

Micro Focus

The Lawn

22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK

http://www.microfocus.com
Copyright © Micro Focus 2017. All rights reserved.

MICRO FOCUS, the Micro Focus logo, and Micro Focus product names are
trademarks or registered trademarks of Micro Focus Development Limited
or its subsidiaries or affiliated companies in the United States, United
Kingdom, and other countries. All other marks are the property of their
respective owners.

2017-02-20

Contents

P aCe .. Vil
Contacting MICIO FOCUS et aeen iX

Part I Configuring Artix

Getting Started. ... e, 3
Setting your ArtiX ENVIFONMENTo 3
Artix Environment Variables ... 5
Customizing your ENVIironment SCrPL ...t 7
ArtixX CoNTIQUIrAtION ... e 9
Artix Configuration CONCEPES ...uiiniiiii it et e e raaaeens 9
(6feT ol o (U] g= 1 u o] g = 1 = T)Y/ o 1T 12
Artix Configuration Domain Filescoiiiiii e 13
Command-Line Configuration..........oocoieiii i e e eee 16
AN g 8)2 I T [| 1 5 o 19
Configuring Logging Filterscoieiiii et aaees 19
Configuring Log Stream PlUQiNS. .. .coiiiiiii it et e annees 22
Logging for SUbSYStemMS and SEIrVICESuuuiiiii it eaaeeas 25
[D)V2aF=Va o [To32Y o 5 Io o o | o o PSP 33
(6feTal i o (U] gTa o Y (2SI ST= T T=I0S o Lo o] o I 35
Configuring SNMP LOQQINGg . .. u ettt et et et e et e e e e eeaneeas 37
Enterprise Performance LOggingccccvveviiiiiiiiiiiiiieeaieaanns 43
Enterprise Management INtegrationo i 43
Configuring Performance LOgQiNg - ... et 44
Performance Logging Message FOrmatscooiiiiiiiiiiiiii i vaaeenas 47
Remote Performance LOGOIiNG «...ueeuiiieiiieeee e et i et e e e e e e eanneeanns 48
Configuring Remote Performance LOgQiNg ...cceeiieiiiieiiiiie i eiieeeaieeaeannens 50
Using Artix with International Codesets...........ccciiiiiiiiiin.... 55
Introduction to International Codesetsoiiiiiiiiiiii e 55
Working with Codesets USiNg SOAP. ... 57
Working with Codesets using CORBA ... 58
Working with Codesets using Fixed Length Recordsc.ccoooiiiiiiiiiiiiiann... 60
Working with Codesets using Message Interceptorsccvoiviiiiiiiianiaann.. 62
Routing with International CodESEetSouiiiiiiiiiii i e e eieeenas 70

Part Il Deploying Artix Services

Deploying Services in an Artix Container...........cc...oooviia.... 75
Introduction to the Artix CONtaINer ..o e 75
Generating a Plug-in and Deployment DesCriptor......cvoveeiiiiieiiiiieiiievaiaeenns 79

Configuring and Deploying Artix Solutions, Runtime in C++ iii

RUNNING an ArtiX CONtaINEr SEIVeIttt et e e eaanaeaaaas 82

Running an Artix Container Administration Client.............cooiiiiiiiiiiii it 85
Deploying Services 0N RESTAIT......oviiiiiie it eaas 89
Running an Artix Container as a WindOWS ServiCecceviuiiiiiiiiiiiieeiieenaeanns 93
Debugging Plug-ins Deployed in @& CoNtaINerc.oiieiiiiiiiii i 96
Deploying an Artix Transformer ..., 99
The ArtiX TransfOrmMer e 99
Standalone DeploymMent s 101
Deployment as Part of @ Chainooiiiiii e 104
Optional Configurationo i 106
Deploying a Service ChalN.......oooiiiiiiiiiiiiiii e 109
The Artix Chain BUIler ... e aas 109
Configuring the Artix Chain Builder e 110
Deploying Artix Services for High Availability 115
o) 1o To [Tod 1 o] o P 115
Setting up a Persistent Databasecccoviiiiiiiii i s 117
Configuring Persistent Services for High Availabilitycccoiiiinet. 118
Configuring Locator High Availabilityccoiiiiiiiiiii e 121
Configuring Client-Side High Availabilityccooiiiiiiiiiiieiiieee 123
Deploying WS-Reliable Messagingcccceiiiiiiiiiiiiiiiiiiin.. 129
o) oo 118 Tod « T o PP 129
ENabling W S-RM . . . 131
Configuring WS-RM AttribUtes . ..o e 132
Configuring WS-RM Threading.....ccuiieiiii i e i e e anees 139
Configuring WS-RM PerSiSteNCeuiiieti ittt e e eanaas 140

Part 111 Accessing Artix Services

Configuring WS-AdAresSSiNg ..ccovviiiiii e eeaeaanas 145
g o Yo [T3 o[o 145
Configuring a WS-A Message Exchange Patternoooovviiiiiiiiiiiiiiniiinnnn. 147

Publishing WSDL ConNtractS........ccoviiiiiiiiiiiiiiiiiiiiiiiiiieeeaee 151
Artix WSDL Publishing ServiCe.o e 151
Configuring the WSDL Publishing Service...... ..o 152
Querying the WSDL Publishing Serviceoooiiiiiii e 155

Accessing Contracts and References........ccccovvvvvviiiiiiinnn.... 159
o) 1o To [Tod o] o P 159
Enabling Server and Client ApplicatioNsoiiiiiiii i 160
ACCESSING WSDL CONTraCtS. ..ottt ettt et eaaneeens 162
Accessing ENdpoint REfErEeNCES.....oviiiiii e aeeens 166
ACCESSING AITiIX SEIVICES ...ttt et e eanens 170

Accessing Services With UDDI ... 173
INTroduction tO UDDI ... e e ee 173
CoNfigUING UDDI PrOXY .ttt ettt e ettt e e ae e e e aaeeeanes 174

iv Configuring and Deploying Artix Solutions, Runtime in C++

Embedding Artix in a BEA Tuxedo Container...................... 175

Embedding an Artix Process in a Tuxedo Container.........ccccoeevviiiiiiiinnnnnn.. 175

Configuring and Deploying Artix Solutions, Runtime in C++ Vv

vi Configuring and Deploying Artix Solutions, Runtime in C++

Preface

What is Covered in this Book

Configuring and Deploying Artix Solutions, C++ Runtime explains
how to configure and deploy Artix services in a C++ environment.
This book provides detailed descriptions of the specific tasks
involved in configuring and launching Artix applications and
services.

For details of using Artix in a pure Java environment, see
Configuring and Deploying Artix Solutions, Java Runtime.
This book applies to systems that use the Artix Java API for
XML-Based Web Services (JAX-WS).

This book does not discuss the specifics of the different
middleware and messaging products that Artix interacts with. Any
discussion about the features of specific middleware products or
transports relates to how Artix interacts with these features. It is
assumed that you have a working knowledge of the specific
middleware products and transports you are using.

Who Should Read this Book

The main audience of Configuring and Deploying Artix
Solutions, C++ Runtime is Artix system administrators.
However, anyone involved in designing a large scale Artix solution
will find this book useful.

Knowledge of specific middleware or messaging transports is not
required to understand the general topics discussed in this book.
However, if you are using this book as a guide to deploying
runtime systems, you should have a working knowledge of the
middleware transports that you intend to use in your Artix
solutions.

Note: When deploying Artix in a distributed architecture
with other middleware, please see the documentation for
that middleware product. You may require access to an
administrator. For example, a Tuxedo administrator is
required to complete a Tuxedo distributed architecture.

How to Use this Book

Part I, Configuring Artix
This part includes the following:

* Getting Started describes how to set an Artix system
environment using the artix_env script.

* Artix Configuration describes Artix configuration concepts
such as configuration scopes, namespaces, and variables. It
also explains how to use configuration files and commands to
deploy your applications.

Configuring and Deploying Artix Solutions, Runtime in C++ vii

Artix Logging explains how to configure Artix logging. It also
explains Artix support for Java log4j and SNMP (Simple
Network Management Protocol).

Enterprise Performance Logging explains how to configure
integration with third-party Enterprise Management Systems
(EMS), such as IBM Tivoli and BMC Patrol.

Using Artix with International Codesets explains how to
configure Artix support for internationalization.

Part 11, Deploying Artix Services

If you are deploying Artix services, you may want to read one or
more of the following:

Deploying Services in an Artix Container explains how to use
the Artix container to deploy and manage Artix Web services.

Deploying an Artix Transformer explains how to deploy the
Artix transformer service.

Deploying a Service Chain explains how to deploy an Artix
service chain.

Deploying Artix Services for High Availability explains how to
deploy Artix high availability (for example, server-side
replication and client-side failover).

Deploying WS-Reliable Messaging explains how to deploy
WS-Reliable Messaging in Artix.

Part 111, Accessing Artix Services
This part describes several different ways to access Artix services:

Configuring WS-Addressing explains how to configure
WS-Addressing Message Exchange Patterns in Artix.

Publishing WSDL Contracts explains how to use the Artix
WSDL Publishing service to publish WSDL contracts.

Accessing Contracts and References explains how to use Artix
configuration to access Artix WSDL contracts and endpoint
references.

Accessing Services with UDDI explains how to use Universal
Description, Discovery and Integration (UDDI) with Artix.

Embedding Artix in a BEA Tuxedo Container describes how to
deploy Artix into a BEA Tuxedo environment.

The Artix Documentation Library

For information on the organization of the Artix library, the
document conventions used, and where to find additional
resources, see Using the Artix Library, available with the Artix
documentation at
https://supportline.microfocus.com/productdoc.aspx.

viii Configuring and Deploying Artix Solutions, Runtime in C++

https://supportline.microfocus.com/productdoc.aspx

Contacting Micro Focus

Our Web site gives up-to-date details of contact numbers and
addresses.

Further Information and Product
Support

Additional technical information or advice is available from several
sources.

The product support pages contain a considerable amount of
additional information, such as:

* The WebSync service, where you can download fixes and
documentation updates.

* The Knowledge Base, a large collection of product tips and
workarounds.

* Examples and Utilities, including demos and additional
product documentation.

To connect, enter http://www.microfocus.com in your browser to go to
the Micro Focus home page.

Note:
Some information may be available only to customers who have
maintenance agreements.

If you obtained this product directly from Micro Focus, contact us
as described on the Micro Focus Web site, http://www.microfocus.com. If
you obtained the product from another source, such as an
authorized distributor, contact them for help first. If they are
unable to help, contact us.

Information We Need

However you contact us, please try to include the information
below, if you have it. The more information you can give, the
better Micro Focus SupportLine can help you. But if you don't
know all the answers, or you think some are irrelevant to your
problem, please give whatever information you have.

* The name and version number of all products that you think
might be causing a problem.

®* Your computer make and model.

* Your operating system version number and details of any
networking software you are using.

* The amount of memory in your computer.
* The relevant page reference or section in the documentation.

®* Your serial number. To find out these numbers, look in the
subject line and body of your Electronic Product Delivery
Notice email that you received from Micro Focus.

Configuring and Deploying Artix Solutions, Runtime in C++ ix

http://www.microfocus.com
http://www.microfocus.com

Contact information

Our Web site gives up-to-date details of contact numbers and
addresses.

Additional technical information or advice is available from several
sources.

The product support pages contain considerable additional
information, including the WebSync service, where you can
download fixes and documentation updates. To connect, enter
http://www.microfocus.com in your browser to go to the Micro Focus
home page.

If you are a Micro Focus SupportLine customer, please see your
SupportLine Handbook for contact information. You can download
it from our Web site or order it in printed form from your sales
representative. Support from Micro Focus may be available only to
customers who have maintenance agreements.

You may want to check these URLs in particular:

® http://www.microfocus.com/products/corba/artix.aspx (trial software
download and Micro Focus Community files)

® https://supportline.microfocus.com/productdoc.aspx. (documentation
updates and PDFs)

To subscribe to Micro Focus electronic newsletters, use the online
form at:

http://lwww.microfocus.com/Resources/Newsletters/infocus/newsletter-subscriptio
n.asp

x Configuring and Deploying Artix Solutions, Runtime in C++

http://www.microfocus.com
http://www.microfocus.com/products/corba/artix.aspx
https://supportline.microfocus.com/productdoc.aspx
http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-subscription.asp

Part |
Configuring Artix

In this part

This part contains the following chapters:

Getting Started page 3
Artix Configuration page 9
Artix Logging page 19
Enterprise Performance Logging page 43

Using Artix with International Codesets page 55

2 Configuring and Deploying Artix Solutions, Runtime in C++

Getting Started

This chapter explains how to set up an Artix C++ runtime environment.

Setting your Artix Environment

To use the Artix tools and runtime environment, the host
computer must have several Artix-specific environment variables
set. These variables can be configured during installation, or later
using the artix_env script, or configured manually. This section
shows how to run the artix_env script and explains the available
options.

Running the artix_env script

The Artix installation process creates a script named artix_env on
UNIX systems, or artix_env.bat on Windows, which captures the
information required to set your host’s environment variables.
Running this script configures your system to use Artix. The script
is located in the following directory:

ARTIX_PRODUCT_DIR\bin

Command-line arguments

On Windows, artix_env.bat takes two command parameters:
b preserve

®* -verbose

On UNIX artix_env takes the following optional arguments:

M preserve

° -verbose
° -bits
e —compiler

Configuring and Deploying Artix Solutions, Runtime in C++ 3

These options have the following effects:

Table 1:

Options to artix_env Script

Option

Description

preserve

Preserves the settings of any environment
variables that have already been set. By default
this option is off. When it is set to on, artix_env
does not overwrite the values of variables that are
already set. This option applies to the following
environment variables:

e IT_PRODUCT DIR
* IT_LICENSE FILE

* IT_CONFIG_DIR

* IT_CONFIG_DOMAINS DIR
* IT_DOMAIN_NAME

* IT_ART_ADMIN_PATH

* IT_IDL_CONFIG_FILE

e CLASSPATH

e PATH

* LIBPATH (AIX)

e LD LIBRARY_PATH (Solaris, Linux)
* LD_PRELOAD (Linux)

* SHLIB_PATH (HP-UX)

For more detailed information, see “Artix
Environment Variables” on page 5.

Note: Before using the -preserve option, always
ensure that the existing environment variable
values are set correctly.

-verbose

artix_env outputs verbose messages to stdout.
By default this option is off.

-bits
[32]64]

Sets the Artix environment for the specified C++
compiler width. The default is 32.

-compiler

Specifies the C++ compiler to use; for example,
acca0331cios).

4 Configuring and Deploying Artix Solutions, Runtime in C++

Artix Environment Variables

This section describes the following environment variables in more
detail:

e JAVA HOME
e IT_PRODUCT DIR

e IT_LICENSE FILE

e IT_CONFIG DIR

* IT_CONFIG_DOMAINS DIR
* IT_DOMAIN_NAME

e IT_IDL_CONFIG_FILE
e IT_WSDLGEN_CONFIG_FILE
* IT_ART_ADMIN_PATH

e PATH

Note: You do not have to manually set your environment
variables; you can do so by running the provided artix_env
script.

The environment variables are explained in Table 2:

Table 2: Artix Environment Variables

Variable Description

JAVA_HOME The directory path to your system’s JDK is
specified with the system environment variable
JAVA_HOME. You may wish to specify the JVM
bundled with Artix, which is installed in
IT_PRODUCT DIR\jre.

Alternatively you can specify a previously
installed JVM using the Artix installer.

If not specified, this defaults to the first JRE
found on the system.

IT_PRODUCT_DIR IT_PRODUCT_DIR points to the top level of your
product installation. For example, on Windows, if
you install Artix into the C:\Artix directory,
IT_PRODUCT_DIR should be set to that directory.

Note: If you have any other products installed
that use this variable, and you choose not to
install them into the same directory tree, you
must reset IT_PRODUCT_DIR each time you switch
products.

You can override this variable using the
-BUSproduct_dir command-line parameter when
running Artix applications.

IT_LICENSE FILE IT_LICENSE_FILE specifies the location of your
Artix license file. The default value is
IT_PRODUCT_DIR\etc\licenses.txt.

You can override this variable using the
-BUSlicense_file command-line parameter when
running Artix applications.

Configuring and Deploying Artix Solutions, Runtime in C++ 5

Table 2: Artix Environment Variables

Variable

Description

IT_CONFIG_DIR

IT_CONFIG_DIR specifies the root configuration
directory. The default root configuration
directory on UNIX is /etc/opt/iona, and
IT_PRODUCT_DIR\etc on Windows.

You can override this variable using the
-BUSconfig_dir command-line parameter when
running Artix applications.

IT_CONFIG_DOMAINS_DIR

IT_CONFIG_DOMAINS_DIR specifies the directory
where Artix searches for its configuration files.
The configuration domain’s directory defaults to
IT_CONFIG_DIR\domains.

You can override it using the
-BUSconfig_domains_dir command-line parameter
when running Artix applications.

IT_DOMAIN_NAME

IT_DOMAIN_NAME specifies the name of the
configuration domain used by Artix to locate its
C++ configuration. This variable also specifies
the name of the file in which the configuration is
stored. For example, the artix domain is stored
in 1T_CONFIG_DIR\domains\artix.cfg.

You can override this variable with the
-BUSdomain_name command-line parameter when
running Artix applications.

IT_IDL_CONFIG_FILE

IT_IDL_CONFIG_FILE specifies the configuration
used by the Artix IDL compiler. If this variable is
not set, you will be unable to run the IDL to
WSDL tools provided with Artix. This variable is
required for an Artix development
installation.The default location is:

IT_PRODUCT_DIR\etc\idl.cfg

Note: Do not modify the default IDL
configuration file.

IT_WSDLGEN_CONFIG_FILE

IT_WSDLGEN_CONFIG_FILE specifies the location of
the WSDLGen configuration file. WSDLGen is a
tool used to generate C++ code from WSDL. The
default location of the WSDLGen configuration
file is:

IT_PRODUCT_DIR\tools\etc\wsdlgen.cfg

This file is used to specify the location of
templates used for C++ code generation.

IT_ART_ADMIN_PATH

IT_ART_ADMIN_PATH specifies the location of an
internal configuration script used by
administration tools. Defaults to
IT_CONFIG_DIR\admin.

6 Configuring and Deploying Artix Solutions, Runtime in C++

Table 2: Artix Environment Variables

Variable Description

PATH

The Artix bin directories are prepended on the
PATH to ensure that the proper libraries,
configuration files, and utility programs (for
example, the IDL compiler) are used. These
settings avoid problems that might otherwise
occur if Orbix and/or Tuxedo (both include IDL
compilers and CORBA class libraries) are
installed on the same host computer.

The default Artix bin directory is:
UNIX

$1T_PRODUCT_DIR/bin

Windows

%1 T_PRODUCT_DIR%\bin

Customizing your Environment Script

The artix_env script sets the Artix environment variables using
values obtained from the Artix installer and from the script’s
command-line options. The script checks each one of these
settings in sequence, and updates them, where appropriate.

The artix_env script is designed to suit most needs. However, if
you want to customize it for your own purposes, please note the
following points in this section.

Before you begin

You can only run the artix_env script once in any console session.
If you run this script a second time, it exits without completing.
This prevents your environment from becoming bloated with
duplicate information (for example, on your PATH and CLASSPATH).

In addition, if you introduce any errors when customizing the
artix_env script, it also exits without completing. This feature is
controlled by a variable called 1T_ARTIXENV on Windows or
IT_ARTIX_ENV_SET on UNIX.The variable is set to true the first time
you run the script in a console; this causes the script to exit when
run again.

Environment variables

The following applies to the environment variables set by the
artix_env script:

* The JAVA_HOME environment variable defaults to the value
obtained from the Artix installer. If you do not manually set
this variable before running artix_env, it takes its value from
the installer. The default location for the JRE supplied with
Artix is ARTIX_PRODUCT_DIR\jre.

Configuring and Deploying Artix Solutions, Runtime in C++ 7

* The following environment variables are all set with default
values relative to IT_PRODUCT_DIR:
+ JAVA_HOME
+ IT_CONFIG_FILE
+ IT_IDL_CONFIG_FILE
+ IT_CONFIG DIR
+ IT_CONFIG_DOMAINS DIR
. IT_LICENSE_FILE
+ IT_ART_ADMIN_PATH
If you do not set these variables manually, artix_env sets
them with default values based on IT_PRODUCT DIR. For

example, the default for 1T_CONFIG_DIR on Windows is
IT_PRODUCT DIR\etc.

* The IT_IDL_CONFIG_FILE environment variable is a required
only for an Artix Development installation. All other
environment variables are required for both Development and
Runtime installations.

e Before artix_env sets each environment variable, it checks if
the preserve command-line option was supplied when the
script was run. This ensures that your preset values are not
overwritten. Before using the preserve option, always check
the existing values for these variables are set correctly.

8 Configuring and Deploying Artix Solutions, Runtime in C++

Artix Configuration

This chapter introduces the main concepts and components in the Artix
C++ runtime configuration (for example, configuration domains, scopes,
variables, and data types). It also explains how to use Artix configuration
files and commands to manage your applications.

Artix Configuration Concepts

The Artix C++ runtime is built upon the Adaptive Runtime
architecture (ART).

Runtime behavior is established through common and
application-specific configuration settings that are applied during
application startup. As a result, the same application code can be
run, and can exhibit different capabilities, in different
configuration environments. This section includes the following:

* Configuration domains.

* Configuration scopes.

* Specifying configuration scopes.
* Configuration namespaces.

* Configuration variables.

Configuration domains

An Artix configuration domain is a collection of configuration
information in an Artix C++ runtime environment. This
information consists of configuration variables and their values. A
default Artix configuration is provided when Artix is installed. The
default Artix configuration domain file has the following location:

Windows %IT_PRODUCT_DIR%\etc\domains\artix.cfg
UNIX $1T_PRODUCT_DIR/etc/domains/artix.cfg

The contents of this file can be modified to affect aspects of Artix
behavior (for example, logging or routing).

Configuration scopes

An Artix configuration domain is subdivided into configuration
scopes. These are typically organized into a hierarchy of scopes,
whose fully-qualified names map directly to bus names. By
organizing configuration variables into various scopes, you can
provide different settings for individual services, or common
settings for groups of services.

Local configuration scopes

Configuration scopes apply to a subset of services or to a specific
service in an environment. For example, the Artix demo
configuration scope includes example local configuration scopes
for demo applications.

Configuring and Deploying Artix Solutions, Runtime in C++ 9

Application-specific configuration variables either override default
values assigned to common configuration variables, or establish
new configuration variables. Configuration scopes are localized
through a name tag and delimited by a set of curly braces
terminated with a semicolon, for example, scopeNameTag {.};

A configuration scope may include nested configuration scopes.
Configuration variables set within nested configuration scopes
take precedence over values set in enclosing configuration scopes.

In the artix.cfg file, there are several predefined configuration
scopes. For example, the demo configuration scope includes nested
configuration scopes for some of the demo programs included with
the product.

Example 1: Demo Configuration Scope
demo

fml_plugin
{
orb_plugins = ["local_log_stream', "iiop_profile",
“'giop™, "iiop", ''soap’, "http', G2, "tunnel’,
“mq™”, “ws_orb™, fml'];
3
telco
{
orb_plugins = ["'local_log_stream”, "‘iiop_profile",
“'giop”, "iiop”, "G2", "tunnel'];
plugins:tunnel ziiop:port = *55002";
poa:MyTunnel :direct persistent = "true';
poa:MyTunnel :well_known_address = "plugins:tunnel’;

server
{
orb plugins = ["local_log_stream'”, "iiop_profile",
"giop", lli ioprs, 'lOtS"’ .'Soap.', 'lhttp'l, "GZ: ,

“tunnel'];
plugins:tunnel :poa_name = "MyTunnel';
¥
};
tuxedo
{

orb_plugins = ["local_log_stream”, "iiop_profile",
llgiopll’ lli iopll , Ilsoapll , llhttpll’ lltuxedoll] ;

event_log:filters = ["*=FATAL+ERROR™];
}

Note: The orb_plugins list is redefined within each configuration
scope.

10 Configuring and Deploying Artix Solutions, Runtime in C++

Specifying configuration scopes

To make an Artix process run under a particular configuration
scope, you specify that scope using the -BUSname parameter.
Configuration scope names are specified using the following
format

scope - subscope

For example, the scope for the telco server demo shown in
Example 1 is specified as demo.telco.server. During process
initialization, Artix searches for a configuration scope with the
same name as the -BUSname parameter.

There are two ways of supplying the -BUSname parameter to an
Artix process:

* Pass the argument on the command line.
* Specify the -BUSname as the third parameter to IT_Bus::init().

For example, to start an Artix process using the configuration
specified in the demo.tuxedo scope, you can start the process using
the following syntax:

processName [application parameters] -BUSname demo.tuxedo

Alternately, you can use the following code to initialize the Artix
bus:

IT_Bus::init (argc, argv, “demo.tuxedo™);

If a corresponding scope is not located, the process starts under
the highest level scope that matches the specified scope name. If
there are no scopes that correspond to the -BUSname parameter,
the Artix process runs under the default global scope. For
example, if the nested tuxedo scope does not exist, the Artix
process uses the configuration specified in the demo scope; if the
demo scope does not exist, the process runs under the default
global scope.

Configuration namespaces

Most configuration variables are organized within namespaces,
which group related variables. Namespaces can be nested, and
are delimited by colons (:). For example, configuration variables
that control the behavior of a plug-in begin with plugins: followed
by the name of the plug-in for which the variable is being set. For
example, to specify the port on which the Artix standalone service
starts, set the following variable:

plugins:artix_service:iiop:port

To set the location of the routing plug-in’s contract, set the
following variable:

plugins:routing:wsdl_url

Configuring and Deploying Artix Solutions, Runtime in C++ 11

Configuration variables

Configuration data is stored in variables that are defined within
each namespace. In some instances, variables in different
namespaces share the same variable names.

Variables can also be reset several times within successive layers
of a configuration scope. Configuration variables set in narrower
configuration scopes override variable settings in wider scopes.
For example, a company.operations.orb_plugins variable would
override a company.orb_plugins variable. Plug-ins specified at the
company scope would apply to all processes in that scope, except
those processes that belong specifically to the company.operations
scope and its child scopes.

Further information

For detailed information on Artix configuration namespaces and
variables, see the Artix Configuration Reference.

Configuration Data Types
Each Artix configuration variable has an associated data type that
determines the variable’s value.
Data types can be categorized as follows:
* Primitive types
* Constructed types

Primitive types

Artix supports the following three primitive types:

. boolean
. double
. long

Constructed types

Artix supports two constructed types: string and ConfigList (a
sequence of strings).

* In an Artix configuration domain file (.cfg), the string
character set is ASCII.

* The ConfigList type is simply a sequence of string types. For
example:

orb plugins = ["local_log_stream”, *"iiop_profile",
“giop™,"iiop"];

12 Configuring and Deploying Artix Solutions, Runtime in C++

../../config_ref/cpp/index.htm

Artix Configuration Domain Files

This section explains how to use Artix configuration domain files to
manage applications in your environment. These files use the .cfg
extension. This section includes the following:

e “Default configuration file”.

* “Importing configuration settings”.

* “Working with multiple installations”.

* “Using symbols as configuration file parameters”.

Default configuration file

The Artix configuration domain file contains all the configuration
settings for the domain. The default configuration domain file is
found in the following location:

Windows%IT_PRODUCT_DIR%\etc\domains\artix.cfg
UNIX $1T_PRODUCT_DIR/etc/domains/artix.cfg

You can edit the settings in an Artix configuration domain file to
modify different aspects of Artix behavior (for example, routing, or
levels of logging).

Importing configuration settings

You can manually create new Artix configuration domain files to
compartmentalize your applications. These new configuration
domain files can import information from other configuration
domains using an include statement in your configuration file.

This provides a convenient way of compartmentalizing your
application-specific configuration from the global ART
configuration information that is contained in the default
configuration domain file. It also means that you can easily revert
to the default settings in the default Artix configuration domain
file. Using separate application-specific configuration files is the
recommended way of working with Artix configuration.

Example 2 shows an include statement that imports the default
configuration file. The include statement is typically the first line
the configuration file.

Example 2: Configuration file include statement

include “../../../._/._./etc/domains/artix.cfg"”;

my_app_config {

For complete working examples of Artix applications that use this
import mechanism, see the configuration files provided with Artix

demos. These demo applications are available from the following
directory:

ArtixInstal IDir\samples

Configuring and Deploying Artix Solutions, Runtime in C++ 13

Working with multiple installations

If you are using multiple installations or versions of Artix, you can
use your configuration files to help manage your applications as
follows:

1. Install each version of Artix into a different directory.

2. Install your applications into their own directory.

3. Copy the artix.cfg file from whichever Artix release you want
to use into another directory (for example, an application
directory).

4. In your application’s local configuration file, include the
artix.cfg file from your copy location.

This enables you to switch between Artix versions by copying the
corresponding artix.cfg file into a common location. This avoids
having to update the directory information in your configuration
file whenever you want to switch between Artix versions.

Using symbols as configuration file
parameters

You can define arbitrary symbols for use in Artix .cfg files, for
example:

SERVER_LOG = "my_server_log";

These symbols can then be reused as parameters in configuration
settings, for example:

plugins:local_log_stream:filename = SERVER_LOG;
You can use configuration symbols to customize your file
depending on the environment. This enables you to use the same

basic configuration file in different environments (for example,
development, test, and production).

Using configuration symbols in a string

You can use symbols within a string using a syntax of
%{SYMBOL_NAME}. For example, if you define the following symbol:

LOG_LEVEL = "FATAL+ERROR+WARNING+INFO_MED+INFO_HI*";
This can be used within a string as follows:

event log:filters = [""*=%{LOG_LEVEL}'"];
You can also combine multiple symbols within a string as follows:

plugins:local_log_stream:filename =
"0,{APP_NAME}-%{CLIENT_LOG}";

14 Configuring and Deploying Artix Solutions, Runtime in C++

Configuration example

The configuration file in Example 3 contains some user-defined
symbols:

Example 3: Defining Configuration Symbols

#mydomain.cfg
INSTALL_CFG = "../._./artix.cfg";

CLIENT_LOG = "my_client.log";

SERVER_LOG = "my_server.log;
APP_NAME = "'myapp"';
LOG_LEVEL = ""FATAL+ERROR+WARNING+INFO_MED+INFO_HI";

include "template.cfg';

The configuration file in Example 4 uses the predefined symbols in
configuration variable settings:

Example 4: Using Configuration Symbols

#template.cfg
include INSTALL CFG

myapps {
orb_plugins = ["local_log_stream', 'soap", "http'];

server {
#Simple user-defined symbol.
plugins:local_log_stream:filename = SERVER LOG;

#Using a symbol within a string.
event_log:filters = [""*=%{LOG_LEVEL}"];
}

client {
#Combining symbols within a string.
plugins:local_log_stream:filename =
"%{APP_NAME}-%{CLIENT_LOG}";
};
};

This example shows a user-defined symbol in an include
statement. It shows a simple example of using a symbol in an

configuration setting, and more complex examples of using
symbols in strings.

For details of using configuration symbols on the command line,
see “Command-Line Configuration” on page 16.

Configuring and Deploying Artix Solutions, Runtime in C++ 15

Command-Line Configuration

This section explains how to configure the following options on the
command line:

* Configuration variables

* Configuration scopes

®* User-defined configuration symbols
* Environment variables

* Location of WSDL and references

* Multiple bus instances

Setting configuration variables

Artix enables you to override configuration variables at runtime by
using arguments on the command line. These arguments are then
passed to the Artix 1T Bus::init() call. Setting configuration
variables on the command line takes precedence over variables in
a configuration file.

Command-line arguments for configuration variables take the
following format:

-BUSCONFIG_VariableName Value

For example:

client -BUSCONFIG_plugins:local_log _stream:filename
client.log -BUSCONFIG_ orb_plugins
["local_log_stream™,"'soap", "http']
-BUSCONFIG_event_log:filters ['"*=*"]

For detailed information on Artix configuration variable settings,
see the Artix Configuration Reference.

Setting configuration scopes

You can specify configuration scopes when starting an application
on the command line using the -BUSname argument.

For example, to start a process using the configuration specified in
the demo.myapp scope, you would start the process with the
following syntax:

ProcessName [application parameters] -BUSname demo.myapp

For more details, see “Specifying configuration scopes” on
page 11.

Setting configuration symbols
You can also override user-defined configuration symbols on the

command line. Setting configuration symbols on the command
line takes precedence over symbols in a configuration file.

16 Configuring and Deploying Artix Solutions, Runtime in C++

For example, you can override the log file name in Example 3 on
page 15 using command-line arguments as follows:

client -BUSCONFIG_CLIENT_LOG test2.log
This successfully creates a log file named test2.log. For more

details, see “Using symbols as configuration file parameters” on
page 14.

Setting environment variables

You can use command-line arguments to pass the value of
environment variables to configuration files.

For example, you can specify the directory where Artix searches
for its configuration files using the -BUSconfig_domains_dir
argument. For more details on Artix environment variables, see
“Getting Started”.

Specifying locations of WSDL and
references

You can specify the location of WSDL contracts and Artix
references using the following command-line arguments:

-BUSservice_contract URL
-BUSservice_contract_dir Directory
-BUSinitial_reference url

For example:

./server -BUSservice _contract ../../etc/hello.wsdl

For more details, see “Accessing Contracts and References”.

Configuring and Deploying Artix Solutions, Runtime in C++ 17

18 Configuring and Deploying Artix Solutions, Runtime in C++

Artix Logging

This chapter describes how to configure Artix logging. It shows how to
configure logging for specific Artix subsystems and services, how to
control dynamic logging on the command line and Artix message snoop.
It also explains the Artix support for Java log4j and the Simple Network
Management Protocol.

Configuring Logging Filters

Logging in Artix is controlled by the event_log:filters
configuration variable, and by the log stream plug-ins (for
example, local_log_stream and xmIfile_log_stream). This section
explains the following:

* “Configuring logging levels”
* “Logging severity levels”
* “Filtering passwords from logs”

Configuring logging levels

You can set the event_log:filters configuration variable to
provide a wide range of logging levels. The event_log:filters
variable can be set in your Artix configuration domain file:

ArtixInstalIDir\etc\domains\artix.cfg.

Displaying errors
The default event_log:filters setting displays errors only:

event log:filters = ['"*=FATAL+ERROR'];

Displaying warnings
The following setting displays errors and warnings only:

event_log:filters = ["*=FATAL+ERROR+WARNING'];

Displaying request/reply messages
Adding INFO_MED causes all request/reply messages to be logged
(for all transport buffers):

event_log:Filters = [""*=FATAL+ERROR+WARNING+INFO_MED'];

Displaying trace output

The following setting displays typical trace statement output
(without the raw transport buffers):

event log:filters = ['"*=FATAL+ERROR+WARNING+INFO_HI'"];

Displaying all logging
The following setting displays all logging:

event log:filters = ['"™*=*""];

Configuring and Deploying Artix Solutions, Runtime in C++ 19

The default configuration settings enable logging of only serious
errors and warnings. For more exhaustive information, select a
different filter list at the default scope, or include a more

expansive event_log:filters setting in your configuration scope.

Logging severity levels

Artix supports the following levels of log message severity:
* Information

* Warning

. Error

* Fatal error

Information

Information messages report significant non-error events. These
include server startup or shutdown, object creation or deletion,
and details of administrative actions.

Information messages provide a history of events that can be
valuable in diagnosing problems. Information messages can be set
to low, medium, or high verbosity.

Warning

Warning messages are generated when Artix encounters an
anomalous condition, but can ignore it and continue functioning.
For example, encountering an invalid parameter, and ignoring it in
favor of a default value.

Error

Error messages are generated when Artix encounters an error.
Artix might be able to recover from the error, but might be forced
to abandon the current task. For example, an error message
might be generated if there is insufficient memory to carry out a
request.

Fatal error

Fatal error messages are generated when Artix encounters an
error from which it cannot recover. For example, a fatal error
message is generated if Artix cannot find its configuration file.

Table 3 shows the syntax used by the event_log:filters variable
to specify Artix logging severity levels.

Table 3: Artix Logging Severity Levels

Severity Description
Level
INFO_LO[W] Low verbosity informational messages.

INFO_MED[IUM] | Medium verbosity informational

messages.
INFO_HI[GH] High verbosity informational messages.
INFO[_ALL] All informational messages.

WARN[ING] Warning messages.

20 Configuring and Deploying Artix Solutions, Runtime in C++

Table 3: Artix Logging Severity Levels

Severity Description
Level
ERR[OR] Error messages.

FATAL[_ERROR] | Fatal error messages.

* All messages.

Filtering passwords from logs

You can also use event log filters to control whether plain-text
passwords are printed in the log.

To enable filtering of Web Services Security (WS-S) plain-text
passwords, specify the following configuration setting:

event_log:filter_sensitive_info =
['event_log:filter_sensitive_info:wss_password];

event_log:filter_sensitive_info:wss_password =
[#PasswordText$%™ "$%>", "'</*, "*'];

This setting changes the characters in the log of a WS-S plain-text
password to * characters.

The event_log:filter_sensitive_info configuration variable can also
be used to filter other types of sensitive logging information, and
multiple filters can be enabled in a single setting. The general
format for this configuration variable is as follows:

event_log:filter_sensitive_info = [""foo'"];
foo = ["Start™, "end", "#"];

In this general example, the first line provides the list of pattern
names to consider for replacement, and the second line provides
the actual pattern using the following syntax:

['Start_Pattern™, "End Pattern', "‘Replacement_Character''];

This replaces anything in the log between Start _pattern and
End_pattern with the # character.

Because Artix configuration files do not support the escaped **
character in configuration, any pattern that has the " character
should instead replace this character with the following:

$%" " $%
You must specify two single quotes and not a double quote. These

are then treated as the " character during the filtering of logging
information.

Configuring and Deploying Artix Solutions, Runtime in C++ 21

Configuring Log Stream Plugins

In addition to setting the event log filter, you must ensure that a
log stream plug-in is set in your artix.cfg file. These include the

local_log_stream and the xmlfile_log_stream. This section explains
how to use log stream plugins to perform the following tasks:

* “Configuring logging output”

* “Using a rolling log file”

e “Buffering the output stream”

* “Configuring HTTP trace logging”
* “Configuring precision logging”

* “lLogging the thread ID”

Configuring logging output

The local_log_stream sends logging to a text file; while the
xmlfile_log_stream outputs logging to an XML file. The
local_log_stream is set by default.

Using text log files

To configure the local_log_stream, set the following variables in
your configuration file:

//Ensure these plug-ins exist in your orb_plugins list
orb_plugins = ["local_log_stream"”, ...];

//0ptional text filename
plugins:local_log_stream:filename = "/var/mylocal .log";

If you do not specify a text log file name, logging is sent to stderr.

Using XML log files

To configure the xmlfile_log_stream, set the following variables in
your configuration file:

//Ensure this plug-in is in your oeraluglns list
orb_plugins = ["'xmlfile_log stream™, ...];

// Optional filename; can be qualified.
plugins:xmlfile_log_stream:filename =
"artix_logfile.xml";

// Optional process ID added to filename (default is
false).
plugins:xmifile_log _stream:use pid = "false';

You must ensure that your application can detect the configuration
settings for the log stream plugins. You can either set them at the
global scope, or configure a unique scope for use by your
application, for example:

IT Bus::init(argc, argv, '‘demo.myscope');
This enables you to place the necessary configuration in the
demo.myscope scope.

22 Configuring and Deploying Artix Solutions, Runtime in C++

Using a rolling log file

By default, a logging plug-in creates a new log file each day to
prevent the log file from growing indefinitely. In this model, the
log stream adds the current date to the configured filename. This
produces a complete filename, for example:

/var/adm/my_artix_log.01312006

A new log file begins with the first event of the day, and ends each
day at 23:59:59.
Specifying the date format

You can configure the format of the date in the rolling log file,
using the following configuration variables:

. plugins:local_log_stream:filename_date format
. plugins:xmlfile_log_stream:filename_date format

The specified date must conform to the format rules of the ANSI C
strftime() function. For example, for a text log file, use the
following settings:

plugins:local_log_stream:rolling_file="true";
plugins:local_log_stream:filename="my_log";
plugins:local_log_stream:filename_date format=""_%Y_%m_%d"

On the 31st January 2006, this results in a log file named

my_log_2006_01 31.

The equivalent settings for an XML log file are:
plugins:xmifile_log_stream:rolling_file=""true";
plugins:xmifile_log_stream:filename="my_log";
plugins:xmlfile_log_stream:filename_date format=""_%Y %m %

dn;

Disabling rolling log files

To disable rolling file behavior for a text log file, set the following
variable to false:

plugins:local_log_stream:rolling_file = "false";

To disable rolling file behavior for an XML log file, set the following
variable to false:

plugins:xmifile_log_stream:rolling_file = "false";

Configuring and Deploying Artix Solutions, Runtime in C++ 23

Buffering the output stream

You can also set the output stream to a buffer before it writes to a
local log file. To specify this behavior, use either of the following
variables:

plugins:local_log_stream:buffer_file
plugins:xmlfile_log_stream:buffer_file

When set to true, by default, the buffer is output to a file every
1000 milliseconds when there are more than 100 messages
logged. This log interval and number of log elements can also be
configured.

Note: To ensure that the log buffer is sent to the log file,
you must always shutdown your applications correctly.

For example, the following configuration writes the log output to a
log file every 400 milliseconds if there are more than 20 log
messages in the buffer.

Using text log files
plugins:local_log_stream:filename = "/var/adn/artix.log";
plugins:local_log_stream:buffer_file = "true";

plugins:local_log_stream:milliseconds _to_log = ""400";
plugins:local_log_stream:log_elements = ""20";

Using XML log files
plugins:xml_log_stream:filename = "/var/adm/artix.xml"’;
plugins:xml_log_stream:buffer_file = "true";

plugins:xml_log_stream:milliseconds_to log = ""400";
plugins:xml_log_stream: log_elements = "20";

Configuring HTTP trace logging

HTTP trace logging shows the full HTTP buffers (headers and
body) as they go to and from the wire. This feature is disabled by
default. You can enable HTTP-specific trace logging using the
following setting:

policies:http:trace_requests:enabled=""true";

You should also set log filtering as follows to pick up the HTTP
additional messages, and then resend the logs:

event_log:filters = ["IT_HTTP=*""];

For example, you could enable HTTP trace logging to verify that
basic authentication headers are written to the wire correctly.

Similarly, to enable HTTPS-specific trace logging, use the following
setting:

policies:https:trace_requests:enabled=""true";

24 Configuring and Deploying Artix Solutions, Runtime in C++

Configuring precision logging

You can also specify whether events are logged with time
precision in nanoseconds, or at the granularity of seconds. By
default, precision logging is disabled, and Artix logs in seconds. To
enable precision logging, use the following setting:

plugins:local_log_stream:precision_logging = "“true;

Logging the thread ID

You can also specify whether a thread ID is logged in the log
message, for example:

plugins:local_log_stream:log_thread id = "true';

The default is false. When this setting has been enabled, the
following example logging message shows the thread ID in bold:

Wed, 26 Sep 2007 12:22:26.0000000 [homer600:6870:1269287216]
(IT_BUS.CORE:0) I - Registering Bus plugin
SOAPServicePluginFactory

Logging for Subsystems and Services

You can use the event_log:filters configuration variable to set
fine-grained logging for specified Artix logging subsystems. For
example, you can set logging for the Artix core, specific
transports, bindings, or services. You can set logging for Artix
services, such as the locator, and for services that you have
developed.

This section lists the Artix-specific logging subsystems and those
for the underlying Adaptive Runtime (ART) core, and shows
examples of how to use them.

Artix logging subsystems

Artix logging subsystems are organized into a hierarchical tree,
with the IT_BUS subsystem at the root. Example logging
subsystems include:

IT_BUS.CORE
IT_BUS.TRANSPORT .HTTP
IT_BUS.BINDING.SOAP

Table 4 shows a list of available Artix logging subsystems.

Table 4: Artix Logging Subsystems

Subsystem Description
IT_BUS Artix bus
IT_BUS_BINDING All bindings

Configuring and Deploying Artix Solutions, Runtime in C++ 25

Table 4: Artix Logging Subsystems

Subsystem

Description

IT_BUS.BINDING.COLOC

Collocated binding

IT_BUS.BINDING.CORBA

CORBA bhinding

IT_BUS_BINDING.CORBA.CONTEXT

CORBA context

IT_BUS_BINDING.FIXED Fixed binding
IT_BUS_BINDING.HTTP HTTP binding
IT_BUS.BINDING.SOAP SOAP binding

IT_BUS.BINDING.SOAP12

SOAP 1.2 binding

IT_BUS_BINDING.SOAP_COMMON

Common SOAP binding

IT_BUS_BINDING.TAGGED

Tagged binding

IT_BUS.CORE

Artix core

IT_BUS.CORE.CONFIG

Artix core configuration

IT_BUS_CORE.CONTEXT

Artix core contexts

IT_BUS_CORE. INITIAL_REFERENCE

Artix initial references

IT_BUS.CORE.PLUGIN

Artix plug-ins

IT_BUS.CORE.RESOURCE_RESOLVER

Artix resource resolver

IT_BUS_FOUNDATION.AFC

Artix Foundation Classes (Artix-specific
data type extensions)

IT_BUS_FOUNDATION.CONTEXT_L IBRARY

Artix Foundation context library

IT_BUS. 118N. INTERCEPTOR

Internationalization

IT_BUS. INTEGRATION.AP_NANO_AGENT

AmberPoint SOA management agent

IT_BUS. INTEGRATION.CA_WSDM_OBSERVER

CA Web Services Distributed
Management observer

IT_BUS_JINI_GENERIC_PLUGIN

Java generic service

IT_BUS.JINI.JBUS

Java Message Service

IT_BUS.JINI.JBUS.TRANSACTION

JMS transactions

IT_BUS.JINI.INI_UTIL

Java utilities

IT_BUS_JINI_TRANSACTION

Java transactions

1T_BUS.JVM_MANAGER

JVM manager

IT_BUS.LOGGING

Artix logging

IT_BUS.LOGGING.LOG4J

Log4J logging

IT_BUS_LOGGING.RESPONSE_TIME

Response time logging

IT_BUS_LOGGING.SNMP

Simple Network Management Protocol
logging

26 Configuring and Deploying Artix Solutions, Runtime in C++

Table 4:

Artix Logging Subsystems

Subsystem

Description

1T_BUS .MANAGEMENT

Artix management

IT_BUS.MESSAGING_PORT

Artix messaging port

IT_BUS.SERVICE

All Artix services.

IT_BUS.SERVICE.

ACTIVATOR.REGISTRY

Artix service activator registry

IT_BUS_SERVICE.CHAIN Artix chain service
IT_BUS.SERVICE.CONTAINER Artix container service
IT_BUS.SERVICE.DB Artix database wrapper (server-side
high availability based on Berkeley DB)
IT_BUS.SERVICE.DB.ENV Artix database environment

IT_BUS.SERVICE.

DB.REPLICA. IMPL

Artix database replication messages

IT_BUS.SERVICE.

DB.REPLICA_MGR

Artix database replication manager

IT_BUS.SERVICE.

DB.REPLICA.MONITOR

Artix database replication monitor

IT_BUS.SERVICE.

DB.REPLICA.SYNC

Artix database synchronization
manager

IT_BUS.SERVICE.

LOCATOR

Artix locator service

IT_BUS.SERVICE.

PEER_MANAGER

Artix peer manager service

IT_BUS.SERVICE.

ROUTING

Artix router

IT_BUS.SERVICE.

ROUTING. XPATH

XPath routing expressions

IT_BUS.SERVICE.

SECURITY

Artix security service

IT_BUS.SERVICE.

SECURITY .CERT_VALIDATOR

Security certificate validator

IT_BUS.SERVICE.

SECURITY .LOGIN_SERVICE.CLIENT

Security login client

IT_BUS.SERVICE.

SECURITY .LOGIN_SERVICE.SERVICE

Security login service

IT_BUS.SERVICE.

SECURITY.SECURITY_INTERCEPTOR

Security interceptor

IT_BUS.SERVICE.

SECURITY.WSS

SOAP Partial Message Protection

IT_BUS.SERVICE.

SESSION_MANAGER

Artix session manager service

IT_BUS.SERVICE.

WSDL_PUBL ISH

Artix WSDL publishing service

IT_BUS.SERVICE.

XSLT

Artix transformer service

IT_BUS_TRANSACTIONS

Transactions

IT_BUS.TRANSACTIONS.OTS

CORBA Object Transaction Service
transactions

IT_BUS.TRANSACTIONS.WSAT

Web Services Atomic Transactions

IT_BUS_TRANSACTIONS . XA

XA transactions

IT_BUS.TRANSPORT .HTTP

HTTP transport

Configuring and Deploying Artix Solutions, Runtime in C++ 27

Table 4: Artix Logging Subsystems

Subsystem

Description

IT_BUS_TRANSPORT -MQ

MQ transport

IT_BUS.TRANSPORT . STUB_TRANSPORT

Artix simple stub transport

IT_BUS.TRANSPORT . TUNNELL

Tunnel transport

IT_BUS_TRANSPORT . TUXEDO

Tuxedo transport

IT_BUS_VERSION

Artix version

IT_BUS.WSRM

Web Services Reliable Messaging

IT_BUS.WSRM_DB

Web Services Reliable Messaging
persistence

IT_BUS.XA SWITCH

XA transactions switch

IT_WSRM

Web Services Reliable Messaging

Note: This list may change in future releases.

28 Configuring and Deploying Artix Solutions, Runtime in C++

ART core logging subsystems

Table 4 shows a list of available logging subsystems for the
underlying ART core.

Table 5: ART Core Logging Subsystems

Subsystem

Description

IT_ATLI2_IOP

Abstract Transport Layer
Interface, version 2 with
Inter-ORB Protocol

IT_ATLI2_IP

Abstract Transport Layer
Interface 2.0 with Internet
Protocol

IT_ATLI2_IP_TUNNEL

Abstract Transport Layer
Interface, with Internet Tunnel
Protocol

IT_ATLI_TLS

Abstract Transport Layer
Interface with Transport Security
Layer

IT_COBOL_PLI

Artix Mainframe only

IT_CODESET

Internationalization

IT_CONNECTION_FILTER

Connection filter

IT_CORE ART core
IT_CSI Common Secure Interoperability
IT_GSP CORBA binding security

IT_GenericSecurityToolkit

Baltimore and z/OS SystemSLL
toolkit

IT_GIOP General Inter-ORB Protocol
IT_HTTP Hypertext Transfer Protocol
IT_HTTPS HTTP with Secure Socket Layer
IT_IIOP Internet Inter-ORB Protocol
IT_LIOP_TLS Internet Inter-ORB Protocol with
Transport Layer Security
IT_LICENSING Licensing
IT_MESSAGING Messaging

IT_MGMT_LOGGING

Management service

IT_OBJECT KEY REPLACER

Object key replacer

IT_OTS Object Transaction Layer
IT_OTS LITE Object Transaction Layer Lite
IT_POA Portable Object Adaptor

Configuring and Deploying Artix Solutions, Runtime in C++ 29

Table 5: ART Core Logging Subsystems

Subsystem Description

IT_POA_LOCATOR Portable Object Adapter with
locator

IT_REQUEST_LOGGER Request logger
IT_SCHANNEL Schannel security
IT_SECURITY Security
IT_TLS Transport Layer Security
IT_WORKQUEUE Multi-threading
IT XA XA transactions
MESSAGE_SNOOP Message snooping.

Note: This list may change in future releases.

Subsystem filter syntax
The event_log:filters variable takes a list of filters, where each
filter sets logging for a specified subsystem using the following
format:

Subsystem=SeveritylLevel[+SeveritylLevel]...
Subsystem is the name of the Artix subsystem that reports the
messages; while SeverityLevel represents the severity levels that
are logged by that subsystem. For example, the following filter
specifies that only errors and fatal errors for the HTTP transport
should be reported:

IT_BUS.TRANSPORT . HTTP=ERR+FATAL

In a configuration file, event_log:filters is set as follows:

event_log:filters=["LogFilter" [, LogFilter™]...]

The following entry in a configuration file explicitly sets severity
levels for a list of subsystem filters:

event_log: filters=["1T_BUS=FATAL+ERROR",

"IT_BUS.BINDING.CORBA=WARN+FATAL+ERROR""] ;

30 Configuring and Deploying Artix Solutions, Runtime in C++

Setting the Artix bus pre-filter

The Artix bus pre-filter provides filtering of log messages that are
sent to the EventLog before they are output to the LogStream. This
enables you to minimize the time spent generating log messages
that will be ignored. For example:

event_log:filters:bus:pre_filter = "WARN+ERROR+FATAL";

event_log:filters = ["IT_BUS=FATAL+ERROR",
"I1T_BUS.BINDING=*""];

In this example, only WARNING, ERROR and FATAL priority log
messages are sent to the EventlLog. This means that no processing
time is wasted generating strings for INFO log messages. The
EventlLog then only sends FATAL and ERROR log messages to the
LogStream for the 1T_BUS subsystem.

Note: event log:filters:bus:pre_filter defaults to * (all
messages). Setting this variable to WARN+ERROR+FATAL
improves performance significantly.

Setting logging for specific subsystems

You can set logging filters for specific Artix subsystems. A
subsystem with no configured filter value implicitly inherits the
value of its parent. The default value at the root of the tree
ensures that each node has an implicit filter value. For example:

event _log:filters = ["IT_BUS=FATAL+ERROR",
"I1T_BUS.BINDING.CORBA=WARN+FATAL+ERROR'] ;

This means that all subsystems under IT_BUS have a filter of
FATAL+ERROR, except for 1T_BUS.BINDING.CORBA which has
WARN+FATAL+ERROR.

Setting multiple subsystems with a
single filter

Using the IT_BUS subsystem means you can adjust the logging for
Artix subsytems with a single filter. For example, you can turn off
logging for the tunnel transport (IT_BUS.TRANSPORT. TUNNEL=FATAL)
and/or turn up logging for the HTTP transport
(IT_BUS.TRANSPORT.HTTP=INFO_LOW+...), as show in the following
example:

event_log:filters= ["IT_BUS=FATAL+ERROR",

"1T_BUS.TRANSPORT . TUNNEL=FATAL"",
"IT_BUS.TRANSPORT .HTTP=INFO_LOW+INFO_HI+WARN'] ;

Configuring and Deploying Artix Solutions, Runtime in C++ 31

Configuring service-based logging

You can use Artix service subsystems to log for Artix services,
such as the locator, and also for services that you have developed.
This can be useful when you are running many services, and need
to filter services that are particularly noisy. Using service-based
logging involves some performance overheads and extra
configuration. This feature is disabled by default.

To enable logging for specific services, perform the following
steps:
1. Set the following configuration variables:

event_log: log_service_names:active = "true';
event_log: log_service_names:services = [“'ServiceNamel',
"'ServiceName2'] ;

2. Set the event log filters as appropriate, for example:

event_log:filters = ["I1T_BUS=FATAL+ERROR",
""ServiceName1l=WARN+ERROR+FATAL"", *ServiceName2=ERROR+FATAL"",
""ServiceName2. IT_BUS.BINDING . CORBA=INFO+WARN+ERROR+FATAL""

1;

Service name format

In these examples, the service name must be specified in the
following format:

""{NamespaceURI }LocalPart"

For example:

"“{http://ww.my-company -.com/bus/tests}SOAPHTTPService™

Setting parameterized configuration

The following example shows setting service-based logging in your
application using the -BUSCONFIG_event_log:filters parameter:

const char* bus_argv[] = {"-BUSname", "my spp_logging",
""-BUSCONFIG_event_log:filters"™, "{IT_BUS=ERR},
{{http://ww.my-company/my_app}SOAPHTTPService. IT_BUS.BINDING.SOAP=INFO}"

Logging per bus

For C++ applications, you can configure logging per bus by
specifying your logging configuration in an application-specific
scope. However, you must also specify logging per bus in your
server code, for example:

* Include the following file:
ArtixInstallIDir/include/it_bus/bus_logger.h

®* Pass a valid bus to the BusLogger (for example, using BusLogger
macros, such as IT_INIT_BUS_LOGGER _MEM).

For full details on how to specify that logging statements are sent
to a particular Artix bus, see Developing Advanced Artix
Plug-ins in C++.

32 Configuring and Deploying Artix Solutions, Runtime in C++

Programmatic logging configuration

C++ applications can use a logging API to query, add, or cancel
logging filters for subsystems, as well as adding and removing
services from per-service logging. For example, you can access a
C++ IT_Bus::Logging: :LoggingConfig class by calling
bus->get_pdk_bus()->get_logging_config().

For full details, see Developing Artix Applications in C++.

Dynamic Artix Logging

At runtime, you can use it_container_admin commands to
dynamically get and set logging levels for specific subsystems and
services. This section explains how to use the it_container_admin
-getlogginglevel and -setlogginglevel options.

Getting logging levels

The -getlogginglevel option gets the logging level for specified a
subsystem or service. This command has the following syntax:

-getlogginglevel [-subsystem SubSystem] [-service
{Namespace }LocalPart]

Get logging for a specific subsystem

The following example gets the logging level for the CORBA
binding only:

it _container_admin -getlogginglevel -subsystem
IT_BUS.BINDING.CORBA

Get logging for multiple subsystems

The following example uses a wildcard to get the logging levels for
all subsystems:

it _container_admin -getlogginglevel -subsystem *

This outputs a list of subsystems that have been explicitly set in a
configuration file or by -setlogginglevel.

For example, if 1T_BUS.BINDING=LOG_INFO is output, this means that
IT_BUS.BINDING is set to LOG_INFO, and that no child subsystems of
IT_BUS.BINDING are explicitly set. In this case, all child subsystems
inherit LOG_INFO from their parent.

Get logging for a specific service

The following example gets the logging level for a locator service
that is running in a container:

it _container_admin -getlogginglevel -subsystem

IT_BUS.BINDING.SOAP -service
{http://ws. iona.con/locator}lLocatorService

Configuring and Deploying Artix Solutions, Runtime in C++ 33

Setting logging levels

The -setlogginglevel option sets the logging level for a specified
subsystem. This command has the following syntax:

-setlogginglevel -subsystem SubSystem -level Level
[-propagate] [-service {Namespace} ocalpart]

The possible logging levels are:

LOG_FATAL
LOG_ERROR
LOG_WARN
LOG_INFO_HIGH
LOG_INFO_MED
LOG_INFO_LOW
LOG_SILENT
LOG_INHERIT

Set logging for a specific subsystem

The following example sets the logging level for the HTTP
transport only:

it _container_admin -getlogginglevel -subsystem
IT_BUS.TRANSPORT.HTTP -level LOG_WARN

Set logging for multiple subsystems

You can set logging for multiple subsystems by using the
-propagate option. The following example sets the logging level for
all transports (I11OP, HTTP, and so on):

it _container_admin -setlogginglevel -subsystem
IT_BUS.TRANSPORT -level LOG_WARN -propagate true

Override child subsystem levels

You can use the -propagate option to override child subsystem
levels that have been set previously. For example, take the simple
case where IT_BUS is set to LOG_INFO, and no other subsystems are
set. If the IT_BUS level is changed, it is automatically propagated
to all 1T _BUS children.

However, take the case where IT_BUS.CORE is set to LOG_WARN, and
IT_BUS.TRANSPORT is set to LOG_INFO_LOW. Setting 1T_BUS to LOG_ERROR
affects IT_BUS and all its children, except for 1T_BUS.CORE and
IT_BUS.TRANSPORT. In this case, you can use -propagate true to
override the child subsystem levels set previously. For example:

it _container_admin -setlogginglevel -subsystem IT_BUS
-level LOG_ERROR -propagate true
Set logging for services

The following example sets the logging level for the SOAP binding
when used with the locator service:

it _container_admin -setlogginglevel -subsystem

IT_BUS.BINDING.SOAP -level LOG_INFO_HIGH -service
{http://ws.iona.com/locator}LocatorService

34 Configuring and Deploying Artix Solutions, Runtime in C++

The -propagate option can also be used when setting logging for
service. For example, if you have service-specific logging enabled
for IT_BUS.BINDING and IT_BUS_BINDING.SOAP, setting a
service-specific log level for 1T_BUS.BINDING with -propagate true
also sets the service level for 1T_BUS_BINDING.SOAP.

it _container_admin -setlogginglevel -subsystem
IT_BUS.BINDING -level LOG_INFO_LOW -propagate true
-service {http://ws.iona.com/locator}LocatorService

Inheriting a logging level

You can use the LOG_INHERIT level to cancel the current logging
level and inherit from the parent subsystem instead.

For example, if the IT_BUS.CORE subsystem is set to LOG_INFO_LOW,
and its parent (IT_BUS) is set to LOG_ERROR, setting IT_BUS.CORE to
LOG_INHERIT results in IT_BUS.CORE logging at LOG_ERROR. This is
shown in the following example:

it _container_admin -setlogginglevel -subsystem
IT BUS.CORE -level LOG INHERIT

By default, all subsystems are effectively in LOG_INHERIT mode
because they inherit a level from their parent subsystem.

Silent logging

You can use the LOG_SILENT level to specify that a given subsystem
does not perform any logging, for example:

it container_admin -setlogginglevel -subsystem
IT_BUS.TRANSPORT.TUNNEL -level LOG_SILENT

Further information

For more details on using the it_container_admin command, see
“Deploying Services in an Artix Container” on page 75.

For more details on subsystems, see “Logging for Subsystems and
Services” on page 25.

Configuring Message Snoop

Message snoop is an ART-based message interceptor that sends
input/output messages to the Artix log to enable viewing of the
message content. This is a useful debugging tool when developing
and testing an Artix system.

Message snoop is enabled by default. It is automatically added as
the last interceptor before the binding to detect any changes that
other interceptors might make to the message. By default,
message_snoop logs at INFO_MED in the MESSAGE_SNOOP subsystem. You
can change these settings in configuration.

Configuring and Deploying Artix Solutions, Runtime in C++ 35

Disabling message snoop

Message snoop is invoked on every message call, twice in the
client and twice in the server (assuming Artix is on both sides).
This means that it can have an impact on performance. More
importantly, message snoop involves risks to confidentiality. You
can disable message snoop using the following setting:

artix: interceptors:message_snoop:enabled = *“false™;

WARNING: For security reasons, it is strongly
recommended that message snoop is disabled in
production deployments.

Setting a message snoop log level

You can set a message snoop log level globally or for a service
port. The following example sets the level globally:

artix: interceptors:message_snoop: log_level = "WARNING";
event_log:filters = [""*=WARNING",
"IT_BUS=INFO_HI+WARN+ERROR", **MESSAGE_SNOOP=WARNING'];

The following example sets the level for a service port:

artix: interceptors:message_snoop:http://ww.acme.com/test
s:myService:myPort:log_level = "INFO_MED";

event_log:filters = ['"*=INFO_MED", *"IT_BUS=",
""MESSAGE_SNOOP=INFO_MED'"] ;

Setting a message snoop subsystem

You can set message snoop to a specific subsystem globally or for
a service port. The following example sets the subsystem globally:

artix: interceptors:message_snoop: log_subsystem =
""MY_SUBSYSTEM";

event_log:filters = ['"*=INFO_MED", *"IT_BUS=",
""MY_SUBSYSTEM=INFO_MED'"] ;

The following example sets the subsystem for a service port:
artix: interceptors:message_snoop:http://ww.acme.com/test
s:myService:myPort: log_subsystem = ""MESSAGE_SNOOP'';

event_log:filters = ['"*=INFO_MED", *"IT_BUS=",
""MESSAGE_SNOOP=INFO_MED'"] ;

36 Configuring and Deploying Artix Solutions, Runtime in C++

If message snoop is disabled globally, but configured for a
service/port, it is enabled for that service/port with the specified
configuration only. For example:

artix: interceptors:message_snoop:enabled = *“false';

artix: interceptors:message_snoop:http://ww.acme.com/test
s:myService:myPort:log_level = "WARNING";

artix: interceptors:message_snoop:http://ww.acme.com/test
s:myService:myPort: log_subsystem = *"MY_SUBSYSTEM';

event _log:filters = ["*=WARNING",
"IT_BUS=INFO_HI+WARN+ERROR", "‘MY_SUBSYSTEM=WARNING'];

Setting message snoop in conjunction with log filters is useful
when you wish to trace only messages that are relevant to a
particular service, and you do not wish to see logging for others
(for example, the container, locator, and so on).

Configuring SNMP Logging

SNMP

Simple Network Management Protocol (SNMP) is the Internet
standard protocol for managing nodes on an IP network. SNMP
can be used to manage and monitor all sorts of equipment (for
example, network servers, routers, bridges, and hubs).

The Artix SNMP LogStream plug-in uses the open source library
net-snmp (v.5.0.7) to emit SNMP v1/v2 traps. For more
information on this implementation, see
http://sourceforge.net/projects/net-snmp/. To obtain a freeware
SNMP Trap Receiver, visit http://www.ncomtech.com.

Configuring and Deploying Artix Solutions, Runtime in C++ 37

http://sourceforge.net/projects/net-snmp/
http://sourceforge.net/projects/net-snmp/

Artix Management Information Base
(MIB)

A Management Information Base (MIB) file is a database of
objects that can be managed using SNMP. It has a hierarchical
structure, similar to a directory tree. It contains both pre-defined
values and values that can be customized. The Artix MIB is shown
below:

Example 5: Artix MIB
ARTIX-MIB DEFINITIONS ::= BEGIN
IMPORTS

MODULE-IDENTITY, OBJECT-TYPE,
Integer32, Counter32,

Unsigned32,
NOTIFICATION-TYPE FROM SNMPv2-SMI
DisplayString FROM RFC1213-MIB

-- V2 s/current/current

Micro Focus OBJECT IDENTIFIER ::= { iso(1l) org(3) dod(6) internet(l) private(4)
enterprises(l) 5043 }

ArtixMib MODULE-IDENTITY
LAST-UPDATED *'201503210000Z""

ORGANIZATION "Micro Focuslnternational plc™

CONTACT-INFO
Corporate Headquarters
The Lawn, 22-30 Old Bath Road
Newbury
Berkshire RG14 10N
UK
Tel: +44 (0) 1635 565200
http://ww.microfocus.com

DESCRIPTION
"This MIB module defines the objects used and format of SNMP traps that are generated
from the Event Log for Artix based systems from Micro Focus'

ci={artix 1}

38 Configuring and Deploying Artix Solutions, Runtime in C++

Example 5: Artix MIB

- Micro Focus (5043)

- |
- microfocusMib(1)

B | | |
. orbix3(2) I0NAAdMiIn (3) Artix (4)

e I I
- ArtixEventLogMibObjects(0) ArtixEventLogMibTraps (1)

- |- eventSource (1) |- ArtixbaseTrapDef (1)
-— |- eventld (2)

- |- eventPriority (3)

- |- timeStamp (4)

- |- eventDescription (5)

Artix OBJECT IDENTIFIER ::= { ionaMib 4 }
ArtixEventLogMibObjects OBJECT IDENTIFIER ::= { Artix O }
ArtixEventLogMibTraps OBJECT IDENTIFIER ::= { Artix 1 }
ArtixBaseTrapDef OBJECT IDENTIFIER ::= { ArtixEventLogMibTraps 1 }

-- MIB variables used as varbinds
eventSource OBJECT-TYPE
SYNTAX DisplayString (SIZE(O..255))
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
""The component or subsystem which generated the event."
::= { ArtixEventLogMibObjects 1 }

Configuring and Deploying Artix Solutions, Runtime in C++ 39

Example 5: Artix MIB

eventld OBJECT-TYPE
SYNTAX INTEGER
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The event id for the subsystem which generated the event."

::= { ArtixEventLogMibObjects 2 }

eventPriority OBJECT-TYPE
SYNTAX INTEGER
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"The severity level of this event. This maps to IT_Logging::EventPriority types. All
priority types map to four general types: INFO (1), WARN (W), ERROR (E), FATAL_ERROR (F)"

::= { ArtixEventLogMibObjects 3 }

timeStamp OBJECT-TYPE
SYNTAX DisplayString (SIZE(O..255))
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The time when this event occurred."

::= { ArtixEventLogMibObjects 4 }

eventDescription OBJECT-TYPE
SYNTAX DisplayString (SI1ZE(O..255))
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

""The component/application description data included with event."
::= { ArtixEventLogMibObjects 5 }

-— SNMPv1 TRAP definitions

-- ArtixEventLogBaseTraps TRAP-TYPE
- OBJECTS {

== eventSource,

- eventld,

- eventPriority,

40 Configuring and Deploying Artix Solutions, Runtime in C++

ArtixEventLogNotif
OBJECTS {
eventSource,

END

SNMPv2 Notification type

}

STATUS current
ENTERPRISE iona
DESCRIPTION

eventDescription

STATUS current

ENTERPRISE iona

VARIABLES { ArtixEventLogMibObjects }

"The generic trap generated from an Artix Event Log."
::= { ArtixBaseTrapDef 1 }

eventPriority,

eventDescription

Example 5: Artix MIB

NOTIFICATION-TYPE

"The generic trap generated from an Artix Event Log."
::= { ArtixBaseTrapDef 1 }

SNMP integration

Events received from various Artix components are converted into
SNMP management information. This information is sent to
designated hosts as SNMP traps, which can be received by any
SNMP managers listening on the hosts. In this way, Artix enables
SNMP managers to monitor Artix-based systems.

Artix supports SNMP version 1 and 2 traps only.

Artix provides a log stream plug-in called snmp_log_stream. The
shared library name of the SNMP plug-in found in the artix.cfg file
is:

plugins:snmp_log_stream:shlib_name = "it_snmp"

Configuring the SNMP plugin

The SNMP plugin has five configuration variables, whose defaults
can be overridden by the user. The availability of these variables
is subject to change. The variables and defaults are:

plugins:snmp_log_stream:community = "‘public';

plugins:snmp_log_stream:server = "localhost";
plugins:snmp_log_stream:port = "162";

plugins:snmp_log_stream:trap_type = "'6";

plugins:snmp_log_stream:oid = "'your IANA number in dotted decimal notation'

Configuring and Deploying Artix Solutions, Runtime in C++ 41

Configuring the Enterprise Object
Identifier

The last variable described, oid, is the Enterprise Object Identifier.
This is assigned to specific enterprises by the Internet Assigned
Numbers Authority (IANA). The first six numbers correspond to
the prefix: iso.org.dod. internet.private.enterprise (1.3.6.1.4._1).
Each enterprise is assigned a unique number, and can provide
additional numbers to further specify the enterprise and product.

For example, the oid for Micro Focus is 5043. The additional
number 1.4.1.0 specifies Artix. Therefore the complete OID for
Artix is 1.3.6.1.4.1.5043.1.4.1.0. To find the number for your
enterprise, visit the IANA website at http://www.iana.org.

The SNMP plug-in implements the 1T_Logging: :LogStream interface
and therefore acts like the local_log_stream plug-in.

42 Configuring and Deploying Artix Solutions, Runtime in C++

http://www.iana.org

Enterprise
Performance Logging

Performance logging plug-ins enable Artix to integrate effectively with
third-party Enterprise Management Systems (EMS).

Enterprise Management Integration

The performance logging plug-ins enable Artix to integrate
effectively with Enterprise Management Systems (EMS), such as
IBM Tivoli™, HP OpenView™, or BMC Patrol™. The performance
logging plug-ins can also be used in isolation or as part of a
bespoke solution.

Enterprise Management Systems enable system administrators
and production operators to monitor enterprise-critical
applications from a single management console. This enables
them to quickly recognize the root cause of problems that may
occur, and take remedial action (for example, if a machine is
running out of disk space).

Performance logging

When performance logging is configured, you can see how each
Artix server is responding to load. The performance logging
plug-ins log this data to file or syslog. Your EMS (for example, IBM
Tivoli) can read the performance data from these logs, and use it
to initiate appropriate actions, (for example, issue a restart to a
server that has become unresponsive, or start a new replica for an
overloaded cluster).

Example EMS integration

Figure 1 shows an overview of the Artix and IBM Tivoli integration
at work. In this example, a restart command is issued to an
unresponsive server.

In Figure 1, the performance log files indicate a problem. The Artix
Tivoli Provider uses the log file interpreter to read the logs. The
provider sees when a threshold is exceeded and fires an event.
The event causes a task to be activated in the Tivoli Task Library.
This task restarts the appropriate server.

This chapter explains how to manually configure the performance
logging plug-ins. It also explains the format of the performance
logging messages.

For details on how to integrate your EMS environment with Artix,
see the Artix Management Guide, C++ Runtime.

Configuring and Deploying Artix Solutions, Runtime in C++ 43

Configuring Performance Logging

This section explains how to manually configure performance
logging. This section includes the following:

* “Performance logging plug-in”.

* “Monitoring Artix requests”.

* “Specifying a log file”.

* “Monitoring clusters”.

* “Configuring a server ID”.

* “Configuring a client ID”.

* “Performance Logging Message Formats”.

Performance logging plug-in

The performance logging component includes the following
plug-ins:

Table 6: Performance Logging Plug-in

Plug-in Description

Response monitor | Monitors response times of requests as
they pass through the Artix binding
chains. Performs the same function for
Artix as the response time logger does for
Orbix.

Collector Periodically collects data from the
response monitor plug-in and logs the
results.

Monitoring Artix requests

You can use performance logging to monitor Artix server and
client requests.

To monitor both client and server requests, add the
bus_response_monitor plug-in to the orb_plugins list in the global
configuration scope. For example:

orb_plugins = ["'xmlfile_log _stream", "'soap', "at_http",
""bus_response_monitor'];

To configure performance logging on the client side only, specify
this setting in a client scope only.

Logging to a file or memory

You can specify whether logging is output to a file or stored in
memory using plugins:bus_response_monitor:type variable.
Specifying file outputs performance logging data to a file, while

44 Configuring and Deploying Artix Solutions, Runtime in C++

specifying memory places the data into memory so it can be
retrieved using the Artix container service. When file is enabled,
memory is also enabled. For example:

plugins:bus_response_monitor:type = "file";

Specifying a log file

You can configure the collector plug-in to log data to a specific file
location.

The following example configuration results in performance data
being logged to /var/log/my_app/perf_logs/treasury_app-log:

plugins: it _response_time_collector:filename =
*/var/log/my_app/perf_logs/treasury_app.-log";

Monitoring clusters

You can configure your EMS to monitor a cluster of servers. You
can do this by configuring multiple servers to log to the same file.
If the servers are running on different hosts, the log file location
must be on an NFS mounted or shared directory.

Alternatively, you can use syslogd as a mechanism for monitoring
a cluster. You can do this by choosing one syslogd to act as the
central logging server for the cluster. For example, say you decide
to use a host named teddy as your central log server. You must
edit the /etc/syslog.conf file on each host that is running a server
replica, and add a line such as the following:

Substitute the name of your log server
user. info @teddy

Some syslog daemons will not accept log messages from other
hosts by default. In this case, it may be necessary to restart the
syslogd on teddy with a special flag to allow remote log messages.

You should consult the man pages on your system to determine if
this is necessary and what flags to use.

Configuring a server 1D

You can configure a server ID that will be reported in your log
messages. This server ID is particularly useful in the case where
the server is a replica that forms part of a cluster.

In a cluster, the server ID enables management tools to recognize
log messages from different replica instances.

You can configure a server ID as follows:

plugins: it _response_time_collector:server-id = "Locator-1";

Configuring and Deploying Artix Solutions, Runtime in C++ 45

This setting is optional; and if omitted, the server ID defaults to
the ORB name of the server. In a cluster, each replica must have
this value set to a unique value to enable sensible analysis of the
generated performance logs.

Configuring a client 1D

You can also configure a client ID that will be reported in your log
messages, for example:

plugins:it_response_time_collector:server-id = "my_client_app';
This setting enables management tools to recognize log messages

from client applications. This setting is optional; and if omitted, it
is assumed that a server is being monitored.

Configuration example

The following simple example configuration file is from the
management demo supplied in your Artix installation:

include “../../../../._./etc/domains/artix.cfg";
demos {

management
{
orb_plugins = ["'xmlfile_log_stream", ''soap', "‘at_http",
""bus_response_monitor'];

client {
plugins: it _response_time_collector:server-id=
""management-demo-client';

plugins: it _response_time_col lector:filename=
“"management_demo_client.log";

}: ,

server {
plugins:it _response_time_collector:server-id=
“'management-demo-server'’;

plugins: it _response_time_collector:filename=
""management_demo_server.log";

In this example, the bus_response_monitor plug-in is set in the
global scope. This specifies settings for both the client and server
applications.

46 Configuring and Deploying Artix Solutions, Runtime in C++

Performance Logging Message Formats

This section describes the performance logging message formats
used by Artix. It includes the following:

e “Artix log message format”.
* “Simple life cycle message formats”.

Artix log message format

Performance data is logged in a well-defined format. For Artix
applications, this format is as follows:

YYYY-MM-DD HH:MM:SS server=ServerID [namespace=nnn service=sss
port=ppp operation=name] count=n avg=n max=n min=n int=n oph=n

Table 7: Artix log message arguments

Argument Description

server The server ID of the process that is logging
the message.

namespace The Artix namespace.

service The Artix service.

port The Artix port.

operation The name of the operation for CORBA
invocations or the URI for requests on
servlets.

count The number of operations of invoked (110P).
or

The number of times this operation or URI
was logged during the last interval (HTTP).

avg The average response time (milliseconds) for
this operation or URI during the last interval.

max The longest response time (milliseconds) for
this operation or URI during the last interval.

min The shortest response time (milliseconds)
for this operation or URI during the last
interval.

int The number of milliseconds taken to gather

the statistics in this log file.

oph Operations per hour.

The combination of namespace, service and port above denote a
unique Artix endpoint.

Configuring and Deploying Artix Solutions, Runtime in C++ 47

Simple life cycle message formats

The server will also log simple life cycle messages. All servers
share the following common format.

YYYY-MM-DD HH:MM:SS server=ServerlID status=CurrentStatus

Table 8: Simple life cycle message formats arguments

Argument Description

server The server ID of the process that is logging
the message.

status A text string describing the last known status
of the server (for example, starting_up,
running, shutting_down).

Remote Performance Logging

The performance logging plug-ins can be configured to log data to
a local file or to a remote endpoint. Depending on your specific
architecture, it might not always be desirable or feasible to deploy
the required management tools on a particular platform. In this
case, it would not be appropriate to persist the performance
logging data to a local file, because there would be no local
application to consume it.

In some situations, NFS or a similar file sharing mechanism might
be used to persist data across your distributed system. However,
security and performance concerns often prevent the use of such
protocols. In such cases, Artix provides a remote logging facility
for the purposes of sending logging data to a remote endpoint
where the data can be persisted and subsequently consumed by
an application that is native to that remote system.

Components of a remote logging
framework

The components of a remote logging framework are as follows:

* The performance logging collector plug-in runs within a
deployed application on the source host. This is the host that
sends its logging data to a remote endpoint. The collector is
configured to harvest the required performance logging data
and to write this data to a remote CORBA endpoint (instead
of, for example, to a local file on the source host).

Note: Remote logging is only supported in the C++
version of the performance logging collector plug-in.

* The remote logger daemon is an Artix application that is
deployed on the remote target host. It loads the remote log
receiver servant, which is accepts the performance logging
data from the source applications and logs this data to a local
file on the target host.

48 Configuring and Deploying Artix Solutions, Runtime in C++

Figure 1:

* The EMS component (for example, a Tivoli or BMC Patrol

agent) runs on the remote target host. It consumes the data
from the file and propagates the performance information to
the centralized region manager.

Figure 1 shows how remote logging works in Artix.

[Source Host Source Host Source Host
Source Applle alon Source Applleation Soures Application
e - @
Ferbmaice | Fgmrrna]oe W
Loggng Pug—n Loggllg nug 1 Logghg Flvg-h
[I] lTZ'I]‘1
HoP Icﬁ P
Target Host
Remoate Logoer
Dzemon
EMS Component
(e.g. Tiwali or
. Bk Patrol
agent])
Parformanc e
Logging Dat

Remote Logging Framework

Deploying a remote logger daemon

As explained in “Components of a remote logging framework” on
page 48, the remote logger daemon loads the remote log receiver
servant, which accepts the performance logging data from the
source application(s), and logs this data to a local file on the
target host. You may deploy the remote logger plug-in in any Artix
application. The remote logger plug-in should be deployed in a
standalone container whose sole purpose is to log data from one
or more source applications. The local file on the remote host can
then be consumed by the EMS agent running on that host, or used
as part of some custom-made solution.

Points to note

The following points should be noted:

* 1IOP is used for the data communication between the collector
and the remote logger daemon. This adds very low overhead
to the logging payload, because it uses a binary protocol on
the wire (CDR).

Configuring and Deploying Artix Solutions, Runtime in C++ 49

* To secure the message transfer, IIOP/TLS can be used for
data communication between the collector and the remote
logger daemon.

* The timestamps embedded in the remote logging data are
localized to the specific source system on which the monitored
application is running. You must ensure that the system clocks
on all participating systems are synchronized to an acceptable
level, as governed by your EMS or your custom-made
solution.

Configuring Remote Performance Logging

This section explains how to configure remote logging, which
enables you to send logging data to a remote endpoint on another
host rather than to a local file.

Configuring the Remote Logger Daemon

To configure the remote logger daemon that runs on the remote
target host, add the following configuration scope and settings to
the Artix configuration domain:

remote_logger_daemon

{
orb_plugins = [“local_log_stream™, “remote_log_receiver'];
event_log:filters = ["IT_MGMT_LOGGING=*""];

plugins:remote_log_receiver:log_filename =
*"/var/logs/remote_perflogs.txt';

plugins:remote_log_receiver:ior_filename =
""/var/publish/logger_ref.txt";

plugins:remote_log_receiver:iiop:addr_list = ["host:port™"];

plugins:remote_log_receiver:prerequisite_plugins =
["iiop_profile", "giop'", "iiop'];

Note: You may add this configuration scope directly to
your Artix configuration domain in artix.cfg, or you may
create a separate configuration file that includes artix.cfg.

50 Configuring and Deploying Artix Solutions, Runtime in C++

Remote logging configuration settings

The settings for the remote_log_receiver plug-in are explained as
follows:

plugins:remote_log_receiver: This is the local file on the remote
log_filename host to which all logs are directed.

plugins:remote_log_receiver: When the remote logger daemon is
ior_filename started, it writes a stringified

Interoperable Object Reference
(IOR) to the file specified by this
configuration item. This IOR may
be subsequently made available to
the source applications that are
acting as clients of the remote
logger. However, this is not
required if the source applications
use a corbaloc URL rather than an
IOR to contact the remote logger.

plugins:remote_log_receiver: This specifies the hostname or IP
iiop:addr_list address of the host on which the
remote logger is running, and the
port that it uses to listen for
logging requests.

plugins:remote_log_receiver: This must specify the I110OP plug-ins
prerequisite_plugins that the remote logger needs for
communication with the source
host(s).
TLS security
If you are using TLS security:

* Ensure that you replace the plugins:remote_log_receiver:iiop:
addr_list configuration item with
plugins:remote_log_receiver:
iiop_tls:addr_list.

° Ensure that the plugins:remote_log_receiver:prerequisite_
plugins configuration item lists “iiop_tls" rather than "iiop".

Running the remote logger daemon

To run the remote logger daemon, run the Artix container as
follows:

it _container -ORBname remote_logger_daemon

Note: This is assuming that the relevant configuration
scope is called remote_logger_daemon.

Configuring a deployed application on
the source host

You must also configure your deployed application to use
performance logging with the remote logger capability. For the

purposes of illustration, it describes the steps that are required to
configure an Artix for z/OS application.

Configuring and Deploying Artix Solutions, Runtime in C++ 51

Configuration steps

To enable a deployed application (for example, on z/0S) to use
performance logging with the remote logger capability:

1. Ensure that the remote logger daemon has been configured
correctly and deployed on the target host, as described in
“Configuring the Remote Logger Daemon” on page 50.

2. Open the configuration domain for your deployed application

(by default, this is artixhlq.CONFIG(ARTIX) for Artix for z/OS

applications).

Go to the appropriate configuration scope for your application.

4. Add it _response_time_logger to the end of the ORB plug-ins
list setting. Also, ensure that I1OP is enabled for the
application, for example:

w

orb_plugins = ["local_log_stream', "iiop_profile", "giop",
“iiop", .., "It _response_time_logger'];

Note: Ensure that you have a management license
available.

5. Add it _response_time_logger to the server binding list for the
application. For example:

binding:server_binding_list =
['*SOAP+it_response_time_logger',
"it_response_time_logger'];

6. Add the following collector plug-in configuration variables:

update the log every 30 seconds
plugins: it _response_time_collector:period = "30";

the id of the server for the log output
plugins: it _response_time_collector:server-id = “'server-id";

the remote endpoint details:

plugins: it _response_time_collector:remote_logging enabled = "true';

initial_references:IT_PerflLoggingReceiver:reference =
""corbaloc:iiop:1.2@remote_host:1234/1T_PerflLoggingReceiver ';

Note: Ensure that the server-id value is replaced with the actual
server ID for the log output (for example cics-server-adapter-1).

52 Configuring and Deploying Artix Solutions, Runtime in C++

Example output

The following is example output from the performance log on the
remote file system where a number of different operations have
been run against the application:

2006-10-18 10:08:22 server=cics-server-adapter-1 status=starting_up

2006-10-18 10:08:22 server=cics-server-adapter-1 status=running

2006-10-18 10:08:52 server=cics-server-adapter-1 status=running

2006-10-18 10:09:22 server=cics-server-adapter-1 status=running

2006-10-18 10:09:22 server=cics-server-adapter-1 [operation=test bounded] count=1
avg=110 max=110 min=110

int=30001 oph=119

2006-10-18 10:09:22 server=cics-server-adapter-1 [operation=test _unbounded] count=1
avg=809 max=809 min=809

int=30001 oph=119

2006-10-18 10:09:52 server=cics-server-adapter-1 status=running

2006-10-18 10:09:52 server=cics-server-adapter-1 [operation=call_me] count=1 avg=793
max=793 min=793

int=29998 oph=120

2006-10-18 10:10:22 server=cics-server-adapter-1 status=running

2006-10-18 10:10:22 server=cics-server-adapter-1 [operation=_get _currentMappings]
count=1 avg=0 max=0 min=0

int=30000 oph=120

2006-10-18 10:10:52 server=cics-server-adapter-1 status=running

2006-10-18 10:11:22 server=cics-server-adapter-1 status=running

2006-10-18 10:11:52 server=cics-server-adapter-1 status=running

2006-10-18 10:12:22 server=cics-server-adapter-1 status=running

2006-10-18 10:12:22 server=cics-server-adapter-1 [operation=resolve] count=1 avg=0
max=0 min=0 Int=29999 oph=120

2006-10-18 10:12:52 server=cics-server-adapter-1 status=running

2006-10-18 10:12:57 server=cics-server-adapter-1 status=shutdown_started

2006-10-18 10:12:57 server=cics-server-adapter-1 status=shutdown_complete

Configuring and Deploying Artix Solutions, Runtime in C++ 53

54 Configuring and Deploying Artix Solutions, Runtime in C++

Using Artix with
International Codesets

The Artix SOAP and CORBA bindings enable you to transmit and receive
messages in a range of codesets.

Introduction to International Codesets

A coded character set, or codeset for short, is a mapping between
integer values and characters that they represent. The best known
codeset is ASCII (American Standard Code for Information
Interchange). ASCII defines 94 graphic characters and 34 control
characters using the 7-bit integer range.

European languages

The 94 characters defined by the ASCII codeset are sufficient for
English, but they are not sufficient for European languages, such
as French, Spanish, and German.

To remedy the situation, an 8-bit codeset, 1SO 8859-1, also
known as Latin-1, was invented. The lower 7-bit portion is
identical to ASCII. The extra characters in the upper 8-bit range
cover those languages used widely in Western Europe.

Many other codesets are defined under 1SO 8859 framework.
These cover languages in other regions of Europe, as well as
Russian, Arabic and Hebrew. The most recent addition is 1SO
8859-15, which is a revision of 1ISO 8859-1. This adds the Euro
currency symbol and other letters while removing less used
characters.

For further information about 1SO-8859-x encoding, see the
following web site: “The ISO 8859 Alphabet Soup”
(http://czyborra.com/charsets/iso8859.html).

Ideograms

Asian countries that use ideograms in their writing systems need
more characters than fit in an 8-bit integer. Therefore, they
invented double-byte codesets, where a character is represented
by a bit pattern of 2 bytes.

These languages also needed to mix the double-byte codeset with
ASCII in a single text file. So, character encoding schemas, or
simply encodings, were invented as a way to mix characters of
multiple codesets.

Some of the popular encodings used in Japan include:
* Shift JIS

e Japanese EUC

e Japanese ISO 2022

Configuring and Deploying Artix Solutions, Runtime in C++ 55

http://czyborra.com/charsets/iso8859.html
http://czyborra.com/charsets/iso8859.html

Unicode

Unicode is a codeset that aims to assign a unique number, or code
point, to every character that exists (and even once existed) in all
languages. To accomplish this, Unicode, which began as a
double-byte codeset, has been expanded into a quadruple-byte
codeset.

Unicode, in pure form, can be difficult to use within existing
computer architectures, because many APIs are byte-oriented and
assume that the byte value 0 means the end of the string.

For this reason, Unicode Transformation Format for 8-bit channel,
or UTF-8, is frequently used. When browsers list “Unicode” in its
encoding selection menu, they usually mean UTF-8, rather than
the pure form of Unicode.

For more information about Unicode and its variants, visit Unicode
(http://www.unicode.org/).

Charset names

To address the need for computer networks to connect different
types of computers that use different encodings, the Internet
Assigned Number Authority, or IANA, has a registry of encodings
at http://www.iana.org/assignments/character-sets.

IANA names are used by many Internet standards including MIME,
HTML, and XML. Table 9 lists IANA names for some popular
charsets.

Table 9: IANA Charset Names

IANA Name Description

US-ASCII 7-bit ASCII for US English

1SO-8859-1 Western European languages

UTF-8 Byte oriented transformation of Unicode

UTF-16 Double-byte oriented transformation of
Unicode

Shift_JIS Japanese DOS & Windows

EUC-JP Japanese adaptation of generic EUC
scheme, used in UNIX

1SO-2022-JP Japanese adaptation of generic 1ISO 2022
encoding scheme

Note: IANA names are case insensitive. For example, US-ASCII
can be spelled as us-ascii or US-ascii.

CORBA names

In CORBA, codesets are identified by numerical values registered
with the Open Group’s registry, OSF Codeset Registry:
ftp://ftp.opengroup.org/pub/code_set_registry/code_set_registry
1.2g.txt.

56 Configuring and Deploying Artix Solutions, Runtime in C++

http://www.unicode.org
http://www.unicode.org
http://www.iana.org/assignments/character-sets
ftp://ftp.opengroup.org/pub/code_set_registry/code_set_registry1.2g.txt
ftp://ftp.opengroup.org/pub/code_set_registry/code_set_registry1.2g.txt

Java names

Java uses IANA charset names, but recent Java versions also
recognize the older “historical” names used by earlier Java
versions. See
http://docs.oracle.com/javase/6/docs/api/java/nio/charset/Chars
et.html for details.

Note: Artix uses IANA charset names even for CORBA codesets.

Working with Codesets using SOAP

Because SOAP messages are XML based, they are composed
primarily of character data that can be encoded using any of the
existing codesets. If the applications in a system are using
different codesets, they can not interpret the messages passing
between them. The Artix SOAP plug-in uses the XML prologue of
SOAP messages to ensure that it stays in sync with the
applications that it interacts with.

Making requests

When making requests or broadcasting a message, the SOAP
plug-in determines the codeset to use from its Artix configuration
scope. You can set the SOAP plug-in’s character encoding using
the plugins:soap:encoding configuration variable. This takes the
IANA name of the desired codeset. The default value is UTF-8.

For more information on this configuration variable, see the Artix
Configuration Reference. For general information on
configuring Artix applications, see “Getting Started” on page 3.

Responding to SOAP requests

When an Artix server receives a SOAP message, it checks the XML
prologue to see what encoding codeset the message uses. If the
XML prologue specifies the message’s codeset, Artix uses the
specified codeset to read the message and to write out its
response to the request. For example, an Artix server that
receives a request with the XML prologue shown in Example 6
decodes the message using UTF-16 and encodes its response using
UTF-16.

Example 6: XML Prologue

<?xml version="1.0" encoding=""UTF-16""?>

If an Artix server receives a SOAP message where the XML
prologue does not include the encoding attribute, the server will

use whatever default codeset is specified in its configuration to
decode the message and encode the response.

Configuring and Deploying Artix Solutions, Runtime in C++ 57

http://docs.oracle.com/javase/6/docs/api/java/nio/charset/Charset.html
http://docs.oracle.com/javase/6/docs/api/java/nio/charset/Charset.html

Working with Codesets using CORBA

The Artix CORBA plug-in supports both wide characters and
narrow characters to accommodate an array of codesets. It also
supports codeset negotiation. Codeset negotiation is the process
by which two CORBA processes which use different native
codesets determine which codeset to use as a transmission
codeset. Occasionally, the process requires the selection of a
conversion codeset to transmit data between the two processes.
The algorithm is defined in section 13.10.2.6 "Code Set
Negotiation" of the CORBA 2.6.1 specification.

Native codeset

A native codeset (NCS) is a codeset that a CORBA program speaks
natively.

For JAX-RPC, this is UTF-8 (0x05010001) for char and String, and
UTF-16 (0x00010109) for wchar and wstring.

For C and C++, this is the encoding that is set by setlocale(),
which in turn depends on the LANG and LC xxxx environment
variables.

You can configure the Artix CORBA plug-in’s native codesets using
the configuration variables listed in Table 10.

Table 10: Configuration Variables for CORBA Native Codeset

Configuration Variable Description
plugins:codeset:char:ncs Specifies the native codeset for
narrow character and string
data.

plugins:codeset:wchar:ncs Specifies the native codeset for
wide character and string data.

58 Configuring and Deploying Artix Solutions, Runtime in C++

Conversion codeset

A conversion codeset (CCS) is an alternative codeset that the
application registers with the ORB. More than one CCS can be
registered for each of the narrow and wide interfaces. CCS should
be chosen so that the expected input data can be converted to and
from the native codeset without data loss. For example, Windows
code page 1252 (0x100204e4) can be a conversion codeset for
1SO-8859-1 (0x00010001), assuming only the common characters
between the two codesets are used in the data.

You can configure the Artix CORBA plug-in’s list of conversion
codesets using the configuration variables listed in Table 11.

Table 11: Configuration Variables for CORBA Conversion
Codesets

Configuration Variable Description

plugins:codeset:char:ccs Specifies the list of conversion
codesets for narrow character
and string data.

plugins:codeset:wchar:ccs Specifies the list of conversion
codesets for wide character
and string data.

Transmission codeset

A transmission codeset (TCS) is the codeset agreed upon after the
codeset negotiation. The data on the wire uses this codeset. It is
either the native codeset, one of the conversion codesets, or

UTF-8 for the narrow interface and UTF-16 for the wide interface.

Negotiation algorithm

Codeset negotiation uses the following algorithm to determine
which codeset to use in transferring data between client and
server:

1. If the client and server are using the same native codeset, no
translation is required.

2. If the client has a converter to the server’s codeset, the
server’s native codeset is used as the transmission codeset.

3. If the client does not have an appropriate converter and the
server does have a converter to the client’s codeset, the
client’s native codeset is used as the transmission codeset.

4. If neither the client nor the server has an appropriate
converter, the server ORB tries to find a conversion codeset
that both server and client can convert to and from without
loss of data. The selected conversion codeset is used as the
transmission codeset.

5. If no conversion codeset can be found, the server ORB
determines if using UTF-8 (narrow characters) or UTF-16
(wide characters) will allow communication between the client

Configuring and Deploying Artix Solutions, Runtime in C++ 59

and server without loss of data. If UTF-8 or UTF-16 is
acceptable, it is used as the transmission codeset. If not, a
CODESET_INCOMPATIBLE exception is raised.

Codeset compatibility

The final steps involve a compatibility test, but the CORBA
specification does not define when a codeset is compatible with
another. The compatibility test algorithm employed in Orbix is
outlined below:

1. 1SO 8859 Latin-n codesets are compatible.

2. UCS-2 (double-byte Unicode), UCS-4 (four-byte Unicode),
and UTF-x are compatible.

3. All other codesets are not compatible with any other codesets.
This compatibility algorithm is subject to change without notice in
future releases. Therefore, it is best to configure the codeset

variables as explicitly as possible to reduce dependency on the
compatibility algorithm.

Working with Codesets using Fixed Length Records

Artix fixed record length support enables Artix to interact with
mainframe systems using COBOL. For example, many COBOL
applications send fixed length record data over WebSphere MQ.

Artix provides a fixed binding that maps logical messages to
concrete fixed record length messages. This binding enables you
to specify attributes such as encoding style, justification, and
padding character.

Encoding attribute

The Artix fixed binding provides an optional encoding attribute for
both its fixed:binding and fixed:body elements. The encoding
attribute specifies the codeset used to encode the text data. Valid
values are any IANA codeset name. See
http://www.iana.org/assignments/character-sets for details.

The encoding attribute for the fixed:binding element is a global
setting; while the fixed:body attribute is per operation. Both
settings are optional. If you do not set either, the default value is
UTF-8.

For more details, see ArtixInstalIDir\schemas\fixed-binding.xsd.

60 Configuring and Deploying Artix Solutions, Runtime in C++

http://www.iana.org/assignments/character-sets

Fixed binding example

The following WSDL example shows a fixed binding with encoding
attributes for fixed:body elements. This binding includes two
operations, echoVoid and echoString.

Example 7: Fixed Length Record Binding

<?xml version="1.0" encoding=""UTF-8"?>

<definitions xmIns="http://schemas.xmlsoap.org/wsdl/"
xmlIns: fixed="http://schemas. iona.com/bindings/fixed"
xmIns:http="http://schemas. iona.com/transports/http"
xmlns:http-conf="http://schemas. iona.com/transports/http/configuration™
xmlns:iiop=""http://schemas. iona.com/transports/iiop_tunnel®
xmlns:mg=""http://schemas. iona.com/transports/mq"
xmlns:soap=""http://schemas.xmlsoap.org/wsdl/soap/""

xmIns:tns="http://ww. iona.com/artix/test/118nBase/"

xmIns:xsd=""http://ww.w3.0org/2001/XMLSchema’
xmlns:xsd1=""http://wmw. iona.com/artix/test/118nBase” name="118nBaseService"
targetNamespace=""http://www. iona.com/artix/test/118nBase/""

<message name="'echoString'">
<part name="'stringParamQ' type="‘xsd:string'/>
</message>

<message name="‘echoStringResponse'>
<part name="‘return’ type="'xsd:string'/>
</message>

<message name="‘echoVoid"/>
<message name="‘echoVoidResponse'/>

<portType name="'118nBasePortType"">
<operation name="‘echoString">
<input message='"tns:echoString" name="‘echoString'/>
<output message='"tns:echoStringResponse' name="‘echoStringResponse'/>
</operation>
<operation name="echoVoid">
<input message='"tns:echoVoid" name="‘echoVoid'/>
<output message=""tns:echoVoidResponse" name="'echoVoidResponse'/>
</operation>
</portType>

Configuring and Deploying Artix Solutions, Runtime in C++ 61

Example 7: Fixed Length Record Binding

<binding name=""118nFIXEDBinding" type=""tns:118nBasePortType'>
<fixed:binding/>
<operation name="'echoString'>
<fixed:operation discriminator="discriminator'/>
<input name="‘echoString'>
<fixed:body encoding="'1S0-8859-1'>
<fixed:field bindingOnly=""true" fixedvalue=""01"
name=""discriminator"/>
<fixed:field name="'stringParam0" size=""50"/>
</Ffixed:body>
</input>
<output name="‘echoStringResponse'>
<fixed:body encoding=""1S0-8859-1'">
<fixed:field name="return" size="50"/>
</fixed:body>
</output>
</operation>

<operation name="‘echoVoid'>

<fixed:operation discriminator="discriminator'/>
<input name="‘echoVoid'>
<fixed:body>
<fixed:field name="'discriminator" fixedValue="'02"
bindingOnly=""true"/>
</fixed:body>
</input>
<output name="'echoVoidResponse'">
<fFixed:body/>
</output>
</operation>
</binding>

</definitions>

Further information

For more details on the Artix fixed length binding, see Artix
Bindings and Transports, C++ Runtime.

Working with Codesets using Message Interceptors

Artix provides support for codeset conversion for transports that
do not have their own concept of headers. For example, IBM
WebSphere MQ, and BEA Tuxedo. This generic support is

implemented using an Artix message interceptor and WSDL port
extensors.

For example, an Artix C++ client could use Artix Mainframe to
access a mainframe system, using a binding for fixed length
record over MQ. In this scenario, an Artix message interceptor can
be configured to enable codeset conversion between ASCII and
EBCDIC (Extended Binary Coded Decimal Interchange Code).

62 Configuring and Deploying Artix Solutions, Runtime in C++

You can enable this codeset conversion simply by editing your
WSDL file, or by using accessor methods in your application code.
This section explains how to use both of these approaches.

Note: Codeset conversion set in application code takes
precedence over the same settings in a WSDL file.

Codeset conversion attributes

This generic support for codeset conversion is implemented using
a message interceptor. This message interceptor manipulates the
following codeset conversion attributes:

LocalCodeSet Specifies the codeset used locally by a
client or server application.

OutboundCodeSet Specifies the codeset used by the
application for outgoing messages.

InboundCodeSet Specifies the codeset used by the
application for incoming messages.

You can specify these attributes to convert client-side requests
and server-side responses. All three attributes are optional.

Configuring and Deploying Artix Solutions, Runtime in C++ 63

Configuring codeset conversion in a
WSDL file

You can configure codeset conversion by setting the codeset
conversion attributes in a WSDL file. Example 8 shows the
contents of the Artix internationalization schema
(118n-context.xsd).

Example 8: Artix i18n Schema

<?xml version="1.0" encoding=""UTF-8" ?>

<xs:schema xmlns:xs="http://ww.w3.0rg/2001/XMLSchema"*
xmIns:wsdl=""http://schemas.xmlsoap.org/wsdl/*"
targetNamespace=""http://schemas. iona.com/bus/i18n/context"
xmIns: i18n-context=""http://schemas. iona.com/bus/i18n/context"
elementFormDefault="qual ified"
attributeFormDefault=""unqual ified'>

<xs:import namespace = "http://schemas.xmlsoap.org/wsdl/*
schemaLocation="wsdl .xsd"/>

<xs:element name="‘client" type="i118n-context:ClientConfiguration" />
<xs:complexType name="‘ClientConfiguration’>

<Xs:annotation>
<xs:documentation> 118n Client Context Information
</xs:documentation>

</xs:annotation>

<xs:complexContent>
<xs:extension base="wsdl:tExtensibilityElement” >
<xs:attribute name="LocalCodeSet" type='"xs:string" use="optional' />
<xs:attribute name="OutboundCodeSet" type=""xs:string' use="‘optional" />
<xs:attribute name="InboundCodeSet" type="'xs:string" use="'optional" />
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:element name="'server' type=""il8n-context:ServerConfiguration'/>

<xs:complexType name="'ServerConfiguration' >
<Xs:annotation>
<xs:documentation> 118n Server Context Information
</xs:documentation>
</xs:annotation>

<xs:complexContent>
<xs:extension base="wsdl:tExtensibilityElement" >
<xs:attribute name="LocalCodeSet" type='"xs:string" use="optional’ />
<xs:attribute name="OutboundCodeSet" type="xs:string' use="optional™ />
<xs:attribute name="InboundCodeSet" type="'xs:string"” use="‘optional’ />
</xs:extension>
</xs:complexContent>

</xs:complexType>

</xs:schema>

64 Configuring and Deploying Artix Solutions, Runtime in C++

The Artix internationalization message interceptor uses this
schema as a port extensor. This enables you to configure codeset
conversion attributes in a WSDL file.

Client/server WSDL example

The following example shows codeset conversion settings for a
client and a server application specified in a sample WSDL file:

Example 9: i18n Specified in a WDSL File

<?xml version="1.0" encoding=""UTF-8"?>
<definitions name="118nBaseService"
targetNamespace=""http://ww. iona.com/artix/test/118nBase/""

xmIns=""http://schemas.xmlsoap.org/wsdl/*
xmIns:soap=""http://schemas.xmlsoap.org/wsdl/soap/""
xmIns:tns="http://wmw. iona.com/artix/test/118nBase/""
xmIns:xsd=""http://ww.w3.0rg/2001/XMLSchema™
xmIns:mg=""http://schemas. iona.com/transports/mq"
xmIns:http=""http://schemas. iona.com/transports/http"
xmIns:http-conf="http://schemas. iona.com/transports/http/configuration
xmIns: fixed="http://schemas. iona.com/bindings/fixed"
xmlIns: i18n-context="http://schemas. iona.com/bus/i18n/context"
xmlns:xsd1=""http://ww. iona.com/artix/test/118nBase' >

<import namespace=""http://ww. iona.com/artix/test/118nBase""
location="./118nServiceBindings.wsdl"/>

<service name="'118nService'>

<port binding=""tns:118nFIXEDBinding"” name=""118nFIXED_HTTPPort'>
<http:address location="http://localhost:0"/>
<il18n-context:client LocalCodeSet="1S0-8859-1" InboundCodeSet=""UTF-8"/>
<i18n-context:server LocalCodeSet="UTF-8" OutboundCodeSet=""1S0-8859-1"/>
</port>

<port binding=""tns:118nFIXEDBinding"” name=""118nFIXED_MQPort'>

<mg:client QueueManager=""MY_DEF _QM" QueueName=""MY_FIRST Q" AccessMode="'send""
ReplyQueueManager="MY_DEF_QM" ReplyQueueName=""REPLY_Q"
CorrelationStyle=""messageld copy" />

<mg:server QueueManager="MY_DEF OQM" QueueName="MY_FIRST_Q"
ReplyQueueManager="MY_DEF_QM" ReplyQueueName=""REPLY_Q" AccessMode=""receive"
CorrelationStyle=""messageld copy" />
<il8n-context:client LocalCodeSet=""UTF-8" InboundCodeSet="""/>
<il8n-context:server LocalCodeSet=""1S0-8859-1"/>

</port>

</service>
</definitions>
This sample WSDL file shows a single service named 118nService,
with two bindings and two ports named 118nFIXED_HTTPPort and

118nFIXED_MQPort. The binding in both cases is fixed length record,
each with a single operation.

Configuring and Deploying Artix Solutions, Runtime in C++ 65

Enabling codeset conversion in
application code

You can also enable codeset conversion attributes by calling the
following methods in your C++ application code:

namespace IT_ContextAttributes

{
class IT_CONTEXT _ATTRIBUTE_ APl ClientConfiguration

{
void setlLocalCodeSet(const IT_Bus::String & val);

void setOutboundCodeSet(const IT_Bus::String & val);
void setlnboundCodeSet(const IT_Bus::String & val);

}:

class IT_CONTEXT _ATTRIBUTE_ APl ServerConfiguration
{

void setlLocalCodeSet(const IT_Bus::String & val);
void setOutboundCodeSet(const IT_Bus::String & val);
void setlnboundCodeSet(const IT Bus::String & val);
};
}

An Artix ContextContainer in the message interceptor, and the
WSDL configuration are checked for each attribute. This is
performed during the client’s intercept_invoke() method and the
server’s intercept_dispatch() method. The client request buffer or
server response buffer can be converted to another encoding as
needed. This conversion can occur on the outbound or inbound
intercept points.

The interceptor refers to the current context on a per-thread
basis. For detailed information on Artix contexts, see Developing
Artix Applications with C++.

Linking with the context library

The message interceptor uses a common type library of Artix
context attributes. The application must be linked with this
common library, and with any transports that use this context to
set or get attributes. The generated header files for this common
library are available in the following directory:

ArtixInstal IDir\include\it_bus_ pdk\context attrs

You must ensure that your application links with the context
library that contains the generated stub code for i18n-context.xsd.

66 Configuring and Deploying Artix Solutions, Runtime in C++

http://communities.progress.com/pcom/docs/DOC-106903
http://communities.progress.com/pcom/docs/DOC-106903

Client code example

Example 10 shows an example of the code that you need to add to
your C++ client application:

Example 10: Accessing i18n in C++ Client Code

void
118nTest: :echoString(

{

118nBaseClient* client, const String& instr)
String outstr;

try
{

// Set the 118n request context to match the fixed binding encoding setting

IT _Bus::Bus var bus = client->get bus();
ContextRegistry * reg = bus->get_context_registry();

ContextCurrent & cur = reg->get _current();
ContextContainer * registered_ctx = cur.request _contexts();

AnyType & 118n_ctx_info =
registered_ctx->get_context(IT_ContextAttributes: : 118N_INTERCEPTOR_CLIENT_QNAME,
true);

ClientConfiguration & i18n_ctx _cfg = dynamic_cast<ClientConfiguration&>
(i18n_ctx_info);

// Set the Inbound codeset to match the binding encoding

static const String LOCAL _CODE_SET = ''1S0-8859-1";
118n_ctx_cfg.setlLocalCodeSet(LOCAL_CODE_SET);

const String & local_codeset = (*il18n_ctx _cfg.-getlLocalCodeSet());
client->echoString(instr, outstr);

// Read the i18n reply context

registered _ctx = cur.reply_contexts();

AnyType & 118n_ctx_reply_info =

registered_ctx->get_context(IT_ContextAttributes: : 118N_INTERCEPTOR_CLIENT_QNAME,
true);

const ClientConfiguration & i18n_ctx reply cfg =
dynamic_cast<const ClientConfiguration&> (i18n_ctx reply_info);

Configuring and Deploying Artix Solutions, Runtime in C++ 67

Example 10: Accessing i18n in C++ Client Code

const String * local_codeset _reply = i18n_ctx_reply cfg.getlLocalCodeSet();
const String * outbound codeset reply = i18n_ctx_reply_cfg.getOutboundCodeSet();
const String * inbound_codeset_reply = i18n_ctx_reply_cfg.getinboundCodeSet();

if(local_codeset_reply)

cout << “client LocalCodeSet reply context:" << local_codeset reply->c_str() <<
endl;

iT(outbound_codeset reply)

cout << "'client OutboundCodeSet reply context:''<< outbound_codeset reply->c_str
<< endl;

if(inbound_codeset _reply)

cout << "client InboundCodeSet reply context™ << inbound_codeset reply->c_str()

<< endl;
}
catch (IT_Bus::ContextException& ce)
{
}
catch (IT_Bus::Exception& ex)
{
}
catch (--.)
{
}
}
Server code example
Example 10 shows example of the code that you need to add to
your C++ servant application.
Example 11: Accessing i18n in C++ Server Code
void

118nServicelmpl : z:echoString(
const String& stringParamO,
String & var_return) IT_THROW_DECL((IT_Bus: :Exception))

var_return = stringParamO;

try

{

// Read the 118n reply context

ContextRegistry * reg = m_bus->get context registry(Q);

ContextCurrent & cur = reg->get _current();
ContextContainer * registered_ctx = cur.request _contexts();

68 Configuring and Deploying Artix Solutions, Runtime in C++

Example 11: Accessing i18n in C++ Server Code

AnyType & 118n_ctx_info =
registered_ctx->get_context(IT_ContextAttributes: : 118N_INTERCEPTOR_SERVER QNAME,
false);

const ServerConfiguration & i18n_ctx cfg =

dynamic_cast<const ServerConfiguration&> (i18n_ctx_info);

const String * local_codeset = 118n_ctx cfg.-getlLocalCodeSet();
const String * outbound_codeset = i18n_ctx_cfg.getOutboundCodeSet();
const String * inbound_codeset = 118n_ctx_cfg.getinboundCodeSet();

if(local_codeset)

cout << "server LocalCodeSet request context:" << local_codeset->c_str() << endl;
if(outbound_codeset)

cout << "server OutboundCodeSet request context:" << outbound_codeset->c_str() <<
endl;
if(inbound_codeset)

cout << "'server InboundCodeSet request context:" << inbound_codeset->c_str() <<
endl ;

// Add code to change the reply context

registered_ctx = cur.reply_contexts();

AnyType & i18n_reply ctx =
registered_ctx->get_context(IT_ContextAttributes: : 118N_INTERCEPTOR_SERVER_QNAME,

true);

ServerConfiguration & i18n_reply ctx cfg =
dynamic_cast<ServerConfiguration&> (i18n_reply ctx);

// Set the local codeset to match the binding encoding

static const String LOCAL _CODE_SET = "1S0-8859-1";
i18n_reply_ctx _cfg.setlLocalCodeSet(LOCAL_CODE SET);

String & set _local_context = (*i118n_reply_ctx_cfg.getlLocalCodeSet());

assert(set_local_context == LOCAL_CODE_SET);

3
catch (IT_Bus: :ContextException& ex)
{
cout << "Error with server context"” << ex.message() << endl;
}
catch (IT_Bus::Exception& ex)
{
cout << "Error with server context" << ex.message() << endl;
}
catch (--.)
{
cout << "Unknown Error with server context" << endl;
}

Configuring and Deploying Artix Solutions, Runtime in C++ 69

Artix configuration settings

Finally, you must also enable the i18n message interceptor in your
artix.cfg file. Example 12 shows the required settings:

Example 12: Artix Configuration Settings

// Add to a demo/application scope.
interceptor{
binding:artix:client_message_interceptor_list
"'118n-context: 118nInterceptorfFactory™;

binding:artix:server_message interceptor_list
""i18n-context: 118nlInterceptorfFactory'’;

orb_plugins = ["xmlfile_log_stream”, "il18n_interceptor'];

event_log:filters = ["*=WARN+ERROR+FATAL'];

Further information

For more information details on writing Artix C++ applications and
on Artix contexts, see Developing Artix Applications with
C++.

Routing with International Codesets

When routing between applications, Artix attempts to correctly
map between different codesets. If both endpoints use bindings
that support internationalization (i18n), Artix uses codeset
conversion. If only one of the endpoints supports
internationalization, the Artix endpoint supporting
internationalization attempts to use codeset conversion on the
messages.

The following bindings do not natively support
internationalization:

* Tagged
° G2++
e XML

However, for these bindings you can use the Artix i18n interceptor
to perform codeset conversion on the message buffer before it is
placed on the wire. For more details, see Artix Bindings and
Transports, C++ Runtime.

Routing between internationalized
endpoints
When Artix is routing between internationalized endpoints, the

receiving endpoint and the sending endpoint both behave
independently of each other.

70 Configuring and Deploying Artix Solutions, Runtime in C++

For example, if one endpoint of a router receives a request in
Shift_JIS and the router is configured to use 1SO-8859-1, the
Shift_JIS request is properly decoded by the router.

However, when the request is passed on by the router, it is passed
on in 1SO-8859-1. If the two codesets are not compatible, there is
a good chance that data will be lost in the conversion and the
request will not be properly handled.

Note: If the codesets are not compatible, and data is lost
in the router, Artix does not generate a warning.

Routing from non-internationalized to
internationalized bindings

When Artix is routing from a non-internationalized endpoint to an
internationalized endpoint, it uses the default codeset specified in
the router’s configuration for writing messages to internationalized
endpoints. If the Artix router is configured to encode messages
using a codeset that is different from the one used by the
endpoint, you will lose data.

For example, if a Tuxedo application makes a request on a Web
service through a router, the router receives non-internationalized
data from the Tuxedo application. And the router then writes the
SOAP message using the codeset specified in its configuration. If
the Web service and the router are both configured to write in
us-dk, the operation proceeds without a problem. The router
receives the encoded response from the server and passes it back
to the Tuxedo binding.

However, if the Web service is configured to accept data using
us-dk, and the router is configured to encode data using Chinese,
data may be lost between the router and the Web service due to
codeset incompatibility.

Routing from internationalized to
non-internationalized bindings

When Artix is routing SOAP messages to a non-SOAP endpoint,
such as a Tuxedo server on a mainframe using the fixed plug-in,

Artix handles the message transformations so that the SOAP
application receives responses in the correct codeset.

Configuring and Deploying Artix Solutions, Runtime in C++ 71

For example, a Web service client in a Chinese locale encodes its
requests in eucTW and invokes on a service that is hosted on a
mainframe that is behind an Artix router, as shown in Figure 2.

eucTW \
SOAP Client SOAP Fixed

.
%[% Artix Router Mainframe

TUX Service

Plug-in Plug-in

#5 Flred

Figure 2: Routing Internationalized Requests

The Artix router would process the request as follows:

1.

On receiving the SOAP request, the router inspects the XML
prologue and decodes the message using the specified
codeset (in this case, eucTW).

The fixed binding plug-in then writes out the message to the
mainframe service.

When the mainframe sends its response back to the router,
the fixed binding decodes the message and passes it back to
the SOAP plug-in.

The SOAP plug-in inspects the message and determines the
request to that corresponds it.

The SOAP plug-in then encodes the message using the
codeset specified in the request (in this case, eucTW), and
passes the response to the client.

72 Configuring and Deploying Artix Solutions, Runtime in C++

Part 11

Deploying Artix
Services

In this part

This part contains the following chapters:

Deploying Services in an Artix Container page 75
Deploying an Artix Transformer page 99
Deploying a Service Chain page 109
Deploying Artix Services for High Availability page 115
Deploying WS-Reliable Messaging page 129

74 Configuring and Deploying Artix Solutions, Runtime in C++

Deploying Services in
an Artix Container

The Artix container enables you to deploy and manage C++ services
dynamically. For example, you can deploy a new service into a running
container, or perform runtime tasks such as start, stop, and list existing
services in a container.

Introduction to the Artix Container

The Artix container provides a consistent mechanism for deploying
and managing Artix services. This section provides an overview
the Artix container architecture and its main components. The
Artix container is the recommended way to deploy Artix services.
To use the container, your services should be developed as Artix
plug-ins.

Artix plug-ins

You can write Artix Web service implementations as C++ plug-ins.
An Artix plug-in is a code library that can be loaded into an Artix
application at runtime.

Artix provides a platform-independent framework for loading
plug-ins dynamically, based on the dynamic linking capabilities of
modern operating systems (using shared libraries and DLLS).

Benefits

Writing your application as an Artix plug-in means that you need
to write less code, and that you can deploy your services into an
Artix container. When you deploy your service into a container,
this eliminates the need to write your own C++ server mainline.
Instead, you can deploy your service by simply passing the
location of a generated deployment descriptor to an Artix
container’s administration client. This provides a powerful
programming model where the code is location independent.

In addition, the Artix container retains information about the
services that it deploys. This enables the container to reload
services dynamically when it restarts.

Main components

The Artix container architecture includes the following main
components:

* Artix container server

* Artix container service

* Artix service plug-in

* Artix deployment descriptor

Configuring and Deploying Artix Solutions, Runtime in C++ 75

* Artix container administration client
. WSDL contract

How it works

Figure 3 shows an simple overview of how the main Artix
container components interact. Some user-defined service
plug-ins are deployed into an Artix container server, along with an
Artix container service.

When the Artix container service is running, you can then use a
container administration client to communicate with it at runtime.
This client enables you to deploy and manage your services
dynamically.

An Artix container service can run inside any Artix bus. Because it
is implemented as an Artix plug-in, it can be loaded into any
application. The recommended approach is to deploy it into an
Artix container server, as shown in Figure 3.

Admin Client Container Server

|:' F@ ‘ —— ContainerService

Service Service
One Two

I:‘ C++ service plug-in

Figure 3: Artix Container Architecture

76 Configuring and Deploying Artix Solutions, Runtime in C++

Artix container server

An Artix container server is a simple Artix application that hosts
the container service. It consists of a server mainline that
initializes a bus and loads the Artix container service, which
enables you to remotely deploy and manage your services.

You can run an Artix container server using the it_container
command. If your application requires some configuration, you
can start an Artix container server with a configuration scope. For
more details, see “Running an Artix Container Server” on page 82.

Artix deployment descriptor

When deploying a user-defined service into an Artix container, you
must pass in a generated Artix deployment descriptor. This is a
simple XML file that specifies the details such as:

®* Service name.
* Plug-in that implements the service.

You can generate a C++ deployment descriptor by using Artix
code generation commands. For more details, see “Generating a
Plug-in and Deployment Descriptor” on page 79.

Artix container service

The Artix container service is a remote interface that supports the
following operations:

* List all services in the application.

* Stop a running service.

* Start a dormant service.

* Remove a service.

* Deploy a new service.

* Get an endpoint reference for a service.
* Get the WSDL for a service.

* Get the URL to a service’s WSDL.

* Shut down the container service.

When an Artix container service deploys a new service, it loads the
appropriate plug-ins, sets up and activates your service.

The Artix container service assumes that the plug-ins are available
in your application environment, so you must ensure that they are
in the expected library path. The Artix container service supports
C++ applications, provided that they are compiled into plug-ins.

The Artix container service has a WSDL-based interface and so
can be used with any binding or transport.

Configuring and Deploying Artix Solutions, Runtime in C++ 77

Artix container administration client

Because the Artix container service has a WSDL-based interface
with a SOAP/HTTP binding, you can communicate with it using any
client. Artix provides a command-line tool that uses the Artix
container stub code, and which enables you to manage the
container service easily. The Artix container administration client
currently supports SOAP/HTTP only.

You can run an Artix container administration client using the

it _container_admin command. This client makes all the container
service operations available through simple command-line
options. For more details, see “Running an Artix Container
Administration Client” on page 85.

Multiple Artix services and containers

You can deploy single or multiple Artix services in a single Artix
container. How many containers you should have depends on the
needs of your system. In general, it is recommended that you
deploy services that need to co-exist into the same container.
Otherwise, you should partition your services into different Artix
containers.

Artix container demos

The following demos in your Artix installation show use of the Artix
container:

° - . .\samples\advanced\container\deploy_ plugin

This shows how starting with a .wsdl file, you can use the
wsdltocpp command-line tool to generate a C++ plug-in and
deployment descriptor. It then shows how to deploy the
plug-in into the Artix container.

78 Configuring and Deploying Artix Solutions, Runtime in C++

. - . .\samples\advanced\container\deploy_routes

This shows how routes are simply advanced services that
happen to be implemented by the router plug-in, and whose
implementation is just a proxy to a different service. It shows
how you can dynamically deploy and manage routes in the
Artix container.

° - . -\samples\advanced\container\secure_container

This shows how to run a container server in a secure mode
with client authentication and authorization. It shows how to
restart a service in secure mode, and how to shutdown a
container by requesting a user name and password from a
console. For details of securing a container, see the Artix
Security Guide.

Several other advanced Artix demos also use the Artix container,
for example:

. - . .\samples\advanced\locator
° - . -\samples\advanced\session_management
° - . -\samples\routing

Generating a Plug-in and Deployment Descriptor

Artix services are implemented by C++ plug-ins. When you want
to deploy a service into an Artix container, the first step is to
generate a plug-in from a WSDL contract.

This generates a dynamic library (Windows), or shared library
(UNIX), and a dependencies file. An XML deployment descriptor is
also generated for the service. You can generate a plug-in and
deployment descriptor using any of the following commands:

e wsdltocpp
* wsdd

Using wsdltocpp

For example, to generate a C++ plug-in library and a deployment
descriptor for a specified .wsdl file, use the following command:

wsdltocpp -n deploy_plugin -impl -server -m NMAKE: library
-plugin:it_simple_service_cpp_bus_plugin -deployable
simple_service.wsdl

The -plugin and -deployable options are the most important.
-plugin generates a new plug-in, and -deployable generates a
corresponding deployment descriptor.

The generated plug-in can have an optional name (in this case,
it_simple_service_cpp_bus_plugin). If a name is specified, the
generated plug-in library uses this name. The name is ignored if
the .wsdl file contains more than one service definition. If no
plug-in name is set or ignored, the plug-in name takes the
following format: ServiceNamePortTypeName.

Configuring and Deploying Artix Solutions, Runtime in C++ 79

In this example, -impl generates the skeleton code for
implementing the server defined by the WSDL. -server generates
code for a server sample implementation, and -m generates a
makefile.

Note: You specify all as the make target; the default
target does not generate the dependencies file (.dps).

For full details on using the wsdltocpp command, see the Artix
Command Line Reference, or Developing Artix Applications
in C++.

C++ deployment descriptor

The deployment descriptor generated for the example C++
service is as follows:

<?xml version="1.0" encoding=""utf-8"?>
<ml:deploymentDescriptor xmlns:ml="http://schemas. iona.com/deploy'>
<service xmlns:servicens

="http://ww. iona.com/bus/tests'>servicens:SimpleServiceService</ser
vice>
<plugin>
<name>it_simple_service_cpp_bus plugin</name>
<type>Cxx</type>
</plugin>
</ml:deploymentDescriptor>

The type element tells the Artix container that this is a C++
service.

Using wsdd

For more complex deployment descriptors, you can use the Web
services deployment descriptor (wsdd) command as an alternative
to wsdltocpp.

The descriptors generated by wsdltocpp do not include all the
possible information that descriptors can have—for example,
provider_namespace (see the advanced/container/deploy_routes
demo).

The following example uses the wsdd command:

wsdd -service {http://ww. iona.com/test}CustomService
-pluginName testplugin -pluginType Cxx

The full syntax of the wsdd command is as follows:

wsdd -service QName -pluginName PluginName -pluginType Cxx
[-pluginlmpl Library/ClassName] [-pluginURL url]
[-wsdlurl WsdlLocation] [-provider ProviderNamespace]
[-Ffile oOutputFile] [-d OutputDir] [-h] [-Vv] [-verbose]
[-quiet]

80 Configuring and Deploying Artix Solutions, Runtime in C++

The following arguments are required:

Table 12: Required Arguments to wsdd

-service QName

Specifies the name of a service to
be deployed.

-pluginName PluginName

Specifies the name that a plug-in is
registered as.

-pluginType Cxx

Specifies the plug-in type.

The following arguments are optional:

Table 13: Optional Arguments to wsdd

-pluginimpl
Library/ClassName

Specifies a library name (.dl1/.s0)
for a C++ plug-in.

—-pluginURL url

Specifies the location where
plug-in library/classes are located.
This option, if specified, has no
effect on deployment.

-wsdlurl wsdlLocation

Specifies a URL to a service WSDL.

—-provider ProviderNamespace

Specifies the provider namespace.
Used in the
container/deploy_routes demo. For
example, this can be used by
plug-ins to provide servant
implementations for more than
one service.

-File OutputFile

Specifies the name of the
generated descriptor file. The
default is deployserviceLocalName.
For example, if -service
{http://ww. iona.com/test}CustomS
ervice is used, it is
deployCustomService.xml

—-d OutputDir

The location where a descriptor
should be generated.

-h[elp] Displays detailed help information
for each option.

-v[ersion] Displays the version of the tool.

-verbose Displays output in verbose mode.

—-quiet Displays output in quiet mode.

Configuring and Deploying Artix Solutions, Runtime in C++ 81

Adding business logic

For C++ applications, you must still add your business logic code
to the servant implementation class.

The supplied Artix demos include a fully implemented servant file
instead of the generated file.

Artix deployment descriptors

As well as hosting user-defined services, an Artix container can be
used to host Artix services such as the locator. The following is an
example generated deployment descriptor for the locator service:

<?xml version="1.0" encoding=""utf-8"?>
<ml:deploymentDescriptor xmlns:ml="http://schemas. iona.com/deploy'>
<service
xmlns:servicens="http://ws. iona.com/2005/11/locator'*>servicens:LocatorService</service>
<plugin>
<name>it_service_locator</name>
<type>Cxx</type>
</plugin>
</ml:deploymentDescriptor>

For details on deploying a locator in the container, see the Artix
Locator Guide.

Running an Artix Container Server

An Artix container server is an Artix server mainline that initializes
an Artix bus, and loads an Artix container service.

As well as hosting your own service plug-ins, the Artix container
server can also be used to host Artix services, such as the locator,
session manager, router, and so on. You can run as many
instances of the Artix container server as your applications
require.

This section explains how to run an Artix container server process
using the it_container command.

it _container command

To run an Artix container server, use the it _container command.
This has the following syntax:

it container [-s[ervice] Options] [-d[aemon]] [-p[ort]
PortNumber] [-publish [-File Filename]] [-deploy Descriptor]
[-deployfolder] [-env Name=Value] [-policy Descriptor]
[-v[ersion]] [-h[elp]]

82 Configuring and Deploying Artix Solutions, Runtime in C++

-s[ervicel On Windows, runs the container server
as a Windows service. Without this
parameter, it runs in foreground. See
“Running an Artix Container as a
Windows Service” on page 93.

-d[aemon] On UNIX, runs the container server as a
daemon in the background. Without this
parameter, it runs in the foreground.

-p[ort] PortNumber Specifies the port number for the
container service. There is no default port
number.

-publish [-Fille Filenane]lSpecifies the location to export the
container service URL. By default, this is
/ContainerService.url. You can override
the default using -File.

-deploy Descriptor Deploys a service using a specified
deployment descriptor (for example, at
startup). This is instead of deploying with
the container service (see “Using the
it_container_admin command” on
page 86).

-deployfolder Path Specifies the location of a local folder to
store deployment descriptors. This
enables redeployment of existing
services on restart (see “Deploying
Services on Restart” on page 89).

-env Name=Value Specifies arguments passed to the
container server process such as
environment variables (see “Specifying
arguments to the container server” on
page 85).

—-policy Descriptor Define the set of policies acting on this
container service using the specified
policy descriptor.

-v[ersion] Prints version information and exits.
-h[elp] Prints usage summary and exits.

Running the container server in the
background

On UNIX, to run a container server in the background, use the
it_container -daemon command.

If the -daemon option is not specified, the container server runs in
the foreground of the active command window. This option does
not apply on Windows.

Configuring and Deploying Artix Solutions, Runtime in C++ 83

Publishing the container service URL in a
file

To publish a container service URL, use the -publish option, for
example:

it _container -publish —file
my_directory/my_container_service.url

The -publish option tells the container server to publish the
container service URL in a local file. This URL can then be later
retrieved by the it _container_admin command, which uses it to
contact the container service, and initialize a container service
client proxy.

By default, a ContainerService.url file is created in the local
directory. Use the -file option to override this behavior.

Running the container server on a
specified port

To run a container server on a specific port, specify the -port
option, for example:

it container -port 1111
it _container -port 2222

This port is used for the container service. This is also the port for
the wsdl_publish plug-in. The container administrative client uses
wsdl_publish to get contracts for the container service and for all
other services hosted by the container.

This port number can then be used by a container service
administration client when contacting the container server, for
example:

it _container_admin -port 1111

Specifying configuration to the container
server

You can run it_container without any configuration, and this is
sufficient for many simple applications. However, if your
application requires additional settings, you can start it_container
with command-line configuration.

For simple applications, the container server loads any plug-ins
that you need to instantiate your service, so you do not normally
need to configure a plug-ins list, or any other configuration.
However, some advanced features may involve launching
it_container with command-line configuration.

84 Configuring and Deploying Artix Solutions, Runtime in C++

The following example is from the ..samples\advanced\locator
demo and shows running the locator service in the container
server:

it container -BUSname demo.locator.service
-BUSdomain_name locator -BUSconfig domains_dir
-./../etc -publish -File
-./../etc/ContainerService.url

In this example, the locator service picks up specific configuration
from its demo.locator._service scope. For more details, see the
demos for the locator, session manager, and router.

Specifying arguments to the container
server

You can use the -env option to specify arguments passed to the
container server process as follows:

it _container —env foo=bhar

All arguments passed to the container process are set before
Bus::init(Q) is called.

For example, you can use the -env option to set environment
variables as follows:

it container -env PATH="'c:\myApp;%PATH%""

You can specify the -env option multiple times to add more than
one change to the environment, for example:

it _container —env foo=bar —env foo2=bar2 —env foo3=bar3

Note: Due to operating system dependent limitations, not
all environment variables can be set on all platforms (for
example, LD_LIBRARY_PATH on Solaris).

See also “Installing a container as a Windows service” on page 94

Running an Artix Container Administration Client

This section explains how to use the Artix container administration
client to perform tasks such as deploying a generated plug-in into
the Artix container server, and retrieving a service URL. It
explains the full syntax of the it _container_admin command, which
is used to control the Artix container administration client.

Configuring and Deploying Artix Solutions, Runtime in C++ 85

Using the it _container_admin command

The full syntax for the it_container_admin command is as follows:

—-deploy -file dd.xml

-listservices

-startservice -service {Namespace}LocalPart

-stopservice -service {Namespace}LocalPart

-removeservice -service {Namespace}LocalPart

-publishreference -service {Namespace}LocalPart
[-File Filename]

—-publishwsdl -service {Namespace}LocalPart
[-File Filename]

—publishurl -service {Namespace}LocalPart
[-File Filename]

-shutdown [-soft]

—port ContainerPort

-host ContainerHostname

—-container File.url

-getservicepolicy -service <{Namespace}LocalPart>

86 Configuring and Deploying Artix Solutions, Runtime in C++

Deploys a new service into the
container server. This involves loading
a plug-in that contains the service
implementation. You must specify an
Artix deployment descriptor using the
-file option.

Displays all services in the application.
Shows the state of each service (for
example, initialized, activated,
de-activated, or shutting down).

Restarts the specified service that is
visible but dormant, or that has been
previously stopped.

Stops the specified running service.

Removes and undeploys all trace of
the specified service from the
application.

Gets an endpoint reference for the
specified service. The -file option
publishes the reference to a local file.
This can then be used to initialize a
client application.

Gets the WSDL for the specified
service. The -file option publishes the
WSDL to a local file. This can then be
used to initialize a client application.

Gets an HTTP URL for the specified
service from which you can then
download the WSDL. The -file option
publishes the URL to a local file. This
can then be used to initialize a client
application.

Shuts down the entire application. The
-soft option shuts down gracefully.

Contacts the container server on the
specified port. There is no default
container port. See “Running the
container server on a specified port”
on page 84. This can be used with
other options instead of -container.

Contacts the container server on the
specified host. Defaults to localhost if
unspecified. The -host option is for
use with -port only.

Runs the specified container service.
This can be used with other options
instead of -port and -host.

Retrieves the set of policies applied to
the specified service.

-getlogginglevel [-subsystem SubSystem] Gets the dynamic logging level for the

[-service {Namespace}LocalPart] specified subsystem or service. See
“Dynamic Artix Logging” on page 33.
-setlogginglevel -subsystem SubSystem -level Sets the logging level for a specified
Level [-propagate] [-service subsystem of a specified service. See
{Namespace}Localpart] “Dynamic Artix Logging” on page 33.

Note: By default, it _container_admin looks in the local directory
for the ContainerService.url file. If this file is not local, use the
—-container option, or the -port and -host options, to contact the
container.

Deploying the generated plug-in

To deploy a generated plug-in into the container server, use the
-deploy option, for example:

it _container_admin -deploy -file
- -/plugin/deploySimpleServiceService.xml

The -file option specifies a generated deployment descriptor. This
lists the service that this plug-in can provide, the plug-in name,
and plug-in type. In this example, the portable C++ plug-in library
name is expected to be the same as the plug-in name. The library
is expected to be located in the ../plugin directory.

When a container service loads the plug-in, it registers a servant
for the service that is described in the deployment descriptor.

Getting service WSDL

To get the WSDL for a deployed service from the container, use
the -publishwsdl option, for example:

it _container_admin -publishwsdl -service
{http://ww. iona.com/bus/demos}Wel IWisherService -file
my_service

The -publishurl option gets the service’s WSDL contract. The
—file option publishes the WSDL to a local file. When the client
runs, it reads the published WSDL from the local file, and uses it
to initialize a client stub, and communicate with a deployed
service.

Using the -publishreference, -publishwsdl, and -publishurl options
means that you can write WSDL contracts without hard-coded
ports, and that your clients will still be able to call against them.

Configuring and Deploying Artix Solutions, Runtime in C++ 87

Getting a service URL

To get a URL for a deployed service from the container service,
use the -publishurl option, for example:

it _container_admin -publishurl -service
{http://ww. iona.com/bus/tests}SimpleServiceService -file
my_service

The -publishurl option gets a URL to the service’s WSDL contract.
The -file option publishes the URL to a local file. When the client
runs, it reads the published WSDL URL from the local file, and
uses it to initialize a client stub, and then communicate with a
deployed service.

Listing deployed services

To display a list of the services in your application, use the
-listservices option, for example:

it container_admin -port 2222 -listservices

{http://ww. 1ona.com/demos/wel lwisher}Wwel IWisherService
ACTIVATED

{http://ww. iona.com/demos/greeter}GreeterService ACTIVATED

This example shows the output listed under the it_container_admin
-listservices command. The ACTIVATED service state indicates that
a service is running and accepting requests. In this example, the
-port option is used to contact a container server that was already
started on port 2222.

Service states

The possible service states are as follows:

NOT_INITIALIZED Service has not yet initialized an
implementation object or work queue.

INITIALIZED A transient service state. A service
remaining in this state indicates that
activation failed, and the service was not
removed from the bu