

Progress Software

Publication date 11 Aug 2011
Copyright © 2001-2011 Progress Software Corporation and/or its subsidiaries or affiliates.

Legal Notices

These materials and all Progress software products are copyrighted and all rights are reserved by Progress Software Corporation.
The information in these materials is subject to change without notice, and Progress Software Corporation assumes no responsibility
for any errors that may appear therein. The references in these materials to specific platforms supported are subject to change.

Actional, Apama, Artix, Business Empowerment, DataDirect (and design), DataDirect Connect, DataDirect Connect64, DataDirect
Technologies, DataDirect XML Converters, DataDirect XQuery, DataXtend, Dynamic Routing Architecture, EdgeXtend, Empowerment
Center, Fathom, Fuse Mediation Router, Fuse Message Broker, Fuse Services Framework, IntelliStream, IONA, Making Software
Work Together, Mindreef, ObjectStore, OpenEdge, Orbix, PeerDirect, POSSENET, Powered by Progress, PowerTier, Progress,
Progress DataXtend, Progress Dynamics, Progress Business Empowerment, Progress Empowerment Center, Progress Empowerment
Program, Progress OpenEdge, Progress Profiles, Progress Results, Progress Software Developers Network, Progress Sonic,
ProVision, PS Select, Savvion, SequeLink, Shadow, SOAPscope, SOAPStation, Sonic, Sonic ESB, SonicMQ, Sonic Orchestration
Server, SpeedScript, Stylus Studio, Technical Empowerment, WebSpeed, Xcalia (and design), and Your Software, Our
Technology-Experience the Connection are registered trademarks of Progress Software Corporation or one of its affiliates or
subsidiaries in the U.S. and/or other countries. AccelEvent, Apama Dashboard Studio, Apama Event Manager, Apama Event
Modeler, Apama Event Store, Apama Risk Firewall, AppsAlive, AppServer, ASPen, ASP-in-a-Box, BusinessEdge, Business Making
Progress, Cache-Forward, CloudEdge, DataDirect Spy, DataDirect SupportLink, Fuse, FuseSource, Future Proof, GVAC, High
Performance Integration, ObjectStore Inspector, ObjectStore Performance Expert, OpenAccess, Orbacus, Pantero, POSSE,
ProDataSet, Progress Arcade, Progress CloudEdge, Progress Control Tower, Progress ESP Event Manager, Progress ESP Event
Modeler, Progress Event Engine, Progress RFID, Progress RPM, Progress Software Business Making Progress, PSE Pro,
SectorAlliance, SeeThinkAct, Shadow z/Services, Shadow z/Direct, Shadow z/Events, Shadow z/Presentation, Shadow Studio,
SmartBrowser, SmartComponent, SmartDataBrowser, SmartDataObjects, SmartDataView, SmartDialog, SmartFolder, SmartFrame,
SmartObjects, SmartPanel, SmartQuery, SmartViewer, SmartWindow, Sonic Business Integration Suite, Sonic Process Manager,
Sonic Collaboration Server, Sonic Continuous Availability Architecture, Sonic Database Service, Sonic Workbench, Sonic XML
Server, The Brains Behind BAM, WebClient, and Who Makes Progress are trademarks or service marks of Progress Software
Corporation and/or its subsidiaries or affiliates in the U.S. and other countries. Java is a registered trademark of Oracle and/or
its affiliates. Any other marks contained herein may be trademarks of their respective owners.

Third Party Acknowledgements -- See Third Party Acknowledgements on page 16.

Table of Contents
Preface ... 11

What is Covered in This Book ... 12
Who Should Read This Book .. 13
Organization of this Guide .. 14
The Artix ESB Documentation Library ... 15
Third Party Acknowledgements ... 16

Interceptors in the Artix ESB Runtime .. 19
The Interceptor APIs .. 25
Determining When the Interceptor is Invoked .. 27

Specifying an Interceptor's Phase ... 28
Constraining an Interceptors Placement in a Phase ... 31

Implementing the Interceptors Processing Logic ... 35
Processing Messages .. 36
Unwinding After an Error ... 39

Configuring Endpoints to Use Interceptors .. 41
Deciding Where to Attach Interceptors .. 42
Adding Interceptors Using Configuration .. 44
Adding Interceptors Programmatically ... 47

Using the InterceptorProvider API .. 48
Using Java Annotations ... 52

Manipulating Interceptor Chains on the Fly ... 55
A. Artix ESB Message Processing Phases .. 59
B. Artix ESB Provided Interceptors .. 63

Core Artix ESB Interceptors .. 64
Front-Ends ... 65
Message Bindings .. 67
Other Features .. 70

C. Interceptor Providers .. 73
Index .. 75

3

4

List of Figures
1. Artix ESB Interceptor Chains ... 20
2. An Interceptor Phase .. 28
3. Flow Through an Interceptor ... 35

5

6

List of Tables
1. Interceptor Chain Configuration Elements 44
2. Interceptor Chain Annotations ... 52
A.1. Inbound Message Processing Phases 59
A.2. Inbound Message Processing Phases 60
B.1. Core Inbound Interceptors ... 64
B.2. Inbound JAX-WS Interceptors ... 65
B.3. Outbound JAX-WS Interceptors ... 65
B.4. Inbound JAX-RS Interceptors ... 66
B.5. Outbound JAX-RS Interceptors ... 66
B.6. Inbound SOAP Interceptors .. 67
B.7. Outbound SOAP Interceptors .. 68
B.8. Inbound XML Interceptors ... 68
B.9. Outbound XML Interceptors ... 69
B.10. Inbound CORBA Interceptors .. 69
B.11. Outbound CORBA Interceptors .. 69
B.12. Inbound Logging Interceptors ... 70
B.13. Outbound Logging Interceptors ... 70
B.14. Inbound WS-Addressing Interceptors 70
B.15. Outbound WS-Addressing Interceptors 70
B.16. Inbound WS-RM Interceptors ... 71
B.17. Outbound WS-RM Interceptors ... 71

7

8

List of Examples
1. The Interceptor Interface ... 25

2. The PhaseInterceptor Interface ... 26

3. Setting an Interceptor's Phase ... 29
4. Methods for Adding an Interceptor Before Other Interceptors 31
5. Specifying a List of Interceptors that Must Run After the Current
Interceptor ... 32
6. Methods for Adding an Interceptor After Other Interceptors 33
7. Specifying a List of Interceptors that Must Run Before the Current
Interceptor ... 33
8. Getting the Message Exchange .. 37
9. Getting Messages from a Message Exchange 37
10. Checking the Direction of a Message Chain 37
11. Example Message Processing Method 37
12. Handling an Unwinding Interceptor Chain 39
13. Attaching Interceptors to the Bus ... 45
14. Attaching Interceptors to a JAX-WS Service Provider 45
15. The InterceptorProvider Interface 48

16. Attaching an Interceptor to a Consumer Programmatically 49
17. Attaching an Interceptor to a Service Provider
Programmatically .. 50
18. Attaching an Interceptor to a Bus ... 51
19. Syntax for Listing Interceptors in a Chain Annotation 53
20. Attaching Interceptors to a Service Implementation 53
21. Method for Getting an Interceptor Chain 56
22. Methods for Adding Interceptors to an Interceptor Chain 56
23. Adding an Interceptor to an Interceptor Chain On-the-fly 56
24. Methods for Adding Interceptors to an Interceptor Chain 57
25. Adding an Interceptor to an Interceptor Chain On-the-fly 57

9

10

Preface
What is Covered in This Book ... 12
Who Should Read This Book .. 13
Organization of this Guide .. 14
The Artix ESB Documentation Library ... 15
Third Party Acknowledgements ... 16

11

What is Covered in This Book
This book describes how to develop interceptors for the Artix ESB Java
Runtime runtime. It also describes how to configure your applications to use
these custom interceptors.

12

Who Should Read This Book
This book is intended for developers who are very comfortable with Java
programming and using the Java APIs geared toward manipulating XML
documents and SOAP messages. Developers reading this book should also
have an understanding of distributed application design and the low-level
details of how endpoints in a distributed application communicate.

13

Organization of this Guide
This guide is organized to reflect how a developer will walk through the process
of developing an interceptor for the Artix ESB Java Runtime runtime. The
introduction lays out the basic concepts and the subsequent chapters describe
the one step of the development process.

14

The Artix ESB Documentation Library
For information on the organization of the Artix ESB library, the document
conventions used, and where to find additional resources, see Using the Artix
ESB Library1.
See the entire documentation set at the Artix Product Documentation Web
Site2

1 http://documentation.progress.com/output/Iona/artix/5.6/library_intro/library_intro.pdf
2 http://communities.progress.com/pcom/docs/DOC-106903

15

http://documentation.progress.com/output/Iona/artix/5.6/library_intro/library_intro.pdf
http://documentation.progress.com/output/Iona/artix/5.6/library_intro/library_intro.pdf
http://communities.progress.com/pcom/docs/DOC-106903
http://communities.progress.com/pcom/docs/DOC-106903
http://documentation.progress.com/output/Iona/artix/5.6/library_intro/library_intro.pdf
http://communities.progress.com/pcom/docs/DOC-106903

Third Party Acknowledgements
Progress Artix ESB v5.6 incorporates Apache Commons Codec v1.2 from The
Apache Software Foundation. Such technology is subject to the following
terms and conditions: The Apache Software License, Version 1.1 - Copyright
(c) 2001-2003 The Apache Software Foundation. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer. 2. Redistributions in binary
form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided
with the distribution. 3. The end-user documentation included with the
redistribution, if any, must include the following acknowledgement: "This
product includes software developed by the Apache Software Foundation
(http://www.apache.org/)." Alternately, this acknowledgement may appear in
the software itself, if and wherever such third-party acknowledgements
normally appear. 4. The names "Apache", "The Jakarta Project", "Commons",
and "Apache Software Foundation" must not be used to endorse or promote
products derived from this software without prior written permission. For
written permission, please contact apache@apache.org. 5. Products derived
from this software may not be called "Apache", "Apache" nor may "Apache"
appear in their name without prior written permission of the Apache Software
Foundation. THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

==

This software consists of voluntary contributions made by many individuals
on behalf of the Apache Software Foundation. For more information on the
Apache Software Foundation, please see http://www.apache.org/.

16

http://www.apache.org/

Progress Artix ESB v5.6 incorporates Jcraft JSCH v0.1.44 from Jcraft. Such
technology is subject to the following terms and conditions: Copyright (c)
2002-2010 Atsuhiko Yamanaka, JCraft,Inc. All rights reserved. Redistribution
and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met: 1. Redistributions of source
code must retain the above copyright notice, this list of conditions and the
following disclaimer. 2. Redistributions in binary form must reproduce the
above copyright notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the distribution. 3.
The names of the authors may not be used to endorse or promote products
derived from this software without specific prior written permission. THIS
SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL JCRAFT, INC. OR ANY
CONTRIBUTORS TO THIS SOFTWARE BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.

17

18

Interceptors in the Artix ESB Runtime
Most of the functionality in the Artix ESB runtime is implemented by interceptors. Every endpoint created by the
Artix ESB runtime has three potential interceptor chains for processing messages. The interceptors in the these
chains are responsible for transforming messages between the raw data transported across the wire and the Java
objects handled by the endpoint's implementation code. The interceptors are organized into phases to ensure
that processing happens on the proper order.

Overview A large part of what Artix ESB does entails processing messages. When a
consumer makes a invocation on a remote service the runtime needs to
marshal the data into a message the service can consume and place it on
the wire. The service provider must unmarshal the message, execute its
business logic, and marshal the response into the appropriate message format.
The consumer must then unmarshal the response message, correlate it to the
proper request, and pass it back to the consumer's application code. In
addition to the basic marshaling and unmarshaling, the Artix ESB runtime
may do a number of other things with the message data. For example, if
WS-RM is activated, the runtime must process the message chunks and
acknowledgement messages before marshaling and unmarshaling the message.
If security is activated, the runtime must validate the message's credentials
as part of the message processing sequence.

Figure 1 on page 20 shows the basic path that a request message takes
when it is received by a service provider.

19

Figure 1. Artix ESB Interceptor Chains

Message processing in Artix ESB When a Artix ESB developed consumer invokes a remote service the following
message processing sequence is started:

1. The Artix ESB runtime creates an outbound interceptor chain to process
the request.

2. If the invocation starts a two-way message exchange, the runtime creates
an inbound interceptor chain and a fault processing interceptor chain.

3. The request message is passed sequentially through the outbound
interceptor chain.

Each interceptor in the chain performs some processing on the message.
For example, the Artix ESB supplied SOAP interceptors package the
message in a SOAP envelope.

20

Interceptors in the Artix ESB Runtime

4. If any of the interceptors on the outbound chain create an error condition
the chain is unwound and control is returned to the application level
code.

An interceptor chain is unwound by calling the fault processing method
on all of the previously invoked interceptors.

5. The request is dispatched to the appropriate service provider.

6. When the response is received, it is passed sequentially through the
inbound interceptor chain.

Note
If the response is an error message, it is passed into the fault
processing interceptor chain.

7. If any of the interceptors on the inbound chain create an error condition,
the chain is unwound.

8. When the message reaches the end of the inbound interceptor chain, it
is passed back to the application code.

When a Artix ESB developed service provider receives a request from a
consumer, a similar process takes place:

1. The Artix ESB runtime creates an inbound interceptor chain to process
the request message.

2. If the request is part of a two-way message exchange, the runtime also
creates an outbound interceptor chain and a fault processing interceptor
chain.

3. The request is passed sequentially through the inbound interceptor chain.

4. If any of the interceptors on the inbound chain create an error condition,
the chain is unwound and a fault is dispatched to the consumer.

An interceptor chain is unwound by calling the fault processing method
on all of the previously invoked interceptors.

5. When the request reaches the end of the inbound interceptor chain, it
is passed to the service implementation.

21

6. When the response is ready it is passed sequentially through the outbound
interceptor chain.

Note
If the response is an exception, it is passed through the fault
processing interceptor chain.

7. If any of the interceptors on the outbound chain create an error condition,
the chain is unwound and a fault message is dispatched.

8. Once the request reaches the end of the outbound chain, it is dispatched
to the consumer.

Interceptors All of the message processing in the Artix ESB runtime is done by interceptors.
Interceptors are POJOs that have access to the message data before it is
passed to the application layer. They can do a number of things including:
transforming the message, stripping headers off of the message, or validating
the message data. For example, an interceptor could read the security headers
off of a message, validate the credentials against an external security service,
and decide if message processing can continue.

The message data available to an interceptor is determined by a number of
factors:

• the interceptor's chain

• the interceptor's phase

• the other interceptors that occur earlier in the chain

Phases Interceptors are organized into phases. A phase is a logical grouping of
interceptors with common functionality. Each phase is responsible for a
specific type of message processing. For example, interceptors that process
the marshaled Java objects that are passed to the application layer would all
occur in the same phase.

Interceptor chains Phases are aggregated into interceptor chains. An interceptor chain is a list
of interceptor phases that are ordered based on whether messages are inbound
or outbound.

22

Interceptors in the Artix ESB Runtime

Each endpoint created using Artix ESB has three interceptor chains:

• a chain for inbound messages

• a chain for outbound messages

• a chain for error messages

Interceptor chains are primarily constructed based on the choose of binding
and transport used by the endpoint. Adding other runtime features, such as
security or logging, also add interceptors to the chains. Developers can also
add custom interceptors to a chain using configuration.

Developing interceptors Developing an interceptor, regardless of its functionality, always follows the
same basic procedure:

1. Determine which abstract interceptor class to extend.

Artix ESB provides a number of abstract interceptors to make it easier
to develop custom interceptors.

2. Determine the phase in which the interceptor will run.

Interceptors require certain parts of a message to be available and require
the data to be in a certain format. The contents of the message and the
format of the data is partially determined by an interceptor's phase.

3. Determine if there are any other interceptors that must be executed either
before or after the interceptor.

In general, the ordering of interceptors within a phase is not important.
However, in certain situations it may be important to ensure that an
interceptor is executed before, or after, other interceptors in the same
phase.

4. Implement the interceptor's message processing logic.

5. Implement the interceptor's fault processing logic.

If an error occurs in the active interceptor chain after the interceptor has
executed, its fault processing logic is invoked.

6. Attach the interceptor to one of the endpoint's interceptor chains.

23

24

The Interceptor APIs
Interceptors implement the PhaseInterceptor interface which extends the base Interceptor interface. This
interface defines a number of methods used by the Artix ESB's runtime to control interceptor execution and are
not appropriate for application developers to implement. To simplify interceptor development, Artix ESB provides
a number of abstract interceptor implementations that can be extended.

Interfaces All of the interceptors in Artix ESB implement the base Interceptor interface
shown in Example 1 on page 25.

Example 1. The Interceptor Interface

package org.apache.cxf.interceptor;

public interface Interceptor<T extends Message>
{

void handleMessage(T message) throws Fault;

void handleFault(T message);

}

The Interceptor interface defines the two methods that a developer needs
to implement for a custom interceptor:

handleMessage()
The handleMessage() method does most of the work in an interceptor.

It is called on each interceptor in a message chain and receives the
contents of the message being processed. Developers implement the
message processing logic of the interceptor in this method. For detailed
information about implementing the handleMessage() method, see

Processing Messages on page 36.

handleFault()
The handleFault() method is called on an interceptor when normal

message processing has been interrupted. The runtime calls the
handleFault() method of each invoked interceptor in reverse order as

it unwinds an interceptor chain. For detailed information about
implementing the handleFault() method, see Unwinding After an

Error on page 39.

25

Most interceptors do not directly implement the Interceptor interface.
Instead, they implement the PhaseInterceptor interface shown in
Example 2 on page 26. The PhaseInterceptor interface adds four methods
that allow an interceptor the participate in interceptor chains.

Example 2. The PhaseInterceptor Interface

package org.apache.cxf.phase;
...

public interface PhaseInterceptor<T extends Message> extends
Interceptor<T>
{

Set<String> getAfter();

Set<String> getBefore();

String getId();

String getPhase();

}

Abstract interceptor class Instead of directly implementing the PhaseInterceptor interface, developers
should extend the AbstractPhaseInterceptor class. This abstract class
provides implementations for the phase management methods of the
PhaseInterceptor interface. The AbstractPhaseInterceptor class also
provides a default implementation of the handleFault() method.

Developers need to provide an implementation of the handleMessage()
method. They can also provide a different implementation for the
handleFault() method. The developer-provided implementations can
manipulate the message data using the methods provided by the generic
org.apache.cxf.message.Message interface.

For applications that work with SOAP messages, Artix ESB provides an
AbstractSoapInterceptor class. Extending this class provides the
handleMessage() method and the handleFault() method with access to
the message data as an org.apache.cxf.binding.soap.SoapMessage
object. SoapMessage objects have methods for retrieving the SOAP headers,
the SOAP envelope, and other SOAP metadata from the message.

26

The Interceptor APIs

Determining When the Interceptor is
Invoked
Interceptors are organized into phases. The phase in which an interceptor runs determines what portions of the
message data it can access. An interceptor can determine its location in relationship to the other interceptors
in the same phase. The interceptor's phase and its location within the phase are set as part of the interceptor's
constructor logic.

Specifying an Interceptor's Phase ... 28
Constraining an Interceptors Placement in a Phase ... 31

When developing a custom interceptor, the first thing to consider is where in
the message processing chain the interceptor belongs. The developer can
control an interceptor's position in the message processing chain in one of
two ways:

• Specifying the interceptor's phase

• Specifying constraints on the location of the interceptor within the phase

Typically, the code specifying an interceptor's location is placed in the
interceptor's constructor. This makes it possible for the runtime to instantiate
the interceptor and put in the proper place in the interceptor chain without
any explicit action in the application level code.

27

Specifying an Interceptor's Phase

Overview Interceptors are organized into phases. An interceptor's phase determines
when in the message processing sequence it is called. Developers specify an
interceptor's phase its constructor. Phases are specified using constant values
provided by the framework.

Phase Phases are a logical collection of interceptors. As shown in
Figure 2 on page 28, the interceptors within a phase are called sequentially.

Figure 2. An Interceptor Phase

The phases are linked together in an ordered list to form an interceptor chain
and provide defined logical steps in the message processing procedure. For
example, a group of interceptors in the RECEIVE phase of an inbound
interceptor chain processes transport level details using the raw message data
picked up from the wire.

There is, however, no enforcement of what can be done in any of the phases.
It is recommended that interceptors within a phase adhere to tasks that are
in the spirit of the phase.

28

Determining When the Interceptor is Invoked

The complete list of phases defined by Artix ESB can be found in
Appendix A on page 59.

Specifying a phase Artix ESB provides the org.apache.cxf.Phase class to use for specifying
a phase. The class is a collection of constants. Each phase defined by Artix
ESB has a corresponding constant in the Phase class. For example, the
RECEIVE phase is specified by the value Phase.RECEIVE.

Setting the phase An interceptor's phase is set in the interceptor's constructor. The
AbstractPhaseInterceptor class defines three constructors for instantiating
an interceptor:

• public AbstractPhaseInterceptor(String phase)—sets the phase

of the interceptor to the specified phase and automatically sets the
interceptor's id to the interceptor's class name.

Tip
This constructor will satisfy most use cases.

• public AbstractPhaseInterceptor(String id, String

phase)—sets the interceptor's id to the string passed in as the first

parameter and the interceptor's phase to the second string.

• public AbstractPhaseInterceptor(String phase, boolean

uniqueId)—specifies if the interceptor should use a unique, system

generated id. If the uniqueId parameter is true, the interceptor's id will

be calculated by the system. If the uniqueId parameter is false the

interceptor's id is set to the interceptor's class name.

The recommended way to set a custom interceptor's phase is to pass the
phase to the AbstractPhaseInterceptor constructor using the super()
method as shown in Example 3 on page 29.

Example 3. Setting an Interceptor's Phase

import org.apache.cxf.message.Message;
import org.apache.cxf.phase.AbstractPhaseInterceptor;
import org.apache.cxf.phase.Phase;

29

Specifying an Interceptor's Phase

public class StreamInterceptor extends AbstractPhaseInterceptor<Message>
{

public StreamInterceptor()
{
super(Phase.PRE_STREAM);
}

}

The StreamInterceptor interceptor shown in Example 3 on page 29 is
placed into the PRE_STREAM phase.

30

Determining When the Interceptor is Invoked

Constraining an Interceptors Placement in a Phase

Overview Placing an interceptor into a phase may not provide fine enough control over
its placement to ensure that the interceptor works properly. For example, if
an interceptor needed to inspect the SOAP headers of a message using the
SAAJ APIs, it would need to run after the interceptor that converts the message
into a SAAJ object. There may also be cases where one interceptor consumes
a part of the message needed by another interceptor. In these cases, a
developer can supply a list of interceptors that must be executed before their
interceptor. A developer can also supply a list of interceptors that must be
executed after their interceptor.

Important
The runtime can only honor these lists within the interceptor's phase.
If a developer places an interceptor from an earlier phase in the list
of interceptors that must execute after the current phase, the runtime
will ignore the request.

Add to the chain before One issue that arises when developing an interceptor is that the data required
by the interceptor is not always present. This can occur when one interceptor
in the chain consumes message data required by a later interceptor. Developers
can control what a custom interceptor consumes and possibly fix the problem
by modifying their interceptors. However, this is not always possible because
a number of interceptors are used by Artix ESB and a developer cannot modify
them.

An alternative solution is to ensure that a custom interceptor is placed before
any interceptors that will consume the message data the custom interceptor
requires. The easiest way to do that would be to place it in an earlier phase,
but that is not always possible. For cases where an interceptor needs to be
placed before one or more other interceptors the Artix ESB's
AbstractPhaseInterceptor class provides two addBefore() methods.

As shown in Example 4 on page 31, one takes a single interceptor id and
the other takes a collection of interceptor ids. You can make multiple calls to
continue adding interceptors to the list.

Example 4. Methods for Adding an Interceptor Before Other Interceptors

public void addBefore(String i);

31

Constraining an Interceptors Placement in a Phase

public void addBefore(Collection<String> i);

As shown in Example 5 on page 32, a developer calls the addBefore()
method in the constuctor of a custom interceptor.

Example 5. Specifying a List of Interceptors that Must Run After the Current
Interceptor

public class MyPhasedOutInterceptor extends AbstractPhaseIn
terceptor
{

public MyPhasedOutInterceptor() {
super(Phase.PRE_LOGICAL);
addBefore(HolderOutInterceptor.class.getName());

}

...

}

Tip
Most interceptors use their class name for an interceptor id.

Add to the chain after Another reason the data required by the interceptor is not present is that the
data has not been placed in the message object. For example, an interceptor
may want to work with the message data as a SOAP message, but it will not
work if it is placed in the chain before the message is turned into a SOAP
message. Developers can control what a custom interceptor consumes and
possibly fix the problem by modifying their interceptors. However, this is not
always possible because a number of interceptors are used by Artix ESB and
a developer cannot modify them.

An alternative solution is to ensure that a custom interceptor is placed after
the interceptor, or interceptors, that generate the message data the custom
interceptor requires. The easiest way to do that would be to place it in a later
phase, but that is not always possible. The AbstractPhaseInterceptor
class provides two addAfter() methods for cases where an interceptor needs
to be placed after one or more other interceptors.

As shown in Example 6 on page 33, one method takes a single interceptor
id and the other takes a collection of interceptor ids. You can make multiple
calls to continue adding interceptors to the list.

32

Determining When the Interceptor is Invoked

Example 6. Methods for Adding an Interceptor After Other Interceptors

public void addAfter(String i);

public void addAfter(Collection<String> i);

As shown in Example 7 on page 33, a developer calls the addAfter()
method in the constuctor of a custom interceptor.

Example 7. Specifying a List of Interceptors that Must Run Before the
Current Interceptor

public class MyPhasedOutInterceptor extends AbstractPhaseIn
terceptor
{

public MyPhasedOutInterceptor() {
super(Phase.PRE_LOGICAL);
addAfter(StartingOutInterceptor.class.getName());

}

...

}

Tip
Most interceptors use their class name for an interceptor id.

33

Constraining an Interceptors Placement in a Phase

34

Implementing the Interceptors Processing
Logic
Interceptors are straightforward to implement. The bulk of their processing logic is in the handleMessage()
method. This method receives the message data and manipulates it as needed. Developers may also want to add
some special logic to handle fault processing cases.

Processing Messages .. 36
Unwinding After an Error ... 39

Figure 3 on page 35 shows the process flow through an interceptor.

Figure 3. Flow Through an Interceptor

In normal message processing, only the handleMessage() method is called.
The handleMessage() method is where the interceptor's message processing
logic is placed.

If an error occurs in the handleMessage() method of the interceptor, or any
subsequent interceptor in the interceptor chain, the handleFault() method
is called. The handleFault() method is useful for cleaning up after an
interceptor in the event of an error. It can also be used to alter the fault
message.

35

Processing Messages

Overview In normal message processing, an interceptor's handleMessage() method
is invoked. It receives that message data as a Message object. Along with
the actual contents of the message, the Message object may contain a number
of properties related to the message or the message processing state. The
exact contents of the Message object depends on the interceptors preceding
the current interceptor in the chain.

Getting the message contents The Message interface provides two methods that can be used in extracting
the message contents:

• public <T> T getContent(java.lang.Class<T> format);

The getContent() method returns the content of the message in an object
of the specified class. If the contents are not available as an instance of
the specified class, null is returned. The list of available content types is
determined by the interceptor's location on the interceptor chain and the
direction of the interceptor chain.

• public Collection<Attachment> getAttachments();

The getAttachments() method returns a Java Collection object
containing any binary attachments associated with the message. The
attachments are stored in org.apache.cxf.message.Attachment objects.
Attachment objects provide methods for managing the binary data.

Important
Attachments are only available after the attachment processing
interceptors have executed.

Determining the message's
direction

The direction of a message can be determined by querying the message
exchange. The message exchange stores the inbound message and the
outbound message in separate properties.1

The message exchange associated with a message is retrieved using the
message's getExchange() method. As shown in Example 8 on page 37,

1It also stores inbound and outbound faults separately.

36

Implementing the Interceptors Processing Logic

getExchange() does not take any parameters and returns the message
exchange as a org.apache.cxf.message.Exchange object.

Example 8. Getting the Message Exchange

Exchange getExchange();

The Exchange object has four methods, shown in Example 9 on page 37,
for getting the messages associated with an exchange. Each method will
either return the message as a org.apache.cxf.Message object or it will
return null if the message does not exist.

Example 9. Getting Messages from a Message Exchange

Message getInMessage();

Message getInFaultMessage();

Message getOutMessage();

Message getOutFaultMessage();

Example 10 on page 37 shows code for determining if the current message
is outbound. The method gets the message exchange and checks to see if
the current message is the same as the exchange's outbound message. It also
checks the current message against the exchanges outbound fault message
to error messages on the outbound fault interceptor chain.

Example 10. Checking the Direction of a Message Chain

public static boolean isOutbound()
{

Exchange exchange = message.getExchange();
return message != null

&& exchange != null
&& (message == exchange.getOutMessage()

|| message == exchange.getOutFaultMessage());
}

Example Example 11 on page 37 shows code for an interceptor that processes zip
compressed messages. It checks the direction of the message and then
performs the appropriate actions.

Example 11. Example Message Processing Method

import java.io.IOException;
import java.io.InputStream;

37

Processing Messages

import java.util.zip.GZIPInputStream;

import org.apache.cxf.message.Message;
import org.apache.cxf.phase.AbstractPhaseInterceptor;
import org.apache.cxf.phase.Phase;

public class StreamInterceptor extends AbstractPhaseInterceptor<Message>
{

...

public void handleMessage(Message message)
{

boolean isOutbound = false;
isOutbound = message == message.getExchange().getOutMessage()

|| message == message.getExchange().getOutFaultMessage();

if (!isOutbound)
{
try
{

InputStream is = message.getContent(InputStream.class);
GZIPInputStream zipInput = new GZIPInputStream(is);
message.setContent(InputStream.class, zipInput);

}
catch (IOException ioe)
{

ioe.printStackTrace();
}

}
else
{
// zip the outbound message
}

}
...

}

38

Implementing the Interceptors Processing Logic

Unwinding After an Error

Overview When an error occurs during the execution of an interceptor chain, the runtime
stops traversing the interceptor chain and unwinds the chain by calling the
handleFault() method of any interceptors in the chain that have already
been executed.

The handleFault() method can be used to clean up any resources used by
an interceptor during normal message processing. It can also be used to
rollback any actions that should only stand if message processing completes
successfully. In cases where the fault message will be passed on to an
outbound fault processing interceptor chain, the handleFault() method
can also be used to add information to the fault message.

Getting the message payload The handleFault() method receives the same Message object as the
handleMessage() method used in normal message processing. Getting the
message contents from the Message object is described in Getting the message
contents on page 36.

Example Example 12 on page 39 shows code used to ensure that the original XML
stream is placed back into the message when the interceptor chain is
unwound.

Example 12. Handling an Unwinding Interceptor Chain

@Override
public void handleFault(SoapMessage message)
{
super.handleFault(message);
XMLStreamWriter writer = (XMLStreamWriter)message.get(ORIGINAL_XML_WRITER);
if (writer != null)
{
message.setContent(XMLStreamWriter.class, writer);

}
}

39

Unwinding After an Error

40

Configuring Endpoints to Use Interceptors
Interceptors are added to an endpoint when it is included in a message exchange. The endpoint's interceptor
chains are constructed from a the interceptor chains of a number of components in the Artix ESB runtime.
Interceptors are specified in either then endpoint's configuration or the configuration of one of the runtime
components. Interceptors can be added using either the configuration file or the interceptor API.

Deciding Where to Attach Interceptors .. 42
Adding Interceptors Using Configuration .. 44
Adding Interceptors Programmatically ... 47

Using the InterceptorProvider API .. 48
Using Java Annotations ... 52

41

Deciding Where to Attach Interceptors

Overview There are a number of runtime objects that host interceptor chains. These
include:

• the endpoint object

• the service object

• the proxy object

• the factory object used to create the endpoint or the proxy

• the binding

• the central Bus object

A developer can attach their own interceptors to any of these objects. The
most common objects to attach interceptors are the bus and the individual
endpoints. Choosing the correct object requires understanding how these
runtime objects are combined to make an endpoint.

Endpoints and proxies Attaching interceptors to either the endpoint or the proxy is the most fine
grained way to place an interceptor. Any interceptors attached directly to an
endpoint or a proxy only effect the specific endpoint or proxy. This is a good
place to attach interceptors that are specific to a particular incarnation of a
service. For example, if a developer wants to expose one instance of a service
that converts units from metric to imperial they could attach the interceptors
directly to one endpoint.

Factories Using the Spring configuration to attach interceptors to the factories used to
create an endpoint or a proxy has the same effect as attaching the interceptors
directly to the endpoint or proxy. However, when interceptors are attached
to a factory programmatically the interceptors attached to the factory are
propagated to every endpoint or proxy created by the factory.

Bindings Attaching interceptors to the binding allows the developer to specify a set of
interceptors that are applied to all endpoints that use the binding. For example,
if a developer wants to force all endpoints that use the raw XML binding to

42

Configuring Endpoints to Use Interceptors

include a special ID element, they could attach the interceptor responsible
for adding the element to the XML binding.

Buses The most general place to attach interceptors is the bus. When interceptors
are attached to the bus, the interceptors are propagated to all of the endpoints
managed by that bus. Attaching interceptors to the bus is useful in applications
that create multiple endpoints that share a similar set of interceptors.

Combining attachment points Because an endpoint's final set of interceptor chains is an amalgamation of
the interceptor chains contributed by the listed objects, several of the listed
object can be combined in a single endpoint's configuration. For example, if
an application spawned multiple endpoints that all required an interceptor
that checked for a validation token, that interceptor would be attached to the
application's bus. If one of those endpoints also required an interceptor that
converted Euros into dollars, the conversion interceptor would be attached
directly to the specific endpoint.

43

Deciding Where to Attach Interceptors

Adding Interceptors Using Configuration

Overview The easiest way to attach interceptors to an endpoint is using the configuration
file. Each interceptor to be attached to an endpoint is configured using a
standard Spring bean. The interceptor's bean can then be added to the proper
interceptor chain using Artix ESB configuration elements.

Each runtime component that has an associated interceptor chain is
configurable using specialized Spring elements. Each of the component's
elements have a standard set of children for specifying their interceptor chains.
There is one child for each interceptor chain associated with the component.
The children list the beans for the interceptors to be added to the chain.

Configuration elements Table 1 on page 44 describes the four configuration elements for attaching
interceptors to a runtime component.

Table 1. Interceptor Chain Configuration Elements

DescriptionElement

Contains a list of beans configuring interceptors
to add to an endpoint's inbound interceptor chain.

inInterceptors

Contains a list of beans configuring interceptors
to add to an endpoint's outbound interceptor
chain.

outInterceptors

Contains a list of beans configuring interceptors
to add to an endpoint's inbound fault processing
interceptor chain.

inFaultInterceptors

Contains a list of beans configuring interceptors
to add to an endpoint's outbound fault processing
interceptor chain.

outFaultInterceptors

All of the interceptor chain configuration elements take a list child element.
The list element has one child for each of the interceptors being attached
to the chain. Interceptors can be specified using either a bean element directly
configuring the interceptor or a ref element that refers to a bean element
that configures the interceptor.

Examples Example 13 on page 45 shows configuration for attaching interceptors to a
bus' inbound interceptor chain.

44

Configuring Endpoints to Use Interceptors

Example 13. Attaching Interceptors to the Bus

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:cxf="http://cxf.apache.org/core"
xmlns:http="http://cxf.apache.org/transports/http/configuration"
xsi:schemaLocation="
http://cxf.apache.org/core http://cxf.apache.org/schemas/core.xsd
http://cxf.apache.org/transports/http/configuration http://cxf.apache.org/schemas/con

figuration/http-conf.xsd
http://www.springframework.org/schema/beans http://www.springframe

work.org/schema/beans/spring-beans.xsd">
...
<bean id="GZIPStream" class="demo.stream.interceptor.StreamInterceptor"/>

<cxf:bus>
<cxf:inInterceptors>
<list>
<ref bean="GZIPStream"/>

</list>
</cxf:inInterceptors>

</cxf:bus>
</beans>

Example 14 on page 45 shows configuration for attaching an interceptor to
a JAX-WS service's outbound interceptor chain.

Example 14. Attaching Interceptors to a JAX-WS Service Provider

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:jaxws="http://cxf.apache.org/jaxws"
xmlns:wsa="http://cxf.apache.org/ws/addressing"
xsi:schemaLocation="

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

<jaxws:endpoint ...>
<jaxws:outInterceptors>
<list>
<bean id="GZIPStream" class="demo.stream.interceptor.StreamInterceptor" />

</list>
</jaxws:outInterceptors>

45

Adding Interceptors Using Configuration

</jaxws:endpoint>
</beans>

More information For more information about configuring endpoints using the Spring
configuration see Artix® ESB Deployment Guide.

46

Configuring Endpoints to Use Interceptors

http://www.iona.com/support/docs/artix/5.5/deploy/java/deploy_java.pdf

Adding Interceptors Programmatically
Using the InterceptorProvider API .. 48
Using Java Annotations ... 52

Interceptors can be attached to endpoints programmatically using either one
of two approaches:

• the InterceptorProvider API

• Java annotations

Using the InterceptorProvider API allows the developer to attach
interceptors to any of the runtime components that have interceptor chains,
but it requires working with the underlying Artix ESB classes. The Java
annotations can only be added to service interfaces or service implementations,
but they allow developers to stay within the JAX-WS API or the JAX-RS API.

47

Adding Interceptors Programmatically

Using the InterceptorProvider API

Overview Interceptors can be registered with any component that implements the
InterceptorProvider interface, as shown in Example 15 on page 48.

Example 15. The InterceptorProvider Interface

package org.apache.cxf.interceptor;

import java.util.List;

public interface InterceptorProvider
{

List<Interceptor<? extends Message>> getInInterceptors();

List<Interceptor<? extends Message>> getOutInterceptors();

List<Interceptor<? extends Message>> getInFaultIntercept
ors();

List<Interceptor<? extends Message>> getOutFaultIntercept
ors();
}

The four methods in the interface allow you to retrieve each of an endpoint's
interceptor chains as a Java List object. Using the methods offered by the
Java List object, developers can add and remove interceptors to any of the
chains.

Procedure To use the InterceptorProvider API to attach an interceptor to a runtime
component's interceptor chain, do the following:

1. Get access to the runtime component with the chain to which the
interceptor is being attached.

Developers will need to use Artix ESB specific APIs to access the runtime
components from standard Java application code. The runtime
components are usually accessible by casting the JAX-WS or JAX-RS
artifacts into the underlying Artix ESB objects.

2. Create an instance of the interceptor.

3. Use the proper get method to retrieve the desired interceptor chain.

48

Configuring Endpoints to Use Interceptors

4. Use the List object's add() method to attach the interceptor to the

interceptor chain.

Tip
This step is usually combined with that of retrieving the
interceptor chain.

Attaching an interceptor to a
consumer

Example 16 on page 49 shows code for attaching an interceptor to the
inbound interceptor chain of a JAX-WS consumer.

Example 16. Attaching an Interceptor to a Consumer Programmatically

package com.fusesource.demo;

import java.io.File;
import java.net.URL;
import javax.xml.namespace.QName;
import javax.xml.ws.Service;

import org.apache.cxf.endpoint.ClientProxy;
import org.apache.cxf.endpoint.ClientProxy;

public class Client
{
public static void main(String args[])
{
QName serviceName = new QName("http://demo.eric.org", "stockQuoteReporter");
Service s = Service.create(serviceName); ❶

QName portName = new QName("http://demo.eric.org", "stockQuoteReporterPort");
s.addPort(portName, "http://schemas.xmlsoap.org/soap/", "http://localhost:9000/EricStock

Quote"); ❷

quoteReporter proxy = s.getPort(portName, quoteReporter.class); ❸

Client cxfClient = ClientProxy.getClient(proxy); ❹

ValidateInterceptor validInterceptor = new ValidateInterceptor(); ❺
cxfClient.getInInterceptors().add(validInterceptor); ❻

...
}

}

49

Using the InterceptorProvider API

The code in Example 16 on page 49 does the following:

❶ Creates a JAX-WS Service object for the consumer.

❷ Adds a port to the Service object that provides the consumer's target

address.
❸ Creates the proxy used to invoke methods on the service provider.

❹ Gets the Artix ESB Client object associated with the proxy.

❺ Creates an instance of the interceptor.

❻ Attaches the interceptor to the inbound interceptor chain.

Attaching an interceptor to a
service provider

Example 17 on page 50 shows code for attaching an interceptor to a service
provider's outbound interceptor chain.

Example 17. Attaching an Interceptor to a Service Provider Programmatically

package com.fusesource.demo;
import java.util.*;

import org.apache.cxf.endpoint.Server;
import org.apache.cxf.frontend.ServerFactoryBean;
import org.apache.cxf.frontend.EndpointImpl;

public class stockQuoteReporter implements quoteReporter
{
...
public stockQuoteReporter()
{
ServerFactoryBean sfb = new ServerFactoryBean(); ❶
Server server = sfb.create(); ❷
EndpointImpl endpt = server.getEndpoint(); ❸

AuthTokenInterceptor authInterceptor = new AuthTokenInterceptor(); ❹

endpt.getOutInterceptors().add(authInterceptor); ❺
}

}

The code in Example 17 on page 50 does the following:

❶ Creates a ServerFactoryBean object that will provide access to the

underlying Artix ESB objects.
❷ Gets the Server object that Artix ESB uses to represent the endpoint.

50

Configuring Endpoints to Use Interceptors

❸ Gets the Artix ESB EndpointImpl object for the service provider.

❹ Creates an instance of the interceptor.

❺ Attaches the interceptor to the endpoint;s outbound interceptor chain.

Attaching an interceptor to a bus Example 18 on page 51 shows code for attaching an interceptor to a bus'
inbound interceptor chain.

Example 18. Attaching an Interceptor to a Bus

import org.apache.cxf.BusFactory;
org.apache.cxf.Bus;

...

Bus bus = BusFactory.getDefaultBus(); ❶

WatchInterceptor watchInterceptor = new WatchInterceptor(); ❷

bus..getInInterceptors().add(watchInterceptor); ❸

...

The code in Example 18 on page 51 does the following:

❶ Gets the default bus for the runtime instance.

❷ Creates an instance of the interceptor.

❸ Attaches the interceptor to the inbound interceptor chain.

The WatchInterceptor will be attached to the inbound interceptor chain
of all endpoints created by the runtime instance.

51

Using the InterceptorProvider API

Using Java Annotations

Overview Artix ESB provides four Java annotations that allow a developer to specify the
interceptor chains used by an endpoint. Unlike the other means of attaching
interceptors to endpoints, the annotations are attached to application-level
artifacts. The artifact that is used determines the scope of the annotation's
effect.

Where to place the annotations The annotations can be placed on the following artifacts:

• the service endpoint interface(SEI) defining the endpoint

If the annotations are placed on an SEI, all of the service providers that
implement the interface and all of the consumers that use the SEI to create
proxies will be affected.

• a service implementation class

If the annotations are placed on an implementation class, all of the service
providers using the implementation class will be affected.

The annotations The annotations are all in the org.apache.cxf.interceptor package and
are described in Table 2 on page 52.

Table 2. Interceptor Chain Annotations

DescriptionAnnotation

Specifies the interceptors for the inbound
interceptor chain.

InInterceptors

Specifies the interceptors for the outbound
interceptor chain.

OutInterceptors

Specifies the interceptors for the inbound fault
interceptor chain.

InFaultInterceptors

Specifies the interceptors for the outbound fault
interceptor chain.

OutFaultInterceptors

Listing the interceptors The list of interceptors is specified as a list of fully qualified class names using
the syntax shown in Example 19 on page 53.

52

Configuring Endpoints to Use Interceptors

Example 19. Syntax for Listing Interceptors in a Chain Annotation

interceptors={"interceptor1", "interceptor2", ..., "interceptorN"}

Example Example 20 on page 53 shows annotations that attach two interceptors to
the inbound interceptor chain of endpoints that use the logic provided by
SayHiImpl.

Example 20. Attaching Interceptors to a Service Implementation

import org.apache.cxf.interceptor.InInterceptors;

@InInterceptors(interceptors={"com.sayhi.interceptors.FirstLast", "com.sayhi.interceptors.Log
Name"})
public class SayHiImpl implements SayHi
{
...

}

53

Using Java Annotations

54

Manipulating Interceptor Chains on the
Fly
Interceptors can reconfigure an endpoint's interceptor chain as part of its message processing logic. It can add
new interceptors, remove interceptors, reorder interceptors, and even suspend the interceptor chain. Any on-the-fly
manipulation is invocation-specific, so the original chain is used each time an endpoint is involved in a message
exchange.

Overview Interceptor chains only live as long as the message exchange that sparked
their creation. Each message contains a reference to the interceptor chain
responsible for processing it. Developers can use this reference to alter the
message's interceptor chain. Because the chain is per-exchange, any changes
made to a message's interceptor chain will not effect other message exchanges.

Chain life-cycle Interceptor chains and the interceptors in the chain are instantiated on a
per-invocation basis. When an endpoint is invoked to participate in a message
exchange, the required interceptor chains are instantiated along with instances
of its interceptors. When the message exchange that caused the creation of
the interceptor chain is completed, the chain and its interceptor instances
are destroyed.

This means that any changes you make to the interceptor chain or to the
fields of an interceptor do not persist across message exchanges. So, if an
interceptor places another interceptor in the active chain only the active chain
is effected. Any future message exchanges will be created from a pristine
state as determined by the endpoint's configuration. It also means that a
developer cannot set flags in an interceptor that will alter future message
processing.

Tip
If an interceptor needs to pass information along to future instances,
it can set a property in the message context. The context does persist
across message exchanges.

Getting the interceptor chain The first step in changing a message's interceptor chain is getting the
interceptor chain. This is done using the Message.getInterceptorChain()

55

method shown in Example 21 on page 56. The interceptor chain is returned
as a org.apache.cxf.interceptor.InterceptorChain object.

Example 21. Method for Getting an Interceptor Chain

InterceptorChain getInterceptorChain();

Adding interceptors The InterceptorChain object has two methods, shown in
Example 22 on page 56, for adding interceptors to an interceptor chain. One
allows you to add a single interceptor and the other allows you to add multiple
interceptors.

Example 22. Methods for Adding Interceptors to an Interceptor Chain

void add(Interceptor i);

void add(Collection<Interceptor> i);

Example 23 on page 56 shows code for adding a single interceptor to a
message's interceptor chain.

Example 23. Adding an Interceptor to an Interceptor Chain On-the-fly

void handleMessage(Message message)
{
...
AddledIntereptor addled = new AddledIntereptor(); ❶
InterceptorChain chain = message.getInterceptorChain(); ❷
chain.add(addled); ❸
...

}

The code in Example 23 on page 56 does the following:

❶ Instantiates a copy of the interceptor to be added to the chain.

Important
The interceptor being added to the chain should be in either
the same phase as the current interceptor or a latter phase than
the current interceptor.

❷ Gets the interceptor chain for the current message.

56

Manipulating Interceptor Chains on the Fly

❸ Adds the new interceptor to the chain.

Removing interceptors The InterceptorChain object has one method, shown in
Example 24 on page 57, for removing an interceptor from an interceptor
chain.

Example 24. Methods for Adding Interceptors to an Interceptor Chain

void remove(Interceptor i);

Example 25 on page 57 shows code for removing an interceptor from a
message's interceptor chain.

Example 25. Adding an Interceptor to an Interceptor Chain On-the-fly

void handleMessage(Message message)
{
...
SackedIntereptor sacked = new SackedIntereptor(); ❶
InterceptorChain chain = message.getInterceptorChain(); ❷
chain.remove(sacked); ❸
...

}

The code in Example 25 on page 57 does the following:

❶ Instantiates a copy of the interceptor to be removed from the chain.

Important
The interceptor being removed from the chain should be in
either the same phase as the current interceptor or a latter
phase than the current interceptor.

❷ Gets the interceptor chain for the current message.

❸ Removes the interceptor from the chain.

57

58

Appendix A. Artix ESB Message
Processing Phases
Inbound phases Table A.1 on page 59 lists the phases available in inbound interceptor chains.

Table A.1. Inbound Message Processing Phases

DescriptionPhase

Performs transport specific processing, such as determining MIME boundaries for binary
attachments.

RECEIVE

Processes the raw data stream received by the transport.PRE_STREAM

USER_STREAM

POST_STREAM

Determines if a request is a SOAP or XML message and builds adds the proper interceptors.
SOAP message headers are also processed in this phase.

READ

Performs protocol level processing. This includes processing of WS-* headers and processing
of the SOAP message properties.

PRE_PROTOCOL

USER_PROTOCOL

POST_PROTOCOL

Unmarshals the message data into the objects used by the application level code.UNMARSHAL

Processes the unmarshalled message data.PRE_LOGICAL

USER_LOGICAL

POST_LOGICAL

PRE_INVOKE

Passes the message to the application code. On the server side, the service implementation is
invoked in this phase. On the client side, the response is handed back to the application.

INVOKE

59

DescriptionPhase

Invokes the outbound interceptor chain.POST_INVOKE

Outbound phases Table A.2 on page 60 lists the phases available in inbound interceptor chains.

Table A.2. Inbound Message Processing Phases

DescriptionPhase

Performs any set up that is required by later phases in the chain.SETUP

Performs processing on the unmarshalled data passed from the application level.PRE_LOGICAL

USER_LOGICAL

POST_LOGICAL

Opens the connection for writing the message on the wire.PREPARE_SEND

Performs processing required to prepare the message for entry into a data stream.PRE_STREAM

Begins processing protocol specific information.PRE_PROTOCOL

Writes the protocol message.WRITE

Marshals the message.PRE_MARSHAL

MARSHAL

POST_MARSHAL

Process the protocol message.USER_PROTOCOL

POST_PROTOCOL

Process the byte-level message.USER_STREAM

POST_STREAM

Sends the message and closes the transport stream.SEND

Important
Outbound interceptor chains have a mirror set of ending phases
whose names are appended with _ENDING. The ending phases are

60

used interceptors that require some terminal action to occur before
data is written on the wire.

61

62

Appendix B. Artix ESB Provided
Interceptors
Core Artix ESB Interceptors .. 64
Front-Ends ... 65
Message Bindings .. 67
Other Features .. 70

63

Core Artix ESB Interceptors

Inbound Table B.1 on page 64 lists the core inbound interceptors that are added to
all Artix ESB endpoints.

Table B.1. Core Inbound Interceptors

DescriptionPhaseClass

Invokes the proper method on the service.INVOKEServiceInvokerInterceptor

Outbound The Artix ESB does not add any core interceptors to the outbound interceptor
chain by default. The contents of an endpoint's outbound interceptor chain
depend on the features in use.

64

Front-Ends

JAX-WS Table B.2 on page 65 lists the interceptors added to a JAX-WS endpoint's
inbound message chain.

Table B.2. Inbound JAX-WS Interceptors

DescriptionPhaseClass

Creates holder objects for any out or in/out parameters in the
message.

PRE_INVOKEHolderInInterceptor

Unwraps the parts of a wrapped doc/literal message into the
appropriate array of objects.

POST_LOGICALWrapperClassInInterceptor

Passes message processing to the JAX-WS logical handlers
used by the endpoint. When the JAX-WS handlers complete,

PRE_PROTOCOLLogicalHandlerInInterceptor

the message is passed along to the next interceptor on the
inbound chain.

Passes message processing to the JAX-WS SOAP handlers
used by the endpoint. The SOAP handlers complete, the
message is passed along to the next interceptor in the chain.

PRE_PROTOCOLSOAPHandlerInterceptor

Table B.3 on page 65 lists the interceptors added to a JAX-WS endpoint's
outbound message chain.

Table B.3. Outbound JAX-WS Interceptors

DescriptionPhaseClass

Removes the values of any out and in/out parameters from
their holder objects and adds the values to the message's
parameter list.

PRE_LOGICALHolderOutInterceptor

Processes outbound fault messages.PRE_PROTOCOLWebFaultOutInterceptor

Makes sure that wrapped doc/literal messages and rpc/literal
messages are properly wrapped before being added to the
message.

PRE_LOGICALWrapperClassOutInterceptor

Passes message processing to the JAX-WS logical handlers
used by the endpoint. When the JAX-WS handlers complete,

PRE_MARSHALLogicalHandlerOutInterceptor

the message is passed along to the next interceptor on the
outbound chain.

65

DescriptionPhaseClass

Passes message processing to the JAX-WS SOAP handlers
used by the endpoint. The SOAP handlers complete, the
message is passed along to the next interceptor in the chain.

PRE_PROTOCOLSOAPHandlerInterceptor

Calls back to the Destination object to have it setup the
output streams, headers, etc. to prepare the outgoing
transport.

PREPARE_SENDMessageSenderInterceptor

JAX-RS Table B.4 on page 66 lists the interceptors added to a JAX-RS endpoint's
inbound message chain.

Table B.4. Inbound JAX-RS Interceptors

DescriptionPhaseClass

Selects the root resource class, invokes any configured JAX-RS request
filters, and determines the method to invoke on the root resource.

PRE_STREAMJAXRSInInterceptor

Important
The inbound chain for a JAX-RS endpoint skips straight to the
ServiceInvokerInInterceptor interceptor. No other interceptors
will be invoked after the JAXRSInInterceptor.

Table B.5 on page 66 lists the interceptors added to a JAX-RS endpoint's
outbound message chain.

Table B.5. Outbound JAX-RS Interceptors

DescriptionPhaseClass

Marshals the response into the proper format for transmission.MARSHALJAXRSOutInterceptor

66

Message Bindings

SOAP Table B.6 on page 67 lists the interceptors added to a endpoint's inbound
message chain when using the SOAP Binding.

Table B.6. Inbound SOAP Interceptors

DescriptionPhaseClass

Checks if the message is a fault message. If the message is a
fault message, normal processing is aborted and fault
processing is started.

POST_PROTOCOLCheckFaultInterceptor

Processes the must understand headers.PRE_PROTOCOLMustUnderstandInterceptor

Unmarshals rpc/literal messages. If the message is bare, the
message is passed to a BareInInterceptor object to

deserialize the message parts.

UNMARSHALRPCInInterceptor

Parses the SOAP headers and stores them in the message
object.

READReadsHeadersInterceptor

Parses the SOAP action header and attempts to find a unique
operation for the action.

READSoapActionInInterceptor

Binds the SOAP headers that map to operation parameters to
the appropriate objects.

UNMARSHALSoapHeaderInterceptor

Parses the mime headers for mime boundaries, finds the root
part and resets the input stream to it, and stores the other
parts in a collection of Attachment objects.

RECEIVEAttachmentInInterceptor

Examines the first element in the SOAP body to determine the
appropriate operation and calls the data binding to read in the
data.

UNMARSHALDocLiteralInInterceptor

Creates an XMLStreamReader object from the message.POST_STREAMStaxInInterceptor

Handles the processing of HTTP GET methods.UNMARSHALURIMappingInterceptor

Creates the required MIME handlers for binary SOAP
attachments and adds the data to the parameter list.

PRE_INVOKESwAInInterceptor

Table B.7 on page 68 lists the interceptors added to a endpoint's outbound
message chain when using the SOAP Binding.

67

Table B.7. Outbound SOAP Interceptors

DescriptionPhaseClass

Marshals rpc style messages for transmission.MARSHALRPCOutInterceptor

Removes all SOAP headers that are marked as inbound
only.

PRE_LOGICALSoapHeaderOutFilterInterceptor

Sets up the SOAP version and the SOAP action header.POST_LOGICALSoapPreProtocolOutInterceptor

Sets up the attachment marshallers and the mime stuff
needed to process any attachments that may be in the
message.

PRE_STREAMAttachmentOutInterceptor

Writes the message parts.MARSHALBareOutInterceptor

Creates an XMLStreamWriter objects from the message.PRE_STREAMStaxOutInterceptor

Wraps the outbound message parameters.MARSHALWrappedOutInterceptor

Writes the soap:envelope element and the elements for

the header blocks in the message. Also writes an empty

WRITESoapOutInterceptor

soap:body element for the remaining interceptors to

populate.

Removes any binary data that will be packaged as a SOAP
attachment and stores it for later processing.

PRE_LOGICALSwAOutInterceptor

XML Table B.8 on page 68 lists the interceptors added to a endpoint's inbound
message chain when using the XML Binding.

Table B.8. Inbound XML Interceptors

DescriptionPhaseClass

Parses the mime headers for mime boundaries, finds the root part
and resets the input stream to it, and stores the other parts in a
collection of Attachment objects.

RECEIVEAttachmentInInterceptor

Examines the first element in the message body to determine the
appropriate operation and calls the data binding to read in the data.

UNMARSHALDocLiteralInInterceptor

Creates an XMLStreamReader object from the message.POST_STREAMStaxInInterceptor

Handles the processing of HTTP GET methods.UNMARSHALURIMappingInterceptor

68

DescriptionPhaseClass

Unmarshals the XML message.UNMARSHALXMLMessageInInterceptor

Table B.9 on page 69 lists the interceptors added to a endpoint's outbound
message chain when using the XML Binding.

Table B.9. Outbound XML Interceptors

DescriptionPhaseClass

Creates an XMLStreamWriter objects from the message.PRE_STREAMStaxOutInterceptor

Wraps the outbound message parameters.MARSHALWrappedOutInterceptor

Marshals the message for transmission.MARSHALXMLMessageOutInterceptor

CORBA Table B.10 on page 69 lists the interceptors added to a endpoint's inbound
message chain when using the CORBA Binding.

Table B.10. Inbound CORBA Interceptors

DescriptionPhaseClass

Deserializes the CORBA message.PRE_STREAMCorbaStreamInInterceptor

Deserializes the message parts.UNMARSHALBareInInterceptor

Table B.11 on page 69 lists the interceptors added to a endpoint's outbound
message chain when using the CORBA Binding.

Table B.11. Outbound CORBA Interceptors

DescriptionPhaseClass

Serializes the message.PRE_STREAMCorbaStreamOutInterceptor

Writes the message parts.MARSHALBareOutInterceptor

Creates a streamable object for the message and stores
it in the message context.

USER_STREAMCorbaStreamOutEndingInterceptor

69

Other Features

Logging Table B.12 on page 70 lists the interceptors added to a endpoint's inbound
message chain to support logging.

Table B.12. Inbound Logging Interceptors

DescriptionPhaseClass

Writes the raw message data to the logging system.RECEIVELoggingInInterceptor

Table B.13 on page 70 lists the interceptors added to a endpoint's outbound
message chain to support logging.

Table B.13. Outbound Logging Interceptors

DescriptionPhaseClass

Writes the outbound message to the logging system.PRE_STREAMLoggingOutInterceptor

For more information about logging see Artix ESB Logging in Artix® ESB
Deployment Guide.

WS-Addressing Table B.14 on page 70 lists the interceptors added to a endpoint's inbound
message chain when using WS-Addressing.

Table B.14. Inbound WS-Addressing Interceptors

DescriptionPhaseClass

Decodes the message addressing properties.PRE_PROTOCOLMAPCodec

Table B.15 on page 70 lists the interceptors added to a endpoint's outbound
message chain when using WS-Addressing.

Table B.15. Outbound WS-Addressing Interceptors

DescriptionPhaseClass

Aggregates the message addressing properties for a message.PRE_LOGICALMAPAggregator

Encodes the message addressing properties.PRE_PROTOCOLMAPCodec

70

http://www.iona.com/support/docs/artix/5.5/deploy/java/deploy_java.pdf

For more information about WS-Addressing see Deploying WS-Addressing
in Artix® ESB Deployment Guide.

WS-RM Important
WS-RM relies on WS-Addressing so all of the WS-Addressing
interceptors will also be added to the interceptor chains.

Table B.16 on page 71 lists the interceptors added to a endpoint's inbound
message chain when using WS-RM.

Table B.16. Inbound WS-RM Interceptors

DescriptionPhaseClass

Handles the aggregation of message parts and acknowledgement messages.PRE_LOGICALRMInInterceptor

Encodes and decodes the WS-RM properties from messages.PRE_PROTOCOLRMSoapInterceptor

Table B.17 on page 71 lists the interceptors added to a endpoint's outbound
message chain when using WS-RM.

Table B.17. Outbound WS-RM Interceptors

DescriptionPhaseClass

Handles the chunking of messages and the transmission of the chunks.
Also handles the processing of acknowledgements and resend requests.

PRE_LOGICALRMOutInterceptor

Encodes and decodes the WS-RM properties from messages.PRE_PROTOCOLRMSoapInterceptor

For more information about WS-RM see Enabling Reliable Messaging in
Artix® ESB Deployment Guide.

71

http://www.iona.com/support/docs/artix/5.5/deploy/java/deploy_java.pdf
http://www.iona.com/support/docs/artix/5.5/deploy/java/deploy_java.pdf

72

Appendix C. Interceptor Providers
Overview Interceptor providers are objects in the Artix ESB runtime that have interceptor

chains attached to them. They all implement the
org.apache.cxf.interceptor.InterceptorProvider interface.
Developers can attach their own interceptors to any interceptor provider.

List of providers The following objects are interceptor providers:

• AddressingPolicyInterceptorProvider

• ClientFactoryBean

• ClientImpl

• ClientProxyFactoryBean

• CorbaBinding

• CXFBusImpl

• org.apache.cxf.jaxws.EndpointImpl

• org.apache.cxf.endpoint.EndpointImpl

• ExtensionManagerBus

• JAXRSClientFactoryBean

• JAXRSServerFactoryBean

• JAXRSServiceImpl

• JaxWsClientEndpointImpl

• JaxWsClientFactoryBean

• JaxWsEndpointImpl

73

• JaxWsProxyFactoryBean

• JaxWsServerFactoryBean

• JaxwsServiceBuilder

• MTOMPolicyInterceptorProvider

• NoOpPolicyInterceptorProvider

• ObjectBinding

• RMPolicyInterceptorProvider

• ServerFactoryBean

• ServiceImpl

• SimpleServiceBuilder

• SoapBinding

• WrappedEndpoint

• WrappedService

• XMLBinding

74

Index
Symbols
@InFaultInterceptors, 52
@InInterceptors, 52
@OutFaultInterceptors, 52
@OutInterceptors, 52

A
AbstractPhaseInterceptor, 26

addAfter(), 32
addBefore(), 31
constructor, 29

C
configuration

inbound fault interceptors, 44, 52
inbound interceptors, 44, 52
outbound fault interceptors, 44, 52
outbound interceptors, 44, 52

E
Exchange

getInFaultMessage(), 36
getInMessage(), 36
getOutFaultMessage(), 36
getOutMessage(), 36

H
handleFault(), 39
handleMessage(), 36

I
inFaultInterceptors, 44
inInterceptors, 44
interceptor

definition, 22
life-cycle, 55

Interceptor, 25

interceptor chain
definition, 22
life-cycle, 55
programmatic configuration, 47
Spring configuration, 44

InterceptorChain
add(), 56
remove(), 57

M
Message

getAttachments(), 36
getContent(), 36
getExchange(), 36
getInterceptorChain(), 55

O
org.apache.cxf.Phase, 29
outFaultInterceptors, 44
outInterceptors, 44

P
PhaseInterceptor, 25
phases

definition, 22
inbound, 59
outbound, 60
setting, 29

75

76

	Table of Contents
	Preface
	What is Covered in This Book
	Who Should Read This Book
	Organization of this Guide
	The Artix ESB Documentation Library
	Third Party Acknowledgements

	Interceptors in the Artix ESB Runtime
	The Interceptor APIs
	Determining When the Interceptor is Invoked
	Specifying an Interceptor's Phase
	Constraining an Interceptors Placement in a Phase

	Implementing the Interceptors Processing Logic
	Processing Messages
	Unwinding After an Error

	Configuring Endpoints to Use Interceptors
	Deciding Where to Attach Interceptors
	Adding Interceptors Using Configuration
	Adding Interceptors Programmatically
	Using the InterceptorProvider API
	Using Java Annotations

	Manipulating Interceptor Chains on the Fly
	Appendix A. Artix ESB Message Processing Phases
	Appendix B. Artix ESB Provided Interceptors
	Core Artix ESB Interceptors
	Front-Ends
	Message Bindings
	Other Features

	Appendix C. Interceptor Providers
	Index

