
 
 
 
 
 

Artix 5.6.4 
 
 
 

Java Router, Deployment Guide 
 

 

 

 

 
 



 

Micro Focus 
The Lawn 
22-30 Old Bath Road 
Newbury, Berkshire RG14 1QN 
UK 
 
 
http://www.microfocus.com 
 
Copyright © Micro Focus 2017. All rights reserved.  
 
MICRO FOCUS, the Micro Focus logo and Micro Focus Licensing are trademarks or 
registered trademarks of Micro Focus IP Development Limited or its subsidiaries or 
affiliated companies in the United States, United Kingdom and other countries. 
All other marks are the property of their respective owners. 
 
 
2017-02-23 



 Artix Java Router, Deployment Guide iii 

Contents 

Preface ................................................................... v 
Open Source Project Resources ................................................ v 
Document Conventions ........................................................... v 
The Artix ESB Documentation Library ....................................... vi 
Further Information and Product Support .................................. vi 

Information We Need ......................................................... vii 
Contact information ........................................................... vii 

Deploying a Standalone Router .............................. 1 
Introduction to Standalone Deployment ..................................... 1 
Defining a Standalone Main Method .......................................... 2 
Adding Components to the Camel Context ................................. 4 
Adding RouteBuilders to the Camel Context ............................... 5 
Running a Standalone Application ............................................. 7 

Deploying into a Spring Container .......................... 8 
Introduction to Spring Deployment ........................................... 8 
Defining a Spring Main Method ................................................. 9 
Spring Configuration ............................................................... 9 
Running a Spring Application ................................................. 12 

Components ......................................................... 13 
CORBA ............................................................................... 13 
CXF Component ................................................................... 13 

Endpoint URI format ............................................................ 14 
Address Endpoint URI ........................................................ 14 
Bean Endpoint URI ............................................................ 17 
How the data format affects CXF interceptors ........................ 20 
Combining router processors and CXF interceptors ....................... 21 
Creating a message in POJO data format .............................. 23 
Accessing a message in PAYLOAD data format ....................... 23 
Accessing a message in MESSAGE data format ...................... 25 
How to throw a SOAP fault ................................................... 25 
How to propagate CXF request and response contexts ............ 26 

File Component .................................................................... 31 
JMS Component ................................................................... 41 
SOAP .................................................................................. 55 
Websphere MQ Component .................................................... 55 

 

 





 Artix Java Router, Deployment Guide v 

Preface 
Open Source Project Resources 

Apache Incubator CXF 
 Web site: http://cxf.apache.org/ 

 User's list: <user@cxf.apache.org> 

Apache Tomcat 
 Web site: http://tomcat.apache.org/ 

 User's list: <users@tomcat.apache.org> 

Apache ActiveMQ 
 Web site: http://activemq.apache.org/ 

 User's list: <users@activemq.apache.org> 

Apache Camel 
 Web site: http://camel.apache.org 

 User's list: <users@camel.apache.org> 

Document Conventions 
Typographical conventions 
This book uses the following typographical conventions: 

fixed width Fixed width (Courier New font) in normal text 
represents portions of code and literal names 
of items such as classes, functions, variables, 
and data structures. For example, text might 
refer to the javax.xml.ws.Endpoint class. 

Constant width paragraphs represent code 
examples or information a system displays 
on the screen. For example: 
import java.util.logging.Logger;   

Fixed width 

italic 
Fixed width italic words or characters in code 
and commands represent variable values you 
must supply, such as arguments to 
commands or path names for your particular 
system. For example: 
% cd /users/YourUserName   

Italic Italic words in normal text represent 
emphasis and introduce new terms. 



vi Artix Java Router, Deployment Guide  

Bold Bold words in normal text represent 
graphical user interface components such as 
menu commands and dialog boxes. For 
example: the User Preferences dialog. 

Keying conventions 
This book uses the following keying conventions: 

No prompt When a command’s format is the same for 
multiple platforms, the command prompt is 
not shown. 

% A percent sign represents the UNIX command 
shell prompt for a command that does not 
require root privileges. 

# A number sign represents the UNIX 
command shell prompt for a command that 
requires root privileges. 

> The notation > represents the MS-DOS or 
Windows command prompt. 

... Horizontal or vertical ellipses in format and 
syntax descriptions indicate that material has 
been eliminated to simplify a discussion. 

[ ] Brackets enclose optional items in format and 
syntax descriptions. 

{ } Braces enclose a list from which you must 
choose an item in format and syntax 
descriptions. 

| In format and syntax descriptions, a vertical 
bar separates items in a list of choices 
enclosed in {} (braces). 

 

The Artix ESB Documentation Library 
For information on the organization of the Artix ESB library, the 
document conventions used, and where to find additional 
resources, see Using the Artix ESB Library. 

Further Information and Product Support 
Additional technical information or advice is available from 
several sources.  

The product support pages contain a considerable amount of 
additional information, such as:  

 The WebSync service, where you can download fixes and 
documentation updates.  



 Artix Java Router, Deployment Guide vii 

 The Knowledge Base, a large collection of product tips and 
workarounds.  

 Examples and Utilities, including demos and additional 
product documentation.  

Note:  
Some information may be available only to customers who 
have maintenance agreements.  

If you obtained this product directly from Micro Focus, contact 
us as described on the Micro Focus Web site, 
http://www.microfocus.com. If you obtained the product from 
another source, such as an authorized distributor, contact 
them for help first. If they are unable to help, contact us.  

Information We Need 

However you contact us, please try to include the information 
below, if you have it. The more information you can give, the 
better Micro Focus SupportLine can help you. But if you don't 
know all the answers, or you think some are irrelevant to 
your problem, please give whatever information you have.  

 The name and version number of all products that you 
think might be causing a problem.  

 Your computer make and model.  

 Your operating system version number and details of any 
networking software you are using.  

 The amount of memory in your computer.  

 The relevant page reference or section in the 
documentation.  

 Your serial number. To find out these numbers, look in the 
subject line and body of your Electronic Product Delivery 
Notice email that you received from Micro Focus.  

Contact information 

Our Web site gives up-to-date details of contact numbers and 
addresses.  

Additional technical information or advice is available from 
several sources.  

The product support pages contain considerable additional 
information, including the WebSync service, where you can 
download fixes and documentation updates. To connect, enter 
http://www.microfocus.com in your browser to go to the Micro 
Focus home page.  



viii Artix Java Router, Deployment Guide  

If you are a Micro Focus SupportLine customer, please see 
your SupportLine Handbook for contact information. You can 
download it from our Web site or order it in printed form from 
your sales representative. Support from Micro Focus may be 
available only to customers who have maintenance 
agreements. 

You may want to check these URLs in particular: 

 http://www.microfocus.com/products/corba/artix.aspx 
(trial software download and Micro Focus Community files) 

 https://supportline.microfocus.com/productdoc.aspx 
(documentation updates and PDFs) 

To subscribe to Micro Focus electronic newsletters, use the 
online form at: 

http://www.microfocus.com/Resources/Newsletters/infocus/newslett
er-subscription.asp 

 

 



 

 Artix Java Router, Deployment Guide 1 

Deploying a 
Standalone Router 
This chapter describes how to deploy the Java Router in 
standalone mode. This means that you can deploy the router 
independent of any container, but some extra programming steps 
are required. 

Introduction to Standalone Deployment 
Figure 1 gives an overview of the architecture for a router 
deployed in standalone mode. 

Figure  1.  Standalone Router 

 

Camel context 
The Camel context represents the router service itself. In 
contrast to most container deployment modes (where the 
Camel context instance is normally hidden), the standalone 
deployment requires you to explicitly create and initialize the 
Camel context in your application code. As part of the initialization 
procedure, you explicitly create components and route builders 
and add them to the Camel context. 

Components 
Components represent connections to particular kinds of 
destination—for example, a file system, a Web service, a JMS 
broker, a CORBA service, and so on. In order to read and write 
messages to and from various destinations, you need to 
configure and register components, by adding them to the Camel 
context. 



 

2 Artix Java Router, Deployment Guide  

RouteBuilders 
The RouteBuilder classes represent the core of your router 
application, because they define the routing rules. In a 
standalone deployment, you are responsible for managing the 
lifecycle of RouteBuilder objects. In particular, you must create 
instances of the route builder objects and register them, by 
adding them to the Camel context. 

Defining a Standalone Main Method 
In the case of a standalone deployment, it is up to the 
application developer to create, configure and start a Camel 
context instance (which encapsulates the core of the router 
functionality). For this purpose, you should define a main() 
method that performs the following key tasks: 

1. Create a Camel context instance. 

2. Add components to the Camel context. 

3. Add routing rules (RouteBuilder objects) to the Camel context. 

4. Start the Camel context, so that it activates the routing rules you 
defined. 

Example of a standalone main method 
Example 1 on page 20 shows the standard outline of a 
standalone main() method, which is defined in an example 
class, CamelJmsToFileExample. This example shows how to 
initialize and activate a Camel context instance. 



 

 Artix Java Router, Deployment Guide 3 

Example  1.  Standalone Main Method 

 

Where the preceding code can be explained as follows: 

❶ Define a static main() method to serve as the entry point 
for running the standalone router. 

❷ For a standalone router, you need to instantiate a Camel 
context explicitly. There is just one implementation of 
CamelContext currently available, the DefaultCamelContext 
class. 

❸ The first step in initializing the Camel context is to add 
any components that your need for your routes (see 
Adding Components to the Camel Context). 

❹ The second step in initializing the Camel context is to add 
one or more RouteBuilder objects (see Adding 
RouteBuilders to the Camel Context). 

❺ The CamelContext.start() method creates a new thread 
and starts to process incoming messages using the 
registered routing rules. If the main thread now exits, the 
Camel context sub-thread remains active and continues to 

package org.apache.camel.example.jmstofile;  

import javax.jms.ConnectionFactory; 

import org.apache.activemq.ActiveMQConnectionFactory;  
import org.apache.camel.CamelContext; 
import org.apache.camel.CamelTemplate;  
import org.apache.camel.Exchange;  
import org.apache.camel.Processor; 
import org.apache.camel.builder.RouteBuilder; 
import org.apache.camel.component.jms.JmsComponent;  
import org.apache.camel.impl.DefaultCamelContext; 

public final class CamelJmsToFileExample {  

private CamelJmsToFileExample() { 
} 

 
public static void main(String args[]) throws Exception 

{ ❶ 
CamelContext context = new DefaultCamelContext(); ❷ 

// Add components to the Camel context. ❸ 
// ... (not shown) 

// Add routes to the Camel context. ❹ 
// ... (not shown) 

 
// Start the context. context.start(); ❺ 

 
// End of main thread. 

} 
} 



 

4 Artix Java Router, Deployment Guide  

process messages. Typically, you can stop the router by 
typing Ctrl-C  in the window where you launched the router 
application (or by sending a kill signal in UNIX). If you want 
more control over stopping the router process, you could 
use the CamelContext.stop() method in combination with an 
instrumentation library (such as JMX). 

Adding Components to the Camel Context 
Relationship between components and endpoints 
The essential difference between components and endpoints is 
that, when configuring a component, you provide concrete 
connection details (for example, hostname, IP port, and so on), 
whereas, when specifying an endpoint URI, you provide 
abstract identifiers (for example, queue name, service name, 
and so on). It is also possible to define multiple endpoints for 
each component. For example, a single message broker 
(represented by a component) can support connections to 
multiple different queues (represented by endpoints). 

The relationship between an endpoint and a component is 
established through a URI prefix. Whenever you add a 
component to the Camel context, the component gets 
associated with a particular URI prefix (specified as the first 
argument to the CamelContext.addComponent() method). Endpoint 
URIs that start with that prefix are then automatically parsed by 
the associated component. 

Example of adding a component 
Example 2 shows the outline of the standalone main() method, 
highlighting details of how to add a JMS component to the 
Camel context. 

  



 

 Artix Java Router, Deployment Guide 5 

Example  2.  Adding a Component to the Camel Context 
public final class CamelJmsToFileExample { 

... 
public static void main(String args[]) throws Exception 

{ 
CamelContext context = new DefaultCamelContext(); 

 
// Add components to the Camel context. 

ConnectionFactory connectionFactory = new 

ActiveMQConnectionFactory("vm://localhost?broker.persistent=false"); ❶ 

context.addComponent("test-jms", 

JmsComponent.jmsComponentAutoAcknowledge(connectionFactory)); ❷ 
 

// Add routes to the Camel context. 
// ... (not shown) 

 
// Start the context. context.start(); 

 
// End of main thread. 

} 
} 

 
Where the preceding code can be explained as follows: 

❶ Before you can add a JMS component to the Camel context, 
you need to create a JMS connection factory (an 
implementation of javax.jms.ConnectionFactory). In this 
example, the JMS connection factory is implemented by the 
FUSE Message Broker class, ActiveMQConnectionFactory. The 
broker URL, vm://localhost, specifies a broker that is co-
located in the same Java Virtual Machine (JVM) as the 
router. The broker library automatically instantiates the new 
broker as soon as you try to send a message to it. 

❷ Add a JMS component named test-jms to the Camel context. 
This example uses a JMS component with the auto-
acknowledge option set to true. This implies that messages 
received from a JMS queue will automatically be 
acknowledged (receipt confirmed) by the JMS component. 

Adding RouteBuilders to the Camel Context 
RouteBuilder objects represent the core of your router application, 
because they embody the routing rules you want to implement. 
In the case of a standalone deployment, you have to manage 
the lifecycle of your RouteBuilder objects explicitly, which 
involves instantiating the RouteBuilder classes and adding them 
to the Camel context. 

Example of adding a RouteBuilder 
Example 3 shows the outline of the standalone main() method, 
highlighting details of how to add a RouteBuilder object to the 
Camel context. 



 

6 Artix Java Router, Deployment Guide  

Example  3.  Adding a RouteBuilder to the Camel Context 
package org.apache.camel.example.jmstofile; 
... 
public class JmsToFileRoute extends RouteBuilder { ❶ 

public void configure() { 
from("test-jms:queue:test.queue").to("file://test"); 

❷ 
// set up a listener on the file component 
from("file://test").process(new Processor() { ❸ 

public void process(Exchange e) { 
System.out.println("Received exchange: " + e.getIn()); 

} 
}); 

} 
} 
 
public final class CamelJmsToFileExample { 

... 
public static void main(String args[]) throws Exception 

{ 
CamelContext context = new DefaultCamelContext(); 

 
// Add components to the Camel context. 
// ... (not shown) 

 
// Add routes to the Camel context. context.addRoutes(new 
JmsToFileRoute()); ❹ 

 
// Start the context. context.start(); 
// End of main thread. 

} 
} 
 

Where the preceding code can be explained as follows: 

❶ Define a class that inherits from 
org.apache.camel.builder.RouteBuilder in order to define 
your routing rules. If required, you can define multiple 
RouteBuilder classes. 

❷ The first route implements a hop from a JMS queue to the 
file system. That is, messages are read from the JMS 
queue test.queue, and then written to files in the test 
directory. The JMS endpoint, which has a URI prefixed by 
test-jms, uses the JMS component registered in Example 
2. 

❸ The second route reads (and deletes) the messages from 
the test directory and displays the messages in the 
console window. To display the messages, the route 
implements a custom processor (implemented inline). 

❹ Call the CamelContext.addRoutes() method to add a 
RouteBuilder object to the Camel context. 



 

 Artix Java Router, Deployment Guide 7 

Running a Standalone Application 
Downloading ActiveMQ 
Before running this sample code, you must download ActiveMQ 
5.x, and add relevant jar files to the classpath. 

Setting the CLASSPATH 
Configure your application's CLASSPATH as follows: 

 Add ArtixRoot/lib/it-soa-router.jar to the CLASSPATH. 

Running the application 
Assuming that you have coded a main() method, as described in 
Defining a Standalone Main Method, you can run your 
application using Sun's J2SE interpreter with the following 
command: 

java org.apache.camel.example.jmstofile.CamelJmsToFileExample 

 
If you are developing the application using a Java IDE (for 
example, Eclipse (http://www.eclipse.org/) or IntelliJ 
(http://www.jetbrains.com/idea)), you can run your 
application by selecting the CamelJmsToFileExample class and 
directing the IDE to run the class. 

Normally, an IDE would automatically choose the static main() 
method as the entry point to run the class. 

 

 



 

8 Artix Java Router, Deployment Guide  

Deploying into a Spring 
Container 

This chapter describes how to deploy the Java Router into a 
Spring container. A notable feature of the Spring container 
deployment is that it enables you to specify routing rules in an 
XML configuration file. 

Introduction to Spring Deployment 
Figure 2 gives an overview of the architecture for a router 
deployed into a Spring container. 

Figure   2.   Router Deployed in a Spring Container 

 

Spring wrapper class 
To instantiate a Spring container, Java Router provides the 
Spring wrapper class, org.apache.camel.spring.Main, which exposes 
methods for creating a Spring container. The wrapper class 
simplifies the procedure for creating a Spring container, 
because it includes a lot of boilerplate code required for the 
router. For example, the wrapper class specifies a default 
location for the Spring configuration file and adds the Camel 
context schema to the Spring configuration, enabling you to 
specify routes using the camelContext XML element. 

Lifecycle of RouteBuilder objects  
The Spring container is responsible for managing the lifecycle of 
RouteBuilder objects. In practice, this means that the router 
developer need only define the RouteBuilder classes. The Spring 
container will find and instantiate the RouteBuilder objects after 
it starts up (see Spring Configuration). 



 

 Artix Java Router, Deployment Guide 9 

Spring configuration file  
The Spring configuration file is a key feature of the Spring 
container. Through the Spring configuration file you can 
instantiate and link together Java objects. You can also 
configure any Java object using the dependency injection 
feature. 

In addition to these generic features of the Spring configuration 
file, Java Router defines an extension schema that enables you 
to define routing rules in XML. 

Component configuration  
In order to use certain transport protocols in your routes, you 
must configure the corresponding component and add it to the 
Camel context. You can add components to the Camel context 
by defining bean elements in the Spring configuration file (see 
Configuring components). 

Defining a Spring Main Method 
Java Router defines a convenient wrapper class for the Spring 
container. To instantiate a Spring container instance, all that you 
need to do is write a short main() method that delegates creation 
of the container to the wrapper class. 

Example of a Spring main method 
Example 4 shows how to define a Spring main() method for 
your router application. 

Example 4. Spring Main Method 

 

Where org.apache.camel.spring.Main is the Spring wrapper class, 
which defines a static main() method that instantiates the 
Spring container. 

Spring Configuration 
You can use a Spring configuration file to configure the following 
basic aspects of a router application: 

 Specify the Java packages that contain RouteBuilder 
classes. 

 Define routing rules in XML. 

 Configure components. 

package my.package.name; 
 
public class Main { 

public static void main(String[] args) { 
org.apache.camel.spring.Main.main(args); 

} 
} 



 

10 Artix Java Router, Deployment Guide  

In addition to these core aspects of router configuration, you can 
take advantage of the generic Spring mechanisms for 
configuring and linking together Java objects within the Spring 
container. 

Location of the Spring configuration file 
The Spring configuration file for your router application must be 
stored at the following location, relative to your CLASSPATH: 

META-INF/spring/camel-context.xml   

Basic Spring configuration 
Example 5 shows a basic Spring XML configuration file that 
instantiates and activates RouteBuilder classes defined in the 
my.package.name Java package. 

Example   5.   Basic Spring XML Configuration 
<?xml version="1.0" encoding="UTF-8"?> 
 
<!-- Configures the Camel Context--> 
<beans xmlns="http://www.springframework.org/schema/beans" 

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation=" http://www.springframework.org/schema/beans 

http://www.springframework.org/schema/beans/spring-beans.xsd ❶ 
 

http://camel.apache.org/schema/spring  
http://camel.apache.org/camel/schema/spring/camel-spring.xsd"> 

❷ 
 

<camelContext xmlns="http://activemq.apache.org/camel/schema/spring"> 

❸ 
<package>my.package.name</package> ❹ 

</camelContext> 
</beans> 
 

The preceding configuration can be explained as follows: 

❶ This line specifies the location of the Spring framework 
schema. The URL represents a real, physical location from 
where you can download the schema. The version of the 
Spring schema currently supported by Java Router is 
Spring 3.0. 

❷ This line specifies the location of the Camel context 
schema. The URL shown in this example always points to 
the latest version of the schema. 

❸ Define a camelContext element, which belongs to the 
namespace, http://camel.apache.org/schema/spring. 

❹ Use the package element to specify one or more Java 
package names. 



 

 Artix Java Router, Deployment Guide 11 

As it starts up, the Spring wrapper automatically 
instantiates and activates any RouteBuilder classes that it 
finds in the specified packages. 

Configuring components 
To configure router components, use the generic Spring bean 
configuration mechanism (which implements a dependency 
injection configuration pattern). That is, you define a Spring bean 
element to create a component instance, where the class 
attribute specifies the full class name of the relevant Java 
Router component. Bean properties on the component class can 
then be set using the Spring properties element. Using the 
dependency injection mechanism, you can determine what 
properties you can set by consulting the JavaDoc for the 
relevant component. 

Example 6 shows how to configure a JMS component using 
Spring configuration. This component configuration enables 
you to access endpoints of the format 
jms:[queue|topic]:QueueOrTopicName in your routing rules. 

Example   6.   Configuring Components in Spring 
<?xml version="1.0" encoding="UTF-8"?> 
 
<beans ... > 
 

<camelContext useJmx="true" xmlns="http://camel.apache.org/schema/spring"> 
 
<!-- Java packages (not shown) ... --> 

</camelContext> 
 
<!-- Configure the default ActiveMQ broker URL --> 
<bean id="jms" class="org.apache.camel.component.jms.JmsComponent"> ❶ 

<property name="connectionFactory"> ❷ 
<bean class="org.apache.activemq.ActiveMQConnectionFactory"> ❸ 

<property name="brokerURL" value="vm://local 
host?broker.persistent=false&amp;broker.useJmx=false"/> ❹ 

</bean> 
</property> 

</bean> 
 
</beans> 
 

Where the preceding configuration can be explained as follows: 

❶ Use the class attribute to specify the name of the component 
class—in this example, we are configuring the JMS 
component class, JmsComponent. The id attribute specifies the 
prefix to use for JMS endpoint URIs. For example, with the 
id equal to jms you can connect to an endpoint like 
jms:queue:FOO.BAR in your application code. 

❷ When you set the property named, connectionFactory, 
Spring implicitly calls the 
JmsComponent.setConnectionFactory() method to initialize 
the JMS component at run time. 



 

12 Artix Java Router, Deployment Guide  

❸ The connection factory property is initialized to be an 
instance of ActiveMQConnectionFactory (that is, an 
instance of a FUSE Message Broker message queue). 

❹ When you set the brokerURL property on 
ActiveMQConnectionFactory, Spring implicitly calls the 
setBrokerURL() method on the connection factory instance. 
In this example, the broker URL, vm://localhost, specifies 
a broker that is co-located in the same Java Virtual Machine 
(JVM) as the router. The broker library automatically 
instantiates the new broker as soon as you try to send a 
message to it. 

For more details about configuring components in Spring, see 
Components. 

Running a Spring Application 
Downloading ActiveMQ 
You must first download ActiveMQ version 5.x, and include 
relevant jar files in the classpath. 

Setting the CLASSPATH 
Configure your application's CLASSPATH as follows: 

1. Add all of the JAR files in ArtixRoot/lib/it-soa-router.jar to 
the CLASSPATH. 

2. Add the directory containing META-INF/spring/camel-context.xml to 
the CLASSPATH. For example, if your Spring configuration file is 
/var/my_router_app/META-INF/spring/camel-context.xml, add the 
following directory to the CLASSPATH: 

/var/my_router_app   

Running the application 
Assuming that you have coded a main() method, as described in 
Defining a Spring Main Method, you can run your application 
using Sun's J2SE interpreter with the following command: 

java my.package.name.Main     

If you are developing the application using a Java IDE (for 
example, Eclipse (http://www.eclipse.org/) or IntelliJ 
(http://www.jetbrains.com/idea)), you can run your 
application by selecting the my.package.name.Main class and 
directing the IDE to run the class. 

Normally, an IDE would automatically choose the static main() 
method as the entry point to run the class. 

 



 

 Artix Java Router, Deployment Guide 13 

Components 
In Java Router, a component is essentially an integration plug-
in, which can be used to enable integration with different kinds 
of protocol, containers, databases, and so on. By adding a 
component to your Camel context, you gain access to a 
particular type of endpoint, which can then be used as the 
sources and targets of your routes. This reference chapter 
provides an overview of the components available in Java Router. 

CORBA 
The CORBA protocol does not have a dedicated component. It is 
supported through the CXF component—see CXF Component. 

CXF Component 
Introduction to CXF Component 
The CXF component enables you to access endpoints using the 
Apache CXF1 open services framework (primarily Web services). 
Because CXF has support for multiple different protocols, you 
can use a CXF component to access many different kinds of 
service. For example, CXF supports the following bindings 
(message encodings): 

 SOAP 1.1. 

 SOAP 1.2 

 CORBA 

And CXF supports the following transports: 

 HTTP 

 RESTful HTTP 

 IIOP (transport for CORBA only) 

 JMS 

 WebSphere MQ 

Adding the CXF component  
There is no need to add the CXF component to the Camel 
context; it is automatically loaded by the router core. 

Configuring the CXF component to use log4j 
The default logger for the CXF component is java.util.logging. 
To configure the CXF component to use the Apache log4j logger 
instead, perform the following steps: 



 

14 Artix Java Router, Deployment Guide  

1. Create a text file named META-INF/cxf/org.apache.cxf.logger, 
with the following contents: 

org.apache.cxf.common.logging.Log4jLogger   

This file should contain only this text, on a single line. 

2. Add the file to your Classpath, taking care that it precedes 
the camel-cxf JAR file. 

Endpoint URI format  

There are two different URI formats supported by the CXF 
component, as follows: 

 Address Endpoint URI 

 Bean Endpoint URI 

Address Endpoint URI 

Endpoint URI format 
The CXF address endpoint URI conforms to the following format: 

cxf://Address[?QueryOptions]   

Where Address is the physical address of the endpoint, whose 
format is binding/transport specific (for example, the HTTP URL 
format, http://, for SOAP/HTTP or the corbaloc format, 
corbaloc:iiop:, for CORBA/IIOP). You can optionally add a list of 
query options, ?QueryOptions, in the following format: 

?Option=Value&Option=Value&Option=Value...   

URI query options 

The CXF URI supports the query options described in Table 1. 

Table  1.  CXF URI Query Options 

Option Description 

address The endpoint address (overriding the value that appears in 
the first part of the CXF URI). 

dataFormat The format used to represent messages internally. Can be 
one of POJO, PAYLOAD, or MESSAGE. 



 

 Artix Java Router, Deployment Guide 15 

Option Description 

serviceClass The value of the service class depends on whether the 
endpoint is a producer or a consumer, as follows: 

 Producer endpoint—the name of the service endpoint 
interface (SEI). Do not specify a proxy class here. The 
CXF component will automatically determine the proxy 
type and create a proxy instance for you. 

 Consumer endpoint—the name of the class that 
implements the service (which derives from the SEI). If 
the implementation class is appropriately annotated 
(following JSE-181 - 
http://jcp.org/en/jsr/detail?id=181), it also 
determines the WSDL location, service name, and port 
name for the WSDL endpoint. 

portName The port QName (defaults to the value of the annotation in 
the service class, if one is specified). 

serviceName The service QName (defaults to the value of the annotation in 
the service class, if one is specified). This is required for 
camel-cxf consumer if more than one serviceName is 
present in the WSDL. 

wsdlURL Location of the WSDL contract file (defaults to the value of 
the annotation in the service class, if one is specified). 

relayHeaders (POJO data format only) If a route connects a CXF consumer 
endpoint to a CXF producer endpoint, this boolean option 
(set on the producer endpoint) determines whether the 
SOAP headers received from the consumer endpoint are 
relayed to the producer endpoint and whether SOAP 
headers set by the producer endpoint are sent back to the 
consumer endpoint. Default is true (do relay headers). 

When this option is true, headers can also be filtered by 
installing custom filters of MessageHeadersRelay type. For 
details, see Filtering Message Headers. 

Wrapped Which kind of operation the CXF endpoint producer will 
invoke. May be true or false. Default is false. 

wrappedStyle The WSDL style that describes how parameters are 
represented in the SOAP body. If the value is false, CXF 
will chose the document-literal unwrapped style, If the 
value is true, CXF will chose the document-literal wrapped 
style. Default is null. 

setDefaultBus If true, sets the default bus when CXF endpoint creates a 
bus by itself. Default is false. 



 

16 Artix Java Router, Deployment Guide  

Option Description 
Bus A default bus created by CXF Bus Factory. Use # notation 

to reference a bus object from the registry. The 
referenced object must be an instance of 
org.apache.cxf.Bus. 

For example: bus=#busName 
cxfBinding Use # notation to reference a CXF binding object from the 

registry. The referenced object must be an instance of 
org.apache.camel.component.cxf.CxfBinding (use an 
instance of 
org.apache.camel.component.cxf.DefaultCxfBinding).  

For example: cxfBinding=#bindingName 
headerFilterStrategy Use # notation to reference a header filter strategy object 

from the registry. The referenced object must be an 
instance of org.apache.camel.spi.HeaderFilterStrategy 
(use an instance of 
org.apache.camel.component.cxf.CxfHeaderFilterStrategy) 

For example: headerFilterStrategy=#strategyName 
loggingFeatureEnabled This option enables the CXF Logging Feature which writes 

inbound and outbound SOAP messages to log. Defaults to 
false.  

For example: loggingFeatureEnabled=true 
defaultOperationName This option sets the default operationName that will be 

used by the CxfProducer which invokes the remote 
service. The default is null. 

For example: defaultOperationName=greetMe 
defaultOperationNamespace This option sets the default operationNamespace that will 

be used by the CxfProducer which invokes the remote 
service. The default is null. 

For example: 
defaultOperationNamespace=http://apache.org/ 
hello_world_soap_http 

synchronous This option lets the cxf endpoint decide whether to use the 
sync or async API to do the underlying work. The default 
value is false, which means that camel-cxf endpoint will 
try to use the async API by default.  

For example: synchronous=true 
publishedEndpointUrl This option specifies an endpoint URL that overrides the 

one published from the WSDL. The endpoint can be 
accessed with service address URL plus ?wsdl to see the 
whole definition of the corresponding wsdl. The default is 
null. 

For example: 
publishedEndpointUrl=http://example.com/service 



 

 Artix Java Router, Deployment Guide 17 

Option Description 
properties.XXX Enables you to set custom properties for CXF in the 

endpoint URL.  

For example, set properties.mtom-enabled=true to 
enable MTOM. 

allowStreaming When the CXF component is running in PAYLOAD mode 
(see Accessing a message in PAYLOAD data format): 

 If this option is set to false, the CXF component uses 
the DOM parser to parse the incoming messages into 
DOM Elements. 

 If set to true, it keeps the payload as a 
javax.xml.transform.Source object that would allow 
streaming in some cases. This is the default.  

skipFaultLogging This option controls whether the PhaseInterceptorChain 
skips logging the Fault that it catches. Defaults to false. 

cxfEndpointConfigurer Enables you to programmatically configure the CXF 
endpoint by applying 
org.apache.camel.component.cxf.CxfEndpointConfigurer. 

Specify a child class that extends CxfEndpointConfigurer. 
username Specifies the username used to authenticate the CXF 

client. 
password Specifies the password used to authenticate the CXF 

client. 
continuationTimeout This option is used to set the CXF continuation timeout (in 

milliseconds) which can  be used in CxfConsumer by 
default when the CXF server is using Jetty or Servlet 
transport. The default is 30000. 

For example: continuation=80000  

Bean Endpoint URI 

Endpoint URI format 
The CXF bean endpoint URI conforms to the following format: 

cxf:bean:BeanID[?QueryOptions]   

BeanID is the ID of a CXF endpoint bean that is registered in the 
Spring bean registry. To create the associated CXF endpoint bean, 
add a cxf:cxfEndpoint element to your Spring configuration, as 
follows: 



 

18 Artix Java Router, Deployment Guide  

<beans xmlns="http://www.springframework.org/schema/beans" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xmlns:cxf="http://camel.apache.org//schema/cxf" 
...> 

... 
<cxf:cxfEndpoint id="BeanID" serviceClass="serviceClassName" 

address="https://localhost:58001/GreeterService/BasicAuthPort" 
wsdlURL="WsdlLocation" 
endpointName="ns:portName" 
serviceName="ns:serviceName" 
xmlns:ns="XmlNamespace"> 

</cxf:cxfEndpoint> 
... 

</beans> 
You can optionally add a list of query options, 
?QueryOptions—see  Table 1 for a list of available options. 

cxfEndpoint attributes 
The cxf:cxfEndpoint element supports the following attributes: 

Table 2.  Attributes of cxf:cxfEndpoint Element 

Attribute Description 

wsdlURL The location of the WSDL contract. Can be a Classpath URL, classpath:, 
file URL, file:, or remote URL, http:. 

serviceName The WSDL service name (from the name attribute of the relevant 
wsdl:service element in the WSDL contract). The format of this attribute is 
NsPrefix:ServiceName, where NsPrefix is a namespace prefix valid at this 
scope. 

endpointName The WSDL endpoint name (from the name attribute of the relevant wsdl:port 
element in the WSDL contract). The format of this attribute is 
NsPrefix:EndpointName, where NsPrefix is a namespace prefix valid at this 
scope. 

address The WSDL endpoint's address, which overrides the value from the WSDL 
contract. 

bus The name of the CXF Bus that provides the context for this JAX-WS 
endpoint. 

serviceClass The class name of the SEI (Service Endpoint Interface) class, which 
could optionally have JSR181 annotations. 

cxfEndpoint child elements 
The cxf:cxfEndpoint element can optionally contain the following 
child elements: 

Table  3.  Child Elements of cxf:cxfEndpoint 

Child Element Description 

cxf:inInterceptors The incoming interceptors for this endpoint. A list of bean 
elements or ref elements. 

cxf:inFaultInterceptors The incoming fault interceptors for this endpoint. A list of bean 
elements or ref elements. 



 

 Artix Java Router, Deployment Guide 19 

Child Element Description 

cxf:outInterceptors The outgoing interceptors for this endpoint. A list of bean 
elements or ref elements. 

cxf:outFaultInterceptors The outgoing fault interceptors for this endpoint. A list of bean 
elements or ref elements. 

cxf:properties A properties map, which sets the JAX-WS endpoint's bean 
properties. See Using cxf:properties to set endpoint 
properties. 

cxf:handlers A JAX-WS handler list for the JAX-WS endpoint. See JAX-WS 
Configuration (http://cxf.apache.org/docs/jax-ws-
configuration.html). 

cxf:dataBinding Enables you to specify the DataBinding for this endpoint, where 
the data binding can be instantiated using the <bean 
class="MyDataBinding"/> syntax. 

cxf:binding Enables you to specify the BindingFactory for this endpoint, 
where the binding factory can be instantiated using the <bean 
class="MyBindingFactory"/> syntax. 

cxf:features The features that hold the interceptors for this endpoint. A list 
of bean elements or ref elements. 

cxf:schemaLocations The schema locations available to the endpoint. A list of 
schemaLocation elements. 

cxf:serviceFactory The service factory for this endpoint, where the service factory 
can be instantiated using the <bean class="MyServiceFactory"/> 
syntax. 

Using cxf:properties to set endpoint properties 
You can use the cxf:properties child element to set any of the 
bean properties listed in Table 1. For example, you can set the 
CXF endpoint's dataFormat and setDefaultBus bean properties as 
follows: 

<cxf:cxfEndpoint id="testEndpoint" address="http://local host:9000/router" 
serviceClass="org.apache.camel.component.cxf.HelloService" 

 
endpointName="s:PortName" serviceName="s:ServiceName" 
xmlns:s="http://www.example.com/test"> 
<cxf:properties> 
<entry key="dataFormat" value="MESSAGE"/> 
<entry key="setDefaultBus" value="true"/> 

</cxf:properties> 
</cxf:cxfEndpoint> 

 
 

Programming with CXF Messages 
A CXF endpoint allows you to select different data formats for the 
propagated messages, as shown in Table 4. This subsection 
describes how to access or modify the different data formats in 
CXF messages. 



 

20 Artix Java Router, Deployment Guide  

Table  4.  CXF Data Formats 

Data Format Description 

POJO With the plain old Java object (POJO) format, the 
message body contains a list of the Java parameters 
to the method being invoked on the target server. The 
type of the POJO message body is 
org.apache.cxf.message.MessageContentsList. 

PAYLOAD The message body contains the contents of the 
soap:body element after message configuration in the 
CXF endpoint is applied. The type of the PAYLOAD 
message body is List<org.w3c.dom.Element>. 

RAW The message body contains the raw message that is 
received from the transport layer. The type of the 
MESSAGE message body is InputStream. 

CXF_MESSAGE The CXF_MESSAGE format allows you to invoke the 
full capabilities of CXF interceptors by converting the 
message from the transport layer into a raw SOAP 
message. 

MESSAGE This format is deprecated.  

How the data format affects CXF interceptors 

The choice of data format causes CXF interceptors in certain 
phases to be skipped. This is unavoidable, for technical 
reasons. Some CXF interceptor phases are logically 
incompatible with certain data formats. The choice of data 
format affects CXF interceptor phases as follows: 

 POJO—All CXF interceptor phases are processed as normal. 

 PAYLOAD—CXF interceptor phases are processed, except for 
the following phases: 

 In phases—UNMARSHAL, PRE_LOGICAL, 
PRE_LOGICAL_ENDING, POST_LOGICAL, 
POST_LOGICAL_ENDING, PRE_INVOKE. 

 Out phases—MARSHAL, MARSHAL_ENDING, 
PRE_LOGICAL, PRE_LOGICAL_ENDING, 
POST_LOGICAL, POST_LOGICAL_ENDING. 

 RAW—Only the following CXF interceptor phases are 
processed (all others being skipped): 

 In phases—RECEIVE, USER_STREAM, INVOKE, 
POST_INVOKE. 



 

 Artix Java Router, Deployment Guide 21 

 Out phases—PREPARE_SEND, 
PREPARE_SEND_ENDING, USER_STREAM, WRITE, 
SEND. 

TIP: For optimum efficiency, select the lowest level data format 
compatible with the kind of processing you need to perform. The data 
formats can be ranked in order of efficiency (starting with the most 
efficient), as follows: RAW, PAYLOAD, POJO.  

Combining router processors and CXF interceptors 

When designing a route that processes CXF messages, typically 
the best strategy is to use a combination of router processors 
and CXF interceptors. Each type of processing has its strengths 
and weaknesses: 

 CXF interceptors offer the advantage that you can access the 
message at all levels of marshalling and parsing. For 
example, you can add a CXF interceptor to process a SOAP 
message in its raw format and add another interceptor to 
process the parsed operation parameters. 

By contrast, in a router processor, you can only access the 
message in the form selected by the data format option. 

 Router processors enable you to apply the power of the Java 
DSL to process and route CXF messages. For example, you 
can easily apply the content based routing pattern to send a 
CXF message to various endpoints, depending on the 
contents of a header or an operation parameter. 

You also need to remember to take into account the fact that 
when the PAYLOAD or RAW data formats are selected, some of 
the CXF interceptor phases are skipped. 

Identifying the data format  
The easiest way to check the data format in a processor is to 
look up the CxfConstants.DATA_FORMAT_PROPERTY property on the 
exchange. For example, given an exchange instance, exchange, 
that originates from a CXF endpoint: 

// Java 
import org.apache.camel.component.cxf.common.message.CxfConstants; 
... 
String dataFormat = 
exchange.getProperty(CxfConstants.DATA_FORMAT_PROPERTY).toString(); 

 
The returned data format can have one of the values: POJO, 
PAYLOAD, CIF_MESSAGE, or RAW. 

Accessing a message in POJO data format 
The POJO data format is based on the CXF invoker 
(http://cxf.apache.org/docs/invokers.html). The message 



 

22 Artix Java Router, Deployment Guide  

header has a CxfConstants.OPERATION_NAME property, which 
contains the name of the operation to invoke, and the message 
body is a list of the SEI method parameters. The following 
example shows how to access the contents of a POJO message 
in the implementation of a Processor. 

// Java 
public class PersonProcessor implements Processor { 
 

private static final transient Log LOG = LogFactory.get 
Log(PersonProcessor.class); 
 

public void process(Exchange exchange) throws Exception 
 { 

LOG.info("processing exchange in camel"); 
 
BindingOperationInfo boi = (BindingOperationInfo)exchange.getProperty 

             (BindingOperationInfo.class.toString()); 
if (boi != null) { 

LOG.info("boi.isUnwrapped" + boi.isUnwrapped()); 
} 

// Get the parameters list which element is the holder. 
 
MessageContentsList msgList =  

           (MessageContentsList)exchange.getIn().getBody(); 
Holder<String> personId = (Holder<String>)msg List.get(0); 
Holder<String> ssn = (Holder<String>)msgList.get(1);  
Holder<String> name = (Holder<String>)msgList.get(2); 
 
 
if (personId.value == null || personId.value.length()== 0) { 
 
LOG.info("person id 123, so throwing exception"); 
 
// Try to throw out the soap fault message 

org.apache.camel.wsdl_first.types.UnknownPerson 
Fault personFault = new 

org.apache.camel.wsdl_first.types.UnknownPersonFault(); 
personFault.setPersonId(""); 

org.apache.camel.wsdl_first.UnknownPersonFault fault = new 
org.apache.camel.wsdl_first.UnknownPersonFault("Get the null value of person 
name", personFault); 

 
// Since camel has its own exception handler framework, we can't throw the 
exception to  
/// trigger it 
// We just set the fault message in the exchange for camel-cxf component 
handling 
// exchange.getFault().setBody(fault); 

  } 
 

name.value = "Bonjour";  
ssn.value = "123"; 
LOG.info("setting Bonjour as the response"); 
 
// Set the response message, first element is the return value of the 
operation, 
// the others are the holders of method parameters  
exchange.getOut().setBody(new Object[] {null, personId,ssn, name}); 

  } 
 



 

 Artix Java Router, Deployment Guide 23 

Creating a message in POJO data format 

To create a message in POJO data format, first specify the 
operation name in the CxfConstants.OPERATION_NAME message 
header. Next, add the method parameters to a list and set the 
message with this parameter list. The response message's body 
is of MessageContentsList type. For example: 

// Java 
Exchange senderExchange = new DefaultExchange(context, Exchange Pattern.InOut); 
final List<String> params = new ArrayList<String>(); 
 
// Prepare the request message for the camel-cxf procedure 
params.add(TEST_MESSAGE);  
senderExchange.getIn().setBody(params); 
senderExchange.getIn().setHeader(CxfConstants.OPERATION_NAME, 
ECHO_OPERATION); 

 
Exchange exchange = template.send("direct:EndpointA", sender Exchange); 
 
org.apache.camel.Message out = exchange.getOut(); 
// The response message's body is an MessageContentsList which first element 
// is the return value of the operation, 
// If there are some holder parameters, the holder parameter will be filled 
// in the reset of List. 
// The result will be extract from the MessageContentsList with the String  
// class type 
 
MessageContentsList result = (MessageContentsList)out.get Body(); 
LOG.info("Received output text: " + result.get(0));  
Map<String, Object> responseContext = 
CastUtils.cast((Map)out.getHeader(Client.RESPONSE_CONTEXT)); 
assertNotNull(responseContext); 
assertEquals("We should get the response context here", "UTF- 8", 
responseContext.get(org.apache.cxf.message.Message.ENCOD ING)); 
assertEquals("Reply body on Camel is wrong", "echo " + TEST_MESSAGE, 
result.get(0)); 

 
 

Accessing a message in PAYLOAD data format 

The PAYLOAD format means that you process the payload 
message from the SOAP envelope. You can use the 
Header.HEADER_LIST as the key to set or get the SOAP headers 
and use the List<Element> to set or get SOAP body elements. 

Message.getBody() will return an 
org.apache.camel.component.cxf.CxfPayload object, which has 
getters for SOAP message headers and Body elements. This 
change enables decoupling the native CXF message from the 
Camel message. 

  



 

24 Artix Java Router, Deployment Guide  

For example: 

protected RouteBuilder createRouteBuilder() { 
  return new RouteBuilder() { 
      public void configure() { 
          from(simpleEndpointURI + "&dataFormat=PAYLOAD").to("log:info").process 
                (new Processor() { 
              @SuppressWarnings("unchecked") 
              public void process(final Exchange exchange) throws Exception { 
                  CxfPayload<SoapHeader> requestPayload =  
                       exchange.getIn().getBody(CxfPayload.class); 
                  List<Source> inElements = requestPayload.getBodySources(); 
                  List<Source> outElements = new ArrayList<Source>(); 
                  // You can use a customer toStringConverter to turn a CxfPayLoad  
                  // message into String if you want 
                  String request = exchange.getIn().getBody(String.class); 
                  XmlConverter converter = new XmlConverter(); 
                  String documentString = ECHO_RESPONSE; 
                    
                  Element in = new XmlConverter().toDOMElement(inElements.get(0)); 
                  // Just check the element namespace 
                  if (!in.getNamespaceURI().equals(ELEMENT_NAMESPACE)) { 
                      throw new IllegalArgumentException("Wrong element namespace"); 
                  } 
                  if (in.getLocalName().equals("echoBoolean")) { 
                      documentString = ECHO_BOOLEAN_RESPONSE; 
                      checkRequest("ECHO_BOOLEAN_REQUEST", request); 
                  } else { 
                      documentString = ECHO_RESPONSE; 
                      checkRequest("ECHO_REQUEST", request); 
                  } 
                  Document outDocument = converter.toDOMDocument(documentString); 
                  outElements.add(new DOMSource(outDocument.getDocumentElement())); 
                  // set the payload header with null 
                  CxfPayload<SoapHeader> responsePayload = new  
                       CxfPayload<SoapHeader>(null, outElements, null); 
                  exchange.getOut().setBody(responsePayload); 
              } 
          }); 
      } 
  }; 
} 
 

 
  



 

 Artix Java Router, Deployment Guide 25 

Accessing a message in MESSAGE data format 

To access a message in MESSAGE data format, retrieve the 
message from the underlying CXF message as a 
java.io.InputStream type. For example: 

// Java 
import java.io.InputStream; 
... 
from(routerEndpointURI).process(new Processor() { 

@SuppressWarnings("unchecked") 
public void process(Exchange exchange) throws Exception 

{ 
   ... 
   InputStream inputStream = exchange.getIn().getBody(InputStream.class); 
 

// Continue processing the raw message from InputStream 
 

... 
} 

 
}) 
.to(serviceEndpointURI); 
 

How to throw a SOAP fault 

You can use the throwFault() DSL command to throw a SOAP 
fault, and this works for the POJO, PAYLOAD, and RAW data formats. 
First of all, you need to define a SOAP fault, as follows:  

 

Once you have created the fault, SOAP_FAULT, you can throw it as 
follows: 

from(routerEndpointURI).setFaultBody(SOAP_FAULT);   

If your CXF endpoint is configured to use the RAW data format, 
you could set the SOAP Fault message in the message body and 
set the response code in the message header. For example: 

 

SOAP_FAULT = new SoapFault(EXCEPTION_MESSAGE, Soap 
Fault.FAULT_CODE_CLIENT); 
Element detail = SOAP_FAULT.getOrCreateDetail(); Document 
doc = detail.getOwnerDocument(); 
Text tn = doc.createTextNode(DETAIL_TEXT); 
detail.appendChild(tn); 

from(routerEndpointURI).process(new Processor() { 
 

public void process(Exchange exchange) throws Exception 
{ 

Message out = exchange.getOut(); 
// Set the message body with the 
out.setBody(this.getClass().getResourceAsStream("Soap
FaultMessage.xml")); 
// Set the response code here 
out.setHeader(org.apache.cxf.message.Message.RESPONS
E_CODE, new Integer(500)); 

} 
 
}); 



 

26 Artix Java Router, Deployment Guide  

How to propagate CXF request and response 
contexts 

The CXF client API provides a way to invoke an operation with 
request and response context. For example, to set the request 
context and get the response context for an operation that is 
invoked through a CXF producer endpoint, you can use code like 
the following: 

CxfExchange exchange = (CxfExchange)template.send(getJaxwsEnd pointUri(), new 
Processor() { 

public void process(final Exchange exchange) { final List<String> params = 
new ArrayList<String>(); 
params.add(TEST_MESSAGE); 
// Set the request context to the inMessage Map<String, Object> 
requestContext = new HashMap<String, Object>(); 

requestContext.put(BindingProvider.ENDPOINT_AD DRESS_PROPERTY, 
JAXWS_SERVER_ADDRESS); 

exchange.getIn().setBody(params); 
exchange.getIn().setHeader(Client.REQUEST_CONTEXT , requestContext); 
exchange.getIn().setHeader(CxfConstants.OPER ATION_NAME, 
GREET_ME_OPERATION); 

              } 
}); 
org.apache.camel.Message out = exchange.getOut(); 
// The output is an object array, the first element of the array is the return 

value 
Object[] output = out.getBody(Object[].class); LOG.info("Received output text: 
" + output[0]); 
 
// Get the response context form outMessage Map<String, Object> 
responseContext = CastUtils.cast((Map)out.getHeader(Client.RESPONSE_CONTEXT)); 
assertNotNull(responseContext); 
assertEquals("Get the wrong wsdl opertion name", 

"{http://apache.org/hello_world_soap_http}greetMe", 
responseContext.get("javax.xml.ws.wsdl.operation").toString()); 

 
 

Filtering Message Headers 
When more than one CXF endpoint appears in a route, you need 
to decide whether or not to allow headers to propagate between 
the endpoints. By default, the headers are relayed back and 
forth between the endpoints, but in many cases it might be 
necessary to filter the headers or to block them altogether. You 
can control header propagation by applying filters to producer 
endpoints (filtering is not applicable to consumer endpoints). 

The simplest kind of route that can illustrate CXF header filtering 
is as follows: 

from("cxf:bean:A").to("cxf:bean:B?relayHeaders=true");  

In this route, filtering is applied to request headers and response 
headers before and after entering the producer endpoint, as 
shown in Figure 3. 



 

 Artix Java Router, Deployment Guide 27 

 Figure   3.   Relay Filter Architecture 

 
 

In-band headers  
An in-band header is a header that is explicitly defined as part 
of the WSDL binding contract for an endpoint. 

Out-of-band headers  
An out-of-band header is a header that is serialized over the 
wire, but is not explicitly part of the WSDL binding contract. In 
particular, the SOAP binding permits out-of-band headers, 
because the SOAP specification does not require headers to be 
defined in the WSDL contract. 

Semantics of the relayHeaders option 
By default, the relayHeaders option is true on all CXF producer 
endpoints. In this case, in-band headers and out-of-band 
headers are affected differently: in-band headers are all relayed, 
without exception, while out-of-band headers are subjected to 
filtering. When the relayHeaders option is set explicitly to false on 
a CXF producer endpoint, both in-band headers and out-of-band 
headers are completely blocked. 

The semantics of the relayHeaders option can be summarized as 
follows: 

 In-band headers Out-of-band headers 

relayHeaders=true Relay all Filter 

relayHeaders=false Block Block 

 

MessageHeaderFilter interface 
When the relayHeaders option is enabled, out-of-band headers 
are subject to filtering, where relay filters are implemented by 
sub-classing the MessageHeaderFilter interface, as shown in 
Example 7. 

  



 

28 Artix Java Router, Deployment Guide  

Example   7.   MessageHeaderFilter Interface 
package org.apache.camel.component.cxf.common.header; 
import java.util.List; 
 
import org.apache.camel.spi.HeaderFilterStrategy.Direction; 
import org.apache.cxf.headers.Header; 
 
public interface MessageHeaderFilter { 
    List<String> getActivationNamespaces(); 
    void filter(Direction direction, List<Header> headers); 
} 

 

Implementing the filter() method 
The MessageHeaderFilter.filter() method is responsible for 
applying header filtering. Filtering is applied both before and 
after an operation is invoked on the producer endpoint. Hence, 
there are two directions to which filtering is applied, as follows: 

 Direction.OUT 

When the direction parameter equals Direction.OUT, the filter 
is processing headers from a Camel message to a CXF 
message. 

 Direction.IN 

When the direction parameter equals Direction.IN, the filter 
is processing headers from a CXF message to a Camel 
message. 

Binding filters to XML namespaces 
It is possible to register multiple relay filters against a given CXF 
endpoint. The CXF endpoint selects the appropriate filter to use 
based on the XML namespace of the WSDL binding protocol (for 
example, the namespace for the SOAP 1.1 binding or for the 
SOAP 1.2 binding). If a header's namespace is unknown, the 
DefaultMessageHeadersRelay (which relays all headers) is selected 
by default. 

To bind a filter to one or more namespaces, implement the 
getActivationNamespaces() method, which returns the list of bound 
XML namespaces. 

Identifying the namespace to bind to 
Example 8 illustrates how to identify the namespaces to which 
you can bind a filter. This example shows the WSDL file for a 
Bank server that exposes SOAP endpoints. 

  



 

 Artix Java Router, Deployment Guide 29 

Example  8.  Sample Binding Namespaces 
<wsdl:definitions 
targetNamespace="http://cxf.apache.org/schemas/cxf/idl/bank" 

xmlns:tns="http://cxf.apache.org/schemas/cxf/idl/bank" 
xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" 
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"> 
... 
<wsdl:binding name="BankSOAPBinding" type="tns:Bank"> 

<soap:binding style="document" 
transport="http://schemas.xmlsoap.org/soap/http" /> 

<wsdl:operation name="getAccount"> 
... 

</wsdl:operation> 
... 

</wsdl:binding> 
... 

</wsdl> 

 
 

From the soap:binding tag, you can infer that namespace 
associated with the SOAP binding is 
http://schemas.xmlsoap.org/wsdl/soap/. 

Built-in filters 
SoapMessageHeaderFilter is the built in filter. 

 SoapMessageHeaderFilter 

This filter is designed to filter standard SOAP headers. It is 
bound to the following XML namespaces: 

 

  

http://schemas.xmlsoap.org/soap/ 
http://schemas.xmlsoap.org/wsdl/soap/ 
http://schemas.xmlsoap.org/wsdl/soap12/ 



 

30 Artix Java Router, Deployment Guide  

Implementing a custom filter  
If you want to implement your own custom filter, define a class 
that inherits from the MessageHeaderFilter interface and 
implement its methods as described in this section. For 
example, Example 9 shows an example of a custom filter, 
CustomHeaderFilter, that binds to the SOAP namespaces 
(covering both SOAP 1.1 and SOAP 1.2) and relays all of the 
headers that pass through it. 

Example   9.   Sample Relay Filter Implementation 
//Java 
package org.apache.camel.component.cxf.soap.headers; 
 
import java.util.Arrays; 
import java.util.List; 
 
import 
org.apache.camel.component.cxf.common.header.MessageHeaderFilter; 
import org.apache.camel.spi.HeaderFilterStrategy.Direction; 
import org.apache.cxf.headers.Header; 
 
public class CustomHeaderFilter implements MessageHeaderFilter { 
 
    public static final String ACTIVATION_NAMESPACE = 
"http://cxf.apache.org/bindings/custom"; 
    public static final List<String> ACTIVATION_NAMESPACES = 
Arrays.asList(ACTIVATION_NAMESPACE); 
 
 
    public List<String> getActivationNamespaces() { 
        return ACTIVATION_NAMESPACES; 
    } 
 
    public void filter(Direction direction, List<Header> headers) { 
    } 
} 

 
 

Deploying a custom filter 
To apply a custom relay filter to a CXF endpoint, perform the 
following steps: 

1. Create an instance of your custom filter class. 

2. Add a java.util.List (or any java.util.Collection type) containing 
your custom filter to the 
org.apache.camel.cxf.message.headers.relays endpoint bean 
property. If you want to apply multiple custom filters, simply add 
them to the list. 

  



 

 Artix Java Router, Deployment Guide 31 

MessageHeaderFilter is a property of 
CxfHeaderFilterStrategy. Here is an example of configuring 
user defined Message Header Filters: 

<bean id="customMessageFilterStrategy" 
class="org.apache.camel.component.cxf.common.header.CxfHeaderFilterStrategy"> 
  <property name="messageHeaderFilters"> 
    <list> 
      <!--  SoapMessageHeaderFilter is the built in filter.  It can be removed by  
      omitting it. --> 
      <bean class= 
            "org.apache.camel.component.cxf.common.header.SoapMessageHeaderFilter"/> 
            
      <!--  Add custom filter here -->    
      <bean class="org.apache.camel.component.cxf.soap.headers.CustomHeaderFilter"/> 
    </list> 
  </property> 
</bean> 

 

File Component 
The file component provides access to the file system, enabling 
you to read messages from files and write messages to files. It 
is useful for simple demonstrations and testing purposes. 

Adding the file component  
There is no need to add the file component to the Camel 
context; it is embedded in the router core. 

Endpoint URI format  
A file endpoint has a URI that conforms to the following format: 

file://FileOrDirectory?QueryOptions  

?Option=Value&Option=Value&Option=Value...  

  



 

32 Artix Java Router, Deployment Guide  

URI query options 

The file URI supports the query options described in Table 5. 

Table  5.  File URI Query Options 

Option Default Description 

Common options 
autoCreate true Automatically create missing directories in the file's 

pathname. For the file consumer, that means creating 
the starting directory. For the file producer, it means 
creating the directory the files should be written to. 

bufferSize 128kb The size of the write buffer, in bytes. 
fileName null Use an Expression, such as File Expression Language, 

to set the filename dynamically.  

For consumers, this value is used as a filename filter. 
For producers, it is used to evaluate the filename to 
write. If an expression is set, it take precedence over 
the CamelFileName header (even if the header itself is an 
Expression). The expression options support both String 
and Expression types. If the expression is a String type, 
it is always evaluated using the File Language. If the 
expression is an Expression type, the specified 
Expression type is used - this allows you, for instance, 
to use OGNL expressions. For the consumer, you can 
use it to filter filenames, so you can for instance 
consume today's file using the File Language syntax: 
mydata-${date:now:yyyyMMdd}.txt.  

The producers support the CamelOverruleFileName 
header which takes precedence over any existing 
CamelFileName header; the CamelOverruleFileName is a 
header that is used only once, and makes it easier as 
this avoids having to store CamelFileName and restore it 
afterwards. 

flatten false Flattens the file name path to strip any leading paths, 
reducing it to just the file name. This allows you to 
consume recursively into sub-directories, but when you 
for example write the files to another directory they will 
be written in a single directory. Setting this to true on 
the producer enforces that any file name received in the 
CamelFileName header will be stripped of any leading 
paths. 

charset null Specifies the encoding of the file. Use this on the 
consumer to specify the encodings of the files, so that 
Camel knows the charset it should load the file content 
in case the file content is being accessed. Likewise when 
writing a file, you can use this option to specify which 
charset to write the file as well. 



 

 Artix Java Router, Deployment Guide 33 

Option Default Description 
copyAndDeleteOnRenameFail true Whether to fallback and do a copy and delete file, if the 

file cannot be renamed directly.  
renameUsingCopy false Perform rename operations using a copy and delete 

strategy. This is primarily used in environments where 
the regular rename operation is unreliable (for example, 
across different file systems or networks). This option 
takes precedence over the copyAndDeleteOnRenameFail 
parameter, which falls back to the same copy and delete 
strategy but only after additional delays. 

Consumer only 
initialDelay 1000 Milliseconds before polling of the file/directory starts. 
delay 500 Milliseconds before the next poll of the file/directory. 
useFixedDelay false If true, poll once after the initial delay. 
RunLoggingLevel TRACE Specifies the logging level for the start/complete log line 

which the consumer runs when it polls. 
recursive false If true and the file URI specifies a directory path, the file 

component polls for changes in all sub-directories. 
delete false If true, delete the file after processing (the default is to 

move it). 
noop false If true, do not move, delete, or modify the file in any 

way. This option is good for read only data, or for ETL 
type requirements. 

preMove null An Expression (such as File Language) used to 
dynamically set the filename when moving it before 
processing. For example, to move in-progress files into 
the order directory set this value to order. 

move .camel An Expression (such as File Language) used to 
dynamically set the filename when moving it after 
processing. For example, to move files into a .done 
subdirectory set this value to .done. 

moveFailed null An Expression (such as File Language) used to set a 
different target directory if moving files, as defined by 
the move option, fails. For example, to move files into a 
.error subdirectory use: .error.  

Note that when moving the files to the “fail” location 
Camel handles the error and will not pick up the file 
again. 

include null Used to include files, if the filename matches the regex 
pattern. 

exclude null Used to exclude files, if the filename matches the regex 
pattern. 



 

34 Artix Java Router, Deployment Guide  

Option Default Description 
antInclude null Ant-style filter inclusion, for example antInclude=*/.txt. 

Multiple inclusions may be specified in comma-delimited 
format. 

antExclude null Ant-style filter exclusion. If both antInclude and 
antExclude are used, antExclude takes precedence. 
Multiple exclusions may be specified in comma-delimited 
format. 

antFilterCaseSensitive True Whether Ant-style filters are case-sensitive or not. 
idempotent false Whether to use the Idempotent Consumer EIP pattern to 

let Camel skip already-processed files. Will by default 
use a memory based LRUCache that holds 1000 entries. 
If noop=true then idempotent is enabled as well to avoid 
consuming the same files over and over again. 

idempotentKey Expression To use a custom idempotent key. By default the 
absolute path of the file is used. You can use File 
Language. For example to use the file name and file 
size, specify: 

idempotentKey=${file:name}-${file:size} 

idempotentRepository null A pluggable repository 
org.apache.camel.spi.IdempotentRepository. By default 
uses MemoryMessageIdRepository if no value is specified 
and idempotent is true. 

inProgressRepository memory A pluggable in-progress repository 
org.apache.camel.spi.IdempotentRepository. The in-
progress repository is used to account the current in 
progress files being consumed. By default a memory-
based repository is used. 

filter null A pluggable filter as a 
org.apache.camel.component.file.GenericFileFilt
er class. Will skip files if the filter returns false in its 
accept() method. 

Sorter null A pluggable sorter as a 
java.util.Comparator<org.apache.camel.component.file.
GenericFile> class. 

sortBy null A built-in sort using the File Language. It supports 
nested sorts, so you can have a sort by file name and as 
a second group sort by modified date. See 
http://camel.apache.org/file2.html for details. 



 

 Artix Java Router, Deployment Guide 35 

Option Default Description 
readLock markerFile Used to poll the files if it has exclusive read-lock on the 

file (that is, if the file is not in-progress or being 
written). Camel will wait until the file lock is granted. 

This option provides the following built-in strategies:  

 markerFile Camel creates a marker file 
(fileName.camelLock) and then holds a lock on it. 
This option is not available for the FTP component.  

 changed is using file length/modification timestamp 
to detect whether the file is currently being copied or 
not. Will at least use 1 sec. to determine this, so this 
option cannot consume files as fast as the others, 
but can be more reliable as the JDK IO API cannot 
always determine whether a file is currently being 
used by another process. The option 
readLockCheckInterval can be used to set the 
check frequency. This option is only available for the 
FTP component. Notice that the FTP option 
fastExistsCheck can be enabled to speedup this 
readLock strategy, if the FTP server supports the 
LIST operation with a full file name (some servers 
may not). 

 fileLock is for using 
java.nio.channels.FileLock. This option is not 
available for the FTP component. This approach 
should be avoided when accessing a remote file 
system via a mount/share unless that file system 
supports distributed file locks.  

 rename tries to rename the file as a test if it can get 
an exclusive read-lock. 

 none is for no read locks at all. 

readLockTimeout 10000 An optional timeout, in milliseconds, for the read-lock, if 
supported by the read-lock. If the read-lock could not be 
granted and the timeout is triggered, then Camel skips 
the file. At the next poll Camel retries the file. 

Use a value of 0 or lower to indicate forever. Currently 
fileLock, changed and rename support the timeout.  

For FTP the default readLockTimeout value is 20000 
instead of 10000. The readLockTimeout value must be 
higher than readLockCheckInterval, but a rule of thumb 
is to have a timeout that is at least twice the 
readLockCheckInterval. This ensures that ample time is 
allowed for the read lock process to try to grab the lock 
before the timeout. 



 

36 Artix Java Router, Deployment Guide  

Option Default Description 
readLockCheckInterval 1000 Interval, in milliseconds, for the read-lock, if supported 

by the read lock. This interval is used for sleeping 
between attempts to acquire the read lock. For example 
when using the changed read lock, you can set a higher 
interval period to cater for slow writes. The default of 
one second may be too fast if the producer is very slow 
writing the file.  

For FTP the default readLockCheckInterval is 5000.  

readLockMinLength 1 This option applies only to readLock=changed. This 
option allows you to configure a minimum file length. By 
default Camel expects the file to contain data, and thus 
the default value is 1. You can set this option to zero, to 
allow consuming zero-length files. 

readLockLoggingLevel WARN Logging level used when a read lock could not be 
acquired. By default a WARN is logged. You can change 
this level, for example to OFF to not have any logging. 
This option is only applicable for readLock of types 
changed, fileLock, rename. 

readLockMarkerFile true Whether to use a marker file with the changed, rename, 
or exclusive read lock types. By default a marker file is 
used to guard against other processes picking up the 
same files. This behavior can be turned off by setting 
this option to false.  

directoryMustExist false Similar to startingDirectoryMustExist but this 
applies during polling recursive sub directories. 

doneFileName null If provided, Camel will only consume files if a done file 
exists. This option configures what file name to use. 
Either you can specify a fixed name. Or you can use 
dynamic placeholders. The done file is always expected 
in the same folder as the original file.. 

exclusiveReadLock 
Strategy 

null Pluggable read-lock as a 
org.apache.camel.component.file.GenericFileExclusiveRe
adLockStrategy implementation. 



 

 Artix Java Router, Deployment Guide 37 

Option Default Description 
maxMessagesPerPoll 0 An integer to define a maximum number of messages to 

gather per poll. By default no maximum is set. Can be 
used to set a limit of, for example, 1000 when starting 
up the server where there are thousands of files. Set a 
value of 0 or negative to disabled it. See more details at 
Batch Consumer.  

If this option is in use then the File and FTP components 
will limit before any sorting. For example if you have 
100000 files and use maxMessagesPerPoll=500, then 
only the first 500 files will be picked up, and then 
sorted. You can use the eagerMaxMessagesPerPoll 
option and set this to false to allow to scan all files first 
and then sort afterwards. 

eagerMaxMessagesPerPoll true Controls whether the limit from maxMessagesPerPoll is 
eager or not. If eager then the limit is applied during the 
scanning of files. Setting to false scans all files, and 
then performs sorting. Setting this option to false 
allows for sorting all files first, and then limiting the poll. 
Note that this requires a higher memory usage as all file 
details are in memory to perform the sorting. 

minDepth 0 The minimum depth to start processing when recursively 
processing a directory. Using minDepth=1 means the 
base directory. Using minDepth=2 means the first sub 
directory. 

maxDepth Integer. 
MAX_VALUE 

The maximum depth to traverse when recursively 
processing a directory. 

processStrategy null A pluggable 
org.apache.camel.component.file.GenericFileProc
essStrategy allowing you to implement your own 
readLock option or similar. Can also be used when 
special conditions must be met before a file can be 
consumed, such as when a special ready file exists. If 
this option is set then the readLock option does not 
apply. 

startingDirectoryMust 
Exist 

false Whether the starting directory must exist. Note that the 
autoCreate option is default-enabled, which means the 
starting directory is normally auto-created if it does not 
exist. You can disable autoCreate and enable this 
option  to ensure that the starting directory must exist. 
Will throw an exception if the directory does not exist. 



 

38 Artix Java Router, Deployment Guide  

Option Default Description 
pollStrategy null A pluggable 

org.apache.camel.spi.PollingConsumerPollStrategy 
allowing you to provide a custom implementation to 
control handling of errors occurring during the poll 
operation before an Exchange has been created and 
routed in Camel. In other words the error occurred while 
the polling was gathering information, for instance 
access to a file network failed so Camel cannot access it 
to scan for files.  

The default implementation logs the exception at WARN 
level and ignores it. 

sendEmptyMessageWhen 
Idle 

false If the polling consumer did not poll any files, you can 
enable this option to send an empty message (no body) 
instead. 

consumer.bridgeError 
Handler 

false Bridges the consumer to the Camel routing Error 
Handler, which means that any exceptions occurring 
while trying to pickup files are processed as a message 
and handled by the routing Error Handler. By default the 
consumer uses the 
org.apache.camel.spi.ExceptionHandler to deal with 
exceptions, that by default will be logged at 
WARN/ERROR level and ignored. 

scheduledExecutor 
Service 

null Allows for configuring a custom/shared thread pool to 
use for the consumer. By default each consumer has its 
own single-threaded thread pool. This option allows you 
to share a thread pool among multiple file consumers. 

scheduler null To use a custom scheduler to trigger the consumer to 
run.  

backoffMultiplier 0 To let the scheduled polling consumer backoff if there 
has been a number of idles or errors in a row. The 
multiplier is then the number of polls to be skipped 
before the next actual attempt is made. When this 
option is in use then backoffIdleThreshold and/or 
backoffErrorThreshold must also be configured.  

backoffIdleThreshold 0 The number of subsequent idle polls that should happen 
before the backoffMultipler is invoked. 

backoffErrorThreshold 0 The number of subsequent error polls that should 
happen before the backoffMultipler is invoked. 



 

 Artix Java Router, Deployment Guide 39 

Option Default Description 

Producer only 
fileExist Override What to do if a file already exists with the same name. 

The following values can be specified:  

 Override, which is the default, replaces the existing 
file.  

 Append adds content to the existing file.  

 Fail throws a GenericFileOperationException, 
indicating that there is already an existing file.  

 Ignore silently ignores the problem and does not 
override the existing file, but assumes everything is 
satisfactory.  

 Move requires the corresponding moveExisting 
option to be configured. The option 
eagerDeleteTargetFile can be used to control what 
to do if moving a file when there already exists a file 
of that name, which would otherwise cause the move 
operation to fail. The Move option will move any 
existing files, before writing the target file.  

 TryRename is only applicable if tempFileName option 
is in use. This tries to rename the file from the 
temporary name to the actual name, without 
checking whether it already exists. This check may 
be faster on some file systems and especially FTP 
servers. 

tempPrefix null This option is used to write the file using a temporary 
name and then, after the write is complete, rename it to 
the real name. Can be used to identify files being written 
and also to prevent consumers (not using exclusive read 
locks) reading in-progress files. It is often used by FTP 
when uploading big files. 

tempFileName null The same as tempPrefix option but offering a more 
fine grained control on the naming of the temporary 
filename as it uses the File Language. 

moveExisting null An Expression (such as File Language) used to compute 
the file name to use when fileExist=Move is 
configured. To move files into a backup subdirectory just 
enter backup. This option only supports the following 
File Language tokens: "file:name", "file:name.ext", 
"file:name.noext", "file:onlyname", 
"file:onlyname.noext", "file:ext", and "file:parent". Note 
the "file:parent" is not supported by the FTP component, 
as the FTP component can only move any existing files 
to a relative directory based on the current directory. 



 

40 Artix Java Router, Deployment Guide  

Option Default Description 
keepLastModified false Keeps the last modified timestamp from the source file 

(if any). Will use the Exchange.FILE_LAST_MODIFIED 
header to located the timestamp. This header can 
contain either a java.util.Date or long with the 
timestamp. If the timestamp exists and the option is 
enabled it will set this timestamp on the written file.  

Note: This option only applies to the file producer. You 
cannot use this option with any of the ftp producers 

eagerDeleteTargetFile true Whether or not to eagerly delete any existing target file. 
This option only applies when fileExists=Override 
and the tempFileName option are both set.  

You can use this to disable (set it to false) the deleting 
the target file before the temp file is written. For 
example you may write big files and want the target file 
to exist while the temp file is being written. This ensure 
the target file is not deleted until the very last moment, 
just before the temp file is being renamed to the target 
filename.  

This option is also used to control whether to delete any 
existing files when fileExist=Move is enabled, and an 
existing file exists. If the option 
copyAndDeleteOnRenameFail is false, then an exception 
will be thrown if an existing file existed. If it is true, 
then the existing file is deleted before the move 
operation. 

doneFileName null If a filename is provided, Camel writes a second, empty, 
done file when the original file has been written. 

You can either specify a fixed filename, or use dynamic 
placeholders. The done file will always be written in the 
same folder as the original file.  

allowNullBody false Used to specify if a null body is allowed during file 
writing. If set to true then an empty file will be created. 
If set to false, and attempting to send a null body to 
the file component, a GenericFileWriteException of 
'Cannot write null body to file' will be thrown.  

If the fileExist option is set to Override, the file will be 
truncated, and if set to Append, the file will remain 
unchanged. 

forceWrites true Whether to force syncing writes to the file system. You 
can turn this off if you do not want this level of 
guarantee, for example if writing to logs or audit logs. 
This yields better performance. 

Chmod null Specify the file permissions sent by the producer. The 
chmod value must be between 000 and 777. If there is a 
leading digit (for example, as in 0755) it is ignored. 



 

 Artix Java Router, Deployment Guide 41 

Message headers 
The message headers shown in Table 6 can be used to affect 
the behavior of the file component 

Table  6.  File URI Message Headers 

Header Description 

org.apache.camel.file.name Specifies the output file name (relative to the 
endpoint directory) to be used for the output 
message when sending to the endpoint. If this 
is not present, a generated message ID is 
used instead. 

 

JMS Component 
The JMS component allows messages to be sent to (or 
consumed from) a JMS queue or topic. The JMS component 
uses Springs JMS support for declarative transactions, Spring's 
JmsTemplate for sending, and a MessageListenerContainer for 
consuming. 

Endpoint URI format 
JMS endpoints have the following URI format: 

jms:[temp:][queue:|topic:]DestinationName[?Options]  

Where DestinationName is a JMS queue or topic name. By 
default, the DestinationName is interpreted as a queue name. For 
example, to connect to the queue, FOO.BAR, use: 

jms:FOO.BAR     

You can include the optional queue: prefix, if you prefer: 

jms:queue:FOO.BAR      

To connect to a topic, you must include the topic: prefix. For 
example, to connect to the topic, Stocks.Prices, use: 

jms:topic:Stocks.Prices     

You can access temporary queues using the following URI 
format: 

jms:temp:queue:DestinationName     

Or temporary topics using the following URI format: 

jms:temp:topic:DestinationName     

This URI format enables multiple routes or processors or beans 
to refer to the same temporary destination. For example, you 
could create three temporary destinations and use them in 
routes as inputs or outputs by referring to them by name. 



 

42 Artix Java Router, Deployment Guide  

You can optionally add a list of query options, ?Options, in the 
following format: 

?Option=Value&Option=Value&Option=Value...      

URI query options 
JMS endpoints support the following URI query options. See 
http://camel.apache.org/jms.html for more details about how 
some of these options are used: 

Table 7. JMS URI Query Options 

Name Default Description 

acceptMessagesWhileStopping false If true, a JMS consumer endpoint accepts 
messages while it is stopping. 

acknowledgementModeName AUTO_ACKNOWLEDGE The JMS acknowledgement name, which 
is one of the following: TRANSACTED, 
CLIENT_ACKNOWLEDGE, AUTO_ACKNOWLEDGE, 
DUPS_OK_ACKNOWLEDGE. 

acknowledgementMode -1 The JMS acknowledgement mode, 
defined as an Integer. Allows you to set 
vendor-specific extensions to the 
acknowledgment mode. For the regular 
modes, set the acknowledgementModeName 
property instead. 

allowNullBody true If true, allows sending messages with no 
body. If this option is false and the 
message body is null, then a 
JMSException is thrown. 

alwaysCopyMessage False If true, the router will always make a JMS 
message copy of the message when it is 
passed to the producer for sending. 
Copying the message is needed in some 
situations, such as when a 
replyToDestinationSelectorName is set (the 
router automatically sets 
alwaysCopyMessage to true if a 
replyToDestinationSelectorName is set) 



 

 Artix Java Router, Deployment Guide 43 

Name Default Description 

asyncConsumer false Whether the JmsConsumer processes the 
Exchange asynchronously. If this is 
enabled, the JmsConsumer may pick up 
the next message from the JMS queue, 
while the previous message is being 
processed asynchronously (by the 
Asynchronous Routing Engine). This 
means that messages may not be 
processed strictly in order. If false (as 
default) then the Exchange is fully 
processed before the JmsConsumer picks 
up the next message from the JMS 
queue.  

Note if transacted has been enabled, 
then asyncConsumer=true does not run 
asynchronously, as transactions must 
be executed synchronously. 

asyncStartListener false Whether to start the JmsConsumer 
message listener asynchronously, when 
starting a route. For example if a 
JmsConsumer cannot get a connection to 
a remote JMS broker, it may block while 
retrying. This causes Camel to block 
while starting routes. Setting this option 
to true allows routes to startup, while 
the JmsConsumer connects to the JMS 
broker using a dedicated thread in 
asynchronous mode.  

If this option is used, note that if the 
connection could not be established, 
then an exception is logged at WARN 
level, and the consumer will not be able 
to receive messages. You can then 
restart the route to retry. 

asyncStopListener false Whether to stop the JmsConsumer 
message listener asynchronously, when 
stopping a route. 

autoStartup true If true, the consumer container starts up 
automatically. 

cacheLevel -1 Sets the cache level ID for the underlying 
JMS resources. 

cacheLevelName CACHE_AUTO Sets the cache level by name for the 
underlying JMS resources. Possible 
values are: CACHE_AUTO, 
CACHE_CONNECTION, CACHE_CONSUMER, 
CACHE_NONE, and CACHE_SESSION. 



 

44 Artix Java Router, Deployment Guide  

Name Default Description 

clientId null Sets the JMS client ID. This value must 
be unique and can only be used by a 
single JMS connection instance. It is 
typically required only for durable topic 
subscriptions. You may prefer to use 
virtual topics instead. 

consumerType Default The consumer type determines which 
Spring JMS listener should be used. This 
option can have one of the following 
values: 

• Default—for 

DefaultMessageListenerContainer. 

• Simple—for 

SimpleMessageListenerContainer. 

• ServerSessionPool—for serversession. 

ServerSessionMessageListenerContainer. 

Where each of these classes belongs to 
the org.springframework.jms.listener Java 
package. If you set useVersion102=true, the 
router will use the corresponding JMS 
1.0.2 Spring classes instead. 

concurrentConsumers 1 Specifies the default number of 
concurrent consumers. 

connectionFactory null The default JMS connection factory to use 
for the listenerConnectionFactory and 
templateConnectionFactory, if neither are 
specified. 



 

 Artix Java Router, Deployment Guide 45 

Name Default Description 

defaultTaskExecutorType null Specifies what default TaskExecutor type 
to use in the 
DefaultMessageListenerContainer, both 
for consumer endpoints and the ReplyTo 
consumer of producer endpoints. 
Possible values are:  

 SimpleAsync (uses Spring's 
SimpleAsyncTaskExecutor)  

 ThreadPool (uses Spring's 
ThreadPoolTaskExecutor with 
optimal values - cached threadpool-
like).  

If not set, it defaults to using a cached 
ThreadPool for consumer endpoints and 
SimpleAsync for reply consumers. The 
use of ThreadPool is recommended to 
reduce "thread trash" in elastic 
configurations with dynamically 
increasing and decreasing concurrent 
consumers. 

deliveryMode null Specifies the delivery mode to be used. 
Possible values are those defined by 
javax.jms.DeliveryMode. 

deliveryPersistent true Is persistent delivery used by default? 

destination null Specifies the JMS destination object to 
use on this endpoint. 

destinationName null Specifies the JMS destination name to 
use on this endpoint. 

destinationResolver null A pluggable 
org.springframework.jms.support.de
stination.DestinationResolver that 
allows you to use your own resolver (for 
example, to look up the real destination 
in a JNDI registry). 

disableReplyTo false Do you want to ignore the JMSReplyTo 
header and so treat messages as InOnly 
by default and not send a reply back? 



 

46 Artix Java Router, Deployment Guide  

Name Default Description 
disableTimeToLive false Use this option to disable the time to 

live value on sent messages. 

For example, in a request/reply over 
JMS, Camel by default uses the 
requestTimeout value as time to live 
on the message being sent. However 
the sender and receiver systems have 
to have their clocks synchronized, which 
is not always the case. You can use 
disableTimeToLive=true to not set a 
time to live value on the sent message. 
Then the message will not expire on the 
receiver system. 

durableSubscriptionName null The durable subscriber name for 
specifying durable topic subscriptions. 

eagerLoadingOfProperties false Enables eager loading of JMS properties 
as soon as a message is received. This 
feature is generally inefficient, because 
the JMS properties might not be required. 
But eager loading can be useful for testing 
purpose, to ensure JMS properties can be 
understood and handled correctly. 

errorHandler null Specifies a 
org.springframework.util.ErrorHand
ler to be invoked in case of any 
uncaught exceptions thrown while 
processing a Message.  

By default these exceptions will be 
logged at the WARN level, if no 
errorHandler has been configured. You 
can configure the logging level and 
whether stack traces should be logged 
using the next two options. 

errorHandlerLoggingLevel WARN Configure the default errorHandler 
logging level for logging uncaught 
exceptions. 

errorHandlerLogStackTrace true Controls whether stacktraces should be 
logged by the default errorHandler or 
not. 

exceptionListener null The JMS Exception Listener used to be 
notified of any underlying JMS 
exceptions. 

explicitQosEnabled false If true, the properties, deliveryMode, 
priority, and timeToLive, are used when 
sending messages. 



 

 Artix Java Router, Deployment Guide 47 

Name Default Description 

exposeListenerSession true If true, the listener session is exposed 
when consuming messages. 

forceSendOriginalMessage false When using mapJmsMessage=false 
Camel creates a new JMS message to 
send to a new JMS destination if you 
touch the headers (get or set) during 
the route. Set this option to true to 
force Camel to send the original JMS 
message that was received. 

idleConsumerLimit 1 Specify a limit for the number of 
consumers that are allowed to be idle at 
any given time. 

idleTaskExecutionLimit 1 Specify the limit for idle executions of a 
receive task, not having received any 
message within its execution. If this limit 
is reached, the task will shut down and 
leave receiving to other executing tasks 
(in the case of dynamic scheduling; see 
the maxConcurrentConsumers setting). 

includeSentJMSMessageID false This is only applicable when sending to 
a JMS destination using InOnly (for 
example, “fire and forget”). Enabling 
this option enriches the Camel 
Exchange with the actual JMSMessageID 
that was used by the JMS client when 
the message was sent to the JMS 
destination. 

includeAllJMSXProperties false Whether to include all JMSXxxx 
properties when mapping from JMS to 
Camel Message. Setting this to true will 
include properties such as JMSXAppID, 
and JMSXUserID etc.  

Note: If you are using a custom 
headerFilterStrategy then this option 
does not apply. 

jmsMessageType null Allows you to use your own 
implementation of the 
org.springframework.jms.core.JmsOp
erations interface. Camel uses 
JmsTemplate as default. Can be used 
for testing purpose.. 



 

48 Artix Java Router, Deployment Guide  

Name Default Description 

jmsKeyFormatStrategy default A pluggable strategy for encoding and 
decoding JMS keys so they can be 
compliant with the JMS specification. 
Camel provides two implementations 
out of the box: 

 The default strategy will safely 
marshal dots and hyphens (. and -). 

 The passthrough strategy leaves 
the key as is. Can be used for JMS 
brokers which accept illegal 
characters in JMS header keys. 

You can provide your own 
implementation of the 
org.apache.camel.component.jms.Jms
KeyFormatStrategy and refer to it 
using the # notation. 

jmsOperations null Enables you to use your own 
implementation of the 
org.springframework.jms.core.JmsOperations 

interface. The router uses the JmsTemplate 
class by default. Can be used for testing purpose. 

lazyCreateTransactionManager true If true, Camel creates a 
JmsTransactionManager, if there is no 
transactionManager injected when 
option transacted=true. 

listenerConnectionFactory null The JMS connection factory used for 
consuming messages. 

mapJmsMessage true If true, Camel automatically maps the 
received JMS message to an appropiate 
payload type, such as 
javax.jms.TextMessage to a String 

maximumBrowseSize -1 Limits the number of messages fetched 
when browsing endpoints using Browse 
or the JMX API. 

maxConcurrentConsumers 1 Specifies the maximum number of 
concurrent consumers. 

maxMessagesPerTask 1 The number of messages per task. 

messageConverter null The Spring Message Converter. 

messageIdEnabled true If true, message IDs are added to sent 
messages. 



 

 Artix Java Router, Deployment Guide 49 

Name Default Description 

messageListenerContainer 
FactoryRef 

null Registry ID of the 
MessageListenerContainerFactory 
used to determine what 
org.springframework.jms.listener.A
bstractMessageListenerContainer to 
use to consume messages. Setting this 
will automatically set consumerType to 
Custom. 

messageTimestampEnabled true Should timestamps be enabled by default 
on sending messages. 

password null The password for the connector factory. 

priority -1 Values of > 1 specify the message 
priority when sending, if the 
explicitQosEnabled property is specified. 

preserveMessageQos false Set to true, if you want to send message 
using the QoS settings specified on the 
message, instead of the QoS settings on 
the JMS endpoint. 

pubSubNoLocal false Specifies whether to inhibit the delivery of 
messages published by its own 
connection. 

selector null Sets the JMS Selector which is an SQL 92 
predicate used to apply to messages to 
filter them at the message broker. You 
may have to encode special characters 
such as = as %3D. 

receiveTimeout none The timeout when receiving messages. 

recoveryInterval none The recovery interval. 

replyTo null Provides an explicit ReplyTo destination, 
which overrides any incoming value of 
Message.getJMSReplyTo(). 



 

50 Artix Java Router, Deployment Guide  

Name Default Description 

replyToCacheLevelName CACHE_CONSUMER Sets the cache level by name for the 
reply consumer when doing 
request/reply over JMS. This option only 
applies when using fixed reply queues 
(not temporary). Camel by default uses: 

 CACHE_CONSUMER for exclusive or 
shared w/ replyToSelectorName.  

 CACHE_SESSION for shared without 
replyToSelectorName.  

Some JMS brokers such as IBM 
WebSphere may need to set 
replyToCacheLevelName=CACHE_NONE in 
order to work.  

Note: If using temporary queues then 
CACHE_NONE is not allowed, and you 
must use a higher value such as 
CACHE_CONSUMER or CACHE_SESSION. 

replyToOverride null Provides an explicit ReplyTo destination 
in the JMS message, which overrides 
the setting of replyTo. It is useful if you 
want to forward the message to a 
remote Queue and receive the reply 
message from the ReplyTo destination. 

replyToTempDestinationAffinity endpoint Specifies how temporary queues are used 
for the replyTo destination sharing 
strategy. This option can take one of the 
following values: 

• component—a single temporary queue is 
shared among all producers for a given 
component instance. 

• endpoint—a single temporary queue is 
shared among all producers for a given 
endpoint instance. 

• producer—a single temporary queue is 
created for each producer. 

replyToDestination null Provides an explicit replyTo destination 
which overrides any incoming value of 
Message.getJMSReplyTo(). 

replyToDestinationSelectorName null When using a shared queue (that is, not 
using a temporary reply queue), this 
option sets the name of a JMS selector 
that is used to filter replies. 

replyToDeliveryPersistent true Specifies whether persistent delivery is 
used by default for replies. 



 

 Artix Java Router, Deployment Guide 51 

Name Default Description 

replyToType null Specifies the kind of strategy to use for 
replyTo queues when doing 
request/reply over JMS. Possible values 
are: Temporary, Shared, or Exclusive. 
By default Camel will use temporary 
queues. However if replyTo has been 
configured, then Shared is used by 
default. This option allows you to use 
exclusive queues instead of shared 
ones.  

Note that Shared reply queues have 
lower performance than Temporary and 
Exclusive. 

requestTimeout 20000 The timeout when sending messages. 

requestTimeoutCheckerInterval 1000 Configures how often Camel should 
check for timed out Exchanges when 
doing request/reply over JMS. By 
default Camel checks once per second. 
Lower this interval, to check more 
frequently in order to react faster when 
a timeout occurs. The timeout is 
determined by the option 
requestTimeout. 

selector null Sets the JMS Selector, which is an SQL 
92 predicate that is used to filter 
messages within the broker. You may 
have to encode special characters, for 
example “=” as “%3D”. 

serverSessionFactory null The JMS ServerSessionFactory if you 
wish to use ServerSessionFactory for 
consumption. 

subscriptionDurable false Enabled by default if you specify a 
durableSubscriberName and a clientId. 

taskExecutor null Allows you to specify a custom task 
executor for consuming messages. 

taskExecutorSpring2 null Specifies a custom task executor for 
consuming messages when using Spring 
2.x with Camel. 

templateConnectionFactory null The JMS connection factory used for 
sending messages. 



 

52 Artix Java Router, Deployment Guide  

Name Default Description 

testConnectionOnStartup false Specifies whether to test the connection 
on startup. This ensures that when 
Camel starts all the JMS consumers 
have a valid connection to the JMS 
broker. If a connection cannot be 
granted then Camel throws an 
exception on startup. This ensures that 
Camel is not started with failed 
connections. 

timeToLive null Is a time to live specified when sending 
messages? 

transacted false Specifies whether transacted mode is 
used for sending/receiving messages. 

transactedInOut false Specifies whether transacted mode is 
used with the InOut exchange pattern. 

transactionManager null The Spring transaction manager to use. 

transactionName null The name of the transaction to use. 

transactionTimeout null The timeout value of the transaction if 
using transacted mode. 

transferException false If this is enabled, when you are using 
Request Reply messaging (InOut) and 
an Exchange fails on the consumer side, 
then the caused Exception is sent back 
in response as a 
javax.jms.ObjectMessage. If the client 
is Camel, the returned Exception is 
rethrown. This allows you to use Camel 
JMS as a bridge in your routing - for 
example, using persistent queues to 
enable robust routing. Note that if you 
also have transferExchange enabled, 
this option takes precedence. The 
caught exception is required to be 
serializable. The original Exception on 
the consumer side can be wrapped in an 
outer exception such as 
org.apache.camel.RuntimeCamelExcep
tion when returned to the producer. 



 

 Artix Java Router, Deployment Guide 53 

Name Default Description 

transferExchange False You can transfer the exchange over the 
wire instead of just the body and 
headers. The following fields are 
transferred: In body, Out body, Fault 
body, In headers, Out headers, Fault 
headers, exchange properties, 

exchange exception. This requires that 
the objects are serializable. Camel will 
exclude any non-serializable objects and 
log the exclusion at WARN level. You 
must enable this option on both the 
producer and consumer side, so Camel 
knows the payload is an Exchange and 
not a regular payload. 

username null The username for the connector factory. 

useMessageIDAsCorrelationID false Specifies whether JMSMessageID is used 
as the JMSCorrelationID for InOut 
messages. By default, the router uses a 
GUID. 

useVersion102 - No longer supported. 

Configuring in XML 
You can configure your JMS provider inside the Spring XML as 
follows: 

<camelContext id="camel" 
xmlns="http://activemq.apache.org/camel/schema/spring"> 
</camelContext> 
 
<bean id="activemq" class="org.apache.camel.component.jms.JmsComponent"> 
<property name="connectionFactory"> 

<bean class="org.apache.activemq.ActiveMQConnectionFactory"> 
<property name="brokerURL" 

value="vm://localhost?broker.persistent=false"/> 
</bean> 

</property> 
</bean> 
 

You can configure as many JMS component instances as you 
wish and give them a unique name using the id attribute. The 
preceding example creates an activemq component. You could 
take a similar approach to configuring MQSeries, BEA, Sonic, 
and so on. 

Once you have a named JMS component you can then refer to 
endpoints within that component using URIs. For example, 
given the component name, activemq, you can then refer to 
destinations as activemq:[queue:|topic:]DestinationName. This 
works by the SpringCamelContext lazily fetching components 
from the spring context for the scheme name you use for 
Endpoint URIs and having the Component resolve the 
endpoint URIs. 



 

54 Artix Java Router, Deployment Guide  

Using JNDI to find the connection factory 
If you are using a J2EE container, you might want to look up 
JNDI to find your ConnectionFactory rather than use the usual 
<bean> mechanism in spring. You can do this using Spring's 
factory bean or the new XML namespace. For example: 

 

Enabling  transactions  
A common requirement is to consume from a queue in a 
transaction then process the message using the Camel route. 
To do this just ensure you set the following query options on the 
component/endpoint: 

?transacted=true&transactionManager=TranssactionManager  

Where the TransactionManager is typically the 
JmsTransactionManager. 

Durable subscriptions 
If you wish to use durable topic subscriptions, you need to 
specify both the clientId and durableSubscriberName query 
options. Note that the value of the clientId must be unique and 
can only be used by a single JMS connection instance in your 
entire network. You may prefer to use Virtual Topics instead to 
avoid this limitation. For more background, see Durable 
Messaging at http://activemq.apache.org/how-do-durable-
queues-and-topics-work.html. 

Adding message headers  
When using message headers; the JMS specification states that 
header names must be valid Java identifiers. So, by default, the 
JMS component will ignore any headers which do not match 
this rule. Try to name your headers as if they are valid Java 
identifiers. One benefit of this is that you can then use your 
headers inside a JMS Selector (whose SQL92 syntax mandates 
headers in the form of Java identifiers). 

Cache settings 
If you are using XA or running in a J2EE container, you might 
need to set the cacheLevelName to be CACHE_NONE. We have found it 
necessary to disable caching with JBoss and JTA/XA. 

Using the JMS component with ActiveMQ 
The JMS component exploits Spring 2's JmsTemplate for sending 
messages. This is not ideal for use in a non-J2EE container and 
typically requires a caching JMS provider to avoid poor 

<bean id="weblogic" 
class="org.apache.camel.component.jms.JmsComponent"> 
<property name="connectionFactory" ref="myConnectionFact ory"/> 

</bean> 
 
<jee:jndi-lookup id="myConnectionFactory" jndi-
name="java:env/ConnectionFactory"/> 



 

 Artix Java Router, Deployment Guide 55 

performance. So, if you intend to use Apache ActiveMQ (see  

http://activemq.apache.org/) as your Message Broker, we 
recommend that you either: 

 Use the ActiveMQ component, which is already configured to 
use ActiveMQ efficiently, or 

 Use the PoolingConnectionFactory in ActiveMQ. 

SOAP 
The SOAP protocol does not have a dedicated component. It is 
supported through the CXF component—see CXF Component. 

Websphere MQ Component 
The Websphere MQ component is a specialized JMS component 
that is used to integrate IBM's Websphere MQ into the Artix 
Java router. Because the Websphere MQ component is derived 
from the JMS component, all of the properties provided by the 
JMS component are also available to the Websphere MQ 
component. In addition, the Websphere MQ component 
automatically configures the underlying IBM connection factory 
for you. 

NOTE: You must have a license for the Websphere MQ product to use 
this component. The required Websphere libraries are not provided with 
Artix.  

 

Adding the MQ component  
There is no need to add the Websphere MQ component to the 
Camel context; it is automatically loaded by the router core. 

Endpoint URI format  
The Websphere MQ component has a URI format that is almost 
identical to the JMS URI format, except that the jms: prefix is 
replaced by mq:. 

mq:[temp:][queue:|topic:]DestinationName[?Options]   

For a detailed description of the analogous JMS URI format, see 
Endpoint URI format. 

URI query options 
MQ endpoints support all of the JMS query options—see Table 7. 
In addition, the MQ endpoints also support the following query 
options: 

  



 

56 Artix Java Router, Deployment Guide  

Table  8.  MQ URI Query Options 

Name Default Description 

userName null User name for the Websphere 
MQ connection. 

userPassword null User password for the 
Websphere MQ connection. 

explicitQosEnabled true Same as the corresponding JMS 
option, with different default. The 
value of this option has been 
optimized for Websphere MQ. Do 
not change! 

messageIdEnabled true Same as the corresponding JMS 
option. The value of this option 
has been optimized for 
Websphere MQ. Do not change! 

replyToDeliveryPersistent false Same as the corresponding JMS 
option, with different default. The 
value of this option has been 
optimized for Websphere MQ. Do 
not change! 

useMessageIDAsCorrelationID true Same as the corresponding JMS option, 
with different default. The value of 
this option has been optimized for 
Websphere MQ. Do not change! 

Demonstration code with transaction propagation 
In the Artix samples, there is an advanced demonstration that 
shows how to configure the Java router to act as a bridge 
between FUSE Message Broker (Apache ActiveMQ) and 
Websphere MQ, with full support for XA transaction 
propagation. The demonstration code can be found at the 
following location: 

ArtixRoot/java/samples/transports/jms/mqi_bridge   

And the router configuration can be found in the following files: 

 
mqi_bridge/src/bridge/com/iona/bridge/routes.xml 
mqi_bridge/src/bridge/com/iona/bridge/components.xml 


