
Artix ESBTM

Making Software Work TogetherTM

Artix for J2EE
Version 5.0, July 2007

IONA Technologies PLC and/or its subsidiaries may have patents, patent applications,
trademarks, copyrights, or other intellectual property rights covering subject matter in
this publication. Except as expressly provided in any written license agreement from
IONA Technologies PLC, the furnishing of this publication does not give you any license
to these patents, trademarks, copyrights, or other intellectual property. Any rights not
expressly granted herein are reserved.
IONA, IONA Technologies, the IONA logos, Orbix, Artix, Making Software Work
Together, Adaptive Runtime Technology, Orbacus, IONA University, and IONA XMLBus
are trademarks or registered trademarks of IONA Technologies PLC and/or its
subsidiaries.
Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries. CORBA is a trademark or registered trademark of the
Object Management Group, Inc. in the United States and other countries. All other
trademarks that appear herein are the property of their respective owners.
IONA Technologies PLC makes no warranty of any kind to this material including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose. IONA Technologies PLC shall not be liable for
errors contained herein, or for incidental or consequential damages in connection with the furnishing, perform-
ance or use of this material.

COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third
party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publica-
tion and features described herein are subject to change without notice.

Copyright © 2001-2007 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: June 27, 2007

Contents

List of Figures 7

Preface 9

Part I Introduction

Chapter 1 Introduction 13
J2EE Connector Architecture Overview 14

System-Level Contracts 16
Common Client Interface 17

Artix J2EE Connector Overview 18
Artix Servlet Container Support 21
Artix Concepts 22

Part II Using Artix in a J2EE Application Server

Chapter 2 Getting Started with Artix J2EE Connector 25
Introduction 26
Running the Hello World Demo on JBoss 27
Running the Hello World Demo on WebLogic 31
Running the Hello World Demo on WebSphere 35

Chapter 3 Exposing a Web Service to a J2EE Application 39
Introduction 40
Mapping the WSDL to Java 42
Writing your J2EE Application 43

Connection Management API Definition 44
Using the Connection Management API 45

Packaging your Application 49
3

CONTENTS
Chapter 4 Exposing a J2EE Application as a Web Service 53
Introduction 54
Mapping the WSDL to Java 56
Implementing a Stateless Session Bean 57
Configuring Inbound Connections 59

Chapter 5 Deploying Artix J2EE Connector 63
Setting the Artix Environment 64
Deploying to JBoss 66
Deploying to WebLogic 69
Deploying to WebSphere 72

Chapter 6 Transactions 75
Transactions Overview 76
Local Transactions 79
Global Transactions 84

Outbound Global Transactions 85
Inbound Global Transactions 88

Chapter 7 Security 91
Outbound Security 92
Configuring Outbound Security 95

Credentials Mapping 96
Configuring Credentials Mapping in JBoss 98

Inbound Security 101
Configuring Inbound Security 104

Securing the Target EJB 105
Configuring JAAS Login Module 107
Configuring EJB Create Username and Password 109

Configuring a Secure Transport 111

Part III Using Artix in a Servlet Container

Chapter 8 Exposing Artix Web Services from a Servlet Container 115
Introduction 116
Configuring Servlet Container to Run an Artix Application 119
4

CONTENTS
Building an Artix Application 125
Mapping the WSDL to Java 126
Writing the Implementation Class 128
Developing an Artix Java Plug-in 129
Configuring Artix to Use Your Plug-in 133

Building and Deploying your Web Application 136

Part IV Reference Information

Chapter 9 Artix J2EE Connector Configuration Properties 143
Configuration Properties 144

ArtixInstallDir 145
ArtixLicenseFile 146
LogLevel 147
ConfigurationDomain 148
ConfigurationScope 149
EJBServicePropertiesURL 150
EJBServicePropertiesPollInterval 151
MonitorEJBServiceProperties 152
JAASLoginConfigName 153
JAASLoginUserName 154
JAASLoginPassword 155

Setting Configuration Property Values 156
Setting Configuration Property Values in JBoss 157
Setting Configuration Property Values in WebLogic 158
Setting Configuration Property Values in WebSphere 159

Index 161
5

CONTENTS
6

List of Figures

Figure 1: J2EE Connector Architecture Component Structure 15

Figure 2: Connecting J2EE Applications to Web services using Artix J2EE Connector 19

Figure 3: Hello World Demo Running 30

Figure 4: Artix J2EE Connector Participating in Local Transactions 80

Figure 5: Artix J2EE Connector in an Outbound Global Transaction 85

Figure 6: Artix J2EE Connector in an Inbound Global Transaction 88

Figure 7: Artix J2EE Connector Propagating Credentials with Outbound Connections 92

Figure 8: Artix J2EE Connector Propagating Credentials with Inbound Connections 102

Figure 9: Exposing Artix Web Service from a Servlet Container 117

Figure 10: Classloader Configuration 123
7

LIST OF FIGURES
 8

Preface
What is Covered in this Guide
This book describes how to use Artix in a J2EE application server
environment and how to use Artix in a servlet container environment. It
applies to applications developed using the Artix JAX-RPC API, and not
applications developed using the Artix JAX-WS API.

Who Should Read this Guide
This guide is aimed at J2EE application programmers who want to use the
Artix JAX-RPC API to develop and deploy distributed J2EE applications that
are Web service enabled.

To use the Artix for J2EE guide, although you do not need an in depth
knowledge of Artix concepts, WSDL and Web services, you do need to be
familiar with these topics. The following guides are a good place to start if
you are not already familiar with Artix concepts, WSDL and Web Services:

• Getting Started with Artix

• Designing Artix Solutions

In addition, the following may provide useful background information:

• Understanding Web Services: XML, WSDL, SOAP, and UDDI, written
by Eric Newcomer, published by Addison Wesley, ISBN
0-201-75081-3.

• Understanding SOA with Web Services, written by Eric Newcomer
and Greg Lomow, published by Addison Wesley, ISBN
0-321-18086-0.

• The W3C XML Schema page at: www.w3.org/XML/Schema.

• The W3C WSDL specification at: www.w3.org/TR/wsdl.
9

http://www.w3.org/XML/Schema
http://www.w3.org/TR/wsdl

PREFACE
Organization of this Guide
This guide is divided into the following parts:

• Part I, Introduction, which gives an overview of the J2EE Connector
Architecture, the Artix J2EE Connector, and the Artix servlet container
support.

• Part II, Using Artix in a J2EE Application Server, which describes:

i. Getting started with the Artix J2EE Connector by running a simple
demo.

ii. Exposing a Web service to a J2EE application

iii. Exposing a J2EE application as a Web service

iv. Deploying Artix J2EE Connector

v. Using transactions with the Artix J2EE Connector

vi. Artix J2EE Connector security

• Part III, Using Artix in a Servlet Container, which describes how to
expose Artix Web services from a servlet container environment.

• Part IV, Reference Information, which provides details of the
configuration properties supported by the Artix J2EE Connector.

• Glossary of Terms, which explains the terminology used in this book.

• Index

The Artix Documentation Library
For information on the organization of the Artix library, the document
conventions used, and where to find additional resources, see Using the
Artix Library.
 10

../library_intro/index.htm
../library_intro/index.htm

Part I
Introduction

In this part This part contains the following chapters:

Introduction page 13
11

12

CHAPTER 1

Introduction
Artix can be used in a J2EE application server environment
and a servlet container environment. Using the Artix J2EE
Connector, developers can easily connect their J2EE
applications to Artix Web services and expose their J2EE
applications as Artix Web services from within their chosen
J2EE application server. In addition, Artix Web services can
be exposed from servlet container. This chapter introduces the
Artix J2EE Connector and the J2EE Connector Architecture on
which it is implemented. This chapter also introduces Artix
servlet container support and points you to resources that
explain Artix concepts, WSDL and Web services.

In this chapter This chapter discusses the following topics:

J2EE Connector Architecture Overview page 14

Artix J2EE Connector Overview page 18

Artix Servlet Container Support page 21

Artix Concepts page 22
13

CHAPTER 1 | Introduction
J2EE Connector Architecture Overview

Overview The J2EE Connector Architecture is part of the Java 2 Platform, Enterprise
Editions (J2EE) 1.3 specification. It outlines a standard architecture for
enabling J2EE applications to access resources in diverse Enterprise
Information Systems (EISs). The goal is to standardize access to
non-relational resources in the same way the JDBC API standardizes access
to relational data.

The J2EE Connector Architecture is implemented in a J2EE application
server and an EIS-specific resource adapter. The EIS resource adapter plugs
into the J2EE application server and provides a system library specific to,
and connectivity to, that EIS.

In this section This section introduces the J2EE Connector Architecture. The following
topics are covered:

• Graphical representation

• System-Level Contracts

• Common Client Interface

More information For more information on the J2EE Connector Architecture and to view the
specification itself, visit Sun Microsystems’ website (http://java.sun.com).
14

http://java.sun.com

J2EE Connector Architecture Overview
Graphical representation Figure 1 shows the components defined by the J2EE Connector
Architecture.

Figure 1: J2EE Connector Architecture Component Structure
15

CHAPTER 1 | Introduction
System-Level Contracts

Overview The J2EE Connector Architecture defines system-level contracts that are
implemented by the J2EE application server and the EIS resource adapter.
The following system-level contracts are specified in version 1.0 of the J2EE
Connector Architecture:

• Connection management

• Transaction management

• Security management

Connection management The connection management contract provides a consistent application
programming model for enabling a J2EE application to connect to an EIS,
and for allowing a J2EE application server to pool such connections. It
facilitates a scalable and efficient environment that can support a large
number of components requiring access to an EIS.

Transaction management The transaction management contract defines the scope of transactional
integration between a J2EE application server and an EIS that supports
transactional access. It defines three levels of transaction support—no
transactions, local transactions, and global or XA transactions.

Security management The security management contract allows a J2EE application to access an
EIS in a secure environment. This reduces security threats to the EIS and
protects valuable information resources managed by the EIS. Mechanisms
that can be used to protect an EIS against security threats include:

• Identification and authentication of principals (human users) to verify
that they are who they say they are.

• Authorization and access control to determine whether a principal is
allowed to access the EIS.

• Transport-level security to protect communications between the J2EE
application server and the EIS.
16

J2EE Connector Architecture Overview
Common Client Interface

Overview The Common Client Interface (CCI) defines a common application
programming model to allow application components and tools to interact
with resource adapters. It is independent of any specific EIS. It is a low-level
API and is similar to other J2EE interfaces such as the Java Database
Connectivity (JDBC) interface.
17

CHAPTER 1 | Introduction
Artix J2EE Connector Overview

Overview The Artix J2EE Connector is a J2EE Connector Architecture resource
adapter. It enables you to expose Artix Web services to your J2EE
applications and allows you to expose your J2EE applications as Artix Web
services.

The term Web services is used here to include SOAP over HTTP based
services and any service that has been exposed as a Web service by Artix.
Artix uses Web Services Definition Language (WSDL) contracts to expose
services. The Artix J2EE Connector can use the Artix WSDL files to
transparently connect your J2EE applications over multiple transports to any
Artix-enabled back-end service. This includes HTTP, CORBA, IIOP, IBM
WebSphere MQ, Java Messaging Service (JMS), BEA Tuxedo, and TIBCO
Rendezvous.

To use the Artix J2EE Connector you do not need an in depth knowledge of
Artix, WSDL or Web services. However, it would help if you were familiar
with Artix and its approach to Web services. The guides listed under the
Getting Started subsection of the Using the Artix Library are a good place to
start.

In this section This section provides a high-level overview of Artix J2EE Connector’s
components and how it can be used to manage both outbound and inbound
Web service connections, security and transactions for your J2EE
applications. The following topics are covered:

• Graphical representation

• Artix J2EE Connector RAR file

• Artix J2EE Connector deployment descriptor file

• Connection management

• Security management
18

../library_intro/index.htm

Artix J2EE Connector Overview
Graphical representation Figure 2 illustrates at a high-level how the Artix J2EE Connector can be
used to expose a Web service to a J2EE application. It acts as a bridge
between J2EE and SOAP over HTTP Web services. This is the simplest
example. It also illustrates that the Artix J2EE Connector can be used as a
bridge between J2EE and a CORBA server that has been exposed as a Web
service by Artix.

Artix J2EE Connector RAR file The Artix J2EE Connector resource adapter is packaged as a standard J2EE
Connector Architecture resource adapter archive (RAR) file, artix.rar. The
artix.rar file contains all the classes that Artix J2EE Connector needs to
manage the connections between J2EE applications and Artix Web services.
The Artix J2EE Connector uses the Java Native Interface (JNI) to access
core Artix functionality. The relevant native code libraries are accessed from
the Artix installation as needed at runtime.

Artix J2EE Connector deployment
descriptor file

The Artix J2EE Connector’s deployment descriptor file, ra.xml, contains
information about Artix J2EE Connector’s resource implementation,
configuration properties, transaction and security support. It describes the
capabilities of the resource adapter and provides a deployer with enough
information to properly configure the resource adapter in an application
server environment. An application server relies on the information in the

Figure 2: Connecting J2EE Applications to Web services using Artix
J2EE Connector
19

CHAPTER 1 | Introduction
deployment descriptor to know how to interact properly with the resource
adapter. The deployment descriptor is contained in the Artix J2EE Connector
RAR file, artix.rar.

You should not change the settings in the Artix J2EE Connector deployment
descriptor file. When deploying the Artix J2EE Connector, you can set the
configuration properties to suit your environment using your J2EE
application server’s deployment tools. The configuration property values for
your environment are not stored in the read-only deployment descriptor,
ra.xml. Instead, your application server stores them separately in its own
copy or representation of the deployment descriptor. The application server
configured deployment descriptor properties override the entries in the
ra.xml file.

Connection management The Artix J2EE Connector manages both outbound and inbound Artix Web
service connections. To run a simple demo, see “Getting Started with Artix
J2EE Connector” on page 25.

For more information on how to use the Artix J2EE Connector to manage
outbound connections, see “Exposing a Web Service to a J2EE Application”
on page 39.

For more information on how to use the Artix J2EE Connector to manage
inbound connections, see “Exposing a J2EE Application as a Web Service”
on page 53.

Security management The Artix J2EE Connector supports credentials propagation. It propagates
username and password credentials with outbound and inbound Artix Web
service requests.

For more information on using security with the Artix J2EE Connector, see
“Security” on page 91.

Transaction management The Artix J2EE Connector supports local and global (XA) transactions, as
specified by the J2EE Connector Architecture.

For more information on using transactions with the Artix J2EE Connector,
see “Transactions” on page 75.
20

Artix Servlet Container Support
Artix Servlet Container Support

Overview You can expose Artix Web services from a servlet container. You can expose
Artix Web services from a servlet container. Artix provides the servlet
component of the Web service. It provides a basic servlet, the
ArtixServlet.class, and a servlet transport plug-in, which you can use to
route HTTP requests to the servlet to Artix. You must write the Web service
implementation class and generate an Artix Java plug-in. The Artix Java
plug-in is required to create an instance of your Web service implementation
and register it with the Artix bus.

Client applications use the information in the WSDL file to initialize a proxy
to the Web service. Client applications can invoke on the Web services
through the HTTP port assigned to the servlet container or using any of the
transports supported by Artix.

More information For more information on how to expose Artix Web services from a servlet
container, see “Exposing Artix Web Services from a Servlet Container” on
page 115.
21

CHAPTER 1 | Introduction
Artix Concepts

Overview To use Artix in a J2EE application server or a servlet container environment,
you do not need an in depth knowledge of Artix concepts, WSDL and Web
services. In fact, for a simple application, everything that you need to get up
and running is provided in this guide. However, if you are developing a
complex application, you may need to be more familiar with Artix concepts,
WSDL, Web services, and Service Oriented Architectures (SOA). The
following will help provide you with the background information that you
need:

• Other Artix guides

• Artix glossary

• Other resources

Other Artix guides The Artix guides listed in Using the Artix Library under the Getting Started
and Designing Artix Solutions sections contain useful introductory material
on Artix technology, WSDL, Web services and SOA.

Artix glossary The Artix library also includes a comprehensive glossary that explains the
terminology used in this guide and in the rest of the Artix guides.

Other resources The following also provide useful background information:

• Understanding Web Services: XML, WSDL, SOAP, and UDDI, written
by Eric Newcomer, published by Addison Wesley, ISBN
0-201-75081-3.

• Understanding SOA with Web Services, written by Eric Newcomer
and Greg Lomow, published by Addison Wesley, ISBN
0-321-18086-0.

• The W3C XML Schema page at: www.w3.org/XML/Schema.

• The W3C WSDL specification at: www.w3.org/TR/wsdl.
22

http://www.w3.org/XML/Schema
http://www.w3.org/TR/wsdl
../glossary/index.htm
../library_intro/index.htm

Part II
Using Artix in a J2EE

Application Server

In this part This part contains the following chapters:

Getting Started with Artix J2EE Connector page 25

Exposing a Web Service to a J2EE Application page 39

Exposing a J2EE Application as a Web Service page 53

Deploying Artix J2EE Connector page 63

Transactions page 75

Security page 91
23

24

CHAPTER 2

Getting Started
with Artix J2EE
Connector
This chapter focuses on getting started with the Artix J2EE
Connector. It walks you through a simple Hello World demo
that shows you how to use the Artix J2EE Connector to connect
a servlet, which is deployed in a J2EE application server, to a
SOAP over HTTP Web service. JBoss, WebLogic, and
WebSphere are used as example J2EE application servers.

In this chapter This chapter contains the following sections:

Introduction page 26

Running the Hello World Demo on JBoss page 27

Running the Hello World Demo on WebLogic page 31

Running the Hello World Demo on WebSphere page 35
25

CHAPTER 2 | Getting Started with Artix J2EE Connector
Introduction

Overview This chapter is based on running the Artix J2EE Hello World demo. It
shows how you use the Artix J2EE Connector to connect a servlet deployed
in a J2EE application server to a SOAP over HTTP Artix Web service.

Demo location The demo can be found in:

WSDL file location The Artix Web service WSDL file, hello_world.wsdl, used to build both the
client J2EE application and the Artix server for this demo can be found in:

ArtixInstallDir/cxx_java/samples/j2ee/hello_world_soap_http

ArtixInstallDir/cxx_java/samples/basic/hello_world_soap_http/etc
26

Running the Hello World Demo on JBoss
Running the Hello World Demo on JBoss

Overview To run the Hello World demo on JBoss, complete the following steps:

Set Artix environment You must set the Artix environment before running JBoss or building the
demo. See “Setting the Artix Environment” on page 64 for more detail.

Start the JBoss server Start the JBoss server by running the following command from your
JBossHome/bin directory:

(Windows) run.bat

(UNIX) run.sh

Deploy the Artix J2EE Connector
to JBoss

To deploy the Artix J2EE Connector to JBoss, copy the Artix J2EE Connector
RAR file, artix.rar, from your

directory, to your JBoss deployment directory:

Step Action

1 Set Artix environment

2 Start the JBoss server

3 Deploy the Artix J2EE Connector to JBoss

4 Configure the connection factory

5 Build the demo

6 Deploy the Hello World application to JBoss

7 Start the back-end Artix server

8 Run the Hello World demo

ArtixInstallDir/cxx_java/lib/artix/j2ee/Version

JBossHome/server/default/deploy
27

CHAPTER 2 | Getting Started with Artix J2EE Connector
Configure the connection factory Connection factory configuration details are contained in the JBoss-specific
Artix J2EE Connector deployment descriptor file, CFactoryName-ds.xml file.
This demo provides a deployment descriptor for use with JBoss 4. To
configure the connection factory, copy the artixj2ee_1_5-ds.xml file from
your

directory, to your JBoss deployment directory:

Build the demo Build the Hello World demo from the
ArtixInstallDir/cxx_java/samples/j2ee/hello_world_soap_http

directory by running the following command:

(Windows) > ant

(Unix) % ant

The ant utility is a Java-based build tool. It is bundled with Artix. The
build.xml file located in the demo directory contains the instructions for
building the Hello World application, in an XML format that is understood
by the ant utility. For more information about ant, see
http://ant.apache.org/.

ArtixInstallDir/cxx_java/samples/j2ee/hello_world_soap_http/etc

JBossHome/server/default/deploy
28

http://ant.apache.org/
http://ant.apache.org/

Running the Hello World Demo on JBoss
Deploy the Hello World
application to JBoss

To deploy the Hello World application to JBoss, copy the Hello World
application WAR file, helloworld.war, from your

directory, to your JBoss deployment directory:

Start the back-end Artix server You can use either the Artix Java server or the Artix C++ server from the
Artix basic Hello World demo as the back-end server in this example. It is
located in:

In either case, you must compile the server before you can start it. For more
information on how to compile and start the back-end Artix server, see the
README.txt file located in the basic/hello_world_soap_http demo
directory.

Run the Hello World demo The Hello World demo presents a servlet view of the Hello World Web
service. If JBoss is running under its default URI, and assuming that the
application server is running on the same machine as the web browser, the
servlet is available on JBoss at the following URI:

http://localhost:8080/helloworld/rundemo.do

The Hello World demo is displayed as shown in Figure 3:

ArtixInstallDir/cxx_java/samples/j2ee/hello_world_soap_http/
j2ee_archives

JBossHome/server/default/deploy

ArtixInstallDir/cxx_java/samples/basic/hello_world_soap_http
29

CHAPTER 2 | Getting Started with Artix J2EE Connector
Figure 3: Hello World Demo Running
30

Running the Hello World Demo on WebLogic
Running the Hello World Demo on WebLogic

Overview To run the Hello World demo on WebLogic, complete the following steps:

Add Artix J2EE Connector API
JAR to WebLogic’s classpath

WebLogic uses independent classloaders for each connection factory. The
Artix J2EE Connector’s API classes must be available to the application’s
classloader and to the resource adapter’s classloader. This can lead to the
problem of sharing classes across classloaders.

To prevent such class sharing problems, place the shared API classes on
WebLogic’s CLASSPATH. You can do this by appending the Artix J2EE
Connector API JAR file, artixj2ee.jar, to WebLogic’s CLASSPATH or to your
global CLASSPATH environment variable. The artixj2ee.jar file is located
in:

Alternatively, you can update WebLogic’s start scripts. See the WebLogic
documentation for details.

Step Action

1 Add Artix J2EE Connector API JAR to WebLogic’s classpath

2 Set Artix environment

3 Start the WebLogic server

4 Configure the connection factory

5 Deploy Artix J2EE Connector to WebLogic

6 Build the demo

7 Deploy the Hello World application to WebLogic

8 Start the back-end Artix server

9 Run the Hello World demo

ArtixInstallDir/cxx_java/lib/artix/j2ee/Version
31

CHAPTER 2 | Getting Started with Artix J2EE Connector
Set Artix environment You must set the Artix environment before running WebLogic or building the
demo. See “Setting the Artix Environment” on page 64 for more detail.

Start the WebLogic server Start the WebLogic server by running the following command from your
BEA_Home/user_projects/domains/mydomain directory:

startWebLogic.cmd

Configure the connection factory Connection factory details are contained in the WebLogic-specific Artix J2EE
Connector deployment descriptor, weblogic-ra.xml. WebLogic expects to
find this file in the Artix J2EE Connector’s RAR file, artix.rar. To configure
the connection factory, you must add the weblogic-ra.xml file to the
artix.rar file prior to deploying the RAR file. The Hello World demo build
file, build.xml, references an ant target that does this for you. Run the ant
target as follows from the
ArtixInstallDir/cxx_java/samples/j2ee/hello_world_soap_http
directory:

(Windows) > ant prepare.rar.to.deploy

(UNIX) % ant prepare.rar.to.deploy

The ant utility is a Java-based build tool. It is bundled with Artix. The
prepare.rar.to.deploy target makes a copy of the artix.rar file, extracts
the contents, adds the weblogic-ra.xml file and rebuilds the RAR file. The
rebuilt artix.rar file is placed in the j2ee-archives directory of the demo.

The ant target is defined in the common.xml file, which is located in the
ArtixInstallDir/cxx_java/samples directory.

For more details about ant, see http://ant.apache.org/.

Deploy Artix J2EE Connector to
WebLogic

To deploy the Artix J2EE Connector to WebLogic, copy the Artix J2EE
Connector RAR file, artix.rar, from your

directory, to your WebLogic auto-deployment directory:

WebLogic 8
BEA_Home/user_projects/domains/mydomain/applications

ArtixInstallDir/cxx_java/samples/j2ee/hello_world_soap_http/
j2ee-archives
32

http://ant.apache.org/

Running the Hello World Demo on WebLogic
WebLogic 9
BEA_Home/user_projects/domains/mydomain/autodeploy

Build the demo Build the Hello World demo from the
ArtixInstallDir/cxx_java/samples/j2ee/hello_world_soap_http

directory by running the following command:

(Windows) > ant

(Unix) % ant

Deploy the Hello World
application to WebLogic

To deploy the Hello World application to WebLogic, copy the Hello World
application WAR file, helloworld.war, from your

directory, to your WebLogic auto-deployment directory:

WebLogic 8
BEA_Home/user_projects/domains/mydomain/applications

WebLogic 9
BEA_Home/user_projects/domains/mydomain/autodeploy

Start the back-end Artix server You can use either the Artix Java server or the Artix C++ server from the
Artix basic Hello World demo as the back-end server in this example. It is
located in:

In either case, you must compile the server before you can start it. For more
information on how to compile and start the back-end Artix server, see the
README.txt file located in the basic/hello_world_soap_http demo
directory.

Note: If you are running WebLogic in production mode (with
auto-deployment disabled), refer to the WebLogic documentation for
instructions on deploying a J2EE Connector Architecture resource adapter
or connector from the administration web console.

ArtixInstallDir/cxx_java/samples/j2ee
/hello_world_soap_http/j2ee_archives

ArtixInstallDir/cxx_java/samples/basic
/hello_world_soap_http
33

CHAPTER 2 | Getting Started with Artix J2EE Connector
Run the Hello World demo The Hello World demo presents a servlet view of the Hello World Web
service. The servlet is available on WebLogic’s host in the /helloworld
context. If WebLogic is running under its default URI, and assuming that the
application server is running on the same machine as the web browser, the
servlet is available on WebLogic at the following URI:

http://localhost:7001/helloworld/rundemo.do

The Hello World demo is displayed as shown in Figure 3 on page 30.
34

Running the Hello World Demo on WebSphere
Running the Hello World Demo on WebSphere

Overview To run the Hello World demo on WebSphere, complete the following steps:

Set Artix environment You must set the Artix environment before running WebSphere. See “Setting
the Artix Environment” on page 64 for more detail.

Start the WebSphere server Start the WebSphere server by running the following command from your
WebSphereHome/bin directory:

(Windows) startServer.bat server1

(UNIX) startServer.sh server1

Deploy the Artix J2EE Connector
to WebSphere

To deploy the Artix J2EE Connector run the following Jython script, which
deploys the Artix J2EE Connector and creates a connection factory:

On Windows:

Step Action

1 Set Artix environment

2 Start the WebSphere server

3 Deploy the Artix J2EE Connector to WebSphere

4 Build the demo

5 Deploy the Hello World application to WebSphere

6 Start the back-end Artix server

7 Run the Hello World demo

WebSphereHome\bin\wsadmin.bat -lang jython -f
ArtixInstallDir\cxx_java\samples\j2ee\hello_world_soap_http\
etc\rardeploy.py
nodeName

ArtixInstallDir\cxx_java\lib\artix\j2ee\Version\artix.rar
35

CHAPTER 2 | Getting Started with Artix J2EE Connector
On UNIX:

For more information on Jython, see www.jython.org.

Alternatively, you can use the WebSphere Administrative Console to deploy
the Artix J2EE Connector. Please refer to the WebSphere documentation for
details on how to deploy a J2EE Connector Architecture resource adapter.

Build the demo Build the Hello World demo from the
ArtixInstallDir/cxx_java/samples/j2ee/hello_world_soap_http

directory by running the following command:

(Windows) > ant

(Unix) % ant

The ant utility is a Java-based build tool. It is bundled with Artix. The
build.xml file located in the demo directory contains the instructions for
building the Hello World application, in an XML format that is understood
by the ant utility. For more information about ant, see
http://ant.apache.org/.

Deploy the Hello World
application to WebSphere

To deploy the Hello World application, run the following Jython script:

On Windows:

On UNIX:

WebSphereHome/bin/wsadmin.sh -lang jython -f
ArtixInstallDir/cxx_java/samples/j2ee/hello_world_soap_http/
etc/rardeploy.py
<nodeName>

ArtixInstallDir/cxx_java/lib/artix/j2ee/Version/artix.rar

WebSphereHome\bin\wsadmin.bat -lang jython -f
ArtixInstallDir\cxx_java\samples\j2ee\hello_world_soap_http\
etc\appdeploy.py
nodeName serverName ArtixInstallDir\cxx_java\samples\j2ee\
hello_world_soap_http\j2ee-archives\helloworld.war

WebSphereHome/bin/wsadmin.sh -lang jython -f
ArtixInstallDir/cxx_java/samples/j2ee/hello_world_soap_http/
etc/appdeploy.py
nodeName serverName ArtixInstallDir/cxx_java/samples/j2ee/
hello_world_soap_http/j2ee-archives/helloworld.war
36

http://www.jython.org/
http://ant.apache.org/
http://ant.apache.org/

Running the Hello World Demo on WebSphere
Alternatively, you can use the WebSphere Administrative Console to deploy
the Hello World application. Please refer to the WebSphere documentation
for details on how to deploy applications.

Start the back-end Artix server You can use either the Artix Java server or the Artix C++ server from the
Artix basic Hello World demo as the back-end server in this example. It is
located in:

In either case, you must compile the server before you can start it. For more
information on how to compile and start the back-end Artix server, see the
README.txt file located in the basic/hello_world_soap_http demo
directory.

Run the Hello World demo The Hello World demo presents a servlet view of the Hello World Web
service. The servlet is available on your WebSphere host in the helloworld
context. If WebSphere is running under its default URI, and assuming that
the application server is running on the same machine as the web browser,
the servlet is available on WebSphere at the following URI:

http://localhost:9080/helloworld/rundemo.do

The Hello World demo is displayed as shown in Figure 3 on page 30.

ArtixInstallDir/cxx_java/samples/basic
/hello_world_soap_http
37

CHAPTER 2 | Getting Started with Artix J2EE Connector
38

CHAPTER 3

Exposing a Web
Service to a J2EE
Application
You can use the Artix J2EE Connector to connect your J2EE
applications to Web services. This chapter walks you through
the steps involved.

In this chapter This chapter discusses the following topics:

Introduction page 40

Mapping the WSDL to Java page 42

Writing your J2EE Application page 43

Packaging your Application page 49
39

CHAPTER 3 | Exposing a Web Service to a J2EE Application
Introduction

Overview This section outlines how you expose a Web service to your J2EE
application using the Artix J2EE Connector. The following topics are
covered:

• Implementation steps

• How it works

• Demo

Implementation steps The following is a high-level view of the steps that you need to complete to
connect your J2EE application to a Web service using the Artix J2EE
Connector. It assumes that the Web service WSDL file already exists. If,
however, you need to develop a WSDL file, please refer to the Describing
Service Interfaces with WSDL guide.

The rest of this chapter describes steps 1 to 4 in detail. For deployment
details, see “Deploying Artix J2EE Connector” on page 63.

Step Action

1 Obtain a copy of, or details of the location of, the WSDL file for
the Web service to which you want to connect.

2 Map the WSDL file to Java to obtain the Java interfaces that
you will use when writing your application. Artix provides a
wsdltojava command-line utility that does this for you. The
Artix WSDL-to-Java mapping is based on the JAX-RPC
standard.

3 Write your application.

4 Package your application.

5 Deploy the your application and the Artix J2EE Connector to
your J2EE application server.
40

../contract/index.html
../contract/index.html

Introduction
How it works The Artix J2EE Connector is provided with a Java JAX-RPC style interface
that represents the Web service and the location of a WSDL file that
describes the Web service. The getConnection() operation on the Artix
J2EE Connector connection factory, returns a proxy that implements the
Java JAX-RPC interface. When the application invokes an operation on the
returned proxy, the Artix J2EE Connector uses the information in the
corresponding WSDL file to determine the appropriate binding information
for the Web service. The binding information describes the low-level details
around access to the Web service, the protocol address and wire format.
Typically this is SOAP over HTTP, but it can be fixed format over JMS, CDR
over IIOP, or any one of the many transports that Artix supports. The Artix
J2EE Connector uses Artix to invoke on the Web service using the
appropriate binding.

In addition, the proxy supports a close() operation. This is used when the
application is finished with the Web service. The close() operation returns
the proxy to the application server’s connection pool so it can be reused by
other components.

Demo The examples used in this chapter are taken from the J2EE Hello World
demo, which can be found in:

If you want to run this demo, see “Getting Started with Artix J2EE
Connector” on page 25 or the README.txt file in the demo directory.

ArtixInstallDir/cxx_java/samples/j2ee/hello_world_soap_http
41

CHAPTER 3 | Exposing a Web Service to a J2EE Application
Mapping the WSDL to Java

Overview The Artix development tools include a wsdltojava command-line utility that
you can use to generate Java interfaces from the WSDL file. Artix maps
WSDL types to Java using the mapping described in the JAX-RPC
specification.

Syntax of wsdltojava command To generate Java interfaces from a WSDL file, run the following command:

The parameters shown above are defined as follows:

Example For example, the following wsdltojava command was used to generate the
Greeter.java interface class that is provided in the J2EE Hello World
demo:

The hello_world.wsdl file can be found in:

More information For more information on the wsdltojava command-line utility, see the
Generating Code from WSDL chapter in the Artix Command Line Reference.

wsdltojava -d [output_dir] -interface -p package wsdl_contract

-d [output_dir] Specifies the directory to which the generated code is
written. The default is the current working directory.

-interface Generates the Java interface for the service.

-p <[wsdl
namespace =]
Package
Name>

Specifies the name of the Java package to use for the
generated code. You can optionally map a WSDL
namespace to a particular package name if your contract
has more than one namespace.

wsdl_contract Specifies the WSDL file from which the Java code is
being generated.

wsdltojava -d src -interface -p demo.ejb hello_world.wsdl

ArtixInstallDir/cxx_java/samples/basic/hello_world_soap_http/etc
42

../command_ref/index.html

Writing your J2EE Application
Writing your J2EE Application

Overview The Artix J2EE Connector connection management API allows you to get a
connection from your J2EE application to a Web service. The Artix J2EE
Connector API usage pattern is consistent with general connection
management in J2EE. This section provides an overview of the Artix J2EE
Connector connection management interfaces and outlines typical usage
scenarios.

In this section This section covers the following topics:

Connection Management API Definition page 44

Using the Connection Management API page 45
43

CHAPTER 3 | Exposing a Web Service to a J2EE Application
Connection Management API Definition

Overview The Artix J2EE Connector connection management API is packaged in
com.iona.connector and consists of two interfaces—
ArtixConnectionFactory and Connection. It is packaged in the
artixj2ee.jar file, located in the following directory:

ArtixInstallDir/cxx_java/lib/artix/j2ee/Version

This subsection gives a brief description of each and points you to the
Javadoc for more information. The following topics are covered:

• ArtixConnectionFactory

• Connection

• Javadoc

ArtixConnectionFactory The ArtixConnectionFactory interface provides the methods to create a
Connection that represents a Web service defined by the supplied
parameters. The ArtixConnectionFactory interface is the type returned
from an environment naming context lookup of the Artix J2EE Connector by
a J2EE component.

Connection The Connection interface provides a handle to a connection managed by the
J2EE application server. It is the super interface of the Web service proxy
returned by ArtixConnectionFactory. It allows the caller to return the proxy
to the application server’s pool when it is no longer needed. The returned
proxy also implements the interface supplied as an argument to
getConnection().

Javadoc For more detail on the Artix J2EE Connector API, see the Artix JAX-RPC
Javadoc.
44

../javadoc/rpc/index.html
../javadoc/rpc/index.html

Writing your J2EE Application
Using the Connection Management API

Overview The Artix J2EE Connector ArtixConnectionFactory interface has several
method signatures that you can use. This allows you to use the
ArtixConnectionFactory interface in a way that best suits your
environment. This subsection outlines the possible usage scenarios. The
following topic are covered:

• Hardcoding WSDL location details in your application

• Providing WSDL location details at runtime

• Omitting the port name parameter

• Configuring Artix to locate the WSDL at runtime

• Accessing the Artix bus directly

• More detail on Artix J2EE Connector API

Hardcoding WSDL location details
in your application

The following example code is taken from the Hello World demo used in
“Getting Started with Artix J2EE Connector” on page 25. It had been
simplified to make it easier to read. It demonstrates how the WSDL location
details can be hardcoded in your application:

Example 1: Hello World servlet

 Context ctx = new InitialContext();

1 ArtixConnectionFactory factory =
(ArtixConnectionFactory)ctx.lookup("java:comp/env/eis/

 ArtixConnector");

2 URL wsdlLocation = getClass().getResource("/hello_world.wsdl");
3 QName serviceName = new

QName("http://www.iona.com/hello_world_soap_http",
"SOAPService");

4 QName portName = new QName("","SoapPort");

5 Greeter greeter = (Greeter)factory.getConnection(Greeter.class,
wsdlLocation, serviceName, portName);

6 greeter.sayHi();

7 ((Connection)greeter).close();
45

CHAPTER 3 | Exposing a Web Service to a J2EE Application
The code in Example 1 can be explained as follows:

1. Retrieve the connection factory from JNDI.

2. Determine the WSDL location URL from the classpath using the JVM
runtime. The WSDL file must be available on the classpath for this to
work.

3. Create a QName that identifies which service in the WSDL file to use.

4. Create a QName that identifies which port in the WSDL file to use.

5. Invoke on the connection factory to create a connection to the Web
service and return a proxy.

6. Invoke on the service.

7. Close the connection to the service and return to the application server
connection pool.

Providing WSDL location details
at runtime

The following example code shows the same code, but in this case the
WSDL file is located by the runtime using Artix:

Example 2: Hello World servlet

 Context ctx = new InitialContext();

1 ArtixConnectionFactory factory =
(ArtixConnectionFactory)ctx.lookup("java:comp/env/eis/

 ArtixConnector");

2 QName serviceName = new
QName("http://www.iona.com/hello_world_soap_http",
"SOAPService");

3 QName portName = new QName("","SoapPort");

4 Greeter greeter = (Greeter)factory.getConnection(Greeter.class,
serviceName, portName);

5 greeter.sayHi();

6 ((Connection)greeter).close();
46

Writing your J2EE Application
The code in Example 2 can be explained as follows:

1. Retrieve the connection factory from JNDI.

2. Create a QName that identifies which service in the WSDL contract to
use. This is used by the Artix runtime to locate the WSDL contract. See
Configuring Artix to locate the WSDL at runtime for more detail.

3. Create a QName that identifies which port in the WSDL contract to use.

4. Invoke on the connection factory to create a connection to the Web
service and return a proxy.

5. Invoke on the service.

6. Close the connection to the service.

Omitting the port name parameter The ArtixConnectionFactory API also allows you to omit the port name
parameter. You can drop the port name parameter if the WSDL file only
defines one port or the first port defined in a WSDL file that has a number of
port definitions is the port that you want to use.

Configuring Artix to locate the
WSDL at runtime

There are several ways in which Artix can find WSDL files and endpoint
references at runtime. For more detail, see the Accessing Contracts and
References chapter in the Configuring and Deploying Artix Solutions, C++
Runtime guide.

Accessing the Artix bus directly If you need to access the Artix bus directly, you must use the
com.iona.connector.ArtixConnectionFactory.getBus() method. For
example, you might need to access the bus context registry or create a
reference. Example 3 shows how to use the
ArtixConnectionFactory.getBus() method.

Note: One way that Artix uses find WSDL files and endpoint references is
the command line. This approach is not appropriate for the Artix J2EE
Connector.

Example 3: Using ArtixConnectionFactory.getBus()

Context ctx = new InitialContext();
1 ArtixConnectionFactory factory =

(ArtixConnectionFactory)ctx.lookup(EIS_JNDI_NAME);
2 Bus bus = (Bus)factory.getBus();
47

../deploy/cpp/index.htm
../deploy/cpp/index.htm

CHAPTER 3 | Exposing a Web Service to a J2EE Application
The code shown in Example 3 can be explained as follows:

1. Retrieve the connection factory from JNDI.

2. Cast the connection factory to com.iona.jbus.Bus.

3. Call getContextRegistry() on the returned bus to get a reference to
the context registry. The com.iona.jbus.ContextRegistry object
manages all of the context objects for the application.

For more information on message contexts, see the Using Message Contexts
chapter in the Developing Artix Applications with JAX-RPC.

More detail on Artix J2EE
Connector API

For more detail on the Artix J2EE Connector API, see the Artix JAX-RPC
Javadoc.

3 ContextRegistry registry = bus.getContextRegistry();

Example 3: Using ArtixConnectionFactory.getBus()

Note: If you are using WebLogic, you must ensure that the bus, and any
dependencies that it might have, are available to the classloader that loads
the application. The easiest way to do this is add the Artix Java runtime
JAR,
ArtixInstallDir/cxx_java/lib/artix/java_runtime/Version/java_run
time-rt.jar, to WebLogic’s system classpath.
48

../javadoc/rpc/index.html
../javadoc/rpc/index.html
../jaxrpc_pguide/index.htm

Packaging your Application
Packaging your Application

Overview When packaging and deploying your J2EE application you must declare the
resource reference used in your code in your application deployment
descriptor and map that resource reference to a resource. In addition, you
need to package the Web service interface classes with your application.

In this section This section describes the following:

• Declaring the resource reference

• Mapping the resource reference

• Packaging Web service interface classes

Declaring the resource reference You must declare the resource reference used in your code in your
application deployment descriptor, ejb-jar.xml or web.xml, by adding a
resource-ref tag. For example, in the Hello World demo, the
helloworld.war file contains a web.xml file that includes the following:

Mapping the resource reference You must map the resource reference used in your code to the resource.
How you do this is dependent on the application server that you are using.
For example, if you are using JBoss, you must add a resource-ref tag to

Note: The example deployment descriptors shown here are taken from
the Hello World demo, which is used in “Getting Started with Artix J2EE
Connector” on page 25.

<resource-ref>
 <res-ref-name>eis/ArtixConnector</res-ref-name>
 <res-type>com.iona.connector.ArtixConnectionFactory
 </res-type>
 <res-auth>Container</res-auth>
</resource-ref>
49

CHAPTER 3 | Exposing a Web Service to a J2EE Application
the application server deployment descriptor file, jboss.xml. For example,
in the Hello World demo, the helloworld.war file contains a
jboss-web.xml file that includes the following:

The jndi-name of the resource-ref element binds the resource reference to
the connection factory that has been previously declared.

Similarly, if you are using WebLogic, you need to add
reference-descriptor tag to the application server deployment file,
weblogic.xml. For example, in the Hello World demo, the helloworld.war
file contains a weblogic.xml file that includes the following:

If you are using WebSphere, you can use the WebSphere Administrative
Console to map the resource reference to the resource while deploying the
Artix J2EE Connector. Please refer to the WebSphere documentation for
details.

Packaging Web service interface
classes

You must package the interface classes that you generated from the Web
service WSDL file with your J2EE application module when you are
packaging and deploying it. If the WSDL file contains complex types, the
wsdltojava utility will also produce helper classes. These also need to be
packaged with your J2EE application module.

<jboss-web>
 <resource-ref>
 <res-ref-name>eis/ArtixConnector</res-ref-name>
 <res-type>com.iona.connector.ArtixConnectionFactory</res-type>
 <jndi-name>java:/ArtixConnector</jndi-name>
 </resource-ref>
</jboss-web>

<weblogic-web-app>
 <reference-descriptor>
 <resource-description>
 <res-ref-name>eis/ArtixConnector</res-ref-name>
 <jndi-name>ArtixConnector</jndi-name>
 </resource-description>
 </reference-descriptor>
</weblogic-web-app>
50

Packaging your Application
It is important to package these files in the appropriate location in your J2EE
application module. For example, the helloworld.war file deployed in the
Hello World demo described in “Getting Started with Artix J2EE Connector”
on page 25, the interface classes are packaged in the WEB-INF/classes
directory.

More information Please refer to the J2EE specification and your J2EE vendor documentation
for more information on application packaging and deployment.
51

CHAPTER 3 | Exposing a Web Service to a J2EE Application
52

CHAPTER 4

Exposing a J2EE
Application as a
Web Service
You can expose your J2EE application as a Web service using
the Artix J2EE Connector.

In this chapter This chapter discusses the following topics:

Introduction page 54

Mapping the WSDL to Java page 56

Implementing a Stateless Session Bean page 57

Configuring Inbound Connections page 59
53

CHAPTER 4 | Exposing a J2EE Application as a Web Service
Introduction

Overview This section outlines how you expose a J2EE application as a Web service
using the Artix J2EE Connector. The following topics are covered:

• Implementation steps

• How it works

• Demo

Implementation steps The following is a high-level view of the steps that you need to complete to
expose your J2EE application as a Web service using the Artix J2EE
Connector. It assumes that the Web service WSDL file already exists. If,
however, you need to develop a WSDL file, please refer to the Describing
Service Interfaces with WSDL guide.

The rest of this chapter describes steps 1 to 4 in more detail. For
deployment information, see “Deploying Artix J2EE Connector” on page 63.

Step Action

1 Obtain a copy of, or details of the location of, the WSDL file
that defines the Web service that your application will
implement.

2 Map the WSDL file to Java to obtain the Java interfaces that
you will use when writing your application. Artix provides a
wsdltojava command-line utility that does this for you. The
Artix WSDL-to-Java mapping is based on the JAX-RPC
standard.

3 Implement a stateless session bean (SLSB) whose remote
interface extends the JAX-RPC interface generated by the
wsdltojava utility.

4 Configure the Artix J2EE Connector for inbound connections by
using an ejb_servants.properties file.

5 Deploy the Artix J2EE Connector and your application to your
J2EE application server.
54

../contract/index.html
../contract/index.html

Introduction
How it works Your J2EE application must provide an end point to which the Artix J2EE
Connector can dispatch incoming requests. This endpoint is a stateless
session bean (SLSB). The SLSB implements a method for each service/port
operation defined in the WSDL contract. The signature for each method is
as defined by the JAX-RPC mapping.

For each port, the Artix J2EE Connector creates a servant and registers it
with the Artix bus. A servant is an object that implements the service/port
operations specified in the WSDL file. The port is mapped to the SLSB by it
JNDI name. Each servant is given a JNDI name for the SLSB home on
which to receive the request. The port-to-JNDI mapping is specified in an
external properties file, ejb_servants.properties.

On receiving a request, the servant resolves the SLSB home object from
JNDI and creates an instance of the bean. The servant forwards the request
to the SLSB and passes return types or exceptions to the Artix runtime and
from there to the client.

Demo The examples used in this chapter are taken from the Inbound Connection
demo, which can be found in:

If you want to run this demo, see the README.txt file in the demo directory.

ArtixInstallDir/cxx_java/samples/j2ee/inbound_connection
55

CHAPTER 4 | Exposing a J2EE Application as a Web Service
Mapping the WSDL to Java

Overview The Artix development tools include a wsdltojava command-line utility that
you can use to generate Java interfaces from the WSDL file. Artix maps
WSDL types to Java using the mapping described in the JAX-RPC
specification.

Syntax of wsdltojava command To generate Java interfaces from a WSDL file, run the following command:

The parameters shown above are defined as follows:

Example For example, the following wsdltojava command was used to generate the
Greeter.java interface class that is provided in the Inbound Connection
demo:

The hello_world.wsdl file can be found in:

More information For more information on the wsdltojava command-line utility, see the
Generating Code from WSDL chapter in the Artix Command Line Reference.

wsdltojava -d [output_dir] -interface -p package wsdl_contract

-d [output_dir] Specifies the directory to which the generated code is
written. The default is the current working directory.

-interface Generates the Java interface for the service.

-p <[wsdl
namespace =]
Package
Name>

Specifies the name of the Java package to use for the
generated code. You can optionally map a WSDL
namespace to a particular package name if your contract
has more than one namespace.

wsdl_contract Specifies the WSDL file from which the Java code is
being generated.

wsdltojava -d src -interface -p demo.greeter hello_world.wsdl

ArtixInstallDir/cxx_java/samples/basic/hello_world_soap_http/etc
56

../command_ref/index.html

Implementing a Stateless Session Bean
Implementing a Stateless Session Bean

Overview You must implement a stateless session bean (SLSB) whose remote
interface extends the interface that you generated from the WSDL file in the
previous section. As per the EJB specification, the SLSB implementation
must implement the methods defined in the remote interface. This section
shows, as an example, the SLSB used in the Inbound Connection demo,
including the:

• Generated Java interface

• EJB remote interface definition

• Stateless Session Bean example

Generated Java interface The following example shows the Java interface, Greeter, which was
generated from the hello_world.wsdl file in the Inbound Connection
demo:

EJB remote interface definition The following EJB remote interface extends the Greeter interface:

Example 4: Greeter Interface

public interface Greeter extends java.rmi.Remote {

 public String sayHi() throws RemoteException;

 public String greetMe(String me) throws RemoteException;
}

Example 5: Greeter Remote Interface

...
public interface GreeterRemote extends EJBObject, Greeter {
}

57

CHAPTER 4 | Exposing a J2EE Application as a Web Service
Stateless Session Bean example The following SLSB implements a method for each operation defined in the
hello_world.wsdl file:

Example 6: Greeter Stateless Session Bean

...
public class GreeterBean implements SessionBean {
...
 public String sayHi() throws RemoteException {...
 }
 public String greetMe(String user) throws RemoteException

{...
 }
 //rest of bean implementation goes here
}

58

Configuring Inbound Connections
Configuring Inbound Connections

Overview The Artix J2EE Connector creates a servant for each port defined in the
WSDL contract and registers it with the Artix bus. Each servant is given a
JNDI name for the SLSB home on which to receive the request. You must
configure the Artix J2EE Connector with the port-to-JNDI mapping so that it
can pass incoming Web service requests to your application. To do this, you
must create an ejb_servants.properties file that maps the port to the
JNDI name.

In this section This section describes the format of the ejb_servants.properties file,
provides an example, and describes how to configure the Artix J2EE
Connector to find and monitor your ejb_servants.properties file. The
following topics are covered:

• Format of ejb_servants.properties

• Example

• Multiple entries

• Configuring the location and monitoring of ejb_servant.properties

Format of ejb_servants.properties The format of the ejb_servants.properties file is:

jndi_name={namespace}ServiceName,PortName@url_to_wsdl

jndi_name The configured JNDI name of the bean. This is the JNDI
name that an external client uses to contact the bean.

ServiceName The string form of the QName for the Artix service in the
WSDL file. The string form uses curly brackets for the
namespace and a plain string for the local part. Artix
listens on all configured ports for the service.

PortName The string form for the port name defined in the WSDL
file. This is an optional parameter and can be used to
specify a particular port. If it is not specified, Artix listens
on all ports.
59

CHAPTER 4 | Exposing a J2EE Application as a Web Service
Example Artix includes a ejb_servants.properties file that you can use as a
template for your application. It is located in:

The following shows the entry that is added to the
ejb_servants.properties file for the Inbound Connection demo:

Multiple entries You can include more than one entry in an ejb_servants.properties file if,
for example, you want to deploy multiple J2EE applications as Web services
targets.

Configuring the location and
monitoring of
ejb_servant.properties

By default, the Artix J2EE Connector is configured to find the
ejb_servants.properties file in:

If you store your ejb_servants.properties file in a different location, you
must set the EJBServicePropertiesURL configuration property to specify
that location. See “EJBServicePropertiesURL” on page 150 for details.

In addition, by default, the Artix J2EE Connector is configured to check the
ejb_servants.properties file for updates at 30 second intervals. This
behavior can be altered by changing the default settings of the

@url_to_wsdl The string form of a URL that identifies the WSDL file.
This is an optional parameter and does not need to be
used if Artix runtime has been configured to locate the
WSDL file (using the service QName).

For details on how to configure Artix to locate the WSDL
contract at runtime, see the Accessing Contracts and
References chapter in the Configuring and Deploying
Artix Solutions, C++ Runtime.

ArtixInstallDir/cxx_java/etc

GreeterBean={http://www.iona.com/hello_world_soap_http}SOAPService@file:C:/IONA/cxx_java \
samples/j2ee/inbound_connection/wsdl/hello_world.wsdl

Note: The contents must appear on one line.

ArtixInstallDir/cxx_java/etc
60

../deploy/cpp/index.htm
../deploy/cpp/index.htm

Configuring Inbound Connections
MonitorEJBServiceProperties and EJBServicePropertiesPollInterval
configuration properties. See “MonitorEJBServiceProperties” on page 152
and “EJBServicePropertiesPollInterval” on page 151 for more detail.
61

CHAPTER 4 | Exposing a J2EE Application as a Web Service
62

CHAPTER 5

Deploying Artix
J2EE Connector
How you deploy the Artix J2EE Connector is dependent on the J2EE
application server that you are using. In all cases, however, you must set the
Artix environment before running your application server. This chapter
outlines how to do this and highlights some important points when
deploying to JBoss, WebLogic and WebSphere.

For more detailed deployment information, please refer to your J2EE
application server documentation.

In this chapter This chapter discusses the following topics:

Setting the Artix Environment page 64

Deploying to JBoss page 66

Deploying to WebLogic page 69

Deploying to WebSphere page 72
63

CHAPTER 5 | Deploying Artix J2EE Connector
Setting the Artix Environment

Overview The Artix shared libraries must be available to the Artix J2EE Connector. To
set the Artix environment, you must do either run the artix_env script or
append the Artix shared library directory to the system environment variable.

Run the artix_env script Run the artix_env script located in your ArtixInstallDir/cxx_java/bin
directory.

For more information on the artix_env script, see the getting started
chapter in the Configuring and Deploying Artix Solutions, C++ Runtime
guide.

Append Artix shared library
directory to system environment
variable

If you do not want to run the artix_env script, you must instead append the
Artix shared library directory to your system environment variable as follows:

Windows

UNIX

On HP-UX set SHLIB_PATH as follows:

Artix J2EE Connector classloader
firewall

The Artix J2EE Connector uses a classloader firewall to isolate classes used
by Artix and classes used by the application server. If, for example, the
application server requires Xerces 2.4 and Artix requires Xerces 2.5, the

set PATH=%PATH%;ArtixInstallDir\cxx_java\bin

LD_LIBRARY_PATH=ArtixInstallDir/cxx_java/shlib:ArtixInstallDir/
cxx_java/
shlib/
default:$LD_LIBRARY_PATH

SHLIB_PATH=ArtixInstallDir/cxx_java/shlib:ArtixInstallDir/cxx_ja
va/

shlib/
default:$SHLIB_PATH
64

../deploy/cpp/index.htm

Setting the Artix Environment
classloader firewall allows both versions to exist. You do not need to do
anything with this classloader firewall. If, however, you are interested in
finding out more about Artix classloader firewalls:

• The Artix J2EE Connector classloader firewall configuration file,
artix_j2ee_ce.xml, is located in the following directory of your Artix
installation:

• See the Things to Consider when Developing Artix Applications
chapter, in the Developing Artix Applications with JAX-RPC.

InstallDir/cxx_java/etc
65

../jaxrpc_pguide/index.htm

CHAPTER 5 | Deploying Artix J2EE Connector
Deploying to JBoss

Overview This section gives an overview of how to deploy the Artix J2EE Connector to
JBoss and points you to a demo that walks you through deployment and
shows you a running application. It also provides you with an example of a
JBoss-specific Artix J2EE Connector deployment descriptor file.

In addition, to enable JBoss to make the Artix J2EE Connector available to
your application, you must include an entry in the application deployment
descriptor that binds the resource reference to the resource. This section
provides with an example of such an entry. The following topics are covered:

• Deployment steps

• Run the Hello World demo

• Example CFactoryName-ds.xml deployment descriptor

• Example application-specific deployment descriptor

• More detail

Deployment steps To deploy the Artix J2EE Connector to JBoss, complete the following steps:

Step Action

1 Set the Artix environment before running JBoss.

See “Setting the Artix Environment” on page 64 for more detail.

2 Copy the Artix J2EE Connector’s RAR file, artix.rar, from the
ArtixInstallDir/cxx_java/lib/artix/j2ee/Version
directory, to your JBoss deployment directory, typically:
JBossHome/server/default/deploy

3 Copy a JBoss-specific Artix J2EE Connector deployment
descriptor file, CFactoryName-ds.xml, to your JBoss
deployment directory: JBossHome/server/default/deploy

This file is required to configure the Artix J2EE Connector
connection factories. For more details, see Example
CFactoryName-ds.xml deployment descriptor.
66

Deploying to JBoss
Run the Hello World demo To deploy the Artix J2EE Connector and an example application to JBoss,
see “Running the Hello World Demo on JBoss” on page 27.

Example CFactoryName-ds.xml
deployment descriptor

The JBoss-specific Artix J2EE Connector deployment descriptor,
CFactoryName-ds.xml, defines the connection factories associated with the
Artix J2EE Connector, any dependencies it might have on other services, the
JNDI name under which it is registered, and the value of the configuration
properties that need to be defined for the connection factories.

The Artix J2EE Hello World demo provides an example of such a
deployment descriptor, artixj2ee_1_5-ds.xml, for use with JBoss 4:

Example application-specific
deployment descriptor

JBoss also requires an application-specific deployment descriptor to bind
the resource reference to the resource; that is, to make the Artix J2EE
Connector available to the application.

The following example deployment descriptor, jboss-web.xml, is used in
the Hello World demo to make the Artix J2EE Connector available to the
Hello World application:

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE connection-factories (View Source for full

doctype...)>
<connection-factories>
 <no-tx-connection-factory>
 <jndi-name>ArtixConnector</jndi-name>
 <rar-name>artix.rar</rar-name>
 <connection-definition>
 com.iona.connector.ArtixConnectionFactory
 </connection-definition>
 </no-tx-connection-factory>
</connection-factories>

<jboss-web>
 <resource-ref>
 <res-ref-name>eis/ArtixConnector</res-ref-name>
 <res-type>com.iona.connector.ArtixConnectionFactory
 </res-type>
 <jndi-name>java:/ArtixConnector</jndi-name>
 </resource-ref>
</jboss-web>
67

CHAPTER 5 | Deploying Artix J2EE Connector
The jndi-name of the resource-ref element binds the resource reference to
the connection factory that has been previously deployed.

When deploying your application, copy it and an application-specific
deployment descriptor file to your JBoss deployment directory:

JBossHome/server/default/deploy.

More detail For more detailed deployment information, please refer to the JBoss
documentation.
68

Deploying to WebLogic
Deploying to WebLogic

Overview This section gives an overview of how to deploy the Artix J2EE Connector to
WebLogic and points you to a demo that walks you through deployment and
shows you a running application. It also highlights how you can avoid
having to duplicate the Artix J2EE Connector’s API JAR when you are
deploying the Artix J2EE Connector to WebLogic. The following topics are
covered:

• Assumption

• Class sharing between resource adapters and applications

• Deployment steps

• Configuring the connection factory

• Example weblogic-ra.xml

• Run the Hello World demo

• More information

Assumption The information presented in this section is based on the assumption that
you are using WebLogic Server version 8.1 Service Pack 3 or higher.

Class sharing between resource
adapters and applications

WebLogic uses independent classloaders for each connection factory. The
Artix J2EE Connector’s API classes must be available to the application’s
classloader and to the resource adapter’s classloader. This can lead to the
problem of sharing classes across classloaders.

To prevent such class sharing problems, place the shared API classes on
WebLogic’s CLASSPATH. You can do this by appending the Artix J2EE
Connector API JAR file, artixj2ee.jar, to WebLogic’s CLASSPATH or to your
global CLASSPATH environment variable. The artixj2ee.jar file is located
in:

ArtixInstallDir/cxx_java/lib/artix/j2ee/Version
69

CHAPTER 5 | Deploying Artix J2EE Connector
Deployment steps To deploy the Artix J2EE Connector to WebLogic, complete the following
steps:

1. Set the Artix environment before running WebLogic. See “Setting the
Artix Environment” on page 64 for more detail.

2. Configure the connection factory. See Configuring the connection
factory for more detail.

3. Deploy Artix J2EE Connector to WebLogic by copying the artix.rar
file that you configured in step 2, to your WebLogic auto-deployment
directory:

WebLogic 8
BEA_Home/user_projects/domains/mydomain/applications

WebLogic 9
BEA_Home/user_projects/domains/mydomain/autodeploy

Configuring the connection factory Connection factory details are contained in the WebLogic-specific Artix J2EE
Connector deployment descriptor, weblogic-ra.xml. WebLogic expects to
find this file in the Artix J2EE Connector’s RAR file, artix.rar. To configure
the connection factory, you must add the weblogic-ra.xml file to the
artix.rar file prior to deploying the RAR file. To do this:

1. Make a copy of the artix.rar file and place it in the directory that
contains the META-INF\weblogic-ra.xml subdirectory. The artix.rar
file is located in:

2. Run the following JAR utility from the directory to which you have
copied the artix.rar file:

The jar uvf utility extracts the contents of the artix.rar file, adds the
weblogic-ra.xml file to the META-INF directory of the archive file and
rebuilds artix.rar.

ArtixInstallDir/cxx_java/lib/artix/j2ee/Version

jar uvf artix.rar META-INF/weblogic-ra.xml
70

Deploying to WebLogic
Example weblogic-ra.xml The WebLogic-specific Artix J2EE Connector deployment descriptor,
weblogic-ra.xml, defines the connection factories associated with the Artix
J2EE Connector, any dependencies it might have on other services, the
JNDI name under which it is registered, and the value of the configuration
properties that need to be defined for the connection factories.

The following example weblogic-ra.xml file is used to deploy the Artix J2EE
Connector in the Hello World demo:

Run the Hello World demo To deploy the Artix J2EE Connector and an example application to
WebLogic, see “Running the Hello World Demo on WebLogic” on page 31.

More information For more detailed deployment information, please refer to the WebLogic
documentation.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE weblogic-connection-factory-dd ...>
<weblogic-connection-factory-dd>
 <connection-factory-name>ArtixConnector
 </connection-factory-name>
 <jndi-name>ArtixConnector</jndi-name>
</weblogic-connection-factory-dd>
71

CHAPTER 5 | Deploying Artix J2EE Connector
Deploying to WebSphere

Overview This section gives an overview of how to deploy the Artix J2EE Connector to
WebSphere and points you to a demo that walks you through deployment
and shows you a running application. The following topics are covered:

• Deployment steps

• Run the Hello World demo

• More information

Deployment steps To deploy the Artix J2EE Connector to WebSphere:

1. Set the Artix environment before running WebSphere. See “Setting the
Artix Environment” on page 64 for more detail.

2. Run the following Jython script to deploy the Artix J2EE Connector and
create a connection factory:

On Windows:

On UNIX:

Alternatively, you can use the WebSphere Administrative Console to deploy
the Artix J2EE Connector.

WebSphereHome\bin\wsadmin.bat -lang jython -f
ArtixInstallDir\cxx_java\samples\j2ee\hello_world_soap_http\
etc\rardeploy.py
<nodeName>

ArtixInstallDir\\cxx_java\\lib\\artix\\j2ee\\Version\\
artix.rar

WebSphereHome/bin/wsadmin.sh -lang jython -f
ArtixInstallDir/cxx_java/samples/j2ee/hello_world_soap_http/
etc/rardeploy.py
<nodeName>

ArtixInstallDir/cxx_java/lib/artix/j2ee/Version/artix.rar

Note: On WebSphere 6.0.x a client-view jar for the target EJB(s) must
be available to the application server.
72

Deploying to WebSphere
Run the Hello World demo To deploy the Artix J2EE Connector and an example application to
WebSphere, see “Running the Hello World Demo on WebSphere” on
page 35.

More information For more detailed deployment information, please refer to the WebSphere
documentation.

For more information on Jython, see www.jython.org.
73

http://www.jython.org/

CHAPTER 5 | Deploying Artix J2EE Connector
74

CHAPTER 6

Transactions
Transaction support is an essential part of any enterprise
application architecture. The Artix J2EE Connector supports
local and global (XA) transactions as specified by the J2EE
Connector Architecture.

In this chapter This chapter covers the following topics:

Transactions Overview page 76

Local Transactions page 79

Global Transactions page 84

Note: Transaction support is not available in all editions of Artix. Please
check the conditions of your Artix license to see whether your installation
supports transactions.
75

CHAPTER 6 | Transactions
Transactions Overview

What is a transaction? A transaction is a single unit of work that can contain several programming
steps. When a transaction executes, each step must complete successfully
to ensure data integrity. If one step in a transaction fails, all of the steps in
that transaction must roll back. As a result, data that the transaction was
attempting to modify remains unaffected by the failure. If all the steps
succeed, the transaction commits and all data modifications resulting from
the transaction become permanent.

Non-transactional software processes can sometimes proceed and
sometimes fail, and sometimes fail after only half completing their task. This
can be a disaster for certain applications. The most common example is a
bank fund transfer: imagine a failed software call that debited one account
but failed to credit another. A transactional process, on the other hand, is
secure and reliable because it is guaranteed to succeed or fail in a
completely controlled way.

Example The classical example of a transaction is that of funds transfer in a banking
application. This involves two operations: a debit of one account and a
credit of another. To combine these operations into a single unit of work, the
following properties are required:

• If the debit operation fails, the credit operation should fail, and
vice-versa; that is, they should both work or both fail.

• The system goes through an inconsistent state during the process
(between the debit and the credit). This inconsistent state should be
hidden from other parts of the application.

• The committed results of the whole operation should be permanently
stored.
76

Transactions Overview
ACID properties Every transaction must obey what is known as the ACID properties:

Transaction managers Most resource managers, for example databases and message queues,
support native transactions. If, however, an application requires two or more
resource managers to be part of the same transaction, then a third-party
transaction manager is needed to coordinate the transaction and to ensure
that the ACID properties of the transaction are maintained.

The application uses the transaction manager to create the transaction.
Each resource manager accessed during the transaction becomes a
participant in the transaction. When the application completes the
transaction, either with a commit or rollback request, the transaction
manager communicates with each resource manager.

Two-phase commit When there are two or more participants involved in a transaction the
transaction manager uses a two-phase-commit (2PC) protocol to ensure
that all participants agree on the final outcome of the transaction despite
any failures that may occur. Briefly the 2PC protocol works as follows:

• In the first phase, the transaction manager sends a prepare message to
each participant. Each participant responds to this message with a
vote indicating whether the transaction should be committed or rolled
back.

Atomic All of the operations in a transaction must be
performed successfully for the transaction to be
successful. Data modifications are either all
committed or aborted (rolled back) when the
transaction completes.

Consistent A transaction is a unit of work that takes a system
from one consistent state to another.

Isolated While a transaction is executing, its partial results
are hidden from other entities accessing the
system.

Durable The results of a transaction are persistent and can
be recovered after a system or media failure.
77

CHAPTER 6 | Transactions
• The transaction manager collects all the prepare votes and makes a
decision on the outcome of the transaction. If all participants voted to
commit, the transaction can commit. However, if a least one
participant voted to rollback, the transaction is rolled back. This
completes the first phase.

• In the second phase, the transaction manager sends either commit or
rollback messages to each participant.

One-phase commit If there is only one participant in the transaction the transaction manager
can use a one-phase commit (1PC) protocol instead of the 2PC protocol
which can be expensive in terms or the number of messages sent and the
data that must be logged. The 1PC protocol essentially delegates the
transaction completion to the single resource manager.

Artix transaction support The Artix J2EE Connector’s transaction support is built over Artix transaction
support. Artix supports distributed transactions using the following
protocols:

• CORBA binding over IIOP.

• SOAP binding over any compatible transport.

The underlying transaction system used by Artix can be replaced within a
pluggable framework. Currently, the following transaction systems are
supported:

• OTS Lite.

• OTS Encina.

• WS-AtomicTransactions (WS-AT).

For more information on the transaction systems supported by Artix, see the
Artix JAX-RPC Transactions Guide.

Note: Transaction support is not available in all editions of Artix. Please
check the conditions of your Artix license to see whether your installation
supports transactions.
78

../transactions/java/index.htm

Local Transactions
Local Transactions

Overview A local transaction is defined as a transaction that is managed internally by
a resource manager, such as the Artix J2EE Connector. An external
transaction manager is not involved in the coordination of such transactions.

The Artix J2EE Connector supports local transactions as specified by the
J2EE Connector Architecture (J2CA) LocalTransaction interface. It
supports the begin(), commit() and rollback() transaction demarcation
methods. When the Artix J2EE Connector is used in the context of a local
transaction, it propagates a transaction with every invocation.

This section discusses how the Artix J2EE Connector’s local transaction
support works, using the J2EE local transaction demo as an example.

How local transaction support
works

The Artix J2EE Connector’s local transaction support is based on the local
transaction contract defined in the J2CA specification. For more information
on this contract, see the J2CA specification on Sun Microsystems’ website
(http://java.sun.com/j2ee/connector/download.html).

The runtime use of the local transaction contract is at the discretion of the
J2EE application server and is transparent to the J2EE application.

Local transaction demo Artix includes a simple demo that shows the Artix J2EE Connector
participating in a local transaction. It is located in the following directory of
your Artix installation:

To run the demo, follow the instructions in the README.txt file located in the
demo directory.

ArtixInstallDir/cxx_java/samples/j2ee/local_transactions
79

http://java.sun.com/j2ee/connector/download.html

CHAPTER 6 | Transactions
Graphical representation Figure 4 graphically represents what is happening in the J2EE local
transaction demo:

1. The servlet calls ut.begin() to initiate a transaction.

2. Within the transaction, the servlet calls one or more of the WSDL
operations on the remote server, using the Artix J2EE Connector. The
WSDL operations are transactional, requiring updates to a persistent
resource.

3. The servlet calls ut.commit() to make permanent any changes caused
during the transaction. Note that the servlet could, alternatively, call
ut.rollback() to abort the transaction. This scenario is also shown in
the demo.

4. The transaction system performs the commit phase by sending a
notification to the server that it should perform a one-phase commit.

Figure 4: Artix J2EE Connector Participating in Local Transactions
80

Local Transactions
Demo code example Example 7 is taken from the local transaction demo servlet code. Sections of
the code have been omitted for clarity:

Example 7: Local Transaction Demo Code

1 InitialContext ic = new InitialContext();
 ut = (UserTransaction)

ic.lookup("java:comp/UserTransaction");
 ArtixConnectionFactory factory = (ArtixConnectionFactory)

ic.lookup(EIS_JNDI_NAME);

Data data = ...

2 ut.begin();

3 URL wsdlLocation =
 getClass().getResource("/soap_tx_demo.wsdl");

4 QName serviceName = new
 QName("http://www.iona.com/transaction_demo","DataServiceA");

5 QName portName = new QName("","DataSOAPPort");

6 data = (Data)factory.getConnection(Data.class, wsdlLocation,
 serviceName, portName);

7 int readValue = data.read();
 data.write(readValue + 1);
 readValue = data.read();

8 ut.commit();
9 ((Connection)data).close();

10 ut.begin();
11 data = (Data)factory.getConnection(Data.class, wsdlLocation,

serviceName, portName);

12 data.write(readValue + 1);
13 readValue = data.read();

14 ut.rollback();

15 readValue = data.read();

16 ((Connection)data).close();
81

CHAPTER 6 | Transactions
The code shown in Example 7 on page 81 can be explained as follows:

1. Resolves an ArtixConnectionFactory for the Artix J2EE Connector
resource adapter, a user transaction and data reference.

2. Begins a transaction.

3. Determines the WSDL location URL from the classpath using the JVM
runtime.

4. Creates a QName that identifies which service in the WSDL file the client
wants to use.

5. Creates a QName that identifies which port in the WSDL file the client
wants to use.

6. Creates a Connection object using the ArtixConnectionFactory and
casts the connection to the Data interface.

7. Reads the data value from the Artix server. Adds "1" to the data value
and reads the value from the server again. When you run the demo the
values are printed to the screen and you can see the data value being
increased by one.

8. Commits the transaction.

9. Closes the Connection.

10. Begins another transaction.

11. Creates a Connection object using the ArtixConnectionFactory and
casts the connection to the Data interface.

12. Reads the data value from the server and adds "1".

13. Reads the new data value from the server.

14. Rolls back the transaction.

15. Reads the data value from the server. This confirms that the
transaction did not go ahead and "1" was not added to the original
value read from the server.

16. Closes the Connection.
82

Local Transactions
Configuring local transactions The Artix J2EE Connector is configured out of the box to support no
transactions—the Artix J2EE Connector deployment descriptor file, ra.xml,
specifies NoTransaction. To configure the Artix J2EE Connector to
participate in local transactions you must change the transaction support
element in the ra.xml to LocalTransaction by:

1. Making sure the Artix environment is set. See “Setting the Artix
Environment” on page 64 for more detail.

2. Running one of the following ant tasks, depending on whether your
J2EE application server supports J2CA 1.0 or 1.5:

J2CA 1.0

Windows:

UNIX:

J2CA 1.5

Windows:

UNIX:

The ant utility is a Java-based build tool. It is bundled with Artix. The
ant target is defined in the build.xml file, which is located in the
ArtixInstallDir/cxx_java/etc/j2ee directory. For more information
about ant, see http://ant.apache.org/.

> ant %IT_ARTIX_VER_DIR%\etc\j2ee\build.xml ra.dd.10.local

ant -f $IT_ARTIX_VER_DIR/etc/j2ee/build.xml ra.dd.10.local

> ant %IT_ARTIX_VER_DIR%\etc\j2ee\build.xml ra.dd.15.local

ant -f $IT_ARTIX_VER_DIR/etc/j2ee/build.xml ra.dd.15.local
83

http://ant.apache.org/

CHAPTER 6 | Transactions
Global Transactions

Overview A global transaction is one in which two or more resources are involved and
an external transaction manager is needed to coordinate the updates to both
resource managers. The Artix J2EE Connector supports global transactions
for both outbound and inbound transactional invocations. That is, the Artix
J2EE Connector supports outbound transactional invocations from a J2EE
application to an Artix Web service, as well as supporting inbound
transactional invocations to a J2EE application that has been exposed as a
Web service by Artix.

The Artix J2EE Connector supports global transactions via the XAResource
interface as specified by the J2CA specification. For more information, see
the J2CA specification available on Sun Microsystems’ website
(http://java.sun.com/j2ee/connector/download.html).

In this section This section includes the following subsections:

Outbound Global Transactions page 85

Inbound Global Transactions page 88
84

http://java.sun.com/j2ee/connector/download.html

Global Transactions
Outbound Global Transactions

Overview The application server manages the process of enlisting the Artix J2EE
Connector in a global transaction when appropriate. The Artix J2EE
Connector uses Artix to begin a subordinate transaction, which it exposes to
the application server through the javax.transactions.xa.XAResource
interface. When the application server completes its transaction, Artix
completes the subordinate transaction.

Graphical representation Figure 5 shows the Artix J2EE Connector participating in an outbound
global transaction.

Association between superior and
subordinate transactions

There is an association between the subordinate transaction created by Artix
and the superior application server transaction. The XID of the superior
transaction is replicated in the subordinate transaction. This means that

Figure 5: Artix J2EE Connector in an Outbound Global Transaction
85

CHAPTER 6 | Transactions
operations issued under the control of the subordinate transaction share the
global and branch transaction identifiers with the Artix J2EE Connector. This
is important when the components taking part in a transaction need to have
visibility of data during a global transaction.

Code example Example 8 shows a simple Java code example in which the Artix J2EE
Connector is used in a transaction together with an EJB. Error handling has
been omitted for clarity.

1. Resolve an ArtixConnectionFactory for the Artix J2EE Connector
resource adapter, a bean and a user transaction reference.

2. Begin a transaction.

3. Create an ArtixConnection object using the ArtixConnectionFactory.

4. Cast the ArtixConnection to an application-specific Java interface, in
this case DataAccess.

5. Make a transactional invocation on your EJB

6. Make a transactional invocation on the data object.

7. Commit the transaction.

8. Close the ArtixConnection.

Example 8: Using the Artix J2EE Connector in a Global Transaction

1 ArtixConnectionFactory cf = ...
MyDataBeanHome beanHome = ...
UserTransaction ut = ...

2 ut.begin();

3 ArtixConnection conn = cf.getConnection(DataAccess.class);

4 DataAccess Data = (DataAccess) conn;
MyDataBean beanData = beanHome.create(...);

5 beanData.doTransactionalWork();
6 Data.doAdditionalDependentTransactionalWork();

7 ut.commit();

8 conn.close();
86

Global Transactions
Configuring outbound global
transaction support

The Artix J2EE Connector is configured out of the box as a J2CA 1.0
capable connector that supports no transactions—the Artix J2EE Connector
deployment descriptor file, ra.xml, to specifies NoTransaction. To configure
the Artix J2EE Connector to participate in outbound global transactions you
must change the transaction support element in the ra.xml to
XATransaction by:

1. Making sure the Artix environment is set. See “Setting the Artix
Environment” on page 64 for more detail.

2. Running one of the following ant tasks, depending on whether your
J2EE application server supports J2CA 1.0 or 1.5:

J2CA 1.0

Windows:

UNIX:

J2CA 1.5

Windows:

UNIX:

The ant utility is a Java-based build tool. It is bundled with Artix. The ant
target is defined in the build.xml file, which is located in the
ArtixInstallDir/cxx_java/etc/j2ee directory. For more information about
ant, see http://ant.apache.org/.

> ant -f %IT_ARTIX_VER_DIR%\etc\j2ee\build.xml ra.dd.10.xa

ant -f $IT_ARTIX_VER_DIR/etc/j2ee/build.xml ra.dd.10.xa

> ant -f %IT_ARTIX_VER_DIR%\etc\j2ee\build.xml ra.dd.15.xa

ant -f $IT_ARTIX_VER_DIR/etc/j2ee/build.xml ra.dd.15.xa
87

http://ant.apache.org/

CHAPTER 6 | Transactions
Inbound Global Transactions

Overview J2CA 1.5 specifies a contract between an application server and a resource
adapter that allows a resource adapter to propagate an inbound transaction
to the application server, so that the application server and subsequent
participants can do work as part of the inbound transaction. For more detail
about this contract, see “Transaction Inflow” chapter of the J2CA 1.5
specification.

The Artix J2EE Connector uses this functionality when it exposes an EJB
deployed in a J2CA 1.5 capable application server as an Artix service. It
wraps the XATerminator instance provided by the application server in an
XAResource object that is enlisted with the Artix transaction manager. This
allows the application server to participate in a transaction that originates
from an Artix client, and that is managed by an Artix transaction manager.

Graphical representation Figure 6 shows the Artix J2EE Connector participating in an inbound global
transaction.

Figure 6: Artix J2EE Connector in an Inbound Global Transaction
88

http://java.sun.com/j2ee/connector/download.html
http://java.sun.com/j2ee/connector/download.html

Global Transactions
Configuring inbound global
transaction support

The Artix J2EE Connector is configured out of the box as a J2CA 1.0
capable connector that supports no transactions—the Artix J2EE Connector
deployment descriptor file, ra.xml, specifies the J2CA 1.0 specification and
NoTransaction. To configure the Artix J2EE Connector to participate in
global transactions you must change the J2CA specification element and the
transaction support element in the ra.xml to 1.5 and XATransaction
respectively. You can do this by:

1. Making sure the Artix environment is set. See “Setting the Artix
Environment” on page 52 for more detail.

2. Running the following ant task:

Windows:

UNIX:

The ant utility is a Java-based build tool. It is bundled with Artix. The ant
target is defined in the build.xml file, which is located in the
ArtixInstallDir/cxx_java/etc/j2ee directory. For more information about
ant, see http://ant.apache.org/.

> ant -f %IT_ARTIX_VER_DIR%\etc\j2ee\build.xml ra.dd.15.xa

ant -f $IT_ARTIX_VER_DIR/etc/j2ee/build.xml ra.dd.15.xa
89

http://ant.apache.org/

CHAPTER 6 | Transactions
90

CHAPTER 7

Security
The Artix J2EE Connector supports credentials propagation. It
propagates username and password details along with
outbound and inbound Web service requests.

In this chapter This chapter discusses the following topics:

Outbound Security page 92

Configuring Outbound Security page 95

Inbound Security page 101

Configuring Inbound Security page 104

Configuring a Secure Transport page 111
91

CHAPTER 7 | Security
Outbound Security

Overview The Artix J2EE Connector is configured by default to support the
propagation of a username and password with Web service requests from
the J2EE domain to Artix Web services. The identity is used by Artix on the
server side to authenticate the Web service operation.

In this section This section gives a high-level overview of how the Artix J2EE Connector
outbound security works. The following topics are covered:

• Graphical representation

• Scenario description

• How it works

Graphical representation Figure 7 illustrates a scenario in which the Artix J2EE Connector propagates
username and password credentials with outbound connections:

Figure 7: Artix J2EE Connector Propagating Credentials with Outbound
Connections
92

Outbound Security
Scenario description The scenario shown in Figure 7 can be described as follows:

How it works The Artix J2EE Connector security support details are contained in its
deployment descriptor, ra.xml, as follows:

1. Specifies that the Artix J2EE Connector supports username and
password-based authentication.

2. Specifies the interface that the Artix J2EE Connector supports for the
representation of the credentials. The
javax.resource.security.PasswordCredential interface specifies to
the application server that it should pass a Subject containing a
PasswordCredential that includes a username and a password to the
Artix J2EE Connector.

Stage Description

1 The user logs in to the J2EE application and is authenticated.
The J2EE authenticated user invokes on the EJB/Servlet/JSP.

2 The EJB/Servlet/JSP invokes on the Artix J2EE Connector to get
a connection to a Web service.

3 The J2EE application server maps the J2EE authenticated user
to an appropriate subject for the Artix J2EE Connector. This is
known as credentials or principal mapping.

4 The Artix J2EE Connector makes a remote invocation on the
Web service and transmits the mapped username and
password credentials with the request over a secured transport.

Example 9: Artix J2EE Connector ra.xml file fragment

<authentication-mechanism>
1 <authentication-mechanism-type>BasicPassword

 </authentication-mechanism-type>
2 <credential-interface>javax.resource.security.

 PasswordCredential
 </credential-interface>
</authentication-mechanism>
93

CHAPTER 7 | Security
These entries are defined in the J2EE Connector Architecture specification.
For more information, see the specification on Sun Microsystems’ website
(http://java.sun.com).

When you deploy the Artix J2EE Connector to your J2EE application server,
the authentication-mechanism entry in the deployment descriptor indicates
to the application server that the connector supports container-managed
sign-on. When an application requests that the Artix J2EE Connector create
a new connection, the application server passes any security information
associated with that application or user in a Subject that contains a
PasswordCredential. The contents of the PasswordCredential are
controlled by the application server, based on credentials or principal
mapping configuration.

The Artix J2EE Connector uses the PasswordCredential to set the Artix bus
security context using the Artix context API. It sets the WSSE username and
password token. It ensures that the credentials associated with a connection
are passed to Artix before each request. How the credentials are propagated
over the transport is specific to an Artix binding, and is specified in the
WSDL contract. Artix can be configured to send the credentials as a SOAP
header or as a HTTP header. For more information, see the Artix Security
guide.
94

../security_guide/index.htm
http://java.sun.com

Configuring Outbound Security
Configuring Outbound Security

Overview The Artix J2EE Connector is configured by default to support credentials
propagation with outbound connections. You must, however, configure your
application server to pass the J2EE authenticated username and password
to the Artix J2EE Connector with each call to the connector’s getConnection
method. This is known as credentials or principal mapping. If you do not
configure your application server with credentials mapping, a null subject
will be passed to the Artix J2EE Connector with each call to getConnection
and the Artix J2EE Connector will not propagate a username and password
with Web service requests.

In this section How you configure credentials mapping is specific to the J2EE application
server that you are using. This section gives a brief description of credentials
mapping. JBoss is used in an example of how to configure credentials
mapping. The following topics are covered:

• Credentials Mapping

• Configuring Credentials Mapping in JBoss
95

CHAPTER 7 | Security
Credentials Mapping

Overview When a J2EE Connector Architecture connection factory is configured to
perform container managed sign-on, the application server must be
configured to map the caller principal to a resource principal. The
application server creates a Subject instance that contains the configured
security domain credentials of the back-end resource. The Subject returned
by a credential or principal mapping contains a PasswordCredential that
represents the caller identity for the back-end resource. The application
server automatically passes the Subject to the J2EE Connector Architecture
resource adapter with each call to the resource adapter’s getConnection
method.

In this subsection This subsection gives a brief description of the types of credentials mapping.
Please refer to your application server documentation for exact details of
how to preform credentials mapping. The following topics are covered:

• Credentials passed as is

• Many-to-one mapping

• One-to-one mapping

Credentials passed as is In the simplest case, the application server is configured to pass the caller’s
credentials as is to the resource adapter. For example, if the username is
Bob and the password is BobsPassword, then Bob and BobsPassword are
passed to the resource adapter.
96

Configuring Outbound Security
Many-to-one mapping For a many-to-one credentials mapping, the application server is configured
to map all callers’ credentials to single username and password for the
resource adapter. For example:

One-to-one mapping For a one-to-one credentials mapping, the application server is configured to
map the each caller’s credentials to a username and password that uniquely
identifies them for the resource adapter. For example:

This is the most complex type of credentials mapping and most application
servers delegate the mapping to a security provider, such as JAAS or LDAP.

Table 1: Many-to-One Mapping

Caller Credentials

(Username/Password)

Resource Credentials

(Username/Password)

Bob/BobsPassword Artix/ArtixPassword

Tom/TomsPassword Artix/ArtixPassword

Jane/JanesPassword Artix/ArtixPassword

Table 2: One-to-One Mapping

Caller Credentials

(Username/Password)

Resource Credentials

(Username/Password)

Bob/BobsPassword BobArtix/BobsArtixPassword

Tom/TomsPassword TomArtix/TomsArtixPassword

Jane/JanesPassword JaneArtix/JanesArtixPassword
97

CHAPTER 7 | Security
Configuring Credentials Mapping in JBoss

Overview JBoss uses a Java Authentication and Authorization Service (JAAS) to do
credentials or principal mapping. JBoss JAAS configuration details are
contained in the JBoss JAAS configuration file, login-config.xml.

In this subsection This subsection gives an overview of JAAS and tells you how to configure
credentials mapping in JBoss. The following topics are covered:

• Java Authentication and Authorization Service (JAAS)

• Configuring credentials mapping

• Example JBoss login-config.xml

• Example Artix J2EE Connector deployment descriptor

• More information

Java Authentication and
Authorization Service (JAAS)

JAAS provides an API that represents an extensible authentication and
authorization service. The API allows components to remain independent
from underlying authentication technologies. The sequence of operations
that occur when an authorization attempt is made are dependent on
configuration, but remain hidden to the application component.

For more information on JAAS and to see the Javadoc, see Sun
Microsystem’s website: http://java.sun.com/products/jaas/overview.html

Configuring credentials mapping To configure credentials mapping in JBoss, you must:

1. Add an application-policy element to the JBoss JAAS login
configuration file, login-config.xml, and specify that it will be used
by the Artix J2EE Connector.

2. Indicate to the Artix J2EE Connector that it must use the security
domain specified by the application policy. To do this, you must add a
security domain element that specifies the application-policy name
that you used in the login-conf.xml file, to the Artix J2EE Connector
deployment descriptor, CFactoryName-ds.xml
98

http://java.sun.com/products/jaas/overview.html

Configuring Outbound Security
Example JBoss login-config.xml For example, the following JBoss login-config.xml file shows an
application policy that specifies that the calleridentity configuration is to
be used by the Artix J2EE Connector:

The entries in this JBoss login-config.xml file can be explained as follows:

1. Specifies an application-policy element called calleridentity.

2. Specifies that the JBoss caller identity login module will be used. This
login module implementation simply copies the supplied username
and password pair as is into a PasswordCredential. For example, if
the username is Bob and the password is BobsPassword, then Bob and
BobsPassword will be propagated to the Artix J2EE Connector.

3. The managedConnectionFactoryName module option ties this
configuration to a particular deployed ConnectionFactory instance of
the Artix J2EE Connector.

4. The dummy_user and dummy_password elements indicate the default
credentials that should be used in the absence of an existing
authenticated user.

Example 10: JBoss login-config.xml fragment

<?xml version='1.0'?>
<!DOCTYPE policy PUBLIC
 "-//JBoss//DTD JBOSS Security Config 4.0//EN"
 "http://www.jboss.org/j2ee/dtd/security_config.dtd">
<policy>...

1 <application-policy name="calleridentity">
 <authentication>
 <login-module code =

2 "org.jboss.resource.security.CallerIdentityLoginModule"
 flag ="required">

3 <module-option name = "managedConnectionFactoryName">
 jboss.jca:service=NoTxCM,name=ArtixConnector
 </module-option>

4 <module-option name =
 "userName">dummy_user</module-option>
 <module-option name =
 "password">dummy_password</module-option>
 </login-module>
 </authentication>
 </application-policy>
</policy>
99

CHAPTER 7 | Security
Example Artix J2EE Connector
deployment descriptor

For example, the following JBoss 4 artixj2ee_1_5-ds.xml file fragment
specifies to the Artix J2EE Connector that it must use the calleridentity
configuration, as defined in the JBoss login-conf.xml file:

More information For more information on how to configure credentials mapping for a J2EE
Connector Architecture resource adapter in JBoss, please refer to the JBoss
documentation.

<?xml version="1.0" encoding="UTF-8"?>
<connection-factories>
 <no-tx-connection-factory>
 <jndi-name>ArtixConnector</jndi-name>
 <security-domain>calleridentity</security-domain>
 <rar-name>artix.rar</rar-name>
 <connection-definition>com.iona.connector.
 ArtixConnectionFactory</connection-definition>
 ...
 </no-tx-connection-factory>
</connection-factories>
100

Inbound Security
Inbound Security

Overview The Artix J2EE Connector can be configured to support J2EE authentication
for inbound communications. The username and password propagated with
a Web service request can be used to authenticate against the J2EE
application server before the request is dispatched to the EJB. The principal
identified by the propagated username and password pair must correspond
to a J2EE user that has sufficient privileges to execute the requested
operation on the EJB.

In this section This section gives a high-level overview of how the Artix J2EE Connector
inbound security works. The following topics are covered:

• Exposing a J2EE application as a Web service

• Graphical representation

• Scenario description

• How it works

Exposing a J2EE application as a
Web service

To understand how the Artix J2EE Connector supports inbound security, you
must first understand how the Artix J2EE Connector exposes a J2EE
application as a Web service. For details, see “Exposing a J2EE Application
as a Web Service” on page 53.
101

CHAPTER 7 | Security
Graphical representation Figure 8 illustrates a scenario in which the Artix J2EE Connector propagates
username and password credentials with inbound connections:

Scenario description The scenario shown in Figure 8 can be described as follows:

Figure 8: Artix J2EE Connector Propagating Credentials with Inbound
Connections

Stage Description

1 An Artix Web service client invokes on the Web service and
sends a username and password over HTTPS. The Artix J2EE
Connector uses the Artix context API to obtain the username
and password from the Artix bus security context. How these
are propagated over the transport are specific to an Artix
binding and are specified in the WSDL contract.

2 The Artix J2EE Connector uses JAAS to perform a login to the
application server.

3 The Artix J2EE Connector uses a JAAS Subject doAs() method
to invoke on the target EJB.
102

Inbound Security
How it works The Artix J2EE Connector uses JAAS to login to the application server. It
uses a JAAS configuration that identifies a login module that authenticates
against the application server. It uses a JAAS Subject doAs() method to
invoke on the target EJB. The doAs() method ensures that the calling thread
has the appropriate access control information. Using JAAS allows the Artix
J2EE Connector to remain application server independent.
103

CHAPTER 7 | Security
Configuring Inbound Security

Overview To configure inbound security you must secure your EJB; configure the Artix
J2EE Connector to enable it to login to your application server; and
configure the Artix J2EE Connector with a username and password that
identify the principal that will be used to create the EJB.

In this section This section walks you through these configuration steps. The following
topics are covered:

• Securing the Target EJB

• Configuring JAAS Login Module

• Configuring EJB Create Username and Password
104

Configuring Inbound Security
Securing the Target EJB

Overview You must secure the EJB using J2EE access controls. That is, you must
specify method permissions in the assembly descriptor element of your EJB
deployment descriptor, ejb-jar.xml. This subsection provides an example
of such a deployment descriptor. The following topics are covered:

• Example EJB deployment descriptor

• JBoss example

• More information

Example EJB deployment
descriptor

For example, the following EJB deployment descriptor file fragment declares
a role called "BobsRole" that can access all GreeterBean methods:

JBoss example JBoss uses JAAS for application server authentication. The corresponding
deployment descriptor, jboss.xml, must be augmented to include a
security-domain element that identities the JAAS configuration that
contains the relevant concrete role definitions.

Example 11: GreeterBean ejb-jar.xml file fragment

 ...
<assembly-descriptor>
 <security-role>
 <role-name>BobsRole</role-name>
 </security-role>
 <method-permission>
 <role-name>BobsRole</role-name>
 <method>
 <ejb-name>GreeterBean</ejb-name>
 <method-name>*</method-name>
 </method>
 </method-permission>
</assembly-descriptor>
105

CHAPTER 7 | Security
For example, the following jboss.xml file fragment specifies the security
domain as follows:

More information For more detail, please refer to your application server documentation.

<jboss>
 <security-domain>java:jaas/other</security-domain>
 <enterprise-beans>
 <session>
 <ejb-name>GreeterBean</ejb-name>
...
106

Configuring Inbound Security
Configuring JAAS Login Module

Overview The Artix J2EE Connector uses JAAS to login to the application server. It
needs, however, to know which JAAS configuration name it should use in
the login procedure. To configure the Artix J2EE Connector to login to your
application server, you must set the JAASLoginConfigName configuration
property to the JAAS configuration name that will be used to locate the
appropriate JAAS login module. The configuration name is passed as an
argument to the constructor of a
javax.security.auth.login.LoginContext that is subsequently used by
the Artix J2EE Connector to login to the application server.

In this subsection How JAAS is configured is specific to the application server you are using.
This subsection uses JBoss as an example application server to describe
how to configure the Artix J2EE Connector with JAAS login module details.
The following topics are covered:

• JAAS configuration in JBoss

• Setting JAASLoginConfigName in JBoss

• More information

JAAS configuration in JBoss JAAS is configured in JBoss through the JBoss login-config.xml JAAS
configuration file. This file contains application-policy elements that
describe the different configurations. Each application-policy element
contains a series of login modules that are used to implement
authentication. The Artix J2EE Connector needs to use the preconfigured
"client-login" application-policy entry. This entry specifies a login module
that enables the application server to authenticate and verify that the Artix
J2EE Connector supplied username and password correspond to a valid
J2EE principal. This is required because the Artix J2EE Connector
dispatches to an EJB that is protected by J2EE access controls.

Setting JAASLoginConfigName in
JBoss

To configure the Artix J2EE Connector with details of the JBoss JAAS
configuration name that it should use in the JAAS login procedure, set the
JAASLoginConfigName configuration property to client-login in the Artix
J2EE Connector deployment descriptor, CFactory-ds.xml.
107

CHAPTER 7 | Security
For example, in JBoss 4, you set it as follows in the artixj2ee_1_5-ds.xml
file:

More information For more information on how JAAS is configured in your application server
and for information on how to set J2EE Connector Architecture resource
adapter configuration properties, please refer to your application server
documentation.

For more information on the JAASLoginConfigName configuration property,
see “JAASLoginConfigName” on page 153.

<?xml version="1.0" encoding="UTF-8"?>
<connection-factories>
 <no-tx-connection-factory>
 <jndi-name>ArtixConnector</jndi-name>
 ...
 <config-property name="JAASLoginConfigName"

type="java.lang.String">client-login</config-property>
 ...
 </no-tx-connection-factory>
</connection-factories>
108

Configuring Inbound Security
Configuring EJB Create Username and Password

Overview The Artix J2EE Connector must create an instance of this target EJB to
determine the method arguments that must be read from an Artix transport.
Security information propagated with a request is not available until the
read is complete. As a result, the Artix J2EE Connector does not have
sufficient dynamic security information available at the point when
EJBHome.ejbCreate is called. The Artix J2EE Connector must, therefore, be
statically configured with a username and password pair that it can use to
login to the application server to execute the create method.

In this subsection This subsection gives details of the configuration properties that you must
set. It uses JBoss as an example application server to describe how to
configure the Artix J2EE Connector with a username and password pair that
it can use to login to the application server to execute the create method.
The following topics are covered:

• Configuration properties

• Setting JAASLoginUserName and JAASLoginPassword in JBoss

• More information

Configuration properties The Artix J2EE Connector supports the JAASLoginUserName and
JAASLoginPassword configuration properties to allow this static
configuration. The values of username and password must identify a valid
J2EE user that has the appropriate privileges to execute the EJBHome.create
method of the target EJB. Even if the target EJB is configured to allow
unchecked access to the create method, a valid J2EE identity must be
configured for the Artix J2EE Connector to allow the JAAS login to proceed.
109

CHAPTER 7 | Security
Setting JAASLoginUserName and
JAASLoginPassword in JBoss

The following example shows a fragment of a JBoss Artix J2EE Connector
deployment descriptor, artixj2ee_1_5-ds.xml, which sets the username
and password properties to artix:

More information For more information on how JAAS is configured in your application server
and for information on how to set J2EE Connector Architecture resource
adapter configuration properties, please refer to your application server
documentation.

For more information on the JAASLoginUserName configuration property, see
“JAASLoginUserName” on page 154.

For more information on JAASLoginPassword configuration property, see
“JAASLoginPassword” on page 155.

Example 12: Setting JAASLoginUserName and JAASLoginPassword in
JBoss

<?xml version="1.0" encoding="UTF-8"?>
<connection-factories>
 <no-tx-connection-factory>
 <jndi-name>ArtixConnector</jndi-name>
 ...
 <config-property name="JAASLoginUserName"

type="java.lang.String">artix</config-property>
 <config-property name="JAASLoginPassword"

type="java.lang.String">artix</config-property>
 ...
 </no-tx-connection-factory>
 </connection-factories>
110

Configuring a Secure Transport
Configuring a Secure Transport

Overview To protect the integrity of the username and password, which is in plain
text, the transport needs to be secure. For example, if you are using HTTP,
you should configure it to use SSL/TLS security (a combination usually
referred to as HTTPS). The SSL/TLS technology allows communication over
a secured connection. In this secure connection, the data that is being sent
is encrypted before being sent, then decrypted upon receipt and prior to
processing.

More information For information on how to configure a secure transport, see the Artix
Security Guide.
111

../security_guide/index.htm
../security_guide/index.htm

CHAPTER 7 | Security
112

Part III
Using Artix in a Servlet

Container

In this part This part contains the following chapters:

Exposing Artix Web Services from a Servlet Container page 115
113

114

CHAPTER 8

Exposing Artix
Web Services from
a Servlet Container
You can expose Artix Web services from a servlet container.
Client applications can invoke on the Web services through
the HTTP port assigned to the servlet container or using any
of the transports supported by Artix. This chapter walks you
through the typical steps involved.

In this chapter This chapter discusses the following topics:

Introduction page 116

Configuring Servlet Container to Run an Artix Application page 119

Building an Artix Application page 125

Building and Deploying your Web Application page 136
115

CHAPTER 8 | Exposing Artix Web Services from a Servlet Container
Introduction

Overview Artix provides the servlet component of the Web service. It provides a basic
servlet, the ArtixServlet.class, and a servlet transport plug-in, which you
can use to route HTTP requests to the servlet onto Artix. These components
are written in Java and are compiled and archived in a JAR file,
it_artix_servlet.jar, which is located in:

You must write the Web service implementation class and an Artix Java
plug-in. The Artix Java plug-in is required to create an instance of your Web
service implementation and register it with the Artix bus.

In this section This section outlines the steps you must complete to develop and deploy an
Artix Web service to a servlet container. The following topics are covered:

• Implementation steps

• Graphical representation

• How it works

• Demo

Implementation steps The following is a high-level view of the steps that you need to complete to
expose your Web service from a servlet container. It assumes that the Web
service WSDL file already exists. If, however, you need to develop a WSDL
file, please refer to the Describing Service Interfaces with WSDL guide.

ArtixInstallDir/cxx_java/lib/artix/java_runtime/Version

Step Action

1 Configure your servlet container so that it can run Artix
applications.

2 Build an Artix Web service application. This includes
generating an Artix Java plug-in.
116

../contract/index.html

Introduction
The rest of this chapter describes these steps in more detail.

Graphical representation Figure 9 graphically illustrates how you can expose an Artix Web service
from a servlet container.

How it works The Artix servlet initializes an Artix bus within its init() method. It uses the
bus initialization parameters that you provide in the Web service
deployment descriptor file, web.xml. During initialization, the Artix bus
loads the servlet transport plug-in and the Artix Java plug-in that you have
created for your application. The role of the Artix Java plug-in is to create an
instance of the Web service and register it with the Artix bus. In essence, it
associates an Artix servant with a WSDL port.

3 Build a Web application WAR file that includes the Artix
servlet, the Artix servlet transport plug-in, your application, its
deployment descriptor web.xml, the Artix Java plug-in for your
application, and the Web service WSDL file.

4 Deploy the WAR file to your servlet container.

Step Action

Figure 9: Exposing Artix Web Service from a Servlet Container
117

CHAPTER 8 | Exposing Artix Web Services from a Servlet Container
Client applications use the information in the Web service WSDL file to
initialize a proxy to the target Web service. Client requests can be sent to the
servlet container TCP/IP port or to any port that is defined in the WSDL
contract, using any of the transports supported by Artix, and are processed
by the Artix Web service.

Demo Some of the examples used in this chapter are taken from the Servlet
Container demo, which can be found in:

If you want to run this demo, see the README.txt file in the demo directory.

ArtixInstallDir/cxx_java/samples/j2ee/servlet_container
118

Configuring Servlet Container to Run an Artix Application
Configuring Servlet Container to Run an Artix
Application

Overview Before you can deploy an Artix Web service to your servlet container, you
must configure the servlet container so that it can run Artix applications.
How you do this is dependent on the servlet container that you are using.
This section highlights the key configuration steps that you must complete
and uses Tomcat and WebLogic as example servlet containers. The
following topics are covered:

• Setting the Artix Environment

• Make certain Artix JAR files available to your application

• Configuring the Artix classloader firewall

Setting the Artix Environment You must set the Artix environment before starting the servlet container.

Tomcat

To set the Artix environment on Tomcat, create and run a local environment
script as shown in Example 13—it is the script used in the Servlet
Container demo:

1. Call the Artix environment script, artix_env. It is located in the
ArtixInstallDir/cxx_java/bin directory.

2. Reset the value of IT_DOMAIN_NAME to specify the name of the
configuration domain that Artix should use.

Example 13: Script for Setting the Artix Environment on Tomcat

1 call "..\..\..\..\bin\artix_env.bat";
2 set IT_DOMAIN_NAME=tomcat
3 set IT_CONFIG_DOMAINS_DIR=%IT_PRODUCT_DIR%\cxx_java\samples\

j2ee\servlet_container\etc
set CLASSPATH=%CLASSPATH%;.
119

CHAPTER 8 | Exposing Artix Web Services from a Servlet Container
3. Reset the value of IT_CONFIG_DOMAINS_DIR to the location of the
configuration file.

For more information on artix_env, see the getting started chapter in the
Configuring and Deploying Artix Solutions, C++ Runtime guide.

WebLogic

To set the Artix environment on WebLogic, create and run a local
environment script as follows:

Note: Alternatively you can specify a domain name and configuration
directory in your web application deployment descriptor file, web.xml. See
“Example web.xml file” on page 137 for more detail.

Example 14: Script for Setting the Artix Environment on WebLogic

@REM Configure for Artix
1 set PATH=ArtixInstallDir\cxx_java\bin;%PATH%
2 set IT_DOMAIN_NAME=weblogic
3 set IT_LICENSE_FILE=ArtixInstallDir\etc\licenses.txt
4 set IT_CONFIG_DOMAINS_DIR=ArtixInstallDir\cxx_java\samples\

j2ee\servlet_container\etc
5 set CLASSPATH=

ArtixInstallDir\cxx_java\lib\common\classloading\Version\
classloading.jar;

ArtixInstallDir\cxx_java\lib\common\concurrency\Version\
concurrency.jar;

ArtixInstallDir\cxx_java\lib\common\ifc\Version\ifc.jar;
ArtixInstallDir\cxx_java\lib\artix\java_runtime\Version\
it_bus-api.jar;
ArtixInstallDir\cxx_java\lib\ws_common\reflect\Version\
it_ws_reflect_types.jar;
ArtixInstallDir\cxx_java\lib\jaxrpc\jaxrpc\Version\jaxrpc-api.ja

r;
ArtixInstallDir\cxx_java\lib\apache\xerces\Version\xercesImpl.ja

r
ArtixInstallDir\cxx_java\lib\sun\saaj\Version\saaj-api.jar

6 ArtixInstallDir\cxx_java\samples\j2ee\servlet_container\
tomcat\

shared\classes;
%CLASSPATH%
120

../deploy/cpp/index.htm

Configuring Servlet Container to Run an Artix Application
1. Adds the Artix bin directories to the PATH. The bin directory contains
all of the Artix runtime libraries, which are required by each Artix
process.

2. Sets IT_DOMAIN_NAME, which specifies the name of the configuration
domain used by Artix to locate its configuration.

3. Sets IT_LICENSE_FILE, which specifies the location of your Artix
license file. The default value is ArtixInstallDir\etc\licenses.txt.

4. Sets IT_CONFIG_DOMAINS_DIR, which specifies the directory where Artix
searches for its configuration files. Together, IT_DOMAIN_NAME (2
above) and IT_CONFIG_DOMAINS_DIR identify the name and location of
the configuration file.

5. Adds the required Artix JAR files to the CLASSPATH. Note that you must
substitute ArtixInstallDir with details of your Artix installation
directory; for example, C:\IONA.

6. Adds the location of the artix_ce.xml file to the CLASSPATH. Note that
you can place the artix_ce.xml file in any convenient location, as long
as you ensure that the location is on the CLASSPATH

Make certain Artix JAR files
available to your application

The following Artix JAR files must be available to your servlet container so
that they can be used by all Artix applications:

• ArtixInstallDir/cxx_java/lib/common/classloading/Version/
classloading.jar

• ArtixInstallDir/cxx_java/lib/common/concurrency/Version/
concurrency.jar

• ArtixInstallDir/cxx_java/lib/common/ifc/Version/ifc.jar
• ArtixInstallDir/cxx_java/lib/jaxrpc/jaxrpc/Version/jaxrpc-api.ja

r
• ArtixInstallDir/cxx_java/lib/artix/java_runtime/Version/

it_bus-api.jar
• ArtixInstallDir/cxx_java/lib/ws_common/reflect/Version/

it_ws_reflect_types.jar
• ArtixInstallDir/cxx_java/lib/sun/saaj/Version/saaj-api.jar

Note: The CLASSPATH entry should appear on one line.
121

CHAPTER 8 | Exposing Artix Web Services from a Servlet Container
Tomcat

If you are using Tomcat, copy these files to your
TomcatInstallDir/shared/lib directory. The demo build script provided
with the Servlet Container demo, copies these files for you.

WebLogic

If you are using WebLogic, the script that you created and ran to set the
Artix environment places the Artix JARs on the CLASSPATH. You do not need
to anything else at this stage.

Configuring the Artix classloader
firewall

Artix requires third-party JAR files that could conflict with different versions
of the same JARs required by other servlet container applications. To avoid
such issues, you must use of the Artix classloader firewall. The Artix
classloader firewall loads specific JARs required by Artix.

Figure 10 shows the classloader configuration. The arrows point to the
parent classloader in each case; for example, the Tomcat shared classloader
is the parent classloader for the Web application/servlet classloader and the
Artix firewall classloader. This setup allows the web application classloader
and the Artix classloader to share public classes. It isolates the web
application classloader from the Artix classloader, which loads JARs specific

Note: Do not place the Artix JAR files in your Web application’s lib
directory.
122

Configuring Servlet Container to Run an Artix Application
to the Artix runtime. With this configuration, the web application classloader
which is loading the user code is not polluted with JARs that are needed
only by Artix.

To enable the Artix classloader firewall, place an artix_ce.xml file in a
shared location, where it can be detected by Artix. The Artix Servlet
Container demo contains an artix_ce.xml file that you can use for any
Artix application that you are deploying to a servlet container. It is located in
the following directory:

Tomcat

If you are using Tomcat, copy this artix_ce.xml file to your
TomcatInstallDir/shared/classes directory.

Figure 10: Classloader Configuration

ArtixInstallDir/cxx_java/samples/j2ee/servlet_container/
tomcat/shared/classes
123

CHAPTER 8 | Exposing Artix Web Services from a Servlet Container
WebLogic

If you are using WebLogic, the script that you created and ran to set the
Artix environment places the location of the artix_ce.xml file on the
CLASSPATH. You do not need to anything else at this stage.

For more information on the Artix classloader firewall, see the Things to
Consider when Developing Artix Applications chapter, in the Developing
Artix Applications with JAX-RPC.

Note: Do not place the artix_ce.xml file in your Web application’s
classes directory.
124

Building an Artix Application
Building an Artix Application

Overview This section outlines the steps you must complete to build an Artix
application. It includes building an Artix Java plug-in for your application.
The role of the Artix Java plug-in is to create an instance of your Web service
implementation and register it with the Artix bus. The plug-in must be
deployed in your Web application WAR file along with the Web service
implementation code.

In this section This section describes the steps that you must complete to build an Artix
Web service application. The following topics are covered:

• Mapping the WSDL to Java

• Writing the Implementation Class

• Developing an Artix Java Plug-in

• Configuring Artix to Use Your Plug-in
125

CHAPTER 8 | Exposing Artix Web Services from a Servlet Container
Mapping the WSDL to Java

Overview The Artix development tools include a wsdltojava command-line utility that
you can use to generate Java code from the WSDL file. Artix maps WSDL
types to Java using the mapping described in the JAX-RPC specification.
This subsection covers the following topics:

• Syntax of wsdltojava command

• Example

• More information

Syntax of wsdltojava command To generate Java skeleton and plug-in code from a WSDL file, run the
following command:

The parameters shown above are defined as follows:

wsdltojava -p package -d <output_dir> -servlet wsdl_contract

-p <[wsdl
namespace =]
Package
Name>

Specifies the name of the Java package to use for the
generated code. You can optionally map a WSDL
namespace to a particular package name if your contract
has more than one namespace. The -p flag is optional,
but is recommended.

-d <output_dir> Specifies the directory to which the generated code is
written. The default is the current working directory. The
-d parameter is optional.

-servlet Generates a bus plug-in with the appropriate servant
registration code for the generated service
implementation and the code required to allow the
plug-in to run in a servlet container environment.

wsdl_contract Specifies the WSDL contract from which the Java code is
being generated.
126

Building an Artix Application
Example For example, the following wsdltojava command generates the Java files
required to expose the service described in the hello_world.wsdl contract
in the Servlet Container demo. The example shown is run from the
directory in which the hello_world.wsdl file is stored:

More information For more information on the wsdltojava command-line utility, see the
Generating Code from WSDL chapter in the Artix Command Line Reference.

wsdltojava -p servlet.plugin -d ..\java\servlet\src -servlet
hello_world.wsdl
127

../command_ref/index.html

CHAPTER 8 | Exposing Artix Web Services from a Servlet Container
Writing the Implementation Class

Overview You can use the skeleton class generated by the Artix wsdltojava utility as
the basis for writing your Web service implementation class. All you need to
do is add the business logic.

Example For example, the following GreeterImpl.java file is used to implement the
Web service in the Servlet Container demo:

Example 15: GreeterImpl.java

package servlet.plugin;

import java.lang.String;
import javax.xml.namespace.QName;
import com.iona.jbus.*;

public class GreeterImpl implements java.rmi.Remote {

 public String sayHi() {
 return "Hey Now!";
 }

 public String greetMe(String me) {
 return "Hello " + me;
 }
}

128

Building an Artix Application
Developing an Artix Java Plug-in

Overview To make your application available to Artix, you must develop an Artix Java
plug-in for your application. The purpose of this plug-in is to create an
instance of your implementation class and register it with the Artix bus. The
code is similar to that of an Artix Java server mainline and it associates your
Web service implementation with a WSDL port.

In this subsection This subsection provides an example plug-in that exposes an Artix Web
service over all of the ports defined in the WSDL contract. The following
topics are covered:

• Generating the Artix Java plug-in files

• Example of Artix Java plug-in

• Example of Artix Java plug-in factory

• Exposing a Web service over multiple transports

Generating the Artix Java plug-in
files

When you map the WSDL to Java, you must use the -servlet parameter to
generate the Artix Java plug-in code (see “Mapping the WSDL to Java” on
page 126 for more information). The following plug-in files are generated for
you:

• A plug-in class, which extends the Artix BusPlugIn class to implement
your application logic.

• A plug-in factory class, which implements the Artix BusPluginFactory
interface to provide the methods used by the Artix bus to manage your
plug-in.
129

CHAPTER 8 | Exposing Artix Web Services from a Servlet Container
Example of Artix Java plug-in The code in Example 16 shows an Artix Java plug-in, called
SOAPServicePlugin. It was generated using the wsdltojava utility and the
hello_world.wsdl contract located in:

ArtixInstallDir/cxx_java/samples/j2ee/servlet_container/etc

Example 16: An Artix Java Plug-in—SOAPServicePlugin

package servlet.plugin;

import java.net.URL;
import javax.xml.namespace.QName;

import com.iona.jbus.Bus;
import com.iona.jbus.BusConstants;
import com.iona.jbus.BusException;
import com.iona.jbus.BusPlugIn;
import com.iona.jbus.Servant;
import com.iona.jbus.servants.SingleInstanceServant;

public class SOAPServicePlugin extends BusPlugIn {

 public SOAPServicePlugin(Bus bus) {
 super(bus);
 }

 public void busInit() throws BusException {
 Bus bus = getBus();

 QName serviceName = new QName
 ("http://www.iona.com/servlet/plugin","SOAPService");

1 bus.setProperty(BusConstants.ARTIX_SERVLET_SERVICE_QNAME,
 serviceName);

2 URL url = getClass().getResource("hello_world.wsdl");
 String wsdlLocation = url.toString();

3 Servant servant = new SingleInstanceServant(new
 GreeterImpl(), wsdlLocation, bus);

4 bus.registerServant(servant, serviceName);
 }
 public void busShutdown() throws BusException{
 }
}

130

Building an Artix Application
The code shown in Example 16 can be explained as follows:

1. The bus.setProperty property is set so that the servlet knows what
service is being exposed. The serviceName parameter is set the QName
of the service as defined in the WSDL file. You should only deploy one
Artix service per servlet. The servlet uses the value of this property to
get the correct WSDL when the doGet() method is called on the
servlet.

2. Accesses the Web service WSDL file. Note that, in this example, the
WSDL file is located within the web application WAR file along with
the plug-in. You can, however, retrieve the WSDL file from any location
in which it is stored.

3. Creates an instance of the servant.

4. Registers the servant and activates all ports associated with the
service.

Example of Artix Java plug-in
factory

The code in Example 17 shows an Artix Java plug-in factory class, called
SOAPServicePluginFactory.

Example 17: Artix Java Plug-in Factory Implementation—
SOAPServicePluginFactory

package servlet.plugin

import com.iona.jbus.Bus;
import com.iona.jbus.BusPlugIn;
import com.iona.jbus.BusPlugInFactory;
import com.iona.jbus.BusException;

public class SOAPServicePluginFactory implements
BusPlugInFactory {

1 public BusPlugIn createBusPlugIn(Bus bus) throws BusException{
 return new SOAPServicePlugin(bus);
 }

2 public void destroyBusPlugIn(BusPlugIn plugin) throws
BusException{

 }
}

131

CHAPTER 8 | Exposing Artix Web Services from a Servlet Container
The code shown in Example 17 can be explained as follows:

1. The createBusPlugIn() method creates an instance of the Artix Java
plug-in, SOAPServicePluginFactory, and its associated resources, and
associates them with particular bus instances.

2. The destroyBusPlugIn() method destroys plug-in instances and frees
the resources associated with them.

You do not need to modify this code.

Exposing a Web service over
multiple transports

If you want to expose your service over transports other than HTTP, all you
need to do is add a port definition for the transport to the WSDL contract.
You do not need to change the code. Artix supports a number of transports,
including IIOP, JMS, WebSphere MQ, TIBCO, and Tuxedo. You can use any
of these when deploying an Artix Web service into a servlet container. The
following WSDL extract, for example, defines two ports for the SOAPService,
and specifies that clients should use HTTP to contact Port1 and IIOP to
contact Port2:

Both ports are activated when bus.registerServant(servant,
serviceName) is called, as shown in Example 16 on page 130.

<wsdl:service name="SOAPService">
 <wsdl:port binding="tns:Greeter_SOAPBinding" name="Port1">
 <soap:address location="http://localhost:9000"/>
 <http-conf:client/>
 <http-conf:server/>
 </wsdl:port>
 <wsdl:port binding="tns:GreeterCORBABinding" name="Port2">
 <corba:address
 location="file:../../greeter_service.ior"/>
 </wsdl:port>
</wsdl:service>
132

Building an Artix Application
Configuring Artix to Use Your Plug-in

Overview You must configure Artix so that the Artix bus can load your plug-in. This
subsection describes the configuration entries that are required and provides
an example configuration file. The following topics are covered:

• Plug-in configuration

• Example configuration file

• More information

Plug-in configuration To enable the Artix bus to load your plug-in, add the following configuration
entries to your Artix configuration file:

Step Action

1 Load the Java plug-in loader.

Artix Java plug-ins require the Artix bus to use a special Java
plug-in loader, java. You need to add this plug-in loader to the
orb_plugins list.

2 Specify your application-specific plug-in factory class and the
Artix servlet transport plug-in factory class.

To load a plug-in, the Artix bus needs to know which factory
class is used to create instances of the plug-in’s
implementation.

3 Add your plug-in and the Artix servlet transport plug-in to the
java_plugins list that the Artix bus will load.
133

CHAPTER 8 | Exposing Artix Web Services from a Servlet Container
Example configuration file The following is an example of the configuration file used to configure Artix
in the Servlet Container demo. It defines two Artix configuration scopes:
demos.client and tests.servlet_test

1. Includes the artix.cfg file, which is the standard minimal Artix
configuration. It is generated by default when Artix is installed.

2. demos.client scope. This is the scope under which the C++ and Java
clients run in the Servlet Container demo. This scope is not
essential—the client applications would run just as well under the
global scope in artix.cfg.

Example 18: Artix Configuration File—servlet_container.cfg

1 include "../../../../etc/domains/artix.cfg";

2 demos {
 servlet_container {
 client {
 # to see transport buffers, use this setting
 #event_log:filters = ["*=FATAL+ERROR+WARNING+INFO_MED"];
 orb_plugins = ["xmlfile_log_stream"];
 };
 };
};

3 tests {
 #uncomment the following configuration entries to see Artix

message logging
 #the log will be written into the Tomcat install directory
 #event_log:filters=["*=FATAL+ERROR+WARNING+INFO_MED"];
 #plugins:soap:write_xsi_type="true";

 servlet_test
 {

4 orb_plugins = ["xmlfile_log_stream", "java"];
5 java_plugins = ["servlet_transport", "servlet_demo_plugin"];

6 plugins:servlet_transport:classname="com.iona.jbus.servlet.
transport.ServletTransportPlugInFactory";

7 plugins:servlet_demo_plugin:classname="servlet.plugin.
SOAPServicePluginFactory";

 };
};
134

Building an Artix Application
3. tests.servlet_test scope. This is the scope under which the Artix
servlet runs within the servlet container. This is essential. The
orb_plugins and java_plugins entries identify Artix plug-ins that need
to be loaded by the Artix bus.

4. Note that the Java plug-in loader, java, is included in the orb_plugins
list.

5. Note that the servlet_transport and servlet_demo_plugin is
included in the java_plugins list.

6. The servlet_transport plug-in is part of Artix. This is contained in the
it_artix_servlet.jar file and provides the integration between the
Artix servlet running in the servlet container and the Artix core. It
defines a new Artix transport that wraps the servlet container HTTP
stack. This enables Artix Web services to receive invocations on the
TCP/IP port used by servlet container.

7. The servlet_demo_plugin is the Artix Web services implementation
written specifically for the Servlet Container demo. This is an
example of an application-specific Artix Java plug-in and contains the
demo application logic. This is equivalent to the Artix Java plug-in that
you must generate for your Web service application. Details of how to
write such a plug-in is described in the Developing an Artix Java
Plug-in subsection of this chapter.

More information For more detailed information on how to configure Artix plug-ins, see the
Configuring Artix Plug-ins chapter in the Developing Artix Applications
using JAX-RPC.

Note: If you do not want to use the servlet container’s HTTP stack, and
would prefer instead to use the Artix HTTP stack, do not add the
servlet_transport plug-in to the list of plug-ins that you want the Artix
bus to load.
135

../jaxrpc_pguide/index.htm
../jaxrpc_pguide/index.htm

CHAPTER 8 | Exposing Artix Web Services from a Servlet Container
Building and Deploying your Web Application

Overview To deploy your application to your servlet container, you must build an Web
Archive (WAR) file and deploy it to your servlet container. In addition, if you
want to use the servlet container HTTP port to receive messages, you must
deploy the Artix servlet transport and ensure that the Web service WSDL file
contains the URL on which the servlet will be deployed.

In this section This section discusses the following topics:

• Building a WAR file

• Example web.xml file

• Ensuring the URL assigned to servlet is same as in WSDL

• Deploying the WAR file

Building a WAR file Build a WAR file to include:

1. A copy of the Artix supplied it_artix_servlet.jar file in the
WEB-INF/lib directory. This contains the ArtixServlet class and the
plug-in code that provides the integration between the servlet and the
servlet container’s HTTP stack. You do not need to change this in any
way. It is located in:

2. Your Web service implementation class, your application-specific Artix
Java plug-in class, the plug-in factory class, and the Web service
WSDL file. If required, other classes generated by the wsdltojava
command should also be included; for example, application-specific
types and the type factory.

You can either build an ApplicationSpecific.jar file to package all of
these files and include it in the WEB-INF/lib directory of your WAR file,
or place the files (including the class hierarchy) in the
WEB-INF/classes directory.

ArtixInstallDir/cxx_java/lib/artix/java_runtime/Version
136

Building and Deploying your Web Application
3. A web.xml deployment descriptor file in the WEB-INF directory. You
must include an initialization parameter that the Artix servlet can use
when initializing the Artix bus. See Example web.xml file for more
detail.

Example web.xml file When deploying an Artix Web service to your servlet container, you must
include an initialization parameter in your application web.xml deployment
descriptor file. It is used by the ArtixServlet instance when initializing an
Artix bus and ensures that the bus is using the correct Artix configuration
scope.

For example, the following is used when deploying the Servlet Container
demo:

Example 19: Servlet Container demo web.xml file

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web

Application 2.3//EN"
"http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>
 <display-name>Artix Servlet Test App</display-name>
 <description></description>
 <servlet>
 <servlet-name>ArtixServlet</servlet-name>
 <servlet-class>com.iona.jbus.servlet.ArtixServlet

 </servlet-class>
1 <init-param>

 <param-name>bus.init.parameters</param-name>
 <param-value>-ORBid SomeUniqueString
 -ORBname tests.servlet_test</param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <!-- Action Servlet Mapping -->
 <servlet-mapping>
 <servlet-name>ArtixServlet</servlet-name>
 <url-pattern>/artix_servlet</url-pattern>
 </servlet-mapping></web-app>
137

CHAPTER 8 | Exposing Artix Web Services from a Servlet Container
The code shown Example 19 can be explained as follows:

1. To make an Artix process run under a particular configuration scope,
you specify that scope using the -ORBname parameter. It specifies the
scope under which the Artix bus should run. In this case the
configuration scope is test.servlet_test, which has been defined in
the Artix configuration file used in the Servlet Container demo. See
“Example configuration file” on page 134 to view the contents of this
file.

In addition, to run multiple Artix servlet applications in the same
servlet container, you need to distinguish one application’s bus from
another. To do this, set the -ORBid parameter to a unique string for
each application.

Lastly, you could specify a particular domain name and configuration
directory by adding -ORBdomain_name and -ORBconfig_domains_dir
parameters and their values to the param-value entry. If you choose to
do so, you do not need to set these configuration entries in your
environment script.

Ensuring the URL assigned to
servlet is same as in WSDL

In order for the servlet to use the servlet container’s HTTP stack, you must
ensure that the URL and TCP/IP port number in the Web service WSDL file
is the same as that used to deploy the servlet. You can either change the
value in the WSDL file to match that of the servlet, or configure the servlet
container to use the URL and TCP/IP port number specified in the WSDL.

For example, in the Servlet Container demo, the hello_world.wsdl file
specifies the following URL and Tomcat is configured to use the same port:

<wsdl:service name="SOAPService">
<wsdl:port binding="tns:Greeter_SOAPBinding" name="SoapPort">
 <soap:address

location="http://localhost:9876/artix_demo_servlet/
 artix_servlet"/>
</wsdl:port>
</wsdl:service>

Note: If you choose not to use the servlet container’s HTTP stack, and are
instead using the Artix HTTP stack, then you must ensure that the TCP/IP
port number used in the WSDL file is different from that used by the
servlet container.
138

Building and Deploying your Web Application
Deploying the WAR file You must configure your servlet container to run Artix applications before
you deploy your WAR file. Please refer to “Configuring Servlet Container to
Run an Artix Application” on page 119 for more detail.

How you deploy your WAR file is dependent on the servlet container that
you are using. Please refer to you servlet container documentation for exact
details.
139

CHAPTER 8 | Exposing Artix Web Services from a Servlet Container
140

Part IV
Reference Information

In this part This part contains the following chapters:

Artix J2EE Connector Configuration Properties page 143
141

142

CHAPTER 9

Artix J2EE
Connector
Configuration
Properties
You do not have to configure the Artix J2EE Connector for basic
connection management. It is configured for you during the
Artix installation. You can, however, change the default
configuration settings to suit your environment using the
configuration properties detailed in this chapter. This chapter
also provides some basic information on how to set these
configuration properties in JBoss, WebLogic and WebSphere.

In this chapter This chapter covers the following topics:

Configuration Properties page 144

Setting Configuration Property Values page 156
143

CHAPTER 9 | Artix J2EE Connector Configuration Properties
Configuration Properties

Overview The Artix J2EE Connector supports the following configuration properties:.

ArtixInstallDir page 145

ArtixLicenseFile page 146

LogLevel page 147

ConfigurationDomain page 148

ConfigurationScope page 149

EJBServicePropertiesURL page 150

EJBServicePropertiesPollInterval page 151

MonitorEJBServiceProperties page 152

JAASLoginConfigName page 153

JAASLoginUserName page 154

JAASLoginPassword page 155
144

Configuration Properties
ArtixInstallDir

Overview The ArtixInstallDir configuration property specifies the Artix installation
directory. This is set be default when you install Artix.

Value The value of the ArtixInstallDir configuration property is a string
specifying the Artix installation directory.

The Artix J2EE Connector is configured by default with details of the
directory into which you installed Artix; for example:

C:\IONA\artix\5.0

Setting If you want to change the default setting, see “Setting Configuration Property
Values” on page 156.
145

CHAPTER 9 | Artix J2EE Connector Configuration Properties
ArtixLicenseFile

Overview The ArtixLicenseFile configuration property specifies the location of the
Artix license file. This is set to a default location when you install Artix. If,
however, you do not store your Artix license file in the default location, you
need to set the ArtixLicenseFile configuration property to specify the
location that you are using.

Value The value of the ArtixLicenseFile configuration property is a string
specifying the location of the Artix license file.

The Artix J2EE Connector is set by default to specify the default location as:

ArtixInstallDir/etc/licenses.txt

An example could be:

C:/IONA/etc/licenses.txt

Setting If you want to change the default setting, see “Setting Configuration Property
Values” on page 156.
146

Configuration Properties
LogLevel

Overview The LogLevel configuration property specifies the amount of logging that the
Artix J2EE Connector produces. The location of the logging output is
dependent on the J2EE application server.

Value The logging support levels from least to most verbose are:

• DEBUG
• INFO
• WARN
• ERROR
• FATAL

The Artix J2EE Connector is configured by default to support the WARN
logging level.

Setting If you want to change the default setting, see “Setting Configuration Property
Values” on page 156.
147

CHAPTER 9 | Artix J2EE Connector Configuration Properties
ConfigurationDomain

Overview The Artix J2EE Connector uses the Artix configuration file, artix.cfg, by
default. An alternative configuration domain can be specified by using the
ConfigurationDomain configuration property.

Value The value of the ConfigurationDomain configuration property is a string.

The Artix J2EE Connector is configured by default with the configuration
domain value of artix.

Setting If you want to change the default setting, see “Setting Configuration Property
Values” on page 156.
148

Configuration Properties
ConfigurationScope

Overview The ConfigurationScope configuration property specifies the Artix
configuration scope that the Artix J2EE Connector uses.

Value The value of the ConfigurationScope configuration property is a string, with
the . (dot) character identifying nested configuration scopes.

The Artix J2EE Connector is configured by default with a configuration scope
of DEFAULT.

Setting If you want to change the default setting, see “Setting Configuration Property
Values” on page 156.
149

CHAPTER 9 | Artix J2EE Connector Configuration Properties
EJBServicePropertiesURL

Overview The EJBServicePropertiesURL configuration property specifies the location
from which the Artix J2EE Connector can retrieve the
ejb_servants.properties file.

By default, the Artix J2EE Connector is set to check this file for updates at
30 second intervals. This behavior is controlled by the
MonitorEJBServiceProperties and the
EJBServicePropertiesPollInterval configuration properties.

Value The value is a string that specifies a URL.

The Artix J2EE Connector is configured by default with the following file
URL:

file:ArtixInstallDir/cxx_java/etc/ejb_servants.properties

Setting If you want to change the default setting, see “Setting Configuration Property
Values” on page 156.

More detail For more detail on the ejb_servants.properties file, see “Configuring
Inbound Connections” on page 59.

For more detail on the MonitorEJBServiceProperties configuration
property, see “MonitorEJBServiceProperties” on page 152.

For more detail on the EJBServicePropertiesPollInterval configuration
property, see “EJBServicePropertiesPollInterval” on page 151.

Note: If you want the Artix J2EE Connector to check the
ejb_servants.properties file for updates, the URL must be a file URL.
150

Configuration Properties
EJBServicePropertiesPollInterval

Overview The EJBServicePropertiesPollInterval configuration property specifies
the refresh period that the Artix J2EE Connector uses to check the
ejb_servants.properties file for updates. It is dependent on the
MonitorEJBServiceProperties configuration property being set to TRUE.

Value The value is an integer and the default value is 30 seconds. This means
that, by default, the Artix J2EE Connector checks the
ejb_servant.properties file every 30 seconds for updates.

Setting If you want to change the default setting, see “Setting Configuration Property
Values” on page 156.

More detail For more detail on the ejb_servants.properties file, see “Configuring
Inbound Connections” on page 59.

For more detail on the MonitorEJBServiceProperties configuration
property, see “MonitorEJBServiceProperties” on page 152.
151

CHAPTER 9 | Artix J2EE Connector Configuration Properties
MonitorEJBServiceProperties

Overview The MonitorEJBServiceProperties configuration property controls whether
or not the Artix J2EE Connector checks the ejb_servants.properties file
for updates.

Value The value is a boolean and can be set to:

The Artix J2EE Connector is configured by default to TRUE.

How often it checks the ejb_servants.properties file is set by the
EJBServicePropertiesPollInterval configuration property. The default
value of is every 30 seconds.

Setting If you want to change the default setting, see “Setting Configuration Property
Values” on page 156.

More detail For more detail on the ejb_servants.properties file, see “Configuring
Inbound Connections” on page 59.

For more detail on the EJBServicePropertiesURL configuration property,
see“EJBServicePropertiesURL” on page 150.

For more detail on the EJBServicePropertiesPollInterval configuration
property, see “EJBServicePropertiesPollInterval” on page 151.

TRUE This is the default setting and enables the Artix J2EE
Connector to monitor the ejb_servants.properties file
for updates.

For this to work, the location of the
ejb_servants.properties file must be specified as a file
URL to the EJBServicePropertiesURL configuration
property.

FALSE The Artix J2EE Connector will check the
ejb_servants.properties file once on deployment to an
application server, but will not check for updates.
152

Configuration Properties
JAASLoginConfigName

Overview The JAASLoginConfigName configuration property is used to specify the
JAAS configuration name that the Artix J2EE Connector should use to login
to a J2EE application server for secure inbound connections. The
configuration name is passed as an argument to the constructor of a
javax.security.auth.login.LoginContext that the Artix J2EE Connector
uses to login to the application server.

Value The value is a string that specifies the JAAS security configuration name that
the Artix J2EE Connector uses to login to the application server.

The Artix J2EE Connector is configured by default to use a JAAS
configuration name of DEFAULT.

Setting For information on how to set the JAASLoginConfigName configuration
property, see “Setting Configuration Property Values” on page 156

More detail For more detail on using the JAASLoginConfigName configuration property,
see “Configuring JAAS Login Module” on page 107.
153

CHAPTER 9 | Artix J2EE Connector Configuration Properties
JAASLoginUserName

Overview The JAASLoginUserName configuration property is used to identify a valid
J2EE username that has the appropriate privileges to execute the
EJBHome.create method of the target EJB for secure inbound connections.

Value The value is a string that specifies a valid J2EE username the Artix J2EE
Connector can use to create the target EJB for secure inbound connections.

The Artix J2EE Connector is configured by default to use a J2EE username
of DEFAULT.

Setting For information on how to set the JAASLoginUserName configuration
property, see “Setting Configuration Property Values” on page 156.

More detail For more detail on using the JAASLoginUserName configuration property, see
“Configuring EJB Create Username and Password” on page 109.
154

Configuration Properties
JAASLoginPassword

Overview The JAASLoginPassword configuration property is used to specify a
password that corresponds to a valid J2EE user that has the appropriate
privileges to execute the EJBHome.create method of the target EJB for
secure inbound connections.

Value The value is a string that specifies a valid password that the Artix J2EE
Connector can use to create the target EJB for secure inbound connections.

The Artix J2EE Connector is configured by default to use a J2EE user
password of DEFAULT.

Setting For information on how to set the JAASLoginPassword configuration
property, see “Setting Configuration Property Values” on page 156.

More Detail For more detail on using the JAASLoginPassword configuration property, see
“Configuring EJB Create Username and Password” on page 109.
155

CHAPTER 9 | Artix J2EE Connector Configuration Properties
Setting Configuration Property Values

Overview Artix J2EE Connector configuration property values can be set at
deployment time. How you do this is specific to the J2EE application server
that you are using. This section provides details of how to set example Artix
J2EE Connector properties in JBoss, WebLogic and WebSphere. Please
consult your J2EE application server documentation for the most
appropriate way in which to set these values.

In this section The following topics are covered:

Setting Configuration Property Values in JBoss page 157

Setting Configuration Property Values in WebLogic page 158

Setting Configuration Property Values in WebSphere page 159
156

Setting Configuration Property Values
Setting Configuration Property Values in JBoss

Overview JBoss provides J2EE Connector Architecture resource adapter factory
configuration through a CFactoryName-ds.xml deployment descriptor file.
This is a separate file from the resource adapter RAR file. You need one
CFactoryName-ds.xml file per connection factory.

Example The following example artixj2ee_1_5-ds.xml JBoss 4 deployment
descriptor file specifies a value of 60 for the Artix J2EE Connector
EJBServicePropertiesPollInterval configuration property:

The config-property element is used to specify a value for a configuration
property that is supported by the resource adapter being deployed.

More information For more information on the EJBServicePropertiesPollInterval
configuration property, see “EJBServicePropertiesPollInterval” on page 151.

For more information on how to set J2EE Connector Architecture resource
adapter configuration properties in JBoss, see the JBoss documentation.

<connection-factories>
 <no-tx-connection-factory>
 <jndi-name>ArtixConnector</jndi-name>
 ...
 <config-property name="EJBServicePropertiesPollInterval"

type="java.lang.Integer">60</config-property>
 ...
 </no-tx-connection-factory>
</connection-factories>
157

CHAPTER 9 | Artix J2EE Connector Configuration Properties
Setting Configuration Property Values in WebLogic

Overview WebLogic provides J2EE Connector Architecture resource adapter factory
configuration through the weblogic-ra.xml deployment descriptor file. This
file is typically included in the resource adapter RAR file. Although,
WebLogic 8.1 allows the location of the weblogic-ra.xml deployment
descriptor file to be specified by the deployment tool.

Example The following example weblogic-ra.xml deployment descriptor file specifies
a value of 60 for the Artix J2EE Connector
EJBServicePropertiesPollInterval configuration property:

The map-config-property element is used to specify a value for a
configuration property that is supported by the resource adapter being
deployed.

More information For more information on the EJBServicePropertiesPollInterval
configuration property, see “EJBServicePropertiesPollInterval” on page 151.

For more information on how to set J2EE Connector Architecture resource
adapter configuration properties in WebLogic, see the WebLogic
documentation.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE weblogic-connection-factory-dd PUBLIC
"-//BEA Systems, Inc.//DTD WebLogic 8.1.0 Connector//EN"
"http://www.bea.com/servers/wls810/dtd/weblogic810-ra.dtd">
<weblogic-connection-factory-dd>
 <connection-factory-name>ArtixConnector
 </connection-factory-name>
 <jndi-name>CORBAConnector</jndi-name>
 <map-config-property>
 <map-config-property-name>EJBServicePropertiesPollInterval
 </map-config-property-name>
 <map-config-property-value>60
 </map-config-property-value>
 </map-config-property>
</weblogic-connection-factory-dd>
158

Setting Configuration Property Values
Setting Configuration Property Values in WebSphere

Overview WebSphere requires you to set J2EE Connector Architecture resource
adapter factory configuration using the WebSphere Administrative Console
GUI or the wsadmin command-line tool.

More information For more information on how to set J2EE Connector Architecture resource
adapter configuration properties in WebSphere, see the WebSphere
documentation.
159

CHAPTER 9 | Artix J2EE Connector Configuration Properties
160

Index

Numerics
1PC 78
2PC 77

A
ACID properties 77
API

connection management 43
application policy

adding to JBoss login-config.xml 99
client-login 107
configuring credentials mapping in JBoss 99

artix.cfg 134, 148
artix.rar

deploying to JBoss 66
deploying to WebLogic 69
deploying to WebSphere 72

Artix bus 55, 59, 94, 117
accessing directly 47
context registry 47
creating a reference 47

ArtixConnectionFactory 44
usage scenarios 45

ArtixConnectionFactory.getBus() 47
Artix environment

setting 64
artix_env script 64
Artix HTTP stack 135
ArtixInstallDir 145
artixj2ee_1_5-ds.xml 28, 157
artix_j2ee_ce.xml 65
artixj2ee-ds.xml 67

deploying to JBoss 66
example of 67

Artix Java plug-in 129
configuring 133

ArtixLicenseFile 146
Artix servlet transport 115, 116

it_artix_servlet.jar 136
Artix shared library

appending to system environment 64
authentication mechanism

BasicPassword 93

B
BasicPassword 93
BusPlugIn

extending 130
BusPlugInFactory

extending 131

C
CFactoryName-ds.xml 28, 67, 157

example of 67
classloader firewall 122
client-login 107
configuration

inbound security 104
outbound security 95

ConfigurationDomain 148
configuration properties

ArtixInstallDir 145
ArtixLicenseFile 146
ConfigurationDomain 148
ConfigurationScope 149
EJBServicePropertiesPollInterval 61, 151
EJBServicePropertiesURL 60, 150
JAASLoginConfigName 153
JAASLoginPassword 155
JAASLoginUserName 154
LogLevel 147
MonitorEJBServiceProperties 61, 152
setting in JBoss 157
setting in WebLogic 158
setting in WebSphere 159

ConfigurationScope 149
connection management 43

API 43
Artix J2EE Connector 20
interface definition 44
J2EE Connector Architecture 16

credentials mapping 95, 96
in JBoss 98

credentials propagation 91
outbound security 92
161

INDEX
D
-d 126
deployment

interface classes 50
to JBoss 66
to servlet container 136
to Tomcat 136
to WebLogic 69
to WebSphere 72

deployment descriptor 19, 137

E
EJB

securing 105
ejb_servants.properties file

configuring inbound connections 59
example of 60
format of 59
multiple entries 60
port-to-JNDI mapping 55, 59

EJBServicePropertiesPollInterval 61, 151
EJBServicePropertiesURL 60, 150

G
global transactions 84

configuring inbound 89
configuring outbound 87

H
Hello World demo

location of 26
running on JBoss 27
running on WebLogic 31
running on WebSphere 35
WSDL file 26

I
IIOP 132
inbound connections 53

configuring 59
demo 55

inbound security
configuring 104

initialization parameter 137
init param See initialization parameter
interface classes

packaging and deploying 49, 50, 136
it_artix_servlet.jar 136

J
J2EE application

writing 43, 57, 128
J2EE Connector Architecture 14

Common Client Interface, CCI 17
connection management 16
security management 16
system-level contracts 16
transaction management 16

JAAS 98
JAAS configuration name 107
JAASLoginConfigName 107, 153
JAAS login module 107
JAASLoginPassword 109, 155

setting in JBoss 110
JAASLoginUserName 109, 154

setting in JBoss 110
Java Authentication and Authorization Service 98
java_plugins 133, 135
javax.resource.security.PasswordCredential 93
javax.security.auth.login.LoginContext 107
JAX-RPC mapping 55
JBoss

4 deployment descriptor 28, 157
configuring property values in 157
credentials mapping 98
deploying to 66
jboss.xml 50
login-config.xml 99
mapping resource reference 50
principal mapping 98
running the Hello World demo on 27

JMS 132

L
local transactions 79

demo 79
demo code 81

login-config.xml 99, 107
LogLevel 147

M
MonitorEJBServiceProperties 61, 152
162

INDEX
O
one-phase commit 78
-ORBconfig_domains_dir 138
-ORBdomain_name 138
-ORBid 138
orb_plugins 133, 135
OTS Encina 78
OTS Lite 78

P
-p 126
param-value 138
principal mapping 95, 96

in JBoss 98

R
ra.xml 19
RAR. See artix.rar
resource adapter archive file. See artix.rar
resource reference

declaring 49
mapping 49

S
security

configuring inbound 104
configuring outbound 95
credentials mapping 95
credentials propagation 91
inbound 101
outbound 92
principal mapping 95

security management
Artix J2EE Connector 20
J2EE Connector Architecture 16

-servlet 126
servlet container 115–139

Artix Java plug-in 129
configuring Artix Java plug-in 133
demo 118
example Artix configuration file 134
example of extending BusPlugIn 130
example of extending BusPlugInFactory 131
graphical representation 117
running Artix services in 115
using multiple transports or protocols 132

SLSB 55
implementing 57

stateless session bean 55
implementing 57

T
TIBCO 132
transaction management

Artix J2EE Connector 20
J2EE Connector Architecture 16

transaction managers 77
transactions 75–82

1PC definition 78
2PC definition 77
ACID properties of 77
configuring inbound global 89
configuring inbound XA 89
configuring outbound global 87
configuring outbound XA 87
global transactions 84
local transactions 79
local transactions demo 79
local transactions demo code 81
one-phase commit 78
OTS Encina 78
OTS Lite 78
two-phase commit 77
WS-AtomicTransactions 78
XA transactions 84

Tuxedo 132

W
web.xml

deploying Web service in servlet container 137
initialization parameter 137

WebLogic
configuring property values in 158
deploying to 69
mapping resource reference 50
running the Hello World demo on 31
weblogic.xml 50

weblogic-ra.xml 158
example of 71

WebSphere
configuring property values in 159
deploying to 72
mapping resource reference 50
running the Hello World demo on 35

WebSphere MQ 132
WS-AtomicTransactions 78
163

INDEX
WS-AT See WS-AtomicTransactions
wsdl_contract 126
WSDL location

configuring Artix to resolve at runtime 47
hardcoding 45
resolving at runtime 46

WSDL to Java
mapping 56

wsdltojava utility 42, 56

generating Java skeleton code 126
WSSE

username and password 94

X
XA transactions 84

configuring inbound 89
configuring outbound 87
164

	List of Figures
	Preface
	Part I—Introduction
	Introduction
	J2EE Connector Architecture Overview
	System-Level Contracts
	Common Client Interface

	Artix J2EE Connector Overview
	Artix Servlet Container Support
	Artix Concepts

	Part II—Using Artix in a J2EE Application Server
	Getting Started with Artix J2EE Connector
	Introduction
	Running the Hello World Demo on JBoss
	Running the Hello World Demo on WebLogic
	Running the Hello World Demo on WebSphere

	Exposing a Web Service to a J2EE Application
	Introduction
	Mapping the WSDL to Java
	Writing your J2EE Application
	Connection Management API Definition
	Using the Connection Management API

	Packaging your Application

	Exposing a J2EE Application as a Web Service
	Introduction
	Mapping the WSDL to Java
	Implementing a Stateless Session Bean
	Configuring Inbound Connections

	Deploying Artix J2EE Connector
	Setting the Artix Environment
	Deploying to JBoss
	Deploying to WebLogic
	Deploying to WebSphere

	Transactions
	Transactions Overview
	Local Transactions
	Global Transactions
	Outbound Global Transactions
	Inbound Global Transactions

	Security
	Outbound Security
	Configuring Outbound Security
	Credentials Mapping
	Configuring Credentials Mapping in JBoss

	Inbound Security
	Configuring Inbound Security
	Securing the Target EJB
	Configuring JAAS Login Module
	Configuring EJB Create Username and Password

	Configuring a Secure Transport

	Part III—Using Artix in a Servlet Container
	Exposing Artix Web Services from a Servlet Container
	Introduction
	Configuring Servlet Container to Run an Artix Application
	Building an Artix Application
	Mapping the WSDL to Java
	Writing the Implementation Class
	Developing an Artix Java Plug-in
	Configuring Artix to Use Your Plug-in

	Building and Deploying your Web Application

	Part IV—Reference Information
	Artix J2EE Connector Configuration Properties
	Configuration Properties
	ArtixInstallDir
	ArtixLicenseFile
	LogLevel
	ConfigurationDomain
	ConfigurationScope
	EJBServicePropertiesURL
	EJBServicePropertiesPollInterval
	MonitorEJBServiceProperties
	JAASLoginConfigName
	JAASLoginUserName
	JAASLoginPassword

	Setting Configuration Property Values
	Setting Configuration Property Values in JBoss
	Setting Configuration Property Values in WebLogic
	Setting Configuration Property Values in WebSphere

	Index

