
Artix ESBTM

Making Software Work TogetherTM

Artix for CORBA
Version 5.0, July 2007

IONA Technologies PLC and/or its subsidiaries may have patents, patent applications,
trademarks, copyrights, or other intellectual property rights covering subject matter in
this publication. Except as expressly provided in any written license agreement from
IONA Technologies PLC, the furnishing of this publication does not give you any license
to these patents, trademarks, copyrights, or other intellectual property. Any rights not
expressly granted herein are reserved.
IONA, IONA Technologies, the IONA logos, Orbix, Artix, Making Software Work
Together, Adaptive Runtime Technology, Orbacus, IONA University, and IONA XMLBus
are trademarks or registered trademarks of IONA Technologies PLC and/or its
subsidiaries.
Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries. CORBA is a trademark or registered trademark of the
Object Management Group, Inc. in the United States and other countries. All other
trademarks that appear herein are the property of their respective owners.
IONA Technologies PLC makes no warranty of any kind to this material including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose. IONA Technologies PLC shall not be liable for
errors contained herein, or for incidental or consequential damages in connection with the furnishing, perform-
ance or use of this material.

COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third
party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publica-
tion and features described herein are subject to change without notice.

Copyright © 2001-2007 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: July 13, 2007

Contents

List of Figures 7

Preface 9

Chapter 1 Introduction to CORBA Web Services 11
Artix Architecture 12
Integrating a CORBA Server with Web Services 16

Accessing the CORBA Server through a Standalone Router 17
Accessing the CORBA Server through an Embedded Router 18
Replacing the WS Client by an Artix Client 19
Replacing the CORBA Server by an Artix Server 20

Integrating a CORBA Client with Web Services 21
Accessing the WS Server through a Standalone Router 22
Replacing the CORBA Client by an Artix Client 23
Replacing the WS Server by an Artix Server 24

Chapter 2 Exposing a Web Service as a CORBA Service 25
Converting WSDL to IDL 26
Exposing an Artix Web Service as a CORBA Service 30
Exposing a Non-Artix Web Service as a CORBA Service 35

Standalone CORBA-to-SOAP Router Scenario 36
Configuring and Running a Standalone CORBA-to-SOAP Router 37

Using an Orbix 3.3 Client to Access an Artix Server 43
Accessing an Artix Server Using WSDL Query 46

Chapter 3 Exposing a CORBA Service as a Web Service 49
Converting IDL to WSDL 50
Embedding Artix in a CORBA Service 60

Embedded Router Scenario 61
Embedding a Router in the CORBA Server 63

Exposing an Orbix 3.3 or Non-Orbix Service as a Web Service 66
Standalone SOAP-to-CORBA Router Scenario 67
Configuring and Running a Standalone SOAP-to-CORBA Router 69
 3

CONTENTS
Chapter 4 CORBA-to-CORBA Routing 73
Bypassing the Router 74

Basic Bypass Scenario 75
Bypass with Failover Scenario 79
Bypass with Load Balancing Scenario 82

Chapter 5 Integrating the CORBA Naming Service with Artix 85
How an Artix Client Resolves a Name 86
How an Artix Server Binds a Name 90
Artix Client Integrated with a CORBA Server 93

CORBA Server Implementation 94
Artix Client Configuration 97

Chapter 6 Advanced CORBA Port Configuration 99
Configuring Fixed Ports and Long-Lived IORs 100
CORBA Timeout Policies 106
Retrying Invocations and Rebinding 108

Chapter 7 Artix IDL-to-WSDL Mapping 111
Introducing CORBA Type Mapping 112
IDL Primitive Type Mapping 113
IDL Complex Type Mapping 117

IDL enum Type 118
IDL struct Type 121
IDL union Type 124
IDL sequence Types 129
IDL array Types 132
IDL exception Types 135
IDL typedef Expressions 140

IDL Module and Interface Mapping 141

Chapter 8 Artix WSDL-to-IDL Mapping 147
Simple Types 148

Atomic Types 149
String Type 152
Date and Time Types 155
Duration Type 157
4

CONTENTS
Deriving Simple Types by Restriction 158
List Type 160
Unsupported Simple Types 162

Complex Types 163
Sequence Complex Types 164
Choice Complex Types 165
All Complex Types 166
Attributes 167
Nesting Complex Types 169
Deriving a Complex Type from a Simple Type 171
Deriving a Complex Type from a Complex Type 173
Arrays 176

Wildcarding Types 179
Occurrence Constraints 180
Nillable Types 182
Recursive Types 185
Endpoint References 188

Default Endpoint Reference Mapping 189
Custom Endpoint Reference Mapping 193

Mapping to IDL Modules 200

Chapter 9 Monitoring GIOP Message Content 203
Introduction to GIOP Snoop 204
Configuring GIOP Snoop 205
GIOP Snoop Output 208

Appendix A Configuring a CORBA Binding 213

Appendix B Configuring a CORBA Port 219

Appendix C CORBA Utilities in Artix 225
Generating a CORBA Binding 226
Converting WSDL to OMG IDL 228
Converting OMG IDL to WSDL 230

Appendix D Mapping CORBA Exceptions 235
Mapping from CORBA System Exceptions 236
 5

CONTENTS
Mapping from Fault Categories 238
Mapping of Completion Status 239

Appendix E Configuring the Java Runtime CORBA Binding 241
Java Runtime CORBA Binding Architecture 242
Bootstrapping the Configuration 244

Index 249
6

List of Figures

Figure 1: Artix Application with Multiple Bindings and Transports 12

Figure 2: Example of a SOAP/HTTP-to-CORBA Router 14

Figure 3: WS Client Accesses CORBA Server through Standalone Router 17

Figure 4: WS Client Accesses CORBA Server through Embedded Router 18

Figure 5: Replacing the WS Client by an Artix Client 19

Figure 6: Replacing the CORBA Server by an Artix Server 20

Figure 7: Client Accesses the WS Server through a Standalone Router 22

Figure 8: Replacing the CORBA Client by an Artix Client 23

Figure 9: Replacing the WS Server by an Artix Server 24

Figure 10: Standalone Artix Router 36

Figure 11: Artix Router Embedded in a CORBA Server 61

Figure 12: Standalone Artix Router 67

Figure 13: Basic Bypass Routing Scenario 75

Figure 14: Bypass Routing with Failover Scenario 79

Figure 15: Bypass Routing with Load Balancing Scenario 82

Figure 16: Artix Client Resolving a Name from the Naming Service 86

Figure 17: Artix Server Binding a Name to the Naming Service 90

Figure 18: Allowed Inheritance Relationships for Complex Types 173

Figure 19: Java Runtime CORBA Binding Architecture 242
 7

LIST OF FIGURES
 8

Preface
What is Covered in This Book
This book describes a variety of different CORBA integration scenarios and
explains how to use the Artix command-line tools to generate or modify
WSDL contracts and IDL interfaces as required. Details of Artix
programming, however, do not fall within the scope of this book.

Who Should Read This Book
This book is aimed at engineers already familiar with CORBA technology
who need to integrate Web services applications with CORBA.

The Artix Documentation Library
For information on the organization of the Artix library, the document
conventions used, and where to find additional resources, see Using the
Artix Library
 9

../library_intro/index.htm
../library_intro/index.htm

PREFACE
 10

CHAPTER 1

Introduction to
CORBA Web
Services
Artix provides a flexible framework for bridging between
CORBA and Web Services domains. Several different
approaches can be used to integrate a CORBA application into
a Web Services domain and this introduction provides a brief
overview of some typical integration scenarios.

In this chapter This chapter discusses the following topics:

Artix Architecture page 12

Integrating a CORBA Server with Web Services page 16

Integrating a CORBA Client with Web Services page 21
 11

CHAPTER 1 | Introduction to CORBA Web Services
Artix Architecture

Overview The key feature of the Artix architecture is that it supports multiple
communication protocols. With the help of the plug-in development APIs,
moreover, it is possible to extend Artix to support any custom protocol.

Figure 1 illustrates this multi-protocol support, showing an Artix application
that is capable of sending or receiving operation invocations over three
different protocols: SOAP/MQ, SOAP/HTTP, and IIOP.

WSDL contract The Web Services Definition Language (WSDL) contract plays a central role
in Artix. It defines the interfaces (or port types) and operations for a Web
service. In this respect, the WSDL contract is analogous to an IDL interface
in CORBA. However, WSDL contracts contain more than just interface
definitions. The main elements of a WSDL contract are as follows:

• Port types—a port type is analogous to an IDL interface. It defines
remotely callable operations that have parameters and return values.

• Bindings—a binding describes how to encode all of the operations and
data types associated with a particular port type. A binding is specific
to a particular protocol—for example, SOAP or CORBA.

Figure 1: Artix Application with Multiple Bindings and Transports

CORBA

GIOPHTTP

SOAP

Artix Stubs

Application

MQ

Bindings

Transports

Servant object

SOAP/
HTTP

SOAP/MQ IIOP
12

Artix Architecture
• Port definitions—a port contains endpoint data that enables clients to
locate and connect to a remote server. For example, a CORBA port
might contain stringified IOR data.

Servant object An Artix servant provides the implementation of a port type (analogously to
the way in which an Orbix servant provides the implementation of an IDL
interface). The servant class is implemented using the appropriate language
mapping (an IONA proprietary mapping for C++ or a standard JAX-RPC
mapping for Java).

Artix stubs The Artix stub contains the code that is needed to encode and decode the
messages received and sent by an Artix application. Artix provides
command-line tools to generate the stub code from WSDL, as follows:

• wsdltocpp command—generates C++ stub code from WSDL.

• wsdltojava command—generates JAX-RPC stub code from WSDL.

• artix wsdl2java command—generates JAX-WS stub code from
WSDL.

Bindings A binding is a particular kind of encoding for operations and data types (for
example, CORBA or SOAP). Support for a binding is enabled by loading the
relevant plug-in (for example, the soap plug-in for SOAP, or the iiop plug-in
for CORBA, and so on).

In addition to loading the relevant plug-in, you must also provide an XML
description of the binding in the WSDL contract. Artix provides tools that
will generate the binding for you automatically; there is no need to write
them by hand.

Transports A transport is responsible for sending and receiving messages over a specific
transport protocol (for example, HTTP or MQ-Series). Support for a transport
is enabled by loading the relevant plug-in (for example, the mq plug-in for
MQ-Series, or the at_http plug-in for HTTP).

In Artix, transports are closely associated with port definitions. For example,
if you include either a <http-conf:client/> or a <http-conf:server/> tag
within the scope of a port element, this indicates that the port uses the
HTTP transport.
 13

CHAPTER 1 | Introduction to CORBA Web Services
Artix routers An Artix router is used to bridge operation invocations between different
communication protocols. Figure 2 shows an example of a
SOAP/HTTP-to-CORBA router. This router translates incoming SOAP/HTTP
request messages into outgoing IIOP request messages. On the reply cycle,
the router translates incoming IIOP reply messages into outgoing
SOAP/HTTP reply messages.

Artix container The Artix container, it_container, is an application that can be used to run
any of the standard Artix services. The functionality of the container is
determined by the plug-ins it loads at runtime.

By loading the router plug-in (along with the requisite binding and
transport plug-ins) the container is configured to run as a standalone router.

Router plug-in The router plug-in implements a general-purpose protocol bridge. Messages
that arrive on one port are sent out on another port.

For example, the router plug-in shown in Figure 2 on page 14 receives
request messages over the SOAP/HTTP protocol and forwards the request
message out again over the IIOP protocol.

Figure 2: Example of a SOAP/HTTP-to-CORBA Router

CORBA

GIOPHTTP

SOAP

Router plug-in

Artix Container
14

Artix Architecture
Routes To configure a router, you need to specify which ports are connected to
which other ports. Use the ns1:route element to connect a source port to a
destination port. For example:

<ns1:route name="route_0">
 <ns1:source service="tns:<SourceService>"
 port="<SourcePort>"/>
 <ns1:destination service="tns:<DestinationService>"
 port="<DestinationPort>"/>
</ns1:route>
 15

CHAPTER 1 | Introduction to CORBA Web Services
Integrating a CORBA Server with Web
Services

Overview This section considers the problem of a legacy CORBA server that is to be
opened up to Web services applications. Artix supports a variety of solutions
to this integration problem, which are briefly described in the following
subsections.

In this section This section contains the following subsections:

Accessing the CORBA Server through a Standalone Router page 17

Accessing the CORBA Server through an Embedded Router page 18

Replacing the WS Client by an Artix Client page 19

Replacing the CORBA Server by an Artix Server page 20
16

Integrating a CORBA Server with Web Services
Accessing the CORBA Server through a Standalone Router

Overview One of the simplest ways to integrate a WS client with a CORBA server is to
deploy a standalone router to act as a bridge between them. This approach
can be used in any system.

Figure 3 shows a CORBA server that is accessible through a standalone
router. The router is responsible for mapping incoming SOAP/HTTP requests
into outgoing IIOP requests.

Advantages and disadvantages This scenario offers the following advantages:

• Compatible with any CORBA server.

• Compatible with any WS client.

• Non-intrusive—no changes need be made either to the client or to the
server.

And the following disadvantage:

• Loss of performance—every operation invocation that passes through
the router consists of two remote invocations (client-to-router followed
by router-to-server).

Figure 3: WS Client Accesses CORBA Server through Standalone Router

CORBA
Client

IIOP port

WS
Client

CORBA
Server

Standalone
Router

SOAP/HTTP port
IIOP

SOAP/HTTP-to-CORBA
 17

CHAPTER 1 | Introduction to CORBA Web Services
Accessing the CORBA Server through an Embedded Router

Overview If the CORBA server is implemented using an Orbix 6.x product, it is usually
possible to embed the Artix router directly into the Orbix executable. This
approach yields significant performance gains.

Figure 4 shows an example of a CORBA server that is accessible through an
embedded router. The router is responsible for mapping incoming
SOAP/HTTP requests into colocated IIOP requests.

Advantages and disadvantages This scenario offers the following advantages:

• Compatible with Orbix 6.x implementations of the CORBA server.

• Compatible with any WS client.

• No changes need be made to the WS client.

• The CORBA server must be reconfigured, but remains otherwise
unchanged.

And the following disadvantage:

• Moderate performance—this scenario is more efficient than using a
standalone router, but is not as efficient as some other scenarios.

Figure 4: WS Client Accesses CORBA Server through Embedded Router

CORBA
Client

SOAP/HTTP port

WS
Client

IIOP

SOAP/HTTP

IIOP port

Embedded
Router

CORBA Server
18

Integrating a CORBA Server with Web Services
Replacing the WS Client by an Artix Client

Overview If you have not implemented the WS client yet, you could implement it using
Artix. An Artix client offers great flexibility, because it can communicate
through multiple protocols, including IIOP and SOAP/HTTP.

Figure 5 shows an example of a CORBA server that is accessed by an Artix
client and a CORBA client. The Artix client is configured to talk directly to
the CORBA server using the IIOP protocol.

Advantages and disadvantages This scenario offers the following advantages:

• Compatible with any CORBA server.

• No changes need be made to the CORBA server.

• Performance is optimized.

• Artix client offers flexibility for future integration.

And the following disadvantage:

• If you have already implemented the WS client, you would have to
re-write it to use the Artix APIs.

Figure 5: Replacing the WS Client by an Artix Client

CORBA
Client

Artix
Client

CORBA
Server

IIOP port
IIOP

IIOP
 19

CHAPTER 1 | Introduction to CORBA Web Services
Replacing the CORBA Server by an Artix Server

Overview If you want to exploit the full power of the Artix product, you might find it
worthwhile to replace the CORBA server by re-implementing it as an Artix
server. Because Artix supports multiple protocols, an Artix server can easily
support present and future integration requirements.

Figure 6 shows an example of an Artix server that is accessed by a WS
client and a CORBA client. The Artix server is configured to accept requests
both from CORBA clients and WS clients.

Advantages and disadvantages This scenario offers the following advantages:

• Compatible with any WS client.

• No changes need be made to the WS client.

• Performance is optimized.

• Artix server offers flexibility for future integration.

And the following disadvantage:

• You must re-implement the CORBA server as an Artix server.

Figure 6: Replacing the CORBA Server by an Artix Server

CORBA
Client

SOAP/HTTP port

WS
Client

Artix
Server

IIOP

SOAP/HTTP

IIOP port
20

Integrating a CORBA Client with Web Services
Integrating a CORBA Client with Web Services

Overview This section considers the problem of CORBA client that needs to access a
Web services server. Artix supports a variety of solutions to this integration
problem, which are briefly described in the following subsections.

In this section This section contains the following subsections:

Accessing the WS Server through a Standalone Router page 22

Replacing the CORBA Client by an Artix Client page 23

Replacing the WS Server by an Artix Server page 24
 21

CHAPTER 1 | Introduction to CORBA Web Services
Accessing the WS Server through a Standalone Router

Overview A relatively simple way to integrate a CORBA client with a WS server is to
deploy a standalone router to act as a bridge between them. This approach
can be used in any system.

Figure 7 shows a WS server that is accessible through a standalone router.
The router is responsible for mapping incoming IIOP requests into outgoing
SOAP/HTTP requests.

Advantages and disadvantages This scenario offers the following advantages:

• Compatible with any WS server.

• Compatible with any CORBA client.

• Non-intrusive—no changes need be made either to the client or to the
server.

And the following disadvantage:

• Loss of performance—every operation invocation that passes through
the router consists of two remote invocations (client-to-router followed
by router-to-server). This has a noticeable impact on performance.

Figure 7: Client Accesses the WS Server through a Standalone Router

WS
Client

SOAP/HTTP port

CORBA
Client

WS
Server

CORBA
Server

Standalone
Router

IIOP port

IIOP port

IIOP
22

Integrating a CORBA Client with Web Services
Replacing the CORBA Client by an Artix Client

Overview To exploit the full power of the Artix product, you might find it worthwhile to
replace the CORBA client by re-implementing it as an Artix client. The Artix
client can then communicate using a wide variety of protocols, including
IIOP and SOAP/HTTP.

Figure 8 shows an example of a WS server that is accessed by an Artix
client and a WS client. The Artix client is configured to talk directly to the
WS server using the SOAP/HTTP protocol.

Advantages and disadvantages This scenario offers the following advantages:

• Compatible with any WS server.

• No changes need be made to the WS server.

• Performance is optimized.

• Artix client offers flexibility for future integration.

And the following disadvantage:

• You must re-implement the CORBA client as an Artix client.

Figure 8: Replacing the CORBA Client by an Artix Client

WS
Client

SOAP/HTTP port

Artix
Client

WS
Server

CORBA
Server

IIOP port

IIOP

SOAP/HTTP
 23

CHAPTER 1 | Introduction to CORBA Web Services
Replacing the WS Server by an Artix Server

Overview If you want to exploit the full power of the Artix product, you might find it
worthwhile to replace the WS server by re-implementing it as an Artix
server. Because Artix supports multiple protocols, an Artix server can easily
support present and future integration requirements.

Figure 9 shows an example of an Artix server that is accessed by a WS
client and a CORBA client. The Artix server is configured to accept requests
both from CORBA clients and WS clients.

Advantages and disadvantages This scenario offers the following advantages:

• Compatible with any CORBA client.

• No changes need be made to the CORBA client.

• Performance is optimized.

• Artix server offers flexibility for future integration.

And the following disadvantage:

• If you have already implemented the WS server using a third-party
product, you would have to re-write it as an Artix server.

Figure 9: Replacing the WS Server by an Artix Server

WS
Client

SOAP/HTTP port

CORBA
Client

Artix
Server

CORBA
Server

IIOP port

IIOP

IIOP

IIOP port
24

CHAPTER 2

Exposing a Web
Service as a
CORBA Service
This chapter describes how to expose a Web service as a
CORBA service using Artix. If the Web Service is implemented
using Artix, it is relatively easy to integrate with CORBA; if
implemented using a third-party product, integration is made
possible using Artix routers.

In this chapter This chapter discusses the following topics:

Converting WSDL to IDL page 26

Exposing an Artix Web Service as a CORBA Service page 30

Exposing a Non-Artix Web Service as a CORBA Service page 35

Using an Orbix 3.3 Client to Access an Artix Server page 43

Accessing an Artix Server Using WSDL Query page 46
 25

CHAPTER 2 | Exposing a Web Service as a CORBA Service
Converting WSDL to IDL

Overview To convert a WSDL contract to an equivalent OMG IDL interface (or
interfaces), perform the following steps:

1. Add CORBA bindings to WSDL.

2. Add CORBA endpoints to WSDL.

3. Generate the IDL.

Location of mapping utilities The wsdltocorba and artix wsdl2idl utilities are located in the following
bin directories:

• C++ runtime utility, wsdltocorba—in
ArtixInstallDir/cxx_java/bin.

• Java runtime utility, artix wsdl2idl—in
ArtixInstallDir/tools/bin.

Add CORBA bindings to WSDL Generate a CORBA binding for each port type that you want to expose as an
IDL interface:

• If you want to expose a single WSDL port type from the WSDL file,
<WSDLFile>.wsdl, enter the following command:

C++ runtime

Java runtime

Where <PortTypeName> refers to the name attribute of an existing
portType element. This command generates a new WSDL file,
<WSDLFile>-corba.wsdl.

wsdltocorba -corba -i <PortTypeName> <WSDLFile>.wsdl

artix wsdl2idl -corba -i <PortTypeName> <WSDLFile>.wsdl
26

Converting WSDL to IDL
• If you want to expose multiple WSDL port types, you must run the
wsdltocorba command iteratively, once for each port type. For
example:

C++ runtime

Java runtime

Where the -o flag (C++ runtime) or the -w flag (Java runtime) is used
to specify the name of the output file at each stage. Rename the last
file in the sequence to <WSDLFile>-corba.wsdl.

wsdltocorba -corba -i <PortType_A> -o <WSDLFile>01.wsdl
<WSDLFile>.wsdl

wsdltocorba -corba -i <PortType_B> -o <WSDLFile>02.wsdl
<WSDLFile>01.wsdl

wsdltocorba -corba -i <PortType_C> -o <WSDLFile>03.wsdl
<WSDLFile>02.wsdl

...

artix wsdl2idl -corba -i <PortType_A> -w <WSDLFile>01.wsdl
<WSDLFile>.wsdl

artix wsdl2idl -corba -i <PortType_B> -w <WSDLFile>02.wsdl
<WSDLFile>01.wsdl

artix wsdl2idl -corba -i <PortType_C> -w <WSDLFile>03.wsdl
<WSDLFile>02.wsdl

...
 27

CHAPTER 2 | Exposing a Web Service as a CORBA Service
Add CORBA endpoints to WSDL It is not strictly necessary to add CORBA endpoints to the WSDL at this
stage (that is, prior to generating the IDL), but it is convenient to make these
modifications to the WSDL contract now.

To add the CORBA endpoints, open the <WSDLFile>-corba.wsdl file
generated in the previous step and add a service element for each of the
port types you want to expose. For example, a simple CORBA endpoint that
is associated with the <CORBABinding> binding could have the following
form:

The value of the location attribute in the corba:address element can be
specified as one of the following URL types:

• File URL—to configure the Artix server to write an IOR to a file as it
starts up, specify the location attribute as follows:
location="file:///<DirPath>/<IORFile>.ior"

On Windows platforms, the URL format can indicate a particular
drive—for example the C: drive—as follows:

location="file:///C:/<DirPath>/<IORFile>.ior"

• corbaname URL—to configure the Artix server to bind an object
reference in the CORBA naming service, specify the location attribute
as follows:
location="corbaname:rir:/NameService#StringName"

<definitions name="" targetNamespace="..."
 ...
 ...>
 ...
 <service name="<CORBAServiceName>">
 <port binding="tns:<CORBABinding>" name="<CORBAPortName>">
 <corba:address location="file:///greeter.ior"/>
 </port>
 </service>
</definitions>

Note: It is usually simplest to specify the file name using an
absolute path. If you specify the file name using a relative path, the
location is taken to be relative to the directory the Artix process is
started in, not relative to the containing WSDL file.
28

Converting WSDL to IDL
Where StringName is a name in the CORBA naming service. For more
details, see “How an Artix Client Resolves a Name” on page 86.

• Placeholder IOR—is appropriate for IORs created dynamically at
runtime (for example, IORs created by factory objects). In this case,
you should use the special placeholder value, IOR:, for the location
attribute, as follows:
location="IOR:"

Artix then uses the enclosing service element as a template for
transient object references.

Generate the IDL Generate an IDL interface for each port type, as follows:

• To generate IDL for a single port type, select the relevant CORBA
binding, <CORBABinding>, from the WSDL and enter the following
command:

C++ runtime

Java runtime

The output from this command is written to an IDL file,
<WSDLFile>-corba.idl. If you want to change the name of the IDL
output file, you can use the -o <IDLFileName> option.

• To generate IDL for multiple port types, you must run the mapping
utility once for each port type. After generating all of the IDL interfaces
individually, you would typically concatenate the output files into a
single IDL file.

Note: It is also possible to add a CORBA endpoint to the WSDL contract
using the wsdltoservice command line tool. For details of this command,
see the Command Line Reference document.

wsdltocorba -idl -b <CORBABinding> <WSDLFile>-corba.wsdl

artix wsdl2idl -idl -b <CORBABinding> <WSDLFile>-corba.wsdl
 29

CHAPTER 2 | Exposing a Web Service as a CORBA Service
Exposing an Artix Web Service as a
CORBA Service

Overview It is relatively straightforward to expose an Artix Web service as a CORBA
service. Essentially, you must add the configuration of the relevant CORBA
bindings to the WSDL contract and ensure that the requisite CORBA
plug-ins are loaded into the Artix application.

In detail, the steps for exposing an Artix service as a CORBA service are as
follows:

1. Convert WSDL to IDL.

2. Write code to activate the CORBA endpoints.

3. Re-build the Artix server.

4. Configure the Artix server.

Convert WSDL to IDL Follow the instructions in “Converting WSDL to IDL” on page 26 to convert
your WSDL contract to IDL. The output from this step consists of two files,
as follows:

• Modified WSDL file—the WSDL contract is modified to include
CORBA bindings and CORBA endpoints. The Artix server needs the
modified contract to expose the service over CORBA.

• IDL file—an IDL file is generated from the modified WSDL. CORBA
clients use this IDL file to access the CORBA service exposed by the
Artix server.
30

Exposing an Artix Web Service as a CORBA Service
Write code to activate the CORBA
endpoints

In the main function of your application source code, add some code to
activate the CORBA endpoints. For example, given the following service
element in the WSDL contract:

You can activate the ports in the CORBAServiceName service by registering a
servant object with the Artix Bus. The activation code depends on the
language mapping, as follows:

• C++ activation code.

• JAX-RPC activation code.

• JAX-WS activation code.

C++ activation code In C++, you can activate the service,
{TargetNameSpace}CORBAServiceName, as follows:

<definitions name="" targetNamespace="TargetNameSpace"
 ...
 ...>
 ...
 <service name="CORBAServiceName">
 <port binding="tns:CORBABinding" name="CORBAPortName">
 <corba:address location="..."/>
 </port>
 </service>
</definitions>

// C++
IT_Bus::QName service_qname("", "CORBAServiceName",

"TargetNameSpace")

IT_WSDL::WSDLService* wsdl_service =
 m_bus->get_service_contract(service_name);

if (wsdl_service != 0)
{
 m_bus->register_servant(
 *m_servant, // Service implementation
 *wsdl_service // WSDL service node
);
}

 31

CHAPTER 2 | Exposing a Web Service as a CORBA Service
Where m_servant is an object that implements the WSDL service and
service_qname is the QName of the WSDL service.

JAX-RPC activation code In the JAX-RPC mapping (that is, for Java applications running over the
C++ runtime), you can activate the service,
{TargetNameSpace}CORBAServiceName, as follows:

JAX-WS activation code In the JAX-WS mapping (that is, for Java applications running over the Java
runtime), you can activate the service,
{TargetNameSpace}CORBAServiceName, as follows:

In the case of JAX-WS, the association between the service QName,
{TargetNameSpace}CORBAServiceName, and the service implementation is
established by an annotation that appears before the
CORBAServiceNameImpl class declaration.

Note: For more details about activating service endpoints and registering
servants, see the “Artix Programming Considerations” chapter from C++
Programmer’s Guide.

// Java - JAX-RPC mapping
QName service_qname = new QName("TargetNameSpace",

"CORBAServiceName");
String wsdl_location = bus.getServiceWSDL(service_qname);

Servant servant = new SingleInstanceServant(
 wsdl_location,
 new CORBAServiceNameImpl()
);
bus.registerServant(
 servant,
 service_qname,
 "CORBAPortName"
);

// Java - JAX-WS mapping
Object servant = new CORBAServiceNameImpl();
String address = "corbaloc::...";
javax.xml.ws.Endpoint.publish(address, servant);
32

Exposing an Artix Web Service as a CORBA Service
Re-build the Artix server Before re-building the Artix server executable, you must regenerate the Artix
stub files from the modified WSDL contract. In particular, you must ensure
that stub code is generated for each of the newly-defined CORBA bindings.

After regenerating the stub files, you can re-build the Artix server.

Configure the Artix server There are two alternative approaches to configuring the Artix server,
depending on which of the Artix runtimes you are using:

• Configure the C++ runtime—for C++ or JAX-RPC Java.

• Configure the Java runtime—for JAX-WS Java.

Configure the C++ runtime When implementing with the C++ runtime, the Artix server must be
configured to load the requisite CORBA plug-ins. Example 1 shows how to
modify the Artix configuration scope, artix_srvr_with_corba_binding, to
enable the CORBA bindings.

The preceding Artix configuration can be explained as follows:

1. Edit the ORB plug-ins list, adding the plug-ins needed to support
CORBA bindings. The following additional plug-ins are needed:

♦ iiop_profile, giop, and iiop plug-ins—provide support for the
Internet Inter-ORB Protocol (IIOP), which is used by CORBA.

Example 1: Artix Configuration Required for a CORBA Binding

Artix Configuration File

artix_srvr_with_corba_binding {
 ...

 # Modified configuration required for a CORBA binding:
 #

1 orb_plugins = [..., "iiop_profile", "giop", "iiop""];
2 binding:client_binding_list =

["OTS+POA_Coloc","POA_Coloc","OTS+GIOP+IIOP","GIOP+IIOP"];

3 plugins:iiop_profile:shlib_name = "it_iiop_profile";
 plugins:giop:shlib_name = "it_giop";
 plugins:iiop:shlib_name = "it_iiop";
};
 33

CHAPTER 2 | Exposing a Web Service as a CORBA Service
2. You should ensure that the binding:client_binding_list (either
within this scope or in the nearest enclosing scope) includes bindings
with the GIOP+IIOP protocol combination. The client binding list shown
here is a typical default setting.

3. For each of the additional plug-ins you must specify the root name of
the shared library (or DLL on Windows) that contains the plug-in code.
The requisite plugins:<plugin_name>:shlib_name entries can be
copied from the root scope of the Artix configuration file, artix.cfg.

You can optionally specify additional configuration settings for the
plug-ins at this point (see the Artix Configuration Reference for more
details).

Configure the Java runtime When implementing with the Java runtime, there is no need to specify the
CORBA configuration for simple applications. The Java runtime CORBA
binding is configured to load the requisite CORBA plug-ins by default.

However, it is often necessary to customize the CORBA configuration, in
which case you can optionally provide an Orbix configuration file to the
CORBA binding—see “Configuring the Java Runtime CORBA Binding” on
page 241 for details of how to do this.
34

Exposing a Non-Artix Web Service as a CORBA Service
Exposing a Non-Artix Web Service as a
CORBA Service

Overview If you want to expose a non-Artix Web service as a CORBA service, you
must deploy a standalone Artix router that acts as a bridge between CORBA
clients and the Web services server.

In this section This section contains the following subsections:

Standalone CORBA-to-SOAP Router Scenario page 36

Configuring and Running a Standalone CORBA-to-SOAP Router
page 37
 35

CHAPTER 2 | Exposing a Web Service as a CORBA Service
Standalone CORBA-to-SOAP Router Scenario

Overview Figure 10 shows an overview of a standalone CORBA-to-SOAP router. In
this scenario, the router is packaged as a standalone application, which acts
as a bridge between the CORBA client and the Web services server. The
standalone router is responsible for converting incoming CORBA requests
into outgoing requests on the Web services server. Replies from the Web
services server are converted into CORBA replies by the router and sent back
to the client.

Container The Artix container, it_container, is an executable that can be used to run
any of the standard Artix services. The functionality of the container is
determined by the plug-ins it loads at runtime.

In this scenario, the container is configured to load the router plug-in (along
with some other plug-ins) so that it functions as a standalone router.

Modifications to CORBA server When using a standalone Artix router, no modifications need be made to the
CORBA server.

Elements required for this
scenario

The following elements are required to implement this scenario:

• IDL interface for clients.

• WSDL contract for the standalone router.

• Artix configuration file for the standalone router.

Figure 10: Standalone Artix Router

SOAP/HTTP
portCORBA

Client
WS

Server
Standalone

Router

IIOP port

WSDL

Router Contract

IDL

Client Contract

Config

Router Configuration
36

Exposing a Non-Artix Web Service as a CORBA Service
Configuring and Running a Standalone CORBA-to-SOAP Router

Overview This section describes how to configure and run a standalone router that
acts as a bridge between CORBA clients and a SOAP/HTTP Web services
server. The following steps are described:

1. Convert WSDL to IDL.

2. Generate the router.wsdl file.

3. Create the Artix configuration.

4. Run the standalone router.

Convert WSDL to IDL Follow the instructions in “Converting WSDL to IDL” on page 26 to convert
your WSDL contract to IDL and to generate CORBA bindings and CORBA
endpoints in the WSDL contract. The output from this step is a modified
WSDL file, <WSDLFile>.wsdl, and an IDL file.

Generate the router.wsdl file To generate the router.wsdl file, you need to augment the
<WSDLFile>.wsdl file from the previous step. Specifically, you must add the
requisite bindings and endpoints for the second leg of the route, which goes
from the router to the SOAP Web service.

1. Generate CORBA bindings and CORBA endpoints—if you followed the
steps in “Converting WSDL to IDL” on page 26, the <WSDLFile>.wsdl
file already contains the relevant CORBA bindings and CORBA
endpoints.

2. Generate SOAP bindings—generate a SOAP binding for each port type
that is exposed as an IDL interface. The router acts like a SOAP client
with respect to the SOAP Web services server.

If the router needs to access a single WSDL port type, generate a
SOAP binding with the following command:

> wsdltosoap -i <PortTypeName> -b <BindingName>
<WSDLFile>.wsdl

Where <PortTypeName> refers to the name attribute of an existing
portType element and <BindingName> is the name to be given to the
newly generated SOAP binding. This command generates a new WSDL
file, <WSDLFile>-soap.wsdl.
 37

CHAPTER 2 | Exposing a Web Service as a CORBA Service
If the router needs to access multiple WSDL port types, you must run
the wsdltosoap command iteratively, once for each port type. For
example:

> wsdltosoap -i <PortType_A> -b <Binding_A>
-o <WSDLFile>01.wsdl <WSDLFile>.wsdl

> wsdltosoap -i <PortType_B> -b <Binding_B>
-o <WSDLFile>02.wsdl <WSDLFile>01.wsdl

> wsdltosoap -i <PortType_C> -b <Binding_C>
-o <WSDLFile>03.wsdl <WSDLFile>02.wsdl

...

Where the -o <FileName> flag specifies the name of the output file. At
the end of this step, rename the WSDL file to router.wsdl.

3. Add SOAP endpoints—add a service element for each of the port
types you want to expose. For example, a simple SOAP endpoint could
have the following form:

In the preceding example, you must add a line that defines the
http-conf namespace prefix in the <definitions> tag.

The most important setting in the SOAP port is the location attribute
of the soap:address element, which can be set to one of the following
HTTP URLs:

♦ Explicit HTTP URL—if a particular service is provided at a fixed
address, you can specify the <hostname> and <port> values
explicitly.

location="http://<hostname>:<port>

<definitions name="" targetNamespace="..."
 ...
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:http-conf="http://schemas.iona.com/transports/http/configuration"
 ...>
 ...
 <service name="<SOAPServiceName>">
 <port binding="tns:<SOAPBinding>" name="<SOAPPortName>">
 <soap:address location="http://localhost:9000"/>
 <http-conf:client/>
 <http-conf:server/>
 </port>
 </service>
</definitions>
38

Exposing a Non-Artix Web Service as a CORBA Service
♦ Placeholder HTTP URL—if a service is created dynamically at
runtime, you should specify a transient HTTP URL, as follows:

location="http://localhost:0

At runtime, the placeholder URL is replaced by an explicit
address. Artix then treats the enclosing service element as a
template, allowing multiple transient services to be created at
runtime.

4. Add a route for each exposed port type—for each port type, you need
to set up a route to translate incoming CORBA requests into outgoing
SOAP requests. For example, the following route definition instructs
the router to map incoming CORBA request messages to a SOAP/HTTP
endpoint.

In the preceding example, you must add a line that defines the ns1
namespace prefix in the <definitions> tag.

The ns1:source element identifies the CORBA endpoint in the router
that receives incoming requests from a client. The ns1:destination

Note: It is also possible to add a SOAP endpoint to the WSDL
contract using the wsdltoservice command line tool. For details of
this command, see the Command Line Reference document.

<definitions name="" targetNamespace="TargetNamespaceURI"
 ...
 xmlns:tns="TargetNamespaceURI"
 xmlns:ns1="http://schemas.iona.com/routing"
 ...>
 ...
 <ns1:route name="route_0">
 <ns1:source service="tns:<CORBAServiceName>"
 port="<CORBAPortName>"/>
 <ns1:destination service="tns:<SOAPServiceName>"
 port="<SOAPPortName>"/>
 </ns1:route>
</definitions>
 39

CHAPTER 2 | Exposing a Web Service as a CORBA Service
element identifies the SOAP/HTTP endpoint in the Orbix server to
which outgoing requests are routed.

5. Check that you have added all the namespaces that you need—for a
typical CORBA to SOAP/HTTP route, you typically need to add the
following namespaces (in addition to the namespaces already
generated by default):

Create the Artix configuration Example 2 shows a suitable configuration for a standalone router that maps
incoming CORBA requests to outgoing SOAP/HTTP requests.

Note: Generally, when defining routes, if the location of the source
endpoint is a placeholder, the location of the destination endpoint
should also be a placeholder.

<definitions name="" targetNamespace="TargetNamespaceURI"
 ...
 xmlns:tns="TargetNamespaceURI"
 xmlns:ns1="http://schemas.iona.com/routing"
 xmlns:http-conf="http://schemas.iona.com/transports/http/configuration"
 xmlns:wsa="http://www.w3.org/2005/08/addressing"
 ...>
 ...
</definitions>

Example 2: Artix Configuration Suitable for a Standalone Artix Router

Artix Configuration File

1 # Global configuration scope
...

standalone_router {
 # Configuration for standalone router:
 #

2 orb_plugins = ["xmlfile_log_stream", "iiop_profile", "giop",
"iiop", "soap", "at_http", "routing"];

3 plugins:routing:wsdl_url="../../etc/router.wsdl";

4 plugins:soap:shlib_name = "it_soap";
 plugins:http:shlib_name = "it_http";
 plugins:at_http:shlib_name = "it_at_http";
40

Exposing a Non-Artix Web Service as a CORBA Service
The preceding Artix configuration can be explained as follows:

1. The basic configuration settings needed by the Artix container process
are inherited from the global configuration scope.

2. Edit the ORB plug-ins, adding the requisite Artix plug-ins to the list. In
this example, the following plug-ins are needed:

♦ xmlfile_log_stream plug-in—enables logging to an XML file.

♦ iiop_profile, giop, and iiop plug-ins—enables the IIOP
protocol (used by CORBA).

♦ soap plug-in—enables the router to send and receive SOAP
messages.

♦ at_http plug-in—enables the router to send and receive
messages over the HTTP transport.

♦ routing plug-in—contains the core of the Artix router.

If you plan to use other bindings and transports, you might need to add
some other Artix plug-ins instead.

3. The plugins:routing:wsdl_url setting specifies the location of the
router WSDL contract (see “Converting WSDL to IDL” on page 26).
The URL can be a relative filename (as here) or a general file: URL.

4. To load the Artix plug-ins, you must specify the root name of the
shared library (or DLL on Windows) that contains the plug-in code. The
requisite plugins:<plugin_name>:shlib_name entries can be copied
from the root scope of the Artix configuration file, artix.cfg.

You can also specify additional plug-in configuration settings at this
point (see the Artix Configuration Reference for more details).

 plugins:routing:shlib_name = "it_routing";

 # Uncomment these lines for interoperability with Orbix 3.3
5 #policies:giop:interop_policy:negotiate_transmission_codeset

= "false";
 #policies:giop:interop_policy:send_principal = "true";
 #policies:giop:interop_policy:send_locate_request = "false";
};

Example 2: Artix Configuration Suitable for a Standalone Artix Router
 41

CHAPTER 2 | Exposing a Web Service as a CORBA Service
5. If the router needs to integrate with Orbix 3.3 CORBA clients, you
should uncomment these lines to enable interoperability. For more
details about these configuration settings, see the Artix Configuration
Reference.

Run the standalone router Run the standalone router by invoking the container, it_container, passing
the router’s BUS name as a command-line parameter (the BUS name is
identical to the name of the router’s configuration scope).

For example, to run the router configured in Example 2 on page 40, enter
the following at a command prompt:

it_container -BUSname standalone_router

Note: These interoperability settings might also be useful for
integrating with other third-party ORB products. See the Artix
Configuration Reference for more details.
42

Using an Orbix 3.3 Client to Access an Artix Server
Using an Orbix 3.3 Client to Access an
Artix Server

Overview This section gives a summary of the problems that might occur when you try
to compile an Artix-generated IDL file (generated by the wsdltocorba tool)
using the Orbix 3.3 IDL compiler.

Because the Orbix 3.3 product was designed to conform to the CORBA 2.1
specification (which is an earlier version of the CORBA specification than
that used for Artix) there are some differences between the conventions used
in Orbix 3.3 IDL files and the conventions used in Artix IDL files.

Incompatible #pragma macros The following #pragma macros which appear in some standard Artix IDL files
are incompatible with Orbix 3.3 and will cause the Orbix 3.3 IDL compiler
to report an error:

#pragma IT_SystemSpecification
#pragma IT_BeginCBESpecific

Data type compatibility Most of the IDL data types generated by the Artix wsdltocorba tool are
compatible with Orbix 3.3. But there are some exceptions. The following
WSDL data types require workarounds in order to interoperate with the
Orbix 3.3 product:

• xsd:dateType type mapping to the TimeBase::UtcT IDL type.

• Complex type derived from a simple type.

• Recursive types.

Note: The following list of issues is not necessarily exhaustive. This
section summarizes only those interoperability issues known about at the
time of writing.
 43

CHAPTER 2 | Exposing a Web Service as a CORBA Service
xsd:dateType type mapping to the
TimeBase::UtcT IDL type

Artix uses the TimeBase::UtcT type to represent the xsd:dateTime XML
schema type. To support the TimeBase::UtcT type, Artix-generated IDL files
contain the following #include statement:

#include <omg/TimeBase.idl>

A problem arises, however, when the Orbix 3.3 IDL compiler attempts to
compile the TimeBase.idl file, because the TimeBase.idl file includes
#pragma macros that are incompatible with the Orbix 3.3 IDL compiler. To
fix this problem, perform the following steps:

1. Make a copy of the TimeBase.idl file (the original of this file can be
found in the ArtixInstallDir/cxx_java/idl/omg directory).

2. Edit the copied file to delete the following #pragma macros:

3. Edit the #include statement in the main IDL file, to point at the
modified copy of the TimeBase.idl file.

Complex type derived from a
simple type

A problem arises with XML schema complex types that are defined by
derivation from a simple type. For example, consider the following schema
type, Document, that adds a string attribute to a simple string type:

When the wsdltocorba utility maps this schema type to IDL, it generates
the following struct:

#pragma IT_SystemSpecification

#pragma IT_BeginCBESpecific AllJava "@@\
@module TimeBase=org.omg"

<xsd:complexType name="Document">
 <xsd:simpleContent>
 <xsd:extension base="xsd:string">
 <xsd:attribute name="ID" type="xsd:string"/>
 </xsd:extension>
 </xsd:simpleContent>
</xsd:complexType>

// IDL
struct Document {
 string_nil ID;
 string _simpleTypeValue;
};
44

Using an Orbix 3.3 Client to Access an Artix Server
When this IDL sample is passed to the Orbix 3.3 compiler, it fails to compile
because the Orbix 3.3 compiler does not allow identifiers that begin with
the _ (underscore) character.

To work around this problem, you can manually edit the CORBA binding in
the WSDL file, replacing _simpleTypeValue by simpleTypeValue (removing
the underscore character). For example, for the Document data type, the
CORBA binding defines the following mapping by default:

To modify the mapping in this case, simply replace _simpleTypeValue by
simpleTypeValue in the preceding code fragment.

Recursive types The IDL mapping for recursive XML schema types requires the use of
forward declared structs in IDL. The forward declared struct is a relatively
recent addition to IDL syntax and is not supported by Orbix 3.3. Hence,
recursive types are incompatible with Orbix 3.3 clients.

For more details about XML schema recursive types, see “Recursive Types”
on page 185.

<corba:struct name="Document" repositoryID="IDL:Document:1.0"
 type="s:Document">
 <corba:member idltype="ns1:string_nil" name="ID"/>
 <corba:member idltype="corba:string"
 name="_simpleTypeValue"/>
</corba:struct>
 45

CHAPTER 2 | Exposing a Web Service as a CORBA Service
Accessing an Artix Server Using WSDL Query

Overview Usually, a CORBA client that wants to access a CORBA service would locate
the service through a CORBA mechanism—for example, the CORBA naming
service (see “Integrating the CORBA Naming Service with Artix” on
page 85).

In an enterprise application, however, it is likely that the CORBA service
exposed by an Artix server could also be accessed by another Artix program.
Alternatively, there might be some technical reasons for preferring to
connect two Artix programs using the CORBA protocol. In either of these
scenarios, it is possible to locate the CORBA service using an Artix-specific
mechanism, the WSDL publish service. This enables the client to bypass
the CORBA naming service, but it does require that the client knows the
host and port of the WSDL publish service.

Configure WSDL publish on the
server side

The WSDL publish service is deployed as a plug-in, wsdl_publish, on the
Artix server side. Example 3 shows the basic configuration of the WSDL
publish service for a server that takes its configuration from the
wsdl_publish.server scope.

Where the WSDL publish plug-in is configured to listen on IP port 4444 for
WSDL queries and other requests. For complete details on how to configure
the WSDL publish service, see Configuring and Deploying Artix Solutions.

Example 3: Configuration of WSDL Publish in an Artix Server

Artix Configuration File
wsdl_publish {
 server {
 orb_plugins = ["xmlfile_log_stream", "wsdl_publish"];
 plugins:wsdl_publish:publish_port = "4444";
 ...
 };
};
46

Accessing an Artix Server Using WSDL Query
WSDL query URL for CORBA
services

An Artix client can now retrieve the WSDL contract for a specific WSDL
service by downloading the response to the following URL:

Where Host:Port is the IP address of the WSDL publish service,
ServiceName is the local name of the required service, and TargetNameSpace
is the namespace in which the service is defined. Although other query URL
formats are described in the Configuring and Deploying Artix Solutions
guide, the preceding format is the only one that works for the CORBA
binding.

Artix client configuration As an example of how to use a WSDL query URL, consider an Artix client
that consumes a CORBA service exposed by an Artix server.

Assuming that the client has been programmed to use the usual contract
locating mechanism (for example, in C++ the Artix client would be
programmed to locate the contract using the
IT_Bus::Bus::get_service_contract() function), you could configure the
client to query the WSDL contract by specifying the following configuration:

Where the configuration variable bus:qname_alias:QNameAlias defines the
QName alias, greeter, which acts as a shorthand for the specified QName.
The bus:initial_contract:url:greeter configuration variable specifies
the query URL that the client uses to retrieve the WSDL contract.

http://Host:Port/get_wsdl?service=ServiceName&scope=TargetNameSpace

Note: In addition to the insecure HTTP URL format described here, it is
also possible to configure WSDL publish to support the secure HTTPS
protocol. For more details, please consult the Artix Security Guide.

Artix Configuration File
wsdl_query {
 ...
 client {
 bus:qname_alias:greeter =
 "{http://www.iona.com/hello_world_soap_http}SOAPService";
 bus:initial_contract:url:greeter =
"http://foo:1001/get_wsdl?service=SOAPService&scope=http://www.iona.com/hello_world_soap_http";
 };
};
 47

CHAPTER 2 | Exposing a Web Service as a CORBA Service
48

CHAPTER 3

Exposing a CORBA
Service as a Web
Service
This chapter describes how to expose a CORBA service as a
Web service using Artix. Different approaches can be taken,
depending on whether the back-end CORBA service is
implemented using the Orbix 6 product, the Orbix 3.3 product
or some other third-party ORB product.

In this chapter This chapter discusses the following topics:

Converting IDL to WSDL page 50

Embedding Artix in a CORBA Service page 60

Exposing an Orbix 3.3 or Non-Orbix Service as a Web Service page 66
 49

CHAPTER 3 | Exposing a CORBA Service as a Web Service
Converting IDL to WSDL

Overview The first step in exposing a CORBA server as a Web service is to convert the
CORBA server’s IDL into a WSDL contract. For all of the examples presented
in this chapter, the following assumptions are made:

• The server’s IDL does not feature callbacks.

• Web service clients use the SOAP/HTTP protocol.

Choice of runtime Because the scenarios discussed in this chapter are based on the Artix
Router—which is implemented on the C++ runtime—all of the utility
commands that appear in this chapter refer to the C++ runtime versions of
those commands.

WSDL contract files This subsection describes how to generate the following two WSDL files:

• router.wsdl file—deployed along with the embedded router and the
Orbix server, the router.wsdl file contains all of the router information
required to map incoming SOAP requests to outgoing CORBA requests.

• client.wsdl file—contains all of the information required by Web
services clients to make SOAP/HTTP invocations on the router.

Contents of the router contract Given that the router has to be capable of routing incoming SOAP requests
to outgoing CORBA requests, the router generally must contain the following
elements:

• Port types.

• CORBA bindings.

• SOAP bindings.

• CORBA endpoints.

• SOAP/HTTP endpoints.

• Routes from SOAP/HTTP endpoints to CORBA endpoints.
50

Converting IDL to WSDL
Generate the router contract To generate a router contract from a given IDL file, <IDLFile>.idl, perform
the following steps:

1. Generate WSDL from the IDL file—at a command-line prompt, enter:

> idltowsdl <IDLFile>.idl

This command generates a WSDL file, <IDLFile>.wsdl, which
contains the following:

♦ XSD schema types, generated from the IDL data types.

♦ portType elements—a port type for each IDL interface in the
source.

♦ binding elements—a CORBA binding for each port type.

♦ service elements—a CORBA endpoint for each port type

You might need to specify additional flags to the idltowsdl command
utility. Some of the more commonly required options are:

-r <ref_schema> specifies the location of the endpoint references
schema. The schema file, wsaddressing.xsd, is located in the
ArtixInstallDir/cxx_java/schemas directory and on the
Internet. The references schema is needed whenever you generate
WSDL from IDL that uses object references.

-a <corba_address> specifies a default value for the location
attribute in the corba:address elements.

-unwrap generates doc/literal unwrapped style of WSDL.

-usetypes generates rpc/literal style of WSDL.

-3 specifies Orbix 3.3 compatibility mode. Use this option if the
IDL file you are converting stems from a legacy Orbix 3.3
application. See “Orbix 3 legacy compatibility” on page 234 for
more details.

The default style of WSDL generated by the idltowsdl utility is
doc/literal wrapped.

2. Edit the corba:address elements for each CORBA endpoint—for each
CORBA endpoint, you have to specify the location of a CORBA object
reference.

Using your favorite text editor, open the <IDLFile>.wsdl file generated
in the previous step. Replace the dummy setting, location="...", in
 51

CHAPTER 3 | Exposing a CORBA Service as a Web Service
each of the corba:address elements, by one of the following location
URL settings:

♦ File URL—if the Orbix server writes an IOR to a file as it starts up,
you specify the location attribute as follows:

location="file:///<DirPath>/<IORFile>.ior"

On Windows platforms, the URL format can indicate a particular
drive—for example the C: drive—as follows:

location="file:///C:/<DirPath>/<IORFile>.ior"

♦ corbaname URL—allows you to retrieve an object reference from
the CORBA naming service. This setting has the following format:

location="corbaname:rir:/NameService#StringName"

Where StringName is a name in the CORBA naming service. For
more details, see “How an Artix Client Resolves a Name” on
page 86.

♦ Stringified IOR—if you know that the Orbix server’s IOR is not
going to change for some time, you can paste the stringified IOR
directly into the location attribute, as follows:

location="IOR:000000..."

♦ Placeholder IOR—is appropriate for IORs created dynamically at
runtime (for example, IORs created by factory objects). In this
case, you should use the special placeholder value, IOR:, for the
location attribute, as follows:

location="IOR:"

Artix uses the enclosing service element as a template for
transient object references.

Note: It is usually simplest to specify the file name using an
absolute path. If you specify the file name using a relative path, the
location is taken to be relative to the directory the Artix process is
started in, not relative to the containing WSDL file.
52

Converting IDL to WSDL
For example, if your Orbix server writes an IOR to the file,
/tmp/app_iors/hello_world_service.ior, you can use it to specify
the endpoint location as follows:

3. Generate SOAP bindings—generate a SOAP binding for each port type
that you want to expose as a Web service. If you want to expose a
single WSDL port type, enter the following command:

> wsdltosoap -i <PortTypeName> -b <BindingName>
<IDLFile>.wsdl

Where <PortTypeName> refers to the name attribute of an existing
portType element and <BindingName> is the name to be given to the
newly generated SOAP binding. This command generates a new WSDL
file, <IDLFile>-soap.wsdl.

If you want to expose multiple WSDL port types, you must run the
wsdltosoap command iteratively, once for each port type. For example:

> wsdltosoap -i <PortType_A> -b <Binding_A>
-o <IDLFile>01.wsdl <IDLFile>.wsdl

> wsdltosoap -i <PortType_B> -b <Binding_B>
-o <IDLFile>02.wsdl <IDLFile>01.wsdl

> wsdltosoap -i <PortType_C> -b <Binding_C>
-o <IDLFile>03.wsdl <IDLFile>02.wsdl

...

Where the -o <FileName> flag specifies the name of the output file. At
the end of this step, rename the WSDL file to router.wsdl.

<service name="HelloWorldCORBAService">
 <port binding="tns:HelloWorldCORBABinding" name="HelloWorldCORBAPort">
 <corba:address location="file:///tmp/app_iors/hello_world_service.ior"/>
 </port>
</service>
 53

CHAPTER 3 | Exposing a CORBA Service as a Web Service
4. Add SOAP endpoints—add a service element for each of the port
types you want to expose. For example, a simple SOAP endpoint could
have the following form:

In the preceding example, you must add a line that defines the
http-conf namespace prefix in the <definitions> tag.

The most important setting in the SOAP port is the location attribute
of the soap:address element, which can be set to one of the following
HTTP URLs:

♦ Explicit HTTP URL—if a particular service is meant to listen on a
fixed address, you can specify the <hostname> and <port> values
explicitly.

location="http://<hostname>:<port>

♦ Placeholder HTTP URL—if a service is meant to be created
dynamically at runtime, you should specify a transient HTTP
URL, as follows:

location="http://localhost:0

At runtime, the placeholder URL is replaced by an explicit
address when the service is created. Artix treats the enclosing

<definitions name="" targetNamespace="..."
 ...
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:http-conf="http://schemas.iona.com/transports/http/configuration"
 ...>
 ...
 <service name="<SOAPServiceName>">
 <port binding="tns:<SOAPBinding>" name="<SOAPPortName>">
 <soap:address location="http://localhost:9000"/>
 <http-conf:client/>
 <http-conf:server/>
 </port>
 </service>
</definitions>
54

Converting IDL to WSDL
service element as a template, allowing multiple transient
services to be created at runtime.

5. Add a route for each exposed port type—for each port type, you need
to set up a route to translate incoming SOAP requests into outgoing
CORBA requests. For example, the following route definition instructs
the router to map incoming SOAP/HTTP request messages to a CORBA
endpoint.

In the preceding example, you must add a line that defines the ns1
namespace prefix in the <definitions> tag.

The ns1:source element identifies the SOAP/HTTP endpoint in the
router that receives incoming requests from a client. The
ns1:destination element identifies the CORBA endpoint in the Orbix
server to which outgoing requests are routed.

Note: It is also possible to add a SOAP endpoint to the WSDL
contract using the wsdltoservice command line tool. For details of
this command, see the Command Line Reference document.

<definitions name="" targetNamespace="TargetNamespaceURI"
 ...
 xmlns:tns="TargetNamespaceURI"
 xmlns:ns1="http://schemas.iona.com/routing"
 ...>
 ...
 <ns1:route name="route_0">
 <ns1:source service="tns:<SOAPServiceName>"
 port="<SOAPPortName>"/>
 <ns1:destination service="tns:<CORBAServiceName>"
 port="<CORBAPortName>"/>
 </ns1:route>
</definitions>

Note: Generally, when defining routes, if the location of the source
endpoint is a placeholder, the location of the destination endpoint
should also be a placeholder.
 55

CHAPTER 3 | Exposing a CORBA Service as a Web Service
6. Check that you have added all the namespaces that you need—for a
typical SOAP/HTTP to CORBA route, you typically need to add the
following namespaces (in addition to the namespaces already
generated by default):

7. Include the WS-Addressing schema (if required)—if your IDL passes
any object references (for example, as parameters or return values), the
corresponding WSDL contract needs to include the WS-Addressing
schema to represent the object references.

For example, assuming that the wsaddressing.xsd schema file is
stored in the same directory as router.wsdl, you can include the
WS-Addressing schema in the router contract as follows:

The original copy of the wsaddressing.xsd schema file is located in the
ArtixInstallDir/cxx_java/schemas directory.

<definitions name="" targetNamespace="TargetNamespaceURI"
 ...
 xmlns:tns="TargetNamespaceURI"
 xmlns:ns1="http://schemas.iona.com/routing"
 xmlns:http-conf="http://schemas.iona.com/transports/http/configuration"
 xmlns:wsa="http://www.w3.org/2005/08/addressing"
 ...>
 ...
</definitions>

<definitions name="" targetNamespace="TargetNamespaceURI"
 ...>
 <types>
 <schema targetNamespace="..." ...>
 <import namespace="http://www.w3.org/2005/08/addressing"
 schemaLocation="wsaddressing.xsd"/>
 ...
 </schema>
 </types>
 ...
</definitions>
56

Converting IDL to WSDL
router.wsdl file contents For example, if the router contract contains a single port type, the contents
of router.wsdl would have the following outline:

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="" targetNamespace="TargetNamespaceURI"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:corba="http://schemas.iona.com/bindings/corba"
xmlns:corbatm="http://schemas.iona.com/typemap/corba/cdr_over_ii

op.idl"
 xmlns:wsa="http://www.w3.org/2005/08/addressing"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:http-conf="http://schemas.iona.com/transports/http/configu

ration"
 xmlns:ns1="http://schemas.iona.com/routing"
 xmlns:tns="TargetNamespaceURI"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsd1="http://schemas.iona.com/idltypes/cdr_over_iiop.idl">
 <types>
 ...
 </types>
 <message name="..."/>
 ...

 <portType name="<PortTypeName>">
 ...
 </portType>

 <binding name="<CORBABindingName>"
 type="tns:<PortTypeName>">
 ...
 </binding>

 <binding name="<SOAPBindingName>"
 type="tns:<PortTypeName>">
 ...
 </binding>

 <service name="<CORBAServiceName>">
 ...
 </service>

 <service name="<SOAPServiceName>">
 ...
 </service>

 <ns1:route name="route_0">
 57

CHAPTER 3 | Exposing a CORBA Service as a Web Service
Generate the client contract The client WSDL contract is a modified copy of the router contract
containing only those details of the contract that are relevant to the client.
To generate the client contract, perform the following steps:

1. Copy the router.wsdl file to client.wsdl.

2. Edit the client.wsdl file to remove redundant elements. That is, you
should remove the following:

♦ CORBA binding elements.

♦ CORBA service elements.

♦ route elements.

You could also optionally remove some of the redundant namespace
definitions, such as corba, corbatm, and ns1.

client.wsdl file contents For example, if the client contract contains a single port type, the contents
of client.wsdl would have the following outline:

 <ns1:source service="tns:<SOAPServiceName>"
 port="<SOAPPortName>"/>
 <ns1:destination service="tns:<CORBAServiceName>"
 port="<CORBAPortName>"/>
 </ns1:route>
</definitions>

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="" targetNamespace="TargetNamespaceURI"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:corba="http://schemas.iona.com/bindings/corba"
xmlns:corbatm="http://schemas.iona.com/typemap/corba/cdr_over_ii

op.idl"
 xmlns:wsa="http://www.w3.org/2005/08/addressing"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:http-conf="http://schemas.iona.com/transports/http/configu

ration"
 xmlns:ns1="http://schemas.iona.com/routing"
 xmlns:tns="TargetNamespaceURI"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsd1="http://schemas.iona.com/idltypes/cdr_over_iiop.idl">
 <types>
 ...
 </types>
 <message name="..."/>
58

Converting IDL to WSDL
 ...

 <portType name="<PortTypeName>">
 ...
 </portType>

 <binding name="<SOAPBindingName>"
 type="tns:<PortTypeName>">
 ...
 </binding>

 <service name="<SOAPServiceName>">
 ...
 </service>
</definitions>
 59

CHAPTER 3 | Exposing a CORBA Service as a Web Service
Embedding Artix in a CORBA Service

Overview If you want to expose an Orbix 6 CORBA server as a Web service, you have
the option of embedding Artix directly in the CORBA server.

This embedding is possible because Artix (C++ runtime) and Orbix are both
built using the same framework: IONA’s Adaptive Runtime Technology
(ART). Using the ART framework, it is possible to run Artix and Orbix in the
same process just by loading the appropriate set of plug-ins needed by each
product.

In this section This section contains the following subsections:

Embedded Router Scenario page 61

Embedding a Router in the CORBA Server page 63
60

Embedding Artix in a CORBA Service
Embedded Router Scenario

Overview Figure 11 shows an overview of an Artix router embedded in a CORBA
server. In this scenario, the CORBA service is exposed as a Web service that
supports SOAP over HTTP. The embedded router is responsible for
converting incoming SOAP/HTTP requests into colocated requests on the
CORBA server. Any replies from the CORBA server are then converted into
SOAP/HTTP replies by the router and sent back to the client.

Note: Embedding an Artix router is an option that is only available to
Orbix 6 based CORBA applications. In general, the most straightforward
way to build these applications is to use the Orbix libraries included with
the Artix product. If you need to link with libraries taken directly from an
Orbix distribution, you must take care to ensure that these libraries are
binary compatible with Artix.

Figure 11: Artix Router Embedded in a CORBA Server

Web Services
Client

WSDL

Router Contract

Embedded Router

IDL

Target Contract

CORBA
Server

SOAP/HTTP

IIOP

Generate

Artix Orbix 6
 61

CHAPTER 3 | Exposing a CORBA Service as a Web Service
Modifications to CORBA server The following changes must be made to the CORBA server to embed the
Artix router:

• Code changes—No.

• Re-compilation—No.

• Configuration—modify the Orbix configuration file.

Elements required for this
scenario

The following elements are required to implement this scenario:

• WSDL contract for clients.

• WSDL contract for the embedded router.

• Modified Orbix configuration file for the CORBA server.
62

Embedding Artix in a CORBA Service
Embedding a Router in the CORBA Server

Overview This section describes how to embed a router in a CORBA server. The
embedded router enables the CORBA server to receive requests from a
SOAP/HTTP Web services client. The following steps are described:

• Convert IDL to WSDL.

• Deploy the requisite WSDL files.

• Edit the Artix configuration.

Convert IDL to WSDL Use the Artix utilities to generate two WSDL files, router.wsdl and
client.wsdl, from the CORBA server’s IDL interface. For details of how to
convert the IDL file to WSDL, see “Converting IDL to WSDL” on page 50.

Deploy the requisite WSDL files Deploy the following WSDL files on the CORBA server host:

• router.wsdl—the router contract, which describes the route for
converting SOAP/HTTP requests into CORBA requests.

• wsaddressing.xsd—the schema that defines the
wsa:EndpointReferenceType data type, which Artix uses to represent
object references.

The WS-Addressing schema is usually (but not always) required on the
server side. If your IDL does not pass object endpoint references as
parameters or return values, however, you do not need to deploy this
file.

Edit the Artix configuration Given that your CORBA server is configured by a particular configuration
scope, orbix_srvr_with_embeded_router, Example 4 shows how to modify
the server configuration to embed an Artix router.

Example 4: Artix Configuration Suitable for an Embedded Artix Router

Artix Configuration File

orbix_srvr_with_embedded_router {
 ...

 # Modified configuration required for embedded router:
 63

CHAPTER 3 | Exposing a CORBA Service as a Web Service
The preceding Artix configuration can be explained as follows:

1. Edit the ORB plug-ins, adding the requisite Artix plug-ins to the list. In
this example, the following plug-ins are needed:

♦ soap plug-in—enables the router to send and receive SOAP
messages.

♦ at_http plug-in—enables the router to send and receive
messages over the HTTP transport.

♦ routing plug-in—contains the core of the Artix router.

♦ bus_loader plug-in—triggers the Artix Bus initialization step. This
plug-in is needed only when you are loading Artix plug-ins into a
non-Artix application.

If you plan to use other bindings and transports, you might need to add
some other Artix plug-ins instead.

 #
1 orb_plugins = [..., "soap", "at_http", "routing",

"bus_loader"];
2 binding:client_binding_list = ["OTS+GIOP+IIOP", "GIOP+IIOP"];

3 plugins:routing:wsdl_url="../../etc/router.wsdl";

4 plugins:soap:shlib_name = "it_soap";
 plugins:http:shlib_name = "it_http";
 plugins:at_http:shlib_name = "it_at_http";
 plugins:routing:shlib_name = "it_routing";
 plugins:bus_loader:shlib_name = "it_bus_loader";

5 share_variables_with_internal_orb = "false";
};

Example 4: Artix Configuration Suitable for an Embedded Artix Router

Note: In Artix 3.0, Artix plug-ins were refactored to cleanly separate
the ORB initialization step from the Artix Bus initialization step.
Usually, in an Artix application, IT_Bus::init() triggers the Bus
initialization step. In this example, however, the CORBA server never
calls IT_Bus::init(). Therefore, the bus_loader plug-in is needed to
finish the initialization of the Artix plug-ins.
64

Embedding Artix in a CORBA Service
2. The Artix embedded router is not compatible with the POA_Coloc
interceptor. Therefore you must edit the server’s
binding:client_binding_list entry to remove any bindings
containing the POA_Coloc interceptor.

For example, if the client binding list is defined as follows:

binding:client_binding_list =
["OTS+POA_Coloc","POA_Coloc","OTS+GIOP+IIOP","GIOP+IIOP"];

You would replace it with the following list:

binding:client_binding_list = ["OTS+GIOP+IIOP","GIOP+IIOP"];

If you do not purge the POA_Coloc entries from the client binding list,
clients that attempt to access the server through the router will receive
a CORBA::UNKNOWN exception.

3. The plugins:routing:wsdl_url setting specifies the location of the
router WSDL contract (see “Converting IDL to WSDL” on page 50).
The URL can be a relative filename (as here) or a general file: URL.

4. In order for Orbix to load the Artix plug-ins, for each plug-in you must
specify the root name of the shared library (or DLL on Windows) that
contains the plug-in code. The requisite
plugins:<plugin_name>:shlib_name entries can be copied from the
root scope of the Artix configuration file, artix.cfg.

You can also specify additional configuration settings for the Artix
plug-ins at this point (see the Artix Configuration Reference for more
details).

5. In certain circumstances, Orbix creates an internal ORB instance (for
example, during initialization). To prevent the settings from the current
scope being used by the internal ORBs—specifically, to prevent the
internal ORB from loading Artix plug-ins—you should set the
share_variables_with_internal_orb configuration variable to false.

Note: If the binding:client_binding_list variable does not
appear explicitly in the server’s configuration scope, try to find it in
the next enclosing scope (or the scope that is nearest to the server’s
configuration scope) and copy it into the server’s scope.
 65

CHAPTER 3 | Exposing a CORBA Service as a Web Service
Exposing an Orbix 3.3 or Non-Orbix Service as
a Web Service

Overview If you want to expose an Orbix 3.3 or non-Orbix CORBA server as a Web
service, it is generally necessary to deploy a standalone Artix router that acts
as a bridge between Web services clients and the CORBA server. Using a
standalone router is a non-intrusive integration approach that should work
with any CORBA back-end.

In this section This section contains the following subsections:

Standalone SOAP-to-CORBA Router Scenario page 67

Configuring and Running a Standalone SOAP-to-CORBA Router
page 69
66

Exposing an Orbix 3.3 or Non-Orbix Service as a Web Service
Standalone SOAP-to-CORBA Router Scenario

Overview Figure 12 shows an overview of a standalone router. In this scenario, the
router is packaged as a standalone application, which acts as a bridge
between the Web services client and the CORBA server. The standalone
router is responsible for converting incoming SOAP/HTTP requests into
outgoing requests on the CORBA server. Replies from the CORBA server are
converted into SOAP/HTTP replies by the router and sent back to the client.

Container The Artix container, it_container, is an application that can be used to run
any of the standard Artix services. The functionality of the container is
determined by the plug-ins it loads at runtime.

In this scenario, the container is configured to load the router plug-in (along
with some other plug-ins) so that it functions as a standalone router.

Modifications to CORBA server When using a standalone Artix router, no modifications need be made to the
CORBA server.

Figure 12: Standalone Artix Router

Web Services
Client

WSDL

Router Contract

Standalone Router

IDL

Target Contract

CORBA
Server

SOAP/HTTP IIOP

Generate

Artix Orbix 3.3
 67

CHAPTER 3 | Exposing a CORBA Service as a Web Service
Elements required for this
scenario

The following elements are required to implement this scenario:

• WSDL contract for clients.

• WSDL contract for the standalone router.

• Artix configuration file for the standalone router.
68

Exposing an Orbix 3.3 or Non-Orbix Service as a Web Service
Configuring and Running a Standalone SOAP-to-CORBA Router

Overview This section describes how to configure and run a standalone router that
acts as a bridge between a SOAP/HTTP Web services client and a CORBA
server. The following steps are described:

• Convert IDL to WSDL.

• Deploy the requisite WSDL files.

• Create the Artix configuration.

• Run the standalone router.

Convert IDL to WSDL Use the Artix utilities to generate two WSDL files, router.wsdl and
client.wsdl, from the CORBA server’s IDL interface. For details, see
“Converting IDL to WSDL” on page 50.

Deploy the requisite WSDL files Deploy the following WSDL files on the standalone router host:

• router.wsdl—the router contract, which describes the route for
converting SOAP/HTTP requests into CORBA requests.

• wsaddressing.xsd—the schema that defines the
wsa:EndpointReferenceType data type, which Artix uses to represent
object references.

The WS-Addressing schema is usually (but not always) required on the
server side. If your IDL does not pass object references as parameters
or return values, however, you do not need to deploy this file.

Create the Artix configuration Example 5 shows a suitable configuration for a standalone router that maps
incoming SOAP/HTTP requests to outgoing CORBA requests.

Example 5: Artix Configuration Suitable for a Standalone Artix Router

Artix Configuration File

standalone_router {
 # Configuration for standalone router:
 #

1 orb_plugins = ["xmlfile_log_stream", "iiop_profile", "giop",
"iiop", "soap", "at_http", "routing"];
 69

CHAPTER 3 | Exposing a CORBA Service as a Web Service
The preceding Artix configuration can be explained as follows:

1. Edit the ORB plug-ins, adding the requisite Artix plug-ins to the list. In
this example, the following plug-ins are needed:

♦ xmlfile_log_stream plug-in—enables logging to an XML file.

♦ iiop_profile, giop, and iiop plug-ins—enables the IIOP
protocol (used by CORBA).

♦ soap plug-in—enables the router to send and receive SOAP
messages.

♦ at_http plug-in—enables the router to send and receive
messages over the HTTP transport.

♦ routing plug-in—contains the core of the Artix router.

If you plan to use other bindings and transports, you might need to add
some other Artix plug-ins instead.

2. The plugins:routing:wsdl_url setting specifies the location of the
router WSDL contract (see “Converting IDL to WSDL” on page 50).
The URL can be a relative filename (as here) or a general file: URL.

3. To load the Artix plug-ins, you must specify the root name of the
shared library (or DLL on Windows) that contains the plug-in code. The
requisite plugins:<plugin_name>:shlib_name entries can be copied
from the root scope of the Artix configuration file, artix.cfg.

You can also specify additional plug-in configuration settings at this
point (see the Artix Configuration Reference for more details).

2 plugins:routing:wsdl_url="../../etc/router.wsdl";

3 plugins:soap:shlib_name = "it_soap";
 plugins:http:shlib_name = "it_http";
 plugins:at_http:shlib_name = "it_at_http";
 plugins:routing:shlib_name = "it_routing";

 # Uncomment these lines for interoperability with Orbix 3.3
4 #policies:giop:interop_policy:negotiate_transmission_codeset

= "false";
 #policies:giop:interop_policy:send_principal = "true";
 #policies:giop:interop_policy:send_locate_request = "false";
};

Example 5: Artix Configuration Suitable for a Standalone Artix Router
70

Exposing an Orbix 3.3 or Non-Orbix Service as a Web Service
4. If the router needs to integrate with an Orbix 3.3 CORBA server, you
should uncomment these lines to enable interoperability. For more
details about these configuration settings, see the Artix Configuration
Reference.

Run the standalone router Run the standalone router by invoking the container, it_container, passing
the router’s ORB name as a command-line parameter (the ORB name is
identical to the name of the router’s configuration scope).

For example, to run the router configured in Example 5 on page 69, enter
the following at a command prompt:

it_container -BUSname standalone_router

Note: These interoperability settings might also be useful for
integrating with other third-party ORB products. See the Artix
Configuration Reference for more details.
 71

CHAPTER 3 | Exposing a CORBA Service as a Web Service
72

CHAPTER 4

CORBA-to-CORBA
Routing
This chapter describes some special routing options that are
available when the source endpoint and the destination
endpoint in a route are both based on the CORBA binding.

In this chapter This chapter discusses the following topics:

Bypassing the Router page 74
 73

CHAPTER 4 | CORBA-to-CORBA Routing
Bypassing the Router

Overview Specifically for the CORBA binding, the Artix router supports an option to
redirect incoming client connections so that the clients connect directly to
the target server, bypassing the router. This option is only available, if both
the client and the target server are CORBA-based. Bypassing the router
enables you to achieve optimum efficiency for a CORBA-to-CORBA route,
but this option also has some interactions with other router features.

In this section This section contains the following subsections:

Basic Bypass Scenario page 75

Bypass with Failover Scenario page 79

Bypass with Load Balancing Scenario page 82
74

Bypassing the Router
Basic Bypass Scenario

Overview Bypass routing is a CORBA-specific feature that exploits the location
forwarding feature of the General Inter-ORB Protocol (GIOP). Location
forwarding is based on specific GIOP message types, which enable CORBA
services to redirect incoming connections to alternative destinations.
Figure 13 gives an overview of a basic bypass routing scenario.

Scenario steps The basic bypass routing scenario shown in Figure 13 can be described as
follows:

1. The CORBA client sends a GIOP request message to the
CORBAPortOnRouter endpoint.

2. The router sends a location forward reply (a special reply type defined
by GIOP), which contains the interoperable object reference (IOR) for
the destination endpoint on the target server.

Figure 13: Basic Bypass Routing Scenario

CORBA
Client

CORBAPort
CORBA
Server

Router

CORBAPortOnRouter

1

2

3

Note: Internally, the router converts the address of the destination
endpoint to an IOR using the CORBA::ORB::string_to_object()
function. This affects the semantics of connection establishment.

For example, if the destination endpoint is specified as a corbaname
URL, the router would implicitly resolve the name to an IOR (by
contacting a CORBA naming service) before sending the location
forward reply.
 75

CHAPTER 4 | CORBA-to-CORBA Routing
3. The CORBA client uses the received IOR to open a connection directly
to the destination endpoint on the target server. The client now sends
its request messages directly to the destination endpoint on the target.

Interactions with other features Bypass routing interacts with various other router features, as follows:

• Effect on pass-through.

• Effect on security.

• Incompatibility with fanout.

• Incompatibility with content-based routing.

• Incompatibility with transport attributes.

• Unsuitability for connection concentrator.

Effect on pass-through Bypass routing and pass-through routing can be enabled simultaneously. If
the route is CORBA only (that is, the binding types for the source and
destination endpoints are both CORBA), bypass routing takes priority. For
non-CORBA binding types, pass-through routing is used.

Effect on security When bypass routing is enabled, you must ensure that the CORBA client is
appropriately configured for opening a secure connection directly to the
destination endpoint.

It is important also to understand that the router does not provide any
protection for the destination endpoint. The CORBA server on the far side of
the router must be independently capable of enforcing the level of security
that it requires.

Note: This step might also involve sending an additional location
forward message. For example, if the destination endpoint is an Orbix
server with a plain_text_key plug-in, the server might need to look
up the incoming object key in the plain_text_key plug-in’s registry
to obtain the complete IOR. This IOR would then be sent back to the
client inside a location forward reply.
76

Bypassing the Router
Incompatibility with fanout Bypass routing is not compatible with fanout routes (which can be enabled
by setting the multiRoute attribute to fanout in the routing:route
element). A fanout route denotes a route where each incoming request
message propagates to multiple recipients on the destination side of the
route.

If fanout is enabled, the router would ignore the bypass setting and
implement fanout instead.

Incompatibility with
content-based routing

Bypass routing is not compatible with content-based routing (which can be
configured using the routing:query element in the router contract).

If content-based routing is enabled, the router would ignore the bypass
setting and implement content-based routing instead.

Incompatibility with transport
attributes

Bypass routing is not compatible with routes defined using transport
attributes (which can be configured using the routing:transportAttribute
element in the router contract). Transport attributes enable you to specify a
route based on the values set in the transport attributes in the message
headers.

If transport attributes based routing is enabled, the router would ignore the
bypass setting and implement transport attributes based routing instead.

Unsuitability for connection
concentrator

A connection concentrator is a deployment pattern, where multiple clients
connect to the same source endpoint on a router, but there is only a single
connection from the router to the destination endpoint. This pattern enables
you to reduce the number of connections made to the destination endpoint.

It does not make sense to use the bypass feature with a connection
concentrator, because all of the client connections would end up going
directly to the destination endpoint.
 77

CHAPTER 4 | CORBA-to-CORBA Routing
Configuring router bypass To enable router bypass, add the following setting to the router’s
configuration:

The default is false.

Sample route Example 6 shows an example of a basic bypass route that listens for
connection attempts on the CORBAPortOnRouter endpoint and then forwards
the connections on to the CORBAPort endpoint.

Artix Configuration File
bypass_router
{
 plugins:routing:use_bypass = "true";
 ...
};

Example 6: Sample Bypass Route

<definitions name="" targetNamespace="TargetNamespaceURI"
 ...
 xmlns:tns="TargetNamespaceURI"
 xmlns:ns1="http://schemas.iona.com/routing"
 ...>
 ...
 <ns1:route name="pass_through_route">
 <ns1:source service="tns:CORBAServiceOnRouter"
 port="CORBAPortOnRouter"/>
 <ns1:destination service="tns:CORBAService"
 port="CORBAPort"/>
 </ns1:route>
</definitions>
78

Bypassing the Router
Bypass with Failover Scenario

Overview Bypass routing can be combined with the router failover feature (which can
be enabled by setting multiRoute to failover in the routing:route
element). In this case, failover support requires cooperation between the
CORBA client and the router. Figure 14 gives an overview of a bypass
routing with failover scenario.

Scenario steps The bypass routing scenario shown in Figure 14 can be described as
follows:

1. The CORBA client sends a GIOP request message to the
CORBAPortOnRouter endpoint.

2. The router sends a location forward reply, which contains the IOR for
one of the destination endpoints in the failover cluster—for example,
CORBAPort_01.

3. The CORBA client uses the received IOR to open a connection directly
to the CORBAPort_01 destination endpoint.

Figure 14: Bypass Routing with Failover Scenario

CORBA
Client

CORBAPort_01
CORBA
Server

Router

CORBAPortOnRouter

1

2

3

CORBAPort_03
CORBA
Server

CORBA
Server

4

5

6
CORBAPort_02

Server
crashes!
 79

CHAPTER 4 | CORBA-to-CORBA Routing
4. If the target server crashes, the CORBA client transparently falls back
to the CORBAPortOnRouter endpoint.

5. The router again sends a location forward reply, which contains the
IOR for another of the destination endpoints in the failover cluster—for
example, CORBAPort_02.

6. The CORBA client uses the received IOR to open a connection directly
to the CORBAPort_02 destination endpoint.

Configuring bypass with failover To enable bypass routing with failover, add the following setting to the
router’s configuration:

Sample route Example 7 shows an example of a bypass route with failover enabled. There
are three alternative destination endpoints in this failover cluster:
CORBAPort_01, CORBAPort_02, and CORBAPort_03.The multiRoute attribute
must be set to failover.

Artix Configuration File
bypass_router
{
 plugins:routing:use_bypass = "true";
 ...
};
80

Bypassing the Router
Example 7: Sample Bypass Route with Failover

<definitions name="" targetNamespace="TargetNamespaceURI"
 ...
 xmlns:tns="TargetNamespaceURI"
 xmlns:ns1="http://schemas.iona.com/routing"
 ...>
 ...
 <ns1:route name="pass_through_route"
 multiRoute="failover">
 <ns1:source service="tns:CORBAServiceOnRouter"
 port="CORBAPortOnRouter"/>
 <ns1:destination service="tns:CORBAService_01"
 port="CORBAPort_01"/>
 <ns1:destination service="tns:CORBAService_02"
 port="CORBAPort_02"/>
 <ns1:destination service="tns:CORBAService_03"
 port="CORBAPort_03"/>
 </ns1:route>
</definitions>
 81

CHAPTER 4 | CORBA-to-CORBA Routing
Bypass with Load Balancing Scenario

Overview Bypass routing can be combined with the router load balancing feature
(which can be enabled by setting multiRoute to loadBalance in the
routing:route element). When load balancing is combined with bypass
routing, the router has the following characteristics:

• Incoming client connections are load-balanced using a round-robin
algorithm.

• Load balancing is implemented per-connection rather than
per-operation. That is, once a client is assigned to a particular
destination endpoint, it sends all of its requests to that endpoint.

• Failover is also supported in load balancing scenario. That is, if a
server fails, the client is forwarded on to the next healthy server in the
cluster (just as in the failover scenario).

Figure 15 gives an overview of a bypass routing with load balancing
scenario.

Figure 15: Bypass Routing with Load Balancing Scenario

CORBAPort_02

CORBA
Client

CORBAPort_01
CORBA
Server

Router

CORBAPortOnRouter

1

2

3

CORBAPort_03
CORBA
Server

CORBA
Server

4
5

6

CORBA
Client
82

Bypassing the Router
Scenario steps The bypass routing scenario shown in Figure 15 can be described as
follows:

1. The first CORBA client sends a GIOP request message to the
CORBAPortOnRouter endpoint.

2. The router sends a location forward reply, which contains the IOR for
one of the destination endpoints in the load balancing cluster—for
example, CORBAPort_01.

3. The first CORBA client uses the received IOR to open a connection
directly to the CORBAPort_01 destination endpoint.

4. The second CORBA client sends a GIOP request message to the
CORBAPortOnRouter endpoint.

5. The router sends a location forward reply, which contains the IOR for
the next destination endpoint in the load balancing cluster—for
example, CORBAPort_02. The router load balancing uses a round-robin
algorithm to assign destination endpoints to successive clients.

6. The second CORBA client uses the received IOR to open a connection
directly to the CORBAPort_02 destination endpoint.

Configuring bypass with load
balancing

To enable bypass routing with load balancing, add the following setting to
the router’s configuration:

Artix Configuration File
bypass_router
{
 plugins:routing:use_bypass = "true";
 ...
};
 83

CHAPTER 4 | CORBA-to-CORBA Routing
Sample route Example 8 shows an example of a bypass route with load balancing
enabled. There are three alternative destination endpoints in the load
balancing cluster: CORBAPort_01, CORBAPort_02, and CORBAPort_03. The
multiRoute attribute must be set to loadBalance.

Example 8: Sample Bypass Route with Load Balancing

<definitions name="" targetNamespace="TargetNamespaceURI"
 ...
 xmlns:tns="TargetNamespaceURI"
 xmlns:ns1="http://schemas.iona.com/routing"
 ...>
 ...
 <ns1:route name="pass_through_route"
 multiRoute="loadBalance">
 <ns1:source service="tns:CORBAServiceOnRouter"
 port="CORBAPortOnRouter"/>
 <ns1:destination service="tns:CORBAService_01"
 port="CORBAPort_01"/>
 <ns1:destination service="tns:CORBAService_02"
 port="CORBAPort_02"/>
 <ns1:destination service="tns:CORBAService_03"
 port="CORBAPort_03"/>
 </ns1:route>
</definitions>
84

CHAPTER 5

Integrating the
CORBA Naming
Service with Artix
In a mixed Artix/CORBA system, it is often necessary for an
Artix application to retrieve an object reference from the
CORBA Naming Service. Artix supports a relatively simple
configuration option for binding a name to or resolving a name
from the CORBA Naming Service: simply set the location
attribute of <corba:address> to be a corbaname URL.

In this chapter This chapter discusses the following topics:

How an Artix Client Resolves a Name page 86

How an Artix Server Binds a Name page 90

Artix Client Integrated with a CORBA Server page 93
 85

CHAPTER 5 | Integrating the CORBA Naming Service with Artix
How an Artix Client Resolves a Name

Overview Figure 16 shows a typical scenario where an Artix client might need to
resolve a name from the CORBA Naming Service. The Artix client, which is
configured to have a corba binding, connects to a pure CORBA server using
the CORBA Naming Service.

To configure the client to resolve the name, you need to specify a corbaname
URL in the corba:address element within a service. No programming is
required. There are, however, some prerequisites settings in the Artix
configuration file that are also required in order to enable the client to find
the CORBA Naming Service.

Figure 16: Artix Client Resolving a Name from the Naming Service

Artix
Client

CORBA
Server

IIOP port

IIOP

<hostname>:<port>

Orbix 6.x
Locator

CORBA
Naming
Service

1 2

3

86

How an Artix Client Resolves a Name
Resolving steps for Orbix 6.x Artix performs the following steps to resolve a name in the Orbix 6.x CORBA
Naming Service (as shown in Figure 16):

Prerequisites Before configuring the client’s WSDL contract to resolve a name from the
CORBA Naming Service, you must edit the Artix configuration file to provide
some details about the remote naming service.

The configuration settings depend on the kind of ORB you are interoperating
with, as follows:

Interoperating with Orbix 6.x, ASP 5.x

In your Artix configuration file (C++ runtime) or Orbix configuration file
(Java runtime), add the following lines to the configuration scope used by
the Artix client:

Step Action

1 The Artix client sends a GIOP LocateRequest message to the
Orbix locator, whose hostname and port is specified in the Artix
configuration file. The LocateRequest reply gives the location of
the CORBA Naming Service.

2 The Artix client contacts the CORBA Naming Service to resolve
the name specified in the WSDL corba:address element.

3 The object reference returned from the naming service is used
to contact the CORBA server.

Note: If using the Java runtime, you must first associate the client with a
configuration file—see “Configuring the Java Runtime CORBA Binding” on
page 241 for details.

Artix Configuration File
artix_client_of_Orbix_6 {
 ...
 initial_references:NameService:reference = "corbaloc::<hostname>:<port>/NameService";
 url_resolvers:corbaname:plugin="naming_resolver";
 plugins:naming_resolver:shlib_name="it_naming";
};
 87

CHAPTER 5 | Integrating the CORBA Naming Service with Artix
Where <hostname>:<port> is the host and port where the Orbix locator
service is running. By default, Orbix 6.x configures the locator <port> to be
3075, but you might need to check the plugins:locator:iiop:port setting
in your Orbix 6.x configuration file if you are not sure of the value.

Interoperating with Orbix 3.3

In your Artix configuration file (C++ runtime) or Orbix configuration file
(Java runtime), add the following lines to the configuration scope used by
the Artix client:

The stringified IOR shown in the preceding example, IOR:000000..., can be
obtained from the 3.3.x Naming Service by starting the NS with the -I
<filename> switch and copying the IOR from the <filename> into the
configuration file. When using the IOR: format, you do not need to load the
naming_resolver plug-in (the naming_resolver is needed only to resolve
corbaloc URLs).

Interoperating with other ORBs

Generally, the approach used for interoperating with Orbix 3.3 (initializing
initial_references:NameService:reference with the value of the naming
service’s IOR) should work for just about any third-party ORB product. You
might need to modify some of the GIOP interoperability policies, however.
For more details, consult the Artix Configuration Reference.

Note: The Orbix locator service is responsible for keeping track of
running Orbix services. It is completely unrelated to the Artix locator
service.

Artix Configuration File
artix_client_of_Orbix_33 {
 ...
 initial_references:NameService:reference = "IOR:000000......";

 policies:giop:interop_policy:negotiate_transmission_codeset = "false";
 policies:giop:interop_policy:send_principal = "true";
 policies:giop:interop_policy:send_locate_request = "false";
};
88

How an Artix Client Resolves a Name
Configure the WSDL service To configure an Artix client to resolve a name in the CORBA Naming
Service, use the corbaname URL format in the <corba:address> tag, as
follows:

Where StringName is the name that you want to resolve, specified in the
standard CORBA Naming Service string format. For example, if you have a
name with id equal to ArtixTest and kind equal to obj, contained within a
naming context with id equal to Foo and kind equal to ctx, the corbaname
URL would be expressed as:

corbaname:rir:/NameService#Foo.ctx/ArtixTest.obj

In other words, the general format of a string name is as follows:

<id>[.<kind>]/<id>[.<kind>]/...

<service name="CORBAService">
 <port binding="tns:CORBABinding" name="CORBAPort">
 <corba:address location="corbaname:rir:/NameService#StringName"/>
 </port>
</service>
 89

CHAPTER 5 | Integrating the CORBA Naming Service with Artix
How an Artix Server Binds a Name

Overview Figure 17 shows a typical scenario where an Artix server might need to bind
a name to the CORBA Naming Service. In the context of the CORBA Naming
Service, binding a name means that the server advertises the location of a
CORBA object by storing an object reference against a name in the naming
service.

To configure the server to bind the name, you need to specify a corbaname
URL in the corba:address element within a service (exactly the same
configuration as an Artix client). When the Artix server activates the
<service> or <port>, by registering with the Artix Bus, the runtime
automatically binds the name in the naming service.

Figure 17: Artix Server Binding a Name to the Naming Service

Artix
Server

CORBA
Client

IIOP port

<hostname>:<port>

Orbix 6.x
Locator

CORBA
Naming
Service

1 2
90

How an Artix Server Binds a Name
Binding steps for Orbix 6.x Artix performs the following steps to bind a name in the Orbix 6.x CORBA
Naming Service (as shown in Figure 17):

Prerequisites The prerequisites for an Artix server that binds a name to the CORBA
Naming Service are identical to the prerequisites for an Artix client that
resolves a name—see “Prerequisites” on page 87 for details.

Configure the WSDL service To configure an Artix server to bind a name in the CORBA Naming Service,
use the corbaname URL format in the <corba:address> tag, as follows:

Where StringName is the name that you want to resolve, specified in the
standard CORBA Naming Service string format.

This is identical to the configuration for an Artix client, but the server treats
this configuration setting differently. When an Artix server activates a service
containing a corbaname URL, the server automatically binds the given
StringName into the CORBA naming service.

Step Action

1 The Artix server sends a GIOP LocateRequest message to the
Orbix locator, whose hostname and port is specified in the Artix
configuration file. The LocateRequest reply gives the location of
the CORBA Naming Service.

2 The Artix server contacts the CORBA Naming Service to bind
the name specified in the WSDL corba:address element.

<service name="CORBAService">
 <port binding="tns:CORBABinding" name="CORBAPort">
 <corba:address location="corbaname:rir:/NameService#StringName"/>
 </port>
</service>
 91

CHAPTER 5 | Integrating the CORBA Naming Service with Artix
Binding semantics The automatic binding performed by an Artix server when it encounters a
corbaname URL has the following characteristics:

• The binding operation has the semantics of the
CosNaming::NamingContext::rebind() IDL operation. That is, the
bind operation either creates a new binding or clobbers an existing
binding of the same name.

• If some of the naming contexts in the StringName compound name do
not yet exist in the naming service, the Artix server does not create the
missing contexts.

For example, if you try to bind a StringName with the value
Foo/Bar/SomeName where neither the Foo nor Foo/Bar naming contexts
exist yet, the Artix server will not bind the given name. You would need
to create the naming contexts manually prior to running the Artix server
(for example, in Orbix 6.x you could issue the command itadmin ns
newnc NameContext).
92

Artix Client Integrated with a CORBA Server
Artix Client Integrated with a CORBA Server

Overview This section presents an example scenario of an Artix client integrated with
a CORBA server, where the client obtains a CORBA object reference through
the CORBA Naming Service.

In summary, the scenario works as follows:

• A CORBA Naming Service from an ORB product (presumed to be Orbix
6.x) is assumed to be running.

• As the CORBA server starts up, it uses the CosNaming::NamingContext
IDL interface to bind a name to the naming service.

• When the Artix client starts up, the Artix runtime reads the client’s
WSDL contract, extracts a corbaname URL and contacts the naming
service to resolve the corbaname URL.

In this section This section contains the following subsections:

CORBA Server Implementation page 94

Artix Client Configuration page 97
 93

CHAPTER 5 | Integrating the CORBA Naming Service with Artix
CORBA Server Implementation

Overview The code example in this subsection shows you how a server binds a name
to the root naming context of the CORBA Naming Service. This shows how a
CORBA programmer can use the standard CosNaming::NamingContext IDL
interface to bind a name.

CORBA server main function Example 9 shows part of the main() function for a CORBA server that
registers a name in the CORBA Naming Service. The lines of code shown in
bold bind the name, ArtixTest, to the root naming context.

Note: This is a pure CORBA example; there is no Artix programming
involved here.

Example 9: CORBA Server that Register a Name in the Naming Service

// C++
...
#include <omg/CosNaming.hh>
...
int main(int argc, char* argv[])
{
 IT_TerminationHandler::set_signal_handler(sig_handler);

 try
 {
 cout << "Initializing the ORB" << endl;
 global_orb = CORBA::ORB_init(argc, argv);
 CORBA::Object_var poa_obj =
 global_orb->resolve_initial_references("RootPOA");
 PortableServer::POA_var root_poa =
 PortableServer::POA::_narrow(poa_obj);
 assert(!CORBA::is_nil(root_poa));

 cout << "Creating objects" << endl;

 HWImplementation hw_servant;
 PortableServer::ObjectId_var hw_oid =
 root_poa->activate_object(&hw_servant);
94

Artix Client Integrated with a CORBA Server
 CORBA::Object_var ref=
root_poa->create_reference_with_id(

 hw_oid,
 _tc_HelloWorld->id()
);

 // Use the simple NamingContext interface
 CosNaming::NamingContext_var rootContext;

 // Get a reference to the Root Naming Context.
 CORBA::Object_var objVar;
 objVar = global_orb->resolve_initial_references(
 "NameService"
);
 rootContext = CosNaming::NamingContext::_narrow(objVar);

 if (CORBA::is_nil(rootContext.in()))
 {
 cerr << "_narrow returned nil" << endl;
 return 1;
 }

 CosNaming::Name_var tmpName = new CosNaming::Name(1);
 tmpName->length(1);

 tmpName[0].id = CORBA::string_dup("ArtixTest");
 tmpName[0].kind = CORBA::string_dup("");
 rootContext->rebind(tmpName, ref);

 // Activate the POA Manager to allow requests to arrive
 PortableServer::POAManager_var poa_manager =
 root_poa->the_POAManager();
 poa_manager->activate();

 // Give control to the ORB
 //
 global_orb->run();
 return 0;
 }
 catch (CORBA::Exception& e)
 {
 cout << "Error occurred: " << e << endl;
 }
 return 1;
}

Example 9: CORBA Server that Register a Name in the Naming Service
 95

CHAPTER 5 | Integrating the CORBA Naming Service with Artix
Demonstration code If you want to run this CORBA server code in a real example, you could use
the following demonstration as a starting point:

ArtixInstallDir/cxx_java/samples/transports/cdr_over_iiop/corba

In the server subdirectory, there is an existing server.cxx mainline file that
publishes the IOR by saving to a file. To change the server to use the
naming service, you can replace the existing server main() function with the
code shown in Example 9 on page 94.

Note the following points:

• Remember to add the include line, #include <omg/CosNaming.hh>, at
the start of the server.cxx file.

• Edit the server Makefile, adding the it_naming library to the link list.
For example, on Windows you would add it_naming.lib to the link
list.

• You need a separate ORB product (for example, Orbix) to run the
CORBA Naming Service. The Artix product does not include a CORBA
Naming Service.
96

Artix Client Integrated with a CORBA Server
Artix Client Configuration

Overview This subsection shows how to configure an Artix client to fetch an object
reference from the CORBA Naming Service.

Demonstration configuration The configuration files referred to in this subsection are taken from the
cdr_over_iiop demonstration and located in the following directory:

ArtixInstallDir/cxx_java/samples/transports/cdr_over_iiop/etc

The corresponding client application requires no modification. You can
choose to run either a C++ version of the client:

cdr_over_iiop/cxx/client

Or a Java version of the client:

cdr_over_iiop/java/client

Artix configuration file Example 10 shows the Artix configuration required for the Artix client to
interoperate with the Orbix 6.x naming service.

To configure the cdr_over_iiop demonstration, edit the
cdr_over_iiop/etc/cdr_over_iiop.cfg file, inserting the three lines
highlighted in bold in Example 10 on page 97. You might need to modify

Example 10: Artix Configuration for Interoperating with Orbix 6 Naming

Artix Configuration File
include "../../../../../etc/domains/artix.cfg";

demos {
 cdr_over_iiop {
 orb_plugins = ["xmlfile_log_stream", "iiop_profile", "giop", "iiop"];

 initial_references:NameService:reference = "corbaloc::localhost:3075/NameService";
 url_resolvers:corbaname:plugin = "naming_resolver";
 plugins:naming_resolver:shlib_name = "it_naming";

 corba {
 orb_plugins = ["iiop_profile", "giop", "iiop"];
 };
 };
};
 97

CHAPTER 5 | Integrating the CORBA Naming Service with Artix
the value of the hostname and port—this example assumes that the Orbix
locator service is running on the same host as the client, localhost, and
listening on the default port, 3075.

WSDL contract You also need to edit the client’s WSDL contract, specifying the location
attribute of the corba:address element using a corbaname URL.
Example 11 shows the modifications you need to make to the
corba:address element in the cdr_over_iiop/etc/cdr_over_iiop.wsdl
contract file.

When the client starts up, the Artix runtime automatically retrieves the
CORBA object reference by resolving the name, ArtixTest, in the scope of
the root naming context.

Note: The configuration shown in Example 10 on page 97 is specific to
the Orbix 6.x naming service. If you use a different ORB product, you
might have to set this configuration differently—see “Prerequisites” on
page 87 for more details.

Example 11: CORBA Address Specified as a corbaname URL

<definitions name="cdr_over_iiop" targetNamespace="http://www.iona.com/cdr_over_iiop"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:corba="http://schemas.iona.com/bindings/corba"
 xmlns:corbatm="http://www.iona.com/cdr_over_iiop"
 ... >
 ...
 <service name="HelloWorldService">
 <port binding="corbatm:HelloWorldBinding" name="HelloWorldPort">
 <corba:address location="corbaname:rir:/NameService#ArtixTest"/>
 </port>
 </service>
</definitions>
98

CHAPTER 6

Advanced CORBA
Port Configuration
This chapter describes some advanced configuration options
for customizing a CORBA port on an Artix server.

In this chapter This chapter discusses the following topics:

Configuring Fixed Ports and Long-Lived IORs page 100

CORBA Timeout Policies page 106

Retrying Invocations and Rebinding page 108
 99

CHAPTER 6 | Advanced CORBA Port Configuration
Configuring Fixed Ports and Long-Lived IORs

Overview Artix provides a corba:policy element that enables you to customize
certain CORBA-specific policies for a WSDL service that acts as a CORBA
endpoint. Essentially, the corba:policy element makes it possible to enable
the following features on a CORBA endpoint:

• Fixed IP port—the WSDL service listens on the same IP port all the
time. This is useful, for example, if the available range of IP ports is
restricted or if the service must be accessible through a firewall.

• Long-lived interoperable object references (IORs)—the IOR remains
valid even after the server is stopped and restarted.

You can configure a WSDL service to behave in one of the following ways:

• Transient service.

• Direct persistent service.

Transient service By default, a CORBA endpoint is automatically configured to be transient. A
transient service generates IORs with the following characteristics:

• Randomly-assigned IP port—the IP port is assigned by the underlying
operating system. Hence, the port is generally different each time the
Artix server is run.

• Short-lived IORs—the CORBA binding generates IORs in such a way
that they are guaranteed to become invalid when the server is stopped
and restarted.

Note: In this context, transient is a CORBA concept which refers to the
TRANSIENT value of the PortableServer::LifespanPolicy. This notion of
transience should not be confused with the Artix notion of transience,
which is concerned with registering transient servants. The two concepts
are completely different.
100

Configuring Fixed Ports and Long-Lived IORs
Direct persistent service You can optionally configure a CORBA endpoint to be direct persistent. A
direct persistent service generates IORs with the following characteristics:

• Fixed IP port—you can explicitly assign the IP port by configuration.
Hence, the IP port remains the same each time the Artix server is run.

• Long-lived IORs—the CORBA binding generates IORs in such a way
that they remain valid even when the server is stopped and restarted.
All of the addressing information embedded in the IOR must remain
constant, in particular:

♦ IP port is fixed—the WSDL service must be configured to listen
on a fixed IP port.

♦ POA name is fixed—the POA name is a CORBA-specific
construct that identifies an endpoint.

♦ Object ID in IOR is fixed—the Object ID is a CORBA-specific
construct that identifies a particular object in a given POA
instance.

♦ POA is persistent—a prerequisite for generating long-lived IORs is
that the POA must have a life span policy value of PERSISTENT.
 101

CHAPTER 6 | Advanced CORBA Port Configuration
Configuring a service to be direct
persistent

To configure an Artix service to be direct persistent, you must edit both the
WSDL file and the Artix configuration file.

Editing the WSDL file

Artix enables you to set direct persistence attributes in WSDL by adding a
corba:policy element to the WSDL service, as shown in Example 12.

The corba:policy attributes from Example 12 can be explained as follows:

• xmlns:corba namespace—the value of the corba namespace,
CORBANamespace, depends on the runtime you are using, as follows:

♦ C++ runtime (C++ and JAX-RPC)—set the corba namespace
prefix as follows:

♦ Java runtime (JAX-WS)—set the corba namespace prefix as
follows:

Example 12: Setting Direct Persistence Attributes in WSDL

<definitions name="" targetNamespace="..."
 ...
 xmlns:corba="CORBANamespace"
 ...>
 ...
 <service name="CORBAServiceName">
 <port binding="tns:CORBABinding" name="CORBAPortName">
 <corba:address location="file:///greeter.ior"/>
 <corba:policy persistent="true"
 poaname="FQPN"
 serviceid="ObjectID" />
 </port>
 </service>
</definitions>

xmlns:corba="http://schemas.iona.com/bindings/corba"

xmlns:corba="http://schemas.apache.org/yoko/bindings/corba"
102

Configuring Fixed Ports and Long-Lived IORs
• persistent attribute—by setting this attribute to true, you configure
the CORBA binding to generate persistent IORs (that is, IORs that
continue to be valid even after the Artix server is stopped and
restarted). The default value is false.

• poaname attribute—in CORBA terminology, a POA is an object that
groups CORBA objects together (a kind of container for CORBA
objects). It is necessary to set the POA name here, because the POA
name is embedded in the generated IORs. The generated IORs would
not be long-lived, unless the POA name remains constant. By default,
a POA name is automatically generated with the value,
{ServiceNamespace}ServiceLocalPart#PortName.

• serviceid attribute—in CORBA terminology, this attribute specifies an
Object ID for a CORBA object. It is necessary to set the Object ID here,
because the Object ID is embedded in the server-generated IOR. The
Object ID must have a constant value in order for the IOR to be
long-lived. By default, the underlying POA would generate a random
value for the Object ID.

Artix currently allows you to set only one Object ID for each port.

Note: In CORBA terms, this is equivalent to setting the
PortableServer::LifespanPolicy policy to PERSISTENT.

Note: The POA name, FQPN, is a fully-qualified POA name. In
practice, however, you can only set a simple POA name. Artix
currently does not provide a way of creating a POA name hierarchy.

Note: The serviceid attribute also implicitly sets the CORBA
PortableServer::IdAssignmentPolicy policy to USER_ID. If the
serviceid attribute is not set, the
PortableServer::IdAssignmentPolicy policy defaults to SYSTEM_ID.
 103

CHAPTER 6 | Advanced CORBA Port Configuration
Editing the Artix configuration file

To complete the configuration of direct persistence, you must also set some
configuration variables in the relevant scope of the Artix configuration file.

For example, if your Artix server uses the artix_server configuration scope,
you would add the configuration variables as shown in Example 13.

The configuration variables from Example 13 can be explained as follows:

• poa:FQPN:direct_persistent variable—you must set this variable to
true, which configures the CORBA binding to receive direct
connections from Orbix clients. You should substitute FQPN with the
POA name from the poaname attribute in the WSDL (see Example 12
on page 102).

Note: If using the Java runtime, you must first associate the service with
a configuration file—see “Configuring the Java Runtime CORBA Binding”
on page 241 for details.

Example 13: Setting Direct Persistence Configuration Variables

Artix Configuration File
...
artix_server {
 ...
 poa:FQPN:direct_persistent="true";
 poa:FQPN:well_known_address="WKA_prefix";
 WKA_prefix:iiop:port="IP_Port";
};

Note: In CORBA terms, this is equivalent to setting the
IT_PortableServer::PersistenceModePolicy policy to
DIRECT_PERSISTENCE. The alternative policy value,
INDIRECT_PERSISTENCE, is not compatible with Artix, because it
would require connections to be routed through the Orbix locator
service, which is not part of the Artix product.
104

Configuring Fixed Ports and Long-Lived IORs
• poa:FQPN:well_known_address variable—this variable defines a prefix,
WKA_prefix, which forms part of the variable names that configure a
fixed port for the WSDL service. You should substitute FQPN with the
POA name from the poaname attribute in the WSDL.

• WKA_prefix:iiop:port variable—this variable configures a fixed IP
port for the WSDL service associated with WKA_prefix.

Fixed port configuration variables The following IIOP configuration variables can be set for a CORBA endpoint
that uses the WKA_prefix prefix:

WKA_prefix:iiop:host = "host";

Specifies the hostname, host, to publish in the IIOP profile of
server-generated IORs. This variable is potentially useful for
multi-homed hosts, because it enables you to specify which network
card the client should attempt to connect to.

WKA_prefix:iiop:port = "port";

Specifies the fixed IP port, port, on which the server listens for
incoming IIOP/TLS messages. This port value is also published in the
IIOP profile of generated IORs.

WKA_prefix:iiop:listen_addr = "host";

Restricts the IIOP/TLS listening point to listen only on the specified
address, host. It is generally used on multi-homed hosts to limit
incoming connections to a particular network interface. The default is
to listen on 0.0.0.0 (which represents every network card on the host).

Secure fixed port configuration
variables

Additionally, the following secure fixed port configuration variables can be
set for a CORBA endpoint that uses the WKA_prefix prefix:

WKA_prefix:iiop_tls:host
WKA_prefix:iiop_tls:port
WKA_prefix:iiop_tls:listen_addr

These configuration variables function analogously to their insecure
counterparts.

Note: These secure configuration variables will have no effect, unless the
iiop_tls plug-in is also loaded. It is strongly recommended that you read
the Artix Security Guide for details of how to configure IIOP/TLS security.
 105

CHAPTER 6 | Advanced CORBA Port Configuration
CORBA Timeout Policies

Overview Artix servers that expose a CORBA endpoint can be configured to use
CORBA-specific timeout policies. The timeout policies described here affect
GIOP transports (for example, the IIOP or IIOP/TLS transports), but do not
have any affect on non-CORBA transports.

Example To use the timeout policies, add the relevant configuration variables to the
Artix server’s configuration scope in the Artix configuration file.

For example, for an Artix server that uses the artix_server configuration
scope, you can set the CORBA relative roundtrip timeout as follows:

Timeout policies You can configure the following CORBA timeout policies in your Artix
configuration file:

policies:relative_binding_exclusive_request_timeout

Limits the amount of time allowed to deliver a request, exclusive of
binding attempts. Request delivery is considered complete when the
last fragment of the GIOP request is sent over the wire to the target
object. This policy’s value is set in millisecond units.

policies:relative_binding_exclusive_roundtrip_timeout

Limits the amount of time allowed to deliver a request and receive its
reply, exclusive of binding attempts. The countdown begins
immediately after a binding is obtained for the invocation. This policy’s
value is set in millisecond units.

Note: If using the Java runtime, you must first associate the server with
a configuration file—see “Configuring the Java Runtime CORBA Binding”
on page 241 for details.

Artix Configuration File
artix_server {
 # Limit total time for an invocation to 2 seconds
 # (including time for connection and binding establishment).
 policies:relative_roundtrip_timeout = "2000";
}

106

CORBA Timeout Policies
policies:relative_connection_creation_timeout

Specifies how much time is allowed to resolve each address in an IOR,
within each binding iteration. Defaults to 8 seconds.

An IOR can have several TAG_INTERNET_IOP (IIOP transport) profiles,
each with one or more addresses, while each address can resolve
through DNS to multiple IP addresses.

This policy applies to each IP address within an IOR. Each attempt to

resolve an IP address is regarded as a separate attempt to create a

connection. The policy’s value is set in millisecond units.

policies:relative_request_timeout

Specifies how much time is allowed to deliver a request. Request
delivery is considered complete when the last fragment of the GIOP
request is sent over the wire to the target object. The timeout-specified
period includes any delay in establishing a binding. This policy type is
useful to a client that only needs to limit request delivery time. Set this
policy’s value in millisecond units.

No default is set for this policy; if it is not set, request delivery has
unlimited time to complete.

policies:relative_roundtrip_timeout

Specifies how much time is allowed to deliver a request and its reply.
Set this policy’s value in millisecond units. No default is set for this
policy; if it is not set, a request has unlimited time to complete.

The timeout countdown begins with the request invocation, and
includes the following activities:

♦ Marshalling in/inout parameters

♦ Any delay in transparently establishing a binding

If the request times out before the client receives the last fragment of
reply data, all received reply data is discarded. In some cases, the
client might attempt to cancel the request by sending a GIOP
CancelRequest message.
 107

CHAPTER 6 | Advanced CORBA Port Configuration
Retrying Invocations and Rebinding

Overview Artix lets you configure CORBA policies that customize invocation retries
and reconnection. The policies can be grouped into the following categories:

• Retrying invocations.

• Rebinding.

Retrying invocations The following configuration variables determine how the CORBA binding
deals with requests that raise the CORBA::TRANSIENT exception with a
completion status of COMPLETED_NO. In terms of an IIOP connection, a
TRANSIENT exception is raised if an error occurred before or during an
attempt to write to or connect to a socket.

policies:invocation_retry:backoff_ratio

Specifies the degree to which delays between invocation retries
increase from one retry to the next. Defaults to 2.

policies:invocation_retry:initial_retry_delay

Specifies the amount of time, in milliseconds, between the first and
second retries. Defaults to 100.

policies:invocation_retry:max_forwards

Specifies the number of times an invocation message can be
forwarded. Defaults to 20. To specify unlimited forwards, set to -1.

policies:invocation_retry:max_retries

Specifies the number of transparent reinvocations attempted on receipt
of a TRANSIENT exception. Defaults to 5.

Note: The delay between the initial invocation and first retry is
always 0.
108

Retrying Invocations and Rebinding
Rebinding The following configuration variables determine how the CORBA binding
deals with requests that raise the CORBA::COMM_FAILURE exception with a
completion status of COMPLETED_NO. In terms of an IIOP connection, a
COMM_FAILURE exception is raised with a completion status of COMPLETED_NO,
if the connection went down.

policies:rebind_policy

Specifies the default value for the rebind policy. Can be one of the
following:

♦ TRANSPARENT (default)

♦ NO_REBIND

♦ NO_RECONNECT

policies:invocation_retry:max_rebinds

Specifies the number of transparent rebinds attempted on receipt of a
COMM_FAILURE exception. Defaults to 5.

Note: This setting is valid only if the effective
policies:rebind_policy value is TRANSPARENT; otherwise, no
rebinding occurs.
 109

CHAPTER 6 | Advanced CORBA Port Configuration
110

CHAPTER 7

Artix IDL-to-WSDL
Mapping
This chapter describes how the Artix IDL-to-WSDL compiler
maps OMG IDL types to WSDL types and how the WSDL types
are then mapped to C++ and Java.

In this chapter This chapter discusses the following topics:

Introducing CORBA Type Mapping page 112

IDL Primitive Type Mapping page 113

IDL Complex Type Mapping page 117

IDL Module and Interface Mapping page 141
 111

CHAPTER 7 | Artix IDL-to-WSDL Mapping
Introducing CORBA Type Mapping

Overview To ensure that messages are converted into the proper format for a CORBA
application to understand, Artix contracts need to unambiguously describe
how data is mapped to CORBA data types.

For primitive types, the mapping is straightforward. However, complex types
such as structures, arrays, and exceptions require more detailed
descriptions.

Unsupported types The following CORBA types are not supported:

• Value types

• Boxed values

• Local interfaces

• Abstract interfaces

• Forward-declared interfaces
112

IDL Primitive Type Mapping
IDL Primitive Type Mapping

Mapping chart Most primitive IDL types are directly mapped to primitive XML Schema
types. Table 1 lists the mappings for the supported IDL primitive types.

Table 1: Primitive Type Mapping for CORBA Plug-in

IDL Type XML Schema Type CORBA Binding
Type

Artix C++ Type Artix Java Type

any xsd:anyType corba:any IT_Bus::AnyHolder JAX-RPC binding:
com.iona.webservices

.reflect.types.AnyTy

pe

JAX-WS binding:
java.lang.Object

boolean xsd:boolean corba:boolean IT_Bus::Boolean boolean

char xsd:byte corba:char IT_Bus::Byte byte

string xsd:string corba:string IT_Bus::String java.lang.String

wchar xsd:string corba:wchar IT_Bus::String java.lang.String

wstring xsd:string corba:wstring IT_Bus::String java.lang.String

short xsd:short corba:short IT_Bus::Short short

long xsd:int corba:long IT_Bus::Int int

long long xsd:long corba:longlong IT_Bus::Long long

unsigned short xsd:unsignedShort corba:ushort IT_Bus::UShort int

unsigned long xsd:unsignedInt corba:ulong IT_Bus::UInt long

unsigned long
long

xsd:unsignedLong corba:ulonglong IT_Bus::ULong java.math.BigInteger

float xsd:float corba:float IT_Bus::Float float

double xsd:double corba:double IT_Bus::Double double

long double Not Supported Not Supported Not Supported Not Supported
 113

CHAPTER 7 | Artix IDL-to-WSDL Mapping
Unsupported types Artix does not support the CORBA long double type.

Unsupported time/date values The following xsd:dateTime values cannot be mapped to TimeBase::UtcT:

• Values with a local time zone. Local time is treated as a 0 UTC time
zone offset.

• Values prior to 15 October 1582.

• Values greater than approximately 30,000 A.D.

The following TimeBase::UtcT values cannot be mapped to xsd:dateTime:

• Values with a non-zero inacclo or inacchi.

• Values with a time zone offset that is not divisible by 30 minutes.

• Values with time zone offsets greater than 14:30 or less than -14:30.

• Values with greater than millisecond accuracy.

• Values with years greater than 9999.

octet xsd:unsignedByte corba:octet IT_Bus::UByte short

fixed xsd:decimal corba:fixed IT_Bus::Decimal java.math.BigDecimal

Object wsa:EndpointRefer
enceType

corba:object WS_Addressing::En
dpointReferenceTy
pe

JAX-RPC binding:
com.iona.schemas.wsa

ddressing.EndpointRe

ferenceType

JAX-WS binding:
org.apache.cxf.ws.ad

dressing.EndpointRef

erenceType

TimeBase::UtcT xsd:dateTimea corba:dateTime IT_Bus::DateTime JAX-RPC binding:
java.util.Calendar

JAX-WS binding:

a. The mapping between xsd:dateTime and TimeBase:UtcT is only partial. For the restrictions see “Unsupported
time/date values” on page 114

Table 1: Primitive Type Mapping for CORBA Plug-in

IDL Type XML Schema Type CORBA Binding
Type

Artix C++ Type Artix Java Type
114

IDL Primitive Type Mapping
String type The IDL-to-WSDL mapping for strings is ambiguous, because the string,
wchar, and wstring IDL types all map to the same type, xsd:string. This
ambiguity can be resolved, however, because the generated WSDL records
the original IDL type in the CORBA binding description (that is, within the
scope of the <wsdl:binding> </wsdl:binding> tags). Hence, whenever an
xsd:string is sent over a CORBA binding, it is automatically converted
back to the original IDL type (string, wchar, or wstring).

Fixed type The mapping of fixed is a special case. Although fixed maps directly to the
xsd:decimal type, Artix must store additional mapping information in order
to support round-trip conversion between WSDL and IDL. Therefore, Artix
records the details of the IDL fixed mapping in a corba:fixed element
(within the scope of the corba:typeMapping element). For example, the
mapping of a fixed<6, 2> type might be recorded as follows:

Example The mapping of primitive types is handled in the CORBA binding section of
the Artix contract. For example, consider an input message that has a part,
score, that is described as an xsd:int as shown in Example 14.

<corba:typeMapping ... >
 <corba:fixed digits="6"
 scale="2"
 name="SampleTypes.Money"
 repositoryID="IDL:SampleTypes/Money:1.0"
 type="xsd:decimal"/>
</corba:typeMapping>

Example 14: WSDL Operation Definition

<message name="runsScored">
 <part name="score"/>
</message>
<portType ...>
 <operation name="getRuns">
 <input message="tns:runsScored" name="runsScored"/>
 </operation>
</portType>
 115

CHAPTER 7 | Artix IDL-to-WSDL Mapping
 It is described in the CORBA binding as shown in Example 15.

The IDL is shown in Example 16.

Example 15: Example CORBA Binding

<binding ...>
 <operation name="getRuns">
 <corba:operation name="getRuns">
 <corba:param name="score" mode="in" idltype="corba:long"/>
 </corba:operation>
 <input/>
 <output/>
 </operation>
</binding>

Example 16: getRuns IDL

// IDL
void getRuns(in score);
116

IDL Complex Type Mapping
IDL Complex Type Mapping

Overview This section describes how the complex IDL data types are mapped to
WSDL.

In this section This section contains the following subsections:

IDL enum Type page 118

IDL struct Type page 121

IDL union Type page 124

IDL sequence Types page 129

IDL array Types page 132

IDL exception Types page 135

IDL typedef Expressions page 140
 117

CHAPTER 7 | Artix IDL-to-WSDL Mapping
IDL enum Type

Overview An IDL enumeration maps to an XML string with enumeration facets. The
mapped enumeration is a simple type derived by restriction from the
xsd:string type.

IDL example Consider the following definition of an IDL enum type, SampleTypes::Shape:

WSDL mapping The IDL-to-WSDL compiler maps the SampleTypes::Shape enum to a WSDL
restricted simple type, SampleTypes.Shape, as follows:

CORBA type mapping To support round-trip conversion between WSDL and IDL, Artix records the
details of the enumeration type mapping in a corba:enum element (within
the scope of the corba:typeMapping element), as follows:

// IDL
module SampleTypes {
 enum Shape { Square, Circle, Triangle };
 ...
};

<xsd:simpleType name="SampleTypes.Shape">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Square"/>
 <xsd:enumeration value="Circle"/>
 <xsd:enumeration value="Triangle"/>
 </xsd:restriction>
</xsd:simpleType>

<corba:typeMapping ... >
 <corba:enum name="SampleTypes.Shape"
 repositoryID="IDL:SampleTypes/Shape:1.0"
 type="xsd1:SampleTypes.Shape">
 <corba:enumerator value="Square"/>
 <corba:enumerator value="Circle"/>
 <corba:enumerator value="Triangle"/>
 </corba:enum>
 ...
</corba:typeMapping>
118

IDL Complex Type Mapping
C++ mapping The WSDL-to-C++ compiler maps the SampleTypes.Shape type to a C++
class, SampleTypes_Shape, as follows:

The value of the enumeration type can be accessed and modified using the
get_value() and set_value() member functions.

JAX-RPC mapping The JAX-RPC WSDL-to-Java compiler maps the SampleTypes.Shape type to
a Java class, SampleTypesShape, as follows:

To create a new SampleTypesShape object, call the fromString() method
with the value argument equal to Square, Circle, or Triangle. Either the
getValue() method or the toString() method can be used to access the
value.

// C++
class SampleTypes_Shape : public IT_Bus::AnySimpleType
{
 public:
 SampleTypes_Shape();
 SampleTypes_Shape(const IT_Bus::String & value);
 ...
 void set_value(const IT_Bus::String & value);
 const IT_Bus::String & get_value() const;
};

// Java
package com.iona.schemas.idltypes.sampletypes_idl;

public class SampleTypesShape
{
 ...
 public String getValue() { ... };

 public static
 com.iona.schemas.idltypes.sampletypes_idl.SampleTypesShape
 fromString(String value) { ... };
 ...
 public String toString() { ... }
}

 119

CHAPTER 7 | Artix IDL-to-WSDL Mapping
JAX-WS mapping The JAX-WS WSDL-to-Java compiler maps the SampleTypes.Shape type to a
Java enumeration, SampleTypesShape, as follows:

To create a new SampleTypesShape object, call either the constructor
method or the fromValue() method, with the value argument equal to
Square, Circle, or Triangle. Use the value() method to access the value.

// Java
package org.apache.schemas.yoko.idl.sampletypes;

public enum SampleTypesShape {
 CIRCLE("Circle"),
 SQUARE("Square"),
 TRIANGLE("Triangle");
 private final String value;

 SampleTypesShape(String v) { ... }

 public String value() { ... }

 public static SampleTypesShape fromValue(String v) { ... }
}

120

IDL Complex Type Mapping
IDL struct Type

Overview An IDL structure maps to an xsd:sequence type. Each field in the IDL
structure maps to an element in the sequence.

IDL example Consider the following definition of an IDL struct type,
SampleTypes::SampleStruct:

WSDL mapping The IDL-to-WSDL compiler maps the SampleTypes::SampleStruct struct to
an XML schema sequence complex type, SampleTypes.SampleStruct, as
follows:

CORBA type mapping To support round-trip conversion between WSDL and IDL, Artix records the
details of the structure type mapping in a corba:struct element (within the
scope of the corba:typeMapping element), as follows:

// IDL
module SampleTypes {
 struct SampleStruct {
 string theString;
 long theLong;
 };
};

<xsd:complexType name="SampleTypes.SampleStruct">
 <xsd:sequence>
 <xsd:element name="theString" type="xsd:string"/>
 <xsd:element name="theLong" type="xsd:int"/>
 </xsd:sequence>
</xsd:complexType>

<corba:typeMapping ... >
 <corba:struct name="SampleTypes.SampleStruct"
 repositoryID="IDL:SampleTypes/SampleStruct:1.0"
 type="xsd1:SampleTypes.SampleStruct">
 <corba:member idltype="corba:string" name="theString"/>
 <corba:member idltype="corba:long" name="theLong"/>
 </corba:struct>
</corba:typeMapping>
 121

CHAPTER 7 | Artix IDL-to-WSDL Mapping
C++ mapping The WSDL-to-C++ compiler maps the SampleTypes.SampleStruct type to
a C++ class, SampleTypes_SampleStruct, as follows:

The members of the struct can be accessed and modified using the
getStructMember() and setStructMember() pairs of functions.

JAX-RPC mapping The JAX-RPC WSDL-to-Java compiler maps the SampleTypes.SampleStruct
type to a Java class, SampleTypesSampleStruct, as follows:

The members of the struct can be accessed and modified using the
getStructMember() and setStructMember() pairs of methods.

// C++
class SampleTypes_SampleStruct : public

IT_Bus::SequenceComplexType
{
 public:
 SampleTypes_SampleStruct();
 SampleTypes_SampleStruct(const SampleTypes_SampleStruct&

copy);
 ...
 const IT_Bus::String & gettheString() const;
 IT_Bus::String & gettheString();
 void settheString(const IT_Bus::String & val);

 const IT_Bus::Int & gettheLong() const;
 IT_Bus::Int & gettheLong();
 void settheLong(const IT_Bus::Int & val);
};

// Java
package com.iona.schemas.idltypes.sampletypes_idl;

public class SampleTypesSampleStruct
{
 public String getTheString() { ... }
 public void setTheString(String val) { ... }

 public int getTheLong() { ... }
 public void setTheLong(int val) { ... }
 ...
 public String toString() { ... }
}

122

IDL Complex Type Mapping
JAX-WS mapping The JAX-WS WSDL-to-Java compiler maps the SampleTypes.SampleStruct
type to a Java class, SampleTypesSampleStruct, as follows:

The members of the struct can be accessed and modified using the
getStructMember() and setStructMember() pairs of methods.

// Java
package org.apache.schemas.yoko.idl.sampletypes;

public class SampleTypesSampleStruct {
 ...
 public String getTheString() { ... }
 public void setTheString(String value) { ... }

 public int getTheLong() { ... }
 public void setTheLong(int value) { ... }
}

 123

CHAPTER 7 | Artix IDL-to-WSDL Mapping
IDL union Type

Overview Unions are particularly difficult to describe using the XML schema
framework. In the logical data type descriptions, the difficulty is how to
describe the union without losing the relationship between the members of
the union and the discriminator used to select the members. The easiest
method is to describe a union using an xsd:choice and list the members in
the specified order. The OMG’s proposed method is to describe the union as
an xsd:sequence containing one element for the discriminator and an
xsd:choice to describe the members of the union. However, neither of
these methods can accurately describe all the possible permutations of a
CORBA union.

IDL example Consider the following definition of an IDL union type, SampleTypes::Poly:

// IDL
module SampleTypes {
 union Poly switch (short)
 {
 case 0:
 string StringCase0;
 case 1:
 case 2:
 float FloatCase1and2;
 default:
 long caseDef;
 };
};
124

IDL Complex Type Mapping
WSDL mapping—default The IDL-to-WSDL compilers (C++ runtime and Java runtime) generate the
following mapping for the IDL union type by default:

In this case, the IDL union maps to xsd:choice, where the name of the type
is SampleTypes.Poly. By default, Artix uses the xsd:choice type as the
representation of the union throughout the contract.

WSDL mapping—OMG
alternative

The IDL-to-WSDL compiler for the C++ runtime (which includes the
JAX-RPC Java binding) also generates the following alternative mapping for
the IDL union type:

In this case, the IDL union maps to xsd:sequence, where the name of the
type is obtained by prepending _omg_ to the basic type name, giving
SampleTypes._omg_Poly.

<complexType name="SampleTypes.Poly">
 <choice>
 <element name="StringCase0" type="string"/>
 <element name="FloatCase1and2" type="float"/>
 <element name="caseDef" type="int"/>
 </choice>
</complexType>

<complexType name="SampleTypes._omg_Poly">
 <sequence>
 <element maxOccurs="1" minOccurs="1" name="discriminator"
 type="short"/>
 <choice maxOccurs="1" minOccurs="0">
 <element name="StringCase0" type="string"/>
 <element name="FloatCase1and2" type="float"/>
 <element name="caseDef" type="int"/>
 </choice>
 </sequence>
</complexType>
 125

CHAPTER 7 | Artix IDL-to-WSDL Mapping
CORBA type mapping To support round-trip conversion between WSDL and IDL, Artix records the
details of the union type mapping in a corba:union element (within the
scope of the corba:typeMapping element), as follows:

<corba:typeMapping ... >
 <corba:union discriminator="corba:short"
 name="SampleTypes.Poly"
 repositoryID="IDL:SampleTypes/Poly:1.0"
 type="xsd1:SampleTypes.Poly">
 <corba:unionbranch idltype="corba:string"
 name="StringCase0">
 <corba:case label="0"/>
 </corba:unionbranch>
 <corba:unionbranch idltype="corba:float"
 name="FloatCase1and2">
 <corba:case label="1"/>
 <corba:case label="2"/>
 </corba:unionbranch>
 <corba:unionbranch default="true"
 idltype="corba:long"
 name="caseDef"/>
 </corba:union>
</corba:typeMapping>
126

IDL Complex Type Mapping
C++ mapping The WSDL-to-C++ compiler maps the SampleTypes.Poly type to a C++
class, SampleTypes_Poly, as follows:

The value of the union can be modified and accessed using the
getUnionMember() and setUnionMember() pairs of functions. The union
discriminator can be accessed through the get_discriminator() and
get_discriminator_as_uint() functions.

// C++
class SampleTypes_Poly : public IT_Bus::ChoiceComplexType
{
 public:
 ...
 IT_Bus::String & getStringCase0();
 const IT_Bus::String & getStringCase0() const;
 void setStringCase0(const IT_Bus::String & val);

 IT_Bus::Float getFloatCase1and2();
 const IT_Bus::Float getFloatCase1and2() const;
 void setFloatCase1and2(const IT_Bus::Float val);

 IT_Bus::Int getcaseDef();
 const IT_Bus::Int getcaseDef() const;
 void setcaseDef(const IT_Bus::Int val);

 enum PolyDiscriminator
 {
 StringCase0_enum,
 FloatCase1and2_enum,
 caseDef_enum,
 SampleTypes_Poly_MAXLONG=-1
 } m_discriminator;

 PolyDiscriminator get_discriminator() const { ... }
 IT_Bus::UInt get_discriminator_as_uint() const { ... }
 ...
};
 127

CHAPTER 7 | Artix IDL-to-WSDL Mapping
JAX-RPC mapping The JAX-RPC WSDL-to-Java compiler maps the SampleTypes.Poly type to a
Java class, SampleTypesPoly, as follows:

The contents of the union can be accessed and modified using the
getUnionMember() and setUnionMember() pairs of methods. The
setUnionMember() method implicitly sets the discriminator value.

// Java
package com.iona.schemas.idltypes.sampletypes_idl;

public class SampleTypesPoly
{
 ...
 public String getStringCase0() { ... }
 public void setStringCase0(String val) { ... }
 public boolean isSetStringCase0() { ... }

 public float getFloatCase1and2() { ... }
 public void setFloatCase1and2(float val) { ... }
 public boolean isSetFloatCase1and2() { ... }

 public int getCaseDef() { ... }
 public void setCaseDef(int val) { ... }
 public boolean isSetCaseDef() { ... }

 public javax.xml.namespace.QName _getQName() { ... }

 public String toString() { ... }
}

128

IDL Complex Type Mapping
IDL sequence Types

Overview An IDL sequence maps to a sequence containing a single element that has
minOccurs equal to zero and maxOccurs equal to the sequence’s upper
bound (maxOccurs equals unbounded, for an unbounded sequence).

IDL example Consider the following definition of an IDL unbounded sequence type,
SampleTypes::SeqOfStruct:

WSDL mapping The IDL-to-WSDL compiler maps the SampleTypes::SeqOfStruct sequence
to a WSDL sequence type with occurrence constraints,
SampleTypes.SeqOfStruct, as follows:

CORBA type mapping To support round-trip conversion between WSDL and IDL, Artix records the
details of the IDL sequence type mapping in a corba:sequence element
(within the scope of the corba:typeMapping element), as follows:

// IDL
module SampleTypes {
 typedef sequence< SampleStruct > SeqOfStruct;
 ...
};

<xsd:complexType name="SampleTypes.SeqOfStruct">
 <xsd:sequence>
 <xsd:element name="item"
 type="xsd1:SampleTypes.SampleStruct"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
</xsd:complexType>

<corba:typeMapping ... >
 <corba:sequence bound="0"
 elemtype="corbatm:SampleTypes.SampleStruct"
 name="SampleTypes.SeqOfStruct"
 repositoryID="IDL:SampleTypes/SeqOfStruct:1.0"
 type="xsd1:SampleTypes.SeqOfStruct"/>
</corba:typeMapping>
 129

CHAPTER 7 | Artix IDL-to-WSDL Mapping
C++ mapping The WSDL-to-C++ compiler maps the SampleTypes.SeqOfStruct type to a
C++ class, SampleTypes_SeqOfStruct, as follows:

The SampleTypes_SeqOfStruct class is an Artix C++ array type (based on
the IT_Vector template). Hence, the array class has an API similar to the
std::vector type from the C++ Standard Template Library.

JAX-RPC mapping The JAX-RPC WSDL-to-Java compiler maps the SampleTypes.SeqOfStruct
type to a Java class, SampleTypesSeqOfStruct, as follows:

The SampleTypesSeqOfStruct type behaves like an array holder type. The
getItem() and setItem() methods enable you to retrieve and set an array
of SampleTypeSeqOfStruct items.

class SampleTypes_SeqOfStruct : public
IT_Bus::ArrayT<SampleTypes_SampleStruct,
&SampleTypes_SeqOfStruct_item_qname, 0, -1>

{
 public:
 ...
};

Note: IDL bounded sequences map in a similar way to normal IDL
sequences, except that the IT_Bus::ArrayT base class uses the bounds
specified in the IDL.

// Java
package com.iona.schemas.idltypes.sampletypes_idl;

public class SampleTypesSeqOfStruct
{
 ...
 public SampleTypesSampleStruct[] getItem() { ... }
 public void setItem(SampleTypesSampleStruct[] val) { ... }

 public javax.xml.namespace.QName _getQName() { ... }

 public String toString() { ... }
}

130

IDL Complex Type Mapping
JAX-WS mapping The JAX-RPC WSDL-to-Java compiler maps the SampleTypes.SeqOfStruct
type to a Java class, SampleTypesSeqOfStruct, as follows:

The SampleTypesSeqOfStruct type behaves like a java.util.List holder
type. The getItem() method returns a java.util.List instance, which you
can then use for writing and reading the contents of the IDL sequence.

// Java
package org.apache.schemas.yoko.idl.sampletypes;

import java.util.List;

public class SampleTypesSeqOfStruct {
 ...
 public List<SampleTypesSampleStruct> getItem() { ... }
}

 131

CHAPTER 7 | Artix IDL-to-WSDL Mapping
IDL array Types

Overview An IDL array maps to a sequence containing a single element that sets both
minOccurs and maxOccurs equal to the array bound.

IDL example Consider the following definition of an IDL union type,
SampleTypes::ArrOfStruct:

WSDL mapping The IDL-to-WSDL compiler maps the SampleTypes::ArrOfStruct array to a
WSDL sequence type with occurrence constraints,
SampleTypes.ArrOfStruct, as follows:

CORBA type mapping To support round-trip conversion between WSDL and IDL, Artix records the
details of the IDL array type mapping in a corba:array element (within the
scope of the corba:typeMapping element), as follows:

// IDL
module SampleTypes {
 typedef SampleStruct ArrOfStruct[10];
 ...
};

<xsd:complexType name="SampleTypes.ArrOfStruct">
 <xsd:sequence>
 <xsd:element name="item"
 type="xsd1:SampleTypes.SampleStruct"
 minOccurs="10" maxOccurs="10"/>
 </xsd:sequence>
</xsd:complexType>

<corba:typeMapping ... >
 <corba:array bound="10"
 elemtype="corbatm:SampleTypes.SampleStruct"
 name="SampleTypes.ArrOfStruct"
 repositoryID="IDL:SampleTypes/ArrOfStruct:1.0"
 type="xsd1:SampleTypes.ArrOfStruct"/>
</corba:typeMapping>
132

IDL Complex Type Mapping
C++ mapping The WSDL-to-C++ compiler maps the SampleTypes.ArrOfStruct type to a
C++ class, SampleTypes_ArrOfStruct, as follows:

The SampleTypes_ArrOfStruct class is an Artix C++ array type (based on
the IT_Vector template). The array class has an API similar to the
std::vector type from the C++ Standard Template Library, except that the
size of the vector is restricted to the specified array length, 10.

JAX-RPC mapping The JAX-RPC WSDL-to-Java compiler maps the SampleTypes.ArrOfStruct
type to a Java class, SampleTypesArrOfStruct, as follows:

The SampleTypesArrOfStruct type behaves like an array holder type. The
getItem() and setItem() methods enable you to retrieve and set an array
of SampleTypeSampleStruct items.

class SampleTypes_ArrOfStruct : public
IT_Bus::ArrayT<SampleTypes_SampleStruct,
&SampleTypes_ArrOfStruct_item_qname, 10, 10>

{
 ...
};

// Java
package com.iona.schemas.idltypes.sampletypes_idl;

public class SampleTypesArrOfStruct
{
 ...
 public SampleTypesSampleStruct[] getItem() { ... }
 public void setItem(SampleTypesSampleStruct[] val) { ... }

 public javax.xml.namespace.QName _getQName() { ... }

 public String toString() { ... }
}

 133

CHAPTER 7 | Artix IDL-to-WSDL Mapping
JAX-WS mapping The JAX-WS WSDL-to-Java compiler maps the SampleTypes.ArrOfStruct
type to a Java class, SampleTypesArrOfStruct, as follows:

The SampleTypesArrOfStruct type behaves like a java.util.List holder
type. The getItem() method returns a java.util.List instance, which you
can then use for writing and reading the contents of the IDL array.

// Java
package org.apache.schemas.yoko.idl.sampletypes;

import java.util.List;

public class SampleTypesArrOfStruct {
 protected List<SampleTypesSampleStruct> item;

 public List<SampleTypesSampleStruct> getItem() { ... }
}

134

IDL Complex Type Mapping
IDL exception Types

Overview An IDL exception type maps to an xsd:sequence type and to an exception
message. Each field in the IDL exception maps to an element in the
xsd:sequence.

IDL example Consider the following definition of an IDL exception type,
SampleTypes::GenericException:

WSDL mapping The C++ runtime version of the IDL-to-WSDL compiler maps the
SampleTypes::GenericExc exception to a WSDL sequence type,
SampleTypes.GenericExc, and to a WSDL fault message,
SampleTypes.GenericExc, as follows:

// IDL
module SampleTypes {
 exception GenericExc {
 string reason;
 };
 ...
};

<xsd:complexType name="SampleTypes.GenericExc">
 <xsd:sequence>
 <xsd:element name="reason" type="xsd:string"/>
 </xsd:sequence>
</xsd:complexType>
...
<xsd:element name="SampleTypes.GenericExc"
 type="xsd1:SampleTypes.GenericExc"/>
...
<message name="SampleTypes.GenericExc">
 <part element="xsd1:SampleTypes.GenericExc"
 name="exception"/>
</message>
 135

CHAPTER 7 | Artix IDL-to-WSDL Mapping
The output from the Java runtime version of the IDL-to-WSDL compiler is
slightly different. The WSDL sequence type is named
SampleTypes.GenericExcType instead of SampleTypes.GenericExc. For
example:

CORBA type mapping To support round-trip conversion between WSDL and IDL, Artix records the
details of the IDL exception type mapping in a corba:exception element
(within the scope of the corba:typeMapping element).

For example, the C++ runtime version of the IDL-to-WSDL compiler
generates the following corba:exception element:

<xsd:complexType name="SampleTypes.GenericExcType">
 <xsd:sequence>
 <xsd:element name="reason" type="xsd:string"/>
 </xsd:sequence>
</xsd:complexType>
...
<xsd:element name="SampleTypes.GenericExc"
 type="xsd1:SampleTypes.GenericExcType"/>
...
<message name="SampleTypes.GenericExc">
 <part element="xsd1:SampleTypes.GenericExc"
 name="exception"/>
</message>

<corba:typeMapping ... >
 <corba:exception name="SampleTypes.GenericExc"
 repositoryID="IDL:SampleTypes/GenericExc:1.0"
 type="xsd1:SampleTypes.GenericExc">
 <corba:member idltype="corba:string" name="reason"/>
 </corba:exception>
</corba:typeMapping>
136

IDL Complex Type Mapping
C++ mapping The WSDL-to-C++ compiler maps the SampleTypes.GenericExc type and
SampleTypes.GenericExc message type to the C++ classes,
SampleTypes_GenericExc and SampleTypes_GenericExcException, as
follows:

// C++
class SampleTypes_GenericExc : public

IT_Bus::SequenceComplexType
{
 public:
 SampleTypes_GenericExc();
 ...
 const IT_Bus::String & getreason() const;
 IT_Bus::String & getreason();
 void setreason(const IT_Bus::String & val);
};
...
class SampleTypes_GenericExcException
 : public IT_Bus::UserFaultException,
 public IT_Bus::Rethrowable<SampleTypes_GenericExcException>
{
 public:
 SampleTypes_GenericExcException();
 ...
 const SampleTypes_GenericExc & getexception() const;
 SampleTypes_GenericExc & getexception();
 void setexception(const SampleTypes_GenericExc & val);
 ...
};
 137

CHAPTER 7 | Artix IDL-to-WSDL Mapping
JAX-RPC mapping The WSDL-to-Java compiler maps the SampleTypes.GenericExc message
type to a Java class, SampleTypesGenericExc_Exception, as follows:

The exception members can be accessed and modified using the
getExceptionMember() and setExceptionMember() pairs of methods.

JAX-WS mapping The WSDL-to-Java compiler maps the SampleTypes.GenericExc message
type to a Java class, SampleTypesGenericExc_Exception, as follows:

// Java
package com.iona.schemas.idltypes.sampletypes_idl;

public class SampleTypesGenericExc_Exception extends Exception
{
 public SampleTypesGenericExc_Exception(String reason) { ... }
 public SampleTypesGenericExc_Exception() { ... }

 public String getReason() { ... }
 public void setReason(String val) { ... }

 public javax.xml.namespace.QName _getQName() { ... }
 public String toString() { ... }
}

// Java
package org.apache.schemas.yoko.idl.sampletypes;
...
public class SampleTypesGenericExc extends Exception {
 public SampleTypesGenericExc (String message) { ... }

 public SampleTypesGenericExc(
 String message,
 SampleTypesGenericExcType sampleTypesGenericExc
) { ... }

 public SampleTypesGenericExc(
 String message,
 SampleTypesGenericExcType sampleTypesGenericExc,
 Throwable cause
) { ... }

 public SampleTypesGenericExcType getFaultInfo() { ... }
}

138

IDL Complex Type Mapping
The SampleTypeGenericExc class acts as a holder for a
SampleTypesGenericExcType instance, which can be retrieved by calling
getFaultInfo().

The SampleTypeGenericExcType class is defined as follows:

The exception members can be accessed and modified using the
getExceptionMember() and setExceptionMember() pairs of methods.

// Java
package org.apache.schemas.yoko.idl.sampletypes;
...
public class SampleTypesGenericExcType {
 public String getReason() { ... }
 public void setReason(String value) { ... }
}

 139

CHAPTER 7 | Artix IDL-to-WSDL Mapping
IDL typedef Expressions

Overview If a type is aliased in IDL, using a typedef expression, Artix simply replaces
the type alias with the original type when mapping to WSDL.

IDL example Consider the following IDL typedef that defines an alias of a float,
SampleTypes::FloatAlias, and an alias of a struct,
SampleTypes::SampleStruct:

CORBA type mapping To support round-trip conversion between WSDL and IDL, Artix records the
details of each IDL alias mapping in a corba:alias element (within the
scope of the corba:typeMapping element), as follows:

WSDL mapping The IDL-to-WSDL compiler maps the SampleTypes::FloatAlias type alias
directly to the type, xsd:float and the SampleTypes::SampleStructAlias
type alias directly to the type, SampleTypes.SampleStruct.

Note: The typedef that defines an IDL sequence or an IDL array is treated
as a special case, with a specific C++ class or Java class being generated
to represent the sequence or array type.

// IDL
module SampleTypes {
 typedef float FloatAlias;
 typedef SampleStruct SampleStructAlias;
 ...
};

<corba:typeMapping ... >
 <corba:alias basetype="corba:float"
 name="SampleTypes.FloatAlias"
 repositoryID="IDL:SampleTypes/FloatAlias:1.0"
 type="xsd:float"/>
 <corba:alias basetype="corbatm:SampleTypes.SampleStruct"
 name="SampleTypes.SampleStructAlias"
 repositoryID="IDL:SampleTypes/SampleStructAlias:1.0"
 type="xsd1:SampleTypes.SampleStruct"/>
</corba:typeMapping>
140

IDL Module and Interface Mapping
IDL Module and Interface Mapping

Overview This section describes the Artix C++ mapping for the following IDL
constructs:

• Module mapping.

• Interface mapping.

• Object reference mapping.

• Operation mapping.

• Attribute mapping.

Module mapping An IDL identifier appearing within the scope of an IDL module,
ModuleName::Identifier, maps to a C++ identifier of the form
ModuleName_Identifier. That is, the IDL scoping operator, ::, maps to an
underscore, _, in C++.

Although IDL modules do not map to namespaces under the Artix C++
mapping, it is possible nevertheless to put generated C++ code into a
namespace using the -n switch to the WSDL-to-C++ compiler.

For example, if you pass a namespace, TEST, to the WSDL-to-C++ -n
switch, the ModuleName::Identifier IDL identifier would map to
TEST::ModuleName_Identifier.

Interface mapping An IDL interface, InterfaceName, maps to a C++ class of the same name,
InterfaceName. If the interface is defined in the scope of a module, that is
ModuleName::InterfaceName, the interface maps to the
ModuleName_InterfaceName C++ class.

If an IDL data type, TypeName, is defined within the scope of an IDL
interface, that is ModuleName::InterfaceName::TypeName, the type maps to
the ModuleName_InterfaceName_TypeName C++ class.
 141

CHAPTER 7 | Artix IDL-to-WSDL Mapping
Object reference mapping When an IDL interface is used as an operation parameter or return type, it is
mapped to the WS_Addressing::EndpointReferenceType C++ type.

For example, consider an operation, get_foo(), that returns a reference to a
Foo interface as follows:

The get_foo() IDL operation then maps to the following C++ function:

Note that this mapping is qualitatively different from the OMG IDL-to-C++
mapping. In the Artix mapping, the get_foo() operation does not return a
pointer to a Foo proxy object. Instead, you must construct the Foo proxy
object in a separate step, by passing the
WS_Addressing::EndpointReferenceType object into the FooClient
constructor.

Nil object reference A CORBA nil object reference maps to an empty endpoint reference.
Conventionally, the address of an empty endpoint reference is represented
by the following URI:

http://www.w3.org/2005/08/addressing/none

// IDL
interface Foo {};

interface Bar {
 Foo get_foo();
};

// C++
void get_foo(
 WS_Addressing::EndpointReferenceType & var_return
) IT_THROW_DECL((IT_Bus::Exception));
142

IDL Module and Interface Mapping
Operation mapping Example 17 shows two IDL operations defined within the
SampleTypes::Foo interface. The first operation is a regular IDL operation,
test_op(), and the second operation is a oneway operation,
test_oneway().

The operations from the preceding IDL, Example 17 on page 143, map to
C++ as shown in Example 18,

Example 17: Example IDL Operations

// IDL
module SampleTypes {
 ...
 interface Foo {
 ...
 SampleStruct test_op(
 in SampleStruct in_struct,
 inout SampleStruct inout_struct,
 out SampleStruct out_struct
) raises (GenericExc);

 oneway void test_oneway(in string in_str);
 };
};

Example 18: Mapping IDL Operations to C++

// C++
class SampleTypes_Foo
{
 public:
 ...

1 virtual void test_op(
 const TEST::SampleTypes_SampleStruct & in_struct,
 TEST::SampleTypes_SampleStruct & inout_struct,
 TEST::SampleTypes_SampleStruct & var_return,
 TEST::SampleTypes_SampleStruct & out_struct
) IT_THROW_DECL((IT_Bus::Exception)) = 0;

2 virtual void test_oneway(
 const IT_Bus::String & in_str
) IT_THROW_DECL((IT_Bus::Exception)) = 0;
};
 143

CHAPTER 7 | Artix IDL-to-WSDL Mapping
The preceding C++ operation signatures can be explained as follows:

1. The C++ mapping of an IDL operation always has the return type
void. If a return value is defined in IDL, it is mapped as an out
parameter, var_return.

The order of parameters in the C++ function signature, test_op(), is
determined as follows:

♦ First, the in and inout parameters appear in the same order as in
IDL, ignoring the out parameters.

♦ Next, the return value appears as the parameter, var_return
(with the same semantics as an out parameter).

♦ Finally, the out parameters appear in the same order as in IDL,
ignoring the in and inout parameters.

2. The C++ mapping of an IDL oneway operation is straightforward,
because a oneway operation can have only in parameters and a void
return type.

Attribute mapping Example 19 shows two IDL attributes defined within the SampleTypes::Foo
interface. The first attribute is readable and writable, str_attr, and the
second attribute is readonly, struct_attr.

Example 19: Example IDL Attributes

// IDL
module SampleTypes {
 ...
 interface Foo {
 ...
 attribute string str_attr;
 readonly attribute SampleStruct struct_attr;
 };
};
144

IDL Module and Interface Mapping
The attributes from the preceding IDL, Example 19 on page 144, map to
C++ as shown in Example 20,

The preceding C++ attribute signatures can be explained as follows:

1. A normal IDL attribute, AttributeName, maps to a pair of accessor and
modifier functions in C++, _get_AttributeName(),
_set_AttributeName().

2. An IDL readonly attribute, AttributeName, maps to a single accessor
function in C++, _get_AttributeName().

Example 20: Mapping IDL Attributes to C++

// C++
class SampleTypes_Foo
{
 public:
 ...

1 virtual void _get_str_attr(
 IT_Bus::String & var_return
) IT_THROW_DECL((IT_Bus::Exception)) = 0;

 virtual void _set_str_attr(
 const IT_Bus::String & _arg
) IT_THROW_DECL((IT_Bus::Exception)) = 0;

2 virtual void _get_struct_attr(
 TEST::SampleTypes_SampleStruct & var_return
) IT_THROW_DECL((IT_Bus::Exception)) = 0;
};
 145

CHAPTER 7 | Artix IDL-to-WSDL Mapping
146

CHAPTER 8

Artix WSDL-to-IDL
Mapping
This chapter describes how the Artix WSDL-to-IDL compiler
maps WSDL types to OMG IDL types.

In this chapter This chapter discusses the following topics:

Simple Types page 148

Complex Types page 163

Wildcarding Types page 179

Occurrence Constraints page 180

Nillable Types page 182

Recursive Types page 185

Endpoint References page 188

Mapping to IDL Modules page 200
 147

CHAPTER 8 | Artix WSDL-to-IDL Mapping
Simple Types

Overview This section describes the mapping of simple WSDL types to IDL.

In this section This section contains the following subsections:

Atomic Types page 149

String Type page 152

Date and Time Types page 155

Duration Type page 157

Deriving Simple Types by Restriction page 158

List Type page 160

Unsupported Simple Types page 162
148

Simple Types
Atomic Types

soapenc atomic types Artix maps the soapenc:string type to the string IDL type (where the
soapenc namespace prefix is identified with the
http://schemas.xmlsoap.org/soap/encoding/ namespace).

Table of XSD atomic types Table 2 shows how the XSD schema atomic types map to IDL.

Table 2: XSD Schema Simple Types Mapping to IDL

XSD Schema Type IDL Type

xsd:boolean boolean

xsd:byte char

xsd:unsignedByte octet

xsd:short short

xsd:unsignedShort unsigned short

xsd:int long

xsd:unsignedInt unsigned long

xsd:long long long

xsd:unsignedLong unsigned long long

xsd:float float

xsd:double double

xsd:string string

xsd:normalizedString string

xsd:token string

xsd:language string

xsd:NMTOKEN string
 149

CHAPTER 8 | Artix WSDL-to-IDL Mapping
xsd:NMTOKENS Not supported

xsd:Name string

xsd:NCName string

xsd:ID string

xsd:QName string

xsd:dateTime TimeBase::UtcT

xsd:date string

xsd:time string

xsd:gDay string

xsd:gMonth string

xsd:gMonthDay string

xsd:gYear string

xsd:gYearMonth string

xsd:duration string

xsd:decimal Typedef of fixed<31,6>

xsd:integer long long

xsd:positiveInteger unsigned long long

xsd:negativeInteger long long

xsd:nonPositiveInteger long long

xsd:nonNegativeInteger unsigned long long

xsd:base64Binary base64BinarySeq

(typedef of sequence<octet>)

Table 2: XSD Schema Simple Types Mapping to IDL

XSD Schema Type IDL Type
150

Simple Types
xsd:hexBinary hexBinarySeq

(typedef of sequence<octet>)

soapenc:base64 base64Seq

(typedef of sequence<octet>)

xsd:ID Not supported.

Table 2: XSD Schema Simple Types Mapping to IDL

XSD Schema Type IDL Type
 151

CHAPTER 8 | Artix WSDL-to-IDL Mapping
String Type

Overview Artix can map strings both from the soapenc schema and from the XSD
schema, as follows:

• soapenc string type.

• XSD string type.

soapenc string type Artix maps the soapenc:string type to the string IDL type (where the
soapenc namespace prefix is identified with the
http://schemas.xmlsoap.org/soap/encoding/ namespace).

XSD string type By default, xsd:string maps to the ordinary IDL string type.

If you are planning to use international strings, however, you might want
xsd:string to map to the IDL wide string type, wstring, instead. The
wsdltocorba utility does not provide an option to change the default
mapping, but you can easily alter the mapping by manually editing the
contents of the CORBA <binding> tag in the WSDL.

Default CORBA binding Consider, for example, how to add a CORBA binding to the Greeter port
type (see the hello_world.wsdl file located in
ArtixInstallDir/cxx_java/samples/basic/hello_world_soap_http/etc).
You can add a CORBA binding by entering the following command:

The WSDL output from this command, hello_world-corba.wsdl, includes
a new CORBA binding, GreeterCORBABinding, as shown in Example 21.
The contents of this binding element essentially determine the
WSDL-to-CORBA mapping for the port type. Some parameters and return
types in the binding are declared to have an idltype attribute of
corba:string, which means they map to the IDL string type.

> wsdltocorba -corba -i Greeter hello_world.wsdl

Example 21: Default CORBA Binding Generated by wsdltocorba

<definitions ... >
 ...
 <binding name="GreeterCORBABinding" type="tns:Greeter">
152

Simple Types
Manually modified CORBA
binding

To alter the WSDL-to-IDL string mapping, replace some or all of the
instances of corba:string by corba:wstring. Example 22 shows the result
of replacing all instances of corba:string by corba:wstring.

 <corba:binding repositoryID="IDL:Greeter:1.0"/>
 <operation name="sayHi">
 <corba:operation name="sayHi">
 <corba:return idltype="corba:string" name="theResponse"/>
 </corba:operation>
 <input name="sayHiRequest"/>
 <output name="sayHiResponse"/>
 </operation>
 <operation name="greetMe">
 <corba:operation name="greetMe">
 <corba:param idltype="corba:string" mode="in" name="me"/>
 <corba:return idltype="corba:string" name="theResponse"/>
 </corba:operation>
 <input name="greetMeRequest"/>
 <output name="greetMeResponse"/>
 </operation>
 </binding>
</definitions>

Example 21: Default CORBA Binding Generated by wsdltocorba

Example 22: Manually Modified CORBA Binding

<definitions ... >
 ...
 <binding name="GreeterCORBABinding" type="tns:Greeter">
 <corba:binding repositoryID="IDL:Greeter:1.0"/>
 <operation name="sayHi">
 <corba:operation name="sayHi">
 <corba:return idltype="corba:wstring" name="theResponse"/>
 </corba:operation>
 <input name="sayHiRequest"/>
 <output name="sayHiResponse"/>
 </operation>
 <operation name="greetMe">
 <corba:operation name="greetMe">
 <corba:param idltype="corba:wstring" mode="in" name="me"/>
 <corba:return idltype="corba:wstring" name="theResponse"/>
 </corba:operation>
 <input name="greetMeRequest"/>
 <output name="greetMeResponse"/>
 153

CHAPTER 8 | Artix WSDL-to-IDL Mapping
Generated IDL Example 23 shows the IDL that would be generated from the modified
CORBA binding in Example 22 on page 153.

To generate this IDL interface, you would enter the following command:

 </operation>
 </binding>
</definitions>

Example 22: Manually Modified CORBA Binding

Example 23: IDL Generated from the Modified CORBA Binding

// IDL

interface Greeter {
 wstring sayHi();
 wstring greetMe(in wstring me);
};

> wsdltocorba -idl -b GreeterCORBABinding hello_world-corba.wsdl
154

Simple Types
Date and Time Types

Overview The WSDL-to-IDL compiler maps the xsd:dateTime type to the
TimeBase::UtcT IDL type.

TimeBase::UtcT type The TimeBase::UtcT type, which holds a UTC time value, is defined in the
OMG’s CORBA Time Service specification. Example 24 shows the definition
of UtcT in the TimeBase module.

Note: The mapping is subject to certain restrictions, as detailed below.

Example 24: Definition of the TimeBase IDL Module

// IDL
module TimeBase
{
 typedef unsigned long long TimeT;
 typedef TimeT InaccuracyT;
 typedef short TdfT;

 struct UtcT
 {
 TimeT time;
 unsigned long inacclo;
 unsigned short inacchi;
 TdfT tdf;
 };

 struct IntervalT
 {
 TimeT lower_bound;
 TimeT upper_bound;
 };
};
 155

CHAPTER 8 | Artix WSDL-to-IDL Mapping
Unsupported time/date values The following xsd:dateTime values cannot be mapped to TimeBase::UtcT:

• Values with a local time zone. Local time is treated as a 0 UTC time
zone offset.

• Values prior to 15 October 1582.

• Values greater than approximately 30,000 A.D.

The following TimeBase::UtcT values cannot be mapped to xsd:dateTime:

• Values with a non-zero inacclo or inacchi.

• Values with a time zone offset that is not divisible by 30 minutes.

• Values with time zone offsets greater than 14:30 or less than -14:30.

• Values with greater than millisecond accuracy.

• Values with years greater than 9999.
156

Simple Types
Duration Type

Overview The WSDL-to-IDL compiler maps the xsd:duration type to the string IDL
type.

A duration represents an interval of time measured in years, months, days,
hours, minutes, and seconds. This type is needed for representing the sort of
time intervals that commonly appear in business and legal documents.

Lexical representation The lexical representation of a positive time duration is as follows:

P<years>Y<months>M<days>DT<hours>H<minutes>M<seconds>S

Where <years>, <months>, <days>, <hours>, and <minutes> are
non-negative integers and <seconds> is a non-negative decimal. The
<seconds> field can have an arbitrary number of decimal digits, but Artix
considers the digits only up to millisecond precision. The P, Y, M, D, T, H, M,
and S separator characters must all be upper case. The T is the date/time
seperator. To represent a negative time duration, you can add a minus sign,
-, in front of the P character.

Here are some examples:

P2Y6M10DT12H20M15S
-P1Y0M0DT0H0M0.001S

You can abbreviate the duration string by omitting any fields that are equal
to zero. You must omit the date/time seperator, T, if and only if all of the
time fields are absent. For example, P1Y would represent one year.
 157

CHAPTER 8 | Artix WSDL-to-IDL Mapping
Deriving Simple Types by Restriction

Overview Most derived simple types are mapped as if they had been declared to be
the base type. For example, XSD types derived from xsd:string are treated
as if they were declared as xsd:string and are therefore mapped to the IDL
string type.

Exceptionally, derived simple types declared using the <enumeration> facet
are treated as a special case: enumerated simple types are mapped to an
IDL enum type.

Unchecked facets The following facets can be used, but are not checked at runtime:

• length

• minLength

• maxLength

• pattern

• enumeration

• whiteSpace

• maxInclusive

• maxExclusive

• minInclusive

• minExclusive

• totalDigits

• fractionDigits

Checked facets The following facets are supported and checked at runtime:

• enumeration
158

Simple Types
Example with a maxLength facet The following example shows how you can use the <maxLength> facet to
define a string whose length is limited to 100 characters:

The WSDL-to-IDL mapping maps this String100 type to the string type.

Example with enumeration facets The following example shows how to define an enumerated type,
ColorEnum, using the <enumeration> facet:

The WSDL-to-IDL mapping maps this ColorEnum type to the following IDL
enum type.

<xsd:simpleType name="String100">
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="100"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="ColorEnum">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="RED"/>
 <xsd:enumeration value="GREEN"/>
 <xsd:enumeration value="BLUE"/>
 </xsd:restriction>
</xsd:simpleType>

// IDL
enum ColorEnum {
 RED,
 GREEN,
 BLUE
};
 159

CHAPTER 8 | Artix WSDL-to-IDL Mapping
List Type

Overview An xsd:list type maps to an IDL sequence type,
sequence<MappedElementType>, where MappedElementType is the IDL type
representing the list elements.

There are two styles of list declaration, both of which are supported in Artix:

• Lists defined using itemType.

• Lists defined by derivation.

Lists defined using itemType Where the list element type is a schema atomic type, you can define the list
type using the itemType attribute. For example, a list of strings can be
defined as follows:

This maps to the following IDL type:

Lists defined by derivation Where the list element type is derived from a schema atomic type (by the
application of various restricting facets), you can define the list type using a
restriction element. For example, you can define a list of restricted
integers as follows:

<xsd:simpleType name="StringList">
 <xsd:list itemType="xsd:string"/>
</xsd:simpleType>

// IDL
typedef sequence<string> StringList;

<xsd:simpleType name="IntList">
 <xsd:list>
 <xsd:simpleType>
 <xsd:restriction base="xsd:int">
 <xsd:maxInclusive value="1000"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:list>
</xsd:simpleType>
160

Simple Types
This maps to the following IDL type:

// IDL
typedef sequence<long> IntList;
 161

CHAPTER 8 | Artix WSDL-to-IDL Mapping
Unsupported Simple Types

Overview This subsection lists the XSD simple types that are not supported by the
wsdltocorba and artix wsdl2idl mapping utilities.

Unsupported types The following XSD simple types are not supported by the WSDL-to-IDL
mapping:

xsd:ENTITY
xsd:ENTITIES
xsd:IDREF
xsd:IDREFS
xsd:NMTOKENS
xsd:NOTATION
xsd:union
162

Complex Types
Complex Types

Overview This section describes the mapping of complex WSDL types to IDL.

In this section This section contains the following subsections:

Sequence Complex Types page 164

Choice Complex Types page 165

All Complex Types page 166

Attributes page 167

Nesting Complex Types page 169

Deriving a Complex Type from a Simple Type page 171

Deriving a Complex Type from a Complex Type page 173

Arrays page 176
 163

CHAPTER 8 | Artix WSDL-to-IDL Mapping
Sequence Complex Types

Overview The XSD sequence complex type maps to an IDL struct type, where each
element of the original sequence maps to a member of the IDL struct.

Occurrence constraints The WSDL-to-IDL mapping does not support occurrence constraints on the
sequence element. If minOccurs or maxOccurs attribute settings appear in
the sequence element, they are ignored by the WSDL-to-IDL compiler.

On the other hand, elements appearing within the sequence element can
define occurrence constraints—see “Arrays” on page 176.

WSDL example Example 25 shows an XSD sequence type with three simple elements.

IDL mapping Example 26 shows the result of mapping the SimpleStruct type (from the
preceding Example 25) to IDL.

Example 25: Definition of a Sequence Complex Type in WSDL

<xsd:complexType name="SimpleStruct">
 <xsd:sequence>
 <xsd:element name="varFloat" type="xsd:float"/>
 <xsd:element name="varInt" type="xsd:int"/>
 <xsd:element name="varString" type="xsd:string"/>
 </xsd:sequence>
</xsd:complexType>

Example 26: Mapping of SimpleStruct to IDL

// IDL
struct SimpleStruct {
 float varFloat;
 long varInt;
 string varString;
};
164

Complex Types
Choice Complex Types

Overview The XSD choice complex type maps to an IDL union type, where each
element of the original choice maps to a member of the IDL union.

Occurrence constraints Artix does not support occurrence constraints on the choice element.

WSDL example Example 27 shows an XSD choice type with three elements.

IDL mapping Example 28 shows the result of mapping the SimpleChoice type (from the
preceding Example 27) to IDL.

Example 27: Definition of a Choice Complex Type in WSDL

<xsd:complexType name="SimpleChoice">
 <xsd:choice>
 <xsd:element name="varFloat" type="xsd:float"/>
 <xsd:element name="varInt" type="xsd:int"/>
 <xsd:element name="varString" type="xsd:string"/>
 </xsd:choice>
</xsd:complexType>

Example 28: Mapping of SimpleChoice to IDL

// IDL
union SimpleChoice switch (long) {
 case 0:
 float varFloat;
 case 1:
 long varInt;
 case 2:
 string varString;
};
 165

CHAPTER 8 | Artix WSDL-to-IDL Mapping
All Complex Types

Overview The XSD all complex type maps to an IDL struct type, where each element
of the original all maps to a member of the IDL struct.

Occurrence constraints Artix does not support occurrence constraints on the all element.

WSDL example Example 29 shows an XSD all type with three simple elements.

IDL mapping Example 30 shows the result of mapping the SimpleAll type (from the
preceding Example 29) to IDL.

Example 29: Definition of an All Complex Type in WSDL

<xsd:complexType name="SimpleAll">
 <xsd:all>
 <xsd:element name="varFloat" type="xsd:float"/>
 <xsd:element name="varInt" type="xsd:int"/>
 <xsd:element name="varString" type="xsd:string"/>
 </xsd:all>
</xsd:complexType>

Example 30: Mapping of SimpleAll to IDL

// IDL
struct SimpleAll {
 float varFloat;
 long varInt;
 string varString;
};
166

Complex Types
Attributes

Overview Attributes of a sequence type or of an all type map to additional members of
an IDL struct. The type representing an attribute in IDL is defined as a
nillable type (see “Nillable Types” on page 182 for details). This makes it
possible for attributes to be treated as optional.

Attributes can be declared within the scope of the xsd:complexType
element. Hence, you can include attributes in the definitions of an all type, a
sequence type, and a choice type.

The declaration of an attribute in a complex type has the following syntax:

<xsd:complexType name="TypeName">
 <xsd:attribute name="AttrName" type="AttrType"
 use="[optional|required|prohibited]"/>
 ...
</xsd:complexType>

Attribute use The use attribute setting is ignored by the WSDL-to-IDL mapping.

Because attributes are declared as nillable types in IDL, the attributes are
effectively optional by default. If the attribute use is defined as required or
prohibited, however, it is up to the developer to enforce these conditions.

Note: Attributes of a choice type are currently not supported by the
WSDL-to-IDL mapping.
 167

CHAPTER 8 | Artix WSDL-to-IDL Mapping
WSDL example Example 31 shows an XSD sequence type, which is declared to have two
attributes, varAttrString and varAttrIntOptional.

IDL mapping Example 32 shows the result of mapping the SimpleStructWithAttributes
type (from the preceding Example 31) to IDL.

Example 31: Definition of a Complex Type with Attributes in WSDL

<xsd:complexType name="SimpleStructWithAttributes">
 <xsd:sequence>
 <xsd:element name="varFloat" type="xsd:float"/>
 <xsd:element name="varInt" type="xsd:int"/>
 <xsd:element name="varString" type="xsd:string"/>
 </xsd:sequence>
 <xsd:attribute name="varAttrString" type="xsd:string"/>
 <xsd:attribute name="varAttrIntOptional" type="xsd:int"
 use="optional"/>
</xsd:complexType>

Example 32: Mapping of SimpleStructWithAttributes to IDL

// IDL
union string_nil switch(boolean) {
 case TRUE:
 string value;
};
union long_nil switch(boolean) {
 case TRUE:
 long value;
};

struct SimpleStructWithAttributes {
 string_nil varAttrString;
 long_nil varAttrIntOptional;
 float varFloat;
 long varInt;
 string varString;
};
168

Complex Types
Nesting Complex Types

Overview It is possible to nest complex types within each other. When mapped to IDL,
the nested complex types map to a nested hierarchy of structs, where each
instance of a nested type is declared as a member of another struct.

Avoiding anonymous types In general, it is recommended that you name types that are nested inside
other types, instead of using anonymous types. This results in simpler code
when the types are mapped to IDL.

WSDL example Example 33 shows the definition of a nested sequence type, NestedStruct,
which contains another sequence type, SimpleStruct, as an element.

Note: The WSDL-to-IDL mapping has only limited support for mapping
anonymous type, which does not work in all cases.

Example 33: Definition of a Nested Type in WSDL

<xsd:complexType name="SimpleStruct">
 <xsd:sequence>
 <xsd:element name="varFloat" type="xsd:float"/>
 <xsd:element name="varInt" type="xsd:int"/>
 <xsd:element name="varString" type="xsd:string"/>
 </xsd:sequence>
</xsd:complexType>

<xsd:complexType name="NestedStruct">
 <xsd:sequence>
 <xsd:element name="varString" type="xsd:string"/>
 <xsd:element name="varInt" type="xsd:int"/>
 <xsd:element name="varFloat" type="xsd:float"/>
 <xsd:element name="varStruct" type="tns:SimpleStruct"/>
 </xsd:sequence>
</xsd:complexType>
 169

CHAPTER 8 | Artix WSDL-to-IDL Mapping
IDL mapping Example 34 shows the result of mapping the NestedStruct type (from the
preceding Example 33) to IDL.

Example 34: Mapping of NestedStruct to IDL

// IDL
struct SimpleStruct {
 float varFloat;
 long varInt;
 string varString;
};

struct NestedStruct {
 string varString;
 long varInt;
 float varFloat;
 SimpleStruct varStruct;
};
170

Complex Types
Deriving a Complex Type from a Simple Type

Overview A complex type derived from a simple type maps to an IDL struct type with
a member, _simpleTypeValue, to hold the value of the simple type. Any
attributes defined by the derived type are represented as nillable members
of the struct (see “Attributes” on page 167 for more details).

The following kinds of derivation are supported:

• Derivation by restriction.

• Derivation by extension.

Derivation by restriction Example 35 shows an example of a complex type, OrderNumber, derived by
restriction from the xsd:decimal simple type. The new type is restricted to
have values less than 1,000,000.

IDL mapping of restricted type Example 36 shows the result of mapping the OrderNumber type (from the
preceding Example 35) to IDL. The _simpleTypeValue struct member
represents the simple type value.

Example 35: Complex Type Derived by Restriction from a Simple Type

<xsd:complexType name="OrderNumber">
 <xsd:simpleContent>
 <xsd:restriction base="xsd:decimal">
 <xsd:maxExclusive value="1000000"/>
 </xsd:restriction>
 </xsd:simpleContent>
</xsd:complexType>

Example 36: Mapping of OrderNumber to IDL

// IDL
typedef fixed<31, 6> fixed_1;

struct OrderNumber {
 fixed_1 _simpleTypeValue;
};
 171

CHAPTER 8 | Artix WSDL-to-IDL Mapping
Derivation by extension Example 37 shows an example of a complex type, InternationalPrice,
derived by extension from the xsd:decimal simple type. The new type is
extended to include a currency attribute.

IDL mapping of extended type Example 38 shows the result of mapping the InternationalPrice type
(from the preceding Example 37) to IDL. In addition to the
_simpleTypeValue member, representing the simple type, there is a
currency member of string_nil type, representing the currency attribute.

Example 37: Complex Type Derived by Extension from a Simple Type

<xsd:complexType name="InternationalPrice">
 <xsd:simpleContent>
 <xsd:extension base="xsd:decimal">
 <xsd:attribute name="currency" type="xsd:string"/>
 </xsd:extension>
 </xsd:simpleContent>
</xsd:complexType>

Example 38: Mapping of InternationalPrice to IDL

// IDL
union string_nil switch(boolean) {
 case TRUE:
 string value;
};
typedef fixed<31, 6> fixed_1;

struct InternationalPrice {
 string_nil currency;
 fixed_1 _simpleTypeValue;
};
172

Complex Types
Deriving a Complex Type from a Complex Type

Overview Artix supports derivation of a complex type from a complex type, for which
the following kinds of derivation are possible:

• Derivation by restriction.

• Derivation by extension.

Allowed inheritance relationships Figure 18 shows the inheritance relationships allowed between complex
types. All of these inheritance relationships are supported by the
WSDL-to-IDL mapping, including cross-inheritance. For example, a
sequence can derive from a choice, a choice from an all, an all from a
choice, and so on.

Figure 18: Allowed Inheritance Relationships for Complex Types

Sequence Choice All

Sequence Choice All
 173

CHAPTER 8 | Artix WSDL-to-IDL Mapping
IDL mapping Artix maps schema derived types to an IDL struct (irrespective of whether
the schema derived type is a sequence, a choice, or an all). The generated
IDL struct always contains the following two members:

• The base member—holds an instance of the base type, BaseType. The
name of this member is BaseType_f.

• The extension member—holds an instance of the extension type. The
name of this member obeys the following naming convention (where
DerivedType is the name of the derived type in XML):

♦ sequence extension—the name is DerivedTypeSequenceStruct_f.

♦ choice extension—the name is DerivedTypeChoiceType_f.

♦ all extension—the name is DerivedTypeAllStruct_f.

In addition, if the derived type defines attributes, they are mapped directly
to members of the IDL struct.

WSDL example Example 39 shows the definition of a derived type that is obtained by
extending a sequence type (base type) with a choice type (extension type).

Example 39: XML Example of a Choice Type Derived from a Struct Type

// Base type.
<xsd:complexType name="SimpleStruct">
 <xsd:sequence>
 <xsd:element name="varFloat" type="xsd:float"/>
 <xsd:element name="varInt" type="xsd:int"/>
 <xsd:element name="varString" type="xsd:string"/>
 </xsd:sequence>
</xsd:complexType>

// Derived type.
<xsd:complexType name="DerivedChoice_BaseStruct">
 <xsd:complexContent mixed="false">
 <xsd:extension base="s:SimpleStruct">
 <xsd:choice>
 <xsd:element name="varStringExt"
 type="xsd:string"/>
 <xsd:element name="varFloatExt" type="xsd:float"/>
 </xsd:choice>
 <xsd:attribute name="attrString" type="xsd:string"/>
 </xsd:extension>
 </xsd:complexContent>
174

Complex Types
Mapped example The preceding DerivedChoice_BaseStruct schema type maps to an IDL
struct, DerivedChoice_BaseStruct, as shown in Example 40.

</xsd:complexType>

Example 39: XML Example of a Choice Type Derived from a Struct Type

Example 40: IDL Mapping of the DerivedChoice_BaseStruct Type

// IDL

// Base type.
struct SimpleStruct {
 float varFloat;
 long varInt;
 string varString;
};

// Extended part of derived type.
union DerivedChoice_BaseStructChoiceType switch(long) {
 case 0:
 string varStringExt;
 case 1:
 float varFloatExt;
};

// Derived type.
struct DerivedChoice_BaseStruct {
 string_nil attrString;

 SimpleStruct SimpleStruct_f;
 DerivedChoice_BaseStructChoiceType
 DerivedChoice_BaseStructChoiceType_f;
};
 175

CHAPTER 8 | Artix WSDL-to-IDL Mapping
Arrays

Overview An Artix array is a sequence complex type that satisfies the following special
conditions:

• The sequence complex type schema defines a single element only.

• The element definition has a maxOccurs attribute with a value greater
than 1.

Hence, an Artix array definition has the following general syntax:

The ElemType specifies the type of the array elements and the number of
elements in the array can be anywhere in the range LowerBound to
UpperBound.

Mapping arrays to IDL The way Artix maps arrays to IDL depend on the values of the minOccurs
and maxOccurs attributes, as shown in Table 3.

Note: All elements implicitly have minOccurs=1 and maxOccurs=1, unless
specified otherwise.

<complexType name="ArrayName">
 <sequence>
 <element name="ElemName" type="ElemType"
 minOccurs="LowerBound" maxOccurs="UpperBound"/>
 </sequence>
</complexType>

Table 3: Array to IDL Mapping for Various Occurrence Constraints

Occurrence Constraints IDL Type

minOccurs="N" maxOccurs="N" ArrayName[N]

minOccurs="N" maxOccurs="M"

(with N < M)

sequence<ElementType, M>

maxOccurs="unbounded" sequence<ElementType>
176

Complex Types
Fixed array The following XSD schema shows the definition of an array, FixedArray,
whose minOccurs and maxOccurs constraints are set to an identical, finite
value.

The preceding FixedArray schema type maps to the following IDL array:

Bounded array The following XSD schema shows the definition of an array, BoundedArray,
whose minOccurs and maxOccurs constraints are finite and unequal.

The preceding BoundedArray schema type maps to the following IDL
bounded sequence type:

Unbounded array The following XSD schema shows the definition of an array,
UnboundedArray, whose maxOccurs constraint is unbounded.

<xsd:complexType name="FixedArray">
 <xsd:sequence>
 <xsd:element maxOccurs="3" minOccurs="3"
 name="item" type="xsd:int"/>
 </xsd:sequence>
</xsd:complexType>

// IDL
typedef long FixedArray[3];

<xsd:complexType name="BoundedArray">
 <xsd:sequence>
 <xsd:element maxOccurs="3" minOccurs="1"
 name="item" type="xsd:float"/>
 </xsd:sequence>
</xsd:complexType>

// IDL
typedef sequence<float, 3> BoundedArray;

<xsd:complexType name="UnboundedArray">
 <xsd:sequence>
 <xsd:element maxOccurs="unbounded" minOccurs="0"
 name="item" type="xsd:string"/>
 </xsd:sequence>
</xsd:complexType>
 177

CHAPTER 8 | Artix WSDL-to-IDL Mapping
The preceding UnboundedArray schema type maps to the following IDL
unbounded sequence type:

Nested arrays The following XSD schema shows the definition of a nested array,
NestedArray, which is defined as an array whose elements are of
UnboundedArray type.

The preceding NestedArray schema type maps to the following IDL
unbounded sequence type:

// IDL
typedef sequence<string> UnboundedArray;

<xsd:complexType name="NestedArray">
 <xsd:sequence>
 <xsd:element maxOccurs="unbounded" minOccurs="0"
 name="subarray" type="s:UnboundedArray"/>
 </xsd:sequence>
</xsd:complexType>

// IDL
typedef sequence<UnboundedArray> NestedArray;
178

Wildcarding Types
Wildcarding Types

Overview The XML schema wildcarding types enable you to define XML types with
loosely defined characteristics. Table 4 shows how the XSD schema
wildcarding types map to IDL.

xsd:anyType example Consider an XSD sequence, AnyStruct, whose elements are declared to be
of xsd:anyType type, as shown in Example 41.

The preceding AnyStruct schema type maps to the IDL struct type shown in
Example 42.

Table 4: XSD Schema Simple Types Mapping to IDL

XSD Schema Type IDL Type

xsd:anyURI string

xsd:anyType any

xsd:any Not supported

Example 41: AnyStruct Schema Type with xsd:anyType Members

<xsd:complexType name="AnyStruct">
 <xsd:sequence>
 <xsd:element name="varAny_1" type="xsd:anyType"/>
 <xsd:element name="varAny_2" type="xsd:anyType"/>
 </xsd:sequence>
</xsd:complexType>

Example 42: Mapping of AnyStruct Type to IDL

struct AnyStruct {
 any varAny_1;
 any varAny_2;
};
 179

CHAPTER 8 | Artix WSDL-to-IDL Mapping
Occurrence Constraints

Overview Certain XML schema tags—for example, <element>, <sequence>, <choice>
and <any>—can be declared to occur multiple times using occurrence
constraints. The occurrence constraints are specified by assigning integer
values (or the special value unbounded) to the minOccurs and maxOccurs
attributes.

The WSDL-to-IDL mapping currently supports only element occurrence
constraints (that is, minOccurs and maxOccurs attribute settings within the
<element> tag).

Element occurrence constraints You define occurrence constraints on a schema element by setting the
minOccurs and maxOccurs attributes for the element. Hence, the definition
of an element with occurrence constraints in an XML schema element has
the following form:

Limitations In the current version of Artix, element occurrence constraints can be used
only within the following complex types:

• all complex types,

• sequence complex types.

Element occurrence constraints are not supported within the scope of the
following:

• choice complex types.

Mapping to IDL Given an <xsd:element name="ElemName" ... > element with occurrence
constraints, defined in an <xsd:sequence> or an <xsd:all> tag, Artix defines
an ElemNameArray type in IDL to represent the multiply occurring element.

<element name="ElemName" type="ElemType" minOccurs="LowerBound"
maxOccurs="UpperBound"/>

Note: When a sequence schema contains a single element definition and
this element defines occurrence constraints, it is treated as an array. See
“Arrays” on page 176.
180

Occurrence Constraints
The ElemNameArray type is defined according to the rules in Table 3 on
page 176, which determine the mapped IDL type based on the values of the
minOccurs and maxOccurs attributes.

Example of element occurrence
constraints

The following XSD schema shows the definition of an <xsd:sequence> type,
CompoundArray, which has two multiply occurring member elements.

The preceding CompoundArray schema type maps to the following IDL
struct, CompoundArray, which uses two generated array types, array1Array
and array2Array, to represent the types of its member elements:

<xsd:complexType name="CompoundArray">
 <xsd:sequence>
 <xsd:element maxOccurs="unbounded" minOccurs="0"
 name="array1" type="xsd:string"/>
 <xsd:element maxOccurs="unbounded" minOccurs="0"
 name="array2" type="xsd:string"/>
 </xsd:sequence>
</xsd:complexType>

// IDL
typedef sequence<string> array1Array;
typedef sequence<string> array2Array;

struct CompoundArray {
 array1Array array1;
 array2Array array2;
};
 181

CHAPTER 8 | Artix WSDL-to-IDL Mapping
Nillable Types

Overview An element in an XML schema may be declared as nillable by setting the
nillable attribute equal to true. This is useful in cases where you would
like to have the option of transmitting no value for a type (for example, if you
would like to define an operation with optional parameters).

Nillable syntax To declare an element as nillable, use the following syntax:

<element name="ElementName" type="ElementType" nillable="true"/>

The nillable="true" setting indicates that this as a nillable element. If the
nillable attribute is missing, the default is value is false.

Mapping to IDL If a given element of ElementType type is defined with nillable="true" and
ElementType maps to MappedType in IDL, Artix automatically generates a
union IDL type, MappedType_nil, as follows:

Artix uses this MappedType_nil type to represent the type of the nillable
element in IDL (for example, where it appears as the member of a struct and
so on).

Example The following XSD schema shows the definition of an <xsd:sequence> type,
StructWithNillables, which contains several nillable elements:

// IDL
union MappedType_nil switch(boolean) {
 case TRUE:
 MappedType value;
};

<xsd:complexType name="SimpleStruct">
 <xsd:sequence>
 <xsd:element name="varFloat" type="xsd:float"/>
 <xsd:element name="varInt" type="xsd:int"/>
 <xsd:element name="varString" type="xsd:string"/>
 </xsd:sequence>
 <xsd:attribute name="varAttrString" type="xsd:string"/>
</xsd:complexType>
182

Nillable Types
The preceding StructWithNillables schema type maps to the IDL struct,
StructWithNillables, which uses generated nillable types, float_nil,
long_nil, string_nil and SimpleStruct_nil, to represent the types of its
member elements:

<xsd:complexType name="StructWithNillables">
 <xsd:sequence>
 <xsd:element name="varFloat" nillable="true"
 type="xsd:float"/>
 <xsd:element name="varInt" nillable="true"
 type="xsd:int"/>
 <xsd:element name="varString" nillable="true"
 type="xsd:string"/>
 <xsd:element name="varStruct" nillable="true"
 type="s:SimpleStruct"/>
 </xsd:sequence>
</xsd:complexType>

// IDL
union float_nil switch(boolean) {
 case TRUE:
 float value;
};
union long_nil switch(boolean) {
 case TRUE:
 long value;
};
union string_nil switch(boolean) {
 case TRUE:
 string value;
};

struct SimpleStruct {
 string_nil varAttrString;
 float varFloat;
 long varInt;
 string varString;
};
union SimpleStruct_nil switch(boolean) {
 case TRUE:
 SimpleStruct value;
};
 183

CHAPTER 8 | Artix WSDL-to-IDL Mapping
struct StructWithNillables {
 float_nil varFloat;
 long_nil varInt;
 string_nil varString;
 SimpleStruct_nil varStruct;
};
184

Recursive Types
Recursive Types

Overview XML schema allows you to define recursive types and the WSDL-to-IDL
compiler is able to map these types into OMG IDL. The following kinds of
recursive type are considered here:

• Self-recursive types—a type that refers to itself within its own
definition.

• Mutually-recursive types—for example, given two types, A and B, the
definition of A refers to B and the definition of B refers to A.

More complex recursions are also supported—for example, where A
refers to B refers to C refers to A (in shorthand, A -> B -> C -> A).
Overlapping recursions are also supported—for example, A -> C -> A
and A -> B -> C -> A at the same time.

The IDL mapping of recursive types relies on the use of forward declarations
of IDL structs.

Complex types that can use
recursion

The following complex XML schema types can be defined with recursion:

• xsd:sequence,

• xsd:union,

• xsd:all.

Note: Mutual recursion does not work, however, in cases where the
recursive types are defined in separate IDL modules. See “Circular
references across modules” on page 202.

Note: Forward declaration of structs is a relatively new feature of the
OMG IDL syntax and might not be supported by all ORB products.
 185

CHAPTER 8 | Artix WSDL-to-IDL Mapping
XML schema example of
self-recursive type

Example 43 shows an example of a self-recursive sequence—that is, a
sequence type, RecurSeq, that contains a reference to itself.

IDL mapping of self-recursive type Example 44 shows how the self-recursive type, RecurSeq, (from
Example 43 on page 186) maps to OMG IDL. This mapping uses a forward
declaration of the RecurSeq IDL struct to define the recursive type.

Example 43: XML Example of a Self-Recursive Type

<xsd:complexType name="RecurSeq">
 <xsd:sequence>
 <xsd:element name="value" type="xsd:long"/>
 <xsd:element name="RecurSeqs" type="s:RecurSeq"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
</xsd:complexType>

Note: In this example, it is important to set minOccurs equal to zero,
otherwise the recursion could never terminate.

Example 44: IDL Mapping of a Self-Recursive Type

// IDL
struct RecurSeq;
typedef sequence<RecurSeq> RecurSeqsArray;

struct RecurSeq {
 long long value;
 RecurSeqsArray RecurSeqs;
};

Note: Forward declaration of an OMG IDL struct is supported only by
Orbix version and later.
186

Recursive Types
XML schema example of
mutually-recursive types

Example 45 shows an example of two mutually-recursive sequence types,
MutualSeqA and MutualSeqB. In this example, MutualSeqB contains a
reference to MutualSeqA and MutualSeqA contains a reference to
MutualSeqB.

IDL mapping of
mutually-recursive types

Example 46 shows how the mutually-recursive types, MutualSeqA and
MutualSeqB (from Example 45 on page 187) map to OMG IDL. This
mapping uses forward declarations of the MutualSeqA struct and the
MutualSeqB struct, in order to define the recursive types.

Example 45: XML Example of Mutually-Recursive Types

<xsd:complexType name="MutualSeqA">
 <xsd:sequence>
 <xsd:element name="valueA" type="xsd:long"/>
 <xsd:element name="MutualSeqBs" type="s:MutualSeqB"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
</xsd:complexType>

<xsd:complexType name="MutualSeqB">
 <xsd:sequence>
 <xsd:element name="OneMutualSeqA" type="s:MutualSeqA"/>
 <xsd:element name="valueB" type="xsd:long"/>
 </xsd:sequence>
</xsd:complexType>

Example 46: IDL Mapping of Mutually-Recursive Types

// IDL
struct MutualSeqB;
struct MutualSeqA;
typedef sequence<MutualSeqB> MutualSeqBsArray;

struct MutualSeqA {
 long long valueA;
 MutualSeqBsArray MutualSeqBs;
};
struct MutualSeqB {
 MutualSeqA OneMutualSeqA;
 long long valueB;
};
 187

CHAPTER 8 | Artix WSDL-to-IDL Mapping
Endpoint References

Overview Endpoint references provide a convenient way of encapsulating the location
of an Artix service, in a form that can be passed as a parameter or a return
value in a WSDL operation. In the special case where the endpoint
reference refers to a CORBA port, it is possible to map the endpoint
reference to a CORBA object reference. It is obviously not possible for a
CORBA client to use an object reference to connect to a non-CORBA service.

Endpoint reference type The endpoint reference type is defined by the WS-Addressing standard. In
Artix, the endpoint reference type is normally represented as
wsa:EndpointReferenceType.

WS-Addressing namespace Artix conventionally defines the namespace prefix, wsa, to represent the
WS-Addressing namespace:

http://www.w3.org/2005/08/addressing

To use endpoint references, you should define the wsa namespace prefix in
the definitions element of your WSDL contract.

WS-Addressing schema import In order to use endpoint references in a WSDL contract, you must also
import the WS-Addressing schema, using the following import statement:

<import namespace="http://www.w3.org/2005/08/addressing"
 schemaLocation="WSAddressingURL"/>

Where WSAddressingURL can either be the path to an .xsd file in the local
filesystem or a URL to retrieve the schema from a remote location.

In this section This section contains the following subsections:

Default Endpoint Reference Mapping page 189

Custom Endpoint Reference Mapping page 193
188

Endpoint References
Default Endpoint Reference Mapping

Overview By default, the endpoint reference type, wsa:EndpointReferenceType, maps
to the IDL built-in type, Object.

Using an endpoint reference type To use an endpoint reference in your contract, simply declare a parameter or
return value to be of wsa:EndpointReferenceType in an operation’s request
or reply message. For example, to declare the return value from a
create_account operation to be an endpoint reference type, you would
define the operation’s request and reply messages as follows:

Empty endpoint reference An empty endpoint reference is an endpoint reference that does not address
any endpoint. Conventionally, the address of an empty endpoint reference is
represented by the following URI:

http://www.w3.org/2005/08/addressing/none

Artix maps an empty endpoint reference to a CORBA nil object reference.

WSDL example Example 48 shows how endpoint references are used in a bank WSDL
contract. The Bank service exposes two operations, create_account and
get_account, which return references to Account services. The returned
references are declared to be of endpoint reference type,
wsa:EndpointReferenceType (highlighted in bold font).

Example 47: Request and Reply Messages for create_account Operation

<message name="create_account">
 <part name="account_name" type="xsd:string"/>
</message>
<message name="create_accountResponse">
 <part name="return" type="wsa:EndpointReferenceType"/>
</message>

Example 48: Example Using Default Mapping of EndpointReferenceType

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://www.iona.com/bus/demos/bank"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 189

CHAPTER 8 | Artix WSDL-to-IDL Mapping
 xmlns:xsd1="http://soapinterop.org/xsd"
 xmlns:stub="http://schemas.iona.com/transports/stub"
 xmlns:http="http://schemas.iona.com/transports/http"
 xmlns:http-conf="http://schemas.iona.com/transports/http/configuration"
 xmlns:fixed="http://schemas.iona.com/bindings/fixed"
 xmlns:iiop="http://schemas.iona.com/transports/iiop_tunnel"
 xmlns:corba="http://schemas.iona.com/bindings/corba"
 xmlns:ns1="http://www.iona.com/corba/typemap/BasePortType.idl"
 xmlns:wsa="http://www.w3.org/2005/08/addressing"
 xmlns:mq="http://schemas.iona.com/transports/mq"
 xmlns:routing="http://schemas.iona.com/routing"
 xmlns:msg="http://schemas.iona.com/port/messaging"
 xmlns:bank="http://www.iona.com/bus/demos/bank"
 targetNamespace="http://www.iona.com/bus/demos/bank"
 name="BaseService" >
 <types>

 <schema elementFormDefault="qualified"
 targetNamespace="http://www.iona.com/bus/demos/bank"
 xmlns="http://www.w3.org/2001/XMLSchema">

 <import namespace="http://www.w3.org/2005/08/addressing"
 schemaLocation="wsaddressing.xsd"/>

 <complexType name="AccountNames">
 <sequence>
 <element maxOccurs="unbounded" minOccurs="0" name="name" type="xsd:string"/>
 </sequence>
 </complexType>
 </schema>
 </types>

 <message name="list_accounts" />
 <message name="list_accountsResponse">
 <part name="return" type="bank:AccountNames"/>
 </message>

 <message name="create_account">
 <part name="account_name" type="xsd:string"/>
 </message>
 <message name="create_accountResponse">
 <part name="return" type="wsa:EndpointReferenceType"/>
 </message>

 <message name="get_account">

Example 48: Example Using Default Mapping of EndpointReferenceType
190

Endpoint References
 <part name="account_name" type="xsd:string"/>
 </message>
 <message name="get_accountResponse">
 <part name="return" type="wsa:EndpointReferenceType"/>
 </message>

 <message name="delete_account">
 <part name="account_name" type="xsd:string"/>
 </message>
 <message name="delete_accountResponse" />

 <message name="get_balance"/>
 <message name="get_balanceResponse">
 <part name="balance" type="xsd:float"/>
 </message>

 <message name="deposit">
 <part name="addition" type="xsd:float"/>
 </message>

 <message name="depositResponse"/>

 <portType name="Bank">

 <operation name="list_accounts">
 <input name="list_accounts" message="tns:create_account"/>
 <output name="list_accountsResponse" message="tns:list_accountsResponse"/>
 </operation>

 <operation name="create_account">
 <input name="create_account" message="tns:create_account"/>
 <output name="create_accountResponse" message="tns:create_accountResponse"/>
 </operation>

 <operation name="get_account">
 <input name="get_account" message="tns:get_account"/>
 <output name="get_accountResponse" message="tns:get_accountResponse"/>
 </operation>

 <operation name="delete_account">
 <input name="delete_account" message="tns:delete_account"/>
 <output name="delete_accountResponse" message="tns:delete_accountResponse"/>
 </operation>

Example 48: Example Using Default Mapping of EndpointReferenceType
 191

CHAPTER 8 | Artix WSDL-to-IDL Mapping
IDL mapping When the preceding WSDL contract (Example 48 on page 189) is mapped
to OMG IDL, the Bank operations are mapped as shown in Example 49.

 </portType>
 <portType name="Account">
 <operation name="get_balance">
 <input name="get_balance" message="tns:get_balance"/>
 <output name="get_balanceResponse" message="tns:get_balanceResponse"/>
 </operation>
 <operation name="deposit">
 <input name="deposit" message="tns:deposit"/>
 <output name="depositResponse" message="tns:depositResponse"/>
 </operation>
 </portType>
 ...
</definitions>

Example 48: Example Using Default Mapping of EndpointReferenceType

Example 49: Bank Interface with Default Endpoint Reference Mapping

// IDL
interface Bank {
 ::AccountNames
 list_accounts(
 in string account_name
);
 Object
 create_account(
 in string account_name
);
 Object
 get_account(
 in string account_name
);
 void
 delete_account(
 in string account_name
);
};
192

Endpoint References
Custom Endpoint Reference Mapping

Overview Whereas in WSDL all endpoint references must be of the same type (that is,
wsa:EndpointReferenceType), in IDL object references are usually declared
as type specific. For example, if an IDL operation returns a reference to an
account, the return value is normally defined to be of Account type, rather
than the generic Object type.

To ensure that a WSDL endpoint reference maps to a type-specific object
reference in IDL, you can add an annotation to the WSDL contract.

Annotation for a custom endpoint
reference mapping

To customize the mapping of an endpoint reference, you must modify the
parameters in an operation’s request or reply message to refer to a custom
element instead of referring to a wsa:EndpointReferenceType type. The
custom element must then be defined with an xsd:annotation element that
contains details of the custom mapping.

For example, Example 50 shows you how to define a reply message for the
create_account operation from the Bank WSDL contract, such that the type
returned from create_account maps to Account in IDL.

Example 50: Annotation for Custom Mapping of Endpoint Reference

<types>
 <schema ... >
 ...
 <element name="AccountRef"
 type="wsa:EndpointReferenceType">
 <annotation>
 <appinfo>corba:binding=AccountCORBABinding</appinfo>
 </annotation>
 </element>
 </schema>
</types>

<message name="create_account">
 <part name="account_name" type="xsd:string"/>
</message>
<message name="create_accountResponse">
 <part element="bank:AccountRef" name="return"/>
</message>
 193

CHAPTER 8 | Artix WSDL-to-IDL Mapping
The annotation in the AccountRef element is defined in order to map the
wsa:EndpointReferenceType to the Account interface. The setting in the
<appinfo> tag:

identifies an associated Account binding, rather than an Account port type,
because the annotation applies specifically to the CORBA binding, not to all
bindings.

WSDL example Example 51 shows an example of a Bank WSDL contract that uses an
annotation to customize the mapping of the endpoint reference type.

corba:binding=BindingName

Example 51: Example Using Custom Mapping of EndpointReferenceType

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://www.iona.com/bus/demos/bank"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://soapinterop.org/xsd"
 xmlns:stub="http://schemas.iona.com/transports/stub"
 xmlns:http="http://schemas.iona.com/transports/http"
 xmlns:http-conf="http://schemas.iona.com/transports/http/configuration"
 xmlns:fixed="http://schemas.iona.com/bindings/fixed"
 xmlns:iiop="http://schemas.iona.com/transports/iiop_tunnel"
 xmlns:corba="http://schemas.iona.com/bindings/corba"
 xmlns:ns1="http://www.iona.com/corba/typemap/BasePortType.idl"
 xmlns:wsa="http://www.w3.org/2005/08/addressing"
 xmlns:mq="http://schemas.iona.com/transports/mq"
 xmlns:routing="http://schemas.iona.com/routing"
 xmlns:msg="http://schemas.iona.com/port/messaging"
 xmlns:bank="http://www.iona.com/bus/demos/bank"
 targetNamespace="http://www.iona.com/bus/demos/bank"
 name="BaseService" >
 <types>

 <schema elementFormDefault="qualified"
 targetNamespace="http://www.iona.com/bus/demos/bank"
 xmlns="http://www.w3.org/2001/XMLSchema">

 <import namespace="http://www.w3.org/2005/08/addressing"
 schemaLocation="wsaddressing.xsd"/>

 <complexType name="AccountNames">
 <sequence>
194

Endpoint References
 <element maxOccurs="unbounded" minOccurs="0" name="name" type="xsd:string"/>
 </sequence>
 </complexType>

 <xsd:element name="AccountRef" type="wsa:EndpointReferenceType">
 <xsd:annotation>
 <xsd:appinfo>corba:binding=AccountCORBABinding</xsd:appinfo>
 </xsd:annotation>
 </xsd:element>
 </schema>
 </types>

 <message name="list_accounts" />
 <message name="list_accountsResponse">
 <part name="return" type="bank:AccountNames"/>
 </message>

 <message name="create_account">
 <part name="account_name" type="xsd:string"/>
 </message>
 <message name="create_accountResponse">
 <part name="return" element="tns:AccountRef"/>
 </message>

 <message name="get_account">
 <part name="account_name" type="xsd:string"/>
 </message>
 <message name="get_accountResponse">
 <part name="return" element="tns:AccountRef"/>
 </message>

 <message name="delete_account">
 <part name="account_name" type="xsd:string"/>
 </message>
 <message name="delete_accountResponse" />

 <message name="get_balance"/>
 <message name="get_balanceResponse">
 <part name="balance" type="xsd:float"/>
 </message>

 <message name="deposit">
 <part name="addition" type="xsd:float"/>
 </message>

Example 51: Example Using Custom Mapping of EndpointReferenceType
 195

CHAPTER 8 | Artix WSDL-to-IDL Mapping
 <message name="depositResponse"/>

 <portType name="Bank">

 <operation name="list_accounts">
 <input name="list_accounts" message="tns:create_account"/>
 <output name="list_accountsResponse" message="tns:list_accountsResponse"/>
 </operation>

 <operation name="create_account">
 <input name="create_account" message="tns:create_account"/>
 <output name="create_accountResponse" message="tns:create_accountResponse"/>
 </operation>

 <operation name="get_account">
 <input name="get_account" message="tns:get_account"/>
 <output name="get_accountResponse" message="tns:get_accountResponse"/>
 </operation>

 <operation name="delete_account">
 <input name="delete_account" message="tns:delete_account"/>
 <output name="delete_accountResponse" message="tns:delete_accountResponse"/>
 </operation>

 </portType>
 <portType name="Account">
 <operation name="get_balance">
 <input name="get_balance" message="tns:get_balance"/>
 <output name="get_balanceResponse" message="tns:get_balanceResponse"/>
 </operation>
 <operation name="deposit">
 <input name="deposit" message="tns:deposit"/>
 <output name="depositResponse" message="tns:depositResponse"/>
 </operation>
 </portType>
 ...
</definitions>

Example 51: Example Using Custom Mapping of EndpointReferenceType
196

Endpoint References
Generating the IDL interfaces To generate IDL from the WSDL contract shown in Example 51 on
page 194, perform the following steps:

1. Generate the CORBA binding for the Account interface, using the
following command:

C++ runtime

Java runtime

Where the bank WSDL contract is stored in the file, bank.wsdl. The
output from this command is a new WSDL file, bank-corba.wsdl,
which includes the AccountCORBABinding binding.

2. Generate the CORBA binding for the Bank interface, using the
following command:

C++ runtime

Java runtime

The output from this command is a new WSDL file,
bank-corba2.wsdl, which includes both the AccountCORBABinding
binding and the BankCORBABinding binding.

wsdltocorba -corba -i Account -b AccountCORBABinding
bank.wsdl

artix wsdl2idl -corba -i Account -b AccountCORBABinding
bank.wsdl

wsdltocorba -corba -i Bank -b BankCORBABinding
-o bank-corba2.wsdl bank-corba.wsdl

artix wsdl2idl -corba -i Bank -b BankCORBABinding
-o bank-corba2.wsdl bank-corba.wsdl

Note: The order in which these two commands are issued is
important, because the BankCORBABinding binding references the
AccountCORBABinding binding.
 197

CHAPTER 8 | Artix WSDL-to-IDL Mapping
3. Convert the WSDL contract with CORBA bindings into IDL, using the
following command:

C++ runtime

Java runtime

CORBA type mapping Example 52 shows the generated CORBA type mapping that results from
adding both the AccountCORBABinding and the BankCORBABinding into the
contract.

There are two entries because wsdltocorba was run twice on the same file.
The first CORBA object is generated from the first pass of wsdltocorba to
generate the CORBA binding for Account. Because wsdltocorba could not
find the binding specified in the annotation, it generated a generic Object
reference. The second CORBA object, Account, is generated by the second
pass when the binding for Bank was generated. On that pass, wsldtocorba
could inspect the binding for the Account interface and generate a
type-specific object reference.

wsdltocorba -idl -b BankCORBABinding bank-corba2.wsdl

artix wsdl2idl -idl -b BankCORBABinding bank-corba2.wsdl

Example 52: CORBA Type Mapping with References

<corba:typeMapping
 targetNamespace="http://www.iona.com/bus/demos/bank/corba/typemap/">
...
 <corba:object binding="" name="Object"
 repositoryID="IDL:omg.org/CORBA/Object/1.0" type="wsa:EndpointReferenceType"/>
 <corba:object binding="AccountCORBABinding" name="Account"
 repositoryID="IDL:Account:1.0" type="wsa:EndpointReferenceType"/>
</corba:typeMapping>
198

Endpoint References
IDL mapping Example 53 shows the IDL generated for the Account and Bank interfaces.

Example 53: IDL Generated From Artix References

//IDL
...
interface Account {
 float
 get_balance();
 void
 deposit(
 in float addition
);
};
interface Bank {
 ::AccountNames
 list_accounts(
 in string account_name
);
 ::Account
 create_account(
 in string account_name
);
 ::Account
 get_account(
 in string account_name
);
 void
 delete_account(
 in string account_name
);
};
 199

CHAPTER 8 | Artix WSDL-to-IDL Mapping
Mapping to IDL Modules

Overview If you want your generated IDL files to be organised into modules, you can
achieve this by applying the appropriate naming convention to the XML
schema types that appear in the WSDL contract. The following aspects of
IDL module mapping are discussed in this section:

• Module mapping convention.

• References across modules.

• Circular references across modules.

Module mapping convention In order to indicate to the Artix WSDL-to-IDL compiler that you want a type
to appear inside an IDL module, give the type a local name with the
following compound format:

Where Artix uses the period character, ., as a delimiter. ModuleName_1 to
ModuleName_N are the names of a series of nested IDL modules and
TypeName is the unscoped type name in IDL.

For example, you can define an XML sequence type with the compound
name, ONE.SeqA, as follows:

When you map this data type to IDL, you obtain a module, ONE, containing a
struct definition, SeqA, as follows:

ModuleName_1.ModuleName_2.ModuleName_N.TypeName

<xsd:complexType name="ONE.SeqA">
 <xsd:sequence>
 <xsd:element name="valueA" type="xsd:long"/>
 </xsd:sequence>
</xsd:complexType>

// IDL
module ONE {
 struct SeqA {
 long long valueA;
 };
};
200

Mapping to IDL Modules
References across modules It is also possible to make references across modules. That is, a type defined
in one module can use the elements or types defined in another module.

For example, you can define an XML sequence, ONE.SeqA, which has a
member whose type is that of another sequence, TWO.SeqB, as follows:

When you map the preceding types to IDL, the seqB member of the SeqA
struct is of a type, ::TWO::SeqB, that is defined in the second module, as
follows:

<xsd:complexType name="ONE.SeqA">
 <xsd:sequence>
 <xsd:element name="valueA" type="xsd:long"/>
 <xsd:element name="seqB" type="s:TWO.SeqB"/>
 </xsd:sequence>
</xsd:complexType>

<xsd:complexType name="TWO.SeqB">
 <xsd:sequence>
 <xsd:element name="valueB" type="xsd:long"/>
 </xsd:sequence>
</xsd:complexType>

// IDL
module TWO {
 struct SeqB {
 long long valueB;
 };
};
module ONE {
 struct SeqA {
 long long valueA;
 ::TWO::SeqB seqB;
 };
};
 201

CHAPTER 8 | Artix WSDL-to-IDL Mapping
Circular references across
modules

Artix currently does not support the case where you have a chain of
references between modules that form a closed loop.

For example, the following XML schema fragment—where the ONE.SeqA
sequence references the TWO.SeqB sequence, which references the ONE.SeqC
sequence—is not supported:

If you map the preceding WSDL example to IDL, and then map the IDL to
C++, you obtain stub code that is not compilable (the IDL is missing a
forward reference to a struct).

<xsd:complexType name="ONE.SeqA">
 <xsd:sequence>
 <xsd:element name="valueA" type="xsd:long"/>
 <xsd:element name="seqB" type="s:TWO.SeqB"/>
 </xsd:sequence>
</xsd:complexType>

<xsd:complexType name="TWO.SeqB">
 <xsd:sequence>
 <xsd:element name="seqC" type="s:ONE.SeqC"/>
 <xsd:element name="valueB" type="xsd:long"/>
 </xsd:sequence>
</xsd:complexType>

<xsd:complexType name="ONE.SeqC">
 <xsd:sequence>
 <xsd:element name="valueC" type="xsd:long"/>
 </xsd:sequence>
</xsd:complexType>
202

CHAPTER 9

Monitoring GIOP
Message Content
Artix includes the GIOP Snoop tool for intercepting and
displaying GIOP message content.

In this chapter This chapter contains the following sections:

WARNING: It is recommended that you avoid using this feature in secure
applications. The GIOP snoop plug-in can expose user names and
passwords.

Introduction to GIOP Snoop page 204

Configuring GIOP Snoop page 205

GIOP Snoop Output page 208
 203

CHAPTER 9 | Monitoring GIOP Message Content
Introduction to GIOP Snoop

Overview GIOP Snoop is a GIOP protocol level plug-in for intercepting and displaying
GIOP message content. This plug-in implements message level interceptors
that can participate in client and/or server side bindings over any
GIOP-based transport. The primary purposes of GIOP Snoop are to provide a
protocol level monitor and debug aid.

GIOP plug-ins The primary protocol for inter-ORB communications is the General
Inter-ORB Protocol (GIOP) as defined the CORBA Specification.

WARNING: It is recommended that you avoid using this feature in secure
applications. The GIOP snoop plug-in can expose user names and
passwords.
204

Configuring GIOP Snoop
Configuring GIOP Snoop

Overview GIOP Snoop can be configured for debugging in client, server, or both
depending on configuration. This section includes the following
configuration topics:

• Loading the GIOP Snoop plug-in.

• Client-side snooping.

• Server-side snooping.

• GIOP Snoop verbosity levels.

• Directing output to a file.

Loading the GIOP Snoop plug-in For either client or server configuration, the GIOP Snoop plug-in must be
included in the Orbix orb_plugins list (... denotes existing configured
settings):

In addition, the giop_snoop plug-in must be located and loaded using the
following settings:

Note: If using the Java runtime, you must first associate the client or
server with a configuration file—see “Configuring the Java Runtime
CORBA Binding” on page 241 for details.

orb_plugins = [..., "giop_snoop", ...];

Artix Configuration File
plugins:giop_snoop:shlib_name = "it_giop_snoop";
 205

CHAPTER 9 | Monitoring GIOP Message Content
Client-side snooping To enable client-side snooping, include the GIOP_SNOOP factory in the client
binding list. In this example, GIOP Snoop is enabled for IIOP-specific
bindings:

Server-side snooping To enable server-side snooping, include the GIOP_SNOOP factory in the server
binding list.

GIOP Snoop verbosity levels You can use the following variable to control the GIOP Snoop verbosity level:

The verbosity levels are as follows:

These verbosity levels are explained with examples in “GIOP Snoop Output”
on page 208.

binding:client_binding_list =
 [..., "GIOP+GIOP_SNOOP+IIOP", ...];

plugins:giop:message_server_binding_list =
 [..., "GIOP_SNOOP+GIOP", ...];

plugins:giop_snoop:verbosity = "1";

1 LOW

2 MEDIUM

3 HIGH

4 VERY HIGH
206

Configuring GIOP Snoop
Directing output to a file By default, output is directed to standard error (stderr). However, you can
specify an output file using the following configuration variable:

A month/day/year time stamp is included in the output filename with the
following general format:

As a result, for a long running application, each day results in the creation of
a new log file. To enable administrators to control the size and content of
output files GIOP Snoop does not hold output files open. Instead, it opens
and then closes the file for each snoop message trace. This setting is
enabled with:

plugins:giop_snoop:filename = "<some-file-path>";

<filename>.MMDDYYYY

plugins:giop_snoop:rolling_file = "true";

WARNING: It is recommended that you avoid logging GIOP messages in
secure applications. The GIOP snoop plug-in can expose user names and
passwords.
 207

CHAPTER 9 | Monitoring GIOP Message Content

0

GIOP Snoop Output

Overview The output shown in this section uses a simple example that shows
client-side output for a single binding and operation invocation. The client
establishes a client-side binding that involves a message interceptor chain
consisting of IIOP, GIOP Snoop, and GIOP. The client then connects to the
server and first sends a [LocateRequest] to the server to test if the target
object is reachable. When confirmed, a two-way invocation [Request] is
sent, and the server processes the request. When complete, the server
sends a [Reply] message back to the client.

Output detail varies depending on the configured verbosity level. With level
1 (LOW), only basic message type, direction, operation name and some GIOP
header information (version, and so on) is given. More detailed output is
possible, as described under the following examples.

LOW verbosity client-side
snooping

An example of LOW verbosity output is as follows:

This example shows an initial conversation from the client-side perspective.
The client transmits a [LocateRequest] message to which it receives a
[LocateReply] indicates that the server supports the target object. It then
makes an invocation on the operation null_op.

The Conn indicates the logical connection. Because GIOP may be mapped to
multiple transports, there is no transport specific information visible to
interceptors above the transport (such as file descriptors) so each
connection is given a logical identifier. The first incoming and outgoing GIOP
message to pass through each connection are indicated by (first for
binding).

[Conn:1] Out:(first for binding) [LocateRequest] MsgLen: 39 ReqId:
[Conn:1] In: (first for binding) [LocateReply] MsgLen: 8 ReqId: 0
 Locate status: OBJECT_HERE
[Conn:1] Out: [Request] MsgLen: 60 ReqId: 1 (two-way)
 Operation (len 8) 'null_op'
[Conn:1] In: [Reply] MsgLen: 12 ReqId: 1
 Reply status (0) NO_EXCEPTION
208

GIOP Snoop Output
The direction of the message is given (Out for outgoing, In for incoming),
followed by the GIOP and message header contents. Specific information
includes the GIOP version (version 1.2 above), message length and a unique
request identifier (ReqId), which associates [LocateRequest] messages
with their corresponding [LocateReply] messages. The (two-way) indicates
the operation is two way and a response (Reply) is expected. String lengths
such as len 8 specified for Operation includes the trailing null.

MEDIUM verbosity client-side
snooping

An example of MEDIUM verbosity output is as follows:

For MEDIUM verbosity output, extra information is provided. The addition of
time stamps (in hh:mm:ss) precedes each snoop line. The byte order of the
data is indicated (Endian) along with more detailed header information such
as the target address shown in this example. The target address is a GIOP
1.2 addition in place of the previous object key data.

16:24:39 [Conn:1] Out:(first for binding) [LocateRequest] GIOP v1.2 MsgLen: 39
 Endian: big ReqId: 0
 Target Address (0: KeyAddr)
 ObjKey (len 27) ':>.11........\..A..........'

16:24:39 [Conn:1] In: (first for binding) [LocateReply] GIOP v1.2 MsgLen: 8
 Endian: big ReqId: 0
 Locate status: OBJECT_HERE

16:24:39 [Conn:1] Out: [Request] GIOP v1.2 MsgLen: 60
 Endian: big ReqId: 1 (two-way)
 Target Address (0: KeyAddr)
 ObjKey (len 27) ':>.11........\..A..........'
 Operation (len 8) 'null_op'

16:24:39 [Conn:1] In: [Reply] GIOP v1.2 MsgLen: 12
 Endian: big ReqId: 1
 Reply status (0) NO_EXCEPTION
 209

CHAPTER 9 | Monitoring GIOP Message Content
HIGH verbosity client side
snooping

The following is an example of HIGH verbosity output:

This level of verbosity includes all header data, such as service context data.
ASCII-hex pairs of GIOP header and message header content are given to
show the exact on-the-wire header values passing through the interceptor.
Messages are also separated showing inter-message boundaries.

16:24:39 [Conn:1] Out:(first for binding) [LocateRequest] GIOP v1.2 MsgLen: 39
 Endian: big ReqId: 0
 Target Address (0: KeyAddr)
 ObjKey (len 27) ':>.11...........A..........'
 GIOP Hdr (len 12): [47][49][4f][50][01][02][00][03][00][00][00][27]
 Msg Hdr (len 39): [00][00][00][00][00][00][00][00][00][00][00][1b][3a][3e]
[02][31][31][0c][00][00][00][00][00][00][0f][05][00][00][41][c6][08][00][00][00]
[00][00][00][00][00]
[---- end of message ----]

16:31:37 [Conn:1] In: (first for binding) [LocateReply] GIOP v1.2 MsgLen: 8
 Endian: big ReqId: 0
 Locate status: OBJECT_HERE
 GIOP Hdr (len 12): [47][49][4f][50][01][02][00][04][00][00][00][08]
 Msg Hdr (len 8): [00][00][00][00][00][00][00][01]
[---- end of message ----]

16:31:37 [Conn:1] Out: [Request] GIOP v1.2 MsgLen: 60
 Endian: big ReqId: 1 (two-way)
 Target Address (0: KeyAddr)
 ObjKey (len 27) ':>.11...........A..........'
 Operation (len 8) 'null_op'
 No. of Service Contexts: 0
 GIOP Hdr (len 12): [47][49][4f][50][01][02][00][00][00][00][00][3c]
 Msg Hdr (len 60): [00][00][00][01][03][00][00][00][00][00][00][00][00][00]
[00][1b][3a][3e][02][31][31][0c][00][00][00][00][00][00][0f][05][00][00][41][c6]
[08][00][00][00][00][00][00][00][00][00][00][00][00][08][6e][75][6c][6c][5f][6f]
[70][00][00][00][00][00]
[---- end of message ----]

16:31:37 [Conn:1] In: [Reply] GIOP v1.2 MsgLen: 12
 Endian: big ReqId: 1
 Reply status (0) NO_EXCEPTION
 No. of Service Contexts: 0
 GIOP Hdr (len 12): [47][49][4f][50][01][02][00][01][00][00][00][0c]
 Msg Hdr (len 12): [00][00][00][01][00][00][00][00][00][00][00][00]
[---- end of message ----]
210

GIOP Snoop Output
VERY HIGH verbosity client side
snooping

This is the highest verbosity level available. Displayed data includes HIGH
level output and in addition the message body content is displayed. Because
the plug-in does not have access to IDL interface definitions, it does not
know the data types contained in the body (parameter values, return values
and so on) and simply provides ASCII-hex output. Body content display is
truncated to a maximum of 4 KB with no output given for an empty body.
Body content output follows the header output, for example:

...
GIOP Hdr (len 12): [47][49][4f][50][01][02][00][01][00][00][00][0c]
Msg Hdr (len 12): [00][00][00][01][00][00][00][00][00][00][00][00]
Msg Body (len <x>): <content>
...
 211

CHAPTER 9 | Monitoring GIOP Message Content
212

APPENDIX A

Configuring a
CORBA Binding
CORBA bindings are described using a variety of IONA-specific
WSDL elements within the WSDL binding element. In most
cases, the CORBA binding description is generated
automatically using the wsdltocorba utility. Usually, it is
unnecessary to modify generated CORBA bindings.
 213

APPENDIX A | Configuring a CORBA Binding
Namespace The WSDL extensions used to describe CORBA data mappings and CORBA
transport details are conventionally prefixed by the namespace prefix, corba.
The definition of the corba namespace prefix depends on which Artix
runtime you are using, as follows:

• C++ runtime—set the corba namespace prefix as follows:

• Java runtime—set the corba namespace prefix as follows:

corba:binding element The corba:binding element indicates that the binding is a CORBA binding.
This element has one required attribute: repositoryID. repositoryID
specifies the full type ID of the interface. The type ID is embedded in the
object’s IOR and therefore must conform to the IDs that are generated from
an IDL compiler. These are of the form:

The corba:binding element also has an optional attribute, bases, that
specifies that the interface being bound inherits from another interface. The
value for bases is the type ID of the interface from which the bound
interface inherits. For example, the following IDL:

would produce the following corba:binding:

corba:operation element The corba:operation element is an IONA-specific element of <operation>
and describes the parts of the operation’s messages. <corba:operation>
takes a single attribute, name, which duplicates the name given in
<operation>.

xmlns:corba="http://schemas.iona.com/bindings/corba"

xmlns:corba="http://schemas.apache.org/yoko/bindings/corba"

IDL:module/interface:1.0

//IDL
interface clash{};
interface bad : clash{};

<corba:binding repositoryID="IDL:bad:1.0"
 bases="IDL:clash:1.0"/>
214

corba:param element The corba:param element is a member of <corba:operation>. Each <part>
of the input and output messages specified in the logical operation, except
for the part representing the return value of the operation, must have a
corresponding <corba:param>. The parameter order defined in the binding
must match the order specified in the IDL definition of the operation.
<corba:param> has the following required attributes:

corba:return element The corba:return element is a member of <corba:operation> and
specifies the return type, if any, of the operation. It only has two attributes:

corba:raises element The corba:raises element is a member of <corba:operation> and
describes any exceptions the operation can raise. The exceptions are defined
as fault messages in the logical definition of the operation. Each fault
message must have a corresponding corba:raises element. The
corba:raises element has one required attribute, exception, which
specifies the type of data returned in the exception.

mode Specifies the direction of the parameter. The values
directly correspond to the IDL directions: in, inout, out.
Parameters set to in must be included in the input
message of the logical operation. Parameters set to out
must be included in the output message of the logical
operation. Parameters set to inout must appear in both
the input and output messages of the logical operation.

idltype Specifies the IDL type of the parameter. The type names
are prefaced with corba: for primitive IDL types, and
corbatm: for complex data types, which are mapped out
in the corba:typeMapping portion of the contract.

name Specifies the name of the parameter as given in the
logical portion of the contract.

name Specifies the name of the parameter as given in the
logical portion of the contract.

idltype Specifies the IDL type of the parameter. The type names
are prefaced with corba: for primitive IDL types and
corbatm: for complex data types which are mapped out
in the corba:typeMapping portion of the contract.
 215

APPENDIX A | Configuring a CORBA Binding
In addition to operations specified in <corba:operation> tags, within the
<operation> block, each <operation> in the binding must also specify
empty input and output elements as required by the WSDL specification.
The CORBA binding specification, however, does not use them.

For each fault message defined in the logical description of the operation, a
corresponding fault element must be provided in the <operation>, as
required by the WSDL specification. The name attribute of the fault element
specifies the name of the schema type representing the data passed in the
fault message.

Example For example, a logical interface for a system to retrieve employee
information might look similar to personalInfoLookup, shown in
Example 54.

Example 54: personalInfo lookup port type

<message name="personalLookupRequest">
 <part name="empId" type="xsd:int" />
<message />
<message name="personalLookupResponse">
 <part name="return" element="xsd1:personalInfo" />
<message />
<message name="idNotFoundException">
 <part name="exception" element="xsd1:idNotFound" />
<message />
<portType name="personalInfoLookup">
 <operation name="lookup">
 <input name="empID" message="personalLookupRequest" />
 <output name="return" message="personalLookupResponse" />
 <fault name="exception" message="idNotFoundException" />
 </ operation>
</ portType>
216

The CORBA binding for personalInfoLookup is shown in Example 55.

Example 55: personalInfoLookup CORBA Binding

<binding name="personalInfoLookupBinding" type="tns:personalInfoLookup">
 <corba:binding repositoryID="IDL:personalInfoLookup:1.0"/>
 <operation name="lookup">
 <corba:operation name="lookup">
 <corba:param name="empId" mode="in" idltype="corba:long"/>
 <corba:return name="return" idltype="corbatm:personalInfo"/>
 <corba:raises exception="corbatm:idNotFound"/>
 </corba:operation>
 <input/>
 <output/>
 <fault name="personalInfoLookup.idNotFound"/>
 </operation>
</binding>
 217

APPENDIX A | Configuring a CORBA Binding
218

APPENDIX B

Configuring a
CORBA Port
CORBA ports are described using the IONA-specific WSDL
elements, corba:address and corba:policy, within the WSDL
port element, to specify how a CORBA object is exposed.
 219

APPENDIX B | Configuring a CORBA Port
Namespace The WSDL extensions used to describe CORBA data mappings and CORBA
transport details are conventionally prefixed by the namespace prefix, corba.
The definition of the corba namespace prefix depends on which Artix
runtime you are using, as follows:

• C++ runtime—set the corba namespace prefix as follows:

• Java runtime—set the corba namespace prefix as follows:

corba:address element The IOR of the CORBA object is specified using the corba:address element.
You have four options for specifying IORs in Artix contracts:

• Specify the objects IOR directly, by entering the object’s IOR directly
into the contract using the stringified IOR format:

• Specify a file location for the IOR, using the following syntax:

• Specify that the IOR is published to a CORBA name service, by
entering the object’s name using the corbaname format:

For more information on using the name service with Artix see
Deploying and Managing Artix Solutions.

xmlns:corba="http://schemas.iona.com/bindings/corba"

xmlns:corba="http://schemas.apache.org/yoko/bindings/corba"

IOR:22342....

file:///file_name

Note: The file specification requires three backslashes (///).

It is usually simplest to specify the file name using an absolute path. If you
specify the file name using a relative path, the location is taken to be
relative to the directory the Artix process is started in, not relative to the
containing WSDL file.

corbaname:rir/NameService#object_name
220

• Specify the IOR using corbaloc, by specifying the port at which the
service exposes itself, using the corbaloc syntax.

When using corbaloc, you must be sure to configure your service to
start up on the specified host and port.

corba:policy element Using the optional corba:policy element, you can describe a number of
POA polices the Artix service will use when creating the POA for connecting
to a CORBA application. These policies include:

• POA Name.

• Persistence.

• ID Assignment.

Setting these policies lets you exploit some of the enterprise features of
IONA’s Orbix 6.x, such as load balancing and fault tolerance, when
deploying an Artix integration project. For information on using these
advanced CORBA features, see the Orbix documentation.

POA Name

By default, an Artix POA is created with the default name,
{ServiceNamespace}ServiceLocalPart#PortName. For example, if a CORBA
port is defined by the following WSDL fragment:

The unique POA name automatically generated for this CORBA port is
{http://iona.com/mycorbaservice}CorbaService#CorbaPort.

corbaloc:iiop:host:port/service_name

<definitions
 ...
 xmlns:corbatm="http://iona.com/mycorbaservice" >

 <service name="CorbaService">
 <port binding="corbatm:CorbaBinding" name="CorbaPort">
 <corba:address
 location="file:../../hello_world_service.ior"/>
 </port>
 </service>
 ...
 221

APPENDIX B | Configuring a CORBA Port
Alternatively, you can specify the POA name explicitly by setting the
poaname attribute, as follows:

When setting a POA name using the poaname attribute, it is your
responsibility to ensure that the POA name is unique. That is, the POA
name should not be shared between CORBA ports within a service or across
CORBA services.

Persistence

By default Artix POA’s have a persistence policy of false. To set the POA’s
persistence policy to true, use the following:

ID Assignment

By default Artix POAs are created with a SYSTEM_ID policy, meaning that
their ID is assigned by the ORB. To specify that the POA connecting a
specific object should use a user-assigned ID, use the following:

This creates a POA with a USER_ID policy and an object id of POAid.

Example For example, a CORBA port for the personalInfoLookup binding would look
similar to Example 56:

<corba:policy poaname="poa_name" />

<corba:policy persistent="true" />

<corba:policy serviceid="POAid" />

Example 56: CORBA personalInfoLookup Port

<service name="personalInfoLookupService">
 <port name="personalInfoLookupPort"
 binding="tns:personalInfoLookupBinding">
 <corba:address location="file:///objref.ior" />
 <corba:policy persistent="true" />
 <corba:policy serviceid="personalInfoLookup" />
 </ port>
</ service>
222

Artix expects the IOR for the CORBA object to be located in a file called
objref.ior (relative to the directory in which the Artix process is started),
and creates a persistent POA with an object id of personalInfo to connect
the CORBA application.
 223

APPENDIX B | Configuring a CORBA Port
224

APPENDIX C

CORBA Utilities in
Artix
Use the idltowsdl/idl2wsdl utilities to convert OMG IDL to
WSDL and use the wsdltocorba/wsdl2idl utilities to generate
CORBA bindings and to convert WSDL to OMG IDL.

In this appendix This appendix discusses the following topics:

Generating a CORBA Binding page 226

Converting WSDL to OMG IDL page 228

Converting OMG IDL to WSDL page 230
 225

APPENDIX C | CORBA Utilities in Artix
Generating a CORBA Binding

Overview The wsdltocorba utility (C++ runtime) and the artix wsdl2idl utility
(Java runtime) can perform two distinct tasks:

• Generate a CORBA binding.

• Convert WSDL to OMG IDL.

This section discusses how to use the wsdltocorba utility and the artix
wsdl2idl utility to add a CORBA binding to an existing WSDL contract.

Location The wsdltocorba and artix wsdl2idl utilities are located in the following
bin directories:

• C++ runtime utility, wsdltocorba—in
ArtixInstallDir/cxx_java/bin.

• Java runtime utility, artix wsdltoidl—in
ArtixInstallDir/tools/bin.

WSDLTOCORBA/WSDLTOIDL

C++ Runtime Utility
wsdltocorba -corba -i port-type [-d directory] [-o file]

[-props namespace] [-?] [-v] [-verbose] wsdl_file

Java Runtime Utility
artix wsdl2idl -corba -i port-type [-d directory] [-w file]

[-props namespace] [-?] [-v] [-verbose] wsdl_file

Options The command has the following options:

-corba Instructs the tool to generate a CORBA binding for the
specified port type.

-i port-type Specifies the name of the port type being mapped to a
CORBA binding.

-d directory Specifies the directory into which the new WSDL file is
written.
226

Generating a CORBA Binding
-o file (C++ runtime only) Specifies the name of the generated
WSDL file. Defaults to wsdl_file-corba.wsdl.

-w file (Java runtime only) Specifies the name of the generated
WSDL file. Defaults to wsdl_file-corba.wsdl.

-props namespace Specifies the target namespace for the
corba:typeMapping element (an element that defines the
WSDL-to-IDL mappings for complex types).

-? Display detailed information about the options.

-v Display the version of the utility.

-verbose Write a detailed log to standard output while the utility is
running.
 227

APPENDIX C | CORBA Utilities in Artix
Converting WSDL to OMG IDL

Overview The wsdltocorba utility (C++ runtime) and the artix wsdl2idl utility
(Java runtime) can perform two distinct tasks:

• Generate a CORBA binding.

• Convert WSDL to OMG IDL.

This section discusses how to use the wsdltocorba utility and the artix
wsdl2idl utility to convert a WSDL contract into an OMG IDL file.

Location The wsdltocorba and artix wsdl2idl utilities are located in the following
bin directories:

• C++ runtime utility, wsdltocorba—in
ArtixInstallDir/cxx_java/bin.

• Java runtime utility, artix wsdl2idl—in
ArtixInstallDir/tools/bin.

WSDLTOCORBA/WSDLTOIDL

C++ Runtime
wsdltocorba -idl -b binding [-d directory] [-o file] [-?] [-v]

[-verbose] wsdl_file

Java Runtime
artix wsdl2idl -idl -b binding [-d directory] [-o file]

[-a corba-address] [-f corba-address-file] [-?] [-v] [-verbose]
wsdl_file

Options The command has the following options:

-idl Instructs the tool to generate an IDL file from the
specified binding.

-b binding Specifies the CORBA binding from which to generate IDL.

-d directory Specifies the directory into which the new IDL file is
written.
228

Converting WSDL to OMG IDL
-o file Specifies the name of the generated IDL file. Defaults to
wsdl_file.idl (C++ runtime) or BindingName.idl
(Java runtime).

-a corba-address(Java runtime only) Specifies the value of the location
attribute in a corba:address element.

-f
corba-addres
s-file

(Java runtime only) Takes the value of the location
attribute in a corba:address element from the contents
of the specified file, corba-address-file.

-? Display detailed information about the options.

-v Display the version of the utility.

-verbose Write a detailed log to standard output while the utility is
running.
 229

APPENDIX C | CORBA Utilities in Artix
Converting OMG IDL to WSDL

Overview IONA’s IDL compiler supports several command line flags that specify how
to create a WSDL file from an IDL file. The default behavior of the tool is to
create WSDL file that uses wrapped doc/literal style messages. Wrapped
doc/literal style messages have a single part, defined using an element that
wraps all of the elements in the message.

Location The two versions of the idltowsdl utility are located in the following bin
directories:

• C++ runtime utility, idltowsdl—in ArtixInstallDir/cxx_java/bin.

• Java runtime utility, artix idl2wsdl—in
ArtixInstallDir/tools/bin.

IDLTOWSDL

C++ Runtime
idltowsdl [-I idl-include-directory]* [-3] [-o

output-directory] [-a corba-address] [-b] [-f
corba-address-file] [-n schema-import-file] [-s
idl-sequence-type] [-w target-namespace] [-x
schema-namespace] [-t type-map-namespace] [-useTypes] [
-unwrap] [-r reference-schema-file] [-L logical-wsdl-file]
[-P physical-wsdl-file] [-T schema-file-name] [-fasttrack
] [-interface interface-name] [-soapaddr soap-port-address]
[-qualified] [-inline] [-e xml-encoding-type] [-?] [-v
] [-verbose] IDLFile

Java Runtime
artix idl2wsdl [-I idl-include-directory]* [-o output-directory

] [-a corba-address] [-b] [-f corba-address-file] [-n
schema-import-file] [-s idl-sequence-type] [-w
target-namespace] [-x schema-namespace] [-t
type-map-namespace] [-L logical-wsdl-file] [-P
physical-wsdl-file] [-T schema-file-name] [-qualified] [
-e xml-encoding-type] [-?] [-v] [-verbose] [-quiet]
IDLFile
230

Converting OMG IDL to WSDL
Options The command has the following options:

-I idl-include-directorySpecify a directory to be included in the search
path for the IDL preprocessor.

-3 (C++ runtime only) Select parsing mode for
compatibility with legacy Orbix 3 IDL files.

-o output-directory Specifies the directory into which the WSDL file
is written.

-a corba-address Specifies an absolute address through which the
object reference may be accessed. The
corba-address may be a relative or absolute
path to a file, or a corbaname URL

-b Specifies that bounded strings are to be treated
as unbounded. This eliminates the generation of
the special types for the bounded string.

-f corba-address-file Specifies a file containing a string representation
of an object reference. The object reference is
placed in the corba:address element in the
<port> definition of the generated service. The
corba-address-file must exist when you run
the idltowsdl utility.

-n schema-import-file Specifies that a schema file,
schema-import-file, is to be included in the
generated contract by an import statement. This
option cannot be used with the -T option.

-s idl-sequence-type Specifies the XML schema type used to map the
IDL sequence<octet> type. Valid values are
base64Binary or hexBinary. The default is
base64Binary.

-w target-namespace Specifies the namespace to use for the WSDL
targetNamespace. The default is
http://schemas.iona.com/idl/IDLFile.

-x schema-namespace Specifies the namespace to use for the Schema
targetNamespace. The default is
http://schemas.iona.com/idltypes/IDLFile.

-t type-map-namespace Specifies the namespace to use for the CORBA
TypeMapping targetNamespace. The default is
http://schemas.iona.com/typemap/corba/IDL

File.
 231

APPENDIX C | CORBA Utilities in Artix
-useTypes (C++ runtime only) Generate rpc style
messages. rpc style messages have parts
defined using XMLSchema types instead of XML
elements.

-unwrap (C++ runtime only) Generate unwrapped
doc/literal messages. Unwrapped messages
have parts that represent individual elements.
Unlike wrapped messages, unwrapped
messages can have multiple parts and are not
allowed by the WS-I.

-r reference-schema-file(C++ runtime only) Specify the pathname of
the schema file imported to define the
wsa:EndpointReference type. If the -r option is
not given, the idl compiler gets the schema file
pathname from the AddressingSchemaLocation
setting in etc/idl.cfg.

-L logical-wsdl-file Specifies that the logical portion of the
generated WSDL specification into is written to
logical-wsdl-file. The logical-wsdl-file is
then imported into the default generated file.

-P physical-wsdl-filen Specifies that the physical portion of the
generated WSDL specification into is written to
physical-wsdl-file. The physical-wsdl-file
is then imported into the default generated file.

-T schema-file-name Specifies that the schema types are to be
generated into a separate file. The schema file is
included in the generated contract using an
import statement. This option cannot be used
with the -n option.

-fasttrack (C++ runtime only) Provides a fast way of
generating a router contract for a router that
converts incoming SOAP/HTTP messages into
CORBA invocations.

The -interface option must always be specified
when -fasttrack is used.

-interface
interface-name

(C++ runtime only) Used in combination with
the -fasttrack option to specify the IDL
interface that is exposed through the generated
router contract.
232

Converting OMG IDL to WSDL
-soapaddr
soap-port-address

(C++ runtime only) Used in combination with
the -fasttrack option to specify the address of
the generated SOAP port. The address is
specified in the format Host:Port.

-qualified Generate the schemas in the WSDL contract
with the elementFormDefault and
attributeFormDefault attributes set to
qualified. This implies that elements and
attributes appearing in instance documents
must be explicitly qualified by a namespace.

-inline (C++ runtime only) Normally, when you
specify a schema file using the -n option, the
schema is imported by a generated xsd:import
element, which sets the schemaLocation
attribute.

If you specify the -inline option, however, the
schema is included directly in the generated
WSDL contract and the generated xsd:import
element omits the schemaLocation attribute.

-e xml-encoding-type Use the specified WSDL encoding for the value
of the encoding attribute in the generated
<?xml ... ?> tag. The default is UTF-8.

-? Display detailed information about the options.

-v Display the version of the utility.

-verbose Write a detailed log to standard output while the
utility is running.

-quiet (Java runtime only) Run in quiet mode.

Note: The command line flag entries are case sensitive even on
Windows. Capitalization in your generated WSDL file must match the
capitalization used in the prewritten code.
 233

APPENDIX C | CORBA Utilities in Artix
Orbix 3 legacy compatibility (C++ runtime only) To address some issues associated with Orbix 3
migration, the Artix IDL compiler supports a -3 option, which causes the
following behavior in the idltowsdl utility:

• Case sensitivity is activated—this means that name lookup during
parsing is case sensitive. While technically incorrect according to the
CORBA specification, some legacy IDL files might require case
sensitivity. The IDL compiler issues warnings, if case sensitivity rules
are broken.

• New IDL keywords added since CORBA 2.3 (for example, factory and
local) are treated as ordinary identifiers, but warnings are issued.

• If a different spelling of the keyword Object is encountered (for
example, object, OBJECT, or oBjEcT), it is treated as an identifier, and
a warning is issued.

• All IDL is preprocessed with the additional flag
-DIT_ORBIX3IDL_COMPATIBILITY. This allows IDL definitions to make
use of this macro in #ifdefs to help with migration issues.

• Unscoped types from the CORBA module—legacy IDL often uses
TypeCode as a global type, whereas the IDL specification requires it to
be properly scoped to the CORBA module. To deal with this issue, you
could use the following #ifdef to bring TypeCode into global scope, if
required:
#ifdef IT_ORBIX3IDL_COMPATIBILITY
typedef CORBA::TypeCode TypeCode;
#endif

• Semicolons are tolerated in #include statements. The IDL compiler
removes the semicolons and issues a warning.

• Opaque types—there are no easy migration solutions for opaque types.
The IDL compiler does not recognize the opaque keyword. If you have
legacy IDL that uses opaque types, you should consider migrating
them to something like a valuetype instead.

Note: TypeCode originally was a global type in CORBA, but the
CORBA module was added around 1992/1993 to scope such types.)
234

APPENDIX D

Mapping CORBA
Exceptions
To facilitate interoperability between CORBA applications and
Artix applications, Artix automatically maps between CORBA
system exceptions and Artix faults.

In this appendix This appendix discusses the following topics:

Mapping from CORBA System Exceptions page 236

Mapping from Fault Categories page 238

Mapping of Completion Status page 239
 235

APPENDIX D | Mapping CORBA Exceptions
Mapping from CORBA System Exceptions

Overview When a CORBA system exception is returned from a CORBA server to an
Artix client, Artix automatically converts the CORBA system exception to a
fault category.

Map from CORBA system
exceptions to fault categories

Table 5 shows how each of the major CORBA system exceptions map to
Artix fault categories.

Table 5: Map from CORBA System Exceptions to Fault Categories

CORBA System Exception Fault Category

CORBA::BAD_CONTEXT IT_Bus::FaultCategory::INTERNAL

CORBA::BAD_INV_ORDER IT_Bus::FaultCategory::INTERNAL

CORBA::BAD_OPERATION IT_Bus::FaultCategory::BAD_OPERATION

CORBA::BAD_TYPECODE IT_Bus::FaultCategory::MARSHAL_ERROR

CORBA::BAD_QOS IT_Bus::FaultCategory::INTERNAL

CORBA::CODESET_INCOMPATIBLE IT_Bus::FaultCategory::MARSHAL_ERROR

CORBA::COMM_FAILURE IT_Bus::FaultCategory::CONNECTION_FAILURE

CORBA::DATA_CONVERSION IT_Bus::FaultCategory::MARSHAL_ERROR

CORBA::FREE_MEM IT_Bus::FaultCategory::MEMORY

CORBA::IMP_LIMIT IT_Bus::FaultCategory::INTERNAL

CORBA::INITIALIZE IT_Bus::FaultCategory::UNKNOWN

CORBA::INTERNAL IT_Bus::FaultCategory::INTERNAL

CORBA::INTF_REPOS IT_Bus::FaultCategory::INTERNAL

CORBA::INV_FLAG IT_Bus::FaultCategory::INTERNAL

CORBA::INV_IDENT IT_Bus::FaultCategory::NOT_EXIST
236

Mapping from CORBA System Exceptions
CORBA::INV_OBJREF IT_Bus::FaultCategory::INVALID_REFERENCE

CORBA::INV_POLICY IT_Bus::FaultCategory::INTERNAL

CORBA::INVALID_TRANSACTION IT_Bus::FaultCategory::INTERNAL

CORBA::MARSHAL IT_Bus::FaultCategory::MARSHAL_ERROR

CORBA::NO_IMPLEMENT IT_Bus::FaultCategory::NOT_IMPLEMENTED

CORBA::NO_MEMORY IT_Bus::FaultCategory::MEMORY

CORBA::NO_PERMISSION IT_Bus::FaultCategory::NO_PERMISSION

CORBA::NO_RESOURCES IT_Bus::FaultCategory::INTERNAL

CORBA::NO_RESPONSE IT_Bus::FaultCategory::INTERNAL

CORBA::OBJ_ADAPTER IT_Bus::FaultCategory::INTERNAL

CORBA::OBJECT_NOT_EXIST IT_Bus::FaultCategory::NOT_EXIST

CORBA::PERSIST_STORE IT_Bus::FaultCategory::INTERNAL

CORBA::REBIND IT_Bus::FaultCategory::INTERNAL

CORBA::TIMEOUT IT_Bus::FaultCategory::TIMEOUT

CORBA::TRANSACTION_MODE IT_Bus::FaultCategory::INTERNAL

CORBA::TRANSACTION_REQUIRED IT_Bus::FaultCategory::INTERNAL

CORBA::TRANSACTION_ROLLEDBACK IT_Bus::FaultCategory::INTERNAL

CORBA::TRANSACTION_UNAVAILABLE IT_Bus::FaultCategory::INTERNAL

CORBA::TRANSIENT IT_Bus::FaultCategory::TRANSIENT

Table 5: Map from CORBA System Exceptions to Fault Categories

CORBA System Exception Fault Category
 237

APPENDIX D | Mapping CORBA Exceptions
Mapping from Fault Categories

Overview When a fault (that is, a built-in exception) is returned from an Artix server to
a CORBA client, Artix automatically converts the fault category to a CORBA
system exception.

Map from CORBA system
exceptions to fault categories

Table 6 shows how each of the Artix fault categories map to major CORBA
system exceptions.

Table 6: Map from CORBA System Exceptions to Fault Categories

Fault Category CORBA System Exception

IT_Bus::FaultCategory::BAD_OPERATION CORBA::BAD_OPERATION

IT_Bus::FaultCategory::CONNECTION_FAILURE CORBA::COMM_FAILURE

IT_Bus::FaultCategory::INTERNAL CORBA::INTERNAL

IT_Bus::FaultCategory::INVALID_REFERENCE CORBA::INV_OBJREF

IT_Bus::FaultCategory::LICENSE CORBA::NO_IMPLEMENT

IT_Bus::FaultCategory::MARSHAL_ERROR CORBA::MARSHAL

IT_Bus::FaultCategory::MEMORY CORBA::NO_MEMORY

IT_Bus::FaultCategory::NO_PERMISSION CORBA::NO_PERMISSION

IT_Bus::FaultCategory::NOT_EXIST CORBA::OBJECT_NOT_EXIST

IT_Bus::FaultCategory::NOT_IMPLEMENTED CORBA::NO_IMPLEMENT

IT_Bus::FaultCategory::NOT_UNDERSTOOD CORBA::BAD_PARAM

IT_Bus::FaultCategory::TIMEOUT CORBA::TIMEOUT

IT_Bus::FaultCategory::TRANSIENT CORBA::TRANSIENT

IT_Bus::FaultCategory::UNKNOWN CORBA::INITIALIZE

IT_Bus::FaultCategory::VERSION_ERROR CORBA::BAD_PARAM
238

Mapping of Completion Status
Mapping of Completion Status

Overview The CORBA completion status flag and the Artix fault completion status flag
have exactly the same semantics and are thus effectively equivalent. In
other words, a YES completion status implies that the remote operation
completed its work; a NO completion status implies that the remote
operation was never called; and a MAYBE completion status implies that it is
impossible to say whether or not the remote operation completed its work.

Completion status mapping Table 7 shows the mapping between CORBA completion status values and
fault completion status values.

Table 7: Completion Status Mapping

CORBA Completion Status Fault Completion Status

CORBA::COMPLETED_YES IT_Bus::FaultCompletionStatus::YES

CORBA::COMPLETED_NO IT_Bus::FaultCompletionStatus::NO

CORBA::COMPLETED_MAYBE IT_Bus::FaultCompletionStatus::MAYBE
 239

APPENDIX D | Mapping CORBA Exceptions
240

APPENDIX E

Configuring the
Java Runtime
CORBA Binding
The Java runtime version of the CORBA binding can be
configured to load an Orbix configuration file, enabling you to
set advanced configuration options. This appendix describes
how to bootstrap the configuration mechanism, in order to
associate an Orbix configuration file with the CORBA binding.

In this appendix This appendix discusses the following topics:

Java Runtime CORBA Binding Architecture page 242

Bootstrapping the Configuration page 244
 241

APPENDIX E | Configuring the Java Runtime CORBA Binding
Java Runtime CORBA Binding Architecture

Overview Figure 19 gives an overview of the Java runtime CORBA binding
architecture, showing the XML configuration file, cxf.xml and the Orbix
configuration file. This section describes how those configuration files fit into
the architecture of the CORBA binding.

CORBA binding The CORBA binding is responsible for converting Artix operation invocations
into the GIOP message format, enabling you to integrate your program with
CORBA applications. The Java runtime version of the CORBA binding is
designed with a pluggable ORB componenent.

Figure 19: Java Runtime CORBA Binding Architecture

CORBA Binding

Artix Stubs

Application

Java Runtime

ORB

.cfg

Orbix Configuration File

.xml

cxf.xml

ORB Pluggability
Layer
242

Java Runtime CORBA Binding Architecture
ORB pluggability layer In order to load an ORB implementation, the CORBA binding is equipped
with an ORB pluggability layer. Artix configures this layer to load the Orbix
ORB, which is the only option that is currently supported.

cxf.xml file If you need to customize the ORB pluggability layer, you can add the
appropriate configurations settings to the XML configuration file, cxf.xml. In
some cases, it makes sense to customize the ORB pluggability layer,
because it allows you to pass initial arguments to the ORB instance that is
instantiated inside the CORBA binding.

For example, the most common reason for customizing the ORB pluggability
layer is to specify the location of a custom Orbix configuration file.

Orbix configuration file You can optionally associate an Orbix configuration file with the CORBA
binding. This provides you with access to the full power of Orbix
configuration, which you can use to customize the Orbix runtime.

Default configuration of the
CORBA binding

The CORBA binding is packaged with a default XML configuration file,
which loads the Orbix ORB, and a default Orbix configuration file, which
loads a minimal set of plug-ins. For simple applications, this is often
sufficient.

For more advanced applications, however, you can customize the CORBA
binding configuration as described in “Bootstrapping the Configuration” on
page 244.

Note: In principle, the ORB pluggability layer could allow a different ORB
implementation to be integrated with the CORBA binding. In practice,
however, the ORB pluggability layer is intended for internal Artix use only.
Attempting to integrate another ORB with the CORBA binding is not
supported by Artix.
 243

APPENDIX E | Configuring the Java Runtime CORBA Binding
Bootstrapping the Configuration

Overview This section describes how to configure the ORB pluggability layer in the
Java runtime CORBA binding, in order to read an Orbix style configuration
file.

Configuring the classpath The configuration files for the Java runtime CORBA binding must be placed
in a directory that is on the Java CLASSPATH. For example, if the CORBA
binding’s configuration files are placed in the directory, ConfigDirectory,
you would need to configure the CLASSPATH as follows:

Windows

UNIX

Contents of the configuration
directory

The CORBA binding’s configuration directory typically contains the files
shown in Example 57.

By default, the Artix Java runtime searches for an XML configuration file
named cxf.xml on the current CLASSPATH. If you want to give the XML
configuration file a different name or if you want to locate it in a different
directory with respect to the CLASSPATH, specify the file location using the
cxf.config.file Java system property.

For example, you could specify the location of the XML configuration file as
a command-line option to the Java interpreter, as follows:
-Dcxf.config.file=XMLConfigFile.xml.

set CLASSPATH=ConfigDirectory;%CLASSPATH%

export CLASSPATH=ConfigDirectory:$CLASSPATH

Example 57: CORBA Binding Configuration Directory Structure

ConfigDirectory/
 |
 |----cxf.xml
 |
 ‘----DomainName.cfg
244

Bootstrapping the Configuration
cxf.xml file You can customize the ORB pluggability layer by adding appropriate bean
settings to the XML configuration file, cxf.xml. Example 58 shows you how
to configure the ORB pluggability by adding beans with ID equal to
artixORBProperties and artixCorbaBindingFactory respectively.

Example 58: Sample cxf-extension-corba.xml File

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:http="http://cxf.apache.org/transports/http/configuration"
 xsi:schemaLocation="..." >
 ...
 <bean id="artixORBProperties" class="com.iona.cxf.bindings.corba.ORBProperties">
 <property name="orbArgs">
 <list>
 <value>-ORBdomain_name</value>
 <value>default_servants-domain</value>
 <value>-ORBname</value>
 <value>tests.default_servants.server</value>
 </list>
 </property>
 <property name="factory" ref="artixCorbaBindingFactory"/>
 </bean>
 <bean id="artixCorbaBindingFactory"
 class="com.iona.cxf.bindings.corba.CorbaBindingFactory" lazy-init="true">
 <property name="bus" ref="cxf"/>
 <property name="activationNamespaces">
 <set>
 <value>http://schemas.apache.org/yoko/bindings/corba</value>
 </set>
 </property>
 <property name="transportIds">
 <list>
 <value>http://schemas.apache.org/yoko/bindings/corba</value>
 </list>
 </property>
 <property name="orbClass">
 <value>com.iona.corba.art.artimpl.ORBImpl</value>
 </property>
 <property name="orbSingletonClass">
 <value>com.iona.corba.art.artimpl.ORBSingleton</value>
 </property>
 </bean>
</beans>
 245

APPENDIX E | Configuring the Java Runtime CORBA Binding
Specifying ORB arguments Normally, the only part of the XML configuration you need to edit is the
orbArgs property, which enables you to pass command-line arguments to
the underlying ORB runtime.

The following ORB arguments can be used to bootstrap the Orbix
configuration file:

• -ORBdomain-name DomainName—specifes the name of the Orbix
configuration file, without the .cfg suffix.

For example, the ORB domain name setting in Example 58 on
page 245 would direct the CORBA binding to search for the
configuration file, hello_world.cfg, in the configuration directory
(where the configuration directory is listed in the CLASSPATH). If
necessary, Artix will search for the configuration file by looking in each
of the directories in the CLASSPATH.

• -ORBname ConfigScopeName—specifies the name of the ORB instance.

This name is also used to identify the configuration scope in the Orbix
configuration file, from which the ORB takes its configuration data. The
period character, ., is used as a separator to specify a nested
configuration scope name. See Example 58 on page 245.

• -ORBconfig_domains_dir ConfigFileDir—specifies the directory
containing the Orbix configuration file, relative to the configuration
directory.

DomainName.cfg file The Orbix configuration file, DomainName.cfg, has the same syntax as a
regular Orbix configuration file or Artix C++ runtime configuration file. In
this file, you can set any CORBA-related configuration variables—see the
CORBA chapter in the Artix Configuration Reference.
246

Bootstrapping the Configuration
For example, given the bootstrap settings shown in Example 58 on
page 245, you would store the CORBA configuration settings in a file called
hello_world.cfg. The settings relevant to your program would then be
taken from the samples.HelloWorld configuration scope, as follows:

Orbix Configuration File
...
samples {
 HelloWorld {
 ... # Settings for ’samples.HelloWorld’ ORB name
 };
};
 247

APPENDIX E | Configuring the Java Runtime CORBA Binding
248

Index

A
Address specification

CORBA 220
anonymous types

avoiding 169
architecture, Artix overview 12
attributes

mapping 167

B
binding:client_binding_list configuration variable 34
bindings 13
boolean 149
bounded sequences 130
bus:initial_contract:url:QNameAlias configuration

variable 47
bus:qname_alias:QNameAlias configuration

variable 47

C
char 149
checked facets 158
complex types

deriving 173
nesting 169

containers 14
CORBA

enum type 118
exception type 135
sequence type 129
struct type 121, 124
typedef 140
union type 132

corba:address 220
corba:address element 28
corba:policy 221
CORBA bindings

generating 26
CORBA endpoints

generating 28
CORBA ports

generating 28

D
derivation

complex type from complex type 173
double 149

E
embedded router 18
ENTITIES 162
ENTITY 162
enumeration facet 158
enum type 118
exception handling

CORBA mapping 135
exception type 135

F
facets 158

checked 158
fixed 150
fixed ports

host 105
IIOP/TLS listen_addr 105
IIOP/TLS port 105

float 149
fractionDigits facet 158

G
get_discriminator() 127
get_discriminator_as_uint() 127
get_service_contract() function 47
giop plug-in 33
GIOP Snoop 203

I
IDL

bounded sequences 130
enum type 118
exception type 135
object references 142
oneway operations 144
sequence type 129
 249

INDEX
struct type 121, 124
typedef 140
union type 132

IDL attributes
mapping to C++ 144

IDL interfaces
mapping to C++ 141

IDL modules
mapping to C++ 141

IDL operations
mapping to C++ 143
parameter order 144
return value 144

IDL readonly attribute 145
IDREF 162
IDREFS 162
IIOP/TLS

host 105
IIOP/TLS listen_addr 105
IIOP/TLS port 105
iiop plug-in 33
iiop_profile plug-in 33
inheritance relationships

between complex types 173
inout parameters 144
in parameters 144
IOR specification 220
IT_Bus::Boolean 179
it_container command 14

J
JAX-RPC mapping 13

L
length facet 158
LocateReply 208
LocateRequest 208
long 149
long long 149

M
mapping

IDL attributes 144
IDL interfaces 141
IDL modules 141
IDL operations 143

maxExclusive facet 158
maxInclusive facet 158

maxLength facet 158
maxOccurs 176, 180
minExclusive facet 158
minInclusive facet 158
minLength facet 158
minOccurs 180

N
nesting complex types 169
nillable types

syntax 182
NOTATION 162

O
object references

mapping to C++ 142
occurrence constraints

overview of 180
octet 149
oneway operations

in IDL 144
orb_plugins 205
out parameters 144

P
parameters

in IDL-to-C++ mapping 144
pattern facet 158
plug-ins

wsdl_publish 46
plugins:giop_snoop:filename 207
plugins:giop_snoop:rolling_file 207
plugins:giop_snoop:shlib_name 205
plugins:giop_snoop:verbosity 206
ports 13

activating 31
port types 12
protocol bridge 14

Q
query URL 47

R
references

CORBA mapping 142
Reply 208
Request 208
250

INDEX
router plug-in 14
routers 14
routes, configuring 15

S
security

query URL, HTTPS format for 47
sequence complex types

and arrays 176
sequence type 129
servant objects 13
servants

registering 31
short 149
Specifying POA policies 221
standalone router 17, 22

CORBA-to-SOAP 36
string 149, 150
struct type 121, 124
stub code 13
stub files 33

T
TimeBase::UtcT 150
totalDigits facet 158
transports 13
typedef 140

U
unions

logical description 124
union type 132
unsigned long 149
unsigned long long 149

unsigned short 149

W
Web Services Definition Language 12
whiteSpace facet 158
wildcarding types 179
WSDL

attributes 167
wsdl2java command 13
WSDL contract 12
WSDL facets 158
WSDL faults 135
WSDL publish

query URL format 47
wsdl_publish plug-in 46
WSDL publish service 46
WSDL query URL 47
wsdltocorba command

generating a CORBA binding 26
generating IDL 29

wsdltocpp command 13
WSDL-to-IDL conversion 26
wsdltojava command 13
wsdltoservice command 29

X
XML schema

wildcarding types 179
xsd:ENTITIES 162
xsd:ENTITY 162
xsd:IDREF 162
xsd:IDREFS 162
xsd:NOTATION 162
 251

INDEX
252

	List of Figures
	Preface
	What is Covered in This Book
	Who Should Read This Book
	The Artix Documentation Library

	Introduction to CORBA Web Services
	Artix Architecture
	Integrating a CORBA Server with Web Services
	Accessing the CORBA Server through a Standalone Router
	Accessing the CORBA Server through an Embedded Router
	Replacing the WS Client by an Artix Client
	Replacing the CORBA Server by an Artix Server

	Integrating a CORBA Client with Web Services
	Accessing the WS Server through a Standalone Router
	Replacing the CORBA Client by an Artix Client
	Replacing the WS Server by an Artix Server

	Exposing a Web Service as a CORBA Service
	Converting WSDL to IDL
	Exposing an Artix Web Service as a CORBA Service
	Exposing a Non-Artix Web Service as a CORBA Service
	Standalone CORBA-to-SOAP Router Scenario
	Configuring and Running a Standalone CORBA-to-SOAP Router

	Using an Orbix 3.3 Client to Access an Artix Server
	Accessing an Artix Server Using WSDL Query

	Exposing a CORBA Service as a Web Service
	Converting IDL to WSDL
	Embedding Artix in a CORBA Service
	Embedded Router Scenario
	Embedding a Router in the CORBA Server

	Exposing an Orbix 3.3 or Non-Orbix Service as a Web Service
	Standalone SOAP-to-CORBA Router Scenario
	Configuring and Running a Standalone SOAP-to-CORBA Router

	CORBA-to-CORBA Routing
	Bypassing the Router
	Basic Bypass Scenario
	Bypass with Failover Scenario
	Bypass with Load Balancing Scenario

	Integrating the CORBA Naming Service with Artix
	How an Artix Client Resolves a Name
	How an Artix Server Binds a Name
	Artix Client Integrated with a CORBA Server
	CORBA Server Implementation
	Artix Client Configuration

	Advanced CORBA Port Configuration
	Configuring Fixed Ports and Long-Lived IORs
	CORBA Timeout Policies
	Retrying Invocations and Rebinding

	Artix IDL-to-WSDL Mapping
	Introducing CORBA Type Mapping
	IDL Primitive Type Mapping
	IDL Complex Type Mapping
	IDL enum Type
	IDL struct Type
	IDL union Type
	IDL sequence Types
	IDL array Types
	IDL exception Types
	IDL typedef Expressions

	IDL Module and Interface Mapping

	Artix WSDL-to-IDL Mapping
	Simple Types
	Atomic Types
	String Type
	Date and Time Types
	Duration Type
	Deriving Simple Types by Restriction
	List Type
	Unsupported Simple Types

	Complex Types
	Sequence Complex Types
	Choice Complex Types
	All Complex Types
	Attributes
	Nesting Complex Types
	Deriving a Complex Type from a Simple Type
	Deriving a Complex Type from a Complex Type
	Arrays

	Wildcarding Types
	Occurrence Constraints
	Nillable Types
	Recursive Types
	Endpoint References
	Default Endpoint Reference Mapping
	Custom Endpoint Reference Mapping

	Mapping to IDL Modules

	Monitoring GIOP Message Content
	Introduction to GIOP Snoop
	Configuring GIOP Snoop
	GIOP Snoop Output

	Configuring a CORBA Binding
	Configuring a CORBA Port
	CORBA Utilities in Artix
	Generating a CORBA Binding
	Converting WSDL to OMG IDL
	Converting OMG IDL to WSDL

	Mapping CORBA Exceptions
	Mapping from CORBA System Exceptions
	Mapping from Fault Categories
	Mapping of Completion Status

	Configuring the Java Runtime CORBA Binding
	Java Runtime CORBA Binding Architecture
	Bootstrapping the Configuration

	Index

