IONA

Artix ESB

Artix ESB Command Reference

Version 5.0
July 2007

Making Software Work Together™



Artix ESB Command Reference
IONA Technologies

Version 5.0

Published 25 Oct 2007
Copyright © 1999-2007 IONA Technologies PLC

Trademark and Disclaimer Notice

IONA Technologies PLC and/or its subsidiaries may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this publication. Except as expressly provided in any written license agreement from
IONA Technologies PLC, the furnishing of this publication does not give you any license to these patents, trademarks, copyrights,
or other intellectual property. Any rights not expressly granted herein are reserved.

IONA, IONA Technologies, the IONA logos, Orbix, Artix, Making Software Work Together, Adaptive Runtime Technology, Orbacus,
IONA University, and IONA XMLBus are trademarks or registered trademarks of IONA Technologies PLC and/or its subsidiaries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.
CORBA is a trademark or registered trademark of the Object Management Group, Inc. in the United States and other countries.
All other trademarks that appear herein are the property of their respective owners.

While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of any kind to
this material including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. IONA
shall not be liable for errors contained herein, or for incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Copyright Notice

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means,
photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third-party intellectual property
right liability is assumed with respect to the use of the information contained herein. IONA Technologies PLC assumes no
responsibility for errors or omissions contained in this publication. This publication and features described herein are subject to
change without notice. Portions of this document may include Apache Foundation documentation, all rights reserved.




Table of Contents

11 - oL 5
What is Covered in THhiS BOOK .....c.euieeieiii et e e eneaen 6
Who Should Read This BOOK .......uueeiiiiie ettt e e e 7
USING the ArtiX TOOIS ....iuieieie it r s s s s s sa e e e n e s s s s s s sasarnsarnsnsasnsnsnsnsnnnnnnnnnns 9
L= L= LT TV T PPN 13
AEIX JAVAZWSAL ..ot aans 14
JAVAEOW Sl o e 16
1D Q16 1 ZA 7T |t 18
0 1107 21
AEIX CODOI2WSAL ...t e 25
AMEIX XSA2WSAI ettt et e enas 28
D T8 1012 P 30
artix dbCoNfIG2WSAI .. ..o 32
o Lo Yot =4 101772 |t 34
Adding BindINgS ...cucuiiiiiiiiiiii it s s s s s s st ra et e aa e e e e e e e e e e e e et rarnnan 37
AKX WSOl 2 808D «uininitit ittt e e eaaaaaas 38
AMEIX WS XM e e 40
ArtiX WSAIZ2IA] =COMDA ..o ee e 42
WSAITOCOIDA “COMDA ... ettt 44
Adding ENAPOints .....couiiiiiiiiiiiiiiii i st a et e rr e n it s e s nanras 47
artix wsdl2service -transport HEp ... 48
artix WsdI2Service -tranSPOrt JIMS ... 50
wsdltoservice -transport htp/SOaP ... 52
WSAItOSErvice -transport COMDa . ..o 58
WSAITOSEIVICE -tranSPOIt 10D ...enieii i e e 60
WSAIEOSEIVICE —traNSPOIT MG L.inieii e e e e e e e e 62
wsdltoservice -transport tibrv ... 68
WSAIToService -transport TUXEAO ... ... e 73
AddiNg ROULES ..oueiiiiiiiiii it s r s st s s s s s s st a s s s a s s s sasasansasasansnsasnnsnsnnnnrns 75
WS OTOULING et e ettt ettt 76
Validating WSDL .. ..uiii ittt s s s s s e s e e e e et e e e s s s e e e sasarasasasnsnsnnnnnnnnnnnnrnrnrnes 79
AMEIX ValId@EOr Lo e 80
SCHEMAVAIAATON ...t e 81
Transforming XIVIL ....c.oniiiiiiiiiiiiiii ettt e e e e e s s s s s s s sarasasasasasasnsnsnnnnensnsnsnsnsnsnsnnns 83
bS] =T 0 1 0 84
Generating Code from WSDL ......ciciiiiiiiiiiiiiii s s s s s s e e e s s s s s s s rasnrnsnsnsnsnsnsnns 85
AN WSOl N ot 86
E 1) Yo 2 o PP 88
ANEX WSl 2 AV L. utii e e 93
Yo (o - 17 I PPN 97
ArEIX WSAI2ADSEIVICE ...t e 101




Artix ESB Command Reference

(VTR [ (0T | o1y =T AV R P 104
Generating SupPOrt Files ......c.vuiiiii e r e nas 107
ANEIX WSAI2IA] =Tl et 108
WSAIOCOMA —I0l L.ttt e e e e e 110
ArtiX SO 2ADC0N G vt 112
17T [ R PR 117
Fo TN Yo | 2 Tl PSPPI 119




Preface

Table of Contents

What is COVEred iN ThisS BOOK ....uiieieiiii i ettt et ettt ettt et e e e et et e e e e aeneenees
Who Should Read This BOOK ....uuiueiiiiiiiii et ettt e e e e e et e e et e eeeaeeaeas




What is Covered in This Book

What is Covered in This Book

This book is a reference to the command line tools included with Artix ESB.
The command line tools replicates the functionality of the GUI.




Who Should Read This Book

Who Should Read This Book

This book is intended for developers who use command line tools as part of
their build and development environments. However, all users of Artix ESB.







Using the Artix Tools

Overview

The artix tool

Summary

For the most commonly used tools, Artix ESB provides a universal access
point through the artix tool. However, legacy tools, such as the JAX-RPC
code generators, are only accessible by explicitly calling them.

Artix ESB Java Runtime and Artix ESB C++ Runtime share a number of
command line tools. To make it easier to determine which version of the tools
you are using, Artix has integrated a number of the tools into a single tool.
The new tool, artix provides access to the the C++ and JAX-WS code
generators, the Artix ESB Java Runtime tool for adding a service to a WSDL
document, the Artix ESB Java Runtime CORBA tools, and the DB service
tools.

The Artix ESB C++ Runtime version of the tools and the JAX-RPC code
generators can be called by explicitly calling them.

The artix tool provides access to the following tools:

¢ wsdl2java

€39 Warning

This is the JAX-WS version of the Java code generator and
generates code the only runs using Artix ESB Java Runtime.

e wsdl2cpp

¢ java2wsdl

€9 Warning

This WSDL generator only requires JAX-WS classes that can be
run using Artix ESB Java Runtime.

* wsdlgen

* validator




idl2wsdl

€9 Warning

This version of the tool generates WSDL that is only usable by
Artix ESB Java Runtime.

wsdI2idl

€9 Warning

This version of the tool only works with WSDL containing a Artix
ESB Java Runtime CORBA binding.

wsdl2service

(1) Important

This version of the tool only generates SOAP and JMS endpoints.

wsdl2soap
wsdl2xml
xsd2wsdl|
wsdl2dbservice
dbconfig2wsdl
wsdlgen
cobol2brgeinfo
idi2cobol
idI2pli
wsdI2pli
wsdl2cobol

transformerstore




Other tools

Prerequisites

* wsdl2acl
* sql2dbconfig

You can retrieve this list by using the following command:

artix

You can view the options for each of the tools using the following command:

artix tool

The JAX-RPC version of the Java code generator, the JAX-RPC version of the
WSDL generator, and the Artix ESB C++ Runtime versions of the IDL tools
are still available as part of Artix ESB. You can use them, as well as the
mainframe tools, by explicitly calling them from the command line and
specifying the full path to the tool.

The Artix ESB C++ Runtime version of the tools are located in
InstallDir/cxx_java/bin

The mainframe tools are located in InstallDir/mainframe/bin.

Before you can use these tools you must properly set up your environment.
How you set up your environment depends on which runtime you are intending
to use.

To set up your environment to use Artix ESB C++ Runtime do the following:

1. Runthe artix_env script located in TnstallDir/cxx_java/bin.

2. If you are going to be developing JAX-RPC applications, ensure that
JAVA HOME is pointing to a valid Java 5(or higher) JDK.

€3 Warning

The Artix installer only installs a JRE.

To set up your environment to use Artix ESB Java Runtime do the following:

1. Run the artix_java_env script located in TnstallDir/java/bin.

11



2.

Ensure that JAVA HOME points to a Java 5 (or higher) JDK.

€9 Warning

The Artix installer only installs a JRE.

12



Generating WSDL

Summary

Artix provides a number of command line tools for generating WSDL.

Table of Contents

AT JAVA2WSAL L.ttt e aaaaaa 14
L2121 1Yo PPN 16
AN I 2W Sl L.t e 18
10112 PP 21
AFEIX CODO WSl ... eee i e e 25
1) o AT Yo | PSPPI 28
D0 1 (o)1 | PPN 30
artix ADCONTI2WSAl .. oo e 32
oL oToTo g1 T4 (o) VY o | PN 34

13



Name
artix java2wsdl — generates a WSDL document from a JAX-WS compliant
Java class

Synopsis

artix java2wsdl [-0 output-filel] [-cp class-path] [-soapl2] [-t
target-namespace] [-servicename service-name] [-v] [[-verbose] |
[-quiet]] {classname}

Description

artix java2wsdl uses a Web service endpoint's implementation (SEI) class
and associated type classes to generate a WSDL file.

(1) Important

This tool will search and load the service endpoint class and types
classes. Make certain these classes are on the CLASSPATH or in a

location identified through the -cp flag.

Required Arguments

The command has the following required arguments:

Option Interpretation

classname|Specifies the name of the SEI class.

Optional Arguments

The command has the following optional arguments:

Option Interpretation

-0 output-file Specifies the name of the generated WSDL file.

-cp classpath Specify the SEI and types class search path of
directories and zip/jar files.

14



Option

Interpretation

-soapl2 Specifies that the generated WSDL is to include a
SOAP 1.2 binding.
-t Specifies the target namespace to use in the

target-namespace

generated WSDL file.

-servicename

service—-name

Specifies the value of the generated service
element's name attribute.

-v Displays the version number for the tool.

-verbose Displays comments during the code generation
process.

-quiet Suppresses comments during the code generation

process.

15




Name

javatowsd| — generates a WSDL document from a JAX-RPC compliant Java
class

Synopsis

javatowsdl [-h] [-0 output-filel [t target-namespacel [-x
schema-namespacel [-i portTypel [-useTypes] [-qualified] [-L 11icensel
[-v] [[-verbose] | [-quiet]l]l {classname}

Description
javatowsdl uses the mapping rule described in Sun's JAX-RPC 1.1 specification
to generate a WSDL file from a Java class.
The generated WSDL will not contain any physical details concerning the
payload formats or network transports that will be used when exposing the
service. You will need to add this information manually.
€9 Warning
When generating contracts, javatowsdl will add newly generated
WSDL to an existing contract if a contract of the same name exists.
It will not generate a new file or warn you that a previous contract
exists.
Arguments
The tool has the following required arguments:
Option Interpretation
classname|Specifies the name of the Java class.
Arguments

The tool has the following optional arguments:

16



Option

Interpretation

-h

Displays the online help for this utility.

-0 output-file

Specifies the name of the generated WSDL file.

-t

target-namspace

Specifies the target namespace of the generated
WSDL document. By default, the java package name
will be used as the target namespace. If no package
name is specified, the generated target namespace
will be http:\\www.iona.com\ClassName.

-X

schema-n amespace

Specifies the target namespace of the XML Schema
information generated to represent the data types
inside the WSDL document.By default, the generated
target namespace of the XML Schema will be
http:\\www.iona.com\ClassName\xsd.

-1 portType

Specifies the name of the generated portType in

the WSDL document. By default the name of the
class from which the WSDL is generated is used.

-useTypes

Specifies that the generated WSDL will use types in
the WSDL message parts. By default, messages are
generated using wrapped doc/literal style. A wrapper
element with a sequence will be created to hold
method parameters.

-qualified

Specifies that the generated WSDL is fully qualified..

-L license

Specifies the location of your Artix ESB license file.
The default behavior is to check
IT PRODUCT DIR\etc\license.txt

-v Displays the version number for the tool.

-verbose Displays comments during the code generation
process.

-quiet Suppresses comments during the code generation

process.

17



Name

Synopsis

Description

Required Arguments

Optional Arguments

artix idl2wsdl — generates an Artix ESB Java Runtime compliant WSDL
document from a CORBA IDL file

artix idl2wsdl [-| idl-include-dir...] [-0 output-dir] [-a
corba-address] [-b] [-f corba-address-filel [-n
schema-import-file] [-s idl-sequence-typel [-w
target-namespace] [-x schema-namespace] [-t
corba-typemap-namespacel [-L 1logical-wsdl-filename] [-P
physical-wsdl-filename] [-T schema-filename] [-qualified] [-e
xml-encoding-typel [-v] [[-verbose] | [-quiet]] {id1}

artix idl2wsdl supports several options that control the generation of a WSDL
file from an IDL file. The default behavior of the tool is to create WSDL file
that uses wrapped doc/literal style messages. Wrapped doc/literal style
messages have a single part, defined using an element, that wraps all of the
elements in the message.

The command has the following required arguments:

Option | Interpretation

idl |Specifies the name of the IDL file.

The command has the following optional arguments:

Option Interpretation

-1 idl-include-dir Specify a directory to be included in the
search path for the IDL preprocessor. You
can use this flag multiple times.

18



Option

Interpretation

-0 output-dir

Specifies the directory into which the
WSDL file is written.

-a corba-address

Specifies an absolute address through
which the object reference may be
accessed. The address may be a relative
or absolute path to a file, or a corbaname
URL.

Specifies that bounded strings are to be
treated as unbounded. This eliminates the
generation of the special types for the
bounded string.

-f corba-address-file

Specifies a file containing a string
representation of an object reference. The
object reference is placed in the
corba:address element in the port

definition of the generated service. The file
must exist when you run the IDL compiler.

-n schema-import-file

Specifies that a schema file is to be
included in the generated contract by an
import statement. This option cannot be
used with the —T option.

-s idl-sequence-type

Specifies the XML Schema type used to
map the IDL sequence<octet> type. Valid
values are base64Binary and

hexBinary. The default is

base64Binary.

-w target-namespace

Specifies the namespace to use for the
WSDL document's target namespace.

-xX schema-namespace

Specifies the namespace to use for the
generated XML Schema's target
namespace.

-t

corba-typemap-namespace

Specifies the namespace to use for the
CORBA type map's target namespace.

-L logical-wsdl-filename

Specifies that the logical portion of the
generated WSDL specification into is

19



Option

Interpretation

written to logical-wsdl-filename.

The logical WSDL is then imported into
the default generated file.

-P

physical-wsdl-filename

Specifies that the physical portion of the
generated WSDL specification into is
written to physical-wsdl-filename.

The physical WSDL is then imported into
the default generated file.

-T schema-filename

Specifies that the schema types are to be
generated into a separate file. The schema
file is included in the generated contract
using an import statement. This option
cannot be used with the -n option.

-qualified

Generates fully qualified WSDL.

-e xml-encoding-type

Specifies the value for the generated
WSDL document’s xml encoding attribute.
The default is UTF-8.

-h Displays the tool's usage statement.

-v Displays the version number for the tool.

-verbose Displays comments during the code
generation process.

-quiet Suppresses comments during the code

generation process.

20




Name

idltowsdl — generates an Artix ESB C++ Runtime compliant WSDL document
from a CORBA IDL file

Synopsis

idltowsdl [-usetypes] [-unwrap] [-a address] [-f filel [-0 dir] [-s
typel[-r filel [-L filel [-P filel [-wW namespacel [-Xx namespace] [-t
namespacel [-T filel[-n file] [-b] [-| idIDir...] [-qualified] [-inline]
[-3] [-fasttrack] [-interface namel] [-soapaddr port]l[-e encoding]l [-L filel
[-h] [-v] [[-quiet] | [-verbosel]l { idlfile}

Description

idltowsdl supports several command line flags that specify how to create a
WSDL file from an IDL file. The default behavior of the tool is to create WSDL
file that uses wrapped doc/literal style messages. Wrapped doc/literal style
messages have a single part, defined using an element, that wraps all of the
elements in the message.

Required Arguments

The command has the following required arguments:

Option Interpretation
id1rile|Specifies the name of the IDL file.

Optional Arguments

The command has the following optional arguments:

Option Interpretation

-usetypes |Generate rpc style messages. rpc style messages have parts defined
using XML Schema types instead of XML elements.

-unwrap Generate unwrapped doc/literal messages. Unwrapped messages
have parts that represent individual elements. Unlike wrapped

21




Option

Interpretation

messages, unwrapped messages can have multiple parts and are
not allowed by the WS-I.

-a address

Specifies an absolute address through which the object reference
may be accessed. The address may be a relative or absolute path
to a file, or a corbaname URL.

-f file Specifies a file containing a string representation of an object
reference. The object reference is placed in the corba:address
element in the port definition of the generated service.

(1) Important
The file must exist when you run the IDL compiler.

-odir Specifies the directory into which the WSDL file is written.

-s type Specifies the XML Schema type used to map the IDL
sequence<octet> type. Valid values are base64Binary and
hexBinary. The default is base64Binary.

-r file Specify the pathname of the schema file imported to define the
Reference type. If the —r option is not given, the idl compiler gets
the schema file pathname from etc/idl.cfqg.

-L file Specifies that the logical portion of the generated WSDL is written
to file. fileis then imported into the default generated file.

-P file Specifies that the physical portion of the generated WSDL is written
to file. file is then imported into the default generated file.

-w Specifies the namespace to use for the WSDL document's target

namespace namespace. The default is
http://schemas.iona.com/idl/idl name.

-x Specifies the namespace to use for the generated XML Schema's

namespace target namespace. The default is
http://schemas.iona.com/idltypes/idl name.

-t Specifies the namespace to use for the CORBA type map's target

namespace namespace. The default is

http://schemas.iona.com/typemap/corba/idl name.

22




Option

Interpretation

-T file Specifies that the schema types are to be generated into a separate
file. The schema file is included in the generated contract using an
import statement. This cannot be used with -n.

-n file Specifies that a schema file, file, is to be included in the
generated contract by an import statement. This cannot be used
with -T.

-b Specifies that bounded strings are to be treated as unbounded. This
eliminates the generation of the special types for the bounded
strings.

-I idlDpir |Specify a directory to be included in the search path for the IDL
preprocessor. You can use this flag multiple times.

—-qualified|Generates fully qualified WSDL.

-inline Generates a contract that includes all imported documents in-line.
This overrides all options that specify that a section of the contract
is to be imported.

-3 Use relaxed IDL grammar checking semantics to allow IDL used by
Orbix 3 to be parsed.

-fastrack |Use the fasttrack wizard. You must also use the -interface and
-soapaddr flags with this option. This option also adds a SOAP
port and a route between the generated CORBA port and the
generated SOAP port.

-interface|Specifies the IDL interface for which WSDL will be generated by

name the fastrack wizard.

-soapaddr |Specifies the SOAP address to use in the generated port element

port when using the fasttrack wizard.

-e Specifies the value for the generated WSDL document’s xml

encoding encoding attribute. The default is UTF-8.

-L file Specifies the location of your license file. The default is
IT PRODUCT DIR\etc\license.txt.

-h Displays the tool's usage statement.

-v Displays the version number for the tool.

23




Option

Interpretation

-verbose

Displays comments during the code generation process.

-quiet

Suppresses comments during the code generation process.

24




Name

Synopsis

Required Arguments

Optional Arguments

artix cobol2wsdl — generates a WSDL document with a fixed binding from

a COBOL copybook

artix cobol2wsdl {-b binding} {-0p operation} {-im

[inmessage:lincopybook} [-om [outmessage:loutcopybook] [-fm

[faultmessage:lfaultbook] [-i portTypel [-t target] [-x

schema_namel] [-useTypes] [-oneway] [-qualified] [-0 filel [-L file]

[-quiet] [-h] [-v] [-verbose]

The command has the following required arguments:

Option

Interpretation

-b binding

Specifies the name for the generated binding.

-op operation

Specifies the name for the generated
operation.

—-im

[inmessage:lincopybook

Specifies the name of the input message and
the copybook file from which the data defining
the message is taken. The input message

name, inmessage, is optional. However, if

the copybook has more than one 01 levels,
you will be asked to choose the one you want

to use as the input message.

The command has the following optional arguments:

Option

Interpretation

-om [outmessage:loutcopybook

Specifies the name of the output message and
the copybook file from which the data defining
the message is taken. The output message name,

25



Option

Interpretation

outmessage, is optional. However, if the
copybook has more than one 01 levels, you will

be asked to choose the one you want to use as
the output message.

-fm

[faultmessage:lfaultcopybook

Specifies the name of a fault message and the
copybook file from which the data defining the
message is taken. The fault message name,
faultmessage, is optional. However, if the

copybook has more than one 01 levels, you will

be asked to choose the one you want to use as
the fault message. You can specify more than
one fault message.

-1 portType Specifies the name of the port type in the
generated WSDL. Defaults to
bindingPortTypea

-t target Specifies the target namespace for the generated

WSDL. Defaults to
http://www.iona.com/binding

-X schema name

Specifies the namespace for the schema in the
generated WSDL. Defaults to
http://www.iona.com/binding/types

-useTypes

Specifies that the generated WSDL will use type
elements. Default is to generate element
elements for schema types.

-oneway

Specifies that the operation does not have a
response message.

-qualified

Specifies that the schema element in the

generated WSDL has its
elementFormDefault and

attributeFormDefault attributes set to
qualified

-o file

Specifies the name of the generated WSDL file.
Defaults to binding.wsdl

26




Option

Interpretation

-L file Specifies the location of your license file. The
default is
IT PRODUCT DIR\etc\license.txt.
-h Displays the tool's usage statement.

-v Displays the version number for the tool.
-verbose Displays comments during the code generation
process.

-quiet Suppresses comments during the code generation

process.

%lf binding ends in Binding of binding, it is stripped off before being used in any of the

default names.

27



Name

artix xsd2wsd|l — generates a WSDL document containing the types defined
in an XML Schema document

Synopsis
artix xsd2wsdl {-t target-namespace} [-n wsdl-name] [-d
output-directoryl [-0 output-£ile] [-v] [[-verbose] | [-quiet]]
{xsdurl}

Description

artix xsd2wsdl imports an XML Schema document and generates a WSDL
file containing a types element populated by the types defined in the

XMLSchema document.

Required Arguments

The command has the following required arguments:

Option Interpretation

-t target-namespace |Specifies the target namespace for the generated
WSDL.

xsdurl The path and name of the existing XML Schema
file.

Optional Arguments

The command has the following optional arguments:

Option Interpretation

-n wsdl-name Specifies the value of the generated definition
element's name attribute.

-d Specifies the directory in which the generated

output-directory WSDL is placed.

28



Option

Interpretation

-0 output-file

Specifies the name of the generated WSDL file.

-v Displays the version number for the tool.

-verbose Displays comments during the code generation
process.

-quiet Suppresses comments during the code generation

process.

29



Name

Synopsis

Description

Arguments

xsdtowsdl — generates a WSDL document containing the types defined in

an XML Schema document

xsdtowsdl [ -t namespace l1[ -n name 1[ -d dirll -o filell -L

filell[-h]l[-

v ]Il -quiet ]| [ -verbose ]l { xsdurl }

xsdtowsdl imports an XML Schema document and generates a WSDL contract
containing a types element populated by the types defined in the XML Schema
document. The rest of the contract will be empty.

The arguments used to manage the WSDL file generation are reviewed in the

following table.

Option

Interpretation

-t namespace

Specifies the target namespace for the generated contract.
The default is to use the Artix target namespace.

—Nn name

Specifies the name for the generated contract and is the
value of the name attribute in the contract’s root

definitions element. The default is to use the schema
document’s file name.

-ddir

Specifies the output directory for the generated contract.

-o file

Specifies the filename for the generated contract. Defaults
to the filename of the imported schema document. For
example, if the imported schema document is stored in
maxwell.xsd the resulting contract will be

maxwell.wsdl.

-L file

Specifies the location of your license file. The default is
IT PRODUCT DIR\etc\license.txt.

30



Interpretation

-h Displays the tool's usage statement.

-v Displays the version number for the tool.

-verbose Displays comments during the code generation process.
-quiet Suppresses comments during the code generation process.
xsdurl Specifies the URL of the XML Schema document.

31




Name

artix dbconfig2wsdl — generates a WSDL document from an Artix ESB Java
Runtime database configuration file

Synopsis

artix dbconfig2wsdl [-a address] [-d output-dir] [-servicename
service-name] [-jdbctypemappings jdbc-type-mapping-filel [-mp
{ element | type } 1[-t target-namespacel [-0 output-rilel [-logicall
[-v] [[-verbose] | [-quiet]] {dbconfigurl}

Description

artix dbconfig2wsdl imports an Artix ESB Java Runtime database configuration
document and generates an Artix ESB Java Runtime contract defining a service
that represents the database operations defined in the document.

Required Arguments

The tool has the following required arguments:

Option Interpretation

dbconfigurl|Specifies the URL of the database configuration file.

Optional Arguments

The tool has the following optional arguments:

Option Interpretation

-a address Specifies the value of generated
soap:address element's location
attribute.

-d output-dir Specifies the folder into which the generated
WSDL is placed.

32



Option

Interpretation

-servicename name

Specifies the value of the generated
service element's name attribute. The

default is DataService.

-jdbctypemappings
jdbc-type-mapping-file

Specifies the name of the file containing the
mappings between JDBC types and XSD
types.

-mp {element | type}

Specifies if the generated message parts
should be types or elements. The default is
elements.

-t target-namespace

Specifies the target namespace for the
generated contract.

-0 output-file

Specifies the name of the generated WSDL
document.

-logical Specifies the tool only generates the logical
portion of the WSDL document.

-v Displays the version number for the tool.

-verbose Displays comments during the code
generation process.

-quiet Suppresses comments during the code

generation process.

33



Name

dbconfigtowsdl — generates a WSDL document from an Artix ESB C++

Runtime database configuration file

Synopsis

dbconfigtowsdl [-a bindingAddress] [-fasttrack] [-plugin] [-d di r]
[-source dir] [-h] [-v] [[-quiet] | [-verbosell { dbconfigurl }

Description

dbconfigtowsdl imports an Artix ESB C++ Runtime database configuration
document and generates an Artix ESB C++ Runtime contract defining a
service that represents the database operations defined in the document.

Required Arguments

The command has the following required arguments:

Option Interpretation

dbconfigurl|Specifies the URL of the database configuration file.

Optional Arguments

The command has the following optional arguments:

Option

Interpretation

-t
bindingAddress

Specifies the address to use in the port element of the
generated WSDL. This flag is only valid when
-fasttrack is also used. The default is

http://localhost:9000/DBConnection

-fasttrack

Specifies that the tool will generate a default SOAP
binding and HTTP endpoint for the database operations.
In addition, the tool will generate the code for the
intermediary required to expose the operations as a
service.

34




Option

Interpretation

-plugin Specifies that the intermediary is generated as an Artix
ESB C+ + Runtime plug-in. This flag is only valid when
-fastttrack is also used.

-ddir Specifies the output directory for the generated WSDL

file. The default is the local directory. When
-fasttrack is used, the default is etc.

-source dir

Specifies the output directory for the generated code.
This flag is only valid when -fasttrack is also used.

The default is java.

-h Displays the tool's usage statement.

-v Displays the version number for the tool.

-verbose Displays comments during the code generation process.
-quiet Suppresses comments during the code generation

process.

35



36



Adding Bindings

Summary

Artix provides command line tools for adding SOAR, XML, and CORBA
bindings to WSDL documents.

Table of Contents

F L) QT AT | 24T =T o T PP PP PPPN 38
oL VAT 1 2 {2 1 40
AMEIX WSAI2IA] mCOIDA . uiutiti it e 42
(VT EYe Lol do T oo 4 o Y- NP 44

37



Name

Synopsis

Description

Required Arguments

Optional Arguments

artix wsdl2soap — generates a WSDL document containing a valid SOAP/HTTP

endpoint definition based on a portType element

artix wsdl2soap {-i port-type-name} [-b binding-name] [-soap12]

[-d output-directoryl[-0 output-rfilel[-n soap-body-namespacel

[-style (document/rpc)] [-use (literal/encoded)] [-v] [[-verbose] | [-quiet]]

wsdlurl

artix wsdl2soap will generate a new WSDL file with a SOAP binding from an
existing WSDL file containing one or more portType elements.

The tool has the following required arguments:

Option

Interpretation

-1 port-type-name

Specifies the portType element for which a
binding should be generated.

wsdlurl

The path and name of the WSDL file containing the
portType element definition.

The tool has the following optional arguments:

Option

Interpretation

-b binding-name

Specifies the name of the generated SOAP
binding.

-soapl2

Specifies that the generated binding will use
SOAP 1.2.

38



Option

Interpretation

-d output-directory

Specifies the directory to place generated WSDL
file.

-0 output-file

Specifies the name of the generated WSDL file.

-n

soap-body-namespace

Specifies the SOAP body namespace when the
style is RPC.

-style (document/rpc)

Specifies the encoding style (document or RPC)
to use in the SOAP binding. The default is
document.

-use Specifies the binding use (encoded or literal) to

(1iteral/encoded) use in the SOAP binding. The default is
literal.

-v Displays the version number for the tool.

-verbose Displays comments during the code generation
process.

-quiet Suppresses comments during the code

generation process.

39




Name

Synopsis

Description

Required Arguments

Optional Arguments

artix wsdl2xml — generates a WSDL document containing an XML binding
based on a portType element

artix wsdl2xml [-i port-type-namel [-b binding-namel [-e
service-namel [-p port-namel [-a address] [-d output-directoryl

[-0 output-£ilel [-v] [[-verbose] | [-quiet]l] { wsdlurl }

artix wsdl2xml generates an XML binding from an existing WSDL document
containing a portType definition. In addition to an XML binding, the tool

adds an HTTP endpoint to the generated WSDL.
@ Tip

The http:address element will be empty unless you specify an
address using the -a argument.

The tool has the following required arguments:

Option Interpretation

-i port-type-name|Specifies the portType element to use.

wsdlurl The path and name of the existing WSDL file.

The tool has the following optional arguments:

Option Interpretation

-b binding-name |Specifies the name of the generated XML binding.

40



Option

Interpretation

-e service-name

Specifies the value of the generated service

element's name attribute.

-p port—-name

Specifies the value of the generated port element's

name attribute.

@ Tip

To specify multiple port elements,
separate the names by a space.

—-a address

Specifies the value used in the http:address
element of the generated port element.

Note

If you do not provide a value the generated
http:address element's location

attribute will have an empty value.

-d

output-directory

Specifies the directory to place generated WSDL file.

-0 output-file

Specifies the name of the generated WSDL file.

-v Displays the version number for the tool.

-verbose Displays comments during the code generation
process.

-quiet Suppresses comments during the code generation

process.

41




Name
artix wsdl2idl -corba — adds an Artix ESB Java Runtime CORBA binding to

a WSDL document

Synopsis
artix wsld2idl {-corba} {-i portType} [-idl] [-b binding] [-d dir]
[-w wsdlout] [-0 id1out...] [-props namespace] [-wrapped] [-a address]
[-f address-filel [-L filel [[-quiet] | [-verbosell [-v] [-h] {wsd1}
Description

artix wsdl2idl -corba adds a Artix ESB Java Runtime CORBA binding to an
existing WSDL document. The generated WSDL file will also contain a Artix
ESB Java Runtime CORBA port with no address specified.

@ Tip

You can also generate an IDL file that corresponds to the generated
CORBA binding by using the -id1 option.

Required Arguments

The tool has the following required arguments:

Option Interpretation

-corba Specifies that the tool will generate a new WSDL file with
a CORBA binding.

-1 portType|Specifies the name of the interface for which the CORBA
binding is generated.

wsdl Specifies the WSDL document to which the binding is added.

Optional Arguments

The tool has the following optional arguments:

42



Option

Interpretation

-idl Specifies that an IDL file will be generated for the
generated CORBA binding. You must also use the -b
flag in conjunction with this flag.

-b binding Specifies the name of the generated CORBA binding.

-ddir Specifies the directory into which the new WSDL
document is written.

-w wsdlOut Specifies the name of the WSDL document containing
the generated CORBA binding.

-o idlout Specifies the name of the generated IDL file.

-props Specifies the namespace to use for the generated

namespace CORBA typemap.

-wrapped Specifies that the generated binding uses wrapped

types.

—-a address

Specifies the value of the generated binding's
corba:address element's location attribute.

-f address-file

Specifies the name of a file whose contents are to be
used as the value of the generated binding's
corba:address element's 1ocation attribute.

-L file Specifies the location of your Artix license file.

-v Displays the tool's version.

-h Specifies that the tool will display a detailed usage
statement.

-quiet Specifies that the tool is to run in quiet mode.

-versbose Specifies that the tool is to run in verbose mode.

43



Name

wsdltocorba -corba — adds an Artix ESB C++ Runtime CORBA binding to
a WSDL document

Synopsis

wsdltocorba -corba {-i portType} [-idl] [-d dir] [-b binding] [-0

filel [-props namespacel [-wrapped] [-L £i1el [[-quiet] | [-verbosell [-h]

[-v] {wsd1}

Description

wsdltocorba -corba adds a Artix ESB C++ Runtime CORBA binding to an
existing WSDL document. The generated WSDL file will also contain a Artix
ESB C++ Runtime CORBA port with no address specified.

@ Tip

You can also generate an IDL file that corresponds to the generated
CORBA binding by using the -id1 option.

Required Arguments

The tool has the following required arguments:

Option

Interpretation

-1 portType

Specifies the name of the port type for which the CORBA
binding is generated.

wsdl

Specifies the WSDL document to which the binding is added.

Optional Arguments

The tool has the following optional arguments:

44



Option

Interpretation

-idl Specifies that an IDL file will be generated for the
generated CORBA binding. You must also use the -b
flag in conjunction with this flag.

-ddir Specifies the directory into which the new WSDL
document is written.

-b binding Specifies the name of the generated CORBA binding.
The default is portTypeBinding.

-o file Specifies the name of the generated WSDL document.
The default is wsdl file-corba.wsdl.

-props Specifies the namespace to use for the generated

namespace CORBA typemap.

-wrapped Specifies that the generated binding uses wrapped types.

-L file Specifies the location of your Artix license file. The
default behavior is to check
IT PRODUCT DIR\etc\license.txt.

-h Displays the tool's usage statement.

-v Displays the tool's version.

-quiet Specifies that the tool is to run in quiet mode.

-versbose Specifies that the tool is to run in verbose mode.

45



46



Adding Endpoints

Summary

Artix provides command line tools for adding endpoints to WSDL documents.

Table of Contents

artix wsdl2service -transport DD ... 48
artix WSdI2SEIVICE —traNSPOIT JIMS L.t e e e e aaaas 50
WSAItoSErvice -transpOrt NEED/SO@P ... .v.enie i 52
WSAItOSErVICE -tranSPOrt COMDa ... .t e e et 58
WSAIEOSEIVICE ~TranSPOIT 10D ..uininiiii i e e e et et e e eaaan 60
WSAIEOSEIVICE —traNS PO MG L.ttt it e e e et et e et et e e e e e e e aeeeaans 62
WSAITOSErVICE -transpOort TV ... 68
WSAItOSErVICE -TranSPOrt TUXEAO ...t e 73

47



Name

artix wsdl2service -transport http — generates a WSDL document containing
a valid HTTP endpoint definition from a binding element.

Synopsis

wsdl2service -transport httpl[-e service-namel [-p port-namel

{-n binding-name} [-a address] [-soapl2] [-0 output-filel [-d

output-directoryl [-v] [[-verbose] | [-quiet]] {wsdlurl}

Description

artix wsdl2service -transport http creates a new WSDL file containing an
HTTP service definition from an existing WSDL document containing a binding

element.

Required Arguments

The tool has the following required arguments:

Option

Interpretation

-n binding-name

Specifies the binding used to generate the service.

wsdlurl

The path and name of the existing WSDL file.

Optional Arguments

The tool has the following optional arguments:

Option

Interpretation

-e service-name

Specifies the value of the generated service
element's name attribute.

-p port—-name

Specifies the value of the generated port element's
name attribute. To specify multiple port elements,
separate the names by a space.

48



Option

Interpretation

—-a address

Specifies the value used in the address element
of the port.

-soapl?2

Specifies that the SOAP version to use is 1.2.

-0 output-file

Specifies the name of the generated WSDL file.

-d

output-directory

Specifies the directory in which the generated
WSDL is placed.

-v Displays the version number for the tool.

-verbose Displays comments during the code generation
process.

-quiet Suppresses comments during the code generation

process.

49




Name

Synopsis

Description

Required Arguments

Optional Arguments

artix wsdl2service -transport jms — generates a WSDL document containing
a valid JMS endpoint definition from a binding element.

artix wsdl2service -transport jms [-e service-name] [-p
port-namel {-n binding-name} [-jds (queue/topic)] [-jpu
jndi-provider—-URL] [-jcf initial-context-factoryl [-jfn
jndi-connection-factory-name]l-jdn jndi-destination-namel
[-jmt (text/binary)] [-jmc (true/false)] [-jsn durable-subscriber-name]
[-0 output-rfilel [-d output-directoryl [-v] [[-verbose] | [-quiet]]
{wsdlurl}

artix wsdl2service -transport jms creates a new WSDL file containing an JMS
service definition from an existing WSDL document containing a binding
element.

The tool has the following required arguments:

Option Interpretation

-n binding-name|Specifies the binding used to generate the service.

wsdlurl The path and name of the existing WSDL file.

The tool has the following optional arguments:

50



Option

Interpretation

-e service-name

Specifies the value of the generated
service element's name

attribute.

-p port—-name

Specifies the value of the generated
port element's name attribute. To

specify multiple port elements,
separate the names by a space.

-jds (queue/topic)

Specifies the JMS destination style.

-jpu jndi-provider-URL

Specifies the URL of the JMS JNDI
provider.

-jcf initial-context-factory

Specifies the JMS initial context
factory.

-jfn

jndi-connection-factory-name

Specifies the JMS JNDI connection
factory name.

-jdn jndi-destination-name

Specifies the JMS JNDI destination
name.

-jmt (text/binary)

Specifies the JMS message type.

-jmc (true/false)

Specifies if the MessageID is
used as the CorrelationID.

-jsn durable-subscriber-name

Specifies an optional durable
subscriber name.

-0 output-file

Specifies the name of the
generated WSDL file.

-d output-directory

Specifies the directory in which the
generated WSDL is placed.

-v Displays the version number for the
tool.

-verbose Displays comments during the code
generation process.

-quiet Suppresses comments during the

code generation process.

51




Name

Synopsis

Description

wsdltoservice -transport http/soap — generates a WSDL document containing
an Artix ESB C++ Runtime HTTP endpoint

wsdltoservice -transport soap/http [-e servicel [t port][-b
bindingl [-a address] [-hssdt serverSendTimeout] [-hscvt
serverReceiveTimeout] [-hstrc t rustedRootCertificates][-hsuss
useSecureSockets] [-hsct contentTypel [-hscc
serverCacheControl][-hsscse supressClientSendErrors][-hsscre
supressClientReceiveErrors] [-hshka honorKeepAlivel [-hsmps
serverMultiplexPoolSizel] [-hsrurl redirectURL] [-hscl
contentLocation] [-hsce contentEncodingl [-hsst serverTypel
[-hssc serverCentificate] [-hsscc serverCentificateChain]
[-hsspk serverPrivateKey] [-hsspkp serverPrivateKeyPassword]
[-hest clientSendTimeout] [-heevt clientReceiveTimeout] [-hetr
trustedRootCertificates] [-hcuss useSecureSockets] [-hcct
contentTypel [-hcee clientCacheControll [-hcar autoRedirect]
[-hcun userNamel [-hcp password] [-hcat clientAuthorizationTypel
[-hca clientAuthorization] [-hca accept] [-hcal acceptLanguagel
[-hcae acceptEncodingl [-hch hostl[-hcen clientConnection] [-heck
cookiel [-hcbt browserTypel [-hcr referer] [-heps proxyServer]
[-hcpun proxyUserNamel [-hepp proxyPassword] [-hepat
proxyAuthorizationTypel [-hcpa proxyAuthorization] [-heece
clientCertificate] [-hceee clientCertificateChain] [-hepk
clientPrivateKeyl [-hcpkp clientPrivateKeyPassword][-0 filel
[-d dir] [-L fi1e] [[-quiet] | [-verbosell [-h] [-v] {wsdlurl}

wsdltoservice -transport http/soap allows you to fully configure the Artix ESB
C++ Runtime HTTP transport. It adds a Artix ESB C++ Runtime HTTP

52



Required Arguments

Optional Arguments

endpoint to a WSDL document based on the values provided as arguments

to the tool.

The tool has the following required arguments:

Option Interpretation

wsdlurl |Specifies the WSDL document from which to base the generated

WSDL document.

The tool has the following optional arguments:

Option

Interpretation

-transport soap/http

If the payload being sent over the wire is
SOAP, use —~transport soap. For all

other payloads use -transport http.

-e service

Specifies the name of the generated service.

-t port Specifies the value of the name attribute of
the generated port element.
-b binding Specifies the name of the binding for which

the service is generated.

—-a address

Specifies the value used in the address
element of the port.

-hssdt serverSendTimeout

Specifies the number if milliseconds that the
server can continue to try to send a response
to the client before the connection is timed
out.

-hscvt serverReceiveTimeout

Specifies the number of milliseconds that
the server can continue to try to receive a
request from the client before the connection
is timed out.

-hstrc

trustedRootCertificates

Specifies the full path to the X509 certificate
for the certificate authority.

53




Option

Interpretation

-hsuss UseSecureSockets

Specifies if the server uses secure sockets.
Valid values are true or false.

-hsct contentType

Specifies the media type of the information
being sent in a server response.

-hscc serverCacheControl

Specifies directives about the behavior that
must be adhered to by caches involved in
the chain comprising a request from a client
to a server.

-hsscse

supressClientSendErrors

Specifies whether exceptions are thrown
when an error is encountered on receiving a
client request. Valid values are true or

false.

-hsscre

supressClientReceiveErrors

Specifies whether exceptions are thrown
when an error is encountered on sending a
response to a client. Valid values are true

or false.

-hshka honorKeepAlive

Specifies if the server honors client
keep-alive requests. Valid values are true

or false.

-hsmps

serverMultiplexPoolSize

-hsrurl redirectURL

Specifies the URL to which the client request
should be redirected if the URL specified in
the client request is no longer appropriate
for the requested resource.

-hscl contentLocation

Specifies the URL where the resource being
sent in a server response is located.

~-hsce contentEncoding

Specifies what additional content codings
have been applied to the information being
sent by the server, and what decoding
mechanisms the client therefore needs to
retrieve the information.

-hsst serverType

Specifies what type of server is sending the
response to the client.

54




Option

Interpretation

-hssc serverCentificate

Specifies the full path to the X509 certificate
issued by the certificate authority for the
server.

-hsscc

serverCentificateChain

Specifies the full path to the file that
contains all the certificates in the chain.

-hsspk serverPrivateKey

Specifies the full path to the private key that
corresponds to the X509 certificate specified
by serverCertificate.

-hsspkp

serverPrivateKeyPassword

Specifies a password that is used to decrypt
the private key.

-hcst clientSendTimeout

Specifies the number of milliseconds that
the client can continue to try to send a
request to the server before the connection
is timed out.

-hccvt clientReceiveTimeout

Specifies the number of milliseconds that
the client can continue to try to receive a
response from the server before the
connection is timed out.

-hctrc

trustedRootCertificates

Specifies the full path to the X509 certificate
for the certificate authority.

-hcuss ueSecureSockets

Specifies if the client uses secure sockets.
Valid values are true or false.

—-hcct contentType

Specifies the media type of the data being
sent in the body of the client request.

-hccc clientCacheControl

Specifies directives about the behavior that
must be adhered to by caches involved in
the chain comprising a request from a client
to a server.

-hcar autoRedirect

Specifies if the server should automatically
redirect client requests.

-hcun userName

Specifies the username the client uses to
register with servers.

—-hcp password

Specifies the password the client uses to
register with servers.

55




Option

Interpretation

-hcat

clientAuthorizationType

Specifies the authorization mechanisms the
client uses when contacting servers.

-hca clientAuthorization

Specifies the authorization credentials used
to perform the authorization.

-hca accept

Specifies what media types the client is
prepared to handle.

-hcal acceptLanguage

Specifies what language the client prefers
for the purposes of receiving a response.

-hcae acceptEncoding

Specifies what content codings the client is
prepared to handle.

-hch host

Specifies the internet host and port number
of the resource on which the client request
is being invoked.

-hccn clientConnection

Specifies if the client will open a new
connection for each request or if it will keep
the original one open. Valid values are
close and Keep-Alive.

-hcck cookie

Specifies a static cookie to be sent to the
server.

—-hcbt browserType

Specifies information about the browser from
which the client request originates.

-hcr referer

Specifies the value for the client’s referring
entity.

-hcps proxyServer

Specifies the URL of the proxy server, if one
exists along the message path.

—hcpun proxyUserName

Specifies the username that the client uses
to authorize with proxy servers.

-hcpp proxyPassword

Specifies the password that the client uses
to authorize with proxy servers.

-hcpat
proxyAuthorizationType

Specifies the authorization mechanism the
client uses with proxy servers.

-hcpa proxyAuthorization

Specifies the actual data that the proxy
server should use to authenticate the client.

56




Option

Interpretation

-hccce clientCertificate

Specifies the full path to the X509 certificate
issued by the certificate authority for the
client.

-hcccc

clientCertificateChain

Specifies the full path to the file that
contains all the certificates in the chain.

-hcpk clientPrivateKey

Specifies the full path to the private key that
corresponds to the X509 certificate specified
by clientCertificate.

-hcpkp

clientPrivateKeyPassword

Specifies a password that is used to decrypt
the private key.

-o file Specifies the filename for the generated
contract. The default is to append
-service to the name of the imported
contract.

-ddir Specifies the output directory for the
generated contract.

-L file Specifies the location of your Artix license
file. The default behavior is to check
IT PRODUCT DIR\etc\license.txt

-quiet Specifies that the tool runs in quiet mode.

-verbose Specifies that the tool runs in verbose mode.

-h Displays the tool's usage statement.

-v Displays the tool’s version.

57




Name

wsdltoservice -transport corba — generates a WSDL document containing an
Artix ESB C++ Runtime CORBA endpoint

Synopsis

wsdltoservice -transport corba [-e servicel [t port] [-b

bindingl [-a address] [-poa poaName] [-sid serviceId] [-pst
persists][-0 filel [-d dir] [-L file] [[-quiet] | [-verbosell [-h] [-v]

{wsdlurl}

Description

wsdltoservice -transport corba adds a Artix ESB C+ + Runtime CORBA
endpoint to a WSDL document based on the values provided as arguments

to the tool.

Required Arguments

The tool has the following required arguments:

Option Interpretation
wsdlurl|The WSDL document from which to base the generated WSDL
document.

Optional Arguments

The tool has the following optional arguments:

Option

Interpretation

-e service

Specifies the name of the generated CORBA service.

-t port

Specifies the value of the name attribute of the
generated port element.

-b binding

Specifies the name of the binding for which the service
is generated.

58



Option

Interpretation

—-a address

Specifies the value used in the corba:address
element of the port.

—-poa poaName

Specifies the value of the POA name policy.

-sid serviceId

Specifies the value of the ID assignment policy.

-pst persists

Specifies the value of the persistence policy. Valid values
are true and false.

-o file Specifies the filename for the generated contract. The
default is to append -service to the name of the
imported contract.

-ddir Specifies the output directory for the generated contract.

-L file Specifies the location of your Artix license file. The
default behavior is to check
IT PRODUCT DIR\etc\license.txt.

-quiet Specifies that the tool runs in quiet mode.

-verbose Specifies that the tool runs in verbose mode.

-h Displays the tool's usage statement.

-v Displays the tool’s version.

59




Name

Synopsis

Description

Arguments

wsdltoservice -transport iiop — generates a WSDL document containing an
Artix ESB C++ Runtime IIOP tunnel endpoint

wsdltoservice -transport iiopl[-e servicell -t port]l-b

binding]l|[ -a address ][ -poa poaName ][ -sid serviceId]l

-pst persists ][ -paytype payloadll-o filel[-ddir][-L
filelll-quiet] | [-verbosell[-h 1[ -v ]1{ wsdlurl}

wsdltoservice -transport iiop adds a Artix ESB C++ Runtime IIOP tunnel
endpoint to a WSDL document based on the values provided as arguments

to the tool.

The arguments used to manage endpoint generation are reviewed in the

following table.

Option

Interpretation

-e service

Specifies the name of the generated CORBA service.

-t port Specifies the value of the name attribute of the
generated port element.
-b binding Specifies the name of the binding for which the service

is generated.

—-a address

Specifies the value used in the iiop:address
element of the port.

-poa poaName

Specifies the value of the POA name policy.

-sid serviceId

Specifies the value of the ID assignment policy.

-pst persists

Specifies the value of the persistence policy. Valid
values are true and false.

60




Option

Interpretation

-paytype Specifies the type of data being sent in the message

payload payloads. Valid values are string, octets,
imsraw, imsraw_binary, cicsraw, and
cicsraw_binary.

-o file Specifies the filename for the generated contract. The
default is to append -service to the name of the
imported contract.

-ddir Specifies the output directory for the generated
contract.

-L file Specifies the location of your Artix license file. The
default behavior is to check
IT PRODUCT DIR\etc\license.txt.

-quiet Specifies that the tool runs in quiet mode.

-verbose Specifies that the tool runs in verbose mode.

-h Displays the tool's usage statement.

-v Displays the tool’s version.

61



Name

Synopsis

Description

Arguments

wsdltoservice -transport mq — generates a WSDL document containing an
Artix ESB C++ Runtime WebSphere MQ endpoint

wsdltoservice -transport mqgl-e servicel [-t port][-b binding]
[-sgm queueManager] [-sqn queuel [-srgm queueManager] [-srqn queuel
[-smgn modelgueuel [-sus usageStylel [-scs correlationStylel
[-sam accessModel [-sto timeout] [-sme expiryl [-smp priorityl
[-smi messageId] [-sci correlationId] [-sd delivery] [-st
transactionall [-sr0 reportOption] [-sf format] [-sad
applicationDatal[-sat accountingToken] [-sch connectionName]
[-sc convert] [-scr reusable] [-scfp fastPath] [-said idDatal [-saod
originbDatal [-cgm queueManager] [-cqn queue] [-crgm
queueManager] [-crgn queue] [-cmgn modelQueuel [-cus usageStylel
[-ccs correlationStyle] [-cam accessMode] [-cto timeout] [-cme
expiryl [-cmp priority] [-cmi messageId] [-CCi correlationId]
[-cd deliveryl [-ct transactionall [-Cr0 reportOption] [-cf format]
[-cad applicationData]l [-cat accountingToken] [-ccn
connectionNamel [-cC convert] [-ccr reusablel [-ccfp fastPathl]
[-caid idpatal [-caod originDatal [-cagn queuel [-cui user1dl] [-0
filel[-d dir] [-L filel [[-quiet] | [-verbosell [-h] [-v] { wsdlurl }

wsdltoservice -transport mq adds a Artix ESB C+ + Runtime WebSphere MQ
endpoint to a WSDL document based on the values provided as arguments
to the tool.

The arguments used to manage endpoint generation are reviewed in the
following table.

62



Option

Interpretation

-e service

Specifies the name of the generated service.

-t port Specifies the value of the name attribute of the
generated port element.
-b binding Specifies the name of the binding for which the

service is generated.

-SqMm queueManager

Specifies the name of the server’s queue manager.

-sgn queue

Specifies the name of the server’s request queue.

-Srgm queueManager

Specifies the name of the server’s reply queue
manager.

-srgn queue

Specifies the name of the server’s reply queue.

-Smqn modelQueue

Specifies the name of the server’s model queue.

-SuS usageStyle

Specifies the value of the server's UsageStyle
attribute. Valid values are Peer, Requester, or

Responder.

-SCS
correlationStyle

Specifies the value of the server’s
CorrelationStyle attribute. Valid values are

messageld, correlationId, of messageld

copy.

-Sam accessMode

Specifies the value of the server’s AccessMode
attribute. Valid values are peek, send, receive,

receive exclusive, Or receive shared.

-sto timeout

Specifies the value of the server’s Timeout
attribute.

-SMe expiry

Specifies the value of the server's MessageExpiry
attribute.

-SMp priority

Specifies the value of the server’s
MessagePriority attribute.

-smi messageId

Specifies the value of the server's MessageId
attribute.

63



Option

Interpretation

-SCi correlationId

Specifies the value of the server’s CorrelationId
attribute.

-sd delivery

Specifies the value of the server’'s Delivery
attribute.

-st transactional

Specifies the value of the server’s Transactional
attribute. Valid values are none, internal, or xa.

-SI0 reportOption

Specifies the value of the server’s ReportOption
attribute. Valid values are none, coa, cod,

exception, expiration, or discard.

-sf format

Specifies the value of the server's Format attribute.

-sad
applicationData

Specifies the value of the server’s
ApplicationData attribute.

-sat Specifies the value of the server’s
accountingToken |AccountingToken attribute.

-scn Specifies the name of the connection by which the
connectionName adapter connects to the queue.

-SC convert

Specifies if the messages in the queue need to be
converted to the system’s native encoding. Valid
values are true or false.

-SCr reusable

Specifies the value of the server’s
ConnectionReusable attribute. Valid values are

true or false.

-scfp fastPath

Specifies the value of the server’s
ConnectionFastPath attribute. Valid values are

true or false.

-said idData

Specifies the value of the server’s
ApplicationIdData attribute.

-saod originData

Specifies the value of the server’s
ApplicationOriginData attribute.

-CgMm queueManager

Specifies the name of the client’s queue manager.

64




Option

Interpretation

-cqn queue

Specifies the name of the client’s request queue.

-Crgm queueManager

Specifies the name of the client’s reply queue
manager.

-crgn queue

Specifies the name of the client’s reply queue.

-Cmgn modelQueue

Specifies the name of the client's model queue.

-CUS usageStyle

Specifies the value of the client's UsageStyle
attribute. Valid values are Peer, Requester, or

Responder.

-CCS
correlationStyle

Specifies the value of the client’s
CorrelationStyle attribute. Valid values are

messageld, correlationId, of messageld

copy.

-cam accessMode

Specifies the value of the client's AccessMode
attribute. Valid values are peek, send, receive,

receive exclusive, Or receive shared.

-cto timeout

Specifies the value of the client's Timeout attribute.

-CMe expiry

Specifies the value of the client's MessageExpiry
attribute.

-Cmp priority

Specifies the value of the client’s
MessagePriority attribute.

-CMi messageId

Specifies the value of the client's MessageId
attribute.

-CCi correlationId

Specifies the value of the client's CorrelationId
attribute.

-cd delivery

Specifies the value of the client's Delivery
attribute.

-ct transactional

Specifies the value of the client’s Transactional
attribute. Valid values are none, internal, or xa.

65



Option

Interpretation

-Cf0 reportOption

Specifies the value of the client's ReportOption
attribute. Valid values are none, coa, cod,

exception, expiration, or discard.

-cf format Specifies the value of the client’s Format attribute.
-cad Specifies the value of the client’s
applicationData |ApplicationData attribute.

-cat Specifies the value of the client’s
accountingToken |AccountingToken attribute.

-ccn Specifies the name of the connection by which the
connectionName adapter connects to the queue.

-CC convert

Specifies if the messages in the queue need to be
converted to the system’s native encoding. Valid
values are true or false.

-CCr reusable

Specifies the value of the client’s
ConnectionReusable attribute. Valid values are

true or false.

-ccfp fastPath

Specifies the value of the client’s
ConnectionFastPath attribute. Valid values are

true or false.

-caid idbata

Specifies the value of the client’s
ApplicationIdData attribute.

-caod originData

Specifies the value of the client's
ApplicationOriginData attribute.

-cagn queue Specifies the remote queue to which a server will
put replies if its queue manager is not on the same
host as the client’s local queue manager.

-CUi userId Specifies the value of the client’s
UserIdentification attribute.

-0 file Specifies the filename for the generated contract.

The default is to append -service to the name
of the imported contract.

66




Option

Interpretation

-Lfile Specifies the location of your license file. The default
behavior is to check
IT PRODUCT DIR\etc\license.txt.

-quiet Specifies that the tool runs in quiet mode.

-verbose Specifies that the tool runs in verbose mode.

-h Displays the tool’s usage statement.

-V Displays the tool’s version.

-ddir Specifies the output directory for the generated
contract.

wsdlurl Specifies the name of the WSDL file to process.

67



Name

Synopsis

Description

wsdltoservice -transport tibrv — generates a WSDL document containing an
Artix ESB C++ Runtime Tibco Rendevous endpoint

wsdltoservice -transport tibrv[-e servicel [-t port] [-b
binding] [-tss subject] [-tcst subject] [-tbt bindingTypel [-tcl
callbackLevell [-trdt timeout] [-tts transportService] [-ttn
transportNetwork] [-ttbm batchModel [-tqp priorityl [-tqlp
queueLimitPolicyl [-tgme queueMaxEvents] [-tqda
queueDiscardAmount] [-tcs cmSupport] [-tctsn
cmTransportServerName] [-ictcn cmTransportClientName] [-tctro
cmTransportRequest0ld] [-tctin ecmTransportLedgerName] [-tctsl
cmTransportSyncLedger] [-ictra cmTransportRelayAgent] [-tctdtl
cmTransportDefaul tTimeLimit] [-iclca
cmListenerCancelAgreements] [-tcqtsn
cmQueueTransportServerName] [-tcqten
cmQueueTransportClientName] [-tcgtww
cmQueueTransportiWorkerieight] [-tcqtws
cmQueueTransportWorkerTasks] [-tcqtsw
cmQueueTransportScheduleriWeight] [-tcqtsh
cmQueueTransportSchedulerHeartbeat] [-tcqtsa
cmQueueTransportSchedulerActivation] [-tcqtct
cmQueueTransportCompleteTime] [tmnfv messageNameFieldValue]
[-tmnfp messageNameFieldPath] [-tbfi bindingField1d] [-tbfn
bindingFieldName] [-0 filel [-d dir] [-L £ile] [[-quiet] | [-verbosel]
[-h] [-v] { wsdlurl}

wsdltoservice -transport tibrv adds a Artix ESB C++ Runtime Tibco
Rendevous endpoint to a WSDL document based on the values provided as
arguments to the tool.

68



Arguments

The arguments used to manage endpoint generation are reviewed in the

following table.

Option

Interpretation

-e service

Specifies the name of the generated

-t port Specifies the value of the name attr
the generated port element.
-b binding Specifies the name of the binding fo

the service is generated.

-tss subject

Specifies the subject to which the s
listens.

-tbt bindingType

Specifies the message binding type.
vales are msg, xml, opaque, Or st

-tcl callbackLevel

Specifies the server-side callback lev
TIB/RV system advisory messages a
received. Valid values are INFO, WA

ERROR

-trdt timeout

Specifies the client-side response re
dispatch time-out.

-tts transportService

Specifies the UDP service name or {
TibrvNetTransport.

-ttn transportNetwork

Specifies the binding network addre:
TibrvNetTransport.

-ttbm batchMode

Specifies if the TIB/RV transport use
mode to send messages. Valid value
DEFAULT BATCH and TIMER BAT

-tgp priority

Specifies the queue priority.

-tqlp queueLimitPolicy

Valid values are DISCARD NONE,
DISCARD NEW, DISCARD FIRST,
DISCARD LAST.

-tgme queueMaxEvents

Specifies the queue max events.

69



Option

Interpretation

-tgda queueDiscardAmount

Specifies the queue discard amount.

-tcs ecmSupport

Specifies if Certified Message Delivery
support is enabled. Valid values are tr

or false.

-tctsn emTransportServerName

Specifies the server’s TibrvCmTranspor
correspondent name.

-tctecn emTransportClientName

Specifies the client TibrvCmTransport
correspondent name.

-tctro emTransportRequestOld

Specifies if the endpoint can request ol
messages on start-up. Valid values are t

or false.

-tctin emTransportLedgerName

Specifies the TibrvCmTransport ledger f

-tctsl emTransportSyncLedger

Specifies if the endpoint uses a synchror
ledger. Valid values are true or false

-tctra cmTransportRelayAgent

Specifies the endpoint’s TibrvCmTransp
relay agent.

-tetdtl

cmTransportDefaultTimeLimit

Specifies the default time limit for a Cert
Message to be delivered.

-tclca

cmListenerCancelAgreements

Specifies if Certified Message agreemer
are canceled when the endpoint disconne
Valid values are true or false.

-tcqtsn

cmQueueTransportServerName

Specifies the server’s
TibrvCmQueueTransport correspondent
name.

-tcgten

cmQueueTransportClientName

Specifies the client’s TibrvCmQueueTrans
correspondent name.

-tegtww

cmQueueTransportWorkerWeight

Specifies the endpoint’s
TibrvCmQueueTransport worker weic

70



Option

Interpretation

-tcqgtws

cmQueueTransportWorkerTasks

Specifies the endpoint’s
TibrvCmQueueTransport worker t

parameter.

-tcqtsw

cmQueueTransportSchedulerWeight

Specifies the TibrvCmQueueTranspo
scheduler weight parameter.

-tcqtsh

cmQueueTransportSchedulerHeartbeat

Specifies the endpoint’s
TibrvCmQueueTransport schedule

heartbeat parameter.

-tcgtsa

cmQueueTransportSchedulerActivation

Specifies the TibrvCmQueueTranspo
scheduler activation parame

-tcqtct

cmQueueTransportCompleteTime

Specifies the TibrvCmQueueTranspo
complete time parameter.

-tmnfv

messageNameFieldValue

Specifies the message name field va

-tmnfp messageNameFieldPath

Specifies the message name field pz

-tbfi bindingFieldId

Specifies the binding field id.

-tbfn bindingFieldName

Specifies the binding field name.

-0 file Specifies the filename for the genere
contract. The default is to append
-service to the name of the impc
contract.

-ddir Specifies the output directory for the
generated contract.

-L file Specifies the location of your license
The default behavior is to check
IT PRODUCT DIR\etc\licens:

-quiet Specifies that the tool runs in quiet

-verbose Specifies that the tool runs in verbose

-h Displays the tool's usage statement.

71



Option Interpretation
-V Displays the tool's version.
wsdlurl Specifies the name of the WSDL file to

process.

72



Name

Synopsis

Description

Arguments

wsdltoservice -transport tuxedo — generates a WSDL document containing
an Artix ESB C+ + Runtime Tuxedo endpoint

wsdltoservice -transport tuxedo [-e€ servicel [t port] [-b
binding] [-tsn tuxService] [-tin tuxService:tuxFunction] [-ton
tuxService:operation] [-0 filel [-d dir] [-L file] [[-quiet] |
[-verbosell [-h] [-v] { wsdlurl }

wsdltoservice -transport tuxedo adds a Artix ESB C++ Runtime Tuxedo
endpoint to a WSDL document based on the values provided as arguments
to the tool.

The arguments used to manage endpoint generation are reviewed in the
following table.

Option Interpretation
-e service Specifies the name of the generated service.
-t port Specifies the value of the name attribute of

the generated port element.

-b binding Specifies the name of the binding for which
the service is generated.

-tsn tuxService Specifies the name the service uses to
register with the Tuxedo bulletin board.

-tfn Specifies the name of the function to be used
tuxService:tuxFunction|on the specified Tuxedo bulletin board.

-ton Specifies the WSDL operation that is

tuxService:operation [|handled by the specified Tuxedo endpoint.

73




Option

Interpretation

-0 file Specifies the filename for the generated
contract. The default is to append
-service to the name of the imported
contract.

-ddir Specifies the output directory for the
generated contract.

-L file Specifies the location of your license file.
The default behavior is to check
IT PRODUCT DIR\etc\license.txt.

-quiet Specifies that the tool runs in quiet mode.

-verbose Specifies that the tool runs in verbose mode.

-h Displays the tool's usage statement.

-V Displays the tool’s version.

wsdlurl Specifies the name of the WSDL file to

process.

74




Adding Routes

Summary

Artix provides command line tools for adding routes to WSDL documents.

Table of Contents

WSO OULING e e e ettt ettt 76

75



Name

Synopsis

Description

Arguments

wsdltorouting — adds a route to a WSDL document

wsdltorouting [-rn name]1[-ssn servicel [-spn port] [-dsn servicel

[-dpn port]l [-on operation] [-ta attributel [-d dir][-0 file]l [-L
filel [[-quiet] | [-verbosell [-h] [-v] {wsd1}

wsdltorouting adds a route to the provided WSDL document. Routes are used
by the Artix ESB router to direct messages between endpoints. For more
information see Router Guide [../routing/index.htm].

The arguments for controlling the generated route are reviewed in the following

table.
Option Interpretation
-rn name Specifies the name of the generated route. If no name is

given a unique name will be generated for the route.

-ssn service

Specifies the name of the service to use as the source of
the route.

—-spn port

Specifies the name of the port to use as the source of the
route. The port must correspond to a port element in

the specified service.

-dsn service

Specifies the name of the service to use as the destination
of the route.

-dpn port

Specifies the name of the port to use as the destination
of the route. The port must correspond to a port element

in the specified service.

-on operation

Specifies the name of the operation to use for the route.
If the route is port-based, you do not need to use this
flag.

76


../routing/index.htm
../routing/index.htm

Option

Interpretation

-ta attribute

Specifies a transport attribute to use in defining the route.

-ddir Specifies the output directory for the generated contract.

-o file Specifies the filename for the generated contract.

-L file Specifies the location of your Artix license file. The default
behavior is to check
IT_PRODUCT_DIR\etc\license.txt.

-h Displays the tool’s usage statement.

-v Displays the tool's version.

-quiet Specifies that the tool is to run in quiet mode.

-versbose Specifies that the tool is to run in verbose mode.

wsdl Specifies the name of the WSDL document to which the

route is added.

77



78



Validating WSDL

Summary
Artix can validate your contracts to see if they are well-formed WSDL

documents. In addition, Artix can validate your contract against the WS-I
Basic Profile.

Table of Contents

LD V= 1116 F= | (o G P 80
Yol a = g aF= 17721 Lo F=1 (o] PN 81

79



Name

artix validator — validates a WSDL document

Synopsis

artix validator [-s schema-url...] [-w] [-v] [[-verbose] | [-quiet]]
{wsdlurl}

Description

artix validator validates whether a wsdl document is well-formed and conforms
to the WSDL schema.

Required Arguments

The tool has the following required arguments:

Option

Interpretation

wsdlurl

Specifies the WSDL file to validate.

Optional Arguments

The arguments used to validate WSDL file are reviewed in the following table:

Option

Interpretation

-s schema-url |Specifies the URL of a user specific schema to be included

in the validation of the contract. This switch can appear
multiple times.

-w Specifies that warnings are suppressed.

-v Displays the version number for the tool.
-verbose Displays comments during the validation.
-quiet Suppresses comments during the validation.

80



Name

Synopsis

Description

Arguments

schemavalidator — validates WSDL documents and checks if they meet the

WS-| basic profile

schemavalidator [ -d schema-directory...][ -s schema-url ...]

{-wwSDL XSD URL}[-deepll-wsil[-whwsi-test-tools.home

1[ -tad BasicProfileAssertions ][ -L filelll-quiet] |

[-verbosell[-h ][ -v ]

schemavalidator validates that a WSDL document is well-formed. In addition,
it can test the WSDL document for conformance to the WS-I basic profile.

The arguments used to manage WSDL validation are described below.

Argument

Interpretation

-d schema-directory

Specifies the directory used to search for
schemas. This switch can appear multiple
times.

-s schema-url

Specifies the URL of a user specific schema
to be included in the validation of the
contract. This switch can appear multiple
times.

-w WSDL_XSD_URL

Specifies the URL of the document to be
validated.

-deep Specifies that the validator is to check all
WSDL imports and all WSDL semantics.
When using this switch, the tool will also
validate the imported WSDL.

-wsi Specifies that the tool is to use the

wsi-test-tools from wsi.org to validate the
contract.

81




Argument

Interpretation

-wh wsi-test-tools.home

Specifies the base directory of wsi-test-tools.

-tad

BasicProfileAssertions

Specifies the URL of the of

BasicProfileTestAssertions.xml

used in wsi-test-tools.

-L file Specifies the location of your Artix license
file. The default behavior is to check
IT PRODUCT DIR\etc\license.txt.
-h Displays the tool's usage statement.
-v Displays the version number for the tool.
-verbose Displays comments during the code
generation process.
-quiet Suppresses comments during the code

generation process.

82




Transforming XML

Summary
Artix includes a command line driven XSLT processor for transforming XML
documents.

Table of Contents

D ] =T 1 0 4PN 84

83



Name

Synopsis

Description

Arguments

xslttransform — transforms an XML document based on an XSLT stylesheet

xslttransform {-IN

inputXMLURL} {-OUT outputXMLURL} {-XS

XSLTURL} [-PARAM name value...]

xslttransform transforms an XML document based on an XSLT stylesheet.
The command uses the Artix ESB transformer which is implemented as part
of the Artix ESB C++ Runtime. To use it you must source the artix_env script
located in InstallDircxx java/bin.

The arguments for controling the transformation are reviewed in the following

table.

Option

Interpretation

-IN inputXMLURL

Specifies the URL of the source XML document.

-0OUT outputXMLURL

Specifies the URL of the transformed XML
document.

-XS XSLTURL

Specifies the URL of the XSLT stylesheet.

-PARAM name value

Specifies a name/value pair that corresponds to a

parameter in the XSLT stylesheet.

84



Generating Code from WSDL

Summary

Artix provides a number of command line tools for generating application
code from WSDL documents.

Table of Contents

AN WSO N e e 86
LD QYT 0 2o o 88
LD ST | 2 - 1V 93
VYo | (oI 1V PP PPN 97
AFEIX WSOl 2aDS BV ICE ...t 101
WSAIOADSEIVICE ...ttt ettt ettt ettt e e eeens 104

85



Name

Synopsis

Description

Arguments

artix wsdlgen — generates application code based on JavaScript templates

artix wsdlgen [-G ApplicationTypel [-T TemplateID...] [-C
configFile] [-D name=value...] { WSDLFile }

artix wsdlgen is a customizable code generator. Using JavaScript templates,
you can customize the implementaiton classes generated from a WSDL
document. The tool includes a number of standard templates that generate
basic C++ and Java code if you do not require any customization.

For more information see WSDLGen Guide [../wsdlgen/index.htm].

The arguments used to manage the code generation are reviewed in the
following table.

Option Interpretation

-G Specifies the type of application to generate. The

ApplicationType following application types are defined by default:

» cxx—Tfor generating C++ code
* jaxrpc—for generating JAX-RPC code

* jaxws—for generator JAX-WS code

-T TemplateID |Specifies the template ID that governs code
generation. See Template IDs for details.

-C ConfigFile |Specifies the location of a configuration file to be used
by the code generator.

-D name=value |Specifies the value, value, of a JavaScript property,
name. Typically you will use this option to specify a

86


../wsdlgen/index.htm
../wsdlgen/index.htm

Template IDs

Option

Interpretation

value for the portType property. This instructs the
code generator the WSDL portType element for

which code is to be generated.

WSDLFile Specifies the URL of the WSDL document.

When called with -G ApplicationTypethe -T TemplateID switch

supports the following template IDs:

Option Interpretation

impl Generate the stub and skeleton code require to implement the
interface defined by the specified WSDL portType element.

server |Generateasimplemain () fora standalone service that will host
an implementation of the interface defined by the specified WSDL
portType element. Stub code is also generated.

client |Generate a C++ file or Java class that invokes all of the
operations defined by the specified WSDL portType element.
Stub code is also generated.

plugin |If generating C++ or JAX-RPC code, generate all of the code
needed to implement the interface defined by the specified WSDL
portType element as an Artix plug-in.

all For C++ and JAX-RPC, generate a client, a server, and an Artix
plug-in. For JAX-WS, generate a client and a server. For example,
specifying -G cxx -T allisequivalentto -G cxx -T impl
-T plugin -T client.

ant Generate an Apache Ant build file for a Java application.

make Generate a make file for a C++ application.

87



Name

Synopsis

Description

Required Arguments

Optional Arguments

artix wsdl2cpp — generates C+ + stubs and skeletons for the services defined
in a WSDL document

artix wsdl2cpp [-e web _service namel:port 1istll[-b
binding namel [-i port type...][-d output-dir] [-n
URI=C++namespace...] [-nexclude URI[=C++namespacel...] [-ninclude
URI[=C++namespacel...] [-nimport C++namespacel [-impl] [-m { NMAKE
| UNIX }: [ executable | library 11 [-libv versionl [-jp plugin class][-f]
[-server] [-client] [-sample] [-pluginl:plugin namell [-deployable] [-globall
[-license] [-declspec dec1spec] [-all] [-flags] [[-upper] | [-lower] | [-minimal]
| [-mapper classl] [-reflect] [-user_reserved_words wordl [:wordn...]1[-L
filel [[-quiet] | [-verbosell [-h] [-v] {wsdlurl}

artix wsdl2cpp generates C+ + skeletons for the services defined in a WSDL
document. It can also generate starting point code for your server and client
applications.

The tool has the following required arguments:

Option Interpretation

wsdlurl|The WSDL document from which the code is generated.

The tool uses the following optional arguments:

Option Interpretation

-1 port

type

Specifies the name of the port type for which
the tool will generate code. The default is to

88




Option

Interpretation

use the first port type listed in the contract.
This switch can appear multiple times.

-e

web service namel:port listl]

Specifies the name of the service for which
the tool will generate code. The default is to
use the first service listed in the contract.
You can optionally specify a comma
separated list of port names to activate. The
default is to activate all of the service’s ports.

-b binding name

Specifies the name of the binding to use
when generating code. The default is the
first binding listed in the contract.

-d output dir

Specifies the directory to which the
generated code is written. The default is the
current working directory.

-n [URI=]C++namespace

Maps an XML namespace to a C++
namespace. The C++ stub code generated
from the XML namespace (URI) is put into

the specified C++ namespace. This switch
can appear multiple times.

-nexclude URI[=C++namespacel

Do not generate C++ stub code for the
specified XML namespace. You can
optionally map the XML namespace to a
C++ namespace in case it is referenced by
the rest of the XML Schema/WSDL
document. This switch can appear multiple
times.

-ninclude URI[=C++namespacel

Generates C+ + stub code for the specified
XML namespace. You can optionally map
the XML namespace to a C++ namespace.
This switch can appear multiple times.

-nimport C++namespace

Specifies the C+ + namespace to use for the
code generated from imported schema.

—impl

Generates the skeleton code for
implementing the server defined by the
contract.

89




Option

Interpretation

-m {NMAKE |
UNIX}: [executable |

library]

Used in combination with -imp1 to generate
a makefile for the specified platform (NMAKE
for Windows or un1x for UNIX). You can

specify that the generated makefile builds
an executable, by appending
:executable, or a library, by appending

:library

-libv version

Used in combination with either -m
NAME:library or -m UNIX:library

to specify the version number of the library
built by the makefile. This version number
is for your own convenience, to help you
keep track of your own library versions.

-f Deprecated—Was needed to support routing
in earlier versions.

-server Generates code for a sample implementation
of a server.

-client Generates code for a sample implementation
of a client.

-sample Generates code for a sample implementation

of a client and a server (equivalent to
-server -client).

-pluginl:plugin name]

Generates servant registration code as a bus
plug-in. You can optionally specify the
plug-in name by appending : plugin name

to this option. If no plug-in name is
specified, the default name is
ServiceNamePortTypeName. The service

name is specified by the —e option.

-deployable

(Used with -plugin.) Generates a

deployment descriptor file,
deployServiceName.xml, which is

needed to deploy a plug-in into the Artix ESB
C++ Runtime container.

90




Option

Interpretation

—-global

(Used with -plugin.) In the generated

plug-in code, instantiate the plug-in using a
GlobalBusORBPlugIn object instead of

a BusORBPlugIn object.

A GlobalBusORBPlugIn initializes the

plug-in automatically, as soon as it is
constructed (suitable approach for plug-ins
that are linked directly with application
code).

A BusORBPluglIn is not initialized unless

the plug-in is either listed in the
orb_plugins list or deployed into an Artix

ESB C++ Runtime container (suitable
approach for dynamically loading plug-ins).

-license

Displays the currently available licenses.

—declspec declspec

Creates Visual C++ declaration specifiers
for dllexport and dl1limport. This

option makes it easier to package Artix stubs
in a DLL library.

-all Generate stub code for all of the port types
and the types that they use. This option is
useful when multiple port types are defined
in a WSDL contract.

-flags Dislays detailed information about the
options.

-reflect Enables reflection on the generated classes.

-wrapped When used with document/literal wrapped

style, generates function signatures with
wrapped parameters, instead of unwrapping
into separate parameters.

-user reserved words

wordl[:wordn...]

Specifies a colon-separated list of words to
be treated as reserved. For example,
-user_reserved_words

91




Option

Interpretation

SEC:MILLISEC would generate a header

file including 'class _SEC' instead of 'class
SEC'.

-L file Specifies the location of your Artix license
file. The default behavior is to check
IT PRODUCT DIR\etc\license.txt.
-h Displays the tool's usage statement.
-v Displays the version number for the tool.
-verbose Displays comments during the code
generation process.
-quiet Suppresses comments during the code

generation process.

92




Name

artix wsdl2java — generates JAX-WS compliant Java code from a WSDL
document

Synopsis

artix wsdl2java [-p [[wsdl-namespace=]PackageNamel...] [-b
binding-name...] [-d output-directory] [-compile] [-classdir
compile-class-dir] [-client] [-server] [-impl] [-all] [-ant] [-nexclude
[schema-namespace [=java-packagenamell...] [-exsh (true/false)]
[-dns (true/false)] [-dex (true/false)] [-xjcxj cArgs] [-validate] [-v] [[-verbose]
| [-quiet]] {wsd1file}

Description

artix wsdl2java takes a WSDL document and generates fully annotated Java
code from which to implement a service. The WSDL document must have a
valid portType element, but it does not need to contain a binding element

or a service element. Using the optional arguments you can customize the

generated code. In addition, artix wsdl2java can generate an Ant-based
makefile to build your application.

Required Arguments

The tool has the following required arguments:

Option Interpretation

wsdlurl |Specifies the WSDL document from which the code is generated.

Optional Arguments

The tool has the optional arguments:

93



Option

Interpretation

-p [wsdl-namespace=]

PackageName

Specifies zero, or more, package names to use
for the generated code. Optionally specifies the
WSDL namespace to package name mapping.

-b binding-name

Specifies zero, or more, JAXWS or JAXB binding
files. Use spaces to separate multiple entries.

-d output-directory

Specifies the directory into which the generated
code files are written.

-compile Compiles generated Java files.
(1) Important
If you use this option you must ensure
that JAVA HOME points to a valid Java
5 JDK.
-classdir Specifies the directory into which the compiled

compile-class-dir

class files are written.

-client Generates starting point code for a client
mainline.

-server Generates starting point code for a server
mainline.

-impl Generates starting point code for an
implementation object.

-all Generates all starting point code: types, service
proxy, service interface, server mainline, client
mainline, implementation object, and an Ant
build.xml file.

-ant Generates the Ant build.xml file.

-nexclude Ignore the specified WSDL schema namespace

schema —namespace

[=java-packagename]

when generating code. This option may be
specified multiple times. Also, optionally specifies
the Java package name used by types described
in the excluded namespace(s).

-exsh (true/false)

Enables or disables processing of extended soap
header message binding.

94




Option

Interpretation

—-dns (true/false)

Enables or disables the loading of the default
namespace package name mapping. Default is
true.

—dex (true/false)

Enables or disables the loading of the default
excludes namespace mapping. Default is true.

-xjcxjcArgs

Passes a comma separated list of options to the
XJC binding compiler. See XJC Binding Compiler
Arguments.

-validate

Enables validating the wsdl before generating the
code.

-V

Displays the version number for the tool.

-verbose

Displays comments during the code generation
process.

-quiet

Suppresses comments during the code generation
process.

XJC Binding Compiler Arguments

Using the -x7c flag you can pass the following options to the XJC binding

compiler:

Option Description

-Xts

values.

Specifies that the binding compiler will add toString ()
methods to all generated JAXB objects.

There are three levels of detail possible for the generated
toString () method:

* The default is to generate a single line showing the object's
classname, the name of all the object's fields and their

* -Xts,-Xts:style:simple specifies that toString ()

will generate a single line showing only the values for the
object's fields.

95



Option

Description

* —Xts,-Xts:style:multiline specifiesthat toString

will generate a multi-line string with one line for the object's
classname and one line for each of the object's fields. The
lines generated for the fields will include the field's name
and the field's value.

(M) Important

When using the non-default output styles, you must
use the both -xXts flag and a second -xts flag to

specify the output style. The first flag instructs the
tool to load the plug-in and the second flag configures
the plug-in.

-Xdv

Specifies that the generated JAXB objects respect the default
values provided in the XML Schema. The generated getters
will return the the XML Schema's default value if no value is
set by the user.

-readOnly

Specifies that the generated JAXB source files are marked as
read-only.

96



Name

Synopsis

Description

Required Arguments

Optional Arguments

wsdltojava — generates JAX-RPC compliant Java code stubs and skeletons
for the services defined in a WSDL document

wsdltojava [-e service:port...] [-b bindingl] [-i portTypel [-d
output_dirl] [-p [namespace=]packagel [-impl] [-server] [-client]

[-plugin] [-servlet] [-types] [-call] [-interface] [-sample] [-all] [-ant]
datahandlers] [-merge] [-deployable] [-nexclude namespace [=packagell

[-
[-ninclude namespacel=packagell [-ser] [-L £ile] [[-quiet] | [-verbosell
[-h] [-v] {wsdlurl}

wsdltojava generates JAX-RPC compliant Java code stubs and skeletons for
the services defined in the specified WSDL document. It can also generate
starting point code for your server and client applicaitons. The default behavior
of wsdltojava is to generate all of the Java code needed to develop a client
and server.

@ Note

The JAX-RPC APIs are implemented as part of the Artix ESB C+ +
Runtime using a JNI layer.

The tool has the following required attributes:

Option Interpretation

wsdlurl|Specifies the WSDL document for which the code is generated.

The tool has the following optional arguments:

97



Option

Interpretation

-e service:port

Specifies the name of the service, and optionally
the port, for which the tool will generate code.
The default is to use the first service listed in the
contract. Specifying multiple services results in
the generation of code for all the named
service/port combinations. If no port is given, all
ports defined in a service will be activated.

-b binding

Specifies the name of the binding to use when
generating code. The default is to use the first
binding listed in the contract.

-1 portType

Specifies the name of a portType for which code
will be generated. You can specify this flag for
each portType for which you want code
generated. The default is to use the first portType
in the contract.

-d out dir

Specifies the directory to which the generated
code is written. The default is the current working
directory.

-p

[namespace=lpackage

Specifies the name of the Java package to use
for the generated code. You can optionally map
a WSDL namespace to a particular package
name if your contract has more than one
namespace.

-impl Generates the skeleton class for implementing
the server defined by the contract.

-server Generates a simple main class for the server.

-client Generates only the Java interface and code
needed to implement the complex types defined
by the contract. This flag is equivalent to
specifying -interface -types.

-plugin Generate a bus plug-in with the appropriate
servant registration code for the generated service
implementation.

-servlet Generates a bus plug-in with the additional
information needed to deploy it as a servlet.

-types Generates the code to implement the complex

types defined by the contract.

98




Option

Interpretation

-call Generates a sample client the uses the call
interface to invoke on the remote service.

-interface Generates the Java interface for the service.

-sample Generates a sample client that can be used to
test your Java server.

-all Generates code for all portTypes in the contract.

-ant Generate an ant build target for the generated
code.

-datahandlers When a service uses SOAP w/ attachments as
its payload format, generate code that uses
javax.activation.DataHandler instead
of the standard Java classes specified in the
JAX-RPC specification.

-merge Merge any user changes into the generated code.

-deployable Generate a deployment descriptor to deploy the
generated plug-in into an Artix ESB C+ +
Runtime container.

-nexclude Instructs the code generator to skip the specified

namespacel=packagel

XML Schema namespace when generating code.
You can optionally specify a package name to
use for the types that are not generated.

-ninclude

namespacel=packagel

Instructs the code generator to generate code for
the specified XML Schema namespace. You can
optionally specify a package name to use for the
types in the specified namespace.

-ser Specifies that the generated classes for the types
defined in a contract should be serializable.

-stub Specifies that the tool will generate the stub code
for a client and a server.

-L file Specifies the location of your Artix license file.
The default behavior is to check
IT PRODUCT DIR\etc\license.txt.

-h Displays the tool's usage statement.

99



Option Interpretation

-v Displays the version number for the tool.

-verbose Displays comments during the code generation
process.

-quiet Suppresses comments during the code generation
process.

100



Name

Synopsis

Description

Required Arguments

Optional Arguments

artix wsdl2dbservice — generates an Artix ESB Java Runtime intermediary
for a database service

artix wsdl2dbservice [-jdbctypemappings
jdbc-type-mapping-filel [-db data binding name...] [-wv wsdl
version...] [-p [wsdl namespace=lPackage Name...] [-sn [wsdl
namespace=]Package Name] [-b binding-name...] [-d
output-directoryl [-compile] [-classdir
compile-classes-directoryl [-impl] [-server] [-client] [-all] [-ant]
[-nexclude schema namespace [=java packagenamel...] [-exsh

(true|false)] [-dns (true|false)] [-dex (true|false)] [-validate] [-wsdILocation
wsdlLocation attribute] [-v] [[-verbose] | [-quiet]] {wsdlurl}

artix wsdl2dbservce takes a WSDL document and generates the code for a
Artix ESB Java Runtime database service intermediary.

The tool has the following required arguments:

Option Interpretation

wsdlurl |Specifies the WSDL document for which the database service is
generated.

The tool has the following optional arguments:

Option Interpretation

-jdbctypemappings Specifies the location of the JDBC to

jdbc-type-mapping-file XSD mapping file.

101



Option

Interpretation

-db data binding name

Specifies the data binding to use. The
default is JAXB.

-wv wsdl version

Specifies the WSDL version to use. The
default is WSDL 1.1.

-plwsdl namespace=]Package

Specifies the Java package name to use
for the generated code. Optionally, you

Name R
can specify the WSDL namespace
mapping to a particular Java package
name.

-sn [wsdl Specifies the service name to use for

namespace=]Package Name

the generated code. Optionally, you can
specify the WSDL namespace.

-b binding-name

Specifies an external JAXWS or JAXB
binding files.

-d output-directory

Specifies the directory into which the
generated code is placed.

-compile Specifies that the generated code is
compiled.
-classdir Specifies the directory into which the

compile-classes-directory

compiled class files are placed.

—impl

Generates a dummy implementation
class.

—server

Generates a server mainline for the
service.

-client

Generates the code needed to deploy a
client.

all

Generates all starting point code: types,
service proxy, service interface, server
mainline, client mainline,
implementation object, and an Ant
build.xml file.

—-ant

Generates an Ant build.xml.

-nexclude schema-namespace

[=java-packagenamel

Ignore the specified WSDL schema
namespace when generating code. This
option may be specified multiple times.

102




Option

Interpretation

Also, optionally specifies the Java
package name used by types described
in the excluded namespace(s).

-exsh (true/false)

Enables or disables processing of
extended soap header message binding.

-dns (true/false)

Enables or disables the loading of the
default namespace package name
mapping. Default is true.

-dex (true/false)

Enables or disables the loading of the
default excludes namespace mapping.
Default is true.

-validate Enables validating the WSDL before
generating the code.

-v Display's the tool's version.

-quiet Specifies that the tool surpresses most
messages.

-verbose SPecifies that the tool displays verbose

messages.

103



Name

wsdltodbservice — generates an Artix ESB C+ + Runtime intermediary for a
database service

Synopsis

wsdltodbservice [-d dir] [-source dir] [-plugin] [-h] [-v] [[-quiet] |
[-verbosel]l {dbconfig} {wsdlurl}

Description

wsdltodbservce takes a WSDL document and an Artix ESB C++ Runtime
database configuration document and generates the code for the intermediary
used expose the database operations. The generated Java code will need to
be compiled before it can be deployed.

Required Arguments

The tool has the following required arguments:

Option

Interpretation

dbconfig

Specifies the name of the database configuration file to use
when generating code.

wsdlurl

Specifies the WSDL document to use when generating code.

Optional Arguments

The tool has the following optional arguments:

Option

Interpretation

-ddir

Specifies the output directory for the generated DB service.

-source dir|Specifies the output directory for the generated source code.

The default is java.

-plugin

Specifies that the DB service is to be generated as a plug-in
for deployment into an Artix ESB C++ Runtime container.

-h

Displays the tool's usage statement.

104



Option Interpretation

-v Displays the tool's version.

-quiet Specifies that the tool is to run in quiet mode.

-versbose |Specifies that the tool is to run in verbose mode.

105



106



Generating Support Files

Summary

Artix provides tools to generate a number of support files.

Table of Contents

PTG | P2 o T | 108
(V7AYo oYt ¢ o - T T | PN 110
L) QYo | P2de ] oToTo 1= PP PPP 112
17T 2T o RPN 117
oL VAT 2 T 119

107



Name

artix wsdl2idl -idl — generates an IDL file from a WSDI document containing
an Artix ESB Java Runtime CORBA binding

Synopsis
artix wsld2idl {-idl} {-b binding} [-corba] [-i portTypel [-d dir]
[-w wsdlout] [-0 id1out...] [-props namespace] [-wrapped] [-a address]
[-f address-filel [-L filel [[-quiet] | [-verbosell [-v] [-h] {wsd1}
Description

artix wsdl2idl -idl generates an IDL file from a WSDL document containing
an Artix ESB Java Runtime CORBA binding. In addition, the tool can be used
to add a CORBA binding to a WSDL file and generate an IDL file in one step.

Required Arguments

The tool has the following required arguments:

Option Interpretation

-idl Specifies that the tool is to generate IDL from the binding.

-b binding|Specifies the name of the CORBA binding for which the IDL
file is generated.

wsdl Specifies the WSDL document to which the binding is added.

Optional Arguments

The tool has the following optional arguments:

Option Interpretation

-corba Specifies that an CORBA binding will be added to the
WSDL document. You must also use the -i flag in

conjunction with this flag.

-i portType Specifies the name of the port type for which the
CORBA binding is generated.

108



Option

Interpretation

-ddir Specifies the directory into which the new IDL file is
written.

-w wsdlOut Specifies the name of the WSDL document containing
the generated CORBA binding.

-0 idlout Specifies the name of the generated IDL file.

-props Specifies the namespace to use for the generated

namespace CORBA typemap.

-wrapped Specifies that the generated binding uses wrapped

types.

-a address

Specifies the value of the generated binding's
corba:address element's location attribute.

-f address-file

Specifies the name of a file whose contents are to be
used as the value of the generated binding's
corba:address element's location attribute.

-L file Specifies the location of your Artix license file. The
default behavior is to check
IT PRODUCT DIR\etc\license.txt.

-v Displays the tool's version.

-h Specifies that the tool will display a detailed usage
statement.

-quiet Specifies that the tool is to run in quiet mode.

-versbose Specifies that the tool is to run in verbose mode.

109



Name

wsdltocorba -

idl — generates an IDL file from a WSDL document containing

an Artix ESB C++ Runtime CORBA binding

Synopsis

wsdltocorba -idl {-b binding} [-corba] [-i portTypel [-d dir] [-0

filell-L £1

Description

wsdltocorba -
Artix ESB C+

Required Arguments

The required a
table.

1el [[-quiet] | [-verbosell [-h] [-v] { wsdl }

idl generates an IDL file from a WSDL document containing a
+ Runtime CORBA binding.

rguments for generating an IDL file are reviewed in the following

Option

Interpretation

-b binding

Specifies the name of the CORBA binding for which the IDL
is generated.

wsdl

Specifies the WSDL document to which the binding is added.

Optional Arguments

The optional arguments used to control the generated CORBA binding are
explianed in the following table.

Option Interpretation

-corba Specifies that a CORBA binding is to be generated.

-i portType Specifies the name of the port type for which the
CORBA binding is generated.

-ddir Specifies the directory into which the new WSDL
document is written.

110



Option

Interpretation

-o file Specifies the name of the generated WSDL document.
The default is wsdl file-corba.wsdl.

-props Specifies the namespace to use for the generated

namespace CORBA typemap.

-wrapped Specifies that the generated binding uses wrapped
types.

-L file Specifies the location of your Artix license file. The
default behavior is to check
IT PRODUCT DIR\etc\license.txt.

-h Displays the tool's usage statement.

-v Displays the tool's version.

-quiet Specifies that the tool is to run in quiet mode.

-versbose Specifies that the tool is to run in verbose mode.

111



Name

Synopsis

Required Arguments

Optional Arguments

artix sql2dbconfig — generates a Artix ESB Java Runtime database service
configuration file

artix sqgl2dbconfig[ -d output-dir]l[ -new[ -driver
driver-class ][ -connectionurl connection-url][ -property
property...][ -pool ][ -maxactive pool-maxactive][ -maxidle
pool-maxidle ][ -transaction transaction-level ]l
—autocommit auto-commit ][ -readonly read-onlyl]1[ -test ]
[ -add [ -name name ][ -query query ][ -isprocedure ][
-isupdate ][ -oktoexecute ][ -parametertype parameter-type
...J[ -parameterdirection parameter-direction...] [
-parameternullable parameter-nullable...][ -parametervalue
parameter-value ...] [ -timeout timeout ]1][ -delete [ -name

name 1] [-v] [[-verbose] | [-quiet]] {outfile}

(1) Important

Before running this command you should set the JDBC DRIVER CP
environment variable to point to all required JDBC drivers.

The tool has the following required arguments:

Option Interpretation

outfile|Specifies the path and the name of the generated database service
configuration file. The default is . /dbconfig.xml.db.

The the tool has the following optional arguments:

112



Option

Interpretation

-d output-directory

Specifies the directory into which the generated
configuration file is placed.

-—new

Specifies that a new configuration file is to be
generated. Only connection information will be
added to the newly created configuration file.
Users can add operations to the configuration
file in subsequent commands by specifying the
—-add option. The target output file should not

exist in the filesystem. The following options can
be used with the new option:

¢ —driver

® —connectionurl
® —property

* -pool

* —-maxactive

* —-maxidle

* —transaction

* —autocommit

* —-readonly

—-driver driver-class

Specifies the driver class for the new connection.
This option can only be used with —new.

—-connectionurl

connection-url

Specifies the connection url for the new
connection. This option can only be used with
—new.

-property property

Specifies a connection property for the new
connection. This option can only be used with
—new.

113



Option

Interpretation

--pool Specifies that connection pooling should be
enabled. This option can only be used with
—new.

-maxactive Specifies the maximum active connections in

pool-maxactive

the connection pool. This option can only be
used when both -new and -poo1 are specified.

-maxidle

pool-maxidle

Specifies the maximum idle connections in the
pool. This option can only be used when both
-new and -pool are specified.

-transaction

transaction-level

Specifies the transaction isolation level for the
new connection. This option can only be used
with -new. The value should be an integer value

as defined in JDBC specification or one of the
following: none, read committed

read uncommitted, repeatable read

and serializable.

—autocommit

auto-commit

Specifies the auto commit value for the
connection. This option can only be used with
—new.

-readonly read-only

Specifies the read only value for the connection.
This option can only be used with -new.

-test Test a connection using the connection
information provided in an configuration.
-add Specified when adding a new operation to an

existing database service configuration. This
option cannot be used with -new. The following

options can be used with —~add:
® —name
* —query

* —isprocedure

114




Option

Interpretation

* —-isupdate

* —oktoexecute

* —-parametertype

* -parameterdirection

* -parameternullable

* -parametervalue

* —timeout

—name name

Specifies the name of the operation.

-query query

Specifies the query or procedure call of the
operation.

-isprocedure

Specifies that the operation is a stored
procedure.

-isupdate

Specifies that the operation will write to the
database. If both -isupdate and

—-isprocedure are specifies, then
-oktoexecute must be specified. If the

operation requires IN/INOUT parameters, users
must provide parameter values for executing the
operation. The reason is that a stored procedure
can return multiple results. The command will
need to execute the stored procedure to obtain
the result metadata. However, if only

-isupdate is specified, the command will not

need to execute the operation and the result is
assumed to be an update count.

-oktoexecute

Specifies that it is OK to execute the operation
to get resultset metadata.

—-parametertype

parameter-type

Specifies the JDBC type for a parameter by
position. Positions start at 1. The value should

115



Option

Interpretation

be the integer or string value of the JDBC type
as defined in the JDBC specification.

For example -parametertype 1=3 specifies
that the first parameter is a JDBC decimal.

-parameterdirection

parameter-direction

Specifies the direction for a parameter by
position. Positions start at 1. The value should
be one of IN, INOUT, and OUT.

Forexample, -parameterdirection 2=IN

specifies that the second parameter is an input
parameter.

-parameternullable

parameter—-nullable

Specifies whether a parameter is nullable by
position. Positions start at 1.

Forexample, -parameternullable l=true

specifies that the first parameter can be null.

-parametervalue

parameter-value

Specified a parameter's value for by position.
Positions start at 1. This option is necessary for
parameterized operation when -oktoexecute

is used.

For example, -parametervalue 1=12.0
specifies the first parameter's value is 12. 0.

-timeout timeout

Specifies the number of seconds before the
operation times out.

—-delete

Specifies that an operation is to be deleted from
the database service configuration file.

—name name

Specifies the name of the operation to delete.

-v Displays the version number for the tool.
-verbose Displays comments during the generation.
-quiet Suppresses comments during the generation.

116




Name

Synopsis

Description

Required Options

Optional Arguments

wsdd — generates a deployment descriptor that can be used to deploy a Artix
ESB C+ + Runtime plug-in into the Artix ESB C++ Runtime container

wsdd {-service OName} {-pluginName name} {-pluginType {[Cxx] | [Javal}}
[-pluginimpl name] [-pluginURL di r] [-wsdlurl URL] [-provider namespacel
[-file fi1el [-d dir] [[-quiet] | [-verbosel] [-h] [-v]

wsdd generates a deployment descriptor that can be used to deploy and Artix
ESB C++ Runtime plug-in into the Artix ESB C++ Runtime container.

The tool has the following required options:

Option Interpretation

-service QOName Specifies the QName of the plug-in's service as
given in its contract.

-pluginName name Specifies the name of the plug-in as specified in
the Artix ESB C++ Runtime configuration file.

-pluginType Specifies if the plug-in is implemented in C++

{Cxx|Java} or Java.

The tool has the following optional arguments:

Option Interpretation

-pluginImpl name |Specifies the library/class name of the plug-in's
implementation.

-pluginURL dir Specifies the directory where the plug-in’s

implementation is located.

117



Option

Interpretation

-wsdlurl URL

Specifies the location of the contract defining the
service implemented by the plug-in.

-provider Specifies the namespace under which your plug-in's

namespace ServantProvider is registered with the bus.

-file file Specifies the name of the generated deployment
descriptor.

-ddir Specifies the directory where the generated file will
be written.

-h Displays the tool's usage statement.

-v Displays the tool's version.

-quiet Specifies that the tool is to run in quiet mode.

-versbose Specifies that the tool is to run in verbose mode.

118




Name

artix wsdl2acl — generates a starting point ACL file from a WSDL document

Synopsis

artix wsdl2acl {-s server} {WSDL-URL} [-i interface] [-r
default role][-d output dirl[-0 output file] [-props
props_filel[-L 1icensel [[-quiet] | [-verbose]l [-v]

Description

artix wsdl2acl generates a starting point ACL file from a WSDL document.
The generated ACL must be completed before it can be used.

Required Arguments

The command has the following required arguments:

Option Interpretation

-s server|Specifies the name of the server. Typically this is the ORB name
of the server.

WSDL-URL |Specifies the name of the WSDL file from which the ACL file
is generated.

Optional Arguments

The command has the following optional arguments:

Option Interpretation

-1 interface Specifies the port Type for which ACL data will be

generated. The default is to generate information for
all port types defined in the contract.

-r default_role |Specifies the role name to use in the generated ACL
document. The default is IONAUserRole.

-d output_dir Specifies the directory where the generated file will
be written.

119



Option

Interpretation

-o output file

Specifies the name of the generated ACL file. The
default is to use the name of the WSDL file with a
.acl extension.

-props
props file

Specifies the properties file listing the roles for each
operation.

-L license

Specifies the location of your Artix ESB license file.
The default behavior is to check
IT PRODUCT DIR\etc\license.txt.

-v Displays the tool's version.
-quiet Specifies that the tool is to run in quiet mode.
-versbose Specifies that the tool is to run in verbose mode.

120




	Artix ESB Command Reference
	Table of Contents
	Preface
	What is Covered in This Book
	Who Should Read This Book

	Using the Artix Tools
	Generating WSDL
	artix java2wsdl
	Synopsis
	Description
	Required Arguments
	Optional Arguments

	javatowsdl
	Synopsis
	Description
	Arguments
	Arguments

	artix idl2wsdl
	Synopsis
	Description
	Required Arguments
	Optional Arguments

	idltowsdl
	Synopsis
	Description
	Required Arguments
	Optional Arguments

	artix cobol2wsdl
	Synopsis
	Required Arguments
	Optional Arguments

	artix xsd2wsdl
	Synopsis
	Description
	Required Arguments
	Optional Arguments

	xsdtowsdl
	Synopsis
	Description
	Arguments

	artix dbconfig2wsdl
	Synopsis
	Description
	Required Arguments
	Optional Arguments

	dbconfigtowsdl
	Synopsis
	Description
	Required Arguments
	Optional Arguments


	Adding Bindings
	artix wsdl2soap
	Synopsis
	Description
	Required Arguments
	Optional Arguments

	artix wsdl2xml
	Synopsis
	Description
	Required Arguments
	Optional Arguments

	artix wsdl2idl -corba
	Synopsis
	Description
	Required Arguments
	Optional Arguments

	wsdltocorba -corba
	Synopsis
	Description
	Required Arguments
	Optional Arguments


	Adding Endpoints
	artix wsdl2service -transport http
	Synopsis
	Description
	Required Arguments
	Optional Arguments

	artix wsdl2service -transport jms
	Synopsis
	Description
	Required Arguments
	Optional Arguments

	wsdltoservice -transport http/soap
	Synopsis
	Description
	Required Arguments
	Optional Arguments

	wsdltoservice -transport corba
	Synopsis
	Description
	Required Arguments
	Optional Arguments

	wsdltoservice -transport iiop
	Synopsis
	Description
	Arguments

	wsdltoservice -transport mq
	Synopsis
	Description
	Arguments

	wsdltoservice -transport tibrv
	Synopsis
	Description
	Arguments

	wsdltoservice -transport tuxedo
	Synopsis
	Description
	Arguments


	Adding Routes
	wsdltorouting
	Synopsis
	Description
	Arguments


	Validating WSDL
	artix validator
	Synopsis
	Description
	Required Arguments
	Optional Arguments

	schemavalidator
	Synopsis
	Description
	Arguments


	Transforming XML
	xslttransform
	Synopsis
	Description
	Arguments


	Generating Code from WSDL
	artix wsdlgen
	Synopsis
	Description
	Arguments
	Template IDs

	artix wsdl2cpp
	Synopsis
	Description
	Required Arguments
	Optional Arguments

	artix wsdl2java
	Synopsis
	Description
	Required Arguments
	Optional Arguments
	XJC Binding Compiler Arguments

	wsdltojava
	Synopsis
	Description
	Required Arguments
	Optional Arguments

	artix wsdl2dbservice
	Synopsis
	Description
	Required Arguments
	Optional Arguments

	wsdltodbservice
	Synopsis
	Description
	Required Arguments
	Optional Arguments


	Generating Support Files
	artix wsdl2idl -idl
	Synopsis
	Description
	Required Arguments
	Optional Arguments

	wsdltocorba -idl
	Synopsis
	Description
	Required Arguments
	Optional Arguments

	artix sql2dbconfig
	Synopsis
	Required Arguments
	Optional Arguments

	wsdd
	Synopsis
	Description
	Required Options
	Optional Arguments

	artix wsdl2acl
	Synopsis
	Description
	Required Arguments
	Optional Arguments



