
™

PROGRESS
®

ARTIX
Developing Advanced Artix

Plug-Ins in C++
Version 5.6, December 2011

© 2011 Progress Software Corporation and/or its subsidiaries or affiliates. All rights
reserved.
These materials and all Progress® software products are copyrighted and all rights are
reserved by Progress Software Corporation. The information in these materials is subject to
change without notice, and Progress Software Corporation assumes no responsibility for
any errors that may appear therein. The references in these materials to specific platforms
supported are subject to change.

Actional, Apama, Artix, Business Empowerment, DataDirect (and design), DataDirect Con-
nect, DataDirect Connect64, DataDirect Technologies, DataDirect XML Converters, Data-
Direct XQuery, DataXtend, Dynamic Routing Architecture, EdgeXtend, Empowerment
Center, Fathom, Fuse Mediation Router, Fuse Message Broker, Fuse Services Framework,
IntelliStream, IONA, Making Software Work Together, Mindreef, ObjectStore, OpenEdge,
Orbix, PeerDirect, POSSENET, Powered by Progress, PowerTier, Progress, Progress
DataXtend, Progress Dynamics, Progress Business Empowerment, Progress Empowerment
Center, Progress Empowerment Program, Progress OpenEdge, Progress Profiles, Progress
Results, Progress Software Developers Network, Progress Sonic, ProVision, PS Select,
Savvion, SequeLink, Shadow, SOAPscope, SOAPStation, Sonic, Sonic ESB, SonicMQ,
Sonic Orchestration Server, SpeedScript, Stylus Studio, Technical Empowerment, Web-
Speed, Xcalia (and design), and Your Software, Our Technology–Experience the Connec-
tion are registered trademarks of Progress Software Corporation or one of its affiliates or
subsidiaries in the U.S. and/or other countries. AccelEvent, Apama Dashboard Studio,
Apama Event Manager, Apama Event Modeler, Apama Event Store, Apama Risk Firewall,
AppsAlive, AppServer, ASPen, ASP-in-a-Box, BusinessEdge, Business Making Progress,
Cache-Forward, CloudEdge, DataDirect Spy, DataDirect SupportLink, Fuse, FuseSource,
Future Proof, GVAC, High Performance Integration, ObjectStore Inspector, ObjectStore
Performance Expert, OpenAccess, Orbacus, Pantero, POSSE, ProDataSet, Progress Arcade,
Progress CloudEdge, Progress Control Tower, Progress ESP Event Manager, Progress ESP
Event Modeler, Progress Event Engine, Progress RFID, Progress RPM, Progress Software
Business Making Progress, PSE Pro, SectorAlliance, SeeThinkAct, Shadow z/Services,
Shadow z/Direct, Shadow z/Events, Shadow z/Presentation, Shadow Studio, SmartBrowser,
SmartComponent, SmartDataBrowser, SmartDataObjects, SmartDataView, SmartDialog,
SmartFolder, SmartFrame, SmartObjects, SmartPanel, SmartQuery, SmartViewer, Smart-
Window, Sonic Business Integration Suite, Sonic Process Manager, Sonic Collaboration
Server, Sonic Continuous Availability Architecture, Sonic Database Service, Sonic Work-
bench, Sonic XML Server, The Brains Behind BAM, WebClient, and Who Makes Progress
are trademarks or service marks of Progress Software Corporation and/or its subsidiaries or
affiliates in the U.S. and other countries. Java is a registered trademark of Oracle and/or its
affiliates. Any other marks contained herein may be trademarks of their respective owners.

Third Party Acknowledgments:

Progress Artix ESB for C++ v5.6 incorporates Xalan v2.3.1technologies from the Apache
Software Foundation (http://www.apache.org). Such Apache technologies are subject to the
following terms and conditions: The Apache Software License, Version 1.1. Copyright (C)
1999-2002 The Apache Software Foundation. All rights reserved. Redistribution and use in
source and binary forms, with or without modification, are permitted provided that the fol-
lowing conditions are met: 1. Redistributions of source code must retain the above copy-
right notice, this list of conditions and the following disclaimer. 2. Redistributions in binary
form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution. 3.
The end-user documentation included with the redistribution, if any, must include the fol-
lowing acknowledgment: "This product includes software developed by the Apache Soft-
ware Foundation (http://www.apache.org/). Alternately, this acknowledgment may appear
in the software itself, if and wherever such third-party acknowledgments normally appear.
4. The names "Ant", "Xerces," "Xalan," "Log 4J," and "Apache Software Foundation" must
not be used to: endorse or promote products derived from this software without prior written
permission. For written permission, please contact apache@apache.org. 5. Products derived
from this software may not be called "Apache", nor may "Apache" appear in their name,
without prior written permission of the Apache Software Foundation. THIS SOFTWARE IS
PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUD-
ING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABIL-
ITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PRO-
CUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE. This software consists of voluntary contributions made by many individuals on
behalf of the Apache Software Foundation. For more information on the Apache Software
Foundation, please see http://www.apache.org/. Xalan was originally based on software
copyright (c) 1999, Lotus Development Corporation., http://www.lotus.com. Xerces was
originally based on software copyright (c) 1999, International Business Machines, Inc.,
http://www.ibm.com.

Progress Artix ESB for C++ v5.6 incorporates Xerces C++ v2.4 technology from the
Apache Software Foundation (http://www.apache.org). Such Apache technology is subject
to the following terms and conditions: The Apache Software License, Version 1.1 - Copy-
right (c) 1999-2001 The Apache Software Foundation. All rights reserved. Redistribution
and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:
 1. Redistributions of source code must retain the above copyright notice, this list of condi-
tions and the following disclaimer.

http://www.apache.org
http://www.apache.org
http://www.apache.org
http://www.apache.org

 2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials pro-
vided with the distribution.
 3. The end-user documentation included with the redistribution, if any, must include the
following acknowledgment: "This product includes software developed by the Apache Soft-
ware Foundation (http://www.apache.org/)." Alternately, this acknowledgment may appear
in the software itself, if and wherever such third-party acknowledgments normally appear.
4. The names "Xerces" and "Apache Software Foundation" must not be used to endorse or
promote products derived from this software without prior written permission. For written
permission, please contact apache@apache.org.
 5. Products derived from this software may not be called "Apache", nor may "Apache"
appear in their name, without prior written permission of the Apache Software Foundation.
THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARIS-
ING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

Progress Artix ESB for C++ v5.6 incorporates Apache Xerces v2.5.0 technology from the
Apache Software Foundation ((http://www.apache.org). Such Apache technology is subject
to the following terms and conditions: The Apache Software License, Version 1.1 - Copy-
right (c) 1999-2002 The Apache Software Foundation. All rights reserved. Redistribution
and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of condi-
tions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.
3. The end-user documentation included with the redistribution, if any, must include the fol-
lowing acknowledgment: "This product includes software developed by the Apache Soft-
ware Foundation (http://www.apache.org/)." Alternately, this acknowledgment may appear
in the software itself, if and wherever such third-party acknowledgments normally appear.
4. The names "Xerces" and "Apache Software Foundation" must not be used to endorse or
promote products derived from this software without prior written permission. For written
permission, please contact apache@apache.org.
5. Products derived from this software may not be called "Apache", nor may "Apache"
appear in their name, without prior written permission of the Apache Software Foundation.

http://www.apache.org

THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARIS-
ING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.
This software consists of voluntary contributions made by many individuals on behalf of the
Apache Software Foundation and was originally based on software copyright (c) 1999,
International Business Machines, Inc., http://www.ibm.com. For more information on the
Apache Software Foundation, please see <http://www.apache.org/>.

Progress Artix ESB for C++ v5.6 incorporates Xerces C++ v1.7 technology from the
Apache Software Foundation (http://www.apache.org). Such Apache technology is subject
to the following terms and conditions: The Apache Software License, Version 1.1. - Copy-
right (c) 1999-2004 The Apache Software Foundation. All rights reserved. Redistribution
and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of condi-
tions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.
3. The end-user documentation included with the redistribution, if any, must include the fol-
lowing acknowledgment: "This product includes software developed by the Apache Soft-
ware Foundation (http://www.apache.org/)." Alternately, this acknowledgment may appear
in the software itself, if and wherever such third-party acknowledgments normally appear.
4. The names "Xalan" and "Apache Software Foundation" must not be used to endorse or
promote products derived from this software without prior written permission. For written
permission, please contact apache@apache.org.
5. Products derived from this software may not be called "Apache", nor may "Apache"
appear in their name, without prior written permission of the Apache Software Foundation.
THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARIS-

ING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.
This software consists of voluntary contributions made by many individuals on behalf of the
Apache Software Foundation and was originally based on software copyright (c) 1999,
Lotus Development Corporation., http://www.lotus.com. For more information on the
Apache Software Foundation, please see <http://www.apache.org/>.

Progress Artix ESB for C++ v5.6 incorporates Apache Velocity v1.3 technology from the
Apache Software Foundation (http://www.apache.org). Such Apache technology is subject
to the following terms and conditions: The Apache Software License, Version 1.1 - Copy-
right (c) 2000-2003 The Apache Software Foundation. All rights reserved. Redistribution
and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:
 1. Redistributions of source code must retain the above copyright notice, this list of condi-
tions and the following disclaimer.
 2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials pro-
vided with the distribution.
 3. The end-user documentation included with the redistribution, if any, must include the
following acknowledgement: "This product includes software developed by the Apache
Software Foundation (http://www.apache.org/)." Alternately, this acknowledgement may
appear in the software itself, if and wherever such third-party acknowledgements normally
appear.
 4. The names "The Jakarta Project", "Velocity", and "Apache Software Foundation" must
not be used to endorse or promote products derived from this software without prior written
permission. For written permission, please contact apache@apache.org.
 5. Products derived from this software may not be called "Apache", "Velocity" nor may
"Apache" appear in their names without prior written permission of the Apache Group.
 THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARIS-
ING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

Progress Artix ESB for C++ v5.6 incorporates Log4J v1.2.6 technology from the Apache
Software Foundation (http://www.apache.org). Such Apache technology is subject to the
following terms and conditions: The Apache Software License, Version 1.1 - Copyright (C)
1999 The Apache Software Foundation. All rights reserved. Redistribution and use in

source and binary forms, with or without modification, are permitted provided that the fol-
lowing conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of condi-
tions and the following disclaimer.
 2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials pro-
vided with the distribution.
 3. The end-user documentation included with the redistribution, if any, must include the
following acknowledgment: "This product includes software developed by the Apache
Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment may
appear in the software itself, if and wherever such third-party acknowledgments normally
appear.
4. The names "log4j" and "Apache Software Foundation" must not be used to endorse or
promote products derived from this software without prior written permission. For written
permission, please contact apache@apache.org.
5. Products derived from this software may not be called "Apache", nor may "Apache"
appear in their name, without prior written permission of the Apache Software Foundation.
THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION
OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDEN-
TAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLU DING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
This software consists of voluntary contributions made by many individuals on behalf of the
Apache Software Foundation. For more information on the Apache Software Foundation,
please see <http://www.apache.org/>.
(a) Progress Artix ESB for C++ v5.6 incorporates JDOM Beta 9 technology from JDOM.
Such technology is subject to the following terms and conditions: Copyright (C) 2000-2004
Jason Hunter & Brett McLaughlin. All rights reserved. Redistribution and use in source and
binary forms, with or without modification, are permitted provided that the following condi-
tions are met: 1. Redistributions of source code must retain the above copyright notice, this
list of conditions, and the following disclaimer. 2. Redistributions in binary form must
reproduce the above copyright notice, this list of conditions, and the disclaimer that follows
these conditions in the documentation and/or other materials provided with the distribution.
3. The name "JDOM" must not be used to endorse or promote products derived from this
software without prior written permission. For written permission, please contact
<request_AT_jdom_DOT_org>. 4. Products derived from this software may not be called
"JDOM", nor may "JDOM" appear in their name, without prior written permission from the
JDOM Project Management <request_AT_jdom_DOT_org>. In addition, we request (but
do not require) that you include in the end-user documentation provided with the redistribu-
tion and/or in the software itself an acknowledgement equivalent to the following: "This

product includes software developed by the JDOM Project (http://www.jdom.org/)." Alter-
natively, the acknowledgment may be graphical using the logos available at http://
www.jdom.org/images/logos. THIS SOFTWARE IS PROVIDED AS IS AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE JDOM
AUTHORS OR THE PROJECT CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAM-
AGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTER-
RUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLI-
GENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFT-
WARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This software
consists of voluntary contributions made by many individuals on behalf of the JDOM
Project and was originally created by Jason Hunter <jhunter_AT_jdom_DOT_org> and
Brett McLaughlin <brett_AT_jdom_DOT_org>. For more information on the JDOM
Project, please see <http://www.jdom.org/>

Progress Artix ESB for C++ v5.6 incorporates IBM-ICU v2.6 and IBM-ICU v2.6.1 technol-
ogies from IBM. Such technologies are subject to the following terms and conditions: Cop-
yright (c) 1995-2003 International Business Machines Corporation and others All rights
reserved. Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge, pub-
lish, distribute, and/or sell copies of the Software, and to permit persons to whom the Soft-
ware is furnished to do so, provided that the above copyright notice(s) and this permission
notice appear in all copies of the Software and that both the above copyright notice(s) and
this permission notice appear in supporting documentation. THE SOFTWARE IS PRO-
VIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD
PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR HOLDERS
INCLUDED IN THIS NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL
INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER
RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
Except as contained in this notice, the name of a copyright holder shall not be used in adver-
tising or otherwise to promote the sale, use or other dealings in this Software without prior
written authorization of the copyright holder. All trademarks and registered trademarks
mentioned herein are the property of their respective owners.

Progress Artix ESB for C++ v5.6 incorporates John Wilson MinML v1.7 technology from
John Wilson. Such technology is subject to the following terms and conditions: Copyright
(c) 1999, John Wilson (tug@wilson.co.uk). All rights reserved. Redistribution and use in
source and binary forms, with or without modification, are permitted provided that the fol-
lowing conditions are met: Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer. Redistributions in binary form
must reproduce the above copyright notice, this list of conditions and the following dis-
claimer in the documentation and/or other materials provided with the distribution. All
advertising materials mentioning features or use of this software must display the following
acknowledgement: This product includes software developed by John Wilson. The name of
John Wilson may not be used to endorse or promote products derived from this software
without specific prior written permission. THIS SOFTWARE IS PROVIDED BY JOHN
WILSON ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL JOHN WILSON BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARIS-
ING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

Progress Artix ESB for C++ v5.6 incorporates SourceForge - NET-SNMP v5.0.7 technol-
ogy from SourceForge and Networks Associates Technology, Inc. Such technology is sub-
ject to the following terms and conditions: Various copyrights apply to this package, listed
in various separate parts below. Please make sure that you read all the parts. Up until 2001,
the project was based at UC Davis, and the first part covers all code written during this time.
From 2001 onwards, the project has been based at SourceForge, and Networks Associates
Technology, Inc hold the copyright on behalf of the wider Net-SNMP community, covering
all derivative work done since then. An additional copyright section has been added as Part
3 below also under a BSD license for the work contributed by Cambridge Broadband Ltd. to
the project since 2001. An additional copyright section has been added as Part 4 below also
under a BSD license for the work contributed by Sun Microsystems, Inc. to the project since
2003. Code has been contributed to this project by many people over the years it has been in
development, and a full list of contributors can be found in the README file under the
THANKS section. ---- Part 1: CMU/UCD copyright notice: (BSD like) ----- Copyright
1989, 1991, 1992 by Carnegie Mellon University. Derivative Work - 1996, 1998-2000.
Copyright 1996, 1998-2000 The Regents of the University of California. All Rights
Reserved. Permission to use, copy, modify and distribute this software and its documenta-
tion for any purpose and without fee is hereby granted, provided that the above copyright
notice appears in all copies and that both that copyright notice and this permission notice
appear in supporting documentation, and that the name of CMU and The Regents of the
University of California not be used in advertising or publicity pertaining to distribution of
the software without specific written permission. CMU AND THE REGENTS OF THE
UNIVERSITY OF CALIFORNIA DISCLAIM ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTA-
BILITY AND FITNESS. IN NO EVENT SHALL CMU OR THE REGENTS OF THE
UNIVERSITY OF CALIFORNIA BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING
FROM THE LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR

IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. ----
Part 2: Networks Associates Technology, Inc copyright notice (BSD) ----- Copyright (c)
2001-2003, Networks Associates Technology, Inc. All rights reserved. Redistribution and
use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met: *Redistributions of source code must retain the above
copyright notice, this list of conditions and the following disclaimer.* Redistributions in
binary form must reproduce the above copyright notice, this list of conditions and the fol-
lowing disclaimer in the documentation and/or other materials provided with the distribu-
tion.* Neither the name of the Networks Associates Technology, Inc nor the names of its
contributors may be used to endorse or promote products derived from this software without
specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPY-
RIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIA-
BILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSI-
BILITY OF SUCH DAMAGE. ---- Part 3: Cambridge Broadband Ltd. copyright notice
(BSD) ----- Portions of this code are copyright (c) 2001-2003, Cambridge Broadband Ltd.
All rights reserved. Redistribution and use in source and binary forms, with or without mod-
ification, are permitted provided that the following conditions are met:*Redistributions of
source code must retain the above copyright notice, this list of conditions and the following
disclaimer.* Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.* The name of Cambridge Broadband Ltd. may not be used to
endorse or promote products derived from this software without specific prior written per-
mission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER ``AS IS''
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPY-
RIGHT HOLDER BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY,WHETHER IN CONTRACT, STRICT LIA-
BILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---- Part 4: Sun
Microsystems, Inc. copyright notice (BSD) -----Copyright © 2003 Sun Microsystems, Inc.,
4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved. Use is
subject to license terms below. This distribution may include materials developed by third
parties. Sun, Sun Microsystems, the Sun logo and Solaris are trademarks or registered trade-
marks of Sun Microsystems, Inc. in the U.S. and other countries. Redistribution and use in
source and binary forms, with or without modification, are permitted provided that the fol-

lowing conditions are met:* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.* Redistributions in binary form
must reproduce the above copyright notice, this list of conditions and the following dis-
claimer in the documentation and/or other materials provided with the distribution.* Neither
the name of the Sun Microsystems, Inc. nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written per-
mission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIA-
BILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSI-
BILITY OF SUCH DAMAGE. ---- Part 5: Sparta, Inc copyright notice (BSD) -----Copy-
right (c) 2003-2005, Sparta, Inc. All rights reserved. Redistribution and use in source and
binary forms, with or without modification, are permitted provided that the following condi-
tions are met:* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.* Redistributions in binary form must repro-
duce the above copyright notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.* Neither the name of
Sparta, Inc nor the names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission. THIS SOFTWARE IS
PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCI-
DENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUD-
ING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHER-
WISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---- Part 6: Cisco/BUPTNIC
copyright notice (BSD) ----- Copyright (c) 2004, Cisco, Inc and Information Network
Center of Beijing University of Posts and Telecommunications. All rights reserved. Redis-
tribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:* Redistributions of source code must retain
the above copyright notice, this list of conditions and the following disclaimer. * Redistribu-
tions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the dis-
tribution. * Neither the name of Cisco, Inc, Beijing University of Posts and Telecommunica-
tions, nor the names of their contributors may be used to endorse or promote products
derived from this software without specific prior written permission. THIS SOFTWARE IS

PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCI-
DENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUD-
ING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHER-
WISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---- Part 7: Fabasoft R&D Soft-
ware GmbH & Co KG copyright notice (BSD) ----- Copyright (c) Fabasoft R&D Software
GmbH & Co KG, 2003 oss@fabasoft.com Author: Bernhard Penz. Redistribution and use in
source and binary forms, with or without modification, are permitted provided that the fol-
lowing conditions are met:* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.* Redistributions in binary form
must reproduce the above copyright notice, this list of conditions and the following dis-
claimer in the documentation and/or other materials provided with the distribution. * The
name of Fabasoft R&D Software GmbH & Co KG or any of its subsidiaries, brand or prod-
uct names may not be used to endorse or promote products derived from this software with-
out specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE
COPYRIGHT HOLDER ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSE-
QUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABIL-
ITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Progress Artix ESB for C++ v5.6 incorporates OpenSSL/SSLeay v0.9.8i technology from
OpenSSL.org. Such Technology is subject to the following terms and conditions: LICENSE
ISSUES ==============
The OpenSSL toolkit stays under a dual license, i.e. both the conditions of the OpenSSL
License and the original SSLeay license apply to the toolkit. See below for the actual
license texts. Actually both licenses are BSD-style Open Source licenses. In case of any
license issues related to OpenSSL please contact openssl-core@openssl.org.
 OpenSSL License ---------------
/*
==
====

 Copyright (c) 1998-2008 The OpenSSL Project. All rights reserved. Redistribution and use
in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of condi-
tions and the following disclaimer.
 2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials pro-
vided with the distribution.
 3. All advertising materials mentioning features or use of this software must display the fol-
lowing acknowledgment: "This product includes software developed by the OpenSSL
Project for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to endorse or
promote products derived from this software without prior written permission. For written
permission, please contact openssl-core@openssl.org.
5. Products derived from this software may not be called "OpenSSL" nor may "OpenSSL"
appear in their names without prior written permission of the OpenSSL Project.
6. Redistributions of any form whatsoever must retain the following acknowledgment:
"This product includes software developed by the OpenSSL Project for use in the OpenSSL
Toolkit (http://www.openssl.org/)"
THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL
PROJECT OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHER-
WISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

==
====
This product includes cryptographic software written by Eric Young (eay@cryptsoft.com).
This product includes software written by Tim Hudson (tjh@cryptsoft.com).
 Original SSLeay License -----------------------
Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) All rights reserved.
This package is an SSL implementation written by Eric Young (eay@cryptsoft.com). The
implementation was written so as to conform with Netscapes SSL. This library is free for
commercial and non-commercial use as long as the following conditions are aheared to.
The following conditions apply to all code found in this distribution, be it the RC4, RSA,
lhash, DES, etc., code; not just the SSL code. The SSL documentation included with this
distribution is covered by the same copyright terms except that the holder is Tim Hudson
(tjh@cryptsoft.com). Copyright remains Eric Young's, and as such any Copyright notices in
the code are not to be removed. If this package is used in a product, Eric Young should be

given attribution as the author of the parts of the library used. This can be in the form of a
textual message at program startup or in documentation (online or textual) provided with
the package. Redistribution and use in source and binary forms, with or without modifica-
tion, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the copyright notice, this list of conditions and
the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.
3. All advertising materials mentioning features or use of this software must display the fol-
lowing acknowledgement: "This product includes cryptographic software written by Eric
Young (eay@cryptsoft.com)" The word 'cryptographic' can be left out if the rouines from
the library being used are not cryptographic related :-).
4. If you include any Windows specific code (or a derivative thereof) from the apps direc-
tory (application code) you must include an acknowledgement: "This product includes soft-
ware written by Tim Hudson (tjh@cryptsoft.com)"
THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ̀ `AS IS'' AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBU-
TORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE. The licence and distribution terms for any publically available ver-
sion or derivative of this code cannot be changed. i.e. this code cannot simply be copied and
put under another distribution licence [including the GNU Public Licence.]

Progress Artix ESB for C++ v5.6 incorporates Bouncycastle v1.3.3 cryptographic technol-
ogy from the Legion Of The Bouncy Castle (http://www.bouncycastle.org). Such Bouncy-
castle 1.3.3 cryptographic technology is subject to the following terms and conditions:
Copyright (c) 2000 - 2006 The Legion Of The Bouncy Castle (http://www.bouncycas-
tle.org). Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software with-
out restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions: The above copyright
notice and this permission notice shall be included in all copies or substantial portions of the
Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRAN-
TIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING

FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

Progress Artix ESB for C++ v5.6 incorporates PCRE 7.8 from PCRE for the purpose of
providing a set of functions that implement regular expression pattern matching using the
same syntax and semantics as Perl 5. Such technology is subject to the following terms and
conditions: PCRE LICENCE. PCRE is a library of functions to support regular expressions
whose syntax and semantics are as close as possible to those of the Perl 5 language. Release
7 of PCRE is distributed under the terms of the "BSD" licence, as specified below. The doc-
umentation for PCRE, supplied in the "doc" directory, is distributed under the same terms as
the software itself. The basic library functions are written in C and are freestanding. Also
included in the distribution is a set of C++ wrapper functions. THE BASIC LIBRARY
FUNCTIONS. Written by: Philip Hazel. Email local part: ph10. Email domain:
cam.ac.uk. University of Cambridge Computing Service, Cambridge, England. Copyright
(c) 1997-2008 University of Cambridge All rights reserved. THE C++ WRAPPER FUNC-
TIONS. Contributed by: Google Inc. Copyright (c) 2007-2008, Google Inc. All rights
reserved. THE "BSD" LICENCE. Redistribution and use in source and binary forms, with
or without modification, are permitted provided that the following conditions are met: *
Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer. * Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution. * Neither the name of the University
of Cambridge nor the name of Google Inc. nor the names of their contributors may be used
to endorse or promote products derived from this software without specific prior written
permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PRO-
CUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Progress Artix ESB for C++ v5.6 incorporates mcpp v2.6.4 from Kiyoshi Matsui. Such
technology is subject to the following terms and conditions: Copyright (c) 1998, 2002-2007
Kiyoshi Matsui kmatsui@t3.rim.or.jp All rights reserved. This software including the files
in this directory is provided under the following license. Redistribution and use in source
and binary forms, with or without modification, are permitted provided that the following
conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of condi-
tions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.
THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSE-
QUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABIL-
ITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Progress Artix ESB for C++ v5.6 contains IBM Licensed Materials Copyright IBM Corpo-
ration 2010 (IBM 32-bit Runtime Environment for AIX, Java Technology Edition v 1.6.0
SR9 FP2).

Updated: December 5, 2011

Contents

List of Figures 21

Preface 23

Chapter 1 Basic Plug-In Implementation 25
Overview of a Basic Artix Plug-In 26
Developing an Artix Plug-In 30

Development Steps 31
Implementing a BusPlugInFactory Class 32
Implementing a BusPlugIn Class 35
Creating Static Instances 39

Chapter 2 Request Interceptors 41
Overview of Request Interceptors 42

Client Request Interceptors 43
Server Request Interceptors 47

Sending and Receiving Header Contexts 55
SOAP Header Context Example 56
Sample Context Schema 58
Implementation of the Client Request Interceptor 60
Implementation of the Server Request Interceptor 70
Implementation of the Interceptor Factory 76

Accessing and Modifying Parameters 85
Reflection Example 86
Implementation of the Client Request Interceptor 89
Implementation of the Server Request Interceptor 94

Raising Exceptions 99

Chapter 3 WSDL Extension Elements 103
WSDL Structure 104
WSDL Parse Tree 106
How to Extend WSDL 110
Extension Elements for the Stub Plug-In 113
 17

CONTENTS
Implementing an Extension Element Base Class 114
Implementing the Extension Element Classes 119
Implementing the Extension Factory 125
Registering the Extension Factory 131

Chapter 4 Artix Transport Plug-Ins 133
The Artix Transport Layer 134

Architecture Overview 135
Artix Transport Classes 137

Transport Threading Models 140
Threading Introduction 141
MESSAGING_PORT_DRIVEN and MULTI_INSTANCE 143
MESSAGING_PORT_DRIVEN and MULTI_THREADED 145
MESSAGING_PORT_DRIVEN and SINGLE_THREADED 148
EXTERNALLY_DRIVEN 150

Dispatch Policies 152
Dispatch Policy Overview 153
RPC-Style Dispatch 155
Messaging-Style Dispatch 158

Accessing Contexts 161
Oneway Semantics 165
Stub Transport Example 168

Implementing the Client Transport 169
Implementing the Server Transport 176
Implementing the Transport Factory 183
Registering and Packaging the Transport 190

Chapter 5 Artix Logging Reference 193
Using Artix TRACE Macros 194

Chapter 6 WS-RM Persistence 199
Introduction to WS-RM Persistence 200
WS-RM Persistence API 204

Overview of the Persistence API 205
RMPersistentManager Class 206
RMEndpointPersistentStore Class 210
RMSequencePersistentStore Class 213

Persistence and Recovery Algorithms 216
18

CONTENTS
Persistence at a Source Endpoint 217
Recovery of a Source Endpoint 219
Persistence at a Destination Endpoint 221
Recovery of a Destination Endpoint 224

Implementing a WS-RM Persistence Plug-In 227

Index 229
 19

CONTENTS
20

List of Figures

Figure 1: Loading a Plug-In 27

Figure 2: Initializing a Plug-In 29

Figure 3: A Client Request Interceptor Chain 43

Figure 4: Server Request Interceptor Chain 47

Figure 5: Server Request Interceptors Using intercept_around_dispatch() 48

Figure 6: Overview of the Custom SOAP Header Demonstration 56

Figure 7: WSDL Parse Tree Inheritance Hierarchy 107

Figure 8: Factory Pattern for WSDL Extension Elements 111

Figure 9: Extension Element Classes 112

Figure 10: Artix Transport Architecture 135

Figure 11: Overview of the Artix Transport Classes 137

Figure 12: MESSAGING_PORT_DRIVEN and MULTI_INSTANCE Threading Model 143

Figure 13: MESSAGING_PORT_DRIVEN and MULTI_THREADED Threading Model 145

Figure 14: MESSAGING_PORT_DRIVEN and SINGLE_THREADED Threading Model 148

Figure 15: EXTERNALLY_DRIVEN Threading Model 150

Figure 16: Overview of RPC-Style Dispatch 155

Figure 17: Overview of Messaging-Style Dispatch 158

Figure 18: Overview of WS-ReliableMessaging with Persistence 200

Figure 19: Sample WS-RM Message Exchange Pattern 201

Figure 20: Overview of the WS-RM Persistence API 205

Figure 21: Overview of Persisting a Source Endpoint 217

Figure 22: Overview of Recovering a Source Endpoint 219

Figure 23: Overview of Persisting a Destination Endpoint 221

Figure 24: Overview of Recovering a Destination Endpoint 224
 21

LIST OF FIGURES
 22

Preface
What is Covered in This Book
Artix is built on top of Progress ART (Adaptive Runtime Technology), which
uses dynamic linking to load Artix plug-ins at runtime. This book explains how
to write your own plug-ins for the ART framework. Two major areas are
covered: implementing Artix interceptors, which enables you to access request
and reply messages as they pass through the stack; and implementing Artix
transports, which enables you to implement custom transport protocols.

Who Should Read This Book
This book is aimed at experienced Artix developers who need to customize the
behavior of their Artix applications using advanced APIs.

If you would like to know more about WSDL concepts, see the Introduction to
WSDL in Learning about Artix.

The Artix Documentation Library
For information on the organization of the Artix library, the document
conventions used, and where to find additional resources, see Using the Artix
Library.
 23

PREFACE
 24

CHAPTER 1

Basic Plug-In
Implementation
This chapter describes how to implement the core classes of an
Artix plug-in, IT_Bus::BusPlugInFactory and IT_Bus::BusPlugIn.

In this chapter This chapter discusses the following topics:

Overview of a Basic Artix Plug-In page 26

Developing an Artix Plug-In page 30
 25

CHAPTER 1 | Basic Plug-In Implementation
Overview of a Basic Artix Plug-In

Overview This section describes the basic features of an Artix plug-in:

• Artix plug-ins.

• Plug-in packaging.

• Configuration.

• Loading the plug-in.

• Initializing the plug-in.

• BusPlugInFactory object.

• BusPlugIn object.

Artix plug-ins An Artix plug-in is a well-defined component that can be independently loaded
into an application. Artix defines a platform-independent framework for loading
plug-ins dynamically, based on the dynamic linking capabilities of modern
operating systems (that is, using shared libraries or DLLs).

Plug-in packaging Plug-ins are packaged in a form that is compatible with the dynamic linking
capabilities of the particular platform on which they are deployed: a shared
library, a DLL, or a JAR file.

For example, version 5 of a tunnel plug-in implemented in C++ for the Visual
C++ 6.0 compiler on the Windows platform would be packaged as a .dll file
and a .dps file (ART-specific dependencies file), as follows:

it_tunnel5_vc60.dll
it_tunnel5_vc60.dps

Configuration The plug-ins that an application should load are specified by the orb_plugins
configuration variable, which contains a list of plug-in names.

In addition, for each plug-in that is to be loaded, you need to identify the
whereabouts of the plug-in. For C++ applications, you specify the root name of
the corresponding shared library using the
plugins:<plugin_name>:shlib_name configuration variable.
26

Overview of a Basic Artix Plug-In
For example, the following extract shows how to configure an application,
whose ORB name is plugin_example, to load a single plug-in,
sample_artix_interceptor.

Loading the plug-in Figure 1 show how a plug-in is loaded by an application as the application starts
up.

Artix domain configuration file
...
plugin_example {
 orb_plugins = ["sample_artix_interceptor"];

 plugins:sample_artix_interceptor:shlib_name =
"it_sample_artix_interceptor";

};

Figure 1: Loading a Plug-In

> app -ORBname plugin_example

Config
File

Plug-In

Load plug-in3

Launch1

Application

Read2
 27

CHAPTER 1 | Basic Plug-In Implementation
The steps to load the plug-in are as follows:

1. The user launches the application, app, specifying the ORB name as

plugin_example at the command line.

2. As the application starts up, it scans the Artix configuration file to

determine which plug-ins to load. Priority is given to the configuration

settings in the plugin_example configuration scope (that is, the ORB

name determines which configuration scopes to search).

3. The Artix core loads the plug-ins specified by the application’s

configuration.
28

Overview of a Basic Artix Plug-In
Initializing the plug-in Plug-ins are usually initialized when the main application code calls
IT_Bus::init(). Figure 2 shows the plug-in initialization sequence, which
proceeds as follows:

1. The main application code calls IT_Bus::init().

2. The Artix core iterates over all of the plug-ins in the orb_plugins list,

calling IT_Bus::BusPlugInFactory::create_bus_plugin() on each

one.

3. The BusPlugInFactory object creates an IT_Bus::BusPlugIn object,

which initializes the state of the plug-in for the current Bus instance.

4. After all of the BusPlugIn objects have been created, the Artix core calls

bus_init() on each BusPlugIn object.

BusPlugInFactory object A BusPlugInFactory object provides the basic hook for initializing an Artix
plug-in. A single static instance of the BusPlugInFactory object is created when
the plug-in is loaded into an application. See “Implementing a BusPlugInFactory
Class” on page 32 for more details.

BusPlugIn object A BusPlugIn object caches the state of the plug-in for the current Bus instance
(an application can create multiple Bus instances). Typically, the BusPlugIn
object is responsible for performing most of the plug-in initialization and
shutdown tasks.

Figure 2: Initializing a Plug-In

BusPlugIn

IT_Bus::init()1

Application

BusPlugInFactory

create_bus_plugin()2 bus_init()4

3

 29

CHAPTER 1 | Basic Plug-In Implementation
Developing an Artix Plug-In

Overview This section describes how to develop the basic classes for the
sample_artix_interceptor plug-in. The objects described here, of
IT_Bus::BusPlugInFactory and IT_Bus::BusPlugIn type, are the basic
objects needed by every Artix plug-in, enabling a plug-in to initialize and
register with the Artix core.

In this section This section contains the following subsections:

Development Steps page 31

Implementing a BusPlugInFactory Class page 32

Implementing a BusPlugIn Class page 35

Creating Static Instances page 39
30

Developing an Artix Plug-In
Development Steps

How to implement To implement an Artix plug-in, perform the following steps:

Step Action

1 Implement a class that inherits from the
IT_Bus::BusPlugInFactory base class. This class should:

• Implement create_bus_plugin() to return a new

IT_Bus::BusPlugIn object.

• Implement destroy_bus_plugin() to clean up the allocated

BusPlugIn object at shutdown time.

2 Implement a class that inherits from the IT_Bus::BusPlugIn base
class. This class should:

• Implement bus_init() to perform various actions at

initialization time.

• Implement bus_shutdown() to perform various actions at

shutdown time.

3 Create the following static instances:

• A static instance of the newly implemented

BusPlugInFactory class.

• Either of the following static instances:

♦ A static instance of the IT_Bus::BusORBPlugIn class

(for plug-ins packaged as a shared library), or

♦ A static instance of the IT_Bus::GlobalBusORBPlugIn

class (for plug-ins linked directly to the application).

The static instances are created when the library containing the
plug-in is loaded.
 31

CHAPTER 1 | Basic Plug-In Implementation
Implementing a BusPlugInFactory Class

Overview This section describes how to implement a BusPlugInFactory class for the
sample_artix_interceptor plug-in.

An BusPlugInFactory object is the most fundamental constituent of a plug-in
and is responsible for bootstrapping the rest of the plug-in functionality. A
typical BusPlugInFactory implementation does not do very much. Usually it
just creates a new BusPlugIn object in response to an invocation of the
create_bus_plugin() operation.

C++ BusPlugInFactory header Example 1 shows the C++ header for the SampleBusPlugInFactory class,
which is an example of an IT_Bus::BusPlugInFactory class.

Example 1: C++ Header for the BusPlugInFactory Class

// C++
#include <it_bus/bus.h>
#include <it_bus/exception.h>

1 #include <it_bus_pdk/bus_plugin_factory.h>

// In namespace, IT_SampleArtixInterceptor
2 class SampleBusPlugInFactory :

 public IT_Bus::BusPlugInFactory
{
 public:
 SampleBusPlugInFactory();
 virtual ~SampleBusPlugInFactory();

 virtual IT_Bus::BusPlugIn*
 create_bus_plugin(
 IT_Bus::Bus_ptr bus
) IT_THROW_DECL((IT_Bus::Exception));

 virtual void
 destroy_bus_plugin(
 IT_Bus::BusPlugIn* bus_plugin
);

 private:
 SampleBusPlugInFactory(const SampleBusPlugInFactory&);
32

Developing an Artix Plug-In
The preceding header file can be described as follows:

1. Include it_bus_pdk/bus_plugin_factory.h, which is the header file for

the IT_Bus::BusPlugInFactory class.

2. The plug-in factory class, SampleBusPlugInFactory, inherits from

IT_Bus::BusPlugInFactory, which is the base class for all plug-in

factories.

C++ SampleBusPlugInFactory
implementation

Example 2 shows the C++ implementation of the SampleBusPlugInFactory
class, which is an example of an IT_Bus::BusPlugInFactory class.

 SampleBusPlugInFactory&
 operator=(const SampleBusPlugInFactory&);
};

Example 1: C++ Header for the BusPlugInFactory Class

Example 2: C++ Implementation of the SampleBusPlugInFactory Class

// C++

// SampleBusPlugInFactory
//

SampleBusPlugInFactory::SampleBusPlugInFactory()
{
 // complete
}

SampleBusPlugInFactory::~SampleBusPlugInFactory()
{
 // complete
}

IT_Bus::BusPlugIn*
1 SampleBusPlugInFactory::create_bus_plugin(

 IT_Bus::Bus* bus
) IT_THROW_DECL((IT_Bus::Exception))
{
 return new SampleBusPlugIn(bus);
}

 33

CHAPTER 1 | Basic Plug-In Implementation
The preceding implementation can be described as follows:

1. The SampleBusPlugInFactory::create_bus_plugin() creates an

instance of an IT_Bus::BusPlugIn object.

The create_bus_plugin() operation is automatically called whenever a

new Bus instance is created (for example, whenever you call

IT_Bus::init()). Because you are allowed to create more than one Bus

instance, the plug-in must keep track of its state for each Bus—hence the

need for a separate BusPlugIn object.

2. The SampleBusPlugInFactory::destroy_bus_plugin() cleans up Bus

plug-in objects at shutdown time.

void
2 SampleBusPlugInFactory::destroy_bus_plugin(

 IT_Bus::BusPlugIn* bus_plugin
)
{
 delete bus_plugin;
}

Example 2: C++ Implementation of the SampleBusPlugInFactory Class
34

Developing an Artix Plug-In
Implementing a BusPlugIn Class

Overview This section describes how to implement a BusPlugIn class for the
sample_artix_interceptor plug-in.

BusPlugIn objects are typically responsible for the following tasks:

• Registering factory objects that extend Artix functionality.

• Coordinating the plug-in’s initialization and shutdown tasks.

• Caching the plug-in’s per-Bus data and object references.

C++ BusPlugIn header Example 3 shows the C++ header for the SampleBusPlugIn class, which is an
example of an IT_Bus::BusPlugIn class.

Example 3: C++ Header for the BusPlugIn Class

// C++
#include <it_bus/bus.h>
#include <it_bus/exception.h>

1 #include <it_bus_pdk/bus_plugin.h>

// In namespace IT_SampleArtixInterceptor

2 class SampleBusPlugIn :
 public IT_Bus::BusPlugIn,
 public IT_Bus::InterceptorFactory
{
 public:
 // IT_Bus::BusPlugIn
 //
 IT_EXPLICIT
 SampleBusPlugIn(
 IT_Bus::Bus_ptr bus
) IT_THROW_DECL((IT_Bus::Exception));

 virtual ~SampleBusPlugIn();

 virtual void
 bus_init() IT_THROW_DECL((IT_Bus::Exception));

 virtual void
 bus_shutdown() IT_THROW_DECL((IT_Bus::Exception));
 35

CHAPTER 1 | Basic Plug-In Implementation
The preceding C++ header can be described as follows:

1. Include it_bus_pdk/bus_plugin.h, which is the header file for the

IT_Bus::BusPlugIn class.

2. The plug-in class, SampleBusPlugIn, inherits from two base classes:

♦ IT_Bus::BusPlugIn—the base class for all plug-in classes.

♦ IT_Bus::InterceptorFactory—the base class for an interceptor

factory. You only need this class, if you are implementing Artix

interceptors (the code here is taken from an Artix interceptor

demonstration).

C++ BusPlugIn implementation Example 4 shows the C++ implementation of the SampleBusPlugIn class, which
is an example of an IT_Bus::BusPlugIn class.

 // IT_Bus::InterceptorFactory
 //
 ... // (not shown)

 private:
 SampleBusPlugIn(const SampleBusPlugIn&);

 SampleBusPlugIn&
 operator=(const SampleBusPlugIn&);

 IT_Bus::String m_name;
};

Example 3: C++ Header for the BusPlugIn Class

Example 4: C++ Implementation of the BusPlugIn Class

// C++

// In namespace IT_SampleArtixInterceptor

1 SampleBusPlugIn::SampleBusPlugIn(
 IT_Bus::Bus_ptr bus
) IT_THROW_DECL((IT_Bus::Exception))
 :

2 BusPlugIn(bus),
3 m_name("artix_interceptor")

{

36

Developing an Artix Plug-In
 assert(bus != 0);
}

SampleBusPlugIn::~SampleBusPlugIn()
{
 // complete
}

void
4 SampleBusPlugIn::bus_init(

) IT_THROW_DECL((IT_Bus::Exception))
{

5 IT_Bus::Bus_ptr bus = get_bus();

 InterceptorFactoryManager& factory_manager =
 bus->get_pdk_bus()->get_interceptor_factory_manager();

6 factory_manager.register_interceptor_factory(
 m_name,
 this
);
}

void
 7 SampleBusPlugIn::bus_shutdown(

) IT_THROW_DECL((IT_Bus::Exception))
{
 IT_Bus::Bus_ptr bus = get_bus();
 assert(bus != 0);

 InterceptorFactoryManager& factory_manager =
 bus->get_pdk_bus()->get_interceptor_factory_manager();

8 factory_manager.unregister_interceptor_factory(
 this
);
}

Example 4: C++ Implementation of the BusPlugIn Class
 37

CHAPTER 1 | Basic Plug-In Implementation
The preceding C++ implementation can be described as follows:

1. The BusPlugIn constructor typically does not do much, apart from

initializing a couple of member variables.

2. You must always pass the bus instance to the base constructor,

IT_Bus::BusPlugIn(), which caches the reference and makes it available

through the IT_Bus::BusPlugIn::get_bus() accessor.

3. The m_name member variable caches the name of the interceptor factory for

later use. The interceptor name is used in the following contexts:

♦ When registering the interceptor factory with the bus.

♦ To enable the interceptor, by adding the interceptor name to the

relevant lists of interceptors in the artix.cfg file.

4. Artix calls bus_init() after all of the plug-ins have been created by calls

to create_bus_plugin(). The bus_init() function is where most of the

plug-in initialization actually occurs. Typical tasks performed in

bus_init() include:

♦ Reading configuration information from the artix.cfg configuration

file.

♦ Registering special kinds of objects, such as interceptor factories,

transport factories, binding factories, and so on.

♦ Logging.

5. The BusPlugIn::get_bus() function accesses the Bus reference that was

cached by the BusPlugIn base class constructor.

6. Because this code is from an interceptor demonstration, the bus_init()

implementation registers an interceptor factory. The register function takes

the interceptor name, m_name, and the interceptor factory instance, this, as

arguments.

7. Artix calls bus_shutdown() as the Bus is being shut down. This is a the

place to clean up any resources used by the plug-in implementation.

Typically, you would also unregister objects that were registered in

bus_init().

8. Because this code is from an interceptor demonstration, unregister the

interceptor factory.
38

Developing an Artix Plug-In
Creating Static Instances

Overview The mechanism for bootstrapping a plug-in is based on declaring two static
objects, as follows:

• A static instance of the plug-in factory (a subtype of

IT_Bus::BusPlugInFactory).

• Either of the following static instances:

♦ BusORBPlugIn static instance.

♦ GlobalBusORBPlugIn static instance.

BusORBPlugIn static instance Create a static instance of IT_Bus::BusORBPlugIn type, if you intend to
package your plug-in as a shared library. The BusORBPlugIn constructor has the
following characteristics:

• The constructor registers the Bus plug-in factory with the Bus core.

• The constructor does not call create_bus_plugin() on the factory.

If a plug-in is packaged as a shared library, you must list the plug-in name in the
orb_plugins list in the Artix configuration file. For each of the plug-ins listed in
orb_plugins, Artix does the following:

• Artix attempts to load the relevant shared library (dynamic loading).

• Artix calls create_bus_plugin() on the factory.

GlobalBusORBPlugIn static
instance

Create a static instance of IT_Bus::GlobalBusORBPlugIn type, if you intend to
link the plug-in code directly into your application. The GlobalBusORBPlugIn
constructor has the following characteristics:

• The constructor registers the Bus plug-in factory with the Bus core.

• The constructor calls create_bus_plugin() on the factory.

A side effect of using GlobalBusORBPlugIn is that you can have only one
IT_Bus::BusPlugIn object for each application (instead of one
IT_Bus::BusPlugIn object for each Bus object).

If a plug-in is linked directly with your application, there is no need to add the
plug-in name to the orb_plugins list in the Artix configuration.
 39

CHAPTER 1 | Basic Plug-In Implementation
C++ static instances Static instances, of SampleBusPlugInFactory and IT_Bus::BusORBPlugIn
type, are created by the following lines of code.

The preceding code can be explained as follows:

1. Define the plug-in name to be sample_artix_interceptor. This is the

name that must be added to the orb_plugins list in the artix.cfg file in

order to load the plug-in.

2. Create a static SampleBusPlugInFactory instance,

und_sample_plugin_factory. This static instance is created

automatically, as soon as the sample_artix_interceptor plug-in is

loaded.

3. Create a static IT_Bus::BusORBPlugIn instance,

und_sample_interceptor_plugin, taking the plug-in name,

und_sample_plugin_name, and the plug-in factory,

und_sample_plugin_factory, as arguments.

This line is of critical importance because it bootstraps the entire plug-in

functionality. When the static BusORBPlugIn constructor is called, it

automatically registers the plug-in factory with the Bus.

Example 5: Creating Static Objects for a Plug-In

// C++
namespace IT_SampleArtixInterceptor
{

1 const char* const und_sample_plugin_name =
"sample_artix_interceptor";

2 SampleBusPlugInFactory und_sample_plugin_factory;

3 IT_Bus::BusORBPlugIn und_sample_interceptor_plugin(
 und_sample_plugin_name,
 und_sample_plugin_factory
);
}

40

CHAPTER 2

Request
Interceptors
Artix request interceptors enable you to intercept operation
requests and replies, where the request and reply data are
accessible in a high-level format. This chapter describes how to
access and modify header data and parameter data from within a
request interceptor.

In this chapter This chapter discusses the following topics:

Overview of Request Interceptors page 42

Sending and Receiving Header Contexts page 55

Accessing and Modifying Parameters page 82

Raising Exceptions page 96
 41

CHAPTER 2 | Request Interceptors
Overview of Request Interceptors

Overview This section provides a high-level overview of the architecture of request
interceptors in Artix.

In this section This section contains the following subsections:

Client Request Interceptors page 43

Server Request Interceptors page 47
42

Overview of Request Interceptors
Client Request Interceptors

Overview Client request interceptors are used to intercept requests (and replies) on the
client side, between the proxy object and the binding. Figure 3 shows the
architecture of a client request interceptor chain.

Interceptor chaining A client request interceptor chain is arranged as a singly-linked list: each
interceptor in the chain stores a pointer to the next and the chain is terminated by
a binding object.

Client request interceptor chains are created dynamically. The Artix core reads
the relevant configuration variables as it starts up and initializes a chain of
interceptors that link together in the specified order.

ClientRequestInterceptor class A client request interceptor is represented by an instance of
IT_Bus::ClientRequestInterceptor type. The ClientRequestInterceptor
class has the following members:

• m_next_interceptor member variable.

Stores the pointer to the next ClientRequestInterceptor in the chain.

The m_next_interceptor variable is automatically initialized by Artix

when it constructs the chain.

Figure 3: A Client Request Interceptor Chain

intercept_invoke()

Binding

Request-level
interceptors

Stub
Code

Proxy

invoke()
 43

CHAPTER 2 | Request Interceptors
• intercept_invoke() member function.

This is the main interceptor function. You implement this function to

implement new features with interceptors.

intercept_invoke() function Example 6 shows the basic outline of how to implement the
intercept_invoke() function.

The typical implementation of intercept_invoke() has three main parts:

• Pre-invoke processing—put any code here that you would want to execute

before the request is dispatched to the remote server. At this point, the

input parts are already initialized. You can examine or replace input parts.

• Call the next interceptor in the chain—you must always call

intercept_invoke() on the next interceptor, as shown here.

• Post-invoke processing—put any code here that you would want to execute

after the reply is received from the remote server. At this point, both the

input and output parts are initialized. You can examine or modify the

output parts. Replacing parts has no effect.

Example 6: Outline of intercept_invoke() Function

// C++
using namespace IT_Bus;

void
CustomCltReqInterceptor::intercept_invoke(ClientOperation& data)
{
 // PRE-INVOKE processing
 // ...

 m_next_interceptor->intercept_invoke(data);

 // POST-INVOKE processing
 // ...
}

44

Overview of Request Interceptors
ClientOperation class The data object that passes along the client request interceptor chain is an
instance of the IT_Bus::ClientOperation class. The ClientOperation class
encapsulates all of the request and reply data.

The most important member functions of the ClientOperation class are as
follows:

• get_name()

Returns an IT_Bus::String that holds the name of the operation that is

being invoked.

• get_input_message()

Returns an IT_Bus::WritableMessage object that contains the input parts.

The simplest way to obtain the input parts list is to call

get_input_message().get_parts().

• get_output_message()

Returns an IT_Bus::ReadableMessage object that contains the output

parts. The simplest way to obtain the output parts list is to call

get_output_message().get_parts().

• request_contexts()

Returns an IT_Bus::ContextContainer object that provides access to

request contexts. You can use this object to write or read headers in the

request message.

• reply_contexts()

Returns an IT_Bus::ContextContainer object that provides access to

reply contexts. You can use this object to write or read headers in the reply

message.

Configuring a client request
interceptor

To configure Artix to use a client request interceptor, you must update the client
request interceptor list in the Artix configuration file. The client request
interceptor list consists of a list of alternative chain configurations, as follows:

binding:artix:client_request_interceptor_list = ["Chain01",
"Chain02", "Chain03", ...];

The Artix core first attempts to construct an interceptor chain according to
pattern in Chain01. If this attempt fails (for example, if one of the interceptors in
the chain is unavailable) Artix attempts to use the next chain configuration,
Chain02, instead.
 45

CHAPTER 2 | Request Interceptors
Each chain configuration is specified in the following format:

"InterceptorA+InterceptorB+..."

Where InterceptorA is the name of interceptor A and InterceptorB is the
name of interceptor B and so on. An interceptor name is the name under which
the interceptor factory is registered with the
IT_Bus::InterceptorFactoryManager.

Configuring an interceptor in an
Artix router

If an interceptor is meant to be used within an Artix router process, you might
need to configure the router to ensure the interceptor is not bypassed.
Specifically, if you configure a route that maps messages between two bindings
of the same type (for example, CORBA-to-CORBA), the router bypasses
interceptors by default. This is often a useful optimization, but is unsuitable for
some applications.

To force all routed messages to pass through the interceptors in the router, you
should add the following line to the router’s configuration:

plugins:routing:use_pass_through = "false";
46

Overview of Request Interceptors
Server Request Interceptors

Overview Server request interceptors are used to intercept requests (and replies) on the
server side, between the binding and the servant object. Figure 4 shows the
architecture of a server request interceptor chain.

Interceptor chaining A server request interceptor chain is arranged as a doubly-linked list: each
interceptor in the chain stores pointers to the next one and the previous one.

Server request interceptor chains are created dynamically. The Artix core reads
the relevant configuration variables as it starts up and initializes a chain of
interceptors that link together in the specified order.

Figure 4: Server Request Interceptor Chain

Binding

Request-level
interceptors

Servant

operation()

intercept_pre_dispatch()

intercept_post_dispatch()
 47

CHAPTER 2 | Request Interceptors
Alternative interceptor model Server request interceptors support an alternative interceptor model, which
requires you to implement a single interceptor function,
intercept_around_dispatch(), as shown in Figure 5.

The intercept_around_dispatch() is called at the very start of the dispatch
process (before intercept_pre_dispatch()) and returns at the very end of the
dispatch process (after interceptor_post_dispatch()).

ServerRequestInterceptor class A server request interceptor is represented by an instance of
IT_Bus::ServerRequestInterceptor type. The ServerRequestInterceptor
class has the following members:

• m_next_interceptor member variable.

Stores the pointer to the next ServerRequestInterceptor in the chain.

The m_next_interceptor variable is automatically initialized by Artix.

• m_prev_interceptor member variable.

Stores the pointer to the preceding ServerRequestInterceptor in the

chain. The m_prev_interceptor variable is automatically initialized by

Artix.

• intercept_around_dispatch() member function.

Figure 5: Server Request Interceptors Using intercept_around_dispatch()

intercept_around_dispatch()

Binding

Request-level
interceptors

Servant

operation()
48

Overview of Request Interceptors
An intercept point that is called at the very start of the dispatch process

(before the input parts have been unmarshalled); and returns at the very

end of the dispatch process (after the output parts have been marshalled).

If you don’t want to implement this function, you can inherit the default

implementation from IT_Bus::ServerRequestInterceptor, which

simply calls the next interceptor in the chain.

• intercept_pre_dispatch() member function.

Called after the input parts have been unmarshalled, but before dispatching

to the servant.

If you don’t want to implement this function, you can inherit the default

implementation from IT_Bus::ServerRequestInterceptor, which

simply calls the next interceptor in the chain.

• intercept_post_dispatch() member function.

Called after dispatching to the servant, but before marshalling the output

parts.

If you don’t want to implement this function, you can inherit the default

implementation from IT_Bus::ServerRequestInterceptor, which

simply calls the next interceptor in the chain.

Combining the interceptor models If necessary, you can combine the two interceptor models by implementing all of
the intercept functions from the ServerRequestInterceptor class. In this case,
the sequence of interceptor calls is as follows:

1. Artix calls intercept_around_dispatch() on the first interceptor, which

calls intercept_around_dispatch() on the second interceptor, and so on

to the end of the chain.

2. Inside the call to intercept_around_dispatch(), Artix calls the first

interceptor’s intercept_pre_dispatch() function, which calls the

second interceptor’s intercept_pre_dispatch() function, and so on to

the end of the chain. The last interceptor returns, then the next-to-last

interceptor, and then all the way back to the first interceptor.

3. Artix calls the application code.

4. Artix calls the last interceptor’s intercept_post_dispatch() function,

which calls the next-to-last interceptor's intercept_post_dispatch()

function and so on. The first interceptor returns all the way back to the last.
 49

CHAPTER 2 | Request Interceptors
5. The last interceptor’s call to intercept_around_dispatch() returns, all

the way back to the first interceptor.

Sample call sequence To illustrate the sequence of calls that results when the intercept functions are all
used together, consider the chain of three interceptors, A, B, and C, where A is the
first interceptor in the chain, and C is the last. Example 7 shows the sequence of
events, where >> denotes entering a function and << denotes leaving a function.

intercept_around_dispatch()
function

Example 8 shows the basic outline of how to implement the
intercept_around_dispatch() function.

Example 7: Sample Server Interceptor Call Sequence

A >> interceptor_around_dispatch()
 B >> interceptor_around_dispatch()
 C >> interceptor_around_dispatch()
 A >> interceptor_pre_dispatch()
 B >> interceptor_pre_dispatch()
 C >> interceptor_pre_dispatch()
 C << interceptor_pre_dispatch()
 B << interceptor_pre_dispatch()
 A << interceptor_pre_dispatch()
 Application >> invoke()
 Application << invoke()
 C >> interceptor_post_dispatch()
 B >> interceptor_post_dispatch()
 A >> interceptor_post_dispatch()
 A << interceptor_post_dispatch()
 B << interceptor_post_dispatch()
 C << interceptor_post_dispatch()
 C << interceptor_around_dispatch()
 B << interceptor_around_dispatch()
A << interceptor_around_dispatch()

Example 8: Outline of intercept_around_dispatch() Function

// C++
using namespace IT_Bus;

void
CustomSrvrReqInterceptor::intercept_around_dispatch(
 ServerOperation& data
)

50

Overview of Request Interceptors
The typical implementation of intercept_around_dispatch() has three main
parts:

• Pre-unmarshal processing—put any code here that you would want to

execute before the request is dispatched to the servant object. At this point,

the input parts are not yet unmarshalled. Therefore, you cannot access the

input parts.

• Call the next interceptor in the chain—you must always call

intercept_around_dispatch() on the next interceptor, as shown here.

• Post-marshal processing—put any code here that you would want to

execute after the servant code has executed. At this point, both the input

and output parts are available. You can examine or modify the output parts.

Replacing parts has no effect.

intercept_pre_dispatch() function Example 9 shows the basic outline of how to implement the
intercept_pre_dispatch() function.

{
 // PRE-UNMARSHAL processing
 // ...

 if (m_next_interceptor != 0) {
 m_next_interceptor->intercept_around_dispatch(data);
 }

 // POST-MARSHAL processing
 // ...
}

Example 8: Outline of intercept_around_dispatch() Function

Example 9: Outline of intercept_pre_dispatch() Function

// C++
using namespace IT_Bus;

void
CustomSrvrReqInterceptor::intercept_pre_dispatch(
 ServerOperation& data
)
{
 // PRE-DISPATCH processing
 // ...
 51

CHAPTER 2 | Request Interceptors
The typical implementation of intercept_pre_dispatch() has two main parts:

• Pre-dispatch processing—put any code here that you would want to

execute before the request is dispatched to the servant object. At this point,

the input parts are unmarshalled. You can access or modify (but not

replace) the input parts.

• Call the next interceptor in the chain—you must always call

intercept_pre_dispatch() on the next interceptor, as shown here.

intercept_post_dispatch()
function

Example 10 shows the basic outline of how to implement the
intercept_post_dispatch() function.

The typical implementation of intercept_post_dispatch() has two main
parts:

• Post-dispatch processing—put any code here that you would want to

execute after the request is dispatched to the servant object. At this point,

the output parts are initialized. You can access or replace the output parts.

 if (m_next_interceptor != 0) {
 m_next_interceptor->intercept_pre_dispatch(data);
 }
}

Example 9: Outline of intercept_pre_dispatch() Function

Example 10: Outline of intercept_post_dispatch() Function

// C++
using namespace IT_Bus;

void
CustomSrvrReqInterceptor::intercept_post_dispatch(
 ServerOperation& data
)
{
 // POST-DISPATCH processing
 // ...

 if (m_prev_interceptor != 0) {
 m_prev_interceptor->intercept_post_dispatch(data);
 }
}

52

Overview of Request Interceptors
• Call the previous interceptor in the chain—you must always call

intercept_post_dispatch() on the previous interceptor, as shown here.

ServerOperation class The data object that passes along the server request interceptor chain is an
instance of the IT_Bus::ServerOperation class. The ServerOperation class
encapsulates the request and reply data.

The most important member functions of the ServerOperation class are as
follows:

• get_name()

Returns an IT_Bus::String that holds the name of the operation that is

being dispatched.

• get_input_message()

Returns an IT_Bus::ReadableMessage object that contains the input parts.

The simplest way to obtain the input parts list is to call

get_input_message().get_parts().

• get_output_message()

Returns an IT_Bus::WritableMessage object that contains the output

parts. The simplest way to obtain the output parts list is to call

get_output_message().get_parts().

• request_contexts()

Returns an IT_Bus::ContextContainer object that provides access to

request contexts. You can use this object to write or read headers in the

request message.

• reply_contexts()

Returns an IT_Bus::ContextContainer object that provides access to

reply contexts. You can use this object to write or read headers in the reply

message.

Configuring a server request
interceptor

To configure Artix to use a server request interceptor, you must update the
server request interceptor list in the Artix configuration file. The server request
interceptor list consists of a list of alternative chain configurations, as follows:

binding:artix:server_request_interceptor_list = ["Chain01",
"Chain02", "Chain03", ...];
 53

CHAPTER 2 | Request Interceptors
The Artix core first attempts to construct an interceptor chain according to
pattern in Chain01. If this attempt fails (for example, if one of the interceptors in
the chain is unavailable) Artix attempts to use the next chain configuration,
Chain02, instead.

Each chain configuration is specified in the following format:

"InterceptorA+InterceptorB+..."

Where InterceptorA is the name of interceptor A and InterceptorB is the
name of interceptor B and so on. An interceptor name is the name under which
the interceptor factory is registered with the
IT_Bus::InterceptorFactoryManager.

Configuring an interceptor in an
Artix router

If an interceptor is meant to be used within an Artix router process, you might
need to configure the router to ensure the interceptor is not bypassed.
Specifically, if you configure a route that maps messages between two bindings
of the same type (for example, CORBA-to-CORBA), the router bypasses
interceptors by default. This is often a useful optimization, but is unsuitable for
some applications.

To force all routed messages to pass through the interceptors in the router, you
should add the following line to the router’s configuration:

plugins:routing:use_pass_through = "false";
54

Sending and Receiving Header Contexts
Sending and Receiving Header Contexts

Overview You can use Artix interceptors to send and receive header contexts to transmit
with operation request and replies. While it is also possible to program header
contexts at the application level, there are significant advantages to writing this
code at the interceptor level. Header contexts are typically used to send security
credentials and other out-of-band data that are not specific to any port type. By
putting this common code into an interceptor, you can avoid cluttering your
servant code and client code.

In this section This section contains the following subsections:

SOAP Header Context Example page 56

Sample Context Schema page 58

Implementation of the Client Request Interceptor page 60

Implementation of the Server Request Interceptor page 67

Implementation of the Interceptor Factory page 73
 55

CHAPTER 2 | Request Interceptors
SOAP Header Context Example

Overview The examples in this section are based on the shared library demonstration,
which is located in the following Artix directory:

ArtixInstallDir/samples/advanced/shared_library

Figure 6 shows an overview of the shared library demonstration, showing how
the client piggybacks context data along with an invocation request that is
invoked on the sayHi operation.

Figure 6: Overview of the Custom SOAP Header Demonstration

WSDL

WSDL File

Artix Server

sayHi("...")

Artix Client

ServerImpl

1

2

3

4

Context

Context
Context

XSD

XSD File

HelloWorld
Contract

SOAPHeaderInfo
Schema

HelloWorld
Contract

Register context

Initialize context data

Register context

Application

Plug-In Plug-In

5

XSD

XSD File

WSDL

WSDL File

SOAPHeaderInfo
Schema

Application
56

Sending and Receiving Header Contexts
Transmission of context data As illustrated in Figure 6, SOAP context data is transmitted as follows:

1. The client registers the context type, SOAPHeaderInfo, with the Bus.

2. The client interceptor initializes the context data instance.

3. The client invokes the sayHi() operation on the server.

4. As the server starts up, it registers the SOAPHeaderInfo context type with

the Bus.

5. When the sayHi() operation request arrives on the server side, the

sayHi() operation implementation extracts the context data from the

request.

HelloWorld WSDL contract The HelloWorld WSDL contract defines the contract implemented by the server
in this demonstration. In particular, the HelloWorld contract defines the Greeter
port type containing the sayHi WSDL operation.

SOAPHeaderInfo schema The SOAPHeaderInfo schema (in the
samples/advanced/shared_library/etc/contextTypes.xsd file) defines the
custom data type used as the context data type. This schema is specific to the
shared library demonstration.
 57

CHAPTER 2 | Request Interceptors
Sample Context Schema

Overview This subsection describes how to define an XML schema for a context type. In
this example, the SOAPHeaderInfo type is declared in an XML schema. The
SOAPHeaderInfo type is then used by the shared library demonstration to send
custom data in a SOAP header.

SOAPHeaderInfo XML
declaration

Example 11 shows the schema for the SOAPHeaderInfo type, which is defined
specifically for the shared library demonstration to carry some sample data in a
SOAP header. Note that Example 11 is a pure schema declaration, not a WSDL
declaration.

The SOAPHeaderInfo complex type defines two member elements, as follows:

• originator—holds an arbitrary client identifier.

• message—holds an arbitrary example message.

Target namespace You can use any target namespace for a context schema (as long as it does not
clash with an existing namespace). This demonstration uses the following target
namespace:

Example 11: XML Schema for the SOAPHeaderInfo Context Type

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://schemas.iona.com/types/context"
 elementFormDefault="qualified"

attributeFormDefault="unqualified">
 <xs:complexType name="SOAPHeaderInfo">
 <xs:annotation>
 <xs:documentation>
 Content to be added to a SOAP header
 </xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element name="originator" type="xs:string"/>
 <xs:element name="message" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
</xs:schema>
58

Sending and Receiving Header Contexts
http://schemas.iona.com/types/context

Compiling the SOAPHeaderInfo
schema

To compile the SOAPHeaderInfo schema, invoke the wsdltocpp compiler utility
at the command line, as follows:

wsdltocpp -n custom_interceptor contextTypes.xsd

Where contextTypes.xsd is a file containing the XML schema from
Example 11. This command generates the following C++ stub files:

contextTypes_xsdTypes.h
contextTypes_xsdTypesFactory.h
contextTypes_xsdTypes.cxx
contextTypes_xsdTypesFactory.cxx

SOAPHeaderInfo C++ mapping Example 12 shows how the schema from Example 11 on page 58 maps to C++,
to give the custom_interceptor::SOAPHeaderInfo C++ class.

Example 12: C++ Mapping of the SOAPHeaderInfo Context Type

// C++
...
namespace custom_interceptor
{
 ...
 class SOAPHeaderInfo : public IT_Bus::SequenceComplexType
 {
 public:
 static const IT_Bus::QName type_name;

 SOAPHeaderInfo();
 SOAPHeaderInfo(const SOAPHeaderInfo & copy);
 virtual ~SOAPHeaderInfo();
 ...
 IT_Bus::String & getoriginator();
 const IT_Bus::String & getoriginator() const;
 void setoriginator(const IT_Bus::String & val);

 IT_Bus::String & getmessage();
 const IT_Bus::String & getmessage() const;
 void setmessage(const IT_Bus::String & val);
 ...
 };
 ...
}

 59

CHAPTER 2 | Request Interceptors
Implementation of the Client Request Interceptor

Overview A client request interceptor performs processing on the client operation object
which passes through the client interceptor chain. You implement the
intercept_invoke() operation (called by the preceding interceptor in the
chain) to perform request processing.

The ClientRequestInterceptor
base class

Example 13 shows the declarations of the IT_Bus::Interceptor class and the
IT_Bus::ClientRequestInterceptor class, which is the base class for a client
request interceptor. The member functions that must be implemented by derived
classes are highlighted in bold font.

Example 13: The IT_Bus::ClientRequestInterceptor Class

// C++
// In file: it_bus_pdk/interceptor.h
...
namespace IT_Bus {
 enum InterceptorType
 {
 CPP_INTERCEPTOR,
 JAVA_INTERCEPTOR
 };

1 class IT_BUS_API Interceptor
 {
 public:
 Interceptor();
 Interceptor(InterceptorFactory* factory);
 virtual ~Interceptor();

 virtual InterceptorFactory* get_factory();
 virtual InterceptorType get_type();

 private:
 InterceptorFactory* m_factory;
 };
60

Sending and Receiving Header Contexts
The preceding code can be explained as follows:

1. The IT_Bus::Interceptor class is the common base class for all

interceptor types.

2. The IT_Bus::ClientRequestInterceptor class, which inherits from

IT_Bus::Interceptor, is the base class for client request interceptors.

C++ client request interceptor
header

Example 14 shows the declaration of the
IT_SampleArtixInterceptor::ClientInterceptor class, which is derived
from the IT_Bus::ClientRequestInterceptor class.

2 class IT_BUS_API ClientRequestInterceptor
 : public Interceptor
 {
 public:
 ClientRequestInterceptor();
 ClientRequestInterceptor(InterceptorFactory* factory);
 virtual ~ClientRequestInterceptor();

 virtual void
 chain_assembled(ClientRequestInterceptorChain& chain);

 virtual void
 chain_finalized(
 ClientRequestInterceptor* next_interceptor
);

 virtual void
 intercept_invoke(ClientOperation& data);

 protected:
 ClientRequestInterceptor* m_next_interceptor;
 };
};

Example 13: The IT_Bus::ClientRequestInterceptor Class

Example 14: Sample Client Request Interceptor Header File

// C++
// In file: samples/advanced/shared_library/
// cxx/plugin/client_interceptor.h

#include <it_bus/qname.h>
#include <it_bus/bus.h>
 61

CHAPTER 2 | Request Interceptors
The preceding code can be explained as follows:

1. The ClientInterceptor implementation class inherits from the

IT_Bus::ClientRequestInterceptor base class.

2. The m_bus member variable stores a reference to the Bus object.

C++ client request interceptor
implementation

Example 15 shows the implementation of the
IT_SampleArtixInterceptor::ClientInterceptor class.

#include <it_bus_pdk/interceptor.h>
#include <it_cal/cal.h>

namespace IT_SampleArtixInterceptor
{

1 class ClientInterceptor :
 public virtual IT_Bus::ClientRequestInterceptor
 {
 public:
 ClientInterceptor(
 IT_Bus::Bus_ptr bus
);

 virtual ~ClientInterceptor();

 virtual void
 intercept_invoke(IT_Bus::ClientOperation& data);

 private:
 ClientInterceptor&
 operator = (const ClientInterceptor& rhs);

 ClientInterceptor(const ClientInterceptor& rhs);

2 IT_Bus::Bus_ptr m_bus;
 };
};

Example 14: Sample Client Request Interceptor Header File

Example 15: Sample Client Request Interceptor Implementation

// C++
// In file: samples/advanced/shared_library/
// cxx/plugin/client_interceptor.cxx
62

Sending and Receiving Header Contexts
// Include header files related to the soap context
#include <it_bus/operation.h>
#include <it_bus_pdk/context.h>

// Include header files representing the soap header content
#include "../types/contextTypes_xsdTypes.h"
#include "../types/contextTypes_xsdTypesFactory.h"

#include "client_interceptor.h"

IT_USING_NAMESPACE_STD
using namespace custom_interceptor;

using namespace IT_Bus;
using namespace IT_WSDL;
using namespace IT_SampleArtixInterceptor;

1 ClientInterceptor::ClientInterceptor(
 Bus_ptr bus
)
 : m_bus(bus)
{
}

ClientInterceptor::~ClientInterceptor() { }

void
2 ClientInterceptor::intercept_invoke(ClientOperation& data)

{
 cout << "\tClient interceptor intercept_invoke method"
 << "\tOperation called: " << data.get_name()
 << endl;

3 // -----> PRE-INVOKE processing comes here <-----
 // For the sayHi operation, change the originator and message

4 if (data.get_name() == "sayHi")
 {
 // Obtain a pointer to the bus
 Bus_var bus = Bus::create_reference();

 // Use the bus to obtain a pointer to the ContextRegistry
 // created by the soap plugin
 ContextRegistry* context_registry =
 bus->get_context_registry();

Example 15: Sample Client Request Interceptor Implementation
 63

CHAPTER 2 | Request Interceptors
 // Create QName objects needed to define a context
 const QName principal_ctx_name(
 "",
 "SOAPHeaderInfo",
 ""
);

 // Obtain a pointer to the RequestContextContainer
5 ContextContainer* context_container =

 data.request_contexts();

 // Obtain a reference to the context
6 AnyType* info = context_container->get_context(

 principal_ctx_name,
 true
);

 if (0 == info)
 {
 throw Exception("Could not access Context");
 }

 // Cast the context into a SOAPHeaderInfo object
7 SOAPHeaderInfo* header_info =

 dynamic_cast<SOAPHeaderInfo*> (info);

 if (0 == header_info)
 {
 throw Exception("Could not cast Context");
 }

 // Create the content to be added to the header
 const String originator("Artix Engineering");
 const String message("We are Great!");

 // Add the header content
 cout << "\tSetting SOAP header with originator: "
 << originator << " and message: " << message << endl;

8 header_info->setoriginator(originator);
 header_info->setmessage(message);
 }

 if (ClientRequestInterceptor::m_next_interceptor != 0)
 {

Example 15: Sample Client Request Interceptor Implementation
64

Sending and Receiving Header Contexts
The preceding code can be explained as follows:

1. The ClientInterceptor constructor is called by the interceptor factory at

the time the interceptor chain is constructed (see “Implementation of the

Interceptor Factory” on page 73). Here you should initialize a local

reference to the Bus, m_bus, and the interceptor name, m_name.

2. The intercept_invoke() function is the key function in the client request

interceptor. This is the point at which you can intercept and affect an

operation invocation.

3. At this point (prior to invoking intercept_invoke() on the next

interceptor), you can add in any processing that needs to complete before

invoking the WSDL operation.

4. The interceptor modifies the context only for the sayHi operation from the

Greeter port type.

5. The interceptor obtains a reference to the context container for outgoing

requests.

6. Get a pointer to the context identified by the SOAPHeaderInfo QName. If

an instance of this context does not already exist, the get_context()

function creates a new one (indicated by setting the second parameter to

true).

7. Cast the IT_Bus::AnyType* variable from the previous step, info, to the

SOAPHeaderInfo* variable, header_info.

8. Set the originator and message attributes on the SOAPHeaderInfo instance,

header_info.

9. Invoke intercept_invoke() on the next interceptor in the chain. This step

is mandatory for almost all interceptors (a possible exception being a

security interceptor that decides to prevent an invocation from proceeding).

9
ClientRequestInterceptor::m_next_interceptor->intercept_invok
e(data);

 }
10 // -----> POST-INVOKE processing comes here <-----

}

Example 15: Sample Client Request Interceptor Implementation
 65

CHAPTER 2 | Request Interceptors
10. At this point (after invoking intercept_invoke() on the next interceptor),

you can add in any processing that needs to occur after invoking the

WSDL operation.
66

Sending and Receiving Header Contexts
Implementation of the Server Request Interceptor

Overview A server request interceptor performs processing on the server operation object
which passes through the server interceptor chain. You must implement the
following functions to intercept incoming requests:

• intercept_pre_dispatch()

• intercept_post_dispatch()

The ServerRequestInterceptor
base class

Example 16 shows the declarations of the IT_Bus::Interceptor class and the
IT_Bus::ServerRequestInterceptor class, which is the base class for a server
request interceptor. The member functions that must be implemented by derived
classes are highlighted in bold font.

Example 16: The IT_Bus::ServerRequestInterceptor Class

// C++
// In file: it_bus_pdk/interceptor.h
...
namespace IT_Bus {
 enum InterceptorType
 {
 CPP_INTERCEPTOR,
 JAVA_INTERCEPTOR
 };

1 class IT_BUS_API Interceptor
 {
 public:
 Interceptor();
 Interceptor(InterceptorFactory* factory);
 virtual ~Interceptor();

 virtual InterceptorFactory* get_factory();
 virtual InterceptorType get_type();

 private:
 InterceptorFactory* m_factory;
 };

2 class IT_BUS_API ServerRequestInterceptor
 : public Interceptor
 67

CHAPTER 2 | Request Interceptors
The preceding code can be explained as follows:

1. The IT_Bus::Interceptor class is the common base class for all

interceptor types.

2. The IT_Bus::ServerRequestInterceptor class, which inherits from

IT_Bus::Interceptor, is the base class for server request interceptors.

3. The server request interceptor stores references both to the next interceptor

and the previous interceptor in the chain. A server request interceptor chain

is thus a doubly linked list.

 {
 public:
 ServerRequestInterceptor();
 ServerRequestInterceptor(InterceptorFactory* factory);
 virtual ~ServerRequestInterceptor();

 virtual void
 chain_assembled(ServerRequestInterceptorChain& chain);

 virtual void
 chain_finalized(
 ServerRequestInterceptor* next_interceptor
);

 virtual void
 intercept_pre_dispatch(ServerOperation& data);

 virtual void
 intercept_post_dispatch(ServerOperation& data);

 virtual void
 intercept_around_dispatch(ServerOperation& data);

 protected:
3 ServerRequestInterceptor* m_next_interceptor;

 ServerRequestInterceptor* m_prev_interceptor;
 };
};

Example 16: The IT_Bus::ServerRequestInterceptor Class
68

Sending and Receiving Header Contexts
C++ server request interceptor
header

Example 17 shows the declaration of the
IT_SampleArtixInterceptor::ServerInterceptor class, which is derived
from the IT_Bus::ServerRequestInterceptor class.

Example 17: Sample Server Request Interceptor Header File

// C++
// In file: samples/advanced/shared_library/
// cxx/plugin/server_interceptor.h

#include <it_bus/qname.h>
#include <it_bus/bus.h>
#include <it_bus_pdk/interceptor.h>

namespace IT_SampleArtixInterceptor
{

1 class ServerInterceptor :
 public virtual IT_Bus::ServerRequestInterceptor
 {
 public:
 ServerInterceptor(
 IT_Bus::Bus_ptr bus
);

 virtual ~ServerInterceptor();

 virtual void
 intercept_pre_dispatch(IT_Bus::ServerOperation& data);

 virtual void
 intercept_post_dispatch(IT_Bus::ServerOperation& data);

 private:
 ServerInterceptor&
 operator = (const ServerInterceptor& rhs);

 ServerInterceptor(const ServerInterceptor& rhs);

2 IT_Bus::Bus_ptr m_bus;
 };
};
 69

CHAPTER 2 | Request Interceptors
The preceding code can be explained as follows:

1. The ServerInterceptor implementation class inherits from the

IT_Bus::ServerRequestInterceptor base class.

2. The m_bus member variable stores a reference to the Bus object.

C++ server request interceptor
implementation

Example 18 shows the implementation of the
IT_SampleArtixInterceptor::ServerInterceptor class.

Example 18: Sample Server Request Interceptor Implementation

// C++
// In file: samples/advanced/custom_interceptor/
//

cxx/plugin/server_interceptor.cxx
#include "server_interceptor.h"

using namespace IT_Bus;
using namespace IT_WSDL;
using namespace IT_SampleArtixInterceptor;

IT_USING_NAMESPACE_STD

1 ServerInterceptor::ServerInterceptor(
 Bus_ptr bus
)
 : m_bus(bus)
{
}

ServerInterceptor::~ServerInterceptor() { }

void
2 ServerInterceptor::intercept_pre_dispatch(

 IT_Bus::ServerOperation& data
)
{

3 cout << "\tServer interceptor intercept_pre_dispatch invoked"
 << "\tOperation called: " << data.get_name() << endl;

4 // -----> PRE-INVOKE processing comes here <-----

 if (ServerRequestInterceptor::m_next_interceptor != 0)
 {

5 ServerRequestInterceptor::m_next_interceptor->intercept_pre_disp
atch(data);
70

Sending and Receiving Header Contexts
The preceding code can be explained as follows:

1. The ServerInterceptor constructor is called by the interceptor factory at

the time the interceptor chain is constructed (see “Implementation of the

Interceptor Factory” on page 73). Here you should initialize a local

reference to the Bus, m_bus, and the interceptor name, m_name.

2. The intercept_pre_dispatch() function is called before the incoming

request has been dispatched to the service endpoint. This key function

gives you a chance to access the request before it is executed on the server

side.

3. Print the name of the invoked WSDL operation to standard output. For

simplicity, in this demonstration the operation name is printed using cout.

In general, however, it is better practice to use the Artix logging feature.

4. At this point (prior to invoking intercept_pre_dispatch() on the next

interceptor), you can add any processing that needs to complete before

invoking the WSDL operation.

 }
}

void
6 ServerInterceptor::intercept_post_dispatch(

 IT_Bus::ServerOperation& data
)
{
 cout << "\tServer interceptor intercept_post_dispatch "
 << "invoked \tReturn from operation: "
 << data.get_name() << endl;

7 // -----> POST-INVOKE processing comes here <-----

 if (ServerRequestInterceptor::m_prev_interceptor != 0)
 {

8 ServerRequestInterceptor::m_prev_interceptor->intercept_post_dis
patch(data);

 }
}

Example 18: Sample Server Request Interceptor Implementation
 71

CHAPTER 2 | Request Interceptors
5. Invoke intercept_pre_dispatch() on the next interceptor in the chain.

This step is mandatory for almost all interceptors (a possible exception

being a security interceptor that decides to prevent an invocation from

proceeding).

6. The intercept_post_dispatch() function is called after the incoming

request has been dispatched to the service endpoint, but before the output

parts have been marshalled.

7. The post-invoke processing should precede the call on the next interceptor

in the chain.

8. Invoke intercept_post_dispatch() on the previous interceptor in the

chain. This step is mandatory.
72

Sending and Receiving Header Contexts
Implementation of the Interceptor Factory

Overview Artix uses a factory pattern to manage the lifecycle of interceptor objects. To
install a set of interceptors, you must implement an interceptor factory and
register an instance of this factory with the interceptor factory manager object.
The interceptor factory exposes functions that the Artix runtime can then call to
create new interceptor instances.

Request interceptors are created by the following functions:

• get_client_request_interceptor()

• get_server_request_interceptor()

Message interceptors are created by the following functions:

• get_client_message_interceptor()

• get_server_message_interceptor()

If a particular kind of interceptor is not implemented, you can indicate this with
a return value of 0. The interceptor is then omitted from the chain.

The InterceptorFactory base class Example 19 shows the declarations of the IT_Bus::InterceptorFactory class,
which is the base class for an interceptor factory.

Example 19: The IT_Bus::InterceptorFactory Class

// C++
// In file: it_bus_pdk/interceptor.h
...
namespace IT_Bus {
 class IT_BUS_API InterceptorFactory
 {
 public:
 virtual ClientMessageInterceptor *
 get_client_message_interceptor(
 const IT_WSDL::WSDLNode* const wsdl_node = 0
);

 virtual void destroy_client_message_interceptor(
 ClientMessageInterceptor * message_interceptor
);
 73

CHAPTER 2 | Request Interceptors
C++ interceptor factory header Example 20 shows the declaration of the
IT_SampleArtixInterceptor::SampleBusPlugIn class, which implements the
IT_Bus::InterceptorFactory class.

 virtual ClientRequestInterceptor *
 get_client_request_interceptor(
 const IT_WSDL::WSDLNode* const wsdl_node = 0
);

 virtual void destroy_client_request_interceptor(
 ClientRequestInterceptor * request_interceptor
);

 virtual ServerMessageInterceptor*
 get_server_message_interceptor(
 const IT_WSDL::WSDLNode* const wsdl_node = 0
);

 virtual void destroy_server_message_interceptor(
 ServerMessageInterceptor* message_interceptor
);

 virtual ServerRequestInterceptor*
 get_server_request_interceptor(
 const IT_WSDL::WSDLNode* const wsdl_node = 0
);

 virtual void destroy_server_request_interceptor(
 ServerRequestInterceptor* request_interceptor
);

 virtual const String& name() = 0;

 protected:
 ...
 };
};

Example 19: The IT_Bus::InterceptorFactory Class

Example 20: Sample Interceptor Factory Header File

// C++
// In file: samples/advanced/shared_library/
// cxx/plugin/plugin.cxx
74

Sending and Receiving Header Contexts
...
namespace IT_SampleArtixInterceptor
{

1 class SampleBusPlugIn :
 public IT_Bus::BusPlugIn,
 public IT_Bus::InterceptorFactory
 {
 public:
 IT_EXPLICIT
 SampleBusPlugIn(
 IT_Bus::Bus_ptr bus
) IT_THROW_DECL((IT_Bus::Exception));

 virtual ~SampleBusPlugIn();

2 // IT_Bus::BusPlugIn
 //
 ... // Not shown.

3 //IT_Bus::InterceptorFactory
 //
 virtual IT_Bus::ClientMessageInterceptor *
 get_client_message_interceptor(
 const IT_WSDL::WSDLNode* const wsdl_node = 0
);

 virtual void destroy_client_message_interceptor(
 IT_Bus::ClientMessageInterceptor* message_interceptor
);

 virtual IT_Bus::ClientRequestInterceptor *
 get_client_request_interceptor(
 const IT_WSDL::WSDLNode* const wsdl_node = 0
);

 virtual void destroy_client_request_interceptor(
 IT_Bus::ClientRequestInterceptor * request_interceptor
) ;

 virtual IT_Bus::ServerMessageInterceptor*
 get_server_message_interceptor(
 const IT_WSDL::WSDLNode* const wsdl_node = 0
);

Example 20: Sample Interceptor Factory Header File
 75

CHAPTER 2 | Request Interceptors
The preceding code can be explained as follows:

1. In this example, the IT_Bus::InterceptorFactory base class is

implemented by the plug-in class, SampleBusPlugIn. If you prefer, you

could implement IT_Bus::InterceptorFactory using a separate class

instead.

2. The implementation of the functions inherited from the

IT_Bus::BusPlugIn base class is discussed in another chapter—see

“Basic Plug-In Implementation” on page 25.

3. From this point on, all of the functions shown are inherited from

IT_Bus::InterceptorFactory.

4. The m_name variable is used to store the interceptor name.

 virtual void destroy_server_message_interceptor(
 IT_Bus::ServerMessageInterceptor* message_interceptor
);

 virtual IT_Bus::ServerRequestInterceptor*
 get_server_request_interceptor(
 const IT_WSDL::WSDLNode* const wsdl_node = 0
);

 virtual void destroy_server_request_interceptor(
 IT_Bus::ServerRequestInterceptor* request_interceptor
);

 virtual const IT_Bus::QName& name();

 private:
 SampleBusPlugIn(const SampleBusPlugIn&);

 SampleBusPlugIn&
 operator=(const SampleBusPlugIn&);

4 IT_Bus::String m_name;
 };
};

Example 20: Sample Interceptor Factory Header File
76

Sending and Receiving Header Contexts
C++ interceptor factory
implementation

Example 21 shows the implementation of the
IT_SampleArtixInterceptor::SampleBusPlugIn class.

Example 21: Sample Interceptor Factory Implementation

// C++

using namespace IT_Bus;
using namespace IT_WSDL;
using namespace IT_SampleArtixInterceptor;

// SampleBusPlugIn
//

SampleBusPlugIn:: SampleBusPlugIn(
 IT_Bus::Bus_ptr bus
) IT_THROW_DECL((IT_Bus::Exception))
 :
 BusPlugIn(bus),
 m_name("artix_shlib_interceptor")
{
 assert(bus != 0);
}

SampleBusPlugIn::~SampleBusPlugIn() { }

// IT_Bus::BusPlugIn functions
//
void
SampleBusPlugIn::bus_init(
) IT_THROW_DECL((IT_Bus::Exception))
{
 IT_Bus::Bus_ptr bus = get_bus();
 assert(bus != 0);

1 InterceptorFactoryManager& factory_manager =
 bus->get_pdk_bus()->get_interceptor_factory_manager();

2 factory_manager.register_interceptor_factory(
 m_name,
 this
);
}

 77

CHAPTER 2 | Request Interceptors
void
SampleBusPlugIn::bus_shutdown(
) IT_THROW_DECL((IT_Bus::Exception))
{
 IT_Bus::Bus_ptr bus = get_bus();
 assert(bus != 0);

 InterceptorFactoryManager& factory_manager =
 bus->get_pdk_bus()->get_interceptor_factory_manager();

3 factory_manager.unregister_interceptor_factory(
 this
);
}

// IT_Bus::InterceptorFactory functions
//
ClientMessageInterceptor *

4 SampleBusPlugIn::get_client_message_interceptor(
 const WSDLNode* const
)
{
 return 0;
}

void
5 SampleBusPlugIn::destroy_client_message_interceptor(

 ClientMessageInterceptor* message_interceptor
)
{
 delete message_interceptor;
}

ClientRequestInterceptor *
6 SampleBusPlugIn::get_client_request_interceptor(

 const WSDLNode* const
)
{
 return new ClientInterceptor(get_bus());
}

void
7 SampleBusPlugIn::destroy_client_request_interceptor(

 ClientRequestInterceptor * request_interceptor
)

Example 21: Sample Interceptor Factory Implementation
78

Sending and Receiving Header Contexts
{
 delete request_interceptor;
}

ServerMessageInterceptor*
SampleBusPlugIn::get_server_message_interceptor(
 const WSDLNode* const
)
{
 return 0;
}

void
SampleBusPlugIn::destroy_server_message_interceptor(
 ServerMessageInterceptor* message_interceptor
)
{
 delete message_interceptor;
}

ServerRequestInterceptor*
8 SampleBusPlugIn::get_server_request_interceptor(

 const WSDLNode* const
)
{
 return new ServerInterceptor(get_bus());
}

void
9 SampleBusPlugIn::destroy_server_request_interceptor(

 ServerRequestInterceptor* request_interceptor
)
{
 delete request_interceptor;
}

const String&
10 SampleBusPlugIn::name()

{
 return m_name;
}

Example 21: Sample Interceptor Factory Implementation
 79

CHAPTER 2 | Request Interceptors
The preceding code can be explained as follows:

1. The IT_Bus::InterceptorFactoryManager object stores a list of all

interceptor factories. It is implemented by the Artix runtime.

2. You must register the interceptor factory instance with the interceptor

factory manager, as shown here. The register function takes the interceptor

name, m_name, and the interceptor factory instance, this, as arguments.

3. You usually unregister the interceptor factory in the body of the

IT_Bus::BusPlugIn::bus_shutdown() function to ensure a clean

shutdown of the Artix Bus.

4. You would implement the get_client_message_interceptor() function

to install a client message interceptor. In this example, the function returns

0 to indicate that a client message interceptor is not available.

5. The destroy_client_message_interceptor() function would be called

by the Artix runtime to clean up resources associated with the client

message interceptor.

6. The Artix runtime calls get_client_request_interceptor() in the

course of constructing a new interceptor chain to obtain a client request

interceptor instance.

The get_client_request_interceptor() function takes the following

arguments:

♦ wsdl_node—(defaults to 0).

In this example, the implementation of

get_client_request_interceptor() simply returns a new client

interceptor object.

7. The destroy_client_request_interceptor() function is called by the

Artix runtime to clean up resources associated with the client request

interceptor.

8. The Artix runtime calls get_server_request_interceptor() in the

course of constructing a new interceptor chain to obtain a server request

interceptor instance.

The get_server_request_interceptor() function takes the following

arguments:

♦ wsdl_node—(defaults to 0).
80

Sending and Receiving Header Contexts
In this example, the implementation of

get_server_request_interceptor() simply returns a new server

interceptor object.

9. The destroy_server_request_interceptor() function is called by the

Artix runtime to clean up resources associated with the server request

interceptor.

10. The name() function returns the interceptor name.
 81

CHAPTER 2 | Request Interceptors
Accessing and Modifying Parameters

Overview Artix interceptors enable you to access and modify both input and output
parameters, as a message passes back and forth along the interceptor chain. On
the client side, the input and output parameters are accessible from the
IT_Bus::ClientOperation object. On the server side, the input and output
parameters are accessible from the IT_Bus::ServerOperation object.

In this section This section contains the following subsections:

Reflection Example page 83

Implementation of the Client Request Interceptor page 86

Implementation of the Server Request Interceptor page 91
82

Accessing and Modifying Parameters
Reflection Example

Overview In order to access and modify operation parameters from within an interceptor, it
is essential to use the Artix reflection API. In contrast to code written at the
application level, an interceptor must typically be able to process any port type
or operation. Hence, an interceptor implementation must be able to parse any
parameter type; this capability is provided by the Artix reflection API.

To access operation parameters from within an interceptor, you would typically
need to use the following APIs:

• Part list type.

• Reflection API.

Part list type Given either an IT_Bus::ClientOperation instance or an
IT_Bus::ServerOperation instance, data, you can access the input parts and
the output parts as follows:

• To obtain a reference to the input part list, call:

data.get_input_message().get_parts()

• To obtain a reference to the output part list, call:

data.get_output_message().get_parts()

The returned part list (of IT_Bus::PartList& type) is essentially a vector of
(IT_Bus::QName, IT_Bus::AnyType*) pairs.

Reflection API The reflection API enables you to parse any Artix data type and to process the
data without any advance knowledge of its type. For the example described in
this section, you need only the following classes:

• IT_Reflect::Reflection class—the base class for all reflection types.

• IT_Reflect::Value<IT_Bus::String> class—the reflection type that

represents a string.

• IT_Bus::Var<T> template—a smart pointer template type that ensures that

the referenced data is not leaked.

Reflection interceptor
demonstration

The sample code in this section is taken from the following Artix demonstration:

ArtixInstallDir/samples/reflection/interceptor
 83

CHAPTER 2 | Request Interceptors
Example 22 shows the WSDL definition of the Greeter port type that is used in
this demonstration.

Example 22: The Greeter Port Type

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions
 name="HelloWorld"
 targetNamespace="http://www.iona.com/reflect_interceptor"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://www.iona.com/reflect_interceptor"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema" ...>
 <wsdl:types>
 <schema

targetNamespace="http://www.iona.com/reflect_interceptor"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <element name="responseType" type="xsd:string"/>
 <element name="requestType" type="xsd:string"/>
 </schema>
 </wsdl:types>

 <wsdl:message name="sayHiRequest"/>
 <wsdl:message name="sayHiResponse">
 <wsdl:part element="tns:responseType"

name="theResponse"/>
 </wsdl:message>
 <wsdl:message name="greetMeRequest">
 <wsdl:part element="tns:requestType" name="me"/>
 </wsdl:message>
 <wsdl:message name="greetMeResponse">
 <wsdl:part element="tns:responseType"

name="theResponse"/>
 </wsdl:message>

 <wsdl:portType name="Greeter">
 <wsdl:operation name="sayHi">
 <wsdl:input message="tns:sayHiRequest"
 name="sayHiRequest"/>
 <wsdl:output message="tns:sayHiResponse"
 name="sayHiResponse"/>
 </wsdl:operation>
 <wsdl:operation name="greetMe">
 <wsdl:input message="tns:greetMeRequest"
 name="greetMeRequest"/>
 <wsdl:output message="tns:greetMeResponse"
 name="greetMeResponse"/>
84

Accessing and Modifying Parameters
 </wsdl:operation>
 </wsdl:portType>
 ...
</wsdl:definitions>

Example 22: The Greeter Port Type
 85

CHAPTER 2 | Request Interceptors
Implementation of the Client Request Interceptor

Overview This subsection describes how to implement a client request interceptor that uses
reflection to modify an operation’s input and output parameters.

C++ client request interceptor
header

Example 23 shows the header for the ClientInterceptor class, which is
derived from the IT_Bus::ClientRequestInterceptor base class.

Note: This example is only intended to be used in conjunction with the
Greeter port type, as defined in Example 22 on page 84.

Example 23: Client Interceptor Header for Reflection Example

// C++
#include <it_bus/bus.h>
#include <it_bus/qname.h>
#include <it_bus_pdk/interceptor.h>

class ClientInterceptor :
 public virtual IT_Bus::ClientRequestInterceptor
{
 public:
 ClientInterceptor(
 IT_Bus::Bus_ptr bus
);

 virtual ~ClientInterceptor();

 virtual void
 intercept_invoke(
 IT_Bus::ClientOperation& data
);

 private:
 IT_Bus::Bus_ptr m_bus;
};
86

Accessing and Modifying Parameters
C++ client request interceptor
implementation

Example 24 shows the implementation of the ClientInterceptor class.

Example 24: Client Interceptor Implementation for Reflection Example

// C++
#include "client_interceptor.h"
#include <it_bus/operation.h>
#include <it_bus/part_list.h>
#include <it_bus/reflect/value.h>
#include <it_cal/iostream.h>

IT_USING_NAMESPACE_STD;
using namespace IT_Bus;

ClientInterceptor::ClientInterceptor(
 Bus_ptr bus
)
 : m_bus(bus)
{
 // Complete
}

ClientInterceptor::~ClientInterceptor()
{
 // Complete
}

void
1 ClientInterceptor::intercept_invoke(

 ClientOperation& data
)
{
 // Get the value of the input part using reflection.
 // Client-side input parts are "serializable" that is they
 // will be serialized to the underlying transport.
 // Serializable parts are read-only.
 //

2 PartList& input_parts = data.get_input_message().get_parts();
3 if (input_parts.size() == 1)

 {
4 Var<const IT_Reflect::Reflection> r =

 input_parts[0].get_const_value().get_reflection();
5 Var<const IT_Reflect::Value<String> > input_reflection =

 dynamic_cast_var<const IT_Reflect::Value<String> >(r);
 assert(input_reflection.get());
 87

CHAPTER 2 | Request Interceptors
 String input_string = input_reflection->get_value();

 // Print a message
 //

6 String replace_input = input_string + ",1";
 cout << "[Client pre-invoke intercepted: "
 << input_string << "]" << endl;
 cout << "[Replacing with " << replace_input << "]" <<

endl;

 // Replace the part before calling next interceptor.
 //

7 set_const_value(input_parts[0], replace_input);
 }

 // Call the next interceptor
 //

8 m_next_interceptor->intercept_invoke(data);

 // Get the value of the output string using reflection.
 //
 PartList& output_parts =

data.get_output_message().get_parts();
9 if (output_parts.size() == 1)

 {
 Var<IT_Reflect::Reflection> r2 =

output_parts[0].get_modifiable_value().get_reflection();
 Var<IT_Reflect::Value<String> > output_reflection =
 dynamic_cast_var<IT_Reflect::Value<String> >(r2);
 assert(output_reflection.get());
 String output_string = output_reflection->get_value();

 // Print a messsage
 //
 String replace_output = output_string + ",4";
 cout << "[Client post-invoke intercepted: " <<

output_string << "]"
 << endl;
 cout << "[Replacing with " << replace_output << "]" <<

endl;

 // Modify the value of the output part. This directly
 // modifies the underlying application data value.
 //

Example 24: Client Interceptor Implementation for Reflection Example
88

Accessing and Modifying Parameters
The preceding interceptor implementation can be explained as follows:

1. This implementation of intercept_invoke() is designed to modify the

parameters of the sayHi and greetMe WSDL operations by adding a short

string to the input parameter and to the output parameter.

2. The returned part list, input_parts, contains all of the WSDL parts

containing input parameters for the operation. A part list is essentially a

vector of (IT_Bus::QName, IT_Bus::AnyType*) pairs. The

IT_Bus::AnyType is the base type for all WSDL types in Artix.

3. The code in this if-block uses reflection to modify the first input part. This

example is hard-coded to work only with the sayHi and greetMe operation

from the Greeter port type. The example modifies the request message,

only if it consists of a single part which is a string.

4. From the first (and only) pair in the part list, return the const

IT_Bus::AnyType value (using get_const_value()) and convert it into a

reflection object (using get_reflection()).

5. Assuming that the part contains a string, cast the reflection object to a

string reflection.

This step is only intended to work for the Greeter port type. In the general

case, you would have to use the reflection interface to figure out the data

type.

6. Define a modified string, replace_input, which adds ,1 to the original

string.

 output_reflection->set_value(replace_output);
 }
}

Example 24: Client Interceptor Implementation for Reflection Example
 89

CHAPTER 2 | Request Interceptors
7. Call set_const_value() to replace the sole input part in the request. The

set_const_value() function is a convenience template, which is used

only for simple types. It is defined in it_bus/part.h as follows:

The IT_Bus::Part::set_const_value() function takes an

IT_Bus::AnyType as its first parameter. Because simple atomic types, such

as IT_Bus::String, do not inherit from AnyType, it is necessary to wrap

them in an IT_Bus::AnySimpleTypeT<T> instance, which does inherit

from AnyType.

For user-defined types (and other types that inherit from AnyType), you can

pass them directly to the IT_Bus::Part::set_const_value() function.

8. The obligatory call to delegate to the next interceptor in the chain.

9. In the reply message, modify the output, only if it consists of a single part

containing a string (intended for the Greeter port type only).

// C++
namespace IT_Bus {
 template <class T>
 void set_const_value(
 Part& part,
 T& value
)
 {
 part.set_const_value(
 new AnySimpleTypeT<T>(value), Part::AUTO_DELETE);
 }
}

90

Accessing and Modifying Parameters
Implementation of the Server Request Interceptor

Overview This subsection describes how to implement a server request interceptor that
uses reflection to modify an operation’s input and output parameters.

C++ server request interceptor
header

Example 25 shows the header for the ServerInterceptor class, which is
derived from the IT_Bus::ServerRequestInterceptor base class.

Note: This example is only intended to be used in conjunction with the
Greeter port type, as defined in Example 22 on page 84.

Example 25: Server Interceptor Header for Reflection Example

// C++
#include <it_bus/qname.h>
#include <it_bus/bus.h>
#include <it_bus_pdk/interceptor.h>

class ServerInterceptor :
 public virtual IT_Bus::ServerRequestInterceptor
{
 public:
 ServerInterceptor(
 IT_Bus::Bus_ptr bus
);

 virtual ~ServerInterceptor();

 virtual void
 intercept_pre_dispatch(
 IT_Bus::ServerOperation& data
);

 virtual void
 intercept_post_dispatch(
 IT_Bus::ServerOperation& data
);

 private:
 IT_Bus::Bus_ptr m_bus;
};
 91

CHAPTER 2 | Request Interceptors
C++ server request interceptor
implementation

Example 26 shows the implementation of the ServerInterceptor class.

Example 26: Server Interceptor Implementation for Reflection Example

// C++
#include <it_bus/operation.h>
#include <it_bus/reflect/value.h>
#include <it_bus/part_list.h>
#include "server_interceptor.h"

using namespace IT_Bus;
using namespace IT_WSDL;
IT_USING_NAMESPACE_STD

ServerInterceptor::ServerInterceptor(
 Bus_ptr bus
)
 : m_bus(bus)
{
 // Complete.
}

ServerInterceptor::~ServerInterceptor()
{
 // Complete.
}

void
1 ServerInterceptor::intercept_pre_dispatch(

 IT_Bus::ServerOperation& data
)
{
 // Get the value of the input string using reflection.
 // The value points to the value unmarshalled from the wire.
 //

2 PartList& input_parts = data.get_input_message().get_parts();
3 if (input_parts.size() == 1)

 {
4 Var<IT_Reflect::Reflection> r =

 input_parts[0].get_modifiable_value().get_reflection();
5 Var<IT_Reflect::Value<String> > input_reflection =

 dynamic_cast_var<IT_Reflect::Value<String> >(r);
 assert(input_reflection.get());
 String input_string = input_reflection->get_value();
92

Accessing and Modifying Parameters
 // Print a messsage
 //

6 String replace_input = input_string + ",2";
 cout << "[Server pre-invoke intercepted: "
 << input_string << "]" << endl;
 cout << "[Replacing with " << replace_input << "]"
 << endl;

 // Modify the value of the input part before the server
 // sees it.

7 input_reflection->set_value(replace_input);
 }

 if (m_next_interceptor != 0)
 {
 m_next_interceptor->intercept_pre_dispatch(data);
 }
}

void
8 ServerInterceptor::intercept_post_dispatch(

 IT_Bus::ServerOperation& data
)
{
 // Get the value of the output part using reflection.
 //
 PartList& output_parts =

data.get_output_message().get_parts();
9 if (output_parts.size() == 1)

 {
 Var<const IT_Reflect::Reflection> r =
 output_parts[0].get_const_value().get_reflection();
 Var<const IT_Reflect::Value<String> > output_reflection =
 dynamic_cast_var<const IT_Reflect::Value<String>

>(r);
 assert(output_reflection.get());
 String output_string = output_reflection->get_value();

 // Print a messageppp
 //
 String replace_output = output_string + ",3";
 cout << "[Server post-invoke intercepted: "
 << output_string << "]" << endl;
 cout << "[Replacing with " << replace_output << "]" <<

endl;

Example 26: Server Interceptor Implementation for Reflection Example
 93

CHAPTER 2 | Request Interceptors
The preceding interceptor implementation can be explained as follows:

1. The implementation of intercept_pre_dispatch() is designed to modify

the input parameter of the sayHi and greetMe WSDL operations by

appending a short string.

2. The returned part list, input_parts, contains all of the WSDL parts

containing input parameters for the operation. A part list is essentially a

vector of (IT_Bus::QName, IT_Bus::AnyType*) pairs. The

IT_Bus::AnyType is the base type for all WSDL types in Artix.

3. The code in this if-block uses reflection to modify the first input part. This

example is hard-coded to work only with the sayHi and greetMe operation

from the Greeter port type. The example modifies the request message,

only if it consists of a single part which is a string.

4. From the first (and only) pair in the part list, return the IT_Bus::AnyType

value (using get_modifiable_value()) and convert it into a reflection

object (using get_reflection()).

5. Assuming that the part contains a string, cast the reflection object to a

string reflection.

This step is only intended to work for the Greeter port type. In the general

case, you would have to use the reflection interface to figure out the data

type.

6. Define a modified string, replace_input, which adds ,2 to the original

string.

7. Call IT_Reflect::Value<String>::set_value() to modify the input

part in the request.

 // Replace the value before calling next interceptor.
 //

10 set_const_value(output_parts[0], replace_output);
 }

 if (m_prev_interceptor != 0)
 {
 m_prev_interceptor->intercept_post_dispatch(data);
 }
}

Example 26: Server Interceptor Implementation for Reflection Example
94

Accessing and Modifying Parameters
8. The implementation of intercept_post_dispatch() is designed to

modify the output parameter of the sayHi and greetMe WSDL operations

by appending a short string.

9. In the reply message, modify the output, only if it consists of a single part

containing a string (intended for the Greeter port type only).

10. Call set_const_value() to replace the sole output part in the request. The

set_const_value() function is a convenience template, which sets the

part value to a simple type. It is defined in it_bus/part.h as follows:

The IT_Bus::Part::set_const_value() function takes an

IT_Bus::AnyType as its first parameter. Because simple atomic types, such

as IT_Bus::String, do not inherit from AnyType, it is necessary to wrap

them in an IT_Bus::AnySimpleTypeT<T> instance, which does inherit

from AnyType.

For user-defined types (and other types that inherit from AnyType), you can

pass them directly to the IT_Bus::Part::set_const_value() function.

// C++
namespace IT_Bus {
 template <class T>
 void set_const_value(
 Part& part,
 T& value
)
 {
 part.set_const_value(
 new AnySimpleTypeT<T>(value), Part::AUTO_DELETE);
 }
}

 95

CHAPTER 2 | Request Interceptors
Raising Exceptions

Overview Artix allows you to raise exceptions in request interceptors, but you must raise
the exception at the appropriate place.

Where to raise an exception There are specific places in the interceptor code where you can raise exceptions,
as follows:

• Client request interceptor—in the body of the intercept_invoke()

function, either before or after the follow-on invocation to the next

interceptor.

• Server request interceptor—in the body of the

intercept_around_dispatch() function, either before or after the

follow-on invocation to the next interceptor. In particular, you cannot raise

an exception in the body of an intercept_pre_dispatch() or

intercept_post_dispatch() function.

Type of exceptions you can raise You can raise the following types of exception in an interceptor:

• IT_Bus::FaultException (standard Artix exceptions),

• IT_Bus::UserFaultException (user-defined custom exceptions).

Examples of exception raising The following examples show how to raise an IT_Bus::FaultException in an
interceptor:

• Raising a fault exception in a client interceptor.

• Raising a fault exception in a server interceptor.
96

Raising Exceptions
Raising a fault exception in a client
interceptor

Example 27 shows how to raise a NO_PERMISSION fault exception in the body of
a client interceptor’s intercept_invoke() function.

The preceding code fragment can be explained as follows:

1. The IT_Bus::FaultException type is the appropriate type of exception to

raise for the typical errors that occur during an operation invocation. The

constructor takes three arguments, as follows:

♦ Fault category—faults must be classified into one of the standard

categories, which are enumerated in the it_bus/fault_exception.h

header file.

♦ Namespace URI—it is recommended to use a custom namespace for

your fault exceptions (for example,

http://schemas.YourCompany.com/exceptions). This enables

Example 27: Raising a Fault Exception in a Client Interceptor

// C++
void
ClientInterceptor::intercept_invoke(
 ClientOperation& data
)
{
 if (...) // If some error condition occurs...
 {
 IT_Bus::String error = "You don’t have permission!";

1 IT_Bus::FaultException exc(
 IT_Bus::FaultCategory::NO_PERMISSION,
 "http://schemas.YourCompany.com/exceptions",
 error
);

2 exc.set_description(error);
3 exc.set_completion_status(

 IT_Bus::FaultCompletionStatus::NO
);

4 exc.set_source(IT_Bus::FaultSource::CLIENT);
5 throw exc;

 }

 // Call the next interceptor
 m_next_interceptor->intercept_invoke(data);

}

 97

CHAPTER 2 | Request Interceptors
you to distinguish your fault exceptions from the Artix fault

exceptions (which conventionally belong to the

http://schemas.iona.com/exceptions namespace).

♦ Error code—a string code. This is typically a description of the error

condition.

2. The description is identical to the error code.

3. The completion status is NO, because this exception is raised before the

operation is invoked.

4. The source is set to CLIENT, because the exception is raised on the client

side.

5. Use the standard C++ throw mechanism to raise the exception.

Raising a fault exception in a
server interceptor

Example 28 shows how to raise a TIMEOUT fault exception in the body of a server
interceptor’s intercept_around_dispatch() function.

Example 28: Raising a Fault Exception in a Client Interceptor

// C++
using namespace IT_Bus;

void
ServerInterceptor::intercept_around_dispatch(
 ServerOperation& data
)
{
 // PRE-UNMARSHAL processing
 // ...

 if (...) // If some error condition occurs...
 {
 IT_Bus::String error = "Something took too long!";
 IT_Bus::FaultException exc(
 IT_Bus::FaultCategory::TIMEOUT,
 "http://schemas.YourCompany.com/exceptions",
 error
);
 exc.set_description(error);

1 exc.set_completion_status(
 IT_Bus::FaultCompletionStatus::NO
);

2 exc.set_source(IT_Bus::FaultSource::SERVER);
3 throw exc;
98

Raising Exceptions
The preceding code fragment can be explained as follows:

1. The completion status is NO, because this exception is raised before the

operation is invoked.

2. The source is set SERVER, because this exception is raised on the server

side.

3. Use the standard C++ throw mechanism to raise the exception.

 }

 // Call the next interceptor
 if (m_next_interceptor != 0) {
 m_next_interceptor->intercept_around_dispatch(data);
 }

 // POST-MARSHAL processing
 // ...

}

Example 28: Raising a Fault Exception in a Client Interceptor
 99

CHAPTER 2 | Request Interceptors
100

CHAPTER 3

WSDL Extension
Elements
If you implement your own transport or binding plug-in, you would
typically configure it by defining a custom tag (or tags) in the WSDL
contract. This chapter describes how to add a custom tag—that is,
a WSDL extension element—to the Artix WSDL parser.

In this chapter This chapter discusses the following topics:

WSDL Structure page 104

WSDL Parse Tree page 106

How to Extend WSDL page 110

Extension Elements for the Stub Plug-In page 113
 103

CHAPTER 3 | WSDL Extension Elements
WSDL Structure

Overview This section describes some basic features of the WSDL language that are
important for WSDL parsing. The following topics are discussed:

• WSDL Example.

• Standard elements.

• Extensibility/extension elements.

WSDL Example Example 29 shows the outline of a typical WSDL file, including the important
high-level elements that you would find in most WSDL files.

Standard elements The core of WSDL defines many standard XML elements (in Example 29 on
page 104, these tags appear without any prefix before their names). For example,
portType, binding, and service. These elements belong to the base WSDL
specification.

Example 29: WSDL Contract with Extensibility Elements

<wsdl:definitions name="nmtoken"? targetNamespace="uri"?>
 <wsdl:types> ?
 <xsd:schema />*
 <-- extensibility element --> *
 </wsdl:types>

 <wsdl:binding name="nmtoken" type="qname">*
 <-- extensibility element --> *
 <wsdl:operation />*
 </wsdl:binding>
 <wsdl:service name="nmtoken"> *
 <wsdl:port name="nmtoken" binding="qname"> *
 <-- extensibility element -->
 </wsdl:port>
 <-- extensibility element -->
 </wsdl:service>
 <-- extensibility element --> *
</wsdl:definitions>
104

WSDL Structure
Extensibility/extension elements In addition to the standard elements, the WSDL standard allows you to extend
the language by adding new WSDL elements known as extensibility elements or
extension elements.

The WSDL standard does impose some restrictions, however, on where you can
add these extension elements (see appendix 3 of the WSDL specification,
http://www.w3.org/TR/wsdl).
 105

http://www.w3.org/TR/wsdl

CHAPTER 3 | WSDL Extension Elements
WSDL Parse Tree

Overview When an Artix application reads a WSDL file, the complete contents of the file
are parsed and analyzed into a linked tree of objects, the WSDL parse tree. There
are, in fact, two views of this tree, as follows:

• XML view—this view of the parse tree is provided by the

IT_Bus::XMLNode base class. This view of the parse tree provides XML

parsing support, but has no awareness of WSDL features.

• WSDL view—this view of the parse tree is provided by classes that inherit

from IT_WSDL::WSDLNode. This view of the parse tree provides support for

WSDL features.

This section focuses exclusively on the WSDL view of the parse tree. You
should be aware, however, that you might also encounter the parse tree through
the XML view. An IT_Bus::XMLNode object and an IT_WSDL::WSDLNode object
can both refer to the same underlying node in the parse tree.
106

WSDL Parse Tree
Parse tree classes Figure 7 shows part of the inheritance hierarchy for the classes in a WSDL parse
tree. The WSDL nodes are classified into two main types:

• IT_WSDL::WSDLExtensibleNode nodes—base class for standard elements.

• IT_WSDL::WSDLExtensionElement nodes—base class for extension

elements.

WSDLNode The IT_WSDL::WSDLNode class is the base class for all nodes of the WSDL parse
tree. It defines the following public member functions:

// C++
IT_WSDL::NodeType get_node_type();

// Get the QName of this element node
const IT_Bus::QName & get_element_name();

// Get the namespace URI for this element node
const IT_Bus::String & get_target_namespace();

WSDLExtensibleNode The IT_WSDL::WSDLExtensibleNode class is used as the base class for the
standard elements in WSDL. The nodes that inherit from WSDLExtensibleNode
are extensible, in the sense that they may contain extension elements as

Figure 7: WSDL Parse Tree Inheritance Hierarchy

IT_WSDL::WSDLNode

IT_WSDL::WSDLExtensionElementIT_WSDL::WSDLExtensibleNode

IT_WSDL::WSDLPort

IT_WSDL::WSDLService

IT_WSDL::WSDLMessage

IT_WSDL::WSDLOperation

IT_WSDL::WSDLDefinitions IT_WSDL::WSDLPortType

IT_WSDL::WSDLTypes

CustomExtensionElement
 107

CHAPTER 3 | WSDL Extension Elements
sub-elements. In addition to the functions inherited from IT_WSDL::WSDLNode,
the WSDLExtensibleNode base class defines the following public member
functions:

// C++
IT_WSDL::WSDLExtensionElementList & get_extension_elements();

IT_WSDL::WSDLExtensionElement *
find_extension_element(
 const IT_Bus::QName &extension_element
);

IT_WSDL::WSDLExtensionElement *
create_extension_element(
 const IT_Bus::QName &extension_element
);

void
add_extension_element(
 IT_WSDL::WSDLExtensionElement *extension_element
);

WSDLPort The IT_WSDL::WSDLPort extensible node represents the WSDL port element.
This WSDL node type is important for Artix transports, because it encapsulates
all of the information required either to open a connection (client side) or to
listen for a connection (server side). The WSDLPort class defines the following
member functions:

// C++
const IT_Bus::String & get_name ()
const IT_WSDL::WSDLService & get_service ()
const IT_WSDL::WSDLBinding * get_binding ()

WSDLBinding The IT_WSDL::WSDLBinding extensible node represents the WSDL binding
element. This WSDL node type (together with a WSDL port) encapsulates the
information that is needed to establish a WSDL binding. The WSDLBinding class
defines the following member functions:

// C++
IT_WSDL::WSDLDefinitions & get_definitions();
const IT_WSDL::WSDLDefinitions & get_definitions();
const IT_WSDL::IT_Bus::QName & get_name();
const IT_WSDL::WSDLBindingOperationMap & get_operations();
IT_WSDL::WSDLBindingOperationMap & get_operations();
const IT_WSDL::IT_Bus::QName & get_port_type_name();
const IT_WSDL::WSDLPortType * get_port_type();
108

WSDL Parse Tree
const IT_WSDL::WSDLBindingOperation *
get_binding_operation (
 const IT_Bus::String &operation_name
);

const IT_Bus::String& get_binding_namespace() const;

WSDLExtensionElement The IT_WSDL::WSDLExtensionElement is the base class for custom extension
elements. If you want to implement your own extension element class, you
should make it inherit from WSDLExtensionElement. In your own extension
element implementation, you must override the following member functions:

// C++
IT_WSDL::WSDLExtensionFactory & get_extension_factory();

bool parse(
 const XMLIterator &port_type_iter,
 const IT_Bus::XMLNode &parent_node,
 IT_WSDL::WSDLErrorHandler &error_handler
);
 109

CHAPTER 3 | WSDL Extension Elements
How to Extend WSDL

Overview This section provides a high-level overview of how you can extend the parsing
capabilities of WSDL by adding extension elements.

Sample WSDL extensions For example, consider the MessageQueue (MQ) plug-in for Artix, which
introduces two new extension elements, mq:client and mq:server, to WSDL.
These new extension elements belong to the
http://schemas.iona.com/transports/mq namespace. Example 30 shows a
WSDL extract with the MQ extension elements.

Example 30: WSDL Extract with MQ Extension Elements

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="BaseService"

targetNamespace="http://soapinterop.org/"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:mq="http://schemas.iona.com/transports/mq"
 ...
 >
 ...
 <service name="MQBaseService">
 <port ... >
 <mq:client ... />
 <mq:server ... />
 </port>
 </service>
</definitions>
110

How to Extend WSDL
Factory pattern The scheme for extending the WSDL parser is based on a factory pattern. The
programmer registers an extension factory, which is then responsible for
creating instances of the extension elements on demand. Figure 8 illustrates the
process of creating extension elements.

Factory pattern stages The factory pattern for creating extension elements, as shown in Figure 8 on
page 111, operates as follows:

Figure 8: Factory Pattern for WSDL Extension Elements

register_extension_factory()

IT_WSDL::WSDLExtensionFactory

IT_WSDL::WSDLExtensionElement

IT_WSDL::WSDLFactory

create_extension_element()

1

2

3 create element

Stage Description

1 The programmer registers a custom WSDL extension factory by
calling register_extension_factory() on the
IT_WSDL::WSDLFactory object.

In this example, the extension factory is registered against the
http://schemas.iona.com/transports/mq namespace URI.

2 Whenever the WSDL parser encounters an element belonging to
the http://schemas.iona.com/transports/mq namespace, it
calls create_extension_element() on the extension factory.

3 The extension factory figures out which type of extension element
to create by examining the local part of the supplied QName and
then returns a new instance of this extension element type.
 111

CHAPTER 3 | WSDL Extension Elements
Classes to implement Figure 9 shows an outline of the inheritance hierarchy for the classes you would
need to write in order to extend WSDL. There are typically three different kinds
of class to implement:

• Extension factory—inherits from IT_WSDL::WSDLExtensionFactory.

• Extension element base class—inherits from

IT_WSDL::WSDLExtensionElement and IT_Bus::XMLNode.

• Extension elements (one or more of)—inherit from the extension element

base class.

Figure 9: Extension Element Classes

Extension Element Base

Extension Element 1 Extension Element N

Extension Factory

IT_WSDL::WSDLExtensionElement IT_WSDL::WSDLExtensionFactory

...

IT_Bus::XMLNode
112

Extension Elements for the Stub Plug-In
Extension Elements for the Stub Plug-In

Overview This section describes how to extend WSDL, by implementing an extension
element class and an extension factory class for the stub plug-in. Although the
particular example shown here is based on a transport plug-in, this section is
relevant for binding plug-ins as well.

In this section This section contains the following subsections:

Implementing an Extension Element Base Class page 114

Implementing the Extension Element Classes page 119

Implementing the Extension Factory page 125

Registering the Extension Factory page 131
 113

CHAPTER 3 | WSDL Extension Elements
Implementing an Extension Element Base Class

Overview This subsection describes how to implement an extension element base class for
the stub transport. Although it is not strictly necessary to define an extension
element base class, if you have just one extension element, it is nevertheless
good coding practice. Once you have defined a base class for your custom
extension elements, it is relatively easy to add new extension elements as
needed.

Extension element base header Example 31 shows the header for the stub plug-in’s extension element base
class.

Example 31: Header for the StubTransportWSDLExtensionElement Class

// C++
#include <it_wsdl/wsdl_extension_element.h>
#include <it_wsdl/wsdl_port.h>

namespace IT_Transport_Stub
{

1 class StubTransportWSDLExtensionElement :
 public IT_WSDL::WSDLExtensionElement,
 public IT_Bus::XMLNode
 {
 public:
 StubTransportWSDLExtensionElement(
 IT_WSDL::WSDLExtensibleNode* the_node
);

 virtual const IT_Bus::QName &
2 get_element_name() const;

 virtual const IT_Bus::String &
 get_target_namespace() const;

 virtual
 IT_WSDL::WSDLExtensionFactory &

3 get_extension_factory();

 virtual ~StubTransportWSDLExtensionElement();

 virtual void
114

Extension Elements for the Stub Plug-In
 read(
 const IT_Bus::QName& name,
 IT_Bus::ComplexTypeReader & reader
) IT_THROW_DECL((IT_Bus::DeserializationException))
 {
 throw IT_Bus::IOException("Not Supported");
 }

 virtual void
 write(
 const IT_Bus::QName& element_name,
 IT_Bus::ComplexTypeWriter & writer
) const IT_THROW_DECL((IT_Bus::SerializationException))
 {
 // complete
 }

 virtual void
4 write(

 IT_Bus::XMLOutputStream & stream
) const IT_THROW_DECL((IT_Bus::IOException));

 virtual
 IT_Bus::AnyType&
 copy(
 const IT_Bus::AnyType & rhs
)
 {
 return *this;
 }

 protected:
5 IT_WSDL::WSDLExtensibleNode * m_wsdl_extensible_node;

 private:
 ...
 };
};

Example 31: Header for the StubTransportWSDLExtensionElement Class
 115

CHAPTER 3 | WSDL Extension Elements
The preceding header file can be explained as follows:

1. The extension element base class must inherit from

IT_WSDL::WSDLExtensionElement and IT_Bus::XMLNode.

2. The get_element_name() and get_target_namespace() functions are

inherited from the IT_WSDL::WSDLNode base class, by way of the

IT_WSDL::WSDLExtensionElement class.

3. The get_extension_factory() element is inherited from the

IT_WSDL::WSDLExtensionElement class.

4. The write(XMLOutputStream) function is inherited from the

IT_WSDL::WSDLNode base class, by way of the

IT_WSDL::WSDLExtensionElement class.

5. The m_wsdl_extensible_node is used to store a pointer to the parent node

(that is, a pointer to the WSDLExtensibleNode instance that contains this

node).

Extension element base
implementation

Example 32 shows the implementation of the stub plug-in’s extension element
base class.

Example 32: Implementation of StubTransportWSDLExtensionElement

// C++
#include "stub_transport_wsdl_extension_element.h"
#include "stub_transport_wsdl_extension_factory.h"

using namespace IT_Bus;
using namespace IT_WSDL;
using namespace IT_Transport_Stub;

1 StubTransportWSDLExtensionElement::StubTransportWSDLExtensionEle
ment(

 IT_WSDL::WSDLExtensibleNode* the_node
) : m_wsdl_extensible_node(the_node)
{
 // complete
}

StubTransportWSDLExtensionElement::~StubTransportWSDLExtensionEl
ement()

{
 // complete
}

116

Extension Elements for the Stub Plug-In
The preceding implementation class can be described as follows:

1. The sole constructor argument, the_node, is a pointer to the parent

extensible element node (an extensible element node is a node that can

contain other element nodes).

2. The get_extension_factory() function returns a reference to the

extension factory that is responsible for creating all of the WSDL

extension elements that inherit from this extension element base class.

3. The implementation of get_tag_name() is inherited from the

IT_Bus::XMLNode base class. It returns the QName of the current element.

4. The implementation of get_target_namespace() simply calls the

implementation from the IT_Bus::XMLNode base class.

WSDLExtensionFactory &
2 StubTransportWSDLExtensionElement::get_extension_factory()

{
 return StubTransportWSDLExtensionFactory::get_instance();
}

const IT_Bus::QName &
3 StubTransportWSDLExtensionElement::get_element_name() const

{
 return get_tag_name();
}

const IT_Bus::String &
4 StubTransportWSDLExtensionElement::get_target_namespace() const

{
 return XMLNode::get_target_namespace();
}

void
5 StubTransportWSDLExtensionElement::write(

 XMLOutputStream & stream
) const IT_THROW_DECL((IOException))
{
 write_start_tag(stream);
 write_end_tag(stream);
}

Example 32: Implementation of StubTransportWSDLExtensionElement
 117

CHAPTER 3 | WSDL Extension Elements
5. You must implement the write(XMLOutputStream) function (and the

write_attributes() function—see “Extension element implementation”

on page 121), if you want your extension elements to be writeable to a file

or other output stream.

The implementation shown here writes the element’s start tag (including

any requisite namespace settings and attribute settings) and the element’s

end tag. This is sufficient for simple elements with no content. On the other

hand, if some of your extension elements do have content, you should

override the write() function in that element’s sub-class.

Note: In particular, it is essential to implement the stream write()
function, in order for your extension elements to function correctly with
the Artix wsdl_publish plug-in. In response to a client query, the
wsdl_publish plug-in returns the server’s in-memory version of the
WSDL contract. If you have not implemented the stream write()
function, the returned WSDL contract would not include your WSDL
extension element.
118

Extension Elements for the Stub Plug-In
Implementing the Extension Element Classes

Overview This subsection describes how to implement the stub extension element class
(there is only one extension element in the stub transport plug-in). This class
must be capable of parsing the stub extension element.

Stub extension element The stub plug-in adds a single extension element to WSDL, as shown in
Example 33. The stub extension element name is NamespacePrefix:address,
with a single attribute, location. In Example 33, the NamespacePrefix is
defined as stub.

Extension element header Example 34 shows the header file for the stub extension element class.

Example 33: Sample WSDL with Stub Extension Element

<?xml version="1.0" encoding="UTF-8"?>
<definitions ...
 targetNamespace = ...
 xmlns = "http://schemas.xmlsoap.org/wsdl/"
 xmlns:stub= "http://schemas.iona.com/transports/stub"
 ...
 >
 ...
 <service ... >
 <port ... >
 <stub:address
 location="local_0001"
 />
 </port>
 </service>
</definitions>

Example 34: Header for the StubTransportWSDLAddress Class

// C++
#include "stub_transport_wsdl_extension_element.h"

namespace IT_Transport_Stub
{

1 class StubTransportWSDLAddress :
 public StubTransportWSDLExtensionElement
 119

CHAPTER 3 | WSDL Extension Elements
 {
 public:

 StubTransportWSDLAddress(
 IT_WSDL::WSDLExtensibleNode* the_node
);
 StubTransportWSDLAddress();
 virtual ~StubTransportWSDLAddress();

 IT_WSDL::WSDLExtensionElement*
 clone() const;

 virtual bool
 parse(
 const IT_Bus::XMLIterator & element_iterator,
 const IT_Bus::XMLNode & element,
 IT_WSDL::WSDLErrorHandler & error_handler
);

 const IT_Bus::String&
2 get_location() const;

 virtual void
 set_location(
 const IT_Bus::String & location
);

 virtual void
3 write_attributes(

 XMLOutputStream & stream
) const IT_THROW_DECL((IOException));

 virtual
 IT_Bus::AnyType&
 operator=(
 const IT_Bus::AnyType & rhs
)
 {
 return *this;
 }

4 static const IT_Bus::String ELEMENT_NAME;
 static const IT_Bus::String TYPE_ATTRIBUTE_NAME;

 private:

Example 34: Header for the StubTransportWSDLAddress Class
120

Extension Elements for the Stub Plug-In
The preceding header file can be described as follows:

1. The stub extension element inherits from the stub extension element base

class, StubTransportWSDLExtensionElement.

2. The get_location() and set_location() functions are not inherited.

They are specific to the StubTransportWSDLAddress class.

3. The write_attributes() function is inherited from the

IT_Bus::XMLNode base class.

4. Two convenient constants are declared here: ELEMENT_NAME is the local

part of the extension element QName, which is address;

TYPE_ATTRIBUTE_NAME is the name of the attribute, location.

5. The m_location variable stores the value of the location attribute,

(which is, essentially, all of the useful information that is contained in the

address element).

Extension element
implementation

Example 35 shows the implementation of the stub extension element class.

5 IT_Bus::String m_location;
 IT_Bus::String m_target_namespace;
 ...
 };
};

Example 34: Header for the StubTransportWSDLAddress Class

Example 35: Implementation of the StubTransportWSDLAddress Class

// C++
#include "stub_transport_wsdl_address.h"

#include "stub_transport_wsdl_extension_factory.h"

using namespace IT_Bus;
using namespace IT_WSDL;
using namespace IT_Transport_Stub;

1 const String StubTransportWSDLAddress::ELEMENT_NAME = "address";
const String StubTransportWSDLAddress::TYPE_ATTRIBUTE_NAME =

"location";
 121

CHAPTER 3 | WSDL Extension Elements
2 StubTransportWSDLAddress::StubTransportWSDLAddress(
 IT_WSDL::WSDLExtensibleNode* the_node
)
 : StubTransportWSDLExtensionElement(the_node)
{
 // complete
}

3 StubTransportWSDLAddress::StubTransportWSDLAddress()
 : StubTransportWSDLExtensionElement(0)
{
 set_tag_name(
 StubTransportWSDLAddress::ELEMENT_NAME.c_str(),
 StubTransportWSDLExtensionFactory::SCHEMA_URL.c_str(),
 0
);
}

StubTransportWSDLAddress::~StubTransportWSDLAddress()
{
 // complete
}

IT_WSDL::WSDLExtensionElement*
4 StubTransportWSDLAddress::clone() const

{
 StubTransportWSDLAddress* clone =
 new StubTransportWSDLAddress();
 clone->set_location(this->get_location());
 return clone;
}

bool
5 StubTransportWSDLAddress::parse(

 const XMLIterator & element_iterator,
 const IT_Bus::XMLNode & element,
 IT_WSDL::WSDLErrorHandler & error_handler
)
{

6 XMLNode::operator =(element);

Example 35: Implementation of the StubTransportWSDLAddress Class
122

Extension Elements for the Stub Plug-In
The preceding class implementation can be explained as follows:

1. The ELEMENT_NAME and TYPE_ATTRIBUTE_NAME constants are defined here.

2. This form of the constructor takes a pointer to the parent extensible

element. This is the form of constructor called by the stub plug-in’s WSDL

extension factory.

3. The default constructor sets the QName of this element by calling the

set_tag_name() function, which is inherited from the IT_Bus::XMLNode

class.

4. The clone() method makes a copy of the WSDL extension element.

7 m_location = element_iterator.get_field_as_string(
 TYPE_ATTRIBUTE_NAME
);
 return true;
}

const String&
8 StubTransportWSDLAddress::get_location() const

{
 return m_location;
}

void
StubTransportWSDLAddress::set_location(
 const String & location
)
{
 m_location = location;
}

void
9 StubTransportWSDLAddress::write_attributes(

 XMLOutputStream & stream
) const IT_THROW_DECL((IOException))
{
 XMLAttributeWriter::write(
 stream,
 "location",
 m_location
);
}

Example 35: Implementation of the StubTransportWSDLAddress Class
 123

CHAPTER 3 | WSDL Extension Elements
5. The parse() function is automatically called by the Artix core as it

constructs the in-memory WSDL model of the application’s WSDL

contract.

6. This call to XMLNode::operator=() copies the contents of the element

parameter into the current element. The unusual syntax ensures that only

the XMLNode version of the assignment operator is used (as opposed to an

assignment operator defined lower down the inheritance hierarchy).

7. The call to XMLIterator::get_field_as_string() searches the node for

the value of the location attribute (in this context, field means an attribute

value).

8. The get_location() function can be called by other components of the

stub plug-in to access the value of the location attribute from the address

element.

9. In order to support writing to an output stream (as required for

compatibility with the wsdl_publish plug-in, for example), it is necessary

to implement the write_attributes() function.

The XMLAttributeWriter class is a utility class that facilitates writing

XML attributes to the output stream. It defines a collection of overloaded

static write() functions that enable you to write basic types as attributes.

The XMLAttributeWriter::write() function can take any of the

following types as its third argument: IT_Bus::String&,

IT_Bus::Boolean, IT_Bus::Float, IT_Bus::Double, IT_Bus::Int,

IT_Bus::Long, IT_Bus::Short, IT_Bus::UInt, IT_Bus::ULong,

IT_Bus::UShort, IT_Bus::Byte, IT_Bus::UByte, IT_Bus::DateTime,

IT_Bus::Decimal, IT_Bus::BinaryInParam.
124

Extension Elements for the Stub Plug-In
Implementing the Extension Factory

Overview This subsection describes how to write the stub extension factory class. An
extension factory must be capable of creating all types of extension element that
belong to a specific namespace (identified by a namespace URI).

In particular, the stub extension factory must be capable of creating all WSDL
extension elements belonging to the
http://schemas.iona.com/transports/iiop_stub namespace. There is, in
fact, only one such extension element: stubPrefix:address.

Stub extension factory header Example 36 shows the header file for the stub extension factory class.

Example 36: Header for the StubTransportWSDLExtensionFactory Class

// C++
#include <it_wsdl/wsdl_extension_factory.h>
#include <it_bus/bus.h>
#include "stub_transport_wsdl_extension_element.h"

namespace IT_Transport_Stub
{

1 class StubTransportWSDLExtensionFactory
 : public IT_WSDL::WSDLExtensionFactory
 {
 public:
 virtual
 IT_WSDL::WSDLExtensionElement *
 create_extension_element(
 IT_WSDL::WSDLExtensibleNode& parent,
 const IT_Bus::QName& extension_element
) const;

 virtual IT_Bus::AnyType *
 create_type(
 const IT_Bus::QName& extension_element
) const;

 virtual void
 destroy_type(
 IT_Bus::AnyType * element
) const;
 125

CHAPTER 3 | WSDL Extension Elements
The preceding header file can be explained as follows:

1. The extension factory must inherit from the

IT_WSDL::WSDLExtensionFactory base class.

2. The get_extension_element() function is not inherited. It is specific to

the stub WSDL extension factory.

3. The SCHEMA_URL is a convenient string constant that stores the namespace

URI for this extension factory. It is initialized to be

http://schemas.iona.com/transports/stub.

Stub extension factory
implementation

Example 37 shows the implementation of the stub extension factory class.

 static StubTransportWSDLExtensionFactory &
 get_instance();

 static StubTransportWSDLExtensionElement*
2 get_extension_element(

 const IT_WSDL::WSDLPort& wsdl_port,
 const IT_Bus::String& element_name
);

 StubTransportWSDLExtensionFactory();
 virtual ~StubTransportWSDLExtensionFactory();

3 static const IT_Bus::String SCHEMA_URL;

 private:
 ...
 };
};

Example 36: Header for the StubTransportWSDLExtensionFactory Class

Example 37: Implementation of the StubTransportWSDLExtensionFactory

// C++
#include "stub_transport_wsdl_address.h"
#include "stub_transport_wsdl_extension_factory.h"

using namespace IT_WSDL;
using namespace IT_Bus;
using namespace IT_Transport_Stub;
126

Extension Elements for the Stub Plug-In
1 const String StubTransportWSDLExtensionFactory::SCHEMA_URL =
"http://schemas.iona.com/transports/stub";

StubTransportWSDLExtensionFactory::StubTransportWSDLExtensionFac
tory()

{
 // complete
}

StubTransportWSDLExtensionFactory::~StubTransportWSDLExtensionFa
ctory()

{
 // complete
}

IT_Bus::AnyType *
2 StubTransportWSDLExtensionFactory::create_type(

 const QName& extension_element
) const
{
 return 0;
}

WSDLExtensionElement *
3 StubTransportWSDLExtensionFactory::create_extension_element(

 WSDLExtensibleNode& parent,
 const QName& extension_element
) const
{
 String local_part = extension_element.get_local_part();

4 if (local_part == StubTransportWSDLAddress::ELEMENT_NAME)
 {
 return new StubTransportWSDLAddress(&parent);
 }

5 return 0;
}

void
StubTransportWSDLExtensionFactory::destroy_type(
 IT_Bus::AnyType * element
) const
{
 delete IT_DYNAMIC_CAST(

Example 37: Implementation of the StubTransportWSDLExtensionFactory
 127

CHAPTER 3 | WSDL Extension Elements
 StubTransportWSDLExtensionElement *,
 element
);
}

6 StubTransportWSDLExtensionFactory
it_glob_stub_transport_wsdl_extension_factory_instance;

StubTransportWSDLExtensionFactory &
StubTransportWSDLExtensionFactory::get_instance()
{
 return

it_glob_stub_transport_wsdl_extension_factory_instance;
}

StubTransportWSDLExtensionElement*
7 StubTransportWSDLExtensionFactory::get_extension_element(

 const WSDLPort& wsdl_port,
 const String& element_name
)
{
 StubTransportWSDLExtensionElement* extension_element = 0;

8 const WSDLExtensionElementList & port_children_nodes =
 wsdl_port.get_extension_elements();

9 WSDLExtensionElementList::const_iterator node_iter =
 port_children_nodes.begin();

 QName element_qname("", element_name, SCHEMA_URL);

 while (node_iter != port_children_nodes.end())
 {
 const QName & curr_qname =
 (*node_iter)->get_element_name();

 if (element_qname == curr_qname)
 {
 extension_element = IT_DYNAMIC_CAST(
 StubTransportWSDLExtensionElement *,
 (*node_iter)
);
 }
 node_iter++;
 }

Example 37: Implementation of the StubTransportWSDLExtensionFactory
128

Extension Elements for the Stub Plug-In
The preceding implementation class can be explained as follows:

1. This line sets the SCHEMA_URL to

http://schemas.iona.com/transports/stub, which is the namespace

URI that identifies this WSDL extension factory.

2. A WSDL extension factory can also be used to define new XML schema

types, which can be instantiated using the create_type() function.

Because the stub plug-in’s schema does not define any new types, this

function has a dummy implementation.

3. The create_extension_element() function is called by the Artix core

while it is creating the in-memory WSDL parse tree. When the WSDL

parser encounters an element that belongs to the stub plug-in’s namespace

URI, it delegates creation of the element to this extension factory. The

create_extension_element() function is responsible for creating all of

the different kinds of elements that belong to the

http://schemas.iona.com/transports/stub namespace URI.

4. Because there is only one extension element defined by the stub plug-in

(that is, address), it is only necessary to check if the local part of the

QName equals address before creating a StubTransportWSDLAddress

instance.

In general, however, an implementation of create_extension_element()

would typically have to compare the value of local_part with several

different extension element names to select the right type of element.

5. A return value of 0 indicates that create_extension_element() could not

create the requested element type.

6. This line creates a single global instance of the stub plug-in’s WSDL

extension factory.

 return extension_element;
}

Example 37: Implementation of the StubTransportWSDLExtensionFactory

Note: You do not necessarily have to create this factory as a global
static object. Any variation of a singleton implementation pattern would
do here.
 129

CHAPTER 3 | WSDL Extension Elements
7. The get_extension_element() function is specific to this extension

factory implementation. It searches a WSDL port element, wsdl_port, for

a sub-element with the given name, element_name. The transport code

uses this function to extract configuration details from the WSDL port.

8. The get_extension_elements() function returns a list of all the

sub-elements contained in the WSDL port.

9. The extension element list is modelled on the C++ Standard Template

Library list type, std::list. Hence, you can use an iterator to search

through the WSDL port’s sub-elements.
130

Extension Elements for the Stub Plug-In
Registering the Extension Factory

Overview The final step is to register the stub extension factory, so that the extensions
become available to the overall WSDL parse tree. Registration is performed by
calling the register_extension_factory() function on the WSDL factory
object.

WSDL factory The WSDL factory is an object of IT_WSDL::WSDLFactory type that maintains a
registry of all WSDL extension factory classes. The following
IT_WSDL::WSDLFactory member functions manage the extension factory
registry:

// C++
void register_extension_factory(
 const IT_Bus::String &extension_namespace,
 const WSDLExtensionFactory &factory
);

void deregister_extension_factory(
 const IT_Bus::String &extension_namespace
);

Namespace URI Registration associates a specific namespace URI with an extension factory.
While parsing a WSDL file, the WSDL factory will call on the extension factory
whenever it encounters elements from this namespace.

In the case of the stub extension factory, the namespace URI is:

http://schemas.iona.com/transports/stub
 131

CHAPTER 3 | WSDL Extension Elements
Example Example 38 shows how to register a stub extension factory with the
IT_WSDL::WSDLFactory object. For the stub plug-in, registration is performed
by the TransportFactory object—see “Implementing the Transport Factory”
on page 183.

Example 38: Registering a WSDL Extension Factory Instance

// C++
...
using namespace IT_Bus;
using namespace IT_WSDL;
...
void
IT_Transport_Stub::StubTransportFactory::register_wsdl_extension

_factories(
 IT_WSDL::WSDLFactory & factory
) const
{
 factory.register_extension_factory(
 "http://schemas.iona.com/transports/stub",
 it_glob_stub_transport_wsdl_extension_factory_instance
);
}

void
IT_Transport_Stub::StubTransportFactory::deregister_wsdl_extensi

on_factories(
 IT_WSDL::WSDLFactory & factory
) const
{
 factory.deregister_extension_factory(
 "http://schemas.iona.com/transports/stub"
);
}

132

CHAPTER 4

Artix Transport
Plug-Ins
This chapter describes how to implement an Artix transport
plug-in, which enables you to integrate Artix with any transport
protocol.

In this chapter This chapter discusses the following topics:

The Artix Transport Layer page 134

Transport Threading Models page 140

Dispatch Policies page 152

Accessing Contexts page 161

Oneway Semantics page 165

Stub Transport Example page 168
 133

CHAPTER 4 | Artix Transport Plug-Ins
The Artix Transport Layer

Overview This section provides an overview of the architecture and API for the Artix
transport layer.

In this section This section contains the following subsections:

Architecture Overview page 135

Artix Transport Classes page 137
134

The Artix Transport Layer
Architecture Overview

Transport architecture Figure 10 gives a high-level overview of the Artix transport architecture.

WSDL port The WSDL port, as shown in Figure 10, refers to the WSDL port element that
specifies the connection parameters for this transport instance. For example, the
WSDL port for a TCP/IP-based transport would specify values for the server’s
host and IP port.

In the general case, a WSDL port can specify connection parameters for both
client and server.

Figure 10: Artix Transport Architecture

Artix Client
Transport

Artix
Binding

Artix Client

request response

send() receive()

Artix Server
Transport

Artix
Binding

Artix Server

request response

request

response

WSDL Port
<service ...>
 <port ...>
 ...
 </port>
</service>

initialize() initialize()
 135

CHAPTER 4 | Artix Transport Plug-Ins
Client transport A client transport is an object of IT_Bus::ClientTransport type, which can be
implemented by an Artix plug-in developer. The main functions supported by
the client transport class are, as follows:

• initialize()—configure the client connection (usually based on the

parameters read from the WSDL port).

• connect()/disconnect()—open/close a connection to the remote host.

• invoke()/invoke_oneway()—send and receive messages in raw binary

format.

Server transport A server transport is an object of IT_Bus::ServerTransport type, which can be
implemented by an Artix plug-in developer. The main functions supported by
the server transport class are, as follows:

• activate()—begin listening for client connection attempts and incoming

request messages. Typically, the implementation of this function spawns a

new thread to listen for incoming messages.

• deactivate()—stop listening for client connection attempts and incoming

request messages.

• get_configuration()—return a reference to the WSDL extension

element that configures this transport.

• shutdown()—notifies the server transport that the Bus is shutting down.

• send()—a callback to send reply messages back to the client. This

function is called, only if you select an asynchronous style of message

dispatch (which is indicated by enabling the requires stack unwind policy).

• run()—for a certain combination of policies, this function contains the

code that listens for incoming requests. If you select the

MESSAGING_PORT_DRIVEN threading resources policy in combination with

the MULTI_THREADED messaging port threading policy, the run() function

is called concurrently by multiple messaging port threads.
136

The Artix Transport Layer
Artix Transport Classes

Overview Figure 11 shows an overview of the main classes that are relevant to the
implementation of an Artix transport. A brief description of each of these classes
is provided in this subsection.

TransportFactory Class The IT_Bus::TransportFactory is responsible for creating the basic objects in
a transport implementation.When implementing a transport, you must
implement a class that derives from TransportFactory and then register an
instance of the transport factory implementation with the Artix Bus.

ClientTransport Class For the client side of a transport, you must define and implement a class that
derives from the IT_Bus::ClientTransport class. The client transport must be
capable of opening a connection to a remote service, as well as sending and
receiving binary buffers through the transport.

Figure 11: Overview of the Artix Transport Classes

cr
ea

te
s creates

cr
ea

te
s

IT_Bus::TransportPolicyList

IT_Bus::TransportFactory

IT_Bus::ClientTransport IT_Bus::ServerTransport IT_Bus::TransportCallback

IT_Bus::DispatchInfo

cr
ea

te
s

 137

CHAPTER 4 | Artix Transport Plug-Ins
ServerTransport Class For the server side of a transport, you must define and implement a class that
derives from the IT_Bus::ServerTransport class. The server transport
implementation should be capable of listening for incoming request messages
(in binary format) from the transport layer and dispatching these messages up
the call stack.

Requests are dispatched by calling the
IT_Bus::TransportCallback::dispatch() function.

TransportCallback Class The IT_Bus::TransportCallback class is provided by the Artix runtime; you
do not need to implement this class. The most important member of
TransportCallback is the dispatch() function, which the server code uses to
dispatch a request message up the call stack.

The TransportCallback class acts as an observer for the ServerTransport
class. The TransportCallback functions must be called from within a
ServerTransport object as follows:

• TransportCallback::transport_activated()—called from within

ServerTransport::activate(), after the transport is activated.

• TransportCallback::transport_deactivated()—called from within

ServerTransport::deactivate(), after the transport is deactivated.

• TransportCallback::transport_shutdown()—called from within

ServerTransport::shutdown(), after the transport has been shut down.

DispatchInfo Class The IT_Bus::DispatchInfo class is provided by the Artix runtime. You can
obtain a DispatchInfo object by calling the
TransportCallback::get_dispatch_context() function. On the server side,
a DispatchInfo object is used to encapsulate additional information about the
current message.

For example, the DispatchInfo object is used to hold incoming and outgoing
context data. You can also use the DispatchInfo::get_correlation_id()
function to obtain an ID that lets you match incoming requests to outgoing
replies.
138

The Artix Transport Layer
TransportPolicyList Class The IT_Bus::TransportPolicyList holds a collection of policy options that
affect the semantics of the server side of the transport. You can customize the
interaction between the Artix runtime and the server transport by setting the
appropriate policies on a TransportPolicyList instance and returning this
instance from the TransportFactory::get_policies() function.
 139

CHAPTER 4 | Artix Transport Plug-Ins
Transport Threading Models

Overview Artix provides a variety of threading models for server transports. For a
relatively simple server transport implementation, you can take advantage of the
messaging port thread pool, which makes it unnecessary to write the threading
code yourself. Alternatively, if you need more flexibility, you can use the
externally driven threading model, which allows you to implement a custom
threading model.

In this section This section contains the following subsections:

Threading Introduction page 141

MESSAGING_PORT_DRIVEN and MULTI_INSTANCE page 143

MESSAGING_PORT_DRIVEN and MULTI_THREADED page 145

MESSAGING_PORT_DRIVEN and SINGLE_THREADED page 148

EXTERNALLY_DRIVEN page 150
140

Transport Threading Models
Threading Introduction

Overview The server transport threading model is selected by setting threading policies on
an IT_Bus::TransportPolicyList object. This section provides a brief
overview of the various threading policy combinations. The chosen threading
policy combination affects the transport in two ways:

• It dictates a particular programming model for the server transport and

• It regulates the interaction between the Artix runtime and the server

transport.

Threading resources policy The threading resources policy is used to tell the Artix runtime where the server
transport’s threading resources must come from:

• MESSAGING_PORT_DRIVEN policy value—the threads used to read incoming

request messages are supplied from the messaging port thread pool. This

policy setting can be combined with one of the following messaging port

threading policies:

♦ MULTI_INSTANCE,

♦ MULTI_THREADED,

♦ SINGLE_THREADED.

• EXTERNALLY_DRIVEN policy value—the reader threads are either created by

the server transport itself or provided from some other external source.

Messaging port threading model
policy

If you have selected the MESSAGING_PORT_DRIVEN threading resources policy,
you can combine it with a messaging port threading model policy. The following
policy values are supported:

• MULTI_INSTANCE policy value—the Artix runtime creates multiple

instances of the ServerTransport class and each instance consumes a

single thread from the messaging port thread pool.

• MULTI_THREADED policy value—the Artix runtime creates a single instance

of the ServerTransport class and this single instance consumes multiple

threads from the messaging port thread pool.
 141

CHAPTER 4 | Artix Transport Plug-Ins
• SINGLE_THREADED policy value—the Artix runtime creates a single

instance of the ServerTransport class and this instance consumes a single

thread from the messaging port thread pool.

Setting the server transport
threading policies

To set the server threading policies, create an IT_Bus::TransportPolicyList
instance, initialize it with the relevant policy values, and return the policy list
from the TransportFactory::get_policies() function.

When the Artix runtime is about to activate a service, it calls the
get_policies() function to discover what kind of policies should govern the
server transport. This includes the settings for the threading model.
142

Transport Threading Models
MESSAGING_PORT_DRIVEN and MULTI_INSTANCE

Overview By combining the MESSAGING_PORT_DRIVEN and MULTI_INSTANCE policy values,
you obtain the threading model shown in Figure 12. When the service is
activated, Artix creates multiple ServerTransport instances to service the
incoming requests. Each of the ServerTransport instances consumes a thread
from the messaging port thread pool.

The implementation of the activate() function incorporates a while loop
which continuously reads request messages from the transport layer and
dispatches these requests to a TransportCallback object. It is this blocked
activate() function which consumes a messaging port thread.

How it works The MESSAGING_PORT_DRIVEN and MULTI_INSTANCE threading model shown in
Figure 12 works as follows:

Figure 12: MESSAGING_PORT_DRIVEN and MULTI_INSTANCE Threading
Model

while(...) {
 ...
}

ServerTransport

activate()

Messaging Port Thread Pool TransportCallback

dispatch()

1
2

while(...) {
 ...
}

activate()

dispatch()

1
2

Stage Description

1 Each of the threads in the messaging port thread pool calls
activate() on a separate IT_Bus::ServerTransport instance.
The activate() function remains blocked for as long as the
service is active (the activate() implementation typically
contains a while loop).
 143

CHAPTER 4 | Artix Transport Plug-Ins
Setting the policies To set the server threading policies, create an IT_Bus::TransportPolicyList
instance, initialize it with the relevant policy values, and return the policy list
from the TransportFactory::get_policies() function.

Example 39 shows how to set the MESSAGING_PORT_DRIVEN and
MULTI_INSTANCE policy values.

Configuring the thread pool To configure the thread pool for a transport that uses a combination of the
MESSAGING_PORT_DRIVEN and MULTI_INSTANCE policies, set the following
variable in the Artix configuration file:

policy:messaging_transport:min_threads

This variable specifies the number of threads in the messaging port’s thread
pool, when the multi-instance policy is in effect. The default is 1.

2 Each of the ServerTransport objects calls dispatch() on a
separate IT_Bus::TransportCallback instance.

Stage Description

Example 39: Setting Policies for MESSAGING_PORT_DRIVEN and
MULTI_INSTANCE Threading Model

// C++
void
TransportFactoryImpl::initialize(Bus_ptr bus)
{
 m_transport_policylist =
 bus->get_pdk_bus()->create_transport_policy_list();
 m_transport_policylist->set_policy_threading_resources(
 IT_Bus::MESSAGING_PORT_DRIVEN
);
 m_transport_policylist->set_policy_messaging_port_threading(
 IT_Bus::MULTI_INSTANCE
);
}

const TransportPolicyList*
TransportFactoryImpl::get_policies()
{
 return m_transport_policylist;
}

144

Transport Threading Models
MESSAGING_PORT_DRIVEN and MULTI_THREADED

Overview By combining the MESSAGING_PORT_DRIVEN and MULTI_THREADED policy values,
you obtain the threading model shown in Figure 13. When the service is
activated, Artix creates a single ServerTransport instance to service the
incoming requests. The activate() function is responsible for initializing the
transport and the run() function, which is called concurrently by multiple
threads, is responsible for processing incoming requests.

The implementation of the run() function incorporates a while loop which
continuously reads request messages from the transport layer and dispatches
these requests to the TransportCallback object.

How it works The MESSAGING_PORT_DRIVEN and MULTI_THREADED threading model shown in
Figure 13 works as follows:

Figure 13: MESSAGING_PORT_DRIVEN and MULTI_THREADED
Threading Model

while(...) {
 ...
}

ServerTransport

activate()

Messaging Port Thread Pool TransportCallback

dispatch()

1

3

run()

dispatch()

2
run()

Stage Description

1 A thread from the messaging port thread pool calls activate() on
the sole IT_Bus::ServerTransport instance. The activate()
function puts the transport layer into a state where it is ready to
receive request messages, but the function does not process any
messages and returns immediately.
 145

CHAPTER 4 | Artix Transport Plug-Ins
Setting the policies To set the server threading policies, create an IT_Bus::TransportPolicyList
instance, initialize it with the relevant policy values, and return the policy list
from the TransportFactory::get_policies() function.

Example 40 shows how to set the MESSAGING_PORT_DRIVEN and
MULTI_THREEADED policy values.

2 A number of threads from the thread pool call run() on the sole
IT_Bus::ServerTransport instance. The run() function is
responsible for reading request messages from the transport and
dispatching them to the TransportCallback object. Hence, the
calls to run() remain blocked for as long as the service is active.

3 Within each of the concurrent run() calls, the implementation
code calls dispatch() on the IT_Bus::TransportCallback
instance whenever a request message is received on the transport.

Stage Description

Example 40: Setting Policies for MESSAGING_PORT_DRIVEN and
MULTI_THREADED Threading Model

// C++
void
TransportFactoryImpl::initialize(Bus_ptr bus)
{
 m_transport_policylist =
 bus->get_pdk_bus()->create_transport_policy_list();
 m_transport_policylist->set_policy_threading_resources(
 IT_Bus::MESSAGING_PORT_DRIVEN
);
 m_transport_policylist->set_policy_messaging_port_threading(
 IT_Bus::MULTI_THREADED
);
}

const TransportPolicyList*
TransportFactoryImpl::get_policies()
{
 return m_transport_policylist;
}

146

Transport Threading Models
Thread safety When you use the MULTI_THREADED policy value, there is only a single instance
of the ServerTransport, but the instance’s run() function is called
concurrently from multiple threads. It follows that you must take care to make
the implementation of run() completely thread-safe.

For example, member variables of the ServerTransport class must be protected
by a mutex lock whenever they are accessed from within the run() function.

Configuring the thread pool To configure the thread pool for a transport that uses a combination of the
MESSAGING_PORT_DRIVEN and MULTI_THREADED policies, set the following
variable in the Artix configuration file:

policy:messaging_transport:concurrency

This variable specifies the number of threads in the messaging port’s thread
pool, when the multi-threaded policy is in effect. The default is 1.
 147

CHAPTER 4 | Artix Transport Plug-Ins
MESSAGING_PORT_DRIVEN and SINGLE_THREADED

Overview By combining the MESSAGING_PORT_DRIVEN and SINGLE_THREADED policy
values, you obtain the threading model shown in Figure 14. When the service is
activated, Artix creates a single ServerTransport instance to service the
incoming requests. The ServerTransport instance consumes a single thread
from the messaging port thread pool.

The implementation of the activate() function incorporates a while loop
which continuously reads request messages from the transport layer and
dispatches these requests to the TransportCallback object.

How it works The MESSAGING_PORT_DRIVEN and SINGLE_THREADED threading model shown in
Figure 14 works as follows

Setting the policies To set the server threading policies, create an IT_Bus::TransportPolicyList
instance, initialize it with the relevant policy values, and return the policy list
from the TransportFactory::get_policies() function.

Figure 14: MESSAGING_PORT_DRIVEN and SINGLE_THREADED
Threading Model

while(...) {
 ...
}

ServerTransport

activate()

Messaging Port Thread Pool TransportCallback

dispatch()

1
2

Stage Description

1 A single thread in the messaging port thread pool calls activate()
on a single IT_Bus::ServerTransport instance. The activate()
function remains blocked for as long as the service is active (the
activate() implementation typically contains a while loop).

2 The ServerTransport object calls dispatch() on the
IT_Bus::TransportCallback instance.
148

Transport Threading Models
Example 41 shows how to set the MESSAGING_PORT_DRIVEN and
SINGLE_THREADED policy values.

Example 41: Setting Policies for MESSAGING_PORT_DRIVEN and
SINGLE_THREADED Threading Model

// C++
void
TransportFactoryImpl::initialize(Bus_ptr bus)
{
 m_transport_policylist =
 bus->get_pdk_bus()->create_transport_policy_list();
 m_transport_policylist->set_policy_threading_resources(
 IT_Bus::MESSAGING_PORT_DRIVEN
);
 m_transport_policylist->set_policy_messaging_port_threading(
 IT_Bus::SINGLE_THREADED
);
}

const TransportPolicyList*
TransportFactoryImpl::get_policies()
{
 return m_transport_policylist;
}

 149

CHAPTER 4 | Artix Transport Plug-Ins
EXTERNALLY_DRIVEN

Overview By selecting the EXTERNALLY_DRIVEN policy value, you obtain the threading
model shown in Figure 15. When the service is activated, Artix creates a single
ServerTransport instance to service the incoming requests. The
ServerTransport instance does not consume any threads from the messaging
port thread pool. That is, the call to activate() must be non-blocking.

The essence of the EXTERNALLY_DRIVEN thread model is that it does not consume
any messaging port threads. This model is useful if you use a transport library
that has its own threading capabilities.

How it works The EXTERNALLY_DRIVEN threading model shown in Figure 15 works as follows

Figure 15: EXTERNALLY_DRIVEN Threading Model

ServerTransport

activate()

Messaging Port Thread Pool TransportCallback

dispatch()

1

3
External Thread

Create T
hread

2

Stage Description

1 A single thread in the messaging port thread pool calls activate()
on an IT_Bus::ServerTransport instance. The activate()
function puts the transport layer into a state where it is ready to
receive request messages, but it does not process any messages.
150

Transport Threading Models
Setting the policies To set the server threading policies, create an IT_Bus::TransportPolicyList
instance, initialize it with the relevant policy values, and return the policy list
from the TransportFactory::get_policies() function.

Example 42 shows how to set the EXTERNALLY_DRIVEN policy value.

2 Before returning, the activate() function either obtains a thread
from an external source or creates a new thread to process the
incoming request messages.

The request processing code could be put into a private member
function of ServerTransport or it could belong to a different
object altogether.

3 The request processing code, which is running in the external
thread, calls dispatch() on the IT_Bus::TransportCallback
instance.

Stage Description

Example 42: Setting Policies for EXTERNALLY_DRIVEN Threading Model

// C++
void
TransportFactoryImpl::initialize(Bus_ptr bus)
{
 m_transport_policylist =
 bus->get_pdk_bus()->create_transport_policy_list();
 m_transport_policylist->set_policy_threading_resources(
 IT_Bus::EXTERNALLY_DRIVEN
);
}

const TransportPolicyList*
TransportFactoryImpl::get_policies()
{
 return m_transport_policylist;
}

 151

CHAPTER 4 | Artix Transport Plug-Ins
Dispatch Policies

Overview Dispatching refers to the stage just after the server transport obtains the request
message in the form of a raw buffer. The server transport calls the dispatch()
function to pass the request message up to the next layer in the stack, where it is
processed and ultimately routed to the appropriate servant object.

The dispatch policies enable you to control the degree to which dispatching is
synchronized with the transport layer. Broadly speaking, the two main options
are synchronous call semantics (RPC-style dispatch) or asynchronous call
semantics (messaging-style dispatch).

In this section This section contains the following subsections:

Dispatch Policy Overview page 153

RPC-Style Dispatch page 155

Messaging-Style Dispatch page 158
152

Dispatch Policies
Dispatch Policy Overview

Overview On the server side, the manner in which a request message is dispatched to the
upper layers of an application can be influenced by a number of policies, as
follows:

• Stack unwind policy.

• Asynchronous dispatch policy.

Stack unwind policy The stack unwind policy can be set or read from a TransportPolicyList object
using the following API functions:

The stack unwind policy selects between an RPC-style dispatch and a
messaging-style dispatch.

If the stack unwind policy is true, you must call the
DispatchInfo::provide_response_buffer() function to provide a reply
buffer reference and the TransportCallback::dispatch() function blocks
until the reply buffer is written.

If the stack unwind policy is false, you must call the
TransportCallback::dispatch() function to dispatch a request buffer. The
reply buffer is passed back to the ServerTransport through a callback on the
ServerTransport::send() function. In this case also, the dispatch() function
blocks until the reply buffer is written.

The default is false.

// C++
namespace IT_Bus {
 class IT_BUS_API TransportPolicyList
 {
 public:
 ...
 virtual void
 set_policy_requires_stack_unwind(const bool policy) = 0;

 virtual const bool
 get_policy_requires_stack_unwind() const = 0;
};
 153

CHAPTER 4 | Artix Transport Plug-Ins
Asynchronous dispatch policy The asynchronous dispatch policy can be set on a per-request basis and is set by
passing a boolean value into the optional parameter of the
TransportCallback::dispatch() function, which has the following signature:

The asynchronous dispatch policy is an optimization that enables you to
decouple the reader thread from the dispatch processing.

If the asynchronous dispatch policy is true, the dispatch() function returns
immediately after adding the request message to a work queue.

If the asynchronous dispatch policy is false, the dispatch() function remains
blocked until the dispatch processing is complete.

// C++
namespace IT_Bus {
 class IT_BUS_API TransportCallback
 {
 public:
 ...
 virtual void
 dispatch(
 BinaryBuffer& request_message,
 DispatchInfo& dispatch_context,
 bool dispatch_acynchronously_if_possible = 0
) = 0;
};

Note: As of Artix 3.0.2, the asynchronous dispatch policy has not yet been
implemented. That is, the dispatch() function always blocks. The
non-blocking functionality will be implemented in a later release.
154

Dispatch Policies
RPC-Style Dispatch

Overview Some implementations of a server transport could be layered over a Remote
Procedure Call (RPC) transport infrastructure. For this kind of transport, it is
more convenient if the upcall blocks until the reply buffer becomes available
(synchronous invocation). Figure 16 shows an overview of an RPC-style
dispatch call.

Dispatch steps The stages shown in Figure 16 can be described as follows:

Figure 16: Overview of RPC-Style Dispatch

ServerTransport TransportCallback

dispatch()
1

3

2

4

Request Buffer

Reply Buffer

Stage Description

1 The server transport code calls dispatch() on the
TransportCallback object, passing in a reference to the request
buffer.

2 The TransportCallback object processes the request message,
resulting in an upcall to the relevant servant object.

3 After processing the request, the TransportCallback writes the
reply data into the reply buffer.

Note: The reply buffer must be supplied to the
TransportCallback object in advance, using the
DispatchInfo::provide_response_buffer() function. For
details, see Example 44 on page 157.
 155

CHAPTER 4 | Artix Transport Plug-Ins
Setting the requisite policies To set the transport policies, create an IT_Bus::TransportPolicyList
instance, initialize it with the relevant policy values, and then return the policy
list from the TransportFactory::get_policies() function. Example 43
shows how to implement a transport factory with the policies required for
RPC-style dispatch.

Implementation example The code fragment in Example 44 shows how to make an upcall into the Artix
application using RPC-style dispatch. This code fragment could appear in the
body of the ServerTransport::activate() function, in the body of the

4 The dispatch() call remains blocked until the reply buffer is
written. After dispatch() returns, therefore, the reply buffer is
available and ready to be sent back to the client.

Stage Description

Example 43: Setting Policies for RPC-Style Dispatch

// C++
void
TransportFactoryImpl::initialize(Bus_ptr bus)
{
 m_transport_policylist =
 bus->get_pdk_bus()->create_transport_policy_list();
 m_transport_policylist->set_policy_requires_stack_unwind(
 true
);
}

const TransportPolicyList*
TransportFactoryImpl::get_policies()
{
 return m_transport_policylist;
}

156

Dispatch Policies
ServerTransport::run() function, or in a completely different object,
depending on the type of threading model that is used (see “Transport Threading
Models” on page 140).

Example 44: Making an Upcall Using RPC-Style Dispatch

// C++
DispatchInfo& dispatch_context =

m_callback->get_dispatch_context();

dispatch_context.provide_response_buffer(
 vvReceiveBuffer
);

m_callback->dispatch(
 vvSendBuffer,
 dispatch_context
);

// At this point, vvReceiveBuffer contains the reply message.
 157

CHAPTER 4 | Artix Transport Plug-Ins
Messaging-Style Dispatch

Overview The default style of dispatching used by the Artix server transport is
messaging-style dispatch, which is suitable for message-oriented transports such
as the MQ-Series transport. For this kind of transport, the upcall returns as soon
as it has dispatched the request buffer. The reply buffer is returned
asynchronously, through a callback on the ServerTransport::send() function.
Figure 17 shows an overview of a messaging-style dispatch call.

Dispatch steps The stages shown in Figure 17 can be described as follows:

Figure 17: Overview of Messaging-Style Dispatch

ServerTransport TransportCallback

dispatch()
1

4

2

3

Request Buffer

Reply Buffer

5
send()

Stage Description

1 The server transport code calls dispatch() on the
TransportCallback object, passing in a reference to the request
buffer.

2 The TransportCallback object processes the request message,
resulting in an upcall to the relevant servant object.

3 The dispatch() call returns directly after dispatching the request
message.

4 After processing the request, the TransportCallback writes the
reply data into the reply buffer.
158

Dispatch Policies
Setting the requisite policies Normally, there is no need to set transport policies explicitly for messaging-style
dispatch, because it is the default. If you do set some transport policies, however,
you must be sure that the value of the requires stack unwind policy is false (the
default).

Implementation example The code fragment in Example 45 shows how to make an upcall into the Artix
application using messaging-style dispatch. This code fragment could appear in
the body of the ServerTransport::activate() function, in the body of the
ServerTransport::run() function, or in a completely different object,
depending on the type of threading model that is used (see “Transport Threading
Models” on page 140).

5 The Artix runtime calls send() on the ServerTransport object,
passing in a reference to the reply buffer.

Stage Description

Example 45: Making an Upcall Using Messaging-Style Dispatch

// C++
DispatchInfo& dispatch_context =

m_callback->get_dispatch_context();

m_callback->dispatch(
 vvSendBuffer,
 dispatch_context
);

// At this point, vvReceiveBuffer contains the reply message.
 159

CHAPTER 4 | Artix Transport Plug-Ins
In addition to dispatching the request buffer, you must implement the
ServerTransport::send() function to receive the callback containing the reply
buffer. Example 46 shows an outline implementation of the send() function,
which is suitable for message-style dispatch.

Example 46: Implementation of send() for Message-Style Dispatch

// C++
void
ServerTransportImpl::send(
 BinaryBuffer& reply_message,
 DispatchInfo& dispatch_context
)
{
 // Send the reply_message over the transport layer
 // back to the client.
 ... // (transport-specific details)
}

160

Accessing Contexts
Accessing Contexts

Overview Contexts are an Artix mechanism that enables application code to communicate
with plug-ins. Contexts are typically used by transports for the following
purposes:

• Setting connection parameters (for example, timeouts).

• Sending data in message headers (either as part of a request message or a

reply message).

This section describes how to access and use contexts from within a transport
implementation.

Accessing contexts on the client
side

The following extract from the IT_Bus::ClientTransport class shows how
you can access Artix contexts from the connect(), invoke_oneway(), and
invoke() functions.

Note: Although Artix contexts are accessible from the transport, in many
cases it is more appropriate to access contexts from within an interceptor. The
use of interceptors makes your code more modular: you can load individual
interceptors independently of the transport.

// C++
namespace IT_Bus
{
 class IT_BUS_API ClientTransport
 {
 public:
 virtual void
 connect(
 ContextContainer* out_context_container
) = 0;
 ...
 virtual void
 invoke_oneway(
 const IT_WSDL::WSDLOperation& wsdl_operation,
 const BinaryBuffer& request_buffer,
 ContextContainer* out_container,
 ContextContainer* in_container
) = 0;
 161

CHAPTER 4 | Artix Transport Plug-Ins
In each of these functions, the contexts are used as follows:

• connect() function—the outgoing context container could contain

settings that influence the transport connection (for example, connection

timeouts). You can define your own context type specifically for this

purpose.

• invoke_oneway() function—contexts can be used to send and receive

header information across a transport protocol, as follows:

♦ If there is outgoing data to send in a header, the transport

implementation reads it from the relevant outgoing context (obtained

from out_container) and inserts it into a request message header.

♦ If there is incoming data to receive from a header, the transport

implementation extracts it from the reply message and writes it into

the relevant incoming context (obtained from in_container).

• invoke() function—both outgoing contexts and incoming contexts are

available, just as for the invoke_oneway() function.

 virtual void
 invoke(
 const IT_WSDL::WSDLOperation& wsdl_operation,
 const BinaryBuffer& request_buffer,
 BinaryBuffer& response_buffer,
 ContextContainer* out_container,
 ContextContainer* in_container
) = 0;
 ...
 };
};

Note: Incoming reply contexts (read from incoming reply messages)
are supported, even though this is a oneway WSDL operation. Oneway
operations are not necessarily implemented as oneways by the transport
layer. Sometimes, it is necessary to extract context data from reply
messages, even for oneway operations.
162

Accessing Contexts
Accessing contexts with RPC-style
dispatch

On the server side, incoming contexts and outgoing contexts are accessible
through the current IT_Bus::DispatchInfo object. For example, the code for
accessing contexts within an RPC-style dispatch would have the following
general outline:

Accessing contexts with
messaging-style dispatch

With messaging-style dispatch, there are two different points in the code where
you access contexts. Firstly, to access incoming contexts, you need to insert
some code before the TransportCallback::dispatch() call, as follows:

// C++
DispatchInfo& dispatch_context =

m_callback->get_dispatch_context();

dispatch_context.provide_response_buffer(
 vvReceiveBuffer
);

ContextContainer& incoming_container =
dispatch_context.get_incoming_context_container();

// Process each incoming context as follows:
// 1. Extract the relevant header data from the incoming request.
// 2. Obtain the relevant context instance from the
// incoming_container.
// 3. Populate the context instance with the header data.

m_callback->dispatch(
 vvSendBuffer,
 dispatch_context
);

ContextContainer& outgoing_container =
dispatch_context.get_outgoing_context_container();

// Process each outgoing context as follows:
// 1. Obtain the relevant context instance from the
// outgoing_container.
// 1. Read the context data from the context instance.
// 3. Marshal the context data into an outgoing reply header.

// C++
DispatchInfo& dispatch_context =

m_callback->get_dispatch_context();
 163

CHAPTER 4 | Artix Transport Plug-Ins
Next, to access outgoing contexts, you need to insert some code into the
ServerTransport::send() function, as follows:

dispatch_context.provide_response_buffer(
 vvReceiveBuffer
);

ContextContainer& incoming_container =
dispatch_context.get_incoming_context_container();

// Process each incoming context as follows:
// 1. Extract the relevant header data from the incoming request.
// 2. Obtain the relevant context instance from the
// incoming_container.
// 3. Populate the context instance with the header data.

m_callback->dispatch(
 vvSendBuffer,
 dispatch_context
);

// C++
void
ServerTransportImpl::send(
 BinaryBuffer& reply_message,
 DispatchInfo& dispatch_context
)
{
 ...
 ContextContainer& outgoing_container =
 dispatch_context.get_outgoing_context_container();

 // Process each outgoing context as follows:
 // 1. Obtain the relevant context instance from the
 // outgoing_container.
 // 1. Read the context data from the context instance.
 // 3. Marshal the context data into an outgoing reply header.
 ...
}

164

Oneway Semantics
Oneway Semantics

Overview WSDL syntax allows you to define two different kinds of operations:

• Normal operations—which include one or more output messages.

• Oneway operations—which include only input messages.

In general, the remote invocation of a oneway operation can be optimized so that
it consists only of a request message; there is no need to wait for a reply
message, because no data is expected in the reply. This is a valuable
optimization, which is supported by Artix.

Oneway semantics on the client
side

When it comes to implementing oneway semantics on a specific transport,
however, there can be a mismatch between the WSDL notion of a oneway and
the semantics supported by the underlying transport protocol. For example, the
HTTP protocol requires that you must always send an acknowledgment reply
(HTTP 202 OK reply), even if there is no reply data.

To give you sufficient flexibility to implement oneways, therefore, the
ClientTransport class requires you to implement separate functions for
handling normal operations and oneway operations, as follows:

• ClientTransport::invoke() function—called when the WSDL

operation includes one or more output messages.

• ClientTransport::invoke_oneway() function—called when the WSDL

operation includes only input messages.

Oneway semantics with RPC-style
dispatch

Within the section of code that implements an RPC-style dispatch on the server
side, you can check whether a WSDL operation is oneway by calling the
DispatchInfo::is_oneway() function. If the operation is oneway, you should
handle it in the appropriate way for the particular transport protocol.

For example, the code for performing an RPC-style dispatch would have the
following general outline:

// C++
DispatchInfo& dispatch_context =

m_callback->get_dispatch_context();

dispatch_context.provide_response_buffer(
 165

CHAPTER 4 | Artix Transport Plug-Ins
Oneway semantics with
messaging-style dispatch

Within the implementation of the IT_Bus::ServerTransport::send()
function (which is responsible for sending replies back to the client), you can
check whether a WSDL operation is oneway by calling the
DispatchInfo::is_oneway() function. If the operation is oneway, you should
handle it in the appropriate way for the particular transport protocol.

For example, an implementation of ServerTransport::send() would have the
following general outline:

 vvReceiveBuffer
);

m_callback->dispatch(
 vvSendBuffer,
 dispatch_context
);

if (! dispatch_context.is_oneway()) {
 // Normal (two-way) WSDL operation

 // Use transport to send vvReceiveBuffer reply to client.
}
else {
 // Oneway WSDL operation
 // (vvReceiveBuffer is empty in this case)

 // HTTP protocol example: send an acknowledgment.

 // MQ-Series example: do not send any reply.
}

// C++
void
ServerTransportImpl::send(
 BinaryBuffer& reply_message,
 DispatchInfo& dispatch_context
)
{
 if (! dispatch_context.is_oneway()) {
 // Normal (two-way) WSDL operation

 // Use transport to send reply_message back to client.
 }
 else {
 // Oneway WSDL operation
166

Oneway Semantics
 // HTTP protocol example: send an acknowledgment
 // before returning.

 // MQ-Series example: return immediately.
 }
}

 167

CHAPTER 4 | Artix Transport Plug-Ins
Stub Transport Example

Overview The stub transport is a very simple transport that facilitates communication
between a client and a server that are colocated in the same process. The client
transport object holds a pointer that points directly at the server transport object.
When the client has a message to send to the server, it simply invokes a dispatch
function directly on the server transport object.

For this transport to work, the client and server must be colocated. This transport
is potentially useful as a diagnostic tool: it enables you to send messages through
the binding layers, without doing any significant work at the transport layer.

In this section This section contains the following subsections:

Implementing the Client Transport page 169

Implementing the Server Transport page 176

Implementing the Transport Factory page 183

Registering and Packaging the Transport page 190
168

Stub Transport Example
Implementing the Client Transport

Overview This subsection describes how to make a custom implementation of the
IT_Bus::ClientTransport class, using the stub client transport as an example.
The purpose of the client transport class is to manage connections and
send/receive messages in binary format.

Sequence of call Artix calls back on the client transport functions in the following sequence:

1. initialize()—called once, to configure the port.

2. connect()—called once, to establish a connection to the remote host. The

connect() function should be non-blocking.

3. invoke()/invoke_oneway()—called for each WSDL operation

invocation, depending on whether it is a normal operation or a oneway

operation.

4. disconnect()—called once, to close the connection to the remote host.

Client transport header Example 47 shows the header file for the stub plug-in’s client transport class.

Example 47: Header for the StubClientTransport Class

// C++
#include <it_bus_sys/bus_context.h>
#include <it_bus_pdk/messaging_transport.h>
#include "stub_transport_factory.h"
#include "stub_transport_wsdl_address.h"

namespace IT_Transport_Stub
{

1 class StubClientTransport : public IT_Bus::ClientTransport
 {
 public:
 StubClientTransport(

2 ServerTransportMap & server_transport_map
);
 virtual ~StubClientTransport();

3 virtual void
 initialize(const IT_WSDL::WSDLPort& Configuration);
 169

CHAPTER 4 | Artix Transport Plug-Ins
 virtual IT_WSDL::WSDLExtensionElement&
 get_configuration();

 virtual void
 connect(IT_Bus::ContextContainer* out_context_container);

 virtual void disconnect();

 virtual void
 invoke_oneway(
 const IT_WSDL::WSDLOperation& wsdl_operation,
 const IT_Bus::BinaryBuffer& request_buffer,
 IT_Bus::ContextContainer* out_container,
 IT_Bus::ContextContainer* in_container
);

 virtual void
 invoke(
 const IT_WSDL::WSDLOperation& wsdl_operation,
 const IT_Bus::BinaryBuffer& request_buffer,
 IT_Bus::BinaryBuffer& response_buffer,
 IT_Bus::ContextContainer* out_container,
 IT_Bus::ContextContainer* in_container
);

 protected:
4 ServerTransportMap & m_server_transport_map;
5 StubServerTransport * m_server_transport;
6 StubTransportWSDLAddress * m_address_element;
7 IT_Bus::BinaryBuffer m_received;

 private:
 virtual void send(
 const IT_WSDL::WSDLOperation& wsdl_operation,
 const IT_Bus::BinaryBuffer& vvSendBuffer,
 IT_Bus::ContextContainer* out_context_container
);

 virtual void receive(
 const IT_WSDL::WSDLOperation& wsdl_operation,
 IT_Bus::BinaryBuffer& vvReceiveBuffer,
 IT_Bus::ContextContainer* in_context_container
);
 };
};

Example 47: Header for the StubClientTransport Class
170

Stub Transport Example
The preceding transport class header can be explained as follows:

1. The tunnel client transport class must inherit from

IT_Bus::ClientTransport.

2. The IT_Transport_Stub::ServerTransportMap type is a typedef of

IT_Bus::StringMap<StubServerTransport *>, defined in the stub

plug-in’s transport factory header. The ServerTransportMap class is a

hash table that uses a string as the key to retrieve a server transport

instance. This hash table is the discovery mechanism used by the stub

plug-in to find a colocated server transport instance.

3. The following functions, initialize(), get_configuration(),

connect(), disconnect(), send(), and receive(), are all inherited from

the IT_Bus::ClientTransport base class.

4. The m_server_transport_map variable stores a reference to the

ServerTransportMap instance passed into the constructor.

5. The m_server_transport variable stores a pointer to the target server

transport instance.

6. The m_address_element variable stores a pointer to the stub:address

WSDL element that defines the location of the server transport.

7. The m_received binary buffer is used to store received messages

temporarily.

Client transport implementation Example 48 shows the implementation of the client transport class.

Example 48: Implementation of the StubClientTransport Class

// C++
#include "stub_client_transport.h"
#include "stub_transport_wsdl_extension_factory.h"
#include "stub_server_transport.h"

using namespace IT_Bus;
using namespace IT_WSDL;

IT_Transport_Stub::StubClientTransport::StubClientTransport(
 ServerTransportMap & server_transport_map
)
: m_server_transport_map(server_transport_map)
{
 m_server_transport = 0;
 171

CHAPTER 4 | Artix Transport Plug-Ins
 m_address_element = 0;

}

IT_Transport_Stub::StubClientTransport::~StubClientTransport()
{
}

void
1 IT_Transport_Stub::StubClientTransport::initialize(

 const IT_WSDL::WSDLPort& wsdl_port
)
{
 // get address from the WSDL
 //
 String location;
 //address extensor
 WSDLExtensionElement* wsdl_element =

2 StubTransportWSDLExtensionFactory::get_extension_element(
 wsdl_port,
 StubTransportWSDLAddress::ELEMENT_NAME
);

 m_address_element =
 IT_DYNAMIC_CAST(StubTransportWSDLAddress *,

wsdl_element);

 if (m_address_element != 0)
 {
 location = m_address_element->get_location();
 }
}

IT_WSDL::WSDLExtensionElement&
3 IT_Transport_Stub::StubClientTransport::get_configuration()

{
 IT_WSDL::WSDLExtensionElement * elem = 0;
 return *elem;
}

void
4 IT_Transport_Stub::StubClientTransport::connect(

 ContextContainer* out_context_container
)
{

Example 48: Implementation of the StubClientTransport Class
172

Stub Transport Example
5 String location = m_address_element->get_location();

6 ServerTransportMap::iterator iter =
 m_server_transport_map.find(location);

 if (iter == m_server_transport_map.end())
 {
 throw Exception(
 "Couldn't find server for stub transport address",
 location.c_str()
);
 }

 m_server_transport = (*iter).second;
}

void
7 IT_Transport_Stub::StubClientTransport::disconnect()

{
}

void
IT_Transport_Stub::StubClientTransport::invoke_oneway(
 const WSDLOperation& wsdl_operation,
 const BinaryBuffer& request_buffer,
 ContextContainer* out_container,
 ContextContainer* //in_container
)
{
 send(
 wsdl_operation,
 request_buffer,
 out_container
);
}

void
IT_Transport_Stub::StubClientTransport::invoke(
 const WSDLOperation& wsdl_operation,
 const BinaryBuffer& request_buffer,
 BinaryBuffer& response_buffer,
 ContextContainer* out_container,
 ContextContainer* in_container
)
{

Example 48: Implementation of the StubClientTransport Class
 173

CHAPTER 4 | Artix Transport Plug-Ins
 send(
 wsdl_operation,
 request_buffer,
 out_container
);

 receive(
 wsdl_operation,
 response_buffer,
 in_container
);
}

void
8 IT_Transport_Stub::StubClientTransport::send(

 const IT_WSDL::WSDLOperation& wsdl_operation,
 const BinaryBuffer& vvSendBuffer,
 ContextContainer* out_context_container
)
{
 BinaryBuffer send_buffer(vvSendBuffer);

9 m_server_transport->dispatch(send_buffer, m_received);
}

void
10 IT_Transport_Stub::StubClientTransport::receive(

 const IT_WSDL::WSDLOperation& wsdl_operation,
 BinaryBuffer& vvReceiveBuffer,
 ContextContainer* in_context_container
)
{
 vvReceiveBuffer.attach(m_received);
}

Example 48: Implementation of the StubClientTransport Class
174

Stub Transport Example
The preceding client transport implementation can be explained as follows:

1. The main purpose of the initialize() function is to initialize the

configuration of the client transport port. The wsdl_port parameter is an

object of IT_WSDL::WSDLPort type, which is a parse-tree node containing

the data from a WSDL <port ... > </port> element.

2. The get_extension_element() static function searches the WSDL port

node to find a StubPrefix:address sub-element, which is then stored in

m_address_element. See “Implementing the Extension Element Classes”

on page 119 for details.

3. The get_configuration() function has a dummy implementation.

4. The connect() function is responsible for establishing a connection to a

service endpoint. In the case of the stub transport, it attempts to find the

colocated server transport instance identified by the location attribute

from the <StubPrefix:address> tag.

5. The get_location() function returns the value of the location attribute

from the <StubPrefix:address> tag.

6. Search the server transport map, using the location attribute as a key, in

order to find a colocated StubServerTransport instance.

The entries in the ServerTransportMap hash table are created by one or

more colocated StubServerTransport instances.

7. The disconnect() function has a dummy implementation. No action is

needed to disconnect from a stub server transport.

8. The send() function transmits a WSDL request in the form of a binary

buffer, request_buffer.

9. For the stub transport, the implementation of send() is trivial: you invoke

dispatch() directly on the colocated stub server transport instance.

10. The receive() function returns the binary buffer, m_received, that was

stored from the previous call to send().
 175

CHAPTER 4 | Artix Transport Plug-Ins
Implementing the Server Transport

Overview This subsection describes how to make a custom implementation of the
IT_Bus::ServerTransport class, using the stub server transport as an example.
The purpose of the server transport class is to listen for client connection
attempts, listen for incoming messages and to dispatch incoming messages up to
the Artix binding layer.

Server transport header Example 49 shows the stub plug-in’s server transport class:

Example 49: Header for the StubServerTransport Class

// C++
#include <it_bus_pdk/messaging_transport.h>
#include <it_bus_sys/bus_context.h>
#include "stub_transport_wsdl_address.h"
#include "stub_transport_factory.h"

namespace IT_Transport_Stub
{

1 class StubServerTransport : public IT_Bus::ServerTransport
 {
 public:
 StubServerTransport(
 ServerTransportMap & server_transport_map,
 const IT_WSDL::WSDLPort& wsdl_port
);
 virtual ~StubServerTransport();

2 virtual void
 activate(
 IT_Bus::TransportCallback& callback,
 IT_WorkQueue::WorkQueue_ptr work_queue = 0
);

 virtual IT_WSDL::WSDLExtensionElement&
 get_configuration();

 virtual void deactivate();

 virtual void shutdown();

 virtual void
176

Stub Transport Example
The preceding server transport header can be described as follows:

1. The tunnel server transport class must inherit from

IT_Bus::ServerTransport.

2. The following functions, activate(), get_configuration(),

deactivate(), shutdown(), send(), and dispatch(), are all inherited

from the IT_Bus::ServerTransport base class.

3. The m_address_element variable stores a pointer to the

<StubPrefix:address> WSDL element that defines the location of the

server transport.

4. The m_callback variable stores a pointer to the TransportCalback object,

which is used to dispatch requests to the next layer on the server side.

5. The m_server_transport_map variable stores a reference to the

ServerTransportMap instance, which holds a hash table consisting of

pairs of location attribute string and pointer to StubServerTransport.

Server transport implementation Example 50 shows the implementation of the server transport class.

 send(
 IT_Bus::BinaryBuffer& reply_message,
 IT_Bus::DispatchInfo& dispatch_context
);

 void dispatch(
 IT_Bus::BinaryBuffer& vvSendBuffer,
 IT_Bus::BinaryBuffer& vvReceiveBuffer
);

 protected:
3 StubTransportWSDLAddress * m_address_element;
4 IT_Bus::TransportCallback * m_callback;
5 ServerTransportMap & m_server_transport_map;

 };
};

Example 49: Header for the StubServerTransport Class

Example 50: Implementation of the StubServerTransport Class

// C++
#include "stub_server_transport.h"
#include "stub_transport_wsdl_extension_factory.h"
 177

CHAPTER 4 | Artix Transport Plug-Ins
using namespace IT_Bus;
using namespace IT_WSDL;

1 IT_Transport_Stub::StubServerTransport::StubServerTransport(
 ServerTransportMap & server_transport_map,
 const WSDLPort& wsdl_port
)
: m_server_transport_map(server_transport_map)
{
 m_callback = 0;
 // get address from the WSDL
 //
 String location;
 //address extensor
 WSDLExtensionElement* wsdl_element =

2 StubTransportWSDLExtensionFactory::get_extension_element(
 wsdl_port,
 StubTransportWSDLAddress::ELEMENT_NAME
);

 m_address_element =
 IT_DYNAMIC_CAST(StubTransportWSDLAddress *, wsdl_element);

 if (m_address_element != 0)
 {
 location = m_address_element->get_location();
 }
}

IT_Transport_Stub::StubServerTransport::~StubServerTransport()
{
}

void
3 IT_Transport_Stub::StubServerTransport::activate(

 IT_Bus::TransportCallback & callback,
 IT_WorkQueue::WorkQueue_ptr work_queue
)
{
 m_callback = &callback;

4 m_server_transport_map.insert(
 ServerTransportMap::value_type(

Example 50: Implementation of the StubServerTransport Class
178

Stub Transport Example
 m_address_element->get_location(),
 this
)
);

5 m_callback->transport_activated();
}

IT_WSDL::WSDLExtensionElement&
6 IT_Transport_Stub::StubServerTransport::get_configuration()

{
 IT_WSDL::WSDLExtensionElement * elem = 0;
 return *elem;
}

void
7 IT_Transport_Stub::StubServerTransport::deactivate()

{
 // Note: It is impossible to deactivate the stub transport
 // m_callback->transport_deactivated();
}

void
8 IT_Transport_Stub::StubServerTransport::shutdown()

{
 ServerTransportMap::iterator iter =
 m_server_transport_map.find(m_address_element->get_location());

 if (iter != m_server_transport_map.end())
 {
 m_server_transport_map.erase(iter);
 }

9 m_callback->transport_shutdown_complete();
}

void
10 IT_Transport_Stub::StubServerTransport::send(

 BinaryBuffer& reply_message,
 DispatchInfo& dispatch_context
)
{
 assert(0);
}

Example 50: Implementation of the StubServerTransport Class
 179

CHAPTER 4 | Artix Transport Plug-Ins
The preceding server transport implementation can be described as follows:

1. The StubServerTransport constructor receives two parameters from the

transport factory:

♦ server_transport_map—a String to StubServerTransport* map,

which is used to advertize the availability of stub server transports to

stub client transports.

♦ wsdl_port—an object of IT_WSDL::WSDLPort type, which is a

parse-tree node containing the data from a WSDL <port ... >

</port> element.

2. The get_extension_element() static function searches the WSDL port

node to find a StubPrefix:address sub-element, which is then stored in

m_address_element. See “Implementing the Extension Element Classes”

on page 119 for details.

3. The activate() function is called by the Artix core to start up the server

transport. It takes the following arguments:

♦ callback—the TransportCallback object is used to communicate

with the Artix core. In particular, TransportCallback::dispatch()

is used to dispatch requests up to the application code.

void
11 IT_Transport_Stub::StubServerTransport::dispatch(

 BinaryBuffer& vvSendBuffer,
 BinaryBuffer& vvReceiveBuffer
)
{
 DispatchInfo& dispatch_context =
 m_callback->get_dispatch_context();

12 dispatch_context.provide_response_buffer(
 vvReceiveBuffer
);

13 m_callback->dispatch(
 vvSendBuffer,
 dispatch_context
);
}

Example 50: Implementation of the StubServerTransport Class
180

Stub Transport Example
♦ work_queue—this is a NULL pointer, unless you choose the

BORROWS_WORKQUEUE_SELF_DRIVEN threading resources policy.

The deactivate() and activate() functions can be used to pause and

resume the server transport. The activate() function must be

non-blocking.

4. Advertise this StubServerTransport instance by adding an entry to the

server transport map. Because the colocated stub client transports have a

reference to the same server transport map instance, they will be able to

find the stub server transport by supplying the relevant location value as a

key.

5. Before exiting the body of the activate() function, you must notify the

Artix core of the current activation status by calling back on the

IT_Bus::TransportCallback object. There are two alternatives:

♦ TransportCallback::transport_activated()—call this, if the

transport activation is successfull.

♦ TransportCallback::transport_activation_failed()—call

this, if the transport activation fails.

6. The get_configuration() function has a dummy implementation.

7. The deactivate() function is called in order to deactivate the server

transport temporarily. It can be used in combination with activate() to

pause and resume the server transport.

Before exiting the body of the deactivate() function, you must notify the

Artix core by calling TransportCallback::transport_deactivated().

8. The shutdown() function is called by the Artix core while the Bus shuts

down. At this point, you should shut down the server transport and perform

whatever cleanup is necessary.

9. Before exiting the body of the shutdown() function, you must notify the

Artix core by calling

TransportCallback::transport_shutdown_complete().

Note: The stub server transport is a special case, however, because it is
not possible to deactivate it. Strictly speaking, therefore, we ought not to
include the transport_deactivated() call here.
 181

CHAPTER 4 | Artix Transport Plug-Ins
10. The send() function is called, only if you have configured the server

transport to use the asynchronous dispatch model. Because the stub

transport uses the synchronous dispatch model, the send() function is left

unimplemented.

The choice between a synchronous or an asynchronous dispatch model is

selected by the requires stack unwind policy. If the policy is true, the

synchronous model is selected; if false, the asynchronous model is

selected. For more details see “Implementing the Transport Factory” on

page 183.

11. This dispatch() function is not inherited from

IT_Bus::ServerTransport. It is specific to the stub transport. The

dispatch() function represents a simple mechanism for stub client

transports to send a request and receive a reply from the stub server

transport: the client transport simply makes a colocated call on the

StubServerTransport::dispatch() function.

12. Because this server transport uses the synchronous dispatch model, you

must call DispatchInfo::provide_response_buffer() to provide a

buffer into which the reply message will be written.

13. Call TransportCallback::dispatch() to dispatch the request message to

the next stage. Because the transport uses the synchronous dispatch model,

the reply message is available in the buffer, vvReceiveBuffer, as soon as

the TransportCallback::dispatch() call returns.
182

Stub Transport Example
Implementing the Transport Factory

Overview You must implement a transport factory as part of the stub transport
implementation. The Artix core calls functions on the transport factory to create
IT_Bus::ClientTransport and IT_Bus::ServerTransport instances as
needed.

Transport factory header Example 51 shows the stub plug-in’s transport factory header.

Example 51: Header for the StubTransportFactory Class

// C++
#include <it_bus/bus.h>
#include <it_bus_pdk/messaging_transport.h>
#include <it_bus/string_map.h>

namespace IT_Transport_Stub
{
 class StubServerTransport;

1 typedef IT_Bus::StringMap<StubServerTransport *>
 ServerTransportMap;

2 class StubTransportFactory : public IT_Bus::TransportFactory
 {
 public:
 StubTransportFactory();
 virtual ~StubTransportFactory();

 virtual IT_Bus::ClientTransport *
 create_client_transport();

 virtual void destroy_client_transport(
 IT_Bus::ClientTransport * transport
);

 virtual IT_Bus::ServerTransport*
 create_server_transport(
 const IT_WSDL::WSDLPort& configuration
);

 virtual void
 destroy_server_transport(
 183

CHAPTER 4 | Artix Transport Plug-Ins
The preceding header file can be explained as follows:

1. The ServerTransportMap type is defined to be a hash table that uses a

string key to find pointers to StubServerTransport instances. The server

transport map is the endpoint discovery mechanism for the stub transport.

2. The StubTransportFactory class inherits from the

IT_Bus::TransportFactory base class.

3. The m_server_transport_map variable is the concrete server transport

map instance, which is referenced by the client transport objects and the

server transport objects.

 IT_Bus::ServerTransport* transport
);

 virtual IT_Bus::ThreadingModel
 get_client_threading_model();

 virtual void
 register_wsdl_extension_factories(
 IT_WSDL::WSDLFactory & factory
) const;

 virtual void
 deregister_wsdl_extension_factories(
 IT_WSDL::WSDLFactory & factory
) const;

 virtual const IT_Bus::TransportPolicyList*
 get_policies();

 void
 initialize(
 IT_Bus::Bus_ptr bus
);

 protected:
 ...

3 ServerTransportMap m_server_transport_map;
4 IT_Bus::TransportPolicyList* m_transport_policylist;

 };
};

Example 51: Header for the StubTransportFactory Class
184

Stub Transport Example
4. The m_transport_policylist variable stores a pointer to an object that

encapsulates the stub transport’s threading policies.

Transport factory implementation Example 52 shows the transport factory implementation.

Example 52: Implementation of the StubTransportFactory Class

// C++
#include <it_bus_pdk/pdk_bus.h>
#include "stub_transport_factory.h"
#include "stub_client_transport.h"
#include "stub_server_transport.h"

#include "stub_transport_wsdl_extension_factory.h"

using namespace IT_Bus;

IT_Transport_Stub::StubTransportFactory::StubTransportFactory()
{
}

IT_Transport_Stub::StubTransportFactory::~StubTransportFactory()
{
 delete m_transport_policylist;
}

IT_Bus::ClientTransport *
1 IT_Transport_Stub::StubTransportFactory::create_client_transport

()
{
 return new

IT_Transport_Stub::StubClientTransport(m_server_transport_map
);

}

void
2 IT_Transport_Stub::StubTransportFactory::destroy_client_transpor

t(
 IT_Bus::ClientTransport * transport
)
{
 delete transport;
}

IT_Bus::ServerTransport*
 185

CHAPTER 4 | Artix Transport Plug-Ins
3 IT_Transport_Stub::StubTransportFactory::create_server_transport
(
 const IT_WSDL::WSDLPort& wsdl_port
)
{
 return new IT_Transport_Stub::StubServerTransport(
 m_server_transport_map,
 wsdl_port
);
}

void
4 IT_Transport_Stub::StubTransportFactory::destroy_server_transpor

t(
 IT_Bus::ServerTransport* transport
)
{
 delete transport;
}

IT_Bus::ThreadingModel
5 IT_Transport_Stub::StubTransportFactory::get_client_threading_mo

del()
{
 return IT_Bus::MULTI_INSTANCE;
}

6 extern IT_Transport_Stub::StubTransportWSDLExtensionFactory
it_glob_stub_transport_wsdl_extension_factory_instance;

void
7 IT_Transport_Stub::StubTransportFactory::register_wsdl_extension

_factories(
 IT_WSDL::WSDLFactory & factory
) const
{

8 factory.register_extension_factory(
 "http://schemas.iona.com/transports/stub",
 it_glob_stub_transport_wsdl_extension_factory_instance
);
}

void
9 IT_Transport_Stub::StubTransportFactory::deregister_wsdl_extensi

on_factories(

Example 52: Implementation of the StubTransportFactory Class
186

Stub Transport Example
The preceding transport factory implementation can be explained as follows:

1. The create_client_transport() function is called by the Artix core

whenever a new StubClientTransport instance is needed. The

StubClientTransport constructor takes on parameter: a reference to the

server transport map, which enables the stub client transport to discover

stub service endpoints.

2. The destroy_client_transport() function is normally implemented

exactly as shown here.

3. The create_server_transport() function is called by the Artix core

whenever a new StubServerTransport instance is needed. The

StubServerTransport constructor takes two parameters:

♦ A reference to the server transport map, which enables the stub server

transport to advertise its existence to colocated clients.

 IT_WSDL::WSDLFactory & factory
) const
{
}

const TransportPolicyList*
10 IT_Transport_Stub::StubTransportFactory::get_policies()

{
 return m_transport_policylist;
}

void
11 IT_Transport_Stub::StubTransportFactory::initialize(

 Bus_ptr bus
)
{
 m_transport_policylist =
 bus->get_pdk_bus()->create_transport_policy_list();

12 m_transport_policylist->set_policy_threading_resources(EXTERNALL
Y_DRIVEN);

13 m_transport_policylist->set_policy_requires_concurrent_dispatch(
true);

14 m_transport_policylist->set_policy_requires_stack_unwind(true);
}

Example 52: Implementation of the StubTransportFactory Class
 187

CHAPTER 4 | Artix Transport Plug-Ins
♦ A reference to the WSDL port that contains a description of this

service endpoint.

4. The destroy_server_transport() function is normally implemented

exactly as shown here.

5. The get_client_threading_model() is implemented to select the

MULTI_INSTANCE client threading model.

6. This variable references a global static instance of the stub plug-in’s

WSDL extension factory.

7. The register_wsdl_extension_factories() function is called by the

Artix core while the stub plug-in is initializing. It gives you an opportunity

to register one or more WSDL extension factories with the Bus.

8. This line registers the stub plug-in’s WSDL extension factory, associating

it with the http://schemas.iona.com/transports/stub namespace

URI. This is the namespace that can be associated with the StubPrefix to let

you configure the StubPrefix:address element in your WSDL contract.

9. As the stub plug-in shuts down, it calls

deregister_wsdl_extension_factories().

10. As the stub plug-in starts up, the Artix core calls get_policies() to

discover what policies are to be used with this transport plug-in (the

policies are mostly concerned with server threading).

11. If you need to customize the transport policy list, you can do this in the

body of the initialize() function.

12. Usually, when the server transport’s threading policy is set to

EXTERNALLY_DRIVEN, it would imply that the server transport code creates

its own reader threads to process incoming requests. In this case, because

the stub transport is a colocated transport, the situation is somewhat

exceptional. The reader thread is actually provided by the client side—the

client transport simply calls the server transport’s dispatch() function

directly.

13. The server’s concurrent dispatch policy is set to true. This indicates to the

Artix core that the stub server transport is liable to make concurrent

dispatches to the server-side binding (by calling

TransportCallback::dispatch() from multiple threads).
188

Stub Transport Example
14. The requires stack unwind policy is set to true. This selects a synchronous

approach to dispatching requests on the server side. If you enable the stack

unwind policy, you must implement your server transport according to the

following pattern:

♦ Do not implement ServerTransport::send() (this function is only

used to receive replies asynchronously).

♦ In the implementation of ServerTransport::dispatch(), prior to

calling TransportCallback::dispatch(), call

DispatchContext::provide_response_buffer() to specify a

buffer into which the result will be written.

♦ As soon as TransportCallback::dispatch() returns, the response

buffer contains the reply.
 189

CHAPTER 4 | Artix Transport Plug-Ins
Registering and Packaging the Transport

Stub plug-in name Example 53 shows how to register the stub transport plug-in by creating a static
instance of IT_Bus::BusORBPlugIn type. The constructor registers the plug-in
under the specified name, stub_transport.

Registering the stub transport
factory with the Bus

Example 54 shows how to register the stub transport factory with the Bus.

Example 53: Registering the Stub Transport Plug-In

// C++
namespace IT_Bus {
 ...
 const char* const und_stub_transport_plugin_name =

"stub_transport";

 StubTransportBusPlugInFactory
und_stub_transport_plugin_factory;

 IT_Bus::BusORBPlugIn und_stub_transport_plugin(
 und_stub_transport_plugin_name,
 und_stub_transport_plugin_factory
);
}

Example 54: Registering the Stub Transport Factory

// C++
void
StubTransportBusPlugIn::bus_init(
) IT_THROW_DECL((IT_Bus::Exception))
{
 IT_Bus::Bus_ptr bus = get_bus();
 assert(bus != 0);

 m_transport_factory.initialize(bus);
 bus->get_pdk_bus()->register_transport_factory(
 "http://schemas.iona.com/transports/stub",
 &m_transport_factory
);
}

190

Stub Transport Example
To register the transport factory, perform the following steps:

1. Call the IT_Bus::TransportFactory::initialize() function to

initialize the transport factory.

2. Call the IT_Bus::PDKBus::register_transport_factory() factory to

register the transport factory.

Configuring the stub transport
plug-in

To configure an application to use the stub transport plug-in, you must add the
plug-in name, stub_transport, to the orb_plugins list, as follows:

void
StubTransportBusPlugIn::bus_shutdown(
) IT_THROW_DECL((IT_Bus::Exception))
{
 IT_Bus::Bus_ptr bus = get_bus();
 assert(bus != 0);

 bus->get_pdk_bus()->deregister_transport_factory(
 "http://schemas.iona.com/transports/stub"
);
}

Example 54: Registering the Stub Transport Factory

Example 55: Configuring the Stub Transport Plug-In

Artix Configuration File

ApplicationScope {
 orb_plugins = [..., "stub_transport"];
 ...
};
 191

CHAPTER 4 | Artix Transport Plug-Ins
192

CHAPTER 5

Artix Logging
Reference
This chapter explains how to use Artix TRACE macros, and
explains the Artix logging APIs.

In this chapter This chapter includes the following sections:

Using Artix TRACE Macros page 194
 193

CHAPTER 5 | Artix Logging Reference
Using Artix TRACE Macros

Overview This section describes how to use TRACE macros in your own code in order to
send logging messages to the Artix event log. The output from this Artix logging
mechanism can then be controlled using the configuration settings described in
Deploying and Managing Artix Solutions.

This section describes the following aspects of using Artix TRACE macros:

• Header file.

• Initializing the Bus logger.

• Artix subsystem scope.

• Artix trace levels.

• Passing in arguments.

• Creating your own output.

Header file To use the Artix TRACE macros, you must include the it_bus/bus_logger.h
header as follows:

#include <it_bus/bus_logger.h>

Note: In versions prior to Artix 3.0.2, the it_bus/logging_support.h
header was used instead. This header is now deprecated, but it can be used to
support legacy logging code.
194

Using Artix TRACE Macros
Initializing the Bus logger In order to control logging independently for each Bus, it is necessary to
initialize a Bus logger object and associate it with a particular Bus instance. The
Bus logger must be initialized before you can perform any tracing.

The normal way to initialize a Bus logger instance is to define it as a member of
the class you happen to be implementing. For example, you can define and
initialize a Bus logger instance in a class, MyClass, as follows:

1. Declare a BusLogger pointer by inserting the

IT_DECLARE_BUS_LOGGER_MEM macro as a protected member in the class

header file:

2. In the class constructor, call the IT_INIT_BUS_LOGGER_MEM macro to

initialize the BusLogger instance, passing a valid Bus instance to the macro

argument:

3. In the class destructor, call the IT_FINALISE_BUS_LOGGER_MEM macro to

clean up the BusLogger instance.

The Bus pointer passed to the macro in the destructor must be the same as

the one passed to the macro in the constructor.

// C++
class myClass {
 ...
 protected:
 IT_DECLARE_BUS_LOGGER_MEM
};

// C++
myClass::myClass(IT_Bus::Bus_ptr bus) : m_bus(bus)
{
 IT_INIT_BUS_LOGGER_MEM(m_bus)
}

// C++
myClass::~myClass()
{
 IT_FINALISE_BUS_LOGGER_MEM(m_bus)
}

 195

CHAPTER 5 | Artix Logging Reference
Artix subsystem scope Artix uses a hierarchy of subsystem scopes that enables you to filter the
messages that go into the event log. Artix uses several different subsystem
scopes internally, for example:

You can then define an event log filter in the Artix configuration file to control
the level of logging from each of the subsystems. For example:

The default subsystem scope for any TRACE macros in your code is IT_BUS.
Instead of using the default, however, it is better to specify a subsystem scope
explicitly by defining the _IT_SUBSYSTEM_SCOPE macro in your code.

For example, if you are generating logging messages from a custom transport,
you could define the subsystem scope as follows:

You can define the subsystem scope to be any identifier consisting of
alphanumerics and the . character. The . character is used as a delimiter to
separate the subsystem levels.

IT_BUS.CORE
IT_BUS.TRANSPORT.HTTP
IT_BUS.BINDING.SOAP
IT_BUS.BINDING.CORBA
IT_BUS.BINDING.CORBA.RUNTIME

Artix Configuration File
event_log:filters=["IT_BUS=FATAL+ERROR",
 "IT_BUS.BINDING.CORBA=WARN+FATAL+ERROR"];

// C++
// Class implementation file.

// Header files:
#include <it_bus/bus_logger.h>
...

// Define the _IT_SUBSYSTEM_SCOPE *after* including the headers.
#define _IT_SUBSYSTEM_SCOPE IT_BUS.TRANSPORT
196

Using Artix TRACE Macros
Artix trace levels When the event log filter and log stream are properly configured, the Artix
logging output from the TRACE macros is sent to the event log.

When using TRACE macros, the most important concept is the trace level,
which is an enum that lets you filter events. Trace levels are defined in the
ArtixInstallDir/include/it_bus/logging_defs.h file:

The simplest trace statement emits a constant string at level IT_TRACE. For
example:

Passing in arguments Several versions of the macro allow using a C printf format string, and passing
in some arguments. Because you cannot have variable argument lists for macros,
there are several defined according to how many arguments are allowed:

Both the zero argument and the multiple argument versions have a setting that
allows a trace level to be passed in, instead of level IT_TRACE. For example:

const IT_TraceLevel IT_TRACE_FATAL = 64; //FATAL

const IT_TraceLevel IT_TRACE_ERROR = 32; //ERROR

const IT_TraceLevel IT_TRACE_WARNING = 16; //WARNING

const IT_TraceLevel IT_TRACE = 4; //INFO_HIGH

const IT_TraceLevel IT_TRACE_BUFFER = 2; //INFO_MED

const IT_TraceLevel IT_TRACE_METHODS = 1; //INFO_LOW

const IT_TraceLevel IT_TRACE_METHODS_INTERNAL = 1; //INFO_LOW

TRACELOG("Hello world");

TRACELOG1("My name is: %s", "Slim Shady");
TRACELOG2("At state number %d, this happened: %s", 44, "connection failure");

TRACELOG_WITH_LEVEL(IT_METHODS, "MyClass::MyClass()");
TRACELOG_WITH_LEVEL1(IT_TRACE_METHODS_INTERNAL, "Value of my_name_field was %s", my_name_field);
 197

CHAPTER 5 | Artix Logging Reference
Creating your own output If you need to create your own output using iostreams or another expensive
process that is not supported by the macro, use the trace guard block. This
ensures that the trace level test prevents your trace creation code from running
when it does not produce output. For example:

To create binary output (for instance, a hex dump of the buffer), use
TRACELOGBUFFER. For example:

If the trace statement issues at a level less than or equal to the process trace level,
the entry is written to disk. The default log file name is it_bus.log.

BEGIN_TRACE(IT_TRACE)
 String trace_message = "data elements: ";
 for(i = 0; i < data_count; i++)
 {
 trace_message = trace_message + data_item[i] + "

";
 }
 TRACELOG(trace_message.c_str());
END_TRACE

TRACELOGBUFFER(vvMQMessageData, vvMQMessageData.GetSize())
198

CHAPTER 6

WS-RM
Persistence
This chapter describes how to write a custom plug-in that
implements the persistence feature for WS-ReliableMessaging
(WS-RM). The WS-RM specification defines a protocol for the
assured delivery of SOAP messages (or sequences of SOAP
messages) to a Web service destination. By enhancing WS-RM with
a persistence feature, you can ensure that messages get delivered
even after a program crash.

In this chapter This chapter includes the following sections:

Introduction to WS-RM Persistence page 200

WS-RM Persistence API page 204

Persistence and Recovery Algorithms page 216

Implementing a WS-RM Persistence Plug-In page 227
 199

CHAPTER 6 | WS-RM Persistence
Introduction to WS-RM Persistence

Overview Figure 18 shows an overview of how the WS-ReliableMessaging (WS-RM)
protocol works with persistence enabled. You would deploy the WS-RM
protocol in situations where delivery assurances are required, even if the
underlying transport is unreliable. Instead of talking about clients and servers,
the WS-RM specification talks about source endpoints and destination
endpoints. Messages are transmitted from source endpoints and received by
destination endpoints.

Message sequence Under the WS-RM protocol, messages are grouped into sequences. A message
sequence consists of one or more messages.

Application source The application source represents the application code that has a message (or
messages) to send. The WS-RM delivery assurances come into effect as soon as
the application source transfers a message to the WS-RM source.

Application destination The application destination represents the application code that ultimately
receives and processes the message. The WS-RM delivery guarantee is fulfilled,
as soon as the application destination takes delivery of the message from the
WS-RM destination.

Figure 18: Overview of WS-ReliableMessaging with Persistence

Application
Source

WS-RM
Source

Persistence

Application
Source

WS-RM
Destination

Persistence

Transmit Sequence

Acknowledge
200

Introduction to WS-RM Persistence
WS-RM source A WS-RM source is an endpoint that is responsible for transmitting a message
with specific delivery assurances.

WS-RM destination A WS-RM destination is an endpoint that is responsible for receiving a message
with specific delivery assurances.

WS-RM persistence plug-in To provide message persistence for the WS-RM layer, you can implement your
own custom WS-RM persistence plug-in. The persistence plug-in integrates the
WS-RM layer with a database. Messages can then be stored in the database as
long as necessary to guarantee message delivery, even if one of the application
programs crashes.

Sample message exchange Figure 19 shows an example of a WS-RM message exchange, where the
WS-RM source sends a sequence of three messages to the WS-RM destination.
The message types shown in this example refer to SOAP messages containing
the appropriate WS-RM headers.

Figure 19: Sample WS-RM Message Exchange Pattern

WS-RM
Source

WS-RM
Destination

1

2

3

4

5

6

7

8

9

Sequence(ID="http://...", MessageNumber=2, AckRequested)

CreateSequence()

Sequence(ID="http://...", MessageNumber=1)

TerminateSequence()

CreateSequenceResponse(ID="http://...")

Sequence(ID="http://...", MessageNumber=2)

Sequence(ID="http://...", MessageNumber=3)

SequenceAcknowledgement(ID="http://...",
 AcknowledgementRange=1,3)

SequenceAcknowledgement(ID="http://...",
 AcknowledgementRange=1...3)
 201

CHAPTER 6 | WS-RM Persistence
Steps in the message exchange The steps shown in the message exchange of Figure 19 are, as follows:

1. The message exchange pattern is initiated when the source sends a

CreateSequence message to the destination.

2. The destination responds by sending a CreateSequenceResponse message

back to the source.

3. Transmit the first message of a three message sequence. If persistence is

enabled, the WS-RM source saves the message before transmitting.

4. Transmit the second message. If persistence is enabled, the WS-RM source

saves the message before transmitting.

In this example, it is assumed that the second message gets lost. This can

happen even if the underlying protocol is reliable (like HTTP), because a

WS-RM session can span multiple connections. For example, consider

what happens if a HTTP connection drops while the second message is

being sent. The WS-RM source then transparently re-opens a HTTP

connection to send the third message. The second message is now missing,

even though the underlying protocol is reliable.

5. Transmit the final message of the sequence. A LastMessage flag in the

WS-RM header signals to the destination that this is the last message in the

sequence.

6. The destination sends an acknowledgement back to the source, confirming

that message numbers 1 and 3 were received.

7. The source endpoint can now remove messages 1 and 3 from the WS-RM

persistent storage. The second message must be resent, however, because

no acknowledgement for this message has been received.

8. The destination sends an acknowledgement back to the source, confirming

that message numbers 1, 2, and 3 were received.

9. The source terminates the message exchange pattern by sending a

TerminateSequence message to the destination endpoint.

Adding persistence to the message
exchange protocol

The key benefit of adding persistence to the message exchange protocol is that
delivery of messages to the application destination can be guaranteed, even if
one of the application programs crashes.
202

Introduction to WS-RM Persistence
When persistence is enabled, the source endpoint persists messages locally
before attempting to transmit to the destination endpoint. Likewise, the
destination endpoint persists messages as soon as they arrive. The messages
stored on the destination side can then be erased, once they have been delivered
to the application destination.

Standard persistence plug-in Artix provides a default WS-RM persistence plug-in that stores data in a
Berkeley database. For more details, see Configuring and Deploying Artix
Solutions.

Custom persistence plug-in If you want to provide your own implementation of WS-RM persistence (for
example, if you prefer to use a database other than Berkeley DB), follow the
instructions in this chapter to implement a custom persistence plug-in.

References You can read more about the Artix support for WS-ReliableMessaging in the
following documents:

• Configuring and Deploying Artix Solutions.

• Developing Artix Applications in C++.

The WS-ReliableMessaging specification is available from Oasis, at the
following location:

• Web Services Reliable Messaging Protocol
 203

http://communities.progress.com/pcom/docs/DOC-106903
http://communities.progress.com/pcom/docs/DOC-106903
http://communities.progress.com/pcom/docs/DOC-106903
http://communities.progress.com/pcom/docs/DOC-106903
http://www-128.ibm.com/developerworks/webservices/library/specification/ws-rm/

CHAPTER 6 | WS-RM Persistence
WS-RM Persistence API

Overview This section describes the base classes that you need to define in order to
implement the WS-RM persistence feature.

In this section This section contains the following subsections:

Overview of the Persistence API page 205

RMPersistentManager Class page 206

RMEndpointPersistentStore Class page 210

RMSequencePersistentStore Class page 213
204

WS-RM Persistence API
Overview of the Persistence API

Overview Figure 20 shows an overview of the WS-RM persistence API, which consists of
three classes: IT_Bus::RMPersistentManager,
IT_Bus::RMEndpointPersistentStore, and
IT_Bus::RMSequencePersistentStore. In order to write a WS-RM persistence
plug-in, you must provide an implementation for each of these API classes.

RMPersistentManager class The IT_Bus::RMPersistentManager class is the basic point of contact between
the WS-RM core and the WS-RM persistence layer. This class is responsible for
connecting to the database and managing the persistence of WS-RM source
endpoints and WS-RM destination endpoints.

RMEndpointPersistentStore class The IT_Bus::RMEndpointPersistentStore class represents the persistent
storage for a particular WS-RM endpoint (could be either a source endpoint or a
destination endpoint). This class effectively acts as a container for message
sequences.

RMSequencePersistenceStore
class

The IT_Bus::RMSequencePersistenceStore class represents the persistent
storage for a particular WS-RM message sequence. This class effectively acts as
a container for messages.

Figure 20: Overview of the WS-RM Persistence API

RMPersistentManager

RMSequencePersistentStore

RMEndpointPersistentStore

cr
ea

te
s

cr
ea

te
s

 205

CHAPTER 6 | WS-RM Persistence
RMPersistentManager Class

Overview The IT_Bus::RMPersistentManager class provides the basic point of contact
between the WS-RM core and WS-RM persistence plug-in. You must
implement this class in order to implement a WS-RM persistence plug-in.

For details of how to register an IT_Bus::RMPersistentManager instance, see
“Implementing a WS-RM Persistence Plug-In” on page 227.

RMPersistentManager class
header

Example 56 shows the header for the IT_Bus::RMPersistentManager class,
with some hints on how to implement each member function.

Example 56: The RMPersistentManager Class Header

// C++
#include <it_bus/types.h>

namespace IT_Bus
{
 class String;
 class QName;
 class BinaryBuffer;

 class RMPersistentManager
 {
 public:
 virtual RMEndpointPersistentStore*

1 rm_source_endpoint_created(
 const QName& wsdl_service_qname,
 const String& wsdl_port_name,
 const String& stringified_wsa_epr,
 const String& endpoint_address
) = 0;

 virtual RMEndpointPersistentStore*
2 rm_destination_endpoint_created(

 const QName& wsdl_service_qname,
 const String& wsdl_port_name,
 const String& stringified_wsa_epr
) = 0;

 virtual void
3 rm_endpoint_closed(
206

WS-RM Persistence API
The preceding class header can be explained as follows:

1. The rm_source_endpoint_created() function is called by the WS-RM

core just after a WS-RM source endpoint is created.

The arguments to rm_source_endpoint_created() are used as follows:

♦ Database key—the service name, wsdl_service_qname, and port

name, wsdl_port_name, together should be used to generate a

database key.

♦ Database data—the string arguments, stringified_wsa_epr and

endpoint_address, should be stored in the keyed database record.

You also need to create a record for WS-RM source endpoint data.

When this function is called, you should create an entry in your database to

store the WS-RM source endpoint details.

2. The rm_destination_endpoint_created() function is called by the

WS-RM core just after a WS-RM destination endpoint is created.

The arguments to rm_destination_endpoint_created() are used as

follows:

♦ Database key—the service name, wsdl_service_qname, and port

name, wsdl_port_name, together should be used as a database key.

 RMEndpointPersistentStore* ep_store
) = 0;

 virtual RMEndpointPersistentStore*
4 get_next_source_endpoint_to_recover() = 0;

5 virtual void cleanup_persistent_store() = 0;
 };
 ...
}

Example 56: The RMPersistentManager Class Header

Note: The rm_source_endpoint_created() function will be called
multiple times with the same service/port combination, if the user creates
multiple proxies. You must ensure that a unique database key is
generated whenever this function is called, even if the service/port
combination is the same.
 207

CHAPTER 6 | WS-RM Persistence
♦ Database data—the string argument, stringified_wsa_epr, should

be stored in the keyed database record. You also need to create a

record for WS-RM destination endpoint data.

It is possible that rm_destination_endpoint_created() might be called

more than once for a given service name and port name combination. If

this happens, re-use the existing database record (as keyed by the service

name and port name) rather than create a new record.

3. The rm_endpoint_closed() function is called by the WS-RM core after

an endpoint has been shut down.

To implement this function, delete all of the database records associated

with the specified endpoint instance. The WS-RM core guarantees that this

function is called only after all of the sequences have been terminated.

4. The get_next_source_endpoint_to_recover() function is called by the

WS-RM core during recovery after a program crash.

The get_next_source_endpoint_to_recover() function should be

implemented to behave as follows:

i. The first time this function is called, it should retrieve the list of

WS-RM source endpoints from the database and return a pointer to

the first endpoint instance.

ii. On each subsequent call, the function should return a pointer to the

next source endpoint in the list.

iii. When the end of the list has been reached, the function should return

zero.

5. The cleanup_persistent_store() function is called by the WS-RM core

during a normal program shutdown (bus shutdown), at which point all of

the sequences will have been terminated.

To implement this function, delete all of the database records associated

with the current program.

Note: The WS-RM core runs through this call sequence only once per
session. Hence, it is not strictly necessary to reset this iterator function at
the end of the list.
208

WS-RM Persistence API
Note: When a sequence has been terminated, that does not necessarily
imply that all of its message have been transmitted and acknowledged or
that all of the messages have been delivered. When a process shuts down
gracefully, WS-RM sends a wsrm:SequenceTerminated fault to the peer
endpoint to terminate each sequence.
 209

CHAPTER 6 | WS-RM Persistence
RMEndpointPersistentStore Class

Overview The IT_Bus::RMEndpointPersistentStore class stores details either for a
source endpoint or for a destination endpoint. It also acts as a container for
WS-RM message sequences. You must implement this class in order to
implement a WS-RM persistence plug-in.

RMEndpointPersistentStore class
header

Example 57 shows the header for the IT_Bus::RMEndpointPersistentStore
class, with some hints on how to implement each member function.

Example 57: The RMEndpointPersistentStore Class Header

// C++
#include <it_bus/types.h>

namespace IT_Bus
{
 class String;
 class QName;
 class BinaryBuffer;

 class RMEndpointPersistentStore
 {
 public:

1 virtual const QName& get_service_name() = 0;
 virtual String get_port_name() = 0;
 virtual String get_address() = 0;
 virtual String get_stringified_epr() = 0;

2 virtual void store_address(
 const String& endpoint_address
) = 0;

3 virtual RMSequencePersistentStore* sequence_created(
 const String& sequence_id,
 const String& acksto_uri
) = 0;

4 virtual bool endpoint_needs_recovery() = 0;

 virtual RMSequencePersistentStore*
5 get_next_sequence_to_recover() = 0;

 };
210

WS-RM Persistence API
The preceding header class can be explained as follows:

1. The following functions—get_service_name(), get_port_name(),

get_address(), and get_stringified_epr()—return basic data from the

endpoint’s database record.

2. The store_address() updates the endpoint address field (that is, the same

field that is accessible by calling get_address()).

This function is called only in a destination endpoint, after the endpoint is

activated. The sequence of events is as follows:

i. When a destination endpoint is created, the WS-RM core calls

rm_destination_endpoint_created().

ii. The destination endpoint is activated, at which point the URL address

becomes known (for example, the operating system would allocate an

IP address during activation).

iii. The WS-RM core calls store_address(), to pass on the activated

address.

3. The sequence_created() function is called by the WS-RM core just after

a new WS-RM sequence is created.

To implement this function, you should store the sequence_id and

acksto_uri strings in the endpoint’s database record.

4. The endpoint_needs_recovery() function is called by the WS-RM core

during recovery after a program crash.

This function must return true, if there are messages stored in this

endpoint’s database record that were not sent before the program crashed.

5. The get_next_sequence_to_recover() function is called by the WS-RM

core during recovery after a program crash.

}

Example 57: The RMEndpointPersistentStore Class Header
 211

CHAPTER 6 | WS-RM Persistence
The get_next_sequence_to_recover() function should be implemented

to behave as follows:

i. The first time this function is called, it should retrieve the list of

message sequences from the database and return a pointer to the first

sequence instance.

ii. On each subsequent call, the function should return a pointer to the

next sequence in the list.

iii. When the end of the list has been reached, the function should return

zero.
212

WS-RM Persistence API
RMSequencePersistentStore Class

Overview The IT_Bus::RMSequencePersistentStore class acts as a container for
messages belonging to a particular message sequence, where the messages are
stored persistently. You must implement this class in order to implement a
WS-RM persistence plug-in.

RMSequencePersistentStore class
header

Example 58 shows the header for the IT_Bus::RMSequencePersistentStore
class, with some hints on how to implement each member function.

Example 58: The RMSequencePersistentStore Class Header

// C++
#include <it_bus/types.h>

namespace IT_Bus
{
 class String;
 class QName;
 class BinaryBuffer;

 class RMSequencePersistentStore
 {
 public:

1 virtual String get_sequence_id() = 0;
 virtual String get_acksto_uri() = 0;

2 virtual bool store_message(
 IT_Bus::ULong message_id,
 BinaryBuffer& message,
 bool is_last_message
) = 0;

3 virtual void remove_message(
 IT_Bus::ULong message_id,
 bool highest_delivered_message_id
) = 0;

4 virtual void store_acknowledgement(
 const String& stringified_ack_range
) = 0;

5 virtual IT_Bus::ULong get_last_message_id() = 0;
 213

CHAPTER 6 | WS-RM Persistence
The preceding header class can be explained as follows:

1. The following functions—get_sequence_id(), and get_acksto_uri()—

return the sequence’s ID and wsa:acksTo URI from the database record.

2. The store_message() function is called by the WS-RM core each time a

message is about to be sent as part of this message sequence.

To implement this function, store the message buffer, message, and the

message ID, message_id, in the database. The is_last_message

argument is used by the WS-RM core to indicate that this is the last

message in the sequence.

The boolean value returned from store_message() is true, if the message

is successfully persisted, and false, otherwise.

3. The remove_message() function is called by the WS-RM core after the

specified message (identified by the message_id argument) has been

acknowledged (source side) or delivered (destination side).

To implement this function, remove the specified message from the

endpoint’s database record. The highest_delivered_message_id flag is

used only for destination endpoints. The flag is true, if the current

message has the highest ID of all the messages delivered so far in this

sequence. When the flag is true, you should store the value of the

message_id argument in the database.

4. No implementation required—this function is currently unused.

The store_acknowledgement() function would be called by the WS-RM

core whenever an acknowledgement message is received. This function is

not needed, if InOrder delivery assurance is enabled. Currently, Artix

always requires InOrder delivery assurance.

6 virtual void sequence_terminated() = 0;
7 virtual BinaryBuffer* get_next_message_to_recover(

 IT_Bus::ULong& message_id
) = 0;
 };
}

Example 58: The RMSequencePersistentStore Class Header
214

WS-RM Persistence API
5. The get_last_message_id() returns the last message ID of the current

sequence. The returned value depends on whether the current endpoint is a

source endpoint or a destination endpoint:

♦ Source endpoint—returns the ID for the last message of the sequence

or 0, if the last message has not been persisted yet.

♦ Destination endpoint—returns the highest message ID that has been

delivered so far. This is the message ID previously stored by calling

remove_message().

6. The sequence_terminated() function is called by the WS-RM core after

the complete message sequence has been delivered.

To implement this function, remove all details of the specified message

sequence from the database (including any messages that might still be

stored).

7. The get_next_message_to_recover() function is called by the WS-RM

core during recovery after a program crash.

The get_next_message_to_recover() function is called iteratively to

return each message for recovery. The return value from the function is a

pointer to a buffer containing the message and the out argument,

message_id, returns the message’s ID. If there are no more messages in

the store, the function returns 0.

Note: On the destination side, the highest message ID is relevant only if
the InOrder delivery assurance policy is in force. The InOrder delivery
assurance guarantees that messages are delivered in the same order in
which they were sent.
 215

CHAPTER 6 | WS-RM Persistence
Persistence and Recovery Algorithms

Overview To implement a custom WS-RM persistence plug-in correctly, it is helpful to
understand the way in which the WS-RM core persists and recovers data for the
source and destination endpoints. This section describes the interactions between
the WS-RM core and a custom WS-RM persistence plug-in for some basic
persistence and recovery scenarios.

In this section This section contains the following subsections:

Persistence at a Source Endpoint page 217

Recovery of a Source Endpoint page 219

Persistence at a Destination Endpoint page 221

Recovery of a Destination Endpoint page 224
216

Persistence and Recovery Algorithms
Persistence at a Source Endpoint

Overview This subsection describes the typical interaction between the WS-RM core and a
WS-RM persistence plug-in, providing persistence for a WS-RM source
endpoint.

Figure 21 gives a schematic overview of the steps involved in persisting a source
endpoint.

Figure 21: Overview of Persisting a Source Endpoint

RMPersistentManager

RMSequencePersistentStore

RMEndpointPersistentStore

cr
ea

te
s

cr
ea

te
s

rm_source_endpoint_created()

sequence_created()

store_message()

remove_message()

sequence_terminated()

1

2

3

4

5

 217

CHAPTER 6 | WS-RM Persistence
Persistence steps for a source
endpoint

The steps shown in Figure 21 for persisting a source endpoint can be explained
as follows:

Stage Description

1 After a WS-RM source endpoint is created, the WS-RM core calls
rm_source_endpoint_created() on the RMPersistentManager
object, in order to create an instance of a source endpoint in the
persistent store.

2 When the source endpoint initiates a WS-RM message sequence,
the WS-RM core calls sequence_created() on the
RMEndpointPersistentStore object. This call is made after
receipt of the CreateSequenceResponse message, which indicates
completion of the sequence establishment handshake.

3 Before each message is sent out on the wire, the WS-RM core
saves the message to the persistent store by calling
store_message() on the RMSequencePersistentStore object.

If the current message is the last message of the sequence, the
WS-RM core calls store_message() with the is_last_message
flag equal to true. This sets the value of the last message ID,
which is accessible through the get_last_message_id() function.
When is_last_message is true, it implies that the final message
includes a wsrm:LastMessage element.

4 When the source endpoint receives an acknowledgement, it iterates
through the acknowledgement range and calls remove_message()
on the RMSequencePersistentStore object to erase each
acknowledged message from the persistent store.

5 After the source endpoint sends the TerminateSequence message,
the WS-RM core calls sequence_terminated() on the
RMSequencePersistentStore object.
218

Persistence and Recovery Algorithms
Recovery of a Source Endpoint

Overview This subsection describes the typical interaction between the WS-RM core and a
WS-RM persistence plug-in, where the source endpoint is attempting to recover
after a program crash.

A recovering source endpoint operates in two distinct modes:

1. Recovery mode—when an application program restarts after a crash, it

enters recovery mode, as described in this subsection.

During recovery mode, WS-RM attempts to resend all of the

unacknowledged messages, and after all of the messages have been

acknowledged, the WS-RM core closes the message sequences and

endpoints and cleans up the database.

2. Normal mode—after recovery, when a user creates a proxy, the source

endpoint starts to operate in normal mode, as described in “Persistence at a

Source Endpoint” on page 217.

Recovery of a source endpoint Figure 22 gives a schematic overview of the steps involved in recovering a
source endpoint.

Figure 22: Overview of Recovering a Source Endpoint

RMPersistentManager

RMSequencePersistentStore

RMEndpointPersistentStore

cr
ea

te
s

cr
ea

te
s

get_next_source_endpoint_to_recover()

get_next_sequence_to_recover()

get_next_message_to_recover()

sequence_terminated()

1

2

3

5
get_last_message_id()

4

 219

CHAPTER 6 | WS-RM Persistence
Recovery steps for a source
endpoint

The steps shown in Figure 22 for recovering a source endpoint can be explained
as follows:

Stage Description

1 When a program initiates recovery after a crash, the WS-RM core
iteratively calls get_next_source_endpoint_to_recover() on
the RMPersistentManager object in order to obtain a list of all the
source endpoints to recover (where each source endpoint is
represented by an RMEndpointPersistentStore object).

2 On each of the endpoints to be recovered, the WS-RM core
iteratively calls get_next_sequence_to_recover() in order to
obtain a list of message sequences to recover (where each message
sequence is represented by an RMSequencePersistentStore
object).

3 The WS-RM core iteratively calls
get_next_message_to_recover() on each sequence in order to
assemble a list of unsent message for each sequence.

4 At the end of each sequence, the WS-RM core calls
get_last_message_id() to determine whether a LastMessage
message was sent. If the function returns 0, the source endpoint
must sent a LastMessage message to finish the sequence.

5 After resending all of the outstanding messages and receiving
acknowledgements for them, the WS-RM core calls
sequence_terminated() on the relevant
RMSequencePersistentStore object.
220

Persistence and Recovery Algorithms
Persistence at a Destination Endpoint

Overview This subsection describes the typical interaction between the WS-RM core and a
WS-RM persistence plug-in, providing persistence for a WS-RM destination
endpoint.

Figure 23 gives a schematic overview of the steps involved in persisting a
destination endpoint.

Figure 23: Overview of Persisting a Destination Endpoint

RMPersistentManager

RMSequencePersistentStore

RMEndpointPersistentStore

cr
ea

te
s

cr
ea

te
s

rm_destination_endpoint_created()

sequence_created()

store_message()

remove_message()

sequence_terminated()

1

5

6

7

endpoint_needs_recovery()

store_address()

2

3

4

 221

CHAPTER 6 | WS-RM Persistence
Persistence steps for a destination
endpoint

The steps shown in Figure 23 for persisting a destination endpoint can be
explained as follows:

Stage Description

1 After a WS-RM destination endpoint is created, the WS-RM core
calls rm_destination_endpoint_created() on the
RMPersistentManager object, in order to create an instance of a
destination endpoint in the persistent store.

2 The WS-RM core calls endpoint_needs_recovery() to discover
whether there are any undelivered messages from a previous run of
the program (that is, whether the program previously crashed).

In the current example, we presume the function returns false, so
that the destination endpoint operates in normal mode.

3 After the destination endpoint is activated, the WS-RM core calls
store_address() to store the URL address for this endpoint.

4 When the destination endpoint initiates a WS-RM message
sequence, the WS-RM core calls sequence_created() on the
RMEndpointPersistentStore object. This call is made after
receipt of the CreateSequence message, but before sending the
CreateSequenceResponse message.

5 When the destination endpoint receives a message from the
transport layer, the WS-RM core saves the message to the
persistent store by calling store_message() on the
RMSequencePersistentStore object.

If the message duplicates a message already present in the
persistent store, the store_message() function would return
false, indicating that save operation failed.

After the message is persisted, the WS-RM core is ready to send an
acknowledgement of the message.

6 After the successful delivery of a message to the Application
Destination, the WS-RM core deletes the message from the
persistent store by calling remove_message() on the
RMSequencePersistentStore object.
222

Persistence and Recovery Algorithms
7 After the destination endpoint receives the TerminateSequence
message, the WS-RM core calls sequence_terminated() on the
RMSequencePersistentStore object.

Stage Description
 223

CHAPTER 6 | WS-RM Persistence
Recovery of a Destination Endpoint

Overview This subsection describes the typical interaction between the WS-RM core and a
WS-RM persistence plug-in, where the destination endpoint is attempting to
recover after a program crash.

Figure 24 gives a schematic overview of the steps involved in recovering a
destination endpoint.

Figure 24: Overview of Recovering a Destination Endpoint

RMPersistentManager

RMSequencePersistentStore

RMEndpointPersistentStore

cr
ea

te
s

cr
ea

te
s

rm_destination_endpoint_created()

endpoint_needs_recovery()

get_next_message_to_recover()

sequence_terminated()

1

2

5

8

get_next_sequence_to_recover()
4

get_address()3

get_last_message_id()6
remove_message()7
224

Persistence and Recovery Algorithms
Recovery steps for a destination
endpoint

The steps shown in Figure 24 for recovering a destination endpoint can be
explained as follows:

Stage Description

1 When a program initiates recovery after a crash, the WS-RM core
calls rm_destination_endpoint_created() on the
RMPersistentManager object to obtain a reference to an
RMEndpointPersistentStore object.

2 The WS-RM core calls endpoint_needs_recovery() on the
destination endpoint, to determine whether or not this endpoint
needs to be recovered.

In the current example, we presume the function returns true, so
that the destination endpoint operates in recovery mode.

3 The WS-RM core calls get_address() to recover the address
URL previously stored in the database. Artix then activates the
destination endpoint using this address.

4 On each of the endpoints to be recovered, the WS-RM core
iteratively calls get_next_sequence_to_recover() in order to
obtain a list of message sequences to recover (where each message
sequence is represented by an RMSequencePersistentStore
object).

5 For each sequence, there are two categories of message to recover:

• Messages received but not delivered (these are stored in the

database).

• Messages not received at all.

To obtain the list of messages received but not delivered, the
WS-RM core iteratively calls get_next_message_to_recover()
on the sequence.
 225

CHAPTER 6 | WS-RM Persistence
6 To determine which messages have not been received at all, the
WS-RM core calls get_last_message_id(). Assuming that the
InOrder delivery assurance is in force, we know that all of the
messages up to and including the last message ID have been
received and delivered.

For example, if the last message ID is 25 and the database contains
one undelivered message with message ID 33, the destination
endpoint can assemble the following ranges to send in a WS-RM
acknowledgement message:

[(1,25), (33,33)]

7 After each message is successfully delivered to the Application
Destination, the WS-RM core deletes the message by calling
remove_message().

8 After all of a sequence’s messages have successfully reached the
Application Destination, the WS-RM core calls
sequence_terminated() on the relevant
RMSequencePersistentStore object.

Stage Description
226

Implementing a WS-RM Persistence Plug-In
Implementing a WS-RM Persistence Plug-In

Overview This section gives a brief outline of the steps required to implement a WS-RM
persistence plug-in, as follows:

• Implementation steps.

• Registering the persistent manager.

• Plug-in init() function.

Implementation steps To implement a WS-RM persistence plug-in, perform the following steps:

Registering the persistent
manager

To initialize the WS-RM persistence feature, you need to register a persistent
manager instance with the Artix bus, as shown in Example 59.

Step Action

1 Implement the persistent manager class by defining a class that
inherits from IT_Bus::RMPersistentManager (which is declared
in the it_bus_pdk/rm_persistence.h header file).

2 Implement the endpoint persistent store class by defining a class
that inherits from IT_Bus::RMEndpointPersistentStore. (which
is declared in the it_bus_pdk/rm_persistence.h header file).

3 Implement the sequence persistent store class by defining a class
that inherits from IT_Bus::RMSequencePersistentStore. (which
is declared in the it_bus_pdk/rm_persistence.h header file).

4 Create an instance of the persistent manager class and register the
instance with the Artix endpoint manager factory (see “Registering
the persistent manager” on page 227 and “Plug-in init() function”
on page 228 for details).

Example 59: WS-RM Persistent Manager Constructor Function

// C++
RMPersistentManagerImpl::RMPersistentManagerImpl(
 Bus_ptr bus
)

 227

CHAPTER 6 | WS-RM Persistence
The RMPersistentManagerImpl class is a sample implementation of the
IT_Bus::RMPersistentManager base class. The class constructor should take
an IT_Bus::Bus instance as an argument, to provide easy access to the Artix bus
instance. Use the Artix bus instance, bus, to gain access to the
RMEndpointManagerFactory instance and then register the WS-RM persistent
manager instance by calling the register_rm_persistent_manager()
function.

Plug-in init() function Call the persistent manager constructor from inside the bus_init() function, as
shown in Example 60.

Where RMPersistenceBusPlugIn is an example plug-in class that implements a
WS-RM persistence plug-in.

{
 EndpointManagerFactory* factory =
 bus->get_pdk_bus()->get_endpoint_manager_factory("wsrm");

 RMEndpointManagerFactory* rm_endpoint_manager_factory =
 IT_DYNAMIC_CAST(RMEndpointManagerFactory*, factory);

 rm_endpoint_manager_factory->register_rm_persistent_manager(
 this
);
 ...
}

Example 59: WS-RM Persistent Manager Constructor Function

Example 60: Implementation of the Plug-In’s init() Function

// C++
void
RMPersistenceBusPlugIn::bus_init(
) IT_THROW_DECL((Exception))
{
 m_persistent_factory =
 new RMPersistentManagerImpl(m_bus);
}

228

Index

A
activate() function 136, 143

and EXTERNALLY_DRIVEN scenario 150
and messaging-style dispatch 159
and single-threaded scenario 148
MULTI_THREADED scenario 145

architecture
of Artix transport 135

asynchronous dispatch policy 154

C
ClientTransport

connect() function 136
disconnect() function 136
initialize() function 136
invoke() function 136
invoke_oneway() function 161

ClientTransport class
accessing contexts in 161
connect() function 161
description 137
invoke() function 161
overview 136

ClientTransport invoke_oneway() function 136
compiling a context schema 59
connect() function 136, 161
contexts

and trasnports 161
sample schema 58
scenario description 57
schema, target namespace 58

D
deactivate() function 136
disconnect() function 136
dispatch() function 153

and asynchronous dispatch 154
DispatchInfo

get_correlation_id() function 138
DispatchInfo class

and accessing contexts on the server side 163
description 138

is_oneway() function 165
provide_response_buffer() function 153, 155

dispatching
messaging-style dispatch 158
RPC-style dispatch 153, 155

E
EXTERNALLY_DRIVEN policy value 141, 150

G
get_configuration() function 136
get_correlation_id() function 138
get_policies() function 139, 142

and MULTI_THREADED policy value 146
and RPC-style dispatch 156
and the EXTERNALLY_DRIVEN policy value 151
and the SINGLE_THREADED policy value 148
example 144

H
header contexts

sample schema type 58

I
initialize() function 136
invoke() function 136, 161
invoke_oneway() function 136, 161
iostreams 198
is_oneway() function 165
IT_TRACE 197

M
MESSAGING_PORT_DRIVEN and

MULTI_INSTANCE scenario 143
MESSAGING_PORT_DRIVEN and

MULTI_THREADED scenario 145
MESSAGING_PORT_DRIVEN and

SINGLE_THREADED scenario 148
MESSAGING_PORT_DRIVEN policy

and run() function 136
MESSAGING_PORT_DRIVEN policy value 141
 229

INDEX
messaging port threading policy
EXTERNALLY_DRIVEN policy value 150
MULTI_INSTANCE policy value 141
MULTI_THREADED policy value 141
SINGLE_THREADED policy value 142

messaging-style dispatch 158
MULTI_INSTANCE policy value 141
MULTI_THREADED policy

and run() function 136
MULTI_THREADED policy value 141

O
oneway operations

overview 165
oneway semantics

messaging-style dispatch 166
oneways functions

and RPC-style dispatch 165
ORB plug-ins

bootstrapping 39
creating a static instance 39

P
plug-ins

bootstrapping 39
policies

asynchronous dispatch policy 154
stack unwind policy 153

policy:messaging_transport:concurrency configuration
variable 147

policy:messaging_transport:min_threads configuration
variable 144

port
in transport architecture 135

printf 197
provide_response_buffer() function 153, 155

R
requires stack unwind policy

and messaging-style dispatch 159
RPC-style dispatch 153, 155

and oneway semantics 165
run() function 136

and thread safety 147
MULTI_THREADED scenario 145

S
sample context schema 58
schemas

context, example 58
send() function 136, 153

accessing contexts 164
and messaging-style dispatch 158, 166
implementing 160

ServerTransport
activate() function 136, 145
deactivate() function 136
get_configuration() function 136
run() function 136, 145
send() function 136
shutdown() function 136

ServerTransport class 136
activate() function 143, 148, 150
description 138
run() function 147
send() function 153

shutdown() function 136
SINGLE_THREADED policy value 142
SOAPHeaderInfo type 58
stack unwind policy 153

T
target namespace

for a context schema 58
threading policies

setting 144
threading resources policy

EXTERNALLY_DRIVEN policy value 141
MESSAGING_PORT_DRIVEN policy value 141

thread pool
configuring for a MULTI_INSTANCE transport 144
configuring for MULTI_THREADED tranports 147

thread safety 147
trace level 197
TRACELOGBUFFER 198
TRACE macros 197
transport_activated() function 138
transport architecture 135
TransportCallback

dispatch() function 154
transport_activated() function 138
transport_deactivated() function 138
transport_shutdown() function 138

TransportCallback class
230

INDEX
description 138
dispatch() function 153

transport_deactivated() function 138
TransportFactory

get_policies() function 139
TransportFactory class

description 137
get_policies() function 142, 146

TransportPolicyList class

and threading policies 141
description 139
setting policies 153

transport_shutdown() function 138

W
wsdltocpp compiler 59
 231

INDEX
232

	List of Figures
	Preface
	What is Covered in This Book
	Who Should Read This Book
	The Artix Documentation Library

	Basic Plug-In Implementation
	Overview of a Basic Artix Plug-In
	Developing an Artix Plug-In
	Development Steps
	Implementing a BusPlugInFactory Class
	Implementing a BusPlugIn Class
	Creating Static Instances

	Request Interceptors
	Overview of Request Interceptors
	Client Request Interceptors
	Server Request Interceptors

	Sending and Receiving Header Contexts
	SOAP Header Context Example
	Sample Context Schema
	Implementation of the Client Request Interceptor
	Implementation of the Server Request Interceptor
	Implementation of the Interceptor Factory

	Accessing and Modifying Parameters
	Reflection Example
	Implementation of the Client Request Interceptor
	Implementation of the Server Request Interceptor

	Raising Exceptions

	WSDL Extension Elements
	WSDL Structure
	WSDL Parse Tree
	How to Extend WSDL
	Extension Elements for the Stub Plug-In
	Implementing an Extension Element Base Class
	Implementing the Extension Element Classes
	Implementing the Extension Factory
	Registering the Extension Factory

	Artix Transport Plug-Ins
	The Artix Transport Layer
	Architecture Overview
	Artix Transport Classes

	Transport Threading Models
	Threading Introduction
	MESSAGING_PORT_DRIVEN and MULTI_INSTANCE
	MESSAGING_PORT_DRIVEN and MULTI_THREADED
	MESSAGING_PORT_DRIVEN and SINGLE_THREADED
	EXTERNALLY_DRIVEN

	Dispatch Policies
	Dispatch Policy Overview
	RPC-Style Dispatch
	Messaging-Style Dispatch

	Accessing Contexts
	Oneway Semantics
	Stub Transport Example
	Implementing the Client Transport
	Implementing the Server Transport
	Implementing the Transport Factory
	Registering and Packaging the Transport

	Artix Logging Reference
	Using Artix TRACE Macros

	WS-RM Persistence
	Introduction to WS-RM Persistence
	WS-RM Persistence API
	Overview of the Persistence API
	RMPersistentManager Class
	RMEndpointPersistentStore Class
	RMSequencePersistentStore Class

	Persistence and Recovery Algorithms
	Persistence at a Source Endpoint
	Recovery of a Source Endpoint
	Persistence at a Destination Endpoint
	Recovery of a Destination Endpoint

	Implementing a WS-RM Persistence Plug-In

	Index

