
Artix ESBTM

Making Software Work TogetherTM

AmberPoint Integration Guide
Version 5.0, July 2007

IONA Technologies PLC and/or its subsidiaries may have patents, patent applications,
trademarks, copyrights, or other intellectual property rights covering subject matter in
this publication. Except as expressly provided in any written license agreement from
IONA Technologies PLC, the furnishing of this publication does not give you any license
to these patents, trademarks, copyrights, or other intellectual property. Any rights not
expressly granted herein are reserved.
IONA, IONA Technologies, the IONA logos, Orbix, Artix, Making Software Work
Together, Adaptive Runtime Technology, Orbacus, IONA University, and IONA XMLBus
are trademarks or registered trademarks of IONA Technologies PLC and/or its
subsidiaries.
Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries. CORBA is a trademark or registered trademark of the
Object Management Group, Inc. in the United States and other countries. All other
trademarks that appear herein are the property of their respective owners.
IONA Technologies PLC makes no warranty of any kind to this material including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose. IONA Technologies PLC shall not be liable for
errors contained herein, or for incidental or consequential damages in connection with the furnishing, perform-
ance or use of this material.

COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third
party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publica-
tion and features described herein are subject to change without notice.

Copyright © 2001-2007 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: August 24, 2007

Contents

List of Figures 5

Preface 5
What is covered in this book 5
Who should read this book 5
Organization of this book 5
The Artix Documentation Library 6

Chapter 1 Artix AmberPoint Integration 13
AmberPoint Proxy Agent 14
IONA Artix AmberPoint Agent 17

Chapter 2 Configuring the Artix AmberPoint Agent 23
Installing AmberPoint 24
Configuring AmberPoint for Artix Integration 25
Configuring Artix C++ Services for AmberPoint Integration 28
Configuring Artix Java Services for AmberPoint Integration 33

Index 39
3

CONTENTS
4

List of Figures

Figure 1: AmberPoint Proxy Agent Integration 14

Figure 2: AmberPoint Proxy Agent Service Network 15

Figure 3: Artix AmberPoint Agent Integration 17

Figure 4: Artix AmberPoint Agent Embedded in Service Endpoint 19

Figure 5: Artix AmberPoint Agent Service Network 21
5

LIST OF FIGURES
 6

Preface
What is covered in this book
Artix supports integration with the AmberPoint Service-Oriented Architecture
(SOA) management system. This guide explains how to integrate Artix
solutions with AmberPoint. It applies to Artix applications written using
C++, JAX-RPC (Java APIs for XML-Based Remote Procedure Call), and
JAX-WS (Java APIs for XML-Based Web Services).

Who should read this book
This guide is aimed at system administrators using AmberPoint to manage
SOA environments, and developers writing SOA applications. Administrators
do not require detailed knowledge of the technology that is used to create
distributed enterprise applications.

This book assumes that you already have a working knowledge of
AmberPoint. For more information, see http://www.amberpoint.com.

Organization of this book
This book contains the following chapter:

� Chapter 1 describes the architecture of the Artix integration with
AmberPoint.

� Chapter 2 explains how to configure integration with the Artix
AmberPoint Agent, and shows examples from the Artix AmberPoint
integration demo.
5

http://www.amberpoint.com/

PREFACE
The Artix Documentation Library
For information on the organization of the Artix library, the document
conventions used, and where to find additional resources, see Using the
Artix Library.
 6

../library_intro/index.htm
../library_intro/index.htm

CHAPTER 1

Artix AmberPoint
Integration
Artix provides support for integration with the AmberPoint SOA
management system. This chapter describes two approaches
to integrating Artix services with AmberPoint.

In this chapter This chapter includes the following sections:

AmberPoint Proxy Agent page 14

IONA Artix AmberPoint Agent page 17
13

CHAPTER 1 | Artix AmberPoint Integration
AmberPoint Proxy Agent

Overview There are two possible approaches to integrating Artix with the AmberPoint
SOA management system:

� Using the AmberPoint Proxy Agent.

� Using IONA�s Artix AmberPoint Agent.

AmberPoint Proxy Agent
architecture

AmberPoint provides the AmberPoint Proxy Agent, which acts as a proxy for
Web service endpoints by making the service endpoint WSDL available to
the service consumer (client). Figure 1 shows a simple AmberPoint Proxy
Agent architecture:

Figure 1: AmberPoint Proxy Agent Integration
14

AmberPoint Proxy Agent
In this architecture, the following restrictions apply:

� All messages between the service consumer and service endpoint must
be routed through the AmberPoint Proxy Agent.

� All messages must use SOAP over HTTP.

� The service consumer is unaware of the back-end service endpoint,
and views its relationship as being with the proxy only.

If you can work within these limits, the AmberPoint monitoring and
management features can be used out-of-the box with Artix. However, if you
require a more flexible integration (for example, with increased performance
and scalability), you should use the Artix AmberPoint Agent.

AmberPoint Proxy Agent in a
service network

Figure 2 shows the AmberPoint Proxy Agent deployed in a service network
with multiple service consumers and service endpoints.

Figure 2: AmberPoint Proxy Agent Service Network
15

CHAPTER 1 | Artix AmberPoint Integration
Because all messages are routed through the AmberPoint Proxy Agent, the
additional network hops may impact on performance. In addition, the proxy
involves the risk of a single point of failure.

If these are important issues for your system, you should use the Artix
AmberPoint Agent instead.

Further information For information on using the AmberPoint Proxy Agent, see the AmberPoint
product documentation.
16

IONA Artix AmberPoint Agent
IONA Artix AmberPoint Agent

Overview The Artix AmberPoint Agent enables Artix endpoints to be discovered and
monitored by AmberPoint. This is the recommended approach to integrating
Artix services with AmberPoint, and can be used with Artix services
implemented in C++, JAX-RPC, JAX-WS, and scripting languages.

The Artix AmberPoint Agent can be deployed with Artix endpoints that use
SOAP over HTTP to enable reporting of performance metrics back to
AmberPoint. The Artix AmberPoint Agent offers significant benefits over the
AmberPoint Proxy Agent. For example, these include increased performance
and scalability, dynamic discovery, and the use of callbacks. This section
describes the Artix AmberPoint Agent in detail.

Artix AmberPoint Agent
architecture

Figure 3 shows how Artix can be integrated with AmberPoint using the Artix
AmberPoint Agent.

Figure 3: Artix AmberPoint Agent Integration
17

CHAPTER 1 | Artix AmberPoint Integration
The main components in this architecture are:

� �Artix AmberPoint Agent�

� �Artix interceptor�

� �Artix service endpoints�

� �Service consumers�

� �AmberPoint SOA Management System�

� �AmberPoint Nano Agent API�

Artix AmberPoint Agent An Artix AmberPoint Agent consists of components developed by IONA and
AmberPoint (the Artix interceptor, and the AmberPoint Nano Agent API).
You can deploy multiple agents into your SOA network to capture data for
the AmberPoint management system. Artix AmberPoint Agents gather
performance data for all Artix endpoint types, as well as normal Web service
endpoints.

Deployment modes

Artix AmberPoint Agents can be deployed in different ways in your system,
for example:

� Embedded in Artix consumers intercepting traffic. This is suitable if
Artix is deployed on the client side only, and the service endpoints do
not support AmberPoint. This requires configuration for the consumer
only.

� Embedded in Artix service endpoints intercepting traffic. This is
suitable if Artix is used to implement the service endpoint. This works
even when the consumers are third party products. This requires
configuration for the service endpoint only. This is the most common
and recommended approach, as shown in Figure 4.

� Deployed as standalone Artix intermediaries (proxies) on your service
network. This option is suitable if you do not want touch your existing
system and you do not want to update your endpoints or consumers.
This approach is also necessary if Artix is not deployed at either the
consumer or service endpoints.

Note: Integration with the Artix AmberPoint Agent currently applies to
SOAP over HTTP, and services that have one endpoint only.
18

IONA Artix AmberPoint Agent

Artix interceptor An Artix interceptor is deployed on the dispatch path of all messages
exchanged between Artix service endpoints and consumers. It may be
deployed in the same process as the consumer and/or the endpoint, or as an
intermediary between the consumer and service.

The Artix interceptor captures all data in the dispatch path. This applies to
the Artix C++ and Java core runtimes. The Artix interceptor then reports
performance metrics using the AmberPoint nano agent API.

Artix service endpoints An Artix service endpoint is a service built using Artix, and described using
WSDL. The endpoint can be implemented using C++, JAX-RPC, JAX-WS,
or even a scripting language, such as JavaScript. However, its main
characteristic is that it can be described in WSDL, and classified as a
service, which can therefore be consumed. The Artix AmberPoint Agent
provides a WSDL contract describing the endpoint that is being monitored.

Service consumers Service consumers are clients that consume service endpoints by
exchanging messages based on the service interface. Consumers can be
built using Artix, or any product that supports the technology used by the
endpoint. For example, a pure CORBA client could be a consumer for a
CORBA endpoint. A .NET client could be a consumer for an Artix SOAP
endpoint.

Figure 4: Artix AmberPoint Agent Embedded in Service Endpoint
19

CHAPTER 1 | Artix AmberPoint Integration
AmberPoint SOA Management
System

In this document, AmberPoint is the general term used to describe the
system in which all performance metrics are stored and viewed. For the
purposes of this document, all interactions are made using the AmberPoint
Nano Agent API, and the AmberPoint graphical tools are used to view the
Artix data. This simplifies the architecture of AmberPoint for the sake of this
discussion.

AmberPoint Nano Agent API The AmberPoint Nano Agent API is a Java public API provided by
AmberPoint that enables customers to monitor their endpoints. This is the
API that Artix uses to notify AmberPoint of the existence of the service
endpoint. Artix also uses the AmberPoint nano agent API at runtime to
report performance metrics about a previously registered endpoint.

The AmberPoint Nano Agent API enables the Artix interceptor to do the
following:

� Allow dynamic discovery of new Artix endpoints without manual
registration of the endpoints by the user. This registration process
assumes that the Artix interceptor has the required configuration for
the nano agent to contact AmberPoint. When the Artix AmberPoint
Agent becomes active, it uses the Nano Agent API to register a new
endpoint.

� Allow periodic reporting of messages using the Artix interceptor. These
reports contain performance data about the endpoint and the
messages being exchanged.
20

IONA Artix AmberPoint Agent
Artix AmberPoint Agent in a
service network

Figure 5 shows the Artix AmberPoint Agent deployed in a service network
with multiple service consumers and service endpoints.

This loosely-coupled architecture has the following benefits:

� Because the Artix AmberPoint Agent is collocated and embedded in
the service endpoint, there are no additional network hops, so
performance is maximized.

� Unlike with the AmberPoint Proxy Agent, there is no risk of a single
point of failure, so reliability and scalability are also improved.

� An Artix AmberPoint Agent can be embedded into an Artix router.This
enables it to dynamically discover and monitor the Artix service
endpoints and consumers that the router creates and manages.

� Because the client is aware of the back-end service endpoint, the use
of callbacks is supported.

Figure 5: Artix AmberPoint Agent Service Network
21

CHAPTER 1 | Artix AmberPoint Integration
Supported AmberPoint features The Artix AmberPoint Agent enables the use of the following AmberPoint
features:

� Dynamic discovery of Artix clients and services using SOAP over HTTP.

� Monitoring of Artix client and service invocations, and reporting them
back to AmberPoint.

� Mapping Qualities of Service (QoS) to customer Service Level
Agreements (SLAs).

� Monitoring of Artix invocation flow dependencies, which enables
AmberPoint to draw Web service dependency diagrams.

� Centralized logging and performance statistics.

Further information For detailed information on using AmberPoint features, see the AmberPoint
product documentation.
22

CHAPTER 2

Configuring the
Artix AmberPoint
Agent
This chapter explains how to set up integration with IONA�s
Artix AmberPoint Agent, and shows examples from the Artix
AmberPoint integration demos.

In this chapter This chapter includes the following sections:

Installing AmberPoint page 24

Configuring AmberPoint for Artix Integration page 25

Configuring Artix C++ Services for AmberPoint Integration page 28

Configuring Artix Java Services for AmberPoint Integration page 33
23

CHAPTER 2 | Configuring the Artix AmberPoint Agent
Installing AmberPoint

Overview Artix supports integration with version 5.1 of the AmberPoint SOA
management system. This section explains how to install AmberPoint to
enable integration with the Artix AmberPoint Agent.

Installation steps When installing the AmberPoint runtime, perform the following steps:

1. In the AmberPoint installation wizard, choose a suitable HTTP port
number for the J2EE application server in which the AmberPoint server
will be deployed (for example, 9090).

2. AmberPoint comes bundled with Tomcat application server, so for the
demo purposes, choose to install Tomcat.

3. Select Deploy AmberPoint into the container.

4. Select Install a Java VM specifically for this application.

5. Select Deploy a new sphere with the SOA Management System. This
deploys the persistence runtime into the J2EE application server, and
configures it to use the embedded Tomcat HSQL relational database
management system.

6. You can also install AmberPoint sample Web services, but these are
not required.

7. Provide a user name and password with administrative privileges (for
example, admin/admin).

8. When installation is complete, copy the AmberPoint Nano Agent Server
into the deployment directory of the application server. For example,
for Tomcat, use the following command:

If you are not using Tomcat, use the vendor�s visual tools to deploy
apsocketconverter.war into the application server.

copy AP_InstallDir/add_ons/socket_converter/apsocketconverter.war
AP_InstallDir/server/webapps
24

Configuring AmberPoint for Artix Integration
Configuring AmberPoint for Artix Integration

Overview This section explains how to configure the AmberPoint SOA management
system for integration with Artix. This section applies to Artix applications
written in C++, JAX-RPC, and JAX-WS.

Starting the AmberPoint Server When you have completed the AmberPoint installation steps, run the
AmberPoint server using Window's Start menu.

Alternatively, execute the following script:

You can see how your application server starts up and deploys the
AmberPoint server in the log files in the AP_InstallDir/server/logs
directory.

Configuring the AmberPoint Nano
Agent Sever

When the application server has started and deployed all the AmberPoint
.war files, perform the following steps:

1. Open a web browser and specify the following URL:
http://hostname:port/apasc/

2. Login using the admin user name and password that you provided
when installing AmberPoint.

3. When logged in, click Network|Infrastructure in the tabbed menu.
This displays a list of registered Deployments with this application
server's container.

Windows AP_InstallDir\server\bin\startup.bat

UNIX AP_InstallDir/server/bin/startup.sh
25

CHAPTER 2 | Configuring the Artix AmberPoint Agent
4. Ensure that one of the deployed items is named apsocketconverter
and has a green button beside it. This indicates that the AmberPoint
Nano Agent Server has been successfully deployed and is ready to be
configured.

5. In the left pane, click the Register button.

From the drop-down menu, select Message Source|Simple Message
Source: This displays the Register Message Source form.

6. In the Register Message Source form, enter the following:

The source Name can be any string value. The Location specifies the
location of the log file for incoming messages. The default Criteria for
this policy applies this message source to all active services that this
AmberPoint system is aware of.

7. Without modifying the Criteria for this policy, click Preview Services
to see which services this message Source applies to. If you have no
services currently registered, only one service named MonitorEnabler is
displayed.

8. Click the Go button at the top left of the screen, and wait until the
Policy Status is Applied.

9. Return to a command window to build an Artix AmberPoint demo (see
�Configuring Artix C++ Services for AmberPoint Integration� on
page 28 or �Configuring Artix Java Services for AmberPoint
Integration� on page 33).

Name Artix Message Source

Type of Message Source File

Start At At present

Location AmberPointInstallDir\server\amberpoint\
apsocketconverter\logdir
26

Configuring AmberPoint for Artix Integration
Configuring the AmberPoint port If the default AmberPoint Nano Agent Server port (33333) does not suit your
setup, change the following attributes to the new port number:

� messageLogWriter logLocation in your Artix
apobserver.configuration file

� messageLogReader logLocation in:
AP_InstallDir/server/webapps/apsocketconverter.war@/WEB-INF/
application/resources/readerConfig.xml

Whenever you update values in the Artix apobserver.configuration file,
you must restart the services already being monitored by the Artix
AmberPoint Agent for the changes to take effect.

If you update the Nano Agent Server port, you may need to restart the
application server for changes to take effect (except for those servers that
support hot deployment).

For example, these settings appear as follows in the Artix
apobserver.configuration file:

<ap:messageLogWriter
logWriterImplClass="com.amberpoint.msglog.socketimpl.SocketLogWriter"

 logName="{hostname}" <!-- default = localhost -->
 logLocation="{port}" <!-- default = 33333 -->
 syncEverySoManyEntries="50">
</ap:messageLogWriter>
 ...
<ap:hostMapper algorithm="asSent" urlProperty="ap:requestURL"/>
 ...
<ap:hostMapper algorithm="asSent" urlProperty="ap:wsdlUrl"/>
 ...
27

CHAPTER 2 | Configuring the Artix AmberPoint Agent
Configuring Artix C++ Services for
AmberPoint Integration

Overview This section explains how to configure Artix C++ and JAX-RPC services to
support the Artix AmberPoint Agent. It describes Artix AmberPoint demo
configuration settings in detail. However, if your AmberPoint installation and
demo run on the same host, you do not need to make any configuration
changes to run the demo. If you wish to run the demo now, skip this
section, and see the readme.txt in the following directory:

This amberpoint demo is based on ...samples/routing/content_based,
with some modifications to enable Artix and AmberPoint integration.

Configuring the AmberPoint Nano
Agent plug-in

You must enable the AmberPoint Nano Agent plug-in for the Artix runtime.
For example, the configuration scope in which the demo servers run
includes an Artix plug-in named ap_nano_agent. This is loaded into the Artix
runtime, and enables discovery and monitoring by AmberPoint of services
and consumers running inside Artix processes.

In this demo, there are three server instances, each exposing the same
interface but running under different service and endpoint name pairs. These
are as follows:

ArtixInstallDir/artix_Version/cxx_java/samples/integration/amberpoint

demos {
 content_based {
 orb_plugins = ["xmlfile_log_stream", "soap", "at_http", "ap_nano_agent"];
 ...
 }
 ...
}

{TargetService1, TargetPort1}
{TargetService2, TargetPort2}
{TargetService3, TargetPort3}
28

Configuring Artix C++ Services for AmberPoint Integration
Configuring the Artix router To enable router support, you must also add the AmberPoint Nano Agent
plug-in to the router�s configuration. For example, the demo configuration
scope in which the Artix router runs includes additional configuration for the
Artix routing plug-in. Its orb_plugins list includes the ap_nano_agent
plug-in, which enables the router�s endpoints and consumers to be
discovered and monitored by AmberPoint.

The ap_nano_agent plug-in must precede the routing plug-in. This is
because the Artix AmberPoint Agent must register itself in the interceptor
chain before the routing plug-in instantiates and activates the services that it
manages.

Setting plugins:routing:use_pass_through to false disables passing data
through the router without parsing. The ap_nano_agent plug-in requires that
the underlying payload is parsed in the Artix type format.

Configuring the consumer
hostname

plugins:ap_nano_agent:hostname_address:publish_hostname specifies
the form in which the Artix AmberPoint Agent resolves the host address that
an Artix service consumer (proxy) runs on. This variable takes the following
values:

demos {
 content_based {
 ...
 router {
 orb_plugins = ["xmlfile_log_stream", "ap_nano_agent", "routing"];
 plugins:routing:use_pass_through="false";
 ...
 }
 }
}

unqualified The host name in short form, without the domain
name (hostname).

ipaddress The host name in the form of an IP address (for
example, 123.4.56.789). This is the default.

canonical The host name takes a fully qualified form
(hostname.domainname).

true same as unqualified

false same as ipaddress
29

CHAPTER 2 | Configuring the Artix AmberPoint Agent
plugins:ap_nano_agent:hostname_address:local_hostname is an arbitrary
string used as the client hostname instead of trying to resolve it using the
underlying IP runtime. This is undefined by default.

To report the correct service consumer address invoking to an Artix service
monitored by this agent, specify the following setting in the client and server
configuration scope:

Configuring the service hostname The server-side host name resolution is driven by the specific transport.
Because the HTTP transport is the only one currently supported the
following variables must be configured:

� policies:soap:server_address_mode_policy:publish_hostname
� policies:at_http:server_address_mode_policy:publish_hostname

Possible values are the same as those for
plugins:ap_nano_agent:hostname_address:publish_hostname.

These variables specify the format that a service endpoint address is
published to service consumers. AmberPoint discovers Artix services by
consuming a published WSDL contract. It correlates the address in the
WSDL with the inflow of log messages that describe operations invoked on
an endpoint. This means that you must synchronize these configuration
values with the configuration values of the AmberPoint Client Nano Agent.

Configuring the AmberPoint
hostname

The default Artix hostname resolution setting is ipaddress, which is the
same as that for the configuration of AmberPoint Client Nano Agent.
However, if you change the Artix hostname resolution, you must also update
the AmberPoint Client Nano Agent configuration file. For example:

To update the hostname resolutions setting, open the file in a text editor and
find the two occurrences of the hostMapper algorithm attribute.

You must update the value of hostMapper algorithm attribute if you change
the value of
policies:soap:server_address_mode_policy:publish_hostname and
policies:at_http:server_address_mode_policy:publish_hostname
configuration variables.

plugins:bus:register_client_context="true";

ArtixInstallDir/artix_Version/cxx_java/etc/amberpoint/5.1/nanoagent/conf/apobserver.configuration
30

Configuring Artix C++ Services for AmberPoint Integration
The equivalent AmberPoint values are as follows:

To avoid updating the AmberPoint Nano Agent Client configuration each
time you change the Artix configuration, simply use hostMapper
algorithm="asSent".

If you are running your Artix services and the AmberPoint Nano Agent Server
on different machines, you must also update the messageLogWriter
logName attribute to point the host name or IP address where the Nano
Agent Server is running.

Configuring the AmberPoint port If the default AmberPoint Nano Agent Server port (33333) does not suit your
setup, you can update your AmberPoint configuration file to the new port
number. For more details, see �Configuring the AmberPoint port� on
page 27.

Viewing Artix services in
AmberPoint

When you run the demo, and start the Artix router and servers, and make
client invocations to the router, these calls are in turn forwarded on to the
servers.

AmberPoint dependency diagrams

While the demo is running, in the AmberPoint GUI, select the
Network|Services|Dependencies screen. AmberPoint tracks the call flow,
as it happens, between Artix services with the Artix AmberPoint Agent in
their runtime. The dependency flow diagram is a directed graph, and can be
of any complexity. For example, a client makes three calls to the source
service implemented by the router. Each call is routed to the intended
destination service, defined by the routing rules. Each TargetService
receives a single call out of the three made. And each dependency tracking
is shown in relation to the service selected in the Selector list, which is
referred as a primary service.

Artix publish_hostname variable AmberPoint hostMapper
algorithm

ipaddress useIpAddr or asSent

canonical useFQN or asSent

unqualified asSent
31

CHAPTER 2 | Configuring the Artix AmberPoint Agent
You can manually create dependencies between services using the
AmberPoint tools if so desired. See the AmberPoint user documentation for
details on what you can do with dependency diagrams (for example, using
the Network|Services|Dependencies screen).

AmberPoint performance diagrams

You can use the AmberPoint Performance|Activity screen to view
performance statistics. See the AmberPoint user documentation for details
on what you can do with performance statistics.

AmberPoint logging policies

You can collect call logs by adding an AmberPoint logging policy using the
Exceptions|Services screen. To add an AmberPoint logging policy, click the
Add Logging Policy button at the top of the screen. This displays the Add
Policy form,. Use this form to specify a meaningful name, and tune its
parameters to your needs. If you wish to log messages for all available
services, edit the policy rules at the bottom of this form.

When the log policy is created, you must wait until it is applied, like when
you created a Message Source (see �Configuring the AmberPoint Nano
Agent Sever� on page 25). After the log policy has been applied and turns
green, send some more traffic using the demo. You can then watch the
Message Log using the Exceptions|Services|Message Log tab.

Further information There are many other AmberPoint features that you can use with Artix. For
example, when AmberPoint has captured the Artix traffic, you can use its
runtime to define customers and their SLAs, and map these SLAs to the
services in the network. You can also create reactions (alerts) if an SLA
violation has occurred and so on. See the AmberPoint user documentation
for more details.

Artix AmberPoint demo

For more details on the Artix AmberPoint integration demo, see
...\cxx_java\samples\integration\amberpoint\README.txt

Artix C++ configuration

� Configuring and Deploying Artix Solutions, C++ Runtime

� Artix Configuration Reference, C++ Runtime
32

../deploy/cpp/index.htm
../config_ref/cpp/index.html

Configuring Artix Java Services for AmberPoint Integration
Configuring Artix Java Services for
AmberPoint Integration

Overview This section explains how to configure Artix JAX-WS services to support the
Artix AmberPoint Agent. It describes Artix AmberPoint demo configuration
settings. However, if your AmberPoint installation and demo run on the
same host, you do not need to make any configuration changes to run the
demo. If you wish to run the demo now, skip this section, and see the
readme.txt in the following directory:

This amberpoint demo is based on .../java/samples/hello_world, with
some modifications to enable Artix and AmberPoint integration.

Server configuration The Artix Java configuration mechanism uses the XML-based Spring
Framework. The following code shows the server-side configuration taken
from the server.xml file in the Artix amberpoint demo:

ArtixInstallDir/artix_Version/java/samples/management/amberpoint

<?xml version="1.0" encoding="UTF-8"?>
<!-- -->
<!-- Copyright (c) 1993-2006 IONA Technologies PLC. -->
<!-- All Rights Reserved. -->
<!-- -->
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 xsi:schemaLocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd">

 <!-- wiring server life cycle listener for gathering the server's endpoint information -->
 <bean id="com.iona.cxf.management.amberpoint.ServerLifeCycleListenerImpl"
 class="com.iona.cxf.management.amberpoint.ServerLifeCycleListenerImpl">
 <property name="bus" ref="cxf" />
 </bean>
33

CHAPTER 2 | Configuring the Artix AmberPoint Agent
This example shows the configuration setting for the server lifecycle listener,
which gathers the server's endpoint information. It also shows how to log
the server to AmberPoint. And finally, the hello_world service endpoint is
configured for Artix AmberPoint integration, using the jaxws:endpoint
attribute.

For details on how to make your configuration available to the Artix Java
runtime, see �Configuring the AmberPoint hostname� on page 36.

 <!-- wiring the Nano Agent Logger factory for writing logger to apsocketconverter -->
 <bean id="com.iona.cxf.management.amberpoint.nanoagent.NanoAgentLoggerFactory"
 class="com.iona.cxf.management.amberpoint.nanoagent.NanoAgentLoggerFactory">
 <property name="bus" ref="cxf" />
 </bean>

 <!-- wiring the Amberpoint integration feature-->
 <jaxws:endpoint name="{http://apache.org/hello_world_soap_http}SoapPort"
 createdFromAPI="true">
 <jaxws:features>
 <bean class="com.iona.cxf.management.amberpoint.interceptor.InvocationMessageFeature"/>
 </jaxws:features>
 </jaxws:endpoint>
</beans>
34

Configuring Artix Java Services for AmberPoint Integration
Client configuration The following code shows the client-side configuration taken from the
client.xml file in the Artix amberpoint demo.

This example shows how to log the client to AmberPoint. It also shows how
the hello_world client is configured for Artix AmberPoint integration, using
the jaxws:client attribute.

For details on how to make your configuration available to the Artix Java
runtime, see �Configuring the AmberPoint hostname� on page 36.

?xml version="1.0" encoding="UTF-8"?>
<!-- -->
<!-- Copyright (c) 1993-2007 IONA Technologies PLC. -->
<!-- All Rights Reserved. -->
<!-- -->
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 xsi:schemaLocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd">

 <!-- wiring the Nano Agent Logger factory for writing logger to apsocketconverter -->
 <bean id="com.iona.cxf.management.amberpoint.nanoagent.NanoAgentLoggerFactory"
 class="com.iona.cxf.management.amberpoint.nanoagent.NanoAgentLoggerFactory">
 <property name="bus" ref="cxf" />
 </bean>

 <!-- wiring the Amberpoint integration feature-->
 <jaxws:client name="{http://apache.org/hello_world_soap_http}SoapPort"
 createdFromAPI="true">
 <jaxws:features>
 <bean class="com.iona.cxf.management.amberpoint.interceptor.InvocationMessageFeature"/>
 </jaxws:features>
 </jaxws:client>

</beans>
35

CHAPTER 2 | Configuring the Artix AmberPoint Agent
Configuring the AmberPoint
hostname

If you are running your Artix services and the AmberPoint Nano Agent Server
on different machines, you must update the hostname in your AmberPoint
Nano Agent Client configuration file. For example:

You should update the messageLogWriter logName attribute to point the
hostname or IP address where the AmberPoint Nano Agent Server is
running.

Configuring the AmberPoint port If the default AmberPoint Nano Agent Server port (33333) does not suit your
setup, you can update your AmberPoint configuration file to the new port
number. For more details, see �Configuring the AmberPoint port� on
page 27.

Accessing Artix Java configuration You can make your Artix Java configuration available to the Artix Java
runtime in one of the following ways:

� Use one of the following command-line arguments to point to your
XML configuration file:

♦ -Dcxf.config.file=<myCfgResource>

♦ -Dcxf.config.file.url=<myCfgURL>

This enables you to save your XML configuration file anywhere on your
system and avoid adding it to your CLASSPATH.

� Specify the XML configuration file on your CLASSPATH.

� Programmatically, by creating a bus and passing the configuration file
location as either a URL or string, as follows:
 (new SpringBusFactory()).createBus(URL myCfgURL)
 (new SpringBusFactory()).createBus(String myCfgResource)

ArtixInstallDir/artix_Version/java/samples/management/amberpoint/apobserver.configuration
36

Configuring Artix Java Services for AmberPoint Integration
Demo examples

The Artix Java sample applications uses the command-line approach. For
example, in the Artix AmberPoint demo, the following command is used to
start the server:

The following command is used to start the client:

Viewing the demo in AmberPoint You can use the following AmberPoint tools to view the demo application.

AmberPoint dependency diagrams

While the demo is running, in the AmberPoint GUI, select the
Network|Services|Dependencies screen. AmberPoint tracks the call flow,
as it happens, between Artix services with the Artix AmberPoint Agent in
their runtime. The dependency flow diagram is a directed graph, and can be
of any complexity. You can manually create dependencies between services
using the AmberPoint GUI tools if so desired. See the AmberPoint user
documentation for details on what you can do with dependency diagrams
(for example, using the Network|Services|Dependencies screen).

AmberPoint performance diagrams

You can use the AmberPoint Performance|Activity screen to view
performance statistics. See the AmberPoint user documentation for details
on what you can do with performance statistics.

AmberPoint logging policies

You can collect call logs by adding an AmberPoint logging policy using the
Exceptions|Services screen. To add an AmberPoint logging policy, click the
Add Logging Policy button at the top of the screen. This displays the Add
Policy form. Use this form to specify a meaningful name, and tune its
parameters to your needs. If you wish to log messages for all available
services, edit the policy rules at the bottom of this form.

 start java -Djava.util.logging.config.file=%CXF_HOME%\etc\logging.properties
-Dcxf.config.file=server.xml demo.hw.server.Server

start java -Djava.util.logging.config.file=%CXF_HOME%\etc\logging.properties
-Dcxf.config.file=client.xml demo.hw.client.Client .\wsdl\hello_world.wsdl
37

CHAPTER 2 | Configuring the Artix AmberPoint Agent
When the log policy is created, you must wait until it is applied, like when
you created a Message Source (see �Configuring the AmberPoint Nano
Agent Sever� on page 25). After the log policy has been applied and turns
green, send some more traffic using the demo. You can then watch the
Message Log using the Exceptions|Services|Message Log tab.

Further information There are many other AmberPoint features that you can use with Artix. For
example, when AmberPoint has captured the Artix traffic, you can use its
runtime to define customers and their SLAs, and map these SLAs to the
services in the network. You can also create reactions (alerts) if an SLA
violation has occurred and so on. See the AmberPoint user documentation
for more details.

Artix AmberPoint demo

For more details on the Artix AmberPoint integration demo, see
...\java\samples\integration\amberpoint\README.txt

Artix Java configuration

� Configuring and Deploying Artix Solutions, Java Runtime

� Artix Configuration Reference, Java Runtime

Spring Framework

www.springframework.org
38

../deploy/java/index.htm
../config_ref/java/index.html
www.springframework.org

Index

A
Add Logging Policy 32, 37
Add Policy 32, 37
AmberPoint Nano Agent API 20
AmberPoint Nano Agent Client 31, 36
AmberPoint Nano Agent Server 24, 31, 36
AmberPoint Proxy Agent 14
AmberPoint server 25
ap_nano_agent 28, 29
apobserver.configuration 27, 30
application server 24
apsocketconverter 26
apsocketconverter.war 24
Artix AmberPoint agent 17, 18
Artix interceptor 19
Artix router 21, 29
Artix service endpoint 19
asSent 31

C
callbacks 21
canonical 29
client 35
consumer 19
createBus() 36

D
-Dcxf.config.file 36
Dependencies 31, 32, 37
dependency diagrams 22
deployment modes 18
Deployments 25
dynamic discovery 20, 22

E
endpoint 19

G
Go 26

H
hostMapper algorithm 30
HSQL 24
HTTP port 24

I
interceptor 19
ipaddress 29

L
logging policies 32, 37

M
Message Log 32, 38
messageLogReader logLocation 27
messageLogWriter logLocation 27
messageLogWriter logName 36
monitoring 22

N
Nano Agent API 20

P
Performance 21
plugins:ap_nano_agent:hostname_address:local_hos

tname 30
plugins:ap_nano_agent:hostname_address:publish_

hostname 29
plugins:bus:register_client_context 30
plugins:routing:use_pass_through 29
policies:at_http:server_address_mode_policy:publish

_hostname 30
policies:soap:server_address_mode_policy:publish_h

ostname 30
Policy Status 26
port 24
proxy agent 14

R
Register 26
relational database 24
39

INDEX
reporting 20
router 21, 29

S
Selector 31
server.xml 33
service consumer 19
service endpoint 19
Service Level Agreements 22, 32, 38
Simple Message Source 26
SLAs 22, 32, 38
SOA management 14

SOAP/HTTP 15
SpringBusFactory() 36
Spring Framework 33

T
Tomcat 24

U
unqualified 29
useFQN 31
useIpAddr 31
40

	List of Figures
	Preface
	What is covered in this book
	Who should read this book
	Organization of this book
	The Artix Documentation Library

	Artix AmberPoint Integration
	AmberPoint Proxy Agent
	IONA Artix AmberPoint Agent

	Configuring the Artix AmberPoint Agent
	Installing AmberPoint
	Configuring AmberPoint for Artix Integration
	Configuring Artix C++ Services for AmberPoint Integration
	Configuring Artix Java Services for AmberPoint Integration

	Index

