
Artix ESB
Bindings and Transports, C++ Runtime

Version 5.1
December 2007

Making Software Work Together™

Bindings and Transports, C++ Runtime
IONA Technologies

Version 5.1

Published 12 Feb 2009
Copyright © 2001-2008 IONA Technologies PLC

Trademark and Disclaimer Notice

IONA Technologies PLC and/or its subsidiaries may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this publication. Except as expressly provided in any written license agreement from
IONA Technologies PLC, the furnishing of this publication does not give you any license to these patents, trademarks, copyrights,
or other intellectual property. Any rights not expressly granted herein are reserved.

IONA, IONA Technologies, the IONA logo, Orbix, High Performance Integration, Artix, FUSE, and Making Software Work Together
are trademarks or registered trademarks of IONA Technologies PLC and/or its subsidiaries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.
CORBA is a trademark or registered trademark of the Object Management Group, Inc. in the United States and other countries.
All other trademarks that appear herein are the property of their respective owners.

While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of any kind to
this material including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. IONA
shall not be liable for errors contained herein, or for incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Copyright Notice

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means,
photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third-party intellectual property
right liability is assumed with respect to the use of the information contained herein. IONA Technologies PLC assumes no
responsibility for errors or omissions contained in this publication. This publication and features described herein are subject to
change without notice. Portions of this document may include Apache Foundation documentation, all rights reserved.

Table of Contents
Preface ... 13

What is Covered in This Book ... 14
Who Should Read This Book .. 15
How to Use This Book .. 16
The Artix ESB Documentation Library ... 17

I. Bindings ... 19
Understanding Bindings in WSDL ... 23
Using SOAP 1.1 Messages .. 25

Adding a SOAP 1.1 Binding ... 26
Adding SOAP Headers to a SOAP 1.1 Binding .. 29
Sending Data Using SOAP with Attachments .. 34

Using SOAP 1.2 Messages .. 39
Adding a SOAP 1.2 Binding ... 40
Adding Headers to a SOAP 1.2 Message ... 43

Using Tuxedo’s FML Buffers .. 49
Using XML Documents ... 57
Using Fixed Length Records ... 63
Using Tagged Data .. 79
Using RMI ... 91
Using Tibco Rendezvous Messages .. 97

Defining a TibrvMsg Binding ... 98
Default Mappings for TibrvMsg .. 104
Defining Array Mapping Policies ... 109
Defining a Custom TibrvMsg Mapping ... 114
Adding Context Information to a TibrvMsg .. 130

II. Transports .. 133
Understanding How Endpoints are Defined in WSDL ... 137
Using HTTP ... 139

Adding an HTTP Endpoint to a Contract .. 140
Configuring an HTTP Endpoint .. 146

Introduction .. 147
Specifying Send and Receive Timeout Limits ... 148
Specifying a Username and a Password ... 150
Configuring Keep-Alive Behavior .. 152
Specifying Cache Control Directives .. 154

Managing Cookies in Artix Clients .. 157
Using the Java Messaging System ... 159

Defining a JMS Endpoint ... 160
Introduction .. 161
Basic Endpoint Configuration .. 162
Client Endpoint Configuration .. 166

3

Server Endpoint Configuration ... 167
Using the Command Line Tool ... 169

Migrating to the 4.x JMS WSDL Extensions .. 171
Using ActiveMQ as Your JMS Provider ... 172

Using IIOP ... 173
Using FTP ... 177

Adding an FTP Endpoint .. 178
Coordinating Requests and Responses ... 180

Introduction .. 181
Implementing the Client’s Coordination Logic .. 182
Implementing the Server’s Coordination Logic ... 186
Using Properties to Control Coordination Behavior .. 191

Using WebSphere MQ .. 195
Adding a WebSphere MQ Endpoint ... 196
Websphere MQ Connection Settings ... 202
Specifying the WebSphere Library to Load .. 203
Using Queues on Remote Hosts ... 205
Setting a Value of the Message Descriptor’s Format Field ... 207

Using TIBCO Rendezvous .. 209
Using Tuxedo .. 215

III. Other Artix ESB Features .. 219
Working with CORBA ... 223

Adding a CORBA Binding ... 224
Creating a CORBA Endpoint ... 230

Procedure .. 231
Configuring an Artix CORBA Endpoint ... 232
Generating CORBA IDL .. 236

Using the Artix Transformer ... 239
Using the Artix Transformer as a Service .. 240
Using Artix to Facilitate Interface Versioning .. 242
WSDL Messages and the Transformer ... 247
Writing XSLT Scripts ... 250
Elements of an XSLT Script ... 251
XSLT Templates ... 253
Common XSLT Functions ... 259

Using Codeset Conversion ... 261
Index .. 265

4

List of Figures
1. Artix Cookie Processing .. 157
2. MQ Remote Queues .. 206

5

6

List of Tables
1. Attributes Used to Describe the Contents of a MIME Message
Part ... 35
2. soap12:header Attributes ... 43
3. FML Type Support .. 49
4. Attributes of the FML Binding's Field Element 54
5. Attributes for fixed:binding ... 65
6. Attributes for fixed:body ... 66
7. Attributes Used to Define a Tagged Binding 80
8. Attributes for tagged:operation .. 81
9. Attributes for tagged:field ... 82
10. Attributes for tagged:sequence ... 84
11. Attributes for tagged:choice .. 85
12. Attributes for tibrv:binding .. 99
13. Attributes for tibrv:input ... 100
14. Attributes for tibrv:output ... 101
15. TIBCO to XSD Type Mapping ... 104
16. Effect of tibrv:array ... 109
17. Attributes for tibrv:array ... 110
18. Functions Used for Specifying TibrvMsg Array Element
Names .. 111
19. Valid Casts for TibrvMsg Binding .. 117
20. Attributes for tibrv:msg .. 128
21. Attributes for tibrv:field .. 129
22. Options for Adding an HTTP Endpoint 142
23. Settings for CacheControl on an HTTP Server Endpoint 154
24. Settings for CacheControl on HTTP Client Endpoint 156
25. JMS Port Attributes ... 162
26. Attributes for Configuring a JMS Client Endpoint 166
27. Attributes for COnfiguring a JMS Server Endpoint 167
28. Command Line Options for Creating a JMS Endpoint 169
29. Options for Adding a WebSphere MQ Endpoint 197
30. WebSphere MQ Server_Client Attribute Settings 203
31. WebSphere MQ Format Attribute Settings 207
32. Supported TIBCO Rendezvous Features 209
33. Options for Adding a TIB/RV Endpoint 210
34. Options for Adding a Tuxedo Service 216
35. Options for Adding a CORBA Binding 225
36. Attributes of corba:param ... 227
37. Options for Adding a CORBA Endpoint 234
38. Options for Generating IDL ... 236
39. Attributes for the i18n-context:server Element 262

7

40. Attributes for the i18n-context:client Element 263

8

List of Examples
1. Ordering System Interface .. 27
2. SOAP 1.1 Binding for orderWidgets .. 28
3. SOAP Header Syntax .. 29
4. SOAP 1.1 Binding with a SOAP Header 30
5. SOAP 1.1 Binding for orderWidgets with a SOAP Header 32
6. MIME Namespace Specification in a Contract 34
7. Contract using SOAP with Attachments 36
8. Ordering System Interface .. 41
9. SOAP 1.2 Binding for orderWidgets .. 42
10. SOAP Header Syntax .. 43
11. SOAP 1.2 Binding with a SOAP Header 44
12. SOAP 1.2 Binding for orderWidgets with a SOAP Header 46
13. personnelInfo Field Table File .. 51
14. personnelInfo C++ header ... 51
15. Logical description of personneInfo FML buffer 52
16. personnelInfo Lookup Interface .. 52
17. Flattened Message for FML ... 53
18. personalInfo FML binding ... 55
19. Valid XML Binding Message .. 59
20. Invalid XML Binding Message .. 59
21. Invalid XML Document .. 59
22. XML Binding with rootNode set ... 60
23. XML Document generated using the rootNode attribute 60
24. Using xformat:body .. 60
25. Fixed String Message .. 67
26. Fixed String Mapping .. 68
27. Fixed Record Numeric Message ... 68
28. Mapping Numerical Data to a Fixed Binding 68
29. Fixed Date Message .. 69
30. Fixed Format Date Mapping .. 69
31. fixedValue Mapping .. 69
32. Enumeration Logical Mapping ... 70
33. Fixed Ice Cream Mapping ... 70
34. Using the discriminatorName Attribute 71
35. Mapping a Union to a Fixed Record Length Message 72
36. Using counterName .. 74
37. Mapping a Sequence to a Fixed Record Length Message 75
38. Fixed Record Length Message Binding 76
39. Ice Cream Enumeration ... 83
40. Tagged Data Ice Cream Mapping .. 83
41. Mapping a Sequence to a Tagged Data Format 84

9

42. Mapping a Union to a Tagged Data Format 86
43. Tagged Data Format Binding ... 87
44. RMI Endpoint ... 92
45. Service for Using RMI ... 93
46. Client Using RMI ... 94
47. Default TibrvMsg Binding ... 102
48. TibrvMsg Binding with Array Policies Set 111
49. TibrvMsg Contract Elements ... 114
50. Casting in a TibrvMsg Binding ... 116
51. TibrvMsg Binding with Binding-only Elements 119
52. TibrvMsg with a Header ... 119
53. Default TibrvMsg Example .. 120
54. TibrvMsg with added TibrvMsg Example 121
55. TibrvMsg Binding with an Added Binding-only Element 124
56. TibrvMsg for a String ... 125
57. TibrvMsg with a TibrvMsg with a String 125
58. TibrvMsg Binding with an Extra TibrvMsg Level 126
59. TibrvMsg with Custom TibrvMsg Wrapping 126
60. Binding of a Complex Type with an Extra TibrvMsg Level 127
61. Using Context Data in a TibrvMsg Binding 131
62. SOAP 1.1 Port Element ... 140
63. SOAP 1.2 Port Element ... 140
64. Artix HTTP Extension Namespaces 145
65. Generic HTTP Port ... 145
66. Setting the SendTimeout Attribute .. 148
67. Setting the ReceiveTimeout Attribute 149
68. Specifying Just a Usernamre ... 151
69. Specifying that the HTTP Connection is Closed 152
70. Rejecting Keep-Alive Requests ... 153
71. JMS Extension’s Namespace ... 161
72. Artix JMS Port with DynamicQueues 164
73. Artix JMS Port with Non-dynamic Queues 164
74. JMS Port with Alternate InitialContextFactory Specification 164
75. Running the Transformer with the JMS Migration Script 171
76. CORBA personalInfoLookup Port .. 176
77. Defining an FTP Endpoint ... 178
78. Client-Side Filename Factory Interface 182
79. Reply Lifecycle Interface .. 184
80. Configuring an FTP Client Endpoint 185
81. Server-Side Filename Factory Interface 186
82. Request Lifecycle Interface ... 188
83. Configuring an FTP Server Endpoint 189
84. FTP Endpoint with Custom Properties 191
85. Using Custom FTP Properties .. 192

10

86. Constructor for FilenameFactoryPropertyMetaData 193
87. Populating the Filename Properties Metadata 194
88. Sample WebSphere MQ Port ... 201
89. Granting the MQ Transport Authorization 202
90. ARTIX MQ Endpoint Using MQ Client Library 204
91. Setting Up WebSphere MQ Ports for Intercommunication 206
92. WebSphere MQ Client Talking to the Mainframe 208
93. TIB/RV Port Description ... 213
94. Tuxedo Port Description ... 217
95. personalInfo lookup port type .. 228
96. personalInfoLookup CORBA Binding 229
97. CORBA personalInfoLookup Port .. 235
98. Composite WSDL ... 243
99. Versioning Interface .. 244
100. WSDL Fragment for Transformer ... 247
101. Transformer Input Message ... 248
102. Transformer Output Message ... 249
103. XSLT Script Stylesheet Element .. 251
104. Simple XSLT Script ... 252
105. Sample XML Document ... 253
106. XSLT Script with Root Element Template 254
107. XSLT Script without Root Element Template 254
108. XSLT Template with HTML .. 255
109. XSLT Template Using apply-templates 255
110. Bill XML Document ... 256
111. XSLT Script for widgetBill ... 257
112. Processed Bill XML Document ... 258
113. Specifying Codeset Conversion ... 263

11

12

Preface
What is Covered in This Book ... 14
Who Should Read This Book .. 15
How to Use This Book .. 16
The Artix ESB Documentation Library ... 17

13

What is Covered in This Book
This book discusses the bindings and transports supported by the Artix ESB
C++ Runtime. It describes how the combination of WSDL elements and
configuration is used to set-up a binding or a transport. It also discusses the
advantages of using each of the bindings and transports. In the case of
transports, such as Websphere MQ, it also discusses how to access some of
the transports more advanced features.

14

Who Should Read This Book
This book is intended for people who are developing the contracts for endpoints
that are going to be deployed into the Artix ESB C++ Runtime. It assumes
a working knowledge of WSDL and XML. It also assumes a working knowledge
of the underlying middleware technology being discussed.

15

How to Use This Book
This book is broken into three parts:

• Part I on page 19 describes how to work with the message bindings.

• Part II on page 133 describes how to work with the transports.

• Part III on page 219 describes how to use other Artix ESB features that are
contract driven. This includes codeset conversion and XSLT.

16

The Artix ESB Documentation Library
For information on the organization of the Artix ESB library, the document
conventions used, and where to find additional resources, see Using the Artix
ESB Library
[http://www.iona.com/support/docs/artix/5.1/library_intro/index.htm].

17

http://www.iona.com/support/docs/artix/5.1/library_intro/index.htm
http://www.iona.com/support/docs/artix/5.1/library_intro/index.htm
http://www.iona.com/support/docs/artix/5.1/library_intro/index.htm

18

Part I. Bindings

Understanding Bindings in WSDL ... 23
Using SOAP 1.1 Messages .. 25

Adding a SOAP 1.1 Binding ... 26
Adding SOAP Headers to a SOAP 1.1 Binding .. 29
Sending Data Using SOAP with Attachments .. 34

Using SOAP 1.2 Messages .. 39
Adding a SOAP 1.2 Binding ... 40
Adding Headers to a SOAP 1.2 Message ... 43

Using Tuxedo’s FML Buffers .. 49
Using XML Documents ... 57
Using Fixed Length Records ... 63
Using Tagged Data .. 79
Using RMI ... 91
Using Tibco Rendezvous Messages .. 97

Defining a TibrvMsg Binding ... 98
Default Mappings for TibrvMsg .. 104
Defining Array Mapping Policies ... 109
Defining a Custom TibrvMsg Mapping ... 114
Adding Context Information to a TibrvMsg .. 130

21

22

Understanding Bindings in WSDL
Bindings map the logical messages used to define a service into a concrete payload format that can be transmitted
and received by an endpoint.

Overview
Bindings provide a bridge between the logical messages used by a service to
a concrete data format that an endpoint uses in the physical world. They
describe how the logical messages are mapped into a payload format that is
used on the wire by an endpoint. It is within the bindings that details such
as parameter order, concrete data types, and return values are specified. For
example, the parts of a message can be reordered in a binding to reflect the
order required by an RPC call. Depending on the binding type, you can also
identify which of the message parts, if any, represent the return type of a
method.

Port types and bindings
Port types and bindings are directly related. A port type is an abstract definition
of a set of interactions between two logical services. A binding is a concrete
definition of how the messages used to implement the logical services will
be instantiated in the physical world. Each binding is then associated with a
set of network details that finish the definition of one endpoint that exposes
the logical service defined by the port type.

To ensure that an endpoint defines only a single service, WSDL requires that
a binding can only represent a single port type. For example, if you had a
contract with two port types, you could not write a single binding that mapped
both of them into a concrete data format. You would need two bindings.

However, WSDL allows for a port type to be mapped to several bindings. For
example, if your contract had a single port type, you could map it into two or
more bindings. Each binding could alter how the parts of the message are
mapped or they could specify entirely different payload formats for the
message.

The WSDL elements
Bindings are defined in a contract using the WSDLbinding element. The

binding element has a single attribute, name, that specifies a unique name

for the binding. The value of this attribute is used to associate the binding
with an endpoint as discussed in “Understanding How Endpoints are Defined
WSDL” on page 195.

The actual mappings are defined in the children of the binding element.

These elements vary depending on the type of payload format you decide to

23

use. The different payload formats and the elements used to specify their
mappings are discussed in the following chapters.

Adding to a contract
Artix provides a number of tools for adding bindings to your contracts. These
include:

• Artix Designer has wizards that lead you through the process of adding
bindings to your contract.

• A number of the bindings can be generated using command line tools.

The tools will add the proper elements to your contract for you. However, it
is recommended that you have some knowledge of how the different types
of bindings work.

You can also add a binding to a contract using any text editor. When you
hand edit a contract, you are responsible for ensuring that the contract is
valid.

Supported bindings
Artix ESB C++ Runtime supports the following bindings:

• SOAP

• CORBA

• Fixed record length

• Pure XML

• Tagged (variable record length)

• TibrvMsg (a TIBCO Rendezvous format)

• Tuxedo's Field Manipulation Language (FML)

24

Understanding Bindings in WSDL

Using SOAP 1.1 Messages
Artix provides a tool to generate a SOAP 1.1 binding which does not use any SOAP headers. However, you can
add SOAP headers to your binding using any text or XML editor. In addition, you can define a SOAP binding that
uses MIME multipart attachments.

Adding a SOAP 1.1 Binding ... 26
Adding SOAP Headers to a SOAP 1.1 Binding .. 29
Sending Data Using SOAP with Attachments .. 34

25

Adding a SOAP 1.1 Binding
Overview

Artix provides two ways to add a SOAP 1.1 binding for a logical interface:

1. Use Artix Designer as discussed in Using Artix Designer on page 26.

2. Use the command line tool wsdltosoap as described in Using
wsdltosoap on page 26.

Using Artix Designer
Artix Designer provides three ways of adding a SOAP 1.1 binding to a contract:

1. Select Artix Designer → SOAP Enable.

2. Select Artix Designer → New Binding.

3. Select New Binding from the context menu available in diagram view.

For more information on using Artix Designer, see Artix Designer’s on-line
help.

Using wsdltosoap
To generate a SOAP 1.1 binding using wsdltosoap use the following command:

wsdltosoap {-i portType} {-n namespace} [-b binding] [-d dir] [-o file]

[-style {[document] | [rpc]}] [-use {[literal] | [encoded]}] [-quiet] [-verbose]
[-h] [-v] wsdl_file

The command has the following options:

Specifies the name of the port type being mapped to a SOAP
1.1 binding.

-i portType

Specifies the namespace to use for the SOAP 1.1 binding.-n namespace

Specifies the name for the generated SOAP binding. Defaults
to portTypeBinding.

-b binding

Specifies the directory into which the new WSDL file is
written.

-d dir

Specifies the name of the generated WSDL file. Defaults to
wsdl_file-soap.wsdl.

-o file

26

Using SOAP 1.1 Messages

Specifies the encoding style to use in the SOAP binding.
Defaults to document.

-style

Specifies how the data is encoded. Default is literal.-use

Specifies that the tool runs in quiet mode.-quiet

Specifies that the tool runs in verbose mode.-verbose

Specifies that the tool will display a usage message.-h

Displays the tool’s version.-v

wsdltosoap does not support the generation of document/encoded SOAP

bindings.

Example
If your system had an interface that took orders and offered a single operation
to process the orders it would be defined in an Artix contract similar to the
one shown in Example 1 on page 27.

Example 1. Ordering System Interface

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="widgetOrderForm.wsdl"

targetNamespace="http://widgetVendor.com/widgetOrderForm"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://widgetVendor.com/widgetOrderForm"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsd1="http://widgetVendor.com/types/widgetTypes"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/">

<message name="widgetOrder">
<part name="numOrdered" type="xsd:int"/>

</message>
<message name="widgetOrderBill">
<part name="price" type="xsd:float"/>

</message>
<message name="badSize">
<part name="numInventory" type="xsd:int"/>

</message>

<portType name="orderWidgets">
<operation name="placeWidgetOrder">
<input message="tns:widgetOrder" name="order"/>
<output message="tns:widgetOrderBill" name="bill"/>
<fault message="tns:badSize" name="sizeFault"/>

27

Adding a SOAP 1.1 Binding

</operation>
</portType>
...
</definitions>

The SOAP binding generated for orderWidgets is shown in

Example 2 on page 28.

Example 2. SOAP 1.1 Binding for orderWidgets

<binding name="orderWidgetsBinding" type="tns:orderWidgets">
<soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="placeWidgetOrder">
<soap:operation soapAction="" style="document"/>
<input name="order">
<soap:body use="literal"/>

</input>
<output name="bill">
<soap:body use="literal"/>

</output>
<fault name="sizeFault">
<soap:body use="literal"/>

</fault>
</operation>

</binding>

This binding specifies that messages are sent using the document/literal

message style.

28

Using SOAP 1.1 Messages

Adding SOAP Headers to a SOAP 1.1 Binding
Overview

SOAP headers are defined by adding soap:header elements to your default

SOAP 1.1 binding. The soap:header element is an optional child of the

input, output, and fault elements of the binding. The SOAP header

becomes part of the parent message. A SOAP header is defined by specifying
a message and a message part. Each SOAP header can only contain one
message part, but you can insert as many SOAP headers as needed.

Syntax
The syntax for defining a SOAP header is shown in Example 3 on page 29.
The message attribute of soap:header is the qualified name of the message

from which the part being inserted into the header is taken. The part attribute

is the name of the message part inserted into the SOAP header. Because
SOAP headers are always document style, the WSDL message part inserted
into the SOAP header must be defined using an element. Together the
message and the part attributes fully describe the data to insert into the

SOAP header.

Example 3. SOAP Header Syntax

<binding name="headwig">
<soap:binding style="document"

transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="weave">
<soap:operation soapAction="" style="document"/>
<input name="grain">
<soap:body .../>
<soap:header message="QName" part="partName"/>

</input>
...
</binding>

As well as the mandatory message and part attributes, soap:header also

supports the namespace, the use, and the encodingStyle attributes. These

optional attributes function the same for soap:header as they do for

soap:body.

Splitting messages between body
and header The message part inserted into the SOAP header can be any valid message

part from the contract. It can even be a part from the parent message which
is being used as the SOAP body. Because it is unlikely that you would want

29

Adding SOAP Headers to a SOAP 1.1 Binding

to send information twice in the same message, the SOAP binding provides
a means for specifying the message parts that are inserted into the SOAP
body.

The soap:body element has an optional attribute, parts, that takes a space

delimited list of part names. When parts is defined, only the message parts

listed are inserted into the SOAP body. You can then insert the remaining
parts into the SOAP header.

Note
When you define a SOAP header using parts of the parent message,
Artix ESB automatically fills in the SOAP headers for you.

Example
Example 4 on page 30 shows a modified version of the orderWidgets

service shown in Example 2.1 on page 27. This version has been modified
so that each order has an xsd:base64binary value placed in the SOAP header
of the request and response. The SOAP header is defined as being the keyVal

part from the widgetKey message. In this case you would be responsible for

adding the SOAP header in your application logic because it is not part of the
input or output message.

Example 4. SOAP 1.1 Binding with a SOAP Header

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="widgetOrderForm.wsdl"

targetNamespace="http://widgetVendor.com/widgetOrderForm"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://widgetVendor.com/widgetOrderForm"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsd1="http://widgetVendor.com/types/widgetTypes"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/">

<types>
<schema targetNamespace="http://widgetVendor.com/types/widgetTypes"

xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

<element name="keyElem" type="xsd:base64Binary"/>
</schema>

</types>

<message name="widgetOrder">

30

Using SOAP 1.1 Messages

<part name="numOrdered" type="xsd:int"/>
</message>
<message name="widgetOrderBill">
<part name="price" type="xsd:float"/>

</message>
<message name="badSize">
<part name="numInventory" type="xsd:int"/>

</message>
<message name="widgetKey">
<part name="keyVal" element="xsd1:keyElem"/>

</message>

<portType name="orderWidgets">
<operation name="placeWidgetOrder">
<input message="tns:widgetOrder" name="order"/>
<output message="tns:widgetOrderBill" name="bill"/>
<fault message="tns:badSize" name="sizeFault"/>

</operation>
</portType>

<binding name="orderWidgetsBinding" type="tns:orderWidgets">
<soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="placeWidgetOrder">
<soap:operation soapAction="" style="document"/>
<input name="order">
<soap:body use="literal"/>
<soap:header message="tns:widgetKey" part="keyVal"/>

</input>
<output name="bill">
<soap:body use="literal"/>
<soap:header message="tns:widgetKey" part="keyVal"/>

</output>
<fault name="sizeFault">
<soap:body use="literal"/>

</fault>
</operation>

</binding>
...
</definitions>

You could modify Example 4 on page 30 so that the header value was a part
of the input and output messages as shown in Example 5 on page 32. In
this case keyVal is a part of the input and output messages. In the soap:body

element's parts attribute specifies that keyVal is not to be inserted into the

body. However, it is inserted into the SOAP header.

31

Adding SOAP Headers to a SOAP 1.1 Binding

Example 5. SOAP 1.1 Binding for orderWidgets with a SOAP Header

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="widgetOrderForm.wsdl"

targetNamespace="http://widgetVendor.com/widgetOrderForm"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://widgetVendor.com/widgetOrderForm"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsd1="http://widgetVendor.com/types/widgetTypes"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/">

<types>
<schema targetNamespace="http://widgetVendor.com/types/widgetTypes"

xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

<element name="keyElem" type="xsd:base64Binary"/>
</schema>

</types>

<message name="widgetOrder">
<part name="numOrdered" type="xsd:int"/>
<part name="keyVal" element="xsd1:keyElem"/>

</message>
<message name="widgetOrderBill">
<part name="price" type="xsd:float"/>
<part name="keyVal" element="xsd1:keyElem"/>

</message>
<message name="badSize">
<part name="numInventory" type="xsd:int"/>

</message>

<portType name="orderWidgets">
<operation name="placeWidgetOrder">
<input message="tns:widgetOrder" name="order"/>
<output message="tns:widgetOrderBill" name="bill"/>
<fault message="tns:badSize" name="sizeFault"/>

</operation>
</portType>

<binding name="orderWidgetsBinding" type="tns:orderWidgets">
<soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="placeWidgetOrder">
<soap:operation soapAction="" style="document"/>
<input name="order">
<soap:body use="literal" parts="numOrdered"/>
<soap:header message="tns:widgetOrder" part="keyVal"/>

</input>
<output name="bill">

32

Using SOAP 1.1 Messages

<soap:body use="literal" parts="bill"/>
<soap:header message="tns:widgetOrderBill" part="keyVal"/>

</output>
<fault name="sizeFault">
<soap:body use="literal"/>

</fault>
</operation>

</binding>
...
</definitions>

33

Adding SOAP Headers to a SOAP 1.1 Binding

Sending Data Using SOAP with Attachments
Overview

SOAP 1.1 messages generally do not carry binary data. However, the W3C
SOAP 1.1 specification allows for using MIME multipart/related messages to
send binary data in SOAP 1.1 messages. This technique is called using SOAP
with attachments. SOAP attachments are defined in the W3C’s SOAP
Messages with Attachments Note (http://www.w3.org/TR/SOAP-attachments).

Namespace
The WSDL extensions used to define the MIME multipart/related messages
are defined in the namespace http://schemas.xmlsoap.org/wsdl/mime/.

In the discussion that follows, it is assumed that this namespace is prefixed
with mime. The entry in the WSDL definitions element to set this up is

shown in Example 6 on page 34.

Example 6. MIME Namespace Specification in a Contract

xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"

Changing the message binding
In a default SOAP binding, the first child element of the input, output, and

fault elements is a soap:body element describing the body of the SOAP

1.1 message representing the data. When using SOAP with attachments, the
soap:body element is replaced with a mime:multipartRelated element.

Note
WSDL does not support using mime:multipartRelated for fault

messages.

The mime:multipartRelated element tells Artix that the message body is

going to be a multipart message that potentially contains binary data. The
contents of the element define the parts of the message and their contents.
mime:multipartRelated elements in Artix contain one or more mime:part

elements that describe the individual parts of the message.

34

Using SOAP 1.1 Messages

http://www.w3.org/TR/SOAP-attachments

The first mime:part element must contain the soap:body element that would

normally appear in a default SOAP binding. The remaining mime:part

elements define the attachments that are being sent in the message.

Describing a MIME multipart
message MIME multipart messages are described using a mime:multipartRelated

element that contains a number of mime:part elements. To fully describe a

MIME multipart message in an Artix contract:

1. Inside the input or output message you want to send as a MIME

multipart message, add a mime:mulipartRelated element as the first

child element of the enclosing message.

2. Add a mime:part child element to the mime:multipartRelated

element and set its name attribute to a unique string.

3. Add a soap:body element as the child of the mime:part element and

set its attributes appropriately.

Tip
If the contract had a default SOAP binding, you can copy the
soap:body element from the corresponding message from the

default binding into the MIME multipart message.

4. Add another mime:part child element to the mime:multipartReleated

element and set its name attribute to a unique string.

5. Add a mime:content child element to the mime:part element to

describe the contents of this part of the message.

To fully describe the contents of a MIME message part the mime:content

element has the following attributes:

Table 1. Attributes Used to Describe the Contents of a MIME Message Part

DescriptionAttribute

Specifies the name of the WSDL message part, from the parent message definition, that is used as

the content of this part of the MIME multipart message being placed on the wire.

part

35

Sending Data Using SOAP with Attachments

DescriptionAttribute

The MIME type of the data in this message part. MIME types are defined as a type and a subtype using
the syntax type/subtype.

type

There are a number of predefined MIME types such as image/jpeg and text/plain. The MIME types

are maintained by the Internet Assigned Numbers Authority (IANA) and described in detail in Multipurpose
Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies
(ftp://ftp.isi.edu/in-notes/rfc2045.txt) and Multipurpose Internet Mail Extensions (MIME) Part Two:
Media Types (ftp://ftp.isi.edu/in-notes/rfc2046.txt).

6. For each additional MIME part, repeat steps Step 4 on page 35 and Step
5 on page 35.

Example
Example 7 on page 36 shows an Artix contract for a service that stores X-rays
in JPEG format. The image data, xRay, is stored as an xsd:base64binary and

is packed into the MIME multipart message’s second part, imageData. The

remaining two parts of the input message, patientName and patientNumber,

are sent in the first part of the MIME multipart image as part of the SOAP
body.

Example 7. Contract using SOAP with Attachments

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="XrayStorage"

targetNamespace="http://mediStor.org/x-rays"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:tns="http://mediStor.org/x-rays"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<message name="storRequest">
<part name="patientName" type="xsd:string"/>
<part name="patientNumber" type="xsd:int"/>
<part name="xRay" type="xsd:base64Binary"/>

</message>
<message name="storResponse">
<part name="success" type="xsd:boolean"/>

</message>

<portType name="xRayStorage">
<operation name="store">

36

Using SOAP 1.1 Messages

ftp://ftp.isi.edu/in-notes/rfc2045.txt
ftp://ftp.isi.edu/in-notes/rfc2046.txt

<input message="tns:storRequest" name="storRequest"/>
<output message="tns:storResponse" name="storResponse"/>

</operation>
</portType>

<binding name="xRayStorageBinding" type="tns:xRayStorage">
<soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="store">
<soap:operation soapAction="" style="document"/>
<input name="storRequest">
<mime:multipartRelated>
<mime:part name="bodyPart">
<soap:body use="literal"/>

</mime:part>
<mime:part name="imageData">
<mime:content part="xRay" type="image/jpeg"/>

</mime:part>
</mime:multipartRelated>

</input>
<output name="storResponse">
<soap:body use="literal"/>

</output>
</operation>

</binding>

<service name="xRayStorageService">
<port binding="tns:xRayStorageBinding" name="xRayStoragePort">
<soap:address location="http://localhost:9000"/>

</port>
</service>

</definitions>

37

Sending Data Using SOAP with Attachments

38

Using SOAP 1.2 Messages
Artix provides tools to generate a SOAP 1.2 binding which does not use any SOAP headers. However, you can
add SOAP headers to your binding using any text or XML editor.

Adding a SOAP 1.2 Binding ... 40
Adding Headers to a SOAP 1.2 Message ... 43

39

Adding a SOAP 1.2 Binding
Overview

Artix provides two ways to add a SOAP 1.2 binding for a logical interface:

• use Artix Designer as described in Using Artix Designer on page 40.

• The second is the command line tool wsdltosoap as described in Using
wsdltosoap on page 40.

Note
Artix 4.1 only supports literal SOAP 1.2 messages.

Using Artix Designer
Artix Designer provides three ways of adding a SOAP 1.2 binding to a contract:

1. Select Artix Designer → SOAP Enable.

2. Select Artix Designer → New Binding.

3. Select New Binding from the context menu available in diagram view.

For more information on using Artix Designer, see Artix Designer’s on-line
help.

Using wsdltosoap
To generate a SOAP 1.2 binding using wsdltosoap use the following command:

wsdltosoap {–soapversion 1.2} {-i portType} {-n namespace} [-b binding]

[-d dir] [-o file] [-style [[document] | [rpc]]] [-use {[literal] | [encoded]}]

[-quiet] [-verbose] [-h] [-v] wsdl_file

The command has the following options:

Specifies that the generated binding should use SOAP
1.2.

–soapversion 1.2

Specifies the name of the port type being mapped to
a SOAP binding.

-i portType

Specifies the namespace to use for the SOAP binding.-n namespace

Specifies the name for the generated SOAP binding.
Defaults to portTypeBinding.

-b binding

40

Using SOAP 1.2 Messages

Specifies the directory into which the new WSDL file
is written.

-d dir

Specifies the name of the generated WSDL file. Defaults
to wsdl_file-soap.wsdl.

-o file

Specifies the encoding style to use in the SOAP binding.
Defaults to document.

-style

Specifies how the data is encoded. Default is literal.-use

Specifies that the tool runs in quiet mode.-quiet

Specifies that the tool runs in verbose mode.-verbose

Specifies that the tool will display a usage message.-h

Displays the tool’s version.-v

Important
wsdltosoap does not support the generation of document/encoded

SOAP bindings.

Example
If your system had an interface that took orders and offered a single operation
to process the orders it would be defined in an Artix contract similar to the
one shown in Example 8 on page 41.

Example 8. Ordering System Interface

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="widgetOrderForm.wsdl"

targetNamespace="http://widgetVendor.com/widgetOrderForm"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsoap12="http://schemas.xmlsoap.org/wsdl/soap12/"
xmlns:tns="http://widgetVendor.com/widgetOrderForm"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsd1="http://widgetVendor.com/types/widgetTypes"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/">

<message name="widgetOrder">
<part name="numOrdered" type="xsd:int"/>

</message>
<message name="widgetOrderBill">
<part name="price" type="xsd:float"/>

</message>

41

Adding a SOAP 1.2 Binding

<message name="badSize">
<part name="numInventory" type="xsd:int"/>

</message>

<portType name="orderWidgets">
<operation name="placeWidgetOrder">
<input message="tns:widgetOrder" name="order"/>
<output message="tns:widgetOrderBill" name="bill"/>
<fault message="tns:badSize" name="sizeFault"/>

</operation>
</portType>
...
</definitions>

The SOAP binding generated for orderWidgets is shown in

Example 9 on page 42.

Example 9. SOAP 1.2 Binding for orderWidgets

<binding name="orderWidgetsBinding" type="tns:orderWidgets">
<wsoap12:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="placeWidgetOrder">
<wsoap12:operation soapAction="" style="document"/>
<input name="order">
<wsoap12:body use="literal"/>

</input>
<output name="bill">
<wsoap12:body use="literal"/>

</output>
<fault name="sizeFault">
<wsoap12:body use="literal"/>

</fault>
</operation>

</binding>

This binding specifies that messages are sent using the document/literal

message style.

42

Using SOAP 1.2 Messages

Adding Headers to a SOAP 1.2 Message
Overview

SOAP message headers are defined by adding soap12:header elements to

your SOAP 1.2 message. The soap12:header element is an optional child

of the input, output, and fault elements of the binding. The header

becomes part of the parent message. A header is defined by specifying a
message and a message part. Each SOAP header can only contain one
message part, but you can insert as many headers as needed.

Syntax
The syntax for defining a SOAP header is shown in Example 10 on page 43.

Example 10. SOAP Header Syntax

<binding name="headwig">
<soap12:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="weave">
<soap12:operation soapAction="" style="documment"/>
<input name="grain">
<soap12:body .../>
<soap12:header message="QName" part="partName"

use="literal|encoded"
encodingStyle="encodingURI"
namespace="namespaceURI" />

</input>
...
</binding>

The soap12:header element’s attributes are described in

Table 2 on page 43.

Table 2. soap12:header Attributes

DescriptionAttribute

A required attribute specifying the qualified name of the message from which the part being
inserted into the header is taken.

message

A required attribute specifying the name of the message part inserted into the SOAP header.part

Specifies whether the message parts are to be encoded using encoding rules. If set to encoded

the message parts are encoded using the encoding rules specified by the value of the

use

encodingStyle attribute. If set to literal, then the message parts are defined by the

schema types referenced.

43

Adding Headers to a SOAP 1.2 Message

DescriptionAttribute

Specifies the encoding rules used to construct the message.encodingStyle

Defines the namespace to be assigned to the header element serialized with use="encoded".namespace

Splitting messages between body
and header The message part inserted into the SOAP header can be any valid message

part from the contract. It can even be a part from the parent message which
is being used as the SOAP body. Because it is unlikely that you would want
to send information twice in the same message, the SOAP 1.2 binding provides
a means for specifying the message parts that are inserted into the SOAP
body.

The soap12:body element has an optional attribute, parts, that takes a

space delimited list of part names. When parts is defined, only the message

parts listed are inserted into the body of the SOAP 1.2 message. You can
then insert the remaining parts into the message's header.

Note
When you define a SOAP header using parts of the parent message,
Artix ESB automatically fills in the SOAP headers for you.

Example
Example 11 on page 44 shows a modified version of the orderWidgets

service shown in Example 3.1 on page 41. This version has been modified
so that each order has an xsd:base64binary value placed in the header of
the request and response. The header is defined as being the keyVal part

from the widgetKey message. In this case you would be responsible for

adding the application logic to create the header because it is not part of the
input or output message.

Example 11. SOAP 1.2 Binding with a SOAP Header

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="widgetOrderForm.wsdl"

targetNamespace="http://widgetVendor.com/widgetOrderForm"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"
xmlns:tns="http://widgetVendor.com/widgetOrderForm"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsd1="http://widgetVendor.com/types/widgetTypes"

44

Using SOAP 1.2 Messages

xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/">

<types>
<schema targetNamespace="http://widgetVendor.com/types/widgetTypes"

xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

<element name="keyElem" type="xsd:base64Binary"/>
</schema>

</types>

<message name="widgetOrder">
<part name="numOrdered" type="xsd:int"/>

</message>
<message name="widgetOrderBill">
<part name="price" type="xsd:float"/>

</message>
<message name="badSize">
<part name="numInventory" type="xsd:int"/>

</message>
<message name="widgetKey">
<part name="keyVal" element="xsd1:keyElem"/>

</message>

<portType name="orderWidgets">
<operation name="placeWidgetOrder">
<input message="tns:widgetOrder" name="order"/>
<output message="tns:widgetOrderBill" name="bill"/>
<fault message="tns:badSize" name="sizeFault"/>

</operation>
</portType>

<binding name="orderWidgetsBinding" type="tns:orderWidgets">
<soap12:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="placeWidgetOrder">
<soap12:operation soapAction="" style="document"/>
<input name="order">
<soap12:body use="literal"/>
<soap12:header message="tns:widgetKey" part="keyVal"/>

</input>
<output name="bill">
<soap12:body use="literal"/>
<soap12:header message="tns:widgetKey" part="keyVal"/>

</output>
<fault name="sizeFault">
<soap12:body use="literal"/>

</fault>
</operation>

</binding>

45

Adding Headers to a SOAP 1.2 Message

...
</definitions>

You could modify Example 11 on page 44 so that the header value was a
part of the input and output messages as shown in Example 12 on page 46.
In this case keyVal is a part of the input and output messages. In the

soap12:body elements the parts attribute specifies that keyVal is not to

be inserted into the body. However, it is inserted into the header.

Example 12. SOAP 1.2 Binding for orderWidgets with a SOAP Header

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="widgetOrderForm.wsdl"

targetNamespace="http://widgetVendor.com/widgetOrderForm"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"
xmlns:tns="http://widgetVendor.com/widgetOrderForm"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsd1="http://widgetVendor.com/types/widgetTypes"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/">

<types>
<schema targetNamespace="http://widgetVendor.com/types/widgetTypes"

xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

<element name="keyElem" type="xsd:base64Binary"/>
</schema>

</types>

<message name="widgetOrder">
<part name="numOrdered" type="xsd:int"/>
<part name="keyVal" element="xsd1:keyElem"/>

</message>
<message name="widgetOrderBill">
<part name="price" type="xsd:float"/>
<part name="keyVal" element="xsd1:keyElem"/>

</message>
<message name="badSize">
<part name="numInventory" type="xsd:int"/>

</message>

<portType name="orderWidgets">
<operation name="placeWidgetOrder">
<input message="tns:widgetOrder" name="order"/>
<output message="tns:widgetOrderBill" name="bill"/>
<fault message="tns:badSize" name="sizeFault"/>

</operation>
</portType>

46

Using SOAP 1.2 Messages

<binding name="orderWidgetsBinding" type="tns:orderWidgets">
<soap12:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="placeWidgetOrder">
<soap12:operation soapAction="" style="document"/>
<input name="order">
<soap12:body use="literal" parts="numOrdered"/>
<soap12:header message="tns:widgetOrder" part="keyVal"/>

</input>
<output name="bill">
<soap12:body use="literal" parts="bill"/>
<soap12:header message="tns:widgetOrderBill" part="keyVal"/>

</output>
<fault name="sizeFault">
<soap12:body use="literal"/>

</fault>
</operation>

</binding>
...
</definitions>

47

Adding Headers to a SOAP 1.2 Message

48

Using Tuxedo’s FML Buffers
Artix can send and receive messages packaged as FML buffers.

Overview
Tuxedo’s native data format is FML. The FML buffers used by Tuxedo
applications are described in one of two ways:

• A field table file that is loaded at runtime.

• A C header file that is compiled into the application.

A field table file is a detailed and user readable text file describing the contents
of a buffer. It clearly describes each field’s name, ID number, data type, and
a comment. Using the FML library calls, Tuxedo applications map the field
table description to usable fldids at runtime.

The C header file description of an FML buffer simply maps field names to
their fldid. The fldid is an integer value that represents both the type of

data stored in a field and a unique identifying number for that field.

Artix works with this data by mapping the native Tuxedo data descriptions
into a WSDL binding element. As part of developing an Artix solution to

integrate with legacy Tuxedo applications, you must add an FML binding to
the contract describing the integration.

FML/XML Schema support
An FML buffer can only contain the data types listed in Table 3 on page 49.

Table 3. FML Type Support

XML Schema TypeFML Type

xsd:shortshort

xsd:unsignedShortshort

xsd:intlong

xsd:unsignedIntlong

xsd:floatfloat

xsd:doubledouble

xsd:stringstring

xsd:base64Binarystring

49

XML Schema TypeFML Type

xsd:hexBinarystring

Important
Due to FML limitations, support for complex types is limited to
xsd:sequence and xsd:all.

Mapping from a field table to an
Artix contract Creating an Artix contract to represent an FML buffer is a two-step process:

1. Create the logical data representation of the FML buffer in the Artix
contract as described in Mapping to logical type descriptions on page 50.

2. Enter the FML binding information using Artix WSDL extensors as
described in Adding the FML binding on page 53.

Mapping to logical type
descriptions To create a logical data type to represent data in an FML buffer do the

following:

1. If the C header file for the FML buffer does not exist, generate it from
the field table using the Tuxedo mkfldhdr or mkfldhdr32 utility program.

2. For each field in the FML buffer, create an element with the following

attribute settings:

• name is set to a string that identifies the field. This value is used to by

the binding to correlate the logical type with the FML field.

Tip
The value of the name attribute does not need to match the

name of the physical FML field.

• type is set to the appropriate XML Schema type for the type specified

in the field table. See FML/XML Schema support on page 49.

3. If your Tuxedo application has data fields that are always used together,
you can group the corresponding elements into complex types.

50

Using Tuxedo’s FML Buffers

Important
In Tuxedo, a WSDL operation is implicitly bound to the Tuxedo

service used. So, when the Tuxedo extensor is configured for
the WSDL port there must be a one-to-one mapping between

the WSDL operation and the Tuxedo service. IONA

recommends that you group elements into complex types only
if they appear together in all exposed Tuxedo services.

Consider a Tuxedo application that returns personnel records on employees
that needs to be exposed through a new web interface. The Tuxedo application
uses the field table file shown in Example 13 on page 51.

Example 13. personnelInfo Field Table File

personnelInfo Field Table
name number type flags comment
empId 100 long -
name 101 string -
age 102 short -
dept 103 string -
addr 104 string -
city 105 string -
state 106 string -
zip 107 string -

The C++ header file generated by the Tuxedo mkfldhdr tool to represent the
personnelInfo FML buffer is shown in Example 14 on page 51. Even if

you are not planning to access the FML buffer using the compile-time method,
you will need to generate the header file when using Artix because this will
give you the fldid values for the fields in the buffer.

Example 14. personnelInfo C++ header

/* fname fldid */
/* ----- ----- */
#define empId ((FLDID)8293) /* number: 100 type: long */
#define name ((FLDID)41062) /* number: 101 type: string */
#define age ((FLDID)102) /* number: 102 type: short */
#define dept ((FLDID)41064) /* number: 103 type: string */
#define addr ((FLDID)41065) /* number: 104 type: string */
#define city ((FLDID)41066) /* number: 105 type: string */

51

#define state ((FLDID)41067) /* number: 106 type: string */
#define zip ((FLDID)41068) /* number: 107 type: string */

Before mapping the FML buffer into your contract, you need to look at the
operations exposed by the Tuxedo application. Suppose it exposes two
operations:

• infoByName() that returns the employee data based on a name search.

• infoByID() that returns the employee data based on the employee’s ID

number.

Because the employee data is always returned as a unit you can group it into
a complex type as shown in Example 15 on page 52.

Example 15. Logical description of personneInfo FML buffer

<types>
<schema targetNamespace="http://soapinterop.org/xsd"

xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

<complexType name="personnelInfo">
<sequence>
<element name="empId" type="xsd:int"/>
<element name="name" type="xsd:string"/>
<element name="age" type="xsd:short"/>
<element name="dept" type="xsd:string"/>
<element name="addr" type="xsd:string"/>
<element name="city" type="xsd:string"/>
<element name="state" type="xsd:string"/>
<element name="zip" type="xsd:string"/>

</sequence>
</complexType>
...

</schema>
</types>

The interface for your Tuxedo application would be mapped to a portType

similar to Example 16 on page 52.

Example 16. personnelInfo Lookup Interface

<message name="idLookupRequest">
<part name="empId" type="xsd:int"/>

</message>
<message name="nameLookupRequest">

52

Using Tuxedo’s FML Buffers

<part name="empId" type="xsd:string"/>
</message>
<message name="lookupResponse">
<part name="return" element="xsd1:personnelInfo"/>

</message>

<portType name="personelInfoLookup">
<operation name="infoByName">
<input name="name" message="nameLookupRequest"/>
<output name="return" message="lookupResponse"/>

</operation>
<operation name="infoByID">
<input name="id" message="idLookupRequest"/>
<output name="return" message="lookupResponse"/>

</operation>
</portType>

Flattened XML and FML
While XML Schema allows you to create structured data that is organized in
multiple layers, FML data is flat. All of the elements in a field table exist on
the same level. To handle this difference Artix flattens out the XML data when
it is passed through the FML binding.

As a result, complex types defined in XML Schema are collapsed into their
composite elements. For instance, the message lookupResponse, which

uses the complex type defined in Example 15 on page 52, would be
equivalent to the message definition in Example 17 on page 53 when
processed by the FML binding.

Example 17. Flattened Message for FML

<message name="lookupResponse">
<part name="empId" type="xsd:int"/>
<part name="name" type="xsd:string"/>
<part name="age" type="xsd:short"/>
<part name="dept" type="xsd:string"/>
<part name="addr" type="xsd:string"/>
<part name="city" type="xsd:string"/>
<part name="state" type="xsd:string"/>
<part name="zip" type="xsd:string"/>

</message>

Adding the FML binding
To add the binding that maps the logical description of the FML buffer to a
physical FML binding do the following:

53

1. Add the following line in the definition element at the beginning of

the contract.

xmlns:tuxedo="http://schemas.iona.com/transports/tuxedo"

2. Create a new binding element in your contract to define the FML buffer’s

binding.

3. Add a tuxedo:binding element to identify that this binding defines an

FML buffer.

4. Add a tuxedo:fieldTable element to the binding to describe how the

element names defined in the logical portion of the contract map to the
fldid values for the corresponding fields in the FML buffer.

The tuxedo:fieldTable has a mandatory type attribute. type can

be either FML for specifying that the application uses FML16 buffers or

FML32 for specifying that the application uses FML32 buffers.

5. For each element in the logical data type, add a tuxedo:field element

to the tuxedo:fieldTable element.

tuxedo:field defines how the logical data elements map to the physical

FML buffer. It has two mandatory attributes:

Table 4. Attributes of the FML Binding's Field Element

DescriptionAttribute

Specifies the name of the element or message part that
describes the field.

name

Specifies the fldid value for the field in the FML bufferid

6. For each operation in the interface, create a standard WSDL operation

element to define the operation being bound.

7. For each operation, add a standard WSDL input and output elements

to the operation element to define the messages used by the operation.

54

Using Tuxedo’s FML Buffers

8. For each operation, add a tuxedo:operation element to the operation

element.

For example, the binding for the personalInfo FML buffer, defined in

Example 13 on page 51, will be similar to the binding shown in
Example 18 on page 55.

Example 18. personalInfo FML binding

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="personalInfoService" targetNamespace="ht
tp://info.org/"

xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:tns="http://soapinterop.org/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:tuxedo="http://schemas.iona.com/transports/tuxedo">

...
<binding name="personelInfoFMLBinding" type="tns:personnelIn

foLookup">
<tuxedo:binding/>
<tuxedo:fieldTable type="FML">
<tuxedo:field name="empId" id="8293"/>
<tuxedo:field name="name" id="41062"/>
<tuxedo:field name="age" id="102"/>
<tuxedo:field name="dept" id="41064"/>
<tuxedo:field name="addr" id="41065"/>
<tuxedo:field name="city" id="41066"/>
<tuxedo:field name="state" id="41067"/>
<tuxedo:field name="zip" id="41068"/>

</fml:idNameMapping>
<operation name="infoByName">
<tuxedo:operation/>
<input name="name"/>
<output name="return"/>

</operation>
<operation name="infoByName">
<tuxedo:operation/>
<input name="name"/>
<output name="return"/>

</operation>
</binding>

...
</definitions>

55

56

Using XML Documents
The pure XML payload format provides an alternative to the SOAP binding by allowing services to exchange data
using straight XML documents without the overhead of a SOAP envelope.

Artix Designer provides a wizard for generating an XML binding from a logical interface. Alternatively, you can
create an XML binding using any text or XML editor.

Using Artix Designer
You can add an XML binding to a contract by either selecting Artix Designer
→ New Binding or selecting New Binding from the context menu available
in Artix Designer’s diagram view. For more information see the on-line help
provided with Artix Designer.

Hand editing
To map an interface to a pure XML payload format do the following:

1. Add the namespace declaration to include the IONA extensions defining
the XML binding. See XML binding namespace on page 58.

2. Add a standard WSDL binding element to your contract to hold the

XML binding, give the binding a unique name, and specify the name of

the WSDL portType element that represents the interface being bound.

3. Add an xformat:binding child element to the binding> element to

identify that the messages are being handled as pure XML documents
without SOAP envelopes.

4. Optionally, set the xformat:binding element's rootNode attribute to

a valid QName. For more information on the effect of the rootNode

attribute see XML messages on the wire on page 58.

5. For each operation defined in the bound interface, add a standard WSDL
operation element to hold the binding information for the operation's

messages.

6. For each operation added to the binding, add the input, output, and

fault children elements to represent the messages used by the operation.

These elements correspond to the messages defined in the interface
definition of the logical operation.

57

7. Optionally add an xformat:body element with a valid rootNode attribute

to the added input, output, and fault elements to override the value

of rootNode set at the binding level.

Note
If any of your messages have no parts, for example the output
message for an operation that returns void, you must set the
rootNode attribute for the message to ensure that the message

written on the wire is a valid, but empty, XML document.

XML binding namespace
The IONA extensions used to describe XML format bindings are defined in
the namespace http://celtix.objectweb.org/bindings/xmlformat.

Artix ESB tools use the prefix xformat to represent the XML binding extensions.
Add the following line to your contracts:

xmlns:xformat="http://celtix.objectweb.org/bindings/xmlformat"

XML messages on the wire
When you specify that an interface’s messages are to be passed as XML
documents, without a SOAP envelope, you must take care to ensure that your
messages form valid XML documents when they are written on the wire. You
also need to ensure that non-Artix participants that receive the XML documents
understand the messages generated by Artix ESB.

A simple way to solve both problems is to use the optional rootNode attribute

on either the global xformat:binding element or on the individual message’s

xformat:body elements. The rootNode attribute specifies the QName for

the element that serves as the root node for the XML document generated by
Artix ESB. When the rootNode attribute is not set, Artix ESB uses the root

element of the message part as the root element when using doc style
messages, or an element using the message part name as the root element
when using rpc style messages.

For example, if the rootNode attribute is not set the message defined in

Example 19 on page 59 would generate an XML document with the root
element lineNumber.

58

Using XML Documents

Example 19. Valid XML Binding Message

<type ...>
...
<element name="operatorID" type="xsd:int"/>
...

</types><message name="operator"><part name="lineNumber" element="ns1:operatorID"/>
</message>

For messages with one part, Artix ESB will always generate a valid XML
document even if the rootNode attribute is not set. However, the message

in Example 20 on page 59 would generate an invalid XML document.

Example 20. Invalid XML Binding Message

<types>
...
<element name="pairName" type="xsd:string"/>
<element name="entryNum" type="xsd:int"/>
...

</types>

<message name="matildas">
<part name="dancing" element="ns1:pairName"/>
<part name="number" element="ns1:entryNum"/>

</message>

Without the rootNode attribute specified in the XML binding, Artix will

generate an XML document similar to Example 21 on page 59 for the message
defined in Example 20 on page 59. The Artix-generated XML document is
invalid because it has two root elements: pairName and entryNum.

Example 21. Invalid XML Document

<pairName>
Fred&Linda

</pairName>
<entryNum>
123

</entryNum>

If you set the rootNode attribute, as shown in Example 22 on page 60 Artix

ESB will wrap the elements in the specified root element. In this example,
the rootNode attribute is defined for the entire binding and specifies that the

root element will be named entrants.

59

Example 22. XML Binding with rootNode set

<portType name="danceParty">
<operation name="register">
<input message="tns:matildas" name="contestant"/>

</operation>
</portType>

<binding name="matildaXMLBinding" type="tns:dancingMatildas">

<xmlformat:binding rootNode="entrants"/>
<operation name="register">
<input name="contestant"/>
<output name="entered"/>

</binding>

An XML document generated from the input message would be similar to
Example 23 on page 60. Notice that the XML document now only has one
root element.

Example 23. XML Document generated using the rootNode attribute

<entrants>
<pairName>
Fred&Linda

<entryNum>
123

</entryNum>
</entrants>

Overriding the binding's rootNode
attribute setting You can also set the rootNode attribute for each individual message, or

override the global setting for a particular message, by using the
xformat:body element inside of the message binding. For example, if you

wanted the output message defined in Example 22 on page 60 to have a
different root element from the input message, you could override the binding's
root element as shown in Example 24 on page 60.

Example 24. Using xformat:body

<binding name="matildaXMLBinding" type="tns:dancingMatildas">

<xmlformat:binding rootNode="entrants"/>
<operation name="register">
<input name="contestant"/>
<output name="entered">
<xformat:body rootNode="entryStatus"/>

60

Using XML Documents

</output>
</operation>

</binding>

61

62

Using Fixed Length Records
To make interoperating with mainframes and older systems easy, Artix ESB can send and receive messages
formatted as fixed length records.

Overview
The Artix ESB fixed binding is used to represent fixed record length data.
Common uses for this type of payload format are communicating with
back-end services on mainframes and applications written in COBOL. Artix
ESB provides several means for creating a contract containing a fixed binding:

• If you are integrating with an application written in COBOL and have the
COBOL copybook defining the data to be used, you can import the copybook
to create a contract.

• If you have a description of the fixed data in some form other than a COBOL
copybook, you can create a contract by describing the data.

• If you have a logical interface you want to map to a fixed binding you can
use Artix Designer to create a fixed binding.

• You can enter the binding information using any text editor or XML editor.

Using Artix Designer
Artix Designer provides a number of tools for creating a contract with a fixed
binding:

1. You can create a new contract from a COBOL copybook by selecting New
→ File → WSDL from Dataset and importing copybook.

2. You can create a new contract from a description of the fixed data by
selecting New → File → WSDL from Dataset.

3. You can add a fixed binding to a contract by selecting Artix Designer →
New Binding.

4. You can add a fixed binding using the context menu available in Artix
Designer’s diagram view.

For more information see the on-line help provided with Artix Designer.

Hand editing
To map a logical interface to a fixed binding you do the following:

63

1. Add the proper namespace reference to the definition element of your

contract. See Fixed binding namespace on page 64.

2. Add a WSDL binding element to your contract to hold the fixed binding,

give the binding a unique name, and specify the port type that represents

the interface being bound.

3. Add a fixed:binding element as a child of the new binding element

to identify this as a fixed binding and set the element’s attributes to
properly configure the binding. See fixed:binding on page 64.

4. For each operation defined in the bound interface, add a WSDL
operation element to hold the binding information for the operation’s

messages.

5. For each operation added to the binding, add a fixed:operation

child element to the operation element. See fixed:operation on page 65.

6. For each operation added to the binding, add the input, output, and

fault children elements to represent the messages used by the operation.

These elements correspond to the messages defined in the interface
definition of the logical operation.

7. For each input, output, and fault element in the binding, add a

fixed:body child element to define how the message parts are mapped

into the concrete fixed record length payload. See fixed:body on page 65.

Fixed binding namespace
The IONA extensions used to describe fixed record length bindings are defined
in the namespace http://schemas.iona.com/bindings/fixed. Artix

tools use the prefix fixed to represent the fixed record length extensions. Add
the following line to your contract:

xmlns:fixed="http://schemas.iona.com/bindings/fixed

fixed:binding
fixed:binding specifies that the binding is for fixed record length data. Its

attributes are described in Table 5 on page 65.

64

Using Fixed Length Records

Table 5. Attributes for fixed:binding

DescriptionAttribute

Specifies the default justification of the data contained
in the messages. Valid values are left and right.

Default is left.

justification

Specifies the codeset used to encode the text data. Valid
values are any valid ISO locale or Internet Internet

encoding

Assigned Numbers Authority (IANA) codeset name.
Default is UTF-8.

Specifies the hex value of the character used to pad the
record.

padHexCode

The settings for the attributes on these elements become the default settings
for all the messages being mapped to the current binding. All of the values
can be overridden on a message-by-message basis.

fixed:operation
fixed:operation is a child element of the WSDL operation element and

specifies that the operation’s messages are being mapped to fixed record
length data.

fixed:operation has one attribute, discriminator, that assigns a unique

identifier to the operation. If your service only defines a single operation, you
do not need to provide a discriminator. However, if your service has more
than one service, you must define a unique discriminator for each operation
in the service. Not doing so will result in unpredictable behavior when the
service is deployed.

For each message used in the operation, you will need to include a
fixed:field on page 67 element whose name attribute is equal to the value of

discriminator and whose bindingOnly attribute is set to true. This field

will hold the the value used by the binding to discriminate between the
operations. For more information see fixed:field on page 67.

fixed:body
fixed:body is a child element of the input, output, and fault elements

representing the messages being mapped to fixed record length data. It
specifies that the message body is mapped to fixed record length data on the
wire and describes the exact mapping for the message’s parts.

65

To fully describe how a message is mapped into the fixed message do the
following:

1. If the default justification, padding, or encoding settings for the attribute
are not correct for this particular message, override them by setting the
following optional attributes for fixed:body.

Table 6. Attributes for fixed:body

DescriptionAttribute

Specifies how the data in the messages are justified.
Valid values are left and right.

justification

Specifies the codeset used to encode text data. Valid
values are any valid ISO locale or IANA codeset
name.

encoding

Specifies the hex value of the character used to pad
the record.

padHexCode

2. For each part in the message the fixed:body element is binding, add

the appropriate child element to define the part's concrete format on the
wire.

The following child elements are used in defining how logical data is
mapped to a concrete fixed format message:

• fixed:field maps message parts defined using a simple type. See

XML Schema Simple Types in the Writing Artix ESB Contracts.

• fixed:sequence maps message parts defined using a sequence

complex type. Complex types defined using all are not supported by

the fixed format binding. See Defining Data Structures in the Writing
Artix ESB Contracts.

• fixed:choice maps message parts defined using a choice complex

type. See Defining Data Structures in the Writing Artix ESB Contracts.

3. If you need to add any fields that are specific to the binding and that will
not be passed to the applications, define them using a fixed:field

element with its bindingOnly attribute set to true.

66

Using Fixed Length Records

http://www.iona.com/support/docs/artix/5.0/contract/contract.pdf
http://www.iona.com/support/docs/artix/5.0/contract/contract.pdf
http://www.iona.com/support/docs/artix/5.0/contract/contract.pdf

When bindingOnly is set to true, the field described by the

fixed:field element is not propagated beyond the binding. For input

messages, this means that the field is read in and then discarded. For
output messages, you must also use the fixedValue attribute.

The order in which the message parts are listed in the fixed:body element

represent the order in which they are placed on the wire. It does not need to
correspond to the order in which they are specified in the message element

defining the logical message.

fixed:field
fixed:field is used to map simple data types to a fixed length record. To

define how the logical data is mapped to a fixed field do the following:

1. Create a fixed:field child element to the fixed:body element

representing the message.

2. Set the fixed:field element's name attribute to the name of the

message part defined in the logical message description that this element
is mapping.

3. If the data being mapped is of type xsd:string, a simple type that has
xsd:string as its base type, or an enumerated type set, the size attribute

of the fixed:field element.

Note
If the message part is going to hold a date you can opt to use
the format attribute described in step Step 4 on page 68

instead of the size attribute.

The size attribute specifies the length of the string record in the concrete

fixed message. For example, the logical message part, raverID, described

in Example 25 on page 67 would be mapped to a fixed:field similar

to Example 26 on page 68.

Example 25. Fixed String Message

<message name="fixedStringMessage">
<part name="raverID" type="xsd:string"/>
</message>

67

In order to complete the mapping, you must know the length of the record
field and supply it. In this case, the field, raverID, can contain no more

than twenty characters.

Example 26. Fixed String Mapping

<fixed:field name="raverID" size="20"/>

4. If the data being mapped is of a numerical type, like xsd:int, or a simple
type that has a numerical type as its base type, set the fixed:field

element's format attribute.

The format attribute specifies how non-string data is formatted. For

example, if a field contains a 2-digit numeric value with one decimal
place, it would be described in the logical part of the contract as an
xsd:float, as shown in Example 27 on page 68.

Example 27. Fixed Record Numeric Message

<message name="fixedNumberMessage">
<part name="rageLevel" type="xsd:float"/>

</message>

From the logical description of the message, Artix has no way of
determining that the value of rageLevel is a 2-digit number with one

decimal place because the fixed record length binding treats all data as
characters. When mapping rageLevel in the fixed binding the value of

the format attribute would be ##.#, as shown in

Example 28 on page 68. This provides Artix with the meta-data needed
to properly handle the data.

Example 28. Mapping Numerical Data to a Fixed Binding

<fixed:field name="rageLevel" format="##.#"/>

Dates are specified in a similar fashion. For example, the value of the
format attribute for the date 12/02/72 is MM/DD/YY. When using the

fixed binding it is recommended that dates are described in the logical
part of the contract using xsd:string. For example, a message containing
a date would be described in the logical part of the contract as shown
in Example 29 on page 69.

68

Using Fixed Length Records

Example 29. Fixed Date Message

<message name="fixedDateMessage">
<part name="goDate" type="xsd:string"/>

</message>

If goDate is entered using the standard short date format for US English

locales, mm/dd/yyyy, you would map it to a fixed record field as shown

in Example 30 on page 69.

Example 30. Fixed Format Date Mapping

<fixed:field name="goDate" format="mm/dd/yyyy"/>

5. If the justification setting is not correct for this particular field, override
it by setting the justification attribute. Valid values are left and

right.

6. If you want the message part to have a fixed value no matter what data
is set in the message part by the application, set the fixed:field

element’s fixedValue attribute instead of the size or the format

attribute.

The fixedValue attribute specifies a static value to be passed on the

wire. When used without bindingOnly="true", the value specified by

the fixedValue attribute replaces any data that is stored in the message

part passed to the fixed record binding. For example, if goDate, shown

in Example 29 on page 69, were mapped to the fixed field shown in
Example 31 on page 69, the actual message returned from the binding
would always have the date 11/11/2112.

Example 31. fixedValue Mapping

<fixed:field name="goDate" fixedValue="11/11/2112"/>

7. If the data being mapped is of an enumerated type, see “Defining
Enumerated Types” on page 43, add a fixed:enumeration child

element to the fixed:field element for each possible value of the

enumerated type.

69

fixed:enumeration takes two required attributes: value and

fixedValue. The value attribute corresponds to the enumeration value

as specified in the logical description of the enumerated type. The
fixedValue attribute specifies the concrete value that will be used to

represent the logical value on the wire.

For example, if you had an enumerated type with the values
FruityTooty, Rainbow, BerryBomb, and OrangeTango the logical

description of the type would be similar to Example 32 on page 70.

Example 32. Enumeration Logical Mapping

<xs:simpleType name="flavorType">
<xs:restriction base="xs:string">
<xs:enumeration value="FruityTooty"/>
<xs:enumeration value="Rainbow"/>
<xs:enumeration value="BerryBomb"/>
<xs:enumeration value="OrangeTango"/>

</xs:restriction>
</xs:simpleType>

When you map the enumerated type, you need to know the concrete
representation for each of the enumerated values. The concrete
representations can be identical to the logical or some other value. The
enumerated type in Example 32 on page 70 could be mapped to the
fixed field shown in Example 33 on page 70. Using this mapping Artix
will write OT to the wire for this field if the enumerations value is set to

OrangeTango.

Example 33. Fixed Ice Cream Mapping

<fixed:field name="flavor" size="2">
<fixed:enumeration value="FruityTooty"

fixedValue="FT"/>
<fixed:enumeration value="Rainbow" fixedValue="RB"/>
<fixed:enumeration value="BerryBomb"

fixedValue="BB"/>
<fixed:enumeration value="OrangeTango"

fixedValue="OT"/>
</fixed:field>

Note that the parent fixed:field element uses the size attribute to

specify that the concrete representation is two characters long. When

70

Using Fixed Length Records

mapping enumerations, the size attribute will always be used to

represent the size of the concrete representation.

fixed:choice
fixed:choice is used to map choice complex types into fixed record length

messages. To map a choice complex type to a fixed:choice do the following:

1. Add a fixed:choice child element to the fixed:body element.

2. Set the fixed:choice element’s name attribute to the name of the

logical message part being mapped.

3. Set the fixed:choice element's optional discriminatorName attribute

to the name of the field used as the discriminator for the union.

The value for discriminatorName corresponds to the name of a binding

only fixed:field element that describes the type used for the union's

discriminator as shown in Example 34 on page 71. The only restriction
in describing the discriminator is that it must be able to handle the values
used to determine the case of the union. Therefore the values used in
the union mapped in Example 34 on page 71 must be two-digit integers.

Example 34. Using the discriminatorName Attribute

<fixed:field name="disc" format="##"
bindingOnly="true"/>

<fixed:choice name="unionStation"
discriminatorName="disc">

...
</fixed:choice>

4. For each element in the logical definition of the message part, add a
fixed:case child element to the fixed:choice element.

fixed:case
fixed:case elements describe the complete mapping of a choice complex

type element to a fixed record length message. To map a choice complex type
element to a fixed:case do the following:

71

1. Set the fixed:case element’s name attribute to the name of the logical

definition's element.

2. Set the fixed:case element's fixedValue attribute to the value of the

discriminator that selects this element. The value of the fixedValue

attribute must correspond to the format specified by the
discriminatorName attribute of the parent fixed:choice element.

3. Add a child element to define how the element’s data is mapped into a
fixed record.

The child elements used to map the part’s type to the fixed message are
the same as the possible child elements of a fixed:body element. As

with a fixed:body element, a fixed:sequence is made up of

fixed:field elements to describe simple types, fixed:choice

elements to describe choice complex types, and fixed:sequence

elements to describe sequence complex types.

Example 35 on page 72 shows an Artix contract fragment mapping a choice
complex type to a fixed record length message.

Example 35. Mapping a Union to a Fixed Record Length Message

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="fixedMappingsample" targetNamespace="http://www.iona.com/FixedService"

xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:fixed="http://schemas.iona.com/bindings/fixed"
xmlns:tns="http://www.iona.com/FixedService"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<types>
<schema targetNamespace="http://www.iona.com/FixedService"

xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

<xsd:complexType name="unionStationType">
<xsd:choice>
<xsd:element name="train" type="xsd:string"/>
<xsd:element name="bus" type="xsd:int"/>
<xsd:element name="cab" type="xsd:int"/>
<xsd:element name="subway" type="xsd:string"/>

</xsd:choice>
</xsd:complexType>

...
</types>

72

Using Fixed Length Records

<message name="fixedSequence">
<part name="stationPart" type="tns:unionStationType"/>

</message>

<portType name="fixedSequencePortType">
...
</portType>

<binding name="fixedSequenceBinding"
type="tns:fixedSequencePortType">

<fixed:binding/>
...

<fixed:field name="disc" format="##" bindingOnly="true"/>

<fixed:choice name="stationPart"
descriminatorName="disc">

<fixed:case name="train" fixedValue="01">
<fixed:field name="name" size="20"/>

</fixed:case>
<fixed:case name="bus" fixedValue="02">
<fixed:field name="number" format="###"/>

</fixed:case>
<fixed:case name="cab" fixedValue="03">
<fixed:field name="number" format="###"/>

</fixed:case>
<fixed:case name="subway" fixedValue="04">
<fixed:field name="name" format="10"/>

</fixed:case>
</fixed:choice>

...
</binding>
...
</definition>

fixed:sequence
fixed:sequence maps sequence complex types to a fixed record length

message. To map a sequence complex type to a fixed:sequence do the

following:

1. Add a fixed:sequence child element to the fixed:body element.

2. Set the fixed:sequence element's name attribute to the name of the

logical message part being mapped.

73

3. For each element in the logical definition of the message part, add a
child element to define the mapping for the part’s type to the physical
fixed message.

The child elements used to map the part's type to the fixed message are
the same as the possible child elements of a fixed:body element. As

with a fixed:body element, a fixed:sequence is made up of

fixed:field elements to describe simple types, fixed:choice

elements to describe choice complex types, and fixed:sequence

elements to describe sequence complex types.

4. If any elements of the logical data definition have occurrence constraints,
see Defining Data Structures in the Writing Artix ESB Contracts on
page 34, map the element into a fixed:sequence element with its

occurs and counterName attributes set.

The occurs attribute specifies the number of times this sequence occurs

in the message buffer. counterName specifies the name of the field used

for specifying the number of sequence elements that are actually being
sent in the message. The value of counterName corresponds to a

binding-only fixed:field with at least enough digits to count to the

value specified in occurs as shown in Example 36 on page 74. The

value passed to the counter field can be any number up to the value
specified by occurs and allows operations to use less than the specified

number of sequence elements. Artix ESB will pad out the sequence to
the number of elements specified by occurs when the data is transmitted

to the receiver so that the receiver will get the data in the promised fixed
format.

Example 36. Using counterName

<fixed:field name="count" format="##" bindingOnly="true"/>
<fixed:sequence name="items" counterName="count" occurs="10">
...
</fixed:sequence>

For example, a structure containing a name, a date, and an ID number would
contain three fixed:field elements to fully describe the mapping of the

74

Using Fixed Length Records

http://www.iona.com/support/docs/artix/5.0/contract/contract.pdf

data to the fixed record message. Example 37 on page 75 shows an Artix
contract fragment for such a mapping.

Example 37. Mapping a Sequence to a Fixed Record Length Message

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="fixedMappingsample"

targetNamespace="http://www.iona.com/FixedService"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:fixed="http://schemas.iona.com/bindings/fixed"
xmlns:tns="http://www.iona.com/FixedService"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<types>
<schema targetNamespace="http://www.iona.com/FixedService"

xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

<xsd:complexType name="person">
<xsd:sequence>
<xsd:element name="name" type="xsd:string"/>
<xsd:element name="date" type="xsd:string"/>
<xsd:element name="ID" type="xsd:int"/>

</xsd:complexType>
...
</types>

<message name="fixedSequence">
<part name="personPart" type="tns:person"/>

</message>

<portType name="fixedSequencePortType">
...
</portType>

<binding name="fixedSequenceBinding"
type="tns:fixedSequencePortType">

<fixed:binding/>
...

<fixed:sequence name="personPart">
<fixed:field name="name" size="20"/>
<fixed:field name="date" format="MM/DD/YY"/>
<fixed:field name="ID" format="#####"/>

</fixed:sequence>
...
</binding>

...

75

</definition>

Example
Example 38 on page 76 shows an example of a contract containing a fixed
record length message binding.

Example 38. Fixed Record Length Message Binding

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="widgetOrderForm.wsdl"
targetNamespace="http://widgetVendor.com/widgetOrderForm"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:tns="http://widgetVendor.com/widgetOrderForm"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:fixed="http://schemas.iona.com/binings/fixed"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsd1="http://widgetVendor.com/types/widgetTypes">

<types>
<schema targetNamespace="http://widgetVendor.com/types/widgetTypes"
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

<xsd:simpleType name="widgetSize">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="big"/>
<xsd:enumeration value="large"/>
<xsd:enumeration value="mungo"/>
<xsd:enumeration value="gargantuan"/>

</xsd:restriction>
</xsd:simpleType>

<xsd:complexType name="Address">
<xsd:sequence>
<xsd:element name="name" type="xsd:string"/>
<xsd:element name="street1" type="xsd:string"/>
<xsd:element name="street2" type="xsd:string"/>
<xsd:element name="city" type="xsd:string"/>
<xsd:element name="state" type="xsd:string"/>
<xsd:element name="zipCode" type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="widgetOrderInfo">
<xsd:sequence>
<xsd:element name="amount" type="xsd:int"/>
<xsd:element name="order_date" type="xsd:string"/>
<xsd:element name="type" type="xsd1:widgetSize"/>

76

Using Fixed Length Records

<xsd:element name="shippingAddress" type="xsd1:Address"/>
</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="widgetOrderBillInfo">
<xsd:sequence>
<xsd:element name="amount" type="xsd:int"/>
<xsd:element name="order_date" type="xsd:string"/>
<xsd:element name="type" type="xsd1:widgetSize"/>
<xsd:element name="amtDue" type="xsd:float"/>
<xsd:element name="orderNumber" type="xsd:string"/>
<xsd:element name="shippingAddress" type="xsd1:Address"/>

</xsd:sequence>
</xsd:complexType>

</schema>
</types>

<message name="widgetOrder">
<part name="widgetOrderForm" type="xsd1:widgetOrderInfo"/>

</message>

<message name="widgetOrderBill">
<part name="widgetOrderConformation" type="xsd1:widgetOrderBillInfo"/>

</message>

<portType name="orderWidgets">
<operation name="placeWidgetOrder">
<input message="tns:widgetOrder" name="order"/>
<output message="tns:widgetOrderBill" name="bill"/>

</operation>
</portType>

<binding name="orderWidgetsBinding" type="tns:orderWidgets">
<fixed:binding/>
<operation name="placeWidgetOrder">
<fixed:operation discriminator="widgetDisc"/>
<input name="widgetOrder">
<fixed:body>
<fixed:sequence name="widgetOrderForm">
<fixed:field name="amount" format="###"/>
<fixed:field name="order_date" format="MM/DD/YYYY"/>
<fixed:field name="type" size="2">
<fixed:enumeration value="big" fixedValue="bg"/>
<fixed:enumeration value="large" fixedValue="lg"/>
<fixed:enumeration value="mungo" fixedValue="mg"/>
<fixed:enumeration value="gargantuan" fixedValue="gg"/>

</fixed:field>
<fixed:sequence name="shippingAddress">
<fixed:field name="name" size="30"/>

77

<fixed:field name="street1" size="100"/>
<fixed:field name="street2" size="100"/>
<fixed:field name="city" size="20"/>
<fixed:field name="state" size="2"/>
<fixed:field name="zip" size="5"/>

</fixed:sequence>
</fixed:sequence>

</fixed:body>
</input>

<output name="widgetOrderBill">
<fixed:body>
<fixed:sequence name="widgetOrderConformation">
<fixed:field name="amount" format="###"/>
<fixed:field name="order_date" format="MM/DD/YYYY"/>
<fixed:field name="type" size="2">
<fixed:enumeration value="big" fixedValue="bg"/>
<fixed:enumeration value="large" fixedValue="lg"/>
<fixed:enumeration value="mungo" fixedValue="mg"/>
<fixed:enumeration value="gargantuan" fixedValue="gg"/>

</fixed:field>
<fixed:field name="amtDue" format="####.##"/>
<fixed:field name="orderNumber" size="20"/>
<fixed:sequence name="shippingAddress">
<fixed:field name="name" size="30"/>
<fixed:field name="street1" size="100"/>
<fixed:field name="street2" size="100"/>
<fixed:field name="city" size="20"/>
<fixed:field name="state" size="2"/>
<fixed:field name="zip" size="5"/>

</fixed:sequence>
</fixed:sequence>

</fixed:body>
</output>

</operation>
</binding>

<service name="orderWidgetsService">
<port name="widgetOrderPort" binding="tns:orderWidgetsBinding">
<http:address location="http://localhost:8080"/>

</port>
</service>

</definitions>

78

Using Fixed Length Records

Using Tagged Data
Artix has a binding that reads and writes messages where the data fields are delimited by specified characters.

Overview
The tagged data format supports applications that use self-describing, or
delimited, messages to communicate. Artix can read tagged data and write
it out in any supported data format. Similarly, Artix is capable of converting
a message from any of its supported data formats into a self-describing or
tagged data message.

Artix provides several ways of creating a contract with a tagged binding:

• Artix Designer can create a contract with a tagged binding from a description
of the tagged data.

• Artix Designer can create a tagged binding for an existing interface.

• You can enter the binding information using any text editor or XML editor.

Using Artix Designer
Artix Designer provides a number of tools for creating a contract with a tagged
binding:

1. You can create a new contract from a description of the tagged data by
selecting New → File → WSDL from Dataset.

2. You can add a tagged binding to a contract by selecting Artix Designer →
New Binding.

3. You can add a tagged binding using the context menu available in Artix
Designer’s diagram view.

For more information see the on-line help provided with Artix Designer.

Hand editing
To map a logical interface to a tagged data format do the following:

1. Add the proper namespace reference to the definition element of your

contract. See Namespace on page 80 .

2. Add a WSDL binding element to your contract to hold the tagged

binding, give the binding a unique name, and specify the interface that

represents the interface being bound.

79

3. Add a tagged:binding element as a child of the new binding element

to identify this as a tagged binding and set the element’s attributes to
properly configure the binding.

4. For each operation defined in the bound interface, add a WSDL
operation element to hold the binding information for the operation’s

messages.

5. For each operation added to the binding, add a tagged:operation

child element to the operation element.

6. For each operation added to the binding, add the input, output, and

fault children elements to represent the messages used by the operation.

These elements correspond to the messages defined in the interface
definition of the logical operation.

7. For each input, output, and fault element in the binding, add a

tagged:body child element to define how the message parts are mapped

into the concrete tagged data payload.

Namespace
The IONA extensions used to describe tagged data bindings are defined in
the namespace http://schemas.iona.com/bindings/tagged. Artix tools

use the prefix tagged to represent the tagged data extensions. Add the following
line to the definitions element of your contract:

xmlns:tagged="http://schemas.iona.com/bindings/tagged"

tagged:binding
tagged:binding specifies that the binding is for tagged data format

messages. Its ten attributes are explained in Table 7 on page 80 .

Table 7. Attributes Used to Define a Tagged Binding

PurposeAttribute

Required attribute specifying if the message data on the wire includes the field
names. Valid values are true or false. If this attribute is set to false, the setting

for fieldNameValueSeparator is ignored.

selfDescribing

Required attribute that specifies the delimiter the message uses to separate fields.
Valid values include any character that is not a letter or a number.

fieldSeparator

80

Using Tagged Data

PurposeAttribute

Specifies the delimiter used to separate field names from field values in
self-describing messages. Valid values include any character that is not a letter or
a number.

fieldNameValueSeparator

Specifies the scope identifier for complex messages. Supported values are tab(\t),

curlybrace({data}), and none. The default is tab.

scopeType

Specifies if data structures are flattened when they are put on the wire. If
selfDescribing is false, then this attribute is automatically set to true.

flattened

Specifies a special token at the start of a message. It is used when messages require
a special character at the start of a the data sequence. Valid values include any
character that is not a letter or a number.

messageStart

Specifies a special token at the end of a message. Valid values include any character
that is not a letter or a number.

messageEnd

Specifies if array elements need to be scoped as children of the array. If set to true,

arrays take the form echoArray{myArray=2;item=abc;item=def}. If set to

unscopedArrayElement

false, arrays take the form echoArray{myArray=2;{0=abc;1=def;}}. Default

is false.

Specifies if Artix ignores undefined elements in the message payload. Default is
false.

ignoreUnknownElements

Specifies if Artix ignores the case with element names in the message payload.
Default is false.

ignoreCase

The settings for the attributes on these elements become the default settings
for all the messages being mapped to the current binding.

tagged:operation
tagged:operation is a child element of the WSDL operation element and

specifies that the operation’s messages are being mapped to a tagged data
format. It takes two optional attributes that are described in
Table 8 on page 81 .

Table 8. Attributes for tagged:operation

PurposeAttribute

Specifies a discriminator to be used by the Artix
runtime to identify the WSDL operation that will be
invoked by the message reciever.

discriminator

81

PurposeAttribute

Specifies how the Artix runtime will locate the
discriminator as it processes the message. Supported

discriminatorStyle

values are msgname, partlist, fieldvalue, and

fieldname.

tagged:body
tagged:body is a child element of the input, output, and fault messages

being mapped to a tagged data format. It specifies that the message body is
mapped to tagged data on the wire and describes the exact mapping for the
message’s parts.

tagged:body will have one or more of the following child elements:

• tagged:field

• tagged:sequence

• tagged:choice

They describe the detailed mapping of the message to the tagged data to be
sent on the wire.

tagged:field
tagged:field is used to map simple types and enumerations to a tagged

data format. Its two attributes are described in Table 9 on page 82 .

Table 9. Attributes for tagged:field

PurposeAttribute

A required attribute that must correspond to the name of the logical
message part that is being mapped to the tagged data field.

name

An optional attribute specifying an alias for the field that can be
used to identify it on the wire.

alias

82

Using Tagged Data

When describing enumerated types tagged:field will have a number of

tagged:enumeration child elements.

tagged:enumeration
tagged:enumeration is a child element of tagged:field and is used to

map enumerated types to a tagged data format. It takes one required attribute,
value, that corresponds to the enumeration value as specified in the logical

description of the enumerated type.

For example, if you had an enumerated type, flavorType, with the values

FruityTooty, Rainbow, BerryBomb, and OrangeTango the logical

description of the type would be similar to Example 39 on page 83 .

Example 39. Ice Cream Enumeration

<xs:simpleType name="flavorType">
<xs:restriction base="xs:string">
<xs:enumeration value="FruityTooty"/>
<xs:enumeration value="Rainbow"/>
<xs:enumeration value="BerryBomb"/>
<xs:enumeration value="OrangeTango"/>

</xs:restriction>
</xs:simpleType>

flavorType would be mapped to the tagged data format shown in

Example 40 on page 83 .

Example 40. Tagged Data Ice Cream Mapping

<tagged:field name="flavor">
<tagged:enumeration value="FruityTooty"/>
<tagged:enumeration value="Rainbow"/>
<tagged:enumeration value="BerryBomb"/>
<tagged:enumeration value="OrangeTango"/>

</tagged:field>

tagged:sequence
taggeded:sequence maps arrays and sequences to a tagged data format.

Its three attributes are described in Table 10 on page 84 .

83

Table 10. Attributes for tagged:sequence

PurposeAttributes

A required attribute that must correspond to the name of the
logical message part that is being mapped to the tagged data
sequence.

name

An optional attribute specifying an alias for the sequence that
can be used to identify it on the wire.

alias

An optional attribute specifying the number of times the sequence
appears. This attribute is used to map arrays.

occurs

A tagged:sequence can contain any number of tagged:field ,

tagged:sequence , or tagged:choice child elements to describe the

data contained within the sequence being mapped. For example, a structure
containing a name, a date, and an ID number would contain three
tagged:field elements to fully describe the mapping of the data to the fixed

record message. Example 41 on page 84 shows an Artix contract fragment
for such a mapping.

Example 41. Mapping a Sequence to a Tagged Data Format

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="taggedDataMappingsample" targetNamespace="http://www.iona.com/taggedSer
vice"

xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:fixed="http://schemas.iona.com/bindings/tagged"
xmlns:tns="http://www.iona.com/taggedService"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<types>
<schema targetNamespace="http://www.iona.com/taggedService" xmlns="ht

tp://www.w3.org/2001/XMLSchema" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
<xsd:complexType name="person">
<xsd:sequence>
<xsd:element name="name" type="xsd:string"/>
<xsd:element name="date" type="xsd:string"/>
<xsd:element name="ID" type="xsd:int"/>

</xsd:sequence>
</xsd:complexType>

...
</types>
<message name="taggedSequence">
<part name="personPart" type="tns:person"/>

</message>
<portType name="taggedSequencePortType">
...

84

Using Tagged Data

</portType>
<binding name="taggedSequenceBinding"

type="tns:taggedSequencePortType">
<tagged:binding selfDescribing="false" fieldSeparator="pipe"/>

...
<tagged:sequence name="personPart">
<tagged:field name="name"/>
<tagged:field name="date"/>
<tagged:field name="ID"/>

</tagged:sequence>
...
</binding>
...
</definition>

tagged:choice
tagged:choice maps unions to a tagged data format. Its three attributes

are described in Table 11 on page 85 .

Table 11. Attributes for tagged:choice

PurposeAttributes

A required attribute that must correspond to the name
of the logical message part that is being mapped to
the tagged data union.

name

Specifies the message part used as the discriminator
for the union.

discriminatorName

An optional attribute specifying an alias for the union
that can be used to identify it on the wire.

alias

A tagged:choice may contain one or more tagged:case child elements

to map the cases for the union to a tagged data format.

tagged:case
tagged:case is a child element of tagged:choice and describes the

complete mapping of a union’s individual cases to a tagged data format. It
takes one required attribute, name, that corresponds to the name of the case

element in the union’s logical description.

tagged:case must contain one child element to describe the mapping of

the case’s data to a tagged data format. Valid child elements are
tagged:field , tagged:sequence , and tagged:choice .

85

Example 42 on page 86 shows an Artix contract fragment mapping a union
to a tagged data format.

Example 42. Mapping a Union to a Tagged Data Format

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="fixedMappingsample" targetNamespace="http://www.iona.com/tagService"

xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:fixed="http://schemas.iona.com/bindings/tagged"
xmlns:tns="http://www.iona.com/tagService"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<types>
<schema targetNamespace="http://www.iona.com/tagService" xmlns="http://www.w3.org/2001/XMLS

chema" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
<xsd:complexType name="unionStationType">
<xsd:choice>
<xsd:element name="train" type="xsd:string"/>
<xsd:element name="bus" type="xsd:int"/>
<xsd:element name="cab" type="xsd:int"/>
<xsd:element name="subway" type="xsd:string"/>

</xsd:choice>
</xsd:complexType>

...
</types>
<message name="tagUnion">
<part name="stationPart" type="tns:unionStationType"/>

</message>
<portType name="tagUnionPortType">
...
</portType>
<binding name="tagUnionBinding" type="tns:tagUnionPortType">
<tagged:binding selfDescribing="false"

fieldSeparator="comma"/>
...

<tagged:choice name="stationPart" descriminatorName="disc">
<tagged:case name="train">
<tagged:field name="name"/>

</tagged:case>
<tagged:case name="bus">
<tagged:field name="number"/>

</tagged:case>
<tagged:case name="cab">
<tagged:field name="number"/>

</tagged:case>
<tagged:case name="subway">
<tagged:field name="name"/>

</tagged:case>
</tagged:choice>

...

86

Using Tagged Data

</binding>
...
</definition>

Example
Example 43 on page 87 shows an example of an Artix contract containing
a tagged data format binding.

Example 43. Tagged Data Format Binding

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="widgetOrderForm.wsdl"
targetNamespace="http://widgetVendor.com/widgetOrderForm"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:tns="http://widgetVendor.com/widgetOrderForm"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:taged="http://schames.iona.com/binings/tagged"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsd1="http://widgetVendor.com/types/widgetTypes">
<types>
<schema targetNamespace="http://widgetVendor.com/types/widgetTypes"
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
<xsd:simpleType name="widgetSize">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="big"/>
<xsd:enumeration value="large"/>
<xsd:enumeration value="mungo"/>
<xsd:enumeration value="gargantuan"/>

</xsd:restriction>
</xsd:simpleType>
<xsd:complexType name="Address">
<xsd:sequence>
<xsd:element name="name" type="xsd:string"/>
<xsd:element name="street1" type="xsd:string"/>
<xsd:element name="street2" type="xsd:string"/>
<xsd:element name="city" type="xsd:string"/>
<xsd:element name="state" type="xsd:string"/>
<xsd:element name="zipCode" type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="widgetOrderInfo">
<xsd:sequence>
<xsd:element name="amount" type="xsd:int"/>
<xsd:element name="order_date" type="xsd:string"/>
<xsd:element name="type" type="xsd1:widgetSize"/>
<xsd:element name="shippingAddress" type="xsd1:Address"/>

</xsd:sequence>
</xsd:complexType>

87

<xsd:complexType name="widgetOrderBillInfo">
<xsd:sequence>
<xsd:element name="amount" type="xsd:int"/>
<xsd:element name="order_date" type="xsd:string"/>
<xsd:element name="type" type="xsd1:widgetSize"/>
<xsd:element name="amtDue" type="xsd:float"/>
<xsd:element name="orderNumber" type="xsd:string"/>
<xsd:element name="shippingAddress" type="xsd1:Address"/>

</xsd:sequence>
</xsd:complexType>

</schema>
</types>
<message name="widgetOrder">
<part name="widgetOrderForm" type="xsd1:widgetOrderInfo"/>

</message>
<message name="widgetOrderBill">
<part name="widgetOrderConformation" type="xsd1:widgetOrderBillInfo"/>

</message>
<portType name="orderWidgets">
<operation name="placeWidgetOrder">
<input message="tns:widgetOrder" name="order"/>
<output message="tns:widgetOrderBill" name="bill"/>

</operation>
</portType>
<binding name="orderWidgetsBinding" type="tns:orderWidgets">
<tagged:binding selfDescribing="false" fieldSeparator="pipe"/>
<operation name="placeWidgetOrder">
<tagged:operation discriminator="widgetDisc"/>
<input name="widgetOrder">
<tagged:body>
<tagged:sequence name="widgetOrderForm">
<tagged:field name="amount"/>
<tagged:field name="order_date"/>
<tagged:field name="type" >
<tagged:enumeration value="big"/>
<tagged:enumeration value="large"/>
<tagged:enumeration value="mungo"/>
<tagged:enumeration value="gargantuan"/>

</tagged:field>
<tagged:sequence name="shippingAddress">
<tagged:field name="name"/>
<tagged:field name="street1"/>
<tagged:field name="street2"/>
<tagged:field name="city"/>
<tagged:field name="state"/>
<tagged:field name="zip"/>

</tagged:sequence>
</tagged:sequence>

</tagged:body>

88

Using Tagged Data

</input>
<output name="widgetOrderBill">
<tagged:body>
<tagged:sequence name="widgetOrderConformation">
<tagged:field name="amount"/>
<tagged:field name="order_date"/>
<tagged:field name="type">
<tagged:enumeration value="big"/>
<tagged:enumeration value="large"/>
<tagged:enumeration value="mungo"/>
<tagged:enumeration value="gargantuan"/>

</tagged:field>
<tagged:field name="amtDue"/>
<tagged:field name="orderNumber"/>
<tagged:sequence

name="shippingAddress">
<tagged:field name="name"/>
<tagged:field name="street1"/>
<tagged:field name="street2"/>
<tagged:field name="city"/>
<tagged:field name="state"/>
<tagged:field name="zip"/>

</tagged:sequence>
</tagged:sequence>

</tagged:body>
</output>

</operation>
</binding>
<service name="orderWidgetsService">
<port name="widgetOrderPort" binding="tns:orderWidgetsBinding">
<http:address location="http://localhost:8080"/>

</port>
</service>

</definitions>

89

90

Using RMI
Artix provides a way for Artix Java applications to connect to a remote object using RMI. The remote object does
not require a Web services front end, nor does it require the ability to understand SOAP. Artix will handle the
message translation.

Procedure
To use RMI you need to do the following:

1. Add an RMI binding to the application’s WSDL contract.

2. Add an RMI port definition to the application’s WSDL contract.

3. Develop the application so that it uses an interface that extends
java.rmi.Remote.

4. If you are developing a service, generate the RMI stubs using rmic.

Note
If you want to use RMI/IIOP, you need to specify the proper flags
to rmic and extend the appropriate class.

5. Configure the application to load the RMI plug-in and the Java plug-in.

Namespace
The IONA extensions used for RMI information to a WSDL contract are defined
in the namespace http://schemas.iona.com/bindings/rmi. Artix tools

use the prefix rmi to represent the RMI extensions. Add the following line to
your contracts:

xmlns:rmi="http://schemas.iona.com/bindings/rmi"

Adding RMI information to a
contract A contract for an Artix endpoint that uses RMI is slightly different than other

contracts because the RMI connectivity feature of Artix does not use the
interface generated from the logical interface definition. Instead, it uses the
RMI interface of the object to which it will connect. Therefore, the portType

element defining the logical interface can be left empty. If it is fully specified,
it will be ignored by the runtime.

91

To specify that an endpoint is to use RMI you need to add an RMI binding
definition and RMI endpoint definition to your contract. This is done using
the rmi:class element and the rmi:address element.

The rmi:class element defines an RMI binding and is a child of the WSDL

binding element. It has a single attribute, name, that specifies the fully qualified

name of the Java interface of the RMI object to which your application
connects. This interface must extend java.rmi.Remote.

The rmi:address element defines the connection information for an RMI

endpoint. It has a single attribute, url, the specifies the JNDI URL the

application will use to talk to remote objects.

Artix Designer provides a tool for adding an RMI binding to a contract. To use
this tool select Artix Designer → New Binding or select New Binding from
the context menu available in diagram view. For more information see the
on-line help provided with Artix Designer.

Example 44 on page 92 shows a contract fragment that defines an RMI
endpoint.

Example 44. RMI Endpoint

...
<portType name="RMIPortType" />
<binding name="RMIBinding" type="tns:RMIPortType">
<rmi:class name="foo.bar.MyRemoteInterface"/>

</binding>

Writing a service to use RMI
Unlike standard Artix Java services, Artix Java services using RMI do not
require that you use the code generated by wsdltojava. It does not require
that the types adhere to the JAX-RPC mappings. The only requirement is that
the service’s implementation class must implement an interface that extends
java.rmi.Remote.

Note
You can use the interface generated by wsdltojava because the
generated interface extends java.rmi.Remote.

92

Using RMI

You will need to generate RMI stubs for your implementation class using Sun’s
rmic compiler. If you want to use RMI/IIOP instead of plain RMI, you need
to generate the RMI stubs using the proper flags. For more information on
rmic see Sun’s RMIC documentation
[http://java.sun.com/j2se/1.4.2/docs/tooldocs/solaris/rmic.html].

Once you have implemented your service’s application logic and generated
the RMI stubs, you need to create a servant for the implementation object
register the servant with the Artix bus. This is done using the standard Artix
APIs as shown in Example 45 on page 93 .

Example 45. Service for Using RMI

public interface GreeterInterface extends java.rmi.Remote
{
...

}
public class RMIGreeter extends UnicastRemoteObject implements GreeterInterface
{
...

}

public class MyRMIService
{
...

public static void main (String args[]) throws Exception
{
...
Servant servant = new SingleInstanceServant(new RMIGreeter(), myWsdlPath, bus);
bus.registerServant(servant, new QName(tns, "MyRmiService");
...

}
}

Writing a client to use RMI
Implementing a client that uses the RMI binding is similar to implementing
a standard Artix client in Java. You need to have access to the RMI interface
implemented by the service. You use the interface to create a service proxy
using the standard Artix createClient() method.

The only difference is that instead of casting the proxy returned from
createClient() to the implementation class, you cast it to the RMI interface

class as shown in Example 46 on page 94 . This gives you access to all of
the remote object’s methods including the ones used to manage the remote

93

http://java.sun.com/j2se/1.4.2/docs/tooldocs/solaris/rmic.html
http://java.sun.com/j2se/1.4.2/docs/tooldocs/solaris/rmic.html

object. When the proxy connects to the service, it will download the stubs it
needs for communicating.

Example 46. Client Using RMI

public class MyRMIClient
{
...
public static void main (String args[]) throws Exception
{
...
// GreeterInterface defined in previous example.
GreeterInterface proxy =

(GreeterInterface)bus.createClient(wsdlUrl, serviceQName,
portName,
GreeterInterface.class);

...
}

}

For more information see Developing Artix Applications with JAX-RPC
[../../jaxrpc_pguide/index.htm].

Stub downloading
If the java.rmi.server.codebase property is not set and the RMI plug-in was
loaded by a URL classloader, the RMI plug-in will set the codebase to the
classpath of the classloader that loaded the plug-in. This effectively makes
the server classpath available to the client for loading RMI stubs.

If the client and server are on the same host, the client does not need to have
the stub paths explicitly on its classpath. If the RMI stubs are available via
an FTP or HTTP url in the server’s classpath, the client can download them
on a different host.

For more on RMI class loading see
http://java.sun.com/j2se/1.4.2/docs/guide/rmi/codebase.html.

Using RMI/IIOP
If you want to use RMI/IIOP instead of plain RMI, you need to do a few things
differently:

• Use a corbaname URL as the value of rmi:address in your contract.

• Make sure your servant class extends javax.rmi.PortableRemoteObject.

94

Using RMI

../../jaxrpc_pguide/index.htm
../../jaxrpc_pguide/index.htm
http://java.sun.com/j2se/1.4.2/docs/guide/rmi/codebase.html

• Specify the -iiop flag when running rmic to generate your stubs. For more

information see Sun’s RMIC documentation
[http://java.sun.com/j2se/1.4.2/docs/tooldocs/solaris/rmic.html].

• Store the remote object’s address in a CORBA naming service.

Configuring an application to use
RMI Unlike most Artix bindings, the RMI binding does not cause your application

to automatically load the plug-ins it needs. To configure your application to
use RMI you must add the following to your application’s configuration:

orb_plugins=[..., "java", ...];
java_plugins=["rmi"];

For more information see the Artix Configuration Reference, C++ Runtime
[../../config_ref/cpp/index.htm].

Note
RMI support is implemented using a JNI layer in the C++ runtime.

Limitations
The RMI support in Artix has the following limitations:

• The RMI support bypasses all Artix interceptors.

• The router does not support RMI.

• Applications using RMI must be explicitly configured to load the RMI plug-in
and the Java plug-in. See the Artix Configuration Reference, C++ Runtime
[../../config_ref/cpp/index.htm].

Note
RMI support is implemented using a JNI layer in the C++ runtime.

• RMI is only available to Artix endpoints developed in Java.

• Artix security features are not available when using RMI.

• The APIs that resolve a service given only a QName do not work for services
using RMI.

95

http://java.sun.com/j2se/1.4.2/docs/tooldocs/solaris/rmic.html
http://java.sun.com/j2se/1.4.2/docs/tooldocs/solaris/rmic.html
../../config_ref/cpp/index.htm
../../config_ref/cpp/index.htm
../../config_ref/cpp/index.htm
../../config_ref/cpp/index.htm

• You cannot register transient services with RMI.

Logging Errors
For ports that use the RMI binding you may see errors like this in the logs:

(IT_BUS.WSDL:0) E - WSDL for Port hello in service HelloRmiSer
vice xmlns="http://www.iona.com/com.iona.jbus.bind
ings.rmi.Hello" is not valid. It doesn't have any contents.
([[RmiBinding]])

These can be ignored.

96

Using RMI

Using Tibco Rendezvous Messages
Tibco Rendezvous applications typically use a Tibco specific data format called a TibrvMsg. Artix provides a very
flexible mechanism for mapping messages into the TibrvMsg format. This allows you to integrate with existing
Tibco/RV applications by service-enabling them.

The TibrvMsg binding provides default mappings for most XML Schema constructs to simplify defining a TibrvMsg
in an Artix contract. The TibrvMsg binding also supports custom mappings between the messages defined in an
Artix contract and the physical representation of a TibrvMsg. Custom mappings also support the inclusion of
static binding-only data.

Defining a TibrvMsg Binding ... 98
Default Mappings for TibrvMsg .. 104
Defining Array Mapping Policies ... 109
Defining a Custom TibrvMsg Mapping ... 114
Adding Context Information to a TibrvMsg .. 130

97

Defining a TibrvMsg Binding
Overview

The Artix TibrvMsg binding provides a set of default mappings to make writing
a binding simple. By default, messages are mapped into a root TibrvMsg such
that parts defined using XML Schema native types become TibrvMsgFields
of the root TibrvMsg and parts defined using complex types become TibrvMsgs
within the root message. The elements comprising a complex type also follow
the same default mapping behavior. The default mappings will work for most
basic applications. For a detailed explanation of how WSDL types are mapped
to TibrvMsg see Default Mappings for TibrvMsg on page 104 .

Procedure
To map a logical interface to a TibrvMsg:

1. Add the proper namespace reference to the definition element of your

contract. See Namespace on page 99 .

2. Add a WSDL binding element to your contract to hold the TibrvMsg

binding, give the binding a unique name, and specify the port type that

represents the interface being bound.

3. Add a tibrv:binding element as a child of the new binding element

to identify this as a TibrvMsg binding and specify any global parameters.

4. For each operation defined in the bound interface, add a WSDL
operation element to hold the binding information for the operation’s

messages.

5. For each operation in the binding, add a tibrv:operation child

element and set its attributes.

6. For each operation in the binding, add the input, output, and fault

children elements to represent the messages used by the operation.
These elements correspond to the messages defined in the port type
definition of the logical operation.

7. For each input element in the binding, add a tibrv:input child

element and set its attributes.

8. For each output element in the binding, add a tibrv:output child

element and set its attributes.

98

Using Tibco Rendezvous Messages

9. To add custom message mappings see Defining a Custom TibrvMsg
Mapping on page 114 .

Namespace
The IONA extensions used to describe TibrvMsg bindings are defined in the
namespace http://schemas.iona.com/transports/tibrv. Artix tools

use the prefix tibrv to represent the tagged data extensions. Add the following
line to the definitions element of your contract:

xmlns:tibrv="http://schemas.iona.com/transports/tibrv"

tibrv:binding
tibrv:binding is an immediate child of the WSDL binding element and

identifies that the data is to be packed into a TibrvMsg. Its attributes are
described in Table 12 on page 99 .

Table 12. Attributes for tibrv:binding

PurposeAttribute

An optional attribute that specifies the character set used in encoding string data included
in the message. The default value is utf-8.

stringEncoding

An optional attribute that specifies how string data is passed in messages. false, the default

value, specifies that string data is passed as TIRBMSG_STRING. true specifies that string

data is passed as OPAQUE.

stringAsOpaque

In addition to the above properties, tibrv:binding can also specify a policy

for how array data is handled for messages using the binding. The array policy
is set using a child tibrv:array element. The array policy set at the binding

level can be overridden on a per-operation basis, per-message basis, and a
per-type basis. For information on defining array policies see Defining Array
Mapping Policies on page 109 .

The tibrv:binding element can also define binding-only message data

using the tibrv:msg element, the tibrv:field element, or

99

Defining a TibrvMsg Binding

tibrv:context element. Any binding-only data defined at the binding level

is attached to all messages that use the binding.

tibrv:operation
tibrv:operation is the immediate child of a WSDL operation element.

tibrv:operation has no attributes. It can, however, specify an

operation-specific array policy using a a child tibrv:array element. This

array policy overrides any array policy set at the binding level. For information
on defining array policies see Defining Array Mapping Policies on page 109 .

Within a tibrv:operation element you can also define binding-only message

data using the tibrv:msg element, the tibrv:field element, or

tibrv:context element. Any binding-only data defined at the operation

level is attached to all messages that make up the operation.

tibrv:input
tibrv:input is the immediate child of a WSDL input element and defines

a number of properties used in mapping the input message to a TibrvMsg.
Its attributes are described in Table 13 on page 100 .

Table 13. Attributes for tibrv:input

PurposeAttribute

An optional attribute that specifies the field path that includes the message name. If
this attribute is not specified, the first field in the top level message will be used as
the message name and given the value IT_BUS_MESSAGE_NAME.

messageNameFieldPath

An optional attribute that specifies the field value that corresponds to the message
name. If this attribute is not specified, the WSDL message’s name will be used.

messageNameFieldValue

An optional attribute that specifies the character set used in encoding string data
included in the message. This value will override the value set in tibrv:binding

.

stringEncoding

An optional attribute that specifies how string data is passed in the message. false

specifies that string data is passed as TIRBMSG_STRING. true specifies that string

stringAsOpaque

data is passed as OPAQUE. This value will override the value set in tibrv:binding

.

In addition to the above properties, tibrv:input can also specify a policy

for how array data is handled for messages using the binding. The array policy
is set using a child tibrv:array element. The array policy set at this level

100

Using Tibco Rendezvous Messages

overrides any policies set at the binding level or the operation level. For
information on defining array policies see Defining Array Mapping
Policies on page 109 .

The tibrv:input element also defines any custom mappings between the

WSDL messages defined in the contract and the physical TibrvMsg on the
wire. A custom mapping can also include binding-only message data and
context information. For information on defining custom data mappings see
Defining a Custom TibrvMsg Mapping on page 114 .

tibrv:output
tibrv:output is the immediate child of a WSDL output element and defines

a number of properties used in mapping the output message to a TibrvMsg.
Its attributes are described in Table 14 on page 101 .

Table 14. Attributes for tibrv:output

PurposeAttribute

An optional attribute that specifies the field path that includes the message name.
If this attribute is not specified, the first field in the top level message will be used
as the message name and given the value IT_BUS_MESSAGE_NAME.

messageNameFieldPath

An optional attribute that specifies the field value that corresponds to the message
name. If this attribute is not specified, the WSDL message’s name will be used.

messageNameFieldValue

An optional attribute that specifies the character set used in encoding string data
included in the message. This value will override the value set in tibrv:binding

.

stringEncoding

An optional attribute that specifies how string data is passed in the message. false

specifies that string data is passed as TIRBMSG_STRING. true specifies that string

stringAsOpaque

data is passed as OPAQUE. This value will override the value set in tibrv:binding

.

In addition to the above properties, tibrv:output can also specify a policy

for how array data is handled for messages using the binding. The array policy
is set using a child tibrv:array element. The array policy set at this level

overrides any policies set at the binding level or the operation level. For
information on defining array policies see Defining Array Mapping
Policies on page 109 .

The tibrv:output element also defines any custom mappings between the

WSDL messages defined in the contract and the physical TibrvMsg on the

101

Defining a TibrvMsg Binding

wire. A custom mapping can also include binding-only message data and
context information. For information on defining custom data mappings see
Defining a Custom TibrvMsg Mapping on page 114 .

Example
Example 47 on page 102 shows an example of a contract containing a default
TibrvMsg binding.

Example 47. Default TibrvMsg Binding

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="widgetOrderForm.wsdl"
targetNamespace="http://widgetVendor.com/widgetOrderForm"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:tns="http://widgetVendor.com/widgetOrderForm"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tibrv="http://schemas.iona.com/transports/tibrv"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsd1="http://widgetVendor.com/types/widgetTypes">
<types>
<schema targetNamespace="http://widgetVendor.com/types/widgetTypes"
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
<xsd:complexType name="Address">
<xsd:sequence>
<xsd:element name="name" type="xsd:string"/>
<xsd:element name="street" type="xsd:string"

minOccurs="1" maxOccurs="5"/>
<xsd:element name="city" type="xsd:string"/>
<xsd:element name="state" type="xsd:string"/>
<xsd:element name="zipCode" type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="widgetOrderInfo">
<xsd:sequence>
<xsd:element name="amount" type="xsd:int"/>
<xsd:element name="order_date"

type="xsd:string"/>
<xsd:element name="type" type="xsd:string"/>
<xsd:element name="shippingAddress"

type="xsd1:Address"/>
</xsd:sequence>

</xsd:complexType>
<xsd:complexType name="widgetOrderBillInfo">
<xsd:sequence>
<xsd:element name="amount" type="xsd:int"/>
<xsd:element name="order_date"

type="xsd:string"/>
<xsd:element name="type" type="xsd:string"/>

102

Using Tibco Rendezvous Messages

<xsd:element name="amtDue" type="xsd:float"/>
<xsd:element name="orderNumber"

type="xsd:string"/>
<xsd:element name="shippingAddress"

type="xsd1:Address"/>
</xsd:sequence>

</xsd:complexType>
</schema>

</types>

<message name="widgetOrder">
<part name="widgetOrderForm"

type="xsd1:widgetOrderInfo"/>
</message>

<message name="widgetOrderBill">
<part name="widgetOrderConformation"

type="xsd1:widgetOrderBillInfo"/>
</message>

<portType name="orderWidgets">
<operation name="placeWidgetOrder">
<input message="tns:widgetOrder" name="order"/>
<output message="tns:widgetOrderBill" name="bill"/>

</operation>
</portType>

<binding name="orderWidgetsBinding"
type="tns:orderWidgets">

<tibrv:binding/>
<operation name="placeWidgetOrder">
<tibrv:operation/>
<input name="widgetOrder">
<tibrv:input/>

</input>
<output name="widgetOrderBill">
<tibrv:output/>

</output>
</operation>

</binding>

<service name="orderWidgetsService">
<port name="widgetOrderPort" binding="tns:orderWidgetsBinding">
...
</port>

</service>
</definitions>

103

Defining a TibrvMsg Binding

Default Mappings for TibrvMsg
TIBRVMSG type mapping

Table 15 on page 104 shows how Artix maps XML Schema types into TibrvMsg
data types.

Table 15. TIBCO to XSD Type Mapping

XSDTIBRVMSG

xsd:stringTIBRVMSG_STRING

xsd:booleanTIBRVMSG_BOOL

xsd:byteTIBRVMSG_I8

xsd:shortTIBRVMSG_I16

xsd:intTIBRVMSG_I32

xsd:longTIBRVMSG_I64

xsd:unsignedByteTIBRVMSG_U8

xsd:unsignedShortTIBRVMSG_U16

xsd:unsignedIntTIBRVMSG_U32

xsd:unsignedLongTIBRVMSG_U64

xsd:floatTIBRVMSG_F32

xsd:doubleTIBRVMSG_F64

xsd:decimalTIBRVMSG_STRING

xsd:dateTimeTIBRVMSG_DATETIME
a

xsd:base64BinaryTIBRVMSG_OPAQUE

xsd:hexBinaryTIBRVMSG_OPAQUE

xsd:QNameTIBRVMSG_STRING

xsd:nonPositiveIntegerTIBRVMSG_STRING

xsd:negativeIntegerTIBRVMSG_STRING

xsd:nonNegativeIntegerTIBRVMSG_STRING

104

Using Tibco Rendezvous Messages

XSDTIBRVMSG

xsd:positiveIntegerTIBRVMSG_STRING

xsd:timeTIBRVMSG_STRING

xsd:dateTIBRVMSG_STRING

xsd:gYearMonthTIBRVMSG_STRING

xsd:gMonthDayTIBRVMSG_STRING

xsd:gDayTIBRVMSG_STRING

xsd:gMonthTIBRVMSG_STRING

xsd:anyURITIBRVMSG_STRING

xsd:tokenTIBRVMSG_STRING

xsd:languageTIBRVMSG_STRING

xsd:NMTOKENTIBRVMSG_STRING

xsd:NameTIBRVMSG_STRING

xsd:NCNameTIBRVMSG_STRING

xsd:IDTIBRVMSG_STRING

aWhile TIBRVMSG_DATATIME has microsecond precision, xsd:dateTime only supports millisecond
precision. Therefore, Artix rounds all times to the nearest millisecond.

Sequence complex types
Sequence complex types are mapped to a TibrvMsg message as follows:

• The elements of the complex type are enclosed in a TibrvMsg instance.

• If the complex type is specified as a message part, the value of the part

element’s name attribute is used as the name of the generated TibrvMsg.

• If the complex type is specified as an element, the value of the element

element’s name attribute is used as the name of the generated TibrvMsg.

• The TibrvMsg id is 0.

105

Default Mappings for TibrvMsg

• The elements are the mapped to child TibrvMsgField instances of the
wrapping TibrvMsg.

• If an element of the sequence is of a complex type, it will be mapped into
a TibrvMsg instance that conforms to the default mapping rules.

• The value of the element element’s name attribute is used as the name of

the generated TibrvMsgField instance.

• The child fields’ ids are 0.

• The child fields are serialized in the same order as they appear in the
schema definition.

• The child fields are deserialized in the same order as they appear in schema
definition.

All complex types

All complex types are mapped to a TibrvMsg message as follows:

• The elements of the complex type are enclosed in a TibrvMsg instance.

• If the complex type is specified as a message part, the value of the part

element’s name attribute is used as the name of the generated TibrvMsg.

• If the complex type is specified as an element, the value of the element

element’s name attribute is used as the name of the generated TibrvMsg.

• The TibrvMsg id is 0.

• The elements are the mapped to child TibrvMsgField instances of the
wrapping TibrvMsg.

• If an element of the all is of a complex type, it will be mapped into a
TibrvMsg instance that conforms to the default mapping rules.

• The value of the element element’s name attribute is used as the name of

the generated TibrvMsgField instance.

• The child field’s ids are 0.

106

Using Tibco Rendezvous Messages

• The child fields are serialized in the same order as they appear in the
schema definition.

• The child fields can be deserialized in any order.

Choice complex types
Choice complex types are mapped to a TibrvMsg message as follows:

• The elements of the complex type are enclosed in a TibrvMsg instance.

• If the complex type is specified as a message part, the value of the part

element’s name attribute is used as the name of the generated TibrvMsg.

• If the complex type is specified as an element, the value of the element

element’s name attribute is used as the name of the generated TibrvMsg.

• The TibrvMsg id is 0

• There must only be one and only child field in this TibrvMsg message that
corresponds to the active choice element.

• The child field has the name of the corresponding choice's active element
name.

• The child field id is zero.

• During deserialization the binding runtime will extract the first child field
from this message using index equal to 0 as the key. If no field is found

then this choice is considered an empty choice.

NMTOKEN
NMTOKEN schema types are mapped as follows:

• The NMTOKEN is enclosed in a TibrvMsg instance.

• If the NMTOKEN is specified as a message part, the value of the part

element’s name attribute is used as the name of the generated TibrvMsg.

• If the NMTOKEN is specified as an element, the value of the element

element’s name attribute is used as the name of the generated TibrvMsg.

• The TibrvMsg id is 0

107

Default Mappings for TibrvMsg

• Each NMTOKEN is mapped to a child TibrvMsgField instance of this
TibrvMsg.

• The names of the children fields are an ever increasing counter values
beginning with 0.

Default mapping of arrays
XML Schema elements that are not mapped to native Tibrv scalar types and
have minOccurs != 1 and maxOccurs != 1 are mapped as follows:

• Array elements are stored in a TibrvMsg instance at the same scope as the
sibling elements of this array element.

• Array element names are a result of an expression evaluation. The expression
is evaluated for every array element.

• The default array element name expression is concat(xml:attr('name'),

'_', counter(1, 1).

• If an instance of an array element has 0 elements then this array instance

will have nothing loaded onto the wire. Currently this is not true for scalar
arrays that are loaded as a single field.

Default mapping for scalar arrays
The XML Schema elements that are mapped to native Tibrv scalar types and
have minOccurs != 1 and maxOccurs != 1 are mapped as follows:

• Array elements are stored in a TibrvMsg instance at the same scope as
sibling elements of this array element.

• The binding utilizes the Tibrv native array mapping to store XML Schema
arrays. Hence, there will be only one TibrvMsgField with the name equal
to that of the XML Schema element name defining this array.

108

Using Tibco Rendezvous Messages

Defining Array Mapping Policies

Overview
Because TibrvMsg does not natively support sparsely populated arrays, the
Artix TibrvMsg binding allows you to define how array elements are mapped
into a TibrvMsg when they are written to the wire using the tibrv:array

element. In addition, the Artix TibrvMsg binding allows you to define the
naming schema used for array elements when they are mapped into
TibrvMsgField instances.

Policy scoping
The tibrv:array element can define array properties at any level of

granularity by making it the child of different TibrvMsg binding elements.
Table 16 on page 109 shows the effect of setting tibrv:array at different

levels of a binding.

Table 16. Effect of tibrv:array

EffectChild of

Sets the array policies for all messages in the binding.tibrv:binding

Array policies set at the operation level only affect the messages defined within the parent
operation element. They override any array policies set at the binding level.

tibrv:operation

Array policies set at this level only affect the input message. They override any array policies
set at the binding or operation level.

tibrv:input

Array policies set at this level only affect the output message. They override any array policies
set at the binding or operation level.

tibrv:output

Array policies set at this level affect only the fields defined within the tibrv:msg element.

They override any array policies set at higher levels.

tibrv:msg

Array policies set at this level affect only the TibrvMsg field being defined. They override any
array policies set at higher levels.

tibrv:field

Array policies
The array policies are set using the attributes of tibrv:array.

Table 17 on page 110 describes the attributes used to set array policies.

109

Defining Array Mapping Policies

Table 17. Attributes for tibrv:array

PurposeAttribute

Specifies an expression that when evaluated will be used as the name of the TibrvMsg
field to which array elements are mapped. The default element naming scheme is to

elementName

concatenate the value of WSDL element element’s name attribute with a counter.

For information on specifying naming expressions see Custom array naming
expressions on page 111 .

Specifies how scalar array data is mapped into TibrvMsgField instances. true, the

default, specifies that arrays are mapped into a single TibrvMsgField. false specifies

that each member of an array is mapped into a separate TibrvMsgField.

integralAsSingleField

Specifies if the number of elements in an array is included in the TibrvMsg. true

specifies that the number of elements in the array is added as a TibrvMsgField in the

loadSize

same TibrvMsg as the array. false, the default, specifies that the number of elements

in the array is not included in the TibrvMsg.

Specifies an expression that when evaluated will be used as the name of the
TibrvMsgField to which the size of the array is written. The default naming scheme

sizeName

is to concatenate the value of WSDL element element’s name attribute with @size.

For information on specifying naming expressions see Custom array naming
expressions on page 111 .

Sparse arrays
A sparse array is an array with some of the elements set to nil. For instance,
if an array has 10 elements, the 3rd and fifth elements may be nil. Tibco/RV
has no way of natively representing sparse arrays or nil element members.
This presents two problems:

• Tibco/RV throws an exception when it encounters nil scalar values that are
mapped to a TibrvMsgField.

• There is no mechanism for maintaining the element positions of the non-nil
members of the array.

To solve both problems you would specify array policies such that the size of
the array is written to the wire and that each element of the array is written
to the wire as a separate TibrvMsgField. To specify that the array size is
written to the wire use loadSize="true". To specify that each member of the
array is written in a separate TibrvMsgField use integralAsSingleField="false".

The resulting TibrvMsg would have one field for each non-nil member of the
array and a field specifying the size of the array. Artix can use this information

110

Using Tibco Rendezvous Messages

to reconstruct the sparse array when it is passed through the TibrvMsg binding.
A Tibco/RV application would need to implement the logic to handle the
information.

Custom array naming expressions
When specifying a naming policy for array element names you use a string
expression that combines XML properties, strings, and custom naming
functions. For example, you could use the expression
concat(xml:attr(’name’), ’_’, counter(1,1)) to specify that each

element in the array street is named street_n.

Table 18 on page 111 shows the available functions for use in building array
element names.

Table 18. Functions Used for Specifying TibrvMsg Array Element Names

PurposeFunction

Inserts the value of the named attribute.xml:attr(’attribute’)

Concatenates all of the elements into a single string.concat(item1, item2, ...)

Adds an increasing numerical value. The counter starts at start and increases

by increment.

counter(start, increment)

Example
Example 48 on page 111 shows an example of an Artix contract containing
a TibrvMsg binding that uses array policies. The policies are set at the binding
level and:

• Force the name of the TibrvMsg containing array elements to be named
street0, street1,

• Write out the number of elements in each street array.

• Force each element of a street array to be written out as a separate field.

Example 48. TibrvMsg Binding with Array Policies Set

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="widgetOrderForm.wsdl"
targetNamespace="http://widgetVendor.com/widgetOrderForm"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:tns="http://widgetVendor.com/widgetOrderForm"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tibrv="http://schemas.iona.com/transports/tibrv"

111

Array policies

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsd1="http://widgetVendor.com/types/widgetTypes">
<types>
<schema targetNamespace="http://widgetVendor.com/types/widgetTypes"
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
<xsd:complexType name="Address">
<xsd:sequence>
<xsd:element name="name" type="xsd:string"/>
<xsd:element name="street" type="xsd:string"

minOccurs="1" maxOccurs="5"
nillable="true"/>

<xsd:element name="city" type="xsd:string"/>
<xsd:element name="state" type="xsd:string"/>
<xsd:element name="zipCode" type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>

</schema>
</types>

<message name="addressRequest">
<part name="resident" type="xsd:string"/>

</message>
<message name="addressResponse">
<part name="address" type="xsd1:Address"/>

</message>

<portType name="theFourOneOne">
<operation name="lookUp">
<input message="tns:addressRequest" name="request"/>
<output message="tns:addressResponse"

name="response"/>
</operation>

</portType>

<binding name="lookUpBinding" type="tns:theFourOneOne">
<tibrv:binding>

<tibrv:array elementName="concat(xml:attr('name'), counter(0, 1))"
integralsAsSingleField="false"
loadSize="true"/>

<\tibrv:binding>
<operation name="lookUp">
<tibrv:operation/>
<input name="addressRequest">
<tibrv:input/>

</input>
<output name="addressResponse">
<tibrv:output/>

</output>

112

Using Tibco Rendezvous Messages

</operation>
</binding>

<service name="orderWidgetsService">
<port name="widgetOrderPort"

binding="tns:orderWidgetsBinding">
...
</port>

</service>
</definitions>

113

Array policies

Defining a Custom TibrvMsg Mapping

Overview
For instances where the default mappings are insufficient to map the
TibrvMsgs to corresponding WSDL messages, you can define custom mappings
that allow you to specify exactly how the WSDL message parts are mapped
into a TibrvMsg. Custom TibrvMsg mappings allow you to:

• override the native XML Schema type specification of contract elements.

• add binding-only elements to the TibrvMsg placed on the wire.

• place globally used contract elements in higher levels of the binding.

• change how contract elements are mapped into nested TibrvMsg structures.

Custom TibrvMsg binding elements are defined using a combination of
tibrv:msg on page 128 elements and tibrv:field on page 128 elements.

Contract elements vs. binding-only elements
A contract element is an atomic piece of a message defined in the logical
description of the interface being bound. It can be a native XML Schema type
such as xsd:int, in which case it is mapped to a TibrvMsgField. Or it can

be an instance of a complex type, in which case it is mapped to a TibrvMsg.
For example, if a message has a part that is of type xsd:string, the part is

a contract element. In contract fragment shown in Example 49 on page 114
, the message part title is a contract element that will be mapped to a

TibrvMsgField. The message part tale is a contract element that will be

mapped to a TibrvMsg that contains three TibrvMsgField entries.

Example 49. TibrvMsg Contract Elements

<types>
...
<complextType name="leda">
<sequence>
<element name="castor" type="xsd:string"/>
<element name="pollux" type="xsd:string"/>
<element name="hellen" type="xsd:boolean"/>

</sequence>
</complexType>

114

Using Tibco Rendezvous Messages

...
</types>

<message name="taleRequest">
<part name="title" type="xsd:sting"/>

</message>

<message name="taleResponse">
<part name="tale" type="xsd1:leda"/>

</message>

A binding-only element is any artifact that is added to the message as part
of the binding. The main purpose of a binding-only element is to add data
required by a native Tibco application to a message produced by an Artix
application. Binding-only elements are not passed back into an Artix
application. However, a native Tibco application will have access to
binding-only elements.

Scoping
You can add custom TibrvMsg binding elements to any of the TibrvMsg binding
elements. The order in which custom TibrvMsg binding elements are serialized
is as follows:

1. Immutable root TibrvMsg wrapper.

2. Custom elements defined in tibrv:binding are added for all messages.

3. Custom elements defined in tibrv:operation for all messages used by

the WSDL operation.

4. Custom elements defined in tibrv:input or tibrv:output for the specific

message.

If you define a binding-only element in the tibrv:binding element, it will

be the first field in the TibrvMsg generated for all messages that are generated
by the binding. If you also added a binding-only field in the tibrv:operation

for the operation getHeader, messages used by getHeader would have both

binding-only fields.

115

Scoping

Note
If you add a custom mapped contract element at any scope above
the tibrv:input or the tibrv:output level, you must be certain

that it is part of the logical messages for all elements at a lower
scope. For example, if a contract element is given a custom mapping
in a tibrv:operation, the corresponding WSDL message must be

used by both the input and output messages. If it is not an exception
will be thrown.

Casting XMLSchema types
If the default mapping between the type of a contract element and the type
of the corresponding TibrvMsgField is not appropriate, you can use the type

attribute of tibrv:field to change the type of the contract element. The

type attribute allows you to cast one native XML Schema type into another

native XML Schema type.

When Artix finds a tibrv:field element whose name attribute corresponds

to a part element defined in the contract, or an element of a complex type

used as a part, and whose type attribute is set, it will convert the value of

the message part into the specified type. For example, given the contract
fragment in Example 50 on page 116 , the value of input1would be converted

from an int to a string. So if input1 had a value of 3, the TibrvMsg binding

would turn it into the string ’3’.

Example 50. Casting in a TibrvMsg Binding

<definitions ...>
...
<message name="request">
<part name="input1" type="xsd:int"/>

</message>
<portType name="castor">
<operation name="ascend">
<input message="tns:request" name="day"/>

</operation>
...

</portType>

<binding name="castorTib" portType="castor">
<tibrv:binding/>
<operation name="ascend">

116

Using Tibco Rendezvous Messages

<tibrv:operation/>
<input message="tns:request" name="day">
<tibrv:input>
<tibrv:field name="input1" type="xsd:string"/>

</tibrv:input>
</input>

</operation>
...

</binding>
...

</definitions>

Table 19 on page 117 shows the matrix of valid casts for native XML Schema
types.

Table 19. Valid Casts for TibrvMsg Binding

Restricted SupportaFull SupportType

unsignedByte, usignedShort, unsignedInt,

unsignedLong

short, int, long, float, double,

decimal, string, boolean

byte

byteshort, usignedShort, int,

unsignedInt, long, unsignedLong,

unsignedByte

float, double, decimal, string,

boolean

byte, unsignedByte, usignedShort,

unsignedInt, unsignedLong

int, long, float, double,

decimal, string, boolean

short

int, unsignedInt, long, unsignedLong, float,

double, decimal, string, boolean

byte, unsignedByte, shortunsignedShort

byte, unsignedByte, short, usignedShort,

unsignedInt, unsignedLong, float, double

long, decimal, string, booleanint

byte, unsignedByte, short, usignedShort,

int, float, double

long, unsignedLong, decimal,

string, boolean

unsignedInt

byte, unsignedByte, short, usignedShort,

int, unsignedInt, unsignedLong, float,

double

decimal, string, booleanlong

117

Scoping

Restricted SupportaFull SupportType

byte, unsignedByte, short, usignedShort,

int, unsignedInt, long, float, double

decimal, string, booleanunsignedLong

byte, unsignedByte, short, usignedShort,

int, unsignedInt, long, unsignedLong

double, decimal, string, booleanfloat

byte, unsignedByte, short, usignedShort,

int, unsignedInt, long, unsignedLong, float

decimal, string, booleandouble

byte, unsignedByte, short, usignedShort,

int, unsignedInt, long, unsignedLong, float,

double

string, booleandecimal

byte, unsignedByte, short, usignedShort,

int, unsignedInt, long, unsignedLong, float,

double, decimal, boolean, QName, DateTime

string b

decimal, stringbyte, unsignedByte, short,

usignedShort, int, unsignedInt,

long, unsignedLong, float, double

boolean

stringQName

stringDateTime
aMust be within the appropriate value range.
bIn addition to a, the syntax must also conform

Adding binding-only elements to
a contract As mentioned in Scoping on page 115 , a binding-only element can be added

to a TibrvMsg binding at any point in its definition. Before adding a
binding-only element you should determine the proper placement for its
inclusion in the binding. For example, if you are interoperating with a Tibco
system that expects every message to have a header, you would most likely
add the header definition in the tibrv:binding element.

However, if the Tibco system required a static footer for every message, you
would need to add the footer to the tibrv:input and tibrv:output

elements. This is because of the serialization order of the elements in the
TibrvMsg binding. Elements are added to the serialized message from the
global scope to the local scope in order.

118

Using Tibco Rendezvous Messages

Binding-only elements are specified using a combination of tibrv:msg

elements and tibrv:field elements. When specifying a binding-only

element you need to specify a value for the alias attribute. The alias

attribute specifies the name of the generated TibrvMsg element. For
tibrv:field elements you also need to specify values for the type attribute

and the value attribute. The type attribute specifies the XML Schema type

of the element being added and the value attribute specifies the value to be

placed in the resulting TibrvMsgField.

Example 51 on page 119 shows a TibrvMsg binding that adds a static header
to each message that is put on the wire.

Example 51. TibrvMsg Binding with Binding-only Elements

<binding name="headedTibcoBinding" portType="mythMaker">
<tibrv:binding>
<tibrv:msg alias="header">
<tibrv:field alias="class" type="xs:string"

value="greek"/>
<tibrv:field alias="form" type="xs:string"

value="poetry"/>
</tibrv:msg>

</tibrv:binding>
<operation name="spinner">
...

</operation>
...

</binding>

A message generated by the binding in Example 51 on page 119 would have
as its first member a TibrvMsg called header as shown in
Example 52 on page 119 .

Example 52. TibrvMsg with a Header

TibrvMsg
{
TibrvMsgField
{
name = "header";
id = 0;
data.msg =
{
TibrvMsgField
{
name = "class";

119

Scoping

id = 0;
data.str = "greek";
size = sizeof(data);
count = 1;
type = TIBRVMSG_STRING;

}
TibrvMsgField
{
name = "form";
id = 0;
data.str = "poetry";
size = sizeof(data);
count = 1;
type = TIBRVMSG_STRING;

}
}
size = sizeof(data);
count = 1;
type = TIBRVMSG_MSG;

}
...
}

Placing binding-only elements
between contract elements In addition to adding extra-information at the beginning and end of messages,

you can place binding-only elements between contract elements in a message.
For example, the default mapping of the message taleResponse, defined in

Example 49 on page 114 , would produce the TibrvMsg shown in
Example 53 on page 120 .

Example 53. Default TibrvMsg Example

TibrvMsg
{
TibrvMsgField
{
name = "tale";
id = 0;
data.msg =
{
TibrvMsgField
{
name = "castor";
id = 0;
data.str = "This one is a horse trainer.";
size = sizeof(data);
count = 1;

120

Using Tibco Rendezvous Messages

type = TIBRVMSG_STRING;
}
TibrvMsgField
{
name = "pollux";
id = 0;
data.str = "This one is a boxxer.";
size = sizeof(data);
count = 1;
type = TIBRVMSG_STRING;

}
TibrvMsgField
{
name = "hellen";
id = 0;
data.str = "false";
size = sizeof(data);
count = 1;
type = TIBRVMSG_BOOL;

}
}
size = sizeof(data);
count = 1;
type = TIBRVMSG_MSG;

}
...
}

If the Tibco application you are integrating with requires an additional
TibrvMsgField or an additional TibrvMsg between pollux and hellen, as

shown in Example 54 on page 121 , you could add it to the binding by
redefining the mapping of the entire contract element to include a binding-only
element.

Example 54. TibrvMsg with added TibrvMsg Example

TibrvMsg
{
TibrvMsgField
{
name = "tale";
id = 0;
data.msg =
{
TibrvMsgField
{
name = "castor";
id = 0;

121

Scoping

data.str = "This one is a horse trainer.";
size = sizeof(data);
count = 1;
type = TIBRVMSG_STRING;

}
TibrvMsgField
{
name = "pollux";
id = 0;
data.str = "This one is a boxxer.";
size = sizeof(data);
count = 1;
type = TIBRVMSG_STRING;

}
TibrvMsgField
{
name = "clytemnestra";
id = 0;
data.msg =
{
TibrvMsgField
{
name = "father";
id = 0;
data.str = "tyndareus";
size = sizeof(data);
count = 1;
type = TIBRVMSG_STRING;

}
TibrvMsgField
{
name = "husbands";
id = 0;
data.i32 = 2;
size = sizeof(data);
count = 1;
type = TIBRVMSG_I32;

}
}
size = sizeof(data);
count = 1;
type = TIBRVMSG_MSG;

}
TibrvMsgField
{
name = "hellen";
id = 0;
data.str = "false";
size = sizeof(data);

122

Using Tibco Rendezvous Messages

count = 1;
type = TIBRVMSG_BOOL;

}
} size = sizeof(data);
count = 1;
type = TIBRVMSG_MSG;

}
...
}

To add the binding-only element clytemnestra to the default binding of the

message leda you would do the following:

1. Because the message leda is used as an output message, add a

tibrv:msg child element to the tibrv:output element.

2. Set the tibrv:msg element’s name attribute to the value of the

corresponding contract message part that uses the type leda.

3. Add a tibrv:field element as a child of the tibrv:msg element.

4. Set the new tibrv:field element’s name attribute to the value of the

corresponding element’s name attribute. In this instance, castor.

5. Repeat Step 3 on page 123 and Step 4 on page 123 for the second element,
pollux, in leda.

6. To start the binding-only TibrvMsg element, add a tibrv:msg element

after the tibrv:field element for pollux.

7. Set the new tibrv:msg element’s alias attribute to clytemnestra.

8. Add a tibrv:field element as a child of the tibrv:msg element.

9. Set the tibrv:field element’s alias attribute to father.

10. Set the tibrv:field element’s type attribute to xsd:string.

11. Set the tibrv:field element’s value attribute to tyndareus.

123

Scoping

12. Repeat Step 8 on page 123 through Step 11 on page 123 for the second
TibrvMsgField in clytemnestra.

13. On the same level as the tibrv:field elements mapping castor and

pollux, add a tibrv:field element to map helen.

Example 55 on page 124 shows a binding for the message shown in
Example 54 on page 121 .

Example 55. TibrvMsg Binding with an Added Binding-only Element

<binging name="tibBinding">
<tibrv:binding/>
<operation ...>
<tibrv:operation/>
<input ...>
<tibrv:input/>

</input>
<output name="response" message="tns:taleResponse">
<tibrv:output>
<tibrv:msg name="tale">
<tibrv:field name="castor"/>
<tibrv:field name="pollux"/>
<tibrv:msg alias="clytemnestra">
<tibrv:field alias="father" type="xsd:string"

value="tyndareus"/>
<tibrv:field alias="husbands" type="xsd:int"

value="2"/>
<tibrv:msg/>
<tibrv:field name="hellen"/>

</tibrv:msg>
</tibrv:output>

</output>
</operation>

</binding>

Creating a custom mapping for a
message defined in the contract Using the tibrv:msg elements and tibrv:field elements you can

change how contract elements are broken into TibrvMsgs and TibrvMsgFields.
For a detailed discussion of the default TibrvMsg mapping see Default
Mappings for TibrvMsg on page 104 .

You can alter this default mapping to add more wrapping to the
TibrvMsgFields. For instance, if a message consists of a single xsd:string part,
it would be mapped to a TibrvMsg similar to the one shown in
Example 56 on page 125 .

124

Using Tibco Rendezvous Messages

Example 56. TibrvMsg for a String

TibrvMsg
{
TibrvMsgField
{
name = "electra";
id = 0;
data.str = "forelorn";
size = sizeof(data);
count = 1;
type = TIBRVMSG_STRING;

}
}

However, you could specify that instead of being mapped straight to a
TibrvMsgField, it be mapped to a TibrvMsg containing a TibrvMsgField as
shown in Example 57 on page 125 .

Example 57. TibrvMsg with a TibrvMsg with a String

TibrvMsg
{
TibrvMsgField
{
name = "grandchild";
id = 0;
data.msg =
{
TibrvMsgField
{
name = "electra";
id = 0;
data.str = "forelorn";
size = sizeof(data);
count = 1;
type = TIBRVMSG_STRING;

}
size = sizeof(data);
count = 1;
type = TIBRVMSG_MSG;

}
}

To increase the depth of the wrapping of contract elements you define a
custom TibrvMsg mapping that adds the desired number of levels. Each new
level of wrapping is specified by a tibrv:msg element. To create the

125

Scoping

message shown in Example 57 on page 125 you would use a binding definition
similar to the one shown in Example 58 on page 126 .

Example 58. TibrvMsg Binding with an Extra TibrvMsg Level

<binging name="tibBinding">
<tibrv:binding/>
<operation ...>
<tibrv:operation/>
<input ...>
<tibrv:input>
<tibrv:msg alias="gradnchild">
<tibrv:field name="electra" type="xsd:string"/>

</tibrv:msg>
</input>
...

</operation>
</binding>

You can also use this feature to alter the wrapping of complex type elements.
For example, if you were using the message defined in
Example 49 on page 114 the default TibrvMsg would consist of one TibrvMsg,
leda, containing 3 fields, one for each element in the structure, wrapped by

the root TibrvMsg. You could modify the mapping of the logical message to
a TibrvMsg that resembles the one shown in Example 59 on page 126 . The
two elements castor and pollux have been wrapped in a TibrvMsg called

brothers.

Example 59. TibrvMsg with Custom TibrvMsg Wrapping

TibrvMsg
{
TibrvMsgField
{
name = "tale";
id = 0;
data.msg =
{
TibrvMsgField
{
name = "brothers"
id = 0;
data.msg =
{
TibrvMsgField
{
name = "castor";

126

Using Tibco Rendezvous Messages

id = 0;
data.str = "This one is a horse trainer.";
size = sizeof(data);
count = 1;
type = TIBRVMSG_STRING;

}
TibrvMsgField
{
name = "pollux";
id = 0;
data.str = "This one is a boxxer.";
size = sizeof(data);
count = 1;
type = TIBRVMSG_STRING;

}
}
size = sizeof(data);
count = 1;
type = TIBRVMSG_MSG;

}
TibrvMsgField
{
name = "hellen";
id = 0;
data.bool = false;
size = sizeof(data);
count = 1;
type = TIBRVMSG_BOOL;

}
}
size = sizeof(data);
count = 1;
type = TIBRVMSG_MSG;

}
...
}

Adding additional levels of wrapping within a complex type is done the same
way as it is done with a message part. You place additional tibrv:msg

elements around the contract elements you want to be at a deeper level.
Example 60 on page 127 shows a binding fragment that would create the
TibrvMsg shown in Example 59 on page 126 .

Example 60. Binding of a Complex Type with an Extra TibrvMsg Level

<binging name="tibBinding">
<tibrv:binding/>
<operation ...>

127

Scoping

<tibrv:operation/>
<input ...>
<tibrv:input>
<tibrv:msg name="tale">
<tibrv:msg alais="brothers">
<tibrv:field name="castor" type="xsd:string"/>
<tibrv:field name="pollux" type="xsd:string"/>

</tibrv:msg>
<tibrv:field name="hellen" type="xsd:boolean"/>

</tibrv:msg>
</tibrv:input>

</input>
...

</operation>
</binding>

tibrv:msg
tibrv:msg instructs the binding runtime to create an instance of a TibrvMsg.

Its attributes are described in Table 20 on page 128 .

Table 20. Attributes for tibrv:msg

PurposeAttribute

Specifies the name of the contract element from which this TibrvMsg instance gets its
value. If this attribute is not present, then the TibrvMsg is considered a binding-only
element.

name

Specifies the value of the name member of the TibrvMsg instance. If this attribute is not

specified, then the binding will use the value of the name attribute.

alias

Used only when tibrv:msg is an immediate child of tibrv:context. Specifies the

QName of the element defining the context data to use when populating the TibrvMsg.
See Adding Context Information to a TibrvMsg on page 130 .

element

Specifies the value of the id member of the TibrvMsg instance. The default value is 0.id

Used only with contract elements. The values must be identical to the values specified
in the schema definition.

minOccurs/maxOccurs

tibrv:field
tibrv:field instructs the binding to create an instance of a TibrvMsgField.

Its attributes are described in Table 21 on page 129 .

128

Using Tibco Rendezvous Messages

Table 21. Attributes for tibrv:field

PurposeAttribute

Specifies the name of the contract element from which this TibrvMsgField instance gets
its value. If this attribute is not present, then the TibrvMsgField is considered a
binding-only element.

name

Specifies the value of the name member of the TibrvMsgField instance. If this attribute

is not specified, then the binding will use the value of the name attribute.

alias

Used only when tibrv:field is an immediate child of tibrv:context. Specifies the

QName of the element defining the context data to use when populating the TibrvMsgField.
See Adding Context Information to a TibrvMsg on page 130 .

element

Specifies the value of the id member of the TibrvMsgField instance. The default value

is 0.

id

Specifies the XML Schema type of the data being used to populate the data member of

the TibrvMsgField instance. For a list of supported types, see Default Mappings for
TibrvMsg on page 104 .

type

Specifies the value inserted into the data member of the TibrvMsgField instance when

the field is a binding-only element.

value

Used only with contract elements. The values must be identical to the values specified
in the schema definition.

minOccurs/maxOccurs

129

Scoping

Adding Context Information to a TibrvMsg
Overview

By using Artix contexts, you can define binding-only data that is dynamically
generated and consumed by Artix applications. Contexts are a feature of the
Artix programming model that allow application developers to pass metadata
up and down the messaging chain. When using the TibrvMsg binding, you
can instruct your Artix application to use context data to populate outgoing
binding-only fields. On the receiving end, the TibrvMsg binding takes the
information and uses it to populate a context in the application. For information
on using contexts in Artix applications, see Developing Artix Applications with
C++ [../../prog_guide/index.htm] or Developing Artix Applications with
JAX-RPC [../../jaxrpc_pguide/index.htm].

Telling the binding to get
information from Artix contexts When defining a custom TibrvMsg binding, you use the tibrv:context

element to inform the binding that the immediate child element is populated
from an Artix context. The immediate child of a tibrv:context element

must be either a tibrv:msg element or a tibrv:field element depending

on what type of information is contained in the context.

You would use tibrv:msg for context data that is an instance of a complex

XML Schema type. You could also use tibrv:msg if you want an instance

of a native XML Schema type wrapped in a TibrvMsg. You would use
tibrv:field to insert context data that was an instance of a native XML

Schema type as a TibrvMsgField.

When a tibrv:msg element or a tibrv:field element are used to insert

context information into a TibrvMsg they use the element attribute in place

of the name attribute. The element attribute specifies the QName used to

register the context data with the Artix bus. It must correspond to a globally
defined XML Schema element. Also, when inserting context information you
cannot specify values for any other attributes except the alias attribute.

Application considerations
When using context data in your TibrvMsg binding there is some
application-specific information you need to abide by:

• At least one piece of the integrated solution must be an Artix application
to process the context data.

130

Using Tibco Rendezvous Messages

../../prog_guide/index.htm
../../prog_guide/index.htm
../../prog_guide/index.htm
../../jaxrpc_pguide/index.htm
../../jaxrpc_pguide/index.htm
../../jaxrpc_pguide/index.htm

• The Tibrv binding will automatically register, but not create an instance of,
any contexts used in its binding definition with the Artix bus. Contexts are
registered using the QName of the element specified in the contract.

• For any context data that will be sent in an input message, client-side Artix
applications are responsible for creating an instance of the appropriate
context data in the request context container before the message is handed
off to the binding.

• Context data sent from a client in an input message will be available to
server-side Artix applications in the request context once the message has
been processed by the binding.

• For any context data that will be sent in an output message, server-side
Artix applications are responsible for creating an instance of the appropriate
context data in the reply context container before the message is handed
off to the binding.

• Context data sent from a server in an output message will be available to
client-side Artix applications in the reply context once the message has
been processed by the binding.

Example
If you were integrating with a Tibco server that used a header to correlate
messages using an ASCII correlation ID, you could use the TibrvMsg binding’s
context support to implement the correlation ID on the Artix side of the
solution. The first step would be to define an XML Schema element called
corrID for the context that would hold the correlation ID. Then in your

TibrvMsg binding definition you would include a tibrv:context element in

the tibrv:binding element to specify that all messages passing through

the binding will have the header. Example 61 on page 131 shows a contract
fragment containing the appropriate entries for this scenario.

Example 61. Using Context Data in a TibrvMsg Binding

<definitions
xmlns:xsd1="http://widgetVendor.com/types/widgetTypes"
...>
<types>
<schema
targetNamespace="http://widgetVendor.com/types/widgetTypes"
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
...
<element name="corrID" type="xsd:string"/>

131

Adding Context Information to a TibrvMsg

...
</schema>

</types>
...
<portType name="correalatedService">
...
</portType>
<binding name="tibrvCorrBinding"

type="correlatedService">
<tibrv:binding>
<tibrv:context>
<tibrv:field element="xsd1:corrID"/>

</tibrv:context>
</tibrv:binding>
...

</binding>
...

</definitions>

When you develop the Artix side of the solution, you will need to supply the
logic for handling the context data stored in corrID. The context for corrID

will be registered with the Artix bus using the QName
"http://widgetVendor.com/types/widgetTypes", "corrID". If the

Artix side of your solution is a client, you will need to include logic to set an
appropriate corrID in the request context before each request and to read

each response’s corrID from the response context. If the Artix side of your

application is a server, you will need to include logic to read request’s corrID

from the request context and set an appropriate corrID in the reply context

before sending the response.

132

Using Tibco Rendezvous Messages

Part II. Transports

Understanding How Endpoints are Defined in WSDL ... 137
Using HTTP ... 139

Adding an HTTP Endpoint to a Contract .. 140
Configuring an HTTP Endpoint .. 146

Introduction .. 147
Specifying Send and Receive Timeout Limits ... 148
Specifying a Username and a Password ... 150
Configuring Keep-Alive Behavior .. 152
Specifying Cache Control Directives .. 154

Managing Cookies in Artix Clients .. 157
Using the Java Messaging System ... 159

Defining a JMS Endpoint ... 160
Introduction .. 161
Basic Endpoint Configuration .. 162
Client Endpoint Configuration .. 166
Server Endpoint Configuration ... 167
Using the Command Line Tool ... 169

Migrating to the 4.x JMS WSDL Extensions .. 171
Using ActiveMQ as Your JMS Provider ... 172

Using IIOP ... 173
Using FTP ... 177

Adding an FTP Endpoint .. 178
Coordinating Requests and Responses ... 180

Introduction .. 181
Implementing the Client’s Coordination Logic .. 182
Implementing the Server’s Coordination Logic ... 186
Using Properties to Control Coordination Behavior .. 191

Using WebSphere MQ .. 195
Adding a WebSphere MQ Endpoint ... 196
Websphere MQ Connection Settings ... 202
Specifying the WebSphere Library to Load .. 203
Using Queues on Remote Hosts ... 205
Setting a Value of the Message Descriptor’s Format Field ... 207

Using TIBCO Rendezvous .. 209
Using Tuxedo .. 215

135

136

Understanding How Endpoints are
Defined in WSDL
Endpoints represent an instantiated service. They are defined by combining a binding and the networking details
used to expose the endpoint.

Overview
An endpoint can be thought of as a physical manifestation of a service. It
combines a binding, which specifies the physical representation of the logical
data used by a service, and a set of networking details that define the physical
connection details used to make the service contactable by other endpoints.

Endpoints and services
In the same way a binding can only map a single interface, an endpoint can
only map to a single service. However, a service can be manifested by any
number of endpoints. For example, you could define a ticket selling service
that was manifested by four different endpoints. However, you could not have
a single endpoint that manifested both a ticket selling service and a widget
selling service.

The WSDL elements
Endpoints are defined in a contract using a combination of the WSDL service

element and the WSDL port element. The service element is a collection

of related port elements. The port elements define the actual endpoints.

The WSDL service element has a single attribute, name, that specifies a

unique name. The service element is used as the parent element of a

collection of related port elements. WSDL makes no specification about how

the port elements are related. You can associate the port elements in any

manner you see fit.

The WSDL port element has a single attribute, binding, that specifies the

binding used by the endpoint. The port element is the parent element of the

elements that specify the actual transport details used by the endpoint. The
elements used to specify the transport details are discussed in the following
sections.

Adding endpoints to a contract
Artix provides a number of tools for adding endpoints to your contracts. These
include:

137

• Artix Designer has wizards that lead you through the process of adding
endpoints to your contract.

• A number of the endpoint types can be generated using command line
tools.

The tools will add the proper elements to your contract for you. However, it
is recommended that you have some knowledge of how the different transports
used in defining an endpoint work.

You can also add an endpoint to a contract using any text editor. When you
hand edit a contract, you are responsible for ensuring that the contract is
valid.

Supported transports
Artix ESB endpoint definitions are built using extensions defined for each of
the transports Artix ESB C++ Runtime supports. Artix ESB C++ Runtime
supports the following transports:

• HTTP

• BEA Tuxedo

• IBM WebSphere MQ

• TIBCO Rendezvous™

• IIOP

• CORBA

• Java Messaging Service

• File Transfer Protocol

138

Understanding How Endpoints are Defined in WSDL

Using HTTP
HTTP is the standard TCP/IP-based protocol used for client-server communications on the World Wide Web.
The main function of HTTP is to establish a connection between a web browser (client) and a web server for the
purposes of exchanging files and possibly other information on the Web.

Adding an HTTP Endpoint to a Contract .. 140
Configuring an HTTP Endpoint .. 146

Introduction .. 147
Specifying Send and Receive Timeout Limits ... 148
Specifying a Username and a Password ... 150
Configuring Keep-Alive Behavior .. 152
Specifying Cache Control Directives .. 154

Managing Cookies in Artix Clients .. 157

139

Adding an HTTP Endpoint to a Contract
Overview

Artix provides three ways of specifying an HTTP endpoint’s address depending
on the payload format you are using. SOAP 1.1 has a standardized
soap:address element. SOAP 1.2 uses the wsoap12:address element. All

other payload formats use Artix’s http:address element.

As well as the standard soap:address element or http:address element,

Artix provides a number of HTTP extensions. The Artix extensions allow you
to specify a number of the HTTP port’s configuration values in the contract.

SOAP 1.1
When you are sending SOAP 1.1 messages over HTTP you must use the
soap:address element to specify the endpoint’s address. It has one attribute,

location, that specifies the endpoint’s address as a URL.

Example 62 on page 140 shows a port element used to send SOAP 1.1

messages over HTTP.

Example 62. SOAP 1.1 Port Element

<service name="artieSOAP11Service">
<port binding="artieSOAPBinding" name="artieSOAPPort">
<soap:address location="http://artie.com/index.xml">

</port>
</service>

SOAP 1.2
When you are sending SOAP 1.2 messages over HTTP you must use the
wsoap12:address element to specify the endpoint’s address. It has one

attribute, location, that specifies the endpoint’s address as a URL.

Example 62 on page 140 shows a port element used to send SOAP 1.2

messages over HTTP.

Example 63. SOAP 1.2 Port Element

<service name="artieSOAP12Service">
<port binding="artieSOAPBinding" name="artieSOAPPort">
<wsoap12:address location="http://artie.com/index.xml">

140

Using HTTP

</port>
</service>

Other payloads
When your messages are mapped to any payload format other than SOAP,
such as fixed, you must use Artix’s http:address element to specify the

endpoint’s address. Like the soap:address element, it has one attribute,

location, that specifies the endpoint’s address as a URL.

Using the command line tool
To use wsdltoservice to add an HTTP endpoint use the following options.

wsdltoservice {-transport soap/http} [-e service] [-t port] [-b binding]

[-a address] [-hssdt serverSendTimeout] [-hscvt serverReceiveTimeout]

[-hstrc trustedRootCertificates] [-hsuss useSecureSockets] [-hsct

contentType] [-hscc serverCacheControl] [-hsscse

supressClientSendErrors] [-hsscre supressClientReceiveErrors]

[-hshka honorKeepAlive] [-hsmps serverMultiplexPoolSize] [-hsrurl

redirectURL] [-hscl contentLocation] [-hsce contentEncoding] [-hsst

serverType] [-hssc serverCertificate] [-hsscc

serverCertificateChain] [-hsspk serverPrivateKey] [-hsspkp

serverPrivateKeyPassword] [-hcst clientSendTimeout] [-hccvt

clientReceiveTimeout] [-hctrc trustedRootCertificates] [-hcuss

useSecureSockets] [-hcct contentType] [-hccc clientCacheControl]

[-hcar autoRedirect] [-hcun userName] [-hcp password] [-hcat

clientAuthorizationType] [-hca clientAuthorization] [-hca accept]

[-hcal acceptLanguage] [-hcae acceptEncoding] [-hch host] [-hccn

clientConnection] [-hcck cookie] [-hcbt browserType] [-hcr referer]

[-hcps proxyServer] [-hcpun proxyUserName] [-hcpp proxyPassword]

[-hcpat proxyAuthorizationType] [-hcpa proxyAuthorization] [-hccce

clientCertificate] [-hcccc clientCertificateChain] [-hcpk

clientPrivateKey] [-hcpkp clientPrivateKeyPassword] [-o file] [-d

dir] [-L file] [[-quiet] | [-verbose]] [-h] [-v] wsdlurl

The -transport soap/http flag specifies that the tool is to generate an

HTTP service. The other options are as follows.

141

Adding an HTTP Endpoint to a Contract

Table 22. Options for Adding an HTTP Endpoint

DescriptionOption

If the payload being sent over the wire is SOAP, use -transport soap. For

all other payloads use -transport http.

-transport soap/http

Specifies the name of the generated service element.-e service

Specifies the value of the name attribute of the generated port element.-t port

Specifies the name of the binding for which the service is generated.-b binding

Specifies the value used in the address element of the port.-a address

Specifies the number of milliseconds that the server can continue to try to
send a response to the client before the connection is timed-out.

-hssdt serverSendTimeout

Specifies the number of milliseconds that the server can continue to try to
receive a request from the client before the connection is timed-out.

-hscvt serverReceiveTimeout

Specifies the full path to the X509 certificate for the certificate authority.-hstrc trustedRootCertificates

Specifies if the server uses secure sockets. Valid values are true or false.-hsuss useSecureSockets

Specifies the media type of the information being sent in a server response.-hsct contentType

Specifies directives about the behavior that must be adhered to by caches
involved in the chain comprising a request from a client to a server.

-hscc serverCacheControl

Specifies whether exceptions are thrown when an error is encountered on
receiving a client request. Valid values are true or false.

-hsscse supressClientSendErrors

Specifies whether exceptions are thrown when an error is encountered on
sending a response to a client. Valid values are true or false.

-hsscre

supressClientReceiveErrors

Specifies if the server honors client keep-alive requests. Valid values are true

or false.

-hshka honorKeepAlive

Specifies the URL to which the client request should be redirected if the URL
specified in the client request is no longer appropriate for the requested
resource.

-hsrurl redirectURL

Specifies the URL where the resource being sent in a server response is
located.

-hscl contentLocation

Specifies what additional content codings have been applied to the information
being sent by the server, and what decoding mechanisms the client therefore
needs to retrieve the information.

-hsce contentEncoding

142

Using HTTP

DescriptionOption

Specifies what type of server is sending the response to the client.-hsst serverType

Specifies the full path to the X509 certificate issued by the certificate authority
for the server.

-hssc serverCertificate

Specifies the full path to the file that contains all the certificates in the chain.-hsscc serverCertificateChain

Specifies the full path to the private key that corresponds to the X509
certificate specified by serverCertificate.

-hsspk serverPrivateKey

Specifies a password that is used to decrypt the private key.-hsspkp

serverPrivateKeyPassword

Specifies the number of milliseconds that the client can continue to try to
send a request to the server before the connection is timed-out.

-hcst clientSendTimeout

Specifies the number of milliseconds that the client can continue to try to
receive a response from the server before the connection is timed-out.

-hccvt clientReceiveTimeout

Specifies the full path to the X509 certificate for the certificate authority.-hctrc trustedRootCertificates

Specifies if the client uses secure sockets. Valid values are true or false.-hcuss ueSecureSockets

Specifies the media type of the data being sent in the body of the client
request.

-hcct contentType

Specifies directives about the behavior that must be adhered to by caches
involved in the chain comprising a request from a client to a server.

-hccc clientCacheControl

Specifies if the server should automatically redirect client requests.-hcar autoRedirect

Specifies the username the client uses to register with servers.-hcun userName

Specifies the password the client uses to register with servers.-hcp password

Specifies the authorization mechanisms the client uses when contacting
servers.

-hcat clientAuthorizationType

Specifies the authorization credentials used to perform the authorization.-hca clientAuthorization

Specifies what media types the client is prepared to handle.-hca accept

Specifies what language the client prefers for the purposes of receiving a
response

-hcal acceptLanguage

Specifies what content codings the client is prepared to handle.-hcae acceptEncoding

Specifies the internet host and port number of the resource on which the
client request is being invoked.

-hch host

143

Adding an HTTP Endpoint to a Contract

DescriptionOption

Specifies if the client will open a new connection for each request or if it will
keep the original one open. Valid values are close and Keep-Alive.

-hccn clientConnection

Specifies a static cookie to be sent to the server.-hcck cookie

Specifies information about the browser from which the client request
originates.

-hcbt browserType

Specifies the value for the client’s referring entity.-hcr referer

Specifies the URL of the proxy server, if one exists along the message path.-hcps proxyServer

Specifies the username that the client uses to be authorized by proxy servers.-hcpun proxyUserName

Specifies the password that the client uses to be authorized by proxy servers.-hcpp proxyPassword

Specifies the authorization mechanism the client uses with proxy servers.-hcpat proxyAuthorizationType

Specifies the actual data that the proxy server should use to authenticate the
client.

-hcpa proxyAuthorization

Specifies the full path to the X509 certificate issued by the certificate authority
for the client.

-hccce clientCertificate

Specifies the full path to the file that contains all the certificates in the chain.-hcccc clientCertificateChain

Specifies the full path to the private key that corresponds to the X509
certificate specified by clientCertificate.

-hcpk clientPrivateKey

Specifies a password that is used to decrypt the private key.-hcpkp clientPrivateKeyPassword

Specifies the filename for the generated contract. The default is to append
-service to the name of the imported contract.

-o file

Specifies the output directory for the generated contract.-d dir

Specifies the location of your Artix license file. The default behavior is to
check IT_PRODUCT_DIR\etc\license.txt.

-L file

Specifies that the tool runs in quiet mode.-quiet

Specifies that the tool runs in verbose mode.-verbose

Displays the tool’s usage statement.-h

Displays the tool’s version.-v

144

Using HTTP

For more information about the specific attributes and their values see the
Artix WSDL Extension Reference [../wsdl_ref/index.htm].

Example
Example 64 on page 145 shows the namespace entries you need to add to
the definitions element of your contract to use the HTTP extensions.

Example 64. Artix HTTP Extension Namespaces

<definitions
...
xmlns:http="http://schemas.iona.com/transports/http"
... >

Example 65 on page 145 shows a port element for an endpoint that sends

fixed data over HTTP.

Example 65. Generic HTTP Port

<service name="artieFixedService">
<port binding="artieFixedBinding" name="artieFixedPort">
<http:address location="http://artie.com/index.xml">

</port>
</service>

145

Adding an HTTP Endpoint to a Contract

../wsdl_ref/index.htm
../wsdl_ref/index.htm

Configuring an HTTP Endpoint
Introduction .. 147
Specifying Send and Receive Timeout Limits ... 148
Specifying a Username and a Password ... 150
Configuring Keep-Alive Behavior .. 152
Specifying Cache Control Directives .. 154

146

Using HTTP

Introduction
In addition to the http:address element or soap:address element used

to specify the URL of an HTTP endpoint, Artix uses two other elements to
define a number of other properties for HTTP endpoints: http-conf:client

and http-conf:server.

The http-conf:client element specifies properties used to configure an

HTTP client-side endpoint. The http-conf:server element specifies

properties used to configure an HTTP server-side endpoint. The properties
are specified as attributes to the elements. While the elements share many
attributes there are differences.

To use the HTTP configuration elements, you need to include the following
entry in your contract’s definition element:

xmlns:http-conf="http://schemas.iona.com/transports/http/con
figuration"

For a complete discussion of the specific attributes and their values see the
Artix WSDL Extension Reference [../wsdl_ref/index.htm].

147

Introduction

../wsdl_ref/index.htm
../wsdl_ref/index.htm

Specifying Send and Receive Timeout Limits
Overview

The most common values that needs to be configured for an HTTP endpoint
are the ones controlling how long the endpoint will spend sending a receiving
messages before issuing a timeout exception. Both client endpoints and server
endpoints have two attributes that control their timeout behaviors:
SendTimeout and RecieveTimeout.

Send timeout
The timeout limit for attempting to send a message is specified, for both the
client-side and server-side, using the SendTimeout attribute. The timeout

limit specifies the number of milliseconds an endpoint will spend attempting
to transmit a message. It has a default setting of 30000 milliseconds.

This value may need to be adjusted if you are transmitting large messages
as they take longer to send. Other factors that may effect the amount if time
needed to transmit messages over HTTP are the speed of the network, distance
between the endpoints, and the amount of traffic on the network. For example,
if you were transmitting high-resolution photographs across the Atlantic, you
may need to adjust the value of the SendTimeout attribute to 1200000 as

shown in Example 66 on page 148 .

Example 66. Setting the SendTimeout Attribute

<port ...>
<soap:address ... />
<http-conf:client SendTimeout="120000" />

</port>

Recieve timeout
The RecieveTimeout attribute specifies the amount of time an endpoint

spends between when it initially receives the beginning of a message and the
when it receives the last piece of data in the message. For example, if a client
using the default settings sends a response to a service that takes 90 seconds
to process the response, the client will not timeout. However, if it takes the
client 45 seconds to read the response from the network, it will timeout.

The causes for long read times are similar to the reasons for long send times.
Large messages, heavy network traffic, and large physical distances can all
have an impact on the amount if time it takes an HTTP endpoint to receive
a message. For example, if you are transmitting map data to a remote research
facility, you may want to specify a value of 600000 for the ReceiveTimeout

attribute of the remote endpoint as shown in Example 67 on page 149 .

148

Using HTTP

Example 67. Setting the ReceiveTimeout Attribute

<port ...>
<soap:address ... />
<http-conf:server ReceiveTimeout="600000" />

</port>

149

Specifying Send and Receive Timeout Limits

Specifying a Username and a Password
Overview

Username/password authentication is a common way of requiring clients to
identify themselves. By requiring a client to provide a username and a
password, a server can keep a record of who is accessing it and determine if
they are authorized to access the functionality requested. For example, many
Wiki applications and blogging applications require a username and password
before allowing content to be edited.

In Artix, the username and password presented by an HTTP endpoint are
specified using the following attributes of the http-conf:client element:

• UserName

• Password

Be aware that these values will be visible to anyone that has access to the
endpoint’s contract. Using this style of authentication does not provide a high
level of security. For information on using stronger security measures with
Artix see the Artix Security Guide [../security_guide/index.htm].

Setting a username
You set a username using the http-conf:client element’s UserName

attribute. The value you specify is used to populate the username field in the
HTTP header of all messages sent from the endpoint. Setting this attribute is
optional. If no value is specified, Artix does not populate the username field
of the HTTP header with a default value.

Setting a password
You set a password using the http-conf:client element’s Password

attribute. The value you specify is used to populate the password field in the
HTTP header of all messages sent from the endpoint. It is an entirely optional
attribute. If no value is specified, Artix does not populate the password field
of the HTTP header with a default value.

Relationship between the
attributes The UserName attribute and the Password attribute are independent of each

other. Although most applications that require a username also require a
password, it is not mandatory that this pattern is followed. An application
may just require a username for identification, or it may just use a password
to provide a level of exclusivity.

Similarly, Artix does not require that the two attributes be used together. If
an endpoint only needs to provide a password, you can provide a value for

150

Using HTTP

../security_guide/index.htm
../security_guide/index.htm

the Password attribute without providing a value for the UserName attribute.

Example 68 on page 151 shows an HTTP endpoint definition that specifies
just a username.

Example 68. Specifying Just a Usernamre

<port ...>
<http:address ... />
<http-conf:client UserName="Joe" />

</port>

The attributes and other security
features Specifying a username and password in an endpoint’s contract does not effect

the use of other Artix security features. You are not forced to use HTTPS when
using a username or password. Similarly, you are not stopped from
implementing your endpoint using WS-Security headers. For more details on
using Artix’s security features see the Artix Security Guide
[../../security_guide/index.htm].

151

Specifying a Username and a Password

../../security_guide/index.htm
../../security_guide/index.htm

Configuring Keep-Alive Behavior
Overview

The default behavior of Artix endpoints is to open a connection and keep it
open for as long as the client requires. However, it is not always desirable to
keep a connection open over multiple requests. This can present a security
problem. Artix endpoints can, therefore, be configured to close connections
after each request/response cycle.

Making keep-alive requests
HTTP client endpoints are configured to make keep-alive requests using the
http-conf:client element’s Conneciton attribute. This attribute has two

values: close and Keep-Alive.

Keep-Alive is the default. It specifies that the client endpoint wishes to keep

its connections open for future requests. The client will request that the server
keep the connection open. If the server does honor the request, the connection
remains open until one of the endpoints dies. If the server does not honor the
request, the client must open a new conneciton for each request.

close specifies that the client endpoint does not wish to keep its connecitons

open for future requests. The client will always open a new connection for
each request.

Example 69 on page 152 shows a port element that defines an HTTP client

endpoint that does not want to reuse connections.

Example 69. Specifying that the HTTP Connection is Closed

<port ...>
<soap:address location="http://localhost:8080" />
<http-conf:client Conneciton="close" />

</port>

Honoring keep-alive requests
HTTP server endpoints are not required to honor keep-alive requests. The
default behavior of Artix HTTP server endpoints is the accept keep-alive
requests. You can change this behavior using the http-conf:server

element’s HonorKeepAlive attribute. It has two values: false and true.

true is the default. It specifies that the server endpoint will honor all

keep-alive requests. If a client connects to the server endpoint using at least
HTTP 1.1 and requests that the connection is kept alive, the server endpoint

152

Using HTTP

is left open. The client can continue to make requests over the original
connection.

false specifies that the server endpoint rejects all keep-alive requests. Once

the endpoint responds to a request it closes the connection used for the
request/response sequence.

Example 70 on page 153 shows a port element that defines an HTTP server

endpoint that rejects keep-alive requests.

Example 70. Rejecting Keep-Alive Requests

<port ...>
<soap:address location="http://localhost:8080" />
<http-conf:server HonorKeepAlive="false" />

</port>

153

Configuring Keep-Alive Behavior

Specifying Cache Control Directives
Overview

A common method to reduce latency and control network traffic on the Web
is to use caches that sit between server endpoints and client endpoints. These
caches monitor the interactions between the endpoints. They store responses
to requests as they are passed from a server endpoint to a client endpoint.

When a cache sees a request that it recognizes, it will check its stored
responses. If a match is found, the cache will respond to the request on behalf
of the server endpoint. The server endpoint will never know the request was
made and the client endpoint will never know that it is getting a cached
response.

While this optimizes the transaction time, it does pose a few possible
problems:

• If a server endpoint collects usage statistics, it will not have accurate data.

• If the server endpoint frequently updates its data, the client endpoint may
get a response that is out of date.

HTTP provides a mechanism for specifying cache behavior using the HTTP
message header. You can configure these settings for your endpoints using
the CacheControl attribute of both the http-conf:server element and

the http-conf:client element.

Server endpoint settings
Server endpoints can tell caches how to handle the responses they issue. For
example, a server endpoint can direct caches that its responses are stale after
10 seconds. These directives are only valid for the responses issued from a
particular server endpoint.

Table 23 on page 154 shows the valid values for CacheControl in

http-conf:server.

Table 23. Settings for CacheControl on an HTTP Server Endpoint

BehaviorDirective

Caches cannot use a particular response to satisfy subsequent client requests without first
revalidating that response with the server. If specific response header fields are specified

no-cache

with this value, the restriction applies only to those header fields within the response. If no
response header fields are specified, the restriction applies to the entire response.

154

Using HTTP

BehaviorDirective

Any cache can store the response.public

Public (shared) caches cannot store the response because the response is intended for a
single user. If specific response header fields are specified with this value, the restriction

private

applies only to those header fields within the response. If no response header fields are
specified, the restriction applies to the entire response.

Caches must not store any part of response or any part of the request that invoked it.no-store

Caches must not modify the media type or location of the content in a response between a
server and a client.

no-transform

Caches must revaildate expired entries that relate to a response before that entry can be
used in a subsequent response.

must-revalidate

Means the same as must-revalidate, except that it can only be enforced on shared caches

and is ignored by private unshared caches. If using this directive, the public cache directive

must also be used.

proxy-revelidate

Specifies the maximum age, in seconds, of a cached response before it is stale.max-age

Means the same as max-age, except that it can only be enforced on shared caches and is

ignored by private unshared caches. The age specified by s-maxage overrides the age

s-maxage

specified by max-age. If using this directive, the proxy-revalidate directive must also

be used.

Specifies additional extensions to the other cache directives. Extensions might be informational
or behavioral. An extended directive is specified in the context of a standard directive, so

cache-extension

that applications not understanding the extended directive can at least adhere to the behavior
mandated by the standard directive.

Client endpoint settings
Client endpoints can tell caches what kinds of responses they will accept and
how to handle the response they receive. For example, a client endpoint can
direct caches not to store any responses that it receives. A client endpoint
can also direct caches that it will only accept a cached response that is less
than 5 seconds old.

Table 24 on page 156 shows the valid settings for CacheControl in

http-conf:client.

155

Specifying Cache Control Directives

Table 24. Settings for CacheControl on HTTP Client Endpoint

BehaviorDirective

Caches cannot use a particular response to satisfy subsequent client requests without first
revalidating that response with the server. If specific response header fields are specified with

no-cache

this value, the restriction applies only to those header fields within the response. If no response
header fields are specified, the restriction applies to the entire response.

Caches must not store any part of a response or any part of the request that invoked it.no-store

The client can accept a response whose age is no greater than the specified time in seconds.max-age

The client can accept a response that has exceeded its expiration time. If a value is assigned
to max-stale, it represents the number of seconds beyond the expiration time of a response

max-stale

up to which the client can still accept that response. If no value is assigned, it means the
client can accept a stale response of any age.

The client wants a response that will be still be fresh for at least the specified number of
seconds indicated.

min-fresh

Caches must not modify media type or location of the content in a response between a server
and a client.

no-transform

Caches should return only responses that are currently stored in the cache, and not responses
that need to be reloaded or revalidated.

only-if-cached

Specifies additional extensions to the other cache directives. Extensions might be informational
or behavioral. An extended directive is specified in the context of a standard directive, so that

cache-extension

applications not understanding the extended directive can at least adhere to the behavior
mandated by the standard directive.

156

Using HTTP

Managing Cookies in Artix Clients
Overview

Artix can send and receive cookies. It can also be configured to pass along a
static cookie with all outgoing requests. While Artix can send and receive
cookies, it is up to the application to set dynamic cookies and ensure they
are properly managed.

Sending static cookies
If you want your client to always attach a static cookie to its requests, you
can specify this in the client’s contract. The cookie is specified using the
cookie attribute of the http-conf:client element.

How Artix processes cookies
Artix handles cookies using its context mechanism. For an HTTP application
there are two contexts. One context is for incoming messages and the other
is for outgoing messages. Figure 1 on page 157 shows how an Artix client
manages cookies.

Figure 1. Artix Cookie Processing

157

Managing Cookies in Artix Clients

When a client makes a request it can save a cookie into its outbound context
and it will be sent with all future requests. If a client receives a cookie from
a service, that cookie is stored in the client’s inbound context.

The received cookie does not have to be inspected. In order to inspect the
contents of a received cookie, you will need to add the proper logic to your
client using the Artix context APIs.

The received cookie is not automatically transferred to the out bound context.
If you client needs to pass a received cookie along with future requests, you
will need to add logic to your client so that it will transfer the received cookie
from the client’s inbound context to the outbound context.

More information
For information about setting cookies and using Artix contexts see the relevant
programming guide:

• Developing Artix Applications in C++ [../../prog_guide/index.htm]

• Developing Artix Applications in JAX-RPC [../../jaxrpc_pguide/index.htm]

158

Using HTTP

../../prog_guide/index.htm
../../prog_guide/index.htm
../../jaxrpc_pguide/index.htm
../../jaxrpc_pguide/index.htm

Using the Java Messaging System
JMS is a standards based messaging system that is widely used in enterprise Java applications.

Defining a JMS Endpoint ... 160
Introduction .. 161
Basic Endpoint Configuration .. 162
Client Endpoint Configuration .. 166
Server Endpoint Configuration ... 167
Using the Command Line Tool ... 169

Migrating to the 4.x JMS WSDL Extensions .. 171
Using ActiveMQ as Your JMS Provider ... 172

159

Defining a JMS Endpoint
Introduction .. 161
Basic Endpoint Configuration .. 162
Client Endpoint Configuration .. 166
Server Endpoint Configuration ... 167
Using the Command Line Tool ... 169

160

Using the Java Messaging System

Introduction
Overview

Artix provides a transport plug-in that enables endpoints to use Java Messaging
System (JMS) queues and topics. One large advantage of this is that Artix
allows C++ applications to interact directly with Java applications over JMS.

Artix’s JMS transport plug-in uses the Java Naming and Directory Interface
(JNDI) to locate and obtain references to the JMS provider. Once Artix has
established a connection to a JMS provider, Artix supports the passing of
messages packaged as either a JMS ObjectMessage or a JMS TextMessage.

Message formatting
The JMS transport takes messages and packages them into either a JMS
ObjectMessage or a TextMessage. When a message is packaged as an

ObjectMessage the message’s data, including any format-specific information,

is serialized into a byte[] and placed into the JMS message body. When a
message is packaged as a TextMessage, the message’s data, including any

format-specific information, is converted into a string and placed into the JMS
message body.

When a message sent by Artix is received by a JMS application, the JMS
application is responsible for understanding how to interpret the message and
the formatting information. For example, if the Artix contract specifies that
the binding used for a JMS endpoint is SOAP, and the messages are packaged
as a TextMessage, the JMS application will receive a string containing all of

the SOAP envelope information. For a message encoded using the fixed
binding, the message will contain no formatting information, simply a string
of characters, numbers, and spaces.

Namespace
The WSDL extensions used to define a JMS endpoint are specified in the
namespace http://celtix.objectweb.org/transports/jms. To use

the JMS extensions you will need to add the line shown
Example 71 on page 161 to the definitions element of your contract.

Example 71. JMS Extension’s Namespace

xmlns:jms="http://celtix.objectweb.org/transports/jms"

161

Introduction

Basic Endpoint Configuration
Overview

JMS endpoints need to know certain basic information about how to establish
a connection to the proper destination. This information is provided using the
jms:address element and its child the jms:JMSNamingProperty element.

The jms:address element’s attributes specify the information needed to

identify the JMS broker and the destination. The jms:JMSNamingProperty

element specifies the Java properties used to connect to the JNDI service.

address element
The basic configuration for a JMS endpoint is done by using a jms:address

element in your service’s port element. The jms:address element uses the

attributes described in Table 25 on page 162 to configure the connection to
the JMS broker.

Table 25. JMS Port Attributes

DescriptionAttribute

Specifies if the JMS destination is a JMS queue or a JMS topic.destinationStyle

Specifies the JNDI name of the JMS connection factory to use when connecting
to the JMS destination.

jndiConnectionFactoryName

Specifies the JNDI name of the JMS destination to which requests are sent.jndiDestinationName

Specifies the JNDI name of the JMS destinations where replies are sent. This
attribute allows you to use a user defined destination for replies. For more
details see Using a named reply destination on page 163.

jndiReplyDestinationName

Specifies the username to use when connecting to a JMS broker.connectionUserName

Specifies the password to use when connecting to a JMS broker.connectionPassword

JMSNamingProperties element
To increase interoperability with JMS and JNDI providers, the jms:address

element has a child element, jms:JMSNamingProperty, that allows you to

specify the values used to populate the properties used when connecting to
the JNDI provider. The jms:JMSNamingProperty element has two attributes:

name and value. The name attribute specifies the name of the property to

set. The value attribute specifies the value for the specified property.

The following is a list of common JNDI properties that can be set:

162

Using the Java Messaging System

• java.naming.factory.initial

• java.naming.provider.url

• java.naming.factory.object

• java.naming.factory.state

• java.naming.factory.url.pkgs

• java.naming.dns.url>

• java.naming.authoritative

• java.naming.batchsize

• java.naming.referral

• java.naming.security.protocol

• java.naming.security.authentication

• java.naming.security.principal

• java.naming.security.credentials

• java.naming.language

• java.naming.applet

For more details on what information to use in these attributes, check your
JNDI provider’s documentation and consult the Java API reference material.

Using a named reply destination
By default Artix endpoints using JMS create a temporary queue for the
response queue. You can change this behavior by setting the
jndiReplyDestinationName attribute in the endpoint's contract. An Artix

client endpoint will listen for replies on the specified destination and it will
specify the value of the attribute in the ReplyTo field of all outgoing requests.

An Artix service endpoint will use the value of the
jndiReplyDestinationName attribute as the location for placing replies if

there is no destination specified in the request’s ReplyTo field.

Examples
Example 72 on page 164 shows an example of an Artix JMS port specification
that uses dynamic queues.

163

Basic Endpoint Configuration

Example 72. Artix JMS Port with DynamicQueues

<service name="JMSService">
<port binding="tns:Greeter_SOAPBinding" name="SoapPort">
<jms:address jndiConnectionFactoryName="ConnectionFactory"

jndiDestinationName="dynamicQueues/test.artix.jmstransport">
<jms:JMSNamingProperty name="java.naming.factory.initial"

value="org.activemq.jndi.ActiveMQInitialContextFactory" />
<jms:JMSNamingProperty name="java.naming.provider.url" value="tcp://localhost:61616"

/>
</jms:address>

</port>
</service>

Example 73 on page 164 shows an example of an Artix JMS port specification
that does not use dynamic queues.

Example 73. Artix JMS Port with Non-dynamic Queues

<service name="JMSService">
<port binding="tns:Greeter_SOAPBinding" name="SoapPort">
<jms:address jndiConnectionFactoryName="ConnectionFactory"

jndiDestinationName="MyQueue" destinationStyle="queue">
<jms:JMSNamingProperty name="java.naming.factory.initial"

value="org.activemq.jndi.ActiveMQInitialContextFactory" />
<jms:JMSNamingProperty name="java.naming.provider.url" value="tcp://localhost:61616"

/>
<jms:JMSNamingProperty name="queue.MyQueue" value="example.MyQueue" />

</jms:address>
</port>

</service>

Alternate InitialContextFactory
settings for using SonicMQ If you are using Sonic MQ, you will need to use an alternative method of

specifying the InitialContextFactory value. You specify a colon-separated

list of package prefixes to force the JNDI service to instantiate a context factory
with the class name
com.iona.jbus.jms.naming.sonic.sonicURLContextFactory to perform

lookups. This is shown in Example 74 on page 164.

Example 74. JMS Port with Alternate InitialContextFactory Specification

<service name="JMSService">
<port binding="tns:Greeter_SOAPBinding" name="SoapPort">
<jms:address jndiConnectionFactoryName="sonic:jms/queue/connectionFactory"

jndiDestinationName="sonic:jms/queue/helloWorldQueue">
<jms:JMSNamingProperty name="java.naming.factory.initial"

164

Using the Java Messaging System

value="com.iona.jbus.jms.naming.sonic.sonicURLContextFactory"
/>

<jms:JMSNamingProperty name="java.naming.provider.url" value="tcp://localhost:61616"
/>

</jms:address>
</port>

</service>

Using the contract in Example 74 on page 164, Artix would use the URL
sonic:jms/queue/helloWorldQueue to get a reference to the desired

queue. Artix would be handed a reference to a queue named
helloWorldQueue if the JMS broker has such a queue.

165

Basic Endpoint Configuration

Client Endpoint Configuration
The client endpoint’s behaviors are configured using the jms:client element.

The jms:client element is a child of the WSDL port element and has one

attribute:

Table 26. Attributes for Configuring a JMS Client Endpoint

DescriptionAttribute

Specifies how the message data will be packaged as a JMS message. text specifies that the

data will be packaged as a TextMessage. binary specifies that the data will be packaged as

an ObjectMessage.

messageType

This element is optional. The default behavior of a JMS client endpoint is to
send text messages.

166

Using the Java Messaging System

Server Endpoint Configuration
Overview

JMS server endpoints have a number of behaviors that are configurable in
the contract. These include if the server uses durable subscriptions, if the
server uses local JMS transactions, and the message selectors used by the
endpoint.

server element
Server endpoint behaviors are configured using the jms:server element.

The jms:server element is a child of the WSDL port element and has the

following attributes:

Table 27. Attributes for COnfiguring a JMS Server Endpoint

DescriptionAttribute

Specifies whether JMS will use the message ID to correlate messages. The
default is false.

useMessageIDAsCorrealationID

Specifies the name used to register a durable subscription. See Setting up
durable subscriptions on page 167.

durableSubscriberName

Specifies the string value of a message selector to use. See Using message
selectors on page 167.

messageSelector

Specifies whether the local JMS broker will create transactions around
message processing. The default is false. See Using reliable

messaging on page 167.

transactional

The jms:server element and all of its attributes are optional.

Setting up durable subscriptions
If you want to configure your server to use durable subscriptions, you can set
the optional durableSubscriberName attribute. The value of the attribute

is the name used to register the durable subscription.

Using message selectors
If you want to configure your server to use a JMS message selector, you can
set the optional messageSelector attribute. The value of the attribute is the

string value of the selector. For more information on the syntax used to specify
message selectors, see the JMS 1.1 specification.

Using reliable messaging
If you want your server to use the local JMS broker’s transaction capabilities,
you can set the optional transactional attribute to true.

167

Server Endpoint Configuration

When the transactional attribute is set, an Artix server’s JMS transport

layer will begin a transaction when it pulls a request from the queue. The
server will then process the request and send the response back to the JMS
transport layer. Once the JMS transport layer has successfully placed the
response on the response queue, the transport layer will commit the
transaction. So, if the Artix server crashes while processing a request or the
transport layer is unable to send the response, the JMS broker will hold the
request in the queue until it is successfully processed.

In cases where Artix is acting as a router between JMS and another transport,
setting the transactional attribute will ensure that the message is delivered

to the second server. The JMS portion of the router will not commit the
message until the message has been successfully consumed by the outbound
transport layer. If an exception is thrown during the consumption of the
message, the JMS transport will rollback the message, pull it from the queue
again, and attempt to resend it.

168

Using the Java Messaging System

Using the Command Line Tool
To use wsdltoservice to add a JMS endpoint use the tool with the following
options:

wsdltoservice {-transport jms} [-e service] [-t port] [-b binding] [-o

file] [-d dir] [-jnp propName:propVal...] [-jds [queuetopic]] [-jnf

connectionFactoryName] [-jdn destinationName] [-jrdn

replyDesinationName] [-jcun username] [-jcp password] [-jmt

[textbinar]] [-jms messageSelector] [-jumi [truefalse]] [-jtr

[truefalse]] [-jdsn durableSubscriber] [-L file] [[-quiet] | [-verbose]]

[-h] [-v] wsdlurl

The -transport jms flag specifies that the tool is to generate a JMS

endpoint. The other options are as follows:

Table 28. Command Line Options for Creating a JMS Endpoint

DescriptionOption

Specifies the name of the generated service element.-e service

Specifies the value of the name attribute of the generated port element.-t port

Specifies the name of the binding for which the service is generated.-b binding

Specifies the filename for the generated contract. The default is to append
-service to the name of the imported contract.

-o file

Specifies the output directory for the generated contract.-d dir

Specifies any optional Java properties to use in connecting to the JNDI provider.
This information is used to populate a JMSNamingProperty element. You can

use this flag multiple times.

-jnp propName:propVal

Specifies if the JMS destination is a JMS queue or a JMS topic.-jds (queue/topic)

Specifies the JNDI name bound to the JMS connection factory to use when
connecting to the JMS destination.

-jfn connectionFactoryName

Specifies the JNDI name of the JMS destination to which Artix connects.-jdn destinationName

Specifies the JNDI name of the JMS destination used for replies.-jrdn replyDestinationName

169

Using the Command Line Tool

DescriptionOption

Specifies the username used to connect to the JMS broker.-jcun username

Specifies the password used to connect to the JMS broker.-jcp password

Specifies how the message data will be packaged as a JMS message.-jmt (text/binary)

Specifies a message selector to use when pulling messages from the JMS
destination.

-jms messageSelector

Specifies if the JMS message id should be used as the correlation id.-jumi (true/false)

Specifies if the services uses local JMS transactions when processing requests.-jtr (true/false)

Specifies the name of the durable subscription to use.-jdsn durableSubscriber

Specifies the location of your Artix license file. The default behavior is to check
IT_PRODUCT_DIR\etc\license.txt.

-L file

Specifies that the tool runs in quiet mode.-quiet

Specifies that the tool runs in verbose mode.-verbose

Displays the tool’s usage statement.-h

Displays the tool’s version.-v

For more information about the specific attributes and their values see the
Artix WSDL Extension Reference [../../wsdl_ref/index.htm].

170

Using the Java Messaging System

../../wsdl_ref/index.htm
../../wsdl_ref/index.htm

Migrating to the 4.x JMS WSDL Extensions
Overview

The WSDL extensions used to configure a JMS endpoint were modified in the
4.0 release of Artix. This update makes Artix JMS endpoint definitions
compatible with Celtix JMS endpoints. To make the transition as smooth as
possible, Artix includes an XSLT script that can be used to automatically
migrate an old JMS endpoint definition to a new JMS endpoint definition.

XSLT script
The XSLT script used to migrate old JMS endpoint definitions to 4.x JMS
endpoints is called oldjmswsdl_to_newjmswsdl.xsl and it is located in

IntallDir/Artix/Version/etc/xslt/utilities/jms. It will take any Artix

contract containing a pre-4.x Artix JMS endpoint definition as input and output
an equivalent Artix contract containing a 4.x Artix JMS endpoint.

Using the script with Artix
You can use Artix’s XSLT processor to convert your JMS endpoints. To do so
you run the Artix xslttransform command line tool using the options shown
in Example 75 on page 171.

Example 75. Running the Transformer with the JMS Migration Script

xslttransform -XSL oldjmswsdl_to_newjmswsdl.xsl -IN oldWsdl.wsdl -OUT
newWsdl.wsdl

The XSLT processor will read the contract in oldWsdl.wsdl, transform the

old JMS endpoint to a new JMS endpoint, and save the resulting contract in
newWsdl.wsdl.

171

Migrating to the 4.x JMS WSDL Extensions

Using ActiveMQ as Your JMS Provider
Overview

Artix installs ActiveMQ, an open source JMS implementation, for you to use
as a possible messaging system. All of the Artix JMS demos are configured
to use ActiveMQ, so to run the demos you must start the ActiveMQ broker.

Setting the CLASSPATH
When you set your Artix environment using the artix_env script, the ActiveMQ
jars are automatically added to your CLASSPATH.

If you don not want to set the Artix environment before starting ActiveMQ you
need to add
InstallDir/lib/activemq/activemq/3.2.1/activemq-rt.jar to your

CLASSPATH.

Staring the broker
To start the ActiveMQ JMS broker run the following command:

InstallDir/Artix/Version/bin/start_jms_broker

Stopping the broker
To shutdown the ActiveMQ JMS broker run the following command:

InstallDir/Artix/Version/bin/jmsbrokerinteract -sd

Security
By default, ActiveMQ’s security features are turned off. To turn on ActiveMQ’s
security features see the ActiveMQ documentation.

More information
For more information on using ActiveMQ see the project’s homepage at
http://activemq.org [http://activemq.org/].

172

Using the Java Messaging System

http://activemq.org/
http://activemq.org/

Using IIOP
Using IIOP to send non-CORBA formats allows you to take advantages of CORBA services and QoS without using
CORBA applications.

Overview
Artix allows you to use IIOP as a generic transport for sending data using any
of the payload formats. When using IIOP as a generic transport, you define
your endpoint’s address using aniiop:address element. The benefit of using

the generic IIOP transport is that it allows you to use CORBA services without
requiring your applications to be CORBA applications. For example, you could
use an IIOP tunnel to send fixed format messages to an endpoint whose
address is published in a CORBA naming service.

Namespace
The namespace under which the IIOP extensions are defined is
http://schemas.iona.com/bindings/iiop_tunnel. If you are going to

add an IIOP port by hand you will need to add this to your contract’s
definition element.

IIOP address specification
The IOR, or address, of the IIOP port is specified using the iiop:address

element. You have four options for specifying IORs in Artix contracts:

• Specify the object’s IOR directly in the contract, using the stringified IOR
format:

IOR:22342....

• Specify a file location for the IOR, using the following syntax:

file:///file_name

Note
The file specification requires three backslashes (///).

• Specify that the IOR is published to a CORBA name service, by entering
the object’s name using the corbaname format:

corbaname:rir/NameService#object_name

173

For more information on using the name service with Artix see Artix for
CORBA [../../corba_ws/index.htm].

• Specify the IOR using corbaloc, by specifying the port at which the service

exposes itself, using the corbaloc syntax.

corbaloc:iiop:host:port/service_name

When using corbaloc, you must be sure to configure your service to start

up on the specified host and port.

Specifying type of payload
encoding The IIOP transport can perform codeset negotiation on the encoded messages

passed through it if your CORBA system supports it. By default, this feature
is disabled so that the agents sending the message maintain complete control
over codeset conversion. If you wish to enable automatic codeset negotiation
use the following element:

<iiop:payload type="string"/>

Specifying POA policies
Using the optional iiop:policy element, you can describe the POA polices

Artix will use when creating the IIOP endpoint. These policies include:

• The POA name

• Persistence

• The system ID assigned to the POA

Setting these policies lets you exploit some of the enterprise features of IONA’s
Orbix 6.x, such as load balancing and fault tolerance, when deploying an
Artix endpoints using the IIOP transport. For information on using these
advanced CORBA features, see the Orbix documentation.

POA name
Artix POAs are created with the default name of WS_ORB. To specify a name

for the POA that Artix creates for an IIOP endpoint, you use the following:

<iiop:policy poaname="poa_name"/>

174

Using IIOP

../../corba_ws/index.htm
../../corba_ws/index.htm
../../corba_ws/index.htm

The POA name is used for setting certain policies, such as direct persistence
and well-known port numbers in the CORBA configuration.

Persistence
By default Artix POAs have a persistence policy of false. To set the POA’s

persistence policy to true, use the following:

<iiop:policy persistent="true"/>

ID Assignment
By default Artix POAs are created with a SYSTEM_ID policy, meaning that

their ID is assigned by Artix. To specify that the IIOP endpoint’s POA should
use a user-assigned ID, use the following:

<corba:policy serviceid="POAid"/>

This creates a POA with a USER_ID policy and an object id of POAid.

Using the command line tool
To use wsdltoservice to add an IIOP endpoint use the tool with the following
options.

wsdltoservice {-transport iiop} [-e service] [-t port] [-b binding] [-a

address] [-poa poaName] [-sid serviceId] [-pst persists] [-paytype

payload] [-o file] [-d dir] [-L file] [[-quiet] | [-verbose]] [-h] [-v] wsdlurl

The -transport iiop flag specifies that the tool is to generate an IIOP

endpoint. The other options are as follows.

Specifies the name of the generated service element.-e service

Specifies the value of the name attribute of the

generated port element.

-t port

Specifies the name of the binding for which the
endpoint is generated.

-b binding

Specifies the value used in the generated
iiop:address elements.

-a address

Specifies the value of the POA name policy.-poa poaName

Specifies the value of the ID assignment policy.-sid serviceId

175

Specifies the value of the persistence policy. Valid
values are true and false.

-pst persists

Specifies the type of data being sent in the message
payloads. Valid values are string, octets, imsraw,

imsraw_binary, cicsraw, and cicsraw_binary.

-paytype payload

Specifies the filename for the generated contract. The
default is to append -service to the name of the

imported contract.

-o file

Specifies the output directory for the generated contract.-d dir

Specifies the location of your Artix license file. The
default behavior is to check
IT_PRODUCT_DIR\etc\license.txt.

-L file

Specifies that the tool runs in quiet mode.-quiet

Specifies that the tool runs in verbose mode.-verbose

Displays the tool’s usage statement.-h

Displays the tool’s version.-v

For more information about the specific attributes and their values see the
Artix WSDL Extension Reference [../../wsdl_ref/index.htm].

Example
For example, an IIOP endpoint definition for the personalInfoLookup binding

would look similar to Example 76 on page 176:

Example 76. CORBA personalInfoLookup Port

<service name="personalInfoLookupService">
<port name="personalInfoLookupPort"

binding="tns:personalInfoLookupBinding">
<iiop:address location="file:///objref.ior"/>
<iiop:policy persistent="true"/>
<iiop:policy serviceid="personalInfoLookup"/>

</port>
</service>

Artix expects the IOR for the IIOP endpoint to be located in a file called
objref.ior, and creates a persistent POA with an object id of personalInfo

to configure the IIOP endpoint.

176

Using IIOP

../../wsdl_ref/index.htm
../../wsdl_ref/index.htm

Using FTP
Artix allows endpoints to communicate using a remote FTP server as an intermediary persistent datastore. When
using the FTP transport, client endpoints will put request messages into a folder on the FTP server and then
begin scanning the folder for a response. Server endpoints will scan the request folder on the FTP server for
requests. When a request is found, the service endpoint will get it and process the request. When the service
endpoint finishes processing the request, it will post the response back to the FTP server. When the client sees
the response, it will get the response from the FTP server.

Because of the file-based nature of the FTP transport and the fact that endpoints do not have a direct connection
to each other, the FTP transport places the burden of implementing a request/response coordination scheme on
the developer. The FTP transport also requires that you implement the logic determining how the request and
response messages are cleaned-up.

Adding an FTP Endpoint .. 178
Coordinating Requests and Responses ... 180

Introduction .. 181
Implementing the Client’s Coordination Logic .. 182
Implementing the Server’s Coordination Logic ... 186
Using Properties to Control Coordination Behavior .. 191

177

Adding an FTP Endpoint
Overview

You define an FTP endpoint using WSDL extensions that are placed within a
the port element of a contract. The WSDL extensions provided by Artix allow

you to specify a number of properties for establishing the FTP connection. In
addition, they allow you to specify some of the properties used to define the
naming properties for the files used by the transport.

Namespace
To use the FTP transport, you need to describe the endpoint using the FTP
WSDL extensions in the physical part of an Artix contract. The extensions
used to describe a FTP port are defined in the following
namespace:xmlns:ftp="http://schemas.iona.com/transports/ftp"

This namespace will need to be included in your ontract's definitions

element.

Defining the connection details
The connection details for the endpoint are defined in an ftp:port element.

The ftp:port element has two attributes: host and port.

• The host attribute is required. It specifies the name of the machine hosting

the FTP server to which the endpoint connects.

• The port attribute is optional. It specifies the port number on which the

FTP server is listening. The default value is 21.

Example 77 on page 178 shows an example of a port element defining an

FTP endpoint.

Example 77. Defining an FTP Endpoint

<port name="FTPendpoint">
<ftp:port host="Dauphin" port="8080" />

</port>

In addition to the two required attributes, the ftp:port element has the

following optional attributes:

178

Using FTP

DescriptionAttribute

Specifies the location on the FTP server where
requests are stored. The default is /.

requestLocation

Specifies the location on the FTP server where replies
are stored. The default is /.

replyLocation

Specifies the connection mode used to connect to the
FTP daemon. Valid values are passive and active.

The default is passive.

connectMode

Specifies the interval, in seconds, at which the request
and reply locations are scanned for updates. The
default is 5.

scanInterval

Specifying optional namimg
properties You can specify optional naming policies using an ftp:properties element.

The ftp:properties element is a container for a number ftp:property

elements. The ftp:property elements specify the individual naming

properties. Each ftp:property element has two attributes, name and value,

that make up a name-value pair that are used to provide information to the
naming implementation used by the endpoint.

The default naming implementation provided with Artix has two properties:

Determines if the endpoint uses a static, non-unique,
naming scheme for its files. Valid values are true

and false. The default is true.

staticFilemanes

Specifies the prefix to use for file names when
staticFilenames is set to false.

requestFilenamePrefix

For information on defining optional properties see Using Properties to Control
Coordination Behavior on page 191.

179

Adding an FTP Endpoint

Coordinating Requests and Responses
Introduction .. 181
Implementing the Client’s Coordination Logic .. 182
Implementing the Server’s Coordination Logic ... 186
Using Properties to Control Coordination Behavior .. 191

180

Using FTP

Introduction
Overview

FTP requires that messages are written out to a file system for retrieval. This
poses a few problems. The first is determining a naming scheme that is agreed
upon by all endpoints that use a common location on an FTP server. Client
endpoints and the server endpoints they are making requests on need a
method to coordinate requests and responses. This includes knowing which
messages are intended for which endpoint.

The other problem posed by using a file system as a transport is knowing
when a message can be cleaned-up. If a message is cleaned-up too soon,
there is no way to re-read the message if something goes wrong while it is
being processed. If a message is not cleaned-up soon enough, it is possible
that the message will be processed more than once.

Artix requires that you implement the logic used to determine the file naming
and clean-up logic used by your FTP endpoints. This is done by implementing
four Java interfaces: two for the client-side and two for the server-side.

Default implementation
Artix provides a default implementation for coordinating requests and
responses. The default implementation enables clients and servers to interact
as if they are using a standard RPC mechanism. Message names are generated
at runtime following a pattern based on the server endpoint’s service name.
Request messages are cleaned-up by the server endpoint when the
corresponding response is written to the file system. Responses are cleaned-up
by the client endpoint when they are read from the file system.

181

Introduction

Implementing the Client’s Coordination Logic
Overview

The client-side of the coordination implementation is made up of two parts:

• The filename factory is responsible for generating the filenames used for
storing request messages on the FTP server and determining the name of
the associated replies.

• The reply lifecycle policy is responsible for cleaning-up reply files.

The filename factory
The client-side filename factory is created by implementing the interface
com.iona.jbus.transports.ftp.policy.client.FilenameFactory.

Example 78 on page 182 shows the interface.

Example 78. Client-Side Filename Factory Interface

package com.iona.jbus.transports.ftp.policy.client;

import javax.xml.namespace.QName;
import com.iona.webservices.wsdl.ext.ftp.FTPProperties;

public interface FilenameFactory
{
void initialize(QName service, String port,

FTPProperties properties) throws Exception;

String getNextRequestFilename() throws Exception;

String getRequestIncompleteFilename(String requestFilename)
throws Exception;

String getReplyFilename(String requestFilename)
throws Exception;

FilenameFactoryPropertyMetaData[] getPropertiesMetaData();
};

The interface has four methods to implement:

initialize()

initialize() is called by the transport when it is loaded by the bus.

It recieves the following:

182

Using FTP

• the QName of the service the client on which the client wants to make
requests.

• the value of the name attribute for the port element defining the

endpoint implementing the service.

• an array containing any properties you specified as ftp:property

elements in your client’s contract.

This method is used to set up any resources you need to implement
naming scheme used by the client-side endpoints. For example, the
default implementation uses initialize() to do the following:

1. Determine if the user wants to use static filenames based on an
ftp:property element in the contract. For more information see

Using Properties to Control Coordination Behavior on page 191.

2. If so, it generates a static filename prefix for the requests.

3. If not, it uses the user supplied filename prefix for the requests.

getNextRequestFilename()

getNextRequestFilename() is called by the transport each time a

request is sent out. It returns a string that the transport will use as the
filename for the completed request message. For example, the default
implementation creates a filename by appending a string representing
the server endpoint’s system address and the system time, in hexcode,
to the prefix generated in initialize().

getRequestIncompleteFilename()

getRequestIncompleteFilename() is called by the transport each

time a request is sent out. It returns a string that the transport will use
as the filename for the request message as it is being transmitted. For
example, the default implementation creates a filename by appending a
the request filename with _incomplete.

getReplyFilename()

getReplyFilename() is called by the transport when it starts listening

for a response to a two-way request. It recieves a string representing the
name of the request’s filename. It returns the name of the file that will
contain the response to the specified request. For example, the default

183

Implementing the Client’s Coordination Logic

implementation generates the reply filename by appending _reply to

the request filename.

The reply lifecycle policy
The reply lifecycle policy is created by implementing the
com.iona.jbus.transports.ftp.policy.client.ReplyFileLifecycle

interface. Example 79 on page 184 shows the interface.

Example 79. Reply Lifecycle Interface

package com.iona.jbus.transports.ftp.policy.client;

public interface ReplyFileLifecycle
{
boolean shouldDeleteReplyFile(String fileName)
throws Exception;

String renameReplyFile(String fileName) throws Exception;
}

The interface has two methods to implement:

shouldDeleteReplyFile()

shouldDeleteReplyFile() is called by the transport after it completes

reading in a reply. It recieves the filename of the reply and returns a
boolean stating if the file should be deleted. If
shouldDeleteReplyFile() returns true, the transport deletes the

reply file. If it returns false, the transport renames reply file based on

the logic implemented in renameReplyFile().

renameReplyFile()

renameReplyFile() is called by the transport if

shouldDeleteReplyFile() returns false. It receives the original name

of the reply file. It returns a string the contains the filename the transport
uses to rename the reply file.

Configuring the client's
coordination logic If you choose to implement your own coordination logic for an FTP client

endpoint, you need to configure the endpoint to load the your implementation
classes. This is done by adding two configuration values to the endpoint’s
Artix configuration scope:

184

Using FTP

• plugins:ftp:policy:client:filenameFactory specifies the name of

the class implementing the client’s filename factory.

• plugins:ftp:policy:client:replyFileLifecycle specifies the name

of the class implementing the client’s reply lifecycle policy.

Both classes need to be on the endpoint’s classpath.

Example 80 on page 185 shows an example of an Artix configuration scope
that specifies an FTP client endpoint’s coordination policies.

Example 80. Configuring an FTP Client Endpoint

ftp_client
{
plugins:ftp:policy:client:filenameFactory="demo.ftp.policy.client.myFilenameFactory";
plugins:ftp:policy:client:replyFileLifecycle="demo.ftp.policy.client.myReplyFileLifecycle";

};

For more information on configuring Artix see Configuring and Deploying Artix
Solutions, C++ Runtime [../../deploy/cpp/index.htm].

185

Implementing the Client’s Coordination Logic

../../deploy/cpp/index.htm
../../deploy/cpp/index.htm
../../deploy/cpp/index.htm

Implementing the Server’s Coordination Logic
Overview

The server-side of the coordination implementation is made up of two parts:

• The filename factory is responsible for identifying which requests to dispatch
and how to name reply messages.

• The request lifecycle policy is responsible for cleaning-up request files.

The filename factory
The server-side filename factory is created by implementing the interface
com.iona.jbus.transports.ftp.policy.server.FilenameFactory.

Example 81 on page 186 shows the interface.

Example 81. Server-Side Filename Factory Interface

package com.iona.jbus.transports.ftp.policy.server;

import javax.xml.namespace.QName;

import com.iona.jbus.Bus;
import com.iona.transports.ftp.Element;
import com.iona.webservices.wsdl.ext.ftp.FTPProperties;

public interface FilenameFactory
{
void initialize(Bus bus, QName service, String port,

FTPProperties properties) throws Exception;

String getRequestFilenamesRegEx() throws Exception;

Element[] updateRequestFiles(Element[] inElements)
throws Exception;

String getReplyIncompleteFilename(String requestFilename)
throws Exception;

String getReplyFilename(String requestFilename)
throws Exception;

FilenameFactoryPropertyMetaData[] getPropertiesMetaData();
}

The interface has six methods to implement:

186

Using FTP

initialize()

initialize() is called by the transport when it is activiated by the

bus. It recieves the following:

• the bus that has activated the transport.

• the QName of the service to which the endpoint is implementing.

• the value of the name attribute for the port element defining the

endpoint’s connection details.

• an array containing any properties you specified as ftp:property

elements in your server endpoint’s contract.

This method is used to set up any resources you need to implement
naming scheme used by the server-side endpoints. For example, the
default implementation uses initialize() to do the following:

1. Determine if the user wants to use static filenames based on an
ftp:property element in the contract. For more information see

Using Properties to Control Coordination Behavior on page 191.

2. If so, it generates a static filename prefix for the requests.

3. If not, it uses the user supplied filename prefix for the requests.

getRequestFileRegEx()

getRequestFileRegEx() is called by the transport when it initializes

the server-side FTP listener. It returns a regular expression that is used
to match request filenames intended for a specific server instance. For
example, the default implementation returns a regular expression of the
form
{wsdl:tns}_{wsdl:service(@name)}_{wsdl:port(@name)}_{reqUuid}.

updateRequestFiles()

updateRequestFiles() is called by the transport after it determines

thelist of possbile requests and before it dispatches the requests to the
service implementation for processing. It recieves an array of
com.iona.transports.ftp.Element objects. This array is a list of all

the request messages selected by the request filename regular expression.
updateRequestFiles() returns an array of Element objects containing

187

Implementing the Server’s Coordination Logic

only the messages that are to be dispatched to the service
implementation.

getReplyIncompleteFilename()

getReplyInclompleteFilename() is called by the transport when it

is ready to post a response. It recieves the filename of the request that
generated the response. It returns a string that is used as the filename
for the response as it is being written to the FTP server. For example,
the default implementation returns _incomplete appended to request

filename.

getReplyFilename()

getReplyFilename() is called by the transport after it finishes writting

a response to the FTP server. It recieves the filename of the request that
generated the response. It returns a string that is used as the filename
for the completed response. For example, the default implementation
returns _reply appended to request filename.

getPropertiesMetaData()

getPropertiesMetaData() is a convience function that returns an

array of all the possbile properties you can use to effect the behavior of
the FTP naming scheme. The properties returned correspond to the values
defined in the ftp:properties element. For more information see Using

Properties to Control Coordination Behavior on page 191.

The request lifecycle policy
The request lifecycle policy is created by implementing the
com.iona.jbus.transports.ftp.policy.server.RequestFileLifecycle

interface. Example 82 on page 188 shows the interface.

Example 82. Request Lifecycle Interface

package com.iona.jbus.transports.ftp.policy.server;

public interface RequestFileLifecycle
{
boolean shouldDeleteRequestFile(String fileName)
throws Exception;

String renameRequestFile(String fileName) throws Exception;
}

188

Using FTP

The interface has two methods to implement:

shouldDeleteRequestFile()

shouldDeleteRequestFile() is called by the transport after it

completes writing in a response. It recieves the filename of the request
that generated the response and returns a boolean stating if the file
should be deleted. If shouldDeleteRequestFile() returns true, the

transport deletes the request file. If it returns false, the transport

renames reply file based on the logic implemented in
renameRequestFile().

renameRequestFile()

renameRequestFile() is called by the transport if

shouldDeleteRequestFile() returns false. It receives the original

name of the request file. It returns a string the contains the filename the
transport uses to rename the request file.

Configuring the server's
coordination logic If you choose to use your own coordination logic for an FTP server endpoint,

you need to configure the endpoint to load the proper implementation classes.
This is done by adding two configuration values to the endpoint’s Artix
configuration scope:

• plugins:ftp:policy:server:filenameFactory specifies the name of

the class implementing the server’s filename factory.

• plugins:ftp:policy:server:requestFileLifecycle specifies the

name of the class implementing the server’s request lifecycle policy.

Both classes need to be on the endpoint’s classpath.

Example 83 on page 189 shows an example of an Artix configuration scope
that specifies an FTP server endpoint’s coordination policies.

Example 83. Configuring an FTP Server Endpoint

ftp_client
{
plugins:ftp:policy:server:filenameFactory="demo.ftp.policy.server.myFilenameFactory";
plugins:ftp:policy:server:requestFileLifecycle="demo.ftp.policy.client.myReqFileLifecycle";

};

189

Implementing the Server’s Coordination Logic

For more information on configuring Artix see Configuring and Deploying Artix
Solutions, C++ Runtime [../../deploy/cpp/index.htm].

190

Using FTP

../../deploy/cpp/index.htm
../../deploy/cpp/index.htm
../../deploy/cpp/index.htm

Using Properties to Control Coordination Behavior
Overview

In order to ensure that your FTP client endpoints and FTP server endpoints
are using the same coordination behavior, you may need to pass some
information to the transports as they initialize. To make this information
available to both sides of the application and still be settable at run time, the
Artix FTP transport allows you to provide custom properties that are settable
in an endpoint’s contract. These properties are set using the ftp:properties

element.

Properties in the contract
You can place any number of custom properties into port element defining
an FTP endpoint. As described in Specifying optional namimg
properties on page 179, the ftp:properties element is a container for one

or more ftp:property elements. The ftp:property element has two

attributes: name and value. Both attributes can have any string as a value.

Together they form a name/value pair that your coordination logic is
responsible for processing.

For example, imagine an FTP endpoint defined by the port element in

Example 84 on page 191.

Example 84. FTP Endpoint with Custom Properties

<port ...>
<ftp:port ... />
<ftp:properties>
<ftp:property name="UseHumanNames" value="true" />
<ftp:property name="LastName" value="Doe" />

</ftp:properties>
</port>

The endpoint is configured using two custom FTP properties:

• UseHumanNames with a value of true.

• LastName with a value of Doe.

191

Using Properties to Control Coordination Behavior

These properties are only meaningful if the coordination logic used by the
endpoint supports them. If they are not supported, they are ignored.

Supporting the properties
The initialize() method of both the client-side filename factory and the

server-side filename factory take a
com.iona.webservices.wsdl.ext.ftp.FTPProperties object. The

FTPProperties object is populated by the contents of the endpoints

ftp:properties element when the transport is initialized.

The FTPProperties object can be used to access all of the properties defined

by ftp:property elements. To access the properties you do the following:

1. Use the getExtensors() method to get an Iterator object.

2. Using the Iterator objects next() method, get the elements in the list.

3. Cast the return value of the next() method to an FTPProperty object.

Each com.iona.webservices.wsdl.ext.ftp.FTPProperty object contains

one name/value pair from one ftp:property element. You can extract the

value of the name attribute using the FTPProperty object’s getProperty()

with the constant
com.iona.webservices.wsdl.ext.ftp.FTPProperty.NAME. You can

extract the value of the value attribute using the FTPProperty object’s

getProperty() with the constant

com.iona.webservices.wsdl.ext.ftp.FTPProperty.VALUE. Once you

have the values of the properties, it is up to you to determine how they impact
the coordination scheme.

Example 85 on page 192 shows code for supporting the properties shown in
Example 84 on page 191.

Example 85. Using Custom FTP Properties

import com.iona.webservices.wsdl.ext.FTPProperties;
import com.iona.webservices.wsdl.ext.FTPProperty;

String nameTypeProp = "UseHumanNames";
String lastNameProp = "LastName";
for (Iterator it = properties.getExtensors(); it.hasNext();)

192

Using FTP

{
FTPProperty property = (FTPProperty)it.next();
String n = property.getProperty(FTPProperty.NAME);

if (nameTypeProp.equals(n))
{
Boolean useHuman = new Boolean(property.getProperty(FTPProperty.VALUE));

}

if (lastNameProp.equals(n))
{
String lastName = property.getProperty(FTPProperty.VALUE);

}
}

Filling in the filename factory
property metadata The server-side filename factory’s getPropertiesMetaData() method is a

convenience function that can be used to publish the supported custom
properties. It returns the details of the supported properties in an array of
com.iona.jbus.transports.ftp.policy.server.FilenameFactoryPropertyMetaData

objects.

FilenameFactoryPropertyMetaData objects have three fields:

• name is a string that specifies the value of the ftp:property element’s

name attribute.

• readOnly is a boolean that specifies if you can set this property in a

contract.

• valueSet is an array of strings that specify the possible values for the

property.

FilenameFactoryPropertyMetaData objects do not have any methods for

populating its fields once the object is instantiated. You must set all of the
values using the constructor that is shown in Example 86 on page 193.

Example 86. Constructor for FilenameFactoryPropertyMetaData

public FilenameFactoryPropertyMetaData(String n, boolean ro,
String[] vs)

{
name = n;
readOnly = ro;

193

Using Properties to Control Coordination Behavior

valueSet = vs;
}

Example 87 on page 194 shows code for creating an array to be returned from
getPropertiesMetaData().

Example 87. Populating the Filename Properties Metadata

FilenameFactoryPropertyMetaData[] propMetas = new FilenameFactoryPropertyMetaData[]
{
new FilenameFactoryPropertyMetaData("UseHumanNames", false,

new String[] {Boolean.TRUE.toString(),
Boolean.FALSE.toString()}),

new FilenameFactoryPropertyMetaData("LastName", false, null)
};

The list of possible values specified for the property LastName is set to null

because the property can have any string value.

194

Using FTP

Using WebSphere MQ
Artix can use WebSphere MQ to transport messages and leverage much of WebSphere’s infrastructure to provide
QoS.

Adding a WebSphere MQ Endpoint ... 196
Websphere MQ Connection Settings ... 202
Specifying the WebSphere Library to Load .. 203
Using Queues on Remote Hosts ... 205
Setting a Value of the Message Descriptor’s Format Field ... 207

195

Adding a WebSphere MQ Endpoint
Overview

The description for an Artix WebSphere MQ endpoint is entered in a port

element of the Artix contract containing the interface to be exposed over
WebSphere MQ. Artix defines two elements to describe WebSphere MQ
endpoints and their attributes:

• mq:client defines an endpoint for a WebSphere MQ client application.

• mq:server defines an endpoint for a WebSphere MQ server application.

You can use one or both of the WebSphere MQ elements to describe a
WebSphere MQ endpoint. Each can have different configurations depending
on the attributes you choose to set.

WebSphere MQ namespace
The WSDL extensions used to describe WebSphere MQ transport details are
defined in the WSDL namespace
http://schemas.iona.com/transports/mq. If you are going to add a

WebSphere MQ port by hand you will need to include the following in the
definitions tag of your contract:

xmlns:mq="http://schemas.iona.com/transports/mq"

Required Attributes
When you define a WebSphere MQ endpoint you need to provide at least
enough information for the endpoint to connect to its message queues. For
any WebSphere application that means setting the QueueManager and

QueueName attributes in the port element. In addition, if you are configuring

a client that expects to receive replies from the server, you need to set the
ReplyQueueManager and ReplyQueueName attributes of the mq:client

element defining the client endpoint.

In addition, if you are deploying applications on a machine with a full MQ
installation, you need to set the Server_Client attribute to client if the

endpoint is going to use remote queues. This setting instructs Artix to load
libmqic instead of libmqm.

Using the command line tool
To use wsdltoservice to add a WebSphere MQ endpoint use the tool with the
following options.

196

Using WebSphere MQ

wsdltoservice {-transport mq} [-e service] [-t port] [-b binding] [-sqm

queueManager] [-sqn queue] [-srqm queueManager] [-srqn queue] [-smqn

modelQueue] [-sus usageStyle] [-scs correlationStyle] [-sam

accessMode] [-sto timeout] [-sme expiry] [-smp priority] [-smi

messageId] [-sci correlationId] [-sd delivery] [-st transactional]

[-sro reportOption] [-sf format] [-sad applicationData] [-sat

accountingToken] [-scn connectionName] [-sc convert] [-scr reusable]

[-scfp fastPath] [-said idData] [-saod originData] [-cqm queueManager]

[-cqn queue] [-crqm queueManager] [-crqn queue] [-cmqn modelQueue]

[-cus usageStyle] [-ccs correlationStyle] [-cam accessMode] [-cto

timeout] [-cme expiry] [-cmp priority] [-cmi messageId] [-cci

correlationId] [-cd delivery] [-ct transactional] [-cro reportOption]

[-cf format] [-cad applicationData] [-cat accountingToken] [-ccn

connectionName] [-cc convert] [-ccr reusable] [-ccfp fastPath] [-caid

idData] [-caod originData] [-caqn queue] [-cui userId] [-o file] [-d dir]

[-L file] [[-quiet] | [-verbose]] [-h] [-v] wsdlurl

The -transport mq flag specifies that the tool is to generate a WebSphere

MQ service. The other options are as follows.

Table 29. Options for Adding a WebSphere MQ Endpoint

DescriptionOption

Specifies the name of the generated service element.-e service

Specifies the value of the name attribute of the generated port element.-t port

Specifies the name of the binding for which the endpoint is generated.-b binding

Specifies the name of the server’s queue manager.-sqm queueManager

Specifies the name of the server’s request queue.-sqn queue

Specifies the name of the server’s reply queue manager.-srqm queueManager

Specifies the name of the server’s reply queue.-srqn queue

Specifies the name of the server’s model queue.-smqn modelQueue

197

Adding a WebSphere MQ Endpoint

DescriptionOption

Specifies the value of the server’s UsageStyle attribute. Valid values are Peer,

Requester, or Responder.

-sus usageStyle

Specifies the value of the server’s CorrelationStyle attribute. Valid values are

messageId, correlationId, or messageId copy.

-scs correlationStyle

Specifies the value of the server’s AccessMode attribute. Valid values are peek, send,

receive, receive exclusive, or receive shared.

-sam accessMode

Specifies the value of the server’s Timeout attribute.-sto timeout

Specifies the value of the server’s MessageExpiry attribute.-sme expiry

Specifies the value of the server’s MessagePriority attribute.-smp priority

Specifies the value of the server’s MessageId attribute.-smi messageId

Specifies the value of the server’s CorrelationID attribute.-sci correlationId

Specifies the value of the server’s Delivery attribute.-sd delivery

Specifies the value of the server’s Transactional attribute. Valid values are none,

internal, or xa.

-st transactional

Specifies the value of the server’s ReportOption attribute. Valid values are none,

coa, cod, exception, expiration, or discard.

-sro reportOption

Specifies the value of the server’s Format attribute.-sf format

Specifies the value of the server’s ApplicationData attribute.-sad applicationData

Specifies the value of the server’s AccountingToken attribute.-sat accountingToken

Specifies the name of the connection by which the adapter connects to the queue.-scn connectionName

Specifies if the messages in the queue need to be converted to the system’s native
encoding. Valid values are true or false.

-sc convert

Specifies the value of the server’s ConnectionReusable attribute. Valid values are

true or false.

-scr reusable

Specifies the value of the server’s ConnectionFastPath attribute. Valid values are

true or false.

-scfp fastPath

198

Using WebSphere MQ

DescriptionOption

Specifies the value of the server’s ApplicationIdData attribute.-said idData

Specifies the value of the server’s ApplicationOriginData attribute.-saod originData

Specifies the name of the client’s queue manager.-cqm queueManager

Specifies the name of the client’s request queue.-cqn queue

Specifies the name of the client’s reply queue manager.-crqm queueManager

Specifies the name of the client’s reply queue.-crqn queue

Specifies the name of the client’s model queue.-cmqn modelQueue

Specifies the value of the client’s UsageStyle attribute. Valid values are Peer,

Requester, or Responder The default value is Requester.

-cus usageStyle

Specifies the value of the client’s CorrelationStyle attribute. Valid values are

messageId, correlationId, or messageId copy.

-ccs correlationStyle

Specifies the value of the client’s AccessMode attribute. Valid values are peek, send,

receive, receive exclusive, or receive shared.

-cam accessMode

Specifies the value of the client’s Timeout attribute.-cto timeout

Specifies the value of the client’s MessageExpiry attribute.-cme expiry

Specifies the value of the client’s MessagePriority attribute.-cmp priority

Specifies the value of the client’s MessageId attribute.-cmi messageId

Specifies the value of the client’s CorrelationId attribute.-cci correlationId

Specifies the value of the client’s Delivery attribute.-cd delivery

Specifies the value of the client’s Transactional attribute. Valid values are none,

internal, or xa.

-ct transactional

Specifies the value of the client’s ReportOption attribute. Valid values are none, coa,

cod, exception, expiration, or discard.

-cro reportOption

Specifies the value of the client’s Format attribute.-cf format

Specifies the value of the client’s ApplicationData attribute.-cad applicationData

199

Adding a WebSphere MQ Endpoint

DescriptionOption

Specifies the value of the client’s AccountingToken attribute.-cat accountingToken

Specifies the name of the connection by which the adapter connects to the queue.-ccn connectionName

Specifies if the messages in the queue need to be converted to the system’s native
encoding. Valid values are true or false.

-cc convert

Specifies the value of the client’s ConnectionReusable attribute. Valid values are

true or false.

-ccr reusable

Specifies the value of the client’s ConnectionFastPath attribute. Valid values are

true or false.

-ccfp fastPath

Specifies the value of the client’s ApplicationIdData attribute.-caid idData

Specifies the value of the client’s ApplicationOriginData attribute.-caod originData

Specifies the remote queue to which a server will put replies if its queue manager is
not on the same host as the client’s local queue manager.

-caqn queue

Specifies the value of the client’s UserIdentification attribute.-cui userId

Specifies the filename for the generated contract. The default is to append -service

to the name of the imported contract.

-o file

Specifies the output directory for the generated contract.-d dir

Specifies the location of your Artix license file. The default behavior is to check
IT_PRODUCT_DIR\etc\license.txt.

-L file

Specifies that the tool runs in quiet mode.-quiet

Specifies that the tool runs in verbose mode.-verbose

Displays the tool’s usage statement.-h

Displays the tool’s version.-v

For more information about the specific attributes and their values see the
Artix WSDL Extension Reference [../../wsdl_ref/index.htm].

Example
An Artix contract exposing an interface, monsterBash, bound to a SOAP

payload format, Raydon, on an WebSphere MQ queue, UltraMan would

contain a service element similar to Example 88 on page 201.

200

Using WebSphere MQ

../../wsdl_ref/index.htm
../../wsdl_ref/index.htm

Example 88. Sample WebSphere MQ Port

<service name="Mothra">
<port name="X" binding="tns:Raydon">
<mq:server QueueManager="UMA"

QueueName="UltraMan"
ReplyQueueManager="WINR"
ReplyQueueName="Elek"
AccessMode="receive"
CorrelationStyle="messageId copy"/>

</port>
</service>

201

Adding a WebSphere MQ Endpoint

Websphere MQ Connection Settings
Overview

The Artix ESB MQ transport makes some basic connection decisions. These
have an impact on the privileges required when Artix ESB connects to a queue
manager, and how context information is handled.

Granting authority for setting
context information You can control access privileges using the WebSphere MQ setmqaut

command.

Example 89 on page 202 shows the commands required to provide the proper
authorization for the Artix ESB transport. For example, these commands apply
when the Artix AccessMode WSDL extension is set to send+setid.

Example 89. Granting the MQ Transport Authorization

setmqaut -m MY_QMNGR -t queue -n MY_Q -g grp +all

setmqaut -m MY_QMNGR -t queue -n MY_Q -g grp -setall -passid
-passall

For more details on setting authorizations, see the entry for MQ AccessModes
in the Artix WSDL Extension Reference
[http://www.iona.com/support/docs/artix/5.5/wsdl_ref/index.htm].

Further information
For more information on the implications of using MQOO_SET_ALL_CONTEXT,

the setmqaut command, and so on, see:
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/com.ibm.mq.csqzaw.doc/uj19910_.htm.
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/com.ibm.mq.amqzag.doc/fa15980_.htm.

202

Using WebSphere MQ

http://www.iona.com/support/docs/artix/5.5/wsdl_ref/index.htm
http://www.iona.com/support/docs/artix/5.5/wsdl_ref/index.htm
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/com.ibm.mq.csqzaw.doc/uj19910_.htm
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/com.ibm.mq.amqzag.doc/fa15980_.htm

Specifying the WebSphere Library to Load
Overview

The version of the WebSphere MQ shared library loaded by an Artix MQ
endpoint alters the types of queues that an endpoint can access. For example,
if an Artix endpoint loads the MQ client shared library, it will only be able to
use queues hosted on a remote machine. Artix provides an attribute in the
MQ WSDL extensions that allows you to control which library is loaded.

The attribute
Both the mq:server element and the mq:client element support the

attribute that is used to specify which MQ libraries to load. The
Server_Client attribute specifies which shared libraries to load on systems

with a full WebSphere MQ installation. Table 30 on page 203 describes the
settings for this attribute for each type of WebSphere MQ installation.

Table 30. WebSphere MQ Server_Client Attribute Settings

BehaviorServer_Client

Value

MQ Installation

The server shared library(libmqm) is loaded and the application will use

queues hosted on the local machine.

Full

The server shared library(libmqm) is loaded and the application will use

queues hosted on the local machine.

serverFull

The client shared library(libmqic) is loaded and the application will use

queues hosted on a remote machine.

clientFull

The application will attempt to load the server shared library(libmqm) before

loading the client shared library(libmqic). The application accesses queues

hosted on a remote machine.

Client

The application will fail because it cannot load the server shared libraries.serverClient

The client shared library(libmqic) is loaded and the application accesses

queues hosted on a remote machine.

clientClient

Example
Example 90 on page 204 shows an a service element for an MQ endpoint

that uses the MQ client shared library.

203

Specifying the WebSphere Library to Load

Example 90. ARTIX MQ Endpoint Using MQ Client Library

<service name="Mothra">
<port name="X" binding="tns:Raydon">
<mq:server QueueManager="UMA"

QueueName="UltraMan"
ReplyQueueManager="WINR"
ReplyQueueName="Elek"
Server_Client="client" />

</port>
</service>

204

Using WebSphere MQ

Using Queues on Remote Hosts
Overview

When interoperating between WebSphere MQ endpoints whose queue
managers are on different hosts, Artix requires that you specify the name of
the remote queue to which the server will post reply messages. This ensures
that the server will put the replies on the proper queue. Otherwise, the server
will receive a request message with the ReplyToQ field set to a queue that

is managed by a queue manager on a remote host and will be unable to send
the reply.

You specify this server’s local reply queue name in the mq:client element’s

AliasQueueName attribute when you define it in the client endpoint’s contract.

Effect of AliasQueueName
When you specify a value for the AliasQueueName attribute in an mq:client

element, you alter how Artix populates the request message’s ReplyToQ field

and ReplyToQMgr field. Typically, Artix populates the reply queue information

in the request message’s message descriptor with the values specified in the
ReplyQueueManager attribute and the ReplyQueueName attribute. Setting

the AliasQueueName attribute causes Artix to leave ReplytoQMgr empty,

and to set ReplyToQ to the value of the AliasQueueName attribute. When

the ReplyToQMgr field of the message descriptor is left empty, the sending

queue manager inspects the queue named in the ReplyToQ field to determine

who its queue manager is and uses that value for ReplyToQMgr. The server

puts the message on the remote queue that is configured as a proxy for the
client’s local reply queue.

Example
If you had a system defined similar to that shown in Figure 2 on page 206,
you would need to use the AliasQueueName attribute setting when configuring

your WebSphere MQ client. In this set up the client is running on a host with
a local queue manager QMgrA. QMgrA has two queues configured. RqA is a

remote queue that is a proxy for RqB and RplyA is a local queue. The server

is running on a different machine whose local queue manager is QMgrB. QMgrB

also has two queues. RqB is a local queue and RplyB is a remote queue that

is a proxy for RplyA. The client places its request on RqA and expects replies

to arrive on RplyA.

205

Using Queues on Remote Hosts

Figure 2. MQ Remote Queues

The port elements for the client and server for this deployment are shown

in Example 91 on page 206. The AliasQueueName attribute is set to RplyB

because that is the remote queue proxying for the reply queue in server’s local
queue manager. The ReplyQueueManager attribute and the ReplyQueueName

attribute are set to the client’s local queue manager so that it knows where
to listen for responses. In this example, the server’s ReplyQueueManager

attribute and ReplyQueueName attribute do not need to be set because you

are assured that the client is populating the request’s message descriptor with
the needed information for the server to determine where replies are sent.

Example 91. Setting Up WebSphere MQ Ports for Intercommunication

<mq:client QueueManager="QMgrA" QueueName="RqA"
ReplyQueueManager="QMgrA" ReplyQueueName="RplyA"
AliasQueueName="RplyB"
Format="string" Convert="true"/>

<mq:server QueueManager="QMgrB" QueueName="RqB"
Format="String" Convert="true"/>

206

Using WebSphere MQ

Setting a Value of the Message Descriptor’s Format
Field
Overview

WebSphere MQ messages have a Format field in their message descriptors.

Message receivers use this field to determine the nature of the data in the
nature. What the message receiver does with this information is the
responsibility of the application developer. Artix, however, uses the Format

field to determine if the contents of a message are to undergo codeset
conversion.

You can specify the value placed in the message descriptor’s Format field

using the Format attribute. This attribute is supported by both the mq:client

element and the mq:server element and its value is a string specifying the

name of the message’s format.

Special values
The Format attribute can take the special values described in

Table 31 on page 207.

Table 31. WebSphere MQ Format Attribute Settings

DescriptionAttribute Setting

Corresponds to MQFMT_NONE. No format name is specified.none (Default)

Corresponds to MQFMT_STRING. string specifies that the message consists entirely of

character data. The message data may be either single-byte characters or double-byte
characters.

string

Corresponds to MQFMT_STRING. unicode specifies that the message consists entirely of

Unicode characters. (Unicode is not supported in Artix at this time.)

unicode

Corresponds to MQFMT_EVENT. event specifies that the message reports the occurrence

of an WebSphere MQ event. Event messages have the same structure as programmable
commands.

event

207

Setting a Value of the Message Descriptor’s Format Field

DescriptionAttribute Setting

Corresponds to MQFMT_PCF. programmable command specifies that the messages are

user-defined messages that conform to the structure of a programmable command format
(PCF) message.

For more information, consult the IBM Programmable Command Formats and
Administration Interfaces documentation at
http://publibfp.boulder.ibm.com/epubs/html/csqzac03/csqzac030d.htm#Header_12.

programmable

command

Using codeset conversion
Artix uses the value of the Format field in an MQ message header to determine

if the message data should be converted into a host systems native codeset.
If the Format field is set to MQFMT_STRING, Artix will attempt to convert the

data into the host’s native codeset. If the Format field has any other value,

Artix will not attempt to perform codeset conversion.

If you are interoperating with systems that use a different codeset than the
system your endpoint is hosted on, you need to set the Format attribute of

the Artix endpoint to string. This is particularly important when you are
interoperating with WebSphere MQ applications hosted on a mainframe
because the data needs to be converted into the systems native data format.
Not doing so will result in the mainframe receiving corrupted data.

Example
Example 92 on page 208 shows an mq:client element that defines an

endpoint used for making requests against a server on a mainframe system.
In this particular example, we are talking directly to the mainframe queue
manager.

Example 92. WebSphere MQ Client Talking to the Mainframe

<mq:client QueueManager="Mainframe_Request_Queue_Manager"
QueueName="Application_request_queue_name"
ReplyQueueManager="Mainframe_Reply_Queue_Manager"
ReplyQueueName="Application_reply_queue_name"
Server_Client="client" Format="string" Con

vert="true" />

In this example, you will also need to set the MQSERVER environment variable.

The section Using a Remote MQ Server in Artix Technical Use Cases
[http://www.iona.com/support/docs/artix/5.1/cookbook/index.htm] explains
this in detail.

208

Using WebSphere MQ

http://publibfp.boulder.ibm.com/epubs/html/csqzac03/csqzac030d.htm#Header_12
http://www.iona.com/support/docs/artix/5.1/cookbook/index.htm
http://www.iona.com/support/docs/artix/5.1/cookbook/index.htm

Using TIBCO Rendezvous
The TIBCO Rendezvous transport lets you use Artix to integrate systems based on TIBCO Rendezvous (TIB/RV)
software.

Supported features
Table 32 on page 209 shows the matrix of TIBCO Rendezvous features Artix
supports.

Table 32. Supported TIBCO Rendezvous Features

Not SupportedSupportedFeature

xServer-Side Advisory Callbacks

xCertified Message Delivery

xFault Tolerance (TibrvFtMember/Monitor)

xVirtual Connections (TibrvVcTransport)

xSecure Daemon (rvsd/TibrvSDContext)

xTIBRVMSG_IPADDR32

xTIBRVMSG_IPPORT16

Namespace
To use the TIB/RV transport, you need to define the endpoint using TIB/RV
in the physical part of an Artix contract. The extensions used to describe a
TIB/RV endpoint are defined in the namespace:

xmlns:tibrv="http://schemas.iona.com/transports/tibrv"

This namespace will need to be included in your Artix contract’s definition

element.

Describing the port
As with other transports, the TIB/RV transport specifications are contained
within a port element. Artix uses tibrv:port to describe the attributes of

a TIB/RV endpoint. The only required attribute for a tibrv:port element is

serverSubject which specifies the subject to which the server listens.

Using the command line tools
To use wsdltoservice to add a TIB/RV endpoint use the following options.

209

wsdltoservice {-transport tibrv} [-e service] [-t port] [-b binding] [-tss

subject] [-tcst subject] [-tbt bindingType] [-tcl callbackLevel] [-trdt

timeout] [-tts transportService] [-ttn transportNetwork] [-ttbm

batchMode] [-tqp priority] [-tqlp queueLimitPolicy] [-tqme

queueMaxEvents] [-tqda queueDiscardAmount] [-tcs cmSupport] [-tctsn

cmTransportServerName] [-tctcn cmTransportClientName] [-tctro

cmTransportRequestOld] [-tctln cmTransportLedgerName] [-tctsl

cmTransportSyncLedger] [-tctra cmTransportRelayAgent] [-tctdtl

cmTransportDefaultTimeLimit] [-tclca cmListenerCancelAgreements]

[-tcqtsn cmQueueTransportServerName] [-tcqtcn

cmQueueTransportClientName] [-tcqtww

cmQueueTransportWorkerWeight] [-tcqtws

cmQueueTransportWorkerTasks] [-tcqtsw

cmQueueTransportSchedulerWeight] [-tcqtsh

cmQueueTransportSchedulerHeartbeat] [-tcqtsa

cmQueueTransportSchedulerActivation] [-tcqtct

cmQueueTransportCompleteTime] [-tmnfv messageNameFieldValue]

[-tmnfp messageNameFieldPath] [-tbfi bindingFieldId] [-tbfn

bindingFieldName] [-o file] [-d dir] [-L file] [[-quiet] | [-verbose]] [-h]

[-v] wsdlurl

The -transport tibrv flag specifies that the tool is to generate a TIB/RV

service. The other options are as follows.

Table 33. Options for Adding a TIB/RV Endpoint

Specifies the name of the generated service element.-e service

Specifies the value of the name attribute of the generated port element.-t port

Specifies the name of the binding for which the endpoint is generated.-b binding

Specifies the subject to which the server listens.-tss subject

Specifies the prefix to the subject on which the client listens for replies.-tcst subject

210

Using TIBCO Rendezvous

Specifies the message binding type. Valid values are msg, xml, opaque,

or string.

-tbt bindingType

Specifies the server-side callback level when TIB/RV system advisory
messages are received. Valid values are INFO, WARN, or ERROR.

-tcl callbackLevel

Specifies the client-side response receive dispatch timeout.-trdt timeout

Specifies the UDP service name or port for TibrvNetTransport.-tts transportService

Specifies the binding network addresses for TibrvNetTransport.-ttn transportNetwork

Specifies if the TIB/RV transport uses batch mode to send messages.
Valid values are DEFAULT_BATCH and TIMER_BATCH.

-ttbm batchMode

Specifies the queue priority.-tqp priority

Valid values are DISCARD_NONE, DISCARD_NEW, DISCARD_FIRST, or

DISCARD_LAST.

-tqlp queueLimitPolicy

Specifies the queue max events.-tqme queueMaxEvents

Specifies the queue discard amount.-tqda queueDiscardAmount

Specifies if Certified Message Delivery support is enabled. Valid values
are true or false.

-tcs cmSupport

Specifies the server’s TibrvCmTransport correspondent name.-tctsn cmTransportServerName

Specifies the client TibrvCmTransport correspondent name.-tctcn cmTransportClientName

Specifies if the endpoint can request old messages on start-up. Valid
values are true or false.

-tctro cmTransportRequestOld

Specifies the TibrvCmTransport ledger file.-tctln cmTransportLedgerName

Specifies if the endpoint uses a synchronous ledger. Valid values are
true or false.

-tctsl cmTransportSyncLedger

Specifies the endpoint’s TibrvCmTransport relay agent.-tctra cmTransportRelayAgent

Specifies the default time limit for a Certified Message to be delivered.-tctdtl cmTransportDefaultTimeLimit

Specifies if Certified Message agreements are canceled when the endpoint
disconnects. Valid values are true or false.

-tclca cmListenerCancelAgreements

Specifies the server’s TibrvCmQueueTransport correspondent name.-tcqtsn cmQueueTransportServerName

211

Specifies the client’s TibrvCmQueueTransport correspondent name.-tcqtcn cmQueueTransportClientName

Specifies the endpoint’s TibrvCmQueueTransport worker weight.-tcqtww

cmQueueTransportWorkerWeight

Specifies the endpoint’s TibrvCmQueueTransport worker tasks

parameter.

-tcqtws cmQueueTransportWorkerTasks

Specifies the TibrvCmQueueTransport scheduler weight parameter.-tcqtsw

cmQueueTransportSchedulerWeight

Specifies the endpoint’s TibrvCmQueueTransport scheduler heartbeat

parameter.

-tcqtsh

cmQueueTransportSchedulerHeartbeat

Specifies the TibrvCmQueueTransport scheduler activation

parameter.

-tcqtsa

cmQueueTransportSchedulerActivation

Specifies the TibrvCmQueueTransport complete time parameter.-tcqtct

cmQueueTransportCompleteTime

Specifies the message name field value.-tmnfv messageNameFieldValue

Specifies the message name field path.-tmnfp messageNameFieldPath

Specifies the binding field id.-tbfi bindingFieldId

Specifies the binding field name.-tbfn bindingFieldName

Specifies the filename for the generated contract. The default is to append
-service to the name of the imported contract.

-o file

Specifies the output directory for the generated contract.-d dir

Specifies the location of your Artix license file. The default behavior is
to check IT_PRODUCT_DIR\etc\license.txt.

-L file

Specifies that the tool runs in quiet mode.-quiet

Specifies that the tool runs in verbose mode.-verbose

Displays the tool’s usage statement.-h

Displays the tool’s version.-v

212

Using TIBCO Rendezvous

For more information about the specific attributes and their values see the
Artix WSDL Extension Reference [../../wsdl_ref/index.htm].

Example
Example 93 on page 213 shows an Artix description for a TIB/RV endpoint.

Example 93. TIB/RV Port Description

<service name="BaseService">
<port binding="tns:BasePortBinding" name="BasePort">
<tibrv:port serverSubject="Artix.BaseService.BasePort"/>

</port>
</service>

213

../../wsdl_ref/index.htm
../../wsdl_ref/index.htm

214

Using Tuxedo
Artix allows services to connect using Tuxedo’s transport mechanism. This provides them with all of the qualities
of service associated with Tuxedo.

Tuxedo namespaces
To use the Tuxedo transport, you need to describe the endpoint using Tuxedo
in the physical part of an Artix contract. The extensions used to describe a
Tuxedo endpoint are defined in the following namespace:

xmlns:tuxedo="http://schemas.iona.com/transports/tuxedo"

This namespace will need to be included in your Artix contract’s definition

element.

Defining the Tuxedo services
As with other transports, the Tuxedo transport description is contained within
a port element. Artix uses tuxedo:server to describe the attributes of a

Tuxedo endpoint. tuxedo:server has a child element, tuxedo:service,

that gives the bulletin board name of a Tuxedo endpoint. The bulletin board
name for the endpoint is specified in the element’s name attribute. You can

define more than one Tuxedo service to act as an endpoint.

Mapping operations to a Tuxedo
service For each of the Tuxedo services that are endpoints, you must specify which

of the operations bound to the endpoint being defined are handled by the
Tuxedo service. This is done using one or more tuxedo:input child elements.

tuxedo:input takes one required attribute, operation, that specifies the

WSDL operation that is handled by this Tuxedo service endpoint.

Using the command line tools
To use wsdltoservice to add a Tuxedo endpoint use the tool with the following
options.

wsdltoservice {-transport tuxedo} [-e service] [-t port] [-b binding]

[-tsn tuxService] [-tfn tuxService:tuxFunction] [-ton

tuxService:operation] [-o file] [-d dir] [-L file] [[-quiet] | [-verbose]]

[-h] [-v] wsdlurl

The -transport tuxedo flag specifies that the tool is to generate a Tuxedo

service. The other options are as follows.

215

Table 34. Options for Adding a Tuxedo Service

DescriptionOption

Specifies the name of the generated service

element.

-e service

Specifies the value of the name attribute of the

generated port element.

-t port

Specifies the name of the binding for which the
endpoint is generated.

-b binding

Specifies the name the service uses when
registering with the Tuxedo bulletin board.

-tsn tuxService

Specifies the name of the function to be used on
the specified Tuxedo bulletin board.

-tfn

tuxService:tuxFunction

Specifies the WSDL operation that is handled by
the specified Tuxedo endpoint.

-ton

tuxService:operation

Specifies the filename for the generated contract.
The default is to append -service to the name

of the imported contract.

-o file

Specifies the output directory for the generated
contract.

-d dir

Specifies the location of your Artix license file.
The default behavior is to check
IT_PRODUCT_DIR\etc\license.txt.

-L file

Specifies that the tool runs in quiet mode.-quiet

Specifies that the tool runs in verbose mode.-verbose

Displays the tool’s usage statement.-h

Displays the tool’s version.-v

For more information about the specific attributes and their values see the
Artix WSDL Extension Reference [../../wsdl_ref/index.htm].

Example
An Artix contract exposing the personalInfoService as a Tuxedo endpoint

would contain a service element similar to Example 94 on page 217 .

216

Using Tuxedo

../../wsdl_ref/index.htm
../../wsdl_ref/index.htm

Example 94. Tuxedo Port Description

<service name="personalInfoService">
<port binding="tns:personalInfoBinding" name="tuxInfoPort">

<tuxedo:server>
<tuxedo:service name="personalInfoService">
<tuxedo:input operation="infoRequest"/>

</tuxedo:service>
</tuxedo:server>

</port>
</service>

217

218

Part III. Other Artix ESB Features

Working with CORBA ... 223
Adding a CORBA Binding ... 224
Creating a CORBA Endpoint ... 230

Procedure .. 231
Configuring an Artix CORBA Endpoint ... 232
Generating CORBA IDL .. 236

Using the Artix Transformer ... 239
Using the Artix Transformer as a Service .. 240
Using Artix to Facilitate Interface Versioning .. 242
WSDL Messages and the Transformer ... 247
Writing XSLT Scripts ... 250
Elements of an XSLT Script ... 251
XSLT Templates ... 253
Common XSLT Functions ... 259

Using Codeset Conversion ... 261

221

222

Working with CORBA
CORBA, unlike the other platforms supported by Artix, specifies both a mapping between the logical messages
and a network protocol. Because these two cannot be decoupled, Artix provides extensions for both and requires
that they be used together. To further enforce the coupling of the CORBA payload format and the CORBA network
protocol all Artix tools that generate CORBA extensions generate them in sets.

Adding a CORBA Binding ... 224
Creating a CORBA Endpoint ... 230

Procedure .. 231
Configuring an Artix CORBA Endpoint ... 232
Generating CORBA IDL .. 236

223

Adding a CORBA Binding
Overview

CORBA applications use a specific payload format when making and
responding to requests. The CORBA binding, described using an IONA
extension to WSDL, specifies the repository ID of the IDL interface represented
by the port type, resolves parameter order and mode ambiguity in the
operations’ messages, and maps the XML Schema data types to CORBA data
types.

In addition to the binding information, Artix also uses a corba:typemap

element to unambiguously describe how data is mapped to CORBA data
types. For primitive types, the mapping is straightforward. However, complex
types such as structures, arrays, and exceptions require more detailed
descriptions. For a detailed description of the CORBA type mappings see Artix
for CORBA [../../corba_ws/index.htm].

Options
To add a CORBA binding to an Artix contract you can choose one of the
following methods:

• Use Artix Designer. Artix Designer provides a wizard that automatically
generates the binding and type map information for a specified port type.

• Use the wsdltocorba command line tool. The command line tool
automatically generates the binding and type map information for a specified
port type. See Using wsdltocorba on page 224.

• Enter the binding and typemap information by hand using a text editor or
XML editor. This option provides you the flexibility to customize the binding.
However, hand editing Artix contracts can be a time consuming process
and provides no error checking mechanisms. For information on the WSDL
extensions used to specify a CORBA binding see Mapping to the
binding on page 226.

Using wsdltocorba
The wsdltocorba tool adds CORBA binding information to an existing Artix
contract. To generate a CORBA binding use the following command:

wsdltocorba {-corba} {-i portType} [-d dir] [-b binding] [-o file] [-props

namespace] [-wrapped] [-L file] [[-quiet] | [-verbose]] [-h] [-v] wsdl_file

The command has the following options:

224

Working with CORBA

../../corba_ws/index.htm
../../corba_ws/index.htm
../../corba_ws/index.htm

Table 35. Options for Adding a CORBA Binding

Instructs the tool to generate a CORBA binding for the
specified port type.

-corba

Specifies the name of the port type being mapped to a
CORBA binding.

-i portType

Specifies the directory into which the new WSDL file is
written.

-d dir

Specifies the name for the generated CORBA binding.
Defaults to portTypeBinding.

-b binding

Specifies the name of the generated WSDL file. Defaults
to wsdl_file-corba.wsdl.

-o file

Specifies the namespace to use for the generated CORBA
typemap

-props namespace

Specifies that the generated CORBA binding uses
wrapper types.

-wrapped

Specifies the location of your Artix license file. The
default behavior is to check
IT_PRODUCT_DIR\etc\license.txt.

-L file

Specifies that the tool runs in quiet mode. No output
will be shown on the console. This includes error
messages.

-quiet

Specifies that the tool runs in verbose mode.-verbose

Specifies that the tool will display a usage message.-h

Displays the tool’s version.-v

The generated WSDL file will also contain a CORBA endpoint with no address
specified. To complete the endpoint specification you can do so manually or
use Artix Designer.

WSDL namespace
The WSDL extensions used to describe CORBA data mappings and CORBA
transport details are defined in the WSDL namespace
http://schemas.iona.com/bindings/corba. To use the CORBA extensions

you will need to include the following in the definitions tag of your contract:

225

Adding a CORBA Binding

xmlns:corba="http://schemas.iona.com/bindings/corba"

Mapping to the binding
The extensions used to map a logical operation to a CORBA binding are
described in detail below:

• corba:binding

corba:binding indicates that the binding is a CORBA binding. This

element has one required attribute: repositoryID. The repositoryID

attribute specifies the full type ID of the interface. The type ID is embedded
in the object’s IOR and therefore must conform to the IDs that are generated
from an IDL compiler. These are of the form:

IDL:module/interface:1.0

The corba:binding element also has an optional attribute, bases, that

specifies that the interface being bound inherits from another interface.
The value for bases is the type ID of the interface from which the bound

interface inherits. For example, the following IDL:

//IDL
interface clash{};
interface bad : clash{};

would produce the following corba:binding:

<corba:binding repositoryID="IDL:bad:1.0"
bases="IDL:clash:1.0"/>

• corba:operation

corba:operation is an IONA-specific element of the operation element

and describes the parts of the operation’s messages. corba:operation

takes a single attribute, name, which duplicates the name given in

operation.

• corba:param

corba:param is a child of corba:operation. Each part element of the

input and output messages specified in the logical operation, except for the

226

Working with CORBA

part representing the return value of the operation, must have a
corresponding corba:param element. The parameter order defined in the

binding must match the order specified in the IDL definition of the operation.
The corba:param element has the following required attributes:

Table 36. Attributes of corba:param

DescriptionAttribute

Specifies the direction of the parameter. The values directly
correspond to the IDL directions: in, inout, out. Parameters

mode

set to in must be included in the input message of the logical

operation. Parameters set to out must be included in the

output message of the logical operation. Parameters set to
inout must appear in both the input and output messages

of the logical operation.

Specifies the IDL type of the parameter. The type names are
prefaced with corba: for primitive IDL types, and corbatm: for

idltype

complex data types, which are mapped out in the
corba:typeMapping portion of the contract.

Specifies the name of the parameter as given in the logical
portion of the contract.

name

• corba:return

corba:return is a child of corba:operation and specifies the return

type, if any, of the operation. It has two attributes:

DescriptionAttribute

Specifies the name of the parameter as given in the logical
portion of the contract.

name

Specifies the IDL type of the parameter. The type names are
prefaced with corba: for primitive IDL types and corbatm: for

idltype

complex data types which are mapped out in the
corba:typeMapping portion of the contract.

• corba:raises

227

Adding a CORBA Binding

corba:raises is a child of corba:operation and describes any

exceptions the operation can raise. The exceptions are defined as fault
messages in the logical definition of the operation. Each fault message
must have a corresponding corba:raises element. corba:raises has

one required attribute, exception, which specifies the type of data returned

in the exception.

In addition to operations specified in corba:operation tags, within the

WSDL operation element, each operation element in the binding must

also specify empty input and output elements as required by the WSDL

specification. The CORBA binding specification, however, does not use them.

For each fault message defined in the logical description of the operation, a
corresponding fault element must be provided in the operation element,

as required by the WSDL specification. The name attribute of the fault

element specifies the name of the schema type representing the data passed
in the fault message.

Example
For example, a logical interface for a system to retrieve employee information
might look similar to personalInfoLookup, shown in

Example 95 on page 228.

Example 95. personalInfo lookup port type

<message name="personalLookupRequest">
<part name="empId" type="xsd:int"/>

</message>
<message name="personalLookupResponse">
<part name="return" element="xsd1:personalInfo"/>

</message>
<message name="idNotFoundException">
<part name="exception" element="xsd1:idNotFound"/>

</message>
<portType name="personalInfoLookup">
<operation name="lookup">
<input name="empID" message="personalLookupRequest"/>
<output name="return"

message="personalLookupResponse"/>
<fault name="exception" message="idNotFoundException"/>

</operation>
</portType>

228

Working with CORBA

The CORBA binding for personalInfoLookup is shown in

Example 96 on page 229.

Example 96. personalInfoLookup CORBA Binding

<binding name="personalInfoLookupBinding"
type="tns:personalInfoLookup">

<corba:binding repositoryID="IDL:personalInfoLookup:1.0"/>
<operation name="lookup">
<corba:operation name="lookup">
<corba:param name="empId" mode="in"

idltype="corba:long"/>
<corba:return name="return"

idltype="corbatm:personalInfo"/>
<corba:raises exception="corbatm:idNotFound"/>

</corba:operation>
<input/>
<output/>
<fault name="personalInfoLookup.idNotFound"/>

</operation>
</binding>

229

Adding a CORBA Binding

Creating a CORBA Endpoint
Procedure .. 231
Configuring an Artix CORBA Endpoint ... 232
Generating CORBA IDL .. 236

230

Working with CORBA

Procedure
Generally, when you are creating a CORBA endpoint with Artix, you need to
do two things:

1. Specify the port information in the Artix contract so that Artix can
instantiate the appropriate port.

2. Generate the IDL describing your service so that a native CORBA
application can understand the interfaces of the new service.

231

Procedure

Configuring an Artix CORBA Endpoint
Overview

CORBA endpoints are described using the IONA-specific WSDL elements
corba:address and corba:policy within the WSDL port element, to

specify how a CORBA object is exposed.

Namespace
The namespace under which the CORBA extensions are defined is
http://schemas.iona.com/bindings/corba. If you are going to add a

CORBA endpoint by hand you will need to add this to your contract’s
definition element.

CORBA address specification
The IOR of the CORBA object is specified using the corba:address element.

You have four options for specifying IORs in Artix contracts:

• Specify the object’s IOR directly in the contract, using the stringified IOR
format:

IOR:22342...

• Specify a file location for the IOR, using the following syntax:

file:///file_name

Note
The file specification requires three backslashes (///).

• Specify that the IOR is published to a CORBA name service, by entering
the object’s name using the corbaname format:

corbaname:rir/NameService#object_name

For more information on using the name service with Artix see Artix for
CORBA [../../corba_ws/index.htm].

• Specify the IOR using corbaloc, by specifying the port at which the

endpoint exposes itself, using the corbaloc syntax.

corbaloc:iiop:host:port/service_name

232

Working with CORBA

../../corba_ws/index.htm
../../corba_ws/index.htm
../../corba_ws/index.htm

When using corbaloc, you must be sure to configure your endpoint to

start up on the specified host and port.

Specifying POA policies
Using the optional corba:policy element, you can describe a number of

POA polices the endpoint will use when creating the POA for connecting to
a CORBA application. These policies include:

• the name of the generated POA

• if persistence is used

• the ID of the generated POA

Setting these policies lets you exploit some of the enterprise features of IONA’s
Orbix 6.x, such as load balancing and fault tolerance, when deploying an
Artix integration project. For information on using these advanced CORBA
features, see the Orbix documentation.

POA name
Artix POAs are created with the default name of WS_ORB. To specify the name

of the POA Artix creates to connect with a CORBA object, you use the
following:

<corba:policy poaname="poa_name"/>

Persistence
By default Artix POAs have a persistence policy of false. To set the POA’s

persistence policy to true, use the following:

<corba:policy persistent="true"/>

ID assignment
By default Artix POAs are created with a SYSTEM_ID policy, meaning that

their ID is assigned by the ORB. To specify that the POA connecting a specific
object should use a user-assigned ID, use the following:

<corba:policy serviceid="POAid"/>

This creates a POA with a USER_ID policy and an object id of POAid.

Using the command line tool
You can use the wsdltoservice command line tool to add a CORBA endpoint
definition to an Artix contract. To use wsdltoservice to add a CORBA endpoint
use the tool with the following options.

233

Configuring an Artix CORBA Endpoint

wsdltoservice {-transport corba} [-e service] [-t port] [-b binding] [-a

address] [-poa poaName] [-sid serviceId] [-pst persists] [-o file] [-d

dir] [-L file] [[-q] | [-V]] [-h] wsdlurl

The -transport corba flag specifies that the tool is to generate a CORBA

endpoint. The other options are as follows.

Table 37. Options for Adding a CORBA Endpoint

DescriptionsArgument

Specifies the name of the generated service element.-e service

Specifies the value of the name attribute of the generated

port element.

-t port

Specifies the name of the binding for which the service
is generated.

-b binding

Specifies the value used in the corba:address element

of the port.

-a address

Specifies the value of the POA name policy.-poa poaName

Specifies the value of the ID assignment policy.-sid serviceId

Specifies the value of the persistence policy. Valid values
are true and false.

-pst persists

Specifies the filename for the generated contract. The
default is to append -service to the name of the

imported contract.

-o file

Specifies the output directory for the generated contract.-d dir

Specifies the location of your Artix license file. The default
behavior is to check IT_PRODUCT_DIR\etc\license.txt.

-L file

Specifies that the tool runs in quiet mode. No output will
be shown on the console. This includes error messages.

-q

Specifies that the tool will display a usage message.-h

234

Working with CORBA

DescriptionsArgument

Specifies that the tool runs in verbose mode.-V

Example
For example, a CORBA port for the personalInfoLookup binding would

look similar to Example 97 on page 235:

Example 97. CORBA personalInfoLookup Port

<service name="personalInfoLookupService">
<port name="personalInfoLookupPort"

binding="tns:personalInfoLookupBinding">
<corba:address location="file:///objref.ior"/>
<corba:policy persistent="true"/>
<corba:policy serviceid="personalInfoLookup"/>

</port>
</service>

Artix expects the IOR for the CORBA object to be located in a file called
objref.ior, and creates a persistent POA with an object id of personalInfo

to connect the CORBA application.

235

Configuring an Artix CORBA Endpoint

Generating CORBA IDL
Overview

Artix clients that use a CORBA transport require that the IDL defining the
interface exists and be accessible. Artix provides tools to generate the required
IDL from an existing WSDL contract. The generated IDL captures the
information in the logical portion of the contract and uses that to generate
the IDL interface. Each portType element in the contract generates an IDL

module.

From the command line
The wsdltocorba tool compiles Artix contracts and generates IDL for the
specified CORBA endpoint. To generate IDL use the following command:

wsdltocorba { -idl } {-b binding} [-corba] [-i portType] [-d dir] [-o file]

[-L file] [[-q] | [-V]] [-h] wsdl_file

The command has the following options:

Table 38. Options for Generating IDL

DescriptionOption

Instructs the tool to generate an IDL file from the specified
binding.

-idl

Specifies the CORBA binding from which IDL is to be
generated.

-b binding

Instructs the tool to generate a CORBA binding for the
specified port type.

-corba

Specifies the name of the port type being mapped to a
CORBA binding.

-i portType

Specifies the directory into which the new WSDL file is
written.

-d dir

Specifies the name of the generated WSDL file. Defaults to
wsdl_file.idl.

-o file

Specifies the location of your Artix license file. The default
behavior is to check IT_PRODUCT_DIR\etc\license.txt.

-L file

Specifies that the tool runs in quiet mode. No output will be
shown on the console. This includes error messages.

-q

Specifies that the tool runs in verbose mode.-V

236

Working with CORBA

DescriptionOption

Specifies that the tool will display a usage message.-h

By combining the -idl and -corba flags with wsdltocorba, you can generate

a CORBA binding for a logical operation and then generate the IDL for the
generated CORBA binding. When doing so, you must also use the -i portType

flag to specify the port type from which to generate the binding and the -b

binding flag to specify the name of the binding from which to generate the

IDL.

237

Generating CORBA IDL

238

Using the Artix Transformer
The Artix transformer allows you to perform message transformations, data validation, and interface versioning
without having to write additional code.

Using the Artix Transformer as a Service .. 240
Using Artix to Facilitate Interface Versioning .. 242
WSDL Messages and the Transformer ... 247
Writing XSLT Scripts ... 250
Elements of an XSLT Script ... 251
XSLT Templates ... 253
Common XSLT Functions ... 259

239

Using the Artix Transformer as a Service
Overview

Using the Artix transformer, you can create a Web service that does simple
tasks such as converting dates into the proper format or generating HTML
output without writing any code. You can also develop services to validate
the format of requests before they are sent to a busy server for processing.

The data processing is performed by the Artix transformer which uses an XSLT
script to determine how to process the data.

Procedure
To use the Artix transformer as a service you:

1. Define the data, interface, binding, and transport details for the server
in an Artix contract.

2. Write the XSLT script that defines the data processing you want the
transformer to perform.

3. Configure the service with the transformer’s configuration details.

Defining the server
The contract for a service that is implemented by the Artix transformer is the
same as the Artix contract for any other service in Artix. You need to define
the complex types, if any, that the service uses. Then you need to define the
messages used by the service to receive and respond to requests.

Once the data types and messages are defined, you then define the service’s
interface. The only limitation for a service that is implemented by the Artix
Transformer is that it cannot have any fault messages. The interface can
define multiple operations. Each operation will be processed using different
XSLT scripts.

After defining the logical details of the service, you need to define the binding
and network details for the service. The transformer can use any of the
bindings and transports supported by Artix.

Writing the scripts
The XSLT scripts tell the transformer what it needs to do to process the data
it receives. The scripts can be as simple or complex as they need to be to
perform the task. The only requirement is that they are valid XSLT documents.

240

Using the Artix Transformer

For more information about writing XSLT scripts read Writing XSLT
Scripts on page 250.

Configure the transformer
The Artix transformer is an Artix plug-in and can be loaded by an Artix process.
This provides a great deal of flexibility in how you configure and deploy the
process. There are two common deployment patterns for deploying the Artix
transformer as a service. The first is to configure the transformer to load into
the Artix container. The second is to configure the transformer to load directly
into the client process which is making requests against it.

For a detailed discussion of how to configure and deploy the Artix Transformer
see Configuring and Deploying Artix Solutions, C++ Runtime
[../../deploy/cpp/index.htm].

241

Using the Artix Transformer as a Service

../../deploy/cpp/index.htm
../../deploy/cpp/index.htm

Using Artix to Facilitate Interface Versioning
Overview

One of the most common and difficult problems faced in large scale client
server deployments is upgrading systems. For example, if you change the
interface for your server to add new functionality or streamline
communications, you then need to change all of the clients that access the
server. This can mean upgrading thousands of clients that may be scattered
across the globe.

The Artix transformer provides a solution to this problem that allows you to
slowly upgrade the clients without disrupting their ability to function. Using
the transformer you can develop an XSLT script that converts messages
between the different interfaces. Then you can place the transformer between
the old clients and the new server. This solution eliminates the need for
operating two versions of the same server, or trying to do a massive client
and server upgrade. It also does this without requiring you to do any custom
programing.

Procedure
To use the Artix transformer for interface versioning do the following:

1. Create a composite Artix contract defining both versions of the interfaces
that need to be supported.

2. Define an interface for the transformer that defines operations for mapping
the interfaces.

3. Add a SOAP binding to the contract for the transformer’s interface.

4. Add an HTTP port to the contract to define how the transformer can be
contacted.

5. Write the XSLT scripts that define the message transformations.

6. Configure the transformer.

7. Configure the Artix chain builder to create a chain containing the
transformer and the server on which clients will make requests.

Creating a composite contract
While the server and the client applications can be run without knowledge
of the other’s interface, the transformer responsible for translating the
messages between to the two interface versions must know about all of the

242

Using the Artix Transformer

interface versions used. This includes all data type definitions and message
definitions used by both versions of the interface.

You can create this composite contract in several ways. The most
straightforward way is to create a new contract which imports both the new
interface’s contract and the old interface’s contract. To import the contracts
you place an import element for each contract just after the definitions

element in the new contract and before any other elements in the new
contract. The import element has two attributes. location specifies the

pathname of the file containing the contract that is being imported. namespace

defines the XML namespace under which the imported contract can be
referenced.

For example, if you were creating a composite contract for interface versioning
you would have two contracts; one for the server with the updated interface
and one for the client using the legacy interface. The file name for the server’s
contract is r2e2.wsdl and the contract for the client is r2e1.wsdl. For

simplicity, they are located in the same directory as the composite contract.
The composite contract importing both versions of the interface is shown in
Example 98 on page 243.

Example 98. Composite WSDL

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="transformer"

targetNamespace="http://www.widgets.com/transformer"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:r1="http://www.widgets.com/r2e2Server"
xmlns:r2="http://www.widgets.com/r2e1Client"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://www.widgets.com/transformer"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<import location="r2e2.wsdl"
namespace="http://www.widgets.com/r2e2Server/>

<import location="r2e1.wsdl"
namespace="http://www.widgets.com/r2e1Client"/>

</definitions>

243

Using Artix to Facilitate Interface Versioning

Note that in the definitions element of the contract, XML namespace

shortcuts are defined for the imported contracts namespace. This makes using
items defined in the imported contracts much easier.

Define the transformer's interface
Once you have imported all versions of the interface that you need to support
into the transformer’s composite contract, you need to define the transformer’s
interface. The transformer must have one operation defined for each
transformation that is required to support all of the interface versions. For
example, if you only changed the structure of the request message in when
upgrading the server’s interface, the transformer only needs one operation
because the transformation is only one way. If you changed both the request
and response messages, the transformer’s interface will need two operations;
one for the request message and one for the response.

The operation to transform a request from the client to the proper format for
the server takes the client’s message as its input element and the server’s

message as its output message. The operation to transform a response from

the server to the proper format for a client takes the server’s outgoing message
as its input element and the client’s incoming message as its output

element.

Note
Fault messages are not supported.

When adding the operations, be sure to use the proper namespaces when
referencing the messages for the different versions of the interface. Using the
wrong namespaces could result in an invalid contract at the very least. If the
contract is valid, and the namespaces are incorrect, your system will behave
erratically.

For example, if the interface in Example 98 on page 243 was updated so that
both the client’s request and the server’s response need to be transformed
the transformer’s interface would need two operations. In this example the
name of the request message is widgetRequest and the name of the response

message is widgetResponse. The interface for the transformer,

versionTransform, is shown in Example 99 on page 244.

Example 99. Versioning Interface

<portType name="versionTransform">
<operation name="requestTransform">

244

Using the Artix Transformer

<input name="oldRequest" message="r1:widgetRequest"/>
<output name="newRequest" message="r2:widgetRequest"/>

</operation>
<operation name="responseTransform">
<input name="newResponse" message="r2:widgetResponse"/>
<output name="oldReponse" message="r1:widgetResponse"/>

</operation>
</portType>

In the operation transforming the request, requestTransform, the input

message is taken from the namespace r1 which is the namespace under
which the client’s contract is imported. The output message is taken from r2
which is the namespace under which the server’s contract is imported. For
the response message transformation, responseTransform, the order is

reversed. The input message is from r2 and the output message is from r1.

Defining the physical details for
the transformer After defining the operations used in transforming between the different version

of the interface, you need to define the binding and network details for the
transformer. The transformer can use any of the bindings and transports
supported by Artix. For information on adding a binding for the transformer
read Chapter 1: “Understanding Bindings in WSDL” on page 23. For
information on adding network details for the transformer read Chapter 10:
“Understanding How Endpoints are Defined in WSDL” on page 137.

Writing the XSLT scripts
The XSLT scripts tell the transformer what it needs to do to process the data
it receives. The scripts can be as simple or complex as they need to be to
perform the task. The only requirement is that they are valid XSLT documents.
For more information about writing XSLT scripts read Writing XSLT
Scripts on page 250.

Configuring the transformer
The Artix transformer is an Artix plug-in and can be loaded by an Artix process.
This provides a great deal of flexibility in how you configure and deploy the
process. For a detailed discussion of how to configure and deploy the Artix
transformer see Configuring and Deploying Artix Solutions, C++ Runtime
[../../deploy/cpp/index.htm].

When using the transformer to do interface versioning, you need to deploy it
as part of a service chain. To build a service chain in Artix you deploy the
Artix chain builder. Like the transformer, the chain builder is an Artix plug-in
and provides a number of deployment options. One way of deploying the
chain builder along with the transformer is to deploy it alongside the
transformer in an Artix container.

245

Using Artix to Facilitate Interface Versioning

../../deploy/cpp/index.htm
../../deploy/cpp/index.htm

For a detailed discussion of how to configure and deploy the Artix chain builder
see Configuring and Deploying Artix Solutions, C++ Runtime
[../../deploy/cpp/index.htm].

246

Using the Artix Transformer

../../deploy/cpp/index.htm
../../deploy/cpp/index.htm

WSDL Messages and the Transformer
Overview

Conceptually, the Artix transformer works on XML representations of the data
passed along the wire. Your XSLT scripts are written based on the WSDL
descriptions of the message’s being processed. This relieves you of the burden
of understanding how the data on the wire is represented.

Incoming messages
The virtual XML document the transformer uses as input is created by using
the Artix contract to map the raw data from the input port into a DOM facade.
The mapping is done as follows:

• If the message is defined using the doc-literal styles, the transformer uses
the message part’s schema definition to create a representation of the
message.

• If the message is not defined using the doc-literal style, the transformer
does the following to build an XML representation of the message:

1. the name of the message’s root element is the QName of the message

element referred to by the operation’s input element.

2. Each part element in the input message is placed in an element derived

from the name attribute of the part element.

3. If the part is of a complex type, or an element of a complex type, the
type’s elements appear inside of the element containing the part.

For example, if you had a service defined by the WSDL fragment in
Example 100 on page 247 and the transformer implemented the operation
configure the XML document would be constructed using the message

oldClientInput, which is the input message.

Example 100. WSDL Fragment for Transformer

<definitions targetNamespace="vehicle.demo.example"
xmlns:tns="vehicle.demo.example"
...>

<types ...>
...
<complexType name="vehicleType">
<element name="vin" type="xsd:string" />
<element name="model" type="xsd:string" />

247

WSDL Messages and the Transformer

</complexType>
</types>
...
<message name="original">
<part name="vehicle" type="xsd1:vehicleType"/>
<part name="name" type="xsd:string"/>

</message>
<message name="transformed">
<part name="vehicle" type="xsd:string"/>
<part name="firstName" type="xsd:string"/>
<part name="lastName" type="xsd:string"/>

</message>
...
<portType name="parkingLotMeter">
<operation name="configure">
<input name="oldClientInput" message="tns:original"/>
<output name="updatedInput" message="tns:transformed"/>

</operation>
...
</portType>
...

When the message is reconstructed, the transformer uses the input message’s
name, given in the input element, as the name of the root element of the

XML document. It then uses the message parts and the schema types to
recreate the data as an XML message. So if the transformer was using the
contract defined in Example 100 on page 247 an input message processed
by the transformer could look like Example 101 on page 248.

Example 101. Transformer Input Message

<ns1:oldClientInput xmlns:ns1="vehicle.demo.example">
<vehicle>
<vin>0123456789</vin>
<model>Prius</model>

</vehicle>
<name>Old MacDonald</name>

</oldClientInput>

Outbound message
The results from the transformer goes through the reverse of the process that
turns the input message into a virtual XML document. The transformer uses
the output message definition from the Artix contract to place the result
message back onto the wire in the proper payload format. If the result message
is not properly formed this attempt will fail, so you must be careful when
writing your XSLT script to ensure that the results match the expected format.

248

Using the Artix Transformer

When the result message is deconstructed, the transformer expects the
following:

• If the output message is defined using the doc-literal style, the message
must match the schema defining the message’s part.

• If the output message is not defined using the doc-literal style, then the
following must be true:

• The name of the message’s root element is the QName of the message
element referred to by the output element in the contract.

• There are the same number of elements in the result as there are part

elements in the output message definition.

• The elements in the result are based on the name attributes of the part

elements in the output message definition.

• The data contained in the element representing the output message’s
part elements matched the XML Schema definitions in the contract.

For example, a result message for the configure operation defined in
Example 100 on page 247 would look like Example 102 on page 249.

Example 102. Transformer Output Message

<ns1:updatedInput xmlns:ns1="vehicle.demo.example">>
<vehicle>Prius</vehicle>
<firstName>Old</firstName>
<lastName>MacDonald</lastName>

</updatedInput>

Using element names
You can configure the transformer to use the element name of the message
parts instead of the value of the part element’s name attribute. For more

information see Configuring and Deploying Artix Solutions, C++ Runtime
[../../deploy/cpp/index.htm].

249

WSDL Messages and the Transformer

../../deploy/cpp/index.htm
../../deploy/cpp/index.htm

Writing XSLT Scripts
Overview

XML Stylesheet Language Transformations(XSLT) is a language used to
describe the transformation of XML documents. The current W3C standard
for XSLT is 1.0 and can be read at the W3C web site
(http://www.w3.org/TR/xslt). XSLT documents, called scripts, are well-formed
XML documents that describe how a source XML document is transformed
into a resulting XML document. It can be used to perform tasks as simple as
splitting a name entry into first and last name entries and as complex as
validating that a complex XML document matches the expectations of an
interface described in a WSDL document.

Procedure
Writing an XSLT script can be done in a number of ways and using a number
of tools. The steps given here assume that you are writing fairly simple scripts
using a text editor.

To write a XSLT script do the following:

1. Create an XML stylesheet with the required xsl:transform element.

2. Determine which elements in your source message need to be processed
and create xsd:template elements for each of them.

3. For each element that has a matching template element, define how you
want the element processed to produce a new output document.

4. If child elements need to be processed as part of processing a parent
element, define a template for the child element and apply it as part of
the parent element’s template using xsd:apply-templates.

250

Using the Artix Transformer

http://www.w3.org/TR/xslt

Elements of an XSLT Script
Overview

An XSLT script is essentially an XML stylesheet containing a special set of
elements that instruct an XSLT engine in the processing of other XML
documents. An XSLT script must be defined in an xsl:transform element

or an xsl:stylesheet element. In addition, it needs at least one valid

top-level element to define the transformation.

The transform element
The xsl:transform element denotes that the document is an XML stylesheet.

The xsl:stylesheet element can be used in place of the xsl:transform

element. They are equivalent.

When creating an XSLT script you must set the version attribute to 1.0 to
inform the transformer what version of XSLT you are using. In addition, you
must provide an XML namespace shortcut for the XSLT namespace in the
xsl:transform element. Example 103 on page 251 shows a valid

xsl:transform element for an XSLT script.

Example 103. XSLT Script Stylesheet Element

<xsl:transform version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Trans

form">
...
</stylesheet>

Top-level elements
While all that is needed to make an XML document a valid XSLT script is the
xsl:transform element, the xsl:transform element does not provide any

instructions for processing data. The data processing instructions in an XSLT
script are provided by a number of top-level XSLT elements. These element’s
include:

• xsl:import

• xsl:include

• xsl:strip-space

• xsl:preserve-space

251

Elements of an XSLT Script

• xsl:output

• xsl:key

• xsl:decimal-format

• xsl:namespace-alias

• xsl:attribute-set

• xsl:variable

• xsl:param

• xsl:template

An XSLT script can have any number and combination of top-level elements.
Other than xsl:import, which must occur before any other elements, the

top-level elements can be used in any order. However, be aware that the
order determines the order in which processing steps happen.

Example
Example 104 on page 252 shows a simple XSLT script that transforms SSN

elements into acctNum elements.

Example 104. Simple XSLT Script

<xsl:transform version = '1.0'
xmlns:xsl='http://www.w3.org/1999/XSL/Trans

form'>
<xsl:template match="SSN">
<acctNum>
<xsl:value-of select="."/>

</acctNum>
</xsl:template>

</xsl:stylesheet>

Using this XSLT script the transformer would change a message that contained
<SSN>012457890</SSN> into a message that contained
<acctNum>012457890</acctNum>.

252

Using the Artix Transformer

XSLT Templates
Overview

XSLT processors use templates to determine the elements on which to apply
a set of transformations. Documents are processed from the top element
through their structure to determine if elements match a defined template. If
a match is found, the rules specified by the template are applied.

To write a template in XSLT you need to do the following:

1. Create an xsl:template element.

2. Provide the path to the source element it processes.

3. Write the processing rules.

xsl:template elements
Templates are defined using xsl:template elements. These elements take

one required attribute, match, which specifies the source element that triggers

the rules. In addition, you can use the name attribute to give the template a

unique identifier for referencing it elsewhere in the contract.

Specifying the source elements
You specify the elements of the source document to which template rules are
matched using the match attribute of the xsl:template element. The source

elements are specified using the syntax specified by the XPath specification
(http://www.w3.org/TR/xpath). The source element address looks very similar
to a file path where slash(/) specifies the root element and child elements

are listed in top down order separated by a slash(/). For example to specify

the surname element of the XML document shown in

Example 105 on page 253, you would specify it as /name/surname.

Example 105. Sample XML Document

<name>
<firstname>
Joe

</firstname>
<surname>
Friday

253

XSLT Templates

http://www.w3.org/TR/xpath

</surname>
<name>

Template matching order
XSLT processors start processing with the <xsl:template match="/">

element if it is present. All of the processing directives for this template act
on the top-level elements of the source document. For example, given the
XML document shown in Example 105 on page 253 any processing rules
specified in <xsl:template match="/"> would apply to the name element.

In addition, specifying a template for the root element(/) forces you to make

all your source element paths explicit from the root element. The XSLT script
shown in Example 106 on page 254 generates the string Friday when run

on Example 105 on page 253.

Example 106. XSLT Script with Root Element Template

<xsl:transform version = '1.0'
xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>

<xsl:template match="/">
<xsl:value-of select="/name/surname"/>

</xsl:template>
</xsl:transform>

You do not need to specify a template for the root element of the source
document in an XSLT script. When you omit the root element’s template the
processor treats all template paths as though they originated from the source
documents top level element. The XSLT script in Example 107 on page 254
generates the same output as the script in Example 106 on page 254.

Example 107. XSLT Script without Root Element Template

<xsl:transform version = '1.0'
xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>

<xsl:template match="surname">
<xsl:value-of select="."/>

</xsl:template>
</xsl:transform>

Template rules
The contents of an xsl:template element define how the source document

is processed to produce an output document. You can use a combination of
XSLT elements, HTML, and text to define the processing rules. Any plain text
and HTML that are used in the processing rules are placed directly into the
output document. For example, if you wanted to generate an HTML document

254

Using the Artix Transformer

from an XML document you would use an XSLT script that included HTML
tags as part of its processing rules. The script in Example 108 on page 255
takes an XML document with a title element and a subTitle element and

produces an HTML document where the contents of title are displayed

using the <h1> style and the contents of subTitle are displayed using the

<h2> style.

Example 108. XSLT Template with HTML

<xsl:transform version = '1.0'
xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>

<xsl:template match="/">
<h1>
<xsl:value-of select="//title"/>

</h1>
<h2>
<xsl:value-of select="//subTitle"/>

</h2>
</xsl:template>

</xsl:transform>

Applying templates to child
elements You can instruct the XSLT processor to apply any templates defined in the

script to the children of the element being processed using an
xsl:apply-templates element as one of the rules in a template.

xsl:apply-templates instructs the XSLT processor to treat the current

element as a root element and run the templates in the script against it.

For example you could rewrite Example 108 on page 255 as shown in
Example 109 on page 255 using xsl:apply-templates and defining a

template for the title and subTitle elements.

Example 109. XSLT Template Using apply-templates

<xsl:transform version = '1.0'
xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>

<xsl:template match="/">
<xsl:apply-templates/>

</xsl:template>
<xsl"template match="title">
<h1>
<xsl:value-of select="."/>

</h1>
</xsl:template>

255

XSLT Templates

<xsl"template match="subTitle">
<h2>
<xsl:value-of select="."/>

</h2>
</xsl:template>

</xsl:transform>

You can use the optional select attribute to limit the child elements to which

the templates are applied. select takes an XPath value and operates in the

same manner as the match attribute of xsl:template.

Example
For example, if your ordering system produced bills that looked similar to the
XML document in Example 110 on page 256, you could use an XSLT script
to reformat the bill for a system that required the customer’s name in a single
element, name, and the city and state to be in a comma-separated field, city.

Example 110. Bill XML Document

<widgetBill>
<customer>
<firstName>
Joe

</firstName>
<lastName>
Cool

</lastName>
</customer>
<address>
<street>
123 Main Street

</street>
<city>
Hot Coffee

</city>
<state>
MS

</state>
<zipCode>
3942

</zipCode>
</address>
<amtDue>
123.50

</amtDue>
</widgetBill>

256

Using the Artix Transformer

The XSLT script shown in Example 111 on page 257 would result in the
desired transformation.

Example 111. XSLT Script for widgetBill

<xsl:transform version = '1.0'
xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>

❶ <xsl:template match="widgetBill">
<xsl:element name="widgetBill">
<xsl:apply-templates/>

</xsl:element>
</xsl:template>
<xsl:template match="customer">

❷ <xsl:element name="name">
<xsl:value-of select="concat(//firstName,’ ’,//lastName)"/>

</xsl:element>
</xsl:template>
<xsl:template match="address">

❸ <xsl:element name="address">
<xsl:copy-of select="//street"/>
<xsl:element name="city">
<xsl:value-of select="concat(//city,’, ’,//state)"/>

</xsl:element>
<xsl:copy-of select="//zipCode"/>

</xsl:element>
</xsl:template>

❹ <xsl:template match="amtDue">
<xsl:copy-of select="."/>

</xsl:template>
</xsl:transform>

The script does the following:

❶ Creates an element, widgetBill, in the output document and places

the results of the other templates as its children.
❷ Creates an element, name, and sets its value to the result of the

concatenation.
❸ Creates an element, address, and sets its value to the results of the

rules. address will contain a copy of the street element from the

source document, a new element, city, that is a concatenation, and a

copy of the zipCode element from the source document.

❹ Copy the amtDue element from the source document into the output

document.

257

XSLT Templates

Processing the document in Example 110 on page 256 with this XSLT script
would result in the XML document shown in Example 112 on page 258.

Example 112. Processed Bill XML Document

<widgetBill>
<customer>
Joe Cool

</customer>
<address>
<street>
123 Main Street

</street>
<city>
Hot Coffee, MS

</city>
<zipCode>
3942

</zipCode>
</address>
<amtDue>
123.50

</amtDue>
</widgetBill>

258

Using the Artix Transformer

Common XSLT Functions
Overview

XSLT provides a range of capabilities in processing XML documents. These
include conditional statements, looping, creating variables, and sorting.
However, there are a few common functions that are used to generate output
documents. These include:

• xsl:value-of

• xsl:copy-of

• xsl:element

xsl:value-of
xsl:value-of creates a text node in the ouput document. It has a required

select attribute that specifies the text to be inserted into the output

document.

The value of select is evaluated as an expression describing the data to

insert. It can contain any of the XSLT string functions, such as concat(), or

an XSLT axis describing an element in the source document.

Once the select expression is evaluated the result is placed in the output

document.

xsl:copy-of
xsl:copy-of copies data from the source document into the output

document. It has a required select. The value of select is an expression

describing the elements to be copied.

When the result of evaluating the expression is a tree fragment, the complete
fragment is copied into the output document. When the result is an element,
the element, its attributes, its namespaces, and its children are copied into
the output document. When the result is neither an element nor a result tree
fragment, the result is converted to a string and then inserted into the output
document.

xsl:element
xsl:element creates an element in the output document. It takes a required

name attribute that specifies the name of the element that is created. In

259

Common XSLT Functions

addtion, you can specify a namespace for the element using the optional

namespace attribute.

260

Using the Artix Transformer

Using Codeset Conversion
Some bindings do not natively support codeset conversion. Artix provides WSDL extensions and a plug-in that
add codeset conversion to these bindings.

Overview
While many of the bindings supported by Artix provide a means for handling
codeset conversion, some do not. It is also possible that any custom bindings
you developed do not support codeset conversion. To allow bindings that do
not natively support codeset conversion to participate in environments where
more than one codeset is used, Artix provides an i18n message-level
interceptor that will perform codeset conversion on the message buffer before
it is placed on the wire.

The i18n interceptor can be configured by defining the codeset conversion in
your endpoint’s Artix contract using an Artix port extensor. You can also
configure the i18n interceptor programmatically using the context mechanism.
The programmatic settings will override any settings described in the contract.
For more information on using the context mechanism see the appropriate
development guide for your development environment.

Configuring Artix to use the i18n
interceptor Before your application can use the generic i18n interceptor for code

conversion you must configure the Artix bus to load the required plug-ins and
add the interceptor to the appropriate message interceptor lists. To configure
your application to use the i18n interceptor do the following:

1. If your application includes a client that needs to use codeset conversion,
add i18n-context:I18nInterceptorFactory to the

binding:artix:client_message_interceptor_list variable for

your application.

2. If your application includes a service that needs to use codeset conversion,
add i18n-context:I18nInterceptorFactory to the

binding:artix:server_message_interceptor_list variable for

your application.

For more information on configuring Artix see Configuring and Deploying Artix
Solutions, C++ Runtime [../../deploy/cpp/index.htm].

Describing the codeset
conversions in the contract You define the codeset conversions performed by the i18n interceptor in the

port element defining an endpoint. There are two extensors used to define

261

../../deploy/cpp/index.htm
../../deploy/cpp/index.htm
../../deploy/cpp/index.htm

the codeset conversions. One, i18n-context:server, is for service providers

and the other, i18n-context:client, is for clients. They both provide

settings for how both incoming messages and outgoing messages are to be
encoded. These extensions are defined in the namespace
http://schemas.iona.com/bus/i18n/context.

To define the codeset conversions performed by the i18n interceptor do the
following:

1. Add the following line to the definitions element of your contract.

xmlns:i18n-context="http://schemas.iona.com/bus/i18n/con
text"

2. If your application provides a service that requires codeset conversion
add a i18n-context:server element to the port definition of the service

endpoint.

Table 39 on page 262 shows the attributes for the
i18n-context:server element. These attributes define how message

codesets are converted.

Table 39. Attributes for the i18n-context:server Element

DescriptionAttribute

Specifies the server’s native codeset. The default
is the codeset specified by the local system’s
locale setting.

LocalCodeSet

Specifies the codeset into which replies are
converted. The default is the codeset specified in
InboundCodeSet.

OutboundCodeSet

Specifies the codeset into which requests are
converted. The default is the codeset specified in
LocalCodeSet.

InboundCodeSet

3. If your application includes a client that requires codeset conversion add
an i18n-context:client element to the port definition of the service

endpoint.

262

Using Codeset Conversion

Table 40 on page 263 describes the attributes used by the
i18n-context:client element for defining how message codesets are

converted.

Table 40. Attributes for the i18n-context:client Element

DescriptionAttribute

Specifies the server's native codeset. Default is the
codeset specified by the local system's locale
setting.

LocalCodeSet

Specifies the codeset into which requests are
converted. The default is the codeset specified in
LocalCodeSet.

OutboundCodeSet

Specifies the codeset into which replies are
converted. The default is the codeset specified in
OutboundCodeSet.

InboundCodeSet

Example
The contract fragment in Example 113 on page 263 shows a port definition
for an endpoint that defines a server/client pair. The server uses UTF-8 as its
local codeset and the client uses ISO-8859-1 as its local codeset.

Example 113. Specifying Codeset Conversion

...
<service name="covertedService">
<port binding="tns:convertedFixedBinding"

name="convertedPort">
<http:address location="localhost:0"/>
<i18n:client LocalCodeSet="ISO-8859-1"

OutboundCodeSet="UTF-8"
InboundCodeSet="ISO-8859-1"/>

<i18n:server LocalCodeSet="UTF-8"
OutboundCodeSet="ISO-8859-1"/>

</port>
</service>
...

Using the endpoint definition above, the client will convert its requests into
UTF-8 before sending them to the server. The server will convert its replies
into ISO-8859-1 before sending them to the client. The client’s inbound

263

codeset is set to ISO-8859-1 because if left unset the value would have
defaulted to UTF-8. The client would then perform an extra conversion.

264

Using Codeset Conversion

Index
A
ActiveMQ, 172
address specification

CORBA, 232
IIOP, 173

B
bindings

CORBA, 226
fixedrecord length, 63
FML field tables, 50
SOAP with Attachments, 35
tagged, 79
TibrvMsg, 98
XML, 57

C
configuring IIOP, 174
corba:address, 232
corba:binding, 226

bases, 226
repositoryID, 226

corba:operation, 226
name, 226

corba:para
name, 227

corba:param, 226
idltype, 227
mode, 227

corba:policy, 233
persistent, 233
poaname, 233
serviceid, 233

corba:raises, 227
exception, 227

corba:return, 227
idltype, 227
name, 227

corba:typemap, 224

F
FilenameFactoryPropertyMetaData, 193

name, 193
readOnly, 193
valueSet, 193

fixed:binding, 64
encoding, 65
justification, 65
padHexCode, 65

fixed:body, 65
justification, 66
padHexCode, 66

fixed:choice
discriminatorName, 71

fixed:enumeration, 69
fixedValue, 69
value, 69

fixed:field, 67
bindingOnly, 66
fixedValue, 69
format, 68
justification, 69
size, 67

fixed:operation, 65
discriminator, 65

fixed:sequence, 73
counterName, 74
occurs, 74

FTP Transport
client filename factory, 182
reply lifecycle policy, 184
request lifecycle policy, 188
server filename factory, 186

ftp:port
connectMode, 179
host, 178
port, 178
replyLocation, 179
requestLocation, 179
scanInterval, 179

ftp:properties, 179, 191
ftp:property, 179, 191

name, 179, 191

265

value, 179, 191
FTPProperties, 192

getExtensors(), 192
FTPProperty, 192
ftrp:port, 178

H
http-conf:client, 147

CacheControl, 155
Connection, 152
Password, 150
SendTimeout, 148

http-conf:client:client
UserName, 150

http-conf:server, 147
CacheControl, 154
HonorKeepAlive, 152
SendTimeout, 148

http:address, 141
location, 141

http:conf:client, 150

I
i18n-context:client, 261

InboundCodeSet, 263
LocalCodeSet, 263
OutboundCodeSet, 263

i18n-context:server, 261
InboundCodeSet, 262
LocalCodeSet, 262
OutboundCodeSet, 262

iiop:address, 173
iiop:payload, 174
iiop:policy, 174

persistent, 175
poaname, 174
serviceid, 175

IOR specification, 173, 232

J
Java Messaging System, 161
Java Naming and Directory Interface, 161

JMS, 161
jms:address, 162

connectionPassword attribute, 162
connectionUserName attribute, 162
destinationStyle attribute, 162
jndiConnectionFactory attribute, 162
jndiDestinationName attribute, 162
jndiReplyDestinationName attribute, 162

jms:client, 166
messageType attribute, 166

jms:JMSNamingProperties
name attribute, 162
value attribute, 162

jms:JMSNamingProperty, 162
jms:server, 167

durableSubscriberName, 167
messageSelector, 167
transactional, 167
useMessageIDAsCorrelationID, 167

JNDI, 161

M
mime:content, 35

part, 35
type, 36

mime:multipartRelated, 34
mime:part, 34, 35

name attribute, 35
mq:client, 196

AliasQueueName, 205
Format, 207
Server_Client, 203

mq:server, 196
Format, 207
Server_Client, 203

P
plugins:ftp:policy:client:filenameFactory, 185
plugins:ftp:policy:client:replyFileLifecycle, 185
plugins:ftp:policy:server:filenameFactory, 189
plugins:ftp:policy:server:requestFileLifecycle, 189

266

R
rmi:address, 92

url, 92
rmi:class, 92

name, 92

S
soap12:body

parts, 44
soap12:header, 43

encodingStyle, 44
message, 43
namespace, 44
part, 43
use, 43

soap:address, 140
location, 140

soap:body
parts, 29

soap:header, 29
encodingStyle, 29
message, 29
namespace, 29
part, 29
use, 29

specifying POA policies, 174, 233

T
tagged:binding, 80
tagged:body, 82
tagged:case, 85
tagged:choice, 85
tagged:enumeration, 83
tagged:field, 82
tagged:operation, 81
tagged:sequence, 83
tibrv:array, 109
tibrv:binding, 99

stringAsOpaque, 99
stringEncoding, 99

tibrv:context, 130
tibrv:field, 128

tibrv:input, 100
tibrv:msg, 128
tibrv:operation, 100
tibrv:output, 101

messageNameFieldPath, 101
messageNameFieldValue, 101
stringAsOpaque, 101
stringEncoding, 101

tibrv:port, 209
serverSubject, 209

tuxed:operation, 55
tuxedo:binding, 54
tuxedo:field, 54

id, 54
name, 54

tuxedo:fieldTable, 54
tuxedo:input, 215

operation, 215
tuxedo:server, 215
tuxedo:service, 215

name, 215

W
WebSphere MQ

Format
working with mainframes, 208

WSDL
port element, 137

binding attribute, 137
service element, 137

name attribute, 137
WSDL:binding element, 23

name attribute, 23
wsdltocorba

adding a CORBA binding, 224
generating IDL, 236

wsdltoservice
adding a CORBA endpoint, 233
adding a JMS endpoint, 169
adding a TIB/RV endpoint, 209
adding a tuxedo endpoint, 215
adding a WebSphere MQ endpoint, 196
adding an HTTP endpoint, 141

267

adding an IIOP service, 175
wsdltosoap, 26, 40
wsoap12:address, 140

location, 140

X
xformat:binding, 57

rootNode, 57
xformat:body, 58

rootNode, 58
XML Stylesheet Language Transformations, 250
XPath, 253
xsl:apply-template

select, 256
xsl:apply-templates, 255
xsl:copy-of, 259

select, 259
xsl:element, 259

name, 259
namespace, 259

xsl:stylesheet, 251
xsl:template, 253

match, 253
xsl:transform, 251
xsl:value-of, 259

select, 259
XSLT, 250

268

	Bindings and Transports, C++ Runtime
	Table of Contents
	Preface
	What is Covered in This Book
	Who Should Read This Book
	How to Use This Book
	The Artix ESB Documentation Library

	Part I. Bindings
	Understanding Bindings in WSDL
	Using SOAP 1.1 Messages
	Adding a SOAP 1.1 Binding
	Adding SOAP Headers to a SOAP 1.1 Binding
	Sending Data Using SOAP with Attachments

	Using SOAP 1.2 Messages
	Adding a SOAP 1.2 Binding
	Adding Headers to a SOAP 1.2 Message

	Using Tuxedo’s FML Buffers
	Using XML Documents
	Using Fixed Length Records
	Using Tagged Data
	Using RMI
	Using Tibco Rendezvous Messages
	Defining a TibrvMsg Binding
	Default Mappings for TibrvMsg
	Defining Array Mapping Policies
	Defining a Custom TibrvMsg Mapping
	Adding Context Information to a TibrvMsg

	Part II. Transports
	Understanding How Endpoints are Defined in WSDL
	Using HTTP
	Adding an HTTP Endpoint to a Contract
	Configuring an HTTP Endpoint
	Introduction
	Specifying Send and Receive Timeout Limits
	Specifying a Username and a Password
	Configuring Keep-Alive Behavior
	Specifying Cache Control Directives

	Managing Cookies in Artix Clients

	Using the Java Messaging System
	Defining a JMS Endpoint
	Introduction
	Basic Endpoint Configuration
	Client Endpoint Configuration
	Server Endpoint Configuration
	Using the Command Line Tool

	Migrating to the 4.x JMS WSDL Extensions
	Using ActiveMQ as Your JMS Provider

	Using IIOP
	Using FTP
	Adding an FTP Endpoint
	Coordinating Requests and Responses
	Introduction
	Implementing the Client’s Coordination Logic
	Implementing the Server’s Coordination Logic
	Using Properties to Control Coordination Behavior

	Using WebSphere MQ
	Adding a WebSphere MQ Endpoint
	Websphere MQ Connection Settings
	Specifying the WebSphere Library to Load
	Using Queues on Remote Hosts
	Setting a Value of the Message Descriptor’s Format Field

	Using TIBCO Rendezvous
	Using Tuxedo

	Part III. Other Artix ESB Features
	Working with CORBA
	Adding a CORBA Binding
	Creating a CORBA Endpoint
	Procedure
	Configuring an Artix CORBA Endpoint
	Generating CORBA IDL

	Using the Artix Transformer
	Using the Artix Transformer as a Service
	Using Artix to Facilitate Interface Versioning
	WSDL Messages and the Transformer
	Writing XSLT Scripts
	Elements of an XSLT Script
	XSLT Templates
	Common XSLT Functions

	Using Codeset Conversion

	Index

