
Artix ESB®

Locator Guide
Version 5.5, December 2008

Progress Software Corporation and/or its subsidiaries may have patents, patent
applications, trademarks, copyrights, or other intellectual property rights covering
subject matter in this publication. Except as expressly provided in any written license
agreement from Progress Software Corporation, the furnishing of this publication does
not give you any license to these patents, trademarks, copyrights, or other intellectual
property. Any rights not expressly granted herein are reserved.
Progress, IONA, Orbix, High Performance Integration, Artix, FUSE, and Making Software
Work Together are trademarks or registered trademarks of Progress Software Corporation
and/or its subsidiaries in the U.S. and other countries.
Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries. CORBA is a trademark or registered trademark of the
Object Management Group, Inc. in the U.S. and other countries. All other trademarks
that appear herein are the property of their respective owners.
While the information in this publication is believed to be accurate Progress Software Corporation makes no
warranty of any kind to this material including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose. Progress Software Corporation shall not be liable for errors contained herein, or
for incidental or consequential damages in connection with the furnishing, performance or use of this material.

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third
party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publication
and features described herein are subject to change without notice.

Copyright © 2008 IONA Technologies PLC, a wholly-owned subsidiary of Progress
Software Corporation. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: February 2, 2009

Contents

Preface 5

What is Covered in This Book 5
Who Should Read This Book 5
How to Use This Book 5
Artix Documentation Library 6

Chapter 1 Artix Locator Introduction 7
What is the Locator Service? 8
How the Locator Works 10
Locator WSDL Contract 16
Locator Sample Code 18

Locator Samples for the C++/Java JNI Runtime 19
Locator Sample for the Java JAX-WS Runtime 20

Migrating from Previous Versions 21

Chapter 2 Configuring and Deploying the Locator Service 27
Deploying the Locator Service 28
Registering Services with the Locator 34

Configuring a Locator-Enabled Service, C++ Runtime 35
Configuring a Locator-Enabled Service, Java Runtime 38

Using Load Balancing 41
Using Fault Tolerance Features 43
Starting Services with Artix 3 Consumer Support 45
Adding SOAP 1.2 Support 50
3

CONTENTS
Chapter 3 Using the Locator from an Artix Consumer 51
Configuring Artix Consumers to Use the Locator Service 52

Configuring C++ and JAX-RPC Consumers 53
Configuring JAX-WS Consumers 55

Obtaining Service References from the Locator Service 56
Implementing a C++ Consumer 57
Implementing a Java JAX-RPC Consumer 61
Implementing a JAX-WS Consumer 64

Querying a Locator Service 67
Migrating Consumer Code 76

Chapter 4 Using the Locator from a Non-Artix Client 81
Implementing a .NET Client 82
Implementing an Axis Client 86

Index 89
4

Preface
What is Covered in This Book
This book describes the theory and operation of the Artix locator service.

Who Should Read This Book
This book is intended for administrators and developers who want to
configure and deploy an Artix locator service.

The information in this book is at an intermediate to advanced level, and
presumes the reader has a working knowledge of WSDL contracts, Java or
C++, Artix configuration concepts, and the deployment of Artix plug-ins
into an Artix container.

How to Use This Book
This book is organized into the following chapters:

� Chapter 1, �Artix Locator Introduction,� provides an overview of the
Artix locator and its uses.

� Chapter 2, �Configuring and Deploying the Locator Service,� describes
how to edit your Artix configuration files to deploy one or more Artix
locator services. This chapter also describes how an Artix post-3.x
locator can be used by Artix 3.x consumers.

� Chapter 3, �Using the Locator from an Artix Consumer,� describes how
to code C++ and Java service consumers that take advantage of and
that query a deployed Artix locator. This chapter also describes how to
migrate consumers-of-locators from Artix 3 to post-Artix 3.

� Chapter 4, �Using the Locator from a Non-Artix Client,� describes how
an Artix locator service can be used by consumers generated by other
SOA systems�for example, .NET and Axis.
5

PREFACE
Artix Documentation Library
For information on the organization of the Artix library, the document
conventions used, and finding additional resources, see Using the Artix
Library.
 6

../library_intro/index.htm
../library_intro/index.htm

CHAPTER 1

Artix Locator
Introduction
The Artix locator service enables consumers to connect to
services in a way that is independent of the service location.
This chapter provides an overview of the Artix locator service,
including its expected use cases, its operation, and its WSDL
contract. This chapter also discusses migrating from earlier
versions of the Artix locator service.

In this chapter This chapter discusses the following topics:

What is the Locator Service? page 8

How the Locator Works page 10

Locator WSDL Contract page 16

Locator Sample Code page 18

Migrating from Previous Versions page 21
7

CHAPTER 1 | Artix Locator Introduction
What is the Locator Service?

Overview The Artix locator is a Web service that provides Web service consumers with
a mechanism to discover service endpoints at runtime. The locator isolates
consumers from knowledge of a service endpoint�s physical location. The
locator allows service endpoints to advertise their availability to consumers.

Use cases The Artix locator service supports the following use cases:

Service endpoint repository

You can use the Artix locator to isolate the consumers of Artix services from
having to know the exact network location of each service. Consumers can
query the locator for the current location of a service. This allows you to
redeploy popular services onto different hardware or different transports
without needing to recompile or reconfigure consumers in any way.

Service endpoint grouping and organizing

You can query the locator for its list of currently registered services, and you
can filter and organize the results list by service name, port name, portType,
binding, or port extensor name. In addition, you can assign services to
named groups either in the service WSDL contract or in the Artix
configuration file, and can filter the queried service list by group name. This
allows you to add structure to the way consumers view the locator service
data.

Service load balancing

If you register multiple instances of a service with an Artix locator using the
same service name, the locator automatically employs a round-robin or
random algorithm to select the service instance whose reference is returned
to requesting consumers. This provides you with a lightweight mechanism
to distribute the load on popular services without the overhead of setting up
a highly available system.
8

What is the Locator Service?
Service fault tolerance

The Artix locator has fault tolerance features between the service endpoints
and the locator. The service-side locator plug-in is tolerant of restarts of the
locator service, and automatically reregisters its endpoints when the locator
restarts.The locator service is tolerant of badly behaved services that do not
register their endpoints on shutdown: the locator automatically deregisters
the service from the locator in the event of a failure on the service side.

High availability locator

The Artix locator can be configured in a high availability configuration with
two or more slave locators coordinating with one master locator.This allows
you to distribute many instances of the locator across your service network,
all of which share the same reliable repository.
9

CHAPTER 1 | Artix Locator Introduction
How the Locator Works

Overview The Artix locator service is a standalone service that holds a repository of
active service endpoints on your service network. The Artix locator service
functionality is implemented as a number of Artix plug-ins. In order to use
this functionality, you need participation from consumers, service endpoints,
and the central locator service. Therefore, to implement locator functionality
on your network, you must enable Artix plug-ins for each of these points on
your network, and configure them accordingly. You do not have to write any
code to use this functionality. Since the locator service is described by a
WSDL contract, you can also choose to use the locator functionality directly
in your applications.

How the locator works You can make your applications locator-aware simply by running an
instance of the locator service and changing the configuration of your
applications. This is true whether the configuration is the ART-based
configuration of the Artix C++/JAX-RPC runtime, or the Spring-based
configuration of the Artix Java JAX-WS runtime introduced in Artix 5.0.

Services are made locator-aware by means of configuration statements in
the Artix configuration files associated with those services, or in the Spring
configuration files of Artix Java JAX-WS services. A locator-aware service
automatically registers itself with the locator during service startup. The
locator and its registered services periodically confirm that their
communication pathways are operational by pinging each other. This
monitoring is performed by the peer manager plug-in, which is automatically
loaded by the Artix runtime when the locator functionality is enabled.
10

How the Locator Works
Consumers are also made locator-aware by means of configuration
statements in their associated configuration files. Consumers are required to
initialize their proxies in a certain way to take advantage of this
functionality. A locator-aware consumer automatically contacts the locator
service when it is setting up its proxies. The consumer-side locator plug-in
contacts the locator service and provides the QName for the desired service
endpoint. The locator returns a reference, which contains the addressing
details needed to invoke the target service. This is passed to the consumer,
which then instantiates a proxy to the target service.

The consumer-side locator plug-in performs a simple lookup of service
endpoints based on the target service�s QName. If a consumer needs to use
the more advanced querying operations of the locator service, then such
queries needs to be coded directly into the consumer.

The locator and references Starting with Artix 4.0, the Artix locator returns references using the
WS-Addressing standard for Web service references. Previous Artix releases
used the proprietary Artix Reference format.

WS-Addressing references are represented by an instance of a class that
represents the addressing of the target service endpoint. All proxies in Artix
have constructors that take a WS-Addressing reference as a parameter. The
reference contains sufficient information to allow the consumer to create a
functional proxy to a service endpoint.

Registering endpoints An Artix service registers its endpoints with the locator in order to make
them accessible to Artix consumers. When a service registers an endpoint in
the locator, it creates an entry in the locator�s list of services. The entry
associates a service QName with a reference for that endpoint.

Looking up references An Artix consumer looks up a reference in the locator in order to find an
endpoint associated with a particular service. After retrieving the reference
from the locator, the consumer can then establish a remote connection to
the target service by instantiating a consumer proxy object. This procedure
is independent of the type of binding or transport protocol.

Looking up references can be performed on behalf of the consumer by
configuring it to use the locator consumer plug-in. As an alternative, you can
write lookup code directly using the WSDL interface that the locator service
exposes.
11

CHAPTER 1 | Artix Locator Introduction
Automatic load balancing If multiple endpoints are registered against the same service QName in the
locator, the locator employs a random or round-robin algorithm to pick one
of the endpoints. The locator thereby effectively load balances a service over
all of its associated endpoints.

For example, an AddNewCustomer service might be listed in an Artix locator
with two endpoints registered against it:

� Service: AddNewCustomer
WSDL location: http://mainhost:2900/service/newcustomer

� Service: AddNewCustomer
WSDL location: http://backuphost:2900/service/newcustomer

When an Artix consumer looks up a reference for AddNewCustomer, it
obtains a reference to whichever endpoint is next in the sequence.

Locator-related plug-ins Most of the communication details between the locator, registered services,
and consumers are handled by Artix plug-ins. The locator-related plug-ins
are:

Locator service plug-in
(service_locator)

This is the main locator service plug-in. It
accepts and tracks service registrations,
and hands out service references to
requesting consumers.

This plug-in is normally deployed as a
standalone service typically using the Artix
container. All consumer and service
endpoints need to be aware of this shared
service on startup.

This plug-in is also responsible for making
sure its data is reliable. It removes service
endpoints from its repository if it believes
they are inactive.
12

How the Locator Works
When you load an instance of the service_locator or locator_endpoint
plug-in into an Artix container, the container automatically loads the
peer_manager plug-in. The peer_manager plug-in is responsible for the fault
tolerant behavior of the locator service.

The service_locator and locator_endpoint plug-ins are optionally used
alongside the wsdl_publish plug-in. The wsdl_publish plug-in is strongly
recommended when working with the locator.

How do the plug-ins interact? In the examples in this book and in locator demonstration code, the locator
service plug-in is deployed in an Artix container. Although it can be
deployed in any Artix process, the recommended approach is to use the
container. The Artix container and plug-in architecture is described in
�Deploying Services in an Artix Container� in Configuring and Deploying
Artix Solutions, C++ Runtime.

The locator service plug-in automatically loads the peer_manager service,
and if specified, the wsdl_publish service, into the same Artix container.
The container�s URL is published in some way so that other processes can
locate the container.

Locator endpoint manager
plug-in (locator_endpoint)

This is the portion of the locator that
resides with the service endpoints you
want registered in the locator service. It
registers its service endpoint with the
locator service when they become active,
and it deregisters them when they are
shut down.

This plug-in is also responsible for
registering its endpoints with the locator if
the locator service is restarted.

Locator consumer plug-in
(locator_client)

This plug-in queries the locator service
and returns a reference to the target
service.
13

../deploy/cpp/index.htm
../deploy/cpp/index.htm

CHAPTER 1 | Artix Locator Introduction
The container process selects a TCP port on which to place the locator
service1 (unless you specify an exact port in configuration). Consumer
processes can use the published URL of the container to ask the container
to send the locator service�s URL, its WSDL contract, or a reference to the
locator.

An Artix service process can be deployed in a standalone server or in
another Artix container. For clarity, the examples in this book and in the
locator demonstration code show the service deployed in a standalone
server. The recommended approach is to use a container when developing
your services.

The service process is configured to load the locator_endpoint plug-in. The
service�s server executable is started with a command-line directive that
identifies the URL, WSDL, or reference of the locator service (as previously
obtained from the container housing the locator). Thus, when the service
process starts up, its associated locator_endpoint plug-in automatically
contacts the locator and registers the service.

Thereafter, the peer_manager plug-ins associated with both the
locator_service and locator_endpoint plug-ins periodically ping each
other to make sure both parties are still active. If either party detects that
the other is inactive, action is taken to remedy the situation. For the
locator_service side, the inactive endpoints are removed; for the
locator_endpoint side, the plug-in attempts to re-establish communication
in case the locator service is restarted.

The locator_client plug-in is loaded into a consumer by means of
configuration. This plug-in handles the details of getting a reference to the
target service. The consumer uses this reference to create a proxy to the
target service.

1. This locator service is usually run on the same port as the container itself. Thus,
for example, if you query the container at localhost:9300, chances are good the
locator service will be found at localhost:9300 as well.
14

How the Locator Works
Locator service groups Starting with Artix 4.0, you can assign services to named groups so that a
group of related services can be identified by group name when you query
the locator. Group assignments can be made in the service�s WSDL contract
or in an Artix configuration file.

The use of locator service groups is described in �Service groups� on
page 71.

Setting up a locator service Configuring and running an Artix locator service does not require writing any
code. You set up a locator service by means of configuration settings in your
Artix configuration file. You start the locator by starting an instance of the
Artix container executable that is directed to a locator-specific configuration
scope in that configuration file.

The configuration and setup of the Artix locator service is described in
Chapter 2 on page 27.

Using the locator from consumers You can configure consumers to make use of the Artix locator with two
different approaches:

1. Add the consumer-side locator plug-in to the configuration of
consumers, by editing your Artix configuration file. Your consumer-side
code will take advantage of this plug-in as long as it uses the standard
Artix methods of resolving the initial reference to its target service.

2. Write code that queries the locator directly using the WSDL contract
that defines the locator service. Using this method, you can perform
simple endpoint lookups as well as advanced querying.

The configuration and coding of locator-enabled consumers is described in
Chapter 3 on page 51.
15

CHAPTER 1 | Artix Locator Introduction
Locator WSDL Contract

Overview The Artix locator service is described in the locator.wsdl contract, which
defines the public interface through which the service can be accessed
either locally or remotely. The locator WSDL contract is installed by default
to the following location in your Artix installation:

LocatorService portType The locator WSDL contract defines a single portType, LocatorService. This
portType includes public operations for use by Artix developers, as well as
internal operations used to communicate with services as they register and
deregister with the locator service.

Binding and protocol The locator is accessed through the SOAP binding over the HTTP protocol.

Public operations The public operations defined for the LocatorService portType are the
following:

� lookupEndpoint A request-response operation used by a consumer
process to look up an endpoint from the locator based on the target
service�s QName.

� listEndpoints A request-response operation used by a consumer
process to list all endpoints registered with the locator.

� queryEndpoints A request-response operation used by a consumer
process to list all endpoints registered with the locator based on
selection filters.

ArtixInstallDir/cxx_java/wsdl/locator.wsdl
16

Locator WSDL Contract
Internal operations The following operations defined in locator.wsdl are used internally by the
locator_endpoint plug-in in communicating with the locator_service
plug-in:

� registerPeerManager Register a peer endpoint manager with the
locator service. Once registered, the locator associates a peer ID with
the peer endpoint manager.

� deregisterPeerManager Deregister a peer endpoint manager with the
locator service. Deregistering a peer manager also deregisters all
endpoints that were registered by it.

� registerEndpoint Register an endpoint to become available in the
locator. Once registered, an endpoint is returned in the response to the
listEndpoints and queryEndpoints operations.

� deregisterEndpoint Deregister an endpoint from the locator. Once
deregistered, an endpoint is no longer returned in the response to the
listEndpoints and queryEndpoints operations.
17

CHAPTER 1 | Artix Locator Introduction
Locator Sample Code

Overview Artix includes code samples that illustrate various Artix features. Read the
Readme.txt file in each sample�s directory for instructions on building and
running that sample.

C++/JAX-RPC locator samples Five demos illustrate different aspects of the locator as used with the C++/
JAX-RPC runtime. The locator-related demos for this runtime are installed in
subdirectories of:

ArtixInstallDir/cxx_java/samples/advanced/

These samples are described in �Locator Samples for the C++/Java JNI
Runtime� on page 19.

Java JAX-WS locator samples The Java JAX-WS runtime introduced in Artix 5.0 includes one
locator-related sample in the following directory:

ArtixInstallDir/java/samples/advanced/locator

This sample is described in �Locator Sample for the Java JAX-WS Runtime�
on page 20.
18

Locator Sample Code
Locator Samples for the C++/Java JNI Runtime

locator sample The primary locator sample illustrates how the locator can isolate
consumers from knowledge about changes in a service's physical location.
Most examples in this manual are simplified versions of this locator sample.
This sample shows how you can locator-enable an application simply using
configuration. The consumer and server code are not aware that the locator
is being used for discovery of endpoints.

This sample is implemented in both C++ and Java JNI.

locator_query sample The locator_query sample illustrates more advanced uses of the locator
lookup that the consumer-side plug-in does not implement. It illustrates how
to use the listEndpoints operation to obtain a list of the services registered
with a locator. The sample goes on to illustrate how you can filter the
returned list of services with various query selection elements, using the
query_endpoints operation.

This sample is implemented in both C++ and Java JNI.

located_router sample The located_router sample illustrates how endpoints that are wrapped by an
Artix router can still use the locator service for dynamic discovery of
endpoint information. In this sample, the endpoints that the router creates
are automatically registered with the locator when the router starts up.

This sample is implemented only in C++, but the illustrated functionality is
available to Java JNI users as well.

locator_load_balancing sample The locator_load_balancing sample demonstrates how the locator can be
used to provide load balancing across several server processes hosting the
same Web service, without the overhead of setting up a highly available
infrastructure.

This sample is implemented in both C++ and Java JNI.

high_availability_locator sample The high_availability_locator sample illustrates how to run the Artix locator
in a replicated and highly-available mode.

This sample is implemented only in C++, but the illustrated functionality is
available to Java JNI users as well.
19

CHAPTER 1 | Artix Locator Introduction
Locator Sample for the Java JAX-WS Runtime

locator discovery sample This sample illustrates the basic reference discovery mechanism supported
by the Artix locator service when used with the Java JAX-WS runtime.

The server is configured to register an endpoint reference with the locator
when the corresponding JAX-WS endpoint is published. This registration
occurs transparently to the server-side application code. The configured
registerOnPublish feature that triggers this registration is also used to
enable liveness monitoring using a heartbeat conversation with the peer
manager instance embedded in the locator.

For more information, see �Configuring a Locator-Enabled Service, Java
Runtime� on page 38.
20

Migrating from Previous Versions
Migrating from Previous Versions

Overview The Artix post-3.x locator service supports queries from unmodified Artix 3.x
consumer code. This allows you to migrate at your own pace from an Artix
3.x-based installation to an Artix post-3.x-based installation. You can
replace Artix 3.x locators and services with Artix post-3.x locators and
services without having to rewrite or change your consumers.

Backward compatibility Although the Artix 3.x locator returns references in the proprietary Artix
Reference format, the Artix post-3.x locator returns references in
WS-Addressing format. To maintain backward compatibility, the Artix
post-3.x locator service combines two distinct functionalities�3.x and
post-3.x�in a single plug-in. The plug-in enables an Artix 3.x service that
supports the locator WSDL from Artix 3.x. It also enables a more advanced
Artix post-3.x locator service. As shipped, both services are active, but you
can disable the Artix 3.x service if your network does not have Artix 3.x
service endpoints or consumers.

As illustrated in Figure 1, Artix 3.x consumers can query an Artix post-3.x
locator and get the expected results.

Figure 1: Artix 4 locator backward compatibility

Artix 3
Locator Service

Artix Post-3
Locator Service

Artix Locator Service

Artix 3
Client

Artix Post-3
Client

(Resolved by
QName)
21

CHAPTER 1 | Artix Locator Introduction
Locator service QNames The QName for the Artix post-3.x locator service is:

{http://ws.iona.com/2005/11/locator}LocatorService

The QName for the Artix 3.x-compatible locator service that runs alongside
the Artix post-3.x locator service is the same as it was for Artix 3.x, which is:

{http://ws.iona.com/locator}LocatorService

You can verify that both locator services are running in the Artix post-3.x
locator by querying the container with the it_container_admin command.
For example:

1. Go to the Artix 5.x locator demonstration in ArtixInstallDir/
cxx_java/samples/advanced/locator.

2. Load the Artix C++/Java JNI environment by invoking the
artix_env[.bat] command.

3. Build the C++ demo as described in the demo�s Readme.txt file.

4. From the demo�s bin directory, start the locator with the
start_locator command.

5. From the bin directory, run the following command:

6. The following list of service QNames is returned:

Supported configurations The following combinations of Artix services and consumers are supported
by the locator service shipped with Artix post-3.x and the locator shipped
with the C++/Java JNI runtime of Artix post-3.x:

� Post-3.x services and post-3.x consumers

� Post-3.x services and 3.x consumers

� 3.x services and post-3.x consumers

� 3.x services and 3.x consumers

it_containter_admin -container ../etc/ContainerService.url
-listservices

{http://ws.iona.com/peer_manager}PeerManagerService ACTIVATED
{http://ws.iona.com/2005/11/locator}LocatorService ACTIVATED
{http://ws.iona.com/locator}LocatorService ACTIVATED
22

Migrating from Previous Versions
The terms used here have the following meanings:

Unsupported configurations Neither Artix post-3.x services nor Artix post-3.x consumers (as defined
above) work in any combination with a locator service that uses the
locator_service plug-in shipped with Artix 3.x

Migration strategies The Artix post-3.x locator service is backward compatible by default. There
are no configuration steps required to enable backward compatibility in the
locator service itself.

Locator services for Artix 4.1, 4.2, and the C++/Java JNI runtime of Artix
5.x require a one-line addition to their Artix configuration files, as described
in �Artix post-3.x locator setup for backward compatibility�.

You can start your Artix post-3.x services in a way that supports both Artix
3.x and post-3.x consumers. See �Starting Services with Artix 3 Consumer
Support� on page 45.

You can migrate your consumers one at a time to Artix post-3.x locator
compatibility, using the steps described in �Migrating Consumer Code� on
page 76.

Artix post-3.x locator setup for
backward compatibility

The artix.cfg file shipped with Artix 4.1, Artix 4.2, and the C++/JAX-RPC
runtime of Artix 5.x, all have a configuration entry,
bus:non_compliant_epr_format. The shipped artix.cfg sets this entry by
default to "false". This setting allows for greater interoperability between
Artix and Web services software from other vendors.

If your site uses a locator service, locator-enabled services, and
locator-enabled consumers all built with Artix 4.1, 4.2, or the C++/
JAX-RPC runtime of Artix 5.x, then no further configuration is necessary.

Artix post-3.x
service

Uses the Artix 4.x or 5.x C++ locator_endpoint
plug-in.

Artix post-3.x
consumer

Uses the Artix 4.x or 5.x C++ locator_client plug-in,
or is coded to create a proxy to the locator using the new
locator QName.

Artix 3.x service Uses the Artix 3 locator_endpoint plug-in.

Artix 3.x
consumer

Uses no plug-in; is coded to create a proxy to the locator
using the old locator QName.
23

CHAPTER 1 | Artix Locator Introduction
If your site uses a locator service built with one of the following:

� Artix 4.1

� Artix 4.2

� Artix 5.x/C++

and your site uses services and consumers built with both of the following:

� Artix post-3.x

� Artix 3.x,

then you must add one configuration entry in your Artix configuration. Add
the line to the locator.servce scope of the configuration file that controls
your instance of the locator service. The line to add is:

bus:non_compliant_epr_format = "true";

Note: The locator-related demos that ship with Artix 4.1, Artix 4.2, and
Artix 5.0/C++ do not have this line added to their locator.cfg files.
24

Migrating from Previous Versions
For example, the following example shows an edited locator.cfg file for the
primary locator demo that allows Artix 3.x and post-3.x consumers to
connect to and use the Artix 4.1/4.2/5.0-C++ locator service:

Disabling locator support for
Artix 3.x

When you have migrated all Artix consumers to Artix 4.x or 5.x/C++, the
backward compatibility feature of the Artix 4.x/5.x-C++ locator is no longer
necessary for your site. However, there is no need to disable the backward
compatibility feature, and the Artix 4.x/5.x-C++ locator performance is not
improved by disabling backward compatibility.

If you prefer to disable this feature anyway, you can use a local configuration
scope to override the Artix root configuration. In your local scope, set the
WSDL path equal to an empty string for the Artix 3.x-compatible version of
the locator service, using a line like the following:

demo
{
 locator
 {
 client
 {
 orb_plugins = ["xmlfile_log_stream", "locator_client"];
 };

 server
 {
 orb_plugins = ["xmlfile_log_stream", "wsdl_publish",

"locator_endpoint"];
 };

 service
 {
 orb_plugins = ["xmlfile_log_stream", "wsdl_publish",

"service_locator"];
 bus:non_compliant_epr_format = "true";
 };
 };
};

bus:qname_alias:locator_oldversion = "";
25

CHAPTER 1 | Artix Locator Introduction
26

CHAPTER 2

Configuring and
Deploying the
Locator Service
This chapter discusses how to configure and deploy an Artix
locator service by editing configuration files.

In this chapter This chapter discusses the following topics:

Deploying the Locator Service page 28

Registering Services with the Locator page 34

Using Load Balancing page 41

Using Fault Tolerance Features page 43

Starting Services with Artix 3 Consumer Support page 45

Adding SOAP 1.2 Support page 50
27

CHAPTER 2 | Configuring and Deploying the Locator Service
Deploying the Locator Service

Overview The Artix locator service for C++/JAX-RPC applications is implemented
using Artix plug-ins. This means that any Artix application can host the
locator service by loading the service_locator plug-in. However, it is
recommended that you deploy the locator using the Artix container. This
section describes deploying into the Artix container in detail.

The Artix locator service for JAX-WS applications can be deployed in the
following containers:

� Spring container

� Servlet container (for example, Tomcat)

� OSGI container (for example, Equinox or ServiceMix)

For information on deploying into these containers, see Configuring and
Deploying Artix Solutions, Java Runtime.

Artix C++ runtime configuration
concepts

The information in this section presumes an understanding of Artix C++
runtime configuration concepts and practices, as described in Configuring
and Deploying Artix Solutions, C++ Runtime. See the chapters �Artix
Configuration� and �Accessing Contracts and References.�
28

../deploy/cpp/index.htm
../deploy/cpp/index.htm
../deploy/java/index.html
../deploy/java/index.html

Deploying the Locator Service
Configuring the locator to run in a
container

To configure the locator to run in an Artix container, make sure the
service_locator plug-in is included in the locator�s configuration scope.
For example, Example 1 shows the locator.cfg file used by the demo in
ArtixInstallDir/cxx_java/samples/advanced/locator/etc/:

The portion of Example 1 in bold shows a service in the scope
demo.locator.service configured to load the wsdl_publish and
service_locator plug-ins (as well as a logging plug-in). The
service_locator plug-in implements the locator service functionality.

The locator service uses SOAP over HTTP, so the soap and at_http plug-ins
are loaded automatically when the process parses the locator�s WSDL
contract.

Example 1: Locator demo�s locator.cfg file

include "../../../../etc/domains/artix.cfg";
demo
{
 locator
 {
 client
 {
 orb_plugins = ["local_log_stream", "locator_client"];
 };
 server
 {
 orb_plugins = ["local_log_stream", "wsdl_publish", "locator_endpoint"];
 };
 service
 {
 orb_plugins = ["local_log_stream", "wsdl_publish", "service_locator"];
 };
 };
};
29

CHAPTER 2 | Configuring and Deploying the Locator Service
Dynamic port used by default By default, the locator is configured to deploy on a dynamic port. In the
default locator WSDL contract (installed by default in ArtixInstallDir/
wsdl/locator.wsdl), the addressing information is as shown in Example 2:

The localhost:0 port means that when you activate the locator service, the
operating system assigns a port dynamically on startup.

The locator service must itself be easily locatable by consumers. Starting the
locator on a dynamic port means it would start up on a different TCP port
with every restart. This is not useful in a production environment because
you need to make sure that all consumers and services on your network can
access your locator service. Contacting the locator may be difficult if it starts
on a different port every time.

Configuring a fixed port There are several ways to deploy the locator on a well-known fixed port:

� You can edit the default locator.wsdl contract (this is not
recommended)

� You can create a copy of locator.wsdl contract for your application
and deploy it in a separate configuration scope.

� You can use features of the Artix container to determine the port on
which the container deploys the locator.

Example 2: Locator Service on Dynamic Port in default locator.cfg

<service name="LocatorService">
 <port binding="ls:LocatorServiceBinding"
 name="LocatorServicePort">
 <soap:address location="http://localhost:0/services/LocatorService"/>
 </port>
</service>
30

Deploying the Locator Service
Editing the default locator contract

To edit the default locator.wsdl contract, perform the following steps:

1. Open the locator.wsdl contract in any text editor. By default, this
contract is in the following directory:

2. Edit the soap:address attribute at the bottom of the contract to specify
the desired port in the address. Example 3 shows a modified locator
service contract entry. The portion shown in boldface has been
modified to point to port 9000 on the local computer.

Creating a new locator contract

To create a new locator.wsdl contract, perform the following steps:

1. Copy the default locator.wsdl contract to another location, and open
it in any text editor.

2. Edit the soap:address attribute at the bottom of the contract to specify
the correct address, as shown in Example 3.

3. In your Artix configuration file, in the application�s scope, add a new
bus:initial_contract:url:locator variable that points to your
edited WSDL contract. For example:

The default bus:initial_contract:url:locator variable is in the
global scope, which ensures that every application has access to the
contract. Specifying a new contract in your application scope overrides
the global locator contract for your application.

ArtixInstallDir\wsdl\locator.wsdl

Example 3: Locator Service on Fixed Port

<service name="LocatorService">
 <port name="LocatorServicePort" binding="ls:LocatorServiceBinding">
 <soap:address location="http://localhost:9000/services/locator/LocatorService"/>
 </port>
</service>

bus:initial_contract:url:locator = "/myartix/etc/wsdl/locator.wsdl";
31

CHAPTER 2 | Configuring and Deploying the Locator Service
Configuring a range of ports You can also limit the range of ports that the locator is deployed on (that is,
the range of ports for the locator�s SOAP or HTTP address). To do this,
specify the range of ports in the artix.cfg file, as shown in Example 4.

In Example 4, the desired range of ports is highlighted.

When the locator has been correctly configured, it can be started like any
other application. The only difference is that the locator service must be
started before any applications that need to use it.

Deploying the locator in the
container

The recommended deployment for the locator is in an instance of the Artix
container. To deploy the default locator in the container, perform the
following steps:

1. Run the locator in the Artix container, for example:

2. Query the container with the it_container_admin command (or with
your own code). Ask the container to publish the live version of the
locator WSDL after the container has assigned a port for the locator.
For example:

This retrieves the locator's activated WSDL contract. This is the
contract in which the default WSDL�s port 0 has been dynamically
updated with the actual port that the service is using. In this example,
it_container_admin writes the contract to the
locator-activated.wsdl file in the /myartix/etc subdirectory.

Example 4: Locator Port Range

policies:http:server_address_mode_policy:port_range="12345:12349";

it_container -ORBname demo.locator.service -ORBdomain_name
locator -ORBconfig_domains_dir /myartix/etc -publish

it_container_admin
-container /myartix/etc/ContainerService.url
-publishwsdl
-service {http://ws.iona.com/2005/11/locator}LocatorService
-file /myartix/etc/locator-activated.wsdl
32

Deploying the Locator Service
3. Finally, you must make sure your consumers use the activated WSDL
file, now resident in the specified directory, when each consumer starts
up at runtime.

Deploying the locator in the
container on a fixed port

As an alternative, you can use the -port option when starting the container
to specify that the container runs a service on a fixed port. For example:

In this example, any services that run in the container, and have default
contracts with a port of 0, will now use port 9000.

You can manually update the WSDL used by your consumer to 9000, or you
can publish the WSDL from the container using it_container_admin with
the -publishwsdl option, shown in �Deploying the locator in the container�
on page 32.

Shutting down the locator To shut down a locator running in a container, use the container�s shutdown
option. For example:

or if you deploy the locator and container on a fixed port:

Further information The Artix container and plug-in architecture is discussed in more detail in
�Deploying Services in an Artix Container� in Configuring and Deploying
Artix Solutions, C++ Runtime.

it_container -port 9000 -ORBname demo.locator.service
-ORBdomain_name locator -ORBconfig_domains_dir /myartix/etc
-publish

it_container_admin -ORBdomain_name locator -ORBconfig_domains_dir
/myartix/etc -container /myartix/etc/ContainerService.url
-shutdown

it_container_admin -ORBdomain_name locator -host artixserver
-port 9000 -shutdown
33

../deploy/cpp/index.htm
../deploy/cpp/index.htm

CHAPTER 2 | Configuring and Deploying the Locator Service
Registering Services with the Locator

Overview A service does not need to have its implementation changed to work with
the Artix locator. The only requirements are that the service is configured to
load the correct plug-ins, and to reference the correct locator contract.

If you require more fine-grained control, you can control the service
endpoints that are registered. You may want to do this if you have some
services that you do not want to be visible to consumers.

Whichever Artix runtime you use, you locator-enable services by means of
configuration, not coding. The configuration steps are different for services
using the C++ runtime and for services using the Java runtime:

Configuring a Locator-Enabled Service, C++ Runtime page 35

Configuring a Locator-Enabled Service, Java Runtime page 38
34

Registering Services with the Locator
Configuring a Locator-Enabled Service, C++ Runtime

Configuring a locator-enabled
service

Any service that wishes to register itself with the locator must load the
locator_endpoint plug-in. The locator_endpoint plug-in enables the
service to register with the running locator. The following example shows
the configuration scope of a service that registers with the locator service.

Another example is shown in Example 1 on page 29, where a service in the
scope demo.locator.service is configured to load the locator_endpoint
plug-in.

Using a copy of locator.wsdl If you are using a copy of the default locator contract to specify a fixed port,
the service configuration must also specify the location of the contract. For
example:

This is not necessary if you are using a dynamic port, or have overridden the
default contract in a configuration scope with a fixed port. The global
bus:initial_contract:url:locator setting is used instead.

For more information, see the Artix Configuration Reference, C++ Runtime.

my_service
{
 orb_plugins = ["xmlfile_log_stream", "wsdl_publish",

"locator_endpoint"];
 };

Note: Services developed using the Artix JAX-RPC APIs also run on top of
the C++ runtime using a JNI layer.

bus:initial_contract:url:locator="/opt/local/my_service/
locator.wsdl";
35

../config_ref/cpp/index.htm
../config_ref/cpp/index.htm

CHAPTER 2 | Configuring and Deploying the Locator Service
Filtering service endpoints By default, any service activated in an Artix bus that loads the
locator_endpoint plug-in is automatically registered in the locator.

However, you may not want every service registered or exposed to the
locator. Artix allows you to filter the endpoints that are registered by the
locator endpoint manager. You can do this by explicitly including or
excluding endpoints using configuration variables.

Configuration variables are discussed in detail in Configuring and Deploying
Artix Solutions, C++ Runtime.

Excluding endpoints to be
registered

If there are a small number of endpoints that you want to be filtered out, you
can explicitly exclude those endpoints from the locator by using the
exclude_endpoints configuration variable.

For example, if you do not want to register the container service, but want to
register all the endpoints that are activated in that container, use the
following setting:

For an example of this configuration, see the located_router demo.

Including endpoints to be
registered

If you have a small number of endpoints that you want to be added, and
want to filter out all others, you can use the include_endpoints
configuration variable.

For example, if you only want to register the session manager, but not any of
the endpoints that it manages, use the following setting:

plugins:locator_endpoint:exclude_endpoints = ["{http://
ws.iona.com/container}ContainerService"];

plugins:locator_endpoint:include_endpoints = ["{http://
ws.iona.com/sessionmanager}SessionManagerService"];

Note: Combining the exclude_endpoints and include_endpoints
configuration variables is ambiguous and unsupported. If you do this, the
application fails to initialize.
36

../deploy/cpp/index.htm
../deploy/cpp/index.htm

Registering Services with the Locator
Filtering endpoints using
wildcards

You can use wildcarded service names with endpoint-filtering configuration
variables. This enables you to filter based on a specified namespace.

You can specify that all services defined in a particular namespace should
be included. For example:

Alternatively, you can use the following setting to exclude all services
defined in a particular namespace:

Service registration When a properly configured service starts up, it automatically registers with
the locator specified by the contract pointed to by
bus:initial_contract:url:locator.

You can register multiple instances of the same service with a locator. These
service instances must be running in different applications (buses). When
the locator receives multiple registrations of the same service implemented
in different server applications, the locator generates a pool of references for
the service type. When consumers make a request for a service, the locator
supplies references from this pool using a load-balancing algorithm. For
more information on load balancing see �Using Load Balancing� on
page 41.

plugins:locator_endpoint:include_endpoints = ["{http://
www.example.com/finance}*"];

plugins:locator_endpoint:exclude_endpoints = ["{http://
www.example.com/finance}*"];
37

CHAPTER 2 | Configuring and Deploying the Locator Service
Configuring a Locator-Enabled Service, Java Runtime

Overview This section shows how to configure your services to be automatically
registered with the locator by the Artix Java runtime. This applies to services
developed using JAX-WS. For services developed using JAX-RPC, see
�Configuring a Locator-Enabled Service, C++ Runtime� on page 35.

Spring-based configuration Artix services written for the Java runtime use XML-based configuration files
based on the Spring framework. Spring-based configuration for the Java
runtime is described in Artix Configuration Reference, Java Runtime.

The following example service configuration file shows the Spring
configuration that enables the service to register with the Artix locator. It
shows the LocatorSupport bean element that specifies configuration for the
locator. It also shows the jaxws:endpoint element that specifies
configuration for the service endpoint.

Example 5: Service configuration for the Java JAX-WS runtime

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 xmlns:locatorEndpoint="http://cxf.iona.com/locator/endpoint"
 xsi:schemaLocation="
http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd
http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/

spring-beans.xsd">

 <!-- Configuration for locator runtime support -->
 <bean id="LocatorSupport" class="com.iona.cxf.locator.LocatorSupport">
 <property name="bus" ref="cxf"/>
 <property name="contract">
 <value>./wsdl/locator.wsdl</value>
 </property>
 </bean>
38

../config_ref/java/index.htm

Registering Services with the Locator
Locator configuration The LocatorSupport contract attribute in Example 5 can be specified in
one of the following ways:

� as a file store path name (for example, as ./wsdl/locator.wsdl in
Example 5)

� as a path name in the current Web application (for example, as in the
Tomcat version of the Artix Java locator/discovery demo)

� as a URI to be queried at runtime (for example, http://
localhost:9000/services/LocatorService)

Endpoint configuration You can specify various configuration options for the service endpoint using
locatorEndpoint:registerOnPublish attributes. The available attributes
are as follows:

<!-- Configuration for JAX-WS endpoint published by the server -->
 <jaxws:endpoint name="{http://apache.org/hello_world_soap_http}SoapPort"
 createdFromAPI="true">
 <jaxws:features>
 <locatorEndpoint:registerOnPublish monitorLiveness="true"
 heartbeatInterval="10001"/>
 </jaxws:features>
 </jaxws:endpoint>

</beans>

Example 5: Service configuration for the Java JAX-WS runtime

monitorLiveness Specifies whether to enable liveness monitoring for the
endpoint. This is performed using a heartbeat
conversation between a peer manager embedded in
the endpoint, and a peer manager embedded in the
locator. Defaults to true.

heartbeatInterval Specifies the interval in milliseconds between
heartbeat pings from the endpoint peer manager to the
locator peer manager. Defaults to 10000 ms (10
seconds).

heartbeatLeeway Specifies the additional time delay permitted in
milliseconds for an expected heartbeat ping message
before it is assumed that the peer has failed. Defaults
to 2000 ms (2 seconds).
39

CHAPTER 2 | Configuring and Deploying the Locator Service
Further information For an example of a JAX-WS service that has been enabled for the locator,
see the following demo:

ArtixInstallDir/java/samples/advanced/locator/discovery

deferBy Specifies the duration of delay in milliseconds before a
newly published endpoint is registered with the
locator. Defaults to immediate registration (0 ms
delay).

Setting a non-zero value ensures that Tomcat-hosted
endpoints are fully active before initiating a heartbeat
exchange with the locator peer manager. This attribute
applies to Tomcat-hosted endpoints only.

addressRoot Specifies the root URI that the servlet engine listens on
for this endpoint (for example, http://
localhost:8080/helloworld/services). The URI for
the local peer manager is constructed from this
address.

This applies to Tomcat-hosted endpoints only.
40

Using Load Balancing
Using Load Balancing

Overview The Artix locator provides a lightweight mechanism for balancing workloads
among a group of services. When several services with the same service
name register with the Artix locator, it automatically creates a list of
references to each instance of this service. The locator hands out references
to consumers using a round-robin or random algorithm. This process is
automatic and invisible to both consumers and services.

Starting to load balance When the locator is deployed and your services are properly configured, you
must bring up a number of instances of the same service. This can be
accomplished by one of the following methods, depending on your system
topology:

� Start multiple services using the same WSDL contract but without hard
coding the addressing for that service. For example, if the service uses
HTTP, use a location such as location=http://servicehost:0/
servicename. If the service uses CORBA, use the address
location="IOR:".

� Create a number of copies of the WSDL contract defining the service,
and change the addressing information so that each copy has a unique
address. Then bring up each service instance using a different copy of
the contract.

Note: The locator determines whether a service is part of a group by
using the name specified in the service element of the service�s contract.
If you are using the Artix locator to load balance, each instance of your
service should be associated with the same binding and logical interface.
Otherwise, consumers might end up using a different binding, transport, or
portType, depending on the endpoint reference obtained from the locator
service.
41

CHAPTER 2 | Configuring and Deploying the Locator Service
As each service starts up, it automatically registers with the locator. The
locator recognizes that the services all have the same service name specified
in their Artix contracts and creates a list of references for these service
instances.

As consumers make requests for the service, the locator cycles through the
list of server instances to hand out references.
42

Using Fault Tolerance Features
Using Fault Tolerance Features

Overview Enterprise deployments demand that applications can cleanly recover from
occasional failures. The Artix locator is designed to recover from the two
most common failures faced by a look-up service:

� Failure of a registered endpoint.

� Failure of the look-up service.

Endpoint failure When an endpoint gracefully shuts down, the locator_endpoint plug-in
associated with that endpoint notifies the locator that it is no longer
available. The locator removes the endpoint from its list so it cannot give a
consumer a reference to a dead endpoint.

However, when an endpoint fails unexpectedly, it cannot notify the locator,
and the locator can unknowingly give a consumer an invalid reference. This
might cause the failure to cascade onto one or more consumers if
consumers try to invoke on a dead endpoint.

To decrease the risk of passing invalid references to consumers, the locator
service monitors the health of the endpoints that have been registered with
it. If it determines that an endpoint is no longer available, it removes that
endpoint from its database. The locator service can determine the
availability of its registered endpoints because it expects those endpoints to
send periodic ping messages to the locator service. If these messages stop
arriving, the locator service determines that the endpoint is dead.

You can adjust the interval between locator service pings by setting the
plugins:locator:peer_timeout configuration variable. The default and
minimum setting is 10,000 milliseconds (10 seconds). For further
information on this configuration variable, see the Artix Configuration
Reference, C++ Runtime.
43

../config_ref/index.htm
../config_ref/index.htm
../config_ref/index.htm
../config_ref/index.htm

CHAPTER 2 | Configuring and Deploying the Locator Service
Locator service failure If the locator service itself fails, and it is not running in high availability
mode, all the references to the registered endpoints are lost, and the active
endpoints are no longer registered with the locator. The endpoints detect
when the locator service fails, because they are expecting periodic messages
from the locator using the peer manager service. Once an endpoint
determines that the locator has failed, it attempts to reconnect to the locator
and reregister its endpoints. This behavior lets you stop and restart a
deployed locator service without interruption to the consumers and services
on the network.

You can adjust the interval with which the locator pings the endpoints by
setting the plugins:locator:peer_timeout configuration variable. The
default and minimum setting is 10,000 milliseconds (10 seconds). For
further information on this configuration variable, see the Artix Configuration
Reference, C++ Runtime.

Highly available locator cluster You can configure three or more instances of the locator service in a highly
available locator cluster. This configuration is illustrated in the
high_availability_locator demo.

The setup and configuration of a high availability locator cluster is discussed
in the �Deploying High Availability� chapter of Configuring and Deploying
Artix Solutions, C++ Runtime. See especially the �Configuring Locator High
Availability� section of this chapter.
44

../config_ref/index.htm
../config_ref/index.htm
../deploy/cpp/index.htm
../deploy/cpp/index.htm
../config_ref/index.htm
../config_ref/index.htm

Starting Services with Artix 3 Consumer Support
Starting Services with Artix 3 Consumer
Support

Overview This section describes how to start Artix post-3.x services in a way that
supports both Artix 3.x and post-3.x consumers.

Migrating Artix post-3.x services There are no required changes to your application code between Artix 3.x
and Artix post-3.x for locator-aware Artix services. You can migrate your
service and application code from Artix 3.x to Artix post-3.x with these
steps:

� Regenerate stub code generated from WSDL using the Artix post-3.x
code generators.

� Recompile and link your service application.

� Make sure the Artix post-3.x version of the locator_endpoint plug-in
is loaded at runtime and is configured correctly.

� To allow Artix 3.x and post-3.x consumers to connect to an Artix
post-3.x locator service, add one configuration line to the locator
service configuration scope, as described in �Artix post-3.x locator
setup for backward compatibility� on page 23.

Specify the right QName As described in �Locator service QNames� on page 22, the Artix post-3.x
locator implements both Artix 3.x and post-3.x-compatible locator services.
If you access an Artix post-3.x locator using the QName of the Artix 3.x
locator, then the Artix post-3.x locator responds as an Artix 3 locator.
45

CHAPTER 2 | Configuring and Deploying the Locator Service
Supporting Artix 3 consumers To support Artix 3 consumers from your Artix post-3.x services, you must:

� Run your locator service using the Artix post-3.x version of the
locator_service plug-in.

� Make sure the Artix 3-compatible WSDL published from the Artix
post-3.x locator is accessible to your Artix 3 consumers resides in the
location they expect.

Supporting the last bullet point depends on how you implemented the port
on which the locator runs:

� By assigning a fixed port number

� By retrieving the activated WSDL from the locator and storing it in a
location accessible to consumers

Artix 3 interoperability if the
locator is on a fixed port

The locator demos located_router and locator_load_balancing use the
fixed port method. Both demos use a copy of locator.wsdl that assigns
port 9000. This was true in both Artix 3.x and Artix post-3.x versions of the
demo code.

Consumers of the Artix 3 demo should be able to locate and use the services
of the Artix post-3.x demo without any changes. This is because the Artix
post-3.x locator will run on port 9000, and the Artix 3 consumers will look
for the locator on port 9000. The Artix 3 consumers will make requests
using the Artix 3 QName of the locator service. This invokes the Artix 3
compatibility of the Artix post-3.x locator running at port 9000.

If your own consumers use a fixed port for the locator service, then Artix 3
consumers should run without any changes against the Artix post-3.x
locator service running on the same port.
46

Starting Services with Artix 3 Consumer Support
Artix 3 interoperability if you used
activated WSDL

The locator demo named locator has a script that starts a service. This
script queries the locator�s container for the locator�s WSDL contract, and
then writes that activated WSDL to a file. The consumer startup script then
reads the activated WSDL from the same file.

You do not need to write the activated locator WSDL to a file at the same
time the service starts up, as is done in the locator demo. This could occur
in a separate script, and only needs to done once.

If your applications uses the technique of writing activated WSL to a file,
then you must modify the script that writes the WSDL. In your modified
script, have the WSDL for both Artix 3 and Artix post-3.x locator services
written to different network-accessible locations. Remember to write the
Artix 3-compatible WSDL to the location your Artix 3 consumers expect to
find it.

For example, consumers of the Artix 3 locator demo can be made to
interoperate with the locator and services of the same-named Artix post-3.x
demo by following these steps. This example uses the Windows version of
Artix.

1. This example presumes two Artix installations on the same machine.
For example purposes only, let�s say that:

♦ Artix post-3.x is installed in C:\IONA

♦ Artix 3 is installed in C:\IONA3

2. In the bin directory of the Artix post-3.x version of the demo, copy
run_cxx_server.bat to a new file. Let�s call it 4-3_interop.bat.

3. Add one extra line to 4-3_interop.bat, as described and shown
below.

4. Create a new 4-3_servers.bat that calls 4-3_interop.bat five times
with five arguments, in the same way that run_cxx_servers.bat does.
47

CHAPTER 2 | Configuring and Deploying the Locator Service
5. Open a command prompt window and run the test batch files in the
following sequence:

Run start_locator.bat
Run 4-3_servers.bat
Run run_cxx_client.bat
Run run_dotnet_client.bat
Run run_java_client.bat five times with five arguments

6. Open a second command prompt window and change to the Artix 3
locator demo�s bin directory.

7. In command prompt window 2:

Run run_cxx_client.bat
Run run_java_client.bat five times with five arguments
Run run_dotnet_client.bat

The line you must add to 4-3_interop.bat runs it_container_admin a
second time, requesting WSDL using the old locator's QName:

-service {http://ws.iona.com/locator}LocatorService

Another argument writes the resulting WSDL to the location that the Artix 3
locator demo expects to find and use it:

-file /iona3/artix/3.0/demos/advanced/locator/etc/
locator-activated.wsdl
48

Starting Services with Artix 3 Consumer Support
The 4-3_interop.bat file now looks like the following example. The newly
added line is highlighted in boldface.

Example 6: Example 4-3_interop.bat file

@echo off
@setlocal
call "../../../../bin/artix_env.bat";

IF "%1"=="blocking" (
SET DEMO_START=
SHIFT /1
) ELSE (
SET DEMO_START=start
)

IF "%1"=="corba" (GOTO runserver)
IF "%1"=="soaphttp" (GOTO runserver)
IF "%1"=="soaptunnel" (GOTO runserver)
IF "%1"=="fixedhttp" (GOTO runserver)
IF "%1"=="fixedtunnel" (GOTO runserver)

echo valid transports are corba soaphttp soaptunnel fixedhttp
fixedtunnel

GOTO :end

:runserver
cd ..\cxx\server
it_container_admin -container ../../etc/ContainerService.url

-publishwsdl -service {http://ws.iona.com/2005/11/
locator}LocatorService -file ..\..\etc\locator-activated.wsdl

it_container_admin -container ../../etc/ContainerService.url
-publishwsdl -service {http://ws.iona.com/
locator}LocatorService -file /iona3/artix/3.0/demos/advanced/
locator/etc/locator-activated.wsdl

%DEMO_START% server.exe %1 -ORBname demo.locator.server
-ORBdomain_name locator -ORBconfig_domains_dir ../../etc
-BUSservice_contract ../../etc/locator-activated.wsdl

GOTO end

:end
@endlocal
49

CHAPTER 2 | Configuring and Deploying the Locator Service
Adding SOAP 1.2 Support

Overview The default locator.wsdl file shipped with Artix contains a SOAP 1.1
binding and a SOAP 1.1 service. Starting with release 4.1, Artix supports
SOAP 1.2 bindings as well.

If your site requires the use of SOAP 1.2 bindings for communication with
the locator service, follow these steps:

� Make a copy of the default locator.wsdl file.

� Edit your copy to include a SOAP 1.2 binding. See the SOAP 1.2
chapter of Writing Artix Contracts for guidelines on adding a SOAP 1.2
binding.

� Use the bus:initial_contract:url configuration variable to point to
the location of your edited locator.wsdl file, or use one of several
WSDL publishing methods described in �Accessing WSDL Contracts�
in Configuring and Deploying Artix Solutions, C++ Runtime.

SOAP 1.2 considerations The SOAP 1.2 binding in Artix 4.1, 4.2, and 5.0-C++ supports endpoint
references (EPRs) only in the format defined by the WS-Addressing
standard, and no longer supports the deprecated proprietary Artix
references. Artix�s SOAP 1.1 binding supports both EPRs and the Artix
references used by Artix 3.0 and earlier.

This means that an Artix 4.1/4.2/5.0-C++ locator that uses the SOAP 1.2
binding cannot support connections from Artix post-3.x and 3.x consumers,
because those Artix versions did not support SOAP 1.2. Thus, when defining
your Artix 4.1/4.2/5.0-C++ locator service, if your site intends to maintain
backward compatibility with Artix post-3.x and Artix 3.0 consumers, do not
also use a SOAP 1.2 binding. The configuration step described in �Artix
post-3.x locator setup for backward compatibility� on page 23 is not
compatible with a SOAP 1.2 binding.
50

../contract/index.html
../deploy/cpp/index.htm

CHAPTER 3

Using the Locator
from an Artix
Consumer
This chapter describes the configuration and programming
steps to enable an Artix consumer to make use of a deployed
Artix locator service.

In this chapter This chapter discusses the following topics:

Configuring Artix Consumers to Use the Locator Service page 52

Obtaining Service References from the Locator Service page 56

Querying a Locator Service page 67

Migrating Consumer Code page 76
51

CHAPTER 3 | Using the Locator from an Artix Consumer
Configuring Artix Consumers to Use the
Locator Service

Overview Before a consumer can use the Artix locator service, it must be configured to
load the required plug-ins. The plug-ins provide native access to the locator
service and eliminates the need for creating a proxy to obtain service
references.

The consumers written using the C++ APIs and consumers written using
the JAX-RPC APIs run on top of the C++ runtime and require one set of
configuration. Consumers written using the JAX-WS APIs run on top of the
Java runtime and require a different set of configuration. However, both
runtimes provide the same set of features to the consumer.

In this section This section discusses the following topics:

Configuring C++ and JAX-RPC Consumers page 53

Configuring JAX-WS Consumers page 55
52

Configuring Artix Consumers to Use the Locator Service
Configuring C++ and JAX-RPC Consumers

Overview This section describes how to configure consumers to use the locator_client
plug-in, and describes the features of this plug-in. This section applies to all
consumers written for C++ or Java JNI.

Artix configuration concepts The information in this section presumes an understanding of Artix
configuration concepts and practices, as described in Configuring and
Deploying Artix Solutions, C++ Runtime. See the chapters �Artix
Configuration� and �Accessing Contracts and References.�

Configuring a consumer To use a deployed locator service, configure consumers to load the
locator_client plug-in.

An example is shown in Example 1 on page 29, where consumers in the
scope demo.locator.client are configured to load the locator_client
plug-in. The relevant portion of that example is shown here:

Artix releases prior to 4.0 did not use the locator_client plug-in, or any
plug-in, for consumers of the locator.

Note: JAX-RPC consumers are deployed into the C++ runtime using a
JNI layer.

demo
{
 locator
 {
 client
 {
 orb_plugins = ["xmlfile_log_stream", "locator_client"];
 };
 };
};

Note: The locator_client plug-in is only supported for interacting with a
locator service that uses the Artix post-3.x version of the locator_service
plug-in. It does not query a locator service that uses the Artix 3.x version of
the locator_service plug-in.
53

../deploy/cpp/index.htm
../deploy/cpp/index.htm

CHAPTER 3 | Using the Locator from an Artix Consumer
Consumer plug-in features The locator_client plug-in is responsible for helping consumers to resolve
their target service endpoints using the locator service, without having any
code that explicitly does so. With the plug-in configured to be used, when
the consumer�s code attempts to resolve its target service�s endpoint, the
plug-in connects to the locator service to obtain a reference to the target
service. This interaction is triggered by the call to resolve the initial reference
to the target service. However, it is the plug-in that implements the actions
initiated by that call.

In order to function, the locator_client plug-in requires addressing
information for the locator service. This can be specified using various
techniques outlined in the �Accessing Contracts and References� chapter of
Configuring and Deploying Artix Solutions, C++ Runtime. For example, you
can pass in the location of the WSDL through the command line, or you can
configure the location in the consumer's configuration domain.

There are no configuration variables for the locator_client plug-in.
54

../deploy/cpp/index.htm

Configuring Artix Consumers to Use the Locator Service
Configuring JAX-WS Consumers

Overview This section describes the steps to configure JAX-WS consumers to
automatically use the Artix locator to find the Artix service of interest.

Spring-based configuration JAX-WS consumers use XML-based configuration files based on the Spring
framework. Spring-based configuration for the Java runtime is described in
Artix Configuration Reference, Java Runtime.

The following example consumer configuration file shows the bean element
that allows a consumer to use the Artix locator to find the Artix service of
interest.

Example 7: Consumer configuration for the Java JAX-WS runtime

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/

spring-beans.xsd">

 <!-- Config for Locator runtime support -->
 <bean id="LocatorSupport" class="com.iona.cxf.locator.LocatorSupport">
 <property name="bus" ref="cxf"/>
 <property name="contract">
 <value>./wsdl/locator.wsdl</value>
 </property>
 </bean>
</beans>
55

../config_ref/java/index.html

CHAPTER 3 | Using the Locator from an Artix Consumer
Obtaining Service References from the Locator
Service

Overview Once a consumer is configured to load the locator service plug-ins, it
requires some additional coding to use the locator service to obtain
references to the services in which it is interested. Each of the programming
models supported by Artix has a slightly different way of enabling a
consumer�s use of the locator service. However, all of the models make it
extremely simple.

In this section This section discusses the following topics:

Implementing a C++ Consumer page 57

Implementing a Java JAX-RPC Consumer page 61

Implementing a JAX-WS Consumer page 64
56

Obtaining Service References from the Locator Service
Implementing a C++ Consumer

Overview This section shows how to write consumer code in C++ that uses an Artix
locator service to locate and connect to a target service of interest.

C++ consumer code The steps each locator consumer must take are:

1. Invoke IT_Bus::Bus::resolve_initial_reference() on the target
service�s QName.

2. Using the returned reference, invoke IT_Bus::ClientProxyBase() to
set up a proxy to the target service.

The locator_client plug-in does all the work behind the scenes of
connecting to the locator service to obtain a reference to the target service.

C++ Example The locator consumer in Example 8 is a small, complete application
designed to work in the context of the locator demonstration in
ArtixInstallDir/cxx_java/samples/advanced/locator.

See �Explanation of Example 8� on page 59 for notes on this example.

Note: Locator code in Artix 3 consumers must interact with the locator
service using the WSDL contract defining the locator. Locator code in Artix
post-3.x consumers no longer has to do this.

Example 8: Locator consumer example in C++

//
// C++ locator example client code
//
#include <it_bus/bus.h>
#include <it_bus/exception.h>
#include <it_cal/iostream.h>
#include "SimpleServiceConsumer.h"

IT_USING_NAMESPACE_STD
using namespace SimpleServiceNS;
using namespace IT_Bus;
using namespace WS_Addressing;
57

CHAPTER 3 | Using the Locator from an Artix Consumer
int main(int argc, char* argv[])
{
 cout << endl << "SimpleService C++ Client";

 // Initialize the Artix bus.
 IT_Bus::Bus_var bus;
 try
 {
 cout << endl << "Initializing the bus.";

1 bus = IT_Bus::init(argc, (char **)argv,
 "demo.locator.client");
 }
 catch (IT_Bus::Exception& err)
 {
 cout << endl << "Caught unexpected exception while "
 << "initializing the bus: "
 << endl << err.message() << endl;
 return -1;
 }

2 QName service_qname("", "SOAPHTTPService",
 "http://www.iona.com/FixedBinding");

 try
 { // Get a WS-A reference to the target service.

3 EndpointReferenceType ep_ref;
 cout << endl << "Resolving "
 << service_qname.get_local_part()
 << " service in the locator.";

4 if (!bus->resolve_initial_reference(
 service_qname, ep_ref))
 {
 cout << endl
 << "Unable to resolve a reference using "
 << "the locator resolver." << endl;
 return -1;
 }
 // Construct a new proxy to the target service
 // with the result from the locator.
 cout << endl << "Initializing a proxy with the "
 << "results from the locator.";

5 SimpleServiceClient simple_client(ep_ref);

Example 8: Locator consumer example in C++ (Continued)
58

Obtaining Service References from the Locator Service
Explanation of Example 8 The following points refer to the number labels in Example 8.

1. This example hard codes an association with the
demo.locator.client configuration scope by means of an argument to
the IT_Bus::init() call. In a production application, you are more
likely to specify the scope in an -ORBname parameter when invoking the
consumer executable.

The association with the configuration scope is what ensures that the
locator_client plug-in is loaded at runtime. This example presumes a
configuration file like the one shown in Example 1 on page 29.

2. This line constructs a QName for the target service to which this
consumer will connect at runtime. The components of the QName are
defined in the target service�s WSDL contract. In this case, the target
service�s contract is in ArtixInstallDir/cxx_java/samples/
advanced/locator/etc/simple_service.wsdl.

 // Use the new proxy to invoke the say_hello operation on
 // the target service.
 cout << endl << "Invoking say_hello on the service "
 << service_qname.get_local_part() << ".";
 String my_greeting = String("Greetings from ") +
 service_qname.get_local_part();

6
 String result;
 simple_client.say_hello(my_greeting, result);

 cout << endl << "The say_hello operation returned: "
 << endl << " " << result << "!";
 }

 catch (IT_Bus::Exception& err)
 {
 cout << endl
 << "Caught unexpected exception while invoking "
 << "on the endpoint: "
 << endl << err.message() << endl;
 return -1;
 }
 cout << endl << endl;
 return 0;
}

Example 8: Locator consumer example in C++ (Continued)
59

CHAPTER 3 | Using the Locator from an Artix Consumer
3. The reference is declared as an instance of the WS-Addressing
standard�s EndpointReferenceType.

4. This line invokes resolve_initial_reference(), passing the QName
of the target service and an instance of the endpoint reference class.

5. The SimpleServiceClient class is defined in the locator demo in
ArtixInstallDir/cxx_java/samples/advanced/locator/cxx/client.
This class is derived from IT_Bus::ClientProxyBase(), which is the
base class for all Artix C++ proxies. In this case, the proxy is set up for
the target service defined in the QName set up as described in
paragraph 2 above.

6. Now that the client proxy to the target service is established, the code
can invoke operations of the target service. The say_hello operation is
defined in the target service�s WSDL contract, simple_service.wsdl.

Compiling and running Example 8 The code in Example 8 can be saved to a file, then compiled and run in the
context of the locator demo, as follows:

� Save the code to a file in ArtixInstallDir/cxx_java/samples/
advanced/locator/cxx/client.

� Create a separate make file based on the Makefile in that directory.
Name the output executable something other than client[.exe].

� Invoke nmake -f yourmakefile. (Windows) or make -f yourmakefile
(UNIX).

� Create a batch file or shell script to run your executable, based on the
run_cxx_client[.bat] in the demo�s bin directory.

� Start the locator demo with start_locator[.bat].

� Start the example services with run_cxx_servers[.bat].

� Run the example�s batch file or shell script.

When invoked as above, the example code produces output like the
following:

SimpleService C++ Client
Initializing the bus.
Resolving SOAPHTTPService service in the locator.
Initializing a proxy with the results from the locator.
Invoking say_hello on the service SOAPHTTPService.
The say_hello operation returned:
 Greetings from SOAPHTTPService!
60

Obtaining Service References from the Locator Service
Implementing a Java JAX-RPC Consumer

Overview This section shows how to write a JAX-RPC consumer that uses an Artix
locator service to locate and connect to a target service of interest.

JAX-RPC consumer code Consumer�s wishing to use the Artix locator service can simply use the
Bus.createClient shown in Example 9.

The locator_client plug-in does all the work behind the scenes of
connecting to the locator service to obtain a reference to the target service.
Using the returned reference the Bus creates a proxy. It also handles failover
if the service instance originally contacted dies and other service instances
are available.

JAX-RPC Example Example 10 shows code for getting a proxy using the createClient()
method. The example assumes that you have properly configured the
consumer to load the locator_client plug-in.

See �Explanation of Example 10� on page 62 for notes on this example.

Example 9: createClient() Method

abstract Remote createClient(QName serviceName,
 Class interfaceClass)

Example 10: Locator consumer example with JAX-RPC

import java.util.*;
import java.io.*;
import java.net.*;
import java.rmi.*;

import javax.xml.namespace.QName;
import javax.xml.rpc.*;

import com.iona.jbus.Bus;

public class javaLocExample
{
 public static void main (String args[]) throws Exception
 {
61

CHAPTER 3 | Using the Locator from an Artix Consumer
Explanation of Example 10 The following points refer to the number labels in Example 10.

1. This example initializes the bus with whatever arguments are passed
on the command line. The command line arguments must include
-ORBname demo.locator.client to associate this consumer with the
configuration scope demo.locator.client.

The association with the configuration scope is what ensures that the
locator_client plug-in is loaded at runtime. This example presumes a
configuration file like the one shown in Example 1 on page 29.

2. This line constructs a QName for the target service to which this
consumer will connect at runtime. The components of the QName are
defined in the target service�s WSDL contract.

1 Bus bus = Bus.init(args);

2 QName name = new QName("http://www.iona.com/FixedBinding",
 "SOAPHTTPService");

3 client = (SimpleService)bus.createClient(name,
 SimpleService.class);
 if (client == null) {
 System.err.println("Couldn't create SimpleService client "
 + "proxy from locator");
 }

 // Use the new proxy to invoke the say_hello operation on
 // the target service.
 String result;
 String greeting = "Greetings from SOAPHTTPService!";
 System.out.println("Invoking say_hello on the service " +
 name.getLocalPart() +".");

4 result = client.say_hello(greeting);
 System.out.println("The say_hello operation returned: \n"
 + " " + result);
 }
}

Example 10: Locator consumer example with JAX-RPC (Continued)
62

Obtaining Service References from the Locator Service
3. The createClient() method uses the supplied QName to perform a
look up using the locator service and obtain a reference to an instance
of the desired service. It uses the EPR returned from the locator to
create a proxy to the service instance.

4. Now that the client proxy to the target service is established, the code
can invoke operations of the target service. The say_hello operation is
defined in the target service�s WSDL contract, simple_service.wsdl.
63

CHAPTER 3 | Using the Locator from an Artix Consumer
Implementing a JAX-WS Consumer

Overview This section shows how to write a JAX-WS consumer that uses an Artix
locator service to locate and connect to a service of interest.

JAX-WS Code The steps each JAX-WS locator consumer must take are:

1. Mint a locator mediated EPR using the
EndpointReferenceUtils.mint() method.

The mint() method takes the QName of the service in which the
consumer is interested and the consumer�s Bus instance.

2. Get the org.apache.cxf.jaxws.ServiceImple instance of the service
class using the
org.apache.cxf.jaxws.support.ServiceDelegateAccessor.get()
method.

This method takes an instance of the JAX-WS 2.0 Service object your
consumer would normally use and returns an Artix specific
implementation of the object. The Artix specific ServiceImpl object
provides additional methods including a JAX-WS 2.1 style getPort()
method that allows you to create proxies from an EPR.

3. Use the returned Artix specific ServiceImpl object�s getPort() method
to create a proxy for the desired service.

The getPort() method takes the EPR minted from the locator and the
Class object for the SEI of the desired service. It returns a proxy for the
desired service.

Note: When the consumer is not configured to use the locator service, the
EndpointReferenceUtils.mint() method requires that you have provided
an implementation of the EndpointResolver interface and properly
registered it.
64

Obtaining Service References from the Locator Service
JAX-WS example Example 11 shows code for using the locator service from a JAX-WS
consumer. You can find a sample application in ArtixInstallDir/java/
samples/locator/discovery.

The code in Example 11 does the following:

1. Gets the consumer�s bus instance.

2. Mints an EPR for the service whose QName is stored in SERVICE_NAME.

Example 11: JAX-WS Consumer Using the Artix Locator

import org.apache.cxf.jaxws.ServiceImpl;
import org.apache.cxf.jaxws.support.ServiceDelegateAccessor;
import org.apache.cxf.ws.addressing.EndpointReferenceType;
import org.apache.cxf.wsdl.EndpointReferenceUtils;

...

public final class Client
{
 private static final QName SERVICE_NAME
 = new QName("http://apache.org/hello_world_soap_http",

"SOAPService");

 ...

 public static void main(String args[]) throws Exception
 {

1 Bus bus = BusFactory.getDefaultBus();

2 EndpointReferenceType epr =
 EndpointReferenceUtils.mint(SERVICE_NAME, bus);

3 ServiceImpl serviceImpl =
 ServiceDelegateAccessor.get(new SOAPService());

4 Greeter greeter = serviceImpl.getPort(epr, Greeter.class);

 ...
 }

 ...
}

65

CHAPTER 3 | Using the Locator from an Artix Consumer
3. Gets the Artix specific ServiceImpl object for the JAX-WS 2.0 Service
object that would normally be used to get a proxy for the remote
service.

4. Gets a proxy for the remote service using the Artix specific ServiceImpl
and the EPR minted from the locator.
66

Querying a Locator Service
Querying a Locator Service

Overview Starting with Artix post-3.x, the locator has extended query functionality,
compared to the basic listEndpoints operation offered in prior releases.
The locator query capabilities are implemented as the queryEndpoints
operation, which uses as its input parameter a select element defined in an
extensible XML schema, locator-query.xsd.

Demonstration code The querying functionality of the Artix post-3.x locator is illustrated in the
locator_query demonstration example. See ArtixInstallDir/cxx_java/
samples/advanced/locator_query.

Filtered and unfiltered lists of
services

To use the query functionality, follow these overall steps in your consumer
code:

1. Obtain a reference to the locator service and create a client proxy to the
locator.

2. To obtain an unfiltered list of the services registered with that locator,
invoke the locator�s listEndpoints operation.

3. To obtain a filtered list of registered services, invoke the locator�s
queryEndpoints operation, passing it one or more query filters.

Note: JAX-WS consumers do not have native access to the locator
service�s query functionality. You can access this functionality by
generating the proper stub code using the JAX-WS code generators.
67

CHAPTER 3 | Using the Locator from an Artix Consumer
Extensible query language The query language used by the queryEndpoints operation is governed by
an XML Schema, which is installed by default in ArtixInstallDir/
cxx_java/schemas/locator-query.xsd.

The C++ data types used in the examples in this section are from code
generated from this schema (or from locator.wsdl, which includes this
schema). Artix does not ship with code generated from this schema or
WSDL, so it is the Artix developer�s responsibility to generate code from the
schema or WSDL and make use of it.

Because the query language is in a schema, you can extend the schema to
add new query functionality.

The contents of the locator_query.xsd schema are shown in Example 12.
68

Querying a Locator Service
Example 12: Contents of locator-query.xsd

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema
 targetNamespace="http://ws.iona.com/2005/11/locator/query"
 elementFormDefault="qualified"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://ws.iona.com/2005/11/locator/query">
 <xs:simpleType name="FieldEnumeratedType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="GROUP"/>
 <xs:enumeration value="SERVICE"/>
 <xs:enumeration value="PORTNAME"/>
 <xs:enumeration value="INTERFACE"/>
 <xs:enumeration value="BINDING"/>
 <xs:enumeration value="EXTENSOR"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="FilterFieldType">
 <xs:union memberTypes="tns:FieldEnumeratedType xs:string"/>
 </xs:simpleType>
 <xs:complexType name="FilterType">
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="field" type="tns:FilterFieldType"
 use="required"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 <xs:complexType name="QuerySelectType">
 <xs:sequence>
 <xs:element name="filter" type="tns:FilterType" minOccurs="0"
 maxOccurs="unbounded"/>
 <xs:any namespace="##other" minOccurs="0" processContents="lax"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="select" type="tns:QuerySelectType"/>
</xs:schema>
69

CHAPTER 3 | Using the Locator from an Artix Consumer
Query functionality The target namespace of the locator-query.xsd schema is http://
ws.iona.com/2005/11/locator/query. The query:select element of type
query:QuerySelectType is a sequence of filters. It is extensible insofar as it
can support future xs:any elements without breaking compatibility. In the
current implementation, the locator service ignores all xs:any elements that
may be present within a select element.

A filter is a pair of type and value. The value is a string; some filters use
QName values represented as strings in canonical form:

[{<namespace>}]<local-part>

The logic to convert QNames to and from canonical string representation is
available from the IT_Bus::QName type (as shown in the example in this
section).

The type of a filter is one of the query:FieldEnumeratedType values. The
filter type is extensible by allowing any other field type. Extensibility was
achieved by making the Filter type a union of the supported enumerated
type and a string. Any value different from the ones present in the
enumerated type is ignored by the current locator implementation.

The value of a filter could be either a string or a QName, depending on the
filter type. When the value is a QName, you still needs to pass it as a string
using its canonical value.
70

Querying a Locator Service
The matching rules for the supported filter types are shown in the following
table. There is no wildcard support in these filter types, so the search text
must be exact.

Service groups Starting with Artix post-3.x, you can assign arbitrary group membership to
services. This feature is used in combination with the locator�s query
functionality. For example, you could query the locator to ascertain which
services belong to which groups.

There is no restriction on assigning services to groups in different processes.
It is valid to have services in the same process belong to different groups, or
to no group at all. It is valid for services in different processes to belong to
the same group. By default, a service belongs to no group.

A service can be assigned to a group by means of a WSDL extension or by
means of configuration.

Filter type Format Filter the returned list of services by:

GROUP xs:string The case sensitive name of a group of services
you are seeking. (Service group membership is
defined in each service�s WSDL contract or in an
Artix configuration file as described in �Service
groups� on page 71.)

SERVICE xs:QName The QName of the service you are seeking.

PORTNAME xs:string The case sensitive name of at least one of the
ports in the service you are seeking.

INTERFACE xs:QName The QName of the portType associated with a
binding, which is itself associated with at least
one of the ports in the service you are seeking.

BINDING xs:string The QName of the binding associated with at
least one of the ports in the service you are
seeking.

EXTENSOR xs:string The QName of an extensor contained in at least
one of the ports in the service you are seeking.
71

CHAPTER 3 | Using the Locator from an Artix Consumer
Assigning group membership with
a configuration variable

The preferred method of assigning services to groups is performed in an
Artix configuration file, using the service_group configuration variable.

Using the QName alias for a service in the configuration file, specify the
service_group variable and assign an arbitrary string as the group name.

In the following example, the first line defines the QName alias corba_svc.
The second line assigns the corba_svc service to the group named
CORBAGroup.

You can define a global group for all services associated with the current
bus. All services that do not have a group definition in their WSDL or
configuration then belong to the global group by default.

bus:qname_alias:corba_svc = "{http://demo.iona.com/advanced/LocatorQuery}CORBAService";
...
plugins:locator:service_group:corba_svc = "CORBAGroup";

Note: Configuration-assigned group membership takes precedence over
WSDL-assigned group membership.

plugins:locator:service_group = "<default-group-name>";
72

Querying a Locator Service
Assigning group membership in
WSDL

You can use an Artix WSDL extension to assign a service to a group in the
service�s WSDL contract.

The WSDL extension is defined in a new schema under the types section in
locator.wsdl:

This allows service WSDL contracts to use the name= attribute, as shown in
this example taken from the locator_query demo.

<xs:schema targetNamespace="http://ws.iona.com/2005/11/locator/extensions">
 <xs:element name="group" type="xs:string"/>
</xs:schema>

xmlns:locx="http://ws.iona.com/2005/11/locator/extensions"
...
<service name="CORBAService">
 <locx:group>QUERY-DEMO</locx:group>
 <port binding="tns:SimpleServicePortType_CORBABinding" name="CORBAPort">
 <corba:address location="file:../../corba_server.ior"/>
 <corba:policy poaname="corbaport"/>
 </port>
</service>
73

CHAPTER 3 | Using the Locator from an Artix Consumer
Locator query example with single
query

The following C++ code fragment demonstrates the locator�s query
functionality. This example uses a single query filter:

// Create a query
 QuerySelectType select;
 FilterType filter;
 FilterFieldType fld;

 fld.setFieldEnumeratedType(
 FieldEnumeratedType(FieldEnumeratedType::GROUP));
 filter.setfield(fld);
 filter.setvalue("SAMPLE-VALUE");
 select.getfilter().push_back(filter);

 // Create a proxy for the locator.
 // (This assumes that the bus already been initialized)
 Reference locator_ref;
 bus->resolve_initial_reference(LOCATOR_SERVICE_NAME,
 locator_ref);
 LocatorServiceClient locator_client(locator_ref);

 // Invoke
 ElementListT<endpoint> result;
 locator_client->queryEndpoints(select, result);

 // Use the result in some way ...
74

Querying a Locator Service
Locator query example with
multiple queries

The locator supports queries based on multiple filters. The filters restrict the
endpoints in the result set to those endpoints that match the value in each
filter. They act as a composite filter with an implicit AND operator.

Filters have a type and a value. There are no restrictions on mixing different
filters based on their type. It is valid to add filters of the same type.

The following C++ code fragment illustrates the use of the locator�s query
functionality with multiple query filters.

QName sample_portType("", "MyPortType", "http://www.example.com/
demo");

QuerySelectType select;
FilterType filter;
FilterFieldType fld;

fld.setFieldEnumeratedType(
 FieldEnumeratedType(FieldEnumeratedType::GROUP));
filter.setfield(fld);
filter.setvalue("SAMPLE-VALUE");
select.getfilter().push_back(filter);

fld.setFieldEnumeratedType(
 FieldEnumeratedType(FieldEnumeratedType::INTERFACE));
filter.setfield(fld);
filter.setvalue(sample_portType.get_as_canonical_string());
select.getfilter().push_back(filter);
75

CHAPTER 3 | Using the Locator from an Artix Consumer
Migrating Consumer Code

Overview The following differences between Artix 4.x/5.x-C++ and Artix 3.0 might
affect any existing Artix consumers:

� Locator WSDL operation names were changed in compliance with the
wrapped doc-literal convention.

� Artix switched from using a proprietary reference format to using the
standard WS_Addressing endpoint reference format.

� Locator consumers are now configured to load the locator_client
plug-in. This plug-in takes over the tasks of creating a proxy to the
target service. These tasks were formerly the responsibility of consumer
code.

For WS-Addressing migration information, see the chapters �Endpoint
References� in Developing Artix Applications in C++, or �Using Endpoint
References� in Developing Artix Applications with JAX_RPC.

Old and new locator WSDL
contracts supported

As described in �Backward compatibility� on page 21, the Artix post-3.x
locator service incorporates both Artix 3.x and post-3.x-compatible locator
services.

Artix post-3.x includes a newer version of locator.wsdl. The new
locator.wsdl file is located by default in the following directory of your Artix
installation:

Artix 4.x

Artix 5.x

In a production environment, the locator.wsdl can be in any location.

Artix post-3.x also includes a copy of the Artix 3.x locator.wsdl file. By
default, this file is installed in:

ArtixInstallDir/artix/version/wsdl

ArtixInstallDir/cxx_java/wsdl
76

../jaxrpc_pguide/index.htm
../prog_guide/index.htm

Migrating Consumer Code
Artix 4.x

Artix 5.x

The Artix 4/5-C++ configuration file, artix.cfg, resolves which
locator.wsdl contract to use by distinguishing the QName with which the
locator service is called. The default artix.cfg file contains the following
lines:

Thus, if consumer code requests a reference using the QName {http://
ws.iona.com/locator}LocatorService, then any request for the locator�s
initial contract is directed to the 3.x version of locator.wsdl in the wsdl/
oldversion directory.

By using the Artix 4/5-C++ version of the locator QName, {http://
ws.iona.com/2005/11/locator}LocatorService, any request for the
locator�s initial contract is directed to the 4.x/5.x-C++ version of
locator.wsdl.

Configuration for Artix post-3.x
locator service

To allow Artix 3.x and post-3.x consumers to connect to an Artix 4.1, 4.2,
or 5.x/C++ locator service, add one new configuration entry to the locator
service configuration scope, as described in �Artix post-3.x locator setup for
backward compatibility� on page 23.

ArtixInstallDir/artix/version/wsdl/oldversion

ArtixInstallDir/cxx_java/wsdl/oldversion

bus:qname_alias:locator_oldversion = "{http://ws.iona.com/locator}LocatorService";
bus:qname_alias:locator = "{http://ws.iona.com/2005/11/locator}LocatorService";
...
bus:initial_contract:url:locator_oldversion = "ArtixInstallDir/artix/version/wsdl/oldversion/

locator.wsdl";
bus:initial_contract:url:locator = "ArtixInstallDir/artix/version/wsdl/locator.wsdl";
77

CHAPTER 3 | Using the Locator from an Artix Consumer
Locator WSDL operation names The names of public operations in the Artix 4 and 5-C++ version of
locator.wsdl have been changed, as described in Table 1.

Migrating consumer code to Artix
post-3.x

As described in �Migrating from Previous Versions� on page 21, the Artix 4/
5-C++ locator supports the use of unmodified Artix 3 consumers. This
allows you to put your first migration efforts into upgrading your locators and
services to Artix 4 or 5-C++. Once those tasks are complete, you can
migrate your consumers as follows:

1. Edit your configuration files to make sure the locator_client plug-in
is loaded in the configuration scope(s) used by your locator consumers.
See �Configuring C++ and JAX-RPC Consumers� on page 53.

2. If your code directly invokes any operations of the locator.wsdl
contract, update the operation names as described in �Locator WSDL
operation names� on page 78.

Table 1: Operation names in Artix 3 and Artix 4/5 locator.wsdl

Artix 3 locator.wsdl Artix 4/5-C++
locator.wsdl

Notes

lookup_endpoint lookupEndpoint The Artix 3 version returns
an Artix Reference. The
Artix 4/5-C++ version
returns a WS-Addressing
type reference.

list_endpoints listEndpoints

queryEndpoints There is no Artix 3
equivalent operation.
78

Migrating Consumer Code
3. For consumers in C++, simplify your consumer code as described
below.

In Artix 3, the coding steps that every locator consumer had to take
were the following:

i. Invoke IT_Bus::Bus::resolve_initial_reference() on the
locator�s QName.

ii. Using the returned reference, invoke IT_Bus::ClientProxyBase()
to set up a proxy to the locator.

iii. Using the proxy, invoke the locator�s lookup_endpoint operation
to get a reference to the target service.

iv. Using the reference returned by the locator, invoke
ClientProxyBase() to set up a proxy to the target service.

In Artix post-3-x, because the locator_client plug-in is doing most of
the work, the coding steps are shortened to the following:

i. Invoke IT_Bus::Bus::resolve_initial_reference() on the
target service�s QName.

ii. Using the returned reference, invoke IT_Bus::ClientProxyBase()
to set up a proxy to the target service.

4. For consumers in Java for the C++/JAX-RPC runtime, change your
consumer code as described below.

i. Remove code that resolves a reference to the locator and sets up
a proxy to the locator service itself.

ii. Instead of invoking the locator service�s lookup_endpoint
operation to get a reference, use
resolveInitialEndpointReference to directly return a reference
to the target service.

iii. Use members of the endpoint reference class to extract from the
returned reference the location of the WSDL for the target service.

iv. Create a client proxy for the target service.

Note: If your application invokes the listEndpoints or queryEndpoints
operations of the locator service, then you must still create a proxy to the
locator service. This is described in �Querying a Locator Service� on
page 67.
79

CHAPTER 3 | Using the Locator from an Artix Consumer
80

CHAPTER 4

Using the Locator
from a Non-Artix
Client
The Artix locator service can be used by consumers generated
by other SOA systems.

In this chapter This chapter discusses the following topics:

Implementing a .NET Client page 82

Implementing an Axis Client page 86
81

CHAPTER 4 | Using the Locator from a Non-Artix Client
Implementing a .NET Client

Overview .NET clients can use the locator to discover services, using the
Bus.Services.dll library. The locator provides a number of methods for
looking up services and managing service registration. The Artix .NET
plug-in is Web Services Enhancements 2.0 (WSE 2.0) compliant. The
helper classes included in the Bus.Services library simplify working with
the locator by providing native .NET calls to access the locator and the
endpoint references it produces.

What you need before starting Before starting to develop a client that uses the Artix locator you need:

� A means for contacting a deployed Artix locator. This can be one of the
following:

♦ An endpoint reference

♦ An HTTP address

♦ A local copy of the locator�s contract

� A locally accessible copy of the WSDL contract that defines the service
that you want the client to invoke upon.

� To install WSE 2.0 SP3 before starting an Artix .NET locator client.

Demonstration code The code examples in this section are taken from the locator demo�s .NET
client code. The .NET client makes a request on a service instance for which
it does not have a current endpoint reference. The .NET client accesses the
locator to get a reference to an active instance of the service on which it
wants to make requests. The complete client code can be found in the
following directory of your Artix installation:

InstallDir\cxx_java\samples\advanced\locator\dotnet\client
82

Implementing a .NET Client
Procedure To develop a .NET client that uses the Artix locator, do the following:

1. Create a new project in Visual Studio.

2. Right-click the folder for your new project and select Add Reference
from the pop-up menu.

3. Click Browse on Add Reference window.

4. In the file selection window, browse to your Artix installation and select
the Bus.Services.dll from the InstallDir\cxx_java\utils\.NET
directory.

5. Click OK to return to the Visual Studio editing area.

6. Right-click the folder for your new project and select Add Web
Reference from the pop-up menu.

7. In the Address: field of the browser, enter the full path name of the
contract for the service on which you are going to make requests.

8. Click Add Reference to return to the Visual Studio editing area.

9. Open the .cs file generated for the contract you imported.

10. Locate the class declaration for the service on which you intend to
make requests. The class declaration looks similar to that shown in
Example 13.

11. Add a new C# class to your project.

12. Add the statement using Bus.Services; after the statement using
System;.

Example 13: .NET Service Proxy Class Declaration

public class SOAPService :
 System.Web.Services.Protocols.SoapHttpClientProtocol {
83

CHAPTER 4 | Using the Locator from a Non-Artix Client
13. Create a service proxy for the Artix locator by instantiating an instance
of the Bus.Services.Locator class as shown in Example 14.

The constructor�s parameter is the HTTP address of a deployed locator.
The Locator class also has two constructors that take an Artix
reference or a WSDL contract for use with the Artix locator.

14. Create a QName representing the name of the service you wish to
locate using an instance of the System.Xml.XmlQualifiedName class as
shown in Example 15.

15. Invoke the lookup_endpoint() method on the locator proxy as shown
in Example 16.

lookupEndpoint() takes the QName of the desired service as a
parameter and returns an endpoint reference if an instance of the
specified service is registered with the locator instance. Endpoint
references are implemented in the .NET
Bus.Services.EndpointReferenceType class.

16. Create a .NET proxy for the service on which you are going to make
requests as you normally would.

Example 14: Instantiating a Locator Proxy in .NET

Locator l = new Locator("http://localhost:8080");

Example 15: Creating a .NET QName

XmlQualifiedName service = new XmlQualifiedName(
 "HelloWorldService",
 "http://www.iona.com/hello_world_soap_http"
);

Example 16: Looking-up an Endpoint Reference.

Reference ref = l.lookupEndpoint(service);
84

Implementing a .NET Client
17. Change the value of the proxy�s .Url member to the SOAP address of
the endpoint reference returned from the locator as shown in
Example 17.

18. Make requests on the service as you would normally.

Example 17: Changing the URL of a .NET Service Proxy to Use an
Endpoint Reference

simpleService.Url = endpoint.Address.Value;
85

CHAPTER 4 | Using the Locator from a Non-Artix Client
Implementing an Axis Client

Overview Because the Artix locator is a SOAP over HTTP service whose interface is
defined by a WSDL contract, an Axis client can use it to locate deployed
instances of a service. Using the Artix locator from an Axis client involves
generating a proxy for the locator service and interpreting the returned
endpoint reference.

Axis version The examples in this chapter were developed using Axis 1.3. They should
work with Axis 1.4 as well.

Procedure To develop an Axis client that uses Artix locator, do the following:

1. Generate a WSDL file from a running locator instance.

2. Generate Axis stub code from the generated locator WSDL file as
shown in Example 18:

3. Generate Axis stub code from the WSDL document for the service on
which you want your client to invoke, as shown in Example 19:

Example 18: Generating Axis Stub Code for Locator

Java org.apache.axis.wsdl.WSDL2Java locator.wsdl

Example 19: Generating Axis Stub Code for the Target Web Service

Java org.apache.axis.wsdl.WSDL2Java simple_service.wsdl

Note: Axis only understands services that use SOAP over HTTP. If
you are starting from the WSDL for an Artix service that supports
other bindings and transports, you must make a copy of its WSDL
document and remove references to any namespaces, bindings, and
transports other than SOAP over HTTP. Then run the Axis
WSDL2Java generator on your simplified copy of the WSDL
document.
86

Implementing an Axis Client
4. Retrieve a locator service endpoint as shown in Example 20:

5. Instantiate a locator proxy as shown in Example 21:

6. Get a reference to a service using the locator proxy as shown in
Example 22.

7. Get the address of the service from the returned endpoint reference as
shown in Example 23.

8. Create a proxy for the service and invoke on it as you normally would.

Example 20: Retrieving a Locator Service Endpoint

String tns = "http://ws.iona.com/2005/11/locator";
QName service = new QName(tns, "LocatorService");
String port = "LocatorServicePort";
java.lang.String url = get_soap_address("locator.wsdl",

service, port);
java.net.URL endpoint = new java.net.URL(url);

Example 21: Instantiating a Locator Proxy

LocatorService_Service lssl = new
LocatorService_ServiceLocator();

LocatorServiceBindingStub locProxy =
(LocatorServiceBindingStub)lssl.getLocatorServicePort(end
point);

Example 22: Getting an Endpoint Reference

QName servName = new QName("http://www.iona.com/
FixedBinding", "SOAPHTTPService");

EndpointReferenceType serviceEpr =
locProxy.lookupEndpoint(servName);

Example 23: Getting the Service Address

String servURL =
serviceEpr.getAddress().get_value().toString();

serv_endpoint = new java.net.URL(servURL);
87

CHAPTER 4 | Using the Locator from a Non-Artix Client
88

Index

Symbols
.NET client 82

A
addressRoot 40
application

making locator-aware 10
Artix 4.1/4.2

special configuration for Artix 4.0 and 3.x
clients 23, 45, 77

Artix plug-ins
locator-related 12

Artix Reference format 11
Artix runtime 10

C
C++ 19, 22, 53, 57, 60, 68, 74, 75, 79

example 57
client applications

configuring 15
migrating 78

client plug-in 13
client-side 10, 11, 15, 19
combinations

of service and clients 22
configuration

for Artix 4.1/4.2 locator service 23, 45, 77

D
deferBy 40

E
endpoint grouping 8
endpoint manager plug-in 13
endpoint repository 8

F
fault tolerance 9

G
groups

service 71

H
heartbeatInterval 39
heartbeatLeeway 39
high availability configuration 9

J
Java JNI 19, 53
JAX-RPC 38
JAX-WS 20, 38
jaxws:endpoint 38

L
load balancing 8, 12
locator

service groups 14
use cases 8

locator.wsdl 16, 17, 30, 31, 35, 46, 68, 73, 76,
77, 78

Artix 3.0 version 76
Artix 4.x version 76

locator-aware
clients 10

locator-aware, making applications 10
locatorEndpoint 39
locator endpoint plug-in 14
locator service 10

configuring 14
locator service plug-in 12, 13
LocatorSupport 38, 39

M
migrating client applications 78
monitorLiveness 39

O
operations

in locator.wsdl 78
89

INDEX
P
peer manager 39
peer manager plug-in 10, 13
plug-in

client 13
endpoint manager 13
interactions 13
locator endpoint 14
locator service 12, 13
peer manager 13

plug-ins
locator-related 12

public operations 78

Q
QName 10, 11, 12, 16, 21, 22, 45, 46, 48, 57,

59, 60, 61, 70, 71, 72, 77, 79
new locator 23
of locator service 21
old locator 23

R
reference 11

returned by locator 10, 11
register endpoints 11

registerOnPublish 39

S
service and client combinations 22
service groups 71

locator 14
service-side 9
Spring framework 38

T
Tomcat 39

U
use case

endpoint grouping 8
endpoint repository 8
fault tolerance 9
high availability 9
load balancing 8

use cases 8

W
WS-Addressing 11
90

	Preface
	What is Covered in This Book
	Who Should Read This Book
	How to Use This Book
	Artix Documentation Library

	Artix Locator Introduction
	What is the Locator Service?
	How the Locator Works
	Locator WSDL Contract
	Locator Sample Code
	Locator Samples for the C++/Java JNI Runtime
	Locator Sample for the Java JAX-WS Runtime

	Migrating from Previous Versions

	Configuring and Deploying the Locator Service
	Deploying the Locator Service
	Registering Services with the Locator
	Configuring a Locator-Enabled Service, C++ Runtime
	Configuring a Locator-Enabled Service, Java Runtime

	Using Load Balancing
	Using Fault Tolerance Features
	Starting Services with Artix 3 Consumer Support
	Adding SOAP 1.2 Support

	Using the Locator from an Artix Consumer
	Configuring Artix Consumers to Use the Locator Service
	Configuring C++ and JAX-RPC Consumers
	Configuring JAX-WS Consumers

	Obtaining Service References from the Locator Service
	Implementing a C++ Consumer
	Implementing a Java JAX-RPC Consumer
	Implementing a JAX-WS Consumer

	Querying a Locator Service
	Migrating Consumer Code

	Using the Locator from a Non-Artix Client
	Implementing a .NET Client
	Implementing an Axis Client

	Index

