiop_tunnel"
xm ns: corba="http://schemas. i ona. conl bi ndi ngs/ cor ba"

xm ns: ns1="http://wwn i ona. coni cor ba/ t ypenap/ BasePort Type. i dl

xm ns: wsa="ht t p: / / www. w3. or g/ 2005/ 08/ addr essi ng"
xm ns: mg="htt p: // schemas. i ona. coni t ransport s/ ng"
xm ns: routing="http://schenas.iona. coni routing"
xm ns: msg="ht t p: // schenas. i ona. coni por t / messagi ng"
xm ns: bank="ht t p: // wav. i ona. cond bus/ denos/ bank"
t ar get Nanmespace="ht t p: // ww. i ona. com bus/ denos/ bank"
name="BaseServi ce" >
<t ypes>
<xsd: i nport schemalocati on="/schemas/wsaddr essi ng. xsd"
namespace="ht t p: / / www. W3. or g/ 2005/ 08/ addr essi ng"/ >
<schema el enent For nDef aul t ="qual i fi ed"
t ar get Nanespace="ht t p: // wav. i ona. com bus/ denos/ bank"
xm ns="ht t p: // waw. W3. or g/ 2001/ XM_Schena" >
<conpl exType nane="Account Names" >
<sequence>
<el enent maxCccur s="unbounded" m nCccur s="0"
nane="name" type="xsd:string"/>
</ sequence>
</ conpl exType>
</ schema>
</types>

Using References in WSDL

Example 65: Bank WSDL Contract

<message nane="list_accounts" />
<nessage name="| i st_account sResponse" >

<part name="return" type="bank: Account Nanes"/>
</ message>

<message name="create_account">
<part name="account name" type="xsd:string"/>
</ message>
<message nane="cr eat e_account Response" >
<part name="return" type="wsa: Endpoi nt Ref erenceType"/>
</ message>

<nmessage nane="get_account">
<part name="account_nane" type="xsd:string"/>
</ message>
<nmessage nane="get_account Response" >
<part name="return" type="wsa: Endpoi nt Ref er enceType"/>
</ message>

<nessage name="del et e_account ">

<part name="account_nane" type="xsd:string"/>
</ message>
<nessage name="del et e_account Response" />

<message hane="get bal ance"/>
<nessage name="get _bal anceResponse" >

<part name="bal ance" type="xsd:float"/>
</ message>

<nessage name="deposit">
<part name="addition" type="xsd:float"/>
</ message>

<message hane="deposi t Response"/>

<por t Type nane="Bank">
<operation name="I|i st_accounts">
<i nput nane="li st_account s"
message="tns: create_account"/>
<out put name="l|i st _account sResponse"
nmessage="t ns: | i st _account sResponse"/ >
</ oper ati on>

<oper ati on name="cr eat e_account ">

159

CHAPTER 5 | Endpoint References

Example 65: Bank WSDL Contract

<i nput name="creat e_account"
nmessage="t ns: creat e_account "/ >
<out put name="cr eat e_account Response"
message="t ns: cr eat e_account Response"/ >
</ oper at i on>

6 <oper ati on nane="get account">
<i nput nane="get_account" nessage="tns: get_account"/>
<out put name="get _account Response"
message="t ns: get _account Response" />
</ oper at i on>

<oper ati on nane="del et e_account" >
<i nput nane="del et e_account"
nmessage="t ns: del et e_account "/ >
<out put nane="del et e_account Response"
nmessage="t ns: del et e_account Response"/ >
</ oper at i on>
</ port Type>

<port Type nane="Account">
<oper ati on nane="get bal ance" >
<i nput nane="get_bal ance" nmessage="t ns: get _bal ance"/>
<out put nare="get _bal anceResponse"
message="t ns: get _bal anceResponse"/ >
</ oper at i on>
<oper ati on nane="deposit">
<i nput name="deposit" message="tns: deposit"/>
<out put nare="deposi t Response"
nmessage="t ns: deposi t Response"/ >
</ oper at i on>
</ por t Type>

<bi ndi ng nanme="BankBi ndi ng" type="tns: Bank" >

</ bi ndi ng>

<bi ndi ng name="Account Bi ndi ng" type="tns: Account ">
</ bi ndi ng>
7 <servi ce name="BankServi ce">

<port name="BankPort" bi ndi ng="t ns: BankBi ndi ng" >

<soap: addr ess

| ocation="http://I| ocal host : 0/ BankSer vi ce/ BankPort/" />
</ port >

160

Using References in WSDL

Example 65: Bank WSDL Contract

</ servi ce>
<servi ce name="BankServi ceRout er ">
<port name="BankPort" bi ndi ng="t ns: BankBi ndi ng" >
<soap: addr ess

l ocation="http://|ocal host: 0/ BankSer vi ce/ BankPort/"/>
</ port>
</ servi ce>
<servi ce name="Account Servi ce">
<port name="Account Port" bi ndi ng="tns: Account Bi ndi ng">
<soap: address | ocation="http://| ocal host: 0" />
</ port>
</ servi ce>
</ defini ti ons>

The preceding WSDL contract can be described as follows:

1. The <defini ti ons> tag associates the wsa prefix with the
htt p: // wwn W3, or g/ 2005/ 08/ addr essi ng namespace URI. This
means that the reference type is identified as
wsa: Endpoi nt Ref er enceType.

2. The xsd:inport imports the wsa: Endpoi nt Ref er enceType type
definition from the WS-Adressing schema, wsaddr essi ng. xsd. You
must edit this line if the references schema is stored at a different
location relative to the bank WSDL file. Artix stores the WS-Addressing
schema at
Artixlnstal I Dr/artix/ Version/ schemas/ wsaddr essi ng. xsd.

Note: Alternatively, you could cut and paste the references schema
directly into the WSDL contract at this point, replacing the
xsd: i nport element.

3. The creat e_account Response message (which is the out parameter of
the creat e_account operation) is defined to be of
wsa: Endpoi nt Ref er enceType type.

4. The get _account Response message (which is the out parameter of the
get _account operation) is defined to be of
wsa: Endpoi nt Ref er enceType type.

161

CHAPTER 5 | Endpoint References

162

The creat e_account operation defined on the Bank port type is defined
to return a wsa: Endpoi nt Ref er enceType type.

The get _account operation defined on the Bank port type is defined to
return a wsa: Endpoi nt Ref er enceType type.

The information contained in this <ser vi ce nanme="BankSer vi ce">
element is approximately the same as the information that is held in a
BankSer vi ce reference, apart from the addressing information in the
soap: addr ess element.

The BankSer vi ce reference generated at runtime replaces the
http://1 ocal host : 0/ BankSer vi ce/ BankPort/ SOAP address with
http:// host _nane: | P_port/ BankServi ce/ BankPort/ where

host _name and | P_port are substituted with the port address that the
server is actually listening on (dynamic port allocation).

Note: If the IP port in the WSDL contract is non-zero, Artix uses the
specified port instead of performing dynamic port allocation. The
hostname would still be substituted, however.

The information contained in this <servi ce name="Account Servi ce">
element serves as a prototype for generating Account Ser vi ce
references.

Because the account objects are registered as transient servants, the
corresponding Account Ser vi ce references are cloned from the
Account Ser vi ce service at runtime by altering the following data:

. The service QName is replaced by a transient service QName,
which consists of Account Ser vi ce concatenated with a unique 1D
code.

¢ Thehttp://1ocal host:0 SOAP address is replaced by
http://host _name: 1 P_port/ Transi ent URLSuf fi x, where
host _nane and | P_port are set to the port address that the server
is listening on and Transi ent URLSuf fi x is a suffix that is unique
for each transient reference.

Programming with References

Programming with References

Overview

In this section

This section explains how to program with endpoint references, using a
simple bank application as a source of examples. The bank server supports
a create_account () operation and a get _account () operation, which
return references to Account objects.

To program with references, you need to know how to generate references
on the server side and how to resolve references on the client side.

This section contains the following subsections:

Creating References page 164

Resolving References page 169

163

CHAPTER 5 | Endpoint References

Creating References

Overview

Factory pattern

Creating a reference from a static
servant

164

This subsection describes how to create endpoint references, which can be
generated on the server side in order to advertise the location of a service to
clients.

The following topics are discussed in this section:
® Factory pattern.

® Creating a reference from a static servant.

® Creating a reference from a transient servant.
® Creating a reference from a WSDL contract.

References are usually created in the context of a factory pattern. This
pattern involves at least two kinds of object:

® The product—that is, the type of object to which the references refer.
® The factory—which generates references to the first type of object.

For example, the Bank is a factory that generates references to Accounts.

Example 66 shows how to create a BankSer vi ce reference from a static
servant, Bankl npl .

Example 66: Creating a Reference from a Static Servant
Il C++
try {
I T Bus::Bus_var bus = IT Bus::init(argc, (char **)argv);
I T_Bus:: Q\ame servi ce_name(
"", "BankService", "http://wmviona.conibus/denos/bank"
)5
Bankl npl ny_bank(bus);

I T_WADL: : WBDLSer vi ce* wsdl _service =
get _bus()->get _servi ce_contract (servi ce_nane);

Programming with References

Example 66: Creating a Reference from a Static Servant

}

bus- >r egi ster_servant (
ny_bank,
*wsdl _servi ce

JE
| T_Bus: : Servi ce_var service = bus->get_servi ce(servi ce_nane);

W5_Addr essi ng: : Endpoi nt Ref er enceType bank_r ef er ence;
servi ce->get _endpoi nt _r ef er ence(bank_r ef erence) ;

The preceding C++ code can be described as follows:

1.

This line creates a Bankl npl servant instance, which implements the
Bank port type.

Call the I T_Bus: : Bus: : get _servi ce_contract () function to find
details of the servi ce_nane service amongst the known WSDL
contracts. This function returns a parsed WSDL service element, of

| T_WBDL: : WBDLSer vi ce type.

The regi ster_servant () function registers a static servant instance,
taking the following arguments:

. Servant instance.

. Parsed WSDL service element.

Note: The preceding example activates all of the ports associated
with the Bank service. If you want to activate ports individually, see
“Activate ports individually” on page 59.

The return value is an I T_Bus: : Servi ce object, which references the
original BankSer vi ce WSDL service.

Call 1 T_Bus: : Bus: : get _servi ce() to get a pointer to the Servi ce
object.

165

CHAPTER 5 | Endpoint References

5. The get_endpoi nt _ref erence() function populates an endpoint
reference, based on the state of the service object, servi ce.

Note: In versions of Artix prior to 4.0, the equivalent functionality (a
function that returns an | T_Bus: : Ref er ence type) was provided by
the get _reference() function.

Creating a reference from a

Example 67 gives the implementation of the Bankl npl : : cr eat e_account (),
transient servant

function which shows how to create an Account Ser vi ce reference from a
transient servant, Account | npl .

Example 67: Creating a Reference from a Transient Servant

/] C++
voi d
Bankl npl : : creat e_account (
const |T_Bus:: String &ccount _nane,
W5_Addr essi ng: : Endpoi nt Ref er enceType &account _ref er ence
) | T_THRONDECQL((I T_Bus: : Excepti on))
{
Account Map: :iterator account_iter = maccount_nap. find(
account _nane
)
if (account_iter == maccount_map. end())
{
cout << "QOreating new account: "
<< account _nare. c_str() << endl;

1 Account | npl * new account = new Account | npl (
get _bus(), account_nane, 0

JE

| T_WBDL: : WeDL Ser vi ce* wsdl _tenpl ate_service =
get _bus()->get_servi ce_contract (
Account | npl : : SERVI CE_NAMVE
)

3 I T_Bus:: Service_var cloned_service =

get _bus()->regi ster_transi ent _servant (
*new_account,

*wsdl _t enpl at e_servi ce

)

166

Programming with References

Example 67: Creating a Reference from a Transient Servant

}

/1 Now put the details for the account into the nap so
// we can retrieve it later.

/1

AccountDetai |l s details;

details. mservice = cl oned_service.rel ease();

detai |l s. maccount = new account;

account _iter = maccount _map.insert(
Account Map: : val ue_t ype(account _nane, detail s)
). first;
}

(*account _iter).second. mservice->get endpoi nt_reference(
account _r ef erence

)

The preceding C++ code can be described as follows:

1.

This line creates an Account | npl servant instance, which implements
the Account port type.

Call the I T_Bus: : Bus: : get _servi ce_cont ract () function to find
details of the Account | npl : : SERVI CE_NAME service amongst the known
WSDL contracts. This function returns a parsed WSDL service element,
of I T_WBDL: : WBDLSer vi ce type.

The regi ster_transi ent_servant () function registers a transient
servant instance, taking the following arguments:

. Servant instance.

. Parsed WSDL service element.

Note: The preceding example activates all of the ports associated
with the Bank service. If you want to activate ports individually, see
“Activate ports individually” on page 67.

The return value is an | T_Bus: : Servi ce object, which references a
WSDL service cloned from the Account Ser vi ce template service.

167

CHAPTER 5 | Endpoint References

Creating a reference froma WSDL
contract

168

4. Therelease() function is part of the Artix smart pointer API—it tells
the smart pointer, cl oned_ser vi ce, not to delete the referenced

| T_Bus: : Servi ce object once the cl oned_ser vi ce smart pointer goes
out of scope.

5. The get_endpoint _reference() function populates an endpoint
reference, based on the state of the account service object.

Note: In versions of Artix prior to 4.0, the equivalent functionality (a
function that returns an | T_Bus: : Ref er ence type) was provided by
the get _reference() function.

You can create a reference directly from an | T_W8DL: : WeDLSer vi ce object,
which is the Artix representation of a parsed wsdl : servi ce element. Call the
| T_Bus: : Bus: : popul at e_endpoi nt _ref erence() function as follows:

[l C++
| T_Bus: : Q\anme servi ce_gname("",

const WBDLServi ce * wsdl _service =

bus- >get _servi ce_contract (servi ce_gnarne) ;
W5 _Addr essi ng: : Endpoi nt Ref erenceType result;

bus- >popul at e_endpoi nt _r ef er ence(
*wsdl _servi ce,
resul t

)

As this example shows, you can create an endpoint reference without ever
registering a servant.

Programming with References

Resolving References

Overview

Initializing a client proxy with a
reference

To a client, an Ws_Addr essi ng: : Endpoi nt Ref er enceType object is just an
opaque token that can be used to open a connection to a particular Artix
service. The basic usage pattern on the client side, therefore, is for the client
to obtain a reference from somewhere and then use the reference to
initialize a proxy object.

Client proxies include special constructors to initialize the proxy from an
V\S_Addr essi ng: : Endpoi nt Ref er enceType object. For example, the
Account di ent proxy class includes the following constructors:

/] C++

Account d i ent (
const W5 _Addr essi ng: : Endpoi nt Ref er enceType & epr_ref,
I T Bus::Bus_ptr bus = 0

)

Account d i ent (
const W5 _Addr essi ng: : Endpoi nt Ref er enceType& epr _ref,

const | T _Bus:: String& wsdl _| ocat i on,
const | T_Bus:: Q\ane& servi ce_nane,
const | T _Bus:: String& port _nane,

I T_Bus::Bus_ptr bus =0
)i

The first form of constructor connects to the first port in the reference.

The second form of constructor is useful, if the reference contains multiple

ports. You can use the port _name argument to specify which port the client
connects to, while leaving the wsdl _| ocat i on and ser vi ce_name arguments
empty. For example, to initialize a proxy that connects to the CORBAPort port
from the mul ti _port_epr endpoint reference, call the constructor as follows:

[l Ct+
Accountdient* proxy = new Accountd i ent (
mul ti_port_epr,
| T_Bus:: String: : EMPTY,
| T_Bus: : Q\arre: : EVPTY_QNAME,
" CORBAPor t *

169

CHAPTER 5 | Endpoint References

Client example

170

The second form of constructor is also useful for interoperability purposes,
where an endpoint reference originates from a non-Artix application. The
WS-Addressing specification does not require an endpoint reference to
encapsulate metadata for the endpoint. Hence, sometimes the endpoint
reference might contain just an URL (the endpoint address) and provide no
other details about the endpoint. In this case, you can supply the missing
endpoint details directly from a WSDL contract. The second form of
constructor enables you to specify the WSDL contract location,

wsdl _| ocat i on, the service QName, servi ce_nane, and port name,
por t _nane, for the endpoint.

Example 68 shows some sample code from a client that obtains a reference
to an Account and then uses this reference to initialize an Account Qi ent
proxy object.

Example 68: Client Using an Account Reference

/1 Ct+

i?;';\.nkO i ent bankclient;

// 1. Retrieve an account reference fromthe renote Bank obj ect.
W5 _Addr essi ng: : Endpoi nt Ref er enceType account _r ef erence;

bankcl i ent.get _account("A N Qher", account_reference);

/1 2. Resolve the account reference.
Account d i ent account (account _reference);

| T_Bus: : Fl oat bal ance;
account . get _bal ance(bal ance) ;

The WSDL Publish Plug-In

The WSDL Publish Plug-In

Overview

Loading the WSDL publish plug-in

It is recommended that you activate the WSDL publish plug-in for any
applications that generate and export references. To use references, the
client must have access to the WSDL contract referred to by the reference.
The simplest way to accomplish this is to use the wsdl _publ i sh plug-in.

By default, a reference’'s WSDL location URL would reference a local file on

the server system. This suffers from the following drawbacks:

® Clients are not able to access the server's WSDL file, unless they
happen to share the same file system.

®* Endpoint information (the physical contract) might be inaccurate or
incomplete, because the server updates transport properties at
runtime.

In both of these cases, the client needs to have a way of obtaining the
dynamically-updated WSDL contract directly from the remote server. The
simplest way to achieve this is to configure the server to load the WSDL
publish plug-in. The WSDL publish plug-in automatically opens a HTTP
port, from which clients can download a copy of the server's in-memory
WSDL model.

To load the WSDL publish plug-in, edit the arti x. cf g configuration file and
add wsdl _publ i sh to the orb_pl ugi ns list in your application’s configuration
scope. For example, if your application’s configuration scope is

denos. server, you might use the following or b_pl ugi ns list:

Artix Configuration File

denos{
server
{
orb_plugins = ["xmfile_|log_streant, "wsdl _publish"];
pl ugi ns: wsdl _publ i sh: prerequisite_plugins = ["at_http"];
IE
ik

171

CHAPTER 5 | Endpoint References

Generating references withoutthe Figure 15 gives an overview of how a reference is generated when the
WSDL publish plug-in WSDL publish plug-in is not loaded.

Figure 15: Generating References without the WSDL Publish Plug-In

Artix Server

| T_Bus: : Bus
Reference
y
WSDL WSDL
———— K Readandparse |———
WSDL Model WSDL File

In this case, references generated by the | T_Bus: : Bus object would, by
default, have their WSDL location set to point at the local WSDL file.

The Artix server reads and parses the WSDL file as it starts up, creating a
WSDL model in memory. Because the WSDL model can be updated
dynamically by the server, there may be some significant differences
between the WSDL model and the WSDL file.

WSDL model When an Artix server starts up, it reads the WSDL files needed by the
registered services—for example, in Figure 15, a single WSDL file is read
and parsed. After parsing, the WSDL definitions exist in memory in the form
of a WSDL model. The WSDL model is an XML parse tree containing all the
WSDL definitions imported into a particular I T_Bus: : Bus instance at
runtime. Different | T_Bus: : Bus instances have distinct WSDL models.

The WSDL model is dynamically updated by the Artix server to reflect
changes in the physical contract at runtime. For example, if the server
dynamically allocates an IP port for a particular port on a WSDL service, the
port's addressing information is updated in the WSDL model.

172

Generating references with the
WSDL publish plug-in

The WSDL Publish Plug-In

When the WSDL publish plug-in is loaded, the Artix server opens a HTTP
port which it uses to publish the in-memory WSDL model. Figure 16 gives
an overview of how an Artix reference is generated when the WSDL publish
plug-in is loaded.

Figure 16: Generating References with the WSDL Publish Plug-In

Artix Client Artix Server
| T_Bus: : Bus
Reference Reference
l — !
1
1
WSDL publish port 1 WSDbL | WSDL
»O——m T ------- -i ——— K Read and parse | ——=
V| = _——
i :
L WSDL Model_} WSDL File
wsdl_publish plug-in

Specifying the WSDL publish port
and hostname

In this case, references generated by the | T_Bus: : Bus object have their
WSDL location set to the following URL:

htt p: // host _nane: WBDL_publ i sh_port/ QueryString

Where host _nane is the server host, WBDL_publ i sh_port is an IP port used
specifically for the purpose of serving up WSDL contracts, and QueryString
is a string that requests a particular WSDL contract (see “Querying the
WSDL publish port” on page 174).

If a client accesses the WSDL location URL, the server will convert the
WSDL model to XML on the fly and return the resulting WSDL contract in a
HTTP message.

If you need to specify the WSDL publish port and hostname explicitly, set
the pl ugi ns: wsdl _publ i sh: publ i sh_port variable and the
pl ugi ns: wsdl _publ i sh: host nae variable in the Artix configuration file.

173

CHAPTER 5 | Endpoint References

Querying the WSDL publish port

Usefulness of the published
WSDL model

174

It is possible to query the WSDL publish port to obtain various kinds of
metadata for the services currently running in the server. Details of this
query protocol are provided in Configuring and Deploying Artix Solutions.

In most cases, clients do not need to download the published WSDL model

at all. Published WSDL is primarily useful for dynamic clients that try to

invoke an operation on the fly. Because dynamic clients are not compiled

with Artix stub code, the only way they can obtain the logical contract is by

downloading the published WSDL model.

Whether or not you can use the physical part of the WSDL model depends

on how the corresponding servant is registered on the server side:

® |f registered as static, the physical contract is available from the WSDL
model.

® |f registered as transient, the physical contract is available only from
the reference, not from the WSDL model. The associated reference
encapsulates a cloned service which is generated at runtime and is not
included in the WSDL model. See “Registering Transient Servants” on
page 61.

The WSDL Publish Plug-In

Multiple Bus instances Occasionally, you might need to create an Artix server with more than one
I T_Bus: : Bus instance. In this case, you should be aware that separate
WSDL models are created for each Bus instance and separate HTTP ports
are also opened to publish the WSDL models—see Figure 17.

Figure 17: WSDL Publish Plug-In and Multiple Bus Instances

Artix Server

| T_Bus: : Bus
p

| 1
: spL |1
WSDL publish port 1 w !
[o T mnEE T —— .i e — :
===
' - 1
: |
I WSDL Model |

| T_Bus: : Bus

WSDL publish port
(e

wsdl_publish plug-in

175

CHAPTER 5 | Endpoint References

Migration Scenarios

Overview

Retaining proprietary references

Migrating to WS-Addressing
references

176

With the release of Artix 4.0, Artix switched from using a proprietary
reference format to using the standard WS-Addressing endpoint reference
format. If you have existing applications that use the old proprietary
reference format, you might want to consider migrating those applications to
the WS-Addressing standard.

The following migration scenarios are considered here:

® Retaining proprietary references.

® Migrating to WS-Addressing references.

® Mixing new and old references.

The simplest option for existing applications that are being migrated to

Artix 4.0 is to continue using the old Artix proprietary references. Artix 4.0

maintains complete backwards compatibility with the I T_Bus: : Ref er ence

type. Specifically, the backwards compatibility enables you to leave the

following aspects of your application untouched:

® WSDL contracts—continue to use the ref er ences: Ref er ence type,
where the r ef er ences namespace prefix is associated with the
http://schenas. i ona. cont r ef er ences namespace URI.

® C++ source code—continue to use the I T_Bus: : Ref er ence type.

® On-the-wire format—remains the same as Artix 3.0.

If you have an existing application that you want to migrate to Artix 4.0, you

can switch to the WS-Addressing standard by changing the following

aspects of your application:

® WSDL contracts—replace the ref er ences: Ref er ence type by the
wsa: Endpoi nt Ref er enceType type, where the wsa namespace prefix is
associated with the htt p: // waw w8. or g/ 2005/ 08/ addr essi ng
namespace URI.

Migration Scenarios

Modify the xsd: i nport element for references so that it imports the
new WS-Addressing schema instead of the old Artix references
schema. For example:

<definitions xmns="..."
xm ns: wsa="ht t p: // ww. W8. or g/ 2005/ 08/ addr essi ng"
>

<t ypes>
<xsd: i nport schenalLocati on="/schenmas/wsaddr essi ng. xsd"
namespace="htt p: / / wav W8. or g/ 2005/ 08/ addr essi ng"/ >

</types>
</ defini ti ons>

® C++ source code—besides regenerating Artix stub code from the
updated WSDL contracts, two changes are required:

. Replace the | T_Bus: : Ref er ence type by the
WB_Addr essi ng: : Endpoi nt Ref er enceType type.

. Replace any occurrence of | T_Bus: : Servi ce: : get _ref er ence()
with | T_Bus: : Servi ce: : get _endpoi nt _reference(), where
get _endpoi nt _reference() populates an endpoint reference
argument instead of returning an endpoint reference.

® On-the-wire format—the endpoint reference is formatted as a
wsa: Endpoi nt Ref er ence element (which is of

wsa: Endpoi nt Ref er enceType type).

Mixing new and old references It is possible to mix the new and old reference types in a single program.
® Using new and old references in the same program—you can mix new
and old style references freely in the same program. Parameters
declared to be of wsa: Endpoi nt Ref er enceType type in WSDL will map
to the WB_Addr essi ng: : Endpoi nt Ref er enceType C+ + type and
parameters declared to be of r ef er ences: Ref er ence type in WSDL will
map to the | T_Bus: : Ref erence C+ + type.

177

CHAPTER 5 | Endpoint References

178

In this chapter

CHAPTER 6

Callbacks

An Artix callback is a pattern, where the client implements a
WSDL service. This chapter explains the basic concept of a
callback and describes how to implement a simple example.

This chapter discusses the following topics:

Overview of Artix Callbacks page 180
Callback WSDL Contract page 184
Client Implementation page 187
Server Implementation page 191
Routing and Callbacks page 195

179

CHAPTER 6 | Callbacks

Overview of Artix Callbacks

What is a callback? A callback is a pattern, where a client implements a service whose
operations can be called by a server (the server calls back on the client). In
other words, the usual direction of the operation invocation is reversed in
this case.

Stock monitor scenario Figure 18 shows an example of a scenario where the callback pattern is
used. On the client side, a GUI application is running that is used to monitor
and trade stocks and shares. One of the services accessible to the clients is
a Stock Monitor Service that tracks the price of stocks in real time.

Figure 18: Callback Pattern lllusted by a Stock Monitor Scenario

. i . ice("FQO', 9
Client register() Client pri ce()
Janet | Stock 1 Price | Janet | Stock 1 Price |
Stock T T) Stock T T |
. FOO 12 . ! FOO 9
Monitor -1 i sz Monitor -1 i ¥
.| FTmEmEmmm= VT T 1 .. | FTEmmE== T T 1
Service i BAR | $150 i Service i BAR | $151 i
Client S FEE— | Client S F—— |
John) John
register()
(@) (b)
Scenario description The stock monitor scenario shown in Figure 18 can be described as follows:

® Two stockbrokers, Janet and John, want to monitor the current price of
two stocks, FODand BAR. Janet has orders to sell FQO, if it dips below
$10, and John has orders to sell BAR, if it dips below $100.

® When Janet and John log on in the morning, they use the stockbroking
application on their PCs to set up price triggers for the respective
stocks. As shown in Figure 18 (a), the client application sets up the
price trigger by calling the remote regi st er () operation on the Stock
Monitor Service.

180

Characteristics of the callback

pattern

Overview of Artix Callbacks

Later that afternoon, when the stock price of FoOdrops to $9, the
Stock Monitor Service sends a callback notification to Janet's client
application, alerting her to the fact that the price has just dropped
below $10—see Figure 18 (b).

Callback scenarios typically have the following characteristics:

Clients must implement a callback service—the callback service is
required, so that clients can receive notifications from the server side.
One consequence of this is that implementing a callback client is
rather like implementing a server.

IP port for callback service is dynamically allocated—typically, on a
client host, it is not possible to allocate a fixed IP port. In most cases,
therefore, it is necessary to use a dynamically allocated IP port for the
callback service.

Clients must register interest in receiving callbacks—the server must
be notified explicitly that the client is available and interested in
receiving certain events. In particular, the server needs to acquire the
address of the client’s callback service.

Callbacks typically occur asynchronously—usually, the server is
constantly monitoring some state and must be ready at any time to
send a notification to the registered clients. This normally requires the
server to be multi-threaded.

Likewise, the client must be ready to receive a callback at any time
from the server. This normally requires the client to be multi-threaded.

181

CHAPTER 6 | Callbacks

Callback demonstration The callback example described in this section is based on the Artix callback
demonstration, which is located in the following directory:

Artixlnstall Dir/artix/Version/ denos/ cal | backs/ basi c_cal | back

Demonstration scenario Callbacks rely, essentially, on endpoint references. Using references, the
client can encapsulate the details of its callback service and pass on these
details to the server in a reference parameter. Figure 19 illustrates how this
process works.

Figure 19: Overview of the Callback Demonstration

Artix Client Artix Server

@ @ Regi st er Cal | back(Ref)

ﬁ »{ Serverimpl

Callbackimpl | Server SayHi ("...")
WSDL File WSDL File
Callback steps Figure 19 on page 182 shows the callback proceeding according to the

following steps:

1. After the basic initialization steps, including registration of the
Cal | backl npl servant and Cal | backSer vi ce service, the client
generates a reference for the callback service.

The client callback service is activated and capable of receiving
incoming invocations as soon as it is registered.

182

Overview of Artix Callbacks

The client calls Regi st er Cal | back() on the remote server, passing the
reference generated in the previous step.

When the server receives the callback reference, it immediately calls
back on the Cal | backl npl servant by invoking Ser ver SayH () .

Note: In a more realistic application, it is likely that the server would
cache a copy of the callback reference and call back on the client at a
later time, instead of calling back immediately.

183

CHAPTER 6 | Callbacks

Callback WSDL Contract

Overview This subsection describes the WSDL contract that defines the interaction
between the client and the server in the callback demonstration. This WSDL
contract is somewhat unusual in that it defines port types both for the client

and for the server applications.

WSDL contract

184

Example 69 shows the WSDL contract used for the callback demonstration.
Example 69: Example Callback WSDL Contract

<?xm version="1.0" encodi ng="UTF-8"?>
<defi ni ti ons name="basi c_cal | back"

t ar get Namespace="htt p: / / waww. i ona/ coni cal | back"
xm ns="ht t p: // schenas. xni soap. or g/ wsdl /"
xm ns: cor ba="ht t p: // schenas. i ona. coni bi ndi ngs/ cor ba"
xm ns: ns1="http://ww i ona/ coni cal | back/ cor ba/t ypemap/ "
xm ns: ns2="htt p: // schenas. i ona. coni rout i ng"
xm ns: addr essi ng="ht t p: / / wawv. wW3. or g/ 2005/ 08/ addr essi ng"
xm ns: soap="ht t p: / / schemas. xm soap. or g/ wsdl / soap/ "
xm ns: t ns="htt p: // ww i ona/ coni cal | back"
xm ns: wsdl ="ht t p: / / schenas. xm soap. or g/ wsdl /"
xm ns: xsd="ht t p: / / waw. wW8. or g/ 2001/ XM-Schena" >
<t ypes>
<schena t arget Nanespace="ht t p: // wwv. i ona/ coni cal | back"
xm ns="htt p: // waww wW3. or g/ 2001/ XM_Schena"
xm ns: wsdl ="ht t p: // schenas. xm soap. or g/ wsdl / ">
<i npor t
nanespace="ht t p: / / waw w3. or g/ 2005/ 08/ addr essi ng"
schemaLocation="../../../../schemas/wsaddr essi ng. xsd"/ >

<el ement name="cal | back_nessage" type="xsd:string"/>
<el enent name="Regi st er Cal | back" >
<conpl exType>
<sequence>
<el enent nane="r ef er ence"
t ype="addr essi ng: Endpoi nt Ref er enceType"/ >
</ sequence>
</ conpl exType>
</ el enent >
<el ement name="returnType" type="xsd:string"/>
</ schema>

Callback WSDL Contract

Example 69: Example Callback WSDL Contract
</types>

<nessage name="server_sayH ">
<part el ement ="t ns: cal | back_nessage"
name="r et ur n_message"/ >
</ message>
<message nane="regi ster_cal | back">
<part el enent ="t ns: Regi st er Cal | back"
name="cal | back_obj ect"/>
</ message>
<message name="r et ur nMessage" >
<part el enent="tns: returnType" nanme="the_return"/>
</ message>

<port Type nane="Cal | backPort Type" >
<oper ati on name="Server SayH ">
<i nput nessage="t ns: server_sayH "
name="Ser ver SayH Request "/ >
<out put nessage="t ns: r et ur nMessage”
name="Ser ver SayH Response"/ >
</ oper at i on>
</ port Type>

<por t Type nane="Server Port Type">
<oper ati on name="Regi st er Cal | back" >
<i nput nessage="tns: regi ster_cal | back"
name="Regi st er Cal | backRequest "/ >
<out put nessage="t ns: r et ur nMessage”
name="Regi st er Cal | backResponse"/ >
</ oper at i on>
</ port Type>

<servi ce name="Cal | backServi ce">
<port bi ndi ng="t ns: Cal | backPort Type_SQOAPBI ndi ng"
name="Cal | backPort" >
<soap: address | ocation="http://I| ocal host: 0"/ >
</ port>
</ servi ce>

<servi ce name="SOAPServi ce">
<port bi ndi ng="t ns: Ser ver Port Type_SOAPBi ndi ng"
nanme="SQOAPPort ">
<soap: address | ocation="http://I ocal host: 9000"/ >
</ port>
</ servi ce>

185

CHAPTER 6 | Callbacks

186

Example 69: Example Callback WSDL Contract

</ definitions>

The preceding WSDL contract can be described as follows:

1.

The Cal | backPort Type port type is implemented on the client side and
supports a single WSDL operation:

. Server SayH operation—takes a single string argument. The
server calls back on this operation after it has received a reference
to the client’s service.

The Server Port Type port type is implemented on the server side and
supports a single WSDL operation:

. Regi st er Cal | back operation—takes a single endpoint reference
argument, which is used to pass a reference to the client callback
object.

The client callback address should be specified as

http://1 ocal host : 0, which acts as a placeholder for the address
generated dynamically at runtime. When the callback servant is
activated, Artix modifies the address, replacing | ocal host by the
client’s hostname and replacing 0 by a randomly allocated IP port
number.

Note: Do not add a terminating / character at the end of the
address—for example, http://1 ocal host : 0/ . Artix does not accept
addresses terminated with a forward slash.

The server's address, http:// SvrHost : SvrPort, should be specified
explicitly, where Svr Host is the host where the server is running and
SvrPort is a fixed IP port. In this example, the client obtains the
server's address directly from the WSDL contract file.

Client Implementation

Client Implementation

Overview

Client main function

In a callback scenario, the client plays a hybrid role: part client, part server.
Hence, the implementation of the callback client includes coding steps you
would normally associate with a server, including an implementation of a
servant class. The callback client implementation consists of two main
parts, as follows:

® Client main function.
® Callbacklmpl servant class.

Example 70 shows the code for the callback client main function, which
instantiates and registers a Cal | backl npl servant before calling on the
remote server to register the callback.

Example 70: Callback Client Main Function

#i ncl ude <it_bus/bus. h>
#i ncl ude <it_bus/exception. h>
#i ncl ude <it_cal/iostream h>

#i ncl ude "Serverdient.h"
#i ncl ude "Cal | backl npl . h"

| T_USI NG NAMESPACE STD

usi ng nanespace Basi cCal | back;
usi ng nanespace | T_Bus;
usi ng namespace WW5_Addr essi ng;

int
mai n(i nt argc, char* argv[])
{

try

// Need to retain reference to Bus

/1
Bus_var bus = IT Bus::init(argc, argv);

187

CHAPTER 6 | Callbacks

Example 70: Callback Client Main Function

Q\ane soap_servi ce_gnane(

" SOAPSer vi ce",
"http://wwm i ona/ con cal | back"
DE

Serverdient client(
"../..letc/basic_call back. wsdl ",
soap_ser vi ce_gnane,

" SOAPPor t
bus
DE
1 Cal | backl npl servant (bus);
2 Q\ane servi ce_gnaneg(
"Cal | backServi ce",
"http://ww i ona/ con cal | back"
DE
/] Use Bus reference to register and activate servant
/1
3 Servi ce_var service =
bus- >regi st er_transi ent _servant (
servant,

"../..letcl/basic_call back.wsdl ",
servi ce_gnane

)

Endpoi nt Ref er enceType cal | back_r ef er ence;
4 servi ce->get _endpoi nt _ref erence(cal | back_ref erence) ;

String outcone;

/] Oreate instance of wapper class
:R’:egi sterCal | back cal | back_obj ect ;

/1l Set reference into w apper

Il

cal | back_obj ect . setref erence(cal | back_ref erence);

5 client. Regi sterCal | back(cal | back_obj ect, outconeg);

188

Client Implementation

Example 70: Callback Client Main Function

/1 Display return message from Regi sterCal | back operation
/1
cout << "\t" << outcone << endl;

bus- >shut down(true);

}
catch (const | T _Bus:: Exception& e)

{

cout << endl << "Eror : Unhexpected error occured!"
<< endl << e.nessage()
<< endl;

return -1;

}

return O;

}

The preceding code example can be explained as follows:

1. The cal | backl npl servant class implements the Cal | backPort Type
port type. The Cal | backl npl instance created on this line is the client
callback object.

2. The servi ce_gnane specifies the WSDL service to be activated on the
client side. This QName refers to the <servi ce
nanme="Cal | backSer vi ce"> element in Example 69 on page 184.

3. Register the callback servant with the Bus, thereby activating the
Cal | backSer vi ce service. From this point on, the Cal | backSer vi ce
service is active and able to process incoming callback requests in a
background thread.

4. A reference to the callback service is generated by calling
I T_Bus: : Servi ce: : get _endpoi nt _reference().

5. This line invokes the Regi st er Cal | back() operation on the remote
server, passing in the reference to the client callback object. Before this
operation returns, the server calls back on the Server SayH ()
operation of the Cal | backl npl servant.

189

CHAPTER 6 | Callbacks

Callbacklmpl servant class Example 71 shows the implementation of the Cal | backl npl servant class,
which is responsible for receiving the Cal | backl npl : : Ser ver SayH ()
callback from the server. The implementation of this servant class is trivial.
It follows the usual pattern for a servant class implementation and the
Server SayH () function simply prints out its string argument.

Example 71: Callbackimpl Servant Class Implementation

#i ncl ude "Cal | backl npl . h"
#include <it_cal/cal.h>

| T_USI NG NAMESPACE_STD
usi ng namespace Basi cCal | back;

Cal | backl npl : : Cal | backl npl (I T_Bus: : Bus_ptr bus) :
Cal | backSer ver (bus)

{
}

Cal | backl npl : : ~Cal | backl npl ()
{
}

I T_Bus: : Servant *
Cal | backl npl : : cl one() const
{

}

return new Cal | backl npl (get _bus());

voi d

Cal | backl npl : : Server SayH (
const | T Bus::String & eturn_message,
IT Bus::String & he_return

) | T_THRONDEQ.((I T_Bus: : Excepti on))

{
/1l User code goes in here
cout <<"\t\tCall backlnpl:: ServerSayH () called"<<endl;
cout << "\t\t" << return_message <<endl;
cout <<"\t\tCall backlnpl:: ServerSayH () ended"<<endl ;
the_return = "The cal | back was successful *;

}

190

Server Implementation

Server Implementation

Overview

Server main function

The implementation of the server in this callback example follows the usual
pattern for an Artix server. The server main function instantiates and
registers a servant object. A separate file contains the implementation of the
servant class, Server | npl . The server implementation thus consists of two
main parts, as follows:

¢ Server main function.

® ServerPortType implementation.

Example 72 shows the code for the server main function, which instantiates
and registers a Server I npl servant. The server then waits for the client to
register a callback using the Regi st er Cal | back operation.

Example 72: Server Main Function

#i ncl ude <it_bus/bus. h>

#i ncl ude <it_bus/exception. h>

#i ncl ude <it_bus/faul t _exception. h>
#include <it_cal /i ostream h>

| T_USI NG NAMESPACE _STD
#i ncl ude "Serverlnpl . h"

usi ng nanespace Basi cCal | back;
usi ng nanespace | T_Bus;

int
main(int argc, char* argv[])
{
try
{
I T Bus::Bus_var bus = I T Bus::init(argc, argv);

Server | npl servant (bus);
I T_Bus:: Q\ane servi ce_nang(

", "SOAPService", "http://wwvional/conical |l back"
)i

191

CHAPTER 6 | Callbacks

ServerPortType implementation

192

Example 72: Server Main Function

bus- >regi st er _servant (
servant,

"..l..letclbasic_callback.wsdl ",
servi ce_nane

)
cout << "Server Ready" << endl;

bus- >run();
}
catch(1 T_Bus: : Excepti on& e)
{

cout << "Error occurred: " << e.nessage() << endl;
return -1;

}

return O;

}

The preceding code example can be explained as follows:

1. The Serverlnpl servant class implements the Server Port Type port
type, which supports the Regi st er Cal | back operation.

2. The service_gnane refers to the <servi ce nane="SOAPSer vi ce" >
element in Example 69 on page 184.

3. Register the Serverl npl servant with the Bus, thereby activating the
SOAPSer vi ce service.

4. Call the blocking | T_Bus: : Bus: : run() function to allow the server
application to process incoming requests.

Example 73 shows the implementation of the Server I npl servant class.

There is just one WSDL operation, Regi st er Cal | back() , to implement in
this class.

Example 73: Serverimpl Servant Class Implementation
#i nclude "Serverlnpl . h"
#include <it_cal/cal.h>

#i nclude "Cal | backd i ent. h"

usi ng namespace W5 Addr essi ng;

Server Implementation

Example 73: Serverimpl Servant Class Implementation

usi ng nanespace Basi cCal | back;
I T_USI NG NAMVESPACE_STD

Server |l npl::Serverlnpl (I T_Bus::Bus_ptr bus) : Server Server (bus)

{
}

Server | npl : : ~Server | npl ()
{
}

| T_Bus: : Servant *
Server | npl ::cl one() const

{
}

return new Server | npl (get _bus());

voi d
Server | npl : : Regi st er Cal | back(
const Basi cCal | back: : Regi st er Cal | back &cal | back_obj ect,
I T Bus::String & he_return
) | T_THRONDECL((I T_Bus: : Exception))
{
try
{
Il Extract reference from w apper
Endpoi nt Ref er enceType cal | back_epr =
cal | back_obj ect . getref erence();

/1l Instantiate proxy with reference

Cal | backd i ent cc(call back_epr);

I T Bus::String a_return;

cc. ServerSayH ("Server says H to the dient", a return);
cout << "\t\t" << a_return << endl;

}
catch (I T_Bus:: Exception& e)
{
cout << "Caught Unexpected Exception "
<< e.message() << endl;
}
catch (...)
{
cout << "Unknown exception" << endl;
}

193

CHAPTER 6 | Callbacks

Example 73: Serverimpl Servant Class Implementation

cout << "\tFinished i nvoking on Cal | back (bject" << endl;
cout << "\tServerlnpl::RegisterCallback Returning" << endl;
the_return = "The server processing was successful ";

}

The preceding code example can be explained as follows:

1. The Regi sterCal | back() function takes an endpoint reference
argument, which should be a reference to a callback object.

2. This line creates a client proxy, cc, for the Cal | backPort Type port type
and initializes it with the callback reference, cal | back_obj ect . The
reference, cal | back_obj ect , encapsulates details of the
Cal | backSer vi ce service.

3. This line invokes the Server SayH () callback on the client.

This example, where the callback is invoked within the body of

Regi st er Cal | back(), is a little bit artificial. In a more typical use case,
the server would cache an instance of the callback client proxy and
then call back later, in response to some event that is of interest to the
client.

194

Routing and Callbacks

Routing and Callbacks

Overview

CORBA Client

]

Callbacks are fully compatible with Artix routers. References that pass
through a router are automatically proxified, if necessary. Proxification
means that the router automatically creates a new route for the references
that pass through it.

Note: Proxification is not necessary, if the transport protocols along the
route are the same. For same protocol routing, proxification is disabled by

default.

For example, consider the callback routing scenario shown in Figure 20. In
this scenario, a SOAP/HTTP Artix server replaces a legacy CORBA server. As
part of a migration strategy, legacy CORBA clients can continue to

communicate with the new server by interposing an Artix router to translate
between the IIOP and SOAP/HTTP protocols.

Figure 20: Overview of a Callback Routing Scenario

RtrCorbaPort

Regi ster Cal | back(Ref)

» O

~

Server SayHi ()

Artix Router

SvrSoapPort

Proxification

Regi st er Cal | back(Ref)

[S—

S [CORBA Ref] —>[SOAP Ref] -1

>

L7

Server SayHi ()

v

oO—

Artix Server

1O

SOAP Ref

1
1
|
—0O 4+——— 71— ' —o0 =
A \ % / A
. | .
1
1
1
CltCorbaPort RtrSdapPort
IDL WSDL
Callback IDL Router Contract

WSDL

Target Contract

195

CHAPTER 6 | Callbacks

Contracts

Callback IDL

Target contract

Router contract

196

The scenario depicted in Figure 20 requires three distinct, but related,
contracts as follows:

® (Callback IDL.
® Target contract.
® Router contract.

The CORBA client uses a contract coded in OMG Interface Definition
Language (IDL). This IDL contract defines both the target interface
(implemented by the Artix server) and the callback interface (implemented
by the CORBA client).

In this scenario, the target contract is generated from the callback IDL using
the IDL-to-WSDL compiler. Hence, this WSDL contract contains both the
target interface and the callback interface as WSDL port types.

The target contract also contains a single WSDL service description, which
includes the Svr SoapPort port.

The router contract holds details about the CORBA side of the application as

well as the SOAP/HTTP side, including the following information:

® Target WSDL port type.

® Callback WSDL port type.

® CORBA WSDL binding for the target.

® SOAP/HTTP WSDL binding for the target.

® CORBA WSDL service, containing the R r Cor baPort port.

® SOAP/HTTP WSDL service, containing the Svr SoapPort port.

® Template SOAP/HTTP WSDL service, needed for generating the
transient endpoint with Rt r SoapPort port.

® Route information.

You can generate a router contract using the Artix Designer GUI tool. To

specify the location of the generated router contract, you can set the

pl ugi ns: routing: wsdl _url configuration variable in the router scope of the
arti x. cfg configuration file.

Routes

Proxification

Routing and Callbacks

As shown in Figure 20 on page 195, the following routes are created in this

scenario:

® Client-Router-Target route—this route is documented explicitly in the
router contract. The source port, R r Cor baPort, and the destination
port, Svr SoapPort, are described in the router contract.

For example, when the client calls the Regi st er Cal | back() operation,
the request travels initially to the R r Cor baPort on the router (over
IIOP) and then on to the Svr SoapPort on the target server (over
SOAP/HTTP).

® Target-Router-Client route (callback route)—the reverse route (for
callbacks) is not documented explicitly in the router contract. This
route is constructed at runtime to facilitate routing callback
invocations.
For example, when the Artix server calls the Server SayH () callback
operation, the request travels to the R r SoapPort on the router (over
SOAP/HTTP) and then on to the A t CorbaPort on the client (over
[IOP).

Proxification refers to the process whereby a reference of a certain type (for
example, a CORBA reference) that passes through the router is
automatically converted to a reference of another type (for example, a SOAP
reference).

The proxification process is of key importance to Artix callbacks. If the router
in Figure 20 on page 195 did not proxify Regi st er Cal | back()'s reference
argument, it would be impossible for the server to call back on the client.
The server can call back only on SOAP/HTTP endpoints, not on [IOP
endpoints.

197

CHAPTER 6 | Callbacks

Enabling proxification for same
protocol routing

198

In Figure 20 on page 195, the router proxifies the callback reference as
follows:

1.

When the Regi st er Cal | back() operation is invoked, the router
recognizes that the reference argument must be converted into a
SOAP/HTTP-format reference.

The router dynamically creates a new service and port, Rt r SoapPort,
to receive callback requests in SOAP/HTTP format. The new service is
a transient service cloned from a service in the router WSDL contract.
The router looks for a template service that satisfies the following
criteria:

. Supports the same port type as the original reference.

+ Supports the same type of binding (for example, SOAP or CORBA)
as the target server.

Note: Artix selects the first service in the WSDL contract that
satisfies these criteria. Hence, if more than one service matches the
criteria, you must ensure that the template service precedes the other
services in the contract file.

The router creates a new SOAP/HTTP reference, encapsulating details
of the R r SoapPort endpoint.

The router forwards the Regi st er Cal | back() operation on to the target
server in SOAP format, with the proxified SOAP/HTTP reference as its
argument.

The router dynamically constructs a callback route, with source port,
Rt r SoapPor t , and destination port, A t Cor baPort .

The router can be used to redirect messages of the same protocol type (for
example, SOAP to SOAP). In this case, you can either enable or disable
proxification by setting the following variable in the router configuration:

pl ugi ns: rout er: use_pass_t hrough = "Bool ean";

If Bool ean is true (the default), proxification is disabled for same-protocol
routing; if f al se, proxification is enabled for same-protocol routing.

When the router is used as a bridge between different protocols (for example
CORBA to SOAP), proxification is always enabled. It is not possible to
disable proxification in this case.

In this chapter

CHAPTER 7

Artix Contexts

Artix contexts are used for the following purposes: to configure
Artix transports, bindings and interceptors; and to send extra
data in request headers or reply headers.

This chapter discusses the following topics:

Introduction to Contexts page 200
Reading and Writing Context Data page 212
Context Example page 227
Header Context Example page 238
Header Contexts in Three-Tier Systems page 258

199

CHAPTER 7 | Artix Contexts

Introduction to Contexts

Overview

In this section

200

This section provides a conceptual overview of Artix contexts, including a
brief look at the programming interface required for using contexts with
different binding types.

This section contains the following subsections:

Request, Reply and Configuration Contexts page 201
Header Contexts page 204
Registering Contexts page 206

Introduction to Contexts

Request, Reply and Configuration Contexts

Overview Artix contexts provide a general purpose mechanism for configuring Artix
plug-ins. Contexts enable you to configure both the client-side settings and
the server-side settings.

Currently, contexts are used mainly to program transport settings (overriding
the settings that appear in the corresponding WSDL port element).

Figure 21 gives an overview of the context architecture, where the contexts
can be used to modify the attributes of a transport plug-in.

Figure 21: Overview of the Context Architecture

ContextRegistry

get _configuration_context()

ContextContainer
get _current () for Configuration

set/get context data

Thread X
e I
| v |
1 1
1 1
E ContextCurrent i
i for Thread X i
i i
1 1
1 1
| i
E request _cont ext s() reply_contexts() i

1
i i
1 1
1 1
| i i |
H ContextContainer L Context A ContextB | 1 ContextCoqtamer L Context C Context D | 1 |
) for Requests ! ! for Replies ! !)
1 1 1 1
E 1 1
1
1
1
1
1
1
1
1

set/get context data

201

CHAPTER 7 | Artix Contexts

Thread affinity

Request contexts

Reply contexts

Configuration contexts

202

The threading properties of a context depend on the kind of context, as

follows:

® Request and reply contexts—are held in thread-specific storage, so
that different threads can be programmed with different attributes. The
root object for obtaining thread-specific data is the
| T_Bus: : Cont ext Qurrent object.

® Configuration contexts—are not thread-specific.

Request contexts are used to read or modify attributes as follows:

® On the client side—setting transport attributes and setting header
contexts for outgoing requests.

® On the server side—reading header contexts from incoming requests.

By calling the | T_Bus: : Context Qurrent : : request _cont ext s() function,

you can obtain a copy of an | T_Bus: : Cont ext Cont ai ner object, which
contains references to all of the current request contexts.

Reply contexts are used to read or modify attributes as follows:

® On the client side—reading header contexts from incoming replies.

® On the server side—setting transport attributes and setting header
contexts for outgoing replies.

By calling the | T_Bus: : Context Qurrent: :reply_contexts() function, you
can obtain a copy of an | T_Bus: : Cont ext Cont ai ner object, which contains
references to all of the current reply contexts.

Configuration contexts are used to read and modify endpoint-specific context
data that can be set before a connection has initialized. Currently, Artix
supports just the following configuration context properties:

® HTTP endpoint URL,

® JMS broker connection security information,

® FTP connection settings.

By calling the | T_Bus: : Cont ext Regi stry: : get _confi gurati on_cont ext ()

function, you can obtain a copy of an | T_Bus: : Cont ext Cont ai ner object,
which contains references to all of the configuration contexts.

Schema-based API

Introduction to Contexts

The API for getting and setting the attributes of a particular context type is

generated from an XML schema. The code for a context type is generated by

the Artix WSDL-to-C+ + compiler as part of the stub code. There are two

ways of getting hold of the context stub code, depending on whether the

context is a custom type or a built-in type, as follows:

® Custom context—for a context that you define yourself you can
generate the context stub code by running the WSDL-to-C+ + compiler
on the context schema file, Qust onCont ext . xsd. The stub code then
consists of the files Qust onCont ext _xsdTypes. h,
Qust omont ext _xsdTypes. cxx, Qust onCont ext _xsdTypesFact ory. h
and Qust onCont ext _xsdTypesFact ory. cxx.

® Built-in context—for an Artix-defined context, the stub code is
packaged in the Artix library,
it_context_attribute[.lib][.so][.sl].

203

CHAPTER 7 | Artix Contexts

Header Contexts

Overview

SOAP

CORBA

204

Artix header contexts provide a general purpose mechanism for embedding
data in message headers. Currently, you can embed context data in the
following types of protocol header:

® SOAP.

® CORBA.

When you register a context as a SOAP context (using the appropriate form
of the Cont ext Regi stry: : regi ster_cont ext () function), the corresponding
context data is embedded in a SOAP header, as shown in Figure 22.

Figure 22: Inserting Context Data into a SOAP Header

SOAP Context

SOAP Message SOAP Header

The context data is sent in an Artix-specific SOAP header.

When you register a context as a CORBA context (using the appropriate form
of the Cont ext Regi stry: : regi ster _cont ext () function), the corresponding
context data is embedded within a CORBA header as a GIOP service
context—see Figure 23.

Figure 23: Inserting Context Data into a GIOP Service Context

Context Data

GIOP Service Context

GIOP Message GIOP Header

Introduction to Contexts

In CORBA, the message formats are defined by the General Inter-ORB
Protocol (GIOP) specification. In particular, the GIOP request and reply
message formats allow you to include arbitrary header data in GIOP service
contexts. Artix creates one GIOP service context for each Artix context. The
type of GIOP service context is identified by an IOP context ID, which you
specify when registering the Artix context.

205

CHAPTER 7 | Artix Contexts

Registering Contexts

Overview

Getting a context registry instance

Registering a context

206

You register a context type by calling a regi st er _cont ext () function on a
context registry instance, passing the context name and context type as
arguments. The main effect of registering a context type is that the context
container adds a type factory reference to an internal table. This type factory
reference enables the context container to create context data instances
whenever they are needed.

Note: This pre-supposes that the application is linked with the context
schema stub code, which creates static instances of the relevant type
factories. See “Schema-based API” on page 203.

To get a reference to a context registry instance, you call the
I T_Bus: : Bus: : get _cont ext _regi stry() function, shown in Example 74.

Example 74: The IT_Bus::Bus::get_context_registry() Function
Il C++

nanespace | T_Bus {
class | T_BUS APl Bus

{
publ i c:
virtual ContextRegistry*
get_context _registry() = 0;
IE

In practice, you would seldom need to register a context unless you are
implementing your own Artix plug-in. All of the standard Artix contexts are
pre-registered (see “Getting and Setting Transport Attributes” on page 264).

You can register request, reply, and configuration contexts in either of the
following ways:

® Registering a serializable context.
® Registering a non-serializable context.

Introduction to Contexts

Registering a serializable context A serializable context is a data type that inherits from the | T_Bus: : AnyType
base class. Example 75 shows the signature of the regi ster_cont ext ()

function in the | T_Bus: : Cont ext Regi st ry class, which is used to register a
serializable context.

Example 75: The register_context() Function for Serializable Contexts

Il C++
nanespace | T_Bus
{
class | T_BUS APl Cont ext Regi stry
{
publ i c:
enum Cont ext Type {
TYPE,
ELEMENT
}
virtual Bool ean
regi ster_cont ext (
const Q\ane& cont ext _nane,
const (\ane& cont ext _t ype,
Cont ext Type type = TYPE,
Bool ean is_header = fal se
) =0;
IE

I

The preceding | T_Bus: : Cont ext Regi stry: : regi ster_cont ext () function
takes the following arguments:

® context_name—the context name identifies the registered context. The

context names for the pre-registered contexts are given in “Getting and
Setting Transport Attributes” on page 264.

cont ext _t ype—the qualified name of the context data type or element.
which can be either of the following:

+ The name of a schema type (that is, any type derived from
xsd: anyType), or

. The name of a schema element.

207

CHAPTER 7 | Artix Contexts

Registering a non-serializable
context

Registering header contexts

208

® type—a flag that indicates whether the cont ext _t ype parameter is the
name of a schema type (indicated by
I T_Bus: : Cont ext Regi stry: : TYPE) or the name of a schema element
(indicated by I T_Bus: : Cont ext Regi st ry: : ELEMENT).

® is_header —for registering regular contexts (not headers), this flag
should not be supplied (defaults to f al se).

A non-serializable context can be any C+ + type (that is, not necessarily
inheriting from 1 T_Bus: : AnyType). Example 76 shows the signature of the
regi ster_context_data() function in the | T_Bus: : Cont ext Regi st ry class,
which is used to register a non-serializable context.

Example 76: The register_context_data() Function for Non-Serializable
Contexts

/] C++
nanespace | T_Bus
{
class | T_BUS APl Context Regi stry
{
publ i c:
virtual Bool ean
regi ster_cont ext _dat a(
const (\ane& cont ext _nane
) =0;
IE

IE

The preceding | T_Bus: : Cont ext Regi stry: : regi st er _cont ext _dat a()
function takes the following argument:

® context_name—the name of a non-serializable context.

You can register the following kinds of header context:
® Registering a SOAP header context.
® Registering a CORBA header context.

Introduction to Contexts

Registering a SOAP header Example 77 shows the signature of the regi ster_cont ext () function and
context the regi ster_cont ext_as_el enent () function in the
I T_Bus: : Cont ext Regi st ry class, which are used to register a header
context data type for the SOAP protocol.

Example 77: The register_context() Function for SOAP Contexts
Il C++

namespace | T_Bus {
class | T_BUS APl Cont ext Regi stry

{
publ i c:
virtual Bool ean
regi ster_cont ext (
const Q\ane& context _nare,
const Q\Nane& cont ext _type,
const Q\Nane& nessage_narne,
const String& part_nane
) =0;
virtual Bool ean
regi ster_context _as_el ement (
const Q\ane& cont ext _nane,
const Q\ane& el enent _nane,
const Q\ane& nessage_nane,
const String& part_name
) =0
IE

Ik

The | T_BUS: : Cont ext Regi stry: : regi ster_cont ext () function takes the

following arguments:

® context_name—the context name identifies the registered context. A
context name is needed, because a context type could be registered
more than once (for example, if the same context type was used with
different protocols).

® context_t ype—the qualified name of the context data type. It can be
any schema type (that is, any type derived from xsd: anyType).

® nessage_nane—this value corresponds to the nessage attribute in a
soap: header element. Currently, the message name is ignored, but it
should not clash with any existing message names.

209

CHAPTER 7 | Artix Contexts

® part_name—this value corresponds to the part attribute in a
soap: header element. Currently, the part name is ignored.
The | T_BUS: : Cont ext Regi stry: : register_context _as_el ement () function

is a variant that enables you to base the context data on a specified XML
element, el ement _nare, rather than on a particular XML type.

Registering a CORBA header Example 78 shows the signature of the regi st er_cont ext () function in the
context I T_Bus: : Cont ext Regi st ry class, which is used to register a context data
type with the CORBA context container.

Example 78: The register_context() Function for CORBA Contexts
/] C++

nanespace | T_Bus {
class | T_BUS APl Context Regi stry

{
publ i c:
virtual Bool ean
regi ster_cont ext (
const Q\ane& cont ext _narre,
const Q\Nane& cont ext _type
const unsigned long context_id,
) =0
I8

Ik

The I T_Bus: : Cont ext Regi stry: :regi ster_context () function takes the

following arguments:

® context_name—the context name identifies the registered context. A
context name is needed, because a context type could be registered
more than once (for example, if the same context type was used with
different protocols).

® context_type—the qualified name of the context data type. It can be
any schema type (that is, any type derived from xsd: anyType).

210

Introduction to Contexts

cont ext _i d—an ID that tags the GIOP service context containing the
Artix context. In CORBA, the cont ext _i d corresponds to a service
context ID of | OP: : Servi cel d type. For details of GIOP service
contexts, consult the OMG CORBA specification.

Note: Care should be exercised to avoid clashing with standard IDs
allocated by the OMG, which are reserved for use either by the OMG
itself or by particular ORB vendors. In particular, IDs in the range O-
4095 are reserved for use by the OMG.

211

CHAPTER 7 | Artix Contexts

Reading and Writing Context Data

Overview You can read and write a variety of different kinds of context data: basic
types, user-defined types, and instances of arbitrary C+ + classes (custom
types). This section describes how to access and modify the various kinds of
context data.

In this section This section contains the following subsections:
Getting a Context Instance page 213
Reading and Writing Basic Types page 219
Reading and Writing User-Defined Types page 221
Reading and Writing Custom Types page 223
Durability of Context Settings page 226

212

Reading and Writing Context

Data

Getting a Context Instance

Overview

Figure 24 shows an overview of how context data instances are accessed for
writing and reading in an Artix application.

Figure 24: Overview of Context Data and Context Containers

ContextRegistry

get_current ()

Thread X

ContextCurrent
for Thread X

get _confi guration_context()

ContextContainer
for Configuration

request _cont ext s() reply_contexts()

ContextContainer
for Requests

set/get context data

ContextContainer
for Replies

set/get context data

213

CHAPTER 7 | Artix Contexts

Context containers

Getting a configuration context
container

214

A context container is an object that holds a collection of contexts
associated with a particular thread. There are three kinds of context
container:

Request context container—contains thread-specific context data that
can be used for the following purposes:

. Setting transport attributes on the client side that can be set after
a connection has initialized,

+ Sending header contexts in outgoing request messages,
. Receiving header contexts from incoming request messages.

Reply context container—contains thread-specific context data that
can be used for the following purposes:

+ Setting transport attributes on the server side that can be set after
a connection has initialized,

. Sending header contexts in outgoing reply messages,

. Receiving header contexts from incoming reply messages.
Configuration context container—contains endpoint-specific (but
thread-independent) context data that can be set before a connection
has initialized. Currently, Artix supports just the following configuration
context properties:

. HTTP endpoint URL,

. JMS broker connection security information,

. FTP connection settings.

To get a pointer to a configuration context container, call the

get _confi guration_contai ner() function on the Cont ext Regi stry, as
shown in Example 79. The configuration context container is
endpoint-specific, so you must specify the service QName, ser vi ce_nane,

Getting a ContextCurrent instance

ContextCurrent class

Reading and Writing Context Data

and the port name, port _nane, of the relevant endpoint. Only the proxies
and the servant objects associated with the specified endpoint are affected
by the settings in this configuration context container.

Example 79: Getting a Configuration ContextContainer Instance

Il C++
nanmespace | T_Bus
{
class | T_BUS APl Cont ext Regi stry
{
virtual ContextContainer *
get _configuration_cont ext (
const Q\ane & service_nane,
const String & port_nane,
bool create_if_not_found = fal se
) =0
IE

To get a reference to a context registry instance, call the

I T_Bus: : Cont ext Regi st ry: : get _current () function, as defined in
Example 80.

Example 80: Getting a ContextCurrent Instance

[l C++
nanespace | T_Bus
{

class | T_BUS APl Cont ext Regi stry
{

virtual ContextQurrent& get current() = O;

A context current is an object that holds references to thread-specific
context data. In particular, an 1 T_Bus: : Cont ext Qur rent instance provides
access to request contexts (through an I T_Bus: : Cont ext Cont ai ner object)
and reply contexts (through an | T_Bus: : Cont ext Cont ai ner object).

215

CHAPTER 7 | Artix Contexts

Example 81 shows the declaration of the | T_Bus: : Cont ext Qurrent class,
which defines two functions: request _cont ext s(), which returns a
reference to the request context container, and repl y_cont ext s() , which
returns a reference to the reply context container.

Example 81: The IT_Bus::ContextCurrent Class

/] C++
nanespace | T_Bus
{
class | T_BUS APl Context Qurrent
{
publ i c:
virtual Context Cont ai ner*
request _contexts() = 0;
virtual Context Cont ai ner*
reply _contexts() = 0;
IE

ContextContainer class Example 82 shows the declaration of the | T_Bus: : Cont ext Cont ai ner class,

which defines member functions for getting and setting context objects.
Example 82: The IT_Bus::ContextContainer Class

Il C++
nanespace | T_Bus
{
class | T_BUS APl Cont ext Cont ai ner

{
publ i c:
[/l Cet a serializable context
virtual AnyType*
get _cont ext (
const Q\Nane& cont ext _nane,

bool create if_not found = fal se
) =0

virtual const AnyType*
get _cont ext (

const (\ane& cont ext _nane
) const = O;

216

Reading and Writing Context Data

Example 82: The IT_Bus::ContextContainer Class

// Add a serializabl e context
virtual Bool ean
add_cont ext (
const Q\ane& cont ext _nane,
AnyType& cont ext
) =0

// Get a non-serializable context.
virtual Context*
get _context _data(const Q\Nane& cont ext _nane) = 0;

virtual const Context*
get _context _data(const Q\ane& cont ext _nane) const = 0;

// Add a non-serializabl e context.
virtual Bool ean
add_cont ext (
const Q\ane& cont ext _nane,
Cont ext & cont ext
) =0

/1 M scel | aneous context functions
virtual bool
cont ai ns(const Q\Nane& cont ext _nane) = O;

virtual Bool ean
remove_cont ext (const QN\arme& cont ext _narre) = 0;

IE
ik
Accessing and modifying The Cont ext Cont ai ner class defines the following member functions for
serializable contexts accessing and modifying serializable contexts:

L4

get _cont ext () —returns a pointer to the context with the specified
context name, cont ext _nane, which must have been previously
registered with the context registry. The returned reference can be used
either to read to or write from a context. The create_i f_not _f ound flag
has the following effect:

If f al se and the context is not found, the returned pointer value is
NULL.

217

CHAPTER 7 | Artix Contexts

Accessing and modifying
non-serializable contexts

218

. If true and the context is not found, the return value points at a
newly created context instance.

add_cont ext () —is a convenience function that lets you set a context

from an existing context instance. The context must have been

previously registered with the context registry.

The Cont ext Cont ai ner class defines the following member functions for
accessing and modifying non-serializable contexts:

get _cont ext _dat a() —returns a pointer to the context with the
specified context name, cont ext _nane, which must have been
previously registered with the context registry. The returned reference
can be used either to read to or write from a context.

add_cont ext () —is a convenience function that lets you set a context
from an existing context instance. The cont ext parameter must be
defined as an | T_Bus: : Cont ext T<Dat aType> type, which is used to
wrap an instance of Dat aType.

Reading and Writing Context Data

Reading and Writing Basic Types

Overview

Registering a context for strings

To insert and extract a basic type, Basi cType, you must use its
corresponding Basi cTypeHol der type. For example, to insert an

I T_Bus: : String type into a context, you must first insert the string into an
I T_Bus: : StringHol der object. This approach is necessary because the
get _cont ext () and add_cont ext () functions expect context data to be a
type that derives from I T_Bus: : AnyType.

For a complete list of Holder types, see “Holder Types” on page 392.

For example, to register a configuration context that holds string data, you
could use code like the following:

/] C++
const | T Bus:: Q\ane test_ctx_name(

"' "TestString", "http://ww:iona.conitest/context"
)

reg- >regi st er _cont ext (

test _ct x_nane,

I T_Bus:: StringHol der().get type()
IE

Where reg is a context registry (of | T_Bus: : Cont ext Regi stry type). The
I T_Bus: : StringHol der () constructor creates a temporary instance of a
Stri ngHol der object, which you can use to get the QName of the
StringHol der type.

219

CHAPTER 7 | Artix Contexts

Inserting a basic type into a
context

Extracting a basic type from a
context

220

The following example shows how to insert an | T_Bus: : Stri ngHol der
instance into the test _ct x_name request context.

[l C++

| T_Bus: : AnyType* any_string = request_contexts->get context (
test _ctx_nane, // The name of the string context.
true /1 The create_ if_not_found flag

);

I T_Bus::StringHol der* str_hol der =
dynam c_cast<IT_Bus:: StringHol der*>(any_string);

str_hol der->set ("Hello World!'");

The following example shows how to extract the | T_Bus: : Stri ngHol der
instance from the t est _ct x_nane request context.
/] C++

I T_Bus: : AnyType* any_string = request _contexts->get _cont ext (
test _ctx_name /1 The nane of the string context.
)

I T_Bus::StringHol der* str_hol der =

dynam c_cast <I T_Bus: : Stri ngHol der *>(any_stri ng) ;

IT Bus::String str = str_hol der->get ();

Reading and Writing Context Data

Reading and Writing User-Defined Types

Overview

Generating stubs from a context
schema

You can define a dedicated user-defined schema type to hold the context
data. You could include the context type definition directly in the
application’s WSDL contract; however, it is usually more convenient to
define the context type in a separate XML schema file.

For example, to define a complex context data type, Cont ext Dat aType, in
the namespace, ContextDataURI, you could define a context schema
following the outline shown in Example 83.

Example 83: Outline of a Context Schema
<?xm version="1.0" encodi ng="UTF- 8" ?>
<xs: schema
xm ns: xs="htt p: // ww. W3. or g/ 2001/ XM_Schema"
t ar get Nanespace=" Cont ext Dat aUR "
el ement For nDef aul t ="qual i fi ed"
attri but eFor nDef aul t ="unqual i fi ed">
<xs: conpl exType nane="Cont ext Dat aType" >

</ xs: conpl exType>

</ xs: schema>

To generate C+ + stubs from a context schema file, Cont ext Schena. xsd,
enter the following command at the command line:

wsdl t ocpp Cont ext Schena. xsd

The WSDL-to-C++ compiler generates the following C++ stub files:

Cont ext Scherma_wsdl Types. h

Cont ext Scherma_wsdl TypesFact ory. h
Cont ext Scherma_wsdl Types. cxx

Cont ext Schenma_wsdl TypesFact ory. cxx

221

CHAPTER 7 | Artix Contexts

Registering a context for a For example, to register a configuration context that holds an instance of
user-defined type the Cont ext Dat aType type, you could use code like the following:
/Il C++

const | T _Bus:: Q\ane userdata ctx_nane(
"", "TestUserData", "http://ww:iona.contest/context"
)
const | T _Bus:: Q\ane userdata ctx_type(
"" "Context DataType", "ContextDataUR"
)i

reg- >regi st er _cont ext (
userdat a_ct x_nane,
userdata_ct x_type

)

Where reg is a context registry (of | T_Bus: : Cont ext Regi st ry type).

Inserting a user-defined type into The following example shows how to insert a Cont ext Dat aType instance into
a context the user dat a_ct x_nane request context.

Il C++

| T_Bus: : AnyType* any_userdata = request _cont ext s- >get _cont ext (
user dat a_ct x_narre, // The name of the UserData context.
true /] The create_if_not found flag

)

Cont ext Dat aType* ctx_data =
dynam c_cast <Cont ext Dat aType* >(any_user dat a) ;
ctx_data->set... () // Initialize the context data.

Extracting a user-defined type The following example shows how to extract the Cont ext Dat aType instance
from a context from the user dat a_ct x_nane request context.

Il C++
| T_Bus: : AnyType* any_userdata = request _cont ext s- >get _cont ext (
userdat a_ct x_nane /1 The nane of the UserData context.

IE
Cont ext Dat aType* ctx_data =

dynani c_cast <Cont ext Dat aType*>(any_userdat a) ;
cout << ctx_data->get...() // Initialize the context data.

222

Reading and Writing Context Data

Reading and Writing Custom Types

Overview Sometimes it is necessary to store a custom data type in a context—that is,
a data type that does not inherit from | T_Bus: : AnyType. Using a
non-serializable context, you can store instances of any class in a context.

Note: Non-serializable contexts are not streamable, however. You can
only set and get this kind of context locally, from within the same process.

ContextT template The Cont ext T<T> template class is used to hold a reference to an arbitrary
C++ type. The Cont ext T<T> type is needed to wrap T instances before they
can be added to a context container.

Example 84: The ContextT Template Class

[l Ct+
nanespace | T_Bus {
tenpl at e<cl ass T>
class ContextT : public Context

{
publ i c:
Cont ext T(T& context) : mcontext (context)

{
}

T& get _data() {
return mcontext;

I/ conplete

}

private:
T& m cont ext;

223

CHAPTER 7 | Artix Contexts

Inserting a custom type into a
context

Extracting a custom type from a
context

224

Given a user-defined type, Qust ond ass, and a registered custom context
name, CUSTOM CTX_NAME, the following example shows how to use the
Cont ext T<> template to store a Qust o ass instance in a request context
container.

/Il C++
usi ng namespace | T_Bus;

t ypedef Cont ext T<Qust ond ass> Qust onmd assCont ext ;
CQust ond ass dat a;

Cust ond assCont ext ct x(dat a) ;
request _cont ext s->add_cont ext (QUSTOM CTX_NAME, ctX);

The following example shows how to extract a Cust o ass instance from
the request context container. The code that extracts the context must be
colocated with the code that inserts it (in other words, this type of context
cannot be sent in a header).

/] C++
usi ng namespace | T_Bus;

t ypedef Cont ext T<Cust omd ass> Qust ond assCont ext ;

Context * ctx =

request _cont ext s- >get _cont ext _dat a(CUSTOM CTX_NAME) ;
Cust ond assCont ext * custom ctx =

dynam c_cast <Qust ond assCont ext *>(resul t _ctx);
Qust ondJ ass& cust om = cust om ct x- >get _dat a() ;

Accessing the server operation
context

Reading and Writing Context Data

For a practical application of non-serializable contexts, consider Example 85
which shows you how to access an | T_Bus: : Server Qper at i on instance in
the context of an invocation on the server side (in other words, this code
could appear in the body of a servant function).

Example 85: Accessing the Server Operation Context

[l Ct+
#i ncl ude <it_bus_pdk/ cont ext . h>

#i nclude <it_bus_pdk/ context _attrs/context_constants. h>
#i ncl ude <it_bus/operation. h>

usi ng nanespace | T_Bus;
usi ng namespace | T_ContextAttri butes;

Cont ext Regi stry* context _registry =
bus->get _context_registry();

// Ootain a reference to the ContextCurrent.
Cont ext Qurrent & context _current =
context _registry->get_current();

/1 Obtain a pointer to the Request Cont ext Cont ai ner.
Cont ext Cont ai ner* cont ext _cont ai ner =

context _current.request _contexts();
Server Qperation * operation = 0;
I/ Users can now access context derived from Context class.
Context* context_data =
cont ext _cont ai ner->get _cont ext _dat a(SERVER_CPERATI ON_CONTEXT) ;
// Need to cast to appropriate context type.
Server Qper ati onCont ext* operation =

dynam c_cast <Ser ver Qper at i onCont ext *>(cont ext _dat a) ;

/] ServerQperation is wapped in a tenplate ContextT cl ass.
Server Qper ati on& server_op = operation->get _data();

225

CHAPTER 7 | Artix Contexts

Durability of Context Settings

Overview

Client side durability

Server side durability

226

When you set a context value using either get _cont ext () or add_cont ext (),
the context value is not valid indefinitely. The general rule is that a context
value is valid only for the duration of an invocation. There are two cases two
consider, as follows:

® C(Client side durability.

® Server side durability.

On the client side, the general rule is that a context value affects only the
next invocation in the current thread. At the end of the invocation, Artix
clears the context value. Hence, it is generally necessary to reset the context
value before the making the next invocation.

An exception to this rule is demonstrated by the context types derived from
the htt p-conf schema (HTTP_CLI ENT_QUTGO NG_CONTEXTS and

HTTP_CLI ENT_| NOOM NG_CONTEXTS). These context values are valid over
multiple invocations from the current thread.

On the server side, the general rule is that context values are set at the start
of an operation invocation (when the server receives a request message) and
cleared at the end of the invocation. Context values are thus available to the
servant code only for the duration of the invocation.

An exception to this rule is the value of an endpoint URL, which can be
modified outside of an invocation context by calling the set URL() function
on a server configuration context. For details of how to do this, see “Setting
a Configuration Context on the Server Side” on page 235.

Context Example

Context Example

Overview

In this section

This section shows how to modify the settings in a context, using the

htt p- conf schema as an example. The htt p-conf: cl i ent Type context type
enables you to modify the client port settings on a HTTP port and the

ht t p- conf : ser ver Type context type enables you to modify server endpoint
settings.

This section contains the following subsections:

HTTP-Conf Schema page 228
Setting a Request Context on the Client Side page 232
Setting a Configuration Context on the Server Side page 235

227

CHAPTER 7 | Artix Contexts

HTTP-Conf Schema

Overview

http-conf schema file

http-conf:clientType XML
definition

228

This subsection provides an overview of the htt p-conf schema, which
provides the definitions of the htt p- conf configuration context types. Using
the ht t p- conf schema, you can configure the properties of a HTTP port
either in a WSDL contract or by programming. The C++ mapping of the
htt p- conf contexts are already generated for you—all that you need to do is
include the relevant header file in your code and link with the relevant
library.

The htt p-conf schema defines WSDL extension elements for configuring a
HTTP port in Artix. The htt p-conf schema is defined in the following file:

Artixlnstall Dir/artix/Version/ schemas/ htt p-conf. xsd

Example 86 gives an extract from the htt p-conf schema, showing part of
the definition of the ht t p- conf : cl i ent Type complex type.

Example 86: Definition of the http-conf:clientType Type

<xs: schema
t ar get Namespace="ht t p: / / schenas. i ona. coni t r anspor t s/ htt p/ conf
iguration"
xm ns: xs="htt p: // ww W3. or g/ 2001/ XM_Schema"
xm ns: htt p-conf ="htt p://schemas. i ona. coni t ransport s/ htt p/ conf
iguration"
xm ns: wsdl ="htt p: // schemas. xm soap. or g/ wsdl /"
el ement For nDef aul t ="qual i fi ed"
at tri but eFor nDef aul t ="unqual i fi ed">

<xs:inport namespace="htt p://schemas. xm soap. org/wsdl /"/>

<xs: conpl exType name="cl i ent Type" >
<xs: conpl exCont ent >
<xs: ext ensi on base="wsdl : t Ext ensi bi | i t yEH enent ">
<xs:attribute name="SendTi neout"
type="htt p-conf: tinel nterval Type"
use="optional " defaul t="30000"/>

<xs:attribute name="Recei veTi neout "
type="htt p-conf: tinel nterval Type"
use="optional "

http-conf timeout attributes

http-conf:clientType C+ +
mapping

Context Example

Example 86: Definition of the http-conf:clientType Type

def aul t ="30000"/ >
</ xs: ext ensi on>
</ xs: conpl exCont ent >

</ xs: conpl exType>

</ xs: schema>

The ht t p-conf: cl i ent Type type defines two timeout attributes, as follows:

® SendTi neout —(in milliseconds) the maximum amount of time a client
will spend attempting to contact a remote server.

® Recei veTi neout —(in milliseconds) for synchronous calls, the
maximum amount of time a client will wait for a server response.

The htt p-conf: cli ent Type port type maps to the

I T _ContextAttributes::clientType C++ class, as shown in Example 87.
The SendTi meout and Recei veTi neout attributes each map to get and set
functions. Because these are optional attributes, the get functions return a
pointer. A NULL return value indicates that the attribute is not set.

Example 87: C++ Mapping of http-conf:clientType Type
Il C++

nanespace | T_ContextAttri butes
{
class clientType
public I T tExtensibilityE ement Dat a,
public virtual |T_Bus:: Conpl exCont ent Conpl exType

{
publ i c:

IT Bus::Int * get SendTi meout () ;

const | T Bus::Int * getSendTi meout () const;
voi d set SendTi meout (const | T Bus::Int * val);
voi d set SendTi neout (const | T Bus::Int & val);

IT Bus::Int * get Recei veTi neout () ;

const | T Bus::Int * get Recei veTi neout () const;
voi d set Recei veTi nmeout (const | T _Bus::Int * val);

229

CHAPTER 7 | Artix Contexts

Example 87: C++ Mapping of http-conf:clientType Type

voi d set Recei veTi meout (const | T Bus::Int & val);

IE
IH
http-conf:serverType C+ + The ht t p- conf : server Type port type maps to the
mapping I T ContextAttributes::server Type C++ class, as shown in Example 88.

In this example, we are only interested in the functions for setting and
getting the endpoint URL, set URL() and get URL() . Using these functions,
you can examine or modify the host and IP port where the server listens for
incoming client connections.

Example 88: C++ Mapping of the http-conf:serverType Type
/] C++
nanespace | T_ContextAttributes {

class | T_OCONTEXT_ATTR BUTE_API server Type

public I T tExtensibilityE ement Dat a,
public virtual |T_Bus:: Gonpl exCont ent Conpl exType

{
publ i c:
I T Bus::String * get URL();
const | T Bus::String * getUR() const;
void set URL(const | T Bus::String * val);
void setURL(const | T Bus::String & val);
I8

230

Header and library files

Pre-registered context type names

Context Example

One of the pre-requisites for programmatically modifying the ht t p- conf port
configuration is to include the following header file in your C++ code:

it_bus_pdk/context _attrs/http_conf_xsdTypes. h
You must also link your client application with the following library file:

Windows
ArtixlnstalIDr/artix/Version/lib/it_context_attribute.lib

UNIX

ArtixlnstalIDr/artix/Version/lib/it_context_attribute.so
ArtixinstallDir/artix/Version/lib/it_context_attribute.sl
ArtixlnstallDr/artix/Version/lib/it_context_attribute.a

The ht t p- conf: cl i ent Type context type for outgoing data is pre-registered
with the context registry under the following QName constant:

I T _Context Attributes: : HTTP_CLI ENT_OUTGO NG CONTEXTS

The ht t p- conf : ser ver Type context type for outgoing data is pre-registered
with the context registry under the following QName constant:

I T _ContextAttributes:: HTTP_SERVER QUTGO NG CONTEXTS

231

CHAPTER 7 | Artix Contexts

Setting a Request Context on the Client Side

Overview This subsection describes how to set attributes on the
htt p- conf: cl i ent Type context (corresponds to the attributes settable on
the <htt p-conf: cli ent> WSDL port extensor). The htt p-conf: cl i ent Type
context configures client-side attributes on the HTTP transport plug-in.

Client main function Example 89 shows sample code from a client main function, which shows
how to initialize ht t p- conf : cl i ent Type context data in the current thread.

Example 89: Client Main Function Setting a Request Context
Il C++
#i ncl ude <it_bus/ bus. h>
#i ncl ude <it_bus/excepti on. h>
#include <it_cal/iostream h>
I/ Include header files related to the soap context
1 #include <it_bus_pdk/context. h>
2 #include <it_bus pdk/context attrs/http _conf_ xsdTypes. h>
| T_USI NG_NAMESPACE_STD

usi ng namespace | T_Context Attri butes;
usi ng namespace | T_Bus;

int
mai n(int argc, char* argv[])
{
try
{
I T Bus::Bus_var bus = I T Bus::init(argc, argv);
3 Cont ext Regi stry* context_registry =

bus->get _context_registry();
/] Cbtain a reference to the ContextQurrent

4 Cont ext Qurrent & context _current =
context _registry->get_current();

232

Context Example

Example 89: Client Main Function Setting a Request Context

}

// Cbtain a pointer to the Request Context Cont ai ner
Cont ext Cont ai ner* cont ext _cont ai ner =
context _current.request_contexts();

// obtain a reference to the context

AnyType* info = context_contai ner->get_cont ext (
I T _ContextAttributes:: HTTP_CLI ENT_QUTGO NG CONTEXTS,
true

IE

// Cast the context into a clientType object
clientType* http_client_config =
dynani c_cast <cl i ent Type*> (i nfo);

/1 Mdify the Send/ Receive tineouts
http_client_config->set SendTi neout (2000) ;
http_client_confi g- >set Recei veTi meout (600000) ;

}
catch(1 T_Bus: : Excepti on& e)
{
cout << endl << "Eror : Unhexpected error occured!"
<< endl << e.nessage()
<< endl;
return -1;
}
return O;

The preceding code example can be explained as follows:

1.

The i t_bus_pdk/ cont ext . h header file contains the declarations of the
following classes:

. | T_Bus: : Cont ext Regi stry,
. | T_Bus: : Cont ext Cont ai ner,
. | T_Bus: : Cont ext Qurrent.

The ht t p_conf _xsdTypes. h header declares the context data types
generated from the ht t p- conf schema.

Obtain a reference to the | T_Bus: : Cont ext Regi st ry object, which is
used to register contexts with the Bus.

233

CHAPTER 7 | Artix Contexts

234

Call I T_Bus: : Cont ext Regi stry: : get_current () to obtain a reference
to the I T_Bus: : Cont ext Qurrent object. The current object provides
access to the context objects associated with the current thread.

Call I T_Bus: : Cont ext Cont ai ner: : request _cont ext s() to obtain an

| T_Bus: : Cont ext Cont ai ner object that contains all of the contexts for
requests originating from the current thread.

The I T_Bus: : Cont ext Cont ai ner: : get_cont ext () function is called
with its second parameter set to true, indicating that a context with
that name should be created if none already exists.

The 1 T_Bus: : AnyType class is the base type for all complex types in
Artix. In this case, you can cast the AnyType instance, i nf o, to its
derived type, cli ent Type.

You can now modify the send and receive timeouts on the client port
using set SendTi neout () and set Recei veTi meout () . These timeouts
will be applied to any subsequent calls issuing from the current thread.

Context Example

Setting a Configuration Context on the Server Side

Overview

Server main function

This subsection describes how to set attributes on the

ht t p- conf : ser ver Type context (corresponds to the attributes settable on
the <ht t p- conf : server > WSDL port extensor). The ht t p- conf : ser ver Type
context configures server-side attributes on the HTTP transport plug-in.

Example 90 shows sample code from a server main function, which shows
how to initialize ht t p- conf : ser ver Type configuration context data.

Example 90: Server Main Function Setting a Configuration Context
Il C++

#i ncl ude <it_bus/ bus. h>
#i ncl ude <it_bus/exception. h>
#include <it_cal/iostream h>

/! Include header files related to the soap cont ext
#i ncl ude <it_bus_pdk/ cont ext. h>
#i nclude <it_bus_pdk/context _attrs/http_conf_xsdTypes. h>

| T_USI NG NAMESPACE _STD

usi ng namespace | T_ContextAttri butes;
usi ng nanespace | T_Bus;

int
mai n(int argc, char* argv[])
{
try
{
I T Bus::Bus_var bus = | T Bus::init(argc, argv);

I T_Bus: : Q\anme servi ce_nane(
" SOAPSer vi ce",
"http://wmn i ona. comi hel | o_worl d_soap_htt p"

)

Cont ext Regi stry* context _registry =
bus->get _context _registry();

235

CHAPTER 7 | Artix Contexts

Example 90: Server Main Function Setting a Configuration Context

5 Cont ext Cont ai ner * cont ext_contai ner =
cont ext _regi stry->get _configuration_cont ext (
servi ce_nane,
" SoapPort",
true

)

/] Cbtain a reference to the context

6 AnyType* info = context_container->get_cont ext (
I T _ContextAttributes:: HTTP_SERVER OQUTGO NG CONTEXTS,
true
DE

// Cast the context into a serverType obj ect
7 server Type* http_server_config =
dynani c_cast <server Type*> (i nfo);

// Modify the endpoint URL
8 http_server_config->set URL("http://I ocal host: 63278") ;

G eeterlnpl servant (bus);

bus- >regi st er _servant (
servant,
"../..letc/hello_world. wsdl",
servi ce_name

Dk
}
catch(1 T_Bus: : Excepti on& e)
{
cout << endl << "Error : Unexpected error occured!"
<< endl << e.nessage()
<< endl ;
return -1;
}
return O;

}

The preceding code example can be explained as follows:

1. Theit_bus_pdk/ context. h header file contains the declarations of the
following classes:

. | T_Bus: : Cont ext Regi stry,
. | T_Bus: : Cont ext Cont ai ner,
. I T_Bus:: Context Qurrent.

236

Context Example

The ht t p_conf _xsdTypes. h header declares the context data types
generated from the ht t p- conf schema.

This servi ce_nane is the QName of the SOAP service featured in the
hel 1 o_wor | d_soap_ht t p demonstration (in

denos/ basi ¢/ hel | o_wor| d_soap_http).

Obtain a reference to the | T_Bus: : Cont ext Regi st ry object, which is
used to register contexts with the Bus.

The I T_Bus: : Cont ext Cont ai ner object returned by

get _configuration_context () holds configuration data that is used
exclusively by the specified endpoint (that is, the SoapPort port in the
SOAPSer vi ce service).

The I T_Bus: : Cont ext Cont ai ner: : get_cont ext () function is called
with its second parameter set to t rue, indicating that a context with
that name should be created if none already exists.

The 1 T_Bus: : AnyType class is the base type for all complex types in
Artix. In this case, you can cast the AnyType instance, i nf o, to its
derived type, server Type.

You can now modify the URL used by the SoapPort port by calling the
set URL() function.

237

CHAPTER 7 | Artix Contexts

Header Context Example

Overview This section provides a detailed discussion of the custom SOAP header
demonstration, which shows you how to propagate context data in a SOAP
header.

In this section This section contains the following subsections:

Custom SOAP Header Demonstration page 239
SOAP Header Context Schema page 241
Declaring the SOAP Header Explicitly page 244
Client Main Function page 247
Server Main Function page 252
Service Implementation page 255

238

Header Context Example

Custom SOAP Header Demonstration

Overview

The examples in this section are based on the custom SOAP header
demonstration, which is located in the following Artix directory:

Artixlnstal I Dir/artix/Version/ denos/ advanced/ cust om soap_header
Figure 25 shows an overview of the custom SOAP header demonstration,

showing how the client piggybacks context data along with an invocation
request that is invoked on the sayH operation.

Figure 25: Overview of the Custom SOAP Header Demonstration

Artix Client

@ Register context

@ Initialize context data

@ sayH ("...")

Artix Server

v

| |

1 1
i ———— M
1 v :
Helloworld WSDL i wsDL |1

Contract —
N | |
s | i
S 1 1
| |
1

WSDL File ! XSDFile |
1 1

-

| [Context |
SOAPHeaderInfo
Schema
e ™~

@ Register context
» Serverimpl
e
| |
1 1
—————d . !
T i !
i wsbL |1 WSDL Helloworld
Contract
' | v
i i
1 1
i i
1
! XSDFile | WSDL File
1 1

239

CHAPTER 7 | Artix Contexts

Transmission of context data

HelloWorld WSDL contract

SOAPHeaderInfo schema

240

As illustrated in Figure 25, SOAP context data is transmitted as follows:

1.

2.
3.
4

The client registers the context type, SOAPHeader | nf o, with the Bus.
The client initializes the context data instance.
The client invokes the sayH () operation on the server.

As the server starts up, it registers the SOAPHeader | nf o context type
with the Bus.

When the sayH () operation request arrives on the server side, the
sayH () operation implementation extracts the context data from the
request.

The HelloWorld WSDL contract defines the contract implemented by the
server in this demonstration. In particular, the HelloWorld contract defines
the G eet er port type containing the sayH WSDL operation.

The SOAPHeader | nf o schema (in the

denos/ advanced/ cust om soap_header/ et ¢/ cont ext Types. xsd file) defines
the custom data type used as the context data type. This schema is specific
to the custom SOAP header demonstration.

Header Context Example

SOAP Header Context Schema

Overview This subsection describes how to define an XML schema for a context type.
In this example, the SOAPHeader | nf o type is declared in an XML schema.
The SOaPHeader | nf o type is then used by the custom SOAP header
demonstration to send custom data in a SOAP header.

SOAPHeaderInfo XML declaration Example 91 shows the schema for the SOAPHeader | nf o type, which is
defined specifically for the custom SOAP header demonstration to carry
some sample data in a SOAP header. Note that Example 91 is a pure
schema declaration, not a WSDL declaration.

Example 91: XML Schema for the SOAPHeaderInfo Context Type

<?xm versi on="1.0" encodi ng="UTF-8" 2>
<xs: schenma
xm ns: xs="htt p: // wawv. W3. or g/ 2001/ XM_Schera"
t ar get Nanespace="htt p: // schenas. i ona. coni t ypes/ cont ext "
el enent For nDef aul t ="qual i fi ed"
attri but eFor nDef aul t ="unqual i fi ed" >
<xs: conpl exType nane="SQAPHeader | nf 0" >
<xs:annot at i on>
<xs: docunent at i on>
Content to be added to a SQAP header
</ xs: docunent at i on>
</ xs: annot at i on>
<Xs: sequence>
<xs: el enent name="originator" type="xs:string"/>
<xs: el enent name="nessage" type="xs:string"/>
</ xs: sequence>
</ xs: conpl exType>
</ xs: schena>

The SOAPHeader | nf o complex type defines two member elements, as
follows:

® originat or—holds an arbitrary client identifier.

® nessage—holds an arbitrary example message.

241

CHAPTER 7 | Artix Contexts

Target namespace

Compiling the SOAPHeaderInfo
schema

SOAPHeaderInfo C+ + mapping

242

You can use any target namespace for a context schema (as long as it does
not clash with an existing namespace). This demonstration uses the
following target namespace:

http://schenas. i ona. comi t ypes/ cont ext

To compile the SOAPHeader | nf o schema, invoke the wsdl t ocpp compiler
utility at the command line, as follows:

wsdl t ocpp cont ext Types. xsd

Where cont ext Types. xsd is a file containing the XML schema from
Example 91. This command generates the following C+ + stub files:
cont ext Types_xsdTypes. h

cont ext Types_xsdTypesFactory. h

cont ext Types_xsdTypes. cxx
cont ext Types_xsdTypesFact ory. cxx

Example 92 shows how the schema from Example 91 on page 241 maps
to C++, to give the soap_i nt er cept or : : SOAPHeader | nf o C+ + class.

Example 92: C+ + Mapping of the SOAPHeaderinfo Context Type
/Il C++

nanespace soap_i nt er cept or

{

cl ass SQAPHeaderInfo : public |T_Bus:: SequenceConpl exType
{
publ i c:
static const | T _Bus:: Q\ane type_nane;

SOAPHeader | nf o() ;
SAPHeader | nf o(const SQAPHeader | nfo & copy) ;
virtual ~SQAPHeader I nfo();

I T Bus::String & getoriginator();
const | T Bus::String & getoriginator() const;
void setoriginator(const IT Bus::String & val);

I T Bus::String & get message() ;
const | T Bus::String & getnessage() const;
voi d setnessage(const | T Bus::String & val);

Header Context Example

Example 92: C++ Mapping of the SOAPHeaderInfo Context Type

}

243

CHAPTER 7 | Artix Contexts

Declaring the SOAP Header Explicitly

Overview There are two different approaches you can take with SOAP headers:

®* Implicit SOAP header—(the approach taken in Example 91 on
page 241) in this case, you need only declare the schema type that
holds the header data. By registering the type as a SOAP header
context, you enable an Artix application to send and receive SOAP
headers of this type.

® Explicit SOAP header—in this case, you must modify the original
WSDL contract and explicitly declare which operations can send and
receive the header. This approach might be useful for certain
interoperability scenarios.

This subsection briefly describes how to implement the second approach,
explicitly declaring the SOAP header.

Note: The implicit approach is also consistent with the SOAP
specification, which does not require you to declare SOAP headers
explicitly in WSDL.

Demonstration code The code for this demonstration is located in the following directory:

Artixlnstall Dir/artix/Version/ denos/ advanced/ soap_header _bi ndi ng

SOAP header declaration Example 93 shows how to declare a SOAP header, of SOAPHeaderData
type, explicitly in a WSDL contract.

Example 93: SOAP Header Declared in the WSDL Contract

<?xm version="1.0" encodi ng="UTF- 8" ?>
<defini tions nane="Hel | oVor| d"

t ar get Nanespace="ht t p: / / ww. i ona. coni soap_header "

xm ns="ht t p: // schemas. xm soap. or g/ wsdl / "
xm ns: htt p-conf ="htt p://schenas. i ona. con transports/http/configu

ration"

xm ns: soap="ht t p: // schemas. xm soap. or g/ wsdl / soap/ "

xm ns: tns="htt p://wwn. i ona. comd soap_header "

xm ns: wsdl ="ht t p: // schemas. xm soap. or g/ wsdl /"

xm ns: xsd="htt p: / / www. wW3. or g/ 2001/ XM_Schena" >

244

Header Context Example

Example 93: SOAP Header Declared in the WSDL Contract

<types>
<schera t ar get Nanespace="ht t p: / / ww\. i ona. coni soap_header "
xm ns="ht t p: / / waw. W3. or g/ 2001/ XM_Schena"
xm ns: wsdl ="ht t p: // schenas. xm soap. or g/ wsdl /">
<el enent nanme="r esponseType" type="xsd:string"/>
<el enent nanme="r equest Type" type="xsd:string"/>
<conpl exType name="SQAPHeader Dat a" >
<sequence>
<el enent nane="origi nator" type="xsd:string"/>
<el enent nanme="nmessage" type="xsd:string"/>
</ sequence>
</ conpl exType>
<el enent name="SCAPHeader | nf 0"
t ype="t ns: SOAPHeader Dat a"/ >
</ schena>
</types>

<nessage name="sayH Request"/>
<message hane="sayH Response" >

<part el enent ="t ns: responseType" name="t heResponse"/>
</ message>

<nessage name="header _nmessage">
<part el enent ="t ns: SOAPHeader | nf 0" nane="header _i nf 0"/ >
</ message>
<port Type nane="Q eeter">
<oper ati on name="sayH ">
<i nput nessage="t ns: sayH Request "
name="sayH Request"/>
<out put message="t ns: sayH Response"
nane="sayH Response"/ >
</ oper at i on>

</ port Type>

<bi ndi ng name="Q eet er _SQAPBi ndi ng" type="tns: G eeter">
<soap: bi ndi ng styl e="docunent"
transport ="http://schemas. xni soap. or g/ soap/ http"/>
<oper ati on name="sayH ">
<soap: oper at i on soapActi on=
<i nput nane="sayH Request ">
<soap: body use="literal"/>
<soap: header nessage="t ns: header _nmessage"
part ="header _i nf 0"
use="literal"/>

wn

styl e="docunent" />

245

CHAPTER 7 | Artix Contexts

246

Example 93: SOAP Header Declared in the WSDL Contract

</i nput >
<out put name="sayH Response" >
<soap: body use="literal"/>
<soap: header nessage="t ns: header nessage"
part ="header _i nf 0"
use="literal"/>
</ out put >
</ oper at i on>

</ bi ndi ng>

</ definitions>

The preceding WSDL contract can be explained as follows:

1.

This example declares a header of type SOAPHeader Dat a (this example
is different from the header type declared in Example 91 on

page 241). The SOAPHeader Dat a type contains two string fields,

origi nator and message.

You must declare an element to contain the header data. In this case,
the header is transmitted as <SOAPHeader I nfo> . ..
</ SQAPHeader | nf 0>.

You must declare a message element for the header. In this case, the
message QName is t ns: header _message and the part name is
header _i nf 0. These correspond to the values that would be passed to
the last two arguments of the

I T_Bus: : Cont ext Regi st ry: : regi ster_cont ext () function.

In the scope of the bi ndi ng element, you should declare which
operations include the SOAPHeader Dat a header, as shown. The

soap: header element references the message QName,

t ns: header _message, and the part name, header _i nfo.

Header Context Example

Client Main Function

Overview

Client main function

This subsection discusses the client for the custom SOAP header
demonstration. This client is designed to send a custom header, of
SOAPHeader | nf o type, every time it invokes an operation on the G eet er port
type.

To enable the sending of context data, the client performs two fundamental

tasks, as follows:

1. Register a context type with the SOAP container—registering the
context type is a prerequisite for sending context data in a request. By
registering the context type with the Bus, you give the Bus instance the
capability to marshal and unmarshal context data of that type.

2. Initialize the context data in the SOAP current object—before
invoking any operations, the client obtains an instance of the header
context data from a SOAP current object. After initializing the header
context data, any operations invoked from the current thread will
include the header context data.

Example 94 shows sample code from the client main function, which shows
how to register a context type and initialize header context data for the
current thread.

Example 94: Client Main Function Setting a SOAP Context

Il C++
/Il GeeterdientSanple.cxx File

#i ncl ude <it_bus/bus. h>
#i ncl ude <it_bus/exception. h>
#i nclude <it_cal /i ostream h>

/1 Include header files related to the soap context
#i ncl ude <it_bus_pdk/ cont ext . h>

/1 1nclude header files representing the soap header content

#i ncl ude "cont ext Types_xsdTypes. h"
#i ncl ude "cont ext Types_xsdTypesFact ory. h"

247

CHAPTER 7 | Artix Contexts

248

Example 94: Client Main Function Setting a SOAP Context

#include "Geeterdient.h"

| T_US| NG_NAVESPACE_STD

usi ng namespace soap_i nt erceptor;
usi ng namespace | T_Bus;

int

mai n(int argc, char* argv[])

{
try
{

I T Bus::Bus_var bus = I T Bus::init(argc, argv);
Geeterdient client;

Cont ext Regi stry* context_regi stry =
bus- >get _context_registry();

/] Oreate Q\Nane obj ects needed to define a context
const Q\Nane princi pal _ct x_nane(

" SOAPHeader | nf 0",

DE
const QName pri nci pal _ct x_t ype(

" SQAPHeader | nf 0",

"http://schenas.iona. conltypes/context"
DE
const Q\Nane princi pal _nmessage_nane(

"soap_header",

"header _content",

"http://schenas.iona. coni cust om header"
JE

const String principal _part_nanme("header_info");

I/l Register the context with the ContextRegistry
cont ext _regi stry->regi ster_cont ext (

princi pal _ct x_narre,

princi pal _ctx_type,

princi pal _message_nane,

princi pal _part_nane

JE

10

11

12

13

Header Context Example

Example 94: Client Main Function Setting a SOAP Context

// Cobtain a reference to the Context Current
Cont ext Qurrent & context_current =
context _registry->get_current();

// btain a pointer to the Request Context Cont ai ner
Cont ext Cont ai ner* cont ext _cont ai ner =
context _current.request _contexts();

// obtain a reference to the context

AnyType* info = context_contai ner->get_cont ext (
princi pal _ct x_narre,
true

)

// Cast the context into a SQAPHeader | nfo obj ect
SAPHeader | nf o* header _info =
dynam c_cast <SOAPHeader | nf o*> (i nfo);

/I Oreate the content to be added to the header
const String originator ("l ONA Technol ogi es");
const String nessage("Artix is Powerful I");

// Add the header content
header _i nf o->set ori gi nator (origi nator);
header _i nf o- >set nessage(message) ;

/1 1Invoke the VWb service busi ness nethods
String theResponse;

client.sayH (theResponse);

cout << "sayH response: " << theResponse << endl;

}
catch(1 T_Bus: : Excepti on& e)
{
cout << endl << "Error : Unexpected error occured!"
<< endl << e.nessage()
<< endl ;
return -1;
}
return O;

249

CHAPTER 7 | Artix Contexts

250

The preceding code example can be explained as follows:

1.

Theit_bus_pdk/ cont ext . h header file contains the declarations of the
following classes:

. | T_Bus: : Cont ext Regi stry,
. | T_Bus: : Cont ext Cont ai ner ,
. I T_Bus:: Context Qurrent.

The cont ext Types_xsdTypes. h local header file contains the
declaration of the SOAPHeader | nf o class, which has been generated
from the context schema (see Example 91 on page 241).

Obtain a reference to the | T_Bus: : Cont ext Regi st ry object, which is
used to register contexts with the Bus.

The QName with local name, SOAPHeader | nf o, is a context name that
identifies the context uniquely. Although the context name is specified
as a QName, it does not refer to an XML element. You can choose any
unigue QName as the context name.

The QName with namespace URI,

http://schenas. i ona. coni t ypes/ cont ext , and local part,
SOAPHeader | nf o, identifies the context type from Example 91 on
page 241.

The QName with namespace URI,

http://schenas. i ona. conf cust om header, and local part,

header _cont ent , corresponds to the nmessage attribute of a

soap: header element. The value is currently ignored (but should not
clash with any existing message QNames).

The header _i nf o string value identifies the part of the SOAP header
that holds the context data. It corresponds to the part attribute of a
soap: header element. The value is currently ignored.

The call to regi ster_context () tells the Artix Bus that the
SOAPHeader | nf o type will be used to send context data in SOAP
headers. After you have registered the context, the Bus is prepared to
marshal the context data (if any) into a SOAP header.

Call I T_Bus: : Cont ext Regi stry: : get_current () to obtain a reference
to the I T_Bus: : Cont ext Qurrent object. The current object provides
access to all context objects associated with the current thread.

10.

11.

12.

13.

Header Context Example

Call I T_Bus: : Cont ext Cont ai ner : : r equest _cont ext s() to obtain an

| T_Bus: : Cont ext Cont ai ner object that contains all of the contexts for
requests originating from the current thread.

The I T_Bus: : Cont ext Cont ai ner: : get _cont ext () function is called
with its second parameter set to t r ue, indicating that a context with
that name should be created if none already exists.

The I T_Bus: : AnyType class is the base type for all complex types in
Artix. In this case, you can cast the AnyType instance, i nf o, to its
derived type, SQAPHeader | nf o.

By setting the ori gi nat or and nessage elements of this

SOAPHeader | nf o object, you are effectively fixing the context data for
all operations invoked from this thread.

When you invoke the sayH () operation, the context data is included
in the SOAP header. From this point on, any WSDL operation invoked
from the current thread will include the SQaPHeader | nf o context data
in its SOAP header.

251

CHAPTER 7 | Artix Contexts

Server Main Function

Overview

Server main function

252

This subsection discusses the main function for the server in the custom
SOAP header demonstration. In addition to the usual boilerplate code for an
Artix server (that is, registering a servant and calling I T_Bus: : run()), this
server also registers a context type with the Bus.

By registering a context type with the Bus, you give the Bus instance the
capability to unmarshal context data of that type. This unmarshalling
capability is then exploited in the implementation of the sayH () operation
(see Example 96 on page 255).

Example 95 shows sample code from the server main function, which
registers the sOAPHeader | nf o context type and then creates and registers a
Qeeterlnpl servant object.

Example 95: Server Main Function Registering a SOAP Context

/] C++

#i ncl ude <it_bus/bus. h>

#i ncl ude <it_bus/exception. h>
#include <it_bus/fault_exception. h>
#include <it_cal /i ostream h>

#i nclude <it_bus_pdk/ cont ext. h>
#include "Qeeterlnpl.h"
I T_USI NG_NAVESPACE _STD

usi ng namespace soap_i nt erceptor;
usi ng nanmespace | T_Bus;

int
mai n(int argc, char* argv[])
{
try
{
I T Bus::Bus_var bus = IT Bus::init(argc, argv);

Cont ext Regi stry* context_registry =
bus- >get _context_registry();

Header Context Example

Example 95: Server Main Function Registering a SOAP Context

const Q\Nane princi pal _ct x_name(

wn

" SCAPHeader | nf 0",
E
const QName princi pal _ctx_t ype(
" SQAPHeader | nf 0",
"http://schenas. iona. conitypes/context"
E
const QNane princi pal _nmessage_nane(
"soap_header",
"header _content",
"http://schenss.iona. coni cust om header"
)

const String principal _part_nanme("header _i nfo");

cont ext _regi stry->regi ster_cont ext (
princi pal _ct x_narre,
princi pal _ctx_type,
princi pal _message_nane,
princi pal _part_nane

);
QG eeterlnpl servant (bus);

I T_Bus:: Q\ane service_nane("", "SQAPService",
"http://ww:. iona.conm cust om soap_i nterceptor");

bus- >r egi st er _ser vant (
servant,
“../..letc/hello_world. wsdl",
servi ce_name

IE

I T _Bus::run();
}
catch(1 T_Bus: : Excepti on& e)
{

cout << "Error occurred: " << e.nessage() << endl;
return -1;

}

return O;

253

CHAPTER 7 | Artix Contexts

254

The preceding code example can be explained as follows:

1.

Theit_bus_pdk/ cont ext . h header file contains the declarations of the
following classes:

. | T_Bus: : Cont ext Regi stry,
. | T_Bus: : Cont ext Cont ai ner ,
. I T_Bus:: Context Qurrent.

Obtain a reference to the |1 T_Bus: : Cont ext Regi st ry object, which is
used to register contexts with the Bus.

The QName with local name, SOAPHeader | nf o, is a context name that
identifies the context uniquely. Although the context name is specified
as a QName, it does not refer to an XML element. You can choose any
unigue QName as the context name.

The QName with namespace URI,

http://schenas. i ona. con t ypes/ cont ext , and local part,
SOAPHeader | nf o, identifies the context type from Example 91 on

page 241.

The QName with namespace URI,

http://schenas. i ona. conf cust om header, and local part,

header _cont ent , corresponds to the message attribute of a

soap: header element. The value is currently ignored (but should not
clash with any existing message QNames).

The header _i nf o string value identifies the part of the SOAP header
that holds the context data. It corresponds to the part attribute of a
<soap: header > attribute. The value is currently ignored.

The call to regi ster_context () tells the Artix Bus that the
SOAPHeader | nf o type will be used to send context data in SOAP
headers. After you have registered the context, the Bus is prepared to
marshal the context data (if any) into a SOAP header.

Header Context Example

Service Implementation

Overview

Implementation of the sayHi
operation

This subsection discusses the implementation of the Greet er port type,
which maps to the G-eeter I npl servant class in C++.

In the custom SOAP header demonstration, the G eeter | npl : : sayH ()
operation is modified to peek at the context data accompanying the
invocation. To access the context data, you need to get access to a context

current object, which encapsulates all of the context data received from the
client.

Example 96 shows the implementation of the sayH () operation from the
G eeterlnpl servant class. The sayH () operation implementation uses the
context API to access the context data received from the client.

Example 96: sayHi Operation Accessing a SOAP Context
/] C++
voi d
Qeeterlnpl::sayH (
I T _Bus::String & heResponse
) | T_THRONDECL((I T_Bus: : Exception))
{

cout << "sayH invoked" << endl;
theResponse = "Hello fromArtix";

// Cobtain a pointer to the bus
Bus_var bus = Bus::create_reference();

Cont ext Regi stry* context_registry =
bus->get _context_registry();

/1 Create Q\Nane objects needed to define a context
const Q\ane princi pal _ct x_nane(

" SQAPHeader | nf 0",

255

CHAPTER 7 | Artix Contexts

256

Example 96: sayHi Operation Accessing a SOAP Context

}

/I Cbtain a reference to the Context Current
Cont ext Qurrent & context _current =
context _registry->get_current();

// btain a pointer to the Request Cont ext Cont ai ner
Cont ext Cont ai ner* cont ext _cont ai ner =
context _current.request_contexts();

// (btain a reference to the context
AnyType* info = context_contai ner->get_cont ext (
princi pal _ct x_nane

)

// Cast the context into a SOAPHeader| nfo obj ect
SOAPHeader | nf o* header _info =
dynam c_cast <SOAPHeader | nf o*> (i nfo);

// Extract the application specific SOAP header information
String& originator = header_i nfo->getoriginator();
String& message = header _i nf o- >get nessage() ;

cout << "SOAP Header originator =" << originator.c_str() <<
endl ;
cout << "SOAP Header nessage = " << message.c_str() << endl;

The preceding code example can be explained as follows:

1.

The | T_Bus: : Cont ext Regi st ry object, cont ext _regi st ry, provides
access to all of the objects associated with contexts.

The QName with local name, SOAPHeader | nf o, is the name of the
context to be extracted from the incoming request message.

Call I T_Bus:: Cont ext Regi stry: : get_current () to obtain the

I T_Bus: : Cont ext Qurrent object for the current thread.

Call I T_Bus:: Context Qurrent: : request _cont exts() to obtain the
| T_Bus: : Cont ext Cont ai ner object containing all of the incoming
request contexts.

Note: This is the same object that is used on the client side to hold
all of the outgoing request contexts.

Header Context Example

To retrieve a specific context from the request context container, pass
the context’s name into the

I T_Bus: : Cont ext Cont ai ner: : get _cont ext () function.

The 1 T_Bus: : AnyType class is the base type for all types in Artix. In
this example, you can cast the AnyType instance, i nf o, to its derived
type, SOAPHeader | nf o.

You can now access the context data by calling the accessors for the
origi nat or and nessage elements, getori gi nator () and
get nessage() .

257

CHAPTER 7 | Artix Contexts

Header Contexts in Three-Tier Systems

Overview

Request context propagation

258

This section considers how Artix header contexts are propagated in a
three-tier system. The Artix context model makes no distinction between
incoming request contexts and outgoing request contexts. Similarly, Artix
makes no distinction between incoming reply contexts and outgoing reply
contexts. An implicit consequence of this model is that request contexts and
reply contexts are automatically propagated across multiple application

tiers.

Figure 26 shows an example of a three-tier system where a request context
is propagated automatically from tier to tier.

Figure 26: Propagation of a Request Context in a Three-Tier System

Target Server

Request context

Request context

Artix Client Mid-Tier Server
firstCall("...") ‘m secondCal I ("...")
@ [Context | @) \—/(@ [Context | @
e e

)

Request context

Header Contexts in Three-Tier Systems

Context propagation steps In Figure 26, the request context is propagated through the three-tier
system as follows:

1.

In the Artix client, a header context is added to the request context
container. When the client makes an invocation, firstCal | (), on the
mid-tier, the context is inserted into the request message header.
When the request arrives at the mid-tier, it is automatically marshalled
into a request context. The context data is now accessible using the
request context container object.

If the mid-tier makes a follow-on invocation, secondCal | (), the Artix
runtime inserts the received request context into the outgoing request
message. Hence, the client’s request context is automatically
forwarded on to the next tier.

When the request arrives at the target, it is automatically marshalled
into a request context. The client context data is now accessible
through the request context container object.

259

CHAPTER 7 | Artix Contexts

260

CHAPTER 8

Working with
Transport
Attributes

Using the Artix context mechanism, you can set many of the
the transport attributes at runtime.

In this chapter This chapter discusses the following topics:
How Artix Stores Transport Attributes page 262
Getting and Setting Transport Attributes page 264
Setting HTTP Attributes page 274
Setting CORBA Attributes page 304
Setting WebSphere MQ Attributes page 305
Setting FTP Attributes page 322
Setting i18n Attributes page 331
Setting WS-A and WS-RM Attributes page 334

261

CHAPTER 8 | Working with Transport Attributes

How Artix Stores Transport Attributes

Overview

Initialization properties

Global transport attributes

Transport specific

262

Artix uses the context mechanism described in “Artix Contexts” on page 199
to store the properties used to configure the transport layer and populate any
headers used by the selected transport. Most of the properties are stored in
the request and reply context containers. However, some properties that are
used in initializing the transport layer at start-up are stored in a special
context container, the configuration context container.

Some transport attributes, such as JMS broker sign-on values or a server's
HTTP endpoint URL, are used by Artix when it is initializing the transport
layer. Therefore, they need to be specified before Artix initializes the
transport layer for a service or a service proxy. These attributes are stored in
a configuration context container. When the bus initializes the transport
layer, it will check the configuration context container for any initialization
properties.

For most transport properties such as HTTP keep-alive, WebSphere MQ
AccessMode, and Tib/RV cal | backLevel , the context objects containing the
transport’s properties are stored in the Artix request context container and
the Artix reply context container. Once you have retrieved the context object
from the proper context container, you can inspect the values of transport
headers and other transport related properties such as codeset conversion.
You can also dynamically set many of the values for outgoing messages
using the context APIs. For a full listing of all the possible port attributes for
each transport see the Artix WSDL Reference.

Transport attributes are stored in built-in contexts. These contexts are
preregistered with the context container when the transport layer is
initialized. They are specific to the different transports. For example, if you
request the context for the HTTP port attributes from the context container,
the returned context will have methods for setting and examining HTTP
specific attributes. However, if the application is using another transport,

Default values

When are the attribute contexts
populated

How Artix Stores Transport Attributes

WebSphere MQ for example, the HTTP configuration context will not be
registered and you will be unable to get the HTTP configuration context from
the container.

All of the transport attributes have default values that are specified in either
the service's contract or in the service’s configuration. If you do not use the
contexts for overriding transport attributes, these defaults are used when
sending messages.

Whether or not an attribute context is populated when you access it

depends on whether the context was taken from an outgoing message or an

incoming message, as follows:

® Qutgoing messages—when you get the transport attributes for an
outgoing message, the context is empty. You need to create an
instance of the context and set the values you want to override in the
context yourself.

® Incoming messages—when a message is received by the transport
layer, the transport populates the context with the attributes of the
message it receives.

For example, if you are using HTTP, the values of the incoming
message’'s HTTP header are used to populate the context. The context
can then be inspected at any point in the application’s code.

263

CHAPTER 8 | Working with Transport Attributes

Getting and Setting Transport Attributes

Overview

Schemas directory

Header files

Library

264

The contexts for holding transport attributes are handled using either the
standard context mechanism or the configuration context mechanism. To
get a transport attribute context do the following:

1. Make sure you include the requisite header file for the transport
attribute context.

2. Use the context API to obtain either a request context container, a
reply context container, or a configuration context container, as
appropriate.

3. Call get_context () on the context container, passing in the QName of
the transport attribute context.

4. Cast the returned context data to the appropriate type.

Once you have the context data you can inspect it and set new values for
any of its properties.

The schemas for the Artix configuration contexts are located in the following
directory:

ArtixlnstallDir/artix/Version/ schemas

The header files for the Artix configuration contexts are located in the
following directory:

ArtixlnstallDir/artix/Version/include/it_bus_pdk/context_attrs

To gain access to the context stubs, you should link with the following
library:

Windows
ArtixlnstallDr/artix/Version/lib/it_context_attribute.lib

UNIX

ArtixlnstallDir/artix/Version/lib/it_context_attribute.so
ArtixinstallDir/artix/Version/lib/it_context_attribute. sl

Headers and types for the
pre-registered contexts

HTTP client outgoing attributes

Getting and Setting Transport Attributes

The following list gives the context name, data type and header file for each
of the pre-registered contexts. The name of each context is a C+ + constant
of I T_Bus: : Q\arre type, defined in the | T_Cont ext At t ri but es namespace
(for example, | T_Context Attri but es: : HTTP_CLI ENT_QUTGO NG OONTEXTS).
You can pass the context name as a parameter to the

| T_Bus: : Cont ext Cont ai ner: : get _cont ext () function to obtain a pointer to
the context data.

This context enables you to specify HTTP context data for inclusion with the
next outgoing client request. Table 2 shows the relevant details for
accessing this context.

Table 2: Details for HTTP Client Outgoing Context

Description

Value

Header file

<it_bus_pdk/context_attrs/http_conf_xsdTypes. h>

Kind of context container

Request

Context QName

I T ContextAttributes:: HTTP_CLI ENT_QUTGO NG CONTEXTS

Type of context data

I T ContextAttributes::clientType

HTTP client incoming attributes

This context enables you to read context data received with the last HTTP
reply on the client side. Table 3 shows the relevant details for accessing this
context.

Table 3: Details for HTTP Client Incoming Context

Description

Value

Header file

<it_bus_pdk/context_attrs/http_conf_xsdTypes. h>

Kind of context container

Reply

Context QName

I T _ContextAttributes::HTTP_CLI ENT_I NOOM NG _CONTEXTS

Type of context data

I T ContextAttributes::clientType

265

CHAPTER 8 | Working with Transport Attributes

HTTP server outgoing attributes This context enables you to specify HTTP context data for inclusion with the
server’s reply. Table 4 shows the relevant details for accessing this context.

Table 4: Details for HTTP Server Outgoing Context

Description Value
Header file <it_bus_pdk/context_attrs/http_conf_xsdTypes. h>
Kind of context container Reply
Context QName I T Context Attributes:: HTTP_SERVER QUTGO NG QONTEXTS
Type of context data I T_Context Attributes:: server Type

HTTP server incoming attributes This context enables you to read context data received with the current
HTTP request on the server side. Table 5 shows the relevant details for
accessing this context.

Table 5: Details for HTTP Server Incoming Context

Description Value
Header file <it_bus_pdk/context_attrs/http_conf_xsdTypes. h>
Kind of context container Request
Context QName I T ContextAttributes:: HTTP_SERVER | NOOM NG CQONTEXTS
Type of context data I T_Context Attributes: : server Type

266

CORBA transport attributes

Getting and Setting Transport Attributes

This context can be used to access and modify the CORBA Principal.
Table 6 shows the relevant details for accessing this context.

Table 6: Details for CORBA Transport Context

Description

Value

Header file

<i t _bus_pdk/ cont ext _attrs/corba_xsdTypes. h>

Kind of context container

Request, Reply

Context QName

I T_Context Attributes:: CORBA CONTEXT_ATTR BUTES

Type of context data

I T ContextAttributes:: CORBAALtri but esType

Principal attribute

Calling get _cont ext () returns the Principal as an | T_Bus: : St ri ngHol der
instance. Table 7 shows the relevant details for accessing this context.

Table 7: Details for Principal Context

Description

Value

Header file

<it_bus_pdk/ cont ext _attrs/context_types. h>

Kind of context container

Request, Reply

Context QName

I T_Context Attributes:: PR NC PAL_OCONTEXT_ATTR BUTE

Type of context data

| T_Bus:: StringHol der

267

CHAPTER 8 | Working with Transport Attributes

MQ connection attributes

This context is used to set MQ connection attributes on the client side of a
connection. After each invocation, the connection attributes are changed
back to the defaults specified in the WSDL contract. Table 8 shows the
relevant details for accessing this context.

Table 8: Details for MQ Connection Attributes Context

Description

Value

Header file

<it_bus_pdk/ cont ext _attrs/ ng_xsdTypes. h>

Kind of context container

Request

Context QName

I T_Context Attributes:: M) CONNECTI ON_ATTR BUTES

Type of context data

I T_Context Attributes:: MXonnecti onAttributesType

MQ outgoing message attributes

For a client, this context enables you to set the MQ message attributes on
the next outgoing request. For a server, this context enables you to set the
MQ message attributes on the next outgoing reply. Table 9 shows the
relevant details for accessing this context.

Table 9: Details for MQ Outgoing Message Attributes Context

Description

Value

Header file

<it_bus_pdk/ cont ext _attrs/ ng_xsdTypes. h>

Kind of context container

Request, Reply

Context QName

I T _Context Attributes:: M) QUTGO NG MESSAGE ATTRI BUTES

Type of context data

I T_Context Attributes:: MMessageAt tri but esType

268

MQ incoming message attributes

Getting and Setting Transport Attributes

For a client, this context enables you to read the MQ message attributes
received from the last reply. For a server, this context enables you to read
the MQ message received with the current request. Table 10 shows the
relevant details for accessing this context.

Table 10: Details for MQ Incoming Message Attributes Context

Description

Value

Header file

<i t _bus_pdk/ cont ext _attrs/ ng_xsdTypes. h>

Kind of context container

Request, Reply

Context QName

I T _Context Attributes:: M | NOOM NG MESSAGE ATTRI BUTES

Type of context data

I T_Context Attributes:: MMessageAt tri but esType

FTP connection policy

For clients and servers, you can set all of the FTP connection policies in a
configuration context. For a client, you can additionally set the scan interval
policy and the receive timeout policy in a request context. Table 11 shows
the relevant details for accessing this context.

Table 11: Details for FTP Connection Policy Context

Description

Value

Header file

<it_bus_pdk/ context _attrs/ftp_context_xsdTypes. h>

Kind of context container

Configuration, Request

Context QName

I T_Context Attributes:: FTP_CONNECTI ON_PQLI CY

Type of context data

I T_Context Attributes:: Connecti onPol i cyType

269

CHAPTER 8 | Working with Transport Attributes

FTP connection credentials

For clients and servers, the FTP connection credentials context enables you
to set username and password for opening a connection to the FTP daemon.
Table 12 shows the relevant details for accessing this context.

Table 12: Details for FTP Connection Credentials Context

Description

Value

Header file

<it_bus_pdk/ context_attrs/ftp_context_xsdTypes. h>

Kind of context container

Configuration

Context QName

I T_Context Attributes:: FTP_CREDENTI ALS

Type of context data

I T ContextAttributes::Oedential sType

FTP client naming policy

FTP server naming policy

270

The FTP client naming policy enables you to register a class that generates
the names of the files created to store messages in the FTP file system.
Because this class must be a Java class, it is only possible to use this
feature from an Artix Java application. See Developing Artix Applications in
Java for details.

The FTP server naming policy enables you to register a class that generates
the names of the files created to store messages in the FTP file system.
Because this class must be a Java class, it is only possible to use this
feature from an Artix Java application. See Developing Artix Applications in
Java for details.

i18n server attributes

Getting and Setting Transport Attributes

For a server, the i18n server attributes context enables you to set the local
codeset and the server outbound codeset in the reply context. Table 13
shows the relevant details for accessing this context.

Table 13: Details for 18N Server Attributes Context

Description

Value

Header file

<it_bus_pdk/ cont ext _attrs/i 18n_cont ext _xsdTypes. h>

Kind of context container

Reply

Context QName

I T ContextAttributes:: 118N | NTERCEPTCR _SERVER QNAVE

Type of context data

I T_ContextAttributes:: ServerConfiguration

i18n client attributes

For a server, the i18n client attributes context enables you to set the local
codeset and the client outbound codeset in the request context. Table 14
shows the relevant details for accessing this context.

Table 14: Details for 18N Client Attributes Context

Description

Value

Header file

<it_bus_pdk/ cont ext _attrs/i 18n_cont ext _xsdTypes. h>

Kind of context container

Request

Context QName

I T ContextAttributes:: 118N | NTERCEPTCR CLI ENT_QNAVE

Type of context data

I T ContextAttributes::dientConfiguration

271

CHAPTER 8 | Working with Transport Attributes

Bus security attributes

For clients and servers, enables you to set security attributes
programmatically. Table 15 shows the relevant details for accessing this
context.

Table 15: Details for Bus Security Attributes Context

Description

Value

Header file

<it_bus_pdk/ context _attrs/bus_security_ xsdTypes. h>

Kind of context container

Request, Reply

Context QName

I T_Context Attributes:: SEQUR TY_SERVER CONTEXT

Type of context data

I T ContextAttributes::BusSecurity

HTTP endpoint URL attribute

For clients, this attribute enables you to specify the URL that will be used by
the next proxy to open a HTTP connection. The context value is cleared after
the proxy connection is opened. Table 16 shows the relevant details for
accessing this context.

Table 16: Details for HTTP Endpoint URL Context

Description

Value

Header file

<it_bus_pdk/ context _attrs/context_types. h>

Kind of context container

Request

Context QName

I T _ContextAttributes::HITP_ENDPO NT_URL

Type of context data

| T_Bus: : StringHol der

272

Server address context attributes

Getting and Setting Transport Attributes

For servers, this context is set only when you have registered a default
servant (see “Default Servants” on page 637). By reading this context from
the request context container, the server can determine the identity of the
target service. Table 17 shows the relevant details for accessing this
context.

Table 17: Details for Server Address Context

Description

Value

Header file

<i t _bus_pdk/ cont ext _attrs/address_cont ext. h>

Kind of context container

Request

Context QName

I T_Context Attributes:: SERVER ADDRESS CONTEXT

Type of context data

I T_Context Attributes:: AddressCont ext

Server operation attribute

This context is a non-serializable context that can be used to get a reference
to an I T_Bus: : Server Qper at i on object during an invocation on the server
side. In other words, you can access this context type from the body of a
servant function. See “Reading and Writing Custom Types” on page 223 for
more details about non-serializable contexts.

Table 18: Details for Server Operation Context

Description

Value

Header file

<it_bus_pdk/ cont ext _attrs/context_types. h>

Kind of context container

Request

Context QName

I T_Context Attributes:: SERVER CPERATI ON_CONTEXT

Type of context data

I T_Bus: : Server Qper at i onCont ext

273

CHAPTER 8 | Working with Transport Attributes

Setting HTTP Attributes

Overview

In this section

274

Artix uses four contexts to support the HTTP transport. Two contexts support
the server-side HTTP information. The server-side contexts are of

I T_Context Attri but es: : server Type type. The other two contexts support
the client-side HTTP information. The client-side contexts are of

I T_Context Attributes::clientType type.

The information stored in the HTTP transport attribute contexts correlates to
the values passed in an HTTP header.

This section discusses the following topics:

Client-side Configuration page 275
Server-side Configuration page 288
Setting the Server's Endpoint URL page 301

Setting HTTP Attributes

Client-side Configuration

Overview

Outgoing header information

HTTP clients have access to both the values being passed in the HTTP
header of the outgoing request and the values received in the HTTP header

of the response. The information for each header is stored in a separate
context.

On the client-side, the outgoing context, HTTP_CLI ENT_QUTGO NG_CONTEXTS,
is available in the client’s request context. Any changes made to values in
the outgoing context are placed in the request’'s HTTP header and
propagated to the server. For example, if you want to allow requests to be
automatically redirected you could set the Aut oRedi rect attribute to t rue in
the client’s outgoing context. Example 97 shows the code for setting the
Aut oRedi rect property for a client.

Example 97: Setting a Client’s AutoRedirect Property

Il C++
#i ncl ude <it_bus_pdk/ cont ext. h>
#i nclude <it_bus_pdk/context_attrs/http_conf_xsdTypes. h>

| T_USI NG NAMESPACE _STD

usi ng namespace | T_ContextAttri butes;
usi ng nanespace | T_Bus;

Cont ext Regi stry* context_registry =
bus- >get _context _registry();

Cont ext Qurrent & context_current =
context _registry->get _current();

// otain a pointer to the Request Context Contai ner
Cont ext Cont ai ner* cont ext _cont ai ner =
context _current.request _contexts();

/] btain a reference to the context

AnyType* info = context_contai ner->get _cont ext (
I T _ContextAttributes::HITP_CLI ENT_OUTGO NG _CONTEXTS,
true

);

275

CHAPTER 8 | Working with Transport Attributes

Outgoing client attributes

Example 97: Setting a Client’s AutoRedirect Property

|/l Cast the context into a clientType object
clientType* http_client_config =
dynam c_cast <cl i ent Type*> (i nfo);

4 http_client_config->set Aut oRedirect (true);

/1 make proxy invocations

The code in Example 97 does the following:

1. Includes the header files for the general context classes and for the
HTTP client context type.

2. Gets the client's context registry.

3. Gets the client’s outgoing HTTP context from the request context
container.

4. Sets the value of the Aut oRedi rect property to true.

Table 19 shows the attributes that are valid in the outgoing HTTP client
context.

Table 19: Outgoing HTTP Client Attributes

HTTP Attribute Artix APIs Description
Accept String* getAccept () Specifies the MIME types the
const String* getAccept() const client can handle in a response.

voi d set Accept (const String* val)
voi d set Accept (const String& val)

Accept - Encodi ng

String* get Accept Encodi ng() Specifies the types of content
const String* getAccept Encodi ng() encoding the client can handle in
const a response. This property typically
refers to compression

voi d set Accept Encodi ng(

const String* val)
voi d set Accept Encodi ng(

const String& val)

mechanisms.

276

Setting HTTP Attributes

Table 19: Outgoing HTTP Client Attributes

HTTP Attribute

Artix APls

Description

Accept - Language

String* get Accept Language()
const String* getAccept Language()
const

voi d set Accept Language(

const String* val)
voi d set Accept Language(

const String& val)

Specifies the language the client
prefers. Valid language tags
combine an I1SO language code
and an ISO country code
separated by a hyphen. For
example, en- US.

Aut hori zati on

String* getAuthorization()
const String* getAuthorization()
const

voi d set Aut hori zat i on(

const String* val)
voi d set Aut hori zat i on(

const String& val)

Specifies the credentials that will
be used by the server to authorize
requests from the client.

Aut hori zat i onType

String* getAuthorizationType()
const String* get Aut hori zati onType()
const

voi d set Aut hori zati onType(

const String* val)
voi d set Aut hori zat i onType(

const String& val)

Specifies the name of the
authentication scheme in use.

Aut oRedi r ect Bool ean* get Aut oRedi rect () Specifies whether a request
const Bool ean* get Aut oRedi rect () should be automatically
const redirected by the server. The
'd Aut oRedi default is f al se to specify that
voi d set Aut oRedi r ect (requests are not to be
const Bool ean* val) t ticall directed
voi d set Aut oRedi rect (automatically redirected.
const Bool ean& val)
Br owser Type String* getBrowser Type() Specifies information about the

const String* getBrowser Type() const

voi d set Browser Type(

const String* val)
voi d set Browser Type(

const String& val)

browser from which the request
originates. This property is also
know as the user-agent.

277

CHAPTER 8 | Working with Transport Attributes

Table 19: Outgoing HTTP Client Attributes

HTTP Attribute

Artix APls

Description

Accept - Language

String* get Accept Language()
const String* getAccept Language()
const

voi d set Accept Language(

const String* val)
voi d set Accept Language(

const String& val)

Specifies the language the client
prefers. Valid language tags
combine an I1SO language code
and an ISO country code
separated by a hyphen. For
example, en- US.

Aut hori zati on

String* getAuthorization()
const String* getAuthorization()
const

voi d set Aut hori zat i on(

const String* val)
voi d set Aut hori zat i on(

const String& val)

Specifies the credentials that will
be used by the server to authorize
requests from the client.

Aut hori zat i onType

String* getAuthorizationType()
const String* get Aut hori zati onType()
const

voi d set Aut hori zati onType(

const String* val)
voi d set Aut hori zat i onType(

const String& val)

Specifies the name of the
authentication scheme in use.

Aut oRedi r ect Bool ean* get Aut oRedi rect () Specifies whether a request
const Bool ean* get Aut oRedi rect () should be automatically
const redirected by the server. The
'd Aut oRedi default is f al se to specify that
voi d set Aut oRedi r ect (requests are not to be
const Bool ean* val) t ticall directed
voi d set Aut oRedi rect (automatically redirected.
const Bool ean& val)
Br owser Type String* getBrowser Type() Specifies information about the

const String* getBrowser Type() const

voi d set Browser Type(

const String* val)
voi d set Browser Type(

const String& val)

browser from which the request
originates. This property is also
know as the user-agent.

278

Setting HTTP Attributes

Table 19: Outgoing HTTP Client Attributes

HTTP Attribute

Artix APIs

Description

Cache- Cont r ol

String* getCacheControl ()
const String* getCacheControl ()
const

voi d set CacheCont rol (

const String* val)

voi d set CacheControl (

const String& val)

Specifies directives to caches
along the request/response path.

Valid values are:

no- cache: caches must revalidate
responses with the server. If
response header fields are given,
the restriction applies only to
those header fields.

no- st or e: caches must not store
any part of a request or its
response.

max- age: the max age, in
seconds, of an acceptible
response.

max- st al e: the client will accept
expired messages. If a value is
given, it specifies the how many
seconds after a response expires
that the it is still acceptable. If no
value is given, all stale responses
are acceptable.

m n-fresh: the response must
stay fresh for the given number of
seconds.

no- t ransf or m caches must not
modify the media type or the
content location of a response.

onl y-i f - cached: caches should
return only cached responses.

279

CHAPTER 8 | Working with Transport Attributes

Table 19: Outgoing HTTP Client Attributes

HTTP Attribute

Artix APls

Description

AientCertificate

String* getdientCertificate()
const String* getdientCertificate()
const

void setdientCertificate(

const String* val)
void setdientCertificate(

const String& val)

Specifies the full path to the
PKCS12-encoded X509
certificate issued by the certificate
authority for the client.

AientCertificateChain

String* getdientCertificateChain()
const String*
getAientCertificateChain() const

void setdientCertificateChai n(
const String* val)

void setdientCertificateChai n
const String& val)

Specifies the full path to the file
containing all of the certificates in
the chain.

dientPrivat eKey

String* getdientPrivateKey()
const String* getdientPrivateKey()
const

voi d setdientPrivat eKey(

const String* val)
voi d setdientPrivat eKey(

const String& val)

Specifies the full path to the
PKCS12-encoded private key that
corresponds to the X509
certificate specified by
dientCertificate.

dient Privat eKeyPasswor d

String*
getdient Privat eKeyPasswor d()
const String*
get A ientPrivat eKeyPassword() const

voi d setd i entPrivat eKeyPasswor d(
const String* val)

voi d setd i entPrivat eKeyPasswor d(
const String& val)

Specifies the password used to
decrypt the PKCS12-encoded
private key.

280

Setting HTTP Attributes

Table 19: Outgoing HTTP Client Attributes

HTTP Attribute

Artix APIs

Description

Connect i on String* get Connection() Specifies whether a connection is
const String* getConnection() const to be kept open after each
request/response transaction.
voi d set Connect i on(.
const String* val) | Valid values are:
voi d set Connecti on(_ cl ose: the connection is closed
const String& val) | after each transaction.
Keep- Al i ve: the client would like
the conneciton to remain open.
Servers do not have to honor this
request.

Cooki e String* get Cooki e() Specifies a static cookie that is
const String* getCookie() const sent along with a request.
voi d set Cooki e(const String* val) Note: A_cs:orqing to the HTTP
voi d set Cooki e(const String& val) 1.1 specification, HTTP cookies

must contain US-ASCII
characters.

Expi res String* get Expires() Specifies the date after which
const String* getExpires() const responses are considered stale.
voi d set Expires(const String* val)
voi d set Expires(const String& val)

Host String* get Host () Specifies the Internet host and
const String* getHost() const port number of the service for

which the request is targeted.
voi d set Host (const String* val)
voi d set Host (const String& val)
Passwor d String* get Password() Specifies the password to use in
const String* getPassword() const username/password
authentication.
voi d set Password(const String* val)
voi d set Password(const String& val)
Pr agna String* getPragma() Specifies implementation-specific

const String* getPragna() const

voi d set Pragma(const String* val)
voi d set Pragma(const String& val)

directives that might apply to any
recipient along the
request/response chain.

281

CHAPTER 8 | Working with Transport Attributes

Table 19: Outgoing HTTP Client Attributes

HTTP Attribute

Artix APls

Description

Pr oxy- Aut hori zati on

String* getProxyAuthorization()
const String*
get ProxyAut hori zati on() const

voi d set ProxyAut hori zat i on(

const String* val)
voi d set ProxyAut hori zat i on(

const String& val)

Specifies the credentials used to
perform validation at a proxy
server along the request/response
chain. If the proxy uses
username/password validation,
this value is not used.

ProxyAut hori zat i onType

String* getProxyAuthorizationType()
String& get ProxyAut hori zat i onType()

voi d set ProxyAut hori zat i onType(
const String* val)

voi d set ProxyAut hori zat i onType(
const String& val)

Specifies the type of
authentication used by proxy
servers along the
request/response chain.

Pr oxyPasswor d String* getProxyPasswor d() Specifies the password used by
const String* getProxyPassword() proxy servers for authentication if
const username/password
) authentication is in use.
voi d set Pr oxyPasswor d(
const String* val)
voi d set Pr oxyPasswor d(
const String& val)
Pr oxySer ver String* getProxyServer() Specifies the URL of the proxy
const String* getProxyServer() const | server, if one exists, along the
request/response chain.
voi d set ProxyServer (
const String* val) | Note: Artix does not support the
voi d set ProxySer ver (existence of more than one proxy
const String& val) | server along the request/response
chain.
Pr oxyUser Nane String* get ProxyUser Nane() Specifies the username used by

const String* getProxyUser Name()
const

voi d set ProxyUser Nane(String val)

proxy servers for authentication if
username/password
authentication is in use.

282

Setting HTTP Attributes

Table 19: Outgoing HTTP Client Attributes

HTTP Attribute

Artix APIs

Description

Recei veTi meout

I nt* get Recei veTi meout ()
const Int* getReceiveTi neout () const

voi d set Recei veTi meout (

const Int* val)
voi d set Recei veTi meout (

const Int& val)

Specifies the number of
milliseconds the client will wait to
receive a response from a server
before timing out. The default is
3000.

Ref er er String* getReferer() Specifies the entity that referred
const String* getReferer() const the client to the target server.
voi d set Referer(const String* val)
voi d set Referer(const String& val)

Send- Ti meout Int* get SendTi meout () Specifies the number of
const Int* getSendTineout () const milliseconds the client will

continue trying to send a request
voi d set SendTi meout (const I nt* val) to the server before timing out
voi d set SendTi meout (const I nt& val) '

Ser ver Dat e String* get ServerDate() Specifies the time setting for the

const String* getServerDate() const

voi d set Server Dat e(

const String* val)
voi d set Ser ver Dat e(

const String& val)

server. When this value is set, the
client will use it as the base time
from which to calculate message
expiration. The client defaults to

using its internal system clock.

Trusted Root Certificate

String* getTrustedRoot Certificates()
const String*
get Trust edRoot Certi ficates() const

voi d set Trust edRoot Certi fi cat es(
const String* val)

voi d set Trust edRoot Certi fi cat es(
const String& val)

Specifies the full path to the
PKCS12-encoded X509
certificate for the certificate
authority.

User Nane

String* get User Nane()
const String* getUser Nane() const

voi d set User Nane(const String* val)
voi d set User Narme(const String& val)

Specifies the username used for
authentication when the server
uses username/password
authentication.

283

CHAPTER 8 | Working with Transport Attributes

Table 19: Outgoing HTTP Client Attributes

HTTP Attribute

Artix APIs Description

Use Secure Sockets

Bool ean* get UseSecur eSocket s() Specifies the client wants to use a
const Bool ean* get UseSecur eSockets() | secure connection. Secure HTTP

const connections are also referred to as

_ HTTPS.
voi d set UseSecur eSocket s(

const Bool ean* val) Valid values are true and f al se.
voi d set UseSecur eSocket s(

Note: If the contract specifies
const Bool ean& val)

HTTPS, this value is always t r ue.

Incoming header

284

The client’s incoming context, HTTP_CLI ENT_I NOOM NG_CONTEXTS, is
available in the client’s reply context after a response from the server has
been received by the transport layer. The values stored in this context are for
informational purposes only. For example, if you need to check the MIME
type of the data returned in the request, you would read it from the client’s
incoming context as shown in Example 98.

Example 98: Reading the Content Type in an HTTP Client

/] C++
1 #include <it_bus_pdk/context.h>
#i ncl ude <it_bus_pdk/context_attrs/http_conf_xsdTypes. h>

| T_US| NG_NAVESPACE_STD

usi ng namespace | T_Context Attri butes;
usi ng nanmespace | T_Bus;

2 /! make proxy invocation

3 ContextRegistry* context_registry =
bus->get _context _registry();

Cont ext Qurrent & context _current =
context_registry->get_current();

// otain a pointer to the Request Context Contai ner
Cont ext Cont ai ner* cont ext _cont ai ner =
context_current.reply_contexts();

Incoming client attributes

Setting HTTP Attributes

Example 98: Reading the Content Type in an HTTP Client

// Ootain a reference to the context

AnyType* info = context_contai ner->get _cont ext (
| T_Context Attri butes:: HTTP_CLI ENT_| NOOM NG CONTEXTS,
true

)

/'l Cast the context into a clientType object
client Type* http_client_config =
dynani c_cast <cl i ent Type*> (info);

I T Bus::String* content = http_client_config->get Cont ent Type();

The code in Example 98 does the following:

1. Includes the header files for the general context classes and for the
HTTP client context type.

Makes an invocation on the proxy.
Gets the client’s context registry.

Gets the client’s incoming HTTP context from the reply context
container.

5. Gets the value of the Cont ent Type property.

Table 20 shows the attributes that are valid in the incoming HTTP client
context.

Table 20: /ncoming HTTP Client Attributes

HTTP Attribute Artix APls Description
Cont ent - Encodi ng String* get Cont ent Encodi ng() Specifies the type of special
const String* get Content Encodi ng() encoding, if any, the server used
const to package the response.
Cont ent - Language String* get Cont ent Language() Specifies the language the server
const String* get Content Language() used in writing the response.
const

Valid language tags combine an
ISO language code and an ISO
country code separated by a
hyphen. For example, en- Us.

285

CHAPTER 8 | Working with Transport Attributes

Table 20: /ncoming HTTP Client Attributes

HTTP Attribute

Artix APls

Description

Cont ent - Locat i on

String* getContentLocation()
const String* getContentLocation()
const

Specifies the URL where the
resource being sent in a response
is located.

Cont ent - Type

String* getContent Type()
const String* getContent Type() const

Specifies the MIME type of the
data in the response.

ETag String* get ETag() Specifies the entity tag in the
const String* getETag() const response header.
HTTPRepl y String* get HTTPRepl y() Specifies the type of reply being
const String* getHTTPRepl y() const sent back by the server. For
example, if a request is fulfilled a
server will reply with CK.
HTTPRepl yCode Int* get HTTPRepl yCode() Specifies an integer code

const Int* get HTTPRepl yCode() const

associated with the server's reply.
For example, 200 means K and
404 means Not Found.

Last - Modi fi ed

String* getLastMdified()
const String* getLast Mdified()
const

Specifies the date and time at
which the server believes a
resource was last modified.

Proxy- Aut henti cat e

String* getProxyAuthenticate()
const String* getProxyAut henti cate()
const

Specifies a challenge that
indicates the authentication
scheme and parameters
applicable to the proxy for this
Request-URI.

Redi rect URL String* getRedirect URL() Specifies the URL to which client
const String* getRedirectURL() const | requests should be redirected.
This is issued by a server when it
is not appropriate for the request.
Ser ver Type String* get Server Type() Specifies the type of server

const String* getServer Type() const

responded to the client. Values
take the form
pr ogr am narre/ ver si on.

286

Setting HTTP Attributes

Table 20: /ncoming HTTP Client Attributes

HTTP Attribute

Artix APIs

Description

WWY Aut hent i cat e

String* get WW\ut hent i cat e()
const String* get WWMut henti cat e()
const

Specifies at least one challenge
that indicates the authentication
scheme(s) and parameters
applicable to the Request-URI.

287

CHAPTER 8 | Working with Transport Attributes

Server-side Configuration

Overview

Outgoing header

288

HTTP servers have access to both the values being passed in the HTTP
header of the outgoing response and the values received in the HTTP header
of the request. The information for each header is stored in a separate
context.

On the server-side, the outgoing context, HTTP_SERVER OUTGO NG _CONTEXTS,
is available in the server's reply context container. Any changes made to
values in the outgoing context are placed in the reply’s HTTP header and
propagated to the client. For example, if you want to inform the client that it
needs to redirect it's request to a different server, you could set the

Redi r ect URL attribute in the server’s outgoing context to the URL of an

appropriate server. Example 99 shows the code for setting the Redi rect URL
attribute for a server.

Example 99: Setting a Server’s RedirectURL Attribute

/] C++
#include <it_bus_pdk/ cont ext. h>
#include <it_bus_pdk/context_attrs/http_conf_xsdTypes. h>

| T_USI NG NAMESPACE STD

usi ng namespace | T_Context Attri butes;
usi ng namespace | T_Bus;

Cont ext Regi stry* context_registry =
bus->get _context _registry();

Cont ext Qurrent & context _current =
context_registry->get_current();

// otain a pointer to the Request Context Contai ner
Cont ext Cont ai ner* cont ext _cont ai ner =
context_current.reply_contexts();

Setting HTTP Attributes

Example 99: Setting a Server’s RedirectURL Attribute

// Ootain a reference to the context
AnyType* info = context_contai ner->get _cont ext (
| T_Cont ext At tri but es:: HTTP_SERVER QUTGO NG CONTEXTS,

true

)

/'l Cast the context into a serverType obj ect
server Type* http_server_config =
dynani c_cast <server Type*> (info);

ht t p_server_confi g- >set Redi rect URL("ht t p: / / ww. not me. or g/ askt hi s
quy”);

The code in Example 99 does the following:

1. Includes the header files for the general context classes and for the
HTTP server context type.
Gets the server's context registry.
Gets the server's outgoing HTTP context from the reply context
container.

4. Sets the value of the Redi rect URL property to the URL of the server
that can satisfy the request.

289

CHAPTER 8 | Working with Transport Attributes

Outgoing server attributes

Table 21 shows the attributes that are valid in the outgoing HTTP server

context.

Table 21: Outgoing HTTP Server Attributes

HTTP Attribute

Artix APls

Description

Cache- Cont r ol

String* getCacheControl ()
const String* getCacheControl ()
const

voi d set CacheControl (

const String* val)

voi d set CacheControl (

const String& val)

Specifies directives to caches
along the request/response path.

Valid values are:

no- cache: caches must revalidate
responses with the server. If
response header fields are given,
the restriction applies only to
those header fields.

publ i c: any cache can store the
response.

private: public caches cannot
store the response. If response
header fields are given, the
restriction applies only to those
header fields.

no- st or e: caches must not store
any part of the response or the
request.

no-t r ansf or m caches must not
modify the media type or the
content location of a response.

290

Setting HTTP Attributes

Table 21: Outgoing HTTP Server Attributes

HTTP Attribute

Artix APIs

Description

nust - reval i dat e: caches must
revalidate responses that have
expired with the server before the
response can be used.

proxy-reval i dat e: means the
same as nust - reval i dat e, but it
can only be enforced on shared
caches. You must set the public
directive when using this
directive.

max- age: the max age, in
seconds, of an acceptible
response.

s- maxage: means the same as
max- age, but it can only be
enforced on shared caches. When
set it overides the value of

max- age. You must use the

pr oxy-reval i dat e directive when
using this directive.

Cont ent - Encodi ng

String* get Cont ent Encodi ng()
const String* getContent Encodi ng()
const

voi d set Cont ext Encodi ng(

const String* val)
voi d set Cont ext Encodi ng(

const String& val)

Specifies the type of special
encoding, if any, the server uses
to package a response.

Cont ent - Language

String* get Cont ent Language()
const String* get Content Language()
const

voi d set Cont ent Language(

const String* val)
voi d set Cont ent Language(

const String& val)

Specifies the language used to
write a response. Valid language
tags combine an ISO language
code and an ISO country code
separated by a hyphen. For
example, en- US.

291

CHAPTER 8 | Working with Transport Attributes

Table 21: Outgoing HTTP Server Attributes

HTTP Attribute

Artix APls

Description

Cont ent - Locat i on

String* getContentLocation()
const String* getContentLocation()
const

voi d set Cont ent Locat i on(

const String* val)
voi d set Cont ent Locat i on(

const String& val)

Specifies the URL where the
resource being sent in a response
is located.

Cont ent - Type

String* getContent Type()
const String* getContent Type() const

voi d set Cont ent Type(

const String* val)
voi d set Cont ent Type(

const String& val)

Specifies the MIME type of the
data in the response.

String& get Expires()

voi d set Expi res(const String* val)
voi d set Expi res(const String& val)

ETag String* getETag() Specifies the entity tag in the
const String* getETag() const response header.
voi d set ETag(const String* val)
voi d set ETag(const String& val)

Expi res String* get Expires() Specifies the date after which the

response is considered stale.

Honor KeepAl i ve

Bool ean* get Honor KeepAl i ve()
const Bool ean* get Honor KeepAl i ve()
const

voi d set Honor KeepAl i ve(

const Bool ean* val)
voi d set Honor KeepAl i ve(

const Bool ean& val)

Specifies if the server is going to
honor a client’s keep-alive
request.

HTTPRepl y

String* get HTTPRepl y()
const String* getHTTPRepl y() const

voi d set HTTPRepl y(const String* val)
voi d set HTTPRepl y(const String& val)

Specifies the type of response the
server is issuing. For example, if
the request is fulfilled the server
will reply with oK.

292

Setting HTTP Attributes

Table 21: Outgoing HTTP Server Attributes

HTTP Attribute

Artix APIs

Description

HTTPRepl yCode

I nt* get HTTPRepl yCode()
const Int* get HTTPRepl yCode() const

voi d set HTTPRepl yCode(

const Int* val)
voi d set HTTPRepl yCode(

const Int& val)

Specifies an integer code
associated with the response. For
example, 200 means K and 404
means Not Found.

Last - Modi fi ed

String* getlLastMdified()
const String* getlLastMdified()
const

voi d set Last Modi fi ed(

const String* val)
voi d set Last Modi fi ed(

const String& val)

Specifies the date and time at
which the server believes a
resource was last modified.

Pragma

String* getPragna()
const String* getPragna() const

voi d set Pragma(const String* val)
voi d set Pragma(const String& val)

Specifies implementation-specific
directives that might apply to any
recipient along the
request/response chain.

Pr oxy- Aut hori zat i on

String* getProxyAuthorization()
const String*
get ProxyAut hori zati on() const

voi d set ProxyAut hori zati on(

const String* val)
voi d set ProxyAut hori zati on(

const String& val)

Specifies the credentials used to
perform validation at a proxy
server along the request/response
chain. If the proxy uses
username/password validation,
this value is not used.

ProxyAut hori zat i onType

String* get ProxyAut hori zati onType()
const String*
get ProxyAut hori zati onType() const

voi d set ProxyAut hori zat i onType(
const String* val)

voi d set ProxyAut hori zati onType(
const String& val)

Specifies the type of
authentication used by proxy
servers along the
request/response chain.

293

CHAPTER 8 | Working with Transport Attributes

Table 21: Outgoing HTTP Server Attributes

HTTP Attribute

Artix APls

Description

Pr oxyPasswor d

String* getProxyPassword()
const String* getProxyPassword()
const

voi d set Pr oxyPasswor d(

const String* val)
voi d set ProxyPasswor d(

const String& val)

Specifies the password used by
proxy servers for authentication if
username/password
authentication is in use.

Pr oxySer ver String* getProxyServer() Specifies the URL of the proxy
const String* getProxyServer() const | server, if one exists, along the
request/response chain.
voi d set ProxyServer (
const String* val) | Note: Artix does not support the
voi d set ProxySer ver (existence of more than one proxy
const String& val) | server along the request/response
chain.
Pr oxyUser Nane String* getProxyUser Nare() Specifies the username used by

const String* getProxyUser Name()
const

voi d set ProxyUser Nang(

const String* val)
voi d set ProxyUser Name(

const String& val)

proxy servers for authentication if
username/password
authentication is in use.

Reci eve- Ti neout

I nt* get Reci eveTi meout ()
const Int* getReci eveTi meout () const

voi d set Reci eveTi meout (

const Int* val)
voi d set Reci eveTi meout (

const Int& val)

Specifies the number of
milliseconds the server will wait
to receive a request before timing
out. The default is 3000.

Redi rect URL

String* getRedirect URL()
const String* getRedirectUR() const

voi d set Redi rect UR(

const String* val)
voi d set Redi rect URL(

const String& val)

Specifies the URL to which the
request should be redirected.

294

Setting HTTP Attributes

Table 21: Outgoing HTTP Server Attributes

HTTP Attribute

Artix APIs

Description

Send- Ti neout

I nt* get SendTi neout ()
const Int* getSendTi neout () const

voi d set SendTi neout (const Int* val)
voi d set SendTi meout (const I nt& val)

Specifies the number of
milliseconds the server will
continue trying to send a response
before timing out. The default is
3000.

ServerCertificate

String* getServerCertificate()
const String* getServerCertificate()
const

voi d set ServerCertificate(

const String* val)
voi d set ServerCertificate(

const String& val)

Specifies the full path to the X509
certificate issued by the certificate
authority for the server.

ServerCertificateChain

String* getServerCertificateChain()
const String*
get Server CertificateChain() const

voi d set ServerCertificat eChai n(
const String* val)

voi d set ServerCertificat eChai n(
const String& val)

Specifies the full path to the file
containing all of the certificates in
the chain.

Server Type

String* get ServerType()
const String* getServerType() const

voi d set Server Type(

const String* val)
voi d set Server Type(

const String& val)

Specifies the type of server
responded to the client. Values
take the form

pr ogr am nane/ ver si on.

Server Pri vat eKey

String* get ServerPrivateKey()
const String* getServerPrivateKey()
const

voi d set Server Pri vat eKey(

const String* val)
voi d set Server Pri vat eKey(

const String& val)

Specifies the full path to the
PKCS12-encoded private key that
corresponds to the X509
certificate specified by
ServerCertificate.

295

CHAPTER 8 | Working with Transport Attributes

Table 21: Outgoing HTTP Server Attributes

HTTP Attribute

Artix APls

Description

Ser ver Pri vat eKeyPasswor d

String*
get Server Pri vat eKeyPasswor d()
const String*
get Server Pri vat eKeyPasswor d() const

voi d get Server Pri vat eKeyPasswor d(
const String* val)

voi d get Server Pri vat eKeyPasswor d(
const String& val)

Specifies the password used to
decrypt the PKCS12-encoded
private key.

Trusted Root Certificate

String* getTrustedRoot Certificates()
const String*
get Trust edRoot Certi fi cates() const

voi d set Trust edRoot Certi fi cat es(
const String* val)

voi d set Trust edRoot Certi fi cat es(
const String& val)

Specifies the full path to the
PKCS12-encoded X509
certificate for the certificate
authority.

UseSecur eSocket s

Bool ean* get UseSecur eSocket s()
const Bool ean* get UseSecur eSocket s()
const

voi d set UseSecur eSocket s(

const Bool ean* val)
voi d set UseSecur eSocket s(

const Bool ean& val)

Specifies the server wants to use
a secure connection. Secure
HTTP connections are also
referred to as HTTPS.

Note: If the contract specifies
HTTPS, this value is always t r ue.

WWVY Aut hent i cat e

String* get WWWut henti cate()
const String* get WW\Aut henti cate()
const

voi d set W¥Munt hent i cat e(

const String* val)
voi d set W¥Munt hent i cat e(

const String& val)

Specifies at least one challenge
that indicates the authentication
scheme(s) and parameters
applicable to the Request-URI.

296

Incoming header

Setting HTTP Attributes

The server's incoming context, HTTP_SERVER | NOOM NG_QONTEXTS, is
available in the server's request context container after a request from client
has been received by the transport layer. The values stored in this context
are for informational purposes only. For example, if you need to check the
MIME type of the data the client can accept in the response, you would read
it from the server's incoming context as shown in Example 100.

Example 100:Reading the Accept Attribute in an HTTP Server

Il C++
#i ncl ude <it_bus_pdk/ cont ext . h>
#i nclude <it_bus_pdk/context_attrs/http_conf_xsdTypes. h>

| T_USI NG_NAMESPACE_STD

usi ng namespace | T_ContextAttri butes;
usi ng namespace | T_Bus;

Cont ext Regi stry* context _registry =
bus->get _context_registry();

Cont ext Qurrent & context _current =
context _registry->get_current();

/] otain a pointer to the Request ContextContai ner
Cont ext Cont ai ner* cont ext _contai ner =

context _current.request _contexts();

/] Cbtain a reference to the context
AnyType* info = context_contai ner->get _cont ext (

I T ContextAttributes::HITP_SERVER | NOOM NG CONTEXTS,
true

)i
// Cast the context into a serverType obj ect
server Type* http_server_config =

dynam c_cast <server Type*> (i nfo);

I T Bus::String* content = http_server_config- >get Accept ();

297

CHAPTER 8 | Working with Transport Attributes

Incoming server attributes

The code in Example 100 does the following:

1. Includes the header files for the general context classes and for the
HTTP server context type.

2. Gets the server's context registry.

3. Gets the server's incoming HTTP context from the request context
container.

4. Gets the value of the Accept property.

Table 20 shows the attributes that are valid in the incoming HTTP server
context.

Table 22: Incoming HTTP Server Attributes

HTTP Attribute Artix APls Description
Accept String* getAccept () Specifies the MIME types the
const String* getAccept() const client can handle in a response.
Accept - Encodi ng String* getAccept Encodi ng() Specifies the types of content
const String* getAccept Encodi ng() encoding the client can handle in
const a response. This property typically
refers to compression
mechanisms.
Accept - Language String* getAccept Language() Specifies the language preferred
const String* getAccept Language() by the client. Valid language tags
const combine an ISO language code

and an ISO country code
separated by a hyphen. For
example, en- US.

Aut hori zati on String* getAuthori zation() Specifies the credentials that will
const String* getAuthorization() be used by the server to authorize
const requests from the client.
Aut hor i zati onType String* getAuthori zati onType() Specifies the name of the
const String* getAuthorizationType() | authentication scheme in use.
const
Aut oRedi r ect Bool ean* get Aut oRedi rect () Specifies whether the server
const Bool ean* get Aut oRedi rect () should automatically redirect the
const request.

298

Setting HTTP Attributes

Table 22: Incoming HTTP Server Attributes

HTTP Attribute

Artix APIs

Description

Br owser Type

String* get Browser Type()
const String* getBrowser Type() const

Specifies information about the
browser from which the request
originates. This property is also
know as the user-agent.

Certificate |ssuer

String* getCertificatelssuer()
const String* getCertificatel ssuer()
const

Specifies the value stored in the
I ssuer field of the client's X509
certificate.

Certificate Key S ze

Int* getCertificateKeyS ze()
const Int* getCertificateKeyS ze()
const

Specifies the size, in bytes, of the
public key included in the client’s
x509 certificate.

Certificate Valid Not
After

String* getCertificateNotAfter()
const String*
getCertificateNot After() const

Specifies the date and time after
which the client’s X509 certificate
is invalid.

Certificate Valid Not
Bef ore

String* getCertificateNotBefore()
const String*
get Certificat eNot Before() const

Specifies the date and time before
which the client’s X509 certificate
is invalid.

Certificate Subject

String* getCertificateSubject()
const String*
get CertificateSubject() const

Specifies the value of the Subj ect
field in the client’s X509
certificate.

Connect i on String* get Connection() Specifies whether a connection is
const String* getConnection() const to be kept open after each
request/response transaction.
Cooki e String* get Cooki e() Specifies a static cookie that is
const String* getCookie() const sent along with a request.
Note: According to the HTTP
1.1 specification, HTTP cookies
must contain US-ASCII
characters.
Host String* getHost () Specifies the Internet host and

const String* getHost() const

port number of the resource being
requested.

299

CHAPTER 8 | Working with Transport Attributes

Table 22: Incoming HTTP Server Attributes

HTTP Attribute

Artix APls

Description

HTTPVer si on

String* get HTTPVersi on()
const String* getHTTPVersion() const

Specifies the version of the HTTP
transport in use. Currently, this is
always setto 1.1.

| f-Mdified-S nce

String* getlfMdifiedS nce()
const String* getlfMdifiedS nce()
const

If the requested resource has not
been modified since the time
specified, the server should issue
a 304 (not modified) response
without any message body.

Met hod String* getMethod() Specifies the value of the METHD
const String* getMethod() const token sent in the request. Valid
values and their meanings are
given in the HTTP 1.1
specification.
Passw od String* get Passwor d() Specifies the password the client

const String* getPassword() const

wishes to use for authentication.

Proxy- Aut henti cat e

String* getProxyAuthenticate()
const String* getProxyAut henti cate()
const

Specifies a challenge that
indicates the authentication
scheme and parameters
applicable to the proxy for this
Request-URI.

Ref er er String* getReferer() Specifies the entity that referred
const String* getReferer() const the client.
URL String* get URL() Specifies the value of the
const String* getURL() const Request-URI sent in the request.
The valid values for this property
are described in the HTTP 1.1
specification.
User nane String* get User Nane() Specifies the username the client

const String* getUser Nane() const

wishes to use for authentication.

300

Setting HTTP Attributes

Setting the Server’s Endpoint URL

Overview

Getting the property

Server main function

[

Because the server's endpoint URL must be known before the transport
layer is initialized by the bus, you must use the specialized configuration
context to set it. For more information on using the configuration context see
“Getting a Context Instance” on page 213.

To access the HTTP endpoint URL property for an HTTP server, obtain a
configuration context container (using get _confi guration_context()) and
then get the HTTP_SERVER QUTGO NG _CONTEXTS context. You are returned an
I T_Context Attributes: : server Type object that has two relevant methods:
® set URL() sets a String representing the URL of the server.

® get URL() returns a String representing the URL of the server.

Example 101 shows sample code from a server main function, which shows
how to initialize ht t p- conf : ser ver Type configuration context data.

Example 101:Server Main Function Setting a Configuration Context
Il C++

#i ncl ude <it_bus/ bus. h>
#i ncl ude <it_bus/exception. h>
#i nclude <it_cal /i ostream h>

/1 Include header files related to the soap context
#i ncl ude <it_bus_pdk/ cont ext . h>
#include <it_bus_pdk/context_attrs/http_conf_xsdTypes. h>

| T_US| NG_NAMESPACE_STD

usi ng nanespace | T_ContextAttri butes;
usi ng namespace | T_Bus;

int
mai n(int argc, char* argv[])
{
try
{
I T Bus::Bus_var bus = | T Bus::init(argc, argv);

301

CHAPTER 8 | Working with Transport Attributes

Example 101:Server Main Function Setting a Configuration Context

| T_Bus: : Q\ane servi ce_nane(
" SOAPSer vi ce",
"http://ww iona. com hell o_worl d_soap_http"

)

Cont ext Regi stry* context_registry =
bus- >get _context _registry();

Cont ext Cont ai ner * context_contai ner =
cont ext _regi stry->get _configuration_cont ext (
servi ce_nane,
" SoapPort",
true

)

/] Cbtain a reference to the context

AnyType* info = context_contai ner->get cont ext (
I T ContextAttributes:: HTTP_SERVER QUTGO NG _OONTEXTS,
true

JE

// Cast the context into a serverType obj ect
server Type* http_server_config =
dynam c_cast <server Type*> (info);

/1 Modify the endpoint URL
http_server_config->set URL("http://| ocal host: 63278");

G eeterlnpl servant (bus);

bus- >regi st er _servant (
servant,
"../..letc/hello world. wsdl",
servi ce_nane

DB
}
catch(1 T_Bus: : Excepti on& e)
{
cout << endl << "Error : Unhexpected error occured!"
<< endl << e.nessage()
<< endl ;
return -1;
}
return O;

302

Setting HTTP Attributes

Example 101:Server Main Function Setting a Configuration Context

}

The preceding code example can be explained as follows:

1. Theit_bus_pdk/ cont ext.h header file contains the declarations of the
following classes:

. | T_Bus: : Cont ext Regi stry,
. | T_Bus: : Cont ext Cont ai ner,
. | T_Bus: : Context Qurrent.

2. The http_conf_xsdTypes. h header declares the context data types
generated from the ht t p- conf schema.

3. This servi ce_nare is the QName of the SOAP service featured in the
hel 1 o_wor | d_soap_ht t p demonstration (in
denos/ basi ¢/ hel | o_wor| d_soap_htt p).

4. Obtain a reference to the | T_Bus: : Cont ext Regi st ry object, which is
used to register contexts with the Bus.

5. The I T_Bus: : Cont ext Cont ai ner object returned by
get _configuration_context () holds configuration data that is used
exclusively by the specified endpoint (that is, the SoapPort port in the
SOAPSer vi ce Service).

6. The I T _Bus:: Context Cont ai ner: : get_context () function is called
with its second parameter set to t rue, indicating that a context with
that name should be created if none already exists.

7. The I T_Bus:: AnyType class is the base type for all complex types in
Artix. In this case, you can cast the AnyType instance, i nf o, to its
derived type, server Type.

8. You can now modify the URL used by the SoapPort port by calling the
set URL() function.

303

CHAPTER 8 | Working with Transport Attributes

Setting CORBA Attributes

Overview

304

The CORBA transport does not support programmatic configuration, nor
does it provide access to any of the settings that are used to establish the
connection. Artix does, however, provide access to the CORBA principal by
way of the context mechanism. The CORBA principal is manipulated as a
String by the contexts.

For details of how to use the CORBA principal in Artix, consult the Artix
Security Guide.

Setting WebSphere MQ Attributes

Setting WebSphere MQ Attributes

Overview

In this section

When working with WebSphere MQ, your applications can access
information about the WebSphere MQ connection that is in use and
information contained in the WebSphere MQ message descriptor. The MQ
connection attributes context contains information about the queues and
queue managers that your application uses for sending and receiving
messages. On the client-side, you can set this information on a
per-invocation basis. The MQ message attributes context allows you to
inspect and set a number of the properties stored in the WebSphere MQ
message descriptor.

This section discusses the following topics:

Working with Connection Attributes page 306

Working with MQ Message Descriptor Attributes page 311

305

CHAPTER 8 | Working with Transport Attributes

Working with Connection Attributes

Overview

The WebSphere MQ transport provides information about the queues to
which your application send and receives messages. This information is
stored in the MQ connection attributes context and is accessed using the
MQ CCNNECTI ON_ATTRI BUTES constant. The data is returned in an
MXonnect i onAt tri but esType object. Table 23 describes the attributes
stored in the MQ connection attributes context.

Table 23: MQ Connection Attributes Context Properties

Attribute

Artix APIs

Description

AliasQueueName

String* get Ali asQueueNane()
const String* getAiasQieueNanme() const

voi d set Al i asQueueNanme(const String* val)
voi d set Al i asQueueNane(const String& val)

Specifies the remote queue to
which a server will put replies if
its queue manager is not on the
same host as the client’s local
queue manager.

ConnectionName

String* get Gonnecti onNarre()
const String* getConnecti onNane() const

voi d set Gonneci t onNanme(const String* val)
voi d set Conneci t onName(const String& val)

Specifies the name of the
connection by which the adapter
connects to the queue.

ModelQueueName

String* get Mdel QueueNane()
const String* get Mbdel QueueNanme() const

voi d set Mbdel QueueNanme(const String* val)
voi d set Mbdel QueueNane(const String& val)

Specifies the name of the queue
to be used as a model for
creating dynamic queues.

const String* get QueueNarre() const

voi d set QueueNarre(const String* val)
voi d set QueueNane(const String& val)

QueueManager String* get QieueManager () Specifies the name of the queue
const String* get QueueManager () const manager.
voi d set QueueManager (const String* val)
voi d set QueueManager (const String& val)

QueueName String* get QueueNane() Specifies the name of the

message queue.

306

Setting WebSphere MQ Attributes

Table 23: MQ Connection Attributes Context Properties

Attribute Artix APIs Description
ReplyQueueManager | String* get Repl yQueueManager () Specifies the name of the reply
const String* getRepl yQueueManager () const | queue manager. This setting is
) ignored by WebSphere MQ
voi d set Repl yQJeuel\/anagerC(onSt Sringt val) servers when the client specifies
ing* v .
voi d set Repl yQueueManager (the Repl YTOQ\@ n t:e regl,tlest
const Strings val) | Message's message descriptor.
ReplyQueueName String* get Repl yQueueNane() Specifies the name of the queue

const String* getRepl yQueueNane() const

voi d set Repl yQueueNane(const String* val)
voi d set Repl yQueueName(const String& val)

where response messages are
received. This setting is ignored
by WebSphere MQ servers when
the client specifies the Repl yToQ
in the request message’s
message descriptor.

Transactional

Transacti onType* get Transacti onal ()
const Transacti onType* get Transacti onal ()
const

voi d set Transacti onal (

const TransactionType* val)
voi d set Transacti onal (

const TransactionType& val)

Specifies how messages
participate in transactions and
what role WebSphere MQ plays
in the transactions. For
information on setting
Transactional see “Setting the
Transactional attribute” on
page 309.

Example

On the client-side you can control the connection to which requests are
directed by setting the MQ connection attributes in the client’s request
context before each invocation. The connection attributes are returned to the
defaults specified in the client’s contract after each invocation.

Example 102 shows code for specifying the queue and queue manager to

use when making a request.

Example 102:Setting the Client’s QueueManager and QueueName

/] C++
1 #include <it_bus_pdk/context.h>

#i ncl ude <it_bus_pdk/ cont ext _attrs/ ng_xsdTypes. h>

307

CHAPTER 8 | Working with Transport Attributes

Example 102:Setting the Client’s QueueManager and QueueName

| T_USI NG NAMESPACE STD

usi ng nanmespace | T_Context Attri butes;
usi ng namespace | T_Bus;

2 ContextRegistry* context_registry =
bus->get _context _registry();

Cont ext Qurrent & context _current =
context_registry->get_current();

// otain a pointer to the Request Context Contai ner
Cont ext Cont ai ner* cont ext _cont ai ner =
context _current.request_contexts();

3 // otain a reference to the context
AnyType* info = context_contai ner->get_cont ext (
| T_Context At tributes:: M) CONNECTI ON_ATTR BUTES,
true

)

/] Cast the context into a MXonnectionAttri butesType obj ect
MXonnect i onAttri but esType* ng_client_config =
dynam c_cast <MXonnect i onAtt ri but esType*> (info);

4 ny_client_config->set QueueManager (" Bl oggy") ;
nmoy_client _confi g- >set QueueNane(" Tal kBack") ;

// make proxy invocations

The code in Example 102 does the following:

1. Includes the header files for the general context classes and for the MQ
connection attributes context type.

Gets the client’s context registry.

Gets the client's MQ connection attributes context from the request
context container.

4. Sets the queue manager attribute and the queue name attribute.

Note: On the server-side you cannot change any of the connection
attributes programmatically.

308

Setting WebSphere MQ Attributes

Setting the Transactional attribute The transactional attribute is set using a t ransact i onType object.

transacti onType is @ WSDL enumeration whose values are described in
Table 24.

Table 24: MQ Transactional Values

Value

Artix API for Setting Description

none

set Transact i onal (transacti onType: : none) The messages are not part
of a transaction. No rollback
actions will be taken if
errors occur.

i nternal

set Transact i onal (transactionType: :internal) The messages are part of a
transaction with

WebSphere MQ serving as
the transaction manager.

Xa

set Transact i onal (transactionType: : xa) The messages are part of a
transaction with
WebSphere MQ serving as
the resource manager.

Example 103 shows code for setting a client’s connection to use XA style
transactionality for a request.

Example 103:Setting the Client’s Transactionality Attribute

/] C++
1 #include <it_bus_pdk/context.h>
#i ncl ude <it_bus_pdk/ cont ext _attrs/ ng_xsdTypes. h>

| T_US|I NG_NAMESPACE_STD

usi ng nanespace | T_ContextAttri butes;
usi ng namespace | T_Bus;

2 ContextRegistry* context registry =
bus->get _context_registry();

Cont ext Qurrent & context _current =
context _registry->get_current();

309

CHAPTER 8 | Working with Transport Attributes

310

Example 103:Setting the Client’s Transactionality Attribute

/] Ootain a pointer to the Request Context Cont ai ner
Cont ext Cont ai ner* cont ext _cont ai ner =
context _current.request_contexts();

// otain a reference to the context

AnyType* info = context_contai ner->get_cont ext (
I T Context Attributes:: M) CONNECTI ON _ATTR BUTES,
true

)

I/ Cast the context into a MXonnectionAttributesType obj ect
MXonnect i onAttri but esType* ng_client_config =
dynam c_cast <MXonnect i onAt tri but esType*> (info);

ny_client_confi g->set Transacti onal (transacti onType:: xa) ;

// make proxy invocations

The code in Example 102 does the following:

1. Includes the header files for the general context classes and for the MQ
connection attributes context type.

2. Gets the client’s context registry.

3. Gets the client’'s MQ connection attributes context from the request
context container.

4. Sets the MQ transaction type to XA.

For more information about working with Artix enumerated types, see
“Deriving Simple Types by Restriction” on page 382.

Setting WebSphere MQ Attributes

Working with MQ Message Descriptor Attributes

Overview

MQ incoming message attributes

MQ outgoing message attributes

The Artix WebSphere MQ transport splits its MQ message descriptor
attributes between two contexts, as follows:

® MQ incoming message attributes.
® MQ outgoing message attributes.

One context, accessed using the MQ | NOOM NG_MESSAGE_ATTR BUTES

const ant, contains the MQ message descriptor attributes for the last
message received by the application. For a client, this means that it
contains the attributes for the last response received from the server and the
context is accessed through the client’s reply context container. For a server,
this means that the incoming message attributes context contains the
descriptor attributes for the request being processed and it is accessed
through the server’s request context container. The incoming message
properties can be read at any point in the processing of the message once
the transport layer has passed it to the messaging chain.

The second context, accessed using M) QUTGO NG MESSAGE_ATTR BUTES,
allows you to set the values of the attributes in the MQ message descriptor
for the next message being sent across the wire. For clients, this means that
it affects the values of the next request being made and the context is
accessed through the client’s request context. For server’s, this means that
the outgoing message attributes context affects the values of the current
response’s MQ message descriptor and it is accessed through the server's
reply context container. You can set the values of the outgoing message
attributes at any point in an application’s message chain before it the
message is handed off to the transport layer.

311

CHAPTER 8 | Working with Transport Attributes

MQ message attributes

Both the incoming message attributes context and the outgoing message
attributes context are returned using as an MQvessageAt t ri but esType
object. Table 25 describes the attributes stored in the MQ message

attributes context.

Table 25: MQ Message Attributes Context Properties

Attribute

Artix APIs

Description

AccountingToken

String* getAccounti ngToken()
const String* getAccountingToken() const

voi d set Accounti ngToken(const String* val)
voi d set Accounti ngToken(const String& val)

Specifies the value for the MQ
message decscriptor’s
Account i ngToken field.

ApplicationData

String* getApplicationData()
const String* getApplicationData() const

voi d set Appl i cati onDat a(const String* val)
voi d set Appl i cationData(const String& val)

Specifies any
application-specific information
that needs to be set in the
message descriptor.

ApplicationldData

String* getApplicationl dData()
const String* getApplicationldData() const

voi d set Appl i cati onl dDat a(

const String* val)
voi d set Appl i cati onl dDat a(

const String& val)

Specifies the value of the MQ
message descriptor’s

Appl I denti t yDat a field. It is
only valid for MQ clients.

ApplicationOriginData

String* getApplicationCi ginData()
const String* getApplicationCiginData()
const

voi d set Appl i cationCri gi nDat a(

const String* val)
voi d set Appl i cati onCri gi nDat a(

const String& val)

Specifies the value of the MQ
message descriptor's
Appl Ori gi nDat a field.

BackoutCount

I nt* get Backout Count ()
const Int* getBackout Count () const

Returns the number of times
the message has been
previously returned by the
MYGET call as part of a unit of
work, and subsequently backed
out.

312

Setting WebSphere MQ Attributes

Table 25: MQ Message Attributes Context Properties

Attribute

Artix APIs

Description

Convert

Bool ean* i sConvert ()
const Bool ean* isConvert() const

voi d set Convert (const Bool ean* val)
voi d set Convert (const Bool ean& val)

Specifies if the messages in the
queue needs to be converted to
the system’s native encoding.

CorrelationID

Base64Bi nary* get Correl ati onl ()
const Base64Bi nary* getCorrel ationl X)
const

voi d setCorrel ati onl O(

const Base64Bi nary* val)
voi d setCorrel ationl O(

const Base64Bi nary& val)

Specifies the value for the MQ
message descriptor's Correl I d
field.

CorrelationStyle

correl ati onStyl eType*
getCorrel ati onStyl e()

const correl ati onStyl eType*
getCorrel ationStyl e() const

voi d setCorrel ati onStyl e(

const correlationStyl eType* val)
voi d setCorrel ationStyl e(

const correlationStyl eType& val)

Specifies how WebSphere MQ
matches both the message
identifier and the correlation
identifier to select a particular
message to be retrieved from
the queue. For information on
how to set CorrelationStyle, see
“Setting the CorrelationStyle
attribute” on page 314.

Delivery del i ver yType* get Del i very() Specifies the value of the MQ
const del i veryType* getDelivery() const message descriptor's
voi d setDelivery(const deliveryType* val) F’er5| st t.ence field. .For .
voi d setDelivery(const deliveryType& val) information on setting Delivery,
see “Setting the Delivery
attribute” on page 316.
Format f or mat Type* get For mat () Specifies the value of the MQ

const format Type* get Format() const

voi d set Format (const fornat Type* val)
voi d set Format (const fornat Type& val)

message descriptor’s For mat
field. For information on setting
Format, see “Setting the Format
attribute” on page 317.

313

CHAPTER 8 | Working with Transport Attributes

Table 25: MQ Message Attributes Context Properties

Attribute Artix APls Description
MessagelD String* get Messagel X) Specifies the value for the MQ
const String* get Messagel () const message descriptor's Msgl d
voi d set Messagel D(const String* val) field.
voi d set Messagel D(const String& val)
ReportOption report Qpt i onType* get Report Qpti on() Specifies the value of the MQ

const
voi d set Report Opti on(

voi d set Report Opti on(

const reportotionType* get Report Qption()

const report Qopti onType* val)

const reportQoti onType& val)

message descriptor’'s Report
field. For information on setting
ReportOption, see “Setting the
ReportOption attribute” on
page 319.

Userldentifier

String* getUserldentifier()
const String* getUserldentifier() const

voi d setUserldentifier(const String* val)
voi d set Userldentifier(const String& val)

Specifies the value for the MQ
message descriptor's
User | denti fier field.

Setting the CorrelationStyle

The CorrelationStyle attribute is set using a correl ati onStyl eType object.

attribute correl ati onStyl eType is a WSDL enumeration whose values are described
in Table 26.
Table 26: CorrelationStyle Values
Value Artix API for Setting Description
nessagel d correl ati onStyl eType cs("nessagel d"); Use the message ID as the

context->setCorrel ati onStyl e(cs);

value for the message'’s
Correl I d.

correl ationld

correl ationStyl eType cs("correl ationld");
context->setCorrel ati onStyl e(cs);

Use the message’s
Correlationld as the value
for the message’s

Correl | d.

messagel d copy

correl ationStyl eType cs("messagel d copy");
context->set Correl ationStyl e(cs);

Use the message ID as the
value for the message’s
Msgl d.

314

Setting WebSphere MQ Attributes

Example 104 shows code for setting a request message descriptor's
CorrelationStyle message Id.

Example 104:Setting the Client’s CorrelationStyle Attribute

Il C++
#i ncl ude <it_bus_pdk/ cont ext. h>
#i ncl ude <it_bus_pdk/ cont ext _attrs/ my_xsdTypes. h>

| T_USI NG NAMESPACE _STD

usi ng namespace | T_ContextAttri butes;
usi ng nanespace | T_Bus;

Cont ext Regi stry* context_registry =
bus- >get _context _registry();

Cont ext Qurrent & context_current =
context _registry->get _current();

// otain a pointer to the Request Context Contai ner
Cont ext Cont ai ner* cont ext _cont ai ner =
context _current.request _contexts();

/] btain a reference to the context

AnyType* info = context_contai ner->get _cont ext (
I T _ContextAttributes:: M) QUTGO NG MESSAGE ATTRI BUTES,
true

);

/] Cast the context into a MJMessageAttri but esType obj ect
MAvessageAt t ri but esType* ng_nsg_config =
dynani c_cast <MMessageAt tri but esType*> (i nfo);

correl ati onStyl eType cs("messagel d");
ny_nsg_config->set Correl ati onStyl e(cs);

/1 make proxy invocations

The code in Example 104 does the following:

1. Includes the header files for the general context classes and for the MQ
message attributes context type.

2. Gets the client’s context registry.

315

CHAPTER 8 | Working with Transport Attributes

Setting the Delivery attribute

3. Gets the client's MQ outgoing message attributes context from the

request context container.

4. Sets the correlation style to nessagel d.

The Delivery attribute is set using a del i ver yType object. del i veryType is a

WSDL enumeration whose values are described in Table 27.

Table 27: Delivery Values

Value

Artix API for Setting

Description

per si st ent

del i veryType delivery_t("persistent");
cont ext->set Del i very(del ivery_t)

Sets the Persi st ence field
to MJPER_PERS| STENT.

not persi stent

del i veryType delivery_t("not persistent");
cont ext->set Del i very(delivery_t);

Sets the Persi st ence field
to MOPER NOT_PERS| STENT.

Example 105 shows code for setting a request message descriptor’s

316

Per si st ence field to MJPER_PERS| STENT.

Example 105:Setting the Client’s Delivery Attribute

[l C++
#i ncl ude <it_bus_pdk/ cont ext. h>
#include <it_bus_pdk/ cont ext _attrs/ my_xsdTypes. h>

| T_US| NG_NAVESPACE_STD

usi ng namespace | T_Context Attri butes;
usi ng namespace | T_Bus;

Cont ext Regi stry* context _registry =
bus->get _context _registry();

Cont ext Qurrent & context _current =
context_registry->get_current();

// otain a pointer to the Request Context Cont ai ner
Cont ext Cont ai ner* cont ext _cont ai ner =
context _current.request _contexts();

Setting the Format attribute

Setting WebSphere MQ Attributes

Example 105:Setting the Client’s Delivery Attribute

// Ootain a reference to the context

AnyType* info = context_contai ner->get _cont ext (
| T_Context At tri butes:: M) QUTGO NG MESSAGE_ATTR BUTES,
true

)

/l Cast the context into a MJMessageAttri but esType obj ect
MJVessageAt tri but esType* ng_nsg_config =
dynani c_cast <MMessageAt tri but esType*> (i nfo);

del i veryType delivery_t("persistent");
ny_nsg_confi g- >set Del i very(del ivery_t);

// make proxy invocations

The code in Example 105 does the following:

1. Includes the header files for the general context classes and for the MQ
message attributes context type.

2. Gets the client’s context registry.

Gets the client's MQ outgoing message attributes context from the
request context container.

4. Sets the delivery type to persi stent.

The Format attribute is set using a f or mat Type object. f or mat Type is a
WSDL enumeration whose values are described in Table 28.

Table 28: Format Values

Value Artix API for Setting Description
none f or mat Type format (" none"); Sets the Format field to
cont ext - >set For mat (f ornat) ; MFMT_NONE.
string format Type format ("string"); Sets the Format field to
cont ext - >set For mat (f ornat) ; MFMI_STRI NG
uni code for mat Type format ("uni code"); Sets the Format field to
cont ext - >set For mat (f ornat) ; MFMI_STRI NG

317

CHAPTER 8 | Working with Transport Attributes

Table 28: Format Values

Value

Artix API for Setting

Description

event

format Type fornat ("event");
cont ext - >set For nat (f ormat) ;

Sets the Format field to
MJFMT_EVENT.

progranmabl e

comrand

f or mat Type fornat (" programmabl e command");
cont ext - >set For nat (f ormat) ;

Sets the Format field to
MJFMI_PCF.

format Type fornmat ("ins");
cont ext - >set For nat (f ormat) ;

Sets the Format field to
MFMT_I VB,

inms_var_string

format Type format ("inms_var_string");
cont ext - >set For nat (f ormat) ;

Sets the Format field to
MFMT_I M5_VAR STR NG

318

Example 106 shows code for setting a request message descriptor’'s For nat
field to MFMI_STRI NG

Example 106:Setting the Client’s Format Attribute

/] C++
#i ncl ude <it_bus_pdk/ context. h>
#i ncl ude <it_bus_pdk/ context _attrs/ my_xsdTypes. h>

| T_US NG NAVESPACE_STD

usi ng nanespace | T_Context Attri butes;
usi ng nanespace | T_Bus;

Cont ext Regi stry* context_registry =
bus->get _context _registry();

Cont ext Qurrent & context _current =
context _registry->get_current();

// Cbtain a pointer to the Request Context Cont ai ner
Cont ext Cont ai ner* cont ext _cont ai ner =
context _current.request_contexts();

// Cbtain a reference to the context

AnyType* info = context_contai ner->get_cont ext (
I T Context Attributes:: MQ QUTGO NG MESSAGE ATTR BUTES,
true

)

Setting the ReportOption attribute

Setting WebSphere MQ Attributes

Example 106:Setting the Client’s Format Attribute

/] Cast the context into a MJvessageAttri but esType obj ect
MVessageAt tri but esType* ny_nsg_config =
dynani c_cast <MMessageAt tri but esType*> (i nfo);

format Type format ("string");
ny_nsg_conf i g- >set For mat (format) ;

// make proxy invocations

The code in Example 106 does the following:

1. Includes the header files for the general context classes and for the MQ
message attributes context type.

2. Gets the client’s context registry.

3. Gets the client’'s MQ outgoing message attributes context from the
request context container.

4. Sets the message format to string.

The Report Opt i on attribute is set using a repor t Opt i onType object.
Repor t Qpt i onType is a WSDL enumeration whose values are described in
Table 29.

Table 29: ReportOption Values

Value Artix API for Setting Description
coa report Qpti onType report_option("coa"); Set the message
cont ext - >set Report Qpt i on(report_opti on) descriptor’s Report field to
MRO_CQA.
cod report Qpti onType report_option("cod"); Set the message
cont ext - >set Report ot i on(report _option) descriptor's Report field to
MJRO_CCD.
exception report Qpti onType report_option("exception"); Set the message
cont ext - >set Report ot i on(report _option) descriptor's Report field to
MQRO_EXCEPTI ON.

319

CHAPTER 8 | Working with Transport Attributes

Table 29: ReportOption Values

Value Artix API for Setting Description
expiration report Qpti onType report_option("expiration"); Set the message
cont ext - >set Report Qpt i on(report _opti on) descriptor’s Report field to
MQRO_EXPI RATI ON.
di scard report QptionType report_option("di scard"); Set the message
cont ext - >set Report Qpt i on(report _opti on) descriptor’s Report field to
MQRO DI SCARD MSG.

320

Example 107 shows code for setting a request message descriptor's Repor t
field to MGRO DI SCARD MSG

Example 107:Setting the Client’s ReportOption Attribute

[l C++
#i ncl ude <it_bus_pdk/ cont ext. h>
#include <it_bus_pdk/ cont ext _attrs/ my_xsdTypes. h>

| T_US| NG_NAVESPACE_STD

usi ng namespace | T_Context Attri butes;
usi ng nanmespace | T_Bus;

Cont ext Regi stry* context _registry =
bus->get _context _registry();

Cont ext Qurrent & context _current =
context_registry->get_current();

// otain a pointer to the Request ContextContai ner
Cont ext Cont ai ner* cont ext _cont ai ner =
context _current.request_contexts();

// otain a reference to the context

AnyType* info = context_contai ner->get_cont ext (
IT ContextAttributes:: M) QUTGO NG MESSAGE ATTRI BUTES,
true

)

// Cast the context into a MJessageAttri butesType obj ect
MJvessageAt t ri but esType* ng_nsg_config =
dynam c_cast <MQMessageAttri but esType*> (i nfo);

Setting WebSphere MQ Attributes

Example 107:Setting the Client’s ReportOption Attribute

4 reportQptionType report_option("discard");
ny_nsg_confi g- >set Report Qopt i on(report _opti on)

/1 make proxy invocations

The code in Example 107 does the following:

1. Includes the header files for the general context classes and for the MQ
message attributes context type.

2. Gets the client’s context registry.

3. Gets the client’'s MQ outgoing message attributes context from the
request context container.

4. Sets the report option to di scard.

321

CHAPTER 8 | Working with Transport Attributes

Setting FTP Attributes

Overview

In this section

322

The attributes used to configure an FTP connection are split into four
contexts:

® one for setting the policies used to connect to the FTP daemon.

® one for setting the credentials to use when connecting to the FTP
daemon.

® one for setting the naming scheme implementation to use for Artix
clients.

® one for setting the naming scheme implementation to use for Artix
servers.

These settings are all controlled through the special configuration context
that is made available before Artix registers any user level code with the bus.
For more information on using the configuration context see “Getting a
Context Instance” on page 213.

Artix clients can dynamically set the scan interval used by the FTP transport.
and can dynamically adjust the length of time they will wait for a response
before timing out.

This section discusses the following topics:

Setting FTP Connection Policies page 323
Setting the Connection Credentials page 327
Setting the Naming Policies page 330

Setting FTP Attributes

Setting FTP Connection Policies

Overview

Setting the connection mode

When setting the FTP connection policies you access them using the
FTP_OONNECTI ON_PQLI CY tag. The FTP connection policy context information
is returned as a | T_Cont ext At t ri but es: : Connect i onPol i cyType object. All
of the connection policies are valid when set in the configuration context. In
addition, Artix clients can set the scan interval policy and the receive
timeout policy in their request contexts.

The FTP connection mode is set using a Connect ModeType object.

Connect MbdeType is an enumeration whose values are described in
Table 30.

Table 30: ConnectionMode Values

Value Artix API for Setting Description
active Connect ModeType connect _nmode("acti ve"); Specifies that Artix controls the
cont ext - >set connect Mode(connect _node) ; connection to the FTPD.
passi ve Connect MbdeType connect _node(" passi ve") ; Specifies that the FTPD
cont ext - >set connect Mbde(connect _node) ; controls the connection.

Example 108 shows code for setting the connection mode to passi ve.
Example 108:Setting the FTP Connection Mode

Il C++
#i ncl ude <it_bus_pdk/ cont ext . h>
#include <it_bus_pdk/context _attrs/ftp_context xsdTypes. h>

| T_US|I NG_NAMESPACE_STD

usi ng namespace | T_ContextAttri butes;
usi ng namespace | T_Bus;

Cont ext Regi stry* context_registry =
bus->get _context_registry();

323

CHAPTER 8 | Working with Transport Attributes

Example 108:Setting the FTP Connection Mode

3 Qwane service gnane
= new Q\Nane("http://ww i ona. conl ft p_exanpl e", "FTPService");

4 (ont ext Cont ai ner* context _cont ai ner =
context _regi stry.get_configuration_context (
servi ce_qgnarre,
"FTPPort",
true

)

5 /] otain a reference to the context
AnyType* info = context_contai ner->get_cont ext (
| T_Context At tributes:: FTP_OONNECTI ON_PCLI CY,
true

)

// Cast the context into a ConnectionPolicyType object
Connect i onPol i cyType* ftp_config =
dynam c_cast <Connect i onPol i cyType*> (i nfo);

6 Connect MbdeType connect _node(" passi ve");
ftp_confi g- >set connect Mbde(connect _node) ;

// make proxy invocations

The code in Example 108 does the following:

1. Includes the header files for the general context classes and for the FTP
connection policy type.

2. Gets the client's context registry.

324

Setting the connection timeout

Setting the scan interval

Setting FTP Attributes

3. Set the name of an FTP service defined in the WSDL contract. For
example, you might define an FTP service like the following:

<wsdl : defini ti ons name="Hel | oV&r | d"
t ar get Nanespace="htt p: // www. i ona. comi ft p_exanpl e" ... >

<wsdl : servi ce nanme="FTPServi ce">
<wsdl : port bindi ng="tns: G eet er FTPBi ndi ng"
name="FTPPort" >
<ftp: port host="FTPHost" port="3210" />
</wsdl : port>
</ wsdl : servi ce>
</ wsdl : defi ni ti ons>

4. The configuration context is specific to the endpoint defined by the
service, FTPSer vi ce, and the port, FTPPort.

5. Gets the client’'s FTP connection policy context from the configuration
context container.

6. Sets the FTP connection mode to passi ve.

The FTP connection time out determines the number of seconds Artix will
spend in attempting to connect to the FTPD before timing out. It is set using

set connect Ti neout () . The value is specified as an integer as shown in
Example 109.

Example 109:Setting the Connection Timeout Policy

[l Ct+
AnyType* info = context_contai ner->get_cont ext (

I T_Context Attributes:: FTP_CONNECTI ON_PCLI CY,
true

)
Connect i onPol i cyType* ftp_config =
dynani c_cast <Connect i onPol i cyType*> (i nfo);

ft p_confi g. set connect Ti meout (10) ;

The scan interval determines the number of seconds that Artix waits before
rescaning the remote message repository for new messages. In addition to
being settable in the configuration context, the scan interval can also be set
by Artix clients using the request context.

325

CHAPTER 8 | Working with Transport Attributes

It is set using set scanl nt erval (). The value is specified as an integer, as
shown in Example 110.

Example 110:Setting the Scan Interval in a Client

/] C++

AnyType* info = context_contai ner->get_cont ext (

I T Context Attributes:: FTP_CONNECTI ON_PQLI CY,
true

)i
Connect i onPol i cyType* ftp_config =
dynam c_cast <Connect i onPol i cyType*> (i nfo);

ftp_config.setscanlnterval (3);

/1 Make invocation on proxy

Setting the receive timeout The receive timeout determines the number of seconds that an Artix client
waits for a response before throwing a timeout exception. In addition to
being settable in the configuration context, the receive timeout can also be
set by Artix clients using the request context.

It is set using setreci eveTi neout () . The value is specified as an integer as
shown in Example 111.

Example 111:Setting the Receive Timeout in a Client

/] C++

AnyType* info = context_contai ner->get_cont ext (
I T Context Attributes:: FTP_CONNECTI ON_PQLI CY,
true

)
Connect i onPol i cyType* ftp_config =

dynam c_cast <Connect i onPol i cyType*> (i nfo);
ftp_config. setrecei veTi meout (60) ;

// Make invocation on proxy

326

Setting FTP Attributes

Setting the Connection Credentials

Overview

Setting the FTP connection
credentials

Example

FTP servers require you to connect using a username and password. These
are set using the FTP connection credentials property.

Because the username and password used to connect to the FTP server
must be known before the transport is initialized, you need to set the
property in the special configuration context that is made available before
Artix registers any user level code with the bus. For more information on
using the configuration context see “Getting a Context Instance” on

page 213.

To set the FTP connection credentials property, use the FTP_CREDENTI ALS
tag. You are returned a Or edent i al sType object that has four member
functions:

® setnanme() sets a String representing the username used when

connecting to the FTP server.

get nane() returns a Stri ng representing the username used when
connecting to the FTP server.

set passwor d() sets a String representing the password used when
connecting to the FTP server.

get passwor d() returns a St ri ng representing the password used when
connecting to the FTP server.

Example 112 shows how to set the FTP connection credentials properties
on an Artix FTP client.

Example 112:Setting the FTP Connection Mode

[l Ct+

#i ncl ude <it_bus_pdk/ cont ext . h>

#include <it_bus_pdk/context _attrs/ftp_context xsdTypes. h>

| T_US|I NG_NAMESPACE_STD

usi ng namespace | T_ContextAttri butes;
usi ng namespace | T_Bus;

327

CHAPTER 8 | Working with Transport Attributes

Example 112:Setting the FTP Connection Mode

2 ContextRegistry* context registry =
bus->get _context _registry();

3 Qwane service gnane
= new Q\Nane("http://ww i ona. conl ft p_exanpl e", "FTPService");

4 Context Contai ner* context_container =
context _regi stry.get_configuration_context (
servi ce_gnarre,
"FTPPort",
true

)

5 /] otain a reference to the context
AnyType* info = context_contai ner->get_cont ext (
| T_Context At tributes:: FTP_CREDENTI ALS,
true

)

/1 Cast the context into a Oedential sType obj ect
Oredenti al sType* creds =
dynam c_cast <Credent i al sType*> (info);

6 creds- >set nane("george");
creds- >set passwor d(" bosco") ;

// make proxy invocations

The code in Example 112 does the following:

1. Includes the header files for the general context classes and for the FTP
credentials policy type.

2. Gets the client's context registry.

328

3.

Setting FTP Attributes

Set the name of an FTP service defined in the WSDL contract. For
example, you might define an FTP service like the following:

<wsdl : defini ti ons name="Hel | oV&r | d"
t ar get Nanespace="htt p: // www. i ona. comi ft p_exanpl e" ... >

<wsdl : servi ce nanme="FTPServi ce">
<wsdl : port bindi ng="tns: G eet er FTPBi ndi ng"
name="FTPPort" >
<ftp: port host="FTPHost" port="3210" />
</wsdl : port>
</ wsdl : servi ce>
</ wsdl : defi ni ti ons>

The configuration context is specific to the endpoint defined by the
service, FTPSer vi ce, and the port, FTPPort.

Gets the client’s FTP credentials policy context from the configuration
context container.

Sets the username and password for the FTP connection.

329

CHAPTER 8 | Working with Transport Attributes

Setting the Naming Policies

Overview

330

The FTP naming policies determine how Artix names the files created for the
messages sent over the FTP transport and how Artix cleans up files on the
remote datastore. These behaviors are controlled by a set of Java classes

that you can implement to meet specific needs. Artix also provides default
implementations.

For more details, see Developing Artix Application in Java and the FTP
chapter in Using Artix Contracts.

Setting i18n Attributes

Setting i18n Attributes

Overview

Configuring Artix to use the i18n
interceptor

Setting up i18n on a client

Artix has two contexts to configure codeset conversion when using the i18n
interceptor. One context configures the client and the other configures the
server. The i18n interceptor is used when working in an environment where
codeset conversion is required, but the transports in use do not support it. It
is a message-level interceptor and is invoked just before the transport layer
is handed the message.

The i18n interceptor can also be set up using port extensors in your
application’s contract. For information on setting up the i18n interceptor
using port extensors see the chapter on services in Designing Artix Solutions.

Before your application can use the i18n interceptor for code conversion you
must configure the Artix bus to load the required plug-ins and add the
interceptor to the appropriate message interceptor lists. To configure your
application to use the i18n interceptor do the following:
1. If your application includes a service proxy that needs to use codeset
conversion, add "i 18n- cont ext : | 18nl nt er cept or Fact ory" to the
bi ndi ng: arti x: cli ent_nessage_i nterceptor_|ist variable for your
application.
2. If your application includes a service that needs to use codeset
conversion, add "i 18n- cont ext : | 18nl nt er cept or Fact ory" to the
bi ndi ng: arti x: server_nessage_i nter ceptor _| i st variable for your
application.
3. Add"ii1sn_interceptor" to the list of plug-ins to load in the
or b_pl ugi ns variable for your application.

For more information on configuring Artix see Deploying and Managing Artix
Solutions.

In a client the only attributes in the i18n context that alter how the i18n
interceptor works are the client local codeset and the client outbound
codeset in the client’s request context. The client inbound codeset defaults
to the value of the outbound codeset and the client-side interceptor does not
read its value from the context.

331

http://www.iona.com/support/docs/artix/3.0/design/index.htm
http://www.iona.com/support/docs/artix/3.0/deploy/index.htm
http://www.iona.com/support/docs/artix/3.0/deploy/index.htm

CHAPTER 8 | Working with Transport Attributes

Setting up i18n on a server

332

To configure a client for codeset conversion using the i18n interceptor do
the following:

1. Get the client’'s message context.
2. Get the i18n client request context.
3. Set the local codeset property.

4. Set the outbound codeset property.

Example 113 shows the code for configuring a client for codeset conversion.
Example 113:Client i18n Properties

/] C++
#i nclude <it_bus_pdk/ cont ext. h>
#i ncl ude <it_bus_pdk/context _attrs/i18n_cont ext _xsdTypes. h>

| T_USI NG NAMESPACE STD

usi ng namespace | T_Context Attri butes;
usi ng namespace | T_Bus;

Cont ext Regi stry* context _registry =
bus->get _context _registry();

Cont ext Qurrent & context _current =
context_registry->get_current();

Cont ext Cont ai ner* cont ext _cont ai ner =
context _current.request_contexts();

AnyType* info = context_contai ner->get_cont ext (
I T _ContextAttributes:: | 18N | NTERCEPTCR CLI ENT_QNAME,
true

IE

dientConfiguration* i18n_config =
dynam c_cast <A i ent Confi guration*> (i nfo);

i 18n_confi g- >set Local CodeSet ("Latin-1");
i 18n_conf i g- >set Qut boundCodeSet (" UTF- 16") ;

In a server the only attributes in the i18n context that alter how the i18n
interceptor works are the server local codeset and the server outbound
codeset in the server’s reply context. The server-side interceptor does not
read the server inbound codeset from the context.

Setting i18n Attributes

To configure a server for codeset conversion using the i18n interceptor do
the following:

1. Get the server's message context.
2. Get the i18n server reply context.
3. Set the local codeset property.

4. Set the outbound codeset property.

Example 114 shows the code for configuring a server for codeset
conversion.

Example 114:Server i18n Properties

/] C++
#i ncl ude <it_bus_pdk/ cont ext. h>
#i ncl ude <it_bus_pdk/context _attrs/i18n_cont ext _xsdTypes. h>

| T_USI NG NAMESPACE _STD

usi ng nanespace | T_ContextAttri butes;
usi ng nanespace | T_Bus;

Cont ext Regi stry* context _registry =
bus- >get _context _registry();

Cont ext Qurrent & context_current =
context _registry->get _current();

Cont ext Cont ai ner* cont ext _cont ai ner =
cont ext _current.request_contexts();

AnyType* info = context_contai ner->get _cont ext (
I T ContextAttributes::| 18N | NTERCEPTCR SERVER QNAME,
true

)
Server Confi guration* i18n_config_srvr =
dynam c_cast <Server Conf i guration*> (i nfo);

i 18n_confi g_srvr->set Local CodeSet ("Latin-1");
i 18n_confi g_srvr->set Qut boundCodeSet (" UTF- 16") ;

333

CHAPTER 8 | Working with Transport Attributes

Setting WS-A and WS-RM Attributes

Overview

Enabling reliable messaging

Demonstration code

In this section

334

The WS-ReliableMessaging (WS-RM) specification describes an
interoperable protocol that provides message delivery guarantees between a
source and a destination. The protocol is layered above SOAP.

In addition to supporting oneway and synchronous two-way calls, the
WS-RM protocol can also work with message sequences. Delivery
guarantees can be applied to message sequences—for example, you can
require that every message in a message sequence gets delivered to its
destination.

In order to enable reliable messaging, you must update the Artix
configuration file. For details of how to configure WS-RM, see Configuring
and Deploying Artix Solutions.

A demonstration of the WS-ReliableMessaging feature is provided in the
following directory:

ArtixInstallDirl arti x/ Version/ demos/ advanced/ wsr m

This section contains the following subsections:

Setting the WS-A ReplyTo Endpoint page 335

Setting WS-RM Attributes page 337

Setting WS-A and WS-RM Attributes

Setting the WS-A ReplyTo Endpoint

Overview

WS-A configuration context scope

Setting the ReplyTo endpoint for a
client proxy

The WS-Addressing (WS-A) message exchange pattern is a basic
pre-requisite for WS-ReliableMessaging. Essentially, the message exchange
pattern provides the basic infrastructure for setting up a two-way stream of
messages between a source and a destination. When this pattern is
enabled, Artix sends a SOAP header that contains a wsa: To element and a
wsa: Repl yTo element to the server. The Artix core then sends request
messages to the endpoint specified in the wsa: To element and receives reply
messages asynchronously at the endpoint specified in the wsa: Repl yTo
element.

The | T_Bus: : WBAConf i gur at i onCont ext context enables you to specify the
wsa: Repl yTo URI programmatically on the client side.

When you register a WS-A configuration context instance, it is valid for one
proxy and one proxy only. The first proxy on which you invoke an operation
will adopt the programmed settings. The settings will not apply to any
proxies that you create subsequently.

Example 115 shows how to set the WS-Addressing ReplyTo endpoint on a
client proxy.

Example 115:Setting the WS-A ReplyTo Endpoint on a Client Proxy

[l Ct+
#i nclude <it_bus_pdk/ context _attrs/context_constants. h>
#i ncl ude <it_bus_pdk/ context _attrs/wsa_confi g_context.h>

Cont ext Cont ai ner* request _cont ai ner =
m bus- >get _pdk_bus() - >get _cont ext _regi stry()->get_current().requ
est _contexts();

dient Proxy proxy;

WBAConf i gur ati onCont ext* wsa_confi g_cont ext

= new WBAConfi gur ati onCont ext () ;
wsa_confi g_context->set_wsa_replyto_uri (

"http://I| ocal host: 0O/ WAACont ext d i ent / Cont ext Repl yTo"
)

335

CHAPTER 8 | Working with Transport Attributes

Example 115:Setting the WS-A ReplyTo Endpoint on a Client Proxy

5 request _cont ai ner->add_cont ext (
| T_Context Attributes:: WA OONFI GURATI ON_CONTEXT,
*wsa_config_cont ext

)
6 proxy.hello world();

The preceding code example can be explained as follows:

1. Includes the header files for the general context classes and the
WS-Addressing configuration context type.

2. Gets the request context container.

3. Create an | T_Bus: : WeACon(f i gur at i onCont ext instance to hold the
WS-RM attributes.

4. Call the set _wsa_repl yto_uri () function to specify the ReplyTo URI.
The address in this URI can be set as follows:

. Fixed host and port—where you specify the name of the client
host explicitly and you choose an explicit IP port number
(non-zero).

¢+ Dynamically allocated address—where you specify the
placeholder address, | ocal host : 0, and leave it up to the
operating system to allocate an IP port number. Artix replaces
I ocal host with the name of the client host. The client then
transmits the dynamically allocated address to the server inside a
SOAP header (using the wsa: repl yTo element).

5. When you have finished adding WS-Addressing attributes on the
WS-Addressing configuration context instance, add the context to the
request context container.

6. The first proxy on which you invoke an operation adopts the
WS-Addressing settings and clears the context again. The settings then
apply to all subsequent operation calls made using this proxy. Other
proxy instances are not affected by the WS-Addressing settings.

336

Setting WS-A and WS-RM Attributes

Setting WS-RM Attributes

Overview

RM sources and RM destinations

WS-RM configuration context
scope

The basic settings for enabling WS-RM must be specified in the Artix
configuration file (see Configuring and Deploying Artix Solutions). It is
possible, however, to override some of the settings by programming the
WS-RM configuration context, as described here.

The reliable messaging protocol is based on the concept of an RM channel,
which transmits messages in one direction only. Each channel consists of an
RM source (where messages originate) and an RM destination (where
messages arrive).
For each client-server association, there are two basic ways of organizing
RM channels, as follows:
® One-way association—sends oneway messages from a client to a
server. The association consists of a single channel, with an RM source
on the client side and an RM destination on the server side.
® Two-way association—sends messages in both directions, between a
client and a server. This association consists of two channels, where
the client and the server each have an RM source and an
RM destination.

When you register a WS-RM configuration context instance, it is valid for
one proxy and one proxy only. The first proxy on which you invoke an
operation will adopt the programmed settings. The settings will not apply to
any proxies that you create subsequently.

Moreover, WS-RM attributes are by definition applicable either to an RM
source or to an RM destination (either of which can occur in a client or in a
server). This contrasts with other kinds of transport attribute, which are
applicable either to a client or to a server.

337

CHAPTER 8 | Working with Transport Attributes

Setting WS-RM attributes on a Example 116 shows the general approach to setting WS-RM attributes that
client proxy affect a particulary client proxy instance, proxy.

Example 116:Setting WS-RM Attributes on a Client Proxy

Il C++
1 #include <it_bus_pdk/context_attrs/context_constants. h>
#include <it_bus_pdk/ context _attrs/wsrm config_context.h>

| T_US| NG_NAVESPACE_STD

usi ng namespace | T_Context Attri butes;
usi ng namespace | T_Bus;

Cont ext Cont ai ner* request _cont ai ner =
2 mbus->get _pdk_bus()->get_context _registry()->get_current().requ
est_contexts();

dient Proxy proxy;

3 WBRMDonfi gurati onCont ext * wsrm confi g_cont ext
= new WWBRMConf i gur ati onCont ext () ;

4 /] Set We-RM attributes here!

5 request _contai ner->add_cont ext (
I T_ContextAttributes: : WARM CONFI GURATI ON_OONTEXT,
*wsrm confi g_cont ext

IE
6 proxy.hello world();

The preceding code example can be explained as follows:

1. Includes the header files for the general context classes and the
WS-RM configuration context type.

Gets the request context container.

Create an I T_Bus: : WBRMOonf i gur at i onCont ext instance to hold the
WS-RM attributes.

4. You can set any of the client-side WS-RM attributes at this point in the
code (not shown).

338

Setting WS-RM attributes in a
servant

Setting WS-A and WS-RM Attributes

When you have finished adding WS-RM attributes on the WS-RM
configuration context instance, add the context to the request context
container.

The first proxy on which you invoke an operation adopts the WS-RM
settings and clears the context again. The settings then apply to all

subsequent operation calls made using this proxy. Other proxy
instances are not affected by the WS-RM settings.

On the server side, you can set RM source attributes by modifying the
attributes in a WS-RM reply context before the service sends its first reply

message to a particular client. RM destination attributes, on the other hand,

cannot be modified by programming on the server side.

Example 117 shows the general approach to setting WS-RM attributes in a

servant (that is, in the implementation of an operation).
Example 117:Setting WS-RM Attributes in a Servant

[l C++
#i ncl ude <it_bus_pdk/ cont ext _attrs/context_constants. h>
#i ncl ude <it_bus_pdk/ context _attrs/wsrm config_context.h>

| T_US| NG_NAMESPACE_STD

usi ng nanespace | T_ContextAttri butes;
usi ng namespace | T_Bus;

// btain a pointer to the reply Context Contai ner
Cont ext Cont ai ner* reply_contai ner =

m bus->get _context_registry()->get_current().reply_contexts();

WBRMConf i gur at i onCont ext * wsrm conf i g_cont ext
= new WBRMOonf i gur at i onCont ext () ;

// Set Ws-RMsource attributes here!
repl y_cont ai ner - >add_cont ext (

I T _Context Attributes:: WSRV CONFI GURATI ON_CONTEXT,
*wsrm confi g_cont ext

339

CHAPTER 8 | Working with Transport Attributes

Programmable WS-RM source
attributes

WS-RM acknowledgement URI

340

The preceding code example can be explained as follows:

1. Includes the header files for the general context classes and the
WS-RM configuration context type.

2. Gets the reply context container.

3. Create an | T_Bus: : WBRMDonf i gur at i onCont ext instance to hold the
server-side WS-RM attributes.
You can set RM source attributes at this point in the code (not shown).
5. When you have finished adding WS-RM attributes on the WS-RM

configuration context instance, add the context to the request context
container.

You can set the following WS-RM source attributes programmatically:
® WS-RM acknowledgement URI.

® Base re-transmission interval.

® Disable exponential backoff.

® Max unacknowledged messages threshold.

® Maximum messages per sequence.

The WS-RM acknowledgement URI specifies the endpoint where the
WS-RM source receives acknowledgement messages. In a SOAP header,
this attribute is represented by the wsr m AcksTo element. The default is the
standard WS-A anonymous URI:

htt p: // schenas. xm soap. or g/ ws/ 2004/ 08/ addr essi ng/ r ol e/ anonynous
You can set the WS-RM acknowledgement URI by inserting the following

code fragment into Example 116 on page 338 or into Example 117 on
page 339:

/] C++
WBRMonf i gur ati onCont ext* wsrm confi g_context = new
WBRMonf i gur at i onCont ext () ;

AnyUR
acksto_url ("http://1 ocal host: 0/ WsASour ce/ DenmoCont ext AcksTo") ;
W5_Addr essi ng_2004: : AttributedUR acks_to_uri(acksto_url);

wsr m confi g _cont ext->set _wsrm acknow edgenent _uri (acks_to_uri);

Base re-transmission interval

Disable exponential backoff

Max unacknowledged messages
threshold

Setting WS-A and WS-RM Attributes

The base re-transmission interval specifies the interval at which a WS-RM
source re-transmits a message that has not yet been acknowledged. The
default is 2000 milliseconds.

You can set the base re-transmission interval by inserting the following code
fragment into Example 116 on page 338 or into Example 117 on
page 339:

/] C++

WBRMConf i gur at i onCont ext * wsrm confi g_context = new
WBRMConf i gur at i onCont ext () ;
wsrm confi g_cont ext - >set _base_r et ransm ssi on_i nt er val (3000) ;

This attribute specifies whether or not successive re-transmission attempts
for an unacknowledged message are done at exponential time intervals. If
true, the re-transmission is done at the base re-transmission interval; if

fal se, the re-transmission is exponentially backed off. The default is f al se.

You can disable the exponential backoff algorithm by inserting the following
code fragment into Example 116 on page 338: or into Example 117 on
page 339

/] C++

WBRMConf i gur at i onCont ext * wsrm confi g_context = new
WBRMConf i gur at i onCont ext () ;
wsrm confi g_cont ext - >di sabl e_exponenti al _backof f () ;

The maximum unacknowledged messages threshold specifies the
maximum number of unacknowledged messages tolerated at the WS-RM
source. When the threshold is exceeded, the WS-RM source ceases sending
messages (and the application thread remains blocked) until the number of
unacknowledged messages falls below the threshold again. The default is -1
(which represents no limit on the number of unacknowledged messages).
You can set the maximum unacknowledged messages threshold by inserting
the following code fragment into Example 116 on page 338 or into
Example 117 on page 339:

[l C++

WBRMConf i gur at i onCont ext * wsrm confi g_context = new
WBRMConf i gur at i onCont ext () ;

wsrm confi g_cont ext - >set _nmax_unacked_nessages_t hr eshol d(50) ;

341

CHAPTER 8 | Working with Transport Attributes

Maximum messages per sequence

Programmable WS-RM
destination attributes

Acknowledgement interval

342

The maximum messages per sequence determines the maximum number of
user messages allowed in a WS-RM sequence. The default is unlimited,
which is appropriate for most cases.

If a limit is set using this property, the RM source creates a new sequence
whenever the specified limit is reached and all acknowledgements for the
previously sent messages have been received.

You can set the maximum number of messages per sequence by inserting
the following code fragment into Example 116 on page 338 or into
Example 117 on page 339:

[l C++

WBRMonf i gur ati onCont ext* wsrm confi g_context = new
WBERMOonf i gur at i onCont ext () ;

wsr m confi g_cont ext->set _max_nessages_per_sequence(1);

You can set the following WS-RM destination attribute programmatically:
® Acknowledgement interval.

The acknowledgement interval specifies the time interval at which the

WS-RM destination sends asynchronous acknowledgements. The default is
3000 milliseconds.

You can set the acknowledgement interval by inserting the following code
fragment into Example 116 on page 338:

[l C++

WBRMonf i gur ati onCont ext* wsrm confi g_context = new
WBERMOonf i gur at i onCont ext () ;

wsr m confi g_cont ext - >set _acknow edgenent _i nt er val (2500) ;

Note: It is not possible to set the acknowledgement interval
programmatically on the server side. On the server side, the
acknowledgement interval can be set only in configuration.

In this chapter

CHAPTER 9

Artix Data Types

This chapter presents the XML schema data types supported
by Artix and describes how these data types map to C++.

This chapter discusses the following topics:

Including and Importing Schema Definitions page 344
Simple Types page 347
Complex Types page 395
Wildcarding Types page 440
Occurrence Constraints page 460
Nillable Types page 479
Substitution Groups page 501
SOAP Arrays page 511
IT_Vector Template Class page 523
IT_HashMap Template Class page 530
Unsupported XML Schema Constructs in Artix page 535

343

CHAPTER 9 | Artix Data Types

Including and Importing Schema Definitions

Overview

xsd:include syntax

xsd:import syntax

344

Artix supports the including and importing of schema definitions, using the

<i ncl ude/ > and <i npor t/ > schema tags. These tags enable you to insert

definitions from external files or resources into the scope of a schema

element. The essential difference including and importing is this:

® Including brings in definitions that belong to the same target
namespace as the enclosing scherma element, whereas

® Importing brings in definitions that belong to a different target
namespace from the enclosing schena element.

The include directive has the following syntax:

<i ncl ude

schemalLocation = "anyUR "
/>
The referenced schema, given by anyURI , must either belong to the same
target namespace as the enclosing schema or not belong to any target
namespace at all. If the referenced schema does not belong to any target
namespace, it is automatically adopted into the enclosing schema’s
namespace when it is included.

The import directive has the following syntax:

<i nport

namespace = "namespaceAnyUR "

schemalLocation = "schemaAnyUR "
/>
The imported definitions must belong to the namespaceAnyUR target
namespace. If nanespaceAnyUR is blank or remains unspecified, the
imported schema definitions are unqualified.

Including and Importing Schema Definitions

Example Example 118 shows an example of an XML schema that includes another
XML schema.

Example 118:Example of a Schema that Includes Another Schema

<definitions
t ar get Namespace="ht t p: // schenas. i ona. con t est s/ schena_par ser"
xm ns: tns="http://schemas. i ona. coni t est s/ schema_par ser"
xm ns: xsd="htt p: / / www. wW3. or g/ 2001/ XM_Schena"
xm ns="htt p: // schemas. xm soap. or g/ wsdl /" >

<t ypes>
<schema
t ar get Nanespace="htt p: // schenas. i ona. coni t est s/ schena_par ser "
xm ns="ht t p: / / waw W8. or g/ 2001/ XM_Schena" >

<i ncl ude schemalLocati on="i ncl uded. xsd"/>

<conpl exType nane="Incl udi ngSequence" >
<sequence>
<el enent
narme="i ncl udedSeq"
type="t ns: | ncl udedSequence"/ >
</ sequence>
</ conpl exType>

</ schena>

</types>
<...>

Example 119 shows the contents of the included schema file,
i ncl uded. xsd.

345

CHAPTER 9 | Artix Data Types

Example 119:Example of an Included Schema

<schenma
t arget Namespace="ht t p: / / schemas. i ona. coni t est s/ schena_par ser"
xm ns="ht t p: / / waw. w8. or g/ 2001/ XM-Schena" >

<l-- Included type definitions -->
<conpl exType nane="I ncl udedSequence" >
<sequence>

<el enent name="varlInt" type="int"/>
<el ement name="var String" type="string"/>
</ sequence>
</ conpl exType>
</ schenma>

346

Simple Types

Simple Types

Overview

In this section

This section describes the WSDL-to-C++ mapping for simple types. Simple
types are defined within an XML schema and they are subject to the
restriction that they cannot contain elements and they cannot carry any
attributes.

This section contains the following subsections:

Atomic Types page 348
String Type page 350
NormalizedString and Token Types page 355
QName Type page 360
Date and Time Types page 362
Duration Type page 364
Decimal Type page 370
Integer Types page 372
Binary Types page 375
Deriving Simple Types by Restriction page 382
List Type page 385
Union Type page 387
Holder Types page 392
Unsupported Simple Types page 394

347

CHAPTER 9 | Artix Data Types

Atomic Types

Overview

Table of atomic types

348

For unambiguous, portable type resolution, a number of data types are

defined in the Artix foundation classes, specified in it _bus/t ypes. h.

The atomic types are:

Table 31: Simple Schema Type to Simple Bus Type Mapping

Schema Type Bus Type
xsd: bool ean | T_Bus: : Bool ean
xsd: byt e I T _Bus::Byte
xsd: unsi gnedByt e | T_Bus:: UByte
xsd: short | T_Bus: : Short
xsd: unsi gnedShor t | T_Bus: : Ushort
xsd: i nt I T_Bus::Int
xsd: unsi gnedl nt I T _Bus::Unt
xsd: | ong I T_Bus: : Long
xsd: unsi gnedLong | T_Bus: : ULong
xsd: f | oat | T_Bus: : F oat
xsd: doubl e | T_Bus: : Doubl e
xsd: string I T_Bus::String
xsd: nornal i zedStri ng | T_Bus:: Nornal i zedStri ng
xsd: t oken | T_Bus: : Token
xsd: | anguage I T_Bus: : Language
xsd: NMI'CKEN I T_Bus: : NVfoken
xsd: NMICKENS | T_Bus: : NVfokens

Simple Types

Table 31: Simple Schema Type to Simple Bus Type Mapping

Schema Type Bus Type
xsd: Name | T_Bus: : Nane
xsd: NC\ane | T_Bus: : NC\arre
xsd: 1 D IT Bus::1D
xsd: Q\ane I T_Bus: : Q\arre (SOAP only)
xsd: dat eTi ne | T_Bus: : Dat eTi ne
xsd: dat e I T_Bus::Date
xsd: time | T_Bus:: Tine
xsd: gbay | T_Bus: : GDay
xsd: ghont h | T_Bus: : Gvont h
xsd: ghont hDay | T_Bus: : Gvbnt hDay
xsd: gYear | T_Bus: : Grear
xsd: gYear Mont h | T_Bus: : Grear Mont h
xsd: deci nal | T_Bus: : Deci mal
xsd: i nt eger | T_Bus: : | nt eger
xsd: posi ti vel nt eger | T_Bus: : Posi ti vel nt eger
xsd: negat i vel nt eger I T_Bus: : Negat i vel nt eger
xsd: nonPosi ti vel nt eger | T_Bus: : NonPosi ti vel nt eger
xsd: nonNegat i vel nt eger | T_Bus: : NonNegat i vel nt eger
xsd: base64Bi nary | T_Bus: : Bi nar yBuf f er
xsd: hexBi nary | T_Bus: : Bi nar yBuf f er

349

CHAPTER 9 | Artix Data Types

String Type

Overview

IT_Bus::String class

String iterator class

C++ example

Internationalization

350

The xsd: string type maps to | T_Bus: : Stri ng, which is typedef'ed in
it _bus/ustring.hto!T Bus::IT UString class. For a full definition of
I T_Bus::String, seeit_bus/ustring.h.

The I T_Bus: : String class is modelled on the standard ANSI string class.
Hence, the I T_Bus: : Stri ng class overloads the + and += operators for
concatenation, the [] operator for indexing characters, and the ==, ! =, >, <,
>=, <= operators for comparisons.

The corresponding string iterator class is I T_Bus:: String::iterator.

The following C++ example shows how to perform some basic string
manipulation with I T_Bus: : String:

/] C++
IT Bus::String s = "A G+ ANSI string."
s += " And here is sone string concatenation."

/1 Now convert to a C style string.

/1 (Note: s retains ownership of the nenory)
const char *p = s.c_str();

The I T_Bus: : Stri ng class supports the use of international characters.
When using international characters, you should configure your Artix
application to use a particular code set by editing the Artix domain
configuration file, arti x. cf g. The configuration details depend on the type
of Artix binding, as follows:

® SOAP binding—set the pl ugi ns: soap: encodi ng configuration variable.

CORBA binding—set the pl ugi ns: codeset : char : ncs,
pl ugi ns: codeset : char: ccs, pl ugi ns: codeset : wchar : ncs, and
pl ugi ns: codeset : wchar : ccs configuration variables.

For more details about configuring internationalization, see the “Using Artix
with International Codesets” chapter of the Configuring and Deploying Artix
Solutions document.

Encoding arguments

Simple Types

Some of the I T_Bus: : String functions take an optional string argument,
encodi ng, that lets you specify a character set encoding for the string.

The encodi ng argument must be a standard IANA character set name. For
example, Table 32 shows some of commonly used IANA character set

names:

Table 32: /ANA Character Set Names

IANA Name Description

US-ASCII 7-bit ASCII for US English.

ISO-8859-1 Western European languages.

UTF-8 Byte oriented transformation of Unicode.

UTF-16 Double-byte oriented transformation of 4-byte
Unicode.

Shift_JIS Japanese DOS & Windows.

EUC-JP Japanese adaptation of generic EUC scheme, used in
UNIX.

EUC-CN Chinese adaptation of generic EUC scheme, used in
UNIX.

1SO-2022-JP Japanese adaptation of generic ISO 2022 encoding
scheme.

1SO-2022-CN Chinese adaptation of generic ISO 2022 encoding
scheme.

BIG5S Big Five is a character set developed by a consortium
of five companies in Taiwan in 1984.

Artix supports all of the character sets defined in International Components
for Unicode (ICU) 2.6. For a full listing of supported character sets, see
http://www-124.ibm.com/icu/index.html (part of the IBM open source
project http://oss.software.ibm.com).

351

http://oss.software.ibm.com
http://www-124.ibm.com/icu/index.html

CHAPTER 9 | Artix Data Types

Constructors The I T_Bus: : Stri ng class defines a default constructor and non-default
constructors to initialize a string using narrow and wide characters, as
follows:

® Narrow character constructors.
® 16-bit character constructor.
® wechar_t character constructor.

Narrow character constructors Example 120 shows three different constructors that can be used to
initialize an | T_Ust ri ng with a narrow character string.

Example 120:Narrow Character Constructors

I T_UString(
const char* str,
si ze_t n = npos,
const char* encoding = 0,

| T_ExceptionHandl er & eh = | T_EXCEPTI ON_HANDLER
)

I T_UString(
size t n,
char ch
const char* encoding = 0,

| T_ExceptionHandl er & eh = | T_EXCEPTI ON_HANDLER
)

I T_UString(
const I T_String& S,
si ze_t pos = 0,
si ze_t n = npos,
const char* encoding = 0,
| T_ExceptionHandl er& eh = | T_EXCEPTI ON_HANDLER

)

The constructor signatures are similar to the standard ANSI string
constructors, except for the additional encodi ng argument. A null encodi ng
argument, encodi ng=0, implies the constructor uses the local character set.

352

16-bit character constructor

wchar_t character constructor

String conversion functions

Simple Types

Example 121 shows the constructor that can be used to initialize an

I T_UString with an array of 16-bit characters (represented by unsi gned
short*).

Example 121:16-Bit Character Constructor

I T_UString(
const unsi gned short* sb,
const | T_String& encodi ng,
size_t n = npos,

| T_ExceptionHandl er& eh = | T_EXCEPTI ON_ HANDLER

Example 122 shows the constructor that can be used to initialize an
I T_UString with an array of wchar _t characters.

Example 122:wchar_t Character Constructor

I T_UString(
const wchar_t* wb,
size_t n = npos,

| T_ExceptionHandl er& eh = | T_EXCEPTI ON_HANDLER

The member functions shown in Example 123 are used to convert an

I T_Bus:: String to an ordinary C-style string, a UTF-16 format string and a
wchar _t format string:

Example 123:String Conversion Functions
[l Ct+
const char* c_str(
const char* encoding = 0
) const; // has NUL character at end

const unsigned short* utfl16 str() const;

const wchar_t* wchar _t_str() const;

353

CHAPTER 9 | Artix Data Types

String conversion examples

Reference

354

If you want to copy the return value from a string conversion function, you
also need to know the dimension of the relevant array. For this, you can use
the I T Bus::String::length() function:

/] C++
size_t length() const;

The I T_Bus: : String:: I ength() function returns the number of underlying
characters in a string, irrespective of how many bytes it takes to represent
each character. Hence, the size of the array required to hold a copy of a
converted string equals | engt h() +1 (an extra array element is required for
the NUL character).

Example 124 shows you how to convert and copy a string, s, into a C-style
string, a UTF-16 format string and a wchar _t format string.

Example 124:String Conversion Examples

Il C++

// Copy 's' into a plain 'char *' string:
char *s_copy = new char[s. | ength()+1];
strcpy(s_copy, s.c_str());

// Copy 's' into a UTF-16 string:
unsi gned short* utf16_copy = new unsi gned short[s.|ength()+1];
const unsigned short* utfl6 p = s.utf16_str();
for (i=0; i<s.length()+1; i++) {
utf16_copy[i] = utfl16 _p[i];
}

// Copy 's' into a wchar_t string:
wchar _t* wchar _t_copy = new wchar _t[s.length()+1];
const wchar_t* wchar_t p = s.wchar_t_str();
for (i=0; i<s.length()+1; i++) {
wchar _t_copy[i] = wchar_t_p[i];

}

For more details about C++ ANSI strings, see The C++ Programming
Language, third edition, by Bjarne Stroustrup.

For more details about internationalization in Artix, see the “Using Artix with
International Codesets” chapter of the Configuring and Deploying Artix
Solutions document.

Simple Types

NormalizedString and Token Types

Overview

normalizedString type

token types

This subsection describes the syntax and C++ mapping for the
xsd: nor mal i zedSt ri ng type, the xsd: t oken type, and all of the types
deriving from xsd: t oken.

A normalized string is a string that does not contain the return (0x0D), line

feed (0x0A) or tab (0x09) characters. Spaces (0x20) are allowed, however.

The token type and the types derived from token are described in Table 33.

Table 33: Description of token and Types Derived from token

leading or trailing!

XML Schema Sample Value Description of Value
Type
xsd: t oken nly single spaces; no Like an xsd: nor mal i zedSt ri ng type, except that there can

be no sequences of two or more spaces (0x20) and no
leading or trailing spaces.

xsd: | anguage

en-US

Any language identification tag as specified in RFC 3066
(http://www.ietf.org/rfc/rfc3066.txt).

xsd: NVTCKEN NoSpacesAl | owed Like an xsd: t oken type, except that spaces (0x20) are
disallowed (see “Formal definitions” on page 356).

xsd: NMTCKENS Tok01 Tok02 Tok03 A list of xsd: NVTOKEN itemss, using the space character as a
delimiter.

xsd: Narre Restri ct Fi rst Char Like an xsd: t oken type, except that the first character is
restricted to be one of Letter,’ ', or':’ (see “Formal
definitions” on page 356).

xsd: NONarne NoCol onsAl | owed Like an xsd: Nanre type, except that colons, ' : ', are

disallowed (a non-colonized name). See “Formal
definitions” on page 356.

This type is useful for constructing identifiers that use the
colon, ' : ", as a delimiter. For example, the NONane type is
used both for the prefix and the local part of an xsd: Q\ane.

355

http://www.ietf.org/rfc/rfc3066.txt

CHAPTER 9 | Artix Data Types

Table 33: Description of token and Types Derived from token

XML Schema Sample Value Description of Value
Type
xsd: I D Like an xsd: NOnarre type.

The xsd: | Dtype is a legacy from early XML specifications,
where it can provide a unique ID for an XML element. The
element can then be cross-referenced using the ID value.

Formal definitions

356

The Nane, NCName, NVITCKEN, and NMICKENS types are formally defined as
follows:

[1] NarreChar = Letter | Digit | "." | "-" | " | "
| Conbi ni ngChar | Ext ender

[2] Nane = (Letter | "_" | ":') (NaneChar)*

[3] Nanes = Nane (#x20 Name)*

[4] NMTCKEN
[5] NMTCKENS

(NaneChar) +
NMTCKEN (#x20 NVITCKEN) *

[6] NCNarreChar ::= Letter | Digit | "." | "-" | '_'
Conbi ni ngChar | Ext ender
[7] NCNane :i= (Letter | '_") (NONaneChar)*

The Nane, NVTCKEN, and NMICKENS types are defined in the Extensible
Markup Language (XML) 1.0 (Second Edition) document
(http://www.w3.0rg/TR/2000/WD-xml-2e-20000814). The NONane type is
defined in the Namespaces in XML document
(http://www.w3.0rg/TR/1999/REC-xml-names-19990114/).

The terms, Conbi ni ngChar and Ext ender , are defined in the Unicode
Character Database (http://www.unicode.org/Public/UNIDATA/UCD.html).
A combining character is a character that combines with a preceding base
character—for example, accents, diacritics, Hebrew points, Arab vowel
signs and Indic matras. An extender is a character that extends the value or
shape of a preceding alphabetic character—for example, the Catalan middle
dot.

http://www.w3.org/TR/2000/WD-xml-2e-20000814
http://www.w3.org/TR/1999/REC-xml-names-19990114/
http://www.unicode.org/Public/UNIDATA/UCD.html

C++ mapping for all token types
except xsd:NMTOKENS

Simple Types

The token type and its derived types map to C++ as shown in Table 31 on
page 348. All of the token types, except for | T_Bus: : NVTokens, provide two
constructors:

® A no-argument constructor, and

® A constructor that takes a const | T_Bus: : Stri ng& argument.

For setting and getting a token value, the following functions are provided
(inherited from | T_Bus: : Nor mal i zedStri ng):

/] C++
const String&
get _val ue() const | T_THRONDECL(());

voi d

set _val ue(const String& val ue)
I T_THRONDEQL((| T_Bus: : Exception));

357

CHAPTER 9 | Artix Data Types

Validity testing functions

In addition to the functions inherited from | T_Bus: : Normal i zedSt ri ng, each
of the derived token types has a validity testing function, as shown in
Table 34.

Table 34: Validity Testing Functions for Normalized Strings and Tokens

XML Schema Type

Validity Testing Function

xsd: nornal i zedString

static
I T_Bus

bool
::NormalizedString::is_valid_normalized_string(

const String& val ue

)

xsd: t oken static bool

I T_Bus:: Token: :is_valid_token(const String& val ue)
xsd: | anguage static bool

| T_Bus: : Language: : i s_val i d_| anguage(const String& val ue)
xsd: NMTCKEN static bool

I T_Bus: : NMloken: : i s_val i d_nnt oken(const String& val ue)
xsd: Narre static bool

I T_Bus:: Nane: :is_valid_nane(const String& val ue)
xsd: NO\arre static bool

I T_Bus:: NCNarre: i s_val i d_ncnane(const String& val ue)
xsd: I D static bool

IT Bus:: 1D :is_valid_id(const String& val ue)

C++ mapping of NMTOKENS

358

The xsd: NVTCKENS type maps to the C++ class, | T_Bus: : NMfokens. The
| T_Bus: : NMlokens class inherits from

Si npl eTypesLi st T<I T_Bus: : NMIloken>, which in turn inherits from

I T_Vect or <I T_Bus: : N\VToken>.

The | T_Bus: : NMTokens type is thus effectively a vector, where the element
type is | T_Bus: : NMToken. You can use the indexing operator, [], to access
individual elements and, in addition, the Si npl eTypesLi st base class
provides set _si ze() and get _si ze() functions.

For more details about I T_Vect or <T> types, see “IT_Vector Template Class”
on page 523.

Simple Types

C++ example The following example shows how to initialize an xsd: t oken instance in
C++.

[l C++

// Test and set an xsd:token val ue.

IT Bus::String tok_string = "0123 A token wi th spaces";
I T_Bus: : Token t ok;

if (1T_Bus::Token::is_valid_token(tok_string)) {

t ok. set _val ue(tok_string);

}

359

CHAPTER 9 | Artix Data Types

QName Type

Overview xsd: Q\Name maps to | T_Bus: : Q\ane. A qualified name, or QName, is the
unique name of a tag appearing in an XML document, consisting of a
namespace URI and a local part.

Note: In Artix 1.2.1, the mapping from xsd: Q\arre to | T_Bus: : Q\ane is
supported only for the SOAP binding.

QName constructor The usual way to construct an | T_Bus: : Q\are object is by calling the
following constructor:
Il G
Q\anre: : Q\ane(
const String & nanespace_prefix,
const String & | ocal _part,

const String & namrespace_ur i
)
Because the namespace prefix is relatively unimportant, you can leave it
blank. For example, to create a QName for the soap: addr ess element:

/] C++
I T_Bus: : Q\ane soap_address = new | T_Bus: : Q\ane(

"addr ess",
"http://schemas. xm soap. or g/ wsdl / soap"

)

QName member functions The I T_Bus: : Q\ane class has the following public member functions:

const | T _Bus::String &
get _namespace_prefix() const;

const | T _Bus::String &
get _local _part() const;

const | T _Bus::String &
get _namespace_uri () const;

const | T_Bus::String get_raw nane() const;
const | T Bus::String to_string() const;

360

QName equality

Simple Types

bool has_unresol ved_prefix() const;
size_t get_hash_code() const;

The == operator can be used to test for equality of | T_Bus: : Q\ane objects.

QNames are tested for equality as follows:

1. Assuming that a namespace URI is defined for the QNames, the
QNames are equal if their namespace URIs match and the local part of
their element names match.

2. If one of the QNames lacks a namespace URI (empty string), the
QNames are equal if their namespace prefixes match and the local part
of their element names match.

361

CHAPTER 9 | Artix Data Types

Date and Time Types

Overview

The xsd: dat eTi e maps to | T_Bus: : Dat eTi me, which is declared in

<it_bus/ dat e_ti me. h>. Dat eTi e has the following fields:

Table 35: Member Fields of IT_Bus::DateTime

GMT

Field Datatype Accessor Methods

4 digit year short short get Year ()

voi d set Year (short wyear)
2 digit month short short get Mont h()

voi d set Mont h(short whont h)
2 digit day short short get Day()

voi d set Day(short wDay)
hours in military short short get Hour ()
time voi d set Hour (short wHour)
minutes short short get M nut e()

voi d set M nute(short wM nute)
seconds short short get Second()

voi d set Second(short wSecond)
milliseconds short short getMI1iseconds()

void setMI|iseconds(short wM I |i seconds)
local time zone flag voi d set Local Ti meZone()

bool haveUTCTi meZonef f set () const
hour offset from short voi d set UTCTi meZoneCf f set (
GMT short hour _offset,

- short mnute_offset)

minute offset from short

voi d get UTCTi neZoneCO f set (
short & hour_of fset,
short & minute_offset)

362

IT_Bus::DateTime constructor

Other date and time types

Simple Types

The default constructor takes no parameters, initializing the year, month,
and day fields to 1 and the other fields to O. An alternative constructor is
provided, which accepts all of the individual date/time fields, as follows:

| T_Dat eTi me(short wyear, short whonth, short wDay,
short wHour = 0, short wMnute = O,
short wSecond = 0, short wMIIiseconds = 0)

Artix supports a variety of other date and time types, as shown in Table 36.
Each of these types—for example, xsd: ti nme and xsd: day—support a subset
of the fields from xsd: dat eTi ne. Table 36 shows which fields are supported
for each date and time type; the accessors for each field are given by

Table 35.

Table 36: Member Fields Supported by Other Date and Time Types

Date/Time Type C++ Class Supported Fields

xsd: dat e | T _Bus::Date year, month, day,

local time zone flag, hour and minute offset from GMT.
xsd: time | T_Bus::Tine hours, minutes, seconds, milliseconds,

local time zone flag, hour and minute offset from GMT.
xsd: gDay | T_Bus: : GDay day,

local time zone flag, hour and minute offset from GMT.
xsd: ghont h | T_Bus: : Gvbnt h month,

local time zone flag, hour and minute offset from GMT.
xsd: gMont hDay | T_Bus: : Gvbnt hDay month, day,

local time zone flag, hour and minute offset from GMT.
xsd: gYear | T_Bus: : Grear year,

local time zone flag, hour and minute offset from GMT.
xsd: gYear Mont h | T_Bus: : Grear Mont h year, month,

local time zone flag, hour and minute offset from GMT.

363

CHAPTER 9 | Artix Data Types

Duration Type

Overview

Lexical representation

Unsupported facets

364

The xsd: dur at i on type maps to | T_Bus: : Durat i on, which is declared in
<it_bus/ duration. h>. A duration represents an interval of time measured
in years, months, days, hours, minutes, and seconds. This type is needed
for representing the sort of time intervals that commonly appear in business
and legal documents.

Despite its practicality, the duration type is a fairly peculiar way of
representing a time interval, because it is an indeterminate quantity. Both
the number of days in a month and the number of days in a year can vary,
depending on what you choose as the starting date of the duration.

The lexical representation of a positive time duration is as follows:

P<year s>Y<nont hs>Mdays>DT<hour s>H<m nut es>Mseconds>S

Where <year s>, <nont hs>, <days>, <hour s>, and <mi nut es> are
non-negative integers and <seconds> is a non-negative decimal. The
<seconds> field can have an arbitrary number of decimal digits, but Artix
considers the digits only up to millisecond precision. The P, Y, M D, T, H, M
and S separator characters must all be upper case. The T is the date/time
seperator. To represent a negative time duration, you can add a minus sign,
-, in front of the P character.

Here are some examples:

P2Y6MLODT12H20ML5S

- PLYOMODTOHOMD. 001S

You can abbreviate the duration string by omitting any fields that are equal
to zero. You must omit the date/time seperator, T, if and only if all of the
time fields are absent. For example, PLY would represent one year.

The following facets are unsupported by the xsd: dur at i on element:

® pattern

® whiteSpace
® nmaxl ncl usi ve
® naxExcl usi ve
m nl ncl usi ve

® mnExcl usive

Supported facets

Duration constructors

Simple Types

The following facets are supported and checked at runtime:

® enuneration

The I T_Bus: : Durat i on class supports the constructors shown in
Example 125.

Example 125:/T_Bus::Duration Constructors

/] C++
Duration() |T_THROWDECL(());

Durat i on(

bool isNegative,

| T_Bus::Long years,

| T_Bus: : Long nont hs,

| T_Bus::Long days,

I T_Bus:: Long hours,

I T_Bus:: Long m nutes,

I T_Bus: : Long seconds,

I T_Bus::Long mlliseconds
) | T_THRON DECL((Exception));

Dur at i on(
const char* val ue
) | T_THRON DECL((Exception));

Durat i on(
const | T_Bus:: String& val ue
) | T_THROWN DECL((Exception));

These constructors enable you to specify each of the six fields of the
duration: years, months, days, hours, minutes and seconds (where the
seconds field is split into two arguments, seconds and milliseconds). The
last two constructors enable you to initialize the duration from a lexical
string. For example, a period of 1 year, 12 hours and 30 minutes can be
initialized as follows:

[l C++
| T_Bus:: Duration period("P1YOMDI12H30MS') ;

365

CHAPTER 9 | Artix Data Types

In the second constructor, you can leave a particular field unset by
supplying a negative integer argument. For example, to represent a duration
of 1 year 6 months, with the remaining fields left unset:

/] C++
I T Bus::Duration year_nonth(false, 1, 6, -1, -1, -1, -1, -1);

This is equivalent to calling the string value constructor as follows:

/] C++
| T _Bus::Duration year_nont h("PLlY6M);

Duration accessors and modifiers The accessor and modifier functions for each of the | T_Bus: : Durat i on time
fields are shown in Example 37.

Table 37: Accessors and Modifier Functions for Duration Class

Field Accessor/Modifier

Sign bool is_negative()

voi d set_is_negative(bool is_negative)

Years I T_Bus:: Long get_years()

voi d set_years(|T_Bus::Long years)

Months I T_Bus:: Long get_nont hs()

voi d set_nonths(1T_Bus::Long nont hs)

Days I T _Bus::Long get_ days()
voi d set _days(I T_Bus::Long days)

Hours I T _Bus::Long get_hours()

voi d set _hours(IlT_Bus:: Long hours)

Minutes I T_Bus::Long get_m nutes()

void set_ninutes(lT_Bus::Long m nutes)

366

Simp