
Artix ESBTM

Making Software Work TogetherTM

C++ Transactions Guide
Version 5.0, June 2007

IONA Technologies PLC and/or its subsidiaries may have patents, patent applications,
trademarks, copyrights, or other intellectual property rights covering subject matter in
this publication. Except as expressly provided in any written license agreement from
IONA Technologies PLC, the furnishing of this publication does not give you any license
to these patents, trademarks, copyrights, or other intellectual property. Any rights not
expressly granted herein are reserved.
IONA, IONA Technologies, the IONA logos, Orbix, Artix, Making Software Work
Together, Adaptive Runtime Technology, Orbacus, IONA University, and IONA XMLBus
are trademarks or registered trademarks of IONA Technologies PLC and/or its
subsidiaries.
Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries. CORBA is a trademark or registered trademark of the
Object Management Group, Inc. in the United States and other countries. All other
trademarks that appear herein are the property of their respective owners.
IONA Technologies PLC makes no warranty of any kind to this material including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose. IONA Technologies PLC shall not be liable for
errors contained herein, or for incidental or consequential damages in connection with the furnishing, perform-
ance or use of this material.

COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third
party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publica-
tion and features described herein are subject to change without notice.

Copyright © 2001-2007 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: June 26, 2007

Contents

List of Tables 7

List of Figures 9

Preface 11

Chapter 1 Introduction to Transactions 13
Basic Transaction Concepts 14
Artix Transaction Features 16
X/Open Distributed Transaction Processing 21

X/Open DTP Architecture 22
X/Open XA Interface 25

Chapter 2 Getting Started with Transactions 29
Sample Scenario 30
Client Example 36
Server Example 39
Configuration 48

Chapter 3 Selecting a Transaction System 51
Configuring OTS Lite 52
Configuring OTS Encina 55
Configuring Non-Recoverable WS-AT 59
Configuring Recoverable WS-AT 63

Chapter 4 Basic Transaction Programming 67
Artix Transaction Interfaces 68
Beginning and Ending Transactions 71
Server Programming 74

Registering an XA Resource 75
Dynamic Registration Optimization 81
Writing a Custom Resource 88
 3

CONTENTS
Server-Side Programming Model 89

Chapter 5 Transaction Propagation 93
Transaction Propagation and Interposition 94

Chapter 6 Threading 99
Client Threading 100
Threading and XA Resources 105

Chapter 7 Transaction Recovery 111
Transactions Systems and Recovery 112
Transaction Recovery Scenarios 114

Server Crash before or during Prepare Phase 115
Server Crash after Prepare Phase 117
Transaction Coordinator Crash 119

Chapter 8 Recoverable Resources 121
Transaction Participants 122
Interposition 130

Chapter 9 Notification Handlers 133
Introduction to Notification Handlers 134

Chapter 10 Exposing Artix as an XA Resource 137
Introduction to the Artix XA Resource Manager 138
Obtaining an Artix XA Resource Manager 141

Obtaining the XA Switch from a Global Function 142
Obtaining the XA Switch from a Bus Instance 143
Obtaining the XA Switch from a Switch Load File 144

Artix XA Open and Close Strings 146
Configuring the Artix XA Resource Manager 148

Chapter 11 MQ Transactions 151
Reliable Messaging with MQ Transactions 152
Oneway Invocations 153
Synchronous Invocations 156
Router Propagating MQ Transactions 161
4

CONTENTS
Index 163
 5

CONTENTS
6

List of Tables

Table 1: Sample Mechanisms for Obtaining XA Switches 76

Table 2: Examples of Open Strings for Some XA Resource Managers 77

Table 3: Examples of Close Strings for Some XA Resource Managers 77

Table 4: Transaction Systems and Recoverability 112

Table 5: Default Switch Load File for Artix on Various Platforms 144
 7

LIST OF TABLES
 8

List of Figures

Figure 1: Artix Client Invokes a Transactional Operation on a CORBA OTS Server 17

Figure 2: One-Phase Commit Protocol 18

Figure 3: Two-Phase Commit Protocol 19

Figure 4: The X/Open DTP Architecture 22

Figure 5: Bank Scenario with Transactions 30

Figure 6: Overview of a Client-Server System that Uses OTS Lite 52

Figure 7: Overview of a Client-Server System that Uses OTS Encina 55

Figure 8: Client-Server System that Uses Non-Recoverable WS-AT 59

Figure 9: Client-Server System that Uses Recoverable WS-AT 63

Figure 10: Overview of the Artix Transaction API 68

Figure 11: Invocation Dispatch for a Normally Registered RM 82

Figure 12: Invocation Dispatch for a Dynamically Registered RM 84

Figure 13: Overview of Different Kinds of Transaction Propagation 95

Figure 14: Limitation of Transaction Propagation Using OTS Lite 96

Figure 15: Default Client Threading Model 100

Figure 16: Detaching and Re-Attaching a Transaction to a Thread 102

Figure 17: Attaching a Transaction to Multiple Threads 103

Figure 18: Transferring a Transaction from One Thread to Another 104

Figure 19: Auto-Association with a Single Registered Resource 105

Figure 20: Auto-Association with Multiple Registered Resources 107

Figure 21: Database Resource Operating in Multi-Threaded Mode 108

Figure 22: Threading for a Dynamically Registered Resource 109

Figure 23: Server Crash before or during the Prepare Phase 115

Figure 24: Server Crash after the Prepare Phase 117

Figure 25: Transaction Participants in a 2-Phase Commit Protocol 123

Figure 26: Artix XA Resource Manager Manages a Local Resource 138
 9

LIST OF FIGURES
Figure 27: Artix XA Resource Manager Manages a Remote Resource 139

Figure 28: Oneway Operation Invoked Over an MQ Transport with MQ Transactions Enabled 153

Figure 29: Synchronous Operation Invoked Over the MQ Transport with MQ Transactions Enabled
156

Figure 30: Router Propagating an MQ Transaction 161
 10

Preface
What is Covered in this Book
This book explains how to program and configure Artix transactions in C++.

Who Should Read this Book
This guide is intended for Artix C++ programmers. This guide assumes that
the reader is familiar with WSDL and XML schemas.

The Artix Documentation Library
For information on the organization of the Artix library, the document
conventions used, and where to find additional resources, see Using the
Artix Library
 11

../library_intro/index.htm
../library_intro/index.htm

PREFACE
 12

CHAPTER 1

Introduction to
Transactions
This chapter provides an introduction to transaction concepts
and to the transaction features supported by Artix.

In this chapter This chapter discusses the following topics:

Basic Transaction Concepts page 14

Artix Transaction Features page 16

X/Open Distributed Transaction Processing page 21
 13

CHAPTER 1 | Introduction to Transactions
Basic Transaction Concepts

What is a transaction? Artix gives separate software objects the power to interact freely even if they
are on different platforms or written in different languages. Artix adds to this
power by permitting those interactions to be transactions.

What is a transaction? Ordinary, non-transactional software processes can
sometimes proceed and sometimes fail, and sometimes fail after only half
completing their task. This can be a disaster for certain applications. The
most common example is a bank fund transfer: imagine a failed software
call that debited one account but failed to credit another. A transactional
process, on the other hand, is secure and reliable as it is guaranteed to
succeed or fail in a completely controlled way.

Example The classical illustration of a transaction is that of funds transfer in a
banking application. This involves two operations: a debit of one account
and a credit of another (perhaps after extracting an appropriate fee). To
combine these operations into a single unit of work, the following properties
are required:

• If the debit operation fails, the credit operation should fail, and
vice-versa; that is, they should both work or both fail.

• The system goes through an inconsistent state during the process
(between the debit and the credit). This inconsistent state should be
hidden from other parts of the application.

• It is implicit that committed results of the whole operation are
permanently stored.
14

Basic Transaction Concepts
Properties of transactions The following points illustrate the so-called ACID properties of a transaction.

Thus a transaction is an operation on a system that takes it from one
persistent, consistent state to another.

Atomic A transaction is an all or nothing procedure –
individual updates are assembled and either
committed or aborted (rolled back) simultaneously
when the transaction completes.

Consistent A transaction is a unit of work that takes a system
from one consistent state to another.

Isolated While a transaction is executing, its partial results
are hidden from other entities accessing the
transaction.

Durable The results of a transaction are persistent.
 15

CHAPTER 1 | Introduction to Transactions
Artix Transaction Features

Overview This section gives a short overview of the main features supported by Artix
transactions. The Artix transaction API is designed to be compatible with a
variety of different underlying transaction systems. Generally, you can
access the transaction system using a technology-neutral API, but the
technology-specific APIs are also available, in case you need to access more
advanced functionality.

The main features of Artix transactions are as follows:

• Supported protocols

• Client-side transaction support.

• Server-side transaction support.

• Compatibility with Orbix.

• Pluggable transaction system.

• One-phase commit.

• Two-phase commit.

• Transaction propagation.

Supported protocols Artix supports distributed transactions using the following protocols:

• CORBA binding over IIOP.

• SOAP binding over any compatible transport.

Client-side transaction support Transaction demarcation functions (begin_transaction(),
commit_transaction() and rollback_transaction()) can be used on the
client side to initiate and terminate a transaction. While the transaction is
active, all of the operations called from the current thread are included in
the transaction (that is, the operations’ request headers include a
transaction context).
16

Artix Transaction Features
Server-side transaction support On the server side, an API is provided that enables you to implement
transaction participants (sometimes referred to as transactional resources).
Using transaction participants, you can implement servers that participate in
a distributed transaction with the ACID transaction properties (Atomicity,
Consistency, Integrity, and Durability).

Artix supports several different approaches to implementing a transaction
participant, depending on what kind of transaction system is loaded into
your application. For example, you might take a technology-neutral
approach by implementing the IT_Bus::TransactionParticipant class, or
you might decide to exploit the special features of a particular transaction
system instead.

Compatibility with Orbix The Artix transaction facility is fully compatible with CORBA OTS in Orbix.
Hence, if you already have a transactional server implemented with Orbix
ASP, you can easily integrate this with an Artix client, as shown in Figure 1.

Pluggable transaction system The underlying transaction system used by Artix can be replaced within a
pluggable framework. Currently, the following transaction systems are
supported by Artix:

• OTS Lite.

• OTS Encina.

• WS-AtomicTransactions.

Figure 1: Artix Client Invokes a Transactional Operation on a CORBA OTS
Server

CORBA
Server

Transaction
Factory

Resource

Orbix Domain
begin_transaction()
 invoke
 ...
 invoke
commit_transaction()

Artix
Client
 17

CHAPTER 1 | Introduction to Transactions
One-phase commit Artix supports the one-phase commit (1PC) protocol for transactions. This
protocol can be used if there is only one resource participating in the
transaction. The 1PC protocol essentially delegates the transaction
completion to the single resource manager. Figure 2 shows a schematic
overview of the 1PC protocol for a simple client-server system.

The 1PC protocol progresses through the following stages:

1. The client calls begin_transaction() to initiate the transaction.

2. Within the transaction, the client calls one or more WSDL operations
on the remote server. The WSDL operations are transactional, requiring
updates to a persistent resource.

3. The client calls commit_transaction() to make permanent any
changes caused during the transaction (alternatively, the client could
call rollback_transaction() to abort the transaction).

4. The transaction system performs the commit phase by sending a
notification to the server that it should perform a 1PC commit.

Two-phase commit The two-phase commit (2PC) protocol enables multiple resources to
participate in a transaction. In order to preserve the essential properties of a
transaction involving multiple distributed resources, it is necessary to use a
more elaborate algorithm. The 2PC algorithm consists of the following two
phases:

Figure 2: One-Phase Commit Protocol

Artix Server

Transaction
System

Resource

begin_transaction()
 invoke
 ...
 invoke
commit_transaction()

Artix
Client

1

2

3
4

18

Artix Transaction Features
• Prepare phase—the transaction system notifies all of the participants
to prepare the transaction. The participants prepare the transaction by
saving the information that would be required to redo or undo the
changes made during the transaction. At the end of this phase, the
participants vote whether to commit or roll back the transaction.

• Commit (or rollback) phase—if all of the participants vote to commit
the transaction, the transaction system notifies the participants to
commit the changes. On the other hand, if one or more participants
vote to roll back the transaction, the transaction system notifies the
participants to roll back the changes.

Figure 3 shows a schematic overview of the 2PC protocol for a client and
two remote servers.

The 2PC protocol progresses through the following stages:

1. The client calls begin_transaction() to initiate the transaction.

2. Within the transaction, the client calls one or more WSDL operations
on both of the remote servers.

Figure 3: Two-Phase Commit Protocol

begin_transaction()
 invoke
 ...
 invoke
commit_transaction()

Artix
Client

1

3

Artix Server

Transaction
System

Resource

Artix Server

Transaction
System

Resource

2

2
4

5

4
5

prepare
commit
 19

CHAPTER 1 | Introduction to Transactions
3. The client calls commit_transaction() to make permanent any
changes caused during the transaction (alternatively, the client could
call rollback_transaction() to abort the transaction).

4. The transaction system performs the prepare phase by polling all of the
remote transaction participants (the first phase of a two-phase
commit).

5. The transaction system performs the commit or rollback phase by
sending a notification to all of the remote transaction participants (the
second phase of a two-phase commit).

Transaction propagation If you have a section of code executing within a transaction context, Artix
automatically propagates a transaction context with the request message,
whenever a remote operation is called.

For example, consider a three-tier system, where a client initiates a
transaction, invokes an operation on server 1, and then server 1 makes a
further call on server 2. In this scenario, Artix automatically propagates the
transaction to server 2. The transaction is propagated, even if the protocol
between the client and server 1 differs from the protocol used between
server 1 and server 2.
20

X/Open Distributed Transaction Processing
X/Open Distributed Transaction Processing

Overview The X/Open Distributed Transaction Processing (DTP) architecture is a
technical standard published by the Open Group. The X/Open DTP
architecture enables you to integrate resources relatively easily into a
distributed transaction system.

In this section This section contains the following subsections:

X/Open DTP Architecture page 22

X/Open XA Interface page 25
 21

CHAPTER 1 | Introduction to Transactions
X/Open DTP Architecture

Overview This subsection provides a brief overview of the X/Open Distributed
Transaction Processing (DTP) architecture, also known as the XA
specification. For a complete description of the X/Open DTP standard, you
can download the XA specification from the following Web page:

http://www.opengroup.org/bookstore/catalog/c193.htm

DTP model Figure 4 shows an overview of the X/Open DTP model, showing the basic
components and the interfaces between them. The key idea of the X/Open
architecture is that responsibility for managing transactions in a distributed
system must be divided between two components: a transaction manager
and a resource manager. This division would be unnecessary for local
transactions, which could be managed happily by a resource manager
alone, but it is essential for distributed transactions, where the mechanisms
for coordinating global transactions (that is, starting, committing, and rolling
back) are implemented separately from the resource manager.

Figure 4: The X/Open DTP Architecture

{
 EXEC SQL UPDATE
 .
 EXEC SQL UPDATE
}

Application
Program

Resource

XA Resource
Manager

XA Transaction
Manager

XA Interface

AX Interface

TX
 I

nt
er

fa
ce
22

http://www.opengroup.org/bookstore/catalog/c193.htm

X/Open Distributed Transaction Processing
Resource A resource is any part of the system that could undergo a persistent change.
In most cases, a resource represents some form of persistent storage (such
as a database), but it could also represent, for example, the mechanism in
an Automated Teller Machine that tenders cash to customers.

Resource manager A resource manager manages part of a computer’s shared resources. In
particular, the resource manager must be capable of grouping resource
operations into transactions and either committing or rolling back those
transactions in response to calls from the transaction manager (mediated by
the XA interface).

For example, the Oracle DB with an XA switch is an XA-compliant resource
manager.

Transaction manager A transaction manager is responsible for coordinating transactions across a
distributed system. The transaction manager coordinates decisions to
commit or roll back a global transaction and is also responsible for
coordinating failure recovery.

For example, the OTS Encina transaction manager implements the 2-phase
commit protocol for global transactions.

Global transaction A global transaction is a transaction that spans multiple processes and
multiple resources in a distributed system. To manage a global transaction
properly, it is necessary to ensure that the updates made to different
resources in different processes can be committed atomically (or rolled
back) at the end of the transaction.

Transaction branch Because a global transaction is spread over a distributed system, work can
be done on the global transaction in different processes. Moreover, within
each process, work can be done in different resource managers (for
example, you might have an Oracle XA resource manager and an MQ-Series
resource manager both registered within the same process). Hence, it is
useful to introduce the concept of a transaction branch, which identifies the
work done on a global transaction by each resource manager in each
process. The total work done on a global transaction is, therefore, equal to
the sum of the work done in all of its branches.
 23

CHAPTER 1 | Introduction to Transactions
XA interfaces The XA architecture defines a suite of interfaces that mediate the interaction
between the various components of the XA DTP model, as follows:

• XA interface—a collection of functions that the transaction manager
can call on a resource manager in order to coordinate local and
distributed transactions. This interface is fully supported by Artix, both
in the role of transaction manager (where Artix manages foreign
resource managers through the XA interface) and in the role of resource
manager (where Artix is controlled by a foreign transaction manager).

• AX interface—a collection of functions that the resource manager can
call back on the transaction manager. This interface is used internally
by Artix to implement the dynamic registration optimization. See
“Dynamic Registration Optimization” on page 81 for more details.

• TX interface—a collection of functions that perform transaction
demarcation (beginning, committing and rolling back transactions) by
calling on the transaction manager. Artix does not implement the TX
interface; you use the demarcation functions provided on the
IT_Bus::TransactionSystem class instead.
24

X/Open Distributed Transaction Processing
X/Open XA Interface

Overview The X/Open XA interface is the interface that a transaction manager uses to
control the committing or rolling back of a transaction branch in a resource
manager. The great convenience of the XA interface is that it provides a
simple mechanism for integrating a resource into a distributed transaction
system. The XA interface effectively enables you to plug in a resource
manager into a distributed transaction system.

For example, if you want to integrate an Oracle DB into the OTS Encina
distributed transaction system (which is one of the transaction systems
supported by Artix), you would simply register Oracle’s XA switch with Artix.
This requires no more than two or three lines of code in your application
program. Once you have registered the Oracle XA switch, the Oracle DB is
able to partake in distributed transactions managed by OTS Encina.

XA switch type XA defines a set of C-function pointers, and a C-struct that holds these
function pointers, xa_switch_t (see orbix_sys/xa.h) as shown in
Example 1.

Example 1: The XA Switch Type, xa_switch_t

/* C */
struct xa_switch_t
{
 char name[RMNAMESZ]; /* name of resource manager */
 long flags; /* resource manager specific options */
 long version; /* must be 0 */
 int (*xa_open_entry) /* xa_open function pointer */
 (char *, int, long);
 int (*xa_close_entry) /* xa_close function pointer */
 (char *, int, long);
 int (*xa_start_entry) /* xa_start function pointer */
 (XID *, int, long);
 int (*xa_end_entry) /* xa_end function pointer */
 (XID *, int, long);
 int (*xa_rollback_entry) /* xa_rollback function pointer */
 (XID *, int, long);
 int (*xa_prepare_entry) /* xa_prepare function pointer */
 (XID *, int, long);
 int (*xa_commit_entry) /* xa_commit function pointer */
 25

CHAPTER 1 | Introduction to Transactions
Function pointers The function pointers provided by the xa_switch_t struct point to the
following XA functions:

• xa_open() and xa_close()—the xa_open() function opens a
connection to the resource. For example, in a single-threaded
application, the transaction manager would usually call xa_open() as it
starts up.

The xa_close() function closes the connection to the resource. For
example, the transaction manager would usually call xa_close() as it
shuts down.

• xa_start() and xa_end()—the transaction manager calls xa_start()
before doing any work on a transaction branch. At the end of the work,
the transaction manager calls xa_end().

The xa_start() and xa_end() functions are closely related to the XA
threading model (see “Threading and XA Resources” on page 105).
The xa_start() function creates an association between the current
thread and a transaction branch, and the xa_end() function ends the
association. By passing in the appropriate flag, it is also possible for
xa_end() to temporarily suspend the association between the current
thread and the transaction branch and for xa_start() to resume the
association.

• xa_prepare(), xa_commit(), and xa_rollback()—the transaction
manager calls these functions in the course of the 1-phase and
2-phase commit protocols.

• xa_recover() and xa_forget()—the transaction manager can call
these functions to recover after a system crash. Typically, a transaction
manager provides a recovery tool to manage the recovery process.

 (XID *, int, long);
 int (*xa_recover_entry) /* xa_recover function pointer */
 (XID *, long, int, long);
 int (*xa_forget_entry) /* xa_forget function pointer */
 (XID *, int, long);
 int (*xa_complete_entry) /* xa_complete function pointer */
 (int *, int *, int, long);
};

Example 1: The XA Switch Type, xa_switch_t
26

X/Open Distributed Transaction Processing
Providing an XA switch instance Each XA resource manager must provide a global instance of the
xa_switch_t type. For example, this might be provided either as a global
xa_switch_t struct or as the return value from a global function. The
mechanism for obtaining an xa_switch_t instance is not standardised and
varies from product to product.

For example, Oracle provides a global xa_switch_t instance called xaosw.
 27

CHAPTER 1 | Introduction to Transactions
28

 CHAPTER 2

Getting Started
with Transactions
This chapter discusses a simple demonstration scenario
involving a client and two remote servers. The servers enlist
XA resources, which are responsible for integrating the servers’
persistent storage with the Artix transaction system.

In this chapter This chapter discusses the following topics:

Sample Scenario page 30

Client Example page 36

Server Example page 39

Configuration page 48
 29

CHAPTER 2 | Getting Started with Transactions
Sample Scenario

Overview This section describes a sample scenario involving a funds transfer between
two different bank servers, where each bank server is a transactional
resource. This scenario is used as the basis for the examples discussed in
the rest of this chapter.

Bank example Figure 5 shows the outline of a scenario involving a funds transfer between
two bank accounts, which are located on different servers, Bank Server 1
and Bank Server 2. This scenario assumes that the application is using the
OTS transaction system. In particular, the client loads the OTS Encina
plug-in, which is responsible for coordinating the global transactions.

Figure 5: Bank Scenario with Transactions

begin_transaction()
 invoke
 ...
 invoke
commit_transaction()

Artix
Client

1

4

Bank Server 1

OTS

Resource

Bank Server 2

OTS

Resource

OTS

OTS Encina

make_withdrawal()

make_deposit()

3

2

30

Sample Scenario
Funds transfer The scenario shown in Figure 5 can be described as follows:

1. The client initiates a transaction by calling the
IT_Bus::TransactionSystem::begin_transaction() function.

2. Within the scope of the transaction, the client invokes the
make_withdrawal() operation on an account in Bank Server 1, in order
to withdraw a sum of money. The operation request is accompanied by
a transaction context.

3. The client invokes the make_deposit() operation on another account in
Bank Server 2, in order to deposit the sum of money.

4. The client calls the
IT_Bus::TransactionSystem::commit_transaction() to commit the
transaction. The Artix transaction manager then uses a two-phase
commit protocol to commit the changes to Bank Server 1 and Bank
Server 2.

Bank WSDL contract Example 2 shows the WSDL contract for the Bank example that is described
in this section. There are two port types in this contract, Bank and Account.
For each of the two port types there is a SOAP binding, BankBinding and
AccountBinding.

Example 2: Bank WSDL Contract

<definitions targetNamespace="http://www.iona.com/demos/transactions/bank"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:bank="http://schemas.iona.com/demos/transactions/bank"
 xmlns:wsa="http://www.w3.org/2005/03/addressing"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://www.iona.com/demos/transactions/bank"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema" >
 <types>
 <schema elementFormDefault="qualified"
 targetNamespace="http://schemas.iona.com/demos/transactions/bank"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <import namespace="http://www.w3.org/2005/03/addressing"/>
 <complexType name="AccountIDsType">
 <sequence>
 <element maxOccurs="unbounded" minOccurs="0" name="name"
 type="xsd:string"/>
 31

CHAPTER 2 | Getting Started with Transactions
 </sequence>
 </complexType>
 <complexType name="list_accountsInputData">
 <sequence/>
 </complexType>
 <complexType name="list_accountsOutputData">
 <sequence>
 <element name="return" type="bank:AccountIDsType"/>
 </sequence>
 </complexType>
 <element name="list_accounts" type="bank:list_accountsInputData"/>
 <element name="list_accountsResponse" type="bank:list_accountsOutputData"/>
 <complexType name="create_accountInputData">
 <sequence>
 <element name="account_id" type="xsd:string"/>
 </sequence>
 </complexType>
 <complexType name="create_accountOutputData">
 <sequence>
 <element name="return" type="wsa:EndpointReferenceType"/>
 </sequence>
 </complexType>
 <element name="create_account" type="bank:create_accountInputData"/>
 <element name="create_accountResponse" type="bank:create_accountOutputData"/>
 <complexType name="get_accountInputData">
 <sequence>
 <element name="account_id" type="xsd:string"/>
 </sequence>
 </complexType>
 <complexType name="get_accountOutputData">
 <sequence>
 <element name="return" type="wsa:EndpointReferenceType"/>
 </sequence>
 </complexType>
 <element name="get_account" type="bank:get_accountInputData"/>
 <element name="get_accountResponse" type="bank:get_accountOutputData"/>
 <complexType name="delete_accountInputData">
 <sequence>
 <element name="account_id" type="xsd:string"/>
 </sequence>
 </complexType>
 <complexType name="delete_accountOutputData">
 <sequence/>
 </complexType>
 <element name="delete_account" type="bank:delete_accountInputData"/>

Example 2: Bank WSDL Contract
32

Sample Scenario
 <element name="delete_accountResponse" type="bank:delete_accountOutputData"/>
 <complexType name="get_balanceInputData">
 <sequence/>
 </complexType>
 <complexType name="get_balanceOutputData">
 <sequence>
 <element name="return" type="xsd:double"/>
 </sequence>
 </complexType>
 <element name="get_balance" type="bank:get_balanceInputData"/>
 <element name="get_balanceResponse" type="bank:get_balanceOutputData"/>
 <complexType name="make_depositInputData">
 <sequence>
 <element name="amount" type="xsd:double"/>
 </sequence>
 </complexType>
 <complexType name="make_depositOutputData">
 <sequence/>
 </complexType>
 <element name="make_deposit" type="bank:make_depositInputData"/>
 <element name="make_depositResponse" type="bank:make_depositOutputData"/>
 <complexType name="make_withdrawlInputData">
 <sequence>
 <element name="amount" type="xsd:double"/>
 </sequence>
 </complexType>
 <complexType name="make_withdrawlOutputData">
 <sequence/>
 </complexType>
 <element name="make_withdrawl" type="bank:make_withdrawlInputData"/>
 <element name="make_withdrawlResponse" type="bank:make_withdrawlOutputData"/>
 </schema>
 </types>
 <message name="list_accounts">
 <part element="bank:list_accounts" name="parameters"/>
 </message>
 <message name="list_accountsResponse">
 <part element="bank:list_accountsResponse" name="parameters"/>
 </message>
 <message name="create_account">
 <part element="bank:create_account" name="parameters"/>
 </message>
 <message name="create_accountResponse">
 <part element="bank:create_accountResponse" name="parameters"/>
 </message>

Example 2: Bank WSDL Contract
 33

CHAPTER 2 | Getting Started with Transactions
 <message name="get_account">
 <part element="bank:get_account" name="parameters"/>
 </message>
 <message name="get_accountResponse">
 <part element="bank:get_accountResponse" name="parameters"/>
 </message>
 <message name="delete_account">
 <part element="bank:delete_account" name="parameters"/>
 </message>
 <message name="delete_accountResponse">
 <part element="bank:delete_accountResponse" name="parameters"/>
 </message>
 <message name="get_balance">
 <part element="bank:get_balance" name="parameters"/>
 </message>
 <message name="get_balanceResponse">
 <part element="bank:get_balanceResponse" name="parameters"/>
 </message>
 <message name="make_deposit">
 <part element="bank:make_deposit" name="parameters"/>
 </message>
 <message name="make_depositResponse">
 <part element="bank:make_depositResponse" name="parameters"/>
 </message>
 <message name="make_withdrawl">
 <part element="bank:make_withdrawl" name="parameters"/>
 </message>
 <message name="make_withdrawlResponse">
 <part element="bank:make_withdrawlResponse" name="parameters"/>
 </message>
 <portType name="Bank">
 <operation name="list_accounts">
 <input message="tns:list_accounts" name="list_accounts"/>
 <output message="tns:list_accountsResponse" name="list_accountsResponse"/>
 </operation>
 <operation name="create_account">
 <input message="tns:create_account" name="create_account"/>
 <output message="tns:create_accountResponse" name="create_accountResponse"/>
 </operation>
 <operation name="get_account">
 <input message="tns:get_account" name="get_account"/>
 <output message="tns:get_accountResponse" name="get_accountResponse"/>
 </operation>
 <operation name="delete_account">
 <input message="tns:delete_account" name="delete_account"/>

Example 2: Bank WSDL Contract
34

Sample Scenario
 <output message="tns:delete_accountResponse" name="delete_accountResponse"/>
 </operation>
 </portType>

 <portType name="Account">
 <operation name="get_balance">
 <input message="tns:get_balance" name="get_balance"/>
 <output message="tns:get_balanceResponse" name="get_balanceResponse"/>
 </operation>
 <operation name="make_deposit">
 <input message="tns:make_deposit" name="make_deposit"/>
 <output message="tns:make_depositResponse" name="make_depositResponse"/>
 </operation>
 <operation name="make_withdrawl">
 <input message="tns:make_withdrawl" name="make_withdrawl"/>
 <output message="tns:make_withdrawlResponse" name="make_withdrawlResponse"/>
 </operation>
 </portType>
 ...
</definitions>

Example 2: Bank WSDL Contract
 35

CHAPTER 2 | Getting Started with Transactions
Client Example

Overview This section describes a transactional Artix client that connects to two
remote transactional Artix servers, server A and server B. The client uses the
Artix transaction demarcation API to delimit the transaction. The client must
also be configured to load a transaction system plug-in (see “Selecting a
Transaction System” on page 51).

C++ demonstration code The bank client demonstration code is located in the following directory:

ArtixInstallDir/cxx_java/samples/transactions/common/src
/clients/cxx_bank_client

C++ example Example 3 shows how to use the transaction demarcation functions in an
Artix client. Two remote servers, bank server A and bank server B,
participate in the transaction. Hence, this example requires a two-phase
commit protocol.

Example 3: C++ Bank Client Example

// C++
1 BankClient * bank_1_proxy = /* Obtain 1st bank proxy */ ;

BankClient * bank_2_proxy = /* Obtain 2nd bank proxy */ ;

AccountClient * acc_1;
AccountClient * acc_2;

try {
2 WS_Addressing::EndpointReferenceType acc_1_ref;

 bank_1_proxy->get_account("account_1", acc_1_ref);
 acc_1 = new AccountClient(acc_1_ref, bus);

3 WS_Addressing::EndpointReferenceType acc_2_ref;
 bank_2_proxy->get_account("account_2", acc_2_ref);
 acc_2 = new AccountClient(acc_2_ref, bus);
}
catch (const IT_Bus::Exception & access_balance_ex)
{
 String err_msg("ERROR - account balance access failure! : ");
 err_msg += access_balance_ex.message();
 throw IT_Bus::Exception(err_msg);
36

Client Example
The preceding code example can be explained as follows:

1. The bank proxies, bank_1_proxy and bank_2_proxy, provide the initial
connections to bank server A and bank server B, respectively.

In the demonstration code (not shown here), each bank server writes a
reference to a file which is then read by the client (this presupposes
that the clients and servers can both access the same file system).

2. Obtain a proxy to an account in bank server A by calling
get_account() on bank_1_proxy. The endpoint reference, acc_1_ref,
returned from get_account() is used to initialize an account proxy
object, acc_1.

3. Likewise, obtain a proxy to an account in bank server B, acc_2.

4. You should always enclose a transaction in a try block, because it
might be necessary to catch an exception and roll back the transaction.

5. The IT_Bus::TransactionSystem::begin_transaction() call initiates
the transaction.

}

4 try {
5 bus->transactions().begin_transaction();

 acc_1->make_withdrawl(2000.00);
 acc_2->make_deposit(2000.00);

6 bus->transactions().commit_transaction(true);

 display_balances(acc_1, bank_1_id, acc_2, bank_2_id);
}

7 catch (const IT_Bus::Exception & transfer_ex)
{
 String err_msg("ERROR - funds transfer failure! : ");
 err_msg += transfer_ex.message();

8 if (bus->transactions().within_transaction())
 {

9 bus->transactions().rollback_transaction();
 }
 throw IT_Bus::Exception(err_msg);
}

Example 3: C++ Bank Client Example
 37

CHAPTER 2 | Getting Started with Transactions
6. The IT_Bus::TransactionSystem::commit_transaction() call
attempts to commit the changes made to server A and server B. The
boolean argument is the report_heuristics flag, which can take the
following values:

♦ true—specifies that heuristic decisions should be reported during
the commit protocol (if supported by the underlying transaction
system).

♦ false—specifies that heuristic decisions should not be reported.

7. It is essential to catch and handle any exceptions that might be thrown
during a transaction.

8. The within_transaction() call is needed at this point, because the
rollback_transaction() function must only be called from within a
transaction. If rollback_transaction() is called outside a transaction,
it raises an exception.

9. If an exception is thrown, the transaction must be aborted by calling
IT_Bus::TransactionSystem::rollback_transaction().
38

Server Example
Server Example

Overview This section describes a transactional Artix server that implements a bank
service and an unlimited number of account services (each account service
representing a single account). The server uses a transactional resource—an
Oracle database—to store the account records. This transactional resource
is integrated with the Artix transaction manager using an XA interface
(which is an X/Open standard, supported both by Artix and by Oracle).

C++ demonstration code The bank server demonstration code is located in the following directory:

ArtixInstallDir/cxx_java/samples/transactions/common/src
/servers/cxx_xa_http_soap_wsat

Servant classes The bank server implements two servant classes, as follows:

• BankImpl class.

• AccountImpl class.

BankImpl class The BankImpl servant class implements the operations from the Bank port
type. The BankImpl class has the characteristics of a typical account factory
class: that is, it provides operations for creating, finding and deleting
account objects. Clients that use the bank server would initially connect to
the BankService service and then call the Bank operations to obtain a
reference to an account object.

Because the BankImpl class does not participate in any transaction (that is,
it does not access any transactional resources), it is of no relevance to
transactional programming and is not discussed here in detail.

AccountImpl class The AccountImpl servant class implements the operations from the Account
port type. The AccountImpl class is responsible for accessing and updating
account details stored in an Oracle database. Because the Oracle XA switch
is registered with the Artix transaction manager, any database updates must
be coordinated by the Artix transaction manager. When writing the
 39

CHAPTER 2 | Getting Started with Transactions
AccountImpl class, therefore, you should be aware that its operations are
participating in a global transaction and that this affects the way you access
the database.

Integration with Oracle database In the bank server demonstration, the Oracle database is treated as a
resource whose transactions are to be coordinated by the Artix transaction
manager. In order to integrate the Oracle database with the Artix transaction
manager, you must do the following:

1. Register the Oracle XA switch—to subordinate Oracle transactions to
the Artix transaction manager, register an Oracle XA switch object with
the Artix transaction manager. See “Registering an XA Resource” on
page 75 for a detailed discussion.

2. Modify code that interacts with the database—when the XA interface
is enabled, you must observe the following programming restrictions:

♦ Do not open or close any database connections—connections are
now managed automatically through the XA interface.

♦ Do not use embedded SQL or native database API to demarcate
transactions—for example, you must not call the embedded SQL
commands, EXEC SQL BEGIN, EXEC SQL COMMIT, or EXEC SQL
ROLLBACK.

3. Link the server with the relevant Oracle libraries.

C++ registering the Oracle XA
switch

Example 4 shows how to register an Oracle XA switch with the Artix
transaction manager. Registration must occur before the server processes
any incoming requests. You would normally register the XA switch during
initialization of the server program.

Example 4: C++ Registering an Oracle XA Switch

// C++
1 #include <sqlca.h>

2 extern "C" IT_DECLSPEC_IMPORT xa_switch_t xaosw;
extern "C" IT_DECLSPEC_IMPORT xa_switch_t xaoswd;
...

3 xa_switch_t* database_switch = &xaosw;

IT_Bus::TransactionManager & tx_mgr =
40

Server Example
The preceding code fragment can be explained as follows:

1. The sqlca.h header file is an Oracle header file that defines two
instances of xa_switch_t type: xaosw, for a normal XA switch, and
xaoswd, for a dynamically registering XA switch.

2. Declare xaosw to be an external C type (the xa_switch_t type is
declared in C, not C++).

3. The XA switch used in this example, database_switch, is simply a
pointer to an ordinary Oracle XA switch object, xaosw.

4. The XA transaction manager, xa_tx_mgr, is an object that is used to
integrate XA resources with the Artix transaction manager.

 bus->transactions().get_transaction_manager(
 IT_Bus::TransactionSystem::XA_TRANSACTION_TYPE
);

4 IT_Bus::XATransactionManager& xa_tx_mgr =
 dynamic_cast<IT_Bus::XATransactionManager&>(tx_mgr);

IT_Bus::String db_resource_id("oracle_bank");
db_resource_id += bank_id;

5 bool succeeded = xa_tx_mgr.register_xa_resource(
 database_switch,
 IT_Bus::String::EMPTY, // open_string - ""
 IT_Bus::String::EMPTY, // close_string - ""
 db_resource_id, // configuration prefix
 false, // don't use dynamic_registration_optimization
 false // not single-threaded
);

if (!succeeded)
{
 throw IT_Bus::Exception(
 "Failed to register Oracle database as an XA resource"
);
}

Example 4: C++ Registering an Oracle XA Switch
 41

CHAPTER 2 | Getting Started with Transactions
5. Call register_xa_resource() on the IT_Bus::XATransactionManager
instance to register the Oracle XA switch, xaosw, with the Artix XA
transaction manager.

In this example, the open string and the close string are read from an
Artix configuration file. This is flagged by passing an empty string, "",
as the open string. The identifier, db_resource_id, is then used as a
prefix string to identify the relevant variables in the configuration file.
See “Configuration” on page 48 for details.

C++ AccountImpl class Example 5 shows the implementation of the AccountImpl servant class. The
operations implemented by this class are all intended to execute in the
context of a global transaction. This has an effect on the way you program
the database access: in particular, you must avoid starting a local
transaction.

Example 5: C++ AccountImpl Servant Class

// C++
...
void

1 AccountImpl::get_balance(
 IT_Bus::Double &_return
) IT_THROW_DECL((IT_Bus::Exception))
{

2 IT_Bus::String id = get_instance_id();
 const char * id_str = id.c_str();
 double return_balance = 0;

3 ::get_balance_from_db(id_str, return_balance);

 _return = return_balance;
}

void
4 AccountImpl::make_deposit(

 const IT_Bus::Double amount
) IT_THROW_DECL((IT_Bus::Exception))
{
 IT_Bus::String id = get_instance_id();
 const char * id_str = id.c_str();

 IT_Bus::Double balance;
 get_balance(balance);
42

Server Example
 balance += amount;

 ::set_balance_in_db(id_str, balance);

 cout << "Made deposit of $" << amount << " to account \'" <<
id << endl;

}

void
AccountImpl::make_withdrawl(
 const IT_Bus::Double amount
) IT_THROW_DECL((IT_Bus::Exception))
{
 IT_Bus::String id = get_instance_id();
 const char * id_str = id.c_str();

 IT_Bus::Double balance;
 get_balance(balance);

 if (balance < amount)
 {
 throw IT_Bus::Exception("Not enough funds to faciliate

withdrawl");
 }

 balance -= amount;

 ::set_balance_in_db(id_str, balance);

 cout << "Made withdrawl of $" << amount << " from account \'"
<< id << endl;

}

AccountIDsType
AccountImpl::list_all()
{
 AccountIDsType account_ids;
 account_ids = ::list_all_accounts();
 return account_ids;
}

Example 5: C++ AccountImpl Servant Class
 43

CHAPTER 2 | Getting Started with Transactions
The preceding class implementation can be explained as follows:

1. The get_balance() function provides the implementation of the
account service’s get_balance WSDL operation.

2. The get_instance_id() function returns the identity of the account
that is being accessed. The implementation of the get_instance_id()
function depends on the approach used to implement the account
servant class, as follows:

♦ Transient servant—in this approach, a distinct servant object is
created for each account instance. The account identity would be
passed to the servant object at creation time and stored in a
member variable. The get_instance_id() function simply returns
the stored identity in this case.

♦ Default servant—in this approach, a single servant object
services requests for all account instances. The account identity,
therefore, cannot be stored in a member variable. The
get_instance_id() function obtains the account identity by
querying the current address context in this case. For details of
how this works, see the discussion of default servants in
Developing Artix Application in C++.

3. The get_balance_from_db() function uses embedded SQL calls to
retrieve the account balance from an Oracle database. This database
access is integrated into the global transaction.

See Example 6 for a detailed description of this function.

4. The following make_deposit(), make_withdrawl() and list_all()
functions are implementations of WSDL operations, which follow a
pattern similar to the get_balance() function.
44

Server Example
C++ database code Example 6 shows some of the functions that the bank server uses to access
the Oracle database (taken from the oracle_db_fns.pc file). This file
contains embedded SQL statements, which will ultimately be converted into
C++ by the Oracle pre-compiler.

Example 6: C++ Database Code for Accessing Account Data

// For Pro/C++ compiler (C++ with embedded SQL)

void
1 get_balance_from_db(

 const char * the_account_id,
 double& return_balance
)
{
 // local Oracle variables

 EXEC SQL BEGIN DECLARE SECTION;
 VARCHAR acc_id[20];
 double balance=0.0;
 EXEC SQL END DECLARE SECTION;

 acc_id.len = strlen(the_account_id);
 strncpy((char*)&acc_id.arr[0], the_account_id, 19);
 return_balance = (double)0.0;

 // get the balance from the database table
 bool foundit=false;
 EXEC SQL WHENEVER NOT FOUND DO break;
 for (;;)
 {
 EXEC SQL SELECT CURRENT_BALANCE
 INTO :balance
 FROM ARTIX_ACCOUNTS
 WHERE ACCOUNT_ID = :acc_id;

 foundit = true;
 break;
 }
 if (foundit)
 {
 return_balance = balance;
 }
}

 45

CHAPTER 2 | Getting Started with Transactions
The preceding database code can be explained as follows:

1. The get_balance_from_db() function uses conventional embedded
SQL calls to access the ARTIX_ACCOUNTS table, selecting the
CURRENT_BALANCE field from the row indexed by ACCOUNT_ID.

From a transaction viewpoint, it is worth noting that transaction
demarcation statements (EXEC SQL BEGIN, EXEC SQL COMMIT, or EXEC
SQL ROLLBACK) do not appear anywhere in this function. When an XA
switch is registered, the Artix transaction manager is responsible for
transaction demarcation.

2. The set_balance_in_db() function uses conventional embedded SQL
calls to update the ARTIX_ACCOUNTS table, setting the CURRENT_BALANCE
field in the row indexed by ACCOUNT_ID.

void
2 set_balance_in_db(

 const char * the_account_id,
 double new_balance
)
{
 EXEC SQL BEGIN DECLARE SECTION;
 VARCHAR acc_id[20];
 double balance;
 EXEC SQL END DECLARE SECTION;

 acc_id.len = strlen(the_account_id);
 strncpy((char*)&acc_id.arr[0], the_account_id, 19);
 balance = new_balance;

 bool foundit=false;
 EXEC SQL WHENEVER NOT FOUND DO break;
 for (;;)
 {
 EXEC SQL UPDATE ARTIX_ACCOUNTS
 SET CURRENT_BALANCE = :balance
 WHERE ACCOUNT_ID = :acc_id;

 foundit=true;
 break;
 }
}

Example 6: C++ Database Code for Accessing Account Data
46

Server Example
Once again, note the absence of any transaction demarcation
statements (EXEC SQL BEGIN, EXEC SQL COMMIT, or EXEC SQL
ROLLBACK).
 47

CHAPTER 2 | Getting Started with Transactions
Configuration

Overview To use Artix transactions, it is necessary to load and configure the relevant
transaction system (Artix supports multiple transaction systems). Artix does
not load a transaction system by default. Hence, you must include
transaction plug-ins explicitly in the orb_plugins list.

For a more detailed discussion of transaction configuration, see “Selecting a
Transaction System” on page 51.

Configuration file location The tx_demo.cfg configuration file is located in the following directory:

ArtixInstallDir/cxx_java/samples/transactions/common/etc

Client configuration Example 7 shows the configuration settings for the bank client, which uses
the artix.demos.tx_demo.wsat_coordinated Bus ID (which can be
specified, for example, by the -BUSname command-line switch). In this
example, the client is configured to use the WS-AT transaction manager.

Example 7: Client Configuration Using the WS-AT Transaction Manager

Artix Configuration File

Global configuration settings
...

Transaction demonstrations settings
artix
{
 demos
 {
 tx_demo
 {
 ...
 wsat_coordinated
 {
 orb_plugins = ["local_log_stream", "ws_coordination_service"];
 plugins:bus:default_tx_provider:plugin="wsat_tx_provider";
 };
 };
 };
48

Configuration
The following configuration settings are relevant to transactions in the client:

• orb_plugins—the client is configured to load the
ws_coordination_service plug-in, which implements a transaction
manager on the pattern of the WS-Coordination standard. Implicitly,
the client also loads the wsat_protocol plug-in, which provides the
capability to send WS-AtomicTransaction transaction contexts over
SOAP.

• plugins:bus:default_tx_provider:plugin—because Artix can
support several different transaction systems (for example, WS-AT and
OTS Encina), you need to specify explicitly which transaction system
the client uses when it initiates a transaction. In this example, the
client is configured to use the WS-AT transaction system by default.

Server configuration

};

Example 7: Client Configuration Using the WS-AT Transaction Manager

Example 8: Server Configuration with Oracle XA Resource

Artix Configuration File

Global configuration settings
...

Transaction demonstrations settings
artix
{
 demos
 {
 tx_demo
 {
 ...
 wsat_server
 {
 orb_plugins = ["local_log_stream", "wsat_protocol", "coordinator_stub_wsdl"];
 plugins:bus:default_tx_provider:plugin="wsat_tx_provider";

 oracle_xa
 49

CHAPTER 2 | Getting Started with Transactions
The following configuration settings are relevant to transactions in the
server:

• orb_plugins—the server is configured to load the wsat_protocol
plug-in, which provides the capability to send WS-AtomicTransaction
transaction contexts over SOAP, and the coordinator_stub_wsdl
plug-in, which enables the server to call back on the transaction
coordinator object in the client.

• oracle_bankA:open_string—if the programmer passes a blank open
string when registering an XA switch, Artix reads the open string from
configuration instead. The prefix, oracle_bankA, is set by the
programmer at registration time (see “C++ registering the Oracle XA
switch” on page 40).

• oracle_bankA:close_string—if the programmer passes a blank open
string when registering an XA switch, Artix reads the close string from
configuration instead. In this example, the close string is a blank,
because Oracle does not use the close string.

 {
 policies:http:trace_requests:enabled="true";

 # Configuration settings for the Oracle Databases
 #
 oracle_bankA:open_string="Oracle_XA+Acc=P/scott/tiger+SesTm=60+threads=true";
 oracle_bankA:close_string="";
 poa:oracle_bankA:direct_persistent="true";
 poa:oracle_bankA:well_known_address:host="0.0.0.0"; # all network adapters
 poa:oracle_bankA:well_known_address:port="13003"; # unique port

 oracle_bankB:open_string="Oracle_XA+Acc=P/scott/tiger+SesTm=60+threads=true";
 oracle_bankB:close_string="";
 poa:oracle_bankB:direct_persistent="true";
 poa:oracle_bankB:well_known_address:host="0.0.0.0"; # all network adapters
 poa:oracle_bankB:well_known_address:port="13004"; # unique port
 };
 };
 };
 };
};

Example 8: Server Configuration with Oracle XA Resource
50

CHAPTER 3

Selecting a
Transaction
System
Using the Artix plug-in architecture, you can choose between
a number of different transaction system implementations.
Because the Artix transaction API is designed to be
independent of the underlying transaction system, it is
possible to select a particular transaction system at runtime.
Typically, you would choose the transaction system that
provides the best match for your services. For example, if the
majority of your services are SOAP-based, you would select
the WS-AT transaction system.

In this chapter This chapter discusses the following topics:

Configuring OTS Lite page 52

Configuring OTS Encina page 55

Configuring Non-Recoverable WS-AT page 59

Configuring Recoverable WS-AT page 63
 51

CHAPTER 3 | Selecting a Transaction System
Configuring OTS Lite

Overview The OTS Lite plug-in is a lightweight transaction manager, which is subject
to the following restrictions: it supports the 1PC protocol only and it lets you
register only one resource. This plug-in allows applications that only access
a single transactional resource to use the OTS APIs without incurring a large
overhead, but allows them to migrate easily to the more powerful 2PC
protocol by switching to a different transaction manager. Figure 6 shows a
client-server deployment that uses the OTS Lite plug-in.

OTS Lite and interposition If you plan to use OTS Lite in an application that needs to propagate
transactions between different transaction systems, you should be aware
that OTS Lite is subject to certain limitations in the context of interposition.
See “Limitation of using OTS Lite with propagation” on page 96 for details.

Default transaction provider The following variable specifies the default transaction system used by an
Artix client or server:

plugins:bus:default_tx_provider:plugin

To select the CORBA OTS transaction system, you must initialize this
configuration variable with the value, ots_tx_provider.

Figure 6: Overview of a Client-Server System that Uses OTS Lite

Artix Client Artix Server

OTS

Resource

OTS

OTS Lite
52

Configuring OTS Lite
Loading the OTS plug-in In order to use the CORBA OTS transaction system, the OTS plug-in must be
loaded both by the client and by the server. To load the OTS plug-in, include
the ots plug-in name in the orb_plugins list. For example:

Loading the OTS Lite plug-in The OTS Lite plug-in, which is capable of managing 1PC transactions, can
be loaded on the client side, but it is not usually needed on the server side.
You can load the OTS Lite plug-in in one of the following ways:

• Dynamic loading—configure Artix to load the ots_lite plug-in
dynamically, if it is required. For this approach, you need to configure
the initial_references:TransactionFactory:plugin variable as
follows:

This style of configuration has the advantage that the OTS Lite plug-in
is loaded only if it is actually needed.

• Explicit loading—load the ots_lite plug-in by adding it to the list of
orb_plugins, as follows:

Artix Configuration File
ots_lite_client_or_server {
 plugins:bus:default_tx_provider:plugin = "ots_tx_provider";
 orb_plugins = [..., "ots"];
};

Artix Configuration File
ots_lite_client_or_server {
 plugins:bus:default_tx_provider:plugin= "ots_tx_provider";
 orb_plugins = [..., "ots"];
 initial_references:TransactionFactory:plugin = "ots_lite";
 ...
};

Artix Configuration File
ots_lite_client {
 plugins:bus:default_tx_provider:plugin= "ots_tx_provider";
 orb_plugins = [..., "ots", "ots_lite"];
 ...
};
 53

CHAPTER 3 | Selecting a Transaction System
Sample configuration The following example shows a sample configuration for using the OTS Lite
transaction manager:

Artix Configuration File

Basic configuration for transaction plug-ins (shared library
names and so on) included in the global configuration scope.
... (not shown)

ots_lite_client_or_server {
 plugins:bus:default_tx_provider:plugin= "ots_tx_provider";
 orb_plugins = ["xmlfile_log_stream", "iiop_profile", "giop",

"iiop", "ots"];
 initial_references:TransactionFactory:plugin = "ots_lite";
};
54

Configuring OTS Encina
Configuring OTS Encina

Overview The Encina OTS Transaction Manager provides full recoverable 2PC
transaction coordination implemented on top of the industry proven Encina
Toolkit from IBM/Transarc. Encina supports both 1PC and 2PC protocols
and allows you to register multiple resources. Figure 7 shows a client/server
deployment that uses the OTS Encina plug-in.

Default transaction provider The following variable specifies the default transaction system used by an
Artix client or server:

plugins:bus:default_tx_provider:plugin

To select the CORBA OTS transaction system, you must initialize this
configuration variable with the value, ots_tx_provider.

Figure 7: Overview of a Client-Server System that Uses OTS Encina

Artix Client

OTS

OTS Encina

Artix Server

OTS

Resource

Artix Server

OTS

Resource
 55

CHAPTER 3 | Selecting a Transaction System
Loading the OTS plug-in For applications that use the CORBA OTS transaction system, the OTS
plug-in must be loaded both by the client and by the server. To load the OTS
plug-in, include the ots plug-in name in the orb_plugins list. For example:

Loading the OTS Encina plug-in The OTS Encina plug-in, which is capable of managing 1PC and 2PC
transactions, can be loaded on the client side, but it is not usually needed
on the server side. You can load the OTS Encina plug-in in one of the
following ways:

• Dynamic loading—configure Artix to load the ots_encina plug-in
dynamically, if it is required. For this approach, you need to configure
the initial_references:TransactionFactory:plugin variable as
follows:

This style of configuration has the advantage that the OTS Encina
plug-in is loaded only if it is actually needed.

• Explicit loading—load the ots_encina plug-in by adding it to the list of
orb_plugins, as follows:

Artix Configuration File
ots_encina_client_or_server {
 plugins:bus:default_tx_provider:plugin = "ots_tx_provider";
 orb_plugins = [..., "ots"];
};

Artix Configuration File
ots_encina_client_or_server {
 plugins:bus:default_tx_provider:plugin="ots_tx_provider";
 orb_plugins = [..., "ots"];
 initial_references:TransactionFactory:plugin="ots_encina";
 ...
};

Artix Configuration File
ots_lite_client {
 plugins:bus:default_tx_provider:plugin= "ots_tx_provider";
 orb_plugins = [..., "ots", "ots_encina"];
 ...
};
56

Configuring OTS Encina
Sample configuration Example 9 shows a complete configuration for using the OTS Encina
transaction manager:

The preceding configuration can be described as follows:

1. These two lines configure Artix to use the CORBA OTS transaction
system and load the OTS plug-in.

2. This line configures Artix to load the ots_encina plug-in dynamically, if
it is needed by the application (typically needed on the client side).

3. Configuring Encina to use direct persistence means that the Encina
transaction manager service listens on a fixed IP port. The port on
which the transaction manager listens is specified by the
plugins:ots_encina:iiop:port variable.

Example 9: Sample Configuration for OTS Encina Plug-In

Artix Configuration File
ots_encina_client_or_server {

1 plugins:bus:default_tx_provider:plugin= "ots_tx_provider";
 orb_plugins = [..., "ots"];

2 initial_references:TransactionFactory:plugin = "ots_encina";

3 plugins:ots_encina:direct_persistence = "true";
 plugins:ots_encina:iiop:port = "3213";

4 plugins:ots_encina:initial_disk = "../../log/encina.log";
5 plugins:ots_encina:initial_disk_size = "1";
6 plugins:ots_encina:restart_file =

"../../log/encina_restart";
7 plugins:ots_encina:backup_restart_file =

"../../log/encina_restart.bak";

 # Boilerplate configuration settings for OTS Encina:
 # (you should never need to change these)

8 plugins:ots_encina:shlib_name = "it_ots_encina";
 plugins:ots_encina_adm:shlib_name = "it_ots_encina_adm";
 plugins:ots_encina_adm:grammar_db =

"ots_encina_adm_grammar.txt";
 plugins:ots_encina_adm:help_db = "ots_encina_adm_help.txt";
};
 57

CHAPTER 3 | Selecting a Transaction System
4. The plugins:ots_encina:initial_disk variable specifies the path for
the initial file used by the Encina OTS for its transaction logs.

If this file does not exist when you start the client, Encina OTS
automatically creates it (cold start).

5. The plugins:ots_encina:initial_disk_size variable specifies the
size of the initial file used by the Encina OTS for its transaction logs.
Defaults to 2.

6. The plugins:ots_encina:restart_file variable specifies the path for
the restart file, which Encina OTS uses to locate its transaction logs.

If this file does not exist when you start the client, Encina OTS
automatically creates it (cold start).

7. The plugins:ots_encina:backup_restart_file variable specifies the
path for the backup restart file, which Encina OTS uses to locate its
transaction logs.

If this file does not exist when you start the client, Encina OTS
automatically creates it (cold start).

8. The settings in the next few lines specify the basic configuration of the
OTS Encina plug-in. It should not be necessary ever to change the
values of these configuration settings.
58

Configuring Non-Recoverable WS-AT
Configuring Non-Recoverable WS-AT

Overview The WS-AtomicTransactions (WS-AT) transaction system uses SOAP
headers to transmit transaction contexts between the participants in a
transaction. The lightweight WS-AT transaction system supports the 2PC
protocol and allows you to register multiple resources; unlike OTS Encina,
however, it does not support recovery. Figure 8 shows a client/server
deployment that uses the lightweight WS-AT transaction system.

Default transaction provider The following variable specifies the default transaction system used by an
Artix client or server:

plugins:bus:default_tx_provider:plugin

To select the WS-AT transaction system, you must initialize this
configuration variable with the value, wsat_tx_provider.

Figure 8: Client-Server System that Uses Non-Recoverable WS-AT

Artix Client

WS-AT

WS-Coordination

Artix Server

WS-AT

Resource

Artix Server

WS-AT

Resource
 59

CHAPTER 3 | Selecting a Transaction System
Disabling recovery Since Artix version 4.0, the WS-AT transaction system is recoverable by
default (by layering itself over OTS Encina). Hence, to use the lightweight,
non-recoverable version of WS-AT in your application, you need to explicitly
disable recovery by setting the following configuration variable to true:

plugins:ws_coordination_service:disable_tx_recovery = "true";

Plug-ins for WS-AT The division of the WS-AT transaction system into separate plug-ins reflects
the fact that the WS-AT specification has two distinct parts:
WS-AtomicTransactions and WS-Coordination.

The following plug-ins are required to support the WS-AT transaction
system:

• wsat_protocol plug-in—implements WS-AtomicTransactions. It is
required by all services and clients that use WS-AT transactions. This
plug-in enables an Artix executable to receive and transmit WS-AT
transaction contexts.

• ws_coordination_service plug-in—implements WS-Coordination.
Only one instance of this plug-in is required (typically, loaded into a
client). This plug-in coordinates the two-phase commit protocol.

Sample configuration Example 10 shows a complete configuration for using the non-recoverable
WS-AT transaction manager:

Example 10: Sample Configuration for Non-Recoverable WS-AT

Artix Configuration File
ws_atomic_transactions {
 client
 {

1 orb_plugins = ["local_log_stream",
"ws_coordination_service"];

2 plugins:bus:default_tx_provider:plugin ="wsat_tx_provider";
3 plugins:ws_coordination_service:disable_tx_recovery ="true";

 };

 server
 {

4 orb_plugins = ["local_log_stream", "wsat_protocol",
"coordinator_stub_wsdl"];

 plugins:ws_coordination_service:disable_tx_recovery ="true";
60

Configuring Non-Recoverable WS-AT
The preceding configuration can be described as follows:

1. The ws_coordination_service plug-in is needed only on the client
side. Artix does not support auto-loading of this plug-in; you must
explicitly include it in the orb_plugins list.

The ws_coordination_service plug-in implicitly loads the
wsat_protocol plug-in as well. Hence, it is unnecessary to include
wsat_protocol plug-in in the orb_plugins list on the client side.

2. This line specifies that WS-AT is the default transaction provider. This
implies that whenever a client initiates a transaction (for example, by
calling begin_transaction()), Artix creates a new WS-AT transaction
by default.

3. This line specifies that transaction recovery is disabled. The effect of
this setting is that the transaction system relies on a lightweight,
non-recoverable implementation of WS-AT.

4. The server needs to load the wsat_protocol plug-in, in order to
process incoming atomic transactions coordination contexts and to
propagate transaction contexts. The coordinator_stub_wsdl plug-in
enables the server to talk to the WS-Coordination service on the client
side.

5. Strictly speaking, it is unnecessary to specify a default transaction
provider on the server side. On the server side, the transaction provider
is automatically determined by the incoming transaction context.

If the server needs to initiate its own transactions, however, it would be
appropriate to set the default transaction provider here also.

5 // No need to specify default_tx_provider here.
 };
};

Example 10: Sample Configuration for Non-Recoverable WS-AT
 61

CHAPTER 3 | Selecting a Transaction System
References The specifications for WS-AtomicTransactions and WS-Coordination are
available at the following locations:

• WS-AtomicTransactions
(http://msdn.microsoft.com/library/en-us/dnglobspec/html/WS-AtomicT
ransaction.pdf).

• WS-Coordination
(http://msdn.microsoft.com/library/en-us/dnglobspec/html/WS-Coordin
ation.pdf).
62

http://msdn.microsoft.com/library/en-us/dnglobspec/html/WS-AtomicTransaction.pdf
http://msdn.microsoft.com/library/en-us/dnglobspec/html/WS-Coordination.pdf

Configuring Recoverable WS-AT
Configuring Recoverable WS-AT

Overview In order to provide enterprise-level transaction management using the
WS-AT protocols, Artix supports an option to layer WS-AT over the OTS
Encina transaction manager. With this configuration, WS-AT becomes a
fully recoverable transaction system. Figure 9 shows a client/server
deployment that uses the recoverable WS-AT transaction system.

Default transaction provider The following variable specifies the default transaction system used by an
Artix client or server:

plugins:bus:default_tx_provider:plugin

To select the WS-AT transaction system, you must initialize this
configuration variable with the value, wsat_tx_provider.

Figure 9: Client-Server System that Uses Recoverable WS-AT

Artix Client

WS-AT

WS-Coordination

Artix Server

WS-AT

Resource

Artix Server

WS-AT

Resource

OTS

OTS Encina

OTS

OTS
 63

CHAPTER 3 | Selecting a Transaction System
Enabling recovery Since Artix version 4.0, the WS-AT transaction system is recoverable by
default. Hence, to use the recoverable version of WS-AT in your application,
you can either omit the
plugins:ws_coordination_service:disable_tx_recovery variable from
your Artix configuration file or set it to false, as follows:

Loading WS-AT and OTS Encina
plug-ins

The configuration for the recoverable WS-AT transaction system is
essentially a combination of the WS-AT configuration and the OTS Encina
configuration. It is only necessary to load the WS-AT plug-ins explicitly—if
recovery is enabled, Artix implicitly loads the OTS and OTS Encina plug-ins.

Sample configuration Example 10 shows a complete configuration for using the recoverable
WS-AT transaction manager:

Artix Configuration File
plugins:ws_coordination_service:disable_tx_recovery = "false";

Example 11: Sample Configuration for Recoverable WS-AT

Artix Configuration File
ws_atomic_transactions {
 client
 {

1 orb_plugins = ["local_log_stream",
"ws_coordination_service"];

2 plugins:bus:default_tx_provider:plugin ="wsat_tx_provider";

3 # OTS Encina Configuration
 initial_references:TransactionFactory:plugin =

"ots_encina";
 plugins:ots_encina:direct_persistence = "true";
 plugins:ots_encina:iiop:port = "3213";
 plugins:ots_encina:initial_disk = "../../log/encina.log";
 plugins:ots_encina:initial_disk_size = "1";
 plugins:ots_encina:restart_file =

"../../log/encina_restart";
 plugins:ots_encina:backup_restart_file =

"../../log/encina_restart.bak";

 # Boilerplate configuration settings for OTS Encina:
 # (you should never need to change these)
 plugins:ots_encina:shlib_name = "it_ots_encina";
64

Configuring Recoverable WS-AT
The preceding configuration can be described as follows:

1. The ws_coordination_service plug-in is needed only on the client
side. Artix does not support auto-loading of this plug-in; you must
explicitly include it in the orb_plugins list.

The ws_coordination_service plug-in implicitly loads the
wsat_protocol, ots, and ots_encina plug-ins as well. Hence, it is
unnecessary to include the wsat_protocol, ots, and ots_encina
plug-ins in the orb_plugins list on the client side.

2. This line specifies that WS-AT is the default transaction provider. This
implies that whenever a client initiates a transaction (for example, by
calling begin_transaction()), Artix creates a new WS-AT transaction
by default.

3. From this line up to the end of the client scope shows the OTS Encina
configuraion settings. For detailed descriptions of the OTS Encina
settings, see “Sample configuration” on page 57.

4. The server needs to load the wsat_protocol plug-in, in order to
process incoming WS-AT coordination contexts and to propagate
transaction contexts. The coordinator_stub_wsdl plug-in enables the
server to talk to the WS-Coordination service on the client side.

 plugins:ots_encina_adm:shlib_name = "it_ots_encina_adm";
 plugins:ots_encina_adm:grammar_db =

"ots_encina_adm_grammar.txt";
 plugins:ots_encina_adm:help_db = "ots_encina_adm_help.txt";
 };

 server
 {

4 orb_plugins = ["local_log_stream", "wsat_protocol",
"coordinator_stub_wsdl"];

5 // No need to specify default_tx_provider here.
 };
};

Example 11: Sample Configuration for Recoverable WS-AT
 65

CHAPTER 3 | Selecting a Transaction System
5. Strictly speaking, it is unnecessary to specify a default transaction
provider on the server side. On the server side, the transaction provider
is automatically determined by the incoming transaction context.

If the server needs to initiate its own transactions, however, it would be
appropriate to set the default transaction provider here also.
66

CHAPTER 4

Basic Transaction
Programming
This chapter covers the basics of programming transactional
clients and servers. For simple applications, this probably
covers all you need to know about transaction programming.

In this chapter This chapter discusses the following topics:

Artix Transaction Interfaces page 68

Beginning and Ending Transactions page 71

Server Programming page 74
 67

CHAPTER 4 | Basic Transaction Programming
Artix Transaction Interfaces

Overview Figure 10 shows an overview of the main classes that make up the Artix
transaction API. The Artix transaction API is designed to function as a
generic wrapper for a wide variety of specific transaction systems. As long as
your code is restricted to using the generic classes, you will be able to
switch between any of the transaction systems supported by Artix.

On the server side it is likely that you will need to access advanced
functionality, which is available only from technology-specific transaction
manager classes, such as OTSTransactionManager,
WSATTransactionManager, or XATransactionManager.

Figure 10: Overview of the Artix Transaction API

XATransactionManager

WSATTransactionManager

OTSTransactionManager

TransactionSystemIT_Bus::Bus

transactions()

dynamic_cast<...>

TransactionManager

TransactionParticipant

TransactionNotificationHandler

get_transaction_manager()
68

Artix Transaction Interfaces
Accessing the transaction system To access the Artix transaction system, call the transactions() function on
the Bus. The returned IT_Bus::TransactionSystem reference provides the
starting point for accessing all aspects of Artix transactions.

The IT_Bus::Bus::transactions() function has the following signature:

IT_Bus::TransactionSystem&
transactions() IT_THROW_DECL((IT_Bus::Exception));

TransactionSystem class The IT_Bus::TransactionSystem class provides the basic functions needed
for transaction demarcation on the client side (begin_transaction(),
commit_transaction() and rollback_transaction()). For more details see
“Beginning and Ending Transactions” on page 71.

To access server-side functions and advanced client-side functions, you
must call IT_Bus::TransactionSystem::get_transaction_manager() to
obtain an IT_Bus::TransactionManager instance.

TransactionManager class The IT_Bus::TransactionManager class provides server-side functions and
advanced transaction functionality. For the server side, the most important
member function is IT_Bus::TransactionManager::enlist(), which
enables you to implement a transactional resource by enlisting a transaction
participant object.

In order to support multiple transaction systems, the TransactionManager
class is designed as a facade, which is layered above a specific
implementation. In some cases, if the functionality provided by the generic
TransactionManager is not sufficient, you might need to downcast the
TransactionManager reference to one of the following types:

• OTSTransactionManager class.

• WSATTransactionManager class.

OTSTransactionManager class The IT_Bus::OTSTransactionManager class provides access to an
underlying CORBA OTS implementation of the transaction system. Using
this class, you can access the CosTransactions::Coordinator and the
CosTransactions::Current objects for this transaction.

A discussion of the CORBA OTS is beyond the scope of this guide. For more
details, see the CORBA OTS Guide
(http://www.iona.com/support/docs/orbix/6.2/develop.xml), which is
available from the Orbix documentation suite.
 69

http://www.iona.com/support/docs/orbix/6.2/develop.xml
http://www.iona.com/support/docs/orbix/6.2/develop.xml

CHAPTER 4 | Basic Transaction Programming
WSATTransactionManager class The IT_Bus::WSATTransactionManager class provides access to an
underlying WS-AT implementation of the transaction system. Currently, the
WSATTransactionManager class provides access to the WS-AT context,
which is included in a SOAP header with every transactional operation call.

TransactionParticipant base class If you want to implement a transactional resource on the server side, you
can define and implement a class that inherits from the
IT_Bus::TransactionParticipant base class. The
TransactionParticipant class receives callbacks from the transaction
manager that are used to coordinate the commit or rollback steps with other
transaction participants. For more details, see “Recoverable Resources” on
page 121.

There are alternative ways of implementing a transactional resource, which
do not require you to implement a TransactionParticipant class. Some
transaction managers (for example, OTSTransactionManager) support
alternative approaches.

TransactionNotificationHandler
base class

If you want to synchronize certain actions with the committing or rolling
back of a transaction, you can define and implement a class that inherits
from the IT_Bus::TransactionNotificationHandler base class. The
IT_Bus::TransactionNotificationHandler class receives notification
callbacks from the transaction manager whenever a transaction is either
committed or rolled back.
70

Beginning and Ending Transactions
Beginning and Ending Transactions

Overview On the client side, the functions for beginning and committing (or rolling
back) a transaction are collectively referred to as transaction demarcation
functions. Within a given thread, any Artix operations invoked after the
transaction begin and before the transaction commit (or rollback) are
implicitly associated with the transaction. The transaction demarcation
functions are typically the only functions that you need on the client side.

TransactionSystem member
functions

Example 12 shows the public member functions of the
IT_Bus::TransactionSystem class.

Example 12: The IT_Bus::TransactionSystem Class

// C++
namespace IT_Bus
{
 class IT_BUS_API TransactionSystem
 : public virtual RefCountedBase
 {
 public:
 virtual ~TransactionSystem();

 virtual void
 begin_transaction() IT_THROW_DECL((Exception)) = 0;

 virtual Boolean
 commit_transaction(
 Boolean report_heuristics
) IT_THROW_DECL((Exception)) = 0;

 virtual void
 rollback_transaction() IT_THROW_DECL((Exception)) = 0;

 virtual TransactionManager&
 get_transaction_manager(
 const String&

tx_manager_type=DEFAULT_TRANSACTION_TYPE
) IT_THROW_DECL((Exception)) = 0;

 virtual Boolean
 71

CHAPTER 4 | Basic Transaction Programming
Client transaction functions The following functions are used to demarcate transactions on the client
side:

• begin_transaction()—creates a new transaction on the client side
and associates it with the current thread. This function takes no
arguments and has no return value.

This function can throw the following exceptions:

♦ TransactionAlreadyActiveException is thrown if
begin_transaction() is called inside an already active
transaction.

♦ TransactionSystemUnavailableException is thrown if the
transaction system cannot be loaded. This usually points to a
configuration problem.

• commit_transaction()—ends the transaction normally, making any
changes permanent. This function takes a single boolean argument,
report_heuristics, and returns true, if the transaction is commited
successfully.

This function can throw the following exception:

♦ NoActiveTransactionException is thrown if there is there is no
transaction associated with the current thread.

• rollback_transaction()—aborts the transaction, rolling back any
changes.

This function can throw the following exception:

 within_transaction() = 0;
 ...
 // String constants for transaction manager types
 static const String DEFAULT_TRANSACTION_TYPE;
 static const String WSAT_TRANSACTION_TYPE;
 static const String OTS_TRANSACTION_TYPE;
 static const String XA_TRANSACTION_TYPE;
 ...
 };

 typedef Var<TransactionSystem> TransactionSystem_var;
 typedef TransactionSystem* TransactionSystem_ptr;
};

Example 12: The IT_Bus::TransactionSystem Class
72

Beginning and Ending Transactions
♦ NoActiveTransactionException is thrown if there is there is no
transaction associated with the current thread.

Other transaction functions In addition to the preceding demarcation functions, which are intended for
use on the client side, the TransactionSystem class also provides the
following functions, which can be used both on the client side and on the
server side:

• within_transaction()—returns true if the current thread is
associated with a transaction; otherwise, false.

• get_transaction_manager()—returns a reference to a
TransactionManager object, which provides access to advanced
transaction features.

Typically, a TransactionManager object is needed on the server side in
order to enlist participants in a transaction (for example, see
“Recoverable Resources” on page 121). For advanced applications,
you can also downcast the TransactionManager reference to get a
particular implementation of the transaction system (for example, an
IT_Bus::OTSTransactionManager object or an
IT_Bus::WSATTransactionManager object).

This function can throw the following exception:

♦ TransactionSystemUnavailableException is thrown if the
transaction system cannot be loaded.
 73

CHAPTER 4 | Basic Transaction Programming
Server Programming

Overview On the server side, the main transactions-related programming task is the
integration of resources with the Artix transaction system. The purpose of
this integration step is to enable the Artix transaction manager to control the
resource’s transactions.

By far the simplest and most common method of integrating resources into
the Artix transaction system is to use the XA standard, which is supported
by most modern databases. An XA-compliant resource provides a special
data structure, the XA switch, which you can then register with Artix in order
to integrate the resource with the Artix transaction system.

In this section This section contains the following subsections:

Registering an XA Resource page 75

Dynamic Registration Optimization page 81

Writing a Custom Resource page 88

Server-Side Programming Model page 89
74

Server Programming
Registering an XA Resource

Overview The simplest way to integrate a third-party resource (such as a database)
into the Artix transaction system is to use the XA interface. If the third-party
resource supports the XA interface, all that you need to do to integrate the
resource with the Artix transaction system is to register a particular type of
object, an XA switch, with the Artix transaction manager. This puts the Artix
transaction manager in charge of beginning, committing and rolling back
transactions associated with the XA resource. This also implies that the
resource can now participate in distributed transactions, since these are
supported by the Artix transaction manager.

When to register an XA resource You should register an XA resource in the main() function as your
application program is performing initialization and before you attempt to
access the resource for the first time.

register_xa_resource() function The register_xa_resource() function, which is a member of the
IT_Bus::XATransactionManager class, is used to register third-party XA
resource managers with the Artix transaction manager. Example 13 gives
the signature of the register_xa_resource() function.

Example 13: The register_xa_resource() Function

// C++
// In IT_Bus::XATransactionManager
IT_Bus::Boolean
register_xa_resource(
 xa_switch_t* xa_switch,
 IT_Bus::String open_string,
 IT_Bus::String close_string,
 IT_Bus::String resource_manager_identifier,
 IT_Bus::Boolean use_dynamic_registration_optimization,
 IT_Bus::Boolean is_single_threaded_resource
)=0;
 75

CHAPTER 4 | Basic Transaction Programming
register_xa_resource() arguments The IT_Bus::XATransactionManager::register_xa_resource() function
takes the following arguments:

• xa_switch,

• open_string,

• close_string,

• resource_manager_identifier,

• use_dynamic_registration_optimization,

• is_single_threaded_resource.

xa_switch The xa_switch argument is a pointer to an xa_switch_t instance, which is
provided by the third-party XA resource manager. The xa_switch_t type is
declared in the <orbix_sys/xa.h> header, which you need to include in any
file that references the xa_switch_t type.

Each XA resource manager defines a specific XA switch instance, which is
essentially a global struct variable. Table 1 gives the identifier names for
some common XA resource managers.

open_string The open_string argument specifies the string that the Artix XA transaction
manager passes to xa_open() when it opens a connection to the XA
resource manager. The form of the open string is not defined by Artix; it is
defined by the particular third-party XA resource manager being registered.

Table 1: Sample Mechanisms for Obtaining XA Switches

XA Resource
Manager

XA Switch Instance

Oracle DB Two XA switches are defined as global instances
in the Oracle sqlca.h header file:

• xaosw—normal Oracle XA switch.

• xaoswd—Oracle XA switch that supports
dynamic registration.

Sybase DB sybase_xa_switch

DB2 db2xa_switch (UNIX), or

*db2xa_switch (Windows)
76

Server Programming
The XA standard intends that the open string be used as a general
mechanism for passing initialization parameters to the XA resource
manager.

Examples of open strings for some common XA resource managers are
provided in Table 2.

close_string The close_string argument specifies the string that the Artix XA
transaction manager passes to xa_close() when it closes a connection to
the XA resource manager.

Examples of close strings for some common XA resource managers are
provided in Table 3. Some XA resource managers (for example, Oracle DB)
ignore the close string, in which case you can pass an empty string, "".

Table 2: Examples of Open Strings for Some XA Resource Managers

XA Resource
Manager

Example Open String

Oracle DB Oracle_XA+Acc=P/SCOTT/TIGER+SesTm=60+thre

ads=true

Sybase DB -U<Username> -P<Password> -N<DB_Name>

-T<LoggingType> -L<LogFile>

DB2 <DB_Name>,<Username>,<Password>

Note: An empty open string, "", is treated as a special case. In this case,
Artix assumes that the open string is specified in the Artix configuration
file. The name of the configuration variable that specifies the open string is
determined by the resource_manager_identifier argument.

Table 3: Examples of Close Strings for Some XA Resource Managers

XA Resource
Manager

Example Close String

Oracle DB None

Sybase DB None

DB2 None
 77

CHAPTER 4 | Basic Transaction Programming
resource_manager_identifier The resource_manager_identifier argument specifies a string that serves
as a name prefix for certain configuration variables in the Artix configuration
file. These configuration variables can then be used to configure the
resource manager registration.

In particular, if you pass an empty string, "", as the open_string argument,
Artix assumes that you want to specify the value of the open string in
configuration instead of passing it as an argument. In this case, Artix looks
for a configuration variable called ResourceManagerPrefix:open_string,
where ResourceManagerPrefix is the string passed as the
resource_manager_identifier argument.

For example, if you specify the open_string argument to be an empty
string, "", and the resource_manager_identifier argument to be
xa_resource_managers:oracle, you can then specify the open string in the
Artix configuration file as follows:

Where the Artix Bus has been initialized with the configuration scope,
oracle_xa_example.

use_dynamic_registration_optimi
zation

The use_dynamic_registration_optimization argument is a boolean flag
that informs the Artix XA transaction manager whether or not the resource
manager has enabled the dynamic registration optimization. Consult the

Artix Configuration File
oracle_xa_example {
 xa_resource_managers:oracle:open_string =
 "Oracle_XA+Acc=P/SCOTT/TIGER+SesTm=60";
 xa_resource_managers:oracle:close_string="";

 poa:xa_resource_managers:oracle:direct_persistent="true";
 poa:xa_resource_managers:oracle:well_known_address:host
 ="0.0.0.0"; # all network adapters
 poa:xa_resource_managers:oracle:well_known_address:port
 ="13003"; # unique port
 ...
};
78

Server Programming
documentation for your third-party XA resource manager to discover whether
or not this optimization is supported. If the optimization is supported, you
can enable it as follows:

1. Follow the instructions in the third-party XA resource manager
documentation to enable the dynamic registration optimization.

2. Pass the value, true, to the
use_dynamic_registration_optimization argument.

It is important to ensure that both the transaction manager and the resource
manager are aware of the dynamic registration optimization, because this
optimization changes the nature of their interaction through the XA
interface. For more details, see “Dynamic Registration Optimization” on
page 81.

is_single_threaded_resource The is_single_threaded_resource argument is a boolean flag that selects
the XA threading model in the transaction manager as follows:

• false—the XA threading model is multi-threaded (each thread maps
to a resource connection),

• true—the XA threading model is single-threaded (a process maps to a
single resource connection).

You must also ensure that the third-party XA resource manager is configured
to use the same threading model as the transaction manager.

For example, if you want to use the multi-threaded model with the Oracle
XA switch, you must include the setting, threads=true, in the Oracle XA
open string.

For more details see “Threading and XA Resources” on page 105.

Example Example 14 shows an example of how to register an Oracle XA switch with
the Artix XA transaction manager.

Example 14: Example of Registering an Oracle XA Switch

// C++
#include <it_bus/bus.h>
#include <it_bus/transaction_system.h>
#include <it_bus_pdk/xa_transaction_manager.h>

1 #include <orbix_sys/xa.h>

2 #include <sqlca.h>
 79

CHAPTER 4 | Basic Transaction Programming
The preceding code fragment can be explained as follows:

1. The Artix orbix_sys/xa.h header file contains the standard declaration
of the xa_switch_t struct type, as defined in the The XA Specification.
Include this header in any file that refers to the xa_switch_t type.

2. The sqlca.h header file is an Oracle header file that defines two
instances of xa_switch_t type: xaosw, for a normal XA switch, and
xaoswd, for a dynamically registering XA switch.

3. Declare xaosw to be an external C type (the xa_switch_t type is
declared in C, not C++).

4. From the Bus instance, obtain an IT_Bus::XATransactionManager
instance.

5. Call register_xa_resource() on the XATransactionManager instance
to register the Oracle XA switch, xaosw, with the Artix XA transaction
manager. In this example, the open string is provided explicitly in the
second parameter; the resource manager identifier is not used (empty
string); the dynamic registration optimization is not used; and the
threading model is multi-threaded.

3 extern "C" IT_DECLSPEC_IMPORT xa_switch_t xaosw;

IT_Bus::Bus_var bus = ...
...

4 IT_Bus::XATransactionManager& xa_tx_mgr = dynamic_cast
<IT_Bus::XATransactionManager&>(
 bus->transactions().get_transaction_manager(
 IT_Bus::TransactionSystem::XA_TRANSACTION_TYPE
)
);

5 xa_tx_mgr->register_xa_resource(
 &xaosw, // Oracle XA switch
 "Oracle_XA+Acc=P/SCOTT/TIGER+SesTm=60+threads=true",
 // Oracle open string
 "", // Oracle close string
 "", // resource manager identifier
 false, // dynamic registration?
 true // multi-threaded?
);

Example 14: Example of Registering an Oracle XA Switch
80

Server Programming
Dynamic Registration Optimization

Overview The dynamic registration optimization is a variation of the usual protocol
that governs interactions between an XA transaction manager and an XA
resource manager. Typically, it results in more efficient access to the
resource. For example, if the resource is a database, this optimization
causes the database tables to be locked less often, thereby improving
concurrency. Hence, it is usually a good idea to enable this optimization.

If you just want to know how to enable this feature, skip ahead to “Enabling
dynamic registration” on page 85 for details. For advanced users, this
subsection also provides background information on the dynamic
registration optimization, so that you can understand how this protocol
works. A key difference between dynamic registration and normal
registration is that dynamic registration exploits the AX interface.

AX interface Example 15 shows the signatures of the two functions, ax_reg() and
ax_unreg(), that constitute the AX interface. These functions enable an XA
resource manager to call back on an XA transaction manager (that is,
reversing the usual direction of control, where the transaction manager calls
the resource manager).

The AX functions can be explained as follows:

• ax_reg() function—is called by the resource manager to inform the
transaction manager that work is about to begin on a transaction in the
current thread. For example, in the case of a database, the ax_reg()
call would be triggered, when the application code attempts to perform
a database update.

• ax_unreg() function—is needed only for the special case where an
application makes some database updates outside the context of a
global transaction. The resource manager then calls ax_unreg() to

Example 15: Functions in the AX Interface

/* C */
int ax_reg(int rmid, XID *xid, long flags)

int ax_unreg(int rmid, long flags)
 81

CHAPTER 4 | Basic Transaction Programming
inform the transaction manager that the work has ended and,
therefore, the current thread is free once more to participate in a global
transaction.

Normal registration Figure 11 shows the outline of an Artix transactional server that has a
normally registered resource manager, where FooImpl::op() is the
implementation of the WSDL operation, op().

The server is divided up into the following parts:

• The Application Code—showing the implementation of the WSDL
operation, op(), and

• The Transaction Manager—showing the calls made by the Artix
transaction manager,

• The Resource Manager—showing a database resource and its
associated XA resource manager.

The shaded area shows the scope of the association between the current
thread and a transaction branch in the resource manager. The association
begins with xa_start() and ends with xa_end().

Figure 11: Invocation Dispatch for a Normally Registered RM

FooImpl::op()
{
 .
 .
 EXEC SQL UPDATE
 .
 EXEC SQL UPDATE
 .
 .
}

1
2

3

4

5

Application
Code

Transaction
Manager

Resource
Manager

xa_start()

xa_end()

Oracle DB

Upcall

Return

Transaction Branch Scope
82

Server Programming
Steps in normal registration In this scenario, the Artix server accesses an XA resource which is registered
normally. When the server receives a client request with transactional
context, the invocation dispatch proceeds as follows:

1. Before dispatching the invocation, the Artix transaction manager (TM)
obtains a list of all the registered XA resource managers (RMs). In this
case, there is only one RM, which is registered normally. The TM calls
xa_start() on the RM, thereby creating an association between the
current thread and a transaction branch in the RM.

2. The Artix runtime makes an upcall to the FooImpl::op() function,
which implements the WSDL operation, op().

3. In the body of the op() function, the application code makes updates
to the resource—for example, through some embedded SQL calls such
as EXEC SQL UPDATE. These updates are governed by the current
transaction.

4. The FooImpl::op() upcall returns.

5. The Artix TM calls xa_end() on the RM, thereby ending the association
between the current thread and the transaction branch in the RM.

Note: The xa_start() call typically imposes some overheads on the
resource. For example, a mutex lock might be set on the database
connection.
 83

CHAPTER 4 | Basic Transaction Programming
Dynamic registration Figure 12 shows the outline of an Artix transactional server that has a
dynamically registered resource manager, where FooImpl::op() is the
implementation of the WSDL operation, op().

The shaded area shows the scope of the association between the current
thread and a transaction branch in the resource manager. The association
begins when the RM calls ax_reg() and ends when the TM calls xa_end().

Steps in dynamic registration In this scenario, the Artix server accesses an XA resource which is registered
dynamically. When the server receives a client request with transactional
context, the invocation dispatch proceeds as follows:

1. Before dispatching the invocation, the Artix TM obtains a list of all the
registered XA RMs. In this case, there is one dynamically registered
RM. The TM does not call xa_start() on the dynamically registered
RM.

2. The Artix runtime makes an upcall to the FooImpl::op() function,
which implements the WSDL operation, op().

3. In the body of the op() function, the application code makes updates
to the resource—for example, through some embedded SQL calls such
as EXEC SQL UPDATE. The very first update triggers the RM to make an
ax_reg() callback on the TM. This callback initiates an association
between the current thread and a transaction branch in the RM.

Figure 12: Invocation Dispatch for a Dynamically Registered RM

FooImpl::op()
{
 .
 .
 EXEC SQL UPDATE
 .
 EXEC SQL UPDATE
 .
 .
}

1
2

3

4

5

Application
Code

Transaction
Manager

Resource
Manager

ax_reg()

xa_end()
Oracle DB

Upcall

Return

Transaction Branch Scope
84

Server Programming
4. The FooImpl::op() upcall returns.

5. The Artix TM calls xa_end() on the dynamically registered RM, thereby
ending the association between the current thread and the transaction
branch in the RM.

Enabling dynamic registration To enable dynamic registration for a particular XA resource, perform the
following steps:

1. Follow the instructions in the third-party XA resource manager
documentation to enable the dynamic registration optimization.

2. In particular, you must ensure that the Artix library containing the
implementation of the AX interface (ax_reg() and ax_unreg()
functions) is accessible to the third-party XA resource manager. The
Artix library containing the AX interface implementation is, as follows:

♦ Windows platforms—it_xa.lib.

♦ UNIX platforms—libit_xa.so or libit_xa.sl.

3. Pass the value, true, to the
use_dynamic_registration_optimization argument of the
IT_Bus::XATransactionManager::register_xa_resource() function
when you are registering the resource manager’s XA switch.

It is important to ensure that both the transaction manager and the resource
manager are aware of the dynamic registration optimization, because this
optimization changes the nature of their interaction through the XA
interface.

The following examples explain how to enable dynamic registration for
certain third-party XA resource managers:

• Enabling dynamic registration for Oracle.

• Enabling dynamic registration for DB2.
 85

CHAPTER 4 | Basic Transaction Programming
Enabling dynamic registration for
Oracle

In Oracle, dynamic registration is enabled by registering a special XA switch
instance, xaoswd, instead of the normal XA switch instance, xaosw. You
must also set the dynamic registration flag in the register_xa_resource()
call to true. Sample code for registering an Oracle XA switch with dynamic
registration enabled is shown in Example 16.

To make the Artix implementation of the AX interface available to Oracle,
you must also ensure that the it_xa.lib (Windows) or libit_xa[.so][.sl]
(UNIX) library is placed in the link line before the Oracle client library.

Enabling dynamic registration for
DB2

In DB2, dynamic registration is enabled by updating the DB2 configuration
with the name of the Artix library that implements the AX interface. Enter
the following db2 command:

db2 update dbm cfg using TP_MON_NAME <AX_LibNameRoot>

Where <AX_LibNameRoot> is the name of the relevant Artix library less the
filename suffix—that is, it_xa (Windows) or libit_xa.so, libit_xa.sl
(UNIX). The Artix library must also be made accessible to DB2 (by including
it in the library path, or whatever is appropriate for your platform). You need
to restart DB2 after issuing this command.

Example 16: Dynamic Registration for the Oracle XA Resource Manager

// C++
#include <it_bus/bus.h>
#include <it_bus/transaction_system.h>
#include <it_bus_pdk/xa_transaction_manager.h>
#include <orbix_sys/xa.h>

#include <sqlca.h>
extern "C" IT_DECLSPEC_IMPORT xa_switch_t xaoswd;
...
xa_tx_mgr->register_xa_resource(
 &xaoswd, // Oracle XA dynamic switch
 "Oracle_XA+Acc=P/SCOTT/TIGER+SesTm=60+threads=true",
 // Oracle open string
 "", // Oracle close string
 "", // resource manager identifier
 true, // dynamic registration = true
 false // single-threaded = false
);
86

Server Programming
You must also set the dynamic registration flag in the
register_xa_resource() call to true. Sample code for registering a DB2
XA switch with dynamic registration enabled is shown in Example 17.

Example 17: Dynamic Registration for the DB2 XA Resource Manager

// C++
#include <it_bus/bus.h>
#include <it_bus/transaction_system.h>
#include <it_bus_pdk/xa_transaction_manager.h>
#include <orbix_sys/xa.h>

#ifdef WIN32
#define db2xa_switch (*db2xa_switch)
#endif
extern "C" IT_DECLSPEC_IMPORT xa_switch_t db2xa_switch;
...
xa_tx_mgr->register_xa_resource(
 &db2xa_switch, // DB2 XA switch
 "<DB_Name>,<Username>,<Password>",
 // DB2 open string
 "", // DB2 close string
 "", // resource manager identifier
 true, // dynamic registration = true
 false // single-threaded = false
);
 87

CHAPTER 4 | Basic Transaction Programming
Writing a Custom Resource

When do you need a custom
resource?

Occasionally, it might be necessary to integrate a resource with the Artix
transaction manager, where that resource does not support the XA standard.
That is, the resource does not provide an XA switch that can be registered
with a transaction manager.

Implementing a custom resource In this case, you would have to write a custom resource by implementing a
class that derives from the Artix IT_Bus::TransactionParticipant base
class. This custom resource would implement the same functionality as a
resource manager. Writing the custom resource is a fairly complex task that
requires a good understanding of transaction systems.

Reference For an introduction to some of the programming issues involved in writing a
custom resource, see “Recoverable Resources” on page 121.
88

Server Programming
Server-Side Programming Model

Overview When you register an XA resource with Artix, this typically has an impact on
the way you program the XA resource itself. You should consult the
documentation for the third-party resource in order to get a detailed
overview of the resource’s programming model under XA.

Although the programming model under XA is specific to a particular
resource implementation, it is possible to make a few general observations
on the programming model, as follows:

• Restrictions on connecting to and disconnecting from a resource.

• Transaction demarcation restrictions.

• Demarcation models under XA.

Restrictions on connecting to and
disconnecting from a resource

Typically, an XA switch is implemented in such a way that xa_open() is
responsible for opening a connection to the XA resource and xa_close() is
responsible for closing the connection to the XA resource. In this case the
Artix transaction manager, through calls to xa_open() and xa_close(), is
responsible for opening and closing connections to the resource. Typically,
this implies that you must avoid making any explicit calls (using the
resource API) to open or close connections to the resource.

For example, when you register an XA switch for the Oracle database, the
xa_open() and xa_close() calls are responsible for opening and closing
connections to the database. When an XA switch is registered, Oracle
forbids you from opening or closing a database connection explicitly.

Transaction demarcation
restrictions

If your third-party resource has a native demarcation API—that is, a native
API for beginning, committing and rolling back transactions—you must not
use this native demarcation API when you have registered the resource’s XA
switch.

For example, if the resource is a database supporting embedded SQL, you
must avoid using any embedded SQL statements that demarcate a
transaction (whether explicitly or implicitly). At a minimum, you must avoid
using the EXEC SQL BEGIN, EXEC SQL COMMIT, and EXEC SQL ROLLBACK
commands.
 89

CHAPTER 4 | Basic Transaction Programming
Demarcation models under XA When a resource’s transactions are under the control of the Artix XA
transaction manager, the programming model for transaction demarcation
changes fundamentally. When implementing a WSDL operation in Artix,
there are essentially three different cases to consider:

• Operation participating in a global transaction.

• Operation not participating in a global transaction.

• Operation sometimes participating in a global transaction.

Operation participating in a global
transaction

If you are writing database code in the body of an operation which always
participates in a global transaction (that is, incoming requests always
include a transaction context), you should observe the following coding
guidelines when accessing the database:

• Do not open or close any database connections—that is the
responsibility of the transaction manager.

• Do not use any embedded SQL commands that demaracate
transactions. For example, avoid using EXEC SQL BEGIN, EXEC SQL
COMMIT, and EXEC SQL ROLLBACK.

• Do not use any native database APIs that demarcate transactions.

• Do not use the Artix begin_transaction(), commit_transaction(),
and rollback_transaction() functions (defined on the
IT_Bus::TransactionSystem object). A thread can only associate with
one transaction at a time and the operation’s thread is already
associated with a global transaction.

Operation not participating in a
global transaction

If you are writing database code in the body of an operation which never
participates in a global transaction (that is, incoming requests never include
a transaction context), you should observe the following coding guidelines
when accessing the database:

• Do not open or close any database connections—that is the
responsibility of the transaction manager.

• You can demarcate transactions, but you must not do so using
embedded SQL commands or the native database API. Instead, use
the demarcation functions provided by the Artix
IT_Bus::TransactionSystem class—that is, begin_transaction(),
commit_transaction(), and rollback_transaction().
90

Server Programming
Operation sometimes
participating in a global
transaction

If you are writing database code in the body of an operation which
sometimes participates in a global transaction (that is, incoming requests
may include a transaction context), you should observe the following coding
guidelines when accessing the database:

• Do not open or close any database connections—that is the
responsibility of the transaction manager.

• Use the TransactionSystem::within_transaction() function to
determine whether the operation is being called in the context of a
global transaction or not.

• If within_transaction() returns true, do not attempt to demarcate a
new transaction, as any database operations would be executed in the
context of the global transaction.

• If you wish to demarcate a new transaction, separate to the global
transaction, you must first disassociate the global transaction from the
current thread using the TransactionManager::detach_thread()
function. Once the global transaction has been detached, you can
demarcate a new transaction using the demarcation functions provided
by the Artix IT_Bus::TransactionSystem class—that is,
begin_transaction(), commit_transaction(), and
rollback_transaction().

• If you have detached a transaction from the current thread it is
imperative that it be re-attached before the operation exits, using the
TransactionManager::attach_thread() operation.
 91

CHAPTER 4 | Basic Transaction Programming
92

CHAPTER 5

Transaction
Propagation
Transaction propagation refers to the implicit propagation of
transaction context data in message headers.

In this chapter This chapter discusses the following topics:

Transaction Propagation and Interposition page 94
 93

CHAPTER 5 | Transaction Propagation
Transaction Propagation and Interposition

Overview In a multi-tier application, Artix automatically propagates transactions from
tier to tier. This ensures that all of the processes that are relevant to the
outcome of a transaction can participate in the transaction. You do not have
to do anything special to switch on transaction propagation; it is enabled by
default. However, the receiver of a transaction context must have a
transaction plug-in loaded, otherwise the transaction context would be
ignored.

Transaction contexts A transaction context is a data structure that is transmitted to a remote
server and used to recreate the transaction at a remote location. The type of
transaction context that is transmitted depends on the middleware protocol.
Artix supports the following kinds of transaction context:

• OTS transaction context—a transaction context that is sent in a GIOP
header (part of the CORBA standard).

• WS-AT transaction context—a transaction context that is embedded in
a SOAP header.

Propagation scenario The propagation scenario shown in Figure 13 shows two different kinds of
transaction propagation, as follows:

• Transaction propagation within a single middleware technology—the
OTS transaction context, which propagates across the top half of
Figure 13, illustrates a simple kind of propagation, where the client
and the servers all use the same CORBA OTS transaction technology.

• Transaction propagation across middleware technologies—the WS-AT
transaction context, which propagates across the bottom half of
Figure 13, illustrates a kind of propagation, where the transaction
crosses technology domains. While the client uses OTS Encina to
94

Transaction Propagation and Interposition
manage the transaction, it must generate a WS-AT transaction context
to send to the server. The ability to transform transaction contexts is
known as interposition.

Scenario steps The propagation scenario shown in Figure 13 can be described as follows:

Figure 13: Overview of Different Kinds of Transaction Propagation

Artix Client

OTS

OTS Encina

Artix Server
CORBA

OTS

Resource

Artix Server
SOAP/HTTP

WS-AT

Resource

Artix Server
CORBA

OTS1

2 3

4

5

WS-AT
Tx Context

OTS
Tx Context

OTS
Tx Context

Stage Description

1 The Artix client (which is configured to use the OTS Encina
transaction system) initiates a transaction by calling the
begin_transaction() function. The client then invokes a
remote operation, which results in a request message being
sent over an IIOP connection.

2 The request received by the server includes an OTS transaction
context embedded in a GIOP header. Although this server does
not participate directly in the transaction (it registers no
resources), it is capable of propagating the transaction context
to the next tier in the application.
 95

CHAPTER 5 | Transaction Propagation
Limitation of using OTS Lite with
propagation

Figure 14 shows an interposition scenario where the client, which uses an
OTS transaction system, connects to a SOAP/HTTP server, which uses the
WS-AT transaction system.

Because there is only one explicitly registered resource in this scenario (the
database connected to the server), it would seem that the client could use
an OTS Lite transaction manager for this scenario. In reality, however, the
client must use the OTS Encina transaction manager. The reason for this is
that Artix implicitly registers an interposition resource to bridge the
OTS-to-WS-AT middleware boundary. Therefore, there are really two
resources in this scenario.

3 The third tier of the application receives a request containing
an OTS transaction context. This server participates in the
transaction by registering a database resource with the OTS
transaction manager.

4 The client invokes a remote operation, which results in a
request message being sent over a SOAP/HTTP connection.

5 In this case, Artix automatically translates the OTS transaction
into a WS-AT transaction context, which is suitable for
transmission in the header of the SOAP/HTTP request.

There is no need to perform any special configuration or
programming to enable interposition; it occurs automatically.

Stage Description

Figure 14: Limitation of Transaction Propagation Using OTS Lite

Artix Client

OTS

OTS Encina

Artix Server
SOAP/HTTP

WS-AT

Resource

WS-AT
Tx Context
96

Transaction Propagation and Interposition
In summary, interposition requires additional resources as follows:

• OTS-to-WS-AT middleware boundary—one interposition resource is
registered automatically. Applications with one explicitly registered
resource must use OTS Encina.

• WS-AT-to-OTS middleware boundary—no interposition resource
required. Applications with one explicitly registered resource may use
OTS Lite.

Suppressing propagation Once you have selected a transaction system (for example, the application
loads an OTS plug-in or a WS-AT plug-in), transaction contexts are
propagated by default.

It is possible, however, to suppress transaction propagation selectively using
the detach_thread() and attach_thread() functions. After calling
detach_thread(), subsequent operation invocations do not participate in
the transaction and, therefore, do not propagate any transaction context.
You can re-establish an association with a transaction by calling
attach_thread().

For more details on these functions, see “Threading” on page 99.
 97

CHAPTER 5 | Transaction Propagation
98

CHAPTER 6

Threading
This chapter discusses the thread affinity of transactions and
how you can modify thread affinities using the Artix transaction
API.

In this chapter This chapter discusses the following topics:

Client Threading page 100

Threading and XA Resources page 105
 99

CHAPTER 6 | Threading
Client Threading

Overview Artix supports a threading API that enables you to change the thread affinity
of a given transaction. Using the attach_thread() and detach_thread()
functions, you can flexibly re-assign threads to a transaction (subject to the
limitations imposed by the underlying transaction system).

Default client threading model Figure 15 shows the default threading model for transaction on the client
side. When you call begin_transaction(), Artix creates a new transaction
and attaches it to the current thread. So long as the transaction remains
attached, any WSDL operations called from the current thread become part
of the transaction. When you call commit_transaction() (or
rollback_transaction(), if the transaction must be aborted), the
transaction is deleted.

Transaction identifiers A transaction identifier is an opaque identifier of type
IT_Bus::TransactionIdentifier that identifies a transaction uniquely.
Depending on the underlying transaction system, a transaction identifier can
be downcast (using dynamic_cast<...>) to an implementation-specific
transaction identifier.

For example, if OTS is the underlying transaction system, the transaction
identifier can be downcast to an instance of an OTSTransactionIdentifier.
The OTS transaction identifier provides access to implementation-specific
features, such as the CosTransaction::Control class.

Figure 15: Default Client Threading Model

Thread X

begin_transaction()

Transaction Scope

commit_transaction()
100

Client Threading
Controlling thread affinity On the client side, thread affinity is controlled by the following
TransactionManager member functions:

These functions can be explained as follows:

• detach_thread()

Detach the transaction from the current thread. After the call to
detach_thread(), WSDL operations called from the current thread do
not participate in the transaction. The returned transaction identifier
can be used to re-attach the transaction to the current thread at a later
stage.

• attach_thread()

Attach the transaction, specified by the tx_identifier argument, to
the current thread.

• get_tx_identifier()

Return the identifier of the transaction that is attached to the current
thread. If no transaction is attached, return NULL.

Example 18: Functions for Controlling Thread Affinity

// C++
namespace IT_Bus
{
 class IT_BUS_API TransactionManager
 : public virtual RefCountedBase
 {
 public:
 virtual TransactionIdentifier* detach_thread()=0;

 virtual Boolean attach_thread(
 TransactionIdentifier* tx_identifier
) = 0;

 virtual TransactionIdentifier* get_tx_identifier()=0;
 ...
};
 101

CHAPTER 6 | Threading
Detaching and re-attaching a
transaction to a thread

Figure 16 shows how to use the detach_thread() and attach_thread()
functions to suspend temporarily the association between a transaction and
a thread. This can be useful if, in the midst of a transaction, you need to
perform some non-transactional tasks.

Attaching a transaction to multiple
threads

Figure 17 shows how to use the get_tx_identifier() and
attach_thread() functions to associate a transaction with multiple threads.
The get_tx_identifier() function is called from within the thread that
initiated the transaction. The transaction ID can then be passed to the other
threads, Y and Z, enabling them to attach the transaction.

Figure 16: Detaching and Re-Attaching a Transaction to a Thread

Thread X

begin_transaction()

Transaction Scope

commit_transaction()detach_thread() attach_thread()

Figure 17: Attaching a Transaction to Multiple Threads

Thread X

begin_transaction()

Transaction Scope

commit_transaction()id = get_tx_identifier()

attach_thread(id)

Thread Y

Thread Z

attach_thread(id)
102

Client Threading
Transferring a transaction from
one thread to another

Figure 18 shows how to use the detach_thread() and attach_thread()
functions to transfer a transaction from thread X to thread Y. The transaction
ID returned from the detach_thread() call must be passed to thread Y,
enabling it to attach the transaction.

Note: Some transaction systems do not allow you to associate multiple
threads with a transaction. In this case, an attach_thread() call fails
(returning false), if you attempt to attach a second thread to the
transaction.

Figure 18: Transferring a Transaction from One Thread to Another

Note: Some transaction systems do not allow you to transfer a
transaction from one thread to another. In this case, an attach_thread()
call fails (returning false), unless you are re-attaching the original thread
to the transaction.

Thread X

begin_transaction()

Transaction Scope

commit_transaction()

id = detach_thread()

Thread Y

attach_thread(id)
 103

CHAPTER 6 | Threading
Threading and XA Resources

Overview This section discusses the following threading models for XA resources:

• Auto-association.

• Multiple registered resources.

• Multi-threaded resource connections.

• Dynamic registration.

Auto-association When an Artix server receives a transactional request (that is, a request
accompanied by a transaction context), Artix automatically creates an
association between the current thread and locally registered resources. For
each registered resource, the Artix transaction manager creates a
transaction branch, which participates in the global transaction.

Figure 19 shows the sequence of events that occur when a transactional
request arrives at an Artix server that has one registered resource.

Figure 19: Auto-Association with a Single Registered Resource

Thread X

xa_start()

Transaction Branch Scope

xa_end()

Resource

Upcall Return

Receive request Send reply
1

2

3 4

5

6

Resource
Connection
104

Threading and XA Resources
The sequence of events shown in Figure 19 on page 105 can be explained
as follows:

1. Request is received—an operation request is received, which contains
a transaction context.

2. Artix calls xa_start()—to create a temporary association between the
current thread and the local resource. The resource creates a new
transaction branch, which performs work on behalf of the global
transaction.

3. Artix calls servant function—control is passed to the servant function
that implements the WSDL operation. Any interactions and updates
you make to the resource are now governed implicitly by the global
transaction.

4. Servant function returns—control passes back to the Artix runtime.

5. Artix calls xa_end()—to end the association between the current
thread and the resource. Effectively, the local transaction branch is
terminated (but the global transaction is still active).

6. Reply is sent—and the thread becomes available to process another
request.
 105

CHAPTER 6 | Threading
Multiple registered resources Figure 20 shows how auto-association works with multiple registered
resources. When the Artix server receives a transactional request, it obtains
a list of all registered resources. Artix then creates a new transaction branch
for each resource, before making an upcall to the relevant servant function.

After the upcall, any application code in the servant function that interacts
with one of the resources (either resource R1 or resource R2) is implicitly
governed by a global transaction, where the global transaction ID has been
obtained from the received transaction context.

Figure 20: Auto-Association with Multiple Registered Resources

Thread X

xa_start()

Transaction Branch Scope

xa_end()

Resource R1

Upcall Return

Resource R2
106

Threading and XA Resources
Multi-threaded resource
connections

Most modern databases offer the option of running in a multi-threaded
mode. What this means is that instead of having a single connection to the
database, which must be shared between all threads in the server, the
database allows the transaction manager to open a dedicated connection for
each server thread. This has the advantage of reducing contention between
the server threads.

Figure 21 shows an example of a resource configured to use multi-threaded
mode, where the server threads each open an independent connection to
the resource. This enables the threads to access the resource concurrently.

To use the multi-threaded resource mode, both the resource manager and
the Artix transaction manager must be configured appropriately. For details
of how to configure the Artix transaction manager in this case, see
“is_single_threaded_resource” on page 79.

Figure 21: Database Resource Operating in Multi-Threaded Mode

xa_start()

Transaction Branch Scope

xa_end()

Resource

Resource
Connections

Thread Y

Thread X

Transaction Branch Scope
 107

CHAPTER 6 | Threading
Dynamic registration As shown in Figure 22, some XA resources support an alternative algorithm,
dynamic registration, for associating a global transaction with a locally
registered resource.

When dynamic registration is enabled, the transaction manager does not
automatically create a transaction branch for an incoming request (that is,
the transaction manager does not call xa_start()). Instead, the transaction
manager waits until it receives a callback, ax_reg(), from the resource
manager. This callback indicates to the transaction manager that the
application code has attempted to update the resource in some way (for
example, by calling EXEC SQL UPDATE). The transaction manager responds to
this by creating a new transaction branch, which it associates with a global
transaction (assuming the incoming request has a transaction context).

The advantage of this algorithm is that the transaction branch is created
only when necessary. In some cases, if the application code does not make
any resource updates, it might not be necessary to create a transaction
branch at all.

For details of how to configure dynamic registration, see “Dynamic
Registration Optimization” on page 81.

Figure 22: Threading for a Dynamically Registered Resource

Thread X
Transaction Branch Scope

xa_end()

Resource

Upcall Return

Resource
Connection

ax_reg()
108

CHAPTER 7

Transaction
Recovery
Transaction recovery is an enterprise-level feature that ensures
a transaction system can cope with any kind of crash or system
failure, without losing data or getting into an inconsistent
state. In Artix, transaction recovery is implemented by the
Encina transaction engine.

In this chapter This chapter discusses the following topics:

Transactions Systems and Recovery page 112

Transaction Recovery Scenarios page 114
 111

CHAPTER 7 | Transaction Recovery
Transactions Systems and Recovery

Overview Not all of the Artix transaction systems support recovery. It is important to
distinguish between the lightweight transactions systems, which are
non-recoverable, and the enterprise-level transactions systems, which are
recoverable. Table 4 summarizes the characteristics of the various Artix
transaction systems.

OTS Lite OTS Lite is a lightweight transaction system, whose programming interface
is based on the CORBA OTS standard. The OTS Lite system can manage a
single resource only and is not recoverable.

OTS Encina OTS Encina is a complete, enterprise-level transaction system, whose
programming interface is based on the CORBA OTS standard. The OTS
Encina system can manage multiple resources and is recoverable.

Recoverability is the key property that distinguishes an enterprise-level
transaction systems from lightweight transaction systems. Recoverability
ensures that the system can always be brought back into a consistent state,
irrespective of when or how a transaction participant fails.

Non-recoverable WS-AT The non-recoverable WS-AT transaction system is a lightweight transaction
system based on the WS-AtomicTransactions and WS-Coordination
standards. The non-recoverable WS-AT transaction system (in contrast to
OTS Lite) can manage multiple resources.

Table 4: Transaction Systems and Recoverability

Transaction System Single or Multiple
Resources?

Recoverable?

OTS Lite Single No

OTS Encina Multiple Yes

Non-recoverable WS-AT Multiple No

Recoverable WS-AT Multiple Yes
112

Transactions Systems and Recovery
Recoverable WS-AT The recoverable WS-AT transaction system is layered on top of the OTS
Encina transaction engine to give enterprise-level transaction support. From
Artix 4.0 onwards, WS-AT is layered over OTS by default and the relevant
OTS plug-ins are automatically loaded when WS-AT is enabled. If the
plugins:ws_coordination_service:disable_tx_recovery variable appears
in your Artix configuration file, it must be set as follows to ensure
recoverability:

When WS-AT is layered over Encina, the initiation of a transaction in
WS-Coordination effectively initiates an OTS transaction. The coordination
context returned from the WS-Coordination service (and subsequently
propagated on SOAP calls) includes an identifier indicating that it is OTS
based and also includes an encoded form of the relevant OTS propagation
context. That is, all transactions, including WS-AT initiated ones, are always
OTS transactions. If a participant enlistment is required then the WS-AT
system will completely bypass the WS-AT protocols and enlist the
participant directly with OTS. This means that at completion time, OTS is
aware of, and in control of, all resources in the system, be they native OTS
resources, WSAT Participants, XA resources and so on.

Artix Configuration File
plugins:ws_coordination_service:disable_tx_recovery = "false";

Note: It is also possible to layer WS-AT over OTS Lite, but there is no
benefit in doing so, because OTS Lite is more limited than plain WS-AT.
 113

CHAPTER 7 | Transaction Recovery
Transaction Recovery Scenarios

Overview The whole point of transaction recovery is that it enables a transaction
system to recover to a consistent state, irrespective of what kind of system
failures occur. This section discusses a variety of different failure scenarios
in order to illustrate how Encina recovers the transactional system.

In this section This section contains the following subsections:

Server Crash before or during Prepare Phase page 115

Server Crash after Prepare Phase page 117

Transaction Coordinator Crash page 119
114

Transaction Recovery Scenarios
Server Crash before or during Prepare Phase

Overview Figure 23 shows a scenario involving two transactional resources, one
attached to server 1 and another attached to server 2, and a client, which
initiates a transaction involving server 1 and server 2. This scenario uses the
OTS Encina transaction system, where the OTS Encina transaction
coordinator is loaded into the client and the two servers participate in the
transaction.

The mode of failure described in this scenario involves server 1 crashing
either before or during the prepare phase of the two-phase commit protocol.

Figure 23: Server Crash before or during the Prepare Phase

begin_transaction()
 invoke
 ...
 invoke
commit_transaction()

Artix
Client

1

3

Server 1

OTS

Resource

Server 2

OTS

Resource

2

2
4

4

prepare

OTS

OTS Encina

4 Crash!!
 115

CHAPTER 7 | Transaction Recovery
Steps leading to crash As shown in Figure 23, the steps leading to a server crash before or during
the prepare phase of a two-phase commit can be described as follows:

1. The client calls begin_transaction() to initiate the transaction.

2. Within the transaction, the client calls one or more WSDL operations
on both of the remote servers.

3. The client calls commit_transaction() to make permanent any
changes caused during the transaction.

4. The transaction coordinator initiates the prepare phase of the
two-phase commit. At some point either before or during the prepare
phase, server 1 crashes. That is, the transaction coordinator never
receives a vote commit or vote rollback from server 1.

Transaction system recovery If the transaction coordinator does not receive a reply from the prepare call
on server 1 (for example, the connection to server 1 breaks or the
transaction times out), the transaction coordinator will presume that the
transaction is to be rolled back (this rule is called presumed rollback).

The transaction system also rolls back the transaction on all of the other
transaction participants.

Server 1 recovery The manner in which server 1 recovers depends on whether it wrote
anything into its log during the prepare phase. When server 1 re-starts after
crashing, the transaction is recovered in one of the following ways:

• No record of prepare phase in log—in this case, server 1 knows that a
transaction was begun (this is recorded in its log) and that the
transaction was interrupted before the prepare phase. Server 1
automatically rolls back the transaction (presumed rollback), bringing
it back to a state that is consistent with the rest of the system.

• Prepare phase recorded in log—in this case, it is possible that the
prepare phase had completed successfully. Server 1, therefore, needs
to contact the transaction coordinator to discover the outcome of the
transaction. From its log, it can retrieve a recovery coordinator
reference, which it uses to query the transaction state. Depending on
the reply, it will either commit or roll back the transaction (in the
scenario shown in Figure 23, it will be a rollback).
116

Transaction Recovery Scenarios
Server Crash after Prepare Phase

Overview Figure 24 shows a scenario involving two transactional resources, one
attached to server 1 and another attached to server 2, and a client, which
initiates a transaction involving server 1 and server 2. This scenario uses the
OTS Encina transaction system.

The mode of failure described in this scenario involves server 1 crashing
after the prepare phase of the two-phase commit protocol.

Steps leading to crash As shown in Figure 24, the steps leading to a server crash after the prepare
phase of a two-phase commit can be described as follows:

1. The client calls commit_transaction() to make permanent any
changes caused during the transaction.

2. The transaction system performs the prepare phase by polling all of the
remote transaction participants.

Figure 24: Server Crash after the Prepare Phase

begin_transaction()
...
...
...
commit_transaction()

Artix
Client

1

Server 1

OTS

Resource

Server 2

OTS

Resource

2

2

prepare

OTS

OTS Encina

3 Crash!!

prepare

4

commit
 117

CHAPTER 7 | Transaction Recovery
3. After replying to the prepare call, but before receiving the commit call,
server 1 crashes. For this scenario, it is assumed that server 1 replied
to the prepare call with a vote commit.

4. Assuming that the other transaction participants all reply to the
prepare phase with a vote commit, the transaction coordinator decides
to commit the transaction and sends a commit notification to the
participants.

Transaction system recovery If the prepare phase has completed successfully (that is, the prepare call
returned from all of the transaction participants), the transaction coordinator
determines the outcome of the transaction to be either commit or rollback.
In the present scenario, it is assumed that the outcome is commit.

When the transaction coordinator attempts to send a commit notification to
server 1, it discovers that server 1 has crashed. The transaction coordinator
reacts to this situation by retrying the commit call forever.

Server 1 recovery When server 1 is restarted, it knows from its own log that a transaction was
prepared but not commited. Therefore, it expects to receive either a commit
or a rollback call from the transaction coordinator. Because the transaction
coordinator retries the commit call forever, server 1 is bound to receive a
commit call shortly after it starts up, thereby resolving the transaction.
118

Transaction Recovery Scenarios
Transaction Coordinator Crash

Overview Another mode of failure can occur where the process hosting the transaction
coordinator crashes (for example, in Figure 24 this would be the client
process). The transaction coordinator has its own log, which it uses as the
basis for recovery.

Encina logs To enable the transaction coordinator to recover gracefully after a crash, it
writes whatever information would be needed for recovery into a log file or
partition as it goes along.

Transaction system recovery After a transaction coordinator crash, the possible recovery scenarios can be
reduced essentially to two cases, as follows:

• The coordinator determined the transaction outcome before
crashing—upon restarting, the transaction coordinator will try forever
to notify the participants of the transaction outcome (commit or
rollback).

• The coordinator did not determine the transaction outcome before
crashing—the presumed rollback rule is used here. Transaction
participants that were not prepared will simply presume a rollback,
after a timeout has elapsed. Prepared participants will use the
coordinator reference to contact the transaction coordinator and query
the outcome of the transaction.
 119

CHAPTER 7 | Transaction Recovery
120

CHAPTER 8

Recoverable
Resources
This section describes those aspects of server side
programming which enable you to update a persistent resource
transactionally.

In this chapter This chapter discusses the following topics:

Transaction Participants page 122

Interposition page 130
 121

CHAPTER 8 | Recoverable Resources
Transaction Participants

Overview When Artix uses a persistent resource, the easiest way to integrate that
resource within the Artix transaction system is to enlist the resource’s XA
switch. If the resource does not support the XA standard, however, you need
to implement a transaction participant instead. A transaction participant is
an object usually on the server side that interfaces between the Artix
transaction manager and a persistent resource. The role of the transaction
participant is to receive callbacks from the transaction manager, which tell
the participant whether to make pending changes permanent or whether to
abort the current transaction and return the resource to its previous
consistent state.
122

Transaction Participants
Participants in a 2-phase commit Figure 25 shows an example of a two-phase commit involving two
transaction participant instances. Any operations meant to be transactional
should start by creating a transaction participant object and enlisting it with
the transaction manager.

Participants in a 2-phase commit As shown in Figure 25, the transaction participants participate in a
two-phase commit as follows:

Figure 25: Transaction Participants in a 2-Phase Commit Protocol

begin_transaction()
 invoke
 ...
 invoke
commit_transaction()

Artix
Client

1

3

Artix Server

Transaction
System

Resource

Artix Server

Transaction
System

Resource

2

2
4

5

4
5

prepare
commit

enlist

TransactionParticipant

delete6

enlist

TransactionParticipant

delete6

Stage Description

1 The client calls begin_transaction() to initiate a distributed
transaction.

2 Within the transaction, the client calls transactional operations
on Server A and on Server B. In order to participate in the
distributed transaction, the servant code creates a new
transaction participant and enlists it with the transaction
manager.
 123

CHAPTER 8 | Recoverable Resources
Implementing a transaction
participant

To implement a transaction participant, define a class that inherits from the
IT_Bus::TransactionParticipant base class and implement all of its
member functions.

TransactionParticipant member
functions

Example 19 shows the public member functions of the
IT_Bus::TransactionParticipant class.

3 The client calls commit_transaction() to make permanent any
changes caused during the transaction.

4 The transaction system performs the prepare phase by calling
prepare() on all of the transaction participants. Each
participant can vote either to commit or to rollback the current
transaction by returning a flag from the prepare() function.

5 The transaction system performs the commit or rollback phase
by calling commit() or rollback() on all of the transaction
participants.

6 When the transaction is finished, the transaction manager
automatically deletes the associated transaction participant
instances.

Stage Description

Example 19: The IT_Bus::TransactionParticipant Class

// C++
namespace IT_Bus
{
 class IT_BUS_API TransactionParticipant
 : public virtual RefCountedBase
 {
 public:
 virtual ~TransactionParticipant();

 enum VoteOutcome {
 VoteCommit,
 VoteRollback,
 VoteReadOnly
 };

 // 1PC Functions.
124

Transaction Participants
1PC callback function The following function is called during a one-phase commit:

• commit_one_phase()—this function should make permanent any
changes associated with the current transaction.

2PC callback functions The following functions are called during a two-phase commit:

• prepare()—called during phase one of a two-phase commit. Before
returning, this function should write a recovery log to persistent
storage. The recovery log should contain whatever data would be
necessary to restore the system to a consistent state, in the event that
the server crashes before the transaction is finished.

 virtual void commit_one_phase()=0;

 // 2PC Functions.
 virtual VoteOutcome prepare()=0;
 virtual void commit()=0;
 virtual void rollback()=0;

 // Getting the transaction manager.
 virtual String
 preferred_transaction_manager()=0;

 virtual void
 set_manager(
 TransactionManager* tx_manager
)=0;
 ...
 };
 typedef Var<TransactionParticipant>
 TransactionParticipant_var;
 typedef TransactionParticipant* TransactionParticipant_ptr;
};

Example 19: The IT_Bus::TransactionParticipant Class

Note: In some transaction systems, such as OTS Encina, the
transaction manager will not call prepare() if it knows that
transaction will be rolled back.
 125

CHAPTER 8 | Recoverable Resources
The prepare() function also votes on whether to commit or roll back
the transaction overall, by returning one of the following vote
outcomes:

♦ IT_Bus::TransactionParticipant::VoteCommit—vote to
commit the transaction.

♦ IT_Bus::TransactionParticipant::VoteRollback—vote to roll
back the transaction. For example, you would return
VoteRollback, if an error occurred while attempting to write the
recovery log.

♦ IT_Bus::TransactionParticipant::VoteReadOnly—explicitly
request not to be included in the commit phase of the 2PC
protocol.

• commit()—called during phase two of a two-phase commit, if the
transaction outcome was successful overall. The implementation of
this function should make permanent any changes associated with the
current transaction.

• rollback()—called during phase two of a two-phase commit, if the
transaction must be aborted. The implementation of this function
should undo any changes associated with the current transaction,
returning the system to the state it was in before.

Getting the transaction manager After the transaction participant is enlisted by a transaction manager
instance, the transaction system calls back to pass a transaction manager to
the participant. The following functions are relevant to this callback
behavior:

• preferred_transaction_manager()—called just after the participant
is enlisted. The return value is a string that tells the transaction system
what type of transaction manager the participant requires. The
following return strings are supported:

♦ DEFAULT_TRANSACTION_TYPE—no preference; use the current
default.

♦ OTS_TRANSACTION_TYPE—prefer the OTSTransactionManager
interface (manager for CORBA OTS transactions).

♦ WSAT_TRANSACTION_TYPE—prefer the WSATTransactionManager
interface (manager for WS-AtomicTransactions).
126

Transaction Participants
• set_manager()—called after the preferred_transaction_manager()
call. The transaction system calls set_manager() to pass a transaction
manager of the preferred type to the participant. If the type of
transaction manager requested by the participant differs from the one
currently in use, Artix uses interposition to simulate the preferred
transaction manager type.

For more details about interposition, see “Interposition” on page 130.

Enlisting a transaction participant Example 20 shows an example of how to enlist a participant instance in a
transaction. You must enlist a participant at the start of any transactional
WSDL operation. Example 20 shows a sample implementation of a WSDL
operation, transactional_op(), which is called in the context of a
transaction.

Example 20: Example of Enlisting a Transactional Participant

// C++
void
HelloWorldServantImpl::transactional_op(
 const IT_Bus::String value
) IT_THROW_DECL((IT_Bus::Exception))
{
 cout << "HelloWorld transactional_op() called" << endl;

1 IT_Bus::Bus_var bus = this->get_bus();
2 if (bus->transactions().within_transaction())

 {
 cout << "This is a transaction" << endl;

3 TXParticipant * participant = new TXParticipant(this);
4 bus->transactions().get_transaction_manager().enlist(

 participant,
 true
);

5 // Implementation of ’transactional_op()’ comes here.
 // Includes writing to DB or other persistent resources.
 // (not shown)
 ...
 }
 else
 {
 cout << "No transaction" << endl;
 127

CHAPTER 8 | Recoverable Resources
The preceding code example can be explained as follows:

1. The get_bus() function is a standard servant function that returns a
stored reference to the Bus instance.

2. In this example, the transactional_op() operation requires a
transaction. If it is not called in the context of a transaction, it raises an
exception back to the client.

It is an implementation decision whether or not an operation should
require a transaction. In some cases, it may be appropriate for the
operation to proceed with or without a transaction.

3. The TXParticipant class is a sample participant class, which is
implemented by inheriting from IT_Bus::TransactionParticipant.

In this example, a new TXParticipant instance is created every time
transactional_op() is called.

4. This line enlists the participant in the transaction, ensuring that the
participant receives callbacks either to commit or rollback any
changes.

The second parameter is a boolean flag that specifies the kind of
participant:

♦ true indicates a durable participant, which participates in all
phases of the transaction.

♦ false indicates a volatile participant, which is only guaranteed to
participate in the prepare phase of the 2PC protocol. There is no
guarantee that a volatile participant will participate in the commit
phase.

5. The implementation of transactional_op() involves writing to a
persistent resource. The committing or rolling back of any changes to
this persistent resource is controlled by the enlisted TXPersistent
instance.

 IT_Bus::Exception ex("Invocation not in transaction");
 throw ex;
 }
}

Example 20: Example of Enlisting a Transactional Participant
128

Transaction Participants
Alternatives to the Artix
transaction participant

Implementing and enlisting an Artix TransactionParticipant class is not
the only way to make a WSDL operation transactional. By drilling down to
the underlying transaction manager type (for example,
IT_Bus::OTSTransactionManager) it is sometimes possible to use an
alternative API supported by a specific transaction system.

For example, the following demonstration shows how to use the OTS
transaction system:

ArtixInstallDir/artix/Version/demos/transactions/legacy_ots_integrati
on
 129

CHAPTER 8 | Recoverable Resources
Interposition

What is interposition? Sometimes, there can be a mismatch between the transaction API used by
the application code and the type of the underlying transaction system. For
example, imagine that you have a legacy CORBA server that manages
transactions with CORBA OTS. If you migrate this server code to a
WS-AT-based Artix service, you would obtain a mismatch between the
transaction API used by the application code (which is CORBA OTS-based)
and the underlying transaction system (which is WS-AT).

To bridge this API mismatch, Artix uses interposition. With interposition,
the Artix runtime provides the application code with an object of the
preferred type (for example, an OTSTransactionManager object), but the
object is merely a facade, whose calls are ultimately translated into a form
suitable for the underlying transaction system (for example, WS-AT).

Interposition matrix Artix supports interposition between every permutation of transaction
systems. Internally, Artix converts calls made on a specific transaction API
into a technology-neutral API. The calls are then converted from the
technology-neutral API into one of the supported transaction APIs.

Using interposition As an example of interposition, consider a service that loads the WS-AT
transaction system (for example, see “Configuring Non-Recoverable WS-AT”
on page 59), but actually implements the transaction functionality using the
CORBA OTS programming interface. In this case, it is necessary for the
TransactionParticipant implementation to request explicitly an OTS
transaction manager, instead of the default WS-AT transaction manager.

Example 21 shows the implementation of the
preferred_transaction_manager() function and the set_manager()
function for the transaction participant implementation, TxParticipant.

Example 21: Example of a TransactionParticipant that Uses Interposition

// C++
...
IT_Bus::String
TXParticipant::preferred_transaction_manager()
130

Interposition
When Artix calls back on set_manager(), it passes a transaction manager
object, tx_manager, of OTSTransactionManager type. There is no need to
query the type of the tx_manager object before downcasting it, because its
type is already specified by the preferred_transaction_manager()
callback.

{
 return IT_Bus::TransactionSystem::OTS_TRANSACTION_TYPE;
}

void
TXParticipant::set_manager(
 IT_Bus::TransactionManager* tx_manager
)
{
 m_ots_tx_manager =
 dynamic_cast<IT_Bus::OTSTransactionManager*>(tx_manager);
}

Example 21: Example of a TransactionParticipant that Uses Interposition
 131

CHAPTER 8 | Recoverable Resources
132

CHAPTER 9

Notification
Handlers
A notification handler is an object that receives callbacks to
inform it about the outcome of a transaction.

In this chapter This chapter discusses the following topics:

Introduction to Notification Handlers page 134
 133

CHAPTER 9 | Notification Handlers
Introduction to Notification Handlers

Overview A notification handler is an object that records the outcome of a
transaction. It can be used both on the server side and on the client side.
For example, you might use a notification handler to log transaction
outcomes or to synchronize other events with a transaction.

Implementing a notification
handler

To implement a notification handler, define a class that inherits from the
IT_Bus::TransactionNotificationHandler base class and implement all of
its member functions.

TransactionNotificationHandler
base class

Example 22 shows the TransactionNotificationHandler base class.
These functions will only be called if an appropriate notification mechanism
is available in the underlying transaction system.

Example 22: The IT_Bus::TransactionNotificationHandler Class

// C++
namespace IT_Bus
{
 class IT_BUS_API TransactionNotificationHandler
 : public virtual RefCountedBase
 {
 public:
 ...
 virtual void commit_initiated(
 TransactionIdentifier_ptr tx_identifier
)=0;
 virtual void committed()=0;
 virtual void aborted()=0;
 ...
 };

 typedef Var<TransactionNotificationHandler>
 TransactionNotificationHandler_var;
 typedef TransactionNotificationHandler*
 TransactionNotificationHandler_ptr;
};
134

Introduction to Notification Handlers
Notification callback functions The following notification handler functions receive callbacks from the
transaction manager:

• commit_initiated()—informs the handler that a commit has been
initiated. This function is called before any participants are prepared.

• committed()—informs the handler that the transaction completed
successfully.

• aborted()—informs the handler that the transaction did not complete
successfully and was aborted.

Enlisting a notification handler To use a notification handler, you must enlist it with a TransactionManager
object while there is a current transaction. You can enlist a notification
handler at any time prior to the termination of the transaction.

Example 23 shows how to enlist a sample notification handler,
NotificationHandlerImpl.

Note: WS-AT does not support this notification point.

Example 23: Example of Enlisting a Notification Handler

// C++
IT_Bus::Bus_var bus = ... // Get reference to Bus object
if (bus->transactions().within_transaction())
{
 // Enlist notification handler
 NotificationHandlerImpl * handler
 = new NotificationHandlerImpl();
 TransactionManager& tx_manager
 = bus->transactions().get_transaction_manager()
 tx_manager.enlist_for_notification(handler);
}
else
{
 IT_Bus::Exception ex("Invocation not in transaction");
 throw ex;
}

 135

CHAPTER 9 | Notification Handlers
136

CHAPTER 10

Exposing Artix as
an XA Resource
You can expose Artix as an XA resource manager by registering
the Artix XA switch with a third-party XA transaction manager.

In this chapter This chapter discusses the following topics:

Introduction to the Artix XA Resource Manager page 138

Obtaining an Artix XA Resource Manager page 141

Artix XA Open and Close Strings page 146

Configuring the Artix XA Resource Manager page 148
 137

CHAPTER 10 | Exposing Artix as an XA Resource
Introduction to the Artix XA Resource Manager

Overview The most common use case for XA in Artix is where you register a
third-party resource manager (such as an Oracle DB) with Artix and Artix is
responsible for coordinating the transactions.

It is possible, however, to reverse these roles, so that Artix assumes the role
of an XA resource manager and a foreign transaction manager is responsible
for coordinating the transactions in Artix. To support this use case, Artix
provides an XA switch, which can be registered with the foreign transaction
manager. Although this use case is much less common than the former,
there are two possible scenarios where you might want to expose Artix as an
XA resource manager, as follows:

• Scenario 1 - local resource.

• Scenario 2 - remote resource.

Scenario 1 - local resource In the scenario shown in Figure 26, the Artix XA resource manager is
registered with the Microsoft DTC transaction manager and has
responsibility for managing a local resource. This scenario could arise, for
example, if you have already implemented a recoverable resource using the
Artix transaction API and you now want to integrate the resource with a
third party transaction manager (such as Microsoft DTC).

Figure 26: Artix XA Resource Manager Manages a Local Resource

Application Program

Resource

Artix
Tx Manager

Microsoft DTC
Tx Manager

XA Interface

enlist()
138

Introduction to the Artix XA Resource Manager
Of course, it is unlikely that you would implement an Artix recoverable
resource just for this purpose. But if you already have such an
implementation, the Artix XA switch enables you to integrate it rapidly with
a third-party transaction manager.

Scenario 2 - remote resource In the scenario shown in Figure 27, the Artix XA resource manager is
registered with the Microsoft DTC transaction manager, but the managed
resource (or resources) belongs to a remote server. In this case, the Artix
Bus is effectively being used as a transport stack to facilitate interoperability
with a remote server that manages a transactional resource. Artix uses the
IIOP protocol to communicate with the CORBA server and the OTS standard
is used to coordinate the distributed CORBA transactions.

To program this example, you would demarcate the transactions using the
relevant API from Microsoft DTC. To access the operations supported by the
remote CORBA server, use the Artix programming API (the relevant function
signatures for the operations are provided in the Artix stub code).

Figure 27: Artix XA Resource Manager Manages a Remote Resource

Application Program

Resource

Artix
Tx Manager

Microsoft DTC
Tx Manager

XA Interface OTS

CORBA
Server

IIOP/TLS
 139

CHAPTER 10 | Exposing Artix as an XA Resource
How to use the Artix XA switch To use the Artix XA switch with a third-party transaction manager, perform
the following steps:

1. Obtain the Artix XA switch—you need to obtain a pointer to a struct of
xa_switch_t type (as specified by the XA standard). Artix provides a
number of ways of obtaining the Artix XA switch instance. See
“Obtaining an Artix XA Resource Manager” on page 141 for details.

2. Register the Artix XA switch—after obtaining a pointer to the Artix XA
switch, you must register the switch instance with your third-party
transaction manager. Typically, the registration step consists of a
single function call that requires you to provide an open string and a
close string (for details of the Artix-specific open and close strings, see
“Artix XA Open and Close Strings” on page 146).

For details of how to register the XA switch, consult the documentation
for your third-party transaction manager.

3. Configure the Artix XA resource manager—the Artix XA resource
manager needs to be configured as described in “Configuring the Artix
XA Resource Manager” on page 148.

4. Observe the usual XA programming conventions—according to the
usual XA programming conventions, once you have registered the Artix
XA switch, the third-party transaction manager, and not the Artix
transaction system, is responsible for transaction demarcation. This
implies that you should not use the begin_transaction(),
commit_transaction(), and rollback_transaction() functions from
the TransactionSystem class to demarcate transactions.
140

Obtaining an Artix XA Resource Manager
Obtaining an Artix XA Resource Manager

Overview Artix supports several different ways of obtaining an XA resource manager.
Essentially, this involves providing a pointer to the xa_switch_t struct. The
different approaches to obtaining the XA switch are described in the
following subsections.

In this section This section contains the following subsections:

Obtaining the XA Switch from a Global Function page 142

Obtaining the XA Switch from a Bus Instance page 143

Obtaining the XA Switch from a Switch Load File page 144
 141

CHAPTER 10 | Exposing Artix as an XA Resource
Obtaining the XA Switch from a Global Function

Overview In this scenario, you obtain a pointer to the Artix xa_switch_t instance by
calling a global function. Use this approach when the external transaction
manager provides an API function to enlist the XA switch and you do not
have an instance of an Artix Bus.

GetXaSwitch() function To obtain a pointer to the Artix XA switch, call the GetXaSwitch() function,
which is a C function defined in the global scope. The GetXaSwitch()
function takes no arguments and has a return type of xa_switch_t *.

Example Example 24 shows how to obtain an Artix XA switch using the
GetXaSwitch() function. Remember to include the it_bus/xa_switch.h
header file.

Required library You need to link your code with the Artix it_xa_switch library.

Example 24: Obtaining the Artix XA Switch Using GetXaSwitch()

// C++
#include <it_bus/xa_switch.h>
....
xa_switch_t* artix_xa_switch = ::GetXaSwitch();
....
142

Obtaining an Artix XA Resource Manager
Obtaining the XA Switch from a Bus Instance

Overview In this scenario, you obtain a pointer to the Artix xa_switch_t instance
through an IT_Bus::XATransactionManager object, which you can obtain
from the Artix Bus. Use this approach when the external transaction
manager provides an API function to enlist the XA switch and you do have
an instance of an Artix Bus.

get_xa_switch() function To obtain a pointer to the Artix XA switch, call the get_xa_switch()
function, which is a member of the IT_Bus::XATransactionManager class.
The get_xa_switch() function takes no arguments and has a return type of
xa_switch_t *.

Example Example 25 shows how to obtain an Artix XA switch from the Bus instance,
by calling the IT_Bus::XATransactionManager::get_xa_switch() function.

Required library You need to link your code with the Artix it_bus library.

Example 25: Obtaining the Artix XA Switch from a Bus Instance

// C++
#include <it_bus/bus.h>
#include <it_bus/transaction_system.h>
#include <it_bus_pdk/xa_transaction_manager.h>

IT_Bus::Bus_var bus = ...
...
IT_Bus::XATransactionManager& xa_tx_mgr = dynamic_cast
<
 IT_Bus::XATransactionManager,
 bus->transactions().get_transaction_manager(
 IT_Bus::TransactionSystem::XA_TRANSACTION_TYPE
)
>;
xa_switch_t* artix_xa_switch = xa_tx_mgr->get_xa_switch();
 143

CHAPTER 10 | Exposing Artix as an XA Resource
Obtaining the XA Switch from a Switch Load File

Overview In this scenario, the third-party transaction manager obtains the Artix XA
switch by loading a shared library file (the switch load file). Use this
approach when the external transaction manager does not provide an API
function to enlist the XA switch, but does support switch load files.

Using a switch load file To use a switch load file, you supply the third-party transaction manager
(TM) with the name and location of the relevant shared library or DLL.
When the TM loads the switch load library file, it calls a particular function
to obtain the XA switch instance. The mechanisms that are used to load the
switch file and obtain the XA switch instance are specific to the particular
TM. Refer to your third-party TM documentation for details.

Default switch load file Artix provides a default switch load file: the it_xa_switch library. The
precise name of the default switch load file depends on the platform, as
shown in Table 5.

The default switch load file exposes the C functions shown in Example 26.

Table 5: Default Switch Load File for Artix on Various Platforms

Platform Link Library Shared Library or DLL

Windows VC++ 6.0 it_xa_switch.lib it_xa_switch5_vc60.dll

Windows VC++ 7.1 it_xa_switch.lib it_xa_switch5_vc71.dll

Solaris libit_xa_switch.so libit_xa_switch_sc53.so.5

HP-UX libit_xa_switch.sl libit_xa_switch_acca0331.5

AIX libit_xa_switch.a libit_xa_switch5_xlc60.so

Example 26: Functions in the Default Artix Switch Load File

/* C */
xa_switch_t* GetXaSwitch() /* for use by Microsoft DTC */
xa_switch_t* MQStart() /* for use by MQSeries */
144

Obtaining an Artix XA Resource Manager
Example of using a switch load file
with Microsoft DTC

For example, if you are writing a COM+ application on the Windows
platform, you can use Microsoft DTC to load a switch load file. Microsoft
DTC provides the following function to load a switch load file:

The argument, pszDSN, is used as the open string for the XA switch; the
argument, pszClientDllName, is the name of the switch load file; and the
argument, pdwRMCookie, is a cookie used to identify the resource manager
loaded by this call. See Opening an XA Connection in the Microsoft
documentation for more details.

Creating a custom switch load file You can create your own custom switch load file, as follows. Implement the
global function required by your third-party TM (usually a simple wrapper
function around the Artix GetXaSwitch() function). Then compile this code
as a shared library or DLL, as appropriate for the platform you are working
on.

For example, the following code shows the implementation of a load switch
file for use with MQ-Series:

The header, cmqc.h, is an MQ-Series header file that defines the signature of
the MQStart() function. The MQSeries() function is called automatically by
MQ-Series after it loads the switch file.

// In IDtcToXaMapper

HRESULT RequestNewResourceManager(
 CHAR * pszDSN,
 CHAR * pszClientDllName,
 DWORD * pdwRMCookie
);

// C++
#include <cmqc.h>
#include<it_bus/xa_switch.h>

struct xa_switch_t * MQENTRY MQStart(void)
{
 return ::GetXaSwitch();
}

Note: You do not actually have to implement the MQStart() function,
because it is already defined in the default switch load file.
 145

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cossdk/html/bfd5de9b-1863-49db-9762-a8e0fbdb6c15.asp

CHAPTER 10 | Exposing Artix as an XA Resource
Artix XA Open and Close Strings

Overview When registering the Artix XA switch with a third-party transaction manager
(TM), the TM usually requires you to supply an open string and a close
string. These strings are used as follows:

• The TM passes the open string to the xa_open() function, when it
opens a connection to the Artix resource manager,

• The TM passes the close string to the xa_close() function, when it
closes the connection to the Artix resource manager.

The format of the open and close strings is specific to an XA switch
implementation. Therefore, just as Oracle and Sybase have their own
proprietary formats for their open and close strings, the Artix XA switch
defines proprietary open string and close string formats, as described here.

Specifying open and close strings The mechanism for specifying the open and close strings is defined by the
third-party TM implementation. See your TM documentation for details.

Open string For the Artix XA switch, the open string must be an Artix Bus ID. In practice,
the Bus ID is equivalent to the name of an Artix configuration scope.

For example, if you choose a Bus ID equal to
xa_bus.ots_lite_coordinated, Artix will initialize a Bus object that takes
its configuration from the xa_bus.ots_lite_coordinated scope in the Artix
configuration file (for example, see the configuration scope in Example 27).
146

Artix XA Open and Close Strings
Close string For the Artix XA switch, there are two cases to consider for the close string:

• If the Artix XA switch is obtained either from a global function (see
“Obtaining the XA Switch from a Global Function” on page 142) or
from a switch load file (see “Obtaining the XA Switch from a Switch
Load File” on page 144), the close string should usually be
shutdown=true. This close string tells the Bus to call
IT_Bus::Bus::shutdown(true) when xa_close() is called by the TM.

• If the Artix XA switch is obtained from a Bus instance (see “Obtaining
the XA Switch from a Bus Instance” on page 143), the close string
should be empty, "", implying that the caller will take care of calling
bus->shutdown().
 147

CHAPTER 10 | Exposing Artix as an XA Resource
Configuring the Artix XA Resource Manager

Overview When Artix is exposed as an XA resource manager, it has the same
configuration requirements as an Artix application that uses the OTS
transaction coordinator. Two alternative configurations can be used:

• Configuration for a single resource.

• Configuration for multiple resources.

Configuration for a single resource Example 27 shows the configuration, xa_bus.ots_lite_coordinated,
which is suitable for an Artix XA resource manager that manages a single
resource. This type of configuration is suitable for the scenario shown in
Figure 26 on page 138.

The presence of the ots plug-in is required in the list of ORB plug-ins. The
default_tx_provider setting ensures that the xa_transaction_provider
plug-in is loaded by default. Strictly speaking, the latter setting is
unnecessary. Whenever a third-party transaction manager attempts to
obtain a reference to the Artix XA switch, the xa_transaction_provider
plug-in is loaded automatically.

To use this configuration with the Artix XA switch, pass
xa_bus.ots_lite_coordinated as the open string.

Example 27: Resource Manager Configuration for a Single Resource

Artix Configuration File
xa_bus
{
 orb_plugins = ["local_log_stream", "iiop_profile", "giop",

"iiop", "ots"];
 plugins:ots:default_ots_policy="adapts";
 plugins:bus:default_tx_provider:plugin=

"xa_transaction_provider";

 ots_lite_coordinated
 {
 initial_references:TransactionFactory:plugin ="ots_lite";
 };
};
148

Configuring the Artix XA Resource Manager
Configuration for multiple
resources

Example 28 shows the configuration, xa_bus.ots_encina_coordinated,
which is suitable for an Artix XA resource manager that manages multiple
resources. This type of configuration is suitable for the scenario shown in
Figure 27 on page 139.

The presence of the ots plug-in is required in the list of ORB plug-ins.

To use this configuration with the Artix XA switch, pass
xa_bus.ots_encina_coordinated as the open string.

Example 28: Resource Manager Configuration for Multiple Resources

Artix Configuration File
xa_bus
{
 orb_plugins = ["local_log_stream", "iiop_profile", "giop",

"iiop", "ots"];
 plugins:ots:default_ots_policy="adapts";
 plugins:bus:default_tx_provider:plugin=

"xa_transaction_provider";

 ots_encina_coordinated
 {
 plugins:ots_encina:direct_persistence = "true";
 plugins:ots_encina:shlib_name = "it_ots_encina";
 plugins:ots_encina_adm:shlib_name = "it_ots_encina_adm";
 plugins:ots_encina_adm:grammar_db =

"ots_encina_adm_grammar.txt";
 plugins:ots_encina_adm:help_db =

"ots_encina_adm_help.txt";
 initial_references:TransactionFactory:plugin =

"ots_encina";
 plugins:ots_encina:initial_disk = "encina.log";
 plugins:ots_encina:initial_disk_size = "1";
 plugins:ots_encina:restart_file = "encina_restart";
 plugins:ots_encina:backup_restart_file =

"encina_restart.bak";
 };
};

Note: There might be more resources registered than you think. In certain
cases, Artix automatically registers extra resources to support interposition.
See “Limitation of using OTS Lite with propagation” on page 96.
 149

CHAPTER 10 | Exposing Artix as an XA Resource
Interoperating with WS-AT
transactions

The Artix XA resource manager can also interoperate over SOAP with
applications that require WS-AT transactions. This requires no special
configuration. Artix automatically loads the required WS-AT plug-ins, if they
are needed.
150

CHAPTER 11

MQ Transactions
This chapter describes how transactions are integrated with
the Artix MQ transport, which integrates with the IBM
MQ-Series product to provide a reliable message-oriented
transport.

In this chapter This chapter discusses the following topics:

Reliable Messaging with MQ Transactions page 152

Oneway Invocations page 153

Synchronous Invocations page 156

Router Propagating MQ Transactions page 161
 151

CHAPTER 11 | MQ Transactions
Reliable Messaging with MQ Transactions

Overview This section describes how to enable reliable messaging with MQ
transactions in your Artix applications. MQ transactions differ in several
important respects from ordinary Artix transactions, in particular:

• MQ transactions are managed by a transaction manager that is internal
to the MQ-Series product.

• MQ transactions are enabled by setting the relevant attributes of a
WSDL port in the WSDL contract.

• You can not initiate and terminate MQ transactions on the client side
using the Artix transaction API (for example, the functions in
IT_Bus::TransactionSystem are not used for MQ on the client side).

On the client side, MQ transactions follow a completely different model from
Artix transactions. On the server side, however, the MQ transaction is
integrated with an Artix transaction, so that an incoming message is
considered to have been processed, only if the Artix transaction completes
successfully on the server side.
152

Oneway Invocations
Oneway Invocations

Oneway invocation scenario Figure 28 shows a oneway invocation scenario, where an Artix client
invokes oneway operations on an Artix server over the MQ transport with
MQ transactions enabled. Because the WSDL operations are oneway (that
is, consisting only of output messages), the MQ transport does not require a
reply queue in this scenario.

Description of oneway invocation The oneway operation invocation shown in Figure 28 is executed in the
following stages:

Figure 28: Oneway Operation Invoked Over an MQ Transport with MQ
Transactions Enabled

receiveArtix Client
MQ

Artix Server
MQ

WS-AT

WS-Coordination

MQ MQ
send

RequestQueue
propagation. . .

Transaction
Scope

1
2

3 4

5

Transaction Scope

Stage Description

1 When the client invokes a oneway operation over MQ, an MQ
transaction is initiated. After the request message is pushed
onto the client side of the MQ request queue, the MQ
transaction is committed.

Note: The client MQ transaction is local and does not extend
beyond the client side.

2 MQ-Series is responsible for reliably transmitting the request
message from the client side of the MQ transport to the server
side of the MQ transport.
 153

CHAPTER 11 | MQ Transactions
Oneway client configuration To enable transactional semantics for a client that invokes oneway
operations over the MQ transport, you should define a WSDL port as shown
in Example 29.

3 When the server pulls the request message off the incoming
queue, an Artix transaction is initiated before dispatching the
request to the relevant Artix servant.

4 If the Artix servant now invokes operations on some other Artix
servers, these invocations occur within a transaction context.
Hence, these follow-on invocations propagate a transaction
context (for example, a WS-AT context) and enable the remote
servers to participate in the transaction.

5 If the operation completes its work successfully, the transaction
is committed and the request message permanently disappears
from the queue.

On the other hand, if the operation is unsuccessful, the
transaction is rolled back and the request message is pushed
back onto the queue. The request message is immediately
reprocessed (the maximum number of times the message can
be processed is determined by the queue’s backout threshold—
see “Configuring the backout threshold” on page 159).

Stage Description

Example 29: WSDL Port Configuration for Oneway Client Over MQ

<wsdl:service name="MQService">
 <wsdl:port binding="tns:BindingName" name="PortName">
 <mq:client QueueManager="MY_DEF_QM"
 QueueName="HW_REQUEST"

 AccessMode="send"
 CorrelationStyle="correlationId"
 Transactional="internal"
 Delivery="persistent"
 UsageStyle="peer"
 />
 ...
 </wsdl:port>
</wsdl:service>
154

Oneway Invocations
Because the invocation is oneway, there is no need to specify a reply queue
manager. To enable transactions, you must set the Transactional attribute
to internal and the Delivery attribute to persistent.

Oneway server configuration On the server side, you must configure both the WSDL contract and the
Artix configuration file appropriately for using MQ transactions.

WSDL Contract Configuration

To enable transactional semantics for a server that receives oneway
invocations over the MQ transport, you should define a WSDL port as shown
in Example 30.

To enable transactions, you must set the Transactional attribute to
internal and the Delivery attribute to persistent.

Artix Configuration File

On the server side, Artix initiates a transaction whenever it receives a
request message from the MQ transport. Because this transaction is
managed by an Artix transaction manager, you must load and configure one
of the Artix transaction systems (for example, OTS or WS-AT).

For details of how to select a transaction system, see “Selecting a
Transaction System” on page 51.

Example 30: WSDL Port Configuration for Oneway Server Over MQ

<wsdl:service name="MQService">
 <wsdl:port binding="tns:BindingName" name="PortName">
 ...
 <mq:server QueueManager="MY_DEF_QM"
 QueueName="HW_REQUEST"

 AccessMode="receive"
 CorrelationStyle="correlationId"
 Transactional="internal"
 Delivery="persistent"
 UsageStyle="peer"
 />
 </wsdl:port>
</wsdl:service>
 155

CHAPTER 11 | MQ Transactions
Synchronous Invocations

Synchronous invocation scenario Figure 29 shows a synchronous invocation scenario, where an Artix client
invokes normal operations on an Artix server over the MQ transport with MQ
transactions enabled. Because the WSDL operations are synchronous (that
is, consisting of output messages and input messages), the MQ transport
requires a reply queue.

Description of synchronous
invocation

The synchronous operation invocation shown in Figure 29 is executed in the
following stages:

Figure 29: Synchronous Operation Invoked Over the MQ Transport with
MQ Transactions Enabled

receive

Artix Client
MQ

Artix Server
MQ

WS-AT

WS-Coordination

MQ MQRequestQueue

propagation. . .

1 2 3

4

5

Transaction Scope

MQ MQReplyQueue

6

send

7
receive send

Stage Description

1 When the client invokes a synchronous operation over MQ, an
MQ transaction is initiated.

2 MQ-Series is responsible for reliably transmitting the request
message from the client side of the MQ transport to the server
side of the MQ transport.
156

Synchronous Invocations
3 When the server pulls the request message off the incoming
queue, an Artix transaction is initiated before dispatching the
request to the relevant Artix servant.

4 If the Artix servant now invokes operations on some other Artix
servers, these invocations occur within a transaction context.
Hence, these follow-on invocations propagate a transaction
context (for example, a WS-AT context) and enable the remote
servers to participate in the transaction.

5 If the operation completes its work successfully, the transaction
is committed, the request message permanently disappears
from the request queue, and a reply message gets pushed onto
the reply queue.

On the other hand, if the operation is unsuccessful, the
transaction is rolled back. No reply message is sent and the
request message is pushed back onto the request queue. The
request message is immediately reprocessed (the maximum
number of times the message can be processed is determined
by the request queue’s backout threshold—see “Configuring
the backout threshold” on page 159).

6 MQ-Series is responsible for reliably transmitting the reply
message from the server side of the MQ transport to the client
side of the MQ transport.

7 When the client receives the reply message, the synchronous
operation call returns and the client transaction is committed.
Because the client is independent of the server side
transaction, however, it is not possible for the client code to
receive a rollback exception from the server.

It is possible to manage blocked calls by defining the Timeout
attribute on the mq:client element in the WSDL contract. If
the timeout is exceeded, an exception will be thrown.

Stage Description
 157

CHAPTER 11 | MQ Transactions
Synchronous client configuration To enable transactional semantics for a client that invokes synchronous
operations over the MQ transport, you should define a WSDL port as shown
in Example 31.

To enable transactions, you must set the Transactional attribute to
internal and the Delivery attribute to persistent.

Synchronous server configuration On the server side, you must configure both the WSDL contract and the
Artix configuration file appropriately for using MQ transactions.

WSDL Contract Configuration

To enable transactional semantics for a server that receives synchronous
invocations over the MQ transport, define a WSDL port as shown in
Example 32.

Example 31: WSDL Port Configuration for Synchronous Client Over MQ

<wsdl:service name="MQService">
 <wsdl:port binding="tns:BindingName" name="PortName">
 <mq:client QueueManager="MY_DEF_QM"
 QueueName="HW_REQUEST"
 ReplyQueueManager="MY_DEF_QM"
 ReplyQueueName="HW_REPLY"
 AccessMode="send"
 CorrelationStyle="correlationId"
 Transactional="internal"
 Delivery="persistent"
 UsageStyle="responder"
 />
 ...
 </wsdl:port>
</wsdl:service>

Example 32: WSDL Port Configuration for Synchronous Server Over MQ

<wsdl:service name="MQService">
 <wsdl:port binding="tns:BindingName" name="PortName">
 ...
 <mq:server QueueManager="MY_DEF_QM"
 QueueName="HW_REQUEST"
 ReplyQueueManager="MY_DEF_QM"
 ReplyQueueName="HW_REPLY"
 AccessMode="receive"
158

Synchronous Invocations
To enable transactions, you must set the Transactional attribute to
internal and the Delivery attribute to persistent.

Artix Configuration File

On the server side, Artix initiates a transaction whenever it receives a
request message from the MQ transport. Because this transaction is
managed by an Artix transaction manager, you must load and configure one
of the Artix transaction systems (for example, OTS or WS-AT).

For details of how to select a transaction system, see “Selecting a
Transaction System” on page 51.

Configuring the backout threshold You can configure the backout threshold using the runmqsc command-line
tool, which is provided as part of the MQ-Series product. To configure a
queue to use backouts, set the following MQ attributes:

• BOTHRESH—the backout threshold, which defines the maximum
number of times a message can be pushed back onto the queue.

• BOQNAME—the backout queue name. If the current backout count
equals the backout threshold, Artix puts the message onto the backout
queue whose name is given by BOQNAME.

Hence, the BOQNAME queue would contain all of the messages that have been
rolled back more than BOTHRESH times. The administrator can then manually
examine the messages stored in the BOQNAME queue and take appropriate
remedial action.

For more details about how to set MQ attributes, see your MQ-Series user
documentation.

 CorrelationStyle="correlationId"
 Transactional="internal"
 Delivery="persistent"
 UsageStyle="responder"
 />
 </wsdl:port>
</wsdl:service>

Example 32: WSDL Port Configuration for Synchronous Server Over MQ
 159

CHAPTER 11 | MQ Transactions
Accessing the backout count On the server side, you can obtain the backout count for the current
message using Artix contexts. To access the current backout count, perform
the following steps:

1. Retrieve the server context identified by the
IT_ContextAttributes::MQ_INCOMING_MESSAGE_ATTRIBUTES QName.

2. Cast the returned context instance to the
IT_ContextAttributes::MQMessageAttributesType type.

3. Invoke the getBackoutCount() function to access the current backout
count.

For more details about programming with Artix contexts, see Developing
Artix Applications in C++.
160

Router Propagating MQ Transactions
Router Propagating MQ Transactions

Router scenario Figure 30 shows a router scenario, where a message propagates through
the router with MQ transactions enabled. In this particular scenario, both
the router’s source endpoint and the router’s destination endpoint are
configured to use the MQ transport. It would also be feasible, however, to
configure the router’s destination endpoint to use a different transport—for
example, a transactional SOAP/HTTP transport.

Description of router invocation The router invocation shown in Figure 30 is executed in the following
stages:

Figure 30: Router Propagating an MQ Transaction

Artix Client
MQ

Artix Router
MQ

WS-AT

WS-Coordination

MQ MQ

1
2

3 4 6

MQ
Artix Server

MQ

WS-AT

MQ

5

WS-Coordination

Stage Description

1 When the client invokes a oneway operation over MQ, an MQ
transaction is initiated. After the request message is pushed
onto the client side of the MQ request queue, the MQ
transaction is committed.

2 MQ-Series is responsible for reliably transmitting the request
message from the client side of the MQ transport to the router
side of the MQ transport.

3 When the router pulls the request message off the incoming
queue, an Artix transaction is initiated.
 161

CHAPTER 11 | MQ Transactions
Router configuration The router must be configured to load a transaction coordinator, because
the router is responsible for initiating Artix transactions whenever it receives
an MQ request message. That is, you need to add one of the following
plug-ins to the orb_plugins list in the Artix configuration (depending on
your preferred transaction system): ws_coordination_service, ots_lite, or
ots_encina.

For details of how to select a transaction system, see “Selecting a
Transaction System” on page 51.

Target server configuration In this particular scenario (where the destination endpoint is an MQ
endpoint), it is also necessary to configure the target server to load a
transaction coordinator plug-in.

On the other hand, if the destination endpoint was configured to use a
different transport—for example, SOAP/HTTP—it would not be necessary to
load a transaction coordinator and you could configure the target server in
the same way as the server examples described in “Selecting a Transaction
System” on page 51. In this case, the target server could participate directly
in the transaction initiated in the router and the router’s transaction
coordinator would be responsible for coordinating the transaction.

4 The router routes the request message to the appropriate
destination endpoint. In this example, the destination endpoint
uses the MQ transport.

5 MQ-Series is responsible for reliably transmitting the request
message from the router side of the MQ transport to the target
server side of the MQ transport.

6 When the target server pulls the request message off the
incoming queue, an Artix transaction is initiated.

Stage Description
162

Index

A
attach_thread() function

and suppressing propagation 97

B
backout count 160
backout threshold 154, 157

configuring 159
BOQNAME attribute 159
BOTHRESH attribute 159

D
Delivery attribute 155
detach_thread() function

and suppressing propagation 97

G
getBackoutCount() function 160

I
interoperability

transaction propagation 94
interposition

resource for 96

M
MQ-Series

BOQNAME attribute 159
BOTHRESH attribute 159
runmqsc command-line tool 159

MQ transactions 152
backout count 160
backout threshold 154, 157, 159

Delivery attribute 155
synchronous invocation 156
Transactional attribute 155

O
oneway invocations

and MQ transactions 153
OTS Lite

limitations on using 96

R
reliable messaging

and transactions 152
runmqsc command-line tool 159

S
synchronous invocation

and MQ transactions 156

T
Transactional attribute 155
TransactionAlreadyActiveException 72
transaction contexts 94
transaction propagation 94

suppressing, how to 97
transactions 14

compatibility with CORBA OTS 17
example 14
properties 15

TransactionSystemUnavailableException 72

U
UsageStyle attribute 158
 163

INDEX
164

	List of Tables
	List of Figures
	Preface
	What is Covered in this Book
	Who Should Read this Book
	The Artix Documentation Library

	Introduction to Transactions
	Basic Transaction Concepts
	Artix Transaction Features
	X/Open Distributed Transaction Processing
	X/Open DTP Architecture
	X/Open XA Interface

	Getting Started with Transactions
	Sample Scenario
	Client Example
	Server Example
	Configuration

	Selecting a Transaction System
	Configuring OTS Lite
	Configuring OTS Encina
	Configuring Non-Recoverable WS-AT
	Configuring Recoverable WS-AT

	Basic Transaction Programming
	Artix Transaction Interfaces
	Beginning and Ending Transactions
	Server Programming
	Registering an XA Resource
	Dynamic Registration Optimization
	Writing a Custom Resource
	Server-Side Programming Model

	Transaction Propagation
	Transaction Propagation and Interposition

	Threading
	Client Threading
	Threading and XA Resources

	Transaction Recovery
	Transactions Systems and Recovery
	Transaction Recovery Scenarios
	Server Crash before or during Prepare Phase
	Server Crash after Prepare Phase
	Transaction Coordinator Crash

	Recoverable Resources
	Transaction Participants
	Interposition

	Notification Handlers
	Introduction to Notification Handlers

	Exposing Artix as an XA Resource
	Introduction to the Artix XA Resource Manager
	Obtaining an Artix XA Resource Manager
	Obtaining the XA Switch from a Global Function
	Obtaining the XA Switch from a Bus Instance
	Obtaining the XA Switch from a Switch Load File

	Artix XA Open and Close Strings
	Configuring the Artix XA Resource Manager

	MQ Transactions
	Reliable Messaging with MQ Transactions
	Oneway Invocations
	Synchronous Invocations
	Router Propagating MQ Transactions

	Index

