
Borland
VisiBroker® 7.0

VisiBroker for Java Developer’s
Guide

Borland Software Corporation
20450 Stevens Creek Blvd., Suite 800

Cupertino, CA 95014 USA
www.borland.com

Refer to the file deploy.html for a complete list of files that you can distribute in accordance with the
License Statement and Limited Warranty.

Borland Software Corporation may have patents and/or pending patent applications covering subject
matter in this document. Please refer to the product CD or the About dialog box for the list of applicable

patents. The furnishing of this document does not give you any license to these patents.

Copyright 1992–2006 Borland Software Corporation. All rights reserved. All Borland brand and product
names are trademarks or registered trademarks of Borland Software Corporation in the United States

and other countries. All other marks are the property of their respective owners.

Microsoft, the .NET logo, and Visual Studio are either registered trademarks or trademarks of Microsoft
Corporation in the United States and/or other countries.

For third-party conditions and disclaimers, see the Release Notes on your product CD.

VB70JavaDevGd
March 2006

2 VisiBroker for Java Developer ’s Guide

i

Contents

Chapter 1
Introduction to Borland VisiBroker 1
VisiBroker Overview 1

VisiBroker features. 2
VisiBroker Documentation 2

Accessing VisiBroker online help topics in the
standalone Help Viewer 3

Accessing VisiBroker online help topics from within
the VisiBroker Console 3

Documentation conventions 4
Platform conventions 4

Contacting Borland support 4
Online resources. 5
World Wide Web 5
Borland newsgroups 5

Chapter 2
Understanding the CORBA model 7
What is CORBA? 7
What is VisiBroker? 8
VisiBroker Features 8

VisiBroker's Smart Agent (osagent) Architecture . 8
Enhanced Object Discovery Using the

Location Service 9
Implementation and Object Activation Support . . 9
Robust thread and connection management . . . 9
IDL compilers 9
Dynamic invocation with DII and DSI 10
Interface and implementation repositories 10
Server-side portability 10
Customizing the VisiBroker ORB with

interceptors and object wrappers 10
Event Queue . 10
Backing stores in the Naming Service 10
Defining interfaces without IDL 11
GateKeeper . 11

VisiBroker CORBA compliance 11
VisiBroker Development Environment 11

Programmer's tools 11
CORBA services tools 11
Administration Tools 12

Java Development Environment 13
Java 2 Standard Edition 13
Java Runtime Environment 13
What's Required for GateKeeper 13
Java-enabled Web browser 13

Interoperability with VisiBroker 13
Interoperability with other ORB products 14
IDL to Java mapping 14

Chapter 3
Developing an example application
with VisiBroker 15

Development process 15
Step 1: Defining object interfaces 16

Writing the account interface in IDL 17

Step 2: Generating client stubs and server servants 17
Files produced by the idl compiler 17

Step 3: Implementing the client 18
Client.java . 18

Binding to the AccountManager object 19
Obtaining an Account object 19
Obtaining the balance 19

AccountManagerHelper.java 19
Other methods 19

Step 4: Implementing the server. 20
Server programs 20

Step 5: Building the example 21
Compiling the example 21

Step 6: Starting the server and running the example 21
Starting the Smart Agent 21
Starting the server 21
Running the client 22

Deploying applications with VisiBroker 22
VisiBroker Applications 23

Deploying applications 23
Environment variables. 23
Support service availability 23
Using vbj 24
Running the application 24
Executing client Applications 24
Executing server applications in Java 25

Chapter 4
Programmer tools for Java 27
Options . 27

General options. 27
idl2ir . 28
ir2idl . 29
idl2java. 29
java2idl. 31
java2iiop . 32
vbj . 35
vbjc . 37
Specifying the classpath 37
Specifying the JVM 38
idl2wsj . 38

Chapter 5
IDL to Java mapping 39
Names . 39
Reserved names. 40
Reserved words 40
Modules . 40
Basic types . 41

IDL type extensions. 41
Holder classes 42

Java null . 45
Boolean. 45
Char . 45
Octet . 45
String . 45

ii

WString . 45
Integer types 45
Floating point types 45

Helper classes . 46
Constants . 47

Constants within an interface 47
Constants NOT within an interface 47

Constructed types 48
Enum . 48
Struct . 49
Union . 50
Sequence . 52
Array. . 53

Interfaces . 53
Abstract interfaces. 55
Local interfaces 55
Passing parameters 55
Server implementation with inheritance 56
Server implementation with delegation 57
Interface scope 58

Mapping for exceptions 58
User-defined exceptions 59
System exceptions 59
Mapping for the Any type 59
Mapping for certain nested types. 60
Mapping for Typedef 60

Simple IDL types 60
Complex IDL types 60

Chapter 6
VisiBroker properties 63
JAVA RMI over IIOP properties 63
Smart Agent and Smart Agent communication

properties . 64
VisiBroker ORB properties 65
POA properties . 69
ServerManager properties 70

Additional Properties 70
Properties related to Server-side resource usage

70
Properties related to Client-side resource usage

70
Properties related to the Smart Agent (Smart

Agent) . 71
Location Service properties 71
Event Service properties 72
Naming Service (VisiNaming) properties. 72

Pluggable Backing Store Properties. 75
Default properties common to all adapters. . . 75
JDBC Adapter properties 76
DataExpress Adapter properties 77
JNDI adapter properties 78
VisiNaming Service Security-related properties 78

OAD properties . 79
Interface Repository properties. 79
Client-side IIOP connection properties 80
URL Naming properties 81
QoS-related Properties 81
Client-side in-process connection properties 81

Server-side server engine properties81
Server-side thread session IIOP_TS/IIOP_TS

connection properties 82
Server-side thread session BOA_TS/BOA_TS

connection properties 83
Server-side thread pool IIOP_TP/IIOP_TP

connection properties 83
Server-side thread pool BOA_TP/BOA_TP

connection properties 84

Chapter 7
Handling exceptions 85
Exceptions in the CORBA model 85
System exceptions 85

SystemException class 86
Obtaining completion status 87
Catching system exceptions87
Downcasting exceptions to a system exception . .88
Catching specific types of system exceptions . . .88

User exceptions89
Defining user exceptions89

Modifying the object to raise the exception . . .90
Catching user exceptions90
Adding fields to user exceptions 91

Chapter 8
Server basics 93
Overview .93
Initializing the VisiBroker ORB 93
Creating the POA 94

Obtaining a reference to the root POA94
Creating the child POA. 94
Implementing servant methods 95

Creating and Activating the Servant. 96
Activating the POA96

Activating objects 96
Waiting for client requests96
Complete example 96

Chapter 9
Using POAs 99
What is a Portable Object Adapter?99

POA terminology 100
Steps for creating and using POAs 101

POA policies. . 101
Creating POAs 103

POA naming convention 103
Obtaining the rootPOA 104
Setting the POA policies 104
Creating and activating the POA 104

Activating objects 105
Activating objects explicitly 105
Activating objects on demand 105
Activating objects implicitly 106
Activating with the default servant 106
Deactivating objects 107

Using servants and servant managers 108
ServantActivators 109
ServantLocators 111

iii

Managing POAs with the POA manager 113
Getting the current state 114
Holding state. 114
Active state 114
Discarding state 114
Inactive state. 115

Listening and Dispatching: Server Engines, Server
Connection Managers, and their properties 115

Server Engine and POAs 116
Associating a POA with a Server Engine . . . 116
Defining Hosts for Endpoints for the

Server Engine. 117
Server Connection Managers 118

Manager 118
Listener . 118
Dispatcher 119

When to use these properties 119
Adapter activators. 121
Processing requests 121

Chapter 10
Managing threads and connections 123
Using threads . 123
Listener thread, dispatcher thread, and worker threads

124
Thread policies 125
Thread pool policy 125
Thread-per-session policy 129
Connection management 129
ServerEngines 130

ServerEngine properties 131
Setting dispatch policies and properties 131

Thread pool dispatch policy 131
Thread-per-session dispatch policy 133
Coding considerations 133

Setting connection management properties 133
Valid values for applicable properties 134
Effects of property changes 134
Dynamically alterable properties. 135
Determining whether property value

changes take effect 135
Impact of changing property values 135

High scalability configuration for VisiBroker
for Java (using Java NIO) 136

Garbage collection 136
How ORB garbage collection works 136

Properties related to ORB garbage collection 137

Chapter 11
Using the tie mechanism 139
How does the tie mechanism work? 139
Example program 139

Location of an example program using the
tie mechanism 139

Changes to the server class 140
Changes to the AccountManager 141
Changes to the Account class 142
Building the tie example 142

Chapter 12
Client basics 143
Initializing the VisiBroker ORB. 143
Binding to objects 144

Action performed during the bind process 144
Invoking operations on an object 145
Manipulating object references 145

Converting a reference to a string 145
Obtaining object and interface names 145
Determining the type of an object reference . . . 145
Determining the location and state of bound objects .

146
Narrowing object references 146
Widening object references. 146

Using Quality of Service (QoS) 147
Understanding Quality of Service (QoS) 147

Policy overrides and effective policies 147
QoS interfaces 147

org.omg.CORBA.Object. 147
com.borland.vbroker.CORBA.Object (Borland) . .

147
org.omg.CORBA.PolicyManager 148
org.omg.CORBA.PolicyCurrent 148
com.borland.vbroker.QoSExt.DeferBindPolicy 148
com.borland.vbroker.QoSExt.ExclusiveConnectio

nPolicy . 149
com.borland.vbroker.QoSExt::RelativeConnectio

nTimeoutPolicy 149
org.omg.Messaging.RebindPolicy. 150
org.omg.CORBA.Messaging.RelativeRequestTim

eoutPolicy 152
org.omg.CORBA.Messaging.RelativeRoundTripTi

meoutPolicy 152
org.omg.CORBA.Messaging.SyncScopePolicy . .

153
Exceptions . 153

Code Set support 154
Types of Code Sets. 154

Native Code Set 154
Conversion Code Set (CCS) 154
Transmission Code Set (TCS). 154

Code Set Negotiation. 154
Supported Code Sets 154

Deploying client-only applications using Client Runtime.
155

Usage. . 155

Chapter 13
Using IDL 157
Introduction to IDL 157
How the IDL compiler generates code. 158

Example IDL specification 158
Looking at the generated code 158

_<interface_name>Stub.java 158
<interface_name>.java 159
<interface_name>Helper.java 159
<interface_name>Holder.java 160
<interface_name>Operations.java 160
<interface_name>POA.java 161

iv

<interface_name>POATie.java 161
Defining interface attributes in IDL 162
Specifying one-way methods with no return value . 162
Specifying an interface in IDL that inherits

from another interface. 162

Chapter 14
Using the Smart Agent 165
What is the Smart Agent? 165

Best practices for Smart Agent
configuration and synchronization 165

General guidelines 166
Load balancing/ fault tolerance guidelines . . 166
Location service guidelines 166
When not to use a Smart Agent 167

Locating Smart Agents 167
Locating objects through Smart Agent cooperation .

167
Cooperating with the OAD to connect with objects .

167
Starting a Smart Agent (osagent) 168

Verbose output 169
Disabling the agent. 169

Ensuring Smart Agent availability 169
Checking client existence 169

Working within VisiBroker ORB domains 170
Connecting Smart Agents on different local networks .

171
How Smart Agents detect each other 171

Working with multihomed hosts 172
Specifying interface usage for Smart Agents . . 173

Using point-to-point communications 174
Specifying a host as a runtime parameter. . . . 174
Specifying an IP address with an

environment variable. 174
Specifying hosts with the agentaddr file 174

Ensuring object availability 175
Invoking methods on stateless objects 175
Achieving fault-tolerance for objects that

maintain state 175
Replicating objects registered with the OAD . . 175

Migrating objects between hosts 176
Migrating objects that maintain state 176
Migrating instantiated objects 176
Migrating objects registered with the OAD . . . 176

Reporting all objects and services 177
Binding to Objects 177

Chapter 15
Using the Location Service 179
What is the Location Service? 179
Location Service components 181

What is the Location Service agent? 181
Obtaining addresses of all hosts

running Smart Agents 182
Finding all accessible interfaces 182
Obtaining references to instances of an interface

182

Obtaining references to like-named
instances of an interface 182

What is a trigger? 183
Looking at trigger methods 183
Creating triggers 183
Looking at only the first instance found

by a trigger 184
Querying an agent. 184

Finding all instances of an interface 184
Finding interfaces and instances known

to Smart Agents 185
Writing and registering a trigger handler 187

Chapter 16
Using the VisiNaming Service 189
Overview . 189
Understanding the namespace 190

Naming contexts 191
Naming context factories 191
Names and NameComponent 192
Name resolution 192

Stringified names 192
Simple and complex names. 193

Running the VisiNaming Service 193
Installing the VisiNaming Service 193
Configuring the VisiNaming Service 193
Starting the VisiNaming Service 194

Starting the VisiNaming Service with the
vbj command 194

Invoking the VisiNaming Service from the command line
194

Configuring nsutil. 194
Running nsutil 195
Shutting down the VisiNaming Service using nsutil .

195
Bootstrapping the VisiNaming Service 196

Calling resolve_initial_references 196
Using -DSVCnameroot. 196
Using -DORBInitRef 196

Using a corbaloc URL. 196
Using a corbaname URL 197

-DORBDefaultInitRef 197
Using -DORBDefaultInitRef with a corbaloc URL.

197
Using -DORBDefaultInitRef with corbaname . 197

NamingContext 197
NamingContextExt 198
Default naming contexts. 198

Obtaining the default naming context 198
Obtaining naming context factories 200

VisiNaming Service properties 200
Pluggable backing store 203

Types of backing stores 203
In-memory adapter 203
JDBC adapter 204
DataExpress adapter 204
JNDI adapter 204

Configuration and use 205
Properties file 205

v

JDBC Adapter properties 206
DataExpress Adapter properties 207
JNDI adapter properties 208

Configuration for OpenLDAP 208
Caching facility. 208

Important Notes for users of Caching Facility 209
Object Clusters 210
Object Clustering criteria 210

Cluster and ClusterManager interfaces 210
IDL Specification for the Cluster interface . . 211
IDL Specification for the ClusterManager interface

211
IDL Specification for the

NamingContextExtExtended interface . . . 212
Creating an object cluster 212

Explicit and implicit object clusters 213
Load balancing 213
Object failover 214
Pruning stale object references in

VisiNaming object clusters 214
VisiNaming Service Clusters for Failover and

Load Balancing 215
Configuring the VisiNaming Service Cluster. . . 215
Configuring the VisiNaming Service in Master/

Slave mode. 217
Starting up with a large number of connecting clients

217
VisiNaming service federation 218

VisiNaming Service Security 218
Naming client authentication. 219
Configuring VisiNaming to use SSL 219
Method Level Authorization 220

Import statements. 221
Sample programs 222

Binding a name example 222
Configuring VisiNaming with JdataStore HA 224

Create a DB for the Primary mirror 224
Invoke JdsServer for each listening connection . 224
Configure JDataStore HA 225
Run the VisiNaming Explicit Clustering example 226
Run the VisiNaming Naming Failover example . 227

Chapter 17
Using the Event Service 229
Overview . 229

Proxy consumers and suppliers 230
OMG Common Object Services specification . . 231

Communication models 231
Push model 232
Pull model . 232

Using event channels 233
Creating event channels 234
Examples of push supplier and consumer 234

Push supplier and consumer example. 234
Running the Push model example 235

Running the PullModel example 235
Running the PullView example 235
PullSupply 235
Executing PullSupply 235

Implementation of the pull and try_pull methods .
236

Main method of PullSupply 237
PullConsume 237
Executing PullConsume 238

Starting the Event Service 240
Setting the queue length 240

In-process event channel 241
Using the in-process Event Channel 242

Java EventLibrary class 242
Java example 242

Import statements 242

Chapter 18
Using the VisiBroker Server Manager 243
Getting Started with the Server Manager 243

Enabling the Server Manager on a server 243
Obtaining a Server Manager reference. 244
Working with Containers 244
The Storage Interface 245

The Container Interface 245
Container class 245
Container Methods for Java 245

Methods related to property
manipulation and queries 246

Methods related to operations. 246
Methods related to children containers 247
Methods related to storage 247

The Storage Interface 248
Storage Interface Class and Methods 248

Storage Class 248
Storage Interface Methods 248

Limiting access to the Server Manager 249
Server Manager IDL 249

Server Manager examples. 251
Obtaining the reference to the top-level container251
Getting all the containers and their properties . . 251
Getting and Setting properties and saving

them into the file 252
Invoking an operation in a Container 253
Custom Containers 253

Chapter 19
Using VisiBroker Native Messaging 255
Introduction . 255

Two-phase invocation (2PI) 255
Polling-Pulling and Callback models 255
Non-native messaging and IDL mangling 256
Native Messaging solution 256
Request Agent 256
Native Messaging Current 257
Core operations 257

StockManager example 257
Polling-pulling model 258
Callback model 260

Advanced Topics. 262
Group polling 262
Cookie and reply de-multiplexing in reply recipients .

264

vi

Evolving invocations into two-phases 265
Reply dropping 266
Manual trash collection 267
Unsuppressed premature return mode 267
Suppress poller generation in callback model. . 268

Native Messaging API Specification 269
Interface RequestAgentEx 269

create_request_proxy() 269
destroy_request() 270

Interface RequestProxy 270
the_receiver 270
poll() . 271
destroy() 271

Local interface Current 271
suppress_mode() 271
wait_timeout 271
the_cookie 272
request_tag 272
the_poller. 272
reply_not_available. 273

Interface ReplyRecipient 273
reply_available() 273

Semantics of core operations 274
Native Messaging Interoperability Specification . . 274

Native Messaging uses native GIOP 274
Native Messaging service context. 275
NativeMessaging tagged component 276

Using Borland Native Messaging 276
Using request agent and client model 276

Start the Borland Request Agent 276
Borland Request Agent URL 276
Using the Borland Native Messaging client model

277
Borland Request Agent vbroker properties . . . 277

vbroker.requestagent.maxThreads. 277
vbroker.requestagent.maxOutstandingRequests

277
vbroker.requestagent.blockingTimeout. . . . 277
vbroker.requestagent.router.ior. 277
vbroker.requestagent.listener.port 277
vbroker.requestagent.requestTimeout 277

Interoperability with CORBA Messaging 278

Chapter 20
Using the Object Activation Daemon (OAD)
279

Automatic activation of objects and servers 279
Locating the Implementation Repository data. . 279
Activating servers 280

Using the OAD 280
Starting the OAD 280

Using the OAD utilities 281
Converting interface names to repository IDs . . 281
Listing objects with oadutil list 282
Registering objects with oadutil 283

Example: Specifying repository ID 284
Example: Specifying IDL interface name. . . 284
Remote registration to an OAD 285
Using the OAD without using the Smart Agent285

Using the OAD with the Naming Service . . . 285
Distinguishing between multiple instances

of an object 286
Setting activation properties using the

CreationImplDef class 286
Dynamically changing an ORB implementation . 287
OAD Registration using OAD::reg_implementation .

287
Example of object creation and registration . . . 288
Arguments passed by the OAD 288

Un-registering objects 288
Un-registering objects using the oadutil tool . . . 289

Unregistration example 290
Unregistering with the OAD operations 290
Displaying the contents of the

Implementation Repository 290
IDL interface to the OAD 291

Chapter 21
Using Interface Repositories 293
What is an Interface Repository? 293

What does an Interface Repository contain? . . 293
How many Interface Repositories can you have? 294

Creating and viewing an Interface Repository with irep .
294

Creating an Interface Repository with irep 294
Viewing the contents of the Interface Repository 295

Updating an Interface Repository with idl2ir. 295
Understanding the structure of the Interface Repository

296
Identifying objects in the Interface Repository . . 297
Types of objects that can be stored in the

Interface Repository 297
Inherited interfaces. 298

Accessing an Interface Repository 299
Interface Repository example program 299

Chapter 22
Using the Dynamic Invocation Interface 301
What is the dynamic invocation interface? 301

Introducing the main DII concepts 302
Using request objects 302
Encapsulating arguments with the Any type . 303
Options for sending requests 303
Options for receiving replies 304

Steps for invoking object operations dynamically 304
Example programs for using the DII 304
Using the idl2java compiler. 304

Obtaining a generic object reference 305
Creating and initializing a request 305

Request interface 305
Ways to create and initialize a DII request 306
Using the create_request method 306
Using the _request method 306
Example of creating a Request object 307
Setting arguments for the request 307

Implementing a list of arguments with the NVList.
307

vii

Setting input and output arguments with the
NamedValue Class 308

Passing type safely with the Any class 308
Representing argument or attribute types

with the TypeCode class 309
Sending DII requests and receiving results 310

Invoking a request 310
Sending a deferred DII request with the

send_deferred method 311
Sending an asynchronous DII request with

the send_oneway method 311
Sending multiple requests 311
Receiving multiple requests 312

Using the interface repository with the DII 312

Chapter 23
Using the Dynamic Skeleton Interface 315
What is the Dynamic Skeleton Interface?. 315

Using the idl2java compiler 315
Steps for creating object implementations dynamically .

316
Example program for using the DSI 316

Extending the DynamicImplementation class. . . . 316
Example of designing objects for dynamic requests.

316
Specifying repository ids. 318

Looking at the ServerRequest class 319
Implementing the Account object 319
Implementing the AccountManager object 320

Processing input parameters 320
Setting the return value 320

Server implementation 320

Chapter 24
Using Portable Interceptors 323
Portable Interceptors overview 323

Types of interceptors. 324
Types of Portable Interceptors 324

Portable Interceptor and Information interfaces. . . 324
Interceptor class 324
Request Interceptor 325

ClientRequestInterceptor 325
Client-side rules 326
ServerRequestInterceptor 326
Server-side rules 327

IOR Interceptor 328
Portable Interceptor (PI) Current. 328
Codec . 329
CodecFactory 329
Creating a Portable Interceptor 329

Example: Creating a PortableInterceptor . . . 330
Registering Portable Interceptors 330
Registering an ORBInitializer 331

Example: Registering ORBInitializer 332
VisiBroker extensions to Portable Interceptors . 332

POA scoped Server Request Interceptors . . 332
Inserting and extracting system exceptions . 333

Limitations of VisiBroker Portable
Interceptors implementation 333

ClientRequestInfo limitations 333
ServerRequestInfo limitations 333

Portable Interceptors examples 333
Example: client_server 334

Objective of example 334
Importing required packages 334
Client-side request interceptor initialization

and registration to the ORB 335
Implementing the ORBInitializer for a

server-side Interceptor 336
Implementing the RequestInterceptor for

client- or server-side Request Interceptor . . . 337
Implementing the ClientRequestInterceptor for Client

337
Implementation of the public void

send_request(ClientRequestInfo ri) interface337
Implementation of the void

send_poll(ClientRequestInfo ri) interface . . 337
Implementation of the void

receive_reply(ClientRequestInfo ri) interface 338
Implementation of the void

receive_exception(ClientRequestInfo ri)
interface 338

Implementation of the void
receive_request_service_contexts
(ServerRequestInfo ri) interface 340

Implementation of the void receive_request
(ServerRequestInfo ri) interface 340

Implementation of the void receive_reply
(ServerRequestInfo ri)interface 340

Implementation of the void receive_exception
(ServerRequestInfo ri) interface 341

Implementation of the void receive_other
(ServerRequestInfo ri) interface 341

Developing the Client and Server Application . . 343
Implementation of the client application 344
Implementation of the server application . . . 345

Compilation procedure 346
Execution or deployment of Client and

Server Applications 346

Chapter 25
Using VisiBroker Interceptors 347
Interceptors overview 347
Interceptor interfaces and managers 348

Client Interceptors 348
BindInterceptor 348
ClientRequestInterceptor 348

Server Interceptors 349
POALifeCycleInterceptor 349
ActiveObjectLifeCycleInterceptor 350
ServerRequestInterceptor 350
IORCreationInterceptor 350

Service Resolver Interceptor 351
Default Interceptor classes 351
Registering Interceptors with the VisiBroker ORB351
Creating Interceptor objects 352
Loading Interceptors 352

Example Interceptors 352

viii

Example code 352
Client-server Interceptors example. 353
ServiceResolverInterceptor example. 353

Code listings. 355
SampleServerLoader 355
SamplePOALifeCycleInterceptor. 356
SampleServerInterceptor 357
SampleClientInterceptor 358
SampleClientLoader 359
SampleBindInterceptor 360

Passing information between your Interceptors . . 361
Using both Portable Interceptors and

VisiBroker Interceptors simultaneously 361
Order of invocation of interception points 361
Client side Interceptors 361
Server side Interceptors 361
Order of ORB events during POA creation . . . 362
Order of ORB events during object

reference creation 362

Chapter 26
Using object wrappers 363
Object wrappers overview 363

Typed and un-typed object wrappers 363
Special idl2java requirements 364
Object wrapper example applications 364

Untyped object wrappers 364
Using multiple, untyped object wrappers 365
Order of pre_method invocation. 365
Order of post_method invocation 365

Using untyped object wrappers. 366
Implementing an untyped object wrapper factory 366
Implementing an untyped object wrapper 367

pre_method and post_method parameters . 367
Creating and registering untyped object

wrapper factories 367
Removing untyped object wrappers 369

Typed object wrappers 369
Using multiple, typed object wrappers. 370
Order of invocation 371
Typed object wrappers with co-located

client and servers 371
Using typed object wrappers 371

Implementing typed object wrappers 371
Registering typed object wrappers for a client . 372
Registering typed object wrappers for a server . 373
Removing typed object wrappers 375

Combined use of untyped and typed object wrappers .
375

Command-line arguments for typed wrappers . 375
Initializer for typed wrappers. 376
Command-line arguments for untyped wrappers 377
Initializers for untyped wrappers. 377
Executing the sample applications 378

Turning on timing and tracing object wrappers 378
Turning on caching and security object wrappers

378
Turning on typed and untyped wrappers . . . 379
Executing a CO-located client and server . . 379

Chapter 27
Event Queue 381
Event types . 381

Connection events 381
Event listeners. 382

IDL definition 382
ConnInfo structure 382
EventListener interface 382
ConnEventListeners interface. 383
EventQueueManager interface 383

How to return the EventQueueManager 383
Event Queue code samples 383

Registering EventListeners 384
Implementing EventListeners 384

Chapter 28
Using RMI over IIOP 385
Overview of RMI over IIOP 385

Setting up Java applets with RMI-IIOP. 385
java2iiop and java2idl tools. 385

Using java2iiop 386
Supported interfaces 386
Running java2iiop 386

Reverse mapping of Java classes to IDL . . . 387
Completing the development process 387

RMI-IIOP Bank example. 388
Supported data types 389

Mapping primitive data types. 389
Mapping complex data types. 390

Interfaces 390
Arrays . 390

Chapter 29
Using the dynamically managed types 391
DynAny interface overview 391

DynAny examples 391
DynAny types . 392

DynAny usage restrictions 392
Creating a DynAny 392
Initializing and accessing the value in a DynAny. 392

Constructed data types 393
Traversing the components in a

constructed data type. 393
DynEnum. . 393
DynStruct. . 394
DynUnion. . 394
DynSequence and DynArray 394

DynAny example IDL 394
DynAny example client application 395
DynAny example server application 396

Chapter 30
Using valuetypes 401
Understanding valuetypes. 401

Valuetype IDL code sample 401
Concrete valuetypes 402

Valuetype derivation 402
Sharing semantics 402
Null semantics 402

ix

Factories 402
Abstract valuetypes 402

Implementing valuetypes 403
Defining your valuetypes. 403
Compiling your IDL file. 403
Inheriting the valuetype base class 403
Implementing the Factory class 404
Registering your Factory with the VisiBroker ORB .

404
Implementing factories 404

Factories and valuetypes 405
Registering valuetypes. 405

Boxed valuetypes 405
Abstract interfaces 405
Custom valuetypes 407
Truncatable valuetypes 407

Chapter 31
Using URL naming 409
URL Naming Service 409

URL Naming Service examples 409
Registering objects 410
Locating an object by URL 411

Chapter 32
Bidirectional Communication 413
Using bidirectional IIOP 413
Bidirectional VisiBroker ORB properties 414
About the BiDirectional examples. 415
Enabling bidirectional IIOP for existing applications 415
Explicitly enabling bidirectional IIOP 415

Unidirectional or bidirectional connections. . . . 416
Enabling bidirectional IIOP for POAs 417

Security considerations 417

Chapter 33
Using the BOA with VisiBroker 419
Compiling your BOA code with VisiBroker 419
Supporting BOA options 419
Limitations in using the BOA 419
Using object activators 420
Naming objects under the BOA 420

Object names 420

Chapter 34
Using object activators 421
Deferring object activation 421
Activator interface 421
Using the service activation approach 422

Deferring object activation using service activators .
423

Example of deferred object activation for a service .
423

odb.idl interface 423
Implementing a service activator 424
Instantiating the service activator. 424
Using a service activator to activate an object 425

Chapter 35
CORBA exceptions 427
CORBA exception descriptions 427
Heuristic OMG-specified exceptions. 432
Other OMG-specified exceptions 433

Chapter 36
Web Services Overview 435

Web Services Architecture 435
Standard Web Services Architecture 436

VisiBroker Web Services Architecture 436
Web Services Artifacts 437
Web Service Runtime 437

Exposing a CORBA object as Web Service 440
Development 440
Deployment . 441

SOAP/WSDL compatibility. 442

Index 443

x

 1: In troduct ion to Bor land Vis iBroker 1

Introduction to Borland VisiBroker
For the CORBA developer, Borland provides VisiBroker for Java, VisiBroker for C++,
and VisiBroker for .NET to leverage the industry-leading VisiBroker Object Request
Broker (ORB). These three facets of VisiBroker are implementations of the CORBA 2.6
specification.

VisiBroker Overview
VisiBroker is for distributed deployments that require CORBA to communicate between
both Java and non-Java objects. It is available on a wide range of platforms (hardware,
operating systems, compilers and JDKs). VisiBroker solves all the problems normally
associated with distributed systems in a heterogeneous environment.

VisiBroker includes:

– VisiBroker for Java, VisiBroker for C++, and VisiBroker for .NET, three
implementations of the industry-leading Object Request Broker.

– VisiNaming Service, a complete implementation of the Interoperable Naming
Specification in version 1.3.

– GateKeeper, a proxy server for managing connections to CORBA Servers behind
firewalls.

– VisiBroker Console, a GUI tool for easily managing a CORBA environment.

– Common Object Services such as VisiNotify (implementation of Notification Service
Specification), VisiTransact (implementation of Transaction Service Specification),
VisiTelcoLog (implementation of Telecom Logging Service Specification), VisiTime
(implementation of Time Service Specification), and VisiSecure.

2 VisiBroker for Java Developer ’s Guide

VisiBroker Documentat ion

VisiBroker features

VisiBroker offers the following features:

– “Out-of-the-box” security and web connectivity.

– Seamless integration to the J2EE Platform, allowing CORBA clients direct access to
EJBs.

– A robust Naming Service (VisiNaming), with caching, persistent storage, and
replication for high availability.

– Automatic client failover to backup servers if primary server is unreachable.

– Load distribution across a cluster of CORBA servers.

– Full compliance with the OMG's CORBA 2.6 Specification.

– Integration with the Borland JBuilder integrated development environment.

– Enhanced integration with other Borland products including Borland AppServer.

VisiBroker Documentation
The VisiBroker documentation set includes the following:

– Borland VisiBroker Installation Guide—describes how to install VisiBroker on your
network. It is written for system administrators who are familiar with Windows or
UNIX operating systems.

– Borland Security Guide—describes Borland's framework for securing VisiBroker,
including VisiSecure for VisiBroker for Java and VisiBroker for C++.

– Borland VisiBroker for Java Developer's Guide—describes how to develop
VisiBroker applications in Java. It familiarizes you with configuration and
management of the Visibroker ORB and how to use the programming tools. Also
described is the IDL compiler, the Smart Agent, the Location, Naming and Event
Services, the Object Activation Daemon (OAD), the Quality of Service (QoS), the
Interface Repository, and the Interface Repository, and Web Service Support.

– Borland VisiBroker for C++ Developer's Guide—describes how to develop VisiBroker
applications in C++. It familiarizes you with configuration and management of the
Visibroker ORB and how to use the programming tools. Also described is the IDL
compiler, the Smart Agent, the Location, Naming and Event Services, the OAD, the
QoS, Pluggable Transport Interface, RT CORBA Extensions, and Web Service
Support.

– Borland VisiBroker for .NET Developer's Guide—describes how to develop
VisiBroker applications in a .NET environment.

– Borland VisiBroker for C++ API Reference—provides a description of the classes
and interfaces supplied with VisiBroker for C++.

– Borland VisiBroker VisiTime Guide—describes Borland's implementation of the
OMG Time Service specification.

– Borland VisiBroker VisiNotify Guide—describes Borland's implementation of the
OMG Notification Service specification and how to use the major features of the
notification messaging framework, in particular, the Quality of Service (QoS)
properties, Filtering, and Publish/Subscribe Adapter (PSA).

– Borland VisiBroker VisiTransact Guide—describes Borland's implementation of the
OMG Object Transaction Service specification and the Borland Integrated
Transaction Service components.

 1: In troduct ion to Bor land Vis iBroker 3

VisiBroker Documentat ion

– Borland VisiBroker VisiTelcoLog Guide—describes Borland's implementation of the
OMG Telecom Log Service specification.

– Borland VisiBroker GateKeeper Guide—describes how to use the VisiBroker
GateKeeper to enable VisiBroker clients to communicate with servers across
networks, while still conforming to the security restrictions imposed by web browsers
and firewalls.

The documentation is typically accessed through the Help Viewer installed with
VisiBroker. You can choose to view help from the standalone Help Viewer or from
within a VisiBroker Console. Both methods launch the Help Viewer in a separate
window and give you access to the main Help Viewer toolbar for navigation and
printing, as well as access to a navigation pane. The Help Viewer navigation pane
includes a table of contents for all VisiBroker books and reference documentation, a
thorough index, and a comprehensive search page.

Important

Updates to the product documentation, as well as PDF versions, are available on the
web at http://www.borland.com/techpubs.

Accessing VisiBroker online help topics in the standalone Help
Viewer

To access the online help through the standalone Help Viewer on a machine where the
product is installed, use one of the following methods:

Windows

– Choose Start|Programs|Borland Deployment Platform|Help Topics

– or, open the Command Prompt and go to the product installation \bin directory,
then type the following command:

help

UNIX

Open a command shell and go to the product installation /bin directory, then enter
the command:

help

Tip

During installation on UNIX systems, the default is to not include an entry for bin in
your PATH. If you did not choose the custom install option and modify the default for
PATH entry, and you do not have an entry for current directory in your PATH, use ./
help to start the help viewer.

Accessing VisiBroker online help topics from within the
VisiBroker Console

To access the online help from within the VisiBroker Console, choose Help|Help
Topics.

The Help menu also contains shortcuts to specific documents within the online help.
When you select one of these shortcuts, the Help Topics viewer is launched and the
item selected from the Help menu is displayed.

4 VisiBroker for Java Developer ’s Guide

Contact ing Bor land support

Documentation conventions

The documentation for VisiBroker uses the typefaces and symbols described below to
indicate special text:

Platform conventions

The VisiBroker documentation uses the following symbols to indicate platform-specific
information:

Contacting Borland support
Borland offers a variety of support options. These include free services on the Internet
where you can search our extensive information base and connect with other users of
Borland products. In addition, you can choose from several categories of telephone
support, ranging from support on installation of Borland products to fee-based,
consultant-level support and detailed assistance.

For more information about Borland's support services or contacting Borland Technical
Support, please see our web site at: http://support.borland.com and select your
geographic region.

When contacting Borland's support, be prepared to provide the following information:

– Name

– Company and site ID

– Telephone number

– Your Access ID number (U.S.A. only)

– Operating system and version

– Borland product name and version

– Any patches or service packs applied

– Client language and version (if applicable)

– Database and version (if applicable)

– Detailed description and history of the problem

Convention Used for

italics Used for new terms and book titles.

computer Information that the user or application provides, sample command lines
and code.

bold computer In text, bold indicates information the user types in. In code samples, bold
highlights important statements.

[] Optional items.

... Previous argument that can be repeated.
| Two mutually exclusive choices.

Symbol Indicates

Windows All supported Windows platforms.

Win2003 Windows 2003 only

WinXP Windows XP only

Win2000 Windows 2000 only

UNIX UNIX platforms

Solaris Solaris only

Linux Linux only

 1: In troduct ion to Bor land Vis iBroker 5

Contact ing Bor land support

– Any log files which indicate the problem

– Details of any error messages or exceptions raised

Online resources

You can get information from any of these online sources:

World Wide Web
http://www.borland.com

Online Support

http://support.borland.com (access ID required)

Listserv

To subscribe to electronic newsletters, use the online form at:

http://www.borland.com/products/newsletters

World Wide Web

Check http://www.borland.com/bes regularly. The VisiBroker Product Team posts white
papers, competitive analyses, answers to FAQs, sample applications, updated
software, updated documentation, and information about new and existing products.

You may want to check these URLs in particular:

– http://www.borland.com/products/downloads/download_visibroker.html (updated
VisiBroker software and other files)

– http://www.borland.com/techpubs (documentation updates and PDFs)

– http://info.borland.com/devsupport/bdp/faq/ (VisiBroker FAQs)

– http://community.borland.com (contains our web-based news magazine for
developers)

Borland newsgroups

You can participate in many threaded discussion groups devoted to the Borland
VisiBroker. Visit http://www.borland.com/newsgroups for information about joining user-
supported newsgroups for VisiBroker and other Borland products.

Note

These newsgroups are maintained by users and are not official Borland sites.

6 VisiBroker for Java Developer ’s Guide

 2 : Understanding the CORBA model 7

Understanding the CORBA model
This section introduces VisiBroker, which comprises both the VisiBroker for C++ and
the VisiBroker for Java ORBs. Both are complete implementations of the CORBA 2.6
specification. This section describes VisiBroker features and components.

What is CORBA?
The Common Object Request Broker Architecture (CORBA) allows distributed
applications to interoperate (application-to-application communication), regardless of
what language they are written in or where these applications reside.

The CORBA specification was adopted by the Object Management Group to address
the complexity and high cost of developing distributed object applications. CORBA
uses an object-oriented approach for creating software components that can be reused
and shared between applications. Each object encapsulates the details of its inner
workings by presenting a well-defined interface. Use of these interfaces, themselves
written in the standardized Interface Definition Language (IDL) reduces application
complexity. The cost of developing applications is reduced, because once an object is
implemented and tested, it can be used over and over again.

The role of the Object Request Broker (ORB) is to track and maintain these interfaces,
facilitate communication between them, and provide services to applications making
use of them. The ORB itself is not a separate process. It is a collection of libraries and
network resources that integrates within end-user applications, and allows your client
applications to locate and use disparate objects.

The Object Request Broker in the following figure connects a client application with the
objects it wants to use. The client program does not need to know whether the object it
seeks resides on the same computer or is located on a remote computer somewhere
on the network. The client program only needs to know the object's name and
understand how to use the object's interface. The ORB takes care of the details of
locating the object, routing the request, and returning the result.

8 VisiBroker for Java Developer ’s Guide

What is Vis iBroker?

Figure 2.1 Client program acting on an object

What is VisiBroker?
VisiBroker provides a complete CORBA 2.6 ORB runtime and supporting development
environment for building, deploying, and managing distributed applications for both
C++ and Java that are open, flexible, and interoperable. Objects built with VisiBroker
are easily accessed by Web-based applications that communicate using the Internet
Inter-ORB Protocol (IIOP) standard for communication between distributed objects
through the Internet or through local intranets. VisiBroker has a built-in implementation
of IIOP that ensures high-performance and interoperability.

Figure 2.2 VisiBroker Architecture

VisiBroker Features
VisiBroker has several key features as described in the following sections.

VisiBroker's Smart Agent (osagent) Architecture

VisiBroker's Smart Agent (osagent) is a dynamic, distributed directory service that
provides naming facilities for both client applications and object implementations.
Multiple Smart Agents on a network cooperate to provide load-balancing and high
availability for client access to server objects. The Smart Agent keeps track of objects

 2: Understanding the CORBA model 9

Vis iBroker Features

that are available on a network, and locates objects for client applications at object-
invocation time. VisiBroker can determine if the connection between your client
application and a server object has been lost (due to an error such as a server crash or
a network failure). When a failure is detected, an attempt is automatically made to
connect your client to another server on a different host, if it is so configured. For
details on the Smart Agent see “Using the Smart Agent” and “Using Quality of Service
(QoS)”.

Enhanced Object Discovery Using the Location Service

VisiBroker provides a powerful Location Service—an extension to the CORBA
specification—that enables you to access the information from multiple Smart Agents.
Working with the Smart Agents on a network, the Location Service can see all the
available instances of an object to which a client can bind. Using triggers, a callback
mechanism, client applications can be instantly notified of changes to an object's
availability. Used in combination with interceptors, the Location Service is useful for
developing enhanced load balancing of client requests to server objects. See “Using
the Location Service.”

Implementation and Object Activation Support

The Object Activation Daemon (OAD) is the VisiBroker implementation of the
Implementation Repository. The OAD can be used to automatically start object
implementations when clients need to use them. Additionally, VisiBroker provides
functionality that enables you to defer object activation until a client request is received.
You can defer activation for a particular object or an entire class of objects on a server.

Robust thread and connection management

VisiBroker provides native support for single- and multi-threaded thread management.
With VisiBroker's thread-per-session model, threads are automatically allocated on the
server (per client connection) to service multiple requests, and then are terminated
when each connection ends. With the thread pooling model, threads are allocated
based on the amount of request traffic to and from server objects. This means that a
highly active client will be serviced by multiple threads—ensuring that the requests are
quickly executed—while less active clients can share a single thread and still have their
requests immediately serviced.

VisiBroker's connection management minimizes the number of client connections to
the server. All client requests for objects residing on the same server are multiplexed
over the same connection, even if they originate from different threads. Additionally,
released client connections are recycled for subsequent reconnects to the same
server, eliminating the need for clients to incur the overhead of new connections to the
same server.

All thread and connection behavior is fully configurable. See “Managing threads and
connections” for details on how VisiBroker manages threads and connections.

IDL compilers

VisiBroker comes with three IDL compilers that make object development easier,

– idl2java: The idl2java compiler takes IDL files as input and produces the necessary
client stubs and server skeletons in Java.

– idl2cpp: The idl2cpp compiler takes IDL files as input and produces the necessary
client stubs and server skeletons in C++.

– idl2ir: The idl2ir compiler takes an IDL file and populates an interface repository
with its contents. Unlike the previous two compilers, idl2ir functions with both the
C++ and Java ORBs.

See “Using IDL” and “Using Interface Repositories” for details on these compilers.

10 VisiBroker for Java Developer ’s Guide

VisiBroker Features

Dynamic invocation with DII and DSI

VisiBroker provides implementations of both the Dynamic Invocation Interface (DII) and
the Dynamic Skeleton Interface (DSI) for dynamic invocation. The DII allows client
applications to dynamically create requests for objects that were not defined at compile
time. The DSI allows servers to dispatch client operation requests to objects that were
not defined at compile time. See “Using the Dynamic Invocation Interface” and “Using
the Dynamic Skeleton Interface” for more information.

Interface and implementation repositories

The Interface Repository (IR) is an online database of meta information about the
VisiBroker ORB objects. Meta information stored for objects includes information about
modules, interfaces, operations, attributes, and exceptions. “Using Interface
Repositories” covers how to start an instance of the Interface Repository, add
information to an interface repository from an IDL file, and extract information from an
interface repository.

The Object Activation Daemon is a VisiBroker interface to the Implementation
Repository that is used to automatically activate the implementation when a client
references the object. See “Using the Object Activation Daemon (OAD)” for more
information.

Server-side portability

VisiBroker supports the CORBA Portable Object Adapter (POA), which is a
replacement to the Basic Object Adapter (BOA). The POA shares some of the same
functionality as the BOA, such as activating objects, support for transient or persistent
objects, and so forth. The POA also has additional functionality, such as the POA
Manager and Servant Manager which create and manages instances of your objects.
See “Using POAs” for more information.

Customizing the VisiBroker ORB with interceptors and object
wrappers

VisiBroker's Interceptors enable developers to view under-the-cover communications
between clients and servers. The VisiBroker Interceptors are Borland's proprietary
interceptors. Interceptors can be used to extend the VisiBroker ORB with customized
client and server code that enables load balancing, monitoring, or security to meet the
specialized needs of distributed applications. See “Using Portable Interceptors” for
information.

VisiBroker also includes the Portable Interceptors, based on the OMG standardized
feature, that allow you to write portable code for interceptors and use it with different
vendor ORBs. For more information, refer to the COBRA 2.6 specification.

VisiBroker's object wrappers allow you to define methods that are called when a client
application invokes a method on a bound object or when a server application receives
an operation request. See “Using object wrappers” for information.

Event Queue

The event queue is designed as a server-side only feature. A server can register the
listeners to the event queue based on the event types that the server is interested in,
and the server processes those events when the need arises. See “Event Queue” for
more information.

Backing stores in the Naming Service

The new interoperable Naming Service integrates with pluggable backing stores to
make its state persistent. This ensures easy fault tolerance and failover functionality in
the Naming Service. See “Using the VisiNaming Service” for more information.

 2 : Understanding the CORBA model 11

VisiBroker CORBA compl iance

Defining interfaces without IDL

VisiBroker's java2iiop compiler lets you use the Java language to define interfaces
instead of using the Interface Definition Language (IDL). You can use the java2iiop
compiler if you have existing Java code that you wish to adapt to interoperate with
CORBA distributed objects or if you do not wish to learn IDL.

GateKeeper

The GateKeeper allows client programs to issue operation requests to objects that
reside on a web server and to receive callbacks from those objects, all the while
conforming to the security restrictions imposed by web browsers. The Gatekeeper also
handles communication through firewalls and can be used as an HTTP daemon. It is
fully compliant with the OMG CORBA Firewall Specification.

VisiBroker CORBA compliance
VisiBroker is fully compliant with the CORBA specification (version 2.6) from the Object
Management Group (OMG). For more details, refer to the CORBA specification located
at http://www.omg.org/.

VisiBroker Development Environment
VisiBroker can be used in both the development and deployment phases. The
development environment includes the following components:

– Administration and programming tools

– VisiBroker ORB

Programmer's tools

The following tools are used during the development phase:

CORBA services tools

The following tools are used to administer the VisiBroker ORB during development:

Tool Purpose

idl2ir This tool allows you to populate an interface repository with interfaces defined in an
IDL file for both the VisiBroker for Java and VisiBroker for C++.

idl2cpp This tool generates C++ stubs and skeletons from an IDL file.

idl2java This tool generates Java stubs and skeletons from an IDL file

java2iiop Generates Java stubs and skeletons from a Java file. This tool allows you to define
your interfaces in Java, rather than in IDL.

java2idl Generates an IDL file from a file containing Java bytecode.

Tool Purpose

irep Used to manage the Interface Repository. See “Using Interface Repositories.”

oad Used to manage the Object Activation Daemon (OAD). See “Using the Object
Activation Daemon (OAD).”

nameserv Used to start an instance of the Naming Service. See “Using the VisiNaming
Service.”

12 VisiBroker for Java Developer ’s Guide

Vis iBroker Development Environment

Administration Tools

The following tools are used to administer the VisiBroker ORB during development:

Tool Purpose

oadutil list Lists VisiBroker ORB object implementations registered with the OAD.

oadutil reg Registers an VisiBroker ORB object implementation with the OAD.

oadutil unreg Unregisters an VisiBroker ORB object implementation with the OAD.

osagent Used to manage the Smart Agent. See “Using the Smart Agent.”

osfind Reports on objects running on a given network.

 2 : Understanding the CORBA model 13

Java Development Environment

Java Development Environment
The VisiBroker uses the following components in the Java runtime environment:

– Java 2 Standard Edition

– Java runtime environment

Java 2 Standard Edition

A Java development environment, such as Borland JBuilder, is required for developing
applets or applications that use the VisiBroker ORB. JavaSoft's Java Developer's Kit
(JDK) also includes a Java runtime environment.

Sun Microsystems has made JavaSoft's JDK—including its Java runtime
environment—available for Solaris, and Windows NT platforms. You can download the
JDK from Sun Microsystems' web site:

http://java.sun.com

The JDK has also been ported to IBM AIX, OS/2, SGI IRIX, and HP-UX. These other
versions can be downloaded from the respective hardware vendor's web site. To see
what is available for various platforms, visit Sun Microsystems' JavaSoft web site:

http://java.sun.com/products/jdk

Java Runtime Environment

A Java runtime environment is required for any end user who wishes to execute
VisiBroker services and tools. A Java runtime environment is an engine that interprets
and executes a Java application. Typically, Java runtime environments are bundled
with Java development environments. See “Java 2 Standard Edition” for details.

What's Required for GateKeeper

In order to use the VisiBroker Gatekeeper, you will need to use Servlet 2.1 API that is
obtained in JavaServer Web Development Kit 1.0.1.

Java-enabled Web browser

Applets can be run in any Java-enabled web browser—such as Netscape
Communicator, Netscape Navigator, or Microsoft's Internet Explorer. You can obtain
these Java-enabled web browsers by navigating to one of the following URLs:

– http://www.netscape.com/

– http://microsoft.com/ie/

Interoperability with VisiBroker
Applications created with VisiBroker for Java can communicate with object
implementations developed with VisiBroker for C++. Likewise, for applications created
with VisiBroker for C++, these applications can also communicate with objects
implementations developed with VisiBroker for Java. For example, if you want to use
Java application on VisiBroker for C++, simply use the same IDL you used to develop
your Java application as input to the VisiBroker IDL compiler, supplied with VisiBroker
for C++. You may then use the resulting C++ skeletons to develop the object
implementation. To use the C++ application on VisiBroker for Java, repeat the process.
However, you will use the VisiBroker IDL complier with VisiBroker for Java instead.

Also, object implementations written with VisiBroker for Java will work with clients
written in VisiBroker for C++. In fact, a server written with VisiBroker for Java will work
with any CORBA-compliant client; a client written with VisiBroker for Java will work with

14 VisiBroker for Java Developer ’s Guide

Interoperabi l i ty wi th other ORB products

any CORBA-compliant server. This also applies to any VisiBroker for C++ object
implementations.

Interoperability with other ORB products
CORBA-compliant software objects communicate using the Internet Inter-ORB
Protocol (IIOP) and are fully interoperable, even when they are developed by different
vendors who have no knowledge of each other's implementations. VisiBroker's use of
IIOP allows client and server applications you develop with VisiBroker to interoperate
with a variety of ORB products from other vendors.

IDL to Java mapping
VisiBroker conforms with the OMG IDL/Java Language Mapping Specification. See the
VisiBroker Programmer's Reference for a summary of VisiBroker's current IDL to Java
language mapping, as implemented by the idl2java compiler. For each IDL construct
there is a section that describes the corresponding Java construct, along with code
samples.

For more information about the mapping specification, refer to the OMG IDL/Java
Language Mapping Specification.

 3: Developing an example appl icat ion with VisiBroker 15

Developing an example application
with VisiBroker
This section uses an example application to describe the development process for
creating distributed, object-based applications for both Java and C++.

The code for the example application is provided in the bank_agent_java.html file. You
can find this file in:

<install_dir>/examples/vbe/basic/bank_agent/

Development process
When you develop distributed applications with VisiBroker, you must first identify the
objects required by the application. The following figure illustrates the steps to develop
a sample bank application. Here is a summary of the steps taken to develop the bank
sample:

1 Write a specification for each object using the Interface Definition Language (IDL).

IDL is the language that an implementer uses to specify the operations that an
object will provide and how they should be invoked. In this example, we define, in
IDL, the Account interface with a balance() method and the AccountManager interface
with an open() method.

2 Use the IDL compilers to generate the client stub code and server POA servant
code.

With the interface specification described in step 1, use the idl2java or idl2cpp
compilers to generate the client-side stubs and the server-side classes for the
implementation of the remote objects.

3 Write the client program code.

To complete the implementation of the client program, initialize the VisiBroker ORB,
bind to the Account and the AccountManager objects, invoke the methods on these
objects, and print out the balance.

16 VisiBroker for Java Developer ’s Guide

Step 1: Def in ing object interfaces

4 Write the server object code.

To complete the implementation of the server object code, we must derive from the
AccountPOA and AccountManagerPOA classes, provide implementations of the
interfaces' methods, and implement the server's main routine.

5 Compile the client and server code using the appropriate stubs and skeletons.

6 Start the server.

7 Run the client program.

Figure 3.1 Developing the sample bank application

Step 1: Defining object interfaces
The first step to creating an application with VisiBroker is to specify all of your objects
and their interfaces using the OMG's Interface Definition Language (IDL). The IDL can
be mapped to a variety of programming languages.

 3: Developing an example appl icat ion with VisiBroker 17

Step 2: Generat ing cl ient stubs and server servants

You then use the idl2java compiler to generate stub routines and servant code
compliant with the IDL specification. The stub routines are used by your client program
to invoke operations on an object. You use the servant code, along with code you write,
to create a server that implements the object.

Writing the account interface in IDL

IDL has a syntax similar to C++ and can be used to define modules, interfaces, data
structures, and more.

The sample below shows the contents of the Bank.idl file for the bank_agent example.
The Account interface provides a single method for obtaining the current balance. The
AccountManager interface creates an account for the user if one does not already exist.

module Bank{
 interface Account {
 float balance();
 };
 interface AccountManager {
 Account open(in string name);
 };
};

Step 2: Generating client stubs and server servants
The interface specification you create in IDL is used by VisiBroker's idl2java compiler
to generate Java classes for the client program, and skeleton code for the object
implementation.

The client program uses the Java class for all method invocations.

You use the skeleton code, along with code you write, to create the server that
implements the objects.

The code for the client program and server object, once completed, is used as input to
your Java compiler to produce the client and server executables classes.

Because the Bank.idl file requires no special handling, you can compile the file with the
following command.

prompt> idl2java Bank.idl

For more information on the command-line options for the idl2java compiler, see
“Using IDL.”

Files produced by the idl compiler

Java

Because Java allows only one public interface or class per file, compiling the IDL file
will generate several .java files. These files are stored in a generated sub-directory
called Bank, which is the module name specified in the IDL and is the package to which
the generated files belong. The following is a list of .java files generated:

– _AccountManagerStub.java: Stub code for the AccountManager object on the client side.

– _AccountStub.java: Stub code for the Account object on the client side.

– Account.java: The Account interface declaration.

– AccountHelper.java: Declares the AccountHelper class, which defines helpful utility
methods.

– AccountHolder.java: Declares the AccountHolder class, which provides a holder for
passing Account objects.

– AccountManager.java: The AccountManager interface declaration.

18 VisiBroker for Java Developer ’s Guide

Step 3: Implement ing the cl ient

– AccountManagerHelper.java: Declares the AccountManagerHelper class, which defines
helpful utility methods.

– AccountManagerHolder.java: Declares the AccountManagerHolder class, which provides
a holder for passing AccountManager objects.

– AccountManagerOperation.java: This interface provides declares the method
signatures defined in the AccountManager interface in the Bank.idl file.

– AccountManagerPOA.java: POA servant code (implementation base code) for the
AccountManager object implementation on the server side.

– AccountManagerPOATie.java: Class used to implement the AccountManager object on the
server side using the tie mechanism, described in “Using the tie mechanism.”

– AccountOperations.java: This interface provides declares the method signatures
defined in the Account interface in the Bank.idl file

– AccountPOA.java: POA servant code (implementation base code) for the Account
object implementation on the server side.

– AccountPOATie.java: Class used to implement the Account object on the server side
using the tie mechanism, described in “Using the tie mechanism.”

Step 3: Implementing the client

Client.java

Many of the classes used in implementing the bank client are contained in the Bank
package generated by the idl2java compiler as shown in the previous example.

The Client.java file illustrates this example and is included in the bank_agent directory.
Normally, you would create this file.

The Client class implements the client application which obtains the current balance of
a bank account. The bank client program performs these steps:

1 Initializes the VisiBroker ORB.

2 Binds to an AccountManager object.

3 Obtains an Account object by invoking open on the AccountManager object.

4 Obtains the balance by invoking balance on the Account object.

public class Client {
 public static void main(String[] args) {
 // Initialize the ORB.
 org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,null);
 // Get the manager Id
 byte[] managerId = "BankManager".getBytes();
 // Locate an account manager. Give the full POA name and the servant ID.
 Bank.AccountManager manager =
 Bank.AccountManagerHelper.bind(orb, "/bank_agent_poa", managerId);
 // use args[0] as the account name, or a default.
 String name = args.length > 0 ? args[0] : "Jack B. Quick";
 // Request the account manager to open a named account.
 Bank.Account account = manager.open(name);
 // Get the balance of the account.
 float balance = account.balance();
 // Print out the balance.
 System.out.println("The balance in " + name + "'s account is $" +
balance);
 }
}

 3: Developing an example appl icat ion with VisiBroker 19

Step 3: Implement ing the cl ient

Binding to the AccountManager object
Before your client program can invoke the open(String name) method, the client must
first use the bind() method to establish a connection to the server that implements the
AccountManager object.

The implementation of the bind()method is generated automatically by the idl2java
compiler. The bind() method requests the VisiBroker ORB to locate and establish a
connection to the server.

If the server is successfully located and a connection is established, a proxy object is
created to represent the server's AccountManagerPOA object. An object reference to the
AccountManager object is returned to your client program.

Obtaining an Account object
Next, your client class needs to call the open() method on the AccountManager object to
get an object reference to the Account object for the specified customer name.

Obtaining the balance
Once your client program has established a connection with an Account object, the
balance() method can be used to obtain the balance. The balance() method on the
client side is actually a stub generated by the idl2java compiler that gathers all the data
required for the request and sends it to the server object.

AccountManagerHelper.java

Java

This file is located in the Bank package. It contains an AccountManagerHelper object and
defines several methods for binding to the server that implements this object. The
bind() class method contacts the specified POA manager to resolve the object. Our
example application uses the version of the bind method that accepts an object name,
but the client may optionally specify a particular host and special bind options. For
more information about Helper classes, see the VisiBroker Programmer's Reference.

package Bank;
public final class AccountManagerHelper {
 ...
 public static Bank.AccountManager bind(org.omg.CORBA.ORB orb) {
 return bind(orb, null, null, null);
 ...
 }
}

Other methods
Several other methods are provided that allow your client program to manipulate an
AccountManager object reference.

Many of these methods and member functions are not used in the example client
application, but they are described in detail in the VisiBroker Programmer's Reference.

20 VisiBroker for Java Developer ’s Guide

Step 4: Implement ing the server

Step 4: Implementing the server
Just as with the client, many of the classes used in implementing the bank server are
contained in the Bank package generated by the idl2java compiler. The Server.java file
is a server implementation included for the purposes of illustrating this example.
Normally you, the programmer, would create this file.

Server programs

This file implements the Server class for the server side of our banking example. The
code samples below are examples of server side programs for C++ and Java. The
server program does the following:

– Initializes the Object Request Broker.

– Creates a Portable Object Adapter with the required policies.

– Creates the account manager servant object.

– Activates the servant object.

– Activates the POA manager (and the POA).

– Waits for incoming requests.

public class Server {
 public static void main(String[] args) {
 try {
 // Initialize the ORB.
 org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,null);
 // get a reference to the root POA
 POA rootPOA =
 POAHelper.narrow(orb.resolve_initial_references("RootPOA"));
 // Create policies for our persistent POA
 org.omg.CORBA.Policy[] policies = {
 rootPOA.create_lifespan_policy(LifespanPolicyValue.PERSISTENT)
 };
 // Create myPOA with the right policies
 POA myPOA = rootPOA.create_POA("bank_agent_poa",
 rootPOA.the_POAManager(),
 policies);
 // Create the servant
 AccountManagerImpl managerServant = new AccountManagerImpl();
 // Decide on the ID for the servant
 byte[] managerId = "BankManager".getBytes();
 // Activate the servant with the ID on myPOA
 myPOA.activate_object_with_id(managerId, managerServant);
 // Activate the POA manager
 rootPOA.the_POAManager().activate();
 System.out.println(myPOA.servant_to_reference(managerServant) + " is
 ready.");
 // Wait for incoming requests
 orb.run();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

 3: Developing an example appl icat ion with VisiBroker 21

Step 5: Bui ld ing the example

Step 5: Building the example
The examples directory of your VisiBroker release contains a vbmake.bat for this
example and other VisiBroker examples.

Compiling the example

Windows

Assuming VisiBroker is installed in C:\vbroker, type the following to compile the
example:

prompt> vbmake

The command vbmake is a batch file which runs the idl2java compiler and then
compiles each file.

If you encounter some problems while running vbmake , check that your path
environment variable points to the bin directory where you installed the VisiBroker
software.

UNIX

Assuming VisiBroker is installed in /usr/local, type the following to compile the
example:

prompt> make java

In this example, make is the standard UNIX facility. If you do not have it in your PATH, see
your system administrator.

Step 6: Starting the server and running the example
Now that you have compiled your client program and server implementation, you are
ready to run your first VisiBroker application.

Starting the Smart Agent

Before you attempt to run VisiBroker client programs or server implementations, you
must first start the Smart Agent on at least one host in your local network.

The basic command for starting the Smart Agent is as follows:

prompt> osagent

The Smart Agent is described in detail in “Using the Smart Agent.”

Starting the server

Windows

Open a DOS prompt window and start your server by using the following DOS
command:

prompt> start vbj Server

UNIX

Start your Account server by typing:

prompt> vbj Server&

22 VisiBroker for Java Developer ’s Guide

Deploying appl icat ions with VisiBroker

Running the client

Windows

Open a separate DOS prompt window and start your client by using the following DOS
command:

prompt> vbj Client

UNIX

To start your client program, type the following command:

prompt> vbj Client

You should see output similar to that shown below (the account balance is computed
randomly).

The balance in the account in $168.38.

Deploying applications with VisiBroker
VisiBroker is also used in the deployment phase. This phase occurs when a developer
has created client programs or server applications that have been tested and are ready
for production. At this point a system administrator is ready to deploy the client
programs on end-users’ desktops or server applications on server-class machines.

For deployment, the VisiBroker ORB supports client programs on the front end. You
must install the VisiBroker ORB on each machine that runs the client program. Clients
(that make use of the VisiBroker ORB) on the same host share the VisiBroker ORB.
The VisiBroker ORB also supports server applications on the middle tier. You must
install the full VisiBroker ORB on each machine that runs the server application. Server
applications or objects (that make use of the VisiBroker ORB) on the same server
machine share the VisiBroker ORB. Clients may be GUI front ends, applets, or client
programs. Server implementations contain the business logic on the middle tier.

Figure 3.2 Client and server programs deployed with VisiBroker ORBs

 3: Developing an example appl icat ion with VisiBroker 23

Deploying appl icat ions wi th Vis iBroker

VisiBroker Applications

Deploying applications
In order to deploy applications developed with VisiBroker, you must first set up a
runtime environment on the host where the application is to be executed and ensure
that the necessary support services are available on the local network.

The runtime environment required for applications developed with the Java includes
these components:

– Java Runtime Environment.

– VisiBroker Java packages archived in the vbjorb.jar file, located in the lib
subdirectory where you installed VisiBroker.

– Availability of the support services required by the application.

A Java Runtime Environment must be installed on the host where the deployed
application is to execute, and the VisiBroker packages must be installed on the host
where the deployed application is to execute.

Environment variables
When you use the vbj executable, the environmental variables are automatically set up
for you.

If the deployed application is to use a Smart Agent (osagent) on a particular host, you
must set the OSAGENT_ADDR environment variable before running the application. You can
use the vbroker.agent.addr property as a command-line argument to specify a
hostname or IP address. The table below lists the necessary command-line
arguments.

If the deployed application is to use a particular UDP port when communicating with a
Smart Agent, you must set the OSAGENT_PORT environment variable before running the
application.

You can use vbroker.agent.port (Java) command-line argument to specify the UDP
port number.

For more information about environment variables, see the Borland VisiBroker
Installation Guide.

Support service availability
A Smart Agent must be executing somewhere on the network where the deployed
application is to be executed. Depending on the requirements of the application being
deployed, you may need to ensure that other VisiBroker runtime support services are
available, as well. These services include:

Support services Needed when:

Object Activation Daemon (oad) A deployed application is a server that implements object
which needs to be started on demand.

Interface Repository (irep) A deployed application uses either the dynamic skeleton
interface or dynamic implementation interface. See “Using
Interface Repositories” for a description of these interfaces.

GateKeeper A deployed application needs to execute in an environment
that uses firewalls for network security.

24 VisiBroker for Java Developer ’s Guide

Deploying appl icat ions with VisiBroker

Using vbj

Java

You can use the vbj command to start your application and enter command-line
arguments that control the behavior of your application.

vbj -Dvbroker.agent.port=10000 <class>

Running the application
Before you attempt to run VisiBroker client programs or server implementations, you
must first start the Smart Agent on at least one host in your local network. The Smart
Agent is described in detail in “Starting the Smart Agent”.

Executing client Applications
A client application is one that uses VisiBroker ORB objects, but does not offer any
VisiBroker ORB objects of its own to other client applications.

A client may be started with the vbj command, or from within a Java-enabled web
browser.

The following table summarizes the command-line arguments that may be specified for
a Java client application.

Options Description

-DORBagentAddr=<hostname|ip_address> Specifies the hostname or IP address of the host
running the Smart Agent this client should use. If a
Smart Agent is not found at the specified address or if
this option is not specified, broadcast messages will be
used to locate a Smart Agent.

-DORBagentPort=<port_number> Specifies the port number of the Smart Agent. This
option is useful if multiple ORB domains are required. If
the port number is not specified, the default value is set
to 14000.

-DORBmbufSize=<buffer_size> Specifies the size of the intermediate buffer used by
VisiBroker for operation request processing. To improve
performance, the VisiBroker ORB does more complex
buffer management than in previous versions of
VisiBroker. The default size of send and receive buffers
is 4—4kb. If data sent or received is larger than the
default, new buffers will be allocated for each request/
reply. If your application frequently sends data larger
than 4kb and you wish to take advantage of buffer
management, you may use this system property to a
specify a larger number of bytes for a default buffer size.

-DORBtcpNoDelay=<false|true> When set to true, all network connections will send data
immediately. The default is false, which allows a
network connection to send data in batches, as the
buffer fills.

-DORBconnectionMax=<integer> Specifies the maximum number of connections allowed
for an object implementation when OAid TSession is
selected. If you do not specify a value, the default is
unlimited.

-DORBconnectionMaxIdle=<integer> Specifies the number of milliseconds which a network
connection can be idle before being shutdown by
VisiBroker. By default, this is set to 360 which means
that connections will never time-out. This option should
be set for Internet applications.

 3: Developing an example appl icat ion with VisiBroker 25

Deploying appl icat ions wi th Vis iBroker

Executing server applications in Java
A server application is one that offers one or more VisiBroker ORB objects to client
applications. A server application may be started with the vbj command or it may be
activated by the Object Activation Daemon (oad).

The following table summarizes the command-line arguments that may be specified for
a Java server application.

Options Description

-DOAipAddr <hostname|ip_address> Specifies the hostname or IP address to be used for the
Object Adaptor. Use this option if your host has multiple
network interfaces and the BOA is associated with only one
of those interfaces. If no option is specified, the host's
default address is used.

-DOAport <port_number> Specifies the port number to be used by the object adapter
when listening for a new connection.

-DOAid <TPool|TSession> Specifies the thread policy to be used by the BOA. The
default is TPool unless you are in backward compatibility
mode; if you are in backward compatibility, the default is
TSession.

-DOAthreadMax <integer> Specifies the maximum number of threads allowed when
OAid TPool is selected. If you do not specify or you specify
0, this selects unlimited number of threads or, to be more
precise, a number of threads limited only by your system
resources.

-DOAthreadMin <integer> Specifies the minimum number of threads available in the
thread pool. If you do not specify, the default is 0. You can
specify this only when OAid TPool is selected.

-DOAthreadMaxIdle <integer> This specifies the time in seconds during which a thread can
exist without servicing any requests. Threads that idle
beyond the time specified can be returned to the system. By
default, this is set to 300.

-DOAconnectionMax <integer>> Specifies the maximum number of connections allowed
when OAid TSession is selected. If you do not specify, the
default is unlimited.

-DOAconnectionMaxIdle <integer> This specifies the time which a connection can idle without
any traffic. Connections that idle beyond this time can be
shutdown by VisiBroker. By default, this is set to 0, meaning
that connections will never automatically time-out. This
option should be set for Internet applications.

26 VisiBroker for Java Developer ’s Guide

 4: Programmer tools for Java 27

Programmer tools for Java
This chapter describes the programmer tools offered by VisiBroker for Java. In this
section, command syntax consists of the commands, the arguments necessary to
execute them, and command-line options. Some commands take no arguments, but
their options are provided.

VisiBroker, version 6.5 and later, provides additional features in the VisiBroker for Java
tools. Using these features, users have greater flexibility in configuring their
applications, such as setting classpath and ORB properties. VisiBroker provides a
configuration file-based system that lets the user specify the configuration. In addition,
starting with VisiBroker version 6.5, all of these tools are invoked using launchers that
are natively built. Previously, UNIX-based launchers were script-based and provided
very limited functionality for configuration.

Options
All VisiBroker for Java programmer's tools have both general and specific options. The
specific options for each tool are listed in the section for the tool. All the options in the
list are enabled by default and they are preceded by a hyphen (–). To turn-off the
default value, you can either prepend -no_ or remove the hyphen. For example, to
display a “warning” if a #pragma is not recognized, the default value is:

warn_unrecognized_pragmas

To turn-off the default, use the following option:

-no_warn_unrecognized_pragmas

The general options available to all programmer tools are provided in the following
section.

General options

The following options are common to all programmer tools:

Option Description

-VBJdebug Outputs VisiBroker for Java debugging information.

-J<java_option> Passes the java_option directly to the Java Virtual Machine.

-VBJversion Outputs the VisiBroker for Java version in use.

-VBJprop <property>=<value> Passes the specified property to VBJ executable.

28 VisiBroker for Java Developer ’s Guide

idl2ir

idl2ir
This tool allows you to populate an interface repository (IR) with objects defined in an
Interface Definition Language (IDL) source file. It is executed using the idl2ir
command.

Syntax

idl2ir [options] {filename}

Example

idl2ir -irep my_repository -replace java_examples/bank/Bank.idl

Description

The idl2ir command takes an IDL file as input, binds itself to an interface repository
server and populates the repository with the IDL constructs contained in filename. If the
repository already contains an item with the same name as an item in the IDL file, the
old item will be modified.

Keywords

The keyword contains both the options listed below and the IDL input files to be
processed.

Options

The following options are available for idl2ir.

-VBJjavavm <vm-name> Specifies the path, flags to the Java VM. If not specified, the
default value java is used.

-VBJclasspath <classpath> Specifies the classpath. The value entered here precedes the
CLASSPATH ENV variable.

-VBJaddJar <jarfile> <jarfile> to the CLASSPATH before executing the VM. If no
absolute path is specified, the jarfile is assumed to be relative
to <launcher-location>/../lib.

-VBJconfig <config-file-name> The path to the configuration file to be used by the launcher. If
not specified, the default location is <install-dir>/bin/
vbj.config (or vbjc.config for launcher vbjc).

-help|-h|-?|-usage Prints usage information.

Option Description

Option Description

-D, -define foo[=bar] Defines a preprocessor macro foo, optionally with a value
bar.

-I, -include <dir> Specifies an additional directory for #include searching.

-P, -no_line_directives Suppresses the generation of line number information.
The default is off.

-H, -list_includes Prints the full paths of included files on the standard error
output. The default is off.

-U, -undefine <foo> Undefines a preprocessor macro foo.

-C, -retain_comments Retain comments in preprocessed output. The default is
off.

-[no_]idl_strict Specifies a strict OMG standard interpretation of IDL
source. The default is off.

-[no_]builtin (TypeCode|Principal) Create built-in Type ::TypeCode or ::Principal. The default
is on.

-[no_]warn_unrecognized_pragmas Displays a warning that appears if a #pragma is not
recognized. The default is on.

 4: Programmer tools for Java 29

ir2idl

ir2idl
This tool allows you to create an Interface Definition Language (IDL) source file with
objects from an interface repository. It is executed with the ir2idl command.

Syntax

ir2idl [options] filename

Example

ir2idl -irep my_repository -o my_file

Description

The ir2idl command binds to the IR and prints the contents in IDL format.

Keywords

The keyword contains both the options listed below.

Options

The following options are available for ir2idl.

idl2java
This tool generates Java source code from an IDL source file. It is executed using the
idl2java command.

Syntax

idl2java [options] {filename}

-[no_]back_compat_mapping Specifies the use of mapping that is compatible with
VisiBroker 3.x.

-[no_]preprocess Preprocess the input file before parsing. The default is on.

-[no_]preprocess_only Stop parsing the input file after preprocessing. The default
is off.

-[no_]warn_all Turn all warnings on/off simultaneously. The default is on.

-irep <irep name> Specifies the name of the interface repository.

-deep Applies a deep (versus shallow) merge. The default is off.

-replace Replaces entire repository instead of merging. The default
is off.

file1 [file2]... One or more files to process, or “–” for stdin.

-h, -help, -usage, -? Prints help information.

Option Description

Option Description

-irep <irep name> Specifies the name of the interface repository.

-o <file> Specifies the name of the output file, or “–” for stdout.

-strict Specifies strict adherence to OMG-standard code generation. The
default is on. The compiler will complain upon occurrences of Borland-
proprietary syntax extensions in input IDL.

-version Displays or prints out the version of Borland VisiBroker that you are
currently running.

-h, -help, -usage, -? Prints help information.

30 VisiBroker for Java Developer ’s Guide

idl2 java

Example

idl2java -no_tie Bank.idl

Description

The idl2java command, a Java-based preprocessor, compiles an IDL source file and
creates a directory structure containing the Java mappings for the IDL declarations.
Typically, one IDL file will be mapped to many Java files because Java allows only one
public interface or class per file. IDL file names must end with the .idl extension.

Keywords

The keyword contains both the options listed below and the IDL source file(s) to be
processed.

Options

The following options are available for idl2java:

Option Description

-D, -define foo[=bar] Defines a preprocessor macro foo, optionally with a value
bar.

-I, -include <dir> Specifies the full or relative path to the directory for
#include files. Used in searching for include files.

-P, -no_line_directives Suppresses the generation of line number information in
the generated code. The default is off.

-H, -list_includes Prints the full paths of included files on the standard error
output.

-compilerflags Specifies the Java compiler flags. FFirst “–” is escaped,
comma separated.

-compiler <full name> Specify full name of Java Compiler class name.

-U, -undefine foo Undefines a preprocessor macro foo.

-[no_]builtin (TypeCode|Principal) Create built-in Type ::TypeCode or ::Principal. The default
is on.

-[no_]preprocess Preprocess the input file before parsing. The default is on.

-[no_]preprocess_only Stop parsing the input file after preprocessing. The default
is off.

-[no_]warn_all Turn all warnings on/off simultaneously. The default is off.

file1 [file2]... One or more files to process, or “–” for stdin.

-[no_]copy_local_values Copy values when making colocated calls on CORBA
methods. The default is off.

-sealed <pkg> <dest_pkg> Mark this package as sealed. Code will be generated in
dest_pkg or default location.

-no_classloader_aware Generate classloader aware Java code. The default is on.

-backcompat_compile Use the deprecated compile option of jdk1.4.1. The
default is off.

-[no_]idl_strict Specifies strict adherence to OMG standard interpretation
of idl source. The default is off.

-[no_]warn_unrecognized_pragmas Displays a warning that appears if a #pragma is not
recognized. The default is on.

-[no_]back_compat_mapping Specifies the use of IDL mapping that is compatible with
VisiBroker 3.x caffeine compiles.

-[no_]boa Specifies BOA-compatible code generation. The default is
off.

-[no_]comments Suppresses the generation of comments in the code. The
default is on.

-[no_]examples Suppresses the generation of the _example classes. The
default is off.

-gen_included_files Generates code for #included files. The default is off.

 4: Programmer tools for Java 31

java2idl

java2idl
This command generates an IDL from a Java class file (in Java byte code). You can
enter one or more Java classes (in byte codes). If you enter more than one class name,
make sure you include spaces in between the class names.

If you use a class that extends org.omg.CORBA.IDLEntity in some Java remote interface
definition, it must have the following:

– an IDL file that contains the IDL definition for that type because the
org.omg.CORBA.IDLEntity interface is a signature interface that marks all IDL data
types mapped to Java.

– all related (supporting) classes according to the CORBA 2.6 IDL2Java Specification
from the Object Management Group (OMG).

If you use a class that extends org.omg.CORBA.IDLEntity in some Java remote interface
definition, use the -import <IDL files> directive in the java2idl tool's command line.

For more information, refer to the CORBA 2.6 IDL2Java Specification located at
http://www.omg.org/.

Note

To use this command, you must have a virtual machine supporting JDK 1.3 or later.

Syntax

java2idl [options] {filename}

-list_files Lists files written during code generation. The default is
off.

-[no_]obj_wrapper Generates support for object wrappers. The default is off.

-root_dir <path> Specifies the directory in which the generated files reside.

-[no_]servant Generates servant (server-side) code. The default is on.

-tie Generates _tie classes. The default is on.

-[no_]warn_missing_define Warns if any forward declared interfaces were not defined.
The default is on.

-[no_]bind Suppresses the generation ofbind() methods in the
generated Helper class. The default is off.

-[no_]compile When set to on, automatically compiles the Java files. The
default is off.

-dynamic_marshal Specifies that marshalling use DSI/DII model. The default
is off.

-idl2package <IDL_name> <pkg> Overrides default package for a given IDL container type.

-[no_]invoke_handler Generates invocation handler class for EJB. Default is off.

-[no_]narrow_compliance Generated code for narrow is compliant (versus 3.x
compatible). The default is on.

-[no_]Object_methods Generate all methods on Objects. The default is on.

-package <pkg> Specifies the root package for generated code.

-stream_marshal Specifies that marshaling use the stream model. The
default is on.

-strict Specifies strict adherence to OMG standard for code
generation. The default is off.

-version Displays the software version number of Borland
VisiBroker.

-map_keyword <kwd> <replacement> Specifies the keyword to avoid and designates its
replacement.

-h, -help, -usage, -? Prints help information.

Option Description

32 VisiBroker for Java Developer ’s Guide

java2i iop

Example

java2idl -o final.idl Account Client Server

Description

Use this command when you want to generate an IDL from your Java byte code. You
might want to use this when you have existing Java byte code and want to create an
IDL file from it so it can be used with some other programming language like C++,
COBOL, or Smalltalk.

Using the option “–o” as shown in the above example, the three Java byte code files
(Account, Client, Server) are output to a file, final.idl. By default, the output is
displayed on the screen.

Keywords

The keyword contains both the options listed below and the Java byte code file(s) to be
processed.

Options

The following options are available for java2idl.

java2iiop
This command allows you to use the Java language to define IDL interfaces instead of
using IDL. You can enter one or more Java class names (in Java byte code). If you
enter more than one class name, make sure you include spaces in between the class
names. Use fully scoped class names.

Option Description

-D, -define foo[=bar] Defines a preprocessor macro foo, optionally with a value
bar.

-I, -include <dir> Specifies the full or relative path to the directory for #include
files. Used in searching for include files.

-P, -no_line_directives Suppresses the generation of line number information in the
generated code. The default is off.

-H, -list_includes Prints the full paths of included files on the standard error
output.

-U, -undefine foo Undefines a preprocessor macro foo.

-[no_]idl_strict Specifies strict adherence to OMG standard interpretation of
idl source. The default is off.

-[no_]warn_unrecognized_pragmas Displays a warning that appears if a #pragma is not
recognized. The default is on.

-[no_]back_compat_mapping Specifies the use of mapping that is compatible with
VisiBroker 3.x caffeine compile.

-exported <pkg> The type definitions in the specified package will be exported.

-[no_]export_all Exports the type definitions in all packages. The default is
off.

-import <IDL file name> Loads extra IDL definitions.

-imported <pkg> <IDL file name> The type definitions in the specified package should be
considered imported from the specified IDL file and should
not be code generated

-o <file> Specifies the name of an output file, or “–” for stdout.

-strict Specifies strict adherence to OMG standard for code
generation. The default is off.

class1 [class2]... One or more Java Classes to process.

-version Displays the software version number of Borland VisiBroker.

-h, -help, -usage, -? Prints help information.

 4: Programmer tools for Java 33

java2iiop

Note

To use this command, you must have a Java Virtual Machine supporting JDK 1.3 or
later.

If you use a class that extends org.omg.CORBA.IDLEntity in some Java remote interface
definition, it must have the following:

– an IDL file that contains the IDL definition for that type because the
org.omg.CORBA.IDLEntity interface is a signature interface that marks all IDL data
types mapped to Java.

– all related (supporting) classes according to the CORBA 2.6 IDL2Java Specification
from the Object Management Group (OMG).

If you use a class that extends org.omg.CORBA.IDLEntity in some Java remote interface
definition, use the -import <IDL files> directive in the java2iiop tool's command line.

For more information, refer to the CORBA 2.6 IDL2Java Specification located at
http://www.omg.org/.

Syntax

java2iiop [options] {class name}

Example

java2iiop -no_tie Account Client Server

Description

Use java2iiop if you have existing Java byte code that you wish to adapt to use
distributed objects or if you do not want to write IDL. By using java2iiop, you can
generate the necessary container classes, client stubs, and server skeletons from Java
byte code.

Note

The java2iiop compiler does not support overloaded methods on CORBA interfaces.

Keywords

The keyword contains both the options listed below and the Java byte code file(s) to be
processed.

Options

The following options are available for java2iiop.

Option Description

-D, define foo[=bar] Defines a preprocessor macro foo, optionally with a value
bar.

-I, -include <dir> Specifies the full or relative path to the directory for
#include files. Used in searching for include files.

-P, -no_line_directives Suppresses the generation of line number information in
the generated code. The default is off.

-H, -list_includes Prints the full paths of included files on the standard error
output.

-U, -undefine foo Undefines a preprocessor macro foo.

-[no_]idl_strict Specifies strict adherence to OMG standard interpretation
of idl source. The default is off.

-[no_]warn_unrecognized_pragmas Displays a warning that appears if a #pragma is not
recognized. The default is on.

-[no_]back_compat_mapping Specifies the use of mapping that is compatible with
VisiBroker 3.x. The default is off.

-exported <pkg> Specifies the name of an exported package.

34 VisiBroker for Java Developer ’s Guide

java2i iop

-[no_]export_all Exports all packages. The default is off.

-import <IDL file name> Loads extra IDL definitions.

-imported <pkg> <idl_file_name> Specifies the name of an imported package.

-[no_]boa Specifies BOA-compatible code generation. The default is
off.

-[no_]comments Suppresses the generation of comments in the code. The
default is on.

-[no_]examples Suppresses the generation of the _example classes. The
default is off.

-gen_included_files Generates code for #included files. The default is off.

-list_files Lists files written during code generation. The default is
off.

-[no_]obj_wrapper Generates support for object wrappers. The default is off.

-root_dir <path> Specifies the directory in which the generated files reside.

-[no_]servant Generates servant (server-side) code. The default is on.

-tie Generates _tie classes. The default is on.

-[no_]warn_missing_define Warns if any forward declared file names were never
defined. The default is on.

-[no_]bind Suppresses the generation of bind() methods in the
generated Helper class. The default is on.

-[no_]compile Automatically generates Java files. When set to on, also
automatically compiles the Java files. The default is off.

-compiler Specifies the Java compiler to be used. This option is
ignored if the -compile option is not set.

-compilerflags "\-flag,arg[,.] Specifies the Java compiler flags to be passed to the Java
compiler. First “–” is escaped, comma separated.

-C, -retain_comments Retain comments in preprocessed output. The default is
off.

-[no_]builtin (TypeCode|Principal) Create built-in Type ::TypeCode or ::Principal. The default
is on.

-[no_]preprocess Preprocess the input file before parsing. The default is on.

-[no_]preprocess_only Stop parsing the input file after preprocessing. The default
is off.

-[no_]warn_all Turn all warnings on/off simultaneously. The default is off.

-[no_]copy_local_values Copy values when making colocated calls on CORBA
methods. The default is off.

-no_classloader_aware Generate classloader aware Java code. The default is on.

-backcompat_compile Use the deprecated compile option of jdk1.4.1. The
default is off.

-[no_]idlentity_array_mapping Map array of IDLEntity to boxedIDL in boxedRMI. The default
is off.

class1 [class2]... One or more Java classes to process.

-dynamic_marshal Specifies that marshalling use DSI/DII model. The default
is off.

-idl2package <IDL name> <pkg> Overrides default package for a given IDL container type.

-[no_]invoke_handler Generates invocation handler class for EJB. Default is on.

-[no_]narrow_compliance Generated code is compliant (versus 3.x compatible). the
default is on.

-[no_]Object_methods Generates all methods defined in java.lang.Object
methods, such as string and equals. The default is on.

-package <pkg> Specifies the root package for generated code.

-sealed <pkg> <destination_pkg> Generates stubs and skeletons for remote interfaces in
the specified package to the org.omg.stub and the
destination package respectively.

Option Description

 4: Programmer tools for Java 35

vbj

vbj
This command starts the local Java interpreter.

Syntax

vbj [options] [arguments normally sent to java VM] {class} [arg1 arg2 ...]

Where:

Example

vbj Server

Description

Java applications have certain limitations not faced by applications written in other
languages. The vbj command provides options to work around some of these
limitations, and it is the preferred method to launch Borland VisiBroker applications.
The vbj command performs the following actions:

– Passes CLASSPATH and arguments to the Java VM according to command line
options and configuration file definition.

– Customized launching behavior for each application using customized configuration
files.

– Embedded JVM within the same process as the launcher.

– Runs application as daemon in Windows platforms only.

The following options are available for vbj.

-stream_marshal Specifies that marshaling use the stream model. The
default is on.

-strict Specifies strict adherence to OMG standard for code
generation. The default is off.

-version Displays the software version number of Borland
VisiBroker.

-map_keyword <kwd> <replacement> Specifies the keyword to avoid and designates its
replacement.

-h, -help, -usage, -? Prints help information.

Option Description

Argument Description

{class} Specifies the name of the class to be executed.

[arg1 arg2 ...] Specific arguments to be passed to the class.

Argument Description

-debug, -VBJdebug Turns on launcher debug output.

-h, -help, -usage, -? Prints launcher command help.

-version Displays or prints out the version of Borland VisiBroker for Java
that you are currently running.

-install <server-name> Installs a Windows NT/2000 service.

-remove <server-name> Removes a Windows NT/2000 service.

-javahome <jvm-directory> The installation directory of the Java VM.

-classicvm
-hotspotvm / -clientvm
-servervm

Selects the VM type to be run. Note that you can also use the -
J flag to pass VM type. Fro example:

vbj -J-server Server

36 VisiBroker for Java Developer ’s Guide

vbj

-classpath
-classpath/a
-classpath/p
-classpath/r
-VBJclasspath
-VBJaddJar

Modifies the classpath. The value of this argument is either
appended to (/a), prepended to (/p), or completely replaces (/r)
any existing classpath setting in the environment. Only the last
occurrence of the classpath family argument is honored. Note
that -VBJclasspath is equivalent to -classpath/p and -VBJaddJar ir
equivalent to -classpath/a.

-verbose Turns on verbose output from the Java VM.

-VBJconfig <config-file-name> Uses an alternate configuration file and replaces the default
configuration file.

-jpda[:[{paused|running}]
[,address=[<host>:]<port#>]]

Turns on JPDA debug. For example:

-jpda:running,address=23456

Starts the JVM with JPDA turned on. A JPDA debugger
can then attach to this application on port 23456 to
debug the application. Also ensure that in the launcher's
configuration file (for example <install-dir>/bin/
vbj.config) the following line is present:

jpda running,address=23456

-javacmd Prints an equivalent Java command. This is useful when vbj
launcher is not required and the application is executed
through java launcher.

Argument Description

 4: Programmer tools for Java 37

vbjc

vbjc
This command is used to compile Java source code that can import VisiBroker classes.
When called, it:

– Sets CLASSPATH, arguments to be passed to Java VM according to command line
options and configuration file definition.

– Adds the VisiBroker-standard JAR files into the CLASSPATH.

– Launches javac main class: com.sun.tools.javac.Main.

Syntax

vbjc [arguments normally passed to javac]

Example

vbjc Server.java

The vbjc command supports the command line options described in the following table.

Specifying the classpath
The following sources are merged together in the following order:

1 JAR and ZIP files in the patches directory ($VBROKERDIR/lib/patches/) (Note that the
patches directory is not automatically created under the $VBROKERDIR/lib/ directory.
It has to be created by the user explicitly.)

2 The classpath specified in -VBJclasspath, -classpath/p, or -classpath/r

3 The $CLASSPATH exported in the environment (if -classpath/r is not specified)

4 The classpath specified in -classpath/a

5 The default JAR files required by the launcher

6 JAR files added using VBJaddJar and assumed to be located in the
<launcher location>/../lib directory if no absolute path is specified

7 Classpath added using addpath directive in the configuration file

8 JAR files added using addjars directive in the configuration file

9 The current directory

The merged classpath is passed to the Java Virtual Machine using -Djava.class.path.

Argument Description

-VBJdebug Displays or prints out the VisiBroker for Java debugging
information.

-VBJversion Displays or prints out the version of Borland VisiBroker for Java
that you are currently running.

-VBJjavavm <vmname> Specifies the path to the Java Virtual Machine to be used.
Default is java.

-VBJclasspath <classpath> Specifies the classpath. Precedes CLASSPATH environment
variable.

-VBJaddJar <jarfile> Appends <install-dir>/lib/<jarfile> to the CLASSPATH before
executing the VM. If no absolute path is specified, the jarfile is
assumed to be relative to <launcher-location>/../lib.

-VBJconfig <config-file-name> The path to the configuration file to be used by the launcher. If
not specified, the default location is <install-dir>/bin/
vbj.config|vbjc.config.

-help|-h|-?|-usage Prints usage information.

-VBJcompiler <class-name> Overwrites the default javac main class.

38 VisiBroker for Java Developer ’s Guide

Specifying the JVM
By default the JVM is located as follows:

1 Searching the directories specified in the PATH.

2 Using the information specified through javahome directive in the configuration file
(the default configuration file for vbj is vbj.config).

The above procedure can be overridden using the -VBJjavavm or -javahome (only
supported in vbj) option. With -VBJjavavm either the name of the VM can be specified or
the full path to the VM can be specified. The option -javahome has same semantics as
the javahome configuration file directive. Note that if no VM is found using the -VBJjavavm
or -javahome options, no further search is carried out to locate the default JVM and
program terminates with an error.

idl2wsj

Option Description
-encoding_wsi_only Generate specific WS–I encodings only. Defaults to OFF
-encoding_soap_only Generate specific SOAP encodings only. Defaults to OFF
-wsdl_file_name Name of the generated WSDL file. Defaults to the name of IDL
-wsdl_namespace Namespace of the generated WSDL. Defaults to the name of the

IDL file
-gen_java_bridge Generate VisiBroker for Java bridge code. Defaults to OFF.
-root_dir Directory in which generated files should reside

 5: IDL to Java mapping 39

IDL to Java mapping
This section describes the basics of the VisiBroker for Java current IDL-to-Java
language mapping, as implemented by the idl2java compiler. VisiBroker for Java
conforms with the OMG IDL/Java Language Mapping Specification.

See the latest version of the OMG IDL/Java Language Mapping Specification for
complete information about the following:

– Mapping pseudo-objects to Java

– Server-side mapping

– Java ORB portability interfaces

Names
In general, IDL names and identifiers are mapped to Java names and identifiers with
no change.

If a name collision is generated in the mapped Java code, the name collision is
resolved by prepending an underscore (_) to the mapped name.

In addition, because of the nature of the Java language, a single IDL construct may be
mapped to several (differently named) Java constructs. The “additional” names are
constructed by appending a descriptive suffix. For example, the IDL interface
AccountManager is mapped to the Java interface AccountManager and additional Java
classes AccountManagerOperations, AccountManagerHelper, and AccountManagerHolder.

In the exceptional cases that the “additional” names may conflict with other mapped
IDL names, the resolution rule described above is applied to the other mapped IDL
names. In other words, the naming and use of required “additional” names takes
precedence.

For example, an interface whose name is fooHelper or fooHolder is mapped to
_fooHelper or _fooHolder respectively, regardless of whether an interface named foo
exists. The helper and holder classes for interface fooHelper are named
_fooHelperHelper and _fooHelperHolder.

IDL names that would normally be mapped unchanged to Java identifiers that conflict
with Java reserved words will have the collision rule applied.

40 VisiBroker for Java Developer ’s Guide

Reserved names

Reserved names
The mapping reserves the use of several names for its own purposes. The use of any
of these names for a user-defined IDL type or interface (assuming it is also a legal IDL
name) will result in the mapped name having an underscore (_) prepended. Reserved
names are as follows:

– The Java class <type>Helper, where <type> is the name of an IDL user-defined type.

– The Java class <type>Holder, where <type> is the name of an IDL user-defined type
(with certain exceptions such as typedef aliases).

– The Java classes <basicJavaType>Holder, where <basicJavaType> is one of the Java
primitive data types that is used by one of the IDL basic data types.

– The nested scope Java package name <interface>Package, where <interface> is the
name of an IDL interface.

– The Java classes <interface> Operations, <interfaces> POA, and <interface>POATie,
when <interface> is the name of an IDL interface type.

Reserved words
The mapping reserves the use of several words for its own purposes. The use of any of
these words for a user-defined IDL type or interface (assuming it is also a legal IDL
name) will result in the mapped words having an underscore (_) prepended. The
reserved keywords in the Java language are as follows:

Modules
An IDL module is mapped to a Java package with the same name. All IDL type
declarations within the module are mapped to corresponding Java class or interface
declarations within the generated package.

IDL declarations not enclosed in any modules are mapped into the (unnamed) Java
global scope.

The following code sample shows the Java code generated for a type declared within
an IDL module.

/* From Example.idl: */
module Example { };
// Generated java
package Example;
...

abstract abstractBase boolean break
byte case catch char
class const continue default
do double else extends
false final finally float
for goto if implements
import instanceof int interface
local long native new
null package private protected
public return short static
super switch synchronized this
throw throws transient true
try void volatile while

 5 : IDL to Java mapping 41

Basic types

Basic types
The following table shows how the defined IDL types map to basic Java types.

When there is a potential mismatch between an IDL type and its mapped Java type, a
standard CORBA exception can be raised. For the most part, exceptions are in two
categories,

– Range of the Java type is larger than the IDL type. For example, Java chars are a
superset of IDL chars.

– Because there is no support in Java for unsigned types, the developer is responsible
for ensuring that large unsigned IDL type values are handled correctly as negative
integers in Java.

Additional details are described in the following sections.

IDL type extensions

This section summarizes the VisiBroker for Java support for IDL type extensions. The
first table provides a summary for quick look-ups. This is followed by the IDL
extensions for new types table summarizing support for new types.

1VisiBroker for Java will support any future release of OMG standard implementation.
2UNICODE is used “on the wire.”

IDL type Java type

boolean boolean

char char

wchar char

octet byte

string java.lang.String

wstring java.lang.String

short short

unsigned short short

long int

unsigned long int

longlong long

unsigned longlong long

float float

double double

Type Supported in Borland VisiBroker

longlong yes

unsigned longlong yes

long double no1

wchar yes2

wstring yes2

fixed no1

New types Description

longlong 64-bit signed 2's complements integers

unsigned longlong 64-bit unsigned 2's complements integers

long double IEEE Standard 754-1985 double extended floating point

wchar Wide characters

42 VisiBroker for Java Developer ’s Guide

Basic types

Holder classes

Holder classes support OUT and INOUT parameter passing modes and are available for
all the basic IDL data types in the org.omg.CORBA package. Holder classes are generated
for all named user-defined types except those defined by typedefs. For more
information, see the Java API Reference, VisiBroker APIs, org.omg.CORBA package
section.

For user-defined IDL types, the holder class name is constructed by appending Holder
to the mapped Java name of the type.

For the basic IDL data types, the holder class name is the Java type name (with its
initial letter capitalized) to which the data type is mapped with an appended Holder, for
example, IntHolder.

Each holder class has a constructor from an instance, a default constructor, and has a
public instance member, value, which is the typed value. The default constructor sets
the value field to the default value for the type as defined by the Java language:

– false for boolean

– null for values

– 0 for numeric and char types

– null for strings

– null for object references

To support portable stubs and skeletons, Holder classes for user-defined types also
implement the org.omg.CORBA.portable.Streamable interface.

The holder classes for the basic types are defined in the following code sample. They
are in the org.omg.CORBA package.

// Java
package org.omg.CORBA;
final public class ShortHolder implements Streamable {
 public short value;
 public ShortHolder() {}
 public ShortHolder(short initial) {
 value = initial;
 }

 ...//implementation of the streamable interface
}
final public class IntHolder implements Streamable {
 public int value;
 public IntHolder() {}
 public IntHolder(int initial) {
 value = initial;
 }
 ...//implementation of the streamable interface
}
final public class LongHolder implements Streamable {
 public long value;
 public LongHolder() {}
 public LongHolder(long initial) {
 value = initial;
 }
 ...//implementation of the streamable interface
}
final public class ByteHolder implements Streamable {

wstring Wide strings

fixed Fixed-point decimal arithmetic (31 significant digits)

New types Description

 5 : IDL to Java mapping 43

Basic types

 public byte value;
 public ByteHolder() {}
 public ByteHolder(byte initial) {
 value = initial;
 }
 ...//implementation of the streamable interface
}
final public class FloatHolder implements Streamable {
 public float value;
 public FloatHolder() {}
 public FloatHolder(float initial) {
 value = initial;
 }
 ...//implementation of the streamable interface
}
final public class DoubleHolder implements Streamable {
 public double value;
 public DoubleHolder() {}
 public DoubleHolder(double initial) {
 value = initial;
 }
 ...//implementation of the streamable interface
}
final public class CharHolder implements Streamable {
 public char value;
 public CharHolder() {}
 public CharHolder(char initial) {
 value = initial;
 }
 ...//implementation of the streamable interface
}
final public class BooleanHolder implements Streamable {
 public boolean value;
 public BooleanHolder() {}
 public BooleanHolder(boolean initial) {
 value = initial;
 }
 ...//implementation of the streamable interface
}
final public class StringHolder implements Streamable {
 public java.lang.String value;
 public StringHolder() {}
 public StringHolder(java.lang.String initial) {
 value = initial;
 }
 ...//implementation of the streamable interface
}

final public class ObjectHolder implements Streamable {
 public org.omg.CORBA.Object value;
 public ObjectHolder() {}
 public ObjectHolder(org.omg.CORBA.Object initial) {
 value = initial;
 }
 ...//implementation of the streamable interface
}
final public class ValueBaseHolder implements Streamable {

44 VisiBroker for Java Developer ’s Guide

Basic types

 public java.io.Serializable value;
 public ValueBaseHolder() {}
 public ValueBaseHolder(java.io.Serializable initial) {
 value = initial;
 }
 ...//implementation of the streamable interface
}
final public class AnyHolder implements Streamable {
 public Any value;
 public AnyHolder() {}
 public AnyHolder(Any initial) {
 value = initial;
 }
 ...//implementation of the streamable interface
}
final public class TypeCodeHolder implements Streamable {
 public TypeCode value;
 public typeCodeHolder() {}
 public TypeCodeHolder(TypeCode initial) {
 value = initial;
 }
 ...//implementation of the streamable interface
}
final public class PrincipalHolder implements Streamable {
 public Principal value;
 public PrincipalHolder() {}
 public PrincipalHolder(Principal initial) {
 value = initial;
 }
 ...//implementation of the streamable interface
}

The follwing code sample shows the Holder class for a user-defined type <foo>.

// Java
final public class <foo>Holder
 implements org.omg.CORBA.portable.Streamable {
 public <foo> value;
 public <foo>Holder() {}
 public <foo>Holder(<foo> initial) {}
 public void _read(org.omg.CORBA.portable.InputStream i)
 {...}
 public void _write(org.omg.CORBA.portable.OutputStream o)
 {...}
 public org.omg.CORBA.TypeCode _type() {...}
 }

 5 : IDL to Java mapping 45

Basic types

Java null
The Java null may only be used to represent null CORBA object references and
valuetypes (including recursive valuetypes). For example, a zero length string, rather
than null must be used to represent the empty string. This is also true for arrays and
any constructed type, except for valuetypes. If you attempt to pass a null for a
structure, it will raise a NullPointerException.

Boolean

The IDL type boolean is mapped to the Java type boolean. The IDL constants TRUE and
FALSE are mapped to the Java constants true and false.

Char

IDL characters are 8-bit quantities representing elements of a character set while Java
characters are 16-bit unsigned quantities representing Unicode characters. To enforce
type-safety, the Java CORBA runtime asserts range validity of all Java chars mapped
from IDL chars when parameters are marshaled during method invocation. If the char
falls outside the range defined by the character set, a CORBA::DATA_CONVERSION exception
is thrown.

The IDL wchar maps to the Java char type.

Octet

The IDL type octet, an 8-bit quantity, is mapped to the Java type byte.

String

The IDL type string, both bounded and unbounded variants, is mapped to the Java
typejava.lang.String. Range checking for characters in the string as well as bounds
checking of the string are done at marshal time.

WString

The IDL type wstring, used to represent Unicode strings, is mapped to the Java
typejava.lang.String. Bounds checking of the string is done at marshal time.

Integer types

IDL short and unsigned short map to Java type short. IDL long and unsigned long map
to Java type int.

Note

Because there is no support in Java for unsigned types, the developer is responsible
for ensuring that negative integers in Java are handled correctly as large unsigned
values.

Floating point types

The IDL floating point types float and double map to a Java class containing the
corresponding data type.

46 VisiBroker for Java Developer ’s Guide

Helper c lasses

Helper classes
All user-defined IDL types have an additional “helper” Java class with the suffix Helper
appended to the type name generated. Several static methods needed to manipulate
the type are supplied.

– Any insert and extract operations for the type
– Getting the repository id
– Getting the typecode
– Reading and writing the type from and to a stream

For any user-defined IDL type, <typename>, the following code sample is the Java code
generated for the type. The helper class for a mapped IDL interface has a narrow
operation defined for them.

// generated Java helper
public class <typename>Helper {
 public static void insert(org.omg.CORBA.Any a, <typename> t);
 public static <typename> extract(org.omg.CORBA.Any a);
 public static org.omg.CORBA.TypeCode type();
 public static String id();
 public static <typename> read(org.omg.CORBA.portable.InputStream istream);
 {...}
 public static void write(
 org.omg.CORBA.portable.OutputStream ostream, <typename> value)
 {...}
 // only for interface helpers
 public static <typename> narrow(org.omg.CORBA.Object obj);

The following code sample shows the mapping of a named type to Java helper class.

// IDL - named type
struct st {long f1, String f2};
// generated Java
public class stHelper {
 public static void insert(org.omg.CORBA.Any any,
 st s) {...}
 public static st extract(org.omg.CORBA.Any a) {...}
 public static org.omg.CORBA.TypeCode type() {...}
 public static String id() {...}
 public static st read(org.omg.CORBA.InputStream is) {...}
 public static void write(org.omg.CORBA.OutputStream os,
 st s) {...}
}

The following code sample shows mapping of a typedef sequence to Java helper class.

// IDL - typedef sequence
typedef sequence <long> IntSeq;
// generated Java helper
public class IntSeqHelper {
 public static void insert(org.omg.CORBA.Any any,
 int[] seq);
 public static int[] extract(org.omg.CORBA.Any a){...}
 public static org.omg.CORBA.TypeCode type(){...}
 public static String id(){...}
 public static int[] read(
 org.omg.CORBA.portable.InputStream is)
 {...}
 public static void write(
 org.omg.CORBA.portable.OutputStream os,
 int[] seq)
 {...}
}

 5 : IDL to Java mapping 47

Constants

Constants
Constants are mapped depending upon the scope in which they appear.

Constants within an interface

Constants declared within an IDL interface are mapped to public static final fields in
the Java interface Operations class corresponding to the IDL interface.

The following code sample shows the mapping of an IDL constant within a module to a
Java class.

/* From Example.idl: */
module Example {
 interface Foo {
 const long aLongerOne = -321;
 };
};

// Foo.java
package Example;
public interface Foo extends com.borland.vbroker.CORBA.Object,
 Example.FooOperations,
 org.omg.CORBA.portable.IDLEntity {
}
// FooOperations.java
package Example;
public interface FooOperations {
 public final static int aLongerOne = (int)-321;
}

Constants NOT within an interface

Constants declared within an IDL module are mapped to a public interface with the
same name as the constant and containing a public static final field named value.
This field holds the constant's value.

Note

The Java compiler normally inlines the value when the class is used in other Java
code.

THe following code sample shows the mapping of an IDL constant within a module to a
Java class.

/* From Example.idl: */
module Example {
 const long aLongOne = -123;
};
// Generated java
package Example;
public interface aLongOne {
 public final static int value = (int) -123;
}

48 VisiBroker for Java Developer ’s Guide

Constructed types

Constructed types
IDL constructed types include enum, struct, union, sequence, and array. The types
sequence and array are both mapped to the Java array type. The IDL constructed types
enum, struct, and union are mapped to a Java class that implements the semantics of
the IDL type. The Java class generated will have the same name as the original IDL
type.

Enum

An IDL enum is mapped to a Java final class with the same name as the enum type
which declares a value method, two static data members per label, an integer
conversion method, and a private constructor. The following code sample is an
example of an IDL enum mapped to a Java final class:

// Generated java
public final class <enum_name> {
 //one pair for each label in the enum
 public static final int _<label> = <value>;
 public static final <enum_name> <label> =
 new <enum_name>(_<label>);

 public int value() {...}
 //get enum with specified value
 public static <enum_name> from_int(int value);
 //constructor
 protected <enum_name>(int) {...}
}

One of the members is a public static final , which has the same name as the IDL
enum label. The other has an underscore (_) prepended and is used in switch
statements.

The value method returns the integer value. Values are assigned sequentially starting
with 0. If the enum has a label named value, there is no conflict with the value() method
in Java.

There will be only one instance of an enum. Since there is only one instance, pointer
equality tests will work correctly; that is, the default java.lang.Object implementation of
equals() and hash() will automatically work correctly for an enumeration's singleton
object.

The Java class for the enum has an additional method, from_int(), which returns the
enum with the specified value.

The holder class for the enum is also generated. Its name is the enumeration's mapped
Java classname with Holder appended to it as follows:

public class <enum_name>Holder implements
 org.omg.CORBA.portable.Streamable {
 public <enum_name> value;
 public <enum_name>Holder() {}
 public <enum_name>Holder(<enum_name> initial) {...}
 public void _read(org.omg.CORBA.portable.InputStream i)
 {...}
 public void _write(org.omg.CORBA.portable.OutputStream o)
 {...}
 public org.omg.CORBA.TypeCode _type() {...}
}

 5 : IDL to Java mapping 49

Constructed types

The following code sample shows the IDL mapped to Java for enum.

// IDL

module Example {
 enum EnumType { first, second, third };
};
// generated Java
public final class EnumType
 implements org.omg.CORBA.portable.IDLEntity {
 public static final int _first = 0;
 public static final int _second = 1;
 public static final int _third = 2;
 public static final EnumType first = new EnumType(_first);
 public static final EnumType second = new EnumType(_second);
 public static final EnumType third = new EnumType(_third);
 protected EnumType (final int _vis_value) { ... }
 public int value () { ... }
 public static EnumType from_int (final int _vis_value) { ... }
 public java.lang.String toString() { ... }
}
public final class EnumTypeHolder
 implements org.omg.CORBA.portable.Streamable {
 public OtherExample.EnumType value;
 public EnumTypeHolder () { ... }
 public EnumTypeHolder (final OtherExample.EnumType _vis_value) { ... }
 public void _read (final org.omg.CORBA.portable.InputStream input) { ... }
 public void _write (final org.omg.CORBA.portable.OutputStream output) { ...
}
 public org.omg.CORBA.TypeCode _type () { ... }
 public boolean equals (java.lang.Object o) {...}
}

Struct

An IDL struct is mapped to a final Java class with the same name that provides
instance variables for the fields in IDL member ordering and a constructor for all
values. A null constructor is also provided that allows the structure's fields to be
initialized later. The Holder class for the struct is also generated. Its name is the
struct's mapped Java classname with Holder appended to it as follows:

final public class <class>Holder implements
 org.omg.CORBA.portable.Streamable {
 public <class> value;
 public <class>Holder() {}
 public <class>Holder(<class> initial) {...}
 public void _read(org.omg.CORBA.portable.InputStream i)
 {...}
 public void _write(org.omg.CORBA.portable.OutputStream o)
 {...}
 public org.omg.CORBA.TypeCode _type() {...}
}

50 VisiBroker for Java Developer ’s Guide

Constructed types

The following code sample shows the mapping of an IDL struct to Java.

/* From Example.idl: */
module Example {
 struct StructType {
 long field1;
 string field2;
 };

};
// generated Java
public final class StructType
 implements org.omg.CORBA.portable.IDLEntity {
 public int field1;
 public java.lang.String field2;
 public StructType () { ... }
 public StructType (final int field1,
 final java.lang.String field2) { ... }
 public java.lang.String toString() { ... }
 public boolean equals (java.lang.Object o) {...}
public final class StructTypeHolder implements
org.omg.CORBA.portable.Streamable {
 public Example.StructType value;
 public StructTypeHolder () { ... }
 public StructTypeHolder (final Example.StructType _vis_value)
 { ... }
 public void _read (final org.omg.CORBA.portable.InputStream input)
 { ... }
 public void _write (final org.omg.CORBA.portable.OutputStream output)
 { ... }
 public org.omg.CORBA.TypeCode _type () { ... }
}

Union

An IDL union is given the same name as the final Java class and mapped to it; it
provides the following:

– Default constructor

– Accessor method for the union's discriminator, named discriminator()

– Accessor method for each branch

– Modifier method for each branch

– Modifier method for each branch having more than one case label

– Default modifier method, if needed

If there is a name clash with the mapped union type name or any of the field names,
the normal name conflict resolution rule is used: prepend an underscore for the
discriminator.

The branch accessor and modifier methods are overloaded and named after the
branch. Accessor methods shall raise the CORBA::BAD_OPERATION system exception if the
expected branch has not been set.

If there is more than one case label corresponding to a branch, the simple modifier
method for that branch sets the discriminant to the value of the first case label. In
addition, an extra modifier method which takes an explicit discriminator parameter is
generated.

If the branch corresponds to the default case label, then the modifier method sets the
discriminant to a value that does not match any other case labels.

It is illegal to specify a union with a default case label if the set of case labels
completely covers the possible values for the discriminant. It is the responsibility of the

 5 : IDL to Java mapping 51

Constructed types

Java code generator (for example, the IDL compiler, or other tool) to detect this
situation and refuse to generate illegal code.

A default method _default() is created if there is no explicit default case label, and the
set of case labels does not completely cover the possible values of the discriminant. It
will set the value of the union to be an out-of-range value.

The holder class for the union is also generated. Its name is the union's mapped Java
classname with Holder appended to it as follows:

This code sample shows the Holder class for a union.

final public class <union_class>Holder
 implements org.omg.CORBA.portable.Streamable {
 public <union_class> value;
 public <union_class>Holder() {}
 public <union_class>Holder(<union_class> initial) {...}
 public void _read(org.omg.CORBA.portable.InputStream i)
 {...}
 public void _write(org.omg.CORBA.portable.OutputStream o)
 {...}
 public org.omg.CORBA.TypeCode _type() {...}
}

The following code sample shows the mapping of an IDL union to Java.

/* From Example.idl: */
module Example {
 enum EnumType { first, second, third, fourth, fifth, sixth };
 union UnionType switch (EnumType) {
 case first: long win;
 case second: short place;
 case third:
 case fourth: octet show;
 default: boolean other;
 };

};
// Generated java
final public class UnionType {
 //constructor
 public UnionType() {...}
 //discriminator accessor
 public int discriminator() { ... }
 //win
 public int win() { ... }
 public void win(int value) { ... }
 //place
 public short place() { ... }
 public void place(short value) { ... }
 //show
 public byte show() { ... }
 public void show(byte value) { ... }
 public void show(int discriminator, byte value) { ... }
 //other
 public boolean other() {...}
 public void other(boolean value) { ... }
 public java.lang.String to String () { ...}
 public boolean equals (java.lang.Object o) { ...}
}

final public class UnionTypeHolder {
 implements org.omg.CORBA.portable.Streamable {
 public UnionType value;
 public UnionTypeHolder() {}

52 VisiBroker for Java Developer ’s Guide

Constructed types

 public UnionTypeHolder(UnionType initial) {...}
 public void _read(org.omg.CORBA.portable.InputStream i)
 {...}
 public void _write(org.omg.CORBA.portable.OutputStream o)
 {...}
 public org.omg.CORBA.TypeCode_type() {...}
}

Sequence

An IDL sequence is mapped to a Java array with the same name. In the mapping,
anywhere the sequence type is needed, an array of the mapped type of the sequence
element is used.

The holder class for the sequence is also generated. Its name is the sequence's
mapped Java classname with Holder appended to it as follows:

final public class <sequence_class>Holder {
 public <sequence_element_type>[] value;
 public <sequence_class>Holder() {};
 public <sequence_class>Holder(
 <sequence_element_type>[] initial) {...};
 public void _read(org.omg.CORBA.portable.InputStream i)
 {...}
 public void _write(org.omg.CORBA.portable.OutputStream o)
 {...}
 public org.omg.CORBA.TypeCode _type() {...}
}

The following code sample shows the mapping of an IDL sequence to Java.

// IDL
typedef sequence<long>UnboundedData;
typedef sequence<long, 42>BoundedData;
// generated Java
final public class UnboundedDataHolder
 implements org.omg.CORBA.portable.Streamable {
 public int[] value;
 public UnboundedDataHolder() {};
 public UnboundedDataHolder(final int[] initial) { ... };
 public void _read(org.omg.CORBA.portable.InputStream i)
 { ... }
 public void _write(org.omg.CORBA.portable.OutputStream o)
 { ... }
 public org.omg.CORBA.TypeCode _type() { ... }
}
final public class BoundedDataHolder
 implements org.omg.CORBA.portable.Streamable {
 public int[] value;
 public BoundedDataHolder() {};
 public BoundedDataHolder(final int[] initial) { ... };
 public void _read(org.omg.CORBA.portable.InputStream i)
 { ... }
 public void _write(org.omg.CORBA.portable.OutputStream o)
 { ... }
 public org.omg.CORBA.TypeCode _type() { ... }
}

 5 : IDL to Java mapping 53

Interfaces

Array

An IDL array is mapped the same way as an IDL bounded sequence. In the mapping,
anywhere the array type is needed, an array of the mapped type of array element is
used. In Java, the natural Java subscripting operator is applied to the mapped array.
The length of the array can be made available in Java, by bounding the array with an
IDL constant, which will be mapped as per the rules for constants.

The holder class for the array is also generated. Its name is the array's mapped Java
classname with Holder appended to it as follows:

final public class <array_class>Holder
 implements org.omg.CORBA.portable.Streamable {
 public <array_element_type>[] value;
 public <array_class>Holder() {}
 public <array_class>Holder(
 <array_element_type>[] initial) {...}
 public void _read(org.omg.CORBA.portable.InputStream i)
 {...}
 public void _write(org.omg.CORBA.portable.OutputStream o)
 {...}
 public org.omg.CORBA.TypeCode _type() {...}
}

The following code sample shows the mapping for an array.

// IDL
const long ArrayBound = 42;
typedef long larray[ArrayBound];
// generated Java
final public class larrayHolder
 implements org.omg.CORBA.portable.Streamable {
 public int[] value;
 public larrayHolder() {}
 public larrayHolder(int[] initial) {...}
 public void _read(org.omg.CORBA.portable.InputStream i)
 {...}
 public void _write(org.omg.CORBA.portable.OutputStream o)
 {...}
 public org.omg.CORBA.TypeCode_type() {...}
}

Interfaces
IDL interfaces are mapped to the two following public Java interfaces:

– Operations interface, which contains only the operations and constants declared in
the IDL interfaces.

– CORBA Object declaration that extends all base interface operations, this interface
operation, and org.omg.CORBA.object.

An additional “helper” Java class with the suffix Helper is appended to the interface
name. The Java interface extends the mapped, base org.omg.CORBA.Object interface.

The Java interface contains the mapped operation signatures. Methods can be invoked
on an object reference to this interface.

The helper class declares a static narrow method that allows an instance of
org.omg.CORBA.Object to be narrowed to the object reference of a more specific type.
The IDL exception CORBA::BAD_PARAM is thrown if the narrow fails because the object
reference doesn't support the request type. A different system exception is raised to
indicate other kinds of errors. Trying to narrow a null will always succeed with a return
value of null.

54 VisiBroker for Java Developer ’s Guide

Inter faces

There are no special “nil” object references. Java null can be passed freely wherever
an object reference is expected.

Attributes are mapped to a pair of Java accessor and modifier methods. These
methods have the same name as the IDL attribute and are overloaded. There is no
modifier method for IDL “readonly” attributes.

The holder class for the interface is also generated. Its name is the interface's mapped
Java classname with Holder appended to it as follows:

final public class <interface_class>Holder
 implements org.omg.CORBA.portable.Streamable {
 public <interface_class> value;
 public <interface_class>Holder() {}
 public <interface_class>Holder(
 <interface_class> initial) {
 value = initial;

 public void _read(org.omg.CORBA.portable.InputStream i)
 {...}
 public void _write(org.omg.CORBA.portable.OutputStream o)
 {...}
 public org.omg.CORBA.TypeCode _type() {...}
}

The following code sample shows the mapping of an IDL interface to Java.

/* From Example.idl: */
module Example {
 interface Foo {
 long method(in long arg) raises(AnException);
 attribute long assignable;
 readonly attribute long nonassignable;
 };
};
// Generated java
package Example;
public interface Foo extends com.borland.vbroker.CORBA.Object,
 Example.FooOperations,
 org.omg.CORBA.portable.IDLEntity {
}
public interface FooOperations {
 public int method (int arg) throws Example.AnException;
 public int assignable ();
 public void assignable (int assignable);
 public int nonassignable ();
}
public final class FooHelper {
 // ... other standard helper methods
 public static Foo narrow(org.omg.CORBA.Object obj)
 { ... }
 public static Example.Foo bind (org.omg.CORBA.ORB orb,
 java.lang.String name,
 java.lang.String host,
 com.borland.vbroker.CORBA.BindOptions _options) { ... }

public static Example.Foo bind (org.omg.CORBA.ORB orb,
 java.lang.String fullPoaName, byte[] oid) { ... }
 public static Example.Foo bind (org.omg.CORBA.ORB orb,
 java.lang.String fullPoaName, byte[] oid,
 java.lang.String host,
 com.borland.vbroker.CORBA.BindOptions _options) { ... }

 public Foo read (org.omg.CORBA.portable.InputStream in) { ... }
 public void write (org.omg.CORBA.portable.OutputStream out, Foo foo) { ... }

 5 : IDL to Java mapping 55

Interfaces

public Foo extract (org.omg.CORBA.Any any) { ... }
public void insert (org.omg.CORBA.Any any, Foo foo) { ... }
}
public final class FooHolder
 implements org.omg.CORBA.portable.Streamable {
 public Foo value;
 public FooHolder() {}
 public FooHolder(final Foo initial) { ... }
 public void _read(org.omg.CORBA.portable.InputStream i)
 { ... }
 public void _write(org.omg.CORBA.portable.OutputStream o)
 { ... }
 public org.omg.CORBA.TypeCode_type() { ... }
}

Abstract interfaces

An IDL abstract interface is mapped into a single public Java interface with the same
name as the IDL interface. The mapping rules are similar to the rules for generating the
Java operations interface for a non-abstract IDL interface. However, this interface also
serves as the signature interface, and hence extends
org.omg.CORBA.protable.IDLEntity. The mapped Java interface has the same name as
the IDL interface and is also used as the signature type in method declarations when
interfaces of the specified types are used in other interfaces. It contains the methods
which are the mapped operations signatures.

A holder class is generated as for non-abstract interfaces. See “Holder classes” for
more information.

A helper class is also generated according to the normal rules. See “Helper classes” for
more information.

Local interfaces

An IDL local interface is mapped similarly to that of a non-local interface except that a
local interface is marked by org.omg.CORBA.LocalInterface. A local interface may not be
marshaled and its implementation must extend a special base
org.omg.CORBA.LocalObject and implement the generated signature interface. In Java
mapping, the LocalObject class is used as a base class of implementations of a local
interface. Creating an instance of local interface implementation is the same as
creating normal Java object; that is using the new Java operator.

A holder class is generated as for non-local interfaces. See “Holder classes” for more
information.

A helper class is also generated according to the normal rules. See “Helper classes” for
more information.

The VisiBroker ORB implementation will detect any attempt to marshal local objects
and throw a CORBA::MARSHAL exception.

Passing parameters

IDL in parameters are mapped to normal Java actual parameters. The results of IDL
operations are returned as the result of the corresponding Java method.

IDL out and inout parameters cannot be mapped directly into the Java parameter
passing mechanism. This mapping defines additional holder classes for all the IDL
basic and user-defined types which are used to implement these parameter modes in
Java. The client supplies an instance of the appropriate holder Java class that is
passed (by value) for each IDL out or inout parameter. The contents of the holder
instance (but not the instance itself) are modified by the invocation, and the client uses
the (possibly) changed contents after the invocation returns.

This code sample show the IN parameter mapping to Java actual parameters.

56 VisiBroker for Java Developer ’s Guide

Inter faces

/* From Example.idl: */
module Example {
 interface Modes {
 long operation(in long inArg, out long outArg, inout long inoutArg);
 };
};
// Generated Java:
package Example;
public interface Modes extends com.borland.vbroker.CORBA.Object,
 Example.ModesOperations,
 org.omg.CORBA.portable.IDLEntity {
}
public interface ModesOperations {
 public int operation (int inArg,
 org.omg.CORBA.IntHolder outArg,
 org.omg.CORBA.IntHolder inoutArg);
}

In the above, the result comes back as an ordinary result and the actual in parameters
only an ordinary value. But for the out and inout parameters, an appropriate holder
must be constructed. A typical use case might look as follows:

// user Java code
// select a target object
Example.Modes target = ...;
// get the in actual value
int inArg = 57;

// prepare to receive out
IntHolder outHolder = new IntHolder();
// set up the in side of the inout
IntHolder inoutHolder = new IntHolder(131);
// make the invocation
int result =target.operation(inArg, outHolder, inoutHolder);
// use the value of the outHolder
... outHolder.value ...
// use the value of the inoutHolder
... inoutHolder.value ...

Before the invocation, the input value of the inout parameter must be set in the holder
instance that will be the actual parameter. The inout holder can be filled in either by
constructing a new holder from a value, or by assigning to the value of an existing
holder of the appropriate type. After the invocation, the client uses the outHolder.value
to access the value of the out parameter, and the inoutHolder.value to access the
output value of the inout parameter. The return result of the IDL operation is available
as the result of the invocation.

Server implementation with inheritance

Using inheritance is the simplest way to implement a server because server objects
and object references look the same, behave the same, and can be used in exactly the
same contexts. If a server object happens to be in the same process as its client,
method invocations are an ordinary Java function call with no transport, indirection, or
delegation of any kind.

Each IDL interface is mapped to a Java POA abstract class that implements the Java
version of the IDL interface.

Note

The POA class does not “truly” extend the IDL interface, meaning that POA is not a
CORBA object. It is a CORBA servant and it can be used to create a “true” CORBA
object. For more information on the POA class, go to the Java API Reference,
VisiBroker APIs, org.omg.PortableServer package section. For more information about
POAs, see “Using POAs.”

 5 : IDL to Java mapping 57

Interfaces

User-defined server classes are then linked to the VisiBroker ORB by extending the
<interface>POA class, as shown in the following code sample.

Note

The POA class itself is abstract and cannot be instantiated. To instantiate it, your
implementation must implement its declared IDL interface operations.

The following code sample shows the Server implementation in Java using inheritance.

/* From Bank.idl: */
module Bank {
 interface Account {
 };
};
// Generated java
package Bank;
public abstract class AccountPOA extends org.omg.PortableServer.Servant
implements
 org.omg.CORBA.portable.InvokeHandler,
 Bank.AccountOperations { ... }
// Linking an implementation to the ORB :
public class AccountImpl extends Bank.AccountPOA { ... }

Server implementation with delegation

The use of inheritance to implement a server has one drawback: since the server class
extends the POA skeleton class, it cannot use implementation inheritance for other
purposes because Java only supports single inheritance. If the server class needs to
use the sole inheritance link available for another purpose, the delegation approach
must be used.

When server classes are implemented using delegation some extra code is generated.

– Each interface is mapped to a Tie class that extends the POA skeleton and provides
the delegation code.

– Each interface is also mapped to an Operations interface that is used to defined the
type of object the Tie class is delegating.

58 VisiBroker for Java Developer ’s Guide

Mapping for except ions

The delegated implementation must implement the Operation interface and has to be
stored in a Tie class instance. Storing the instance of the Operation interface in the Tie
object is done through a constructor provided by the Tie class. The code sample below
shows an example of how delegation is used.

/* From Bank.idl: */
module Bank {
 interface AccountManager {
 Account open(in string name);
 };
};
// Generated java
package Bank;
public interface AccountManagerOperations {
 public Example.Account open(java.lang.String name);
}
// Generated java
package Bank;
public class AccountManagerPOATie extends AccountManagerPOA {
 public AccountManagerPOATie (final Bank.AccountManagerOperations _delegate)
 { ... }
 public AccountManagerPOATie (final Bank.AccountManagerOperations _delegate,
 final org.omg.PortableServer.POA _poa) { ... }
 public Bank.AccountManagerOperations _delegate () { ... }
 public void _delegate (final Bank.AccountManagerOperations delegate) { ... }
 public org.omg.PortableServer.POA _default_POA () { ... }
 public float open () { ... }
}
// Linking an implementation to the ORB :

 classAccountImpl implements AccountManager Operations
public class Server {
 public static main(String args) {
 // ...
 AccountManagerPOAtie managerServant = new AccountManagerPOATie(new
AccountManagerImpl());
 // ...
}

Interface scope

OMG IDL to Java mapping specification does not allow declarations to be nested within
an interface scope, nor does it allow packages and interfaces to have the same name.
Accordingly, interface scope is mapped to a package with the same name with a
“Package” suffix.

Mapping for exceptions
IDL exceptions are mapped very similarly to structs. They are mapped to a Java class
that provides instance variables for the fields of the exception and constructors.

CORBA system exceptions are unchecked exceptions. They inherit (indirectly) from
java.lang.RuntimeException.

User defined exceptions are checked exceptions. They inherit (indirectly) from
java.lang.Exception.

 5 : IDL to Java mapping 59

User-def ined except ions

User-defined exceptions
User-defined exceptions are mapped to final Java classes that extend
org.omg.CORBA.UserException and are otherwise mapped just like the IDL struct type,
including the generation of Helper and Holder classes.

If the exception is defined within a nested IDL scope (essentially within an interface)
then its Java class name is defined within a special scope. Otherwise its Java class
name is defined within the scope of the Java package that corresponds to the
exception's enclosing IDL module.

The following code sample shows the mapping of user-defined exceptions.

// IDL
module Example {
 exception AnException {
 string reason;
 };
};
// Generated Java
package Example;
public final class AnException extends org.omg.CORBA.UserException {
 public java.lang.String extra;
 public AnException () { ... }
 public AnException (java.lang.String extra) { ... }
 public AnException (java.lang.String _reason, java.lang.String extra) { ...
}

 public java.lang.String to String () { ... }
public boolean equals (java.lang.Object o) { ... }
}
public final class AnExceptionHolder implements
 org.omg.CORBA.portable.Streamable {
 public Example.AnException value;
 public AnExceptionHolder () { }
 public AnExceptionHolder (final Example.AnException _vis_value) { ... }
 public void _read (final org.omg.CORBA.portable.InputStream input) { ... }
 public void _write (final org.omg.CORBA.portable.OutputStream output) { ...
}
 public org.omg.CORBA.TypeCode _type () { ... }
}

System exceptions
The standard IDL system exceptions are mapped to final Java classes that extend
org.omg.CORBA.SystemException and provide access to the IDL major and minor
exception code, as well as a string describing the reason for the exception. There are
no public constructors for org.omg.CORBA.SystemException; only classes that extend it
can be instantiated.

The Java class name for each standard IDL exception is the same as its IDL name and
is declared to be in the org.omg.CORBA package. The default constructor supplies 0 for
the minor code, COMPLETED_NO for the completion code, and the empty string (““) for the
reason string. There is also a constructor which takes the reason and uses defaults for
the other fields, as well as one which requires all three parameters to be specified.

Mapping for the Any type
The IDL type Any maps to the Java class org.omg.CORBA.Any. This class has all the
necessary methods to insert and extract instances of predefined types. If the extraction
operations have a mismatched type, the CORBA::BAD_OPERATION exception is thrown.

60 VisiBroker for Java Developer ’s Guide

Mapping for cer tain nested types

In addition, insert and extract methods which take a holder class are defined to provide
a high speed interface for use by portable stubs and skeletons. There is an insert and
extract method defined for each primitive IDL type as well as a pair for a generic
streamable to handle the case of non-primitive IDL types.

The insert operations set the specified value and reset the Any's type if necessary.

Setting the typecode via the type() accessor wipes out the value. An attempt to extract
before the value is set will result in a CORBA::BAD_OPERATION exception being raised. This
operation is provided primarily so that the type may be set properly for IDL out
parameters.

Mapping for certain nested types
IDL allows type declarations nested within interfaces. Java does not allow classes to
be nested within interfaces. Hence those IDL types that map to Java classes and that
are declared within the scope of an interface must appear in a special “scope” package
when mapped to Java.

IDL interfaces that contain these type declarations generate a scope package to
contain the mapped Java class declarations. The scope package name is constructed
by appending Package to the IDL type name.

This code sample shows the mapping for certain nested types.

// IDL
module Example {
 interface Foo {
 exception e1 {};
 };
}
// generated Java
package Example.FooPackage;
final public class e1 extends org.omg.CORBA.UserException {...}

Mapping for Typedef
Java does not have a typedef construct.

Simple IDL types

IDL types that are mapped to simple Java types may not be subclassed in Java.
Therefore, any typedefs that are type declarations for simple types are mapped to the
original (mapped type) any where the typedef type appears. For simple types, Helper
classes are generated for all typedefs.

Complex IDL types

Typedefs for non arrays and sequences are “unwound” to their original type until a
simple IDL type or user-defined IDL type (of the non typedef variety) is encountered.

Holder classes are generated for sequence and array typedefs.

The following code sample shows the mapping of a complex idl typedef.

// IDL
struct EmpName {
 string firstName;
 string lastName;
};
typedef EmpName EmpRec;
// generated Java
 // regular struct mapping for EmpName

 5 : IDL to Java mapping 61

Mapping for Typedef

 // regular helper class mapping for EmpRec
final public class EmpName {
 ...
}
public class EmpRecHelper {
 ...
}

62 VisiBroker for Java Developer ’s Guide

 6: Vis iBroker propert ies 63

VisiBroker properties
This section describes the Borland VisiBroker properties.

JAVA RMI over IIOP properties

Property Default Description

vbroker.rmi.supportRTSC false This property enables or disables the exchange of
SendingContextRuntime service contexts between clients
and servers when the two are using different (evolved)
versions of a class. If the client and server are on
different versions of a JDK, the application should
make sure that this property is set to true. This value
should also be used for cases where VBJ is talking to
a foreign ORB. This ensures that the codebase data is
exchanged and marshaling/demarshaling of evolved
classes can succeed without exceptions.

javax.rmi.CORBA.StubClass com.inprise.vbroker.rmi.
CORBA.StubImpl

Specifies the name of the implementation of the Stub
base class from which all RMI-IIOP stubs must inherit.

javax.rmi.CORBA.UtilClass com.inprise.vbroker.rmi.
CORBA.UtilImpl

Specifies the name of the implementation of the
Utility class that provides methods that can be used
by stubs and ties to perform common operations.

javax.rmi.CORBA.
PortableRemoteObjectClass

com.inprise.vbroker.rmi.CORBA.
PortableRemoteObjectImpl

Specifies that the RMI-IIOP server implementation
objects may inherit from javax.rmi.PortableRemoteObject
or simply implement an RMI-IIOP remote interface and
then use the exportObject method to register
themselves as a server object.

java.rmi.server.codebase <not set> Specifies where a server can locate unknown classes.
Acceptable value is semicolon (;)-separated URLs.

java.rmi.server.useCodebaseOnly false Specifies if a server is allowed to locate unknown
classes, If set to true, does not allow the server to
locate remote classes even if the client sends the
location of the remote classes to the server.

64 VisiBroker for Java Developer ’s Guide

Smart Agent and Smart Agent communicat ion propert ies

Smart Agent and Smart Agent communication properties

The properties described in the table below are used by the ORB for Smart Agent
communication.

Property Default Old property Description

vbroker.agent.addrFile null ORBagentAddrFile Specifies a file that stores the IP address
or host name of a host running a Smart
Agent.

vbroker.agent.port 14000 ORBagentPort Specifies the port number that defines a
domain within your network. VisiBroker
applications and the Smart Agent work
together when they have the same port
number. This is the same property as the
OSAGENT_PORT environment variable.

Property Default Old property Description

vbroker.agent.
keepAliveTimer

120 N/A The duration in seconds during which
the ORB will send keep-alive
messages to the Smart Agent
(applicable to both clients and
servers). Valid values are integers
between 1 and 120, inclusive.

vbroker.agent.
retryDelay

0 (zero) N/A The duration in seconds that the
process will pause before trying to
reconnect to the Smart Agent in the
event of disconnection from the Smart
Agent. If the value is -1, the process
will exit upon disconnection from the
Smart Agent. The default value of 0
(zero) means that reconnection will be
made without any pause.

vbroker.agent.addr null ORBagentAddr Specifies the IP address or host name
of a host running a Smart Agent. The
default value, null, instructs VisiBroker
applications to use the value from the
OSAGENT_ADDR environment variable. If
this OSAGENT_ADDR variable is not set,
then it is assumed that the Smart
Agent is running on a local host.

vbroker.agent.addrFile null ORBagentAddrFile Specifies a file that stores the IP
address or host name of a host
running a Smart Agent.

vbroker.agent.debug false ORBdebug When set to true, specifies that the
system will display debugging
information about communication of
VisiBroker applications with the Smart
Agent.

vbroker.agent.
enableCache

true ORBagentCache When set to true, allows VisiBroker
applications to cache IOR.

vbroker.agent.
enableLocator

true ORBdisableLocator When set to false, does not allow
VisiBroker applications to
communicate with the Smart Agent.

vbroker.agent.port 14000 ORBagentPort Specifies the port number that defines
a domain within your network.
VisiBroker applications and the Smart
Agent work together when they have
the same port number. This is the
same property as the OSAGENT_PORT
environment variable.

vbroker.agent.failOver true ORBagentNoFailOver When set to true, allows a VisiBroker
application to fail over to another
Smart Agent.

 6 : Vis iBroker propert ies 65

VisiBroker ORB propert ies

VisiBroker ORB properties
The following table describes the VisiBroker ORB properties.

vborker.agent.
clientPort

0 (zero) N/A Lower bound of the range of ports for
the ORB to communicate with the
OSAgent. Valid values are between 0
to 65535. Default value of 0 (zero)
means that a random port will be
selected.

vbroker.agent.
clientPortRange

0 (zero) N/A Range of ports within interval
[clientPort, clientPort+clientPortRange]
for the ORB to communicate with the
OSAgent. This property is effective
only when clientPort is greater than 0
(zero). Valid values are between 0 and
65535.

Property Default Old property Description

Property Default Description

vbroker.orb.propOrdering CMD_PROPS:SYS_PROPS:
FILE_PROPS:ORB_PROPS:DEF_PROPS

This property allows the user to override the
default precedence of properties set by the
ORB's Property Manager. The default
precedence from highest to lowest is:

1 CMD_PROPS: command-line arguments (specified
through the first argument of orb.init() call.

2 SYS_PROPS: system or JVM properties, including
properties specified through -VBJprop, -J, and
so forth.

3 FILE_PROPS: properties in the file specified by
ORBpropStorage property.

4 ORB_PROPS: properties set through the second
argument of the orb.init() call.

5 DEF_PROPS: default ORB properties.

vbroker.orb.rebindForward 0 (zero) This value determines the number of times a
client will try to connect to a forwarded target.
You can use this property when the client cannot
communicate with the forwarded target (because
of network failure, for example). The default value
of 0 (zero) means that the client will keep trying to
connect.

vbroker.orb.activationIOR null Allows the launched server to easily establish
contact with the OAD that launched it.

vbroker.orb.admDir null Specifies the administration directory at which
various system files are located. This property
can be set using the VBROKER_ADM environment
variable.

vbroker.orb.enableKeyId false When set to true, this property enables the use of
key IDs in client requests.

vbroker.orb.
enableServerManager

FALSE When set to TRUE, this property enables Server
Manager when the server is started, so that
clients can access it.

vbroker.orb.keyIdCacheMax 16384 Specifies maximum size of the object key ID
cache in a server.

vbroker.orb.keyIdCacheMin 64 Specifies minimum size of the object key ID
cache in a server.

vbroker.orb.initRef null Specifies the initial reference.

vbroker.orb.defaultInitRef null Specifies the default initial reference.

66 VisiBroker for Java Developer ’s Guide

VisiBroker ORB propert ies

vbroker.orb.alwaysProxy false When set to true, specifies that clients must
always connect to the server using the
GateKeeper.

vbroker.orb.gatekeeper.ior null Forces the client application to connect to the
server through the GateKeeper whose IOR is
provided.

vbroker.locator.ior null Specifies the IOR of the GateKeeper that will be
used as proxy to the Smart Agent. If this property
is not set, the GateKeeper specified by the
vbroker.orb.gatekeeper.ior property is used for
this purpose.

vbroker.orb.exportFirewallPath false Forces the server application to include firewall
information as part of any servant's IOR which
this server exposes (use Firewall::FirewallPolicy
in your code to force it selectively per POA).

vbroker.orb.proxyPassthru false If set to true, forces PASSTHROUGH firewall mode
globally in the application scope (use
QoSExt::ProxyModePolicy in your code to force it
selectively per object or per ORB).

vbroker.orb.bids.critical inprocess The critical bid has highest precedence no matter
where it is specified in the bid order. If there are
multiple values for critical bids, then their relative
importance is decided by the bidOrder property.

vbroker.orb.alwaysSecure false When set to true, specifies that clients must
always make secure connections to the server.

vbroker.orb.alwaysTunnel false When set to true, specifies that clients always
make http tunnel (IIOP wrapper) connections to
the server.

vbroker.orb.autoLocateStubs false Turns on the ability to locate stubs when reading
object references. This is done using read_Object,
based on the object's repository id instead of
either the generic object or the stubs for passed
formal class argument.

vbroker.orb.bidOrder inprocess:liop:ssl:iiop:
proxy:hiop:locator

You can specify the relative order of importance
for the various transports. Transports are given
precedence as follows:

1 inprocess

2 liop

3 ssl

4 iiop

5 proxy

6 hiop

7 locator

The transports that appear first have higher
precedence. For example, if an IOR contains
both LIOP and IIOP profiles, the first chance
goes to LIOP. Only if the LIOP fails is IIOP used.
(The critical bid, specified by the
vbroker.orb.bids.critical property, has highest
precedence no matter where it is specified in the
bid order.)

vbroker.orb.bids.bar n/a This property is used to prevent specified bidders
from placing bids. For example, setting it to
inprocess will disable inprocess bidding. This can
be useful in cases when optimized colocated
invocations are not required. Currently only
inprocess bidders can be barred.

Property Default Description

 6 : Vis iBroker propert ies 67

VisiBroker ORB propert ies

vbroker.orb.defAddrMode 0 (Key) The default addressing mode that client
VisiBroker ORB uses. If it is set to 0, the
addressing mode is Key, if set to 1, the addressing
mode is Profile, if set to 2, the addressing mode
is IOR.

vbroker.orb.bufferCacheTimeout 6000 Specifies the time in which a message chunk has
been cached before it is discarded.

vbroker.orb.bufferDebug false When set to true, this property allows the internal
buffer manager to display debugging information.

vbroker.orb.corbaloc.
resolveHosts

false When this property is set to true the ORB will try
to resolve the hostnames specified in the
corbaloc URL. When false no address resolution
will take place.

vbroker.orb.debug false When set to true, allows the ORB to display
debugging information.

vbroker.orb.dynamicLibs null Specifies a list of available services used by the
VisiBroker ORB. Each service is separated by a
comma.

vbroker.orb.embedCodeset true When an IOR is created, the VisiBroker ORB
embeds the codeset components into the IOR.
This may produce problems with some non-
compliant ORBs. By turning off the embedCodeset
property, you instruct the Visibroker ORB not to
embed codesets in IORs. When set to false,
specifies that character and wide character
conversions between the client and the server
are not to be negotiated.

vbroker.orb.
enableVB4backcompat

false This property enables work-arounds to deal with
behavior that is not GIOP 1.2-compliant in
VisiBroker 4.0 and 4.1. Any VisiBroker client
running on VisiBroker 4.1.1 or a release previous
to 4.1.1 is affected, especially if GateKeeper is
involved. To work with a Visibroker 4.0 or 4.1
client, this flag needs to be set to true. This is a
server-side only flag. There is no corresponding
flag on the client-side.

vbroker.orb.enableBiDir none You can selectively make bidirectional
connections. If the client defines
vbroker.orb.enableBiDir=client and the server
defines vbroker.orb.enableBiDir=server the value
of vbroker.orb.enableBiDir at the GateKeeper
determines the state of the connection. Values of
this property are: server, client, both or none. For
more information, see “Callback with
GateKeeper's bidirectional suppor“ in the
GateKeeper Guide.

vbroker.orb.enableNullString false If set to TRUE, enables marshaling of null strings.

vbroker.orb.fragmentSize 0 (zero) Specifies the GIOP message fragment size. It
must be a multiple of GIOP message chunk size.
Assigning a 0 (zero) to this property will
eventually turn off fragmentation.

vbroker.orb.streamChunkSize 4096 Specifies the GIOP message chunk size. It must
be a power of 2.

vbroker.orb.gcTimeout 30 Specifies the time in seconds that must pass
before important resources that are not used are
cleared.

vbroker.orb.logger.appName VBJ-Application Specifies the application name that appears in
the log.

vbroker.orb.logger.catalog com.inprise.vbroker.
Logging.ORBMsgs

Specifies the message catalog of messages
used by the ORB when logging is enabled.

vbroker.orb.logger.output stdout Specifies the output of the logger. It can be the
standard output or a file name.

Property Default Description

68 VisiBroker for Java Developer ’s Guide

VisiBroker ORB propert ies

vbroker.orb.logLevel emerg Specifies the logging level of message that will
be logged. The default value, emerg, means that
the system logs messages when the system is
unusable, or in a panic condition. Acceptable
values are:

■ emerg (0): indicates some panic condition.

■ alert (1): a condition that requires user
attention—for example, if security has been
disabled.

■ crit (2): critical conditions, such as a device
error.

■ err (3): error conditions.

■ warning (4): warning conditions—these may
accompany some troubleshooting advice.

■ notice (5): conditions that are not errors but
may require some attention, such as upon the
opening of a connection.

■ info (6): informational, such as binding in
progress.

■ debug (7): debug conditions understood by
developers.

vbroker.orb.sendLocate false This property takes one of the following values:
true, false, onbind, or always. When set to true, it
forces the system to send a locate request before
making invocations on an IIOP 1.2 target. When
set to onbind, causes a locate request message to
be sent when a connection is opened for the
purpose of gauging if the peer is GIOP aware.
The value always instructs the ORB to perform
both tasks-sending the locate request before
invocations and upon opening the connection.

vbroker.orb.shutdownTimeout 0 (zero) Allows an application to set a timeout for the
ORB.shudown operation in seconds. This property is
useful in cases when ORB.shutdown does not finish
for a long time. The process will get terminated if
the shutdown does not finish and the timeout
expires. The default value of 0 (zero) means that
process will never get terminated.

vbroker.orb.
systemLibs.applet

com.inprise.vbroker.IIOP.Init,
com.inprise.vbroker.LIOP.Init,
com.inprise.vbroker.qos.Init,
com.inprise.vbroker.

URLNaming.Init,
com.inprise.vbroker.HIOP.Init,
com.inprise.vbroker.

firewall.Init,
com.inprise.vbroker.

dynamic.Init,
com.inprise.vbroker.

naming.Init,
com.inprise.vbroker.IOP.Init,
com.inprise.vbroker.

CONV_FRAME.Init,
com.inprise.vbroker.rmi.

CORBA.Init,
com.inprise.vbroker.

PortableInterceptor.Init,
com.borland.vbroker.notify.Init,
com.borland.vbroker.CosTime.Init

Provides a list of system libraries loaded in
applet.

Property Default Description

 6 : Vis iBroker propert ies 69

POA propert ies

POA properties

vbroker.orb.systemLibs.application com.inprise.vbroker.IIOP.Init,
com.inprise.vbroker.LIOP.Init,
com.inprise.vbroker.qos.Init,
com.inprise.vbroker.ds.Init,
com.inprise.vbroker.

URLNaming.Init,
com.inprise.vbroker.

dynamic.Init,
com.inprise.vbroker.ir.Init,
com.inprise.vbroker.

naming.Init,
com.inprise.vbroker.

ServerManager.Init,
com.inprise.vbroker.IOP.Init,
com.inprise.vbroker.

CONV_FRAME.Init,
com.inprise.vbroker.rmi.

CORBA.Init,
com.inprise.vbroker.

PortableInterceptor.Init,
com.borland.vbroker.

notify.Init,
com.borlvbroker.CosTime.Init

Provides a list of system libraries loaded in
application.

vbroker.orb.tcIndirection true Specifies that indirection be turned off when
writing the typecodes. May be necessary when
inter operating with ORBs from other vendors.
When set to false, it is not possible to marshal
recursive typecodes.

vbroker.orb.warn 0 Specifies a value of 0, 1, or 2 which indicates the
level of warning messages to be printed.

vbroker.orb.procId 0 Specifies the process ID of the server.

vbroker.orb.usingPoll true On UNIX platforms, the ORB uses the system
calls select() or poll() for I/O multiplexing based
on the value of this property. If the value is true,
poll() is used. Otherwise, select() is used. True is
the default value.

Property Default Description

Property Default Description

vbroker.poa.logLevel emerg Specifies the logging level of messages to be logged. The
default value, emerg, means that messages are logged when
the system is unusable or during a panic condition.

Acceptable values are:

■ emerg (0): indicates some panic condition.

■ alert (1): a condition that requires user attention—for
example, if security has been disabled.

■ crit (2): critical conditions, such as a device error.

■ err (3): error conditions.

■ warning (4): warning conditions—these may accompany
some troubleshooting advice.

■ notice (5): conditions that are not errors but may require
some attention, such as upon the opening of a connection.

■ info (6): informational, such as binding in progress.

■ debug (7): debug conditions understood by developers.

70 VisiBroker for Java Developer ’s Guide

ServerManager propert ies

ServerManager properties
This table lists the Server Manager properties.

Additional Properties

The following section describes the new properties supported by the Server Manager.
These properties can be queried through their containers.

Properties related to Server-side resource usage

Properties related to Client-side resource usage

Property Default Description

vbroker.serverManager.name null Specifies the name of the Server Manager.

vbroker.serverManager.enableOperations true When set to true, enables operations,
exposed by the Server Manager, to be
invoked.

vbroker.serverManager.enableSetProperty true When set to true, enables properties,
exposed by the Server Manager, to be
changed.

Property Description

vbroker.se.<SE_name>.scm.<SCM_name>.
manager.inUseConnections

The number of incoming connections for which there
are requests executing in the ORB.

vbroker.se.<SE_name>.scm.<SCM_name>.
manager.idleConnections

The number of incoming connections for which there
are not any requests currently being executed in the
ORB.

vbroker.se.<SE_name>.scm.<SCM_name>.
manager.idledTimeoutConnections

The number of idle connections which have also idled
past their idle timeout setting but have yet to be closed
(due to garbage collection restrictions, for example).

vbroker.se.<SE_name>.scm.<SCM_name>.
dispatcher.inUseThreads

The number of threads currently executing requests
within the dispatcher.

vbroker.se.<SE_name>.scm.<SCM_name>.
dispatcher.idleThreads

The number of threads which are currently idle waiting
for work to be assigned.

Property Description

vbroker.ce.<CE_name>.ccm.activeConnections The number of connections in the active
pool; that is, object references are using
these connections.

vbroker.ce.<CE_name>.ccm.cachedConnections The number of connections in the cache
pool; no object references are using these
connections.

vbroker.ce.<CE_name>.ccm.inUseConnections The number of outgoing connections with
pending requests.

vbroker.ce.<CE_name>.ccm.idleConnections The number of outgoing connections with
no pending requests.

vbroker.ce.<CE_name>.ccm.idledTimeoutConnections The number of idle connections which have
idled past their timeout setting, but have not
been closed.

 6 : Vis iBroker propert ies 71

Locat ion Service propert ies

Properties related to the Smart Agent (Smart Agent)

Location Service properties
The following table lists the Location Service properties.

Property Description

vbroker.agent.currentAgentIP The IP address of the current ORB's Smart Agent
(Smart Agent).

vbroker.agent.currentAgentClientPort The port of the Smart Agent to which the ORB is
sending requests.

Property Default Description

vbroker.locationservice.debug false When set to true, allows the Location Service to
display debugging information.

vbroker.locationservice.verify false When set to true, allows the Location Service to
check for the existence of an object referred by an
object reference sent from the Smart Agent. Only
objects registered BY_INSTANCE are verified for
existence. Objects that are either registered with
OAD, or those registered BY_POA policy are not
verified for existence.

vbroker.locationservice.timeout 1 Specifies the connect/receive/send timeout, in
seconds, when trying to interact with the Location
Service.

72 VisiBroker for Java Developer ’s Guide

Event Service propert ies

Event Service properties
The following table lists the Event Service properties.

Naming Service (VisiNaming) properties
The following tables list the VisiNaming Service properties.

Property Default Description

vbroker.events.maxQueueLength 100 Specifies the number of messages to be queued for
slow consumers.

vbroker.events.factory false When set to true, allows the event channel factory to
be instantiated, instead of an event channel.

vbroker.events.debug false When set to true, allows output of debugging
information.

vbroker.events.interactive false When set to true, allows the event channel to be
executed in a console-driven, interactive mode.

Property Default Description

vbroker.naming.adminPwd inprise Password required by administrative VisiBroker
naming service operations.

vbroker.naming.enableSlave 0 If 1, enables master/slave naming services
configuration. See the “VisiNaming Service Clusters
for Failover and Load Balancing” section for
information about configuring master/slave naming
services.

vbroker.naming.factoryIorFile N/A When this property is specified with a value
specifying a file name, the Naming Service will store
the IOR of context factory in that file. The IOR file can
then be used by nsutil utility to shutdown the Naming
Service remotely.

vbroker.naming.iorFile ns.ior This property specifies the full path name for storing
the naming service IOR. If you do not set this
property, the naming service will try to output its IOR
into a file named ns.ior in the current directory. The
naming service silently ignores file access
permission exceptions when it tries to output its IOR.

 6 : Vis iBroker propert ies 73

Naming Service (Vis iNaming) propert ies

For more information see the Object Clusters section.

vbroker.naming.logLevel emerg This property specifies the level of log messages to
be output from the naming service. Acceptable
values are:

■ emerg (0): indicates some panic condition.

■ alert (1): a condition that requires user attention—
for example, if security has been disabled.

■ crit (2): critical conditions, such as a device error.

■ err (3): error conditions.

■ warning (4): warning conditions—these may
include some troubleshooting advice.

■ notice (5): conditions that are not errors but may
require some attention, such as the opening of a
connection.

■ info (6): informational, such as binding in
progress.

■ debug (7): debug messages for developers.

vbroker.naming.logUpdate false This property allows special logging for all of the
update operations on the CosNaming::NamingContext,
CosNamingExt::Cluster, and
CosNamingExt::ClusterManager interfaces.

The CosNaming::NamingContext interface operations for
which this property is effective are:

bind, bind_context, bind_new_context, destroy,
rebind, rebind_context, unbind

The CosNamingExt::Cluster interface operations for
which this property is effective are:

bind, rebind, unbind, destroy

The CosNamingExt::ClusterManager interface operation
for which this property is effective is:

create_cluster

When this property value is set to true and any of the
above methods is invoked, the following log
message is printed (the output shows a bind
operation being executed):

00000007,5/26/04 10:11 AM,127.0.0.1,00000000,
VBJ-Application,VBJ ThreadPool Worker,INFO,

OPERATION NAME : bind
CLIENT END POINT : Connection[socket=Socket
[addr=/127.0.0.1, port=2026, localport=1993]]
PARAMETER 0 : [(Tom.LoanAccount)]
PARAMETER 1 : Stub[repository_id=IDL:Bank/
LoanAccount:1.0, key=TransientId[poaName=/,
id={4 bytes: (0)(0)(0)(0)},sec=505,usec=990917734,
key_string=%00VB%01%00%00%00%02/
%00%20%20%00%00%00%
04%00%00%00%00%00%00%01%f9;%104f],codebase=null]

Property Default Description

vbroker.naming.enableClusterFailover true When set to true, it specifies that an
interceptor be installed to handle fail-over for
objects that were retrieved from the
VisiNaming Service. In case of an object
failure, an attempt is made to transparently
reconnect to another object from the same
cluster as the original.

Property Default Description

74 VisiBroker for Java Developer ’s Guide

Naming Service (Vis iNaming) propert ies

For more information see “VisiNaming Service Clusters for Failover and
Load Balancing”.

vbroker.naming.propBindOn 0 If 1, the implicit clustering feature is turned on.

vbroker.naming.smrr.pruneStaleRef 1 This property is relevant when the name
service cluster uses the Smart Round Robin
criterion. When this property is set to 1, a stale
object reference that was previously bound to
a cluster with the Smart Round Robin criterion
will be removed from the bindings when the
name service discovers it. If this property is
set to 0, stale object reference bindings under
the cluster are not eliminated. However, a
cluster with Smart Round Robin criterion will
always return an active object reference upon
a resolve() or select() call if such an object
binding exists, regardless of the value of the
vbroker.naming.smrr.pruneStaleRef property. By
default, the implicit clustering in the name
service uses the Smart Round Robin criterion
with the property value set to 1. If set to 2, this
property disables the clearing of stale
references completely, and the responsibility
of cleaning up the bindings belongs to the
application, rather than to VisiNaming.

Property Default Description

vbroker.naming.enableSlave 0 See “VisiNaming Service properties”.

vbroker.naming.slaveMode No default.

Can be set to
cluster
or slave.

This property is used to configure
VisiNaming Service instances in the cluster
mode or in the master/slave mode. The
vbroker.naming.enableSlave property must be
set to 1 for this property to take effect.

Set this property to cluster to configure
VisiNaming Service instances in the cluster
mode. VisiNaming Service clients will then
be load balanced among the VisiNaming
Service instances that comprise the cluster.
Client failover across these instances are
enabled.

Set this property to slave to configure
VisiNaming Service instances in the
master/slave mode. VisiNaming Service
clients will always be bound to the master
server if the master is running but failover
to the slave server when the master server
is down.

vbroker.naming.serverClusterName null This property specifies the name of a
VisiNaming Service cluster. Multiple
VisiNaming Service instances belong to a
particular cluster (for example, clusterXYZ)
when they are configured with the cluster
name using this property.

Property Default Description

 6 : Vis iBroker propert ies 75

Naming Service (Vis iNaming) propert ies

Pluggable Backing Store Properties

The following tables show property information for the VisiNaming service pluggable
backing store types.

Default properties common to all adapters

vbroker.naming.serverNames null This property specifies the factory names of
the VisiNaming Service instances that
belong to a cluster. Each VisiNaming
Service instance within the cluster should
be configured using this property to be
aware of all the instances that constitute
the cluster. Each name in the list must be
unique. This property supports the format:

vbroker.naming.serverNames=
Server1:Server2:Server3

See the related property,
vbroker.naming.serverAddresses.

vbroker.naming.serverAddresses null This property specifies the host and
listening port for the VisiNaming Service
instances that comprise a VisiNaming
Service cluster. The order of VisiNaming
Service instances in this list must be
identical to that of the related property
vbroker.naming.serverNames, which specifies
the names of the VisiNaming Service
instances that comprise a VisiNaming
Service Cluster. This property supports the
format:

vbroker.naming.serverAddresses=host1:
port1;host2:port2;host3:port3

vbroker.naming.anyServiceOrder
(To be set on VisiNaming
Service clients)

false This property must be set to true on the
VisiNaming Service client to utilize the load
balancing and failover features available
when VisiNaming Service instances are
configured in the VisiNaming Service
cluster mode. The following is an example
of how to use this property:

client -DVbroker.naming.
anyServiceOrder=true

Property Default Description

vbroker.naming.backingStoreType InMemory Specifies the naming service adapter type to
use. This property specifies which type of
backing store you want the VisiNaming
Service to use. The valid options are:
InMemory, JDBC, Dx, JNDI. The default is
InMemory.

vbroker.naming.cacheOn 0 Specifies whether to use the Naming Service
cache. A value of 1 (one) enables caching.

Property Default Description

76 VisiBroker for Java Developer ’s Guide

Naming Service (Vis iNaming) propert ies

JDBC Adapter properties

vbroker.naming.cache.connectString N/A This property is required when the Naming
Service cache is enabled
(vbroker.naming.cacheOn=1) and the Naming
Service instances are configured in Cluster
or Master/Slave mode. It helps locate an
Event Service instance in the format
<hostname>:<port>. For example:

vbroker.naming.cache.connectString=

127.0.0.1:14500

See “Caching facility” for details about
enabling the caching facility and setting
the appropriate properties.

vbroker.naming.cache.size 2000 This property specifies the size of the
Naming Service cache. Higher values will
mean caching of more data at the cost of
increased memory consumption.

vbroker.naming.cache.timeout 0 (no limit) This property specifies the time, in seconds,
since the last time a piece of data was
accessed, after which the data in the cache
will be purged in order to free memory. The
cached entries are deleted in LRU (Least
Recently Used) order.

Property Default Description

vbroker.naming.jdbcDriver com.borland.datastore.
jdbc.DataStoreDriver

This property specifies the JDBC
driver that is needed to access the
database used as your backing
store. The VisiNaming Service loads
the appropriate JDBC driver
specified. Valid values are:

■ com.borland.datastore.jdbc.DataStor
eDriver—JDataStore driver

■ com.sybase.jdbc.SybDriver—
Sybase driver

■ oracle.jdbc.driver.OracleDriver—
Oracle driver

■ interbase.interclient.Driver—
Interbase driver

■ weblogic.jdbc.mssqlserver4.Driver—
WebLogic MS SQLServer Driver

■ COM.ibm.db2.jdbc.app.DB2Driver—
IBM DB2 Driver

vbroker.naming.loginName VisiNaming The login name associated with the
database.

vbroker.naming.loginPwd VisiNaming The login password associated with
the database.

vbroker.naming.poolSize 5 This property specifies the number
of database connections in your
connection pool when using the
JDBC Adapter as your backing
store.

Property Default Description

 6 : Vis iBroker propert ies 77

Naming Service (Vis iNaming) propert ies

DataExpress Adapter properties
The following table describes the DataExpress Adapter properties:

vbroker.naming.url jdbc:borland:dslocal:
rootDB.jds

This property specifies the location
of the database which you want the
Naming Service to access. The
setting is dependent upon the
database in use. Acceptable values
are:

■ jdbc:borland:dslocal:<db-name>—
JDataStore UTL

■ jdbc:sybase:Tds:<host-
name>:<port-number>/<db-name>—
Sybase URL

■ jdbc:oracle:thin@<host-
name>:<port-number>:<sid>—
Oracle URL

■ jdbc:interbase://<server-name>/
<full-db-path>—Interbase URL

■ jdbc:weblogic:mssqlserver4:<db-
name>@<host-name>:<port-number>—
WebLogic MS SQLSever URL

■ jdbc:db2:<db-name>—IBM DB2
URL

■ <full-path-JDataStore-db>—
DataExpress URL for the native
driver

vbroker.naming.minReconInterval 30 This property sets the Naming
Service's database reconnection
interval time, in seconds. The
default value is 30. The Naming
Service will ignore the reconnection
request and throw a CannotProceed
exception if the time interval
between this request and the last
reconnection time is less than the
vset value. Valid values for this
property are non-negative integers.
If set to 0, the Naming Service will try
to reconnect to the database for
every request.

Property Description

vbroker.naming.backingStoreType This property should be set to Dx.

vbroker.naming.loginName This property is the login name associated with the database.
The default is VisiNaming.

vbroker.naming.loginPwd This property is the login password associated with the
database. The default value is VisiNaming.

vbroker.naming.url This property specifies the location of the database.

Property Default Description

78 VisiBroker for Java Developer ’s Guide

Naming Service (Vis iNaming) propert ies

JNDI adapter properties
The following is an example of settings that can appear in the configuration file for a
JNDI adapter:

VisiNaming Service Security-related properties

Setting Description

vbroker.naming.backingStoreType=JNDI This setting specifies the backing store type which
is JNDI for the JNDI adapter.

vbroker.naming.loginName=<user_name> The user login name on the JNDI backing server.

vbroker.naming.loginPwd=<password> The password for the JNDI backing server user.

vbroker.naming.jndiInitialFactory=com.
sun.jndi.ldap.LdapCtxFactory

This setting specifies the JNDI initial factory.

vbroker.naming.jndiProviderURL=ldap:
//<hostname>:389/<initial root context>

This setting specifies the JNDI provider URL

vbroker.naming.jndiAuthentication=simple This setting specifies the JNDI authentication type
supported by the JNDI backing server.

Property Value Default Description

vbroker.naming.security.disable boolean true This property indicates whether the
security service is disabled.

vbroker.naming.security.authDomain string "" This property indicates the
authorization domain name to be
used for the naming service method
access authorization.

vbroker.naming.security.transport int 3 This property indicates what transport
the Naming Service will use. The
available values are:

ServerQoPPolicy.SECURE_ONLY=1
ServerQoPPolicy.CLEAR_ONLY=0
ServerQoPPolicy.ALL=3

vbroker.naming.security.
requireAuthentication

boolean false This property indicates whether
naming client authentication is
required. However, when the
vbroker.naming.security.disable
property is set to true, no client
authentication will be performed
regardless of the value of this
requireAuthentication property.

vbroker.naming.security.
enableAuthorization

boolean false This property indicates whether
method access authorization is
enabled.

vbroker.naming.security.
requiredRolesFile

string null This property points to the file
containing the required roles that are
necessary for invocation of each
method in the protected object types.
For more information see “Method
Level Authorization”.

 6 : Vis iBroker propert ies 79

OAD propert ies

OAD properties
This following table lists the configurable OAD properties.

This table list the OAD properties that cannot be overridden in a property file. They can
however be overridden with environment variables or from the command line.

Interface Repository properties
The following table lists the Interface Repository (IR) properties.

Property Default Description

vbroker.oad.spawnTimeOut 20 After the OAD spawns an executable, specifies how
long, in seconds, the system will wait to receive a
callback from the desired object before throwing a
NO_RESPONSE exception.

vbroker.oad.verbose false Allows the OAD to print detailed information about
its operations.

vbroker.oad.readOnly false When set to true, does not allow you to register,
unregister, or change the OAD implementation.

vbroker.oad.iorFile Oadj.ior Specifies the filename for the OAD's stringified IOR.

vbroker.oad.quoteSpaces false Specifies whether to quote a command.

vbroker.oad.killOnUnregister false Specifies whether to kill spawned server processes,
once they are unregistered.

vbroker.oad.verifyRegistration false Specifies whether to verify the object registration.

Property Default Description

vbroker.oad.implName impl_rep Specifies the filename for the implementation repository.

vbroker.oad.implPath null Specifies the directory where the implementation repository
is stored.

vbroker.oad.path null Specifies the directory for the OAD.

vbroker.oad.systemRoot null Specifies the root directory.

vbroker.oad.windir null Specifies the Windows directory.

vbroker.oad.vbj vbj Specifies the VisiBroker for Java directory.

Property Default Description

vbroker.ir.debug false When set to true, allows the IR resolver to display debugging
information.

vbroker.ir.ior null When the vbroker.ir.name property is set to the default value, null,
the VisiBroker ORB will try to use this property to locate the IR.

vbroker.ir.name null Specifies the name that is used by the VisiBroker ORB to locate
the IR.

80 VisiBroker for Java Developer ’s Guide

Cl ient-s ide I IOP connect ion propert ies

Client-side IIOP connection properties
The table below lists the VisiBroker for Java Client-side IIOP Connection properties.

Property Default Description

vbroker.ce.iiop.ccm.
connectionCacheMax

5 Specifies the maximum number of cached
connections for a client. The connection is
cached when a client releases it.
Therefore, the next time a client needs a
new connection, it first tries to retrieve one
from the cache, instead of just creating a
new one.

vbroker.ce.iiop.ccm.
connectionMax

0 Specifies the maximum number of total
connections for a client. This is equal to the
number of active connections plus cached
connections. The default value of zero
specifies that the client will not try to close
any of the old active or cached
connections.

vbroker.ce.iiop.ccm.
connectionMaxIdle

0 Specifies the time, in seconds, that the
client uses to determine if a cached
connection should be closed. If a cached
connection has been idle longer than this
time, then the client closes the connection.

vbroker.ce.iiop.ccm.type Pool Specifies the type of client connection
management used by a client. The value
Pool means connection pool. This is
currently the only valid value for this
property.

vbroker.ce.iiop.ccm.
waitForCompletion

false This property can be set to true to specify
that the application wants to wait for all
replies to be received and only after then
should the ORB should close the
connection. The default value of false
indicates that ORB will not wait for any
replies.

vbroker.ce.iiop.
connection.tcpNoDelay

FALSE When set to TRUE, the server's sockets are
configured to send any data written to them
immediately instead of batching the data
as the buffer fills.

vbroker.ce.iiop.clientPort 0 (random port) Specifies the client port to be used when a
connection is opened by the ORB. Allowed
values range from 0 to 65535. A range
should be specified using the
vbroker.ce.iiop.clientPortRange property
when this property is used.

vbroker.ce.iiop.clientPortRange 0 Specifies the range of client ports to be
used when a connection is opened by the
ORB, starting with the port specified by the
vbroker.ce.iiop.clientPort property.
Allowed values range from 0 to 65535.

vbroker.ce.iiop.host none This property declares the client address
that is to be used when opening
connections from a multihomed machine. If
not specified, the default address is used.

 6 : Vis iBroker propert ies 81

URL Naming propert ies

URL Naming properties
This table lists the URL Naming properties.

QoS-related Properties

Client-side in-process connection properties
The following table lists the Client-side, in-process connection properties.

Server-side server engine properties
This table lists the server-side server engine properties.

Property Default Description

vbroker.URLNaming.allowUserInteraction true When set to true, allows the URL Naming
Service to initiate the graphical user
interface (GUI) for user interaction.

vbroker.URLNaming.debug false When set to true, specifies that the
URLNaming Service display debugging
information.

Property Default Description

vbroker.orb.qos.relativeRTT 0 This property can be used to set the
RelativeRoundtripTimeoutPolicy in milliseconds.
It takes effect at the ORB level and can be
overridden programatically at other levels.
The default value of 0 means no timeout.

vbroker.qos.cache True Specifies if QoS policies should be cached
per delegate, instead of being checked prior
to every request made by the client.

vbroker.orb.qos.connectionTimeout 0 (no limit) This property allows the convenience of
setting the RelativeConnectionTimeoutPolicy
Qos policy at the ORB level, without requiring
explicit code to be written. The connection
timeout value should be specified in
milliseconds.

Property Default Description

vbroker.ce.inprocess.ccm.bid 9488 Specifies the bid value for the POA bidder. It affects
an automatic process in the VisiBroker ORB used in
picking a protocol to handle client connections.

vbroker.ce.iiop.ccm.bid 10000 Specifies the bid value for the iiop bidder. It affects an
automatic process in the VisiBroker ORB used in
picking a protocol to handle client connections.

Property Default Description

vbroker.se.default iiop_tp Specifies the default server engine.

82 VisiBroker for Java Developer ’s Guide

Server-s ide thread session I IOP_TS/I IOP_TS connect ion propert ies

Server-side thread session IIOP_TS/IIOP_TS connection properties
The following table lists the server-side thread session IIOP_TS/IIOP_TS connection
properties.

Property Default Description

vbroker.se.iiop_ts.host null Specifies the host name used by
this server engine. The default
value, null, means use the host
name from the system.

vbroker.se.iiop_ts.proxyHost null Specifies the proxy host name used
by this server engine. The default
value, null, means use the host
name from the system.

vbroker.se.iiop_ts.scms iiop_ts Specifies the list of Server
Connection Manager name(s).

vbroker.se.iiop_ts.scm.iiop_ts.
manager.type

Socket Specifies the type of Server
Connection Manager.

vbroker.se.iiop_ts.scm.iiop_ts.
manager.connectionMax

0 Specifies the maximum number of
connections the server will accept.
The default value, 0 (zero), implies
no restriction.

vbroker.se.iiop_ts.scm.iiop_ts.manager.
connectionMaxIdle

0 Specifies the time in seconds the
server uses to determine if an
inactive connection should be
closed.

vbroker.se.iiop_ts.scm.iiop_ts.
listener.type

IIOP Specifies the type of protocol the
listener is using.

vbroker.se.iiop_ts.scm.iiop_ts.
listener.port

0 Specifies the port number that is
used with the host name property.
The default value, 0 (zero),
specifies that the system will pick a
random port number.

vbroker.se.iiop_ts.scm.iiop_ts.
listener.proxyPort

0 Specifies the proxy port number
used with the proxy host name
property. The default value, 0
(zero), specifies that the system will
pick a random port number.

vbroker.se.iiop_ts.scm.iiop_ts.
listener.giopVersion

1.2 This property can be used to
resolve interoperability problems
with older VisiBroker ORBs that
cannot handle unknown minor
GIOP versions correctly. Legal
values for this property are 1.0, 1.1
and 1.2. For example, to make the
nameservice produce a GIOP 1.1
ior, start it like this:

nameserv -VBJprop
vbroker.se.iiop_tp.scm.
iiop_tp.listener.giopVersion=1.1

vbroker.se.iiop_ts.scm.iiop_ts.
dispatcher.type

"ThreadSession" Specifies the type of thread
dispatcher used in the Server
Connection Manager.

 6 : Vis iBroker propert ies 83

Server-s ide thread session BOA_TS/BOA_TS connect ion propert ies

Server-side thread session BOA_TS/BOA_TS connection properties
This protocol has the same set of properties as the “Server-side thread session
IIOP_TS/IIOP_TS connection properties”, by replacing alliiop_ts with boa_ts in all the
properties. For example, the vbroker.se.iiop_ts.scm.iiop_ts.manager.connectionMax
will become vbroker.se.boa_ts.scm.boa_ts.manager.connectionMax. Also, the default
value for vbroker.se.boa_ts.scms is boa_ts.

Server-side thread pool IIOP_TP/IIOP_TP connection properties
The following table lists the server-side thread pool IIOP_TP/IIOP_TP connection
properties.

Property Default Description

vbroker.se.iiop_tp.host null Specifies the host name that can be
used by this server engine. The default
value, null, means use the host name
from the system. Host names or IP
addresses are acceptable values.

vbroker.se.iiop_tp.proxyHost null Specifies the proxy host name that can
be used by this server engine. The
default value, null, means use the host
name from the system. Host names or
IP addresses are acceptable values.

vbroker.se.iiop_tp.scms iiop_tp Specifies the list of Server Connection
Manager name(s).

vbroker.se.iiop_tp.scm.iiop_tp.
manager.type

Socket Specifies the type of Server Connection
Manager.

vbroker.se.iiop_tp.scm.iiop_tp.
manager.connectionMax

0 Specifies the maximum number of
cache connections on the server. The
default value, 0 (zero), implies no
restriction.

vbroker.se.iiop_tp.scm.iiop_tp.manager.
connectionMaxIdle

0 Specifies the time, in seconds, that the
server uses to determine if an inactive
connection should be closed.

vbroker.se.iiop_tp.scm.iiop_tp.
listener.type

IIOP Specifies the type of protocol the listener
is using.

vbroker.se.iiop_tp.scm.iiop_tp.
listener.port

0 Specifies the port number used with the
host name property. The default value, 0
(zero), means that the system will pick a
random port number.

vbroker.se.iiop_tp.scm.iiop_tp.
listener.portRange

0 (zero) This property is effective only when
listener.port is greater than 0 (zero). If
the listener cannot bind to that port
because the port may be in use then the
listener will try to bind to the ports in the
range [port, port+portRange]. If no ports
in the range are available then a
COMM_FAILURE exception will be thrown.

vbroker.se.iiop_tp.scm.iiop_tp.
listener.proxyPort

0 Specifies the proxy port number used
with the proxy host name property. The
default value, 0 (zero), means that the
system will pick a random port number.

84 VisiBroker for Java Developer ’s Guide

Server-s ide thread pool BOA_TP/BOA_TP connect ion propert ies

Server-side thread pool BOA_TP/BOA_TP connection properties
This protocol has the same set of properties as the “Server-side thread pool IIOP_TP/
IIOP_TP connection properties”, by replacing all iiop_tp with boa_tp in all the
properties. For example, the vbroker.se.iiop_tp.scm.iiop_tp.manager.connectionMax
will become vbroker.se.boa_tp.scm.boa_tp.manager.connectionMax. Also, the default
value for vbroker.se.boa_tp.scms is boa_tp.

vbroker.se.iiop_tp.scm.iiop_tp.
dispatcher.type

ThreadPool Specifies the type of thread dispatcher
used in the Server Connection Manager.

vbroker.se.iiop_tp.scm.iiop_tp.
dispatcher.threadMin

0 Specifies the minimum number of
threads that the Server Connection
Manager can create.

vbroker.se.iiop_tp.scm.iiop_tp.
dispatcher.threadMax

0 Specifies the maximum number of
threads that the Server Connection
Manager can create. The default value,
0 (zero) implies the ORB will control the
thread generation using an internal
algorithm based on heuristics.

vbroker.se.iiop_tp.scm.iiop_tp.
dispatcher.threadMaxIdle

300 Specifies the time in seconds before an
idle thread will be destroyed.

vbroker.se.iiop_tp.scm.iiop_tp.
connection.tcpNoDelay

true When this property is set to false, this
turns on buffering for the socket. The
default value, true, turns off buffering, so
that all packets are sent as soon as they
are ready.

Property Default Description

 7: Handl ing except ions 85

Handling exceptions

Exceptions in the CORBA model
The exceptions in the CORBA model include both system and user exceptions. The
CORBA specification defines a set of system exceptions that can be raised when
errors occur in the processing of a client request. Also, system exceptions are raised in
the case of communication failures. System exceptions can be raised at any time and
they do not need to be declared in the interface.

You can define user exceptions in IDL for objects you create and specify the
circumstances under which those exceptions are to be raised. They are included in the
method signature. If an object raises an exception while handling a client request, the
VisiBroker ORB is responsible for reflecting this information back to the client.

System exceptions
System exceptions are usually raised by the VisiBroker ORB, though it is possible for
object implementations to raise them through interceptors discussed in “Using
VisiBroker Interceptors.” When the VisiBroker ORB raises a SystemException, one of
the CORBA-defined error conditions is displayed as shown below.

For a listing of explanations and possible causes of these exceptions, see “CORBA
exceptions.”

Exception name Description

BAD_CONTEXT Error processing context object.

BAD_INV_ORDER Routine invocations out of order.

BAD_OPERATION Invalid operation.

BAD_PARAM An invalid parameter was passed.

BAD_QOS Quality of service cannot be supported.

BAD_TYPECODE Invalid typecode.

COMM_FAILURE Communication failure.

DATA_CONVERSION Data conversion error.

FREE_MEM Unable to free memory.

IMP_LIMIT Implementation limit violated.

INITIALIZE VisiBroker ORB initialization failure.

86 VisiBroker for Java Developer ’s Guide

System except ions

For a listing of explanations and possible causes of the above exceptions, see
“CORBA exceptions.”

SystemException class

public abstract class org.omg.CORBA.SystemException extends
java.lang.RuntimeException {
 protected SystemException(java.lang.String reason,
 int minor, CompletionStatus completed) { ... }
 public String toString() { ... }
 public CompletionStatus completed;
 public int minor;
}

INTERNAL VisiBroker ORB internal error.

INTF_REPOS Error accessing interface repository.

INV_FLAG Invalid flag was specified.

INV_INDENT Invalid identifier syntax.

INV_OBJREF Invalid object reference specified.

INVALID_TRANSACTION Specified transaction was invalid (used in conjunction with
VisiTransact).

MARSHAL Error marshalling parameter or result.

NO_IMPLEMENT Operation implementation not available.

NO_MEMORY Dynamic memory allocation failure.

NO_PERMISSION No permission for attempted operation.

NO_RESOURCES Insufficient resources to process request.

NO_RESPONSE Response to request not yet available.

OBJ_ADAPTOR Failure detected by object adaptor.

OBJECT_NOT_EXIST Object is not available.

PERSIST_STORE Persistent storage failure.

TRANSIENT Transient failure.

TRANSACTION_MODE Mismatch detected between the TransactionPolicy in the IOR and the
current transaction mode (used in conjunction with VisiTransact).

TRANSACTION_REQUIRED Transaction is required (used in conjunction with VisiTransact).

TRANSACTION_ROLLEDBACK Transaction was rolled back (used in conjunction with VisiTransact).

TRANSACTION_UNAVAILABLE Connection to the VisiTransact Transaction Service has been
abnormally terminated.

TIMEOUT Request timeout.

UNKNOWN Unknown exception.

Exception name Description

 7: Handl ing except ions 87

System except ions

Obtaining completion status

System exceptions have a completion status that tells you whether or not the operation
that raised the exception was completed. The sample below illustrates the
CompletionStatus enumerated values for the CompletionStatus. COMPLETED_MAYBE is
returned when the status of the operation cannot be determined.

enum CompletionStatus {
 COMPLETED_YES = 0;
 COMPLETED_NO = 1;
 COMPLETED_MAYBE = 2;
};

Catching system exceptions

Your applications should enclose the VisiBroker ORB and remote calls in a try catch
block. The code samples below illustrate how the account client program, discussed in
“Developing an example application with VisiBroker” prints an exception.

public class Client {
 public static void main(String[] args) {
 try {
 org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,null);
 byte[] managerId = "BankManager".getBytes();
 Bank.AccountManager manager =
 Bank.AccountManagerHelper.bind(orb, "/bank_agent_poa",
managerId);
 String name = args.length > 0 ? args[0] : "Jack B. Quick";
 Bank.Account account = manager.open(name);
 float balance = account.balance();
 System.out.println("The balance in " + name + "'s account is $" +
balance);
 } catch (Exception e) {
 System.err.println(e);
 }
 }
}

If you were to execute the client program with these modifications and without a server
present, the following output would indicate that the operation did not complete and the
reason for the exception.

prompt>vbj Client
org.omg.CORBA.OBJECT_NOT_EXIST:
Could not locate the following POA:
poa name : /bank_agent_poa
minor code: 0 completed: No

88 VisiBroker for Java Developer ’s Guide

System except ions

Downcasting exceptions to a system exception

You can modify the account client program to attempt to downcast any exception that
is caught to a SystemException. The following code sample shows you how to modify
the client program.

public class Client {
 public static void main(String[] args) {
 try {
 // Initialize the ORB
 org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args, null);
 // Bind to an account
 Account account = AccountHelper.bind(orb, "/bank_poa",
 "BankAccount".getBytes());
 // Get the balance of the account
 float balance = account.balance();
 // Print the account balance
 System.out.println("The account balance is $" + balance);
 catch(Exception e) {
 if (e instanceof org.omg.CORBA.SystemException) {
 System.err.println("System Exception occurred:");
 } else {
 System.err.println("Not a system exception");
 }
 System.err.println(e);
 }
 }
}

The following code sample displays the resulting output if a system exception occurs.

System Exception occurred:
in thread "main" org.omg.CORBA.OBJECT_NOT_EXIST minor code: 0 completed: No

Catching specific types of system exceptions

Rather than catching all types of exceptions, you may choose to specifically catch each
type of exception that you expect. The following code sample show this technique.

public class Client {
 public static void main(String[] args) {
 try {
 org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,null);
 byte[] managerId = "BankManager".getBytes();
 Bank.AccountManager manager =
 Bank.AccountManagerHelper.bind(orb, "/bank_agent_poa",

managerId);
 String name = args.length > 0 ? args[0] : "Jack B. Quick";
 Bank.Account account = manager.open(name);
 float balance = account.balance();
 System.out.println("The balance in " + name + "'s account is

$" + balance);
 } catch(org.omg.CORBA.SystemException e) {
 System.err.println("System Exception occurred:");
 System.err.println(e);
 }
 }
}

 7: Handl ing except ions 89

User except ions

User exceptions
When you define your object's interface in IDL, you can specify the user exceptions
that the object may raise. The following code sample shows the UserException code
from which the idl2java compiler will derive the user exceptions you specify for your
object.

public abstract class UserException extends java.lang.Exception {
 protected UserException();
 protected UserException(String reason);
}

Defining user exceptions

Suppose that you want to enhance the account application, introduced in “Developing
an example application with VisiBroker” so that the account object will raise an
exception. If the account object has insufficient funds, you want a user exception
named AccountFrozen to be raised. The additions required to add the user exception to
the IDL specification for the Account interface are shown in bold.

// Bank.idl
module Bank {
 interface Account {
 exception AccountFrozen {
 };
 float balance() raises(AccountFrozen);
 };
};

The idl2java compiler will generate the following code for a AccountFrozen exception
class.

package Bank;
public interface Account extends com.inprise.vbroker.CORBA.Object,
 Bank.AccountOperations, org.omg.CORBA.portable.IDLEntity {
}
package Bank;
public interface AccountOperations {
 public float balance () throws Bank.AccountPackage.AccountFrozen;
}
package Bank.AccountPackage;
public final class AccountFrozen extends org.omg.CORBA.UserException {
 public AccountFrozen () { ... }
 public AccountFrozen (java.lang.String _reason) { ... }
 public synchronized java.lang.String toString() { ... }
}

90 VisiBroker for Java Developer ’s Guide

User except ions

Modifying the object to raise the exception
The AccountImpl object must be modified to use the exception by raising the exception
under the appropriate error conditions.

public class AccountImpl extends Bank.AccountPOA {
 public AccountImpl(float balance) {
 _balance = balance;
 }
 public float balance() throws AccountFrozen {
 if (_balance < 50) {
 throws AccountFrozen();
 } else {
 return _balance;
 }
 private float _balance;
}

Catching user exceptions
When an object implementation raises an exception, the VisiBroker ORB is responsible
for reflecting the exception to your client program. Checking for a UserException is
similar to checking for a SystemException. To modify the account client program to catch
the AccountFrozen exception, make modifications to the code as shown below.

public class Client {
 public static void main(String[] args) {
 try {
 // Initialize the ORB
 org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args, null);
 // Bind to an account
 Account account = AccountHelper.bind(orb, "/bank_poa",
 "BankAccount".getBytes());
 // Get the balance of the account
 float balance = account.balance();
 // Print the account balance
 System.out.println("The account balance is $" + balance);
 }
 // Check for AccountFrozen exception
 catch(Account.AccountFrozen e) {
 System.err.println("AccountFrozen returned:");
 System.err.println(e);
 }
 // Check for system errors
 catch(org.omg.CORBA.SystemException sys_excep) {
 ...
 }
 }
}

 7: Handl ing except ions 91

User except ions

Adding fields to user exceptions
You can associate values with user exceptions. The code sample below shows how to
modify the IDL interface specification to add a reason code to the AccountFrozen user
exception. The object implementation that raises the exception is responsible for
setting the reason code. The reason code is printed automatically when the exception
is put on the output stream.

// Bank.idl
module Bank {
 interface Account {
 exception AccountFrozen {
 int reason;
 };
 float balance() raises(AccountFrozen);
 };
};

92 VisiBroker for Java Developer ’s Guide

 8: Server basics 93

Server basics
This section outlines the tasks that are necessary to set up a server to receive client
requests.

Overview
The basic steps that you'll perform in setting up your server are:

– Initialize the VisiBroker ORB

– Create and setup the POA

– Activate the POA Manager

– Activate objects

– Wait for client requests

This section describes each task in a global manner to give you an idea of what you
must consider. The specifics of each step are dependent on your individual
requirements.

Initializing the VisiBroker ORB
As stated in the previous section, the VisiBroker ORB provides a communication link
between client requests and object implementations. Each application must initialize
the VisiBroker ORB before communicating with it as follows:

// Initialize the VisiBroker ORB.
org.ogm.CORBA.ORB orb=org.omg.CORBA.ORB.init(args,null);

94 VisiBroker for Java Developer ’s Guide

Creat ing the POA

Creating the POA
Early versions of the CORBA object adapter (the Basic Object Adapter, or BOA) did not
permit portable object server code. A new specification was developed by the OMG to
address these issues and the Portable Object Adapter (POA) was created.

Note

A discussion of the POA can be quite extensive. This section introduces you to some of
the basic features of the POA. For detailed information, see “Using POAs” and the
OMG specification.

In basic terms, the POA (and its components) determine which servant should be
invoked when a client request is received, and then invokes that servant. A servant is a
programming object that provides the implementation of an abstract object. A servant
is not a CORBA object.

One POA (called the rootPOA) is supplied by each VisiBroker ORB. You can create
additional POAs and configure them with different behaviors. You can also define the
characteristics of the objects the POA controls.

The steps to setting up a POA with a servant include:

– Obtaining a reference to the root POA

– Defining the POA policies

– Creating a POA as a child of the root POA

– Creating a servant and activating it

– Activating the POA through its manager

Some of these steps may be different for your application.

Obtaining a reference to the root POA

All server applications must obtain a reference to the root POA to manage objects or to
create new POAs.

//2. Get a reference to the root POA
org.omg.CORBA.Object obj = orb.resolve_initial_reference("RootPOA");
// Narrow the object reference to a POA reference
POA rootPoa = org.omg.PortableServer.POAHelper.narrow(obj);

You can obtain a reference to the root POA by using resolve_initial_references which
returns a value of type CORBA::Object. You are responsible for narrowing the returned
object reference to the desired type, which is PortableServer::POA in the above
example.

You can then use this reference to create other POAs, if needed.

Creating the child POA

The root POA has a predefined set of policies that cannot be changed. A policy is an
object that controls the behavior of a POA and the objects the POA manages. If you
need a different behavior, such as different lifespan policy, you will need to create a
new POA.

POAs are created as children of existing POAs using create_POA. You can create as
many POAs as you think are required.

Note

Child POAs do not inherit the policies of their parent POAs.

 8: Server basics 95

Creat ing the POA

In the following example, a child POA is created from the root POA and has a
persistent lifespan policy. The POA Manager for the root POA is used to control the
state of this child POA.

// Create policies for our persistent POA
org.omg.CORBA.Policy[] policies = {
 rootPOA.create_lifespan_policy(LifespanPolicyValue.PERSISTENT)
};
// Create myPOA with the right policies
POA myPOA = rootPOA.create_POA("bank_agent_poa", rootPOA.the_POAManager(),
policies);

Implementing servant methods

IDL has a syntax similar to C++ and can be used to define modules, interfaces, data
structures, and more. When you compile IDL that contains an interface, a class is
generated which serves as the base class for your servant. For example, in the
Bank.IDL file, an >AccountManager

module Bank{
 interface Account {
 float balance();
 };
 interface AccountManager {
 Account open (in string name);
 };
};

The following shows the AccountManager implementation on the server side.

AccountManagerPOA.java is created and serves as the skeleton code (implementation
base code) for the AccountManager object implementation on the server side, as follows:

import org.omg.PortableServer.*;
import java.util.*;
public class AccountManagerImpl extends Bank.AccountManagerPOA {
 public synchronized Bank.Account open(String name) {
 // Lookup the account in the account dictionary.
 Bank.Account account = (Bank.Account) _accounts.get(name);
 // If there was no account in the dictionary, create one.
 if(account == null) {
 // Make up the account's balance, between 0 and 1000 dollars.
 float balance = Math.abs(_random.nextInt()) % 100000 / 100f;
 // Create the account implementation, given the balance.
 AccountImpl accountServant = new AccountImpl(balance);
 try {
 // Activate it on the default POA which is root POA for this

servant
 account = Bank.AccountHelper.narrow(_default_POA().
 servant_to_reference(accountServant));
 } catch (Exception e) {
 e.printStackTrace();
 }
 // Print out the new account.
 System.out.println("Created " + name + "'s account: " + account);
 // Save the account in the account dictionary.
 _accounts.put(name, account);
 }
 // Return the account.
 return account;
 }
 private Dictionary _accounts = new Hashtable();
 private Random _random = new Random();
}

96 VisiBroker for Java Developer ’s Guide

Creat ing and Act ivat ing the Servant

Creating and Activating the Servant
The AccountManager implementation must be created and activated in the server
code. In this example, AccountManager is activated with activate_object_with_id,
which passes the object ID to the Active Object Map where it is recorded. The Active
Object Map is simply a table that maps IDs to servants. This approach ensures that this
object is always available when the POA is active and is called explicit object
activation.

// Create the servant
AccountManagerImpl managerServant = new AccountManagerImpl();
// Decide on the ID for the servant
byte[] managerId = "BankManager".getBytes();
// Activate the servant with the ID on myPOA
myPOA.activate_object_with_id(managerId, managerServant);

Activating the POA

The last step is to activate the POA Manager associated with your POA. By default,
POA Managers are created in a holding state. In this state, all requests are routed to a
holding queue and are not processed. To allow requests to be dispatched, the POA
Manager associated with the POA must be changed from the holding state to an active
state. A POA Manager is simply an object that controls the state of the POA (whether
requests are queued, processed, or discarded.) A POA Manager is associated with a
POA during POA creation. You can specify a POA Manager to use, or let the system
create a new one for you by passing a null value as the POA Manager name in
create_POA()).

// Activate the POA Manager
PortableServer::POAManager_var mgr=rootPoa ->the_POAManager();
mgr->activate();

Activating objects
In the preceding section, there was a brief mention of explicit object activation. There
are several ways in which objects can be activated:

– Explicit: All objects are activated upon server start-up via calls to the POA

– On-demand: The servant manager activates an object when it receives a request for
a servant not yet associated with an object ID

– Implicit: Objects are implicitly activated by the server in response to an operation by
the POA, not by any client request

– Default servant: The POA uses the default servant to process the client request

A complete discussion of object activation is in “Using POAs.” For now, just be aware
that there are several means for activating objects.

Waiting for client requests
Once your POA is set up, you can wait for client requests by using orb.run(). This
process will run until the server is terminated.

// Wait for incoming requests.
orb->run();

Complete example
The samples below shows the complete example code.

 8: Server basics 97

Complete example

// Server.java
import org.omg.PortableServer.*;
public class Server {
public static void main(String[] args) {
 try {
 // Initialize the ORB.
 org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,null);
 // get a reference to the root POA
 POA rootPOA =
POAHelper.narrow(orb.resolve_initial_references("RootPOA"));
 // Create policies for our persistent POA
 org.omg.CORBA.Policy[] policies = {
 rootPOA.create_lifespan_policy(LifespanPolicyValue.PERSISTENT)
 };
 // Create myPOA with the right policies
 POA myPOA = rootPOA.create_POA("bank_agent_poa",
rootPOA.the_POAManager(),
 policies);
 // Create the servant
 AccountManagerImpl managerServant = new AccountManagerImpl();
 // Decide on the ID for the servant
 byte[] managerId = "BankManager".getBytes();
 // Activate the servant with the ID on myPOA
 myPOA.activate_object_with_id(managerId, managerServant);
 // Activate the POA manager
 rootPOA.the_POAManager().activate();
 System.out.println(myPOA.servant_to_reference(managerServant) + " is
ready.");
 // Wait for incoming requests
 orb.run();
 } catch (Exception e) {
 e.printStackTrace();
 }
}

98 VisiBroker for Java Developer ’s Guide

 9 : Using POAs 99

Using POAs

What is a Portable Object Adapter?
Portable Object Adapters replace Basic Object Adapters; they provide portability on the
server side.

A POA is the intermediary between the implementation of an object and the VisiBroker
ORB. In its role as an intermediary, a POA routes requests to servants and, as a result
may cause servants to run and create child POAs if necessary.

Servers can support multiple POAs. At least one POA must be present, which is called
the rootPOA. The rootPOA is created automatically for you. The set of POAs is
hierarchical; all POAs have the rootPOA as their ancestor.

Servant managers locate and assign servants to objects for the POA. When an
abstract object is assigned to a servant, it is called an active object and the servant is
said to incarnate the active object. Every POA has one Active Object Map which keeps
track of the object IDs of active objects and their associated active servants.

Note

Users familiar with versions of VisiBroker prior to 6.0 should note the change in
inheritance hierarchy to support CORBA Specification 2.6, which requires local
interfaces. For example, a ServantLocator implementation would now extend from
org.omg.PortableServer._ServantLocatorLocalBase instead of
org.omg.PortableServer.ServantLocatorPOA.

100 VisiBroker for Java Developer’s Guide

What is a Portable Object Adapter?

Figure 9.1 Overview of the POA

POA terminology

Following are definitions of some terms with which you will become more familiar as
you read through this section.

Term Description

Active Object Map Table that maps active VisiBroker CORBA objects (through their object
IDs) to servants. There is one Active Object Map per POA.

adapter activator Object that can create a POA on demand when a request is received for a
child POA that does not exist.

etherealize Remove the association between a servant and an abstract CORBA
object.

incarnate Associate a servant with an abstract CORBA object.

ObjectID Way to identify a CORBA object within the object adapter. An ObjectID
can be assigned by the object adapter or the application and is unique
only within the object adapter in which it was created. Servants are
associated with abstract objects through ObjectIDs.

persistent object CORBA objects that live beyond the server process that created them.

POA manager Object that controls the state of the POA; for example, whether the POA
is receiving or discarding incoming requests.

Policy Object that controls the behavior of the associated POA and the objects
the POA manages.

rootPOA Each VisiBroker ORB is created with one POA called the rootPOA. You
can create additional POAs (if necessary) from the rootPOA.

servant Any code that implements the methods of a CORBA object, but is not the
CORBA object itself.

servant manager An object responsible for managing the association of objects with
servants, and for determining whether an object exists. More than one
servant manager can exist.

transient object A CORBA object that lives only within the process that created it.

 9 : Using POAs 101

POA pol ic ies

Steps for creating and using POAs

Although the exact process can vary, following are the basic steps that occur during the
POA lifecycle are:

1 Define the POA's policies.

2 Create the POA.

3 Activate the POA through its POA manager.

4 Create and activate servants.

5 Create and use servant managers.

6 Use adapter activators.

Depending on your needs, some of these steps may be optional. For example, you
only have to activate the POA if you want it to process requests.

POA policies
Each POA has a set of policies that define its characteristics. When creating a new
POA, you can use the default set of policies or use different values to suit your
requirements. You can only set the policies when creating a POA; you can not change
the policies of an existing POA. POAs do not inherit the policies from their parent POA.

The following lists the POA policies, their values, and the default value (used by the
rootPOA).

Thread policy The thread policy specifies the threading model to be used by the POA.

The thread policy can have the following values:

ORB_CTRL_MODEL: (Default) The POA is responsible for assigning requests to
threads. In a multi-threaded environment, concurrent requests may be delivered using
multiple threads. Note that VisiBroker uses multi-threading model.

SINGLE_THREAD_MODEL: The POA processes requests sequentially. In a multi-
threaded environment, all calls made by the POA to servants and servant managers
are thread-safe.

MAIN_THREAD_MODEL: Calls are processed on a distinguished “main” thread.
Requests for all main-thread POAs are processed sequentially. In a multi-threaded
environment, all calls processed by all POAs with this policy are thread-safe. The
application programmer designates the main thread by calling ORB::run() or
ORB::perform_work(). For more information about these methods, see “Activating
objects”.

Lifespan policy The lifespan policy specifies the lifespan of the objects implemented
in the POA.

The lifespan policy can have the following values:

TRANSIENT: (Default) A transient object activated by a POA cannot outlive the POA
that created it. Once the POA is deactivated, an OBJECT_NOT_EXIST exception
occurs if an attempt is made to use any object references generated by the POA.

PERSISTENT: A persistent object activated by a POA can outlive the process in which
it was first created. Requests invoked on a persistent object may result in the implicit
activation of a process, a POA and the servant that implements the object.

Object ID Uniqueness policy The Object ID Uniqueness policy allows a single
servant to be shared by many abstract objects.

The Object ID Uniqueness policy can have the following values:

UNIQUE_ID: (Default) Activated servants support only one Object ID.

MULTIPLE_ID: Activated servants can have one or more Object IDs. The Object ID
must be determined within the method being invoked at run time.

ID Assignment policy The ID assignment policy specifies whether object IDs are
generated by server applications or by the POA.

The ID Assignment policy can have the following values:

102 VisiBroker for Java Developer’s Guide

POA pol ic ies

USER_ID: Objects are assigned object IDs by the application.

SYSTEM_ID: (Default) Objects are assigned object IDs by the POA. If the
PERSISTENT policy is also set, object IDs must be unique across all instantiations of
the same POA.

Typically, USER_ID is for persistent objects, and SYSTEM_ID is for transient objects. If
you want to use SYSTEM_ID for persistent objects, you can extract them from the
servant or object reference.

Servant Retention policy The Servant Retention policy specifies whether the POA
retains active servants in the Active Object Map.

The Servant Retention policy can have the following values:

RETAIN: (Default) The POA tracks object activations in the Active Object Map.
RETAIN is usually used with ServantActivators or explicit activation methods on POA.

NON_RETAIN: The POA does not retain active servants in the Active Object Map.
NON_RETAIN must be used with ServantLocators.

ServantActivators and ServantLocators are types of servant managers. For more
information on servant managers, see “Using servants and servant managers”.

Request Processing policy The Request Processing policy specifies how requests
are processed by the POA.

USE_ACTIVE_OBJECT_MAP_ONLY: (Default) If the Object ID is not listed in the
Active Object Map, an OBJECT_NOT _EXIST exception is returned. The POA must
also use the RETAIN policy with this value.

USE_DEFAULT_SERVANT: If the Object ID is not listed in the Active Object Map or
the NON_RETAIN policy is set, the request is dispatched to the default servant. If no
default servant has been registered, an OBJ_ADAPTER exception is returned. The
POA must also use the MULTIPLE_ID policy with this value.

USE_SERVANT_MANAGER: If the Object ID is not listed in the Active Object Map or
the NON_RETAIN policy is set, the servant manager is used to obtain a servant.

Implicit Activation policy The Implicit Activation policy specifies whether the POA
supports implicit activation of servants.

The Implicit Activation policy can have the following values:

IMPLICIT_ACTIVATION: The POA supports implicit activation of servants. There are
two ways to activate the servants as follows:

– Converting them to an object reference with
org.omg.PortableServer.POA.servant_to_reference() .

– Invoking _this() on the servant.

The POA must also use the SYSTEM_ID and RETAIN policies with this value.

NO_IMPLICIT_ACTIVATION: (Default) The POA does not support implicit activation
of servants.

Bind Support policy The Bind Support policy (a VisiBroker-specific policy) controls
the registration of POAs and active objects with the VisiBroker osagent. If you have
several thousands of objects, it is not feasible to register all of them with the osagent.
Instead, you can register the POA with the osagent. When a client request is made, the
POA name and the object ID is included in the bind request so that the osagent can
correctly forward the request.

The BindSupport policy can have the following values:

BY_INSTANCE: All active objects are registered with the osagent. The POA must also
use the PERSISTENT and RETAIN policy with this value.

BY_POA: (Default) Only POAs are registered with the osagent. The POA must also
use the PERSISTENT policy with this value.

NONE: Neither POAs nor active objects are registered with the smart agent.

Note

The rootPOA is created with NONE activation policy.

 9 : Using POAs 103

Creat ing POAs

Creating POAs
To implement objects using the POA, at least one POA object must exist on the server.
To ensure that a POA exists, a rootPOA is provided during the VisiBroker ORB
initialization. This POA uses the default POA policies described earlier in this section.

Once the rootPOA is obtained, you can create child POAs that implement a specific
server-side policy set.

POA naming convention

Each POA keeps track of its name and its full POA name (the full hierarchical path
name.) The hierarchy is indicated by a slash (/). For example, /A/B/C means that POA
C is a child of POA B, which in turn is a child of POA A. The first slash (see the
previous example) indicates the rootPOA. If the BindSupport:BY_POA policy is set on
POA C, then /A/B/C is registered with the osagent and the client binds with /A/B/C.

If your POA name contains escape characters or other delimiters, VisiBroker precedes
these characters with a double back slash (\\) when recording the names internally. For
example, if you have coded two POAs in the following hierarchy,

org.omg.PortableServer.POA myPOA1 = rootPOA.create_POA("A/B",
 poaManager,
 policies);
org.omg.PortableServer.POA myPOA2 = myPOA1.create_POA("\t",
 poaManager,
 policies);

then the client would bind using:

org.omg.CORBA.Object manager = ((com.inprise.vbroker.orb.ORB) orb).
bind("/A\\/B/\t",

 managerId,
 null,
 null);

104 VisiBroker for Java Developer’s Guide

Creat ing POAs

Obtaining the rootPOA

The following code sample illustrates how a server application can obtain its rootPOA.

// Initialize the ORB.
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args, null);
// get a reference to the rootPOA
org.omg.PortableServer.POA rootPOA =
 POAHelper.narrow(orb.resolve_initial_references("RootPOA"));

Note

The resolve_initial_references method returns a value of type org.omg.CORBA.Object .
You are responsible for narrowing the returned object reference to the desired type,
which is org.omg.PortableServer.POA in the previous example.

Setting the POA policies

Policies are not inherited from the parent POA. If you want a POA to have a specific
characteristic, you must identify all the policies that are different from the default value.
For more information about POA policies, see “POA policies”.

org.omg.CORBA.Policy[] policies = {
 rootPOA.create_lifespan_policy(LifespanPolicyValue.PERSISTENT)
};

Creating and activating the POA

A POA is created using create_POA on its parent POA. You can name the POA anything
you like; however, the name must be unique with respect to all other POAs with the
same parent. If you attempt to give two POAs the same name, a CORBA exception
(AdapterAlreadyExists) is raised.

To create a new POA, use create_POA as follows:

POA create_POA(POA_Name, POAManager, PolicyList);

The POA manager controls the state of the POA (for example, whether it is processing
requests). If null is passed to create_POA as the POA manager name, a new POA
manager object is created and associated with the POA. Typically, you will want to
have the same POA manager for all POAs. For more information about the POA
manager, see “Managing POAs with the POA manager”.

POA managers (and POAs) are not automatically activated once created. Use
activate() to activate the POA manager associated with your POA. The following code
sample is an example of creating a POA.

// Create policies for our persistent POA
org.omg.CORBA.Policy[] policies = {
 rootPOA.create_lifespan_policy(LifespanPolicyValue.PERSISTENT)};
// Create myPOA with the right policies
org.omg.PortableServer.POA myPOA =
 rootPOA.create_POA("bank_agent_poa", rootPOA.the_POAManager(), policies
);

 9 : Using POAs 105

Act ivat ing objects

Activating objects
When CORBA objects are associated with an active servant, if the POA's Servant
Retention Policy is RETAIN, the associated object ID is recorded in the Active Object
Map and the object is activated. Activation can occur in one of several ways:

Activating objects explicitly
By setting IdAssignmentPolicy::SYSTEM_ID on a POA, objects can be explicitly activated
without having to specify an object ID. The server invokes activate_object on the POA
which activates, assigns and returns an object ID for the object. This type of activation
is most common for transient objects. No servant manager is required since neither the
object nor the servant is needed for very long.

Objects can also be explicitly activated using object IDs. A common scenario is during
server initialization where the user invokes activate_object_with_id to activate all the
objects managed by the server. No servant manager is required since all the objects
are already activated. If a request for a non-existent object is received, an
OBJECT_NOT_EXIST exception is raised. This has obvious negative effects if your server
manages large numbers of objects.

This code sample is an example of explicit activation using activate_object_with_id.

// Create the account manager servant.
Servant managerServant = new AccountManagerImpl(rootPoa);
// Activate the newly created servant.
testPoa.activate_object_with_id("BankManager".getBytes(), managerServant);
// Activate the POAs
testPoa.the_POAManager().activate();

Activating objects on demand
On-demand activation occurs when a client requests an object that does not have an
associated servant. After receiving the request, the POA searches the Active Object
Map for an active servant associated with the object ID. If none is found, the POA
invokes incarnate on the servant manager which passes the object ID value to the
servant manager. The servant manager can do one of three things:

– Find an appropriate servant which then performs the appropriate operation for the
request.

– Raise an OBJECT_NOT_EXIST exception that is returned to the client.

– Forward the request to another object.

The POA policies determine any additional steps that may occur. For example, if
RequestProcessingPolicy.USE_SERVANT_MANAGER and ServantRetentionPolicy.RETAIN are
enabled, the Active Object Map is updated with the servant and object ID association.

An example of on-demand activation is shown below.

Explicit activation The server application itself explicitly activates objects by
calling activate_object or activate_object_with_id.

On-demand activation The server application instructs the POA to activate objects
through a user-supplied servant manager. The servant
manager must first be registered with the POA through
set_servant_manager.

Implicit activation The server activates objects solely by in response to certain
operations. If a servant is not active, there is nothing a client
can do to make it active (for example, requesting for an
inactive object does not make it active.)

Default servant The POA uses a single servant to implement all of its objects.

106 VisiBroker for Java Developer’s Guide

Act ivat ing objects

Activating objects implicitly

A servant can be implicitly activated by certain operations if the POA has been created
with ImplicitActivationPolicy.IMPLICIT_ACTIVATION, IdAssignmentPolicy.SYSTEM_ID, and
ServantRetentionPolicy.RETAIN. Implicit activation can occur with:

– POA.servant_to_reference method

– POA.servant_to_id method

– _this() servant method

If the POA has IdUniquenessPolicy.UNIQUE_ID set, implicit activation can occur when
any of the above operations are performed on an inactive servant.

If the POA has IdUniquenessPolicy.MULTIPLE_ID set, servant_to_reference and
servant_to_id operations always perform implicit activation, even if the servant is
already active.

Activating with the default servant

Use the RequestProcessing.USE_DEFAULT_SERVANT policy to have the POA invoke the
same servant no matter what the object ID is. This is useful when little data is
associated with each object.

This is an example of activating all objects with the same servants

import org.omg.PortableServer.*;
public class Server {
 public static void main(String[] args) {
 try {
 // Initialize the ORB.
 org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,null);
 // get a reference to the rootPOA
 POA rootPOA =
POAHelper.narrow(orb.resolve_initial_references("RootPOA"));
 // Create policies for our persistent POA
 org.omg.CORBA.Policy[] policies = {
 rootPOA.create_lifespan_policy(LifespanPolicyValue.PERSISTENT),
 rootPOA.create_request_processing_policy(
 RequestProcessingPolicyValue.USE_DEFAULT_SERVANT
)
rootPOA.create_id_uniqueness_policy(IdUniquenessPolicyValue.MULTIPLE_ID)
 };
 // Create myPOA with the right policies
 POA myPOA = rootPOA.create_POA("bank_default_servant_poa",
 rootPOA.the_POAManager(),
 policies);
 // Create the servant
 AccountManagerImpl managerServant = new AccountManagerImpl();
 // Set the default servant on our POA
 myPOA.set_servant(managerServant);
 org.omg.CORBA.Object ref;
 // Activate the POA manager
 rootPOA.the_POAManager().activate();
 // Generate the reference and write it out. One for each Checking and
 Savings
 // account types. Note that we are not creating any
 // servants here and just manufacturing a reference which is not
 // yet backed by a servant.
 try {
 ref =
myPOA.create_reference_with_id("CheckingAccountManager".getBytes(),
 "IDL:Bank/AccountManager:1.0");

 9 : Using POAs 107

Act ivat ing objects

 // Write out checking object ID
 java.io.PrintWriter pw = new java.io.PrintWriter(
 new java.io.FileWriter("cref.dat"));
 pw.println(orb.object_to_string(ref));
 pw.close();
 ref =
myPOA.create_reference_with_id("SavingsAccountManager".getBytes(),
 "IDL:Bank/AccountManager:1.0");
 // Write out savings object ID
 pw = new java.io.PrintWriter(new java.io.FileWriter("sref.dat"));
 pw.println(orb.object_to_string(ref));
 pw.close();
 } catch (java.io.IOException e) {
 System.out.println("Error writing the IOR to file ");
 return;
 }
 System.out.println("Bank Manager is ready.");
 // Wait for incoming requests
 orb.run();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

Deactivating objects

A POA can remove a servant from its Active Object Map. This may occur, for example,
as a form of garbage-collection scheme. When the servant is removed from the map, it
is deactivated. You can deactivate an object using deactivate_object(). When an
object is deactivated, it doesn't mean this object is lost forever. It can always be
reactivated at a later time.

This is an example of deactivating an object:

import org.omg.PortableServer.*;
public class AccountManagerActivator extends _ServantActivatorLocalBase {
 public Servant incarnate (byte[] oid, POA adapter) throws ForwardRequest {
 Servant servant;
 String accountType = new String(oid);
 System.out.println("\nAccountManagerActivator.incarnate called

with ID = "
 + accountType + "\n");
 // Create Savings or Checking Servant based on AccountType
 if (accountType.equalsIgnoreCase("SavingsAccountManager"))
 servant = (Servant)new SavingsAccountManagerImpl();
 else
 servant =(Servant)new CheckingAccountManagerImpl();
 new DeactivateThread(oid, adapter).start();
 return servant;
 }
 public void etherealize (byte[] oid,
 POA adapter,
 Servant serv,
 boolean cleanup_in_progress,
 boolean remaining_activations) {

System.out.println("\nAccountManagerActivator.etherealize called

with ID ="
 + new String(oid) + "\n");

108 VisiBroker for Java Developer’s Guide

Using servants and servant managers

 }
}
class DeactivateThread extends Thread {
 byte[] _oid;
 POA _adapter;
 public DeactivateThread(byte[] oid, POA adapter) {
 _oid = oid;
 _adapter = adapter;
 }
 public void run() {
 try {
 Thread.currentThread().sleep(15000);
 System.out.println("\nDeactivating the object with ID = " +
 new String(_oid) + "\n");
 _adapter.deactivate_object(_oid);
 } catch (Exception e) {
 e.printStackTrace();
 }
}
}

Using servants and servant managers
Servant managers perform two types of operations: find and return a servant, and
deactivate a servant. They allow the POA to activate objects when a request for an
inactive object is received. Servant managers are optional. For example, servant
managers are not needed when your server loads all objects at startup. Servant
managers may also inform clients to forward requests to another object using the
ForwardRequest exception.

A servant is an active instance of an implementation. The POA maintains a map of the
active servants and the object IDs of the servants. When a client request is received,
the POA first checks this map to see if the object ID (embedded in the client request)
has been recorded. If it exists, then the POA forwards the request to the servant. If the
object ID is not found in the map, the servant manager is asked to locate and activate
the appropriate servant. This is only an example scenario; the exact scenario depends
on what POA policies you have in place.

Figure 9.2 Example servant manager function

 9 : Using POAs 109

Using servants and servant managers

There are two types of servant managers: ServantActivator and ServantLocator. The
type of policy already in place determines which type of servant manager is used. For
more information on POA policy, see “POA policies”. Typically, a Servant Activator
activates persistent objects and a Servant Locator activates transient objects.

To use servant managers, RequestProcessingPolicy.USE_SERVANT_MANAGER must be set
as well as the policy which defines the type of servant manager
(ServantRetentionPolicy.RETAIN for Servant Activator
orServantRetentionPolicy.NON_RETAIN for Servant Locator.)

ServantActivators

ServantActivators are used when ServantRetentionPolicy.RETAIN and
RequestProcessingPolicy.USE_SERVANT_MANAGER are set.

Servants activated by this type of servant manager are tracked in the Active Object
Map.

The following events occur while processing requests using ServantActivators:

1 A client request is received (client request contains POA name, the object ID, and a
few others.)

2 The POA first checks the active object map. If the object ID is found there, the
operation is passed to the servant, and the response is returned to the client.

3 If the object ID is not found in the active object map, the POA invokes incarnate on a
servant manager. incarnate passes the object ID and the POA in which the object is
being activated.

4 The servant manager locates the appropriate servant.

5 The servant ID is entered into the active object map, and the response is returned to
the client.

Note

The etherealize and incarnate method implementations are user-supplied code.

At a later date, the servant can be deactivated. This may occur from several sources,
including the deactivate_object operation, deactivation of the POA manager
associated with that POA, and so forth. More information on deactivating objects is
described in “Deactivating objects”.

This code sample is an example of servant activator-type servant manager:

import org.omg.PortableServer.*;
public class Server {
 public static void main(String[] args) {
 try {
 // Initialize the ORB.
 org.omg.CORBA.ORB orb = org.omg.CORBA.FORB.init(args,null);
 // get a reference to the rootPOA
 POA rootPOA =
 POAHelper.narrow(orb.resolve_initial_references("RootPOA"));
 // Create policies for our POA. We need persistence life span and
 // use servant manager request processing policies
 org.omg.CORBA.Policy[] policies = {
 rootPOA.create_lifespan_policy(LifespanPolicyValue.PERSISTENT),

rootPOA.create_request_processing_policy(RequestProcessingPolicyValue.
 USE_SERVANT_MANAGER)
 };
 // Create myPOA with the right policies
 POA myPOA = rootPOA.create_POA("bank_servant_activator_poa",
 rootPOA.the_POAManager(),

110 VisiBroker for Java Developer’s Guide

Using servants and servant managers

 policies);
 // Create the servant activator servant and get its reference
 ServantActivator sa = new AccountManagerActivator();
 // Set the servant activator on our POA
 myPOA.set_servant_manager(sa);
 org.omg.CORBA.Object ref;
 // Activate the POA manager
 rootPOA.the_POAManager().activate();
 // Generate the reference and write it out. One for each Checking

and Savings
 // account types .Note that we are not creating any
 // servants here and just manufacturing a reference which is not
 // yet backed by a servant.
 try {
 ref =
myPOA.create_reference_with_id("CheckingAccountManager".getBytes(),
 "IDL:Bank/AccountManager:1.0");
 // Write out checking object ID
 java.io.PrintWriter pw =
 new java.io.PrintWriter(new java.io.FileWriter

("cref.dat"));
 pw.println(orb.object_to_string(ref));
 pw.close();
 ref =
myPOA.create_reference_with_id("SavingsAccountManager".getBytes(),
 "IDL:Bank/AccountManager:1.0");
 // Write out savings object ID
 pw = new java.io.PrintWriter(new java.io.FileWriter("sref.dat"));
 pw.println(orb.object_to_string(ref));
 pw.close();
 } catch (java.io.IOException e) {
 System.out.println("Error writing the IOR to file ");
 return;
 }
 System.out.println("Bank Manager is ready.");
 // Wait for incoming requests
 orb.run();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

The servant manager for the servant activator example follows:

import org.omg.PortableServer.*;
public class AccountManagerActivator extends _ ServantActivatorLocalBase {
 public Servant incarnate (byte[] oid, POA adapter) throws ForwardRequest {
 Servant servant;
 String accountType = new String(oid);
 System.out.println("\nAccountManagerActivator.incarnate called with ID =
 " + accountType + "\n");
 // Create Savings or Checking Servant based on AccountType
 if (accountType.equalsIgnoreCase("SavingsAccountManager"))
 servant = (Servant)new SavingsAccountManagerImpl();
 else
 servant =(Servant)new CheckingAccountManagerImpl();
 new DeactivateThread(oid, adapter).start();
 return servant;
 }

 9 : Using POAs 111

Using servants and servant managers

public void etherealize (byte[] oid,
 POA adapter,
 Servant serv,
 boolean cleanup_in_progress,
 boolean remaining_activations) {
 System.out.println("\nAccountManagerActivator.etherealize called

with ID =
 " + new String(oid) + "\n");
 }
}
class DeactivateThread extends Thread {
 byte[] _oid;
 POA _adapter;
 public DeactivateThread(byte[] oid, POA adapter) {
 _oid = oid;
 _adapter = adapter;
 }

 public void run() {

 try {
 Thread.currentThread().sleep(15000);
 System.out.println("\nDeactivating the object with ID =
 " + new String(_oid) + "\n");
 _adapter.deactivate_object(_oid);
 } catch (Exception e) {
 e.printStackTrace();
 }
}
 }

ServantLocators

In many situations, the POA's Active Object Map could become quite large and
consume memory. To reduce memory consumption, a POA can be created with
RequestProcessingPolicy.USE_SERVANT_MANAGER and ServantRetentionPolicy.NON_RETAIN,
meaning that the servant-to-object association is not stored in the active object map.
Since no association is stored, ServantLocator servant managers are invoked for each
request.

The following events occur while processing requests using ServantLocators:

1 A client request, which contains the POA name and the object id, is received.

2 Since ServantRetentionPolicy.NON_RETAIN is used, the POA does not search the
active object map for the object ID.

3 The POA invokes preinvoke on a servant manager. preinvoke passes the object ID,
the POA in which the object is being activated, and a few other parameters.

4 The servant locator locates the appropriate servant.

5 The operation is performed on the servant and the response is returned to the client.

6 The POA invokes postinvoke on the servant manager.

Note

The preinvoke and postinvoke methods are user-supplied code.

112 VisiBroker for Java Developer’s Guide

Using servants and servant managers

This is some example server code illustrating servant locator-type servant managers:

import org.omg.PortableServer.*;
public class Server {
 public static void main(String[] args) {
 try {
 // Initialize the ORB.
 org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,null);
 // get a reference to the rootPOA
 POA rootPOA =
 POAHelper.narrow(orb.resolve_initial_references("RootPOA"));
 // Create policies for our POA. We need persistence life span,
 // use servant manager request processing policies and non retain
 // retention policy. This non retain policy will let us use the
 // servant locator instead of servant activator
 org.omg.CORBA.Policy[] policies = {
 rootPOA.create_lifespan_policy(LifespanPolicyValue.PERSISTENT),
rootPOA.create_servant_retention_policy(ServantRetentionPolicyValue.
 NON_RETAIN),
rootPOA.create_request_processing_policy(RequestProcessingPolicyValue.
 USE_SERVANT_MANAGER)
 };
 // Create myPOA with the right policies
 POA myPOA = rootPOA.create_POA("bank_servant_locator_poa",
 rootPOA.the_POAManager(),
 policies);
 // Create the servant locator servant and get its reference
 ServantLocator sl = new AccountManagerLocator();
 // Set the servant locator on our POA
 myPOA.set_servant_manager(sl);
 org.omg.CORBA.Object ref ;
 // Activate the POA manager
 rootPOA.the_POAManager().activate();
 // Generate the reference and write it out. One for each Checking

and Savings
 // account types .Note that we are not creating any
 // servants here and just manufacturing a reference which is not
 // yet backed by a servant.
 try {
 ref =
myPOA.create_reference_with_id("CheckingAccountManager".getBytes(),
 "IDL:Bank/AccountManager:1.0");
 // Write out checking object ID
 java.io.PrintWriter pw =
 new java.io.PrintWriter(new java.io.FileWriter("cref.dat"));
 pw.println(orb.object_to_string(ref));
 pw.close();
 ref =
myPOA.create_reference_with_id("SavingsAccountManager".getBytes(),
 "IDL:Bank/AccountManager:1.0");
 // Write out savings object ID
 pw = new java.io.PrintWriter(new java.io.FileWriter("sref.dat"));
 pw.println(orb.object_to_string(ref));
 pw.close();
 } catch (java.io.IOException e) {
 System.out.println("Error writing the IOR to file ");
 return;
 }
 System.out.println("BankManager is ready.");
 // Wait for incoming requests
 orb.run();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

 9 : Using POAs 113

Managing POAs wi th the POA manager

The servant manager for this example follows:

import org.omg.PortableServer.*;
import org.omg.PortableServer.ServantLocatorPackage.CookieHolder;
public class AccountManagerLocator extends _ServantLocatorLocalBase {
 public Servant preinvoke (byte[] oid,POA adapter,
 java.lang.String operation,
 CookieHolder the_cookie) throws ForwardRequest {
 String accountType = new String(oid);
 System.out.println("\nAccountManagerLocator.preinvoke called

with ID = " +
 accountType + "\n");
 if (accountType.equalsIgnoreCase("SavingsAccountManager"))
 return new SavingsAccountManagerImpl();
 return new CheckingAccountManagerImpl();
 }
 public void postinvoke (byte[] oid,
 POA adapter,
 java.lang.String operation,
 java.lang.Object the_cookie,
 Servant the_servant) {
 System.out.println("\nAccountManagerLocator.postinvoke called with ID = "
+
 new String(oid) + "\n");
 }
}

Managing POAs with the POA manager
A POA manager controls the state of the POA (whether requests are queued or
discarded), and can deactivate the POA. Each POA is associated with a POA manager
object. A POA manager can control one or several POAs.

A POA manager is associated with a POA when the POA is created. You can specify
the POA manager to use, or specify null to have a new POA Manager created.

The following is an example of naming the POA and its POA Manager:

POA myPOA = rootPOA.create_POA("bank_agent_poa",
 rootPOA.the_POAManager(),
 policies);
POA myPOA = rootPOA.create_POA("bank_agent_poa",
 null,
 policies);

A POA manager is “destroyed” when all its associated POAs are destroyed.

A POA manager can have the following four states:

– Holding

– Active

– Discarding

– Inactive

These states in turn determine the state of the POA. They are each described in detail
in the following sections.

114 VisiBroker for Java Developer’s Guide

Managing POAs with the POA manager

Getting the current state

To get the current state of the POA manager, use

enum State{HOLDING, ACTIVE, DISCARDING, INACTIVE};
State get_state();

Holding state

By default, when a POA manager is created, it is in the holding state. When the POA
manager is in the holding state, the POA queues all incoming requests.

Requests that require an adapter activator are also queued when the POA manager is
in the holding state.

To change the state of a POA manager to holding, use

void hold_requests (in boolean wait_for_completion)
 raises (AdapterInactive);

wait_for_completion is Boolean. If FALSE, this operation returns immediately after
changing the state to holding. If TRUE, this operation returns only when all requests
started prior to the state change have completed or when the POA manager is
changed to a state other than holding. AdapterInactive is the exception raised if the
POA manager was in the inactive state prior to calling this operation.

Note

POA managers in the inactive state cannot change to the holding state.

Any requests that have been queued but not yet started will continue to be queued
during the holding state.

Active state

When the POA manager is in the active state, its associated POAs process requests.

To change the POA manager to the active state, use

void activate()
 raises (AdapterInactive);

AdapterInactive is the exception raised if the POA manager was in the inactive state
prior to calling this operation.

Note

POA managers currently in the inactive state can not change to the active state.

Discarding state

When the POA manager is in the discarding state, its associated POAs discard all
requests that have not yet started. In addition, the adapter activators registered with
the associated POAs are not called. This state is useful when the POA is receiving too
many requests. You need to notify the client that their request has been discarded and
to resend their request. There is no inherent behavior for determining if and when the
POA is receiving too many requests. It is up to you to set-up thread monitoring if so
desired.

To change the POA manager to the discarding state, use

void discard_requests(in boolean wait_for_completion)
 raises (AdapterInactive);

 9 : Using POAs 115

Listening and Dispatching: Server Engines, Server Connect ion Managers, and their propert ies

The wait_for_completion option is Boolean. If FALSE, this operation returns immediately
after changing the state to holding. If TRUE, this operation returns only when all requests
started prior to the state change have completed or when the POA manager is
changed to a state other than discarding. AdapterInactive is the exception raised if the
POA manager was in the inactive state prior to calling this operation.

Note

POA managers currently in the inactive state can not change to the discarding state.

Inactive state

When the POA manager is in the inactive state, its associated POAs reject incoming
requests. This state is used when the associated POAs are to be shut down.

Note

POA managers in the inactive state cannot change to any other state.

To change the POA manager to the inactive state, use

void deactivate (in boolean etherealize_objects, in boolean
wait_for_completion)
 raises (AdapterInactive);

After the state changes, if etherealize_objects is TRUE, then all associated POAs that
have Servant RetentionPolicy.RETAIN and
RequestProcessingPolicy.USE_SERVANT_MANAGER set call etherealize on the servant
manager for all active objects. If etherealize_objects is FALSE, then etherealize is not
called. The wait_for_completion option is Boolean. If FALSE, this operation returns
immediately after changing the state to inactive. If TRUE, this operation returns only
when all requests started prior to the state change have completed or etherealize has
been called on all associated POAs (that have ServantRetentionPolicy.RETAIN and
RequestProcessingPolicy.USE_SERVANT_MANAGER). AdapterInactive is the exception raised
if the POA manager was in the inactive state prior to calling this operation.

Listening and Dispatching: Server Engines, Server Connection
Managers, and their properties

Note

Policies that cover listener and dispatcher features previously supported by the BOA
are not supported by POAs. In order to provide these features, a VisiBroker-specific
policy (ServerEnginePolicy) can be used.

Visibroker provides a very flexible mechanism to define and tune endpoints for
Visibroker servers. An endpoint in this context is a destination for a communication
channel for clients to communicate with servers. A Server Engine is a virtual
abstraction for connection endpoint provided as a configurable set of properties.

A ServerEngine abstraction can provide control in terms of:

– types of connection resources

– connection management

– threading model and request dispatching

116 VisiBroker for Java Developer’s Guide

Listening and Dispatching: Server Engines, Server Connect ion Managers, and their propert ies

Server Engine and POAs

A POA on Visibroker can have many-to-many relationship with a ServerEngine. A POA
can be associated with many ServerEngines and vice-versa. The manifestation of this
fact is that a POA, and hence the CORBA objects on the POA, can support multiple
communication channels.

Figure 9.3 Server engine overview

The simplest case is where POAs have their own unique single server engine. Here,
requests for different POAs arrive on different ports. A POA can also have multiple
server engines. In this scenario, a single POA supports requests coming from multiple
input ports.

Notice that POAs can share server engines. When server engines are shared, the
POAs listen to the same port. Even though the requests for (multiple) POAs arrive at
the same port, they are dispatched correctly because of the POA name embedded in
the request. This scenario occurs, for example, when you use a default server engine
and create multiple POAs (without specifying a new server engine during the POA
creation).

Server Engines are identified by a name and is defined the first time its name is
introduced. By default Visibroker defines three Server Engine names. They are:

– iiop_tp: TCP transport with thread pool dispatcher

– iiop_ts: TCP transport with thread per session dispatcher

– iiop_tm: TCP transport with main thread dispatcher

Two more Server Engines, boa_tp and boa_ts, are available for BOA backward
compatibility.

Associating a POA with a Server Engine
The default Server Engine associated with POA can be changed by using the property
vbroker.se.default. For example, setting

vbroker.se.default=MySE

defines a new server engine with the name MySE. Root POA and all child POAs created
will be associated with this Server Engine by default.

 9 : Using POAs 117

Listening and Dispatching: Server Engines, Server Connect ion Managers, and their propert ies

A POA can also be associated with a particular ServerEngine explicitly by using the
SERVER_ENGINE_POLICY_TYPE POA policy. For example:

// create ServerEngine policy value
org.omg.CORBA.Any seAny = orb.create_any();
org.omg.CORBA.StringSequenceHelper.insert(seAny, new String[]{"MySE"});
org.omg.CORBA.Policy sePolicy =
orb.create_policy(com.inprise.vbroker.PortableServerExt.

SERVER_ENGINE_POLICY_TYPE.value,seAny);

// create POA policies
org.omg.CORBA.Policy[] policies = {
 rootPOA.create_lifespan_policy(LifeSpanPolicyValue.PERSISTENT),
 sePolicy
};

// create POA with policies
POA myPOA = rootPOA.create_POA("bank_se_policy_poa", rootPOA.the_POAManager(),
policies);

The POA has an IOR template, profiles for which, are obtained from the Server
Engines associated with it.

If you don't specify a server engine policy, the POA assumes a server engine name of
iiop_tp and uses the following default values:

vbroker.se.iiop_tp.host=null
vbroker.se.iiop_tp.proxyHost=null
vbroker.se.iiop_tp.scms=iiop_tp

To change the default server engine policy, enter its name using the
vbroker.se.default property and define the values for all the components of the new
server engine. For example:

vbroker.se.default=abc,def
vbroker.se.abc.host=cob
vbroker.se.abc.proxyHost=null
vbroker.se.abc.scms=cobscm1,cobscm2
vbroker.se.def.host=gob
vbroker.se.def.proxyHost=null
vbroker.se.def.scms=gobscm1

Defining Hosts for Endpoints for the Server Engine
Since Server Engines help define a connection's endpoints, the following properties
are provided to specify their hosts:

– vbroker.se.<se-name>.host=<host-URL>: vbroker.se.mySE.host=host.borland.com, for
example.

– vbroker.se.<se-name>.proxyHost=<proxy-host-URL-or-IP-address>:
vbroker.se.mySE.proxyHost=proxy.borland.com, for example.

The proxyHost property can also take an IP address as its value. Doing so replaces the
default hostname in the IOR with this IP address.

The endpoint abstraction of ServerEngine is further fine-grained in terms of
configurable set of entities referred to as Server Connection Managers (SCM). A
ServerEngine can have multiple SCMs. SCMs are not shareable between
ServerEngines. SCMs are also identified using a name and are defined for a
ServerEngine using:

vbroker.se.<se-name>.scms=<SCM-name>[,<SCM-name>,...]

Note

the iiop_tp and liop_tp Server Engines have SCMs named iiop_tp and liop_tp created
for them, respectively.

118 VisiBroker for Java Developer’s Guide

Listening and Dispatching: Server Engines, Server Connect ion Managers, and their propert ies

Server Connection Managers

The Server Connection Manager defines the configurable components of an endpoint.
Its responsibilities are connection resource management, listening for requests, and
dispatching requests to its associated POA. Three logical entities, defined through
property groups, are provided by the SCM to fulfill these responsibilities:

– Manager

– Listener

– Dispatcher

Each SCM has one Manager, Listener, and Dispatcher. All three, when defined, form a
single endpoint definition allowing clients to contact servers.

Manager
Manager is a set of properties defining the configurable portions of a connection
resource. VisiBroker provides a manager of type Socket.

VisiBroker for Java only supports the Socket type, and a variation of the Socket type,
Socket_nio, that uses the Java NIO package. See section “High scalability
configuration for VisiBroker for Java (using Java NIO)” for further details.

You can specify the maximum number of concurrent connections acceptable to the
server endpoint using the connectionMax property:

vbroker.se.<se-name>.scm.<scm-name>.manager.connectionMax=<integer>

Setting connectionMax to 0 (zero) indicates that there is no restriction on the number of
connections, which is the default setting.

You specify the maximum number of idle seconds using the connectionMaxIdle
property:

vbroker.se.<se-name>.scm.<scm-name>.manager.connectionMaxIdle=<seconds>

Setting connectionMaxIdle to 0 (zero) indicates that there is no timeout, which is the
default setting.

Garbage collection time is specified through the following property:

vbroker.orb.gcTimeout=<seconds>

A value of 0 (zero) means that the connection will never be garbage collected.

Listener
The Listener is the SCM component that determines how and where the SCM listens
for messages. Like the Manager, the Listener is also a set of properties. VisiBroker
defines a IIOP listener for the TCP connections.

Since listeners are close to the actual underlying transport mechanism, their properties
are not portable across listener types. Each listener type has its own set of properties,
defined below.

IIOP listener properties

IIOP listners need to define a port and (if desired) a proxy port in conjunction with their
hosts. These are set using the port and proxyPort properties, as follows:

vbroker.se.<se-name>.scm.<scm-name>.listener.port=<port>
vbroker.se.<se-name>.scm.<scm-name>.listener.proxyPort=<proxy-port>

Note

If you do not set the port property (or set it to 0 [zero]), a random port will be selected. A
0 value for the proxyPort property means that the IOR will contain the actual port
(defined by the listener.port property or selected by the system randomly). If it is not
required to advertise the actual port, set the proxy port to a non-zero (positive) value.

VisiBroker additionally supports a property allowing you to specify your GIOP version:

 9 : Using POAs 119

Listening and Dispatching: Server Engines, Server Connect ion Managers, and their propert ies

vbroker.se.<se-name>.scm.<scm-name>.listener.giopVersion=<version>

Dispatcher
The Dispatcher defines a set of properties that determine how the SCM dispatches
requests to threads. Three types of dispatchers are provided: ThreadPool,
ThreadSession, and MainThread. You set the dispatcher type with the type property:

vbroker.se.<se-name>.scm.<scm-name>.dispatcher.type=ThreadPool|ThreadSession|
MainThread

Further control is provided through the SCM for the ThreadPool dispatcher type. The
ThreadPool defines the minimum and maximum number of threads that can be created
in the thread pool, as well as the maximum time in seconds after which an idled thread
is destroyed. These values are controlled with the following properties:

vbroker.se.<se-name>.scm.<scm-name>.dispatcher.threadMin=<integer>
vbroker.se.<se-name>.scm.<scm-name>.dispatcher.threadMax=<integer>
vbroker.se.<se-name>.scm.<scm-name>.dispatcher.threadMaxIdle=<seconds>

The ThreadPool dispatcher allows a “cooling time” to be set. A thread is said to be “hot”
when the GIOP connection being served is potentially readable, either upon creation of
the connection or upon the arrival of a request. After the cooling time (in seconds), the
thread can be returned to the thread pool.

VisiBroker for Java supports the cooling time property when configured to use the Java
NIO package. See the section “High scalability configuration for VisiBroker
for Java (using Java NIO)” for more information.

The following property is used to set the cooling time:

vbroker.se.<se-name>.scm.<scm-name>.dispatcher.coolingTime=<seconds>

When to use these properties

There are many times where you need to change some of the server engine properties.
The method for changing these properties depends on what you need. For example,
suppose you want to change the port number. You could accomplish this by:

– Changing the default listener.port property

– Creating a new server engine

Changing the default listener.port property is the simplest method, but this affects all
POAs that use the default server engine. This may or may not be what you want.

If you want to change the port number on a specific POA, then you'll have to create a
new server engine, define the properties for this new server engine, and then reference
the new server engine when creating the POA. The previous sections show how to
update the server engine properties. The following code snippet shows how to define
properties of a server engine and create a POA with a user-defined server engine
policy:

// Server.java
import org.omg.PortableServer.*;
public class Server {
 public static void main(String[] args) {
 try {

 // Initialize the ORB.
 org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,null);
 // Get property manager
 com.inprise.vbroker.properties.PropertyManager pm =
 ((com.inprise.vbroker.orb.ORB)orb).getPropertyManager();
pm.addProperty("vbroker.se.mySe.host", "");
 pm.addProperty("vbroker.se.mySe.proxyHost", "");
 pm.addProperty("vbroker.se.mySe.scms", "scmlist");
 pm.addProperty("vbroker.se.mySe.scm.scmlist.manager.type", "Socket");
 pm.addProperty("vbroker.se.mySe.scm.scmlist.manager.connectionMax", 100);

120 VisiBroker for Java Developer’s Guide

Listening and Dispatching: Server Engines, Server Connect ion Managers, and their propert ies

 pm.addProperty("vbroker.se.mySe.scm.scmlist.manager.connectionMaxIdle",
 300);
 pm.addProperty("vbroker.se.mySe.scm.scmlist.listener.type", "IIOP");
 pm.addProperty("vbroker.se.mySe.scm.scmlist.listener.port", 55000);
 pm.addProperty("vbroker.se.mySe.scm.scmlist.listener.proxyPort", 0);
 pm.addProperty("vbroker.se.mySe.scm.scmlist.dispatcher.type",
 "ThreadPool");
 pm.addProperty("vbroker.se.mySe.scm.scmlist.dispatcher.threadMax", 100);
 pm.addProperty("vbroker.se.mySe.scm.scmlist.dispatcher.threadMin", 5);
 pm.addProperty("vbroker.se.mySe.scm.scmlist.dispatcher.threadMaxIdle",
 300);
 // get a reference to the root POA
 POA rootPOA =
POAHelper.narrow(orb.resolve_initial_references("RootPOA"));
 // Create our server engine policy
 org.omg.CORBA.Any seAny = orb.create_any();
 org.omg.CORBA.StringSequenceHelper.insert(seAny, new String[]{"mySe"});
 org.omg.CORBA.Policy sePolicy =
 orb.create_policy(
com.inprise.vbroker.PortableServerExt.SERVER_ENGINE_POLICY_TYPE.value,
 seAny);
 // Create policies for our persistent POA
 org.omg.CORBA.Policy[] policies = {
rootPOA.create_lifespan_policy(LifespanPolicyValue.PERSISTENT),sePolicy
 };
 // Create myPOA with the right policies
 POA myPOA = rootPOA.create_POA("bank_se_policy_poa",
 rootPOA.the_POAManager(),
 policies);
 // Create the servant
 AccountManagerImpl managerServant = new AccountManagerImpl();
 // Activate the servant
 myPOA.activate_object_with_id("BankManager".getBytes(), managerServant);
 // Obtaining the reference
 org.omg.CORBA.Object ref = myPOA.servant_to_reference(managerServant);

 // Now write out the IOR
 try {
 java.io.PrintWriter pw =
 new java.io.PrintWriter(new java.io.FileWriter("ior.dat"));
 pw.println(orb.object_to_string(ref));
 pw.close();
 } catch (java.io.IOException e) {
 System.out.println(<Default Para Font>"Error writing the IOR to file
ior.dat");
 return;
 }
 // Activate the POA manager
 rootPOA.the_POAManager().activate();
 System.out.println(ref + " is ready.");
 // Wait for incoming requests
 orb.run();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

 9 : Using POAs 121

Adapter act ivators

Adapter activators
Adapter activators are associated with POAs and provide the ability to create child
POAs on-demand. This can be done during the find_POA operation, or when a request
is received that names a specific child POA.

An adapter activator supplies a POA with the ability to create child POAs on demand,
as a side-effect of receiving a request that names the child POA (or one of its children),
or when find_POA is called with an activate parameter value of TRUE. An application
server that creates all its needed POAs at the beginning of execution does not need to
use or provide an adapter activator; it is necessary only for the case in which POAs
need to be created during request processing.

While a request from the POA to an adapter activator is in progress, all requests to
objects managed by the new POA (or any descendant POAs) will be queued. This
serialization allows the adapter activator to complete any initialization of the new POA
before requests are delivered to that POA.

For an example on using adapter activators, see the POA adaptor_activator example
included with the product.

Processing requests
Requests contain the Object ID of the target object and the POA that created the target
object reference. When a client sends a request, the VisiBroker ORB first locates the
appropriate server, or starts the server if needed. It then locates the appropriate POA
within that server.

Once the VisiBroker ORB has located the appropriate POA, it delivers the request to
that POA. How the request is processed at that point depends on the policies of the
POA and the object's activation state. For information about object activation states,
see “Activating objects”.

– If the POA has ServantRetentionPolicy.RETAIN , the POA looks at the Active Object
Map to locate a servant associated with the Object ID from the request. If a servant
exists, the POA invokes the appropriate method on the servant.

– If the POA has ServantRetentionPolicy.NON_RETAIN or has
ServantRetentionPolicy.RETAIN but did not find the appropriate servant, the following
may take place:

– If the POA has RequestProcessingPolicy.USE_DEFAULT_SERVANT , the POA invokes
the appropriate method on the default servant.

– If the POA has RequestProcessingPolicy.USE_SERVANT_MANAGER , the POA invokes
incarnate or preinvoke on the servant manager.

– If the POA has RequestProcessingPolicy.USE_OBJECT_MAP_ONLY , an exception is
raised.

If a servant manager has been invoked but can not incarnate the object, the servant
manager can raise a ForwardRequest exception.

122 VisiBroker for Java Developer’s Guide

 10: Managing threads and connect ions 123

Managing threads and connections
This section discusses the use of multiple threads in client programs and object
implementations, and will help you understand the VisiBroker thread and connection
model.

Using threads
A thread, or a single sequential flow of control within a process, is also called a
lightweight process that reduces overhead by sharing fundamental parts with other
threads. Threads are lightweight so that there can be many of them present within a
process.

Using multiple threads provides concurrency within an application and improves
performance. Applications can be structured efficiently with threads servicing several
independent computations simultaneously. For example, a database system may have
many user interactions in progress while at the same time performing several file and
network operations.

Although it is possible to write the software as one thread of control moving
asynchronously from request to request, the code may be simplified by writing each
request as a separate sequence, and letting the underlying system handle the
synchronous interleaving of the different operations.

Multiple threads are useful when:

– There are groups of lengthy operations that do not necessarily depend on other
processing (like painting a window, printing a document, responding to a mouse-
click, calculating a spreadsheet column, signal handling).

– There will be few locks on data (the amount of shared data is identifiable and small).

– The task can be broken into various responsibilities. For example, one thread can
handle the signals and another thread can handle the user interface.

124 VisiBroker for Java Developer’s Guide

Listener thread, d ispatcher thread, and worker threads

Thread and connection management occurs within the scope of an entity known as a
server engine. Several default server engines are created automatically by VisiBroker,
which include thread pool engines for IIOP, for LIOP, and so forth. Additional server
engines can be used and created in a VisiBroker server by applications. See the
example in:

<install_dir>/examples/vbe/poa/server_engine_policy/Server.java

Server engines are created, configured, and used independently. The creation and
configuration of one server engine does not affect other server engines in the same
server. Usually, each server engine has one transport end point, called the listen point/
socket.

The relationship between server engines and POAs is many-to-many. Each server
engine can be used by multiple POAs, and each POA may also use multiple server
engines.

Server engines can consist of multiple Server Connection Managers (SCMs). An SCM
is composed of managers, listeners, and dispatchers. The properties of managers,
listeners and dispatchers can be configured to determine how the SCM functions.
These properties are discussed in “Setting connection management properties”.

Listener thread, dispatcher thread, and worker threads
Each server engine has a listener and a dispatcher thread. The listener thread is
responsible for:

– Accepting new connections. Therefore, it listens on the listen end-point.

– Monitoring readability on idle GIOP connections.

– Updating the monitoring list.

– Idle connection garbage collection based on property settings.

The dispatcher determines which threads to send requests.

Each server engine uses a certain number of worker threads to receive and process
requests. Different requests may handled by different worker threads. For a given
request, the request reading, processing (include server side interceptor intercepting),
and replying are all handled by the same thread. The number of worker threads used
by a server engine depends on:

– The thread model.

– The number of concurrent requests or connections.

– The property settings.

 10: Managing threads and connect ions 125

Thread pol ic ies

Thread policies
The two major thread models supported by VisiBroker are the thread pool (also known
as thread-per-request, or TPool) and thread-per-session (also known as thread-per-
connection, or TSession). Single-thread and main-thread models are not discussed in
this document. The thread pool and thread-per-session models differ in these
fundamental ways:

– Situation in which they are created

– How simultaneous requests from the same client are handled

– When and how threads are released

The default thread policy is the thread pool. For information about setting thread-per-
session or changing properties for the thread pool model, see “Setting dispatch policies
and properties”.

Thread pool policy
When your server uses the thread pool policy, it defines the maximum number of
threads that can be allocated to handle client requests. A worker thread is assigned for
each client request, but only for the duration of that particular request. When a request
is completed, the worker thread that was assigned to that request is placed into a pool
of available threads so that it may be reassigned to process future requests from any of
the clients.

Using this model, threads are allocated based on the amount of request traffic to the
server object. This means that a highly active client that makes many requests to the
server at the same time will be serviced by multiple threads, ensuring that the requests
are quickly executed, while less active clients can share a single thread, and still have
their requests immediately serviced. Additionally, the overhead associated with the
creation and destruction of worker threads is reduced, because threads are reused
rather than destroyed, and can be assigned to multiple new connections.

VisiBroker conserves system resources by dynamically allocating the number of
threads in the thread pool based on the number of concurrent client requests by
default. If the client becomes very active, new threads are allocated to meet its needs.
If threads remain inactive, VisiBroker releases them, only keeping enough threads to
meet current client demand. This enables the optimal number of threads to be active in
the server at all times.

The size of the thread pool grows based upon server activity and is fully configurable,
either before or during execution, to meet the needs of specific distributed systems.
With the thread pool model, you can configure the following:

– Maximum and minimum number of threads

– Maximum idle time

Each time a client request is received, an attempt is made to assign a thread from the
thread pool to process the request. If this is the first client request and the pool is
empty, a thread will be created. Likewise, if all threads are busy, a new thread will be
created to service the request.

A server can define a maximum number of threads that can be allocated to handle
client requests. If there are no threads available in the pool and the maximum number
of threads have already been created, the request will block until a thread currently in
use has been released back into the pool.

126 VisiBroker for Java Developer’s Guide

Thread pool pol icy

Thread pool is the default thread policy. You do not have to set up anything to define
this environment. If you want to set properties for the thread pool, see “Setting dispatch
policies and properties”.

Figure 10.1 Pool of threads is available

The figure above shows the object implementation using the thread pool policy. As the
name implies, there is an available pool of worker threads in this policy.

Figure 10.2 Client application #1 sends a request

 10: Managing threads and connect ions 127

Thread pool pol icy

In the above figure, Client application #1 establishes a connection to the Object
Implementation and a thread is created to handle requests. In the thread pool, there is
one connection per client and one thread per connection. When a request comes in, a
worker thread receives the request; that worker thread is no longer in the pool.

A worker thread is removed from the thread pool and is always listening for requests.
When a request comes in, that worker thread reads in the request and dispatches the
request to the appropriate object implementation. Prior to dispatching the request, the
worker thread wakes up one other worker thread which then listens for the next
request.

Figure 10.3 Client application #2 sends a request

128 VisiBroker for Java Developer’s Guide

Thread pool pol icy

As the above figure shows, when Client application #2 establishes its own connection
and sends a request, a second worker thread is created. Worker thread #3 is now
listening for incoming requests.

Figure 10.4 Client application #1 sends a second request

The above figure shows that when a second request comes in from Client application
#1, it uses worker thread #4. Worker thread #5 is spawned to listen for new requests. If
more requests came in from Client application #1, more threads would be assigned to
handle them, each spawned after the listening thread receives a request. As worker
threads complete their tasks, they are returned to the pool and become available to
handle requests from any client.

 10: Managing threads and connect ions 129

Thread-per-session pol icy

Thread-per-session policy
With the thread-per-session (TSession) policy, threading is driven by connections
between the client and server processes. When your server selects the thread-per-
session policy, a new thread is allocated each time a new client connects to a server. A
thread is assigned to handle all the requests received from a particular client. Because
of this, thread-per-session is also referred to as thread-per-connection. When the client
disconnects from the server, the thread is destroyed. You may limit the maximum
number of threads that can be allocated for client connections by setting the
vbroker.se.iiop_ts.scm.iiop_ts.manager.connectionMax property.

Figure 10.5 Object implementation using the thread-per-session policy

The above figure shows the use of the thread-per-session policy. The Client application
#1 establishes a connection with the object implementation. A separate connection
exists between Client application #2 and the object implementation. When a request
comes in to the object implementation from Client application #1, a worker thread
handles the request. When a request from Client application #2 comes in, a different
worker thread is assigned to handle this request.

Figure 10.6 Second request comes in from the same client

In the above figure, a second request has come in to the object implementation from
Client application #1. The same thread that handles request 1 will handle request 2.
The thread blocks request 2 until it completes request 1. (With thread-per-session,
requests from the same Client are not handled in parallel.) When request 1 has
completed, the thread can handle request 2 from Client application #1. Multiple
requests may come in from Client application #1. They are handled in the order that
they come in; no additional threads are assigned to Client application #1.

Connection management
Overall, VisiBroker's connection management minimizes the number of client
connections to the server. In other words there is only one connection per server
process which is shared. All requests from a single client application are multiplexed
over the same connection, even if they originate from different threads. Additionally,
released client connections are recycled for subsequent reconnects to the same
server, eliminating the need for clients to incur the overhead of new connections to the
server.

In the following scenario, a client application is bound to two objects in the server
process. Each bind() shares a common connection to the server process, even though
the bind() is for a different object in the server process.

130 VisiBroker for Java Developer’s Guide

ServerEngines

Figure 10.7 Binding to two objects in the same server process

The following figure shows the connections for a client using multiple threads that has
several threads bound to an object on the server.

Figure 10.8 Binding to an object in a server process

As the above figure shows, all invocations from all threads are serviced by the same
connection. For that scenario, the most efficient multi threading model to use is the
thread pool model. If the thread-per-session model is used in this scenario, only one
thread on the server will be allocated to service all requests from all threads in the
client application, which could easily result in poor performance.

The maximum number of connections to a server, or from a client, can be configured.
Inactive connections will be recycled when the maximum is reached, ensuring resource
conservation.

ServerEngines
Thread and connection management on the server side is performed by
ServerEngines, which can consist of one or more Server Connection Managers
(SCMs). An SCM is a collection of properties of the manager, listener, and dispatcher.

Defining a ServerEngine consists of specifying a set of properties in a properties file.
For example, if on UNIX the property file called myprops.properties is in home directory,
the command line is

prompt> vbj -DORBpropStorage=~/myprops.properties myServer

 10: Managing threads and connect ions 131

Sett ing dispatch pol ic ies and propert ies

ServerEngine properties

vbroker.se.<srvr_eng_name>.scms=<srvr_connection_mngr_name1>,<srvr_connection_m
ngr_name2>

The set of Server Connection Managers associated with a ServerEngine is defined by
this property. The name specified in the above property as the <svr_eng_name> is the
name of the ServerEngine. The SCMs listed here will be the list of SCMs for the
associated server engine. SCMs cannot be shared between ServerEngines. However,
ServerEngines can be shared by multiple POAs.

The other properties are

vbroker.se.<se>.host

The host property is the IP address for the server engine to listen for messages.

vbroker.se.<se>.proxyHost

The proxyHost property specifies the proxy IP address to send to the client in the case
where the server does not want to publish its real hostname.

Setting dispatch policies and properties
Each POA in a multi-threaded object server can choose between two dispatch models:
thread-per-session or thread pool. You choose a dispatch policy by setting the
dispatcher.type property of the ServerEngine.

vbroker.se.<srvr_eng_name>.scm.<srvr_connection_mngr_name>.dispatcher.type=
 ThreadPool
vbroker.se.<srvr_eng_name>.scm.<srvr_connection_mngr_name>.dispatcher.type=
 ThreadSession

For more information about these properties see “Using POAs” and the VisiBroker
Programmer's Reference.

Thread pool dispatch policy

ThreadPool (thread pooling) is the default dispatch policy when you create a POA
without specifying the ServerEnginePolicy.

For ThreadPool, you can set the following properties:

– vbroker.se.default.dispatcher.tp.threadMax

This property sets a TPool server engine's maximum number of worker threads in
the thread pool. The property can be set statically on server startup or dynamically
reconfigured using the property API. For instance, the start up property

vbroker.se.default.dispatcher.tp.threadMax=32

or

vbroker.se.iiop_tp.scm.iiop_tp.dispatcher.threadMax=32

sets the initial maximum worker thread limitation to 32 for the default TPool server
engine. The default value of this property is unlimited (0). If there are no threads
available in the pool and the maximum number of threads have already been
created, the request is blocked until a thread currently in use has been released
back into the pool.

132 VisiBroker for Java Developer’s Guide

Sett ing d ispatch pol ic ies and propert ies

– vbroker.se.default.dispatcher.tp.threadMin

This property sets a TPool server engine's minimum number of worker threads in the
thread pool. The property can be set statically on server startup or dynamically
reconfigured using the property API. For instance, the start up property

vbroker.se.default.dispatcher.tp.threadMin=8

or

vbroker.se.iiop_tp.scm.iiop_tp.dispatcher.threadMin=8

sets the initial worker thread minimum number to 8 for the default TPool server
engine. The default value of this property is 0 (no worker threads).

– vbroker.se.default.dispatcher.tp.threadMaxIdle

This property sets a TPool server engine's idle thread check interval. The property
can be set statically on server startup or dynamically reconfigured using the property
API. For instance, the start up property

vbroker.se.default.dispatcher.tp.threadMaxIdle=120

or

vbroker.se.iiop_tp.scm.iiop_tp.dispatcher.threadMaxIdle=120

sets the initial idle worker thread check interval to 120 seconds for the default TPool
server engine. The default value of this property is 300 seconds. With this setting,
the server engine will check the idle state of each worker thread every 120 seconds.
If a worker thread has been idle across two consecutive checks, it will be recycled
(terminated) at the second check. Therefore, the actual idle thread garbage
collection time is between 120 to 240 seconds under the above setting, instead of
exactly 120 seconds.

– vbroker.se.default.dispatcher.tp.coolingTime

The ThreadPool dispatcher allows a “cooling time” to be set. A thread is said to be
“hot” when the GIOP connection being served is potentially readable, either upon
creation of the connection or upon the arrival of a request. After the cooling time (in
seconds), the thread can be returned to the thread pool. The property can be set
statically on server startup or dynamically reconfigured using the property API. For
instance, the startup property

vbroker.se.default.dispatcher.tp.coolingTime=6

or

vbroker.se.iiop_tp.scm.iiop_tp.dispatcher.coolingTime=6

sets the initial cooling time to 6 seconds for the default engine (or the IIOP TPool
server engine).

This property is applicable to VisiBroker for Java under certain conditions. See “High
scalability configuration for VisiBroker for Java (using Java NIO)” for details. The
default value of this property in VisiBroker for Java is 0 (zero), which implies that a
GIOP connection being serviced ceases to be “hot” unless a new request is
immediately available for servicing. It is important that the value of coolingTime is
not altered unless tests have indicated that a non-default value is beneficial to the
performance of the application.

Note

The vbroker.se.default.xxx.tp.xxx property is recommended when
vbroker.se.default=iiop_tp. When using with ThreadSession, it is recommended that
you use the vbroker.se.iiop_ts.scm.iiop_ts.xxx property.

 10: Managing threads and connect ions 133

Sett ing connect ion management propert ies

Thread-per-session dispatch policy

When using the ThreadSession as the dispatcher type, you must set the se.default
property to iiop_ts.

vbroker.se.default=iiop_ts

Note

In thread-per-session, there are no threadMin, threadMax, threadMaxIdle, and
coolingTime dispatcher properties. Only the Connection and Manager properties are
valid properties for ThreadSession.

Coding considerations

All code within a server that implements the VisiBroker ORB object must be thread-
safe. You must take special care when accessing a system-wide resource within an
object implementation. For example, many database access methods are not thread-
safe. Before your object implementation attempts to access such a resource, it must
first lock access to the resource using a synchronized block.

If serialized access to an object is required, you need to create the POA on which this
object is activated with the SINGLE_THREAD_MODEL value for the ThreadPolicy.

Setting connection management properties
The following properties are used to configure connection management. Properties
whose names start with vbroker.se are server-side properties. The client side
properties have their names starting with vbroker.ce.

Note

The command line options for VisiBroker 3.x backward-compatibility are less obvious
in terms of whether they are client-side or server-side. However, the connection and
thread management options that start with the -ORB prefix set the client-side options
whereas the options with the -OA prefix are used for the server-side options. There are
no common properties which are used for both client-side and server-side thread and
connection management.

The distinction between client and server vanishes if callback or bidirectional GIOP is
used.

– vbroker.se.default.socket.manager.connectionMax

This property sets the maximum allowable client connections to a server engine.
The property can be set statically on server startup or dynamically reconfigured
using the property API. For instance, the start up property

-Dvbroker.se.default.socket.manager.connectionMax=128

or

-Dvbroker.se.iiop_tp.scm.iiop_tp.manager.connectionMax=128

sets the initial maximum connection limitation on this server engine to 128. The
default value of this property is unlimited (0 [zero]). When the server engine reaches
this limitation, before accepting a new client connection, the server engine needs to
reuse an idle connection. This is called connection swapping. When a new
connection arrives at the server, it will try to detach the oldest unused connection. If
all the connections are busy, the new connection will be dropped. The client may
retry again until some timeout expires.

134 VisiBroker for Java Developer’s Guide

Sett ing connect ion management propert ies

– vbroker.se.default.socket.manager.connectionMaxIdle

This property sets the maximum length of time an idle connection will remain open
on a server engine. The property can be set statically on server startup or
dynamically reconfigured using property API. For instance, the start up property

-Dvbroker.se.default.socket.manager.connectionMaxIdle=300

or

-Dvbroker.se.iiop_tp.scm.iiop_tp.manager.connectionMaxIdle=300

sets the initial idle connection maximum lifetime to 300 seconds. The default value
of this property is 0 (unlimited). When a client connection has been idle longer than
this value, it becomes a candidate for garbage collection.

– vbroker.ce.iiop.ccm.connectionMax

Specifies the maximum number of the total connections within a client. The default
value of zero means that the client does not try to close any of the old active or
cached connections. If a new client connection will result in exceeding the limit set
by this property, the VisiBroker for C++ will try to release one of the cached
connections. If there are no cached connections, it will try to close the oldest idle
connection. If both of them fail, the CORBA::NO_RESOURCE exception will result.

Valid values for applicable properties

The following properties have a fixed set or range of valid values:

– vbroker.ce.iiop.ccm.type=Pool

Currently, Pool is the only supported type.

In the following properties, xxx is the server engine name and yyy is the server
connection manager name:

– vbroker.se.xxx.scm.yyy.manager.type=Socket

Socket_nio is the only other permissable value for this property.

– vbroker.se.xxx.scm.yyy.listener.type=IIOP

You can also use the value SSL for security.

– vbroker.se.xxx.scm.yyy.disptacher.type=ThreadPool

The other possible values are ThreadSession and MainThread.

– vbroker.se.iiop_tp.scm.iiop_tp.dispatcher.coolingTime

The default value is 0 (zero) , and the maximum value is 10, so a value greater than
10 will be clamped to 10. In VisiBroker for Java, this property is applicable only if the
Server Connection Manager has a manager type of Socket_nio. See “High
scalability configuration for VisiBroker for Java (using Java NIO)” for details.

Effects of property changes

The effect of a change in a property value depends on the actions associated with the
properties. Most of the actions are directly or indirectly related to the utilization of
system resources. The availability and restrictions of the system resources to the
CORBA application vary depending on the system and the nature of the application.

For instance, increasing the garbage collector timer may increase the system activities,
as the garbage collector will run more frequently. On the other hand, increasing its
value means the idle threads will remain in system unclaimed for longer periods of
time.

 10: Managing threads and connect ions 135

Sett ing connect ion management propert ies

Dynamically alterable properties

The following properties can be changed dynamically and the effect will be immediate
unless stated otherwise:

vbroker.ce.iiop.ccm.connectionCacheMax=5
vbroker.ce.iiop.ccm.connectionMax=0
vbroker.ce.iiop.ccm.connectionMaxIdle=360
vbroker.ce.iiop.connection.rcvBufSize=0
vbroker.ce.iiop.connection.sendBufSize=0
vbroker.ce.iiop.connection.tcpNoDelay=false
vbroker.ce.iiop.connection.socketLinger=0
vbroker.ce.iiop.connection.keepAlive=true
vbroker.ce.liop.ccm.connectionMax=0
vbroker.ce.liop.ccm.connectionMaxIdle=360
vbroker.ce.liop.connection.rcvBufSize=0
vbroker.ce.liop.connection.sendBufSize=0
vbroker.se.iiop_tp.scm.iiop_tp.manager.connectionMax=0
vbroker.se.iiop_tp.scm.iiop_tp.manager.connectionMaxIdle=0
vbroker.se.iiop_tp.scm.iiop_tp.dispatcher.threadMin=0
vbroker.se.iiop_tp.scm.iiop_tp.dispatcher.threadMax=100

The new dispatcher threadMax properties will be reflected after the next garbage
collector run.

vbroker.se.iiop_tp.scm.iiop_tp.dispatcher.threadMaxIdle=300
vbroker.se.iiop_tp.scm.iiop_tp.dispatcher.coolingTime=3
vbroker.se.iiop_tp.scm.iiop_tp.manager.garbageCollectTimer=30
vbroker.se.liop_tp.scm.liop_tp.listener.userConstrained=false

Determining whether property value changes take effect

For this purpose, the server manager needs to be enabled, using the property
vbroker.orb.enableServerManager=true, and the properties can be obtained through the
server manager query either through the Console or through a command-line utility.

Impact of changing property values

It is very difficult to determine the impact of changing the value of a property to
something other than the default. For thread and connection limits, the available
system resources vary depending on the machine configuration and the number of
other processes running. The setting of properties allows performance tuning for a
given system.

136 VisiBroker for Java Developer’s Guide

High scalabi l i ty conf igurat ion for Vis iBroker for Java (using Java NIO)

High scalability configuration for VisiBroker for Java (using Java NIO)
The Java NIO package, available in J2SE 1.4, allows servers to handle multiple
connections efficiently, without having to dedicate a thread per connection. This allows
servers to service a large number of client connections with fewer threads, translating
to higher scalability. VisiBroker for Java servers can be configured to harness Java
NIO technology. Servers using the ThreadPool policy can use Java NIO by setting the
manager type to Socket_nio instead of Socket. For example,

vbroker.se.iiop_tp.scm.iiop_tp.manager.type=Socket_nio

This feature should be used in combination with the threadMax property, which is used
to limit the number of threads in the thread pool that are available for dispatching
requests (i.e., processing invocations). When the manager type is Socket_nio, the
number of threads in the thread pool will not increase (beyond the number specified as
threadMax) proportionate to the number of connections being serviced. This is possible
because here the necessity to have a thread per connection does not exist.

Please note that the thread per connection model (which is the default for the
VisiBroker for Java thread pool) is expected to outperform the NIO based model for
servers where the number of connections is relatively small (i.e., not of the order of
hundreds of connections). It is advisable to run tests to decide on the appropriate
model given the typical load conditions for an application.

Servers using J2SE 1.4 or above will be able to use this feature. Currently, clients
based on VisiBroker for Java do not benefit from the ORB's usage of Java NIO.

The coolingTime property is effective in VisiBroker for Java when NIO based dispatch
is enabled. See “Thread pool dispatch policy” for details.

Garbage collection
The VisiBroker for Java ORB performs automatic garbage collection of various
resources other than the memory. The garbage collection of the memory is performed
by the Java Virtual machine. Various properties are provided to control the garbage
collection period. In addition, resources like threads and connections define timeout
properties that control the collection of these resources.

How ORB garbage collection works

The ORB garbage collector thread is a normal priority thread. After the expiration of
timeout period (specified by the property vbroker.orb.gcTimeout), it wakes up and
collects all the resources that are idle and no longer in use. Classes interested in
getting collected register themselves with the garbage collector. Such classes are
called collectables. Prominent examples of collectables are threads and connections.
Other examples include timeout on various caches like GateKeeper's cache, for
example. Most of the collectables null out or properly release the resources (such as
closing the connection or terminating a thread's run method) held by them when they
are collected. These resources are later reclaimed by the Java garbage collector.

Note

The ORB garbage collector is an internal service and is not exposed to the user.

 10: Managing threads and connect ions 137

Garbage col lect ion

Properties related to ORB garbage collection
The main property that controls the garbage collection period is vbroker.orb.gcTimeout.
The timeout value is in seconds and the default value is 30 seconds.

Threads and connections define properties for idle timeout. For example, the thread
pool dispatcher defines the following property:

vbroker.se.iiop_tp.scm.iiop_tp.dispatcher.threadMaxIdle

The value is in seconds and default value is 300 seconds after which the thread is
removed from the thread pool. Similarly, the default Server Connection Manager
(iiop_tp) defines the following idle timeout property for connections.

vbroker.se.iiop_tp.scm.iiop_tp.manager.connectionMaxIdle

The value is in seconds and default value is 0(zero) which means a connection never
gets closed no matter how long it remains idle. However, if the connection gets
dropped, the ORB removes all the references to it and its resources are later collected
by Java garbage collector. The ORB garbage collector will only collect connections
whose connectionMaxIdle property is set to a non-zero value.

The various timeout properties and the vbroker.orb.gcTimeout property have a subtle
relationship. For example, suppose following properties are specified:

vbroker.orb.gcTimeout=10
vbroker.se.iiop_tp.scm.iiop_tp.dispatcher.threadMaxIdle=5
vbroker.se.iiop_tp.scm.iiop_tp.manager.connectionMaxIdle=5

Here the garbage collection timeout period is set to 10 seconds whereas thread and
connection timeouts are 5 seconds. The figure below illustrates how these properties
interact. Here we have shown a thread, T1, and a connection, C1, that have gone idle
and are then collected.

Note

Although the ORB garbage collector is shown here as running exactly after ten
seconds, in practice this may not be true depending on when the JVM schedules the
garbage collector (GC) thread.

Figure 10.9 Collection of resources by ORB GC

Even though T1 and C1 are eligible for collection, they are collected only when the
ORB garbage collector runs. Until then they remain in the timed-out state.

138 VisiBroker for Java Developer’s Guide

 11: Using the t ie mechanism 139

Using the tie mechanism
This section describes how the tie mechanism may be used to integrate existing Java
code into a distributed object system. This section will enable you to create a
delegation implementation or to provide implementation inheritance.

How does the tie mechanism work?
Object implementation classes normally inherit from a servant class generated by the
idl2java compiler. The servant class, in turn, inherits from
org.omg.PortableServer.Servant . When it is not convenient or possible to alter existing
classes to inherit from the VisiBroker servant class, the tie mechanism offers an
attractive alternative.

The tie mechanism provides object servers with a delegator implementation class that
inherits from org.omg.PortableServer.Servant . The delegator implementation does not
provide any semantics of its own. The delegator implementation simply delegates
every request it receives to the real implementation class, which can be implemented
separately. The real implementation class is not required to inherit from
org.omg.PortableServer::.Servant .

With using the tie mechanism, two additional files are generated from the IDL compiler:

– <interface_name>POATie defers implementation of all IDL defined methods to a
delegate. The delegate implements the interface <interface_name>Operations. Legacy
implementations can be trivially extended to implement the operations interface and
in turn delegate to the real implementation.

– <interface_name>Operations defines all of the methods that must be implemented by
the object implementation. This interface acts as the delegate object for the
associated <interface_name>POATie class when the tie mechanism is used.

Example program

Location of an example program using the tie mechanism

A version of the Bank example using the tie mechanism can be found in:

<install_dir>\vbe\examples\basic\bank_tie

140 VisiBroker for Java Developer’s Guide

Example program

Changes to the server class

The following code sample shows the modifications to the Server class. Note the extra
step of creating an instance of AccountManagerManagerPOATie.

import org.omg.PortableServer.*;

public class Server {
 public static void main(String[] args) {
 try {
 // Initialize the ORB.
 org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,null);
 // get a reference to the root POA
 POA rootPOA = POAHelper.narrow(
 orb.resolve_initial_references("RootPOA"));
 // Create policies for our persistent POA
 org.omg.CORBA.Policy[] policies = {
 rootPOA.create_lifespan_policy(LifespanPolicyValue.PERSISTENT)
 };
 // Create myPOA with the right policies
 POA myPOA = rootPOA.create_POA("bank_agent_poa",
 rootPOA.the_POAManager(), policies);
 // Create the tie which delegates to an instance of AccountManagerImpl
 Bank.AccountManagerPOATie tie =
 new Bank.AccountManagerPOATie(new AccountManagerImpl(rootPOA));
 // Decide on the ID for the servant
 byte[] managerId = "BankManager".getBytes();
 // Activate the servant with the ID on myPOA
 myPOA.activate_object_with_id(managerId, tie);
 // Activate the POA manager
 rootPOA.the_POAManager().activate();
 System.out.println("Server is ready.");
 // Wait for incoming requests
 orb.run();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

 11: Using the t ie mechanism 141

Example program

Changes to the AccountManager

The changes made to the AccountManager class (in comparison to the Bank_agent
example) include:

– AccountManagerImpl no longer extends Bank.AccountManagerPOA.

– When a new Account is to be created, an AccountPOATie is also created and initialized.

import org.omg.PortableServer.*;
import java.util.*;

public class AccountManagerImpl implements
 Bank.AccountManagerOperations {
 public AccountManagerImpl(POA poa) {
 _accountPOA = poa;
 }
 public synchronized Bank.Account open(String name) {
 // Lookup the account in the account dictionary.
 Bank.Account account = (Bank.Account) _accounts.get(name);
 // If there was no account in the dictionary, create one.
 if (account == null) {
 // Make up the account's balance, between 0 and 1000 dollars.
 float balance = Math.abs(_random.nextInt()) % 100000 / 100f;
 // Create an account tie which delegate to an instance of AccountImpl
 Bank.AccountPOATie tie =
 new Bank.AccountPOATie(new AccountImpl(balance));
 try {
 // Activate it on the default POA which is root POA for
 // this servant
 account =
 Bank.AccountHelper.narrow(_accountPOA.servant_to_reference(tie));
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 // Print out the new account.
 System.out.println("Created " + name +
 "'s account: " + account);
 // Save the account in the account dictionary.
 _accounts.put(name, account);
 }
 // Return the account.
 return account;
 }
 private Dictionary _accounts = new Hashtable();
 private Random _random = new Random();
 private POA _accountPOA = null;
}

142 VisiBroker for Java Developer’s Guide

Example program

Changes to the Account class

The changes made to the Account class (in comparison to the Bank example) are that it
no longer extends Bank.AccountPOA.

// Server.java
public class AccountImpl implements Bank.AccountOperations {
 public AccountImpl(float balance) {
 _balance = balance;
 }
 public float balance() {
 return _balance;
 }
 private float _balance;
}

Building the tie example

The instructions described in “Developing an example application with VisiBroker” are
also valid for building the tie example.

 12: Cl ient basics 143

Client basics
This section describes how client programs access and use distributed objects.

Initializing the VisiBroker ORB
The Object Request Broker (ORB) provides a communication link between the client
and the server. When a client makes a request, the VisiBroker ORB locates the object
implementation, activates the object if necessary, delivers the request to the object,
and returns the response to the client. The client is unaware whether the object is on
the same machine or across a network.

You are advised to create only one single instance of the VisiBroker ORB per process
as the ORB can use a significant amount of system resources.

Though much of the work done by the VisiBroker ORB is transparent to you, your client
program must explicitly initialize the VisiBroker ORB. VisiBroker ORB options,
described Chapter 4, “Programmer tools for Java,” can be specified as command-line
arguments. To ensure these options take effect you will need to pass the supplied args
argument to ORB.init. The code samples below illustrate the VisiBroker ORB
initialization.

public class Client {
 public static void main (String[] args) {
 org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args, null);
 ...
}

144 VisiBroker for Java Developer’s Guide

Binding to objects

Binding to objects
A client program uses a remote object by obtaining a reference to the object. Object
references are usually obtained using the <interface>Helper's bind() method. The
VisiBroker ORB hides most of the details involved with obtaining the object reference,
such as locating the server that implements the object and establishing a connection to
that server.

Action performed during the bind process

When the server process starts, it performs ORB.init() and announces itself to Smart
Agents on the network.

When your client program invokes the bind() method, the VisiBroker ORB performs
several functions on behalf of your program.

– The VisiBroker ORB contacts the Smart Agent to locate an object implementation
that offers the requested interface. If an object name is specified when bind() is
invoked, that name is used to further qualify the directory service search. The Object
Activation Daemon (OAD), described in Chapter 20, “Using the Object Activation
Daemon (OAD),” may be involved in this process if the server object has been
registered with the OAD.

– When an object implementation is located, the VisiBroker ORB attempts to establish
a connection between the object implementation that was located and your client
program.

– Once the connection is successfully established, the VisiBroker ORB will create a
proxy object and return a reference to that object. The client will invoke methods on
the proxy object which will, in turn, interact with the server object.

Figure 12.1 Client interaction with the Smart Agent

Note

Your client program will never invoke a constructor for the server class. Instead, an
object reference is obtained by invoking the static bind() method.

Bank.AccountManager manager =
 Bank.AccountManagerHelper.bind(orb,
 "/bank_agent_poa",
 "BankManager".getBytes());

 12: Cl ient basics 145

Invoking operat ions on an object

Invoking operations on an object
Your client program uses an object reference to invoke an operation on an object or to
reference data contained by the object. “Manipulating object references” on page 153
describes the variety of ways that object references can be manipulated.

The following example shows how to invoke an operation using an object reference:

// Invoke the balance operation.
System.out.println("The balance in Account1: $" + account1.balance());

Manipulating object references
The bind() method returns a reference to a CORBA object to your client program. Your
client program can use the object reference to invoke operations on the object that
have been defined in the object's IDL interface specification. In addition, there are
methods that all VisiBroker ORB objects inherit from the class org.omg.CORBA.Object
that you can use to manipulate the object.

Converting a reference to a string

VisiBroker provides a VisiBroker ORB class with methods that allow you to convert an
object reference to a string or convert a string back into an object reference. The
CORBA specification refers to this process as stringification.

A client program can use the object_to_string method to convert an object reference
to a string and pass it to another client program. The second client may then
de-stringify the object reference, using the string_to_object method, and use the
object reference without having to explicitly bind to the object.

Note

Locally-scoped object references like the VisiBroker ORB or the POA cannot be
stringified. If an attempt is made to do so, a MARSHAL exception is raised with the minor
code 4.

Obtaining object and interface names

The table below shows the methods provided by the Object class that you can use to
obtain the interface and object names as well as the repository id associated with an
object reference. The interface repository is discussed in Chapter 21, “Using Interface
Repositories.”

Note

When you invoke bind() without specifying an object name, invoking the
_object_name() method with the resulting object reference will return null .

Determining the type of an object reference
You can check whether an object reference is of a particular type by using the _is_a()
method. You must first obtain the repository id of the type you wish to check using the

Method Description

object_to_string Converts an object reference to a string.

string_to_object Converts a string to an object reference.

Method Description

_object_name Returns this object's name.

_repository_id Returns the repository's type identifier.

146 VisiBroker for Java Developer’s Guide

Manipulat ing object references

_repository_id() method. This method returns true if the object is either an instance of
the type represented by _repository_id() or if it is a sub-type. The member function
returns false if the object is not of the type specified. Note that this may require remote
invocation to determine the type.

You cannot use the instanceof keyword to determine the runtime type.

You can use _is_equivalent() to check if two object references refer to the same object
implementation. This method returns true if the object references are equivalent. It
returns false if the object references are distinct, but it does not necessarily indicate
that the object references are two distinct objects. This is a lightweight method and
does not involve actual communication with the server object.

Determining the location and state of bound objects
Given a valid object reference, your client program can use _is_bound() to determine if
the object bound. The method returns true if the object is bound and returns false if the
object is not bound.

The _is_local() method returns true if the client program and the object
implementation reside within the same process or address space where the method is
invoked.

The _is_remote() method returns true if the client program and the object
implementation reside in different processes, which may or may not be located on the
same host.

Narrowing object references
The process of converting an object reference's type from a general super-type to a
more specific sub-type is called narrowing.

You cannot use the Java casting facilities for narrowing.

VisiBroker maintains a type graph for each object interface so that narrowing can be
accomplished by using the object's narrow() method.

The IDL exception CORBA::BAD_PARAM is thrown if the narrow fails, because the
object reference does not support the requested type.public abstract class
AccountManagerHelper {
 ...
 public static Bank.AccountManager narrow(org.omg.CORBA.Object object) {
 ...
 }
...
}

Widening object references

Converting an object reference's type to a super-type is called widening. The code
sample below shows an example of widening an Account pointer to an Object pointer.
The pointer acct can be cast as an Object pointer because the Account class inherits
from the Object class.

...
Account account;

Method Description

_is_a Determines if an object implements a specified interface.

_is_equivalent Returns true if two objects refer to the same interface implementation.

Method Description

_is_bound Determines if a connection is currently active for this object.

_is_local Determines if this object is implemented in the local address space.

_is_remote Determines if this object's implementation does not reside in the local address
space.

 12: Cl ient basics 147

Using Qual i ty of Service (QoS)

org.omg.CORBA.Object obj;
account = AccountHelper.bind();
obj = (org.omg.CORBA.Object) account;
...

Using Quality of Service (QoS)
Quality of Service (QoS) utilizes policies to define and manage the connection between
your client applications and the servers to which they connect.

Understanding Quality of Service (QoS)

QoS policy management is performed through operations accessible in the following
contexts:

– The VisiBroker ORB level policies are handled by a locality constrained
PolicyManager, through which you can set Policies and view the current Policy
overrides. Policies set at the VisiBroker ORB level override system defaults.

– Thread level policies are set through PolicyCurrent, which contains operations for
viewing and setting Policy overrides at the thread level. Policies set at the thread
level override system defaults and values set at the VisiBroker ORB level.

– Object level policies can be applied by accessing the base Object interface's quality
of service operations. Policies applied at the Object level override system defaults
and values set in at the VisiBroker ORB or thread level.

Note

The QoS policies installed at the ORB level will only affect those objects on which no
method is called before installing the policies, for example a non_existent call internally
makes a call on a server object. If ORB level QoS policies are installed after the
non_existent call, then the policies do not apply.

Policy overrides and effective policies
The effective policy is the policy that would be applied to a request after all applicable
policy overrides have been applied. The effective policy is determined by comparing
the Policy as specified by the IOR with the effective override. The effective Policy is the
intersection of the values allowed by the effective override and the IOR-specified
Policy. If the intersection is empty a org.omg.CORBA.INV_POLICY exception is raised.

QoS interfaces

The following interfaces are used to get and set QoS policies.

org.omg.CORBA.Object
Contains the following methods used to get the effective policy and get or set the policy
override.

– _get_policy returns the effective policy for an object reference.

– _set_policy_override returns a new object reference with the requested list of Policy
overrides at the object level.

com.borland.vbroker.CORBA.Object (Borland)
In order to use this interface, you must cast org.omg.CORBA.Object to
com.borland.vbroker.CORBA.Object. Because this interface is derived from
org.omg.CORBA.Object, the following methods are available in addition to the ones
defined in org.omg.CORBA.Object.

148 VisiBroker for Java Developer’s Guide

Using Qual i ty of Service (QoS)

– _get_client_policy returns the effective Policy for the object reference without doing
the intersection with the server-side policies. The effective override is obtained by
checking the specified overrides in first the object level, then at the thread level, and
finally at the VisiBroker ORB level. If no overrides are specified for the requested
PolicyType the system default value for PolicyType is used.

– _get_policy_overrides returns a list of Policy overrides of the specified policy types
set at the object level. If the specified sequence is empty, all overrides at the object
level will be returned. If no PolicyTypes are overridden at the object level, an empty
sequence is returned.

– _validate_connection returns a boolean value based on whether the current effective
policies for the object will allow an invocation to be made. If the object reference is
not bound, a binding will occur. If the object reference is already bound, but current
policy overrides have changed, or the binding is no longer valid, a rebind will be
attempted, regardless of the setting of the RebindPolicy overrides. A false return
value occurs if the current effective policies would raise an INV_POLICY exception. If
the current effective policies are incompatible, a sequence of type PolicyList is
returned listing the incompatible policies.

org.omg.CORBA.PolicyManager
The PolicyManager is an interface that provides methods for getting and setting Policy
overrides for the VisiBroker ORB level.

– get_policy_overrides returns a PolicyList sequence of all the overridden policies for
the requested PolicyTypes. If the specified sequence is empty, all Policy overrides at
the current context level will be returned. If none of the requested PolicyTypes are
overridden at the target PolicyManager, an empty sequence is returned.

– set_policy_overrides modifies the current set of overrides with the requested list of
Policy overrides. The first input parameter, policies, is a sequence of references to
Policy objects. The second parameter, set_add, of type
org.omg.CORBA.SetOverrideType indicates whether these policies should be added
onto any other overrides that already exist in the PolicyManager using ADD_OVERRIDE, or
they should be added to a PolicyManager that doesn't contain any overrides using
SET_OVERRIDES. Calling set_policy_overrides with an empty sequence of policies and
a SET_OVERRIDES mode removes all overrides from a PolicyManager. Should you
attempt to override policies that do not apply to your client,
org.omg.CORBA.NO_PERMISSION will be raised. If the request would cause the specified
PolicyManager to be in an inconsistent state, no policies are changed or added, and
an InvalidPolicies exception is raised.

org.omg.CORBA.PolicyCurrent
The PolicyCurrent interface derives from PolicyManager without adding new methods. It
provides access to the policies overridden at the thread level. A reference to a thread's
PolicyCurrent is obtained by invoking org.omg.CORBA.ORB.resolve_initial_references
and specifying an identifier of PolicyCurrent.

com.borland.vbroker.QoSExt.DeferBindPolicy
The DeferBindPolicy determines if the VisiBroker ORB will attempt to contact the
remote object when it is first created, or to delay this contact until the first invocation is
made. The values of DeferBindPolicy are true and false. If DeferBindPolicy is set to
true all binds will be deferred until the first invocation of a binding instance. The default
value is false.

If you create a client object, and DeferBindPolicy is set to true, you may delay the
server startup until the first invocation. This option existed before as an option to the
Bind method on the generated helper classes.

The code sample below illustrates an example for creating a DeferBindPolicy and
setting the policy on the VisiBroker ORB.

 12: Cl ient basics 149

Using Qual i ty of Service (QoS)

// Initialize the flag and the references
boolean deferMode = true;
Any policyValue= orb.create_any();
policyValue.insert_boolean(deferMode);

Policy policies =
 orb.create_policy(DEFER_BIND_POLICY_TYPE.value, policyValue);

// Get a reference to the thread manager
PolicyManager orbManager =
 PolicyManagerHelper.narrow(
 orb.resolve_initial_references("ORBPolicyManager"));

// Set the policy on the ORB level
orbManager.set_policy_overrides(new Policy[] {policies},
 SetOverrideType.SET_OVERRIDE);

// Get the binding method
byte[] managerId = "BankManager".getBytes();
Bank.AccountManager manager =
 Bank.AccountManagerHelper.bind(orb, "/qos_poa", managerId);

com.borland.vbroker.QoSExt.ExclusiveConnectionPolicy
The ExclusiveConnectionPolicy is a VisiBroker-specific policy that gives you the ability
to establish an exclusive (non-shared) connection to the specified server object. You
assign this policy a boolean value of true or false. If the policy is true, connections to
the server object are exclusive. If the policy is false, existing connections are reused if
possible and a new connection is opened only if reuse is not possible. The default
value is false.

This policy provides the same capabilities as were provided by Object._clone() in
VisiBroker 3.x.

An example of how to establish exclusive and non-exclusive connections is provided in
the CloneClient.java example which can be found in:

<install_dir>\examples\vbe\QoS_policies\qos\

com.borland.vbroker.QoSExt::RelativeConnectionTimeoutPolicy
The RelativeConnectionTimeoutPolicy indicates a timeout after which attempts to
connect to an object using one of the available endpoints is aborted. The timeout
situation is likely to happen with objects protected by firewalls, where HTTP tunneling
is the only way to connect to the object.

The following code examples illustrates how to create
RelativeConnectionTimeoutPolicy:

Any connTimeoutPolicyValue = orb.create_any();
 // Input is in 100s of Nanoseconds.
 // To specify a value of 20 seconds, use 20 * 10^7 nanoseconds as input

 int connTimeout = 20;

 connTimeoutPolicyValue.insert_ulonglong(connTimeout * 10000000);
 org.omg.CORBA.Policy ctoPolicy =
 orb.create_policyRELATIVE_CONN_TIMEOUT_POLICY_TYPE.value,
 connTimeoutPolicyValue);
 PolicyManager orbManager = PolicyManagerHelper.narrow (
 orb.resolve_initial_references("ORBPolicyManager"));

orbManager.set_policy_overrides(new Policy[] \{ctoPolicy\},
 SetOverrideType.SET_OVERRIDE);

150 VisiBroker for Java Developer’s Guide

Using Qual i ty of Service (QoS)

org.omg.Messaging.RebindPolicy
RebindPolicy is used to indicate whether the ORB may transparently rebind once
successfully bound to a target. An object reference is considered bound once it is in a
state where a LocateRequest message would result in a LocateReply message with
status OBJECT_HERE. RebindPolicy accepts values of type org.omg.Messaging.RebindMode
and are set only on the client side. It can have one of six values that determine the
behavior in the case of a disconnection, an object forwarding request, or an object
failure after an object reference is bound. The supported values are:

– org.omg.Messaging.TRANSPARENT allows the VisiBroker ORB to silently handle object-
forwarding and necessary reconnections during the course of making a remote
request. The code sample below illustrates an example to create a RebindPolicy of
type TRANSPARENT and sets the policy on the VisiBroker ORB, thread, and object
levels.

– org.omg.Messaging.NO_REBIND allows the VisiBroker ORB to silently handle reopening
of closed connections while making a remote request, but prevents any transparent
object-forwarding that would cause a change in client-visible effective QoS policies.
When RebindMode is set to NO_REBIND, only explicit rebind is allowed.

– org.omg.Messaging.NO_RECONNECT prevents the VisiBroker ORB from silently handling
object-forwards or the reopening of closed connections. You must explicitly rebind
and reconnect when RebindMode is set to NO_RECONNECT.

– com.borland.vbroker.QoSExt.VB_TRANSPARENT is the default policy. It extends the
functionality of TRANSPARENT by allowing transparent rebinding with both implicit and
explicit binding. VB_TRANSPARENT is designed to be compatible with the object failover
implementation in VisiBroker 3.x.

– com.borland.vbroker.QoSExt.VB_NOTIFY_REBIND throws an exception if a rebind is
necessary. The client catches this exception, and binds on the second invocation. If
a client has received a CloseConnection message before, it will also reestablish the
closed connection.

– com.borland.vbroker.QoSExt.VB_NO_REBIND does not enable failover. It only allows the
client VisiBroker ORB to reopen a closed connection to the same server; it does not
allow object forwarding of any kind.

Note

Be aware that if the effective policy for your client is VB_TRANSPARENT and your client is
working with servers that hold state data, VB_TRANSPARENT could connect the client to a
new server without the client being aware of the change of server, any state data held
by the original server will be lost.

Note

If the Client has set RebindPolicy and the RebindMode is anything other that the
default(VB_TRANSPARENT), then the RebindPolicy is propagated in a special
ServiceContext as per the CORBA specification. The propagation of the ServiceContext
occurs only when the client invokes the server through a GateKeeper or a RequestAgent.
This propagation does not occur in a normal Client/Server scenario.

The following table describes the behavior of the different RebindMode types.

RebindMode type

Reestablish closed
connection to the
same object?

Allow object
forwarding? Object failover?

NO_RECONNECT No, throws REBIND
exception.

No, throws REBIND
exception.

No

NO_REBIND Yes Yes, if policies
match. No, throws
REBIND exception.

No

TRANSPARENT Yes Yes No

 12: Cl ient basics 151

Using Qual i ty of Service (QoS)

The appropriate CORBA exception will be thrown in the case of a communication
problem or an object failure.

The following example creates a RebindPolicy of type TRANSPARENT and sets the policy
on the VisiBroker ORB, thread, and object levels.

Any policyValue= orb.create_any();
RebindModeHelper.insert(policyValue,
 org.omg.Messaging.TRANSPARENT.value);
Policy myRebindPolicy = orb.create_policy(REBIND_POLICY_TYPE.value,
 policyValue);
//get a reference to the ORB policy manager
org.omg.CORBA.PolicyManager manager;
try {
 manager =
PolicyManagerHelper.narrow(orb.resolve_initial_references("ORBPolicyManager"));
}
catch(org.omg.CORBA.ORBPackage.InvalidName e) {}
//get a reference to the per-thread manager
org.omg.CORBA.PolicyManager current;
try {
 current =
 PolicyManagerHelper.narrow(orb.resolve_initial_references
 ("PolicyCurrent"));
}

VB_NO_REBIND Yes No, throws REBIND
exception.

No

VB_NOTIFY_REBIND No, throws
exception.

Yes Yes.
VB_NOTIFY_REBIND
throws an exception after
failure detection, and then
tries a failover on
subsequent requests.

VB_TRANSPARENT Yes Yes Yes, transparently.

RebindMode type

Reestablish closed
connection to the
same object?

Allow object
forwarding? Object failover?

152 VisiBroker for Java Developer’s Guide

Using Qual i ty of Service (QoS)

catch(org.omg.CORBA.ORBPackage.InvalidName e) {}
//set the policy on the orb level
try{
 manager.set_policy_overrides(myRebindPolicy,
 SetOverrideType.SET_OVERRIDE);
}
catch (InvalidPolicies e){}
// set the policy on the Thread level
try {
 current.set_policy_overrides(myRebindPolicy,
 SetOverrideType.SET_OVERRIDE);
}
catch (InvalidPolicies e){}
//set the policy on the object level:
org.omg.CORBA.Object oldObjectReference=bind(...);
org.omg.CORBA.Object newObjectReference=oldObjectReference._set_policy_override
 (myRebindPolicy, SetOverrideType.SET_OVERRIDE);

For more information on QoS policies and types, see the Messaging section of the
CORBA specification.

org.omg.CORBA.Messaging.RelativeRequestTimeoutPolicy
The RelativeRequestTimeoutPolicy indicates the relative amount of time which a
Request or its responding Reply may be delivered. After this amount of time, the
Request is canceled. This policy applies to both synchronous and asynchronous
invocations. Assuming the request completes within the specified timeout, the Reply
will never be discarded due to timeout. The timeout value is specified in 100s of
nanoseconds. This policy is only effective on established connections, and is not
applicable to establishing a connection.

The following code illustrates how to create RelativeRequestTimeoutPolicy:

 // Specify the request timeout in 100s of Nanosecs.
 // To set a timeout of 20 secs, set 20 * 10^7
 int reqTimeout = 20;
 Any policyValue = orb.create_any();
 policyValue.insert_ulonglong(reqTimeout * 10000000);
 // Create Policy
 org.omg.CORBA.Policy reqPolicy = orb.create_policy(
 RELATIVE_REQ_TIMEOUT_POLICY_TYPE.value, policyValue);
 PolicyManager orbManager = PolicyManagerHelper.narrow(
 orb.resolve_initial_references("ORBPolicyManager"));
 orbManager.set_policy_overrides(new Policy[] {reqPolicy},
 SetOverrideType.SET_OVERRIDE);

org.omg.CORBA.Messaging.RelativeRoundTripTimeoutPolicy
The RelativeRoundTripTimeoutPolicy specifies the relative amount of time for which a
Request or its corresponding Reply may be delivered. If a response has not yet been
delivered after this amount of time, the Request is canceled. Also, if a Request had
already been delivered and a Reply is returned from the target, the Reply is discarded
after this amount of time. This policy applies to both synchronous and asynchronous
invocations. Assuming the request completes within the specified timeout, the Reply
will never be discarded due to timeout. The timeout value is specified in 100s of
nanoseconds. This policy is only effective on established connections, and is not
applicable to establishing a connection.

 12: Cl ient basics 153

Using Qual i ty of Service (QoS)

The following code illustrates how to create RelativeRoundTripTimeoutPolicy:

// Specify the round-trip timeout in 100s of Nanoseconds
 // To set a timeout of 50 secs, set 50 * 10^7
 int rttTimeout = 50;
 Any policyValue = orb.create_any();
 policyValue.insert_ulonglong(rttTimeout * 10000000);
 //Create the RelativeRoundTripTimeoutPolicy and set it at ORB level
 org.omg.CORBA.Policy rttPolicy = orb.create_policy(
 RELATIVE_RT_TIMEOUT_POLICY_TYPE.value, policyValue);
 PolicyManager orbManager = PolicyManagerHelper.narrow(
 orb.resolve_initial_references("ORBPolicyManager"));
 orbManager.set_policy_overrides(new Policy[] {rttPolicy},
 SetOverrideType.SET_OVERRIDE);

org.omg.CORBA.Messaging.SyncScopePolicy
The SyncScopePolicy defines the level of synchronization for a request with respect to
the target. Values of type SyncScope are used in conjunction with a SyncScopePolicy to
control the behavior of one-way operations.

The default SyncScopePolicy is SYNC_WITH_TRANSPORT. To perform one-way operations via
the OAD, you must use SyncScopePolicy=SYNC_WITH_SERVER. Valid values for
SyncScopePolicy are defined by the OMG.

Note

Applications must explicitly set an VisiBroker ORB-level SyncScopePolicy to ensure
portability across VisiBroker ORB implementations. When instances of SyncScopePolicy
are created, a value of type Messaging::SyncScope is passed to
CORBA::ORB::create_policy. This policy is only applicable as a client-side override.

Exceptions

Exception Description

org.omg.CORBA.INV_POLICY Raised when there is an incompatibility between Policy
overrides.

org.omg.CORBA.REBIND Raised when the RebindPolicy has a value of NO_REBIND,
NO_RECONNECT, or VB_NO_REBIND and an invocation on a bound
object references results in an object-forward or location-
forward message.

org.omg.CORBA.PolicyError Raised when the requested Policy is not supported.

org.omg.CORBA.InvalidPolicies Raised when an operation is passed a PolicyList sequence.
The exception body contains the policies from the sequence
that are not valid, either because the policies are already
overridden within the current scope, or are not valid in
conjunction with other requested policies.

154 VisiBroker for Java Developer’s Guide

Code Set support

Code Set support
VisiBroker supports Code Set Negotiation that allows applications to agree on a
common Code Set when marshaling char or wchar IDL data types. A Code Set is a
collection of unambiguous rules that establishes a character set and the one-to-one
relationship between each character of the set and its bit representation or numeric
value.

Types of Code Sets

Code sets can differ in their classification. Some language environments distinguish
between byte-oriented and “wide characters”. The byte-oriented characters are
encoded in one or more 8-bit bytes. ASCII (as used for western European languages
like English) is an example of a typical single-byte encoding. A typical multi-byte
encoding which uses from one to three 8-bit bytes for each character is eucJP
(Extended UNIX Code—Japan, packed format), used for Japanese workstations.
Although byte-oriented Code Sets such as UTF-8 uses one to six 8-bit bytes for a
character representation, the CORBA specification mandates that for char data the size
limit is still one byte and that char[] should be used if a representation uses more than
one byte.

Wide characters are a fixed 16 or 32 bits long, and are used for languages like Chinese
and Japanese, where the number of combinations offered by 8 bits is insufficient and a
fixed-width encoding is needed. A typical example is Unicode (a “universal” character
set defined by The Unicode Consortium). An extended encoding scheme for Unicode
characters is UTF-16 (UCS Transformation Format, 16-bit representations).

Native Code Set
A native code set is the code set which a client or a server uses to communicate with
its ORB. There might be separate native code sets for char and wchar data.

Conversion Code Set (CCS)
This is the set of target code sets for which an ORB can convert all encodings between
the native code set and that target code set. For each code set in this CCS, the ORB
maintains appropriate translation or conversion procedures and advertises the ability to
use that code set for transmitted data in addition to the native code set.

Transmission Code Set (TCS)
A transmission code set is the commonly agreed upon encoding used for character
data transfer between a client's ORB and a server's ORB. There are two transmission
code sets established per session between a client and its server, one for char data
(TCS-C) and the other for wchar data (TCS-W).

Code Set Negotiation

The client-side ORB determines a server's native and conversion code sets from an
IOR multi-component profile structure, simultaneously determining a client's native and
conversion code sets. From this information, the client-side ORB chooses char and
wchar transmission code sets (TCS-C and TCS-W). For both requests and replies, the
char TCS-C determines the encoding of char and string data, and the wchar TCS-W
determines the encoding of wchar and wstring data.

Supported Code Sets

VisiBroker supports the following code sets:

– For IDL char data types the native Code Set is ISO 8859-1 (Latin-1) and the
conversion Code supported is UTF-8.

 12: Cl ient basics 155

Deploying cl ient-only appl icat ions using Cl ient Runt ime

– For IDL wchar data types the native Code Set is UTF-16 and there is no Conversion
Code Set.

Deploying client-only applications using Client Runtime
In many application deployment scenarios it is sometimes required to just have a client
runtime rather than a full-sized ORB implementation. If the application is a pure client
and has no server side functionality, such as POA creation and object activation,
VisiBroker provides a client runtime library for such scenarios. The VisiBroker Client
Runtime has a smaller memory footprint compared to the full VisiBroker
implementation. The client runtime is provided as a Java archive (vbjclientorb.jar) file
which is installed under the /lib directory in the VisiBroker installation.

Note

The Client Runtime does not support full ORB functionality.

The following features are supported by the VisiBroker client runtime library:

– Client-side functionality such as invoking operations on remote servers and services
is provided. Applications using the client runtime can still make use of services like
Interface Repository, Naming Service, RequestAgent (only Polling mode), etc. They
can also make use of GateKeeper for firewall traversal, and they can invoke
operations on servers that are registered with Object Activation Daemon (OAD).
They are also able to use OSAgent for locating servers.

– Client-side interceptors such as Bind Interceptor, and Request Interceptors (both
VisiBroker 4x and Portable Interceptors) can be used.

– VisiSecure client-side functionality is also available.

The following features are not supported by the VisiBroker client runtime library:

– Any server-side functionality, such as POA creation or object activation, is not
available. Using resolve_initial_references("RootPOA") is not allowed.

– Notification, Event Service, and callback mode of Request Agent are not available.

– Location Service is not supported.

– Any type of server-side interceptors, such as POALifeCycleInterceptor, Request
Interceptor (both VisiBroker 4x and Portable Interceptor), and IOR interceptors, are
not available. However, additional security JAR files are required to be included in
the classpath (see instruction in Usage below).

Usage

To make use of vbjclientorb.jar, modify <install_dir>/bin/vbj.config to configure an
addpath entry for vbjclientorb.jar. To make this change, replace the following line in the
vbj.config file:

addpath $var(defaultJarPath)/vbjorb.jar

with:

addpath $var(defaultJarPath)/vbjclientorb.jar

When using VisiSecure in client applications, vbsec.jar, sunjce_provider.jar,
local_policy.jar, US_export_policy.jar should also be present in the classpath. If JDK
1.3.1 is used, the JAR files jsse.jar, jcert.jar, jnet.jar, jaas.jar, and jce1_2_1.jar should
also be present in the classpath, in addition to the JARs mentioned previously.

Note

If a particular feature is not supported by the client runtime (vbjclientorb.jar), at runtime
the following standard error message is printed out along with the ClassNotFound or
NoClassDefFound exception.

156 VisiBroker for Java Developer’s Guide

Deploying cl ient-only appl icat ions using Cl ient Runt ime

"******Client runtime does not support full ORB functionality ******"

 13: Using IDL 157

Using IDL
This section describes how to use the CORBA interface description language (IDL).

Introduction to IDL
The Interface Definition Language (IDL) is a descriptive language (not a programming
language) to describe the interfaces being implemented by the remote objects. Within
IDL, you define the name of the interface, the names of each of the attributes and
methods, and so forth. Once you’ve created the IDL file, you can use an IDL compiler
to generate the client stub file and the server skeleton file in the Java programming
language.

For more information see “Programmer tools for Java.”

The OMG has defined specifications for such language mapping. Information about the
language mapping is not covered in this manual since VisiBroker adheres to the
specification set forth by OMG. If you need more information about language mapping,
see the OMG web site at http://www.omg.org.

Note

The CORBA 2.6 formal specification can be found at
http://www.omg.org/technology/documents/vault.htm#CORBA_IIOP.

Discussions on the IDL can be quite extensive. Because VisiBroker adheres to the
specification defined by OMG, you can visit the OMG site for more information
about IDL.

158 VisiBroker for Java Developer’s Guide

How the IDL compi ler generates code

How the IDL compiler generates code
You use the Interface Definition Language (IDL) to define the object interfaces that
client programs may use. The idl2java compiler uses your interface definition to
generate code.

Example IDL specification

Your interface definition defines the name of the object as well as all of the methods the
object offers. Each method specifies the parameters that will be passed to the method,
their type, and whether they are for input or output or both. The IDL sample below
shows an IDL specification for an object named example. The example object has only
one method, op1.

// IDL specification for the example object
interface example {
 long op1(in char x, out short y);
};

Looking at the generated code
The IDL compiler generates several files from the above Example IDL specification.

– _exampleStub.java is the stub code for the example object on the client side.

– example.java is the example interface declaration.

– exampleHelper.java declares the exampleHelper class, which defines helpful utility
functions and support functions for the example interface.

– exampleHolder.java declares the exampleHolder class, which provides a holder for
passing out and inout parameters.

– exampleOperations.java defines the methods in the example interface and is used
both on the client and the server side. It also works together with the tie classes to
provide the tie mechanism.

– examplePOA.java contains the skeleton code (implementation base code) for the
example object on the server side.

– examplePOATie.java contains the class used to implement the example object on the
server side using the tie mechanism.

_<interface_name>Stub.java

For each user-defined type, a stub class is created by the idl2java compiler. This is the
class which is instantiated on the client side which implements the <interface_name>
interface.

public class exampleStub extends com.inprise.vbroker.CORBA.portable.ObjectImpl
 implements example {
 final public static java.lang.Class _opsClass = exampleOperations.class;
 public java.lang.String[] ids () {
 ...
 }
 public int op1 (char x, org.omg.CORBA.ShortHolder y) {
 ...
}

 13: Using IDL 159

Looking at the generated code

<interface_name>.java

The <interface_name>.java file is the Java interface generated for each IDL interface.
This is the direct mapping of the IDL interface definition to the appropriate Java
interface. This interface is then implemented by both the client and server skeleton.

public interface example extends com.inprise.vbroker.CORBA.Object,
 exampleOperations,
 org.omg.CORBA.portable.IDLEntity {
}

<interface_name>Helper.java

For each user-defined type, a helper class is created by idl2java. The Helper class is
an abstract class with various static methods for the generated Java interface.

public final class exampleHelper {
 public static example narrow (final org.omg.CORBA.Object obj) {
 ...
 }
 public static example unchecked_narrow (org.omg.CORBA.Object obj) {
 ...
 }
 public static example bind (org.omg.CORBA.ORB orb) {
 ...
 }
 public static example bind (org.omg.CORBA.ORB orb,
 java.lang.String name) {
 ...
 }
 public static example bind (org.omg.CORBA.ORB orb, java.lang.String name,
 java.lang.String host,
 com.inprise.vbroker.CORBA.BindOptions _options) {
 ...
 }
 public static example bind (org.omg.CORBA.ORB orb, java.lang.String
 fullPoaName,
 byte[] oid) {
 ...
 }
 public static example bind (org.omg.CORBA.ORB orb,
 java.lang.String fullPoaName, byte[] oid,
 java.lang.String host,
 com.inprise.vbroker.CORBA.BindOptions _options) {
 ...
 }
 public java.lang.Object read_Object (final org.omg.CORBA.portable.
 InputStream istream) {
 ...
 }
 public void write_Object (
 final org.omg.CORBA.portable.OutputStream ostream,
 final java.lang.Object obj) {
 ...
 }
 public java.lang.String get_id () {
 ...
 }
 public org.omg.CORBA.TypeCode get_type () {
 ...
 }
 public static example read (
 final org.omg.CORBA.portable.InputStream _input) {
 ...

160 VisiBroker for Java Developer’s Guide

Looking at the generated code

 }
 public static void write (
 final org.omg.CORBA.portable.OutputStream _output,
 final example value) {
 ...
 }
 public static void insert (
 final org.omg.CORBA.Any any, final example value) {
 ...
 }
 public static example extract (final org.omg.CORBA.Any any) {
 ...
 }
 public static org.omg.CORBA.TypeCode type () {
 ...
 }
 public static java.lang.String id () {
 ...
 }
}

<interface_name>Holder.java

For each user-defined type, a holder class is created by the idl2java compiler. It
provides a class for an object which wraps objects which support the <interface_name>
interface when passed as out and inout parameters.

public final class exampleHolder
 implements org.omg.CORBA.portable.Streamable {
 public foo.example value;
 public exampleHolder () {
 }
 public exampleHolder (final foo.example _vis_value) {
 ...
 }
 public void _read (final org.omg.CORBA.portable.InputStream input) {
 ...
 }
 public void _write (final org.omg.CORBA.portable.OutputStream output) {
 ...
 }
 public org.omg.CORBA.TypeCode _type () {
 ...
 }
}

<interface_name>Operations.java

For each user-defined type, an operations class is created by the idl2java compiler
which contains all the methods defined in the IDL declaration.

public interface exampleOperations {
 public int op1(char x, org.omg.CORBA.ShortHolder y);
}

 13: Using IDL 161

Looking at the generated code

<interface_name>POA.java

The <interface_name>POA.java file is the server-side skeleton for the interface. It
unmarshals in parameters and passes them in an upcall to the object implementation
and marshals back the return value and any out parameters.

public abstract class examplePOA
 extends org.omg.PortableServer.Servant
 implements org.omg.CORBA.portable.InvokeHandler, exampleOperations {
 public example _this () {
 ...
 }
 public example _this (org.omg.CORBA.ORB orb) {
 ...
 }
 public java.lang.String[] _all_interfaces (
 final org.omg.PortableServer.POA poa,
 ...
 }
 public org.omg.CORBA.portable.OutputStream _invoke (java.lang.String opName,
 org.omg.CORBA.portable.InputStream _input,
 org.omg.CORBA.portable.ResponseHandler handler) {
 ...
 }
 public static org.omg.CORBA.portable.OutputStream _invoke (exampleOperations
_self,
 int _method_id, org.omg.CORBA.portable.InputStream _input,
 org.omg.CORBA.portable.ResponseHandler _handler) {
 ...
 }
}

<interface_name>POATie.java

The <interface_name>POATie.java file is a delegator implementation for the
<interface_name> interface. Each instance of the tie class must be initialized with an
instance of an implementation class that implements the <interface_name>Operations
class to which it delegates every operation.

public class examplePOATie extends examplePOA {
 public examplePOATie (final exampleOperations _delegate) {
 ...
 }
 public examplePOATie (final exampleOperations _delegate,
 final org.omg.PortableServer.POA _poa) {
 ...
 }
 public exampleOperations _delegate () {
 ...
 }
 public void _delegate (final exampleOperations delegate) {
 ...
 }
 public org.omg.PortableServer.POA _default_POA () {
 ...
 }
 public int op1 (char x, org.omg.CORBA.ShortHolder y) {
 ...
 }
}

162 VisiBroker for Java Developer’s Guide

Def ining inter face at tr ibutes in IDL

Defining interface attributes in IDL
In addition to operations, an interface specification can also define attributes as part of
the interface. By default, all attributes are read-write and the IDL compiler will generate
two methods, one to set the attribute's value, and one to get the attribute's value. You
can also specify read-only attributes, for which only the reader method is generated.

The IDL sample below shows an IDL specification that defines two attributes, one read-
write and one read-only.

interface Test {
 attribute long count;
 readonly attribute string name;
};

The following code sample shows the operations class generated for the interface
declared in the IDL.

public interface TestOperations {
 public int count ();
 public void count (int count);
 public java.lang.String name ();
}

Specifying one-way methods with no return value
IDL allows you to specify operations that have no return value, called one-way
methods. These operations may only have input parameters. When a oneway method is
invoked, a request is sent to the server, but there is no confirmation from the object
implementation that the request was actually received.

VisiBroker uses TCP/IP for connecting clients to servers. This provides reliable delivery
of all packets so the client can be sure the request will be delivered to the server, as
long as the server remains available. Still, the client has no way of knowing if the
request was actually processed by the object implementation itself.

Note

One-way operations cannot raise exceptions or return values.

interface oneway_example {
 oneway void set_value(in long val);
};

Specifying an interface in IDL that inherits from another interface
IDL allows you to specify an interface that inherits from another interface. The classes
generated by the IDL compiler will reflect the inheritance relationship. All methods, data
type definitions, constants and enumerations declared by the parent interface will be
visible to the derived interface.

interface parent {
 void operation1();
};
interface child : parent {
 ...
 long operation2(in short s);
};

The code sample below shows the code that is generated from the interface
specification shown above.

public interface parentOperations {
 public void operation1 ();
}

 13: Using IDL 163

Speci fy ing an interface in IDL that inher i ts f rom another inter face

public interface childOperations extends parentOperations {
 public int operation2 (short s);
}
public interface parent
 extends com.inprise.vbroker.CORBA.Object, parentOperations,
 org.omg.CORBA.portable.IDLEntity {
}
public interface child extends childOperations, Baz.parent,
 org.omg.CORBA.portable.IDLEntity {
}

164 VisiBroker for Java Developer’s Guide

 14: Using the Smart Agent 165

Using the Smart Agent
This section describes the Smart Agent (osagent), which client programs register with in
order to find object implementations. It explains how to configure your own VisiBroker
ORB domain, connect Smart Agents on different local networks, and migrate objects
from one host to another.

What is the Smart Agent?
VisiBroker's Smart Agent (osagent) is a dynamic, distributed directory service that
provides facilities used by both client programs and object implementations. A Smart
Agent must be started on at least one host within your local network. When your client
program invokes bind() on an object, the Smart Agent is automatically consulted. The
Smart Agent locates the specified implementation so that a connection can be
established between the client and the implementation. The communication with the
Smart Agent is completely transparent to the client program.

If the PERSISTENT policy is set on the POA, and activate_object_with_id is used, the
Smart Agent registers the object or implementation so that it can be used by client
programs. When an object or implementation is deactivated, the Smart Agent removes
it from the list of available objects. Like client programs, the communication with the
Smart Agent is completely transparent to the object implementation. For more
information about POAs, see “Using POAs.”

Best practices for Smart Agent configuration and synchronization

While the Smart Agent imposes no hard limits on the numbers and types of objects that
it can support, there are reasonable best practices that can be followed when
incorporating the it into a larger architecture.

The Smart Agent is designed to be a lightweight directory service with a flat, simple
namespace, which can support a small number of well known objects within a local
network.

Since all objects' registered services are stored in memory, scalability cannot be
optimized and be fault tolerant at the same time. Applications should use well known
objects to bootstrap to other distributed services so as not to rely on the Smart Agent
for all directory needs. If a heavy services lookup load is necessary, it is advisable to
use the VisiBroker Naming Service (VisiNaming). VisiNaming provides persistent
storage capability and cluster load balancing whereas the Smart Agent only provides a
simple round robin on a per osagent basis. Due to the in-memory design of the Smart
Agent, if it is terminated by a proper shutdown or an abnormal termination, it does not

166 VisiBroker for Java Developer’s Guide

What is the Smart Agent?

failover to another Smart Agent in the same ORB domain, that is to the same
OSAGENT_PORT number, whereas the VisiNaming Service provides such failover
functionality. For more information on the VisiBroker naming service, see “Using the
VisiNaming Service.”

General guidelines
The following are some general guidelines for best practice Smart Agent usage.

– Server registrations should be limited to less than 100 object instances or POAs per
ORB domain.

– The Smart Agent keeps track of all clients (not just CORBA servers), so every client
creates a small load on the Smart Agent. Within any 10 minute period, the client
population should generally not exceed 100 clients.

Note

The GateKeeper counts as one client even though it is acting on behalf of many real
clients.

– Applications should use the Smart Agent sparsely by binding to small sets of well
known objects at startup and then using those objects for further discovery. The
Smart Agent communications are based on UDP. Although the message protocol
built on top of UDP is reliable, UDP is often not reliable or allowed in wide area
networks. Since the Smart Agent is designed for intranet use, it is not recommended
over wide area networks that involve firewall configurations.

– The real default IP of the Smart Agent must be accessible to clients on a subnet that
is not directly connected to the Smart Agent host. The Smart Agent cannot be
configured for client access behind a Network Address Translation (NAT) firewall.

– The Smart Agent configures itself at startup using the network information available
at that time. It is not able to detect new network interfaces that are added later, such
as interfaces associated with a dial up connection. Therefore, the Smart Agent is
meant for use in static network configurations.

Load balancing/ fault tolerance guidelines
– The Smart Agent implements load balancing using a simple round-robin algorithm on

a per agent basis, not on an ORB domain basis. For load balancing between server
replicas, when you have more than one Smart Agent in the ORB domain, make sure
all servers are registered with the same Smart Agent.

– The ORB runtime caches access to the Smart Agent, so multiple binds to the same
server object from the same ORB process do not result in round-robin behavior
because all subsequent attempts to bind to the object us the cache rather than
sending a new request to the Smart Agent. This behavior can be changed using ORB
properties. For more information see “VisiBroker properties.” .

– When a Smart Agent is terminated, all servers that were registered with that agent
attempt to locate another agent with which to register. This process is automatic, but
may take up to two minutes for the server to perform this function. During that two
minute window, the server is not registered in the ORB domain and therefore is not
available to new clients. However, this does not affect ongoing IIOP communications
between the server and clients that were previously bound.

Location service guidelines
The location service is built upon the Smart Agent technology. Therefore, the location
service is subject to the same guidelines described above.

– The location service triggers generate UDP traffic between the Smart Agent and the
trigger handlers registered by applications. Use of this feature should be limited to
less than 10 objects, monitored by less than 10 processes.

 14: Using the Smart Agent 167

What is the Smart Agent?

– The location service triggers fire when the Smart Agent determines that an object is
available or down. There may be a delay of up to four minutes for a “down” trigger to
fire. For this reason, you may not want to use this feature for time critical
applications.

For more information about the Location Service, see “Using the Location Service.”

When not to use a Smart Agent
– When the ORB domain spans a large number (greater than 5) of subnets.

Maintaining the agentaddr files for a large ORB domain spread over a large number
of subnets is difficult to manage.

– When the name space requires a large number (greater than 100) of well known
objects.

– When the number of applications (clients) that require the Smart Agent consistently
exceeds 100 in a 10 minute period.

Note

In the above situations an alternative directory, such as the Naming Service, may be
more appropriate. See “Using the VisiNaming Service” for more information.

Locating Smart Agents

VisiBroker locates a Smart Agent for use by a client program or object implementation
using a broadcast message. The first Smart Agent to respond is used. After a Smart
Agent has been located, a point-to-point UDP connection is used for sending
registration and look-up requests to the Smart Agent.

The UDP protocol is used because it consumes fewer network resources than a TCP
connection. All registration and locate requests are dynamic, so there are no required
configuration files or mappings to maintain.

Note

Broadcast messages are used only to locate a Smart Agent. All other communication
with the Smart Agent makes use of point-to-point communication. For information on
how to override the use of broadcast messages, see “Using point-to-point
communications”.

Locating objects through Smart Agent cooperation

When a Smart Agent is started on more than one host in the local network, each Smart
Agent will recognize a subset of the objects available and communicate with other
Smart Agents to locate objects it cannot find. If one of the Smart Agent processes
should terminate unexpectedly, all implementations registered with that Smart Agent
discover this event and they will automatically re register with another available Smart
Agent.

Cooperating with the OAD to connect with objects

Object implementations may be registered with the Object Activation Daemon (OAD)
so they can be started on demand. Such objects are registered with the Smart Agent
as if they are actually active and located within the OAD. When a client requests one of
these objects, it is directed to the OAD. The OAD then forwards the client request to
the actual server. The Smart Agent does not know that the object implementation is not
truly active within the OAD. For more information about the OAD, see “Using the Object
Activation Daemon (OAD).”

168 VisiBroker for Java Developer’s Guide

What is the Smart Agent?

Starting a Smart Agent (osagent)

At least one instance of the Smart Agent should be running on a host in your local
network. Local network refers to a subnetwork in which broadcast messages can be
sent.

Windows

To start the Smart Agent:

– Double-click the osagent executible osagent.exe located in:

<install_dir\bin\

or

– At the Command Prompt, enter: osagent [options]. For example:

prompt> osagent [options]

UNIX

To start the Smart Agent, enter: osagent &. For example:

prompt> osagent &

Note

Due to signal handling changes, bourne and korn shell users need to use the
ignoreSignal hup parameter when starting osagent in order to prevent the hangup (hup)
signal from terminating the process when the user logs out. For example:
nohup $VBROKERDIR/bin/osagent ignoreSignal hup &

The osagent command accepts the following command line arguments:

Example:

The following example of the osagent command specifies a particular UDP port:

 osagent -p 17000

Option Description

-a <IP_address> Specifies the default listening address.

-p <UDP_port> Overrides the setting of OSAGENT_PORT and the registry setting.

-v Turns verbose mode on, which provides information and diagnostic
messages during execution.

-help or -? Prints the help message.

-l Turns off logging if OSAGENT_LOGGING_ON is set.

-ls <size> Specifies trimming log size of 1024KB block. Max value is 300, therefore
largest log size is 300MB

+l <options> Show/enable logging level. Options supported are:

■ Turn logging on and enable level "ief" (== +l oief), equivalent to
OSAGENT_LOGGING_ON set. Logs are auto-trim and written to OSAGENT_LOG_DIR
or VBROKER_ADM directory if set. Otherwise default is to /tmp on UNIX and
%TEMP% on Windows.

■ i - Informational

■ e - Error

■ w - Warning

■ f - Fatal

■ d - Debugging

■ a - All

-n, -N Disables system tray icon on Windows.

 14: Using the Smart Agent 169

What is the Smart Agent?

Verbose output

UNIX

On UNIX, the verbose output is sent to stdout.

Windows

On Windows, the verbose output is written to a log file stored in either of the following
locations:

– C:\TEMP\vbroker\log\osagent.log.

– the directory specified by the VBROKER_ADM environment variable.

Note

To specify a different directory in which to write the log file, use OSAGENT_LOG_DIR. To
configure logging options you can right-click the Smart Agent icon and select Log
Options.

Disabling the agent
Communication with the Smart Agent can be disabled by passing the VisiBroker ORB
the property at runtime:

prompt> vbj -Dvbroker.agent.enableLocator=false

If using string-to-object references, a naming service, or passing in a URL reference,
the Smart Agent is not required and can be disabled. If you pass an object name to the
bind() method, you must use the Smart Agent.

Ensuring Smart Agent availability

Starting a Smart Agent on more than one host within the local network allows clients to
continually bind to objects, even if one Smart Agent terminates unexpectedly. If a
Smart Agent becomes unavailable, all object implementations registered with that
Smart Agent will be automatically re-registered with another Smart Agent. If no Smart
Agents are running on the local network, object implementations will continue retrying
until a new Smart Agent is contacted.

If a Smart Agent terminates, any connections between a client and an object
implementation established before the Smart Agent terminated will continue without
interruption. However, any new bind() requests issued by a client causes a new Smart
Agent to be contacted.

No special coding techniques are required to take advantage of these fault-tolerant
features. You only need to be sure a Smart Agent is started on one or more host on the
local network.

Checking client existence
A Smart Agent sends an “are you alive” message (often called a heartbeat message) to
its clients every two minutes to verify the client is still connected. If the client does not
respond, the Smart Agent assumes the client has terminated the connection.

You can not change the interval for polling the client.

Note

The use of the term “client” does not necessarily describe the function of the object or
process. Any program that connects to the Smart Agent for object references is a
client.

170 VisiBroker for Java Developer’s Guide

Working wi th in Vis iBroker ORB domains

Working within VisiBroker ORB domains
It is often useful to have two or more VisiBroker ORB domains running at the same
time. One domain might consist of production versions of client programs and object
implementations, while another domain might consist of test versions of the same
clients and objects that have not yet been released for general use. If several
developers are working on the same local network, each may want to establish their
own VisiBroker ORB domain so that their tests do not conflict with one another.

Figure 14.1 Running separate VisiBroker ORB domains simultaneously

VisiBroker allows you to distinguish between multiple VisiBroker ORB domains on the
same network by using unique UDP port numbers for the Smart Agents of each
domain. By default, the OSAGENT_PORT variable is set to 14000. If you wish to use a
different port number, check with your system administrator to determine what port
numbers are available.

To override the default setting, the OSAGENT_PORT variable must be set accordingly
before running a Smart Agent, an OAD, object implementations, or client programs
assigned to that VisiBroker ORB domain. For example,

prompt> setenv OSAGENT_PORT 5678
prompt> osagent &
prompt> oad &

The Smart Agent uses an additional internal port number for both TCP and UDP
protocols, the port number is the same for both. This port number is set by using the
OSAGENT_CLIENT_HANDLER_PORT environment variable.

 14: Using the Smart Agent 171

Connect ing Smart Agents on d i f ferent local networks

Connecting Smart Agents on different local networks
If you start multiple Smart Agents on your local network, they will discover each other
by using UDP broadcast messages. Your network administrator configures a local
network by specifying the scope of broadcast messages using the IP subnet mask. The
following figure shows two local networks connected by a network link.

Figure 14.2 Two Smart Agents on separate local networks

To allow the Smart Agent on one network to contact a Smart Agent on another local
network, use the OSAGENT_ADDR_FILE environment variable, as shown in the following
example:

setenv OSAGENT_ADDR_FILE=<path to agent addr file>

Alternatively, use the vbroker.agent.addrFile property, as shown in the following
example:

vbj -Dvbroker.agent.addrFile=<path to agent addr file>

The following example shows what the agentaddr file would contain to allow a Smart
Agent on Local Network #1 to connect to a Smart Agent on another local network.

101.10.2.6

With the appropriate agentaddr file, a client program on Network #1 locates and uses
object implementations on Network #2. For more information on environment variables,
see the Installation Guide.

Note

If a remote network has multiple Smart Agents running, you should list all the IP
addresses of the Smart Agents on the remote network.

How Smart Agents detect each other

Suppose two agents, Agent 1 and Agent 2, are listening on the same UDP port from
two different machines on the same subnet. Agent 1 starts before Agent 2. The
following events occur:

– When Agent 2 starts, it UDP broadcasts its existence and sends a request message
to locate any other Smart Agents.

– Agent 1 makes note that Agent 2 is available on the network and responds to the
request message.

– Agent 2 makes note that another agent, Agent 1, is available on the network.

If Agent 2 is terminated gracefully (such as killing with Ctrl+C), Agent 1 is notified that
Agent 2 is no longer available.

172 VisiBroker for Java Developer’s Guide

Working wi th mult ihomed hosts

Working with multihomed hosts
When you start the Smart Agent on a host that has more than one IP address (known
as a multihomed host), it can provide a powerful mechanism for bridging objects
located on separate local networks. All local networks to which the host is connected
will be able to communicate with a single Smart Agent, therefore bridging the local
networks.

Figure 14.3 Smart Agent on a multihomed host

UNIX

On a multihomed UNIX host, the Smart Agent dynamically configures itself to listen
and broadcast on all of the host's interfaces which support point-to-point connections
or broadcast connections. You can explicitly specify interface settings using the
localaddr file as described in “Specifying interface usage for Smart Agents”.

Windows

On a multihomed Windows host, the Smart Agent is not able to dynamically determine
the correct subnet mask and broadcast address values. To overcome this limitation,
you must explicitly specify the interface settings you want the Smart Agent to use with
the localaddr file.

When you start the Smart Agent with the -v (verbose) option, each interface that the
Smart Agent uses will be listed at the beginning of the messages produced. The
example below shows the sample output from a Smart Agent started with the verbose
option on a multihomed host.

Bound to the following interfaces:
Address: 199.10.9.5 Subnet: 255.255.255.0 Broadcast:199.10.9.255
Address: 101.10.2.6 Subnet: 255.255.255.0 Broadcast:101.10.2.255
...

The above output shows the address, subnet mask, and broadcast address for each
interface in the machine.

UNIX

The above output should match the results from the UNIX command ifconfig -a.

If want to override these settings, configure the interface information in the localaddr
file. See “Specifying interface usage for Smart Agents” for details.

 14: Using the Smart Agent 173

Working wi th mult ihomed hosts

Specifying interface usage for Smart Agents

Note

It is not necessary to specify interface information on a single-homed host.

You can specify interface information for each interface you wish the Smart Agent to
use on your multihomed host in the localaddr file. The localaddr file should have a
separate line for each interface that contains the host's IP address, subnet mask, and
broadcast address. By default, VisiBroker searches for the localaddr file in the
VBROKER_ADM directory. You can override this location by setting the OSAGENT_LOCAL_FILE
environment variable to point to this file. Lines in this file that begin with a “#” character,
and are treated as comments and ignored. The code sample below shows the contents
of the localaddr file for the multihomed host listed above.

#entries of format <address> <subnet_mask> <broadcast address>
199.10.9.5 255.255.255.0 199.10.9.255
101.10.2.6 255.255.255.0 101.10.2.255

UNIX

Though the Smart Agent can automatically configure itself on a multihomed host on
UNIX, you can use the localaddr file to explicitly specify the interfaces that your host
contains. You can display all available interface values for the UNIX host by using the
following command:

prompt> ifconfig -a

Output from this command appears similar to the following:

lo0: flags=849<UP,LOOPBACK,RUNNING,MULTICAST> mtu 8232
 inet 127.0.0.1 netmask ff000000
le0: flags=863<UP,BROADCAST,NOTRAILERS,RUNNING,MULTICAST> mtu 1500
 inet 199.10.9.5 netmask ffffff00 broadcast 199.10.9.255
le1: flags=863<UP,BROADCAST,NOTRAILERS,RUNNING,MULTICAST> mtu 1500
 inet 101.10.2.6 netmask ffffff00 broadcast 101.10.2.255

Windows

The use of the localaddr file with multihomed hosts is required for hosts running
Windows because the Smart Agent is not able to automatically configure itself. You
can obtain the appropriate values for this file by accessing the TCP/IP protocol
properties from the Network Control Panel. If your host is running Windows, the
ipconfig command will provide the needed values. This command is as follows:

prompt> ipconfig

Output from this command appears similar to the following:

Ethernet adapter El90x1:

 IP Address. : 172.20.30.56
 Subnet Mask : 255.255.255.0
 Default Gateway : 172.20.0.2
Ethernet adapter Elnk32:
 IP Address. : 101.10.2.6
 Subnet Mask : 255.255.255.0
 Default Gateway. : 101.10.2.1

174 VisiBroker for Java Developer’s Guide

Using point- to-point communicat ions

Using point-to-point communications
VisiBroker provides three different mechanisms for circumventing the use of UDP
broadcast messages for locating Smart Agent processes. When a Smart Agent is
located with any of these alternate approaches, that Smart Agent will be used for all
subsequent interactions. If a Smart Agent cannot be located using any of these
alternate approaches, VisiBroker will revert to using the broadcast message scheme to
locate a Smart Agent.

Specifying a host as a runtime parameter

The code sample below shows how to specify the IP address where a Smart Agent is
running as a runtime parameter for your client program or object implementation. Since
specifying an IP address will cause a point-to-point connection to be established, you
can even specify an IP address of a host located outside your local network. This
mechanism takes precedence over any other host specification.

prompt> vbj -Dvbroker.agent.addr=<ip_address> Server

You can also specify the IP address through the properties file. Look for the
vbroker.agent.addr entry.

vbroker.agent.addr=<ip_address>

By default, vbroker.agent.addr in the properties file is set to NULL.

You can also list the host names where the agent might reside and then point to that
file with the vbroker.agent.addrFile option in the properties file.

Specifying an IP address with an environment variable

You can specify the IP address of a Smart Agent by setting the OSAGENT_ADDR
environment variable prior to starting your client program or object implementation.
This environment variable takes precedence if a host is not specified as a runtime
parameter.

UNIX

prompt> setenv OSAGENT_ADDR 199.10.9.5
prompt> client

Windows

To set the OSAGENT_ADDR environment variable on a Windows system, you can use the
System control panel and edit the environment variables:

1 Under System Variables, select any current variable.

2 Type OSAGENT_ADDR in the Variable edit box.

3 Type the IP address in the Value edit box. For example, 199.10.9.5.

Specifying hosts with the agentaddr file

Your client program or object implementation can use the agentaddr file to circumvent
the use of a UDP broadcast message to locate a Smart Agent. Simply create a file
containing the IP addresses or fully qualified hostnames of each host where a Smart
Agent is running and then set the OSAGENT_ADDR_FILE environment variable to point to
the path of the file. When a client program or object implementation has this
environment variable set, VisiBroker will try each address in the file until a Smart Agent
is located. This mechanism has the lowest precedence of all the mechanisms for
specifying a host. If this file is not specified, the VBROKER_ADM/agentaddr file is used.

 14: Using the Smart Agent 175

Ensuring object avai labi l i ty

Ensuring object availability
You can provide fault tolerance for objects by starting instances of those objects on
multiple hosts. If an implementation becomes unavailable, the VisiBroker ORB will
detect the loss of the connection between the client program and the object
implementation and will automatically contact the Smart Agent to establish a
connection with another instance of the object implementation, depending on the
effective rebind policy established by the client. For more information on establishing
client policies, go to the Client basics, “Using Quality of Service (QoS)”.

Note

The Smart Agent implements load balancing using a simple round-robin algorithm on a
per agent basis, not on an ORB domain basis. For load balancing between server
replicas, when you have more than one Smart Agent in the ORB domain, make sure all
servers are registered with the same Smart Agent.

Important

The rebind option must be enabled if VisiBroker is to attempt reconnecting the client
with an instance object implementation. This is the default behavior.

Invoking methods on stateless objects

Your client program can invoke a method on an object implementation which does not
maintain state without being concerned if a new instance of the object is being used.

Achieving fault-tolerance for objects that maintain state

Fault tolerance can also be achieved with object implementations that maintain state,
but it will not be transparent to the client program. In these cases, your client program
must either use the Quality of Service (QoS) policy VB_NOTIFY_REBIND or register an
interceptor for the VisiBroker ORB object. For information on using QoS, see “Using
Quality of Service (QoS)”.

When the connection to an object implementation fails and VisiBroker reconnects the
client to a replica object implementation, the bind method of the bind interceptor will be
invoked by VisiBroker. The client must provide an implementation of this bind method
to bring the state of the replica up to date. Client interceptors are described in “Client
Interceptors”.

Replicating objects registered with the OAD

The OAD ensures greater object availability because if the object goes down, the OAD
will restart it. If you want fault tolerance for hosts that may become unavailable, the
OAD must be started on multiple hosts and the objects must be registered with each
OAD instance.

Note

The type of object replication provided by VisiBroker does not provide a multicast or
mirroring facility. At any given time there is always a one-to-one correspondence
between a client program and a particular object implementation.

176 VisiBroker for Java Developer’s Guide

Migrat ing objects between hosts

Migrating objects between hosts
Object migration is the process of terminating an object implementation on one host,
and then starting it on another host. Object migration can be used to provide load
balancing by moving objects from overloaded hosts to hosts that have more resources
or processing power (there is no load balancing between servers registered with
different Samrt Agents.) Object migration can also be used to keep objects available
when a host is shutdown for hardware or software maintenance.

Note

The migration of objects that do not maintain state is transparent to the client program.
If a client is connected to an object implementation that has migrated, the Smart Agent
will detect the loss of the connection and transparently reconnect the client to the new
object on the new host.

Migrating objects that maintain state

The migration of objects that maintain state is also possible, but it will not be
transparent to a client program that has connected before the migration process
begins. In these cases, the client program must register an interceptor for the object.

When the connection to the original object is lost and VisiBroker reconnects the client
to the object, the interceptor's rebind_succeeded() member function will be invoked by
VisiBroker. The client can implement this function to bring the state of the object up to
date.

Refer to “Using Portable Interceptors” for more information about how to use the
interceptors.

Migrating instantiated objects

If the objects that you wish to migrate were created by a server process instantiating
the implementation's class, you need only start it on a new host and terminate the
server process. When the original instance is terminated, it will be unregistered with the
Smart Agent. When the new instance is started on the new host, it will register with the
Smart Agent. From that point on, client invocations are routed to the object
implementation on the new host.

Migrating objects registered with the OAD

If VisiBroker objects that you wish to migrate are registered with the OAD, you must
first unregister them with the OAD on the old host. Then, reregister them with the OAD
on the new host.

Use the following procedure to migrate objects already registered with the OAD:

1 Unregister the object implementation from the OAD on the old host.

2 Register the object implementation with the OAD on the new host.

3 Terminate the object implementation on the old host.

See “Using the Object Activation Daemon (OAD)” for detailed information on
registering and unregistering object implementations.

 14: Using the Smart Agent 177

Report ing a l l objects and services

Reporting all objects and services
The Smart Finder (osfind) command reports on all VisiBroker related objects and
services which are currently available on a given network.

You can use osfind to determine the number of Smart Agent processes running on the
network and the exact host on which they are executing. The osfind command also
reports on all VisiBroker objects that are active on the network if these objects are
registered with the Smart Agent. You can use osfind to monitor the status of the
network and locate stray objects during the debugging phase.

The osfind command has the following syntax:

osfind [options]

The following options are valid with osfind. If no options are specified, osfind lists all of
the agents, OAD's, and implementations in your domain.

Windows

osfind is a console application. If you start osfind from the Start menu, it runs until
completion and exits before you can view the results.

Binding to Objects
Before your client application invokes a method on an interface it must first obtain an
object reference using the bind() method.

When your client application invokes the bind() method, VisiBroker performs several
functions on behalf of your application. These are shown below.

– VisiBroker contacts the osagent to locate an object server that is offering the
requested interface. If an object name and a host name (or IP address) are specified,
they will be used to further qualify the directory service search.

– When an object implementation is located, VisiBroker attempts to establish a
connection between the object implementation that was located and your client
application.

– If the connection is successfully established, VisiBroker will create a proxy object if
necessary, and return a reference to that object.

Note

VisiBroker is not a separate process. It is a collection of classes and other resources
that allow communication between clients and servers.

Option Description

-a Lists all Smart Agents in your domain.

-b Uses the VisiBroker 2.0 backward compatible osfind
mechanism.

-d Prints hostnames as quad addresses.

-f
<agent_address_file_name>

Queries Smart Agents running on the hosts specified in the file.
This file contains one IP address or fully qualified host name
per line. Note that this file is not used when reporting all Smart
Agents; it is only used when reporting objects implementations
and services.

-g Verifies object existence. This can cause considerable delay on
loaded systems. Only objects registered BY_INSTANCE are verified
for existence. Objects that are either registered with the OAD,
or those registered BY_POA policy are not verified for existence.

-h, -help, -usage, -? Prints help information for this option.

-o Lists all OADs in your domain.

-p Lists all POA instances activated on the same host. Without
this option only unique POA names are listed.

178 VisiBroker for Java Developer’s Guide

 15: Using the Locat ion Service 179

Using the Location Service
The VisiBroker Location Service provides enhanced object discovery that enables you
to find object instances based on particular attributes. Working with VisiBroker Smart
Agents, the Location Service notifies you of what objects are presently accessible on
the network, and where they reside. The Location Service is a VisiBroker extension to
the CORBA specification and is only useful for finding objects implemented with
VisiBroker. For more information on the Smart Agent (osagent), see “Using the Smart
Agent.”

What is the Location Service?
The Location Service is an extension to the CORBA specification that provides
general-purpose facilities for locating object instances. The Location Service
communicates directly with one Smart Agent which maintains a catalog, which
contains the list of the instances it knows about. When queried by the Location Service,
a Smart Agent forwards the query to the other Smart Agents, and aggregates their
replies in the result it returns to the Location Service.

The Location Service knows about all object instances that are registered on a POA
with the BY_INSTANCE Policy and objects that are registered as persistent on a BOA. The
server containing these objects may be started manually or automatically by the OAD.
For more information, see “Using POAs,” “Using the BOA with VisiBroker,” and “Using
the Object Activation Daemon (OAD).”

The following diagram illustrates this concept.

Figure 15.1 Using the Smart Agent to find instances of objects

180 VisiBroker for Java Developer’s Guide

What is the Locat ion Serv ice?

Note

A server specifies an instance's scope when it creates the instance. Only globally-
scoped instances are registered with Smart Agents.

The Location Service can make use of the information the Smart Agent keeps about
each object instance. For each object instance, the Location Service maintains
information encapsulated in the structure ObjLocation::Desc shown below.

struct Desc {
 Object ref;
 ::IIOP::ProfileBodyValue iiop_locator;
 string repository_id;
 string instance_name;
 boolean activable;
 string agent_hostname;
};
typedef sequence<Desc> DescSeq;

The IDL for the Desc structure contains the following information:

– The object reference, ref, is a handle for invoking the object.

– The iiop_locator interface provides access to the host name and the port of the
instance's server. This information is only meaningful if the object is connected with
IIOP, which is the only supported protocol. Host names are returned as strings in the
instance description.

– The repository_ id, which is the interface designation for the object instance that can
be looked up in the Interface and Implementation Repositories. If an instance
satisfies multiple interfaces, the catalog contains an entry for each interface, as if
there were an instance for each interface.

– The instance_name, which is the name given to the object by its server.

– The activable flag, which differentiates between instances that can be activated by
an OAD and instances that are started manually.

– The agent_hostname, the name of the Smart Agent with which the instance is
registered.

The Location Service is useful for purposes such as load balancing and monitoring.
Suppose that replicas of an object are located on several hosts. You could deploy a
bind interceptor that maintains a cache of the host names that offer a replica and each
host's recent load average. The interceptor updates its cache by asking the Location
Service for the hosts currently offering instances of the object, and then queries the
hosts to obtain their load averages. The interceptor then returns an object reference for
the replica on the host with the lightest load. For more information about writing
interceptors, see “Using Portable Interceptors” and “Using VisiBroker Interceptors.”

 15: Using the Locat ion Service 181

Locat ion Service components

Location Service components
The Location Service is accessible through the Agent interface. Methods for the Agent
interface can be divided into two groups: those that query a Smart Agent for data
describing instances and those that register and unregister triggers. Triggers provide a
mechanism by which clients of the Location Service can be notified of changes to the
availability of instances.

What is the Location Service agent?

The Location Service agent is a collection of methods that enable you to discover
objects on a network of Smart Agents. You can query based on the interface’s
repository ID, or based on a combination of the interface's repository ID and the
instance name. Results of a query can be returned as either object references or more
complete instance descriptions. An object reference is simply a handle to a specific
instance of the object located by a Smart Agent. Instance descriptions contain the
object reference, as well as the instance's interface name, instance name, host name
and port number, and information about its state (for example, whether it is running or
can be activated).

Note

The locserv executable no longer exists since the service is now part of the core
VisiBroker ORB.

The figure below illustrates the use of interface repository IDs and instance names
given the following example IDL:

module Automobile {
 interface Car{...};
 interface Sedan:Car {...};
}

Figure 15.2 Use of interface repository IDs and instance names

Given the previous example, the following diagram visually depicts Smart Agents on a
network with references to instances of Car. In this example, there are three instances:
one instance of Keri's Car and two replicas of Tom's Car.

Figure 15.3 Smart Agents on a network with instances of an interface

The following sections explain how the methods provided by the Agent class can be
used to query VisiBroker Smart Agents for information. Each of the query methods can
raise the Fail exception, which provides a reason for the failure.

182 VisiBroker for Java Developer’s Guide

Locat ion Service components

Obtaining addresses of all hosts running Smart Agents
Using the String[] in the all_agent_locations() method, you can find out which servers
are hosting VisiBroker Smart Agents. In the example shown in the figure below, this
method would return the addresses (such as, IP address string) of two servers: Athena
and Zeus.

Finding all accessible interfaces
You can query the VisiBroker Smart Agents on a network to find out about all
accessible interfaces. To do so, you can use the String[] in the all_repository_ids()
method. In the example shown in the following figure, this method would return the
repository IDs of two interfaces: Car and Sedan.

Note

Earlier versions of the VisiBroker ORB used IDL interface names to identify interfaces,
but the Location Service uses the repository id instead. To illustrate the difference, if an
interface name is:

::module1::module2::interface

the equivalent repository id is:

IDL:module1/module2/interface:1.0

For the example shown in the figure above, the repository ID for Car would be:

IDL:Automobile/Car:1.0

and the repository ID for Sedan would be:

IDL:Automobile/Sedan:1.0

Obtaining references to instances of an interface
You can query VisiBroker Smart Agents on a network to find all available instances of a
particular interface. When performing the query, you can use either of these methods:

In the example shown in the figure above, a call to either method with the request
IDL:Automobile/Car:1.0 would return three instances of the Car interface: Tom's Car on
Athena, Tom's Car on Zeus, and Keri's Car. The Tom's Car instance is returned twice
because there are occurrences of it with two different Smart Agents.

Obtaining references to like-named instances of an interface
Using one of the following methods, you can query VisiBroker Smart Agents on a
network to return all occurrences of a particular instance name.

In the example shown in the previous figure, a call to either method specifying the
repository ID IDL:Automobile/Sedan:1.0 and instance name Tom's Car would return two
instances because there are occurrences of it with two different Smart Agents.

Method Description

org.omg.CORBA.Object[]
all_instances(String repository_id)

Use this method to return object references to
instances of the interface.

Desc[] all_instance_descs(Stringrepository_id) Use this method to return an instance
description for instances of the interface.

Method Description

org.omg.CORBA.Object[] all_replica String
repository_id, String instance_name

Use this method to return object references to like-
named instances of the interface.

Desc[] all_replica_descs(String
repository_id, String instance_name)

Use this method to return an instance description
for like-named instances of the interface.

 15: Using the Locat ion Service 183

Locat ion Service components

What is a trigger?

A trigger is essentially a callback mechanism that lets you determine changes to the
availability of a specified instance. It is an asynchronous alternative to polling an Agent,
and is typically used to recover after the connection to an object has been lost.
Whereas queries can be employed in many ways, triggers are special-purpose.

Looking at trigger methods
The trigger methods in the Agent class are described in the following tables:

Both of the Agent trigger methods can raise the Fail exception, which provides a
reason for the failure.

The TriggerHandler interface consists of the methods described in the following tables:

Creating triggers
A TriggerHandler is a callback object. You implement a TriggerHandler by deriving from
theTriggerHandlerPOA class (or the TriggerHandlerImpl class with BOA), and
implementing its impl_is_ready() and impl_is_down() methods. To register a trigger
with the Location Service, you use the reg_trigger() method in the Agent interface.
This method requires that you provide a description of the instance you want to
monitor, and the TriggerHandler object you want invoked when the availability of the
instance changes. The instance description (TriggerDesc) can contain combinations of
the following instance information: repository ID, instance name, and host name. The
more instance information you provide, the more particular your specification of the
instance.

struct TriggerDesc {
 string repository_id;
 string instance_name;
 string host_name;
};

Note

If a field in the TriggerDesc is set to the empty string (““), it is ignored. The default for
each field value is the empty string.

For example, a TriggerDesc containing only a repository ID matches any instance of the
interface. Looking back to our example in the figure above, a trigger for any instance of
IDL:Automobile/Car:1.0 would occur when one of the following instances becomes
available or unavailable: Tom's Car on Athena, Tom's Car on Zeus, or Keri's Car.
Adding an instance name of “Tom's Car” to the TriggerDesc tightens the specification
so that the trigger only occurs when the availability of one of the two “Tom's Car”
instances changes. Finally, adding a host name of Athena refines the trigger further so
that it only occurs when the instance Tom's Car on the Athena server becomes
available or unavailable.

Methods Description

void reg_trigger(
com.inprise.vbroker.ObjLocation.TriggerDescdesc,com.inprise.
vbroker.ObjLocation.TriggerHandler handler)

Use this method to register a
trigger handler.

void unreg_trigger(
com.inprise.vbroker.ObjLocation.TriggerDesc desc,com.inprise.
vbroker.ObjLocation.TriggerHandler handler)

Use this method to unregister
a trigger handler.

Method Description

void impl_is_ready(com.inprise.
vbroker.ObjLocation.TriggerDescdesc)

This method is called by the Location Service when an
instance matching the desc becomes accessible.

void impl_is_down(com.inprise.
vbroker.ObjLocation.TriggerDescdesc)

This method is called by the Location Service when an
instance becomes unavailable.

184 VisiBroker for Java Developer’s Guide

Querying an agent

Looking at only the first instance found by a trigger
Triggers are “sticky.” A TriggerHandler is invoked every time an object satisfying the
trigger description becomes accessible. You may only be interested in learning when
the first instance becomes accessible. If this is the case, invoke the Agent's
unreg_trigger() method to unregister the trigger after the first occurrence is found.

Querying an agent
This section contains two examples of using the Location Service to find instances of
an interface. The first example uses the Account interface shown in the following IDL
excerpt:

// Bank.idl
module Bank {
 interface Account {
 float balance();
 };
 interface AccountManager {
 Account open (in string name);
 };
};

Finding all instances of an interface

The following code sample uses the all_instances() method to locate all instances of
the Account interface. Notice that the Smart Agents are queried by passing
“LocationService” to the ORB.resolve_initial_references() method, then narrowing the
object returned by that method to an ObjLocation.Agent . Notice, as well, the format of
the Account repository id: IDL:Bank/Account:1.0.

Finding all instances satisfying the AccountManager interface:

// AccountFinder.java
public class AccountFinder {
 public static void main(String[] args) {
 try {
 // Initialize the ORB.
 org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,null);
 com.inprise.vbroker.ObjLocation.Agent the_agent = null;
 try {
 the_agent = com.inprise.vbroker.ObjLocation.AgentHelper.narrow(
 orb.resolve_initial_references("LocationService"));
 }
 catch (org.omg.CORBA.ORBPackage.InvalidName e) {
 System.out.println("Not able to resolve references " +
 "for LocationService");
 System.exit(1);
 }
 catch (Exception e) {
 System.out.println("Unable to locate LocationService!");
 System.out.println("Caught exception: " + e);
 System.exit(1);
 }
 org.omg.CORBA.Object[] accountRefs =
 the_agent.all_instances("IDL:Bank/AccountManager:1.0");
 System.out.println("Agent returned " + accountRefs.length +
 " object references");
 for (int i=0; i < accountRefs.length; i++) {
 System.out.println("Stringified IOR for account #" + (i+1) + ":");
 System.out.println(orb.object_to_string(accountRefs[i]));

 15: Using the Locat ion Service 185

Querying an agent

 System.out.println();
 }
 } catch (Exception e) {
 System.out.println("Caught exception: " + e);
 System.exit(1);
 }
 }
}

Finding interfaces and instances known to Smart Agents

The following code sample shows how to find everything known to Smart Agents. It
does this by invoking the all_repository_ids() method to obtain all known interfaces.
Then it invokes the all_instances_descs() method for each interface to obtain the
instance descriptions.

Finding everything known to a Smart Agent:

// Find.java
public class Find {
public static void main(String[] args) {
 try {
 // Initialize the ORB.
 org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,null);
 com.inprise.vbroker.ObjLocation.Agent agent = null;
 try {
 agent = com.inprise.vbroker.ObjLocation.AgentHelper.narrow(
 orb.resolve_initial_references("LocationService"));
 } catch (org.omg.CORBA.ORBPackage.InvalidName e) {
 System.out.println("Not able to resolve references " + "for
 LocationService");
 System.exit(1);
 } catch (Exception e) {
 System.out.println("Not able to resolve references " + "for
 LocationService");
 System.out.println("Caught exception: " + e);
 System.exit(1);
 }
 boolean done=false;
 java.io.BufferedReader in =

new java.io.BufferedReader(new java.io.InputStreamReader(System.in));

186 VisiBroker for Java Developer’s Guide

Querying an agent

while (! done) {
 System.out.print("-> ");
 System.out.flush();
 String line = in.readLine();
 if(line.startsWith("agents")) {
 java.lang.String[] agentList = agent.all_agent_locations();
 System.out.println("Located " + agentList.length + " agents");
 for (int i=0; i < agentList.length; i++) {
 System.out.println("\t" + "Agent #" + (i+1) + ": " +
 agentList[i]);
 }
 } else if(line.startsWith("rep")) {
 java.lang.String[] repIds = agent.all_repository_ids();
 System.out.println("Located " + repIds.length + " repository Ids");
 for (int i=0; i < repIds.length; i++) {
 System.out.println("\t" + "Repository Id #" + (i+1) + ": " +
 repIds[i]);
 }
 } else if(line.startsWith("objects ")) {
 String names = line.substring("objects ".length(), line.length());
 PrintObjects(names,agent,orb);
 } else if(line.startsWith("quit")) {
 done = true;
 } else {
 System.out.println("Commands: agents\n" +
 " repository_ids\n" +
 " objects <rep Id>\n" +
 " objects <rep Id> <obj name>\n" +
 " quit\n");
 }
 }
 } catch (com.inprise.vbroker.ObjLocation.Fail err) {
 System.out.println("Location call failed with reason " + err.reason);
 } catch (java.lang.Exception err) {
 System.out.println("Caught error " + err);
 err.printStackTrace();
 }
}
public static void PrintObjects(String names,
 com.inprise.vbroker.ObjLocation.Agent agent,
 org.omg.CORBA.ORB orb)
 throws com.inprise.vbroker.ObjLocation.Fail {
 int space_pos = names.indexOf(' ');
 String repository_id;
 String object_name;
 if (space_pos == -1) {
 repository_id = names;
 object_name = null;
 } else {
 repository_id = names.substring(0,names.indexOf(' '));
 object_name = names.substring(names.indexOf(' ')+1);
 }
 org.omg.CORBA.Object[] objects;
 com.inprise.vbroker.ObjLocation.Desc[] descriptors;
 if (object_name == null) {
 objects = agent.all_instances(repository_id);
 descriptors = agent.all_instances_descs(repository_id);

 15: Using the Locat ion Service 187

Writ ing and register ing a t r igger handler

} else {
 objects = agent.all_replica(repository_id,object_name);
 descriptors = agent.all_replica_descs(repository_id,object_name);
 }
 System.out.println("Returned " + objects.length + " objects");
 for (int i=0; i<objects.length; i++) {
 System.out.println("\n\nObject #" + (i+1) + ":");
 System.out.println("==================");
 System.out.println("\tRep ID: " +
 ((com.inprise.vbroker.CORBA.Object)objects[i])._repository_id());
 System.out.println("\tInstance:" +
 ((com.inprise.vbroker.CORBA.Object)objects[i])._object_name());
 System.out.println("\tIOR: " + orb.object_to_string(objects[i]));
 System.out.println();
 System.out.println("Descriptor #" + (i+1));
 System.out.println("=====================================");
 System.out.println("Host: " + descriptors[i].iiop_locator.host);
 System.out.println("Port: " + descriptors[i].iiop_locator.port);
 System.out.println("Agent Host: " + descriptors[i].agent_hostname);
 System.out.println("Repository Id: " + descriptors[i].repository_id);
 System.out.println("Instance: " + descriptors[i].instance_name);
 System.out.println("Activable: " + descriptors[i].activable);
 }
 }
}

Writing and registering a trigger handler
The following code sample implements and registers a TriggerHandler. The
TriggerHandlerImpl's impl_is_ready() and impl_is_down() methods display the
description of the instance that caused the trigger to be invoked, and optionally
unregister itself.

If it is unregistered, the method calls System.exit() to terminate the program.

Notice that the TriggerHandlerImpl class keeps a copy of the desc and Agent parameters
with which it was created. The unreg_trigger() method requires the desc parameter.
The Agent parameter is duplicated in case the reference from the main program is
released.

Implementing a trigger handler:

// AccountTrigger.java
import java.io.*;
import org.omg.PortableServer.*;
class TriggerHandlerImpl extends
 com.inprise.vbroker.ObjLocation.TriggerHandlerPOA {
 public TriggerHandlerImpl(com.inprise.vbroker.ObjLocation.Agent agent,
 com.inprise.vbroker.ObjLocation.TriggerDesc initial_desc) {
 agent = agent;
 initial_desc = initial_desc;
 }
 public void impl_is_ready(com.inprise.vbroker.ObjLocation.Desc desc) {
 notification(desc, true);
 }
 public void impl_is_down(com.inprise.vbroker.ObjLocation.Desc desc) {
 notification(desc, false);
 }

188 VisiBroker for Java Developer’s Guide

Wri t ing and register ing a t r igger handler

private void notification(com.inprise.vbroker.ObjLocation.Desc desc,
 boolean isReady) {
 if (isReady) {
 System.out.println("Implementation is ready:");
 } else {
 System.out.println("Implementation is down:");
 }
 System.out.println("\tRepository Id = " + desc.repository_id + "\n" +
 "\tInstance Name = " + desc.instance_name + "\n" +
 "\tHost Name = " + desc.iiop_locator.host + "\n" +
 "\tBOA Port = " + desc.iiop_locator.port + "\n" +
 "\tActivable = " + desc.activable + "\n" + "\n");
 System.out.println("Unregister this handler and exit (yes/no)?");
 try {
 BufferedReader in = new BufferedReader(
 new InputStreamReader(System.in));
 String line = in.readLine();
 if(line.startsWith("y") || line.startsWith("Y")) {
 try {
 agent.unreg_trigger(_initial_desc, _this());
 } catch (com.inprise.vbroker.ObjLocation.Fail e) {
 System.out.println("Failed to unregister trigger with

reason=[" + e.reason + "]");
 }
 System.out.println("exiting...");
 System.exit(0);
 }
 } catch (java.io.IOException e) {
 System.out.println("Unexpected exception caught: " + e);
 System.exit(1);
 }
 }
 private com.inprise.vbroker.ObjLocation.Agent _agent;
 private com.inprise.vbroker.ObjLocation.TriggerDesc _initial_desc;
}
public class AccountTrigger {
 public static void main(String args[]) {
 try {
 // Initialize the ORB.
 org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,null);
 POA rootPoa =
 POAHelper.narrow(orb.resolve_initial_references("RootPOA"));
 rootPoa.the_POAManager().activate();
 com.inprise.vbroker.ObjLocation.Agent the_agent =
 com.inprise.vbroker.ObjLocation.AgentHelper.narrow(
orb.resolve_initial_references("LocationService"));
 // Create a trigger description and an appropriate TriggerHandler.
 // The TriggerHandler will be invoked when the osagent becomes
 // aware of any new implementations of the interface
 "Bank::AccountManager"
 com.inprise.vbroker.ObjLocation.TriggerDesc desc =
 new com.inprise.vbroker.ObjLocation.TriggerDesc(
 "IDL:Bank/AccountManager:1.0", "", "");
 TriggerHandlerImpl trig = new TriggerHandlerImpl(the_agent, desc);
 rootPoa.activate_object(trig);
 the_agent.reg_trigger(desc, trig._this());
 orb.run();
 } catch (Exception e) {
 e.printStackTrace();
 System.exit(1);
 }
 }
}

 16: Using the VisiNaming Service 189

Using the VisiNaming Service
This section describes the usage of the VisiBroker VisiNaming Service which is a
complete implementation of the CORBA Naming Service Specification Version 1.2
(formal/02–09–02).

Overview
The VisiNaming Service allows you to associate one or more logical names with an
object reference and store those names in a namespace. With the VisiNaming Service,
your client applications can obtain an object reference by using the logical name
assigned to that object.

The figure below contains a simplified view of the VisiNaming Service that shows how

1 an object implementation can bind a name to one of its objects within a namespace.

2 client applications can then use the same namespace to resolve a name which
returns an object reference to a naming context or an object.

190 VisiBroker for Java Developer’s Guide

Understanding the namespace

Figure 16.1 Binding, resolving, and using an object name from a naming context within a namespace

There are some important differences to consider between locating an object
implementation with the VisiNaming Service as opposed to the Smart Agent.

– Smart Agent uses a flat namespace, while the VisiNaming Service uses a
hierarchical one.

– If you use the Smart Agent, an object's interface name is defined at the time you
compile your client and server applications. This means that if you change an
interface name, you must recompile your applications. In contrast, the VisiNaming
service allows object implementations to bind logical names to its objects at runtime.

– If you use the Smart Agent, an object may implement only one interface name. The
VisiNaming service allows you to bind more than one logical name to a single object.

For more information about the Smart Agent (osagent),see “Using the Smart Agent.”

Understanding the namespace
The figure below shows how the VisiNaming Service might be used to name objects
that make up an order entry system. This hypothetical order entry system organizes its
namespace by geographic region, then by department, and so on. The VisiNaming
Service allows you to organize the namespace in a hierarchical structure of
NamingContext objects that can be traversed to locate a particular name. For example,
the logical name NorthAmerica/ShippingDepartment/Orders could be used to locate an
Order object.

 16: Using the Vis iNaming Service 191

Understanding the namespace

Figure 16.2 Naming scheme for an order entry system

Naming contexts

To implement the namespace shown above with the VisiNaming Service, each of the
shadowed boxes in the diagram above, would be implemented by a NamingContext
object. A NamingContext object contains a list of Name structures that have been bound to
object implementations or to other NamingContext objects. Though a logical name may
be bound to a NamingContext, it is important to realize that a NamingContext does not, by
default, have a logical name associated with it nor is such a name required.

Object implementations use a NamingContext object to bind a name to an object that
they offer. Client applications use a NamingContext to resolve a bound name to an object
reference.

A NamingContextExt interface is also available which provides methods necessary for
using stringified names.

Naming context factories

A naming context factory provides the interface for bootstrapping the VisiNaming
Service. It has operations for shutting down the VisiNaming Service and creating new
contexts when there are none. Factories also have an additional API that returns the
root context. The root context provides a very critical role as a reference point. This is
the common starting point to store all data that are supposed to be publicly available.

Two classes are provided with the VisiNaming Service that allow you to create a
namespace; the default naming context factory and the extended naming context
factory. The default naming context factory creates an empty namespace that has no
root NamingContext. You may find it more convenient to use the extended naming
context factory because it creates a namespace with a root NamingContext.

You must obtain at least one of these NamingContext objects before your object
implementations can bind names to their objects and before client applications can
resolve a name to an object reference.

192 VisiBroker for Java Developer’s Guide

Understanding the namespace

Each of the NamingContext objects shown in the figure above could be implemented
within a single name service process, or they could be implemented within as many as
five distinct name server processes.

Names and NameComponent

A CosNaming::Name represents an identifier that can be bound to an object
implementation or a CosNaming::NamingContext. A Name is not simply a string of
alphanumeric characters; it is a sequence of one or more NameComponent structures.

Each NameComponent contains two attribute strings, id and kind. The Naming service
does not interpret or manage these strings, except to ensure that each id and kind is
unique within a given NamingContext.

The id and kind attributes are strings which uniquely identify the object to which the
name is bound. The kind member adds a descriptive quality to the name. For example,
the name “Inventory.RDBMS” has an id member of “Inventory” and a kind member of
“RDBMS.”

module CosNaming
 typedef string Istring;
 struct NameComponent {
 Istring id;
 Istring kind;
 };
 typedef sequence<NameComponent> Name;
};

The id and kind attributes of NameComponent in the code example above, must be a
character from the ISO 8859-1 (Latin-1) character set, excluding the null character
(0x00) and other non-printable characters. Neither of the strings in NameComponent can
exceed 255 characters. Furthermore, the VisiNaming Service does not support
NameComponent which uses wide strings.

Note

The id attribute of a Name cannot be an empty string, but the kind attribute can be an
empty string.

Name resolution

Your client applications use the NamingContext method resolve to obtain an object
reference, given a logical Name. Because a Name consists of one or more NameComponent
objects, the resolution process requires that all of the NameComponent structures that
make up the Name be traversed.

Stringified names
Because the representation of CosNaming::Name is not in a form that is readable or
convenient for exchange, a stringified name has been defined to resolve this problem.
A stringified name is a one-to-one mapping between a string and a CosNaming::Name. If
two CosNaming::Name objects are equal, then their stringified representations are equal
and vice versa. In a stringified name, a forward slash (/) serves as a name component
separator; a period (.) serves as the id and kind attributes separator; and a backslash
(\) serves as an escape character. By convention a NameComponent with an empty kind
attribute does not use a period (for example, Order).

"Borland.Company/Engineering.Department/Printer.Resource"

Note

In the following examples, NameComponent structures are given in their stringified
representations.

 16: Using the Vis iNaming Service 193

Running the Vis iNaming Service

Simple and complex names
A simple name, such as Billing, has only a single NameComponent and is always resolved
relative to the target naming context. A simple name may be bound to an object
implementation or to a NamingContext.

A complex name, such as NorthAmerica/ShippingDepartment/Inventory, consists of a
sequence of three NameComponent structures. If a complex name consisting of n
NameComponent objects has been bound to an object implementation, then the first (n–1)
NameComponent objects in the sequence must each resolve to a NamingContext, and the
last NameComponent object must resolve to an object implementation.

If a Name is bound to a NamingContext, each NameComponent structure in the sequence
must refer to a NamingContext.

The code sample below shows a complex name, consisting of three components and
bound to a CORBA object. This name corresponds to the stringified name,
NorthAmerica/SalesDepartment/Order. When resolved within the topmost naming
context, the first two components of this complex name resolve to NamingContext
objects, while the last component resolves to an object implementation with the logical
name “Order.”

...
// Name stringifies to "NorthAmerica/SalesDepartment/Order"
NameComponent[] continentName = { new NameComponent("NorthAmerica", "") };
NamingContext continentContext =
 rootNamingContext.bind_new_context(continentName);
NameComponent[] departmentName = { new NameComponent("SalesDepartment", "") };
NamingContext departmentContext =
 continentContext.bind_new_context(departmentName);

NameComponent[] objectName = { new NameComponent("Order", "") };
departmentContext.rebind(objectName,myPOA.servant_to_reference(managerServant))
;
...

Running the VisiNaming Service
The VisiNaming Service can be started with the following commands. Once you have
started the Naming service, you may browse its contents by using the VisiBroker
Console.

Installing the VisiNaming Service

The VisiNaming Service is installed automatically when you install VisiBroker. It
consists of a file nameserv, which for Windows is a binary executable and for UNIX is a
script, and Java class files which are stored in the vbjorb.jar file.

Configuring the VisiNaming Service

In previous versions of VisiBroker, the VisiNaming Service maintained persistence by
logging any modifying operations to a flat-file. From version 4.0 onward, the
VisiNaming Service works in conjunction with backing store adapters. It is important to
note that not all backing store adapters support persistence. The default InMemory
adapter is non-persistent while all the other adapters are. For more details about
adapters, see “Pluggable backing store”.

Note

A Naming Server is designed to register itself with the Smart Agent. In most cases you
should to run the Smart Agent to bootstrap the VisiNaming Service. This allows clients
to retrieve the initial root context by calling the resolve_initial_references method. The
resolving function works through the Smart Agent for the retrieval of the required

194 VisiBroker for Java Developer’s Guide

Invoking the Vis iNaming Service f rom the command l ine

references. Similarly, Naming Servers that participate in a federation also uses the
same mechanism for setting up a federation.

For more information about the Smart Agent, see “Using the Smart Agent.”

Starting the VisiNaming Service

You can start the VisiNaming Service by using the nameserv launcher program in the /
bin directory. The nameserv launcher uses the com.inprise.vbroker.naming.ExtFactory
factory class by default.

UNIX

nameserv [driver_options] [nameserv_options] <ns_name> &

Windows

start nameserv [driver_options] [nameserv_options] <ns_name>

See “General options” for descriptions of the driver options available to all of the
VisiBroker programmer tools.

In order to force the VisiNaming Service to start on a particular port, the VisiNaming
Service must be started with the following command line option:

prompt> nameserv -J-Dvbroker.se.iiop_tp.scm.iiop_tp.listener.port=<port number>

The default name for VisiNaming is “NameService”, if you want to specify a name other
than this, you can start VisiNaming in the following way:

prompt> nameserv -J-Dvbroker.se.iiop_tp.scm.iiop_tp.listener.port=<port number>
<ns_name>

Starting the VisiNaming Service with the vbj command
The VisiNaming Service can be started using vbj.

prompt>vbj com.inprise.vbroker.naming.ExtFactory <ns_name>

Invoking the VisiNaming Service from the command line
The VisiNaming Service Utility (nsutil) provides the ability to store and retrieve
bindings from the command line.

Configuring nsutil

To use nsutil, first configure the Naming service instance using the following
commands:

prompt>nameserv <ns_name>

prompt>nsutil -VBJprop <option> <cmd> [args]

nameserv_option Description

-?, -h, -help, -usage Print out the usage information.

-config <properties_file> Use <properties_file> as the configuration file when starting up the
VisiNaming Service.

<ns_name> The name to use for this VisiNaming Service. This is optional; the
default name is NameService.

Option Description

ns_name Configure the Naming service to contact

SVCnameroot=<ns_name> Note: Before using SVCnameroot, you must first run OSAgent.

 16: Using the Vis iNaming Service 195

Invoking the Vis iNaming Service f rom the command l ine

Running nsutil

The VisiNaming Service Utility supports all the CosNaming operations as well as three
additional commands. The CosNaming operations supported are:

Note

For the operations destroy and list, the name parameter must refer to existing naming
contexts. For the operation list only, there can be zero or more naming contexts,
whose contents will be listed. In the case where no naming context is specified, the
content of the root naming context will be listed.

The additional nsutil commands are:

To run an operation from the nsutil command, place the operation name and its
parameters as the <cmd> parameter. For example:

prompt>nsutil -VBJprop ORBInitRef=NameService=file://ns.ior resolve myName

Shutting down the VisiNaming Service using nsutil

To shut down the VisiNaming Service using nsutil, use the shutdown command:

prompt>nsutil -VBJprop ORBInitRef=NameService=file://ns.ior shutdown <ns_name>

ORBInitRef=NameService=<url> File name or URL, prefixed by its type, which may be (corbaloc:,
corbaname:, file:, ftp:, http:, or ior:). For example, to assign a
file in a local directory, the ns_config string would be:-VBJprop
ORBInitRef=NameService=<file:ns.ior>

cmd Any CosNaming operation, and, in addition, ping and shutdown.

cmd Parameter(s)

bind name objRef

bind_context name ctxRef

bind_new_context name

destroy name

list [name1 name2 name3...]

new_context No parameter

rebind name objRef

rebind_context name ctxRef

resolve name

unbind name

cmd Parameter Description

ping name Resolves the stringified name and contacts the
object to see if it is still alive.

shutdown <naming context factory
name or stringified ior>

Shuts the VisiNaming Service down gracefully
from the command line. The mandatory
parameter of this operation specifies either the
naming context factory's name as registered
with the osagent or the stringified IOR of the
factory.

unbind_from_cluster name objRef Unbinds a specific object in an implicit cluster.
The name is the object's logical name and the
objRef is the stringified object reference that is
to be unbound.

Option Description

196 VisiBroker for Java Developer’s Guide

Bootst rapping the Vis iNaming Service

Bootstrapping the VisiNaming Service
There are three ways to start a client application to obtain an initial object reference to
a specified VisiNaming Service. You can use the following command-line options when
starting the VisiNaming Service:

– ORBInitRef

– ORBDefaultInitRef

– SVCnameroot

The following example illustrates how to use these options.

Suppose there are three VisiNaming Services running on the host TestHost: ns1, ns2,
and ns3, running on the ports 20001, 20002 and 20003 respectively. And there are
three server applications: sr1, sr2, sr3. Server sr1 binds itself in ns1, Server sr2 binds
itself in ns2, and server sr3 in ns3.

Calling resolve_initial_references

The VisiNaming Service provides a simple mechanism by which the
resolve_initial_references method can be configured to return a common naming
context. You use the resolve_initial_references method which returns the root context
of the Naming Server to which the client program connects.

...
 org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args, null);
 org.omg.CORBA.Object rootObj =
orb.resolve_initial_references("NameService");
...

Using -DSVCnameroot

You use the -DSVCnameroot option to specify into which VisiNaming Service instance
(especially important if several unrelated Naming service instances are running) you
want to bootstrap.

For instance, if you want to bootstrap into ns1, you would start your client program as:

vbj -DSVCnameroot=ns1 <client_application>

You can then obtain the root context of ns1 by calling the resolve_initial_references
method on an ORB reference inside your client application as illustrated below. The
Smart Agent must be running in order to use this option.

Using -DORBInitRef

You can use either the corbaloc or corbaname URL naming schemes to specify which
VisiNaming Service you want to bootstrap. This method does not rely on the Smart
Agent.

Using a corbaloc URL
If you want to bootstrap using VisiNaming Service ns2, then start your client application
as follows:

vbj -DORBInitRef=NameService=corbaloc::TestHost:20002/NameService
<client_application>

You can then obtain the root context of ns2 by calling the resolve_initial_references
method on the VisiBroker ORB reference inside your client application as illustrated in
the example above.

 16: Using the Vis iNaming Service 197

NamingContext

Note

The deprecated iioploc and iiopname URL schemes are implemented by corbaloc and
corbaname, respectively. For backwards compatibility, the old schemes are still
supported.

Using a corbaname URL
If you want to bootstrap into ns3 by using corbaname, then you should start your client
program as:

vbj -DORBInitRef NameService=corbaname::TestHost:20003/ <client_application>

You can then obtain the root context of ns3 by calling the resolve_initial_references
method on the VisiBroker ORB reference inside your client application as illustrated
above.

-DORBDefaultInitRef
You can use either a corbaloc or corbaname URL to specify which VisiNaming Service
you want to bootstrap. This method does not rely on the Smart Agent.

Using -DORBDefaultInitRef with a corbaloc URL
If you want to bootstrap into ns2, then you should start your client program as:

vbj -DORBDefaultInitRef corbaloc::TestHost:20002 <client_application>

You can then obtain the root context of ns2 by calling the resolve_initial_references
method on the VisiBroker ORB reference inside your client application as illustrated in
the sample above.

The following is an example of how to set up multiple VisiNaming Services using
corbaloc:

client -DORBDefaultInitRef
NameService=corbaloc::bart:20000,:Bart:20001,:Bart:20002/NameService
 -ORBpropStorage clt.props

Using -DORBDefaultInitRef with corbaname
The combination of -ORBDefaultInitRef or -DORBDefaultInitRef and corbaname works
differently from what is expected. If -ORBDefaultInitRef or -DORBDefaultInitRef is
specified, a slash and the stringified object key is always appended to the corbaname.

If the URL is corbaname::TestHost:20002, then by specifying -DORBDefaultInitRef,
resolve_initial_references in Java will result in a new URL:
corbaname::TestHost:20003/NameService.

NamingContext
This object is used to contain and manipulate a list of names that are bound to
VisiBroker ORB objects or to other NamingContext objects. Client applications use this
interface to resolve or list all of the names within that context. Object implementations
use this object to bind names to object implementations or to bind a name to a
NamingContext object. The sample below shows the IDL specification for the
NamingContext.

Module CosNaming {
 interface NamingContext {
 void bind(in Name n, in Object obj)
 raises(NotFound, CannotProceed, InvalidName, AlreadyBound);
 void rebind(in Name n, in Object obj)
 raises(NotFound, CannotProceed, InvalidName);
 void bind_context(in Name n, in NamingContext nc)
 raises(NotFound, CannotProceed, InvalidName, AlreadyBound);
 void rebind_context(in Name n, in NamingContext NC)
 raises(NotFound, CannotProceed, InvalidName);

198 VisiBroker for Java Developer’s Guide

NamingContextExt

 Object resolve(in Name n)
 raises(NotFound, CannotProceed, InvalidName);
 void unbind(in Name n)
 raises(NotFound, CannotProceed, InvalidName);
 NamingContext new_context();
 NamingContext bind_new_context(in Name n)
 raises(NotFound, CannotProceed, InvalidName, AlreadyBound);
 void destroy()
 raises(NotEmpty);
 void list(in unsigned long how_many,
 out BindingList bl,
 out BindingIterator bi);
 };
};

NamingContextExt
The NamingContextExt interface, which extends NamingContext, provides the operations
required to use stringified names and URLs.

Module CosNaming {
 interface NamingContextExt : NamingContext {
 typedef string StringName;
 typedef string Address;
 typedef string URLString;
 StringName to_string(in Name n)
 raises(InvalidName);
 Name to_name(in StringName sn)
 raises(InvalidName);
 exception InvalidAddress {};
 URLString to_url(in Address addr, in StringName sn)
 raises(InvalidAddress, InvalidName);
 Object resolve_str(in StringName n)
 raises(NotFound, CannotProceed, InvalidName);
 };
};

Default naming contexts
A client application can specify a default naming context, which is the naming context
that the application will consider to be its root context. Note that the default naming
context is the root only in relation to this client application and, in fact, it can be
contained by another context.

Obtaining the default naming context

Java client applications can connect to the VisiNaming Service by using the
resolve_initial_references method in the ORB interface. To use this feature, the
SVCnameroot or ORBInitRef parameters must be specified when the client is started.

For example, to start a Java application named ClientApplication that intends to use
the naming context Inventory as its default naming context, you could enter the
following command:

prompt> vbj -DSVCnameroot=NorthAmerica/ShippingDepartment/Inventory \
 ClientApplication

In the example, NorthAmerica is the server name and ShippingDepartment/Inventory is
the stringified name from the root context.

 16: Using the Vis iNaming Service 199

Defaul t naming contexts

Note

When using the vbj command, all -D properties must appear before the Java class
name.

200 VisiBroker for Java Developer’s Guide

Vis iNaming Serv ice propert ies

Obtaining naming context factories

A naming service client can get a reference to the naming context factory by resolving
the initial reference of the factory as follows:

ExtendedNamingContextFactory myFactory =
ExtendedNamingContextFactoryHelper.narrow(
orb.resolve_initial_reference("VisiNamingContextFactory"));

If osagent is running on the network, then such a client must be started as follows:

vbj -DSVCnameroot=<ns_name> Client

If there is no osagent running on the network, then the client must be started as shown
in the following example:

vbj -DORBInitRef=VisiNamingContextFactory=
 corbaloc::<host>:<port>/VisiNamingContextFactory Client

VisiNaming Service properties
The following tables list the VisiNaming Service properties:

Property Default Description

vbroker.naming.adminPwd inprise Password required by administrative VisiBroker Naming
service operations.

vbroker.naming.enableSlave 0 If 1, enables master/slave naming services
configuration. See “VisiNaming Service Clusters for
Failover and Load Balancing” for information about
configuring master/slave naming services.

vbroker.naming.iorFile ns.ior This property specifies the full path name for storing the
Naming service IOR. If you do not set this property, the
Naming service will try to output its IOR into a file
named ns.ior in the current directory. The Naming
service silently ignores file access permission
exceptions when it tries to output its IOR.

vbroker.naming.logLevel emerg This property specifies the level of log messages to be
output from Naming service. Acceptable values are:

■ vbroker.log.enable=true

■ vbroker.log.filter.default.enable=false

■ vbroker.log.filter.default.register=naming

■ vbroker.log.filter.default.naming.enable=true

■ vbroker.log.filter.default.naming.logLevel=debug

 16: Using the Vis iNaming Service 201

VisiNaming Service propert ies

For more information see “Object Clusters”.

vbroker.naming.logUpdate false This property allows special logging for all of the update
operations on the CosNaming::NamingContext,
CosNamingExt::Cluster, and CosNamingExt::ClusterManager
interfaces.

The CosNaming::NamingContext interface operations for
which this property is effective are:

bind, bind_context, bind_new_context, destroy,
rebind, rebind_context, unbind

The CosNamingExt::Cluster interface operations for which
this property is effective are:

bind, rebind, unbind, destroy.

The CosNamingExt::ClusterManager interface operation for
which this property is effective is:

create_cluster

When this property value is set to true and any of the
above methods is invoked, the following log message is
printed (the output shows a bind operation being
executed):

00000007,5/26/04 10:11 AM,127.0.0.1,00000000,

VBJ-Application,VBJ ThreadPool Worker,INFO,

OPERATION NAME : bind

CLIENT END POINT : Connection[socket=Socket

[addr=/127.0.0.1, port=2026, localport=1993]]

PARAMETER 0 : [(Tom.LoanAccount)]

PARAMETER 1 : Stub[repository_id=IDL:Bank/

LoanAccount:1.0, key=TransientId[poaName=/,

id={4 bytes: (0)(0)(0)(0)},sec=505,usec=990917734,

key_string=%00VB%01%00%00%00%02/%00%20%20%00%00%00%

04%00%00%00%00%00%00%01%f9;%104f],codebase=null]

Property Default Description

vbroker.naming.
enableClusterFailover

true When set to true, it specifies that an interceptor be installed
to handle fail-over for objects that were retrieved from the
VisiNaming Service. In case of an object failure, an attempt is
made to transparently reconnect to another object from the
same cluster as the original.

vbroker.naming.
propBindOn

0 If 1, the implicit clustering feature is turned on.

vbroker.naming.smrr.
pruneStaleRef

1 This property is relevant when the name service cluster uses
the Smart Round Robin criterion. When this property is set to
1, a stale object reference that was previously bound to a
cluster with the Smart Round Robin criterion will be removed
from the bindings when the name service discovers it. If this
property is set to 0, stale object reference bindings under the
cluster are not eliminated. However, a cluster with Smart
Round Robin criterion will always return an active object
reference upon a resolve() or select() call if such an object
binding exists, regardless of the value of the
vbroker.naming.smrr.pruneStaleRef property. By default, the
implicit clustering in the name service uses the Smart Round
Robin criterion with the property value set to 1. If set to 2, this
property disables the clearing of stale references completely,
and the responsibility of cleaning up the bindings belongs to
the application, rather than to VisiNaming.

Property Default Description

202 VisiBroker for Java Developer’s Guide

Vis iNaming Serv ice propert ies

For more information see “VisiNaming Service Clusters for Failover and
Load Balancing”.

Property Default Description

vbroker.naming.enableSlave 0 See “VisiNaming Service properties”.

vbroker.naming.slaveMode No default.

Can be set to
cluster or slave.

This property is used to configure
VisiNaming Service instances in the
cluster mode or in the master/slave
mode. The vbroker.naming.enableSlave
property must be set to 1 for this property
to take effect.
Set this property to cluster to configure
VisiNaming Service instances in the
cluster mode. VisiNaming Service clients
will then be load balanced among the
VisiNaming Service instances that
comprise the cluster. Client failover
across these instances are enabled.
Set this property to slave to configure
VisiNaming Service instances in the
master/slave mode. VisiNaming Service
clients will always be bound to the master
server if the master is running but failover
to the slave server when the master
server is down.

vbroker.naming.serverClusterName null This property specifies the name of a
VisiNaming Service cluster. Multiple
VisiNaming Service instances belong to a
particular cluster (for example, clusterXYZ)
when they are configured with the cluster
name using this property.

vbroker.naming.serverNames null This property specifies the factory names
of the VisiNaming Service instances that
belong to a cluster. Each VisiNaming
Service instance within the cluster should
be configured using this property to be
aware of all the instances that constitute
the cluster. Each name in the list must be
unique. This property supports the
format:

vbroker.naming.serverNames=

Server1:Server2:Server3

See the related property,
vbroker.naming.serverAddresses.

 16: Using the Vis iNaming Service 203

Pluggable backing store

Pluggable backing store
The VisiNaming Service maintains its namespace by using a pluggable backing store.
Whether or not the namespace is persistent, depends on how you configure the
backing store: to use JDBC adapter, the Java Naming and Directory Interface (JNDI,
which is certified for LDAP), or the default, in-memory adapter.

Types of backing stores

The types of backing store adapters supported are:

– In-memory adapter

– JDBC adapter for relational databases

– DataExpress adapter

– JNDI (for LDAP only)

Note

For an example using pluggable adapters, see the code located in the directory:

<install dir>/vbe/examples/ins/pluggable_adaptors

In-memory adapter
The in-memory adapter keeps the namespace information in memory and is not
persistent. This is the adapter used by the VisiNaming Service by default.

vbroker.naming.serverAddresses null This property specifies the host and
listening port for the VisiNaming Service
instances that comprise a VisiNaming
Service cluster. The order of VisiNaming
Service instances in this list must be
identical to that of the related property
vbroker.naming.serverNames, which
specifies the names of the VisiNaming
Service instances that comprise a
VisiNaming Service Cluster. This
property supports the format:

vbroker.naming.serverAddresses=host1:

port1;host2:port2;host3:port3

vbroker.naming.anyServiceOrder
(To be set on VisiNaming
Service clients)

false This property must be set to true on the
VisiNaming Service client to utilize the
load balancing and failover features
available when VisiNaming Service
instances are configured in the
VisiNaming Service cluster mode. The
following is an example of how to use this
property:

client -DVbroker.naming.

anyServiceOrder=true

Property Default Description

204 VisiBroker for Java Developer’s Guide

Pluggable backing store

JDBC adapter
Relational databases are supported via JDBC. The following databases have been
certified to work with the VisiNaming Service JDBC adapter:

– JDataStore 7

– Oracle 10G, Release 1

– Sybase 11.5

– Microsoft SQLServer 2000

– DB2 8.1

– InterBase 7

Multiple VisiNaming Service instances can use the same back-end relational database
if one of these is true:

– The VisiNaming Service instances are independent of each other and use different
factory names, or,

– The VisiNaming Service instances are all part of the same VisiNaming Service
Cluster.

DataExpress adapter
In addition to the JDBC adapter, there is also a DataExpress adapter which allows you
to access JDataStore databases natively. It is much faster than accessing JDataStore
through JDBC, but the DataExpress adapter has some limitations. It only supports a
local database running on the same machine as the Naming Server. To access a
remote JDataStore database, you must use the JDBC adapter.

JNDI adapter
A JNDI adapter is also supported. Sun's JNDI (Java Naming and Directory Interface)
provides a standard interface to multiple naming and directory services throughout the
enterprise. JNDI has a Service Provider Interface (SPI) with which different naming and
service vendors must conform. There are different SPI modules available for Netscape
LDAP server, Novell NDS, WebLogic Tengah, etc. By supporting JNDI, the VisiNaming
Service allows you to have portable access to these naming and directory services and
other future SPI providers.

The VisiNaming JNDI adapter is certified with the following LDAP implementations:

– iPlanet Directory Server 5.0

– OpenLdap 2.2.26

You must use Sun and Netscape JNDI Driver version 1.2 to leverage LDAP.

 16: Using the Vis iNaming Service 205

Pluggable backing store

Configuration and use

Backing store adapters are pluggable, which means that the type of adapter used can
be specified by user-defined information stored in a configuration (properties) file used
when starting up the VisiNaming Service. All adapters, except the in-memory one,
provide persistence. The in-memory adapter should be used when you want to use a
lightweight VisiNaming Service which keeps its namespace entirely in memory.

Note

For the current version of the VisiNaming Service, you cannot change settings while
the VisiNaming Service is running. To change a setting, you must bring down the
service, make the change to the configuration file, and then restart the VisiNaming
Service.

Properties file
As with the VisiNaming Service in general, which adapter is to be used and any
specific configuration of it is handled in VisiNaming Service properties file. The default
properties common to all adapters are:

Property Default Description

vbroker.naming.backingStoreType InMemory Specifies the Naming service adapter type to
use. This property specifies which type of
backing store you want the VisiNaming
Service to use. The valid options are:
InMemory, JDBC, Dx, JNDI. The default is
InMemory.

vbroker.naming.cacheOn 0 Specifies whether to use the Naming Service
cache. A value of 1 (one) enables caching.

vbroker.naming.cache.connectString This property is required when the Naming
Service cache is enabled
(vbroker.naming.cacheOn=1) and the Naming
Service instances are configured in Cluster
or Master/Slave mode. It helps locate an
Event Service/VisiNotify instance in the
format <hostname>:<port>. For example:

vbroker.naming.cache.connectString=

127.0.0.1:14500

See “Caching facility” for details about
enabling the caching facility and setting
the appropriate properties.

vbroker.naming.cache.size 2000 This property specifies the size of the
Naming Service cache. Higher values will
mean caching of more data at the cost of
increased memory consumption.

vbroker.naming.cache.timeout 0 (no limit) This property specifies the time, in seconds,
since the last time a piece of data was
accessed, after which the data in the cache
will be purged in order to free memory. The
cached entries are deleted in LRU (Least
Recently Used) order.

206 VisiBroker for Java Developer’s Guide

Pluggable backing store

JDBC Adapter properties
The following sections describe the JDBC Adapter properties.

vbroker.naming.backingStoreType

This property should be set to JDBC. The poolSize , jdbcDriver, url, loginName, and
loginPwd properties must also be set for the JDBC adapter.

vbroker.naming.jdbcDriver

This property specifies the JDBC driver that is needed to access the database used as
your backing store. The VisiNaming Service loads the appropriate JDBC driver
specified. The default is the Java DataStore JDBC driver.

vbroker.naming.minReconInterval

This property sets the database reconnection retry time by the Naming Service in
seconds. The default value is 30. The Naming Service will ignore the request and throw
a CannotProceed exception if the time interval between this request and the last
reconnection time is less than the value set by this property. The valid value for this
property is 0 (zero) or a greater integer. If the property value is 0 (zero), the VisiNaming
Service will try to reconnect to the database for every request, once disconnected.

vbroker.naming.loginName

This property is the login name associated with the database. The default is VisiNaming.

vbroker.naming.loginPwd

This property is the login password associated with the database. The default value is
VisiNaming.

vbroker.naming.poolSize

This property specifies the number of database connections in your connection pool
when using the JDBC Adapter as our backing store. The default value is 5, but it can be
increased to whatever value the database can handle. If you expect many requests will
be made to the VisiNaming Service, you should make this value larger.

vbroker.naming.url

JDBC driver class name Description

com.borland.datastore.jdbc.DataStoreDriver JDataStore JDBC Driver 7.0

com.sybase.jdbc2.jdbc.SybDriver Sybase driver (jConnect Version 5.0)

oracle.jdbc.driver.OracleDriver Oracle driver (using classes12.zip Version
8.1.7.0.0)

interbase.interclient.Driver Interbase driver (using InterClient.jar Version
3.0.12)

weblogic.jdbc.mssqlserver4.Driver WebLogic MS SQLServer JDBC driver (Version
5.1)

com.ibm.db2.jcc.DB2Driver IBM DB2 driver (using db2jcc.jar Version 1.2.117)

 16: Using the Vis iNaming Service 207

Pluggable backing store

This property specifies the location of the database which you want to access. The
setting is dependent on the database in use. The default is JDataStore and the
database location is the current directory and is called rootDB.jds. You can use any
name you like not necessarily rootDB.jds. The configuration file needs to be updated
accordingly.

You should start InterServer before accessing InterBase via JDBC. If the InterBase
server resides on the local host, specify <server> as localhost; otherwise specify it as
the host name. If the InterBase database resides on Windows NT, specify the
<full_db_path> as driver:\\dir1\dir2\\db.gdb (the first backslash [\] is to escape the
second backslash [\]). If the InterBase database resides on UNIX, specify the
<full_db_path> as \dir1\dir2\db.gdb. You can get more information from
http://www.borland.com/interbase/.

Before you access DB2 via JDBC, you must register the database by its alias
<db_name> using the Client Configuration Assistant. After the database has been
registered, you do not have to specify <host> and <port> for the vbroker.naming.url
property.

If the JDataStore database resides on Windows, the <full path of the JDataStore
database> should be Driver:\\dir1\\dir2\\db.jds (the first backslash [\] is to escape the
second backslash [\]). If the JDataStore database resides on UNIX, the <full path of
the JDataStore database> should be /dir1/dir2/db.jds.

DataExpress Adapter properties
The following table describes the DataExpress Adapter properties:

URL value Description

jdbc:borland:dslocal:<db_name> JDataStore URL

jdbc:sybase:Tds:<host>:<port>/<db_name> Sybase URL

jdbc:oracle:thin:@<host>:<port>:<sid> Oracle URL

jdbc:interbase://<server>/<full_db_path> Interbase URL

jdbc:weblogic:mssqlserver4:<db_name>@<host>:<port> WebLogic MS SQLServer URL

jdbc:db2://<host_name>:<port-number>/<db_name> IBM DB2 URL

<full_path_JDataStore_db> DataExpress URL for the native driver

Property Description

vbroker.naming.backingStoreType This property should be set to Dx.

vbroker.naming.loginName This property is the login name associated with the database.
The default is VisiNaming.

vbroker.naming.loginPwd This property is the login password associated with the
database. The default value is VisiNaming.

vbroker.naming.url This property specifies the location of the database.

208 VisiBroker for Java Developer’s Guide

Pluggable backing store

JNDI adapter properties
The following is an example of settings that can appear in the configuration file for a
JNDI adapter:

Configuration for OpenLDAP

OpenLDAP is one of the supported VisiNaming back-end stores. When using OpenLDAP,
additional configuration is required on the OpenLDAP server. You must perform the
following actions:

1 Add corba.schema in the OpenLDAP server's config file (the default is slapd.conf). The
corba.schema is included with your OpenLDAP server installation.

2 Add openldap_ns.schema in the OpenLDAP config file. openldap_ns.schema is provided
with VisiBroker and is located in

<install-dir>/etc/ns_schema/

Note

The user must have the necessary privilege to add schemas/attributes to the Directory
Server.

Caching facility

By enabling the caching facility you can improve the performance of the Naming
Service when it uses a backing store. For example, in the case of the JDBC adapter,
directly accessing the database every time there is a resolve or bind operation is
relatively slow. If you cache the results, you can reduce the number of times you
access the database. You will only see improvement in the performance of the backing
store if the same piece of data is accessed multiple times.

Note

Multiple Naming Service instances can access the same backing store if they are
configured in the Naming Service Cluster mode or in the Master/Slave mode. In order
to use the caching facility in these two modes, each Naming Service instance must be
specially configured using the vbroker.naming.cache.connectString property. The
VisiBroker Event Service or VisiNotify is used to coordinate the caching facility
amongst the various Naming Service instances.

To enable the caching facility set the following property in your configuration file:

vbroker.naming.cacheOn=1

If multiple Naming Service instances in Cluster or Master/Slave mode will access the
cache, set the vbroker.naming.cache.connectString property so that the Naming
Services can locate the Event Service (or VisiNotify).

Setting Description

vbroker.naming.backingStoreType=JNDI This setting specifies the backing store type which
is JNDI for the JNDI adapter.

vbroker.naming.loginName=<user_name> The user login name on the JNDI backing server.

vbroker.naming.loginPwd=<password> The password for the JNDI backing server user.

vbroker.naming.jndiInitialFactory=com.
sun.jndi.ldap.LdapCtxFactory

This setting specifies the JNDI initial factory.

vbroker.naming.jndiProviderURL=ldap:
//<hostname>:389/<initial root context>

This setting specifies the JNDI provider URL

vbroker.naming.jndiAuthentication=simple This setting specifies the JNDI authentication type
supported by the JNDI backing server.

 16: Using the Vis iNaming Service 209

Pluggable backing store

The format for vbroker.naming.cache.connectString is:

vbroker.naming.cache.connectString=<host>:<port>

Where <host> is the hostname or IP address of the machine where VisiBroker Event
Service is running and <port> is the port used by VisiBroker Event Service/VisiNotify
(default is 14500 for Event Service and 14100 for VisiNotify).

For example:

vbroker.naming.cache.connectString=127.0.0.1:14500

or

vbroker.naming.cache.connectString=myhost:14100

If the host address is an IPv6 style address then enclose it in square brackets.

Note

The VisiBroker Event Service (version 6.5 or later) should be started before starting the
Naming Service instances. If VisiNotify is used instead, VisiNotify should be started.
Start the Event Service/VisiNotify without any channel name (so the default name is
used) before Naming Service instances are started.

If the cache needs tuning, set the following properties:

vbroker.naming.cache.size
vbroker.naming.cache.timeout

See “Properties file” for more information about the caching facility properties.

Important Notes for users of Caching Facility
Consistent configuration is very important. It is extremely important to configure all
Naming Service instances in a Cluster to use the Caching Facility in a consistent
manner. Naming Service instances that constitute a Cluster must either all use the
caching facility or none use it. If certain Naming Service instances use the caching
facility while others do not, the behaviour of the Cluster will be inconsistent. This is also
true for Naming Services configured in the Master-Slave mode. If the Master is
configured to use the caching facility, it is required that the Slave also be configured to
use it, and vice versa.

The distributed cache depends on the Event Service/VisiNotify. If the Caching
Facility is used in Naming Service Cluster mode (or the Master-Slave mode), the
distributed cache needs synchronization across the multiple Naming Services
instances. This is achieved using the Event Service (or VisiNotify). Please note that in
such a configuration, the cached data might be stale. The quality of data would depend
on the health of the Event Service/VisiNotify. Applications that do not find this
acceptable are advised to avoid using the Caching Facility. It is advisable to perform
tests to gauge the suitability of the distributed Caching Facility for a particular
application.

210 VisiBroker for Java Developer’s Guide

Object Clusters

Object Clusters
VisiBroker supports a clustering feature which allows a number of object bindings to be
associated with a single name. The VisiNaming Service can then perform load
balancing among the different bindings in a cluster. You can decide on a load
balancing criterion at the time a cluster is created. Clients, which subsequently resolve
name-object bindings against a cluster, are load balanced amongst different cluster
server members. These clusters of object bindings should not be confused with
“VisiNaming Service Clusters for Failover and Load Balancing”.

A cluster is a multi-bind mechanism that associates a Name with a group of object
references. The creation of a cluster is done through a ClusterManager reference. At
creation time, the create_cluster method for the ClusterManager takes in a string
parameter which specifies the criterion to be used. This method returns a reference to
a cluster, which you can add, remove, and iterate through its members. After deciding
on the composition of a cluster, you can bind its reference with a particular name to any
context in a VisiNaming Service. By doing so, subsequent resolve operations against
the Name will return a particular object reference in this cluster.

Object Clustering criteria
The VisiNaming Service uses a SmartRoundRobin criterion with clusters by default. After
a cluster has been created, its criterion cannot be changed. User-defined criteria are
not supported, but the list of supported criteria will grow as time goes on.
SmartRoundRobin performs some verifications to ensure that the CORBA object
reference is an active one; that the object reference is referring to a CORBA server
which is in a ready state.

Cluster and ClusterManager interfaces

Although a cluster is very similar to a naming context, there are certain methods found
in a context that are not relevant to a cluster. For example, it would not make sense to
bind a naming context to a cluster, because a cluster should contain a set of object
references, not naming contexts. However, a cluster interface shares many of the
same methods with the NamingContext interface, such as bind, rebind, resolve, unbind
and list. This common set of operations mainly pertains to operations on a group. The
only cluster-specific operation is pick. Another crucial difference between the two is
that a cluster does not support compound names. It can only use a single component
name, because clusters do not have a hierarchical directory structure, rather it stores
its object references in a flat structure.

 16: Using the Vis iNaming Service 211

Object Cluster ing cr i ter ia

IDL Specification for the Cluster interface
CosNamingExt module {
 typedef sequence<Cluster> ClusterList;
 enum ClusterNotFoundReason {
 missing_node,
 not_context,
 not_cluster_context
 };
 exception ClusterNotFound {
 ClusterNotFoundReason why;
 CosNaming::Name rest_of_name;
 };
 exception Empty {};
 interface Cluster {
 Object select() raises(Empty);
 void bind(in CosNaming::NameComponent n, in Object obj)
 raises(CosNaming::NamingContext::CannotProceed,
 CosNaming::NamingContext::InvalidName,
 CosNaming::NamingContext::AlreadyBound);
 void rebind(in CosNaming::NameComponent n, in Object obj)
 raises(CosNaming::NamingContext::CannotProceed,
 CosNaming::NamingContext::InvalidName);
 Object resolve(in CosNaming::NameComponent n)
 raises(CosNaming::NamingContext::NotFound,
 CosNaming::NamingContext::CannotProceed,
 CosNaming::NamingContext::InvalidName);
 void unbind(in CosNaming::NameComponent n)
 raises(CosNaming::NamingContext::NotFound,
 CosNaming::NamingContext::CannotProceed,
 CosNaming::NamingContext::InvalidName);
 void destroy()
 raises(CosNaming::NamingContext::NotEmpty);
 void list(in unsigned long how_many,
 out CosNaming::BindingList bl,
 out CosNaming::BindingIterator BI);
};

IDL Specification for the ClusterManager interface
CosNamingExt module {
 interface ClusterManager
 Cluster create_cluster(in string algo);
 Cluster find_cluster(in CosNaming::NamingContext ctx,

in CosNaming::Name n)
 raises(ClusterNotFound, CosNaming::NamingContext::CannotProceed,
 CosNaming::NamingContext::InvalidName);
 Cluster find_cluster_str(in CosNaming::NamingContext ctx, in string n)
 raises(ClusterNotFound, CosNaming::NamingContext::CannotProceed,
 CosNaming::NamingContext::InvalidName);
 ClusterList clusters();
 };
};

212 VisiBroker for Java Developer’s Guide

Object Cluster ing cr i ter ia

IDL Specification for the NamingContextExtExtended interface
The NamingContextExtExtended interface, which extends NamingContextExt, provides
some operations required to remove an object reference from an implicit cluster. You
must narrow a NamingContext to NamingContextExtExtended in order to use these
operations. Note that these operations are proprietary to VisiBroker only.

module CosNamingExt {
 interface NamingContextExtExtended : NamingContextExt {
 void unbind_from_cluster(in Name n, in Object obj)
 raises(NotFound, CannotProceed, InvalidName);
 boolean is_ncluster_type(in Name n, out Object cluster)
 raises(NotFound, CannotProceed, InvalidName);
 };
}

unbind_from_cluster()

The unbind_from_cluster() method allows user to unbind a specific object in a cluster.
The object's logical name (such as “London.Branch/Jack.SavingAccount”) and the
object reference to be unbound need to be passed into this method. Whenever the
number of objects in the cluster reaches zero, the cluster is deleted as well.

This method is useful when automatic pruning of stale object references in a cluster is
not required. Call this method to unbind an object in a cluster based on the
application's specific rules.

Note

The unbind_from_cluster() method can only be used when the VisiNaming Service is
running in the implicit clustering mode and automatic pruning of stale object reference
is disabled. This means that the following two properties must be set at the VisiNaming
Service side:
vbroker.naming.smrr.pruneStaleRef=0
vbroker.naming.propBindOn=1

is_ncluster_type()

The is_ncluster_type() method lets you check whether a context is of a cluster type.
The object's logical name need to be passed into this method. It returns true when the
context is a cluster type and set the cluster object in the second argument value. It
returns false when the context is not a cluster type and set the second argument value
to null.

Creating an object cluster

To create a cluster, use the Cluster Manager interface. A single ClusterManager object
is automatically created when a Naming Server starts up. There is only one
ClusterManager per Naming Server. The role of a ClusterManager is to create, retrieve,
and keep track of the clusters that are in the Naming Server. Here are the general
steps in creating an object cluster:

1 Bind to the Naming Server with which you wish to create cluster objects.

2 Get a reference to the Cluster Manager by calling get_cluster_manager method on
the factory reference.

3 Create a cluster using a specified cluster criterion.

4 Bind objects to an Name using the cluster.

 16: Using the Vis iNaming Service 213

Object Cluster ing cr i ter ia

5 Bind the Cluster object itself to a Name.

6 Resolve through the Cluster reference for the specified cluster criterion.

...
ExtendedNamingContextFactory myFactory =
 ExtendedNamingContextFactoryHelper.bind(orb, FNamingService");
ClusterManager clusterMgr = myFactory.get_cluster_manager();
Cluster clusterObj = clusterMgr.create_cluster("RoundRobin");
clusterObj.bind(new NameComponent("member1", "aCluster"), obj1);
clusterObj.bind(new NameComponent("member2", "aCluster"), obj2);
clusterObj.bind(new NameComponent("member3", "aCluster"), obj3);
NameComponent myClusterName = new NameComponent("ClusterName", "");
root.bind(myClusterName, clusterObj);
root.resolve(myClusterName) // a member of the Cluster is returned.
root.resolve(myClusterName) // the next member of the Cluster is returned.
root.resolve(myClusterName) // the last member of the Cluster is returned.
...

Explicit and implicit object clusters
The clustering feature can be turned on automatically for a VisiNaming Service. The
caveat is that once this facility is on, a cluster is created transparently to bind the
object. The round robin criterion is used. The implication is that it is possible to bind
several objects to the same name in the Naming Server. Conversely, resolving that
name will return one of those objects, and an unbind operation would destroy the
cluster associated with that name. This means that the VisiNaming Service is no longer
compliant to the CORBA specification. The Interoperable Naming Specification
explicitly forbids the ability to bind several objects to the same name. For a compliant
VisiNaming Service, an AlreadyBound exception is thrown if a client tries to use the
same name to bind to a different object. You must decide whether to use this feature
for a dedicated server only.

Note

Do not switch from an implicit cluster mode to an explicit cluster mode as this can
corrupt the backing store.

Once a Naming Server is used with the implicit clustering feature, it must be activated
with that feature turned “on”. To turn on the clustering feature, define the following
property value in the configuration file:

vbroker.naming.propBindOn=1

Note

For an example of both explicit and implicit clustering, see the code located in the
following directories:

<install_dir>/examples/vbe/ins/implicit_clustering

<install_dir>/examples/vbe/ins/explicit_clustering

Load balancing

Both the ClusterManager and the Smart Agent provide RoundRobin criterion load
balancing facilities, however, they are of very different nature. You get load balancing
from the Smart Agent transparently. When a server starts, it registers itself
automatically with the Smart Agent, and this in turn allows VisiBroker ORB to provide
an easy and proprietary way for the client to get a reference to the server. However,
you have no choice in determining what constitutes a group and the members of a
group. The Smart Agent makes all the decisions for you. This is where a Cluster
provides an alternative. It enables a programmatic way to define and create the
properties of a Cluster. You can define the criterion for a Cluster, including choosing

214 VisiBroker for Java Developer’s Guide

Object Cluster ing cr i ter ia

the members of a Cluster. Though the criterion is fixed at creation time, the client can
add or remove members from the Cluster throughout its existance.

Object failover

An advantage of using object clustering is the failover capability among the objects
clustered together in a VisiNaming service. These clustered objects support the same
interface. Once such a cluster is created and bound to a naming context, the failover
behavior is transparently handled by the ORB. Typically when a naming service client
does a resolution against this cluster, the VisiNaming service returns a member from
the cluster. In case any member of the cluster has crashed or is temporarily
unavailable, ORB and VisiNaming service perform transparent failover by handing over
the next available cluster member to the client. This ensures high availability and fault-
tolerance.

Failover capability using object clustering is demonstrated in the example contained in
the following directory:

<install_dir>/examples/vbe/ins/cluster_failover

Pruning stale object references in VisiNaming object clusters

Object references in VisiNaming service can become stale due to unavailability of the
servers. Implicit object clustering provides different strategies, which can be used to
configure the pruning of stale references. Note that this pruning facility only works in
implicit clustering using smart round-robin technique. VisiNaming service is started with
a pruning configuration using the property vbroker.naming.smrr.pruneStaleRef. This
property can take values 0, 1 (default) and 2. The working of pruning facility can be
understood as follows.

VisiNaming service holds the mapping between the names and object references in the
memory. When a client requests for an object reference against a name, VisiNaming
resolves the name, modifies the IOR and hands over the object reference to the client.
The modification pertains to putting the logic that in case, the server represented by the
object reference in unavailable, the client ORB, to which this object reference is being
handed to, can revert back to the VisiNaming service to look for an alternate object
reference (fail-over to another candidate). If the client is unable to find the server and it
does revert back to the VisiNaming service, VisiNaming marks that object reference as
stale.

Depending on the value of the property vbroker.naming.smrr.pruneStaleRef, VisiNaming
decides whether to keep the object reference or remove it. Following are the possible
values:

– vbroker.naming.smrr.pruneStaleRef =0
In this case, if an object reference has been detected stale, VisiNaming only marks it
as stale but does not remove it from its in-memory hold. However, VisiNaming does
not ever hand over this reference to the client unless the server rebinds the object
reference against the same name.

– vbroker.naming.smrr.pruneStaleRef =1
VisiNaming service immediately removes the object reference both from the memory
and persistent backstore (if backing store is being used) as soon as the client
bounces back to the VisiNaming service indicating the object reference as stale.

– vbroker.naming.smrr.pruneStaleRef =2
In this case, VisiNaming does not modify the IOR before handing it over to the client.
In case the client is not able to contact the server represented by the object
reference, client ORB throws OBJECT_NOT_EXIST exception back to the client
application. VisiNaming services does not take guarantee of providing the client
application with an active object reference.

 16: Using the Vis iNaming Service 215

Vis iNaming Service Clusters for Fai lover and Load Balancing

VisiNaming Service Clusters for Failover and Load Balancing
Multiple instances of the VisiNaming Service can be clustered to provide for load
balancing and failover. These clusters of VisiNaming Service instances should not be
confused with the clustering of object bindings described in “Object Clusters”. Clients
can bind to any one of the VisiNaming Service instances that comprise the cluster,
which allows for load sharing across multiple VisiNaming Service instances. If a
particular VisiNaming Service instance becomes inactive or terminates, the client will
automatically fail over to another VisiNaming Service instance within the same cluster.

All instances of the VisiNaming Service within a cluster must use the common
underlying data in a persistent backing store. The caching facility is available to
Naming Service instances provided that a VisiBroker Event Service (or VisiNotify)
instance is made available to the Naming Service instances via the
vbroker.naming.cache.connectString property. There are certain restrictions regarding
the choice of backing store. See the following Note that discusses these restrictions.

When failover occurs, it is transparent to the client, but there can be a slight delay
because server objects might have to be activated on demand by the requests that are
coming in. Also, object reference transients like iterator references are no longer valid.
This is normal because clients using transient iterator references must be prepared for
those references becoming invalid. In general, a VisiNaming Service instance never
keeps too many resource-intensive iterator objects, and it may invalidate a client's
iterator reference at any time. Other than these transient references, any other client
request using persistent references will be rerouted to another VisiNaming Service
instance.

In addition to the VisiNaming Service cluster, a Master/Slave model is also supported.
This is a special cluster with the configuration of two VisiNaming Service instances. It is
useful only when failover is required. The two VisiNaming Services instances must be
running at the same time; the master in active mode and the slave in standby mode. If
both VisiNaming Services are active, the master is always preferred by clients that are
using VisiNaming Service. In the event that the master terminates unexpectedly, the
slave VisiNaming Service takes over. This changeover from master to slave is
seamless and transparent to clients. However, the slave VisiNaming Service does not
become the master server. Instead, it provides temporary backup when the master
server is unavailable. You must take whatever remedial actions necessary to revive the
master server. After the master comes back up again, only requests from the new
clients are sent to the master server. Clients that are already bound to a slave naming
server will not automatically switch back to the master.

Note

Clients that are bound to a slave naming server provide only one level of failover
support. They will not switch back to the master, therefore, if the slave naming server
terminates, the VisiNaming Service also becomes unavailable.

Note

VisiNaming Service Clusters configured in the Master/Slave mode may use either the
JNDI adapter or the JDBC adapter. Clusters not configured in the Master/Slave mode
must use the JDBC adapter for RDBMS. Each clustered service must obviously point
to the same backing store. See “Pluggable backing store” for information on
configuring the backing store for the cluster.

Configuring the VisiNaming Service Cluster

The VisiNaming Service instances that comprise the cluster must be started with the
relevant properties set as illustrated in the code sample below. The configuration is set
to cluster mode using the enableSlave and the slaveMode properties. The instances of
the VisiNaming Service that comprise the cluster have to be started on the hosts and
ports specified using the serverAddresses property. The snippet shows the host and
port entries for the three VisiNaming Service instances in the sample cluster. The
serverNames property lists the factory names of the VisiNaming Service instances.
These names are unique and the ordering identical to the serverAddresses property.
Finally, the serverClusterName property names the cluster.

216 VisiBroker for Java Developer’s Guide

VisiNaming Service Clusters for Fai lover and Load Balancing

Note

Starting from VisiBroker 6.0, VisiNaming Service contains several properties for proxy
support:

– vbroker.naming.proxyEnable allows the VisiNaming Service to use a proxy. Turn off
this property (default is turned off), and the VisiNaming Service will ignore other
Naming service properties for the proxy.

– vbroker.naming.proxyAddresses gives each Naming service in the cluster a proxy host
and a proxy port. The ordering of the proxyAddresses is identical to the
serverAddresses.

Java clients need to use a system property -DAnyServiceOrder=true in order to benefit
from the load balancing and failover capabilities provided by VisiNaming Service
clusters. Clients can use the system property -DSVCnameroot=<serverClusterName> to
resolve to a VisiNaming Service instance within the cluster, provided osagent is being
used. Alternately, the corbaloc mechanism can be used (by specifying the host and
port pairs for all the VisiNaming Service instances that comprise the cluster, for use by
resolve_initial_references).

The Naming Service instances comprising a Cluster can benefit from the Naming
Service Caching Facility. Use the vbroker.naming.cacheOn and
vbroker.naming.cache.connectString properties to configure caching for a Naming
Service cluster. See “Caching facility” for details.

The following code sample shows the configuration of the VisiNaming Service cluster:

vbroker.naming.enableSlave=1
vbroker.naming.slaveMode=cluster
vbroker.naming.serverAddresses=host1:port1;host2:port2;host3:port3
vbroker.naming.serverNames=Server1:Server2:Server3
vbroker.naming.serverClusterName=ClusterX
vbroker.naming.proxyEnable=1 //Any value other than 1 means proxy is

not enabled.
vbroker.naming.proxyAddresses=proxyHost1:proxyPort1;proxyHost2:proxyPort2;proxy
Host3:proxyPort3

Note

When using the vbroker.naming.proxyAddresses property, place a semicolon (;)
separator between each host and port pair.

 16: Using the Vis iNaming Service 217

Vis iNaming Service Clusters for Fai lover and Load Balancing

Configuring the VisiNaming Service in Master/Slave mode

The two VisiNaming Services must be running. You must designate one as the master
and the other as the slave. The same property file can be used for both the servers.
The relevant property values in the property file are shown in the following code sample
to configure for the Master/Slave mode.

vbroker.naming.enableSlave=1
vbroker.naming.slaveMode=slave
vbroker.naming.masterServer=<Master Naming Server Name>
vbroker.naming.masterHost=<host ip address for Master>
vbroker.naming.masterPort=<port number that Master is listening on>
vbroker.naming.slaveServer=<Slave Naming Server Name>
vbroker.naming.slaveHost=<host ip address for Slave>
vbroker.naming.slavePort=<Slave Naming Server port address>
vbroker.naming.masterProxyHost=<proxy host ip address for Master>
vbroker.naming.masterPortPort=<proxy port number for Master>
vbroker.naming.slaveProxyHost=<proxy host ip address for Slave>
vbroker.naming.slavePortPort=<proxy port number for slave>

Note

There is no restriction in the start sequence of the master and the slave servers.

Starting up with a large number of connecting clients

In a production environment with a large number of clients it may be impossible to
avoid clients trying to connect to a Naming Service which is still in the startup phase
(still initializing and not yet ready to service requests). When a Naming Service is not
yet completely started up it may receive incoming requests and discard them.
Depending on the number of requests, which must be received then discarded, this
activity can use too many CPU resources which can disturb the startup process itself,
resulting in a long startup time for the Naming Service.

To solve this particular problem, and let the Naming Service start quickly, the following
configuration settings can be used:

1 Set the following property to true:

vbroker.se.iiop_tp.scm.iiop_tp.listener.deferAccept=true

2 Use a fixed listener port by setting the following properties:

vbroker.se.iiop_tp.scm.iiop_tp.scm.listener.port=<port_number>
vbroker.se.iiop_tp.scm.iiop_tp.listener.portRange=0

For this to succeed, make sure that the <port_number> is available on the host on
which the Naming Service is running. Make sure that the portRange property is set
to 0 (zero). You can leave it at its default setting or explicitly set the property. Note
that both the port and portRange settings described above should be applied.

Clients that try to connect to a Naming Service configured in this manner while it is
starting up will be denied any connection. If they are accessing a Naming Service
Cluster, then they would fail over to another Naming Service that has finished its
initialization. If no Naming Services are up and running, the client application would get
an OBJECT_NOT_EXIST exception.

218 VisiBroker for Java Developer’s Guide

Vis iNaming Service Secur i ty

These settings are per SCM (Server Connection Manager). If needed, all SCMs can be
set to take advantage of this feature.

If SSL is involved in the Naming Service, in addition to the settings described above,
the following settings might also be needed:

vbroker.se.iiop_tp.scm.ssl.listener.deferAccept=true
vbroker.se.iiop_tp.scm.ssl.listener.port=<port_number_for_ssl>
vbroker.se.iiop_tp.scm.ssl.listener.portRange=0

Note

The deferAccept property should only be used for Naming Services. Using for other
services or user written servers can result in undefined behavior.

VisiNaming service federation

Federation enables more than one VisiNaming services to be configured to act as a
distributed namespace. This involves having a naming context in a name service
bound to the names in the naming contexts of other naming services, thereby providing
more than one naming hierarchy to access an object. The figure below shows two
instances of naming service ns1 and ns2. Grayed naming contexts are the initial
contexts of the respective naming services. An AccountManager object s1 is placed in
a naming context under ns1.

Figure 16.3 Naming contexts with multiple access hierarchies

As shown in the figure, naming context containing Paris is bound to Branch under
naming service ns1 and also bound to Remote under naming service ns2. Client can
retrieve the IOR of the AccountManager object against s1 either by resolving ns1: Branch/
Paris/s1 or ns2: Branch/Paris/s1. In both cases, it gets the same IOR.

Setting up federation is as easy as binding the name Branch in the root context of ns2 in
the above example to the naming context containing the name Paris in ns1. The
example in the following location shows the working of VisiNaming federation:

<install_dir>/examples/vbe/ins/federation

VisiNaming Service Security
The VisiNaming Service in the VisiBroker integrates with the Security Service,
providing two levels of security: Client authentication and Method level authorization.
This allows fine grained control over which clients can use the VisiNaming Service and

 16: Using the Vis iNaming Service 219

VisiNaming Service Secur i ty

what methods they can call. The following properties are used to enable or disable
security and to configure the Security Service.

Naming client authentication

Note

For detailed information on authentication and authorization, see the Authentication
and Authorization chapters in the Security Guide.

Configuring VisiNaming to use SSL

Depending on the security requirements, different properties can be set to configure
the VisiNaming service. For the full list of security properties and their descriptions, go
to the Security Guide, Security Properties for Java or the Security Properties for C++
section.

Important

In order to enable security in the VisiNaming Service, you must have a valid VisiSecure
license.

Property Value Default Description

vbroker.naming.security.disable boolean true This property indicates whether the
security service is disabled.

vbroker.naming.security.authDomain string "" This property indicates the
authorization domain name to be
used for the Naming service method
access authorization.

vbroker.naming.security.transport int 3 This property indicates what transport
to be used. The available values are:

ServerQoPPolicy.SECURE_ONLY=1

ServerQoPPolicy.CLEAR_ONLY=0

ServerQoPPolicy.ALL=3

vbroker.naming.security.
requireAuthentication

boolean false This property indicates whether
naming client authentication is
required. When
vbroker.naming.security.disable is
true, no client authentication will be
performed regardless what value this
property takes.

vbroker.naming.security.
enableAuthorization

boolean false This property indicates whether
method access authorization is
enabled.

vbroker.naming.security.
requiredRolesFile

string (none) This property points to the file
containing the required roles that are
necessary for invocation of each
method in the protected object types.
For more information see “Method
Level Authorization”.

220 VisiBroker for Java Developer’s Guide

Vis iNaming Service Secur i ty

The following is a sample of the properties that can be used to configure the
VisiNaming Service to use SSL:

 # Enable Security in Naming Service
 vbroker.naming.security.disable=false

 # Enabling Security Service
 vbroker.security.disable=false

 # Setting SSL Layer Attributes
 vbroker.security.peerAuthenticationMode=REQUIRE_AND_TRUST
 vbroker.se.iiop_tp.scm.ssl.listener.trustInClient=true
 vbroker.security.trustpointsRepository=Directory:./trustpoints

 # Set the certificate identity for the VisiNaming Service using wallet
properties
 vbroker.security.wallet.type=Directory:./identities
 vbroker.security.wallet.identity=delta
 vbroker.security.wallet.password=Delt@$$$

For information about how to configure the client to use SSL, go to the Security Guide,
Making secure connections (Java) or the Making secure connections (C++) section.

Note

Currently, there is no way to specify security and secure transport components in an
IOR using corbaloc. So, when using SSL, bootstrapping a VisiNaming Service using
the corbaloc method at the Naming client side is not possible. However, the
SVCnameroot and stringified IOR methods can still be used.

Method Level Authorization

Method level authorization is supported for the following object types:

– Context

– ContextFactory

– Cluster

– ClusterManager

When security is enabled for the Naming service and enableAuthorization is set to true,
only authorized users of each method of these object types can invoke the
corresponding method.

The Naming service predefines two roles to support the method level authorization:

– Administrator role

– User role

Other roles can be defined if required. Users need to configure the roles map for these
two roles, assigning roles to clients. The following is an example role map definition:

 Administrator {
 *CN=admin
 *group=admin
 uid=*, group=admin
 }

 User {
 *CN=admin
 *group=user
 uid=*, group=user
 }

 16: Using the Vis iNaming Service 221

Import statements

You need to specify the roles before invoking each method of the objects listed above.
This is done using the required_roles property for each method. Below is the list of
these properties and the corresponding default values. These default values are used
only when you do not define any required_roles specified using the property
vbroker.naming.security.requiredRolesFile. The values of these properties are space
or comma separated:

 #
 # naming_required_roles.properties
 #

 # all roles
 required_roles.all=Administrator User

 required_roles.Context.bind=Administrator
 required_roles.Context.rebind=Administrator
 required_roles.Context.bind_context=Administrator
 required_roles.Context.rebind_context=Administrator
 required_roles.Context.resolve=Administrator User
 required_roles.Context.unbind=Administrator
 required_roles.Context.new_context=Administrator User
 required_roles.Context.bind_new_context=Administrator User
 required_roles.Context.list=Administrator User
 required_roles.Context.destroy=Administrator

 required_roles.ContextFactory.root_context=Administrator User
 required_roles.ContextFactory.create_context=Administrator
 required_roles.ContextFactory.get_cluster_manager=Administrator User
 required_roles.ContextFactory.remove_stale_contexts=Administrator
 required_roles.ContextFactory.list_all_roots=Administrator
 required_roles.ContextFactory.shutdown=Administrator

 required_roles.Cluster.select=Administrator User
 required_roles.Cluster.bind=Administrator
 required_roles.Cluster.rebind=Administrator
 required_roles.Cluster.resolve=Administrator User
 required_roles.Cluster.unbind=Administrator
 required_roles.Cluster.destroy=Administrator
 required_roles.Cluster.list=Administrator User

 required_roles.ClusterManager.create_cluster=Administrator
 required_roles.ClusterManager.find_cluster=Administrator User
 required_roles.ClusterManager.find_cluster_str=Administrator User
 required_roles.ClusterManager.clusters=Administrator User

Import statements
The following import statement must be used by any Java class that wishes to use the
VisiBroker ORB extensions to the VisiNaming Service:

import com.inprise.vbroker.CosNamingExt.*;
...

The following packages are needed if you are interested in accessing the OMG
compliant features of the VisiNaming Service:

import org.omg.CosNaming.*
Import org.omg.CosNaming.NamingContextPackage.*
Import org.omg.CosNaming.NamingContextExtPackage.*

222 VisiBroker for Java Developer’s Guide

Sample programs

Sample programs
Several example programs that illustrate the use of the VisiNaming Service are
provided with VisiBroker. They show all of the new features available with the
VisiNaming Service and are found in the <install_dir>/examples/vbe/ins directory. In
addition, a Bank Naming example illustrates basic usage of the VisiNaming Service is
found in the <install_dir>/examples/vbe/basic/bank_naming directory.

Before running the example programs, you must first start the VisiNaming Service, as
described in “Running the VisiNaming Service”. Furthermore, you must ensure that at
least one naming context has been created by doing one of the following:

– Start the VisiNaming Service, as described in “Running the VisiNaming Service”,
which will automatically create an initial context.

– Use the VisiBroker Console.

– Have your client bind to the NamingContextFactory and use the create_context
method.

– Have your client use the ExtendedNamingContextFactory.

Important

If no naming context has been created, a CORBA.NO_IMPLEMENT exception is raised when
the client attempts to issue a bind.

Binding a name example

The Bank Naming example uses the AccountManager interface to open an Account
and to query the balance in that account. The Server class below illustrates the usage
of the VisiNaming Service for binding a name to an object reference. The server
publishes its IOR into the root context of the Naming Server, which is then retrieved by
the client.

From this example, you learn how to:

1 Use the resolve_initial_references method on the VisiBroker ORB instance to get
a reference to the root context of the VisiNaming Service. (In the example, you need
to start the VisiNaming Service with the default name of NameService.)

2 Cast the reference for the root context by using the narrow method of the
NamingContextExtHelper class.

3 Create a POA and servant for your AccountManagerImpl object.

4 Finally use the bind method of the NamingContext interface to bind the Name
BankManager to the object reference for the AccountManagerImpl object.

 16: Using the Vis iNaming Service 223

Sample programs

For more information about POAs, see “Using POAs.”

Import org.omg.PortableServer.*;
Import org.omg.CosNaming.*;
public class Server {
 public static void main(String[] args) {
 try {
 // Initialize the ORB.
 org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,null);

 // get a reference to the root POA
 POA rootPOA =
 POAHelper.narrow(orb.resolve_initial_references("RootPOA"));

 // get a reference to the VisiNaming Service root context
 org.omg.CORBA.Object rootObj =
 orb.resolve_initial_references("NameService");
 NamingContextExt root = NamingContextExtHelper.narrow(rootObj);

 // Create policies for our persistent POA
 org.omg.CORBA.Policy[] policies = {
 rootPOA.create_lifespan_policy(LifespanPolicyValue.PERSISTENT)
 };

 // Create myPOA with the right policies
 POA myPOA = rootPOA.create_POA("bank_agent_poa",

rootPOA.the_POAManager(), policies);

 // Create the servant
 AccountManagerImpl managerServant = new AccountManagerImpl();

 // Decide on the ID for the servant
 byte[] managerId = "BankManager".getBytes();

 // Activate the servant with the ID on myPOA
 myPOA.activate_object_with_id(managerId, managerServant);

 // Activate the POA manager
 rootPOA.the_POAManager().activate();

 // Associate the bank manager with the name at the root context
 // Note that casting is needed as a workaround for a JDK 1.1.x bug.
 ((NamingContext)root).bind(root.to_name("BankManager"),
 myPOA.servant_to_reference(managerServant));
 System.out.println(myPOA.servant_to_reference(managerServant)
 + " is ready.");

 // Wait for incoming requests
 orb.run();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

224 VisiBroker for Java Developer’s Guide

Conf igur ing Vis iNaming with JdataStore HA

Configuring VisiNaming with JdataStore HA
This section helps you configure JDataStore High Available (HA) to work with
VisiNaming.

The Explicit Clustering example used throughout this section illustrates the usage of
JDataStore HA with VisiNaming. In this example, JDataStore will be configured to have
the following mirror types:

– One Primary mirror. This is the only mirror type that can accept both read and write
transactions. Only one Primary mirror at a time is allowed.

– Three Read-only mirrors. These can only perform read transactions, and they
provide a transactionally consistent view of the Primary mirror database.

– One Directory mirror. This contains only the mirror configuration table and other
system security tables. It redirects read-only connection requests to Read-only
mirrors, and writable connection requests to the Primary mirror. It also provides an
important feature for load balancing all read connections across all available Read-
only mirrors. However, this feature is not supported by Naming Service at this
version.

JDataStore HA supports automatic failover in the following circumstances:

– If a connection to the Primary mirror was made before the failure, this connection can
trigger an automatic failover by calling the rollback method on the connection object.
Note that this scenario is not described in this section.

– If the connection request is not for read-only operation, and the current Primary
mirror is not accessible, the Directory mirror automatically triggers the failover
operations to satisfy the request for a writable connection. This is done by promoting
one of the Read-only mirrors to the Primary mirror.

VisiNaming works with JDataStore HA when a connection is made to the Directory
mirror. When the Primary mirror is inaccessible, it will failover to one of the Read-only
mirrors. VisiNaming must work with one Primary, and at least two Read-only mirrors at
all times.

Notes

– The Directory Mirror is a single point of failure in the scenario described in this
section. Higher availability could be achieved by configuring Master and Slave
Naming Services to point to a different directory mirror.

– JDataStoreHA only works with JDataStore Version 7.04 or later.

Create a DB for the Primary mirror

To make use of the JDataStore Explorer (JdsExplorer) to create a new DB, select New
from the File menu.

Invoke JdsServer for each listening connection

In this example, the following connections are used:

– JdsServer –port 2511 (Primary mirror)

– JdsServer –port 2512 (Read-only mirror)

– JdsServer –port 2513 (Read-only mirror)

– JdsServer –port 2514 (Read-only mirror)

– JdsServer –port 2515 (Directory mirror)

 16: Using the Vis iNaming Service 225

Conf igur ing Vis iNaming with JdataStore HA

Note

Always start JdsServer from the location where the AutoFailover_* jds files are located.
Never start JdsServer from <JdataStore Install Directory>/bin unless
vbroker.naming.url is set according. The required jar files are:

– dbtools.jar

– dbswing.jar

– jdsremote.jar

– jdsserver.jar

– jds.jar

Configure JDataStore HA

To configure JDataStore HA, complete the following steps:

1 Invoke the JDS Server Console to configure JDataStore.

2 Create a new project named NS_AutoFailover in the JDataStore Server Console.

Note

When creating a new DataSource, it is best to set its Protocol to Remote and
include the machine IP in the ServerName

3 Click DataSource1 (in the Structure pane) to open it for editing.

4 Right-click DataSource1 and select Connect from the context menu.

5 Right-click Mirror (in the Structure pane) and select Add mirror from the context
menu.

6 Edit Mirror1 so that the Type property is set to PRIMARY.

Each of the mirrors should also ensure that the host uses the IP of the machine
where they are located instead the default value of localhost. You can use a
different IP address for each of the mirrors, as long as the JdsServer is started for
that mirror at the IP. The Directory mirror must have access to each of the mirrors.

7 Set the Auto Failover and Instant Synchronization properties to true.

8 Add Mirror2 and edit it to be a Read-only mirror.

Note that you do not need to create AutoFailover_Mirror2 beforehand. It is created
automatically by JDataStore HA.

9 Set the Auto Failover and Instant Synchronization properties to true for all Read-
only mirrors.

10 Repeat the previous two steps for Mirror3 and Mirror4.

11 Add Mirror5 and edit it be the Directory mirror.

12 Set the Auto Failover and Instant Synchronization properties to false for this
Directory mirror.

13 Choose Save Project "NS_AutoFailover.datasources" from the File menu to save the
project.

14 Right-click Mirrors (in the Structure pane) and choose Synchronize all mirrors.

15 Click Mirror Status (in the Structure pane) and verify that Validate Primary is
checked for Mirror1 only.

226 VisiBroker for Java Developer’s Guide

Conf igur ing Vis iNaming with JdataStore HA

Run the VisiNaming Explicit Clustering example

To run the VisiNaming Explicit Clustering example, complete the following steps:

1 Start osagent with the following command:

osagent

2 Create a file named autofailover.properties with the following properties:

vbroker.naming.backingStoreType=JDBC
vbroker.naming.poolSize=5
vbroker.naming.jdbcDriver=com.borland.datastore.jdbc.DataStoreDriver
vbroker.naming.url=jdbc:borland:dsremote://143.186.141.14/
AutoFailover_Mirror5.jds
vbroker.naming.loginName=SYSDBA
vbroker.naming.loginPwd=masterkey
vbroker.naming.traceOn=0
vbroker.naming.jdsSvrPort=2515
vbroker.naming.logLevel=debug

3 Start Naming Service with the following command:

nameserv –VBJclasspath <JDS_Install>\lib\
jdsserver.jar –config autofailover.properties

4 Start ServerA with the following command:

vbj -DSVCnameroot=NameService ServerA

5 Start ServerB with the following command:

vbj -DSVCnameroot=NameService ServerB

6 Start Client with the following command:

vbj -DSVCnameroot=NameService Client NameService

7 Repeat the previous step several times and observe the output.

To verify the minimum requirement of one Primary and two Read-only mirrors,
complete the following steps:

1 Stop the JdsServer listening to port 2513.

2 Repeat the Start Client step several times.

Note that the behavior is the same as in the previous procedure.

3 Stop the JdsServer listening to port 2514.

4 Repeat the Start Client step several times.

Note that Client begins to raise a BAD_PARAM exception. This is as expected because
a failover requires that at least two read-only mirrors are available.

5 Restart the JdsServer listening to port 2513 and 2514.

This restores the original configuration, with three Read-only mirrors.

To verify the autofailover of JDatastore HA, complete the following steps:

1 Stop the JdsServer listening to port 2511, configured for Primary mirror, and repeat
the Start Client step several times.

Note that one of the Read-only mirrors has been promoted to Primary mirror.

2 Stop another active Read-only mirror and repeat the Start Client step several times.
Note that Client begins to raise a BAD_PARAM exception because a failover requires
that at least two read-only mirrors are available.

3 Restart the JdsServer listening to port 2511.

Note that this was previously configured for Primary mirror.

 16: Using the Vis iNaming Service 227

Conf igur ing Vis iNaming with JdataStore HA

4 Repeat the Start Client step several times.

Note that Mirror1 is now configured as Read-only mirror. You can check this from
the JDS Server Console by making a datasource connection to the Directory mirror
that the Naming Service uses.

Run the VisiNaming Naming Failover example

Run the following example to observe the failover capability of the VisiNaming service.

Note

Before using this procedure, create a JDataStore HA with one Primary mirror at port
1111, three Read-only mirrors at ports 1112, 1113, 1114 and two Directory mirrors at
ports 1115 and 1116.

1 Start osagent with the following command:

osagent

2 Create a file named autofailover.properties with the following properties:

Naming
vbroker.naming.backingStoreType=JDBC
vbroker.naming.poolSize=5
vbroker.naming.jdbcDriver=com.borland.datastore.jdbc.DataStoreDriver
vbroker.naming.loginName=SYSDBA
vbroker.naming.loginPwd=masterkey
vbroker.naming.traceOn=0
vbroker.naming.jdsSvrPort=1115
#vbroker.naming.logLevel=debug
#default value of enableslave is 0. '1' Indicates cluster or
master-slave configuration
vbroker.naming.enableSlave=1
#indicate master-slave configuration
vbroker.naming.slaveMode=slave
vbroker.naming.masterHost=143.186.141.14
vbroker.naming.masterPort=12372
vbroker.naming.masterServer=Master
vbroker.naming.slaveHost=143.186.141.14
vbroker.naming.slavePort=12373
vbroker.naming.slaveServer=Slave

3 Start the JDataStore Servers as shown in the following example:

JdsServer.exe -port=1111
JdsServer.exe -port=1112
JdsServer.exe -port=1113
JdsServer.exe -port=1114
JdsServer.exe -port=1115
JdsServer.exe -port=1116

4 Start the Naming Service Master with the following command:

nameserv –VBJclasspath <JDS_Install>\lib\
jdsserver.jar –config autofailover.properties -VBJprop
vbroker.naming.url=jdbc:borland:dsremote://143.186.141.14/
AutoFailover_Mirror5.jds
-VBJprop vbroker.se.iiop_tp.scm.iiop_tp.listener.port=12372 Master

228 VisiBroker for Java Developer’s Guide

5 Start the Naming Service Slave with the following command:

nameserv –VBJclasspath <JDS_Install>\lib\
jdsserver.jar –config autofailover.properties -VBJprop
vbroker.naming.url=jdbc:borland:dsremote://143.186.141.14/
AutoFailover_Mirror6.jds
-VBJprop vbroker.se.iiop_tp.scm.iiop_tp.listener.port=12373 –VBJprop
vbroker.naming.jdsSvrPort=1116
Slave

6 Start Server with the following command:

vbj -DSVCnameroot=Master Server

7 Start Client with the following command:

vbj -DSVCnameroot=Master Client

8 Press the Enter key and observe the output.

Note that the balance returns a value.

9 Stop the Naming Service Master, repeat the previous step, and observe the output.

Note that the balance returns a value.

10 Press the Enter key to exit, and observe the output.

Note that the balance returns a value

To see how two Directory mirrors handle a single point of failure, complete the
following steps:

1 Stop the JdsServer listening to port 1115.

2 Without starting the Naming Service Master, repeat the Start Client step.

The CannotProceed exception is raised, which is the expected behavior.

3 Repeat the Start Client step several times.

Note that the balance will return a value. Once it can return a value, you can
observe that it is using the Directory mirror that is listening on port 1117.

4 Repeat the Start Client step and press the Enter key three times.

Note that the balance returns a value for three times.

To see how autofailover functions with two Directory mirrors, complete the following
steps:

1 Stop the JdsServer that is listening on port 1111.

2 Repeat the Start Client step.

3 Press the Enter key three times.

The CannotProceed exception is raised several times before it starts returning a
value. Once it returns a value, you can see that one of the mirrors is promoted to be
a Primary mirror. This can only be viewed using the JDS Server Console.

 17: Using the Event Serv ice 229

Using the Event Service
This section describes the VisiBroker Event Service.

Note

The OMG Event Service has been superseded by the OMG Notification Service. The
VisiBroker Event Service is still supported for backward compatibility and light weight
purposes. For mission critical applications, we strongly recommend using VisiBroker
VisiNotify.

Overview
The Event Service package provides a facility that de-couples the communication
between objects. It provides a supplier-consumer communication model that allows
multiple supplier objects to send data asynchronously to multiple consumer objects
through an event channel. The supplier-consumer communication model allows an
object to communicate an important change in state, such as a disk running out of free
space, to any other objects that might be interested in such an event.

Figure 17.1 Supplier-Consumer communication model

230 VisiBroker for Java Developer’s Guide

Overview

The figure above shows three supplier objects communicating through an event
channel with two consumer objects. The flow of data into the event channel is handled
by the supplier objects, while the flow of data out of the event channel is handled by the
consumer objects. If each of the three suppliers shown in the figure above sends one
message every second, then each consumer will receive three messages every
second and the event channel will forward a total of six messages per second.

The event channel is both a consumer of events and a supplier of events. The data
communicated between suppliers and consumers is represented by the Any class,
allowing any CORBA type to be passed in a type safe manner. Supplier and consumer
objects communicate through the event channel using standard CORBA requests.

Proxy consumers and suppliers

Consumers and suppliers are completely de-coupled from one another through the use
of proxy objects. Instead of interacting with each other directly, they obtain a proxy
object from the EventChannel and communicate with it. Supplier objects obtain a
consumer proxy and consumer objects obtain a supplier proxy. The EventChannel
facilitates the data transfer between consumer and supplier proxy objects. The figure
below shows how one supplier can distribute data to multiple consumers.

Figure 17.2 Consumer and supplier proxy objects

Note

The event channel is shown above as a separate process, but it may also be
implemented as part of the supplier object's process. See “Starting the Event Service”
for more information.

 17: Using the Event Service 231

Communicat ion models

OMG Common Object Services specification

The VisiBroker Event Service implementation conforms to the OMG Common Object
Services Specification, with the following exceptions:

– The VisiBroker Event Service only supports generic events. There is currently no
support for typed events in the VisiBroker Event Service.

– The VisiBroker Event Service offers no confirmation of the delivery of data to either
the event channel or to consumer applications. TCP/IP is used to implement the
communication between consumers, suppliers and the event channel and this
provides reliable delivery of data to both the channel and the consumer. However,
this does not guarantee that all of the data that is sent is actually processed by the
receiver.

Communication models
The Event Service provides both a pull and push communication model for suppliers
and consumers. In the push model, supplier objects control the flow of data by pushing
it to consumers. In the pull model, consumer objects control the flow of data by pulling
data from the supplier.

The EventChannel insulates suppliers and consumers from having to know which model
is being used by other objects on the channel. This means that a pull supplier can
provide data to a push consumer and a push supplier can provide data to a pull
consumer.

Figure 17.3 Push model

Note

The EventChannel is shown above as a separate process, but it may also be
implemented as part of the supplier object's process. See “Starting the Event Service”
for more information.

232 VisiBroker for Java Developer’s Guide

Communicat ion models

Push model

The push model is the more common of the two communication models. An example
use of the push model is a supplier that monitors available free space on a disk and
notifies interested consumers when the disk is filling up. The push supplier sends data
to its ProxyPushConsumer in response to events that it is monitoring.

The push consumer spends most of its time in an event loop, waiting for data to arrive
from the ProxyPushSupplier. The EventChannel facilitates the transfer of data from the
ProxyPushSupplier to the ProxyPushConsumer.

The figure below shows a push supplier and its corresponding ProxyPushConsumer
object. It also shows three push consumers and their respective ProxyPushSupplier
objects.

Pull model

In the pull model, the event channel regularly pulls data from a supplier object, puts the
data in a queue, and makes it available to be pulled by a consumer object. An example
of a pull consumer would be one or more network monitors that periodically poll a
network router for statistics.

The pull supplier spends most of its time in an event loop waiting for data requests to
be received from the ProxyPullConsumer. The pull consumer requests data from the
ProxyPullSupplier when it is ready for more data. The EventChannel pulls data from the
supplier to a queue and makes it available to the ProxyPullSupplier.

The figure below shows a pull supplier and its corresponding ProxyPullConsumer object.
It also shows three pull consumers and their respective ProxyPullSupplier objects.

Figure 17.4 Pull model

Note

The event channel is shown above as a separate process, but it may also be
implemented as part of the supplier object's process.

See “In-process event channel” for more information about how to start the event
service in Java.

 17: Using the Event Service 233

Using event channels

Using event channels
To create an EventChannel, connect a supplier or consumer to it and use it:

1 Create and start the EventChannel:

Windows

prompt> start vbj com.inprise.vbroker.CosEvent.EventServer -ior <iorFilename>
 <channelName>

UNIX

prompt> vbj com.inprise.vbroker.CosEvent.EventServer -ior <iorFilename>
 <channelName> &

where <channelName> is the user-specified object name of the event channel and
<iorFilename> is a user-specified filename of the file to which the ior of the object is
to be written.

Another way to create the EventChannel is to run PushModelChannel:

prompt> vbj PushModelChannel <iorFilename>

PushModelChannel first creates an EventChannel and publishes its ior to the file
<iorFilename> given by the user. Other clients (for example, PushModel) can then
bind to the EventChannel by using the initial reference.

To run this:

prompt> vbj -DORBInitRef=EventService=file:<fullpath + iorFilename> PushModel

Regardless of how the event channel is created, make sure that the name specified
in <iorFilename> is created in the specified directory.

Note

Only one instance of the EventChannel is supported. All binding to the EventChannel
is done through the call to orb.resolve_initial_references("EventService"), where
EventService is the hardcoded EventChannel name.

2 Connect to the EventChannel.

3 Obtain an administrative object from the channel and use it to obtain a proxy object.

4 Connect to the proxy object.

5 Begin transferring or receiving data.

The methods used for these steps vary, depending on whether the object being
connected is a supplier or a consumer, and on the communication model being used.
The table below shows the appropriate methods for suppliers.

Steps Push supplier Pull supplier

Bind to the EventChannel EventChannelHelper.narrow
(orb.resolve_initial_references
("EventService"))

EventChannelHelper.narrow
(orb.resolve_initial_references
("EventService"))

Get a SupplierAdmin EventChannel::for_suppliers() EventChannel::for_suppliers()

Get a consumer proxy SupplierAdmin::
obtain_push_consumer()

SupplierAdmin::
obtain_pull_consumer()

Add the supplier to the
EventChannel

ProxyPushConsumer::
connect_push_supplier()

ProxyPullConsumer::
connect_pull_supplier()

Data transfer ProxyPushConsumer::push() Implements pull() and try_pull()

234 VisiBroker for Java Developer’s Guide

Creat ing event channels

The table below shows the appropriate methods for consumers.

Creating event channels
VisiBroker provides a proprietary interface called EventChannelFactory in the
CosEventChannelAdmin module to allow Event Service clients to create event
channels on demand. To enable this feature, start the event service for your operating
system as follows:

Windows

start vbj -Dvbroker.events.factory=true
com.inprise.vbroker.CosEvent.EventServer <factoryName>

UNIX

vbj -Dvbroker.events.factory=true com.inprise.vbroker.CosEvent.EventServer
<factoryName>

The property vbroker.events.factory instructs the service to create a factory object with
the name <factoryName> (with a default value of VisiEvent) instead of a channel
object. To write the IOR of the factory to a file, use the –ior option to provide the file
name. By default, the IOR is written to the console.

The factory object created can then be bound by the client, either using the IOR written
to the file (or console) or using the osagent bind mechanism to pass the factory object
name. Once the factory object reference is obtained, it can be used to create, look up,
or destroy event channel objects. An event channel object obtained from the factory
object can be used to connect suppliers and consumers.

Examples of push supplier and consumer
This section describes the example of the push supplier and the consumer
applications.

Push supplier and consumer example

This section describes the example push supplier and consumer applications. The files
PullSupply.java and PullConsume.java implement the supplier and consumer. These
files can be found in the <install_dir>/examples/vbe/events directory.

To run these examples, you need a supplier-consumer pair. You can pair a consumer
of type Push or Pull can be paired with any supplier of type Push or Pull. The order in
which you invoke the supplier and consumer does not matter. However, the event
channel must be the same object instance.

Before you can start using the Push model example, you need to run this example. The
next few sections describe how to run this example.

Steps Push consumer Pull consumer

Bind to the EventChannel EventChannelHelper.narrow
(orb.resolve_initial_references
("EventService"))

EventChannelHelper.narrow
(orb.resolve_initial_references
("EventService"))

Get a ConsumerAdmin EventChannel::for_consumers() EventChannel::for_consumers()

Obtain a supplier proxy ConsumerAdmin::
obtain_push_supplier()

ConsumerAdmin::
obtain_pull_supplier()

Add the consumer to the
EventChannel

ProxyPushSupplier::
connect_push_consumer()

ProxyPushSupplier::
connect_pull_consumer()

Data transfer Implements push() ProxyPushSupplier::
pull() and try_pull()

 17: Using the Event Service 235

Examples of push suppl ier and consumer

Running the Push model example

To run the PushModel example, enter:

prompt> vbj -DORBInitRef=EventService=file:<fullpath of iorFilename> PushModel

Select e to bind to an event channel, p to get a proxy to a push consumer from the
event channel, m to instantiate a PushModel, and c to connect the event channel.

Continuous sentences indicating the content of the message being pushed to the
EventChannel will be displayed. You can continue to make selections regardless of what
is displayed on the screen. You can specify the number of seconds between events
using the s option. Lastly, select d to disconnect and q to quit.

To run the PushView, enter:

prompt>vbj -DORBInitRef=EventService=file:
<fullpath of iorFilename> PushView

Select e to bind to an event channel, p to get a proxy to a push supplier from the event
channel, v to instantiate a PushView, c to connect the event channel, d to disconnect
and q to quit. To run this example, a supplier of type Push or Pull must be running on
another terminal, continuously sending data to the same event channel in order for
PushView to receive the data. The supplier and consumer can be started in any order.

Running the PullModel example
To run the PullModel example, enter:

prompt> vbj -DORBInitRef=EventService=file:
<fullpath of iorFilename> PullModel

Select e to bind to an event channel, p to get a proxy to a push consumer from the
event channel, m to instantiate a PullModel, c to connect the event channel, d to
disconnect and q to quit.

Running the PullView example
To run the PullView, enter:

prompt>vbj -DORBInitRef=EventService=file:
<fullpath of iorFilename> PullView

Select e to bind to an event channel, p to get a proxy to a push supplier from the event
channel, v to instantiate a PushView, c to connect the event channel. Then select a to
pull asynchronously or s to pull synchronously. To exit, select d to disconnect and q to
quit.

To run this example, a supplier of type Push or Pull must be running on another
terminal, continuously sending data to the same event channel in order for PullView to
receive the data. The supplier and consumer can be started in any order.

PullSupply
The PullSupply class is derived from the PullSupplierPOA class and provides
implementations for the main, pull and try_pull methods. The pull method, shown
below, returns a numbered “hello” message. The try_pull method always sets the
hasEvent flag to true and calls the pull method to provide the message. Once a
PullSupply object is connected to an EventChannel, these methods are used by the
channel to pull data from the supplier.

The main method, shown below, performs the usual VisiBroker ORB and POA creation,
connects to the specified EventChannel, obtains a ProxyPullConsumer from the
EventChannel, instantiates a PullSupply object, activates the PullSupply object on the
POA, then connects this pull supplier to proxy pull consumers.

Executing PullSupply
After compiling PullSupply.java and starting the Event Service, described in “In-
process event channel”, you can execute the supplier with the following command:

vbj -DORBInitRef = <channel_name> = file:<fullpath of iOrFilename> PullSupply

236 VisiBroker for Java Developer’s Guide

Examples of push suppl ier and consumer

Implementation of the pull and try_pull methods
// PullSupply.java
import org.omg.CosEventComm.*;
import org.omg.CosEventChannelAdmin.*;
import org.omg.PortableServer.*;
public class PullSupply extends PullSupplierPOA {
 private POA _myPOA;
 private PullConsumer _pullConsumer;
 private int _counter;
 PullSupply(PullConsumer pullConsumer, POA myPOA) {
 _pullConsumer = pullConsumer;
 _myPOA = myPOA;
 }
 public void disconnect_pull_supplier() {
 System.out.println("Model::disconnect_pull_supplier()");
 try {
 _myPOA.deactivate_object("PullSupply".getBytes());
 } catch(Exception e) {
 e.printStackTrace();
 }
 }
 public org.omg.CORBA.Any pull() throws Disconnected {
 if(_pullConsumer == null) {
 throw new Disconnected();
 }
 try {
 Thread.currentThread().sleep(1000);
 } catch(Exception e) {
 }
 //org.omg.CORBA.Any message =
 new org.omg.CORBA.Any().from_string("Hello #" + ++_counter);
 org.omg.CORBA.Any message = _orb().create_any();
 message.insert_string("Hello #" + ++_counter);
 System.out.println("Supplier being pulled: " + message);
 return message;
 }
 public org.omg.CORBA.Any try_pull(org.omg.CORBA.BooleanHolder hasEvent)
throws
 org.omg.CORBA.SystemException, Disconnected {
 hasEvent.value = true;
 return pull();
 }
...

 17: Using the Event Service 237

Examples of push suppl ier and consumer

Main method of PullSupply
// PullSupply.java
import org.omg.CosEventComm.*;
import org.omg.CosEventChannelAdmin.*;
import org.omg.PortableServer.*;
public class PullSupply extends PullSupplierPOA {
 ...
 public static void main(String[] args) {
 try {
 org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args, null);
 // get a reference to the root POA
 POA rootPOA =
 POAHelper.narrow(orb.resolve_initial_references("RootPOA"));
 // Create policies for our persistent POA
 org.omg.CORBA.Policy[] policies = {
 rootPOA.create_lifespan_policy(LifespanPolicyValue.PERSISTENT)
 };
 // Create myPOA with the right policies
 POA myPOA = rootPOA.create_POA("event_service_poa",
 rootPOA.the_POAManager(), policies);
 EventChannel channel = null;
 PullSupply model = null; ProxyPullConsumer pullConsumer = null;
 channel =

EventChannelHelper.narrow(orb.resolve_initial_references("EventService"));
 System.out.println("Located event channel: " + channel);
 pullConsumer = channel.for_suppliers().obtain_pull_consumer();
 System.out.println("Obtained pull consumer: " + pullConsumer);
 model = new PullSupply(pullConsumer, myPOA);
 myPOA.activate_object_with_id("PullSupply".getBytes(), model);
 myPOA.the_POAManager().activate();
 System.out.println("Created model: " + model);
 System.out.println("Connecting ...");
 pullConsumer.connect_pull_supplier(model._this());
 } catch(Exception e) {
 e.printStackTrace();
 }
 }
}

PullConsume
The PullConsume class is derived from PullConsumerPOA class and provides a command
line interface for pulling data from the PullSupply class. The code sample above shows
how the application connects to any available EventChannel, obtains a
ProxyPullSupplier, connects to the channel, and displays a command prompt. The
table below summarizes the commands that may be entered.

Command Description

a Asynchronously pulls data from the event channel, using the try_pull method. If
no data is currently available, the command will return with a no data message.

s Synchronously pulls data from the event channel, using the pull method. If there
is no data currently available, the command will block until data is available.

q Disconnects from the channel and exits the tool.

238 VisiBroker for Java Developer’s Guide

Examples of push suppl ier and consumer

Executing PullConsume
After compiling PullConsume.java and starting the Event Service, described in
“In-process event channel” , you can execute the consumer with the following
command:

vbj -DORBInitRef = <channel_name> = file:<fullpath of iOr_filename> PullConsume

// PullConsume.java
import org.omg.CosEventComm.*;
import org.omg.CosEventChannelAdmin.*;
import org.omg.PortableServer.*;
import java.io.*;
public class PullConsume extends PullConsumerPOA {
 public void disconnect_pull_consumer() {
 System.out.println("View.disconnect_pull_consumer");
 }
 public static void main(String[] args) {
 try {
 org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args, null);
 // get a reference to the root POA
 POA rootPOA =
 POAHelper.narrow(orb.resolve_initial_references("RootPOA"));
 // Create policies for our persistent POA
 org.omg.CORBA.Policy[] policies = {
 rootPOA.create_lifespan_policy(LifespanPolicyValue.PERSISTENT)
 };
 // Create myPOA with the right policies
 POA myPOA = rootPOA.create_POA("event_service_poa",
 rootPOA.the_POAManager(), policies);
 EventChannel channel = null;
 PullConsume view = null;
 ProxyPullSupplier pullSupplier = null;
 BufferedReader in = new BufferedReader(new

InputStreamReader(System.in));
 channel =EventChannelHelper.narrow(orb.resolve_initial_references

("EventService"));
 System.out.println("Located event channel: " + channel);
 view = new PullConsume();
 myPOA.activate_object_with_id("PullConsume".getBytes(), view);
 myPOA.the_POAManager().activate();
 System.out.println("Created view: " + view);
 pullSupplier = channel.for_consumers().obtain_pull_supplier();
 System.out.println("Obtained pull supplier: " + pullSupplier);
 System.out.println("Connecting...");
 System.out.flush();
 pullSupplier.connect_pull_consumer(view._this());

 17: Using the Event Service 239

Examples of push suppl ier and consumer

while(true) {
 System.out.print("-> ");
 System.out.flush();
 if (System.getProperty("VM_THREAD_BUG") != null) {
 while(!in.ready()) {
 try {
 Thread.currentThread().sleep(100);
 } catch(InterruptedException e) {
 }
 }
 }
 String line = in.readLine();
 if(line.startsWith("a")) {
 org.omg.CORBA.BooleanHolder hasEvent = new

org.omg.CORBA.BooleanHolder();
 org.omg.CORBA.Any result = pullSupplier.try_pull(hasEvent);
 System.out.println("try_pull: " +
 (hasEvent.value ? result.toString() : "NO DATA"));
 continue;
 } else if(line.startsWith("s")) {
 org.omg.CORBA.Any result = pullSupplier.pull();
 System.out.println("pull: " + result);
 continue;
 } else if(line.startsWith("q")) {
 System.out.println("Disconnecting...");
 pullSupplier.disconnect_pull_supplier();
 System.out.println("Quitting...");
 break;
 }
 System.out.println("Commands: a [a]synchronous pull\n" +
 " s [s]ynchronous pull\n" +
 " q [q]uit\n");
 }
 } catch(Exception e) {
 e.printStackTrace();
 }
 }
}

240 VisiBroker for Java Developer’s Guide

Start ing the Event Service

Starting the Event Service
When using VisiBroker for Java, the Event Service can be started by using the
following command.

vbj [-Dvbroker.events.debug] [-Dvbroker.events.interactive] [-
Dvbroker.events.max_queue_length=<number>] [-Dvbroker.events.debug.factory] \
[-Dvbroker.events.vm_thread_bug] com.inprise.vbroker.CosEvent.EventServer -ior
<ior filename> <channel name>

Note

There is a known bug in some implementations of the Java Virtual Machine, including
Solaris, that may cause this command to hang. If you experience difficulties, try
specifying the -Dvbroker.events.vm_thread_bug parameter when you start the Event
Service.

Setting the queue length

In some environments, consumer applications may run slower than supplier
applications. The maxQueueLength parameter prevents out-of-memory conditions by
limiting the number of outstanding messages that will be held for each consumer that
cannot keep up with the rate of messages from the supplier.

If a supplier generates 10 messages per second and a consumer can only process one
message per second, the queue will quickly fill up. Messages in the queue have a fixed
maximum length and if an attempt is made to add a message to a queue that is full, the
channel will remove the oldest message in the queue to make room for the new
message.

Each consumer has a separate queue, so a slow consumer may miss messages while
another, faster consumer may not lose any. The code sample below shows how to limit
each consumer to 15 outstanding messages.

vbj -Dvbroker.events.maxQueueLength=15 CosEvent.EventServer -ior myChannel.ior
MyChannel

Note

If maxQueueLength is not specified or if an invalid number is specified, a default queue
length of 100 is used.

Option Description

-Dvbroker.events.debug Optional parameter that enables the output of debugging
messages to stdout.

-Dvbroker.events.interactive Specifies that the event channel is to execute in a console-
driven, interactive mode.

-Dvbroker.events.maxQueueLength Specifies the number of messages to be queued for slow
consumers. The default maximum queue length is 100
messages for each consumer.

-Dvbroker.events.factory Specifies that an event channel factory is to be instantiated
instead of an event channel.

channel_name The name of the channel or channel factory.

 17: Using the Event Service 241

In-process event channel

In-process event channel
In addition to running an EventChannel as a separate, stand-alone server, the Event
Service also allows you to create an EventChannel within your server or client
application. This frees you from having to start a separate process to provide the
EventChannel for your supplier or consumer applications.

For Java applications, an EventLibrary class is provided that provides methods for
creating an EventChannel which, in turn, handles the loading of the necessary classes.
To create an in-process EventChannel object within a supplier/consumer application,
make the following call:

EventLibrary.create_Channel("MyChannel",whetherToDebug,maxQueueLength);

So, to create a channel named MyChannel with debugging off and a maximum queue
length of 100, you would write:

EventLibrary.create_Channel("MyChannel",false,100);

After this call completes, the resulting client application can bind to the EventChannel as
it would bind to any other CORBA object.

For example, you might have a supplier application creating the channel in-process
and want the consumer application to connect to the same channel. To accomplish
this, you need to pass the channel object from the supplier application to the consumer
application. To do this, convert the EventChannel object to an ior string and write the
string to a file:

try {
EventChannel channel = EventLibrary.create_Channel("MyChannel",false,100);
 PrintWriter pw = new PrintWriter(new FileWriter(ior_filename));
 pw.println(orb.object_to_string(channel));
 pw.close();
}
catch(IOException e) {
 System.out.println("Error writing the IOR to file " ior_filename);
}

The ior_filename specifies the name of the file to which the ior string of the channel will
be written.

To run PushModelChannel:

vbj PushModelChannel <ior_filenamegt;

PushModelChannel is a push supplier. You can connect either a push consumer or pull
consumer to the event channel created in PushModelChannel:

vbj -DORBInitRef=EventService=file:<fullpath of ior_filename> PushView

where <fullpath of ior_filename> is the full path of the ior filename passed into
PushModelChannel and EventService is the name (or identifier) bound to the ior contained
in <ior_filename>. From within PushView, you can bind to the event channel as follows:

EventChannel channel =
 EventChannelHelper.narrow(orb.resolve_initial_references("EventService"));

242 VisiBroker for Java Developer’s Guide

Import statements

Using the in-process Event Channel

If your application uses the in-process event channel feature, you must add the
following import statement:

import com.inprise.vbroker.CosEvent.*;

Java EventLibrary class
The EventLibrary class provides several methods for creating an EventChannel within
an application's process.

Java example
The file PushModelChannel.java implements a push supplier that uses an in-process
event channel. This application presents a command prompt and allows you to enter
one of the commands shown below.

The code sample below contains an excerpt from PushModelChannel.java that shows
how you can use the ChannelLib.create_channel method.

public static void main(String[] args) {
 ...
 channel = EventLibrary.create_channel("channel_server", false, 100);
 ...

Import statements
The following import statements should be used by applications that wish to use the
Event Service:

import org.omg.CosEventComm.*;
import org.omg.CosEventChannelAdmin.*;
...

Command Description

e Creates an event channel.

s <number_of_seconds> Sets the delay for the event channel to the number of seconds
specified, which must be a non-negative number.

p Obtains a push consumer proxy object.

m Creates a PushModelChannel and activates it on the POA.

c Connects the push supplier.

d Disconnects the push consumer.

q Quits the application.

 18: Using the Vis iBroker Server Manager 243

Using the VisiBroker Server Manager
The VisiBroker Server Manager allows client applications to monitor and manage
object servers, view and set properties at runtime for those servers, and view and
invoke methods on Server Manager objects. The Server Manager uses elements
known as containers which represent each major ORB component. A container can
contain properties, operations, and even other containers.

Note

Do not confuse the Server Manager container with J2EE containers. The Server
Manager container is simply a logical grouping of ORB components and selected
runtime properties.

Getting Started with the Server Manager
This section covers enabling the Server Manager on a server, obtaining a Server
Manager reference, working with containers, the Storage interface and the Server
Manager IDL.

Enabling the Server Manager on a server

A VisiBroker server is not enabled to be managed by default. The command which
starts the server must set the following property to manage the server:

vbroker.orb.enableServerManager=true

The property can be specified either through the command-line or through the server's
properties file.

244 VisiBroker for Java Developer’s Guide

Gett ing Star ted wi th the Server Manager

Obtaining a Server Manager reference

The first step in interacting with a Server Manager is to obtain a reference to a server's
Server Manager. This reference points to the top level container. A client can obtain the
reference in two ways:

1 A server runner can choose to name the Server Manager using the property option
vbroker.serverManager.name. For example, the command:

prompt> Server -Dvbroker.serverManager.name=BigBadBoss

registers the Server Manager name “BigBadBoss” to the Smart Agent namespace.
From this point onward, the client can bind to that name and start invoking
operations on the reference. This property can be set in the properties file as well.
This method of locating a Server Manager can be used when the client does not
have object references to any other objects implemented by the server, for example:

import com.inprise.vbroker.ServerManager.*;

// returns reference to Server Manager "BigBadBoss" top container.
Container topContainer = ContainerHelper.bind(orb,"BigBadBoss");

2 If the client has an object reference to some other object implemented by the server,
then the client can perform _resolve_reference("ServerManager") on that object to
obtain the ServerManager for the ORB corresponding to the object. The following
code fragment obtains the Server Manager's top-level container from the
Bank::AccountManager object.

import com.inprise.vbroker.ServerManager.*;

// assume "manager" contains the reference to AccountManager
// object. No need to narrow since AccountManager is a
// com.inprise.vbroker.CORBA.Object, however a narrow is still
// required to convert returned Server Manager reference to
// Container.
Container topContainer = ContainerHelper.narrow(
manager._resolve_reference("ServerManager"));

The client code needs to include the servermgr_c.hh to use the Server Manager
interfaces.

Working with Containers

Once a client application has obtained the reference to the top level container, it can:

– get, set, or add properties on top level container.

– iterate through containers container inside top level container.

– get, set, or add containers.

– invoke operations defined in containers.

– get or set storage on the containers.

– restore or persist properties to property storage.

The top-level container does not support any properties or operations but just contains
the ORB container. The ORB container in turn contains few ORB properties, a shutdown
method, and other containers like RootPOA, Agent, OAD, and so forth.

See “The Container Interface” for information on how to interact with containers.
“Server Manager examples” shows Java and C++ interactions as well.

 18: Using the Vis iBroker Server Manager 245

The Container Interface

The Storage Interface

Server Manager provides an abstract notion of storage that can be implemented in any
fashion. Individual containers may choose to store their properties in the different ways.
Some containers may choose to store their properties in a database, while others may
choose to store them in files or in some other method. The Storage interface is defined
in Server Manager IDL.

Every container uses the same methods to get and set storage, along with the ability to
optionally set storage on all child containers of the parent. Similarly, each container
uses the same methods to read and write its properties from the storage.

For information on the Storage Interface and its methods, see “The Storage Interface”.

The Container Interface
The container interface defines an interface and associated methods for logically
grouping sets of objects, properties, operations, and so forth.

Container class

public interface Container extends
 com.inprise.vbroker.CORBA.Object
 com.inprise.vbroker.ServerManager.ContainerOperations
 org.omg.CORBA.portable.IDLEntity

When using this class in your code, you must include the following include statements:

import com.borland.vbroker.ServerManager.*;
import com.borland.vbroker.ServerManager.ContainerPackage.*;

Container Methods for Java

A container can hold properties, operations, and other containers. Each major ORB
component is represented as a container.

This section explains the Java methods that can be executed on the container
interface. There are four categories:

– Methods related to property manipulation and quereies

– Methods related to operations

– Methods related to children containers

– Methods related to storage

246 VisiBroker for Java Developer’s Guide

The Container Interface

Methods related to property manipulation and queries
public String[] list_all_properties();

Returns the names of all the properties in the contianer as a StringSequence.

public com.inprise.vbroker.ServerManager.ContainerPackage.Property[]
 get_all_properties();

Returns the PropertySequence containing the names, values, and read-write status of all
the properties in the container.

public com.inprise.vbroker.ServerManager.ContainerPackage.Property
 get_property(String name) throws
com.inprise.vbroker.ServerManager.ContainerPackage.NameInvalid

Returns the value of the property name passed as an input parameter.

public void set_property(String name, org.omg.CORBA.Any
 value) throws com.inprise.vbroker.ServerManager.
ContainerPackage.NameInvalid,
 com.inprise.vbroker.ServerManager. ContainerPackage.ValueInvalid,
 com.inprise.vbroker.ServerManager. ContainerPackage.ValueNotSettable

Sets the value of the property name to the requested value.

public void persist_properties(boolean recurse) throws
 com.inprise.vbroker.ServerManager.StorageException;

Causes the container to actually store its properties to the associated storage. If no
storage is associated with the container, a StorageException will be raised. When it is
invoked with the parameter recurse=true, the properties of the children containers are
also stored into the storage. It is up to the container to decide if it has to store all the
properties or only the changed properties.

public void restore_properties(boolean recurse) throws
 com.inprise.vbroker.ServerManager.StorageException;

Instructs the container to obtain its properties from the storage. A container knows
exactly what properties is manages and it attempts to read those properties from the
storage. The containers shipped with the ORB do not support restoring from the
storage. You must create containers that support this feature yourself.

Methods related to operations
public String[] list_all_operations();

Returns the names of all the operations suppored in the container.

public com.inprise.vbroker.ServerManager.ContainerPackage.Operation[]
 get_all_operations();

Returns all the operations along with the parameters and the type code of the
parameters so that the operation can be invoked with the appropriate parameters.

public com.inprise.vbroker.ServerManager.ContainerPackage.Operation
 get_operation(String name) throws
com.inprise.vbroker.ServerManager.ContainerPackage.NameInvalid;

Returns the parameter information of the operation specified by name which can be
used to invoke the operation.

public org.omg.CORBA.Any do_operation(
 com.inprise.vbroker.ServerManager.ContainerPackage.Operation op) throws
 com.inprise.vbroker.ServerManager.ContainerPackage.NameInvalid,
 com.inprise.vbroker.ServerManager.ContainerPackage.ValueInvalid,
 com.inprise.vbroker.ServerManager.ContainerPackage.OperationFailed;

Invokes the method in the operation and returns the result.

 18: Using the Vis iBroker Server Manager 247

The Container Interface

Methods related to children containers
public String[] list_all_containers();

Returns the names of all the children containers of the current container.

public com.inprise.vbroker.ServerManager.ContainerPackage.NamedContainer[]
 get_all_containers();

Returns all the children containers.

public com.inprise.vbroker.ServerManager.ContainerPackage.NamedContainer
 get_container(String name) throws
 com.inprise.vbroker.ServerManager.ContainerPackage.NameInvalid;

Returns the child container identified by the name parameter. If there is not any child
container with this name, a NameInvalid exception is raised.

public void add_container(
 com.inprise.vbroker.ServerManager.ContainerPackage.NamedContainer

container) throws
com.inprise.vbroker.ServerManager.ContainerPackage.NameAlreadyPresent,
 com.inprise.vbroker.ServerManager.ContainerPackage.ValueInvalid;

Adds the container as a child container of this container.

public void set_container(String name,
com.inprise.vbroker.ServerManager.Container value) throws
 com.inprise.vbroker.ServerManager.ContainerPackage.NameInvalid,
 com.inprise.vbroker.ServerManager.ContainerPackage.ValueInvalid,
 com.inprise.vbroker.ServerManager.ContainerPackage.ValueNotSettable;

Modifies the child container identified by the name parameter to one in the value
parameter.

Methods related to storage
void set_storage(in com.inprise.vbroker.ServerManager.Storage s, in boolean

recurse);

Sets the storage of this container. If recurse=true, it also sets the storage for all its
children as well.

com.inprise.vbroker.ServerManager.Storage get_storage();

Returns the current storage of the container.

248 VisiBroker for Java Developer’s Guide

The Storage Interface

The Storage Interface
The Server Manager provides an abstract notion of storage that can be implemented in
any fashion. Individual containers may choose to store their properties in databases,
flat files, or some other means. The storage implementation included with the
VisiBroker ORB uses a flat-file-based approach.

Storage Interface Class and Methods

Storage Class
public interface Storage extends
 com.inprise.vbroker.CORBA.Object
 com.inprise.vbroker.ServerManager.StorageOperations,
 org.omg.CORBA.portable.IDLEntity

The following include statements must appear in your code when using the Storage
interface:

import com.borland.vbroker.ServerManager.*;
import com.borland.vbroker.ServerManager.ContainerPackage.*;

Storage Interface Methods
public void open() throws
 com.inprise.vbroker.ServerManager.StorageException;

Opens the storage and makes it ready for reading and writing the properties. For the
database-based implementation, logging into the database is performed in this
method.

public void close() throws
 com.inprise.vbroker.ServerManager.StorageException;

Closes the storage. This method also updates the storage with any properties that
have been changed since the last Container::persist_properties call. In database
implementations, this method closes the database connection.

public com.inprise.vbroker.ServerManager.ContainerPackage.Property[]
read_properties() throws
com.inprise.vbroker.ServerManager.StorageException;

Reads all the properties from the storage.

public com.inprise.vbroker.ServerManager.ContainerPackage.Property
read_property(String propertyName)

throwscom.inprise.vbroker.ServerManager.ContainerPackage.NameInvalid,
com.inprise.vbroker.ServerManager.StorageException;

Returns the property value for propertyName read from the storage.

public void
write_properties(com.inprise.vbroker.ServerManager.ContainerPackage.

Property[] props) throws com.inprise.vbroker.ServerManager.StorageException;

Saves the property sequence into the storage.

public void write_property
(com.inprise.vbroker.ServerManager.ContainerPackage.Property

prop) throws com.inprise.vbroker.ServerManager.StorageException;

Saves the single property into the storage.

 18: Using the Vis iBroker Server Manager 249

Limit ing access to the Server Manager

Limiting access to the Server Manager
A client that obtains the Server Manager can control the entire ORB and hence security
is paramount. The following properties can limit a user's access to the Server Manager
functionality:

Server Manager IDL

Server Manager IDL is as shown below:

module ServerManager {
interface Storage;

exception StorageException {
 string reason;
};

interface Container
{
 enum RWStatus {
 READWRITE_ALL,
 READONLY_IN_SESSION,
 READONLY_ALL
 };

 struct Property {
 string name;
 any value;
 RWStatus rw_status;
 };
 typedef sequence<Property> PropertySequence;

 struct NamedContainer {
 string name;
 Container value;
 boolean is_replaceable;
 };
 typedef sequence<NamedContainer> NamedContainerSequence;

 struct Parameter {
 string name;
 any value;
 };
 typedef sequence<Parameter> ParameterSequence;

 struct Operation {
 string name;
 ParameterSequence params;
 ::CORBA::TypeCode result;
 };
 typedef sequence<Operation> OperationSequence;

Property Default Value Description

vbroker.orb.enableServerManager false Setting this property to True enables
the Server Manager.

vbroker.serverManager.enableOperations true Controls the permission to invoke
operations in the containers. If set to
false, the client will not be able to
invoke do_operation on any container.

vbroker.serverManager.enableSetProperty true Controls the setting of properties
from the client. If set to false, clients
cannot modify any of the container
properties.

250 VisiBroker for Java Developer’s Guide

Limit ing access to the Server Manager

 struct VersionInfo {
 unsigned long major;
 unsigned long minor;
 };

 exception NameInvalid{};
 exception NameAlreadyPresent{};
 exception ValueInvalid{};
 exception ValueNotSettable{};
 exception OperationFailed{
 string real_exception_reason;
 };

 ::CORBA::StringSequence list_all_properties();
 PropertySequence get_all_properties();
 Property get_property(in string name) raises (NameInvalid);
 void add_property(in Property prop)
 raises(NameAlreadyPresent, NameInvalid, ValueInvalid);
 void set_property(in string name, in any value)
 raises(NameInvalid, ValueInvalid, ValueNotSettable);

 ::CORBA::StringSequence get_value_chain(in string propertyName) raises
(NameInvalid);
 void persist_properties(in boolean recurse) raises (StorageException);
 void restore_properties(in boolean recurse) raises (StorageException);

 ::CORBA::StringSequence list_all_operations();
 OperationSequence get_all_operations();
 Operation get_operation(in string name)
 raises (NameInvalid);
 any do_operation(in Operation op)
 raises(NameInvalid, ValueInvalid, OperationFailed);

 ::CORBA::StringSequence list_all_containers();
 NamedContainerSequence get_all_containers();
 NamedContainer get_container(in string name)
 raises (NameInvalid);
 void add_container(in NamedContainer container)
 raises(NameAlreadyPresent, ValueInvalid);
 void set_container(in string name, in Container value)
 raises(NameInvalid, ValueInvalid, ValueNotSettable);

 void set_storage(in Storage s, in boolean recurse);
 Storage get_storage();

 readonly attribute VersionInfo version;
};

interface Storage
{
 void open() raises (StorageException);
 void close() raises (StorageException);
 Container::PropertySequence read_properties() raises
 (StorageException);
 Container::Property read_property(in string propertyName)
 raises (StorageException, Container::NameInvalid);
 void write_properties(in Container::PropertySequence p) raises
 (StorageException);
 void write_property(in Container::Property p) raises (StorageException);
};

};

 18: Using the Vis iBroker Server Manager 251

Server Manager examples

Server Manager examples
The following examples demonstrate how to:

1 Obtain a reference to the top-level container.

2 Get all containers and their properties recursively.

3 Getting, setting, and saving properties on different containers.

4 Invoke the shutdown() method on the ORB container.

These example files can be found in:

<install_dir>/examples/vbe/ServerManager/

The following example uses the bank_agent server. This server should be started by
passing the property storage file. Initially the property file contains the properties to
enable the Server Manager and set its name. The file is used by the Server Manager to
update the properties if the user changes them. The properties to enable the Server
Manager and set its name can be passed as command-line options, but the property
file is required if any of the properties are to be modified and saved during the session.

Initially, the property file contains the following:

server properties
vbroker.orb.enableServerManager=true
vbroker.serverManager.name=BigBadBoss

The server is started from the command-line:

prompt> Server -ORBpropStorage prop.txt

Obtaining the reference to the top-level container

This example uses the second, or bind method since the Server Manager has been
started with a name (see “Obtaining a Server Manager reference”).

Container topContainer = ContainerHelper.bind(orb,"BigBadBoss");

Getting all the containers and their properties

The following example shows how get_all_properties, get_all_operations, and
get_all_containers can be used to query all the properties and operations of all the
containers below the current container recursively.

public void displayContainer(NamedContainer cont, boolean top) {

 // Get All Containers
 NamedContainer[] nc = cont.value.get_all_containers();

 // Get All Properties for the current container
 Property[] props=cont.value.get_all_properties();

 // Get All Operations for the current container
 Operation[] ops=cont.value.get_all_operations();

 // Now print all properties and operations and recurse
 // through all containers

 }

252 VisiBroker for Java Developer’s Guide

Server Manager examples

Getting and Setting properties and saving them into the file

The following code fragment shows how to query a property of a container. If the
container is not the top-level container, it needs to be reached first by traversing
through all its parents from the top container. The get and set methods can be called
only on the container which owns the property.

Note

Properties with RW_STATUS values of READONLY_ALL are not settable.

public void getSetProperties(NamedContainer topCont) throws Exception {

 // Obtain the ORB container from top level container.
 Container orbCont=topCont.value.get_container("ORB").value;

 // Obtain the "iiop_tp" SCM container. This container is
 // contained as follows:
 // topCont->ORB->ServerEngines->iiop_tp->iiop_tp (the first
 // iiop_tp is the ServerEngine name)'

 Container iiopCont=orbCont.get_container(
 "ServerEngines").value.get_container(
 "iiop_tp").value.get_container(
 "iiop_tp").value;

 // Obtain the "bank_agent_poa" container. This container is
 // contained as follows:
 // topCont->ORB->RootPOA->Children->bank_agent_poa
 Container poaCont=orbCont.get_container(
 "RootPOA").value.get_container(
 "Children").value.get_container(
 "bank_agent_poa").value;

 // get the process Id property from ORB container
 Property procIdProp=orbCont.get_property("vbroker.orb.procId");

 // get the listener port property from iiop_tp container
 Property portProp=iiopCont.get_property(
 "vbroker.se.iiop_tp.scm.iiop_tp.listener.port");

 // get the upTime property from bank_agent_poa container
 Property upTimeProp=poaCont.get_property("upTime");
 ...
 // let the user modify listener port value
 org.omg.CORBA.Any portAny=orb.create_any();
 portAny.insert_long(newPort);
 iiopCont.set_property(
"vbroker.se.iiop_tp.scm.iiop_tp.listener.port",portAny);
...
 // save the updated property to file

iiopCont.persist_properties(true);
}

 18: Using the Vis iBroker Server Manager 253

Server Manager examples

Invoking an operation in a Container

The ORB container supports the operation shutdown. The operation can be obtained by
calling get_operation on the container.

public void invokeShutdown(NamedContainer topCont) throws Exception {

 Container orbCont=topCont.value.get_container("ORB").value;

 System.out.println("Executing ShutDown ...");

 // Prepare parameter (boolean wait_for_completion)
 org.omg.CORBA.Any any=orb.create_any();
 any.insert_boolean(false);
 Parameter[] params=new Parameter[1];

 // Prepare result (void)
 params[0]=new Parameter("waitForCompletion",any);
 org.omg.CORBA.TypeCode result=orb.get_primitive_tc(
 org.omg.CORBA.TCKind.tk_void);

 // Prepare operation
 Operation op=new Operation("shutdown",params, result);

 // Invoke operation
 orbCont.do_operation(op);
}

The operation returned by the get_operation call has the default parameters. If the
default values of the parameters are not the intended ones, these values should be
modified before calling the do_operation method.

Custom Containers

It is possible for a user application to define containers and add them to the Server
Manager. The container manages two properties and defines one operation. It also
uses its own storage for storing the properties. The two properties are:

The operation is:

Property Description

manager.lockAllAccounts This property has a read-write status of READWRITE_ALL, so it can be
modified and takes effect while the server is running. The purpose of
this property is to make AccountManager unavailable for client
applications. The initial value of this property is read by the server on
startup and saved to the same file when server shuts down/restarts.

manager.numAccounts This property has a read-write status of READONLY_ALL, so it can only be
read. The purpose of this property is to provide the number of
Accounts in the AccountManager. The value of this property is not
written to the storage.

Operation Description

shutdown Shuts down the server without starting it again. Before shutdown, the
manager.lockAllAccounts property is written (persisted) to the property file.

254 VisiBroker for Java Developer’s Guide

Server Manager examples

For a complete example, go to:

<install_dir>/examples/vbe/ServerManager/custom_container/

The main steps in writing custom containers is follows:

1 Implement the Container interface defined in Serve Manager IDL.

2 Instantiate the servant that implements the Container interface and activate it on a
POA.

3 Obtain the reference to Server Manager top level container. Add the custom
container to the Container hierarchy.

The server then can be started with the Server Manager enabled and a client can
interact with the custom container.

If you want your application to implement its own storage, it has to implement the
Storage interface defined in Server Manager IDL. The basic steps are same as
implementing custom containers.

 19: Using Vis iBroker Nat ive Messaging 255

Using VisiBroker Native Messaging

Introduction
Native Messaging is a language independent, portable, interoperable, server side
transparent, and OMG compliant two-phase invocation framework for CORBA and
RMI/J2EE (RMI-over-IIOP) applications.

Two-phase invocation (2PI)

In object-oriented vocabulary, invocations are method calls made on target objects.
Conceptually, an invocation is made up of two communication phases:

– sending a request to a target in the first phase

– receiving a reply from the target in the second phase

In classic object-oriented distributed frameworks, such as CORBA, RMI/J2EE, and
.NET, invocations on objects are one-phased (1PI), in which the sending and receiving
phases are encapsulated together inside a single operation rather than exposed
individually. In a one-phased invocation the client calling thread blocks on the operation
after the first phase until the second phase completes or aborts.

If a client can be unblocked after the first phase, and the second phase can be carried
out separately, the invocation is called two-phased (2PI). The operation unblocking
before completing its two invocation phases is called a premature return (PR) in Native
Messaging.

A 2PI allows a client application to unblock immediately after the request sending
phase. Consequently, the client does not have to halt its calling thread and retain the
transport connection while waiting for a reply. The reply can be retrieved or received by
the client from an independent client execution context and/or through a different
transport connection.

Polling-Pulling and Callback models

In a two-phase invocation scenario, after sending out each request the client
application can either actively poll and pull the reply using a poller object provided by
the infrastructure, or the client can passively wait for the infrastructure to notify it and
send back the reply on a specified asynchronous callback handler. These two
scenarios are usually called the synchronous polling-pulling model and the
asynchronous callback model respectively.

256 VisiBroker for Java Developer’s Guide

Introduct ion

Non-native messaging and IDL mangling

In non-native messaging, such as CORBA Messaging, two-phase invocations are not
made with native operation signatures on native IDL or RMI interfaces. Instead, at
different invocation phases, and with different reply retrieve models, client applications
have to call various mangled operations.

For instance, in CORBA Messaging, to make a two-phase invocation of operation
foo (<parameter_list>) on a target, the request sending is not made with the native
signature foo() itself, but it is made with either of the following mangled signatures:

// in polling-pulling model
sendp_foo(<input_parameter_list>);

// in callback model
sendc_foo(<callback_handler>, <input_parameter_list>);

The reply polling operation signature is:

foo(<timeout>, <return_and_output_parameter_list_as_output>);

The reply delivery callback operation signature is:

foo(<return_and_output_parameter_list_reversed_as_input>);

These mangled operations are either additional signatures added to the original
application specified interface, or defined in additional type specific interfaces or
valuetypes.

Problems of this non-native and mangling approach are:

– It ruins the intuitiveness of the original IDL interface and operation signatures.

– It could conflict with other operation mangling, for instance, in case of Java RMI.

– It could collide with operation signatures already used by the original IDL interface.

– It introduces interface binary incompatibility. For instance, interfaces with and without
mangled signatures are not necessarily binary compatible in their language mapping.

– It does not respect the natural mapping between IDL operations and native GIOP
messages, and therefore, introduces inconsistency and dilemmas when used with
other OMG CORBA features, such as PortableInterceptor.

Native Messaging solution

Native Messaging only uses native IDL language mapping and native RMI interfaces
defined by applications, without any interface mangling and without introducing any
additional application specific interface or valuetype.

For instance, in Native Messaging, sending a request to foo(<parameter_list>) and
retrieving (or receiving) its reply in either the polling-pulling or callback models are
made with the exact native operation foo(<parameter_list>) itself and are made on
native IDL or RMI interfaces. No mangled operation signature and interfaces or
valuetypes are introduced or used.

This pure native and non-mangling approach is not only elegant and intuitive but
completely eliminates conflicts, name collision, and inconsistencies of operation
signature mangling.

Request Agent

Similar to the OMG Security and Transaction Services, Native Messaging is an object
service level solution, which is based on an fully interoperable broker server, the
Request Agent, and a client side portable request interceptor fully compliant with the
OMG Portable Interceptor specification.

When making two-phase invocations, Native Messaging applications do not send
requests directly to their target objects. Instead, request invocations are made on
delegate request proxies created on a specified Request Agent. The request proxy is

 19: Using Vis iBroker Nat ive Messaging 257

StockManager example

responsible for delegating invocations to their specified target objects, and delivering
replies to client callback handlers or returning them later on client polling-pulling.

Therefore, a request agent needs to be known by client applications. Usually, this is
accomplished by initializing the client ORB using OMG standardized ORB initialization
command arguments:

-ORBInitRef RequestAgent=<request_agent_ior_or_url>

This command allows client applications to resolve the request agent reference from
this ORB as an initial service, for instance:

// Getting Request Agent reference in Java
org.omg.CORBA.Object ref
 = orb.resolve_initial_references("RequestAgent");
NativeMessaging.RequestAgentEx agent
 = NativeMessaging.RequestAgentExHelper.narrow(ref);

By default, the URL of a request agent is:

corbaloc::<host>:<port>/RequestAgent

Here, <host> is the host name or dotted IP address of a RequestAgent server, and
<port> is the TCP listener port number of this server. By default, NativeMessaging
RequestAgent uses port 5555.

Native Messaging Current

Similar to the OMG Security and Transaction Services, Native Messaging uses a
thread local Current object to provide and access additional supplemental parameters
for making two-phase invocations. These parameters include blocking timeout, request
tag, cookie, poller reference, reply availability flag, and others. Semantic definitions
and usage descriptions of these parameters are given in later sections. Similarly, the
Native Messaging Current object reference can be resolved from an ORB as an initial
service, for instance:

// Getting Current object reference in Java
org.omg.CORBA.Object ref
 = orb.resolve_initial_references("NativeMessagingCurrent");
NativeMessaging.Current current
 = NativeMessaging.CurrentHelper.narrow(ref);

Core operations

A two-phase framework allows all normal invocations to be carried out in two separate
phases manageable by client applications. Nevertheless, on fulfilling or using this two-
phase invocation service, the framework and/or client may need some other primitive
core functions from the framework. Operations used to access primitive core functions
are called core operations. It is desirable that:

– Core operations are always accomplished in a single phase. An invocation on a core
operation always blocks until it completes or aborts.

– Core operations are always orthogonal to any normal two-phase invocations that
they are involved in.

In Native Messaging, all pseudo operations are reserved as core operations.

Note

In this document, if not explicitly stated, “invocation” or “operation” implies a non-core
two way operation.

StockManager example
The StockManager example is used in this section to illustrate the Native Messaging
usage scenarios. This example is abridged from the full scale version that is shipped

258 VisiBroker for Java Developer’s Guide

StockManager example

with the product in the <install_dir>/examples/vbe/NativeMessaging/stock_manager
directory, and it is provided to illustrate functionality that is equivalent to the CORBA
Messaging StockManager example.

The following example assumes a server object has its IDL interface, StockManager,
defined as follows:

// from: <install_dir>/examples/vbe/NativeMessaging/
// stock_manager/StockManager.idl
interface StockManager {
 boolean add_stock(in string symbol, in float price);
 boolean find_closest_symbol(inout string symbol);
};

A conventional single-phase add_stock() or find_closest_symbol() call adds a stock
symbol to or finds a symbol in the targeted stock manager server. The following is an
example of the invocation code:

// invoke and block until return
boolean stock_added = stock_manager.add_stock("ACME", 100.5);
omg.org.CORBA.StringHolder symbol_holder
 = new omg.org.CORBA.StringHolder("ACMA");
boolean closest_found
 = stock_manager.find_closest_symbol(symbol_holder);

In the above one-phase invocation case, the invocations are blocked until the client
receives its returns or exceptions.

Using Native Messaging, two-phase invocations can be made on the same stock
manager server. Replies to these invocations can be retrieved or returned using the
synchronous polling-pulling model or the asynchronous callback model, as illustrated in
the “Polling-pulling model”, and “Callback model”.

Note

This document illustrates the StockManager example code in C++. The corresponding
Java code is available in “Using VisiBroker Native Messaging.”

Polling-pulling model

In the polling-pulling model, the result of a two-phase invocation is pulled back by client
applications. The steps for Native Messaging polling-pulling two-phase invocations are
summarized below.

1 Create a request proxy from a Native Messaging Request Agent. This proxy is
created for a specific target object (a stock manager server in our example) and is
used to delegate requests to the target.

2 Get the typed receiver or <I> interface of this proxy. This typed receiver is used by
the client application to send requests to the proxy. The typed receiver of a proxy
supports the same IDL interface as the target object. In this example, the typed
receiver supports the StockManager interface and can be narrowed down to a typed
StockManager stub.

3 Perform the first invocation phase, making several invocations on the typed receiver
stub. By default, invocations on a typed receiver are returned with dummy output
and return values. This is called a premature return. Receiving a premature return
from proxy's typed receiver without raising an exception indicates that a two-phase
invocation has been successfully initiated. It indicates that the request has been
accepted and assigned to a distinct poller object by the request agent. The poller
object of a two-phase invocation is available from the local NativeMessaging
Current. Like the typed receiver, all poller objects also support the same IDL
interface as the target (in this example the StockManager).

4 Carry out the second phase of the invocation, polling availability and pulling replies
back from the poller objects. The client application narrows the poller objects to their
corresponding typed receiver stubs (StockManager in this example) and invokes the

 19: Using Vis iBroker Nat ive Messaging 259

StockManager example

same operations as those invoked in the request sending phase. When making an
invocation on poller objects input parameters are ignored. Also, the agent does not
deliver new requests to the delegated target object. The agent treats all invocations
made on the poller object as polling-pulling requests. Usually, a timeout value can
be provided as a supplemental parameter through NativeMessaging Current to
specify the maximum polling blocking timeout. If the reply is available before the
timeout, the polling invocation will receive a mature return with output parameters
and a return result from the real invocation. Otherwise, if the reply is not available
before the timeout expires, the poll ends up with a premature return again.
Applications should use the reply_not_available attribute of Native Messaging
Current to determine whether a polling return is premature.

The following code sample illustrates how to use Native Messaging to make polling-
pulling two-phase invocations on a stock manager object:

// from: <install_dir>/examples/vbe/NativeMessaging/
// stock_manager/PollingClient.java

// 1. create a request proxy from the request agent for making
// non-blocking requests on targeted stock_manager server.
RequestProxy proxy = agent.create_request_proxy(
 stock_manager, "", null,
 new NameValuePair[0]);

// 2. Get the request receiver of the proxy
StockManager stock_manager_rcv
 = StockManagerHelper.narrow(proxy.the_receiver());

// 3. send two requests to the receiver, and get
// their reply pollers from the Native Messaging Current.
StockManager[] pollers = new StockManager[2];
stock_manager_rcv.add_stock("ACME", 100.5);
pollers[0] = StockManagerHelper.narrow(current.the_poller());
StringHolder symbol_holder = new StringHolder("ACMA");
stock_manager_rcv.find_closest_symbol(symbol_holder);
pollers[1] = StockManagerHelper.narrow(current.the_poller());

// 4. Poll/pull the two associated replies.
current.wait_timeout(max_timeout);

boolean stock_added;
do { stock_added = pollers[0].add_stock("", 0.0); }
while(current.reply_not_available());

boolean closest_found;
do { closest_found = pollers[1].find_closest_symbol(symbol_holder); }
while(current.reply_not_available());

Note

– In Native Messaging, the request sending phase and the reply polling-pulling phase
of a two-phase invocation all use the same operation signature. This operation used
by both phases of a two-phase invocation is exactly the same native operation
defined on the actual target's IDL interface.

– Poller objects are normal CORBA objects with location transparency. Therefore, in
Native Messaging, it is not necessary to carry out the request sending phase and the
reply polling phase of a two-phase invocation in same client execution context and
through same transport connection.

– If there is an exception in polling-pulling phase, the application should use the
Current reply_not_available attribute to determine whether the exception is the result

260 VisiBroker for Java Developer’s Guide

StockManager example

of a reply polling-pulling failure, or the successful pulling of a real exceptional result
of the delegated request. TRUE indicates that the exception is a polling-pulling failure
between the client and agent. FALSE indicates that the exception is the real result of
the delegated request.

– In a premature return, Native Messaging sets all non-primitive output parameters
and the return value to null. This is similar to the OMG non-exception handling C++
mapping except Native Messaging uses a local Current object rather than the
CORBA Environment.

Additional features, variances of the polling-pulling model, and Native Messaging API
syntax and semantics specification are discussed in “Advanced Topics” and “Native
Messaging API Specification”.

Callback model

Using the Native Messaging callback model, applications are unblocked immediately
after they send out requests to a proxy's typed receiver. Replies to these invocations
are delivered to a callback reply recipient that is specified upon creating the request
proxy.

The steps to make Native Messaging two-phase invocations in the callback model are
summarized below:

1 Create a request proxy from a Native Messaging Request Agent. This proxy is
created for a specific target object. Like the polling-pulling model, this proxy will be
used to delegate requests to the specified target. A reply recipient callback handler,
which is a null reference in the polling-pulling model, is also specified on creating
this request proxy. The request agent will deliver to the callback handler any newly
available replies to requests delegated by this proxy.

2 Like the second step in the polling-pulling model, get the typed receiver, or <I>
interface, of this proxy and narrow it down to a typed <I> stub (a StockManager stub
in this example).

3 Like the third step in the polling-pulling model, perform the first invocation phase by
making several invocations on the proxy's typed receiver stub. By default,
invocations on a typed receiver are returned with dummy output and return values.
This is called a premature return. A premature return on a proxy's typed receiver
without an exception indicates a two-phase invocation has been successfully
initiated.

4 Complete the second phase of the invocation, which is to receive replies. In the
callback model, this is done asynchronously in a completely independent execution
context. Client applications implement and activate a reply recipient object. This
callback object is type unspecific, that is it does not depend on the real target's IDL
interface. The key operation of this callback handler is the reply_available() method
which is discussed below after the code sample.

The following code sample illustrates the first three steps for using Native Messaging to
make callback model two-phase invocations on a stock manager object:

// from: <install_dir>/examples/vbe/NativeMessaging/
// stock_manager/CallbackClient.java

// get type independent callback handler reference
NativeMessaging.ReplyRecipient reply_recipient = …;
// 1. create a request proxy from the request agent for
// making non-blocking requests on targeted stock_manager server.
RequestProxy proxy = agent.create_request_proxy(
 stock_manager, "", reply_recipient,
 new NameValuePair[0]);

// 2. Get the request receiver of the proxy
StockManager stock_manager_rcv

 19: Using Vis iBroker Nat ive Messaging 261

StockManager example

 = StockManagerHelper.narrow(proxy.the_receiver());

// 3. send two requests to the receiver.
stock_manager_rcv.add_stock("ACME", 100.5);
StringHolder symbol_holder = new StringHolder("ACMA");
Stock_manager_rcv.find_closest_symbol(symbol_holder);

Here, the reply_recipient callback handler is a NativeMessaging::ReplyRecipient object
regardless the specific application target types. The ReplyRecipient interface is defined
as

// from: <install_dir>/idl/NativeMessaging.idl

interface NativeMessaging::ReplyRecipient {
 void reply_available(
 in object reply_holder,
 in string operation,
 in sequence<octet> the_cookie);
);
};

The reply_holder parameter of reply_available() is called a reflective callback
reference, which is the same as a reply poller object of the polling-pulling model and
can be used by the reply_available() implementation to pull back the reply result in the
same way a polling-pulling client would pull back a reply result from a poller object.

Note

In delivering replies to a callback handler, Native Messaging uses the double dispatch
pattern to reverse the callback model into a polling-pulling model. Here, a reply
recipient implementation makes a second (reflective) callback on a typed reply_holder
reference to retrieve the reply.

The following code sample is an example implementation of reply_available() method:

// from: <install_dir>/examples/vbe/NativeMessaging/
// stock_manager/AsyncStockRecipient.java

void reply_available(
 omg.org.CORBA.Object reply_holder,
 String operation,
 byte[] cookie)
{
 StockManager poller
 = StockManagerHelper.narrow(reply_poller);

 // retrieve response using reflective callback
 if(operation.equals("add_stock")) {
 // retrieve a add_stock() return
 boolean stock_added = poller.add_stock("", 0.0);
 ...
 }
 else
 if(operation.equals("find_closest_symbol")) {
 StringHolder symbol_holder = new StringHolder("");
 // retrieve a find_closest_symbol() return
 boolean closest_found
 = poller.find_closest_symbol(symbol_holder);
 ...
 }
}

262 VisiBroker for Java Developer’s Guide

Advanced Topics

Note

– In Native Messaging, the request sending phase and the reply receiving phase of a
two-phase invocation both use the same operation. The operation used by both
phases of a two-phase invocation is exactly the same native operation defined on the
actual target's IDL interface.

– Reply recipient objects are normal CORBA objects and are location transparent.
Therefore, in Native Messaging, the reply recipient callback object is not necessarily
located within the request sending client process.

– If an exception is raised when the reply_available() implementation retrieves a reply
from the reply_holder, the application should use the Current reply_not_available
attribute to determine whether the exception reports retrieving a failure or a
successful reply retrieval of a real exceptional result of the delegated request. TRUE
indicates that this exception is the result of a reply retrieval failure between the client
and agent. FALSE indicates that this exception is a real result of delegated request.

– Reply retrieval operations on reply_holder should only be made within the scope of
the reply_available() method. Once the application returns from reply_available(),
the reply_holder may no longer be valid.

Additional features, variances of the polling-pulling model, and the Native Messaging
API specification are discussed in “Advanced Topics” and “Native Messaging API
Specification”.

Advanced Topics

Group polling

As illustrated in previous sections, multiple requests can be delegated by a given
request proxy. However, as different requests take different processing time, replies
from them are not necessarily ready in the order in which they were invoked. Instead of
polling individual requests one by one, group polling allows a polling client application,
which has multiple requests delegated by a given request proxy, to determine the
availability of replies in an multiplexed aggregation.

In order to participate in group polling, a request sent to a given proxy needs to be
tagged. Request tags are assigned by clients to identify requests in the scope of their
group, namely the request proxy. Native Messaging does not impose any constraint on
request tag content, except that they must be unique within the scope (request proxy).
Untagged requests (requests with empty tags) do not participate in group polling, and
the availability of their replies is not reported by group polling results.

The steps for using group polling are summarized below.

1 Send tagged requests. To tag a request, a client application simply sets the
request_tag attribute of the local Native Messaging Current object before making
each invocation on the typed receiver interface (before delivering each request).
The content of each request tag is specified by application for its own convenience,
as long as it is unique within its scope (proxy).

2 Poll reply availability on the request proxy, instead of on any individual poller, by
calling the proxy's poll(max_timeout, unmask) operation. This operation will block
until timeout, or until any tagged requests delegated by this proxy are ready for
mature return, at which time their tags will be put in the returned request tag
sequence. An empty tag sequence return indicates a timeout has expired.

3 Retrieve reply results from individual pollers, which have reported that they are
ready for mature return by the group polling return result.

The following code sample illustrates above steps of using Native Messaging group
polling feature:

// from: <install_dir>/examples/vbe/NativeMessaging/
// stock_manager/GroupPollingClient.java

 19: Using Vis iBroker Nat ive Messaging 263

Advanced Topics

StockManager pollers[] = new StockManager[2];
// send one tagged request
current.request_tag("0".getBytes());
stock_manager_rcv.add_stock("ACME", 100.5);
pollers[0] = StockManagerHelper.narrow(current.the_poller());

// send another tagged request
current.request_tag("1".getBytes());
StringHolder symbol_holder = new StringHolder("ACMA");
Stock_manager_rcv.find_closest_symbol(symbol_holder);
pollers[1] = StockManagerHelper.narrow(current.the_poller());

// polling request availability on proxy and retrieve their replies
byte[][] tags = null;
while(true) {
 // polling availability
 try {
 tags = proxy.poll(max_timeout, true);
 }
 catch(PollingGroupIsEmpty e) {
 proxy.destroy(true);
 break;
 }
 // retrieve replies
 for(int i=0;i<tags.length;i++) {
 int id = Integer.parseInt(new String(tags[i]));

 switch(id) {
 case 0: // the first tagged request sent above
 boolean stock_added;
 stock_added = pollers[0].add_stock("", 0.0);
 break;

 case 1: // the second tagged request sent above
 boolean closest_found;
 closest_found
 = pollers[1].find_closest_symbol(symbol_holder);
 break;

 default:
 break;
 }
 }
}

Note

– After each invocation, the Current request_tag attribute is automatically reset to
empty or null.

– Try to initiate a 2PI on a proxy with a request_tag already used by another 2PI or the
proxy will end up with a CORBA BAD_INV_ORDER exception with minor code
NativeMessaging::DUPLICATED_REQUEST_TAG.

– The unmask parameter of the poll() operation on a request proxy specifies whether
the poll() should unmask all mature requests. If they are unmasked, they will not be
involved and reported by the next poll().

– If all requests on a proxy are not tagged or unmasked, poll() will raise a
PollingGroupIsEmpty exception.

264 VisiBroker for Java Developer’s Guide

Advanced Topics

Cookie and reply de-multiplexing in reply recipients

As illustrated in previous sections, multiple requests can be delegated by a given
request proxy. In the callback model, all replies to these requests will be sent back to
the same reply recipient object specified on creating the proxy. The challenge is how
the client demultiplexes different replies on one ReplyRecipient callback handler.

Applications using OMG CORBA Messaging also face the same challenge. To avoid
activating many callback objects, CORBA Messaging suggests that applications use a
POA default servant or servant manager to manipulate callback objects, and assign
different object IDs to different callback references. Although this avoids many callback
objects being activated in the reply recipient process, it is inflexible and far from an
efficient scenario, because it requires an object reference to be created and marshaled
for sending each callback request.

Native Messaging supports two demultiplexer mechanisms, which can be used either
together or alone depending on the required demultiplexer granularity. A coarse
grained demultiplex, but handy mechanism, is simply demultiplexing by operation
signature, which is available within the ReplyRecipient's reply_available() callback
method. This is the mechanism used in some of the previous examples.

A more effective demultiplexing mechanism in the Native Messaging callback scenario
is using request cookies. A request cookie is an octet sequence (or byte array). Its
content is specified by client applications on the Native Messaging's Current object
before sending a request. The specified cookie is passed to the reply recipient's
reply_available() method on delivering the reply of that request. There is no constraint
on the content of a cookie, not even a uniqueness requirement. Contents of cookies
are decided solely by applications for their own convenience and efficiency on callback
demultiplexing.

The following code sample illustrates how to assign cookie to a request:

// send a requests with a cookie
current.the_cookie("add stock".getBytes());
stock_manager_rcv.add_stock("ACME", 100.5);

// send another request with a different cookie
current.the_cookie("find symbol".getBytes());
StringHolder symbol_holder = new StringHolder("ACMA");
stock_manager_rcv.find_closest_symbol(symbol_holder);

The following code sample illustrates how to use attach cookies to demultiplex by reply
recipient:

void reply_available(
 omg.org.CORBA.Object reply_poller,
 String operation,
 byte[] cookie)
{
 StockManager poller
 = StockManagerHelper.narrow(reply_poller);

 String id = new String(cookie);

 if(id.equals("add stock")) {
 boolean stock_added.add_stock("", 0.0);

 ...
 }
 else
 if(id.equals("find symbol")) {
 StringHolder symbol_holder = new StringHolder("");
 boolean closest_found
 = poller.find_closest_symbol(symbol_holder);
 ...
 }
}

 19: Using Vis iBroker Nat ive Messaging 265

Advanced Topics

Evolving invocations into two-phases

Compared to conventional single-phase invocations, two-phase invocations incur
additional reply polling communication round trips. For a long duration heavyweight
task, latency from few additional communication round trips is insignificant. However,
for a lightweight transient invocation, this latency can be undesirable.

It is ideal for applications if lightweight transient invocations can be completed in a
single-phase without incurring additional latency, and heavyweight long duration
invocations can automatically be performed in two separated phases without holding
client execution context and transport connection.

In Native Messaging, this can be achieved with the evolve into two-phase invocation
feature. By default, invocations on a proxy's typed receiver always end up with
premature returns along with their reply results to be polled back or delivered through
callbacks later in a separate invocation phase. The evolve into two-phase feature
allows invocations on a proxy's typed receiver to block and end up with a mature return
if it can be accomplished before a specified timeout expires. Otherwise, if the
invocation cannot complete before the timeout expires, it will evolve into a two-phase
invocation by taking a premature return. To determine whether an invocation on a
proxy's typed receiver has evolved into a two-phase invocation, the application can
examine the reply_not_available attribute of the local Native Messaging Current object
after the return.

To use this feature:

– The request proxy should be created with a WaitReply property with a value of TRUE.

– Set the wait_timeout attribute of Native Messaging Current to a non-zero value
(milliseconds) before the invocations.

– After each invocation on the typed receiver, determine whether a return is premature
by examining the reply_not_available attribute of the local Native Messaging Current
object after each invocation.

– If a return is premature, get the returned poller object from the local Current to poll
the reply in separate phase later.

The following code sample illustrates how to use the evolve invocations into two-
phases:

// Create a request proxy with WaitReply property TRUE
org.omg.CORBA.NameValuePair nv = new org.omg.CORBA.NameValuePair();
nv.id = new String("WaitReply");
nv.value = orb.create_any();
nv.value.insert_boolean(true);
org.omg.CORBA.NameValuePair[] props
 = new org.omg.CORBA.NameValuePair[]{nv};

RequestProxy proxy
 = agent.create_request_proxy(stock_manager, "", null, props);

// Get the typed receiver of this proxy
StockManager stock_manager_rcv
 = StockManagerHelper.narrow(proxy.the_receiver());

// Set wait_timeout attribute to 3 seconds
current.wait_timeout(3000);

// make an invocation on the receiver.
boolean stock_added = stock_manager_rcv.add_stock("ACME", 100.5);

// check whether it has evolved into a two-phase invocation.
if(current.reply_not_available() == false) {
 // It is not evolved. The return above is mature.
 // The job has done.
 return;

266 VisiBroker for Java Developer’s Guide

Advanced Topics

}

// It has evolved into a two-phase invocation.
// We should get the poller and poll its reply.
StockManager poller = StockManagerHelper.narrow(current.the_poller());
do { stock_added = poller.add_stock("", 0.0); }
while(current.reply_not_available())

Notes

– If an operation on a proxy's typed receiver can be completed before it evolves into a
two-phase invocation on timeout, there will be no poller generated, nor will a callback
be made on the reply recipient to deliver the reply.

– If an exception is raised from blocking on a proxy or polling reply, the application
should use the reply_not_available attribute of Native Messaging Current to
determine whether the exception reports a request delivering or reply polling failure
or if it is a real result of delegating the request. A value of TRUE for this attribute
indicates that this exception is a reply delivering or polling failure between the client
and agent. FALSE indicates that this exception is a real result of delegating the
request.

Reply dropping

In the callback model, by default, a request agent sends whatever result, return or
exception, of the invocation back to the reply recipient. Reply dropping allows specified
types of reply results to be filtered out. This is useful, for instance, if applications want
to invoke one-way requests with no result to be returned, but would still be notified if
any invocations fail.

Native Messaging allows applications to specify a ReplyDropping property on creating a
request proxy. This property specifies which types of returns should be filtered out from
being sent to the reply recipient. The value of this property is an octet (or byte) with the
following filtering rules:

– if(value & 0x01 == 0x01) drop normal replies

– if(value & 0x02 == 0x02) drop system exceptions

– if(value & 0x04 == 0x04) drop user exceptions

For example, a value of 0x06 for this property lets the request agent drop all exceptions,
system as well as user, on requests delegated by this proxy.

The following example code illustrates setting the ReplyDropping property:

// Create a request proxy with ReplyDropping property
// with value 0x01 (dropping all normal replies).
org.omg.CORBA.NameValuePair nv = new org.omg.CORBA.NameValuePair();
nv.id = new String("ReplyDropping");
nv.value = orb.create_any();
nv.value.insert_octet(0x01);
org.omg.CORBA.NameValuePair[] props
 = new org.omg.CORBA.NameValuePair[]{nv};

RequestProxy proxy
 = agent.create_request_proxy(stock_manager, "",
 reply_recipient, props);
...

Notes

– Reply dropping only applies to the callback model. If the reply_recipient reference
passed to the create_request_proxy() is null, the reply dropping property is ignored.

 19: Using Vis iBroker Nat ive Messaging 267

Advanced Topics

– If the value of the reply dropping property in create_request_proxy() is not 0x00, and
the reply_recipient reference is not null, invocation on this proxy's typed receiver will
not return a poller object on Native Messaging Current.

Manual trash collection

By default, a poller object will be trashed immediately after a polling operation on it
results in a mature return. In the callback model, once the callback is returned, a
request agent also trashes the poller regardless of whether the application has
retrieved the reply within the callback reply_available() operation. Polling on a trashed
object raises a CORBA OBJECT_NOT_EXIST exception and the Current
reply_not_available attribute is set to TRUE.

If a request proxy is created with a RequestManualTrash property of value TRUE, poller
objects of requests delegated by this proxy are not trashed automatically. Polling on
these poller objects after a reply becomes available is idempotent, returning the same
result every time.

These poller objects can be manually trashed if an application no longer needs them.
To manually trash poller objects, applications simply call the destroy_request()
operation on the request agent, with the poller to be trashed as a parameter. For
example,

agent.destroy_request(poller);

Note

Pollers of requests delegated by an auto-trashing proxy can also be trashed manually.
This makes sense when replies on these pollers are either not yet available or have not
been polled back.

Unsuppressed premature return mode

The key concept of Native Messaging is unblocking from a native operation after its
first invocation phase. In Native Messaging, this is called premature return. There are
two premature return modes in Native Messaging: suppressed mode and
unsuppressed mode. All of the discussions so far used the default suppressed mode.
In suppressed mode, the premature return is a normal operation return, except that it
contains dummy output and return values. This is similar to an exceptional return in
non-exception handling in the OMG C++ mapping, except that Native Messaging uses
a thread local Current object instead of an additional Environment parameter.

Suppressed premature return mode is handy, however, it requires client-side mapping
support. Namly, it assumes the IDL precompiler generated client-side stub code
catches and suppresses premature return exceptions. To port client applications to an
ORB, its IDL precompiler does not generate premature return suppressed client-side
stub code, the unsuppressed premature return mode can be used.

In Native Messaging unsuppressed premature return mode, a native operation is
unblocked by simply raising an RNA exception, that is a CORBA NO_RESPONSE exception
with minor code REPLY_NOT_AVAILABLE. To use unsuppressed premature return mode, an
application needs to turn off suppressed mode by calling suppress_mode(false) on
Native Messaging Current, and it needs to catch and handle the RNA exceptions
accordingly.

Note

To ensure that the code is portable to both suppressed and unsuppressed modes, it is
recommended that applications use the Current reply_not_available attribute in
unsuppressed mode, rather than the RNA exception and minor code to determine the
maturity of a return.

268 VisiBroker for Java Developer’s Guide

Advanced Topics

The following example code illustrates the StockManager polling example in
unsuppressed mode. This code is not only portable to all ORBs, but also portable to
suppressed mode as well.

// from: <install_dir>/examples/vbe/NativeMessaging/
// stock_manager/PollingClientPortable.java

void yield_non_rna(org.omg.CORBA.NO_RESPONSE e) {
 if(e.minor != NativeMessaging.REPLY_NOT_AVAILABLE.value) {
 throw e;
 }
}
...
// turn off suppress mode
current.suppress_mode(false);

// send several requests to the receiver, and get
// their reply pollers from the Native Messaging Current.
StockManager pollers[2];
try{ stock_manager_rcv.add_stock("ACME", 100.5)); }
catch(org.omg.CORBA.NO_RESPONSE e) { yield_non_rna(e); }
pollers[0] = StockManagerHelper.narrow(current.the_poller());
StringHolder symbol_holder = new StringHolder("ACMA");
try{ stock_manager_rcv.find_closest_symbol(symbol_holder)); }
catch(org.omg.CORBA.NO_RESPONSE e) { yield_non_rna(e); }
pollers[1] = StockManagerHelper.narrow(current.the_poller());

// poll the two associated replies.
current.wait_timeout(max_timeout);

boolean stock_added;
do { try{ stock_added = pollers[0].add_stock("", 0.0)) }
 catch(org.omg.CORBA.NO_RESPONSE e) { yield_non_rna(e); } }
while(current.reply_not_available());

boolean closest_found;
do { try{ closest_found = pollers[1].find_closest_symbol(symbol_holder)) }
 catch(org.omg.CORBA.NO_RESPONSE e) { yield_non_rna(e); } }
while(current.reply_not_available());

Suppress poller generation in callback model

By default, pollers are generated even in the callback model. This allows:

– Applications to trash a request before it completes.

– Applications to retrieve replies independent of their reply recipients.

However, generating and sending back poller references incurs additional overhead.
Native Messaging allows applications to suppress (disable) poller reference generation
in the callback model.

To suppress a poller in the callback model, applications only need to create a request
proxy with the CallbackOnly property set to TRUE. In this case null pollers are returned.

 19: Using Vis iBroker Nat ive Messaging 269

Nat ive Messaging API Speci f icat ion

Native Messaging API Specification
Note

Several operations and attributes in the Native Messaging IDL definition are not
specified in this document. They are either value added features, depreciated features,
or reserved for further extension.

Interface RequestAgentEx

This is the interface of the Native Messaging Request Agent. A request agent is
responsible for delegating invocations to their specified target object and delivering
return results to client callback handlers or returning them later on client polling. See
“Request Agent” for more information.

create_request_proxy()
RequestProxy
create_request_proxy(
 in object target,
 in string repository_id,
 in ReplyRecipient reply_recipient,
 in PropertySeq properties)
 raises(InvalidProperty);

The create_request_proxy() method creates a request proxy to delegate two-phase
invocations to the specified target object.

Argument Description

target The target of all requests to be delegated by this proxy.

repository_id This is the assigned repository ID of the typed receiver, reply poller, and reply
holder from this proxy. If this parameter is an empty string, the target's
repository ID is used. This ID is used by Native Messaging to fulfill _is_a()
semantics on typed receiver, reply poller, and reply holder.

reply_recipient The reply recipient callback handler. When replies become available the
request agent calls back its reply_available() operation to send back reply
results. A null_reply_recipient implies the polling-pulling model.

properties Properties to specify non-default semantics of the proxy. Supported
properties include:

■ WaitReply: A boolean property with default value FALSE. See “Evolving
invocations into two-phases” for more information.

■ RequestManualTrash: A boolean property with default value FALSE. See
“Manual trash collection” for more information.

■ ReplyDropping: An octet property with default value 0x00. See “Reply
dropping” for more information.

■ CallbackOnly: A boolean property with default value FALSE. See “Suppress
poller generation in callback model” for more information.

Exception Description

InvalidProperty This exception indicates that an invalid property name or value is used in the
properties list. The property name is available from the exception.

270 VisiBroker for Java Developer’s Guide

Nat ive Messaging API Speci f icat ion

destroy_request()
void
destroy_request(
 in object poller)
 raises(RequestNotExist);

This method is used to manually trash a poller object. See “Manual trash collection” for
more information.

Interface RequestProxy

Request proxies are created by an application from a request agent in order to
delegate requests to the specified target and with the specified semantic properties.
See “create_request_proxy()”.

the_receiver
readonly attribute object the_receiver;

This attribute is the proxy's typed receiver reference. The type receiver of a proxy
supports the same IDL interface as the specified target and is where applications send
their requests to be delegated by the proxy.

Note

– By default, calling operations on a proxy's typed receiver initiates two-phase
invocations to be delegated by this proxy. These calls will be unblocked and yield
distinct reply pollers.

– If the proxy is created with a WaitReply property value of TRUE and the request on
the_receiver is called with a non-zero wait_timeout, the request agent will try to
delegate the request as single-phase invocation before the timeout expires. If the
agent does not receive a reply from the target before the timeout expires, it will
unblock the client and the request will evolve into a two-phase invocation. After
unblocking from a call on the_receiver, applications can use the Current
reply_not_available attribute to determine whether the request has evolved into a
two-phase invocation. See “reply_not_available”.

– IDL one-way operations only have one invocation phase intrinsically, therefore, one-
way invocations on a proxy's typed receiver do not yield poller objects. The agent
simply forwards them to their targets without going through a second invocation
phase.

– Core operations on a proxy's typed receiver are handled synchronously; they will be
blocked until a mature return or exception. Calling core operations on typed receivers
does not imply initiating two-phase invocations. For instance, a _non_existent() call
on a proxy's typed receiver only implies a ping on the receiver itself, not on the real
target.

Argument Description

poller the poller to be trashed.

Exception Description

RequestNotExist This exception indicates the poller to be trashed is not available.

 19: Using Vis iBroker Nat ive Messaging 271

Nat ive Messaging API Speci f icat ion

poll()
RequestIdSeq
poll(
 in unsigned long timeout,
 in boolean unmask)
 raises(PollingGroupIsEmpty);

This method performs group polling. See “Group polling” for more information.

destroy()
void
destroy (
 in boolean destroy_requests);

This method destroys a request proxy.

Local interface Current

A local Native Messaging Current object is used by an application to specify and
access additional information before and after a two-phase invocation. The Current
object can be resolved from the local ORB as an initial reference. See “Native
Messaging Current” for more information.

suppress_mode()
void
suppress_mode(
 in boolean mode);

This sets the current premature return mode. In suppressed mode, two-phase
invocations are unblocked after the first phase in a normal return, except that it
contains dummy output and return values. In unsuppressed mode, two-phase
invocations are unblocked after the first phase by an RNA exception (a CORBA
NO_RESPONSE exception with minor code of NativeMessaging::REPLY_NOT_AVAILABLE). See
“Unsuppressed premature return mode” for more information.

wait_timeout
attribute unsigned long wait_timeout;

Argument Description

timeout specifies the maximum length of time, in milliseconds, that this method
will wait for any tagged request to become available. If no tagged request
becomes available before the timeout expires an empty RequestIdSeq is
returned.

unmask specifies whether a tagged request, its tag is in the returned sequence,
should be unmasked. Once unmasked, a tagged request will no longer
be involved in subsequent group polling.

Exception Description

PollingGroupIsEmpty This exception indicates there are no tagged or unmasked requests
pending on this proxy.

Argument Description

destroy_requests if TRUE, all requests delegated by this proxy are trashed.

Argument Description

mode specifies whether the suppressed mode is used.

272 VisiBroker for Java Developer’s Guide

Nat ive Messaging API Speci f icat ion

This attribute specifies the maximum number of milliseconds a two-phase invocation
will block on sending a request or on polling a reply. On timeout, Native Messaging
unblocks the call with a premature return.

the_cookie
attribute Cookie the_cookie;

This attribute specifies the cookie to be sent immediately following the invocation on a
proxy's typed receiver. By default, the cookie is empty. A non-empty cookie can be
used by reply_recipient to do more application-specific demultiplexing. See “Cookie
and reply de-multiplexing in reply recipients” for more information.

request_tag
attribute RequestTag request_tag;

This attribute uniquely identifies the request immediately following an invocation on a
proxy's typed receiver. By default the tag is initially empty, and it is reset to empty after
sending the request. Requests with non-empty tags are involved in group polling. See
“poll()” and “Group polling”.

Note

– After each invocation, the Current request_tag attribute is automatically reset to
empty or null.

– Attempting to initiate a 2PI on a proxy with a request_tag previously used by another
2PI on the proxy will result in a CORBA BAD_INV_ORDER exception with minor code
NativeMessaging::DUPLICATED_REQUEST_TAG.

the_poller
readonly attribute object the_poller;

This attribute returns the poller object reference just after delivering a request through
an invocation made on a proxy's typed receiver. Poller objects are used by client
applications to fulfill the reply polling-pulling phase of two-phase invocations.

Note

– A client application should call the same operation used in initiating the two-phase
invocation on the given poller object to poll and retrieve the return result. Calling an
operation on the poller that does not match the one used in initiating the two-phase
invocation will result in a CORBA BAD_OPERATION exception, and the value of the
Current reply_not_available attribute will be TRUE.

– Poller objects are normal CORBA objects with location transparency. Therefore, in
Native Messaging, the request sending phase and the reply polling phase of a two-
phase invocation are not necessarily carried out in same client execution context and
through same transport connection. A client application can accomplish the first
invocation phase and get the poller object, then perform the polling in a completely
distinct client execution context, in a different process, and through a different
transport connection.

– If an exception is raised in the reply polling-pulling phase, an application should use
the Current reply_not_available attribute to determine whether the exception reports
a reply polling-pulling failure or a successful reply pulling of a real exceptional result
of the delegated request. TRUE indicates that this exception is a polling-pulling failure
between the client and agent. FALSE indicates that this exception is the real result of
the delegated request.

– Core operations made on poller objects are orthogonal to two-phase invocations
pending on them. For instance, _is_a() or _non_existent() on a poller does not imply
reply polling-pulling on the pending two-phase invocation, but only implies a
repository ID comparison and non-existence check on the poller object itself.

 19: Using Vis iBroker Nat ive Messaging 273

Nat ive Messaging API Speci f icat ion

reply_not_available
readonly attribute boolean reply_not_available;

This attribute reports the consequence of an unblocked (either normal return or
exception) call on a proxy's typed receiver, reply poller, or reply holder, as summarized
by the following table.

The terms in the above table are defined as follows:

– 2PI initiated: This is the result when an operation made on a proxy's typed receiver
results in a normal return or an RNA exception (in unsuppressed mode), and the
Current reply_not_available attribute is TRUE. This is one of the two premature return
cases in Native Messaging. By default, a reply poller of this initiated two-phase
invocation is available on Current after the call.

– 2PI initiation failure: This is the result when an operation made on a proxy's typed
receiver results in an exception other than RNA, and the Current reply_not_available
attribute is TRUE. This outcome indicates either that the agent has rejected the two-
phase invocation, or the client failed to receive agent's premature reply message. No
reply poller is available on Current. If this is caused by a communication failure on
receiving a premature reply message, the agent will still delegate the request and
may even generate a callback to a reply recipient.

– 2PI completed: This is the result when an operation made on a proxy's typed
receiver, a reply poller or reply holder, results in either a normal return or any
CORBA exception, and the Current reply_not_available attribute is FALSE. If the
operation results in an exception other than RNA, a TRUE reply_not_available attribute
indicates that this exception is a real result of a delegated request to target.

– Reply not available: This is the result when an operation made on a reply poller
results in a normal return or an RNA exception, and the Current reply_not_available
attribute is TRUE. This is one of the two premature return cases.

– Polling-Pulling failure: This is the result when an operation made on a reply poller
or reply holder results in an exception other than RNA, and the Current
reply_not_available attribute is TRUE. This outcome indicates a usage or system
failure on retrieving the reply, such as calling an unmatched operation or the poller
has already been trashed.

– N/A: Not an applicable outcome. It should never happen.

Interface ReplyRecipient

ReplyRecipient objects are implemented by Native Messaging applications to receive
reply results in the callback model. See the example in “Callback model” and “Cookie
and reply de-multiplexing in reply recipients”.

reply_available()
void
reply_available(

Reply_not_availableq True False True False

Called object Proxy's typed
receiver

Reply poller or
holder

Normal return,
no exception

2PI initiated
(premature)

2PI completed (poller only) Reply
not available
(premature)

2PI completed

RNA exception
(unsuppressed mode)

2PI initiated
(premature)

N/A (poller only) Reply
not available
(premature)

N/A

Exception other
than RNA

2PI initiation
failure

2PI completed
(target failure)

Polling-pulling
failure

2PI completed
(target failure)

274 VisiBroker for Java Developer’s Guide

Native Messaging Interoperabi l i ty Speci f icat ion

 in object reply_holder,
 in string operation,
 in Cookie the_cookie);

This method is callback by request agent on delivering a reply. The actual reply result,
either a normal return or an exception, is held by the input reply_holder object and can
be retrieved by making a callback on it. If an exception is raised from a call on the
reply_holder, the application should use the Current reply_not_available attribute to
determine whether the exception is reporting a retrieval failure or the real result of the
delegated request. TRUE indicates that this exception is the result of a retrieval failure
between the client and agent. FALSE indicates that this exception is a real result of the
delegated request.

See the example in “Callback model”.

Semantics of core operations

Native Messaging reserves all pseudo operations as core operations. Core operations
meet the following rules:

– They are always accomplished in one phase. Core operations always block until a
mature return or a non-RNA exception.

– They do not initiate a two-phase invocation to be forwarded to the real target when
called on a proxy's typed receiver. For instance, calling _non_existent() on a proxy's
typed receiver is only a ping to check the non-existence of the receiver itself, not the
target.

– They are orthogonal to pending two-phase invocations on a reply poller or reply
holder: For instance, calling _is_a() or _non_existent() on a reply poller or reply
holder does not imply retrieving the reply result of the pending two-phase invocation,
but only repository ID comparsion and existence checks on these poller or holder
objects themselves.

Native Messaging Interoperability Specification
The content of this section is not intended for Native Messaging application developers
but for third party Native Messaging vendors.

Native Messaging uses native GIOP

In non-native messaging, such as CORBA Messaging, the OMG GIOP protocol is not
used as a direct message protocol; it is used as a tunneling protocol for another ad hoc
message routing protocol.

For instance, in CORBA Messaging, calling a mangled operation

sendc_foo(<input_parameter_list>);

Argument Description

reply_holder Within the scope of the reply_available() method, this object reference has the
same semantics as a reply poller. A reply retrieving operation on reply_holder
should only be made within the scope of the reply_available() method. Once the
application returns from reply_available(), the reply_holder may no longer be
valid.

operation The original operation signature. It can be used by applications for coarse
grained demultiplexing. A call made on the reply_holder reference should have
same operation signature as this parameter. Making a call on the reply_holder
with a different operation will end up with a CORBA BAD_OPERATION exception with
Current reply_not_available attribute value of TRUE.

the_cookie The original request cookie. Can be used by applications for fine grained
demultiplexing.

 19: Using Vis iBroker Nat ive Messaging 275

Nat ive Messaging Interoperabi l i ty Speci f icat ion

does not incur a native OMG GIOP Request message with operation sendc_foo in the
head and <input_parameter_list> as payload. Instead, a routing message tunneling
through GIOP Request is sent.

Native Messaging uses the native OMG GIOP directly as its message level protocol:

– A method call on an agent, request proxy's typed receiver, reply poller, reply
recipient, or reply holder reference incurs a native GIOP Request message with the
exact called operation name in head, and the exact input parameters as payload to
be sent, as defined by OMG GIOP.

– A premature return is simply a native GIOP Reply message containing an RNA
exception, specifically a CORBA NO_RESPONSE exception with minor code of
REPLY_NOT_AVAILABLE.

– A mature return is simply a native GIOP Reply message with either the exact
<return_value_and_output_parameter_list> or the exact exception from the target as
payload.

Native Messaging service context

Like the OMG Security and Transaction service, Native Messaging also uses a service
context to achieve certain semantic results. The client-side Native Messaging engine,
implemented in an OMG standardized PortableInterceptor for instance, is responsible
for creating and adding required service contexts into certain outgoing requests and for
extracting information from the same kind of service context inside incoming replies.

The context_id used by Native Messaging's service context is
NativeMessaging::NMService. The context_data is an encapsulated
NativeMessaging::NMContextData defined as:

module NativeMessaging {
...
 const IOP::ServiceID NMService = ...

 struct RequestInfo {
 RequestTag request_tag;
 Cookie the_cookie;
 unsigned long wait_timeout;
 };

 union NMContextData switch(short s) {
 case 0: RequestInfo req_info;
 case 1: unsigned long wait_timeout;
 case 2: object the_poller;
 case 3: string replier_name;
 };
};

Mandated usage of different context data in Native Messaging is summarized in the
following table:

The terms in the above table are defined as follows:

– req_info: NMContextData is mandated to all requests of two-way non-core operation
sending to a proxy's typed receiver. This context has request_tag, cookie and

Sending to or receiving from
Proxy's typed
receiver Reply poller Reply holder

Request req_info wait_timeout Not defined

Normal Reply (NO_EXCEPTION) Not defined

RNA Exception the_poller No NMService
context

N/A

Non-RNA exception from calling target replier_name

Non-RNA exception within agent No NMService
context

276 VisiBroker for Java Developer’s Guide

Using Bor land Nat ive Messaging

wait_timeout from Native Messaging Current as supplement parameters for initiating
a two-phase invocation. The content of this context should be used by the request
agent to tag the request, to deliver callback with the cookie, and to wait before
evolving into a two-phased invocation. See corresponding topics in the previous
sections.

– wait_timeout: NMContextData is mandated to all normal (two-way non-core)
requests sent to a reply poller, with wait_timeout from Native Messaging Current as
supplement parameter for polling. The content, namely the wait_timeout, should be
used by the request agent to block the call before a mature or premature return. See
corresponding topics in previous sections.

– the_poller: NMContextData is mandated to all successful returns on initiating two-
phase invocations on a proxy's typed receiver object. The content of the context, a
poller reference, is extracted and copied to Native Messaging Current's the_poller
attribute.

– replier_name: NMContextData is mandated to all exceptional returns as a
successful return of an exceptional return result from delegating a request. This
context should not appear if the exceptional return is a failure not resulting from
delegating the request. The actual content of the string should be empty and
preserved for further extension.

– Not defined: Native Messaging does not use NMService context in these cases.

– N/A: Not applicable. It should never happen.

NativeMessaging tagged component

A tagged component with the NativeMessaging::TAG_NM_REF tag should be embedded in
typed receivers of request proxies and poller references. The component_data of this
tagged component encapsulates an octet. Namely the first octet of the component_data
is the byte-order byte and second byte of it is the value octet. A value of 0x01 for this
octet indicates the reference is a typed receiver of a request proxy, and a value of 0x02
indicates it is a poller reference.

This component is used by PortableInterceptor's send_request() method to determine
whether a request is sending to a Native Messaging request proxy's the_receiver
reference, a reply poller, or something else, and to decide whether and what service
context to add to the outgoing request.

Using Borland Native Messaging

Using request agent and client model

Start the Borland Request Agent
To start the Request Agent service, run the command requestagent. Run it with
requestagent -? to see the usage information.

Borland Request Agent URL
To use Native Messaging, a request agent needs to be known by client applications.
Usually, this is done by initializing the client ORB with the OMG standardized ORB
initialize command arguments:

-ORBInitRef RequestAgent=<request_agent_ior_or_url>

This allows client applications to resolve the request agent reference from the ORB as
an initial service, for instance:

// Getting Request Agent reference in Java
org.omg.CORBA.Object ref

 19: Using Vis iBroker Nat ive Messaging 277

Using Bor land Nat ive Messaging

 = orb.resolve_initial_references("RequestAgent");
NativeMessaging.RequestAgentEx agent
 = NativeMessaging.RequestAgentExHelper.narrow(ref);

By default, the URL of a request agent is:

corbaloc::<host>:<port>/RequestAgent

Here, <host> is the host name or dotted IP address of a Request Agent server, and
<port> is the TCP listener port number of this server. By default, the Native Messaging
Request Agent uses port 5555.

Using the Borland Native Messaging client model
Borland Native Messaging client side models in Java are implemented as OMG
portable interceptors and are referred to as the Native Messaging Client Component.
The Native Messaging for Java Client Component needs to be initialized explicitly by
setting vbroker.orb.enableNativeMessaging to true (the default value is false).

Borland Request Agent vbroker properties

vbroker.requestagent.maxThreads
Specifies the maximum number of threads for request invocation. The default value is 0
(zero) which means no limit. Values cannot be negative.

vbroker.requestagent.maxOutstandingRequests
Specifies the maximum queue size for requests waiting to get serviced. This property
only takes effect if the maxThreads property is set to non-zero value. The default value is
0 (zero) which means no limit. Values cannot be negative. If a request arrives when the
queue size is equal to maximum size, the request waits for a timeout until there is
space in the queue. See “vbroker.requestagent.blockingTimeout”.

vbroker.requestagent.blockingTimeout
Specifies the maximum time, in milliseconds, that a request can wait before it is added
to the queue. The default value is 0 (zero) which means no wait. Values cannot be
negative. If the value is set to 0 (zero) and a request arrives and the queue is full, the
Request Agent will raise CORBA::IMP_LIMIT exception. Otherwise, the request waits for
the specified timeout. After the timeout, either the request gets executed immediately if
the queue is empty and worker thread is available, or the request is enqueued in the
waiting queue if the queue has space and the request remains there until it gets
serviced, or if the queue is still full, CORBA::IMP_LIMIT exception is raised by the
Request Agent.

vbroker.requestagent.router.ior
Specifies the IOR of OMG messaging router. The default value is empty string.

vbroker.requestagent.listener.port
Specifies the TCP listener port to be used by the request agent. The default value
is 5555.

vbroker.requestagent.requestTimeout
This property specifies the maximum time, in milliseconds, that the agent will hold the
reply result for its client. If request agent has received reply results on a request, but
the client does not pull the result or trash the request, the request agent will trash the
request (together with its reply result) upon the expiration of the request timeout set by
this property. The default value of this property is infinity, meaning the agent will
preserve the reply results until they are trashed by client applications (manually or
automatically).

278 VisiBroker for Java Developer’s Guide

Using Bor land Nat ive Messaging

Interoperability with CORBA Messaging

The Native Messaging Request Agent is forward interoperable with the OMG untyped
Messaging Router. Specifically, the Request Agent can be configured to route requests
through an OMG untyped router instead of sending them directly to their specified
targets. To do so, the request agent needs to be started with the
“vbroker.requestagent.router.ior” property with a valid CORBA Messaging router IOR
as value.

 20: Using the Object Act ivat ion Daemon (OAD) 279

Using the Object Activation Daemon
(OAD)
This section discusses how to use the Object Activation Daemon (OAD).

Automatic activation of objects and servers
The Object Activation Daemon (OAD) is the VisiBroker implementation of the
Implementation Repository. The Implementation Repository provides a runtime
repository of information about the classes a server supports, the objects that are
instantiated, and their IDs. In addition to the services provided by a typical
Implementation Repository, the OAD is used to automatically activate an
implementation when a client references the object. You can register an object
implementation with the OAD to provide this automatic activation behavior for your
objects.

Object implementations can be registered using a command-line interface (oadutil).
There is also a VisiBroker ORB interface to the OAD, described in “IDL interface to the
OAD”. In each case, the repository ID, object name, the activation policy, and the
executable program representing the implementation must be specified.

Note

You can use the VisiBroker OAD to instantiate servers generated with VisiBroker for
Java and C++.

The OAD is a separate process that only needs to be started on those hosts where
object servers are to be activated on demand.

Locating the Implementation Repository data

Activation information for all object implementations registered with the OAD are stored
in the Implementation Repository. By default, the Implementation Repository data is
stored in a file named impl_rep in the <install_dir>/adm/impl_dir directory.

280 VisiBroker for Java Developer’s Guide

Using the OAD

Activating servers

The OAD activates servers in response to client requests. VisiBroker clients and non-
VisiBroker IIOP-compliant clients can activate servers through the OAD.

Any client that uses the IIOP protocol can activate a VisiBroker server when that
server's reference is used. The server's exported Object Reference points to the OAD
and the client can be forwarded to the spawned server in accordance with the rules of
IIOP. To allow true persistence of the server's object references (such as through a
Name Service), the OAD must always be started on the same port. For example, to
start the OAD on port 16050, enter the following:

prompt> oad -VBJprop vbroker.se.iiop_tp.scm.iiop_tp.listener.port=16050

Note

Port 16000 is the default port, but it can be changed by setting the listener.port
property.

Using the OAD
The OAD is an optional feature that allows you to register objects that are to be started
automatically when clients attempt to access them. Before starting the OAD, you
should first start the Smart Agent. For more information, see “Starting a Smart Agent
(osagent)”.

Starting the OAD

Windows

To start the OAD:

– Use the oad.exe located in <install_dir>\bin\

or

– Enter the following at the command prompt:

prompt> oad

The oad command accepts the following command line arguments:

Option Description

-verbose Turns on verbose mode.

-version Prints the version of this tool.

-path <path> Specifies the platform-specific directory for storing the
Implementation Repository. This overrides any setting
provided through the use of environment variables.

-filename <repository_filename> Specifies the name of the Implementation Repository. If you
do not specify it, the default is impl_rep. This overrides any
user environment variable settings.

-timeout <#_of_seconds> Specifies the amount of time the OAD will wait for a
spawned server process to activate the requested
VisiBroker ORB object. The default time-out is 20 seconds.
Set this value to 0 (zero) if you wish to wait indefinitely. If a
spawned server process does not activate the requested
object within the time-out interval, the OAD will kill the
spawned process and the client will see a CORBA::NO
IMPLEMENT exception. Turn on the verbose option to see more
detailed information.

-IOR <IOR_filename> Specifies the filename to store the OAD's stringified IOR.

-kill Stipulates that an object's child process should be killed
once all of its object are unregistered with the OAD.

-no_verify Turns off check for validity of registrations.

 20: Using the Object Act ivat ion Daemon (OAD) 281

Using the OAD ut i l i t ies

The OAD is installed as Windows Service, allowing you to control it with the Service
Manager provided with Windows.

UNIX

To start the OAD enter the following command:

prompt> oad &

Using the OAD utilities
The oadutil commands provide a way for you to manually register, unregister, and list
the object implementations available on your VisiBroker system. The oadutil
commands are implemented in Java and use a command line interface. Each
command is accessed by invoking the oadutil command, passing the type of operation
to be performed as the first argument.

Note

An object activation daemon process (oad) must be started on at least one host in your
network before you can use the oadutil commands.

The oadutil command has the following syntax:

oadutil {list|reg|unreg} [options]

The options for this tool vary, depending on whether you specify list, reg or unreg.

Converting interface names to repository IDs

Interface names and repository IDs are two ways of representing the type of interface
the activated object should implement. All interfaces defined in IDL are assigned a
unique repository identifier. This string is used to identify a type when communicating
with the Interface Repository, the OAD, and most calls to the VisiBroker ORB itself.

When registering or unregistering an object with the OAD, the oadutil commands allow
you to specify either an object's IDL interface name or its repository id.

An interface name is converted to a repository ID as follows:

1 Prepend “IDL:” to the interface name.

2 Replace all non-leading instances of the scope resolution operator (::) with a slash
(/) character.

3 Append “:1.0” to the interface name.

For example, the IDL interface name

::Module1::Module2::IntfName

would be converted to the following repository ID:

IDL:Module1/Module2/IntfName:1.0

The #pragma ID and #pragma prefix mechanisms can be used to override the default
generation of repository ID's from interface names. If the #pragma ID mechanism is used
in user-defined IDL files to specify non-standard repository IDs, the conversion process

-? Displays command usage.

-readonly When the OAD is started with the -readonly option, no
changes can be made to the registered objects. Attempts to
register or unregister objects will return an error. The -
readonly option is usually used after you've made changes
to the Implementation Repository, and have restarted the
OAD in readonly mode to the prevent any additional
changes.

Option Description

282 VisiBroker for Java Developer’s Guide

Using the OAD ut i l i t ies

outlined above will not work. In these cases, you must use -r repository ID argument
and specify the object's repository ID.

To obtain the repository id of the object implementation's most derived interface in
Java, use the method java: <interface_name>Helper.id() defined for all CORBA
objects.

Listing objects with oadutil list

The oadutil list utility allows you to list all VisiBroker ORB object implementations
registered with the OAD. The information for each object includes:

– Interface names of the VisiBroker ORB objects.

– Instance names of the object offered by that implementation.

– Full path name of the server implementation's executable.

– Activation policy of the VisiBroker ORB object (shared or unshared).

– Reference data specified when the implementation was registered with the OAD.

– List of arguments to be passed to the server at activation time.

– List of environment variables to be passed to the server at activation time.

The oadutil list command returns all VisiBroker ORB object implementations
registered with the OAD. Each OAD has its own Implementation Repository database
where the registration information is stored.

Note

An OAD process must be started on at least one host in your network before you can
use the oadutil list command.

The oadutil list command has the following syntax:

oadutil list [options]

The oadutil list command accepts the following command line arguments:

Option Description

-i <interface name> Lists the implementation information for objects of a particular IDL
interface name. Only one of the following options may be specified at a
particular time: -i, -r, -s, or -poa.

Note: All communications with the VisiBroker ORB reference an object's
repository id instead of the interface name. For more information about
the conversion performed when specifying an interface name, see the
“Converting interface names to repository IDs” section.

-r <repository id> Lists the implementation information of a specific repository id. See
“Converting interface names to repository IDs” for details on specifying
repository IDs. Only one of the following options may be specified at a
particular time: -i, -r, -s, or -poa.

-s <service name> Lists the implementation information for a specific service name. Only
one of the following options may be specified at a particular time: -i, -r, -
s, or -poa.

-poa <poa_name> Lists the implementation information for a specific POA name. Only one
of the following options may be specified at a particular time: -i, -r, -s, or
-poa.

-o <object name> Lists the implementation information for a specific object name. You can
use this only if the interface or repository id is specified in the command
statement. This option is not applicable when an -s or -poa arguments is
used.

-h <OAD host name> Lists the implementation information for objects registered with an OAD
running on a specific remote host.

-verbose Turns verbose mode on, causing messages to be output to stdout.

-version Prints the version of this tool.

-full Lists the status of all implementations registered with the OAD.

 20: Using the Object Act ivat ion Daemon (OAD) 283

Using the OAD ut i l i t ies

The following is an example of a local list request, specifying an interface name and
object name:

oadutil list -i Bank::AccountManager -o BorlandBank

The following is an example of a remote list request, specifying a host IP address:

oadutil list -h 206.64.15.198

Registering objects with oadutil

The oadutil command can be used to register an object implementation from the
command line or from within a script. The parameters are either the interface name and
object name, the service name, or the POA name, and path name to the executable
that starts the implementation. If the activation policy is not specified, the shared server
policy will be used by default. You may write an implementation and start it manually
during the development and testing phases. When your implementation is ready to be
deployed, you can simply use oadutil to register your implementation with the OAD.

Note

When registering an object implementation, use the same object name that is used
when the implementation object is constructed. Only named objects (those with a
global scope) may be registered with the OAD.

The oadutil reg command has the following syntax:

oadutil reg [options]

Note

An oad process must be started on at least one host in your network before you can use
the oadutil reg command.

The options for the oadutil reg command accepts the following command-line
arguments:

Option Required Description

-i <interface name> Yes Specifies a particular IDL interface name. Only one of
the following options may be specified at a particular
time: -i, -r, -s, or -poa. See “Converting interface
names to repository IDs” for details on specifying
repository IDs.

-r <repository id> Yes Specifies a particular repository id. Only one of the
following options may be specified at a particular
time: -i, -r, -s, or -poa.

-s <service name> Yes Specifies a particular service name. Only one of the
following options may be specified at a particular
time: -i, -r, -s, or -poa.

-poa <poa_name> Yes Use this option to register the POA instead of an
object implementation. Only one of the following
options may be specified at a particular time: -i, -r,
-s, or -poa.

-o <object name> Yes Specifies a particular object. You can use this only if
the interface name or repository id is specified in the
command statement. This option is not applicable
when an -s or -poa argument is used.

-cpp <file name to execute> Yes Specifies the full path of an executable file that must
create and register an object that matches the
-o/-r/-s/-poa arguments. Applications registered with
the -cpp argument must be stand-alone executables.

-java <full class name> Yes Specifies the full name of a Java class containing a
main routine. This application must create and
register an Object that matches the -o/-r/-s/-poa
argument. Classes registered with the -java
argument will be executed with the command vbj
<full_classname>.

284 VisiBroker for Java Developer’s Guide

Using the OAD ut i l i t ies

Example: Specifying repository ID
The following command will register with the OAD the VisiBroker program factory. It
will be activated upon request for objects of repository ID IDL:ehTest/Factory:1.0
(which corresponds to the interface name ehTest::Factory). The instance name of the
object to be activated is ReentrantServer, and that name is also passed to the spawned
executable as a command-line argument. This server has the unshared policy, by
which it will be terminated when the requesting client breaks its connection to the
spawned server.

prompt> oadutil reg -r IDL:ehTest/Factory:1.0 -o ReentrantServer \
 -java factory_r -a ReentrantServer -p unshared

Note

In the example above, the specified Java class must be found in the CLASSPATH.

Example: Specifying IDL interface name
The following command will register the VisiBroker Server class with the OAD. In this
example, the specified class must activate an object of repository ID IDL:Bank/
AccountManager:1.0 (corresponding to the interface name IDL name
Bank::AccountManager) and instance name CreditUnion. The server will be started with
unshared policy, ensuring that it will terminate when the requesting client breaks its
connection. The server is also passed with an environment variable DEBUG=1 when it is
first started by the client.

prompt> oadutil reg -i Bank::AccountManager -o CreditUnion \
 -java Server -a CreditUnion -p unshared -e DEBUG=1

Note

In the previous example, the specified Java class must be found in the CLASSPATH.

-host <OAD host name> No Specifies a specific remote host where the OAD is
running.

-verbose No Turns verbose mode on, causing messages to be
output to stdout.

-version No Prints the version of this tool.

-cos_name <CosName> No Specifies the CosName to bind this registration to
NOTE;. This does not work with service or POA
registrations.

-d <referenceData> No Specifies reference data to be passed to the server
upon activation.

-a arg1 -a arg2 No Specifies the arguments to be passed to the
spawned executable as command-line arguments.
Arguments can be passed with multiple -a (arg)
parameters. They will be propagated in order to
create the spawned executable.

-e env1 -e env2 No Specifies environment variables to be passed to the
spawned executable. Arguments can be passed with
multiple -e (env) parameters. They will be propagated
in order to create the spawned executable.

-p <shared|unshared> No Specifies the activation policy of the spawned
objects. The default policy is SHARED_SERVER. Shared:
Multiple clients of a given object share the same
implementation. Only one server is activated by an
OAD at a particular time. Unshared: Only one client
of a given implementation will bind to the activated
server. If multiple clients wish to bind to the same
object implementation, a separate server is activated
for each client application. A server exits when its
client application disconnects or exits.

Option Required Description

 20: Using the Object Act ivat ion Daemon (OAD) 285

Using the OAD ut i l i t ies

The previous registration tells the OAD to execute the following command when
spawning the requested server:

vbj -DDEBUG=1 Server CreditUnion

Remote registration to an OAD
To register an implementation with an OAD on a remote host, use the -h argument to
oadutil reg.

The following is an example of how to perform a remote registration to an OAD on
Windows from a UNIX shell. The double backslashes are necessary to avoid having
the shell interpret the backslashes before passing them to oadutil.

prompt> oadutil reg -r IDL:Library:1.0 Harvard \
 -java c:\\vbroker\\examples\\library\\libsrv -p shared -h 100.64.15.198

Using the OAD without using the Smart Agent
To access a server using the OAD without involving the Smart Agent, use the property
vbroker.orb.activationIOR to indicate the OAD's IOR to oadutil and to the server.

For example, let us assume that the OAD's IOR is located in the e:/adm dir (on
Windows), and you want to run the bank_portable example that is included (in the
examples/basic/bank_portable directory) with with the product. To access this server
without using the Smart Agent:

1 Start the OAD: the classpath visible to OAD must include the Server's classpath.
The command is:

prompt>start oad -VBJprop vbroker.agent.enableLocator=false -verbose

2 Register the server using oadutil: the command is:

prompt> oadutil -VBJprop vbroker.orb.activationIOR=file:
///e:/adm/oadj.ior -VBJprop

 vbroker.agent.enableLocator=false reg -i Bank::AccountManager
 -o BankManager -java Server

3 Generate the Server's IOR: when the server is started it will write out it's IOR into a
file. Terminate the server once it is running, so that the launching of the server by
the OAD can be demonstrated. The command is:

prompt> vbj -Dvbroker.orb.activationIOR=file:///e:/adm/oadj.ior Server

4 Run the Client: make sure the OAD is running, then use the command:

prompt> vbj -Dvbroker.agent.enableLocator=false Client

Using the OAD with the Naming Service
OAD facilitates the use of the Naming Service for bootstrapping. In the above section,
the Smart Agent was not used, and the client needed to obtain the server's IOR file.
This bootstrapping can be achieved using the Naming Service instead, as illustrated in
the following steps.

1 Start the OAD, providing it with a reference to the Naming Service. Assume that the
Naming Service runs on port 1111 on host myhost.

prompt>oad -verbose -VBJprop
vbroker.orb.initRef=NameService=corbaloc::myhost:1111/NameService

2 Register the server with the OAD. Note the use of the -cos_name parameter which
indicates to the OAD that this server should be automatically bound to the Naming
Service.

prompt>oadutil -VBJprop vbroker.orb.activationIOR=file:
///e:/adm/oadj.ior -VBJprop

 vbroker.agent.enableLocator=false reg -i Bank::AccountManager
-o BankManager -cos_name simple_test -cpp Server/pre>

prompt>oadutil -VBJprop vbroker.orb.activationIOR=file:

286 VisiBroker for Java Developer’s Guide

Using the OAD ut i l i t ies

///e:/adm/oadj.ior -VBJprop
 vbroker.agent.enableLocator=false reg -i Bank::AccountManager

-o BankManager -cos_name simple_test -java Server

3 The client can then use the Naming Service to resolve and obtain the server's
reference. A snippet of the client code for a Java client is shown below.

prompt>org.omg.CORBA.Object server=
 rootCtx.resolve(new NameComponent[] {new
NameComponent("simple_test","")});

Note that the OAD automatically created a binding for the server in the Naming Service
because the -cos_name parameter was used.

Distinguishing between multiple instances of an object

Your implementation can use ReferenceData to distinguish between multiple instances
of the same object. The value of the reference data is chosen by the implementation at
object creation time and remains constant during the lifetime of the object. The
ReferenceData typedef is portable across platforms and VisiBroker ORBs.

Setting activation properties using the CreationImplDef class

The CreationImplDef class contains the properties the OAD requires to activate a
VisiBroker ORB object: path_name, activation_policy, args, and env. The following
sample shows the CreationImplDef struct.

The path_name property specifies the exact path name of the executable program that
implements the object. The activation_policy property represents the server's
activation policy, discussed in “Example of object creation and registration”. The args
and env properties represent command line arguments and environment settings for
the server.

module extension {
...
 enum Policy {
 SHARED_SERVER,
 UNSHARED_SERVER
 };
 struct CreationImplDef {
 CORBA::RepositoryId repository_id;
 string object_name;
 CORBA::ReferenceData id;
 string path_name;
 Policy activation_policy;
 CORBA::StringSequence args;
 CORBA::StringSequence env;
 };
...
};

 20: Using the Object Act ivat ion Daemon (OAD) 287

Using the OAD ut i l i t ies

Dynamically changing an ORB implementation

The sample below shows the change_implementation() method which can be used to
dynamically change an object's registration. You can use this method to change the
object's activation policy, path name, arguments, and environment variables.

module Activation
{
...
 void change_implementation(in extension::CreationImplDef old_info,
 in extension::CreationImplDef new_info)
 raises (NotRegistered, InvalidPath, IsActive);
...
};

Caution

Although you can change an object's implementation name and object name with the
change_implementation() method, you should exercise caution. Doing so will prevent
client programs from locating the object with the old name.

OAD Registration using OAD::reg_implementation

Instead of using the oadutil reg command manually or in a script, VisiBroker allows
client applications to use the OAD::reg_implementation operation to register one or more
objects with the activation daemon. Using this operation results in an object
implementation being registered with the OAD and the osagent. The OAD will store the
information in the Implementation Repository, allowing the object implementation to be
located and activated when a client attempts to bind to the object.

module Activation {
...
 typedef sequence<ObjectStatus> ObjectStatus List;
...
 typedef sequence<ImplementationStatus> ImplStatusList;
...
 interface OAD {
 // Register an implementation.
 Object reg_implementation(in extension::CreationImplDef impl)
 raises (DuplicateEntry, InvalidPath);
 }
}

The CreationImplDef struct contains the properties the OAD requires. The properties
are repository_id, object_name, id, path_name, activation_policy, args, and env.
Operations for setting and querying their values are also provided. These additional
properties are used by the OAD to activate an VisiBroker ORB object.

struct CreationImplDef {
 CORBA::RepositoryId repository_id;
 string object_name;
 CORBA::ReferenceData id;
 string path_name;
 Policy activation_policy;
 CORBA::StringSequence args;
 CORBA::StringSequence env;
};

The path_name property specifies the exact path name of the executable program that
implements the object. The activation_policy property represents the server's
activation policy. The args and env properties represent optional arguments and
environment settings to be passed to the server.

288 VisiBroker for Java Developer’s Guide

Un-register ing objects

Example of object creation and registration

The following code sample shows how to use the CreationImplDef class and the
OAD.reg_implementation() method to register a server with the OAD. This mechanism
may be used in a separate, administrative program, not necessarily in the object
implementation itself. If used in the object implementation, these tasks must be
performed prior to activating the object implementation.

Creating an ORB object and registering with the OAD:

// Register.java
import com.inprise.vbroker.Activation.*;
import com.inprise.vbroker.extension.*;
public class Register{
 public static void main(String[] args) {
 // Initialize the ORB.
 org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,null);
 // Locate an OAD
 try {
 OAD anOAD =
 OADHelper.bind(orb);
 // Create an ImplDef
 CreationImplDef _implDef = new
 com.inprise.vbroker.extension.CreationImplDef();
 _implDef.repository_id = "IDL:Bank/AccountManager:1.0";
 _implDef.object_name = "BankManager";
 _implDef.path_name = "vbj";
 _implDef.id = new byte[0];
 _implDef.activation_policy =
 com.inprise.vbroker.extension.Policy.SHARED_SERVER;
 _implDef.env = new String[0];
 String[] str = new String[1];
 str[0] = "Server";
 _implDef.args = str;
 try {
 anOAD.reg_implementation(_implDef);
 } catch (Exception e) {
 System.out.println("Caught " + e);
 }
 }
 catch (org.omg.CORBA.NO_IMPLEMENT e) {
 }
 }
}

Arguments passed by the OAD

When the OAD starts an object implementation it passes all of the arguments that were
specified when the implementation was registered with the OAD.

Un-registering objects
When the services offered by an object are no longer available or temporarily
suspended, the object should be unregistered with the OAD. When the VisiBroker ORB
object is unregistered, it is removed from the Implementation Repository. The object is
also removed from the Smart Agent's dictionary. Once an object is unregistered, client
programs will no longer be able to locate or use it. In addition, you will be unable to use
the OAD.change_implementation() method to change the object's implementation. As
with the registration process, un-registering may be done either at the command line or
programmatically.

 20: Using the Object Act ivat ion Daemon (OAD) 289

Un-register ing objects

Un-registering objects using the oadutil tool

The oadutil unreg command allows you to unregister one or more object
implementations registered with the OAD. Once an object is unregistered, it can no
longer be automatically activated by the OAD if a client requests the object. Only
objects that have been previously registered via the oadutil reg command may be
unregistered with oadutil unreg.

If you specify only an interface name, all VisiBroker ORB objects associated with that
interface will be unregistered. Alternatively, you may identify a specific VisiBroker ORB
object by its interface name and object name. When you unregister an object, all
processes associated with that object will be terminated.

Note

An oad process must be started on at least one host in your network before you can use
the oadutil reg command.

The oadutil unreg command has the following syntax:

oadutil unreg [options]

The options for the oadutil unreg command accepts the following command line
arguments:

Option Required Description

-i <interface name> Yes Specifies a particular IDL interface name. Only one of the
following options may be specified at a particular time: -i, -r,
-s, or -poa. See “Converting interface names to repository
IDs” for details on specifying repository IDs.

-r <repository id> Yes Specifies a particular repository id. Only one of the following
options may be specified at a particular time: -i, -r, -s, or
-poa.

-s <service name> Yes Specifies a particular service name. Only one of the following
options may be specified at a particular time: -i, -r, -s, or
-poa.

-o <object name> Yes Specifies a particular object name. You can use this only if
the interface name or repository id is included in the
command statement. This option is not applicable when a -s
or -poa argument is used.

-poa <POA_name> Yes Unregisters the POA registered using oadutil reg -poa
<POA_name>.

-host <host name> No Specifies the host name where the OAD is running.

-verbose No Enables verbose mode, causing messages to be output to
stdout.

-version No Prints the version of this tool.

290 VisiBroker for Java Developer’s Guide

Un-register ing objects

Unregistration example
The oadutil unreg utility unregisters one or more VisiBroker ORB objects from these
three locations:

– Object Activation Daemon
– Implementation repository
– Smart Agent

The following is an example of how to use the oadutil unreg command. It unregisters
the implementation of the Bank::AccountManager named MyBank from the local OAD.

oadutil unreg -i Bank::AccountManager -o MyBank

Unregistering with the OAD operations

An object's implementation can use any one of the operations or attributes in the OAD
interface to unregister a VisiBroker ORB object.

– unreg_implementation(in CORBA::RepositoryId repId, in string object_name)

– unreg_interface(in CORBA::RepositoryId repId)

– unregister_all()

– attribute boolean destroy_on_unregister()

The following is an example of an OAD unregistered operation:

module Activation {
...
 interface OAD {
 ...
 void unreg_implementation(in CORBA::RepositoryId repId,
 in string object_name)
 raises(NotRegistered);
 ...
 }
}

Displaying the contents of the Implementation Repository

You can use the oadutil tool to list the contents of a particular Implementation
Repository. For each implementation in the repository the oadutil tool lists all the
object instance names, the path name of the executable program, the activation mode
and the reference data. Any arguments or environment variables that are to be passed
to the executable program are also listed.

Operation Description

unreg_implementation() Use this operation when you want to un-registered implementations
using a specific repository id and object name. This operation
terminates all processes currently implementing the specified
repository id and object name.

unreg_interface() Use this operation when you want to un-registered implementations
by using a specific repository id only. This operation terminates all
processes currently implementing the specified repository id.

unregister_all() Use this operation to un-registered all implementations. Unless
destroyActive is set to true, all active implementations continue to
execute. For backward compatibility, unregister_all() is not
destructive; it is equivalent to invoking unregister_all_destroy(false).

destroy_on_unregister Use this attribute to destroy any spawned processes on
unregistration of the relevant implementation. The default value is
false.

 20: Using the Object Act ivat ion Daemon (OAD) 291

IDL inter face to the OAD

IDL interface to the OAD
The OAD is implemented as a VisiBroker ORB object, allowing you to create a client
program that binds to the OAD and uses its interface to query the status of objects that
have been registered. The sample below shows the IDL interface specification for the
OAD.

module Activation
{
 enum state {
 ACTIVE,
 INACTIVE,
 WAITING_FOR_ACTIVATION
 };
 struct ObjectStatus {
 long unique_id;
 State activation_state;
 Object objRef;
 };
 typedef sequence<ObjectStatus> ObjectStatusList;
 struct ImplementationStatus {
 extension::CreationImplDef impl;
 ObjectStatusList status;
 };
 typedef sequence<ImplementationStatus> ImplStatusList;
 exception DuplicateEntry {};
 exception InvalidPath {};
 exception NotRegistered {};
 exception FailedToExecute {};
 exception NotResponding {};
 exception IsActive {};
 exception Busy {};
 interface OAD {
 Object reg_implementation(in extension::CreationImplDef impl)
 raises (DuplicateEntry, InvalidPath);
 extension::CreationImplDef get_implementation(
 in CORBA::RepositoryId repId,
 in string object_name)
 raises (NotRegistered);
 void change_implementation(in extension::CreationImplDef old_info,
 in extension::CreationImplDef new_info)
 raises (NotRegistered,InvalidPath,IsActive);
 attribute boolean destroy_on_unregister;
 void unreg_implementation(in CORBA::RepositoryId repId,
 in string object_name)
 raises (NotRegistered);
 void unreg_interface(in CORBA::RepositoryId repId)
 raises (NotRegistered);
 void unregister_all();
 ImplementationStatus get_status(in CORBA::RepositoryId repId,
 in string object_name)
 raises (NotRegistered);
 ImplStatusList get_status_interface(in CORBA::RepositoryId repId)
 raises (NotRegistered);
 ImplStatusList get_status_all();
};

292 VisiBroker for Java Developer’s Guide

 21: Using Interface Reposi tor ies 293

Using Interface Repositories
An Interface Repository (IR) contains descriptions of CORBA object interfaces. The
data in an IR is the same as in IDL files, descriptions of modules, interfaces,
operations, and parameters, but it is organized for runtime access by clients. A client
can browse an Interface Repository (perhaps serving as an online reference tool for
developers) or can look up the interface of any object for which it has a reference
(perhaps in preparation for invoking the object with the Dynamic Invocation Interface
(DII)).

Reading this section will enable you to create an Interface Repository and access it
with VisiBroker utilities or with your own code.

What is an Interface Repository?
An Interface Repository (IR) is like a database of CORBA object interface information
that enables clients to learn about or update interface descriptions at runtime. In
contrast to the VisiBroker Location Service, described in “Using the Location Service,”
which holds data describing object instances, an IR's data describes interfaces (types).
There may or may not be available instances that satisfy the interfaces stored in an IR.
The information in an IR is equivalent to the information in an IDL file (or files), but it is
represented in a way that is easier for clients to use at runtime.

Clients that use Interface Repositories may also use the Dynamic Invocation Interface
(DII) described in “Using the Dynamic Invocation Interface.” Such clients use an
Interface Repository to learn about an unknown object's interface, and they use the DII
to invoke methods on the object. However, there is no necessary connection between
an IR and the DII. For example, someone could use the IR to write an “IDL browser”
tool for developers; in such a tool, dragging a method description from the browser to
an editor would insert a template method invocation into the developer's source code.
In this example, the IR is used without the DII.

You create an Interface Repository with the VisiBroker irep program, which is the IR
server (implementation). You can update or populate an Interface Repository with the
VisiBroker idl2ir program, or you can write your own IR client that inspects an
Interface Repository, updates it, or does both.

What does an Interface Repository contain?

An Interface Repository contains hierarchies of objects whose methods divulge
information about interfaces. Although interfaces are usually thought of as describing

294 VisiBroker for Java Developer’s Guide

Creat ing and v iewing an Inter face Reposi tory wi th i rep

objects, using a collection of objects to describe interfaces makes sense in a CORBA
environment because it requires no new mechanism such as a database.

As an example of the kinds of objects an IR can contain, consider that IDL files can
contain IDL module definitions, and modules can contain interface definitions, and
interfaces can contain operation (method) definitions. Correspondingly, an Interface
Repository can contain ModuleDef objects which can contain InterfaceDef objects,
which can contain OperationDef objects. Thus, from an IR ModuleDef, you can learn
what InterfaceDefs it contains. The reverse is also true; given an InterfaceDef you can
learn what ModuleDef it is contained in. All other IDL constructs, including exceptions,
attributes, and valuetypes, can be represented in an Interface Repository.

An Interface Repository also contains typecodes. Typecodes are not explicitly listed in
IDL files, but are automatically derived from the types (long, string, struct, and so on)
that are defined or mentioned in IDL files. Typecodes are used to encode and decode
instances of the CORBA any type: a generic type that stands for any type and is used
with the dynamic invocation interface.

How many Interface Repositories can you have?

Interface repositories are like other objects; you can create as many as you like. There
is no VisiBroker-mandated policy governing the creation or use of IRs. You determine
how Interface Repositories are deployed and named at your site. You may, for
example, adopt the convention that a central Interface Repository contains the
interfaces of all “production” objects, and developers create their own IRs for testing.

Note

Interface repositories are writable and are not protected by access controls. An
erroneous or malicious client can corrupt an IR or obtain sensitive information from it.

If you want to use the _get_interface_def method defined for all objects, you must have
at least one Interface Repository server running so the VisiBroker ORB can look up the
interface in the IR. If no Interface Repository is available, or if the IR that the VisiBroker
ORB binds to has not been loaded with an interface definition for the object,
_get_interface_def raises a NO_IMPLEMENT exception.

Creating and viewing an Interface Repository with irep
The VisiBroker Interface Repository server is called irep, and is located in the
<install_dir>/bin directory. The irep program runs as a daemon. You can register
irep with the Object Activation Daemon (OAD) as you would any object
implementation. The oadutil tool requires the object ID, for example, IDL:org.omg/
CORBA/Repository:2.3 (as opposed to an interface name such as CORBA::Repository).

Note

The irep server needs a rollback file to keep its internal data consistent. The file is
created if it does not already exist, for example when launching the irep server for the
first time. The IRepName specified in the command line is used to make up the name
of the rollback file. Make sure that the name contains only valid file system characters
based on your platform. If the specified name contains directory locations that do not
exist, they will be automatically created.

Creating an Interface Repository with irep

Use the irep program to create an Interface Repository and view its contents. The
usage syntax for the irep program is as follows:

irep <driver_options> <other_options> <IRepName> [file.idl]

 21: Using Inter face Reposi tor ies 295

Updat ing an Interface Reposi tory wi th id l2 i r

The syntax for creating an Interface Repository in the irep is described in the following
table:

The irep arguments are defined in the following table. You may also use the driver
options defined in “General options”.

The following example shows how an Interface Repository named TestIR can be
created from a file called Bank.idl.

irep TestIR Bank.idl

Viewing the contents of the Interface Repository

You can view the contents of the Interface Repository with either the VisiBroker ir2idl
utility, or the VisiBroker Console application. The syntax for the ir2idl utility is:

ir2idl [-irep <IRname>]

The syntax for viewing the contents of an Interface Repository in the irep is described
in the following table:

Updating an Interface Repository with idl2ir
You can update an Interface Repository with the VisiBroker idl2ir utility, which is an IR
client. The syntax for the idl2ir utility is:

idl2ir [arguments] <idl_file_list>

The following example shows how the TestIR Interface Repository would be updated
with definitions from the Bank.idl file.

Syntax Description

IRepName Specifies the instance name of the Interface Repository. Clients can bind to this
Interface Repository instance by specifying this name.

file.idl Specifies the IDL file whose contents irep will load into the Interface Repository it
creates and will store the IR contents into when it exits. If no file is specified, irep
creates an empty Interface Repository.

Argument Description

-D, -define foo[=bar] Define a preprocessor macro, optionally with value.

-I, -include <dir> Specify additional directory for #include searching.

-P, -no_line_directives Do not emit #line directives from preprocessor. The default
is off.

-H, -list_includes Display #included file names as they are encountered. The
default is off.

-C, -retain_comments Retain comments in preprocessed output. The default is off.

-U, -undefine foo Undefine a preprocessor macro.

-[no_]idl_strict Strict OMG-standard interpretation of IDL source. The default
is off.

-[no_]warn_unrecognized_pragmas Warn if a #pragma is not recognized. The default is on.

-[no_]back_compat_mapping Use mapping that is compatible with VisiBroker 3.x.

-h, -help, -usage, -? Print this usage information.

-version Display software version numbers.

-install <service name> Install as a NT service.

-remove <service name> Uninstall this NT service.

Syntax Description

-irep <IRname> Directs the program to bind to the Interface Repository instance named
IRname. If the option is not specified, it binds to any Interface Repository
returned by the Smart Agent.

296 VisiBroker for Java Developer’s Guide

Understanding the structure of the Interface Reposi tory

idl2ir -irep TestIR -replace Bank.idl

Entries in an Interface Repository cannot be removed using the idl2ir or irep utilities.
To remove an item:

– Exit or quit the irep program.

– Edit the IDL file named in the irep command line.

– Start irep again with the updated file.

Interface repositories have a simple transaction service. If the specified IDL file fails to
load, the Interface Repository rolls back its content to its previous state. After loading
the IDL, the Interface Repository commits its state to be used in subsequent
transactions. For any repository, there is a file <IRname>.rollback in the home directory
that contains the state of the last uncommitted transaction.

Note

If you wish to remove all entries in the Interface Repository, you can replace the
contents with a new empty IDL file. For example, using an IDL file named Empty.idl,
you could run the following command:

idl2ir -irep TestIR -replace Empty.idl

Understanding the structure of the Interface Repository
An Interface Repository organizes the objects it contains into a hierarchy that
corresponds to the way interfaces are defined in an IDL specification. Some objects in
the Interface Repository contain other objects, just as an IDL module definition might
contain several interface definitions. Consider how the example IDL file shown below
would translate to a hierarchy of objects in an Interface Repository.

// Bank.idl
module Bank {
 interface Account {
 float balance();
 };
 interface AccountManager {
 Account open(in string name);
 };
};

Figure 21.1 Interface repository object hierarchy for Bank.idl

The OperationDef object contains references to additional data structures (not
interfaces) that hold the parameters and return type.

 21: Using Inter face Reposi tor ies 297

Understanding the structure of the Interface Reposi tory

Identifying objects in the Interface Repository

The following table shows the objects that are provided to identify and classify Interface
Repository objects.

Types of objects that can be stored in the Interface Repository

The following table summarizes the objects that can be contained in an Interface
Repository. Most of these objects correspond to IDL syntax elements. A StructDef, for
example, contains the same information as an IDL struct declaration, an InterfaceDef
contains the same information as an IDL interface declaration, all the way down to a
PrimitiveDef which contains the same information as an IDL primitive (boolean, long,
and so forth.) declaration.

Item Description

name A character string that corresponds to the identifier assigned in an IDL specification
to a module, interface, operation, and so forth. An identifier is not necessarily
unique.

id A character string that uniquely identifies an IRObject. A RepositoryID contains three
components, separated by colon (:) delimiters. The first component is IDL: and the
last is a version number such as :1.0. The second component is a sequence of
identifiers separated by slash (/) characters. The first identifier is typically a unique
prefix.

def_kind An enumeration that defines values which represent all the possible types of
Interface Repository objects.

Object type Description

Repository Represents the top-level module that contains all other objects.

ModuleDef Represents an IDL module declaration that can contain ModuleDefs,
InterfaceDefs, ConstantDefs, AliasDefs, ExceptionDefs, and the IR equivalents of
other IDL constructs that can be defined in IDL modules.

InterfaceDef Represents an IDL interface declaration and contain OperationDefs,
ExceptionDefs, AliasDefs, ConstantDefs, and AttributeDefs.

AttributeDef Represents an IDL attribute declaration.

OperationDef Represents an IDL operation (method) declaration. Defines an operation on
an interface. It includes a list of parameters required for this operation, the
return value, a list of exceptions that may be raised by this operation, and a list
of contexts.

ConstantDef Represents an IDL constant declaration.

ExceptionDef Represents an IDL exception declaration.

ValueDef Represents a valuetype definition containing lists of constants, types,
valuemembers, exceptions, operations, and attributes.

ValueBoxDef Represents a simple boxed valuetype of another IDL type.

ValueMemberDef Represents a member of the valuetype.

NativeDef Represents a native definition. Users can not define their own natives.

StructDef Represents an IDL structure declaration.

UnionDef Represents an IDL union declaration.

EnumDef Represents an IDL enumeration declaration.

AliasDef Represents an IDL typedef declaration. Note that the IR TypedefDef interface is
a base interface that defines common operations for StructDefs, UnionDefs, and
others.

StringDef Represents an IDL bounded string declaration.

SequenceDef Represents an IDL sequence declaration.

ArrayDef Represents an IDL array declaration.

PrimitiveDef Represents an IDL primitive declaration: null, void, long, ushort, ulong, float,
double, boolean, char, octet, any, TypeCode, Principal, string, objref, longlong,
ulonglong, longdouble, wchar, wstring.

298 VisiBroker for Java Developer’s Guide

Understanding the structure of the Interface Reposi tory

Inherited interfaces

Three non-instantiatable (that is, abstract) IDL interfaces define common methods that
are inherited by many of the objects contained in an IR (see the table above). The
following table summarizes these widely inherited interfaces. For more information on
the other methods for these interfaces, see the VisiBroker Programmer's Reference.

Interface Inherited by Principal query methods

IRObject All IR objects including
Repository

def_kind() returns an IR object's definition kind,
for example, module or interface
destroy() destroys an IR object

Container IR objects that can contain
other IR objects, for example,
module or interface

lookup() looks up a contained object by name
contents() lists the objects in a Container
describe_contents() describes the objects in a
Container

Contained IR objects that can be contained
in other objects, that is,
Containers

name() name of this object
defined_in() Container that contains an object
describe() describes an object
move () moves an object into another container

 21: Using Inter face Reposi tor ies 299

Accessing an Interface Reposi tory

Accessing an Interface Repository
Your client program can use an Interface Repository's IDL interface to obtain
information about the objects it contains. Your client program can bind to the
Repository and then invoke the methods shown below. A complete description of this
interface can be found in the Programmer's Reference.

Note

A program that uses an Interface Repository must be compiled with the-
D_VIS_INCLUDE_IR flag.

package org.omg.CORBA;
public interface Repository extends Container {
 ...
 org.omg.CORBA.Contained lookup_id(string id);
 org.omg.CORBA.PrimitiveDef get_primitive(org.omg.CORBA.PrimitiveKind kind);
 org.omg.CORBA.StringDef create_string(long bound);
 org.omg.CORBA.SequenceDef create_sequence(long bound,
 org.omg.CORBA.IDLType element_type);
 org.omg.CORBA.ArrayDef create_array(long length,
 org.omg.CORBA.IDLType element_type);
 ...
}

Interface Repository example program
This section describes a simple Interface Repository example which contains an
AccountManager interface to create an account and (re)open an account. This example
code can be found in the following directory:

<install_dir>\vbe\examples\ir

At the initialization time the AccountManager implementation bootstraps the Interface
Repository definition for the managed Account interface. This exposes the additional
operation that has been already implemented by this particular Account implementation
to the clients. The clients now can access all known operations (which are described in
IDL) and, additionally, they can verify with the Interface Repository support for other
operations and invoke them. The example illustrates how we can manage Interface
Repository definition objects and how to introspect remote objects using the Interface
Repository.

Before this program can be tested, the following conditions should exist:

– OSAgent should be up and running. For more information, see “Using the Smart
Agent.”

– Interface repository should be started using irep. For more information, see
“Creating and viewing an Interface Repository with irep”.

– Interface Repository should be loaded with an IDL file either by the command line
when you start the Interface Repository, or by using idl2ir. For more information,
see “Updating an Interface Repository with idl2ir”.

– Start the client program.

300 VisiBroker for Java Developer’s Guide

Interface Reposi tory example program

Looking up an interface's operations and attributes in an IR:

//Client.java
import org.omg.CORBA.InterfaceDef;
import org.omg.CORBA.InterfaceDefHelper;
import org.omg.CORBA.Request;
import java.util.Random;
public class Client {
 public static void main(String[] args) {
 try {
 // Initialize the ORB.
 org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,null);
 // Get the manager Id
 byte[] managerId = "BankManager".getBytes();
 // Locate an account manager. Give the full POA name and the

servant ID.
 Bank.AccountManager manager =
 Bank.AccountManagerHelper.bind(orb, "/bank_ir_poa", managerId);
 // use args[0] as the account name, or a default.
 String name = args.length > 0 ? args[0] : "Jack B. Quick";
 // Request the account manager to open a named account.
 Bank.Account account = manager.open(name);
 // Get the balance of the account.
 float balance = account.balance();
 // Print out the balance.
 System.out.println("The balance in " + name + "'s account is $" +
 balance);
 // Calculate and set a new balance
 balance = args.length > 1 ? Float.parseFloat(args[1]) :
 Math.abs(new Random().nextInt()) % 100000 / 100f;
 account.balance(balance);
 // Get the balance description if it is possible and print it
String desc = getDescription(account);
System.out.println("Balance description:\n" + desc);
} catch (org.omg.CORBA.SystemException e) {
System.err.println("System exception caught:" + e);
} catch (Exception e) {
System.err.println("Unexpected exception caught:");
e.printStackTrace();
}
}
 static String getDescription (Bank.Account account) {
 // Get the interface repository definition for this interface
 InterfaceDef accountDef =
 InterfaceDefHelper.narrow(account._get_interface_def());
 // Check if this *particular* implementation supports "describe"

operation
 if (accountDef.lookup("describe") != null) {
 // We cannot use the static skeleton's method here because at the
 // time of its creation this method was not present in the IDL's
 // version of the Account interface. Use DII instead.
 Request request = account._request("describe");
 request.result().value().insert_string("");
 request.invoke();
 return request.result().value().extract_string();
 } else {
 return "<no description>";
 }
 }
}

 22: Using the Dynamic Invocat ion Interface 301

Using the Dynamic Invocation
Interface
The developers of most client programs know the types of the CORBA objects their
code will invoke, and they include the compiler-generated stubs for these types in their
code. By contrast, developers of generic clients cannot know what kinds of objects
their users will want to invoke. Such developers use the Dynamic Invocation Interface
(DII) to write clients that can invoke any method on any CORBA object from knowledge
obtained at runtime.

What is the dynamic invocation interface?
The Dynamic Invocation Interface (DII) enables a client program to invoke a method on
a CORBA object whose type was unknown at the time the client was written. The DII
contrasts with the default static invocation, which requires that the client source code
include a compiler-generated stub for each type of CORBA object that the client
intends to invoke. In other words, a client that uses static invocation declares in
advance the types of objects it will invoke. A client that uses the DII makes no such
declaration because its programmer does not know what kinds of objects will be
invoked. The advantage of the DII is flexibility; it can be used to write generic clients
that can invoke any object, including objects whose interfaces did not exist when the
client was compiled. The DII has two disadvantages:

– It is more difficult to program (in essence, your code must do the work of a stub).

– Invocations take longer because more work is done at runtime.

The DII is purely a client interface. Static and dynamic invocations are identical from an
object implementation's point of view.

302 VisiBroker for Java Developer’s Guide

What is the dynamic invocat ion interface?

You can use the DII to build clients like these:

– Bridges or adapters between script environments and CORBA objects. For
example, a script calls your bridge, passing object and method identifiers and
parameter values. Your bridge constructs and issues a dynamic request, receives
the result, and returns it to the scripting environment. Such a bridge could not use
static invocation because its developer could not know in advance what kinds of
objects the script environment would want to invoke.

– Generic object testers. For example, a client takes an arbitrary object identifier,
looks up its interface in the interface repository (see “Using Interface Repositories”),
and then invokes each of its methods with artificial argument values. Again, this style
of generic tester could not be built with static invocation.

Note

Clients must pass valid arguments in DII requests. Failure to do so can produce
unpredictable results, including server crashes. Although it is possible to dynamically
type-check parameter values with the interface repository, it is expensive. For best
performance, ensure that the code (for example, script) that invokes a DII-using client
can be trusted to pass valid arguments.

Introducing the main DII concepts

The dynamic invocation interface is actually distributed among a handful of CORBA
interfaces. Furthermore, the DII frequently offers more than one way to accomplish a
task—the trade-off being programming simplicity versus performance in special
situations. As a result, DII is one of the more difficult CORBA facilities to grasp. This
section is a starting point, a high-level description of the main ideas.

To use the DII you need to understand these concepts, starting from the most general:

– Request objects

– Any and Typecode objects

– Request sending options

– Reply receiving options

Using request objects
A Request object represents one invocation of one method on one CORBA object. If
you want to invoke two methods on the same CORBA object, or the same method on
two different objects, you need two Request objects. To invoke a method you first need
the target reference, an object reference representing the CORBA object. Using the
target reference, you create a Request, populate it with arguments, send the Request,
wait for the reply, and obtain the result from the Request.

There are two ways to create a Request. The simpler way is to invoke the target object's
_request method, which all CORBA objects inherit. This does not, in fact, invoke the
target object. You pass _request the IDL name of the method you intend to invoke in
the Request, for example, “get_balance.” To add argument values to a Request created
with _request, you invoke the Request's add_value method for each argument required
by the method you intend to invoke. To pass one or more Context objects to the target,
you must add them to the Request with its ctx method.

Although not intuitively obvious, you must also specify the type of the Request's result
with its result method. For performance reasons, the messages exchanged between
the VisiBroker ORBs do not contain type information. By specifying a place holder
result type in the Request, you give the VisiBroker ORB the information it needs to
properly extract the result from the reply message sent by the target object. Similarly, if
the method you are invoking can raise user exceptions, you must add place holder
exceptions to the Request before sending it.

The more complicated way to create a Request object is to invoke the target object's
_create_request method, which, again, all CORBA objects inherit. This method takes
several arguments which populate the new Request with arguments and specify the
types of the result and user exceptions, if any, that it may return. To use the

 22: Using the Dynamic Invocat ion Interface 303

What is the dynamic invocat ion interface?

_create_request method you must have already built the components that it takes as
arguments. The potential advantage of the _create_request method is performance.
You can reuse the argument components in multiple _create_request calls if you invoke
the same method on multiple target objects.

Note

There are two overloaded forms of the _create_request method: one that includes
ContextList and ExceptionList parameters, and one that does not. If you want to pass
one or more Context objects in your invocation, and/or the method you intend to invoke
can raise one or more user exceptions, you must use the _create_request method that
has the extra parameters.

Encapsulating arguments with the Any type
The target method's arguments, result, and exceptions are each specified in special
objects called Anys. An Any is a generic object that encapsulates an argument of any
type. An Any can hold any type that can be described in IDL. Specifying an argument to
a Request as an Any allows a Request to hold arbitrary argument types and values
without making the compiler complain of type mismatches. (The same is true of results
and exceptions.)

An Any consists of a TypeCode and a value. A value is just a value, and a TypeCode is an
object that describes how to interpret the bits in the value (that is, the value's type).
Simple TypeCode constants for simple IDL types, such as long and Object, are built into
the header files produced by the idl2java compiler. TypeCodes for IDL constructed
types, such as structs, unions, and typedefs, have to be constructed. Such TypeCodes
can be recursive because the types they describe can be recursive.

Consider a struct consisting of a long and a string. The TypeCode for the struct
contains a TypeCode for the long and a TypeCode for the string. You can get a TypeCode at
runtime from an interface repository (see “Using Interface Repositories”) or by asking
the VisiBroker ORB to create one by invoking ORB::create_struct_tc or
ORB::create_exception_tc.

If you use the _create_request method, you need to put the Any-encapsulated target
method arguments in another special object called an NVList. No matter how you
create a Request, its result is encoded as an NVList. Everything said about arguments in
this paragraph applies to results as well. “NV” stands for named value, and an NVList
consists of a count and number of items, each of which has a name, a value, and a
flag. The name is the argument name, the value is the Any encapsulating the argument,
and the flag denotes the argument's IDL mode (for example, in or out). The result of
Request is represented a single named value.

Options for sending requests
Once you create and populate a Request with arguments, a result type, and exception
types, you send it to the target object. There are several ways to send a Request,

– The simplest is to call the Request's invoke method, which blocks until the reply
message is received.

– More complex, but not blocking, is the Request's send_deferred method. This is an
alternative to using threads for parallelism. For many operating systems the
send_deferred method is more economical than spawning a thread.

– If your motivation for using the send_deferred method is to invoke multiple target
objects in parallel, you can use the VisiBroker ORB object's
send_multiple_requests_deferred method instead. It takes a sequence of Request
objects.

– Use the Request's send_oneway method if, and only if, the target method has been
defined in IDL as oneway.

– You can invoke multiple oneway methods in parallel with the VisiBroker ORB's
send_multiple_requests_oneway method.

304 VisiBroker for Java Developer’s Guide

What is the dynamic invocat ion interface?

Options for receiving replies
If you send a Request by calling its invoke method, there is only one way to get the
result: use the Request object's env method to test for an exception, and if none, extract
the NamedValue from the Request with its result method. If you used the send_oneway
method, then there is no result. If you used the send_deferred method, you can
periodically check for completion by calling the Request's poll_response method which
returns a code indicating whether the reply has been received. If, after polling for a
while, you want to block waiting for completion of a deferred send, use the Request's
get_response method.

If you have sent Requests with the send_multiple_requests_deferred method, you can
find out if a particular Request is complete by invoking that Request's get_response
method. To learn when any outstanding Request is complete, use the VisiBroker ORB's
get_next_response method. To do the same thing without risking blocking, use the
VisiBroker ORB's poll_next_response method.

Steps for invoking object operations dynamically

To summarize, here are the steps that a client follows when using the DII,

1 Obtain a generic reference to the target object you wish to use.

2 Create a Request object for the target object.

3 Initialize the request parameters and the result to be returned.

4 Invoke the request and wait for the results.

5 Retrieve the results.

Example programs for using the DII

Several example programs that illustrate the use of the DII are included in the following
directory:

<install_dir>/examples/vbe/bank_dynamic

These example programs are used to illustrate DII concepts in this section.

Using the idl2java compiler

The idl2java compiler has a flag (-dynamic_marshal) which, when switched on,
generates stub code using DII. To understand how to do any type of DII:

1 create an IDL file,

2 generate with -dynamic_marshal,

3 and look at the stub code.

 22: Using the Dynamic Invocat ion Interface 305

Obtain ing a gener ic object reference

Obtaining a generic object reference
When using the DII, a client program does not have to use the traditional bind
mechanism to obtain a reference to the target object, because the class definition for
the target object may not have been known to the client at compile time.

The code sample below shows how your client program can use the bind method
offered by the VisiBroker ORB object to bind to any object by specifying its name. This
method returns a generic org.omg.CORBA.Object .

...
org.omg.CORBA.Object account;
try {
 // initialize the ORB.
 org.omg.CORBA.ORB.init(args, null);
} catch(Exception e) {
 System.err.println ("Failure during ORB_init");
 e.printStackTrace();
}
...
try {
 // Request ORB to bind to the object supporting the account interface.
 account = orb.bind("IDL:Account:1.0");
} catch(const CORBA::Exception& excep) {
 System.err.println ("Error binding to account");
 excep.printStackTrace();
}
System.out.println ("Bound to account object");
...

Creating and initializing a request
When your client program invokes a method on an object, a Request object is created to
represent the method invocation. The Request object is written, or marshalled, to a
buffer and sent to the object implementation. When your client program uses client
stubs, this processing occurs transparently. Client programs that wish to use the DII
must create and send the Request object themselves.

Note

There is no constructor for this class. The Object's _request method or Object's
_create_request method are used to create a Request object.

Request interface

The following code sample shows the Request interface. The target of the request is
set implicitly from the object reference used to create the Request. The name of the
operation must be specified when the Request is created.

package org.omg.CORBA;
public abstract class Request {
 public abstract org.omg.CORBA.Object target();
 public abstract java.lang.String operation();
 public abstract org.omg.CORBA.NVList arguments();
 public abstract org.omg.CORBA.NamedValue result();
 public abstract org.omg.CORBA.Environment env();
 public abstract org.omg.CORBA.ExceptionList exceptions();
 public abstract org.omg.CORBA.ContextList contexts();
 public abstract void ctx(org.omg.CORBA.Context ctx);
 public abstract org.omg.CORBA.Context ctx();
 public abstract org.omg.CORBA.Any add_in_arg();

306 VisiBroker for Java Developer’s Guide

Creat ing and in i t ia l iz ing a request

 public abstract org.omg.CORBA.Any add_named_in_arg(
 public abstract org.omg.CORBA.Any add_inout_arg();
 public abstract org.omg.CORBA.Any add_named_inout_arg(
 public abstract org.omg.CORBA.Any add_out_arg();
 public abstract org.omg.CORBA.Any add_named_out_arg(
 public abstract void set_return_type(
 public abstract org.omg.CORBA.Any return_value();
 public abstract void invoke();
 public abstract void send_oneway();
 public abstract void send_deferred();
 public abstract void get_response();
 public abstract boolean poll_response();
}

Ways to create and initialize a DII request

Once you have issued a bind to an object and obtained an object reference, you can
use one of two methods for creating a Request object.

The following sample shows the methods offered by the org.omg.CORBA.Object
interface.

package org.omg.CORBA;
public interface Object {
...
 public org.omg.CORBA.Request _request(java.lang.String operation;
 public org.omg.CORBA.Request _create_request(
 org.omg.CORBA.Context ctx,
 java.lang.String operation,
 org.omg.CORBA.NVList arg_list,
 org.omg.CORBA.NamedValue result
)
 public org.omg.CORBA.Request _create_request(
 org.omg.CORBA.Context ctx,
 java.lang.String operation,
 org.omg.CORBA.NVList arg_list,
 org.omg.CORBA.NamedValue result,
 org.omg.CORBA.ExceptionList exceptions,
 org.omg.CORBA.ContextList contexts
)
...
}

Using the create_request method

You can use the _create_request method to create a Request object, initialize the
Context, the operation name, the argument list to be passed, and the result. Optionally,
you can set the ContextList for the request, which corresponds to the attributes defined
in the request's IDL. The request parameter points to the Request object that was
created for this operation.

Using the _request method

The code sample in “Example of creating a Request object” shows the use of the
_request method to create a Request object, specifying only the operation name. After
creating a float request, calls to its add_in_arg method add an input parameter Account
name. Its result type is initialized as an Object reference type via a call to
set_return_type method. After a call has been made, the return value is extracted with
the result's call to the result method. The same steps are repeated to invoke another

 22: Using the Dynamic Invocat ion Interface 307

Creat ing and in i t ia l iz ing a request

method on an Account Manager instance with the only difference being in-parameters
and return types.

The req, an Any object is initialized with the desired account name and added to the
request's argument list as an input argument. The last step in initializing the request is
to set the result value to receive a float.

Example of creating a Request object

A Request object maintains ownership of all memory associated with the operation, the
arguments, and the result so you should never attempt to free these items. The
following code sample is an example of creating a request object.

// Client.java
public class Client {
 public static void main(String[] args) {
 if (args.length ! = 2) {
 System.out.println("Usage: vbj Client <manager-name> <account-name>\

n");
 return;
 }
 String managerName = args[0];
 String accountName = args[1];
 org.omg.CORBA.Object accountManager, account;
 org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args, null);
 accountManager = orb.bind("IDL:Bank/AccountManager:1.0",
 managerName, null, null);
 org.omg.CORBA.Request request = accountManager._request("open");
 request.add_in_arg().insert_string(accountName);
 request.set_return_type(orb.get_primitive_tc(
 org.omg.CORBA.TCKind.tk_objref)
);
 request.invoke();
 account = request.result().value().extract_Object();
 org.omg.CORBA.Request request = account._request("balance");
 request.set_return_type(orb.get_primitive_tc(
 org.omg.CORBA.TCKind.tk_float)
);
 request.invoke();
 float balance = request.result().value().extract_float();
 System.out.println("The balance in " + accountName + "'s account is

$" + balance);
 }
}

Setting arguments for the request

The arguments for a Request are represented with a NVList object, which stores name-
value pairs as NamedValue objects. You can use the arguments method to obtain a pointer
to this list. This pointer can then be used to set the names and values of each of the
arguments.

Note

Always initialize the arguments before sending a Request. Failure to do so will result in
marshalling errors and may even cause the server to abort.

Implementing a list of arguments with the NVList
This class implements a list of NamedValue objects that represent the arguments for a
method invocation. Methods are provided for adding, removing, and querying the
objects in the list. The following code sample is an example of the NVList class:

308 VisiBroker for Java Developer’s Guide

Creat ing and in i t ia l iz ing a request

package org.omg.CORBA;
public abstract class NVList {
 public int count();
 public void add(int flags);
 public void add_item(java.lang.String name, int flags);
 public void add_value(
 java.lang.String name,
 org.omg.CORBA.Any value,
 int flags
);
 public org.omg.CORBA.NamedValue item(int index);
 public void remove(int index);
}

Setting input and output arguments with the NamedValue Class
This class implements a name-value pair that represents both input and output
arguments for a method invocation request. The NamedValue class is also used to
represent the result of a request that is returned to the client program. The name
property is simply a character string and the value property is represented by an Any
class. The following code sample is an example of the NamedValue class.

There is no constructor for this class. The ORB.create_named_value method is used to
obtain a reference to a NamedValue object.

package org.omg.CORBA;
public abstract class NamedValue {
 public java.lang.String name();
 public org.omg.CORBA.Any value();
 public int flags();
}

The following table describes the methods in the NamedValue class.

Passing type safely with the Any class

This class is used to hold an IDL-specified type so that it may be passed in a type-safe
manner.

Objects of this class have a reference to a TypeCode that defines the contained object's
type and a reference to the contained object. Methods are provided to construct, copy,
and release an object as well as initialize and query the object's value and type. In
addition, streaming operators methods are provided to read and write the object from
and to a stream. The following code sample is an example.

package org.omg.CORBA;
public abstract class Any {
 public abstract TypeCode type();
 public abstract void type(TypeCode type);
 public abstract void read_value(InputStream input, TypeCode type);
 public abstract void write_value(OutputStream output);
 public abstract boolean equal(Any rhs);

Method Description

name Returns a pointer to the name of the item that you can then use to initialize the
name.

value Returns a pointer to an Any object representing the item's value that you can then use
to initialize the value. For more information, see “Passing type safely with the Any
class”.

flags Indicates if this item is an input argument, an output argument, or both an input and
output argument. If the item is both an input and output argument, you can specify a
flag indicating that the VisiBroker ORB should make a copy of the argument and
leave the caller's memory intact. Flags are ARG_IN, ARG_OUT, and ARG_INOUT.

 22: Using the Dynamic Invocat ion Interface 309

Creat ing and in i t ia l iz ing a request

 ...
}

Representing argument or attribute types with the TypeCode class

This class is used by the Interface Repository and the IDL compiler to represent the
type of arguments or attributes. TypeCode objects are also used in a Request object to
specify an argument's type, in conjunction with the Any class.

TypeCode objects have a kind and parameter list property, represented by one of the
values defined by the TCKind class.

Note

There is no constructor for this class. Use the ORB.get_primitive_tc method or one of
the ORB.create_*_tc methods to create a TypeCode object.

The following table shows the kinds and parameters for the TypeCode objects.

TypeCode class:

Kind Parameter list

tk_abstract_interface repository_id, interface_name

tk_alias repository_id, alias_name, TypeCode

tk_any None

tk_array length, TypeCode

tk_boolean None

tk_char None

tk_double None

tk_enum repository_id, enum-name, enum-id1, enum-id2, ... enum-idn

tk_except repository_id, exception_name, StructMembers

tk_fixed digits, scale

tk_float None

tk_long None

tk_longdouble None

tk_longlong None

tk_native id, name

tk_null None

tk_objref repository_id, interface_id

tk_octet None

tk_Principal None

tk_sequence TypeCode, maxlen

tk_short None

tk_string maxlen-integer

tk_struct repository_id, struct-name, {member1, TypeCode1}, {membern, TypeCoden}

tk_TypeCode None

tk_ulong None

tk_ulonglong None

tk_union repository_id, union-name, switch TypeCode,{label-value1, member-name1,
TypeCode1}, {labell-valuen, member-namen, TypeCoden}

tk_ushort None

tk_value repository_id, value_name, boxType

tk_value_box repository_id, value_name, typeModifier, concreteBase, members

tk_void None

tk_wchar None

tk_wstring None

310 VisiBroker for Java Developer’s Guide

Sending DII requests and receiv ing resul ts

public abstract class TypeCode extends java.lang.Object
 implements org.omg.CORBA.portable.IDLEntity {
 public abstract boolean equal(org.omg.CORBA.TypeCode tc);
 public boolean equivalent(org.omg.CORBA.TypeCode tc);
 public abstract org.omg.CORBA.TCKind kind();
 public TypeCode get_compact_typecode()
 public abstract java.lang.String id()
 throws org.omg.CORBA.TypeCodePackage.BadKind;
 public abstract java.lang.String name()
 throws org.omg.CORBA.TypeCodePackage.BadKind;
 public abstract int member_count()
 throws org.omg.CORBA.TypeCodePackage.BadKind;
 public abstract java.lang.String member_name(int index)
 throws org.omg.CORBA.TypeCodePackage.BadKind,
 org.omg.CORBA.TypeCodePackage.Bounds;
 public abstract org.omg.CORBA.TypeCode member_type(int index)
 throws org.omg.CORBA.TypeCodePackage.BadKind,
 org.omg.CORBA.TypeCodePackage.Bounds;
 public abstract org.omg.CORBA.Any member_label(int index)
 throws org.omg.CORBA.TypeCodePackage.BadKind,
 org.omg.CORBA.TypeCodePackage.Bounds;
 public abstract org.omg.CORBA.TypeCode discriminator_type()
 throws org.omg.CORBA.TypeCodePackage.BadKind;
 public abstract int default_index()
 throws org.omg.CORBA.TypeCodePackage.BadKind;
 public abstract int length()
 throws org.omg.CORBA.TypeCodePackage.BadKind;
 public abstract org.omg.CORBA.TypeCode content_type()
 throws org.omg.CORBA.TypeCodePackage.BadKind;
 public short fixed_digits()
 throws org.omg.CORBA.TypeCodePackage.BadKind;
 public short fixed_scale()
 throws org.omg.CORBA.TypeCodePackage.BadKind;
 public short member_visibility(int index)
 throws org.omg.CORBA.TypeCodePackage.BadKind,
 org.omg.CORBA.Bounds;
 public short type_modifier()
 throws org.omg.CORBA.TypeCodePackage.BadKind;
 public TypeCode concrete_base_type()
 throws org.omg.CORBA.TypeCodePackage.BadKind;
}

Sending DII requests and receiving results
The Request class, as discussed in “Creating and initializing a request”, provides
several methods for sending a request once it has been properly initialized.

Invoking a request

The simplest way to send a request is to call its invoke method, which sends the
request and waits for a response before returning to your client program. The
return_value method returns a reference to an Any object that represents the return
value. The following code sample shows how to send a request with invoke.

try {
 ...
 // Create request that will be sent to the account object
 request = account._request("balance");
 // Set the result type
 request.set_return_type(orb.get_primitive_tc
 (org.omg.CORBA.TCKind.tk_float));
 // Execute the request to the account object

 22: Using the Dynamic Invocat ion Interface 311

Sending DI I requests and receiv ing resul ts

 request.invoke();
 // Get the return balance
 float balance;
 org.omg.CORBA.Any balance_result = request.return_value();
 balance = balance_result.extract_float();
 // Print out the balance
 System.out.println("The balance in " + name + "'s account is $" +
 balance);
} catch(Exception e) {
 e.printStackTrace();
}

Sending a deferred DII request with the send_deferred method

A non-blocking method, send_deferred, is also provided for sending operation requests.
It allows your client to send the request and then use the poll_response method to
determine when the response is available. The get_response method blocks until a
response is received. The following codes show how these methods are used. The
following sample shows you how to use the send_deferred and poll_response methods
to send a deferred DII request.

try {
...
 // Create request that will be sent to the manager object
 org.omg.CORBA.Request request = manager._request("open");
 // Create argument to request
 org.omg.CORBA.Any customer = orb.create_any();
 customer.insert_string(name);
 org.omg.CORBA.NVList arguments = request.arguments();
 arguments.add_value("name" , customer, org.omg.CORBA.ARG_IN.value);
 // Set result type
 request.set_return_type(orb.get_primitive_tc
 (org.omg.CORBA.TCKind.tk_objref));
 // Creation of a new account can take some time
 // Execute the deferred request to the manager object-plist
 request.send_deferred();
 Thread.currentThread().sleep(1000);
 while (!request.poll_response()) {
 System.out.println(" Waiting for response...");
 Thread.currentThread().sleep(1000); // Wait one second between polls
 }

request.get_response();
 // Get the return value
 org.omg.CORBA.Object account;
 org.omg.CORBA.Any open_result = request.return_value();
 account = open_result.extract_Object();
 ...
} catch(Exception e) {
 e.printStackTrace();
}

Sending an asynchronous DII request with the send_oneway
method

The send_oneway method can be used to send an asynchronous request. Oneway
requests do not involve a response being returned to the client from the object
implementation.

Sending multiple requests

A sequence of DII Request objects can be created using array of Request objects. A
sequence of requests can be sent using the VisiBroker ORB methods

312 VisiBroker for Java Developer’s Guide

Using the interface reposi tory wi th the DII

send_multiple_requests_oneway or send_multiple_requests_deferred. If the sequence of
requests is sent as oneway requests, no response is expected from the server to any
of the requests.

Receiving multiple requests

When a sequence of requests is sent using send_multiple_requests_deferred, the
poll_next_response and get_next_response methods are used to receive the response
the server sends for each request.

The VisiBroker ORB method poll_next_response can be used to determine if a
response has been received from the server. This method returns true if there is at
least one response available. This method returns false if there are no responses
available.

The VisiBroker ORB method get_next_response can be used to receive a response. If
no response is available, this method will block until a response is received. If you do
not wish your client program to block, use the poll_next_response method to first
determine when a response is available and then use the get_next_response method to
receive the result. The following code sample shows an example of receiving multiple
requests.

VisiBroker ORB methods for sending multiple requests and receiving the results:

package org.omg.CORBA;
public abstract class ORB {
 public abstract org.omg.CORBA.Environment create_environment();
 public abstract void send_multiple_requests_oneway(org.omg.CORBA.Request[]
reqs);
 public abstract void send_multiple_requests_deferred(org.omg.CORBA.Request[]
reqs);
 public abstract boolean poll_next_response();
 public abstract org.omg.CORBA.Request get_next_response();
 ...
}

Using the interface repository with the DII
One source of the information needed to populate a DII Request object is an interface
repository (IR) (see “Using Interface Repositories”). The following example uses an
interface repository to get obtain the parameters of an operation. Note that the
example, atypical of real DII applications, has built-in knowledge of a remote object's
type (Account) and the name of one of its methods (balance). An actual DII application
would get that information from an outside source, for example, a user.

– Binds to any Account object.

– Looks up the Account's balance method in the IR and builds an operation list from the
IR OperationDef.

– Creates argument and result components and passes these to the _create_request
method. Note that the balance method does not return an exception.

– Invokes the Request, extracts and prints the result.

 22: Using the Dynamic Invocat ion Interface 313

Using the inter face reposi tory with the DII

314 VisiBroker for Java Developer’s Guide

 23: Using the Dynamic Skeleton Interface 315

Using the Dynamic Skeleton Interface
This section describes how object servers can dynamically create object
implementations at run time to service client requests.

What is the Dynamic Skeleton Interface?
The Dynamic Skeleton Interface (DSI) provides a mechanism for creating an object
implementation that does not inherit from a generated skeleton interface. Normally, an
object implementation is derived from a skeleton class generated by the idl2java
compiler. The DSI allows an object to register itself with the VisiBroker ORB, receive
operation requests from a client, process the requests, and return the results to the
client without inheriting from a skeleton class generated by the idl2java compiler.

Note

From the perspective of a client program, an object implemented with the DSI behaves
just like any other VisiBroker ORB object. Clients do not need to provide any special
handling to communicate with an object implementation that uses the DSI.

The VisiBroker ORB presents client operation requests to a DSI object implementation
by calling the object's invoke method and passing it a ServerRequest object. The object
implementation is responsible for determining the operation being requested,
interpreting the arguments associated with the request, invoking the appropriate
internal method or methods to fulfill the request, and returning the appropriate values.

Implementing objects with the DSI requires more manual programming activity than
using the normal language mapping provided by object skeletons. However, an object
implemented with the DSI can be very useful in providing inter-protocol bridging.

Using the idl2java compiler

The idl2java compiler has a flag (-dynamic_marshal) which, when switched on,
generates skeleton code using DSI. To understand how to do any type of DSI: create
an IDL file, generate with -dynamic_marshal, and look at the skeleton code.

316 VisiBroker for Java Developer’s Guide

Steps for creat ing object implementat ions dynamical ly

Steps for creating object implementations dynamically
To create object implementations dynamically using the DSI:

1 When compiling your IDL use the -dynamic_marshal flag.

2 Design your object implementation so that it is derived from the
org.omg.PortableServer.DynamicImplementation interface instead of deriving your
object implementation from a skeleton class.

3 Declare and implement the invoke method, which the VisiBroker ORB will use to
dispatch client requests to your object.

4 Register your object implementation (POA servant) with the POA manager as the
default servant.

Example program for using the DSI

An example program that illustrates the use of the DSI is located in the following
directory:

<install_dir>/examples/vbe/basic/bank_dynamic

This example is used to illustrate DSI concepts in this section. The Bank.idl file, shown
below, illustrates the interfaces implemented in this example.

// Bank.idl
module Bank {
 interface Account {
 float balance();
 };
 interface AccountManager {
 Account open(in string name);
 };
};

Extending the DynamicImplementation class
To use the DSI, object implementations should be derived from the
DynamicImplementation base class shown below. This class offers several constructors
and the invoke method, which you must implement.

package org.omg.CORBA;
public abstract class DynamicImplementation extends Servant {
 public abstract void invoke(ServerRequest request);
...
}

Example of designing objects for dynamic requests

The code sample below shows the declaration of the AccountImpl class that is to be
implemented with the DSI. It is derived from the DynamicImplementation class, which
declares the invoke method. The VisiBroker ORB will call the invoke method to pass
client operation requests to the implementation in the form of ServerRequest objects.

 23: Using the Dynamic Skeleton Interface 317

Extending the DynamicImplementat ion class

The code sample below shows the Account class constructor and _primary_interface
function.

import java.util.*;
import org.omg.PortableServer.*;
public class AccountImpl extends DynamicImplementation {
 public AccountImpl(org.omg.CORBA.ORB orb, POA poa) {
 _orb = orb;
 _poa = poa;
 }
 public synchronized org.omg.CORBA.Object get(String name) {
 org.omg.CORBA.Object obj;
 // Check if account exists
 Float balance = (Float)_registry.get(name);
 if (balance == null) {
 // simulate delay while creating new account
 try {
 Thread.currentThread().sleep(3000);
 } catch (Exception e) {
 e.printStackTrace();
 }
 // Make up the account's balance, between 0 and 1000 dollars
 balance = new Float(Math.abs(_random.nextInt()) % 100000 / 100f);
 // Print out the new account
 System.out.println("Created " + name + "'s account: " +
 balance.floatValue());
 _registry.put(name, balance);
 }
 // Return object reference
 byte[] accountId = name.getBytes();
 try {
 obj = _poa.create_reference_with_id(accountId, "IDL:Bank/

Account:1.0");
 } catch (org.omg.PortableServer.POAPackage.WrongPolicy e) {
 throw new org.omg.CORBA.INTERNAL(e.toString());
 }
 return obj;
 }
 public String[] _all_interfaces(POA poa, byte[] objectId) { return null; }
 public void invoke(org.omg.CORBA.ServerRequest request) {
 Float balance;
 // Get the account name from the object id
 String name = new String(_object_id());
 // Ensure that the operation name is correct
 if (!request.operation().equals("balance")) {
 throw new org.omg.CORBA.BAD_OPERATION();
 }
 // Find out balance and fill out the result
 org.omg.CORBA.NVList params = _orb.create_list(0);
 request.arguments(params);
 balance = (Float)_registry.get(name);
 if (balance == null) {
 throw new org.omg.CORBA.OBJECT_NOT_EXIST();
 }
 org.omg.CORBA.Any result = _orb.create_any();
 result.insert_float(balance.floatValue());
 request.set_result(result);
 System.out.println("Checked " + name + "'s balance: " +
 balance.floatValue());
 }
 private Random _random = new Random();
 static private Hashtable _registry = new Hashtable();
 private POA _poa;
 private org.omg.CORBA.ORB _orb;
}

318 VisiBroker for Java Developer’s Guide

Extending the DynamicImplementat ion class

The following code sample shows the implementation of the AccountManagerImpl class
that need to be implemented with the DSI. It is also derived from the
DynamicImplementation class, which declares the invoke method. The VisiBroker ORB
will call the invoke method to pass client operation requests to the implementation in
the form of ServerRequest objects.

import org.omg.PortableServer.*;
public class AccountManagerImpl extends DynamicImplementation {
 public AccountManagerImpl(org.omg.CORBA.ORB orb, AccountImpl accounts) {
 _orb = orb;
 _accounts = accounts;
 }
 public synchronized org.omg.CORBA.Object open(String name) {
 return _accounts.get(name);
 }
 public String[] _all_interfaces(POA poa, byte[] objectId) { return null; }
 public void invoke(org.omg.CORBA.ServerRequest request) {
 // Ensure that the operation name is correct
 if (!request.operation().equals("open")) {
 throw new org.omg.CORBA.BAD_OPERATION();
 }

 // Fetch the input parameter
String name = null;
try {
org.omg.CORBA.NVList params = _orb.create_list(1);
org.omg.CORBA.Any any = _orb.create_any();
any.insert_string(new String(""));
params.add_value("name", any, org.omg.CORBA.ARG_IN.value);
request.arguments(params);
name = params.item(0).value().extract_string();
} catch (Exception e) {
throw new org.omg.CORBA.BAD_PARAM();
}
// Invoke the actual implementation and fill out the result
org.omg.CORBA.Object account = open(name);
org.omg.CORBA.Any result = _orb.create_any();
result.insert_Object(account);
request.set_result(result);
}
private AccountImpl _accounts;
private org.omg.CORBA.ORB _orb;
}

Specifying repository ids

The_primary_interface method should be implemented to return supported repository
identifiers. To determine the correct repository identifier to specify, start with the IDL
interface name of an object and use the following steps:

1 Replace all non-leading instances of the delimiter scope resolution operator (::) with
a slash (/).

2 Add “IDL:” to the beginning of the string.

3 Add “:1.0” to the end of the string.

For example, this code sample shows an IDL interface name:

Bank::AccountManager

The resulting repository identifier looks like this:

IDL:Bank/AccountManager:1.0

 23: Using the Dynamic Skeleton Interface 319

Looking at the ServerRequest c lass

Looking at the ServerRequest class
A ServerRequest object is passed as a parameter to an object implementation's invoke
method. The ServerRequest object represents the operation request and provides
methods for obtaining the name of the requested operation, the parameter list, and the
context. It also provides methods for setting the result to be returned to the caller and
for reflecting exceptions.

package org.omg.CORBA;
public abstract class ServerRequest {
 public java.lang.String operation();
 public void arguments(org.omg.CORBA.NVList args);
 public void set_result(org.omg.CORBA.Any result);
 public void set_exception(org.omg.CORBA.Any except);
 public abstract org.omg.CORBA.Context ctx();
 // the following methods are deprecated
 public java.lang.String op_name(); // use operation()
 public void params(org.omg.CORBA.NVList params); // use arguments()
 public void result(org.omg.CORBA.Any result); // use set_result()
 public abstract void except(org.omg.CORBA.Any except); // use
set_exception()
}

All arguments passed into the arguments, set_result, or set_exception methods are
thereafter owned by the VisiBroker ORB. The memory for these arguments will be
released by the VisiBroker ORB; you should not release them.

Note

The following methods have been deprecated:

– op_name

– params

– result

– exception

Implementing the Account object
The Account interface declares only one method, so the processing done by the
AccountImpl class' invoke method is fairly straightforward.

The invoke method first checks to see if the requested operation has the name
“balance.” If the name does not match, a BAD_OPERATION exception is raised. If the
Account object were to offer more than one method, the invoke method would need to
check for all possible operation names and use the appropriate internal methods to
process the operation request.

Since the balance method does not accept any parameters, there is no parameter list
associated with its operation request. The balance method is simply invoked and the
result is packaged in an Any object that is returned to the caller, using the ServerRequest
object'sset_result method.

320 VisiBroker for Java Developer’s Guide

Implement ing the AccountManager object

Implementing the AccountManager object
Like the Account object, the AccountManager interface also declares one method.
However, the AccountManagerImpl object'sopen method does accept an account name
parameter. This makes the processing done by the invoke method a little more
complicated.

The method first checks to see that the requested operation has the name “open”. If the
name does not match, a BAD_OPERATION exception is raised. If the AccountManager object
were to offer more than one method, its invoke method would need to check for all
possible operation names and use the appropriate internal methods to process the
operation request.

Processing input parameters

The following are the steps the AccountManagerImpl object'sinvoke method uses to
process the operation request's input parameters.

1 Create an NVList to hold the parameter list for the operation.

2 Create Any objects for each expected parameter and add them to the NVList, setting
their TypeCode and parameter type (ARG_IN, ARG_OUT, or ARG_INOUT).

3 Invoke the ServerRequest object'sarguments method, passing the NVList, to update
the values for all the parameters in the list.

The open method expects an account name parameter; therefore, an NVList object is
created to hold the parameters contained in the ServerRequest. The NVList class
implements a parameter list containing one or more NamedValue objects. The NVList and
NamedValue classes are described in “Using the Dynamic Invocation Interface.”

An Any object is created to hold the account name. This Any is then added to NVList with
the argument's name set to name and the parameter type set to ARG_IN.

Once the NVList has been initialized, the ServerRequest object'sarguments method is
invoked to obtain the values of all of the parameters in the list.

Note

After invoking the arguments method, the NVList will be owned by the VisiBroker ORB.
This means that if an object implementation modifies an ARG_INOUT parameter in the
NVList, the change will automatically be apparent to the VisiBroker ORB. This NVList
should not be released by the caller.

An alternative to constructing the NVList for the input arguments is to use the
VisiBroker ORB object'screate_operation_list method. This method accepts an
OperationDef and returns an NVList object, completely initialized with all the necessary
Any objects. The appropriate OperationDef object may be obtained from the interface
repository, described in “Using Interface Repositories.”

Setting the return value

After invoking the ServerRequest object's arguments method, the value of the name
parameter can be extracted and used to create a new Account object. An Any object is
created to hold the newly created Account object, which is returned to the caller by
invoking the ServerRequest object's set_result method.

Server implementation
The implementation of the main routine, shown in the following code sample, is almost
identical to the original example in “Developing an example application
with VisiBroker.”

 23: Using the Dynamic Skeleton Interface 321

Server implementat ion

import org.omg.PortableServer.*;
public class Server {
 public static void main(String[] args) {
 try {
 // Initialize the ORB
 org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args, null);
 // Get a reference to the root POA
 POA rootPOA =
 POAHelper.narrow(orb.resolve_initial_references("RootPOA"));
 // Get the POA Manager
 POAManager poaManager = rootPOA.the_POAManager();
 // Create the account POA with the right policies
 org.omg.CORBA.Policy[] accountPolicies = {
 rootPOA.create_servant_retention_policy(
 ServantRetentionPolicyValue.NON_RETAIN),
 rootPOA.create_request_processing_policy(
 RequestProcessingPolicyValue.USE_DEFAULT_SERVANT)
 };
 POA accountPOA = rootPOA.create_POA("bank_account_poa",
 poaManager, accountPolicies);
 // Create the account default servant
 AccountImpl accountServant = new AccountImpl(orb, accountPOA);
 accountPOA.set_servant(accountServant);
 // Create the manager POA with the right policies
 org.omg.CORBA.Policy[] managerPolicies = {
 rootPOA.create_lifespan_policy(LifespanPolicyValue.PERSISTENT),
 rootPOA.create_request_processing_policy(
 RequestProcessingPolicyValue.USE_DEFAULT_SERVANT)
 };
 POA managerPOA = rootPOA.create_POA("bank_agent_poa",
 poaManager, managerPolicies);
 // Create the manager default servant
 AccountManagerImpl managerServant = new AccountManagerImpl(orb,
 accountServant);
 managerPOA.set_servant(managerServant);
 // Activate the POA Manager
 poaManager.activate();
 System.out.println("AccountManager is ready");
 // Wait for incoming requests
 orb.run();
 } catch(Exception e) {
 e.printStackTrace();
 }
 }
}

DSI implementation is instantiated as a default servant and the POA should be created
with the support of corresponding policies. For more information see “Using POAs.”

322 VisiBroker for Java Developer’s Guide

 24: Using Portable Interceptors 323

Using Portable Interceptors
This section provides an overview of Portable Interceptors. Several Portable
Interceptor examples are discussed as well as the advanced features of Portable
Interceptor factories.

For a complete description of Portable Interceptors, refer to the OMG Final Adopted
Specification, ptc/2001-04-03, Portable Interceptors.

Portable Interceptors overview
The VisiBroker ORB provides a set of interfaces known as interceptors which provide a
framework for plugging-in additional ORB behavior such as security, transactions, or
logging. These interceptor interfaces are based on a callback mechanism. For
example, using the interceptors, you can be notified of communications between
clients and servers, and modify these communications if you wish, effectively altering
the behavior of the VisiBroker ORB.

At its simplest usage, the interceptor is useful for tracing through code. Because you
can see the messages being sent between clients and servers, you can determine
exactly how the ORB is processing requests.

Figure 24.1 How Interceptors work

If you are building a more sophisticated application such as a monitoring tool or
security layer, interceptors give you the information and control you need to enable
these lower-level applications. For example, you can develop an application that
monitors the activity of various servers and performs load balancing.

324 VisiBroker for Java Developer’s Guide

Portable Interceptor and Information interfaces

Types of interceptors

There are two types of interceptors supported by the VisiBroker ORB.

Types of Portable Interceptors

The two kinds of Portable Interceptors defined by the OMG specification are: Request
Interceptors and IOR interceptors.

For additional information on using both Portable Interceptors and VisiBroker
Interceptors, see “Using VisiBroker Interceptors.”

See also VisiBroker for Java APIs, and the “Portable Interceptor interfaces and classes
for C++” chapter of the VisiBroker for C++ API Reference.

Portable Interceptor and Information interfaces
All Portable Interceptors implement one of the following base interceptor API classes
which are defined and implemented by the VisiBroker ORB:

– Request Interceptor:

– ClientRequestInterceptor

– ServerRequestInterceptor

– IORInterceptor

Interceptor class

All the interceptor classes listed above are derived from a common class: Interceptor.
This Interceptor class has defined common methods that are available to its inherited
classes.

The Interceptor class:

public interface Interceptor
 extends org.omg.CORBA.portable.IDLEntity, org.omg.CORBA.LocalInterface
{
 public java.lang.String name ();
 public void destroy ();
}

Portable Interceptors VisiBroker Interceptors

An OMG standardized feature that allows
writing of portable code as interceptors, which
can be used with different ORB vendors.

VisiBroker-specific interceptors. For more
information, go to “Using VisiBroker
Interceptors.”

Request Interceptors IOR interceptor

Can enable the VisiBroker ORB
services to transfer context
information between clients and
servers. Request Interceptors are
further divided into Client Request
Interceptors and Server Request
Interceptors.

Used to enable a VisiBroker ORB service to add
information in an IOR describing the server's or object's
ORB-service-related capabilities. For example, a
security service (like SSL) can add its tagged
component into the IOR so that clients recognizing that
component can establish the connection with the server
based on the information in the component.

 24: Using Portable Interceptors 325

Portable Interceptor and Information interfaces

Request Interceptor

A request interceptor is used to intercept the flow of a request/reply sequence at
specific interception points so that services can transfer context information between
clients and servers. For each interception point, the VisiBroker ORB gives an object
through which the interceptor can access request information. There are two kinds of
request interceptor and their respective request information interfaces:

– ClientRequestInterceptor and ClientRequestInfo

– ServerRequestInterceptor and ServerRequestInfo

Figure 24.2 Request Interception points

For more detail information on Request Interceptors, see the VisiBroker for Java APIs,
and the “Portable Interceptor interfaces and classes for C++” chapter of the VisiBroker
for C++ API Reference.

ClientRequestInterceptor
ClientRequestInterceptor has its interception points implemented on the client-side.
There are five interception points defined in ClientRequestInterceptor by the OMG as
shown in the following table:

1 TII is not implemented in the VisiBroker ORB. As a result, the send_poll() interception point will
never be invoked.

Interception Points Description

send_request Lets a client-side Interceptor query a request and modify the service
context before the request is sent to the server.

send_poll Lets a client-side Interceptor query a request during a Time-Independent
Invocation (TII)1 polling get reply sequence.

receive_reply Lets a client-side Interceptor query the reply information after it is
returned from the server and before the client gains control.

receive_exception Lets a client-side Interceptor query the exception's information, when an
exception occurs, before the exception is sent to the client.

receive_other Lets a client-side Interceptor query the information which is available
when a request result other than normal reply or an exception is
received.

326 VisiBroker for Java Developer’s Guide

Portable Interceptor and Information interfaces

For more information on each interception point, see the VisiBroker for Java APIs, and
the “Portable Interceptor interfaces and classes for C++” chapter of the VisiBroker for
C++ API Reference.

package org.omg.PortableInterceptor;
public interface ClientRequestInterceptor
 extends Interceptor, org.omg.CORBA.portable.IDLEntity,
org.omg.CORBA.LocalInterface
{
 public void send_request(ClientRequestInfo ri) throws ForwardRequest;
 public void send_poll(ClientRequestInfo ri) throws ForwardRequest;
 public void receive_reply(ClientRequestInfo ri);
 public void receive_exception(ClientRequestInfo ri) throws ForwardRequest;
 public void receive_other(ClientRequestInfo ri) throws ForwardRequest;
}

Client-side rules
The following are the client-side rules:

– The starting interception points are: send_request and send_poll. On any given
request/reply sequence, one and only one of these interception points is called.

– The ending interception points are: receive_reply, receive_exception and
receive_other.

– There is no intermediate interception point.

– An ending interception point is called if and only if send_request or send_poll runs
successfully.

– A receive_exception is called with the system exception BAD_INV_ORDER with a minor
code of 4 (ORB has shutdown) if a request is canceled because of ORB shutdown.

– A receive_exception is called with the system exception TRANSIENT with a minor code
of 3 if a request is canceled for any other reason.

ServerRequestInterceptor
ServerRequestInterceptor has its interception points implemented on the server-side.
There are five interception points defined in ServerRequestInterceptor. The following
table shows the ServerRequestInterceptor Interception points.

Successful invocations send_request is followed by receive_reply; a start point is
followed by an end point

Retries send_request is followed by receive_other; a start point is
followed by an end point

Interception Points Description

receive_request_service_contexts Lets a server-side Interceptor get its service context
information from the incoming request and transfer it to
PortableInterceptor::Current's slot.

receive_request Lets a server-side Interceptor query request information
after all information, including operation parameters, is
available.

send_reply Lets a server-side Interceptor query reply information and
modify the reply service context after the target operation
has been invoked and before the reply is returned to the
client.

send_exception Lets a server-side Interceptor query the exception's
information and modify the reply service context, when an
exception occurs, before the exception is sent to the client.

send_other Lets a server-side Interceptor query the information which is
available when a request result other than normal reply or
an exception is received.

 24: Using Portable Interceptors 327

Portable Interceptor and Information interfaces

For more detail on each interception point, see the VisiBroker for Java APIs, and the
“Portable Interceptor interfaces and classes for C++” chapter of the VisiBroker for C++
API Reference.

ServerRequestInterceptor Interface:

package org.omg.PortableInterceptor;
public interface ServerRequestInterceptor
 extends Interceptor, org.omg.CORBA.portable.IDLEntity,
org.omg.CORBA.LocalInterface
{
 public void receive_request_service_contexts(ServerRequestInfo ri)
 throws ForwardRequest;
 public void receive_request(ServerRequestInfo ri) throws ForwardRequest;
 public void send_reply(ServerRequestInfo ri);
 public void send_exception(ServerRequestInfo ri) throws ForwardRequest;
 public void send_other(ServerRequestInfo ri) throws ForwardRequest;
}

Server-side rules
The following are the server-side rules:

– The starting interception point is: receive_request_service_contexts. This interception
point is called on any given request/reply sequence.

– The ending interception points are: send_reply, send_exception and send_other. On
any given request/reply sequence, one and only one of these interception points is
called.

– The intermediate interception point is receive_request. It is called after
receive_request_service_contexts and before an ending interception point.

– On an exception, receive_request may not be called.

– An ending interception point is called if and only if send_request or send_poll runs
successfully.

– A send_exception is called with the system exception BAD_INV_ORDER with a minor code
of 4 (ORB has shutdown) if a request is canceled because of ORB shutdown.

– A send_exception is called with the system exception TRANSIENT with a minor code of 3
if a request is canceled for any other reason.

Successful invocations The order of interception points:
receive_request_service_contexts, receive_request,
send_reply; a start point is followed by an intermediate
point which is followed by an end point.

328 VisiBroker for Java Developer’s Guide

Portable Interceptor and Information interfaces

IOR Interceptor

IORInterceptor give applications the ability to add information describing the server's or
object's ORB service related capabilities to object references to enable the VisiBroker
ORB service implementation in the client to function properly. This is done by calling
the interception point, establish_components. An instance of IORInfo is passed to the
interception point. For more information on IORInfo, see the VisiBroker for Java APIs,
and the “Portable Interceptor interfaces and classes for C++” chapter of the VisiBroker
for C++ API Reference.

package org.omg.PortableInterceptor;
public interface IORInterceptor
 extends Interceptor, org.omg.CORBA.portable.IDLEntity,
org.omg.CORBA.LocalInterface
{
 public void establish_components(IORInfo info);
 public void components_established(IORInfo info);
 public void adapter_manager_state_changed(int id, short state);
 public void adapter_state_changed(
 ObjectReferenceTemplate[] templates, short state);
}

Portable Interceptor (PI) Current

The PortableInterceptor::Current object (hereafter referred to as PICurrent) is a table
of slots that can be used by Portable Interceptors to transfer thread context information
to request context. Use of PICurrent may not be required. However, if client's thread
context information is required at interception point, PICurrent can be used to transfer
this information.

PICurrent is obtained through a call to:

ORB.resolve_initial_references("PICurrent");

PortableInterceptor.Current interface:

package org.omg.PortableInterceptor;
public interface Current
 extends org.omg.CORBA.CurrentOperations, org.omg.CORBA.portable.IDLEntity
{
 public org.omg.CORBA.Any get_slot(int id) throws InvalidSlot;

 public void set_slot(int id, org.omg.CORBA.Any data) throws InvalidSlot;
}

 24: Using Portable Interceptors 329

Portable Interceptor and Information interfaces

Codec

Codec provides a mechanism for interceptors to transfer components between their IDL
data types and their CDR encapsulation representations. A Codec is obtained from
CodecFactory. For more information, see “CodecFactory”.

The Codec interface:

package org.omg.IOP;
public interface Codec
 extends org.omg.CORBA.portable.IDLEntity, org.omg.CORBA.LocalInterface
{
 public byte[] encode(org.omg.CORBA.Any data) throws InvalidTypeForEncoding;
 public org.omg.CORBA.Any decode(byte[] data) throws FormatMismatch;
 public byte[] encode_value(org.omg.CORBA.Any data) throws

InvalidTypeForEncoding;
 public org.omg.CORBA.Any decode_value(byte[] data,

org.omg.CORBA.TypeCode tc)
 throws FormatMismatch, TypeMismatch;
}

CodecFactory

This class is used to create a Codec object by specifying the encoding format, the major
and minor versions. CodecFactory can be obtained with a call to:

ORB.resolve_initial_references("CodecFactory")

The CodecFactory interface:

package org.omg.IOP;
public interface CodecFactory
 extends org.omg.CORBA.portable.IDLEntity, org.omg.CORBA.LocalInterface
{
 public Codec create_codec(Encoding enc) throws UnknownEncoding;
}

Creating a Portable Interceptor

The generic steps to create a Portable Interceptor are:

1 The Interceptor must be inherited from one of the following Interceptor interfaces:

– ClientRequestInterceptor

– ServerRequestInterceptor

– IORInterceptor

1 The Interceptor implements one or more interception points that are available to the
Interceptor.

2 The Interceptor can be named or anonymous. All names must be unique among all
Interceptors of the same type. However, any number of anonymous Interceptors
can be registered with the VisiBroker ORB.

330 VisiBroker for Java Developer’s Guide

Portable Interceptor and Information interfaces

Example: Creating a PortableInterceptor
import org.omg.PortableInterceptor.*;

public class SampleClientRequestInterceptor extends org.omg.CORBA.LocalObject
 implements ClientRequestInterceptor
{
 public java.lang.String name() {
 return "SampleClientRequestInterceptor";
 }

 public void send_request(ClientRequestInfo ri)
 throws ForwardRequest {
 // actual interceptor code here
 }

 public void send_poll(ClientRequestInfo ri)
 throws ForwardRequest {
 // actual interceptor code here
 }

 public void receive_reply(ClientRequestInfo ri) {
 // actual interceptor code here
 }

 public void receive_exception(ClientRequestInfo ri)
 throws ForwardRequest {
 // actual interceptor code here
 }

 public void receive_other(ClientRequestInfo ri)
 throws ForwardRequest {
 // actual interceptor code here
 }
}

Registering Portable Interceptors

Portable Interceptors must be registered with the VisiBroker ORB before they can be
used. To register a Portable Interceptor, an ORBInitializer object must be
implemented and registered. Portable Interceptors are instantiated and registered
during ORB initialization by registering an associated ORBInitializer object which
implements its pre_init() or post_init() method, or both. The VisiBroker ORB will
call each registered ORBInitializer with an ORBInitInfo object during the initializing
process.

The ORBInitializer interface:

package org.omg.PortableInterceptor;

public interface ORBInitializer
 extends org.omg.CORBA.portable.IDLEntity, org.omg.CORBA.LocalInterface
{
 public void pre_init(ORBInitInfo info);
 public void post_init(ORBInitInfo info);
}

 24: Using Portable Interceptors 331

Portable Interceptor and Information interfaces

The ORBInitInfo interface:

package org.omg.PortableInterceptor;
public interface ORBInitInfo
 extends org.omg.CORBA.portable.IDLEntity, org.omg.CORBA.LocalInterface
{
 public java.lang.String[] arguments();
 public java.lang.String orb_id();
 public CodecFactory codec_factory();
 public void register_initial_reference(java.lang.String id,
org.omg.CORBA.Object obj)
 throws InvalidName;
 public void resolve_initial_references(java.lang.String id) throws
InvalidName;
 public void add_client_request_interceptor(ClientRequestInterceptor
interceptor)
 throws DuplicateName;
 public void add_server_request_interceptor(ServerRequestInterceptor
interceptor)
 throws DuplicateName;
 public void add_ior_interceptor(IORInterceptor interceptor) throws
DuplicateName;
 public int allocate_slot_id();
 public void register_policy_factory(int type, PolicyFactory policy_factory);
}

Registering an ORBInitializer

To register an ORBInitializer, the global method register_orb_initializer is provided.
Each service that implements Interceptors provides an instance of ORBInitializer. To
use a service, an application:

1 calls register_orb_initializer() with the service's ORBInitializer; and

2 makes an instantiating ORB_Init() call with a new ORB identifier to produce a new
ORB.

Since the register_orb_initializer() is a global method, it would break applet
security with respect to the ORB. As a result, ORBInitializers are registered with
VisiBroker ORB by using Java ORB properties instead of calling
register_orb_initializer().

The new property names are of the form:

org.omg.PortableInterceptor.ORBInitializerClass.<Service>

where <Service> is the string name of a class which implements
org.omg.PortableInterceptor.ORBInitializer.

During ORB.init():

1 these ORB properties which begin with
org.omg.PortableInterceptor.ORBInitializerClass are collected.

2 the <Service> portion of each property is collected.

3 an object is instantiated with the <Service> string as its class name.

4 the pre_init() and post_init() methods are called on that object.

5 if there is any exception, the ORB ignores them and proceeds.

Note

To avoid name collisions, the reverse DNS name convention is recommended. For
example, if company ABC has two initializers, it could define the following properties:

org.omg.PortableInterceptor.ORBInitializerClass.com.abc.ORBInit1

org.omg.PortableInterceptor.ORBInitializerClass.com.abc.ORBInit2

332 VisiBroker for Java Developer’s Guide

Portable Interceptor and Information interfaces

Example: Registering ORBInitializer
A client-side monitoring tool written by company ABC may have the following
ORBInitializer implementation:

package com.abc.Monitoring;

import org.omg.PortableInterceptor.Interceptor;
import org.omg.PortableInterceptor.ORBInitializer;
import org.omg.PortableInterceptor.ORBInitInfo;

public class MonitoringService extends org.omg.CORBA.LocalObject
 implements org.omg.PortableInterceptor.ORBInitializer
{
 void pre_init(ORBInitInfo info)
 {
 // instantiate the service's Interceptor.
 Interceptor interceptor = new MonitoringInterceptor();

 // register the Monitoring's Interceptor.
 info.add_client_request_interceptor(interceptor);
 }

 void post_init(ORBInitInfo info)
 {
 // This init point is not needed.
 }
}

The following command may be used to run a program called MyApp using this
monitoring service:

java -Dorg.omg.PortableInterceptor.ORBInitializerClass.com.abc.
Monitoring.MonitoringService MyApp

VisiBroker extensions to Portable Interceptors

POA scoped Server Request Interceptors
Portable Interceptors specified by OMG are scoped globally. VisiBroker has defined
“POA scoped Server Request Interceptor”, a public extension to the Portable
Interceptors, by adding a new module call PortableInterceptorExt. This new module
holds a local interface, IORInfoExt, which is inherited from
PortableInterceptor::IORInfo and has additional methods to install POA scoped server
request interceptor.

The IORInfoExt interface:

package com.inprise.vbroker.PortableInterceptor;

public interface IORInfoExt extends
 org.omg.CORBA.LocalInterface,
 org.omg.PortableInterceptor.IORInfo,
 com.inprise.vbroker.PortableInterceptor.IORInfoExtOperations,
 org.omg.CORBA.portable.IDLEntity
{
 public void add_server_request_interceptor(ServerRequestInterceptor
interceptor)
 throws DuplicateName;
 public java.lang.String[] full_poa_name();
}

 24: Using Portable Interceptors 333

Portable Interceptors examples

Inserting and extracting system exceptions
To conveniently insert and extract SystemExceptions to and from an Any, a utility helper
class is provided only for VisiBroker for Java. The
com.inprise.vbroker.PortableInterceptor.SystemExceptionHelper class provides the
methods to insert and extract the SystemExceptions into and out of an Any respectively.
You need to import the following package:

import com.inprise.vbroker.PortableInterceptor.*;

The two methods have the following signatures:

public static void insert (final org.omg.CORBA.Any any, final
org.omg.CORBA.SystemException se);
public static org.omg.CORBA.SystemException extract (final org.omg.CORBA.Any
any);

Limitations of VisiBroker Portable Interceptors implementation

The following are limitations of the Portable Interceptor implementation in VisiBroker.

ClientRequestInfo limitations
– arguments(), result(), exceptions(), contexts(), and operation_contexts() are

only available for DII invocations. For more information, see “Using the Dynamic
Skeleton Interface.”

– received_exception() and received_exception_id() will always return a
CORBA::UNKNOWN exception and its respective repository id if a user exception is thrown
by the application.

ServerRequestInfo limitations
– exceptions() does not return any value; it will raise a CORBA::NO_RESOURCES exception

in both dynamic invocations and static stub based invocation.

– contexts() returns the list of contexts that are available during operation invocation.

– sending_exception() returns the correct user exception only in the case of dynamic
invocation (provided the user exception can be inserted into an Any or its TypeCode
information is available).

– arguments(), result(), contexts(), and operation_contexts() are only available for
DSI invocations. For more information, see “Using the Dynamic Skeleton Interface.”

Portable Interceptors examples
This section discusses how applications are actually written to make use of Portable
Interceptors and how each request interceptor is implemented. Each example consists
of a set of client and server applications and their respective interceptors written in
Java and C++. For more information on the definition of each interface, see the
VisiBroker for Java APIs, and the “Portable Interceptor interfaces and classes for C++”
chapter of the VisiBroker for C++ API Reference.

We also recommend that developers who want to make use of Portable Interceptors
read the chapter on Portable Interceptors in the most recent CORBA specification.

The Portable Interceptors examples are located in the following directory:

<install_dir>/examples/vbe/pi

334 VisiBroker for Java Developer’s Guide

Example: c l ient_server

Each example is associated with one of the following directory names to better
illustrate the objective of that example.

– client_server

– chaining

Example: client_server
This section provides a detailed description, explanation, the compilation procedure,
and the execution or deployment of the examples in client_server.

Objective of example

This example demonstrates how easily a Portable Interceptor can be added into an
existing CORBA application without altering any code. The Portable Interceptor can be
added to any application, both client and server-side, through executing the related
application again, together with the specified options or properties which can be
configured during runtime.

The client and server application used is similar to the one found in:

<install_dir>/examples/vbe/basic/bank_agent

Portable Interceptors have been added to the entire example during runtime
configuration. This provides developers, who are familiar with VisiBroker Interceptors,
a fast way of coding between VisiBroker Interceptors and OMG specific Portable
Interceptors.

Importing required packages

To use Portable Interceptor interfaces, inclusion of the related packages or header files
is required.

Note

If you are using any Portable Interceptors exceptions, such as, DuplicateName or
InvalidName, the ORBInitInfoPackage is optional.

Required packages for using Portable Interceptor are:

import org.omg.PortableInterceptor.*;
import org.omg.PortableInterceptor.ORBInitInfoPackage.*;

To load a client-side request interceptor, a class that uses the ORBInitializer interface
must be implemented. This is also applicable for server-side request interceptor as far
as initialization is concerned. The following example shows the code for loading:

Proper inheritance of a ORBInitializer in order to load a server request interceptor:

public class SampleServerLoader extends org.omg.CORBA.LocalObject implements
ORBInitializer

Note

Each object that implements the interface, ORBInitializer, is also required to inherit
from the object LocalObject. This is necessary because the IDL definition of
ORBInitializer uses the keyword local.

For more information on the IDL keyword, local, see “Understanding valuetypes”.

During the initialization of the ORB, each request Interceptor is added through the
implementation of the interface, pre_init(). Inside this interface, the client request
Interceptor is added through the method, add_client_request_interceptor(). The
related client request interceptor is required to be instantiated before adding itself into
the ORB.

 24: Using Portable Interceptors 335

Example: c l ient_server

Client-side request interceptor initialization and registration to the
ORB

public void pre_init(ORBInitInfo info) {
 try {
 info.add_client_request_interceptor

(new SampleClientInterceptor());
 ...

According to the OMG specification, the required application registers the respective
interceptors through the method register_orb_initializer. For more information, see
“Developing the Client and Server Application”.

VisiBroker provides an optional way of registering these interceptors through a
dynamic link library (DLL). The advantage of using this method of registering is that the
applications do not require changing any code, only changing the way they are
executed. With an additional option during execution, the interceptors are registered
and executed. The option is similar to 4.x Interceptors:

vbroker.orb.dynamicLibs=<DLL filename>

where <DLL filename>is the filename of the dynamic link library (extension .SO for UNIX
or .DLL for Windows). To load more than one DLL file, separate each filename with a
comma (“,”), for example:

Windows

vbroker.orb.dynamicLibs=a.dll,b.dll,c.dll

UNIX

vbroker.orb.dynamicLibs=a.so,b.so,c.so

In order to load the interceptor dynamically, the VISInit interface is used. This is similar
to the one used in VisiBroker Interceptors. For more information, see “Using VisiBroker
Interceptors.” The registration of each interceptor loader is similar within the ORB_init
implementation.

Complete implementation of the client-side interceptor loader:

// SampleClientLoader.java

import org.omg.PortableInterceptor.*;
import org.omg.PortableInterceptor.ORBInitInfoPackage.*;

public class SampleClientLoader extends org.omg.CORBA.LocalObject
implements ORBInitializer
{
 public void pre_init(ORBInitInfo info) {
 try {
 System.out.println("=====>SampleClientLoader: Installing ...");
 info.add_client_request_interceptor(new SampleClientInterceptor());
 System.out.println("=====>SampleClientLoader: Interceptors loaded.");
 }
 catch(DuplicateName dn) {
 System.out.println("=====>SampleClientLoader: " + dn.name + " already
 installed.");
 }
 catch(Exception e) {
 e.printStackTrace();
 throw new org.omg.CORBA.INITIALIZE(e.toString());
 }
 }
 public void post_init(ORBInitInfo info) {
 // We do not do anything here.

336 VisiBroker for Java Developer’s Guide

Example: c l ient_server

 }
}

Implementing the ORBInitializer for a server-side Interceptor

At this stage, the client request interceptor should already have been properly
instantiated and added. Subsequent code thereafter only provides exception handling
and result display. Similarly, on the server-side, the server request interceptor is also
done the same way except that it uses the, add_server_request_interceptor() method
to add the related server request interceptor into the ORB.

Server-side request interceptor initialization and registration to the ORB:

public void pre_init(ORBInitInfo info) {
 try {
 info.add_server_request_interceptor

(new SampleServerInterceptor());
 ...

This method also applies similarly to loading the server-side ORBInitializer class
through a DLL implementation.

Server-side request ORB Initializer loading through DLL:

The complete implementation of the server-side interceptor loader:

// SampleServerLoader.java

import org.omg.PortableInterceptor.*;
import org.omg.PortableInterceptor.ORBInitInfoPackage.*;

 public class SampleServerLoader extends org.omg.CORBA.LocalObject

implements ORBInitializer

 {

 public void pre_init(ORBInitInfo info) {
 try {
 info.add_server_request_interceptor(new
SampleServerInterceptor());
 System.out.println("=====>SampleServerLoader: Interceptors loaded");
 }
 catch(DuplicateName dn) {
 System.out.println("Interceptor: " + dn.name + " already

installed.");
 }
 catch(Exception e) {
 e.printStackTrace();
 throw new org.omg.CORBA.INITIALIZE(e.toString());
 }
 }
 public void post_init(ORBInitInfo info) {

 // We do not do anything here.
 }
}

 24: Using Portable Interceptors 337

Example: c l ient_server

Implementing the RequestInterceptor for client- or server-side
Request Interceptor

Upon implementation of either client- or server-side request interceptor, two other
interfaces must be implemented. They are name() and destroy().

The name() is important here because it provides the name to the ORB to identify the
correct interceptor that it will load and call during any request or reply. According to the
CORBA specification, an interceptor may be anonymous, for example, it has an empty
string as the name attribute. In this example, the name, SampleClientInterceptor, is
assigned to the client-side interceptor and SampleServerInterceptor is assigned to the
server-side interceptor.

Implementation of interface attribute, readonly attribute name:

public String name() {
 return _name;
 }

Implementing the ClientRequestInterceptor for Client

For the client request interceptor, it is necessary to implement the
ClientRequestInterceptor interface for the request interceptor to work properly.

When the class implements the interface, the following five request interceptor
methods are implemented regardless of any implementation:

– send_request()

– send_poll()

– receive_reply()

– receive_exception()

– receive_other()

In addition, the interface for the request interceptor must be implemented before hand.
On the client-side interceptor, the following request interceptor point will be triggered in
relation to its events.

send_request—provides an interception point for querying request information and
modifying the service context before the request is sent to the server.

Implementation of the public void send_request(ClientRequestInfo ri)
interface

public void send_request(ClientRequestInfo ri) throws ForwardRequest {
 ...

Implementation of the void send_poll(ClientRequestInfo ri) interface
send_poll—provides an interception point for querying information during a Time-
Independent Invocation (TII) polling to get reply sequence.

public void send_poll(ClientRequestInfo ri) {
 ...

338 VisiBroker for Java Developer’s Guide

Example: c l ient_server

Implementation of the void receive_reply(ClientRequestInfo ri) interface
receive_reply—provides an interception point for querying information on a reply after
it is returned from the server and before control is returned to the client.

public void receive_reply(ClientRequestInfo ri) {
 ...

Implementation of the void receive_exception(ClientRequestInfo ri)
interface
receive_exception—provides an interception point for querying the exception's
information before it is raised to the client.

public void receive_exception(ClientRequestInfo ri) throws ForwardRequest {
 ...

receive_other—provides an interception point for querying information when a request
results in something other than a normal reply or an exception. For example, a request
could result in a retry (for example, a GIOP Reply with a LOCATION_FORWARD status was
received); or on asynchronous calls, the reply does not immediately follow the request.
However, the control is returned to the client and an ending interception point is called.

public void receive_other(ClientRequestInfo ri) throws ForwardRequest {
 ...

The complete implementation of the client-side request interceptor follows.

// SampleClientInterceptor.java

import org.omg.PortableInterceptor.*;
import org.omg.Dynamic.*;

public class SampleClientInterceptor extends org.omg.CORBA.LocalObject
implements ClientRequestInterceptor {

 public SampleClientInterceptor() {
 this("SampleClientInterceptor");
 }

public SampleClientInterceptor(String name) {
 _name = name;
}
private String _name = null;
/**
* InterceptorOperations implementation
*/
public String name() {
 return _name;
}

public void destroy() {
 System.out.println("=====>SampleServerLoader: Interceptors unloaded");
}

/**
* ClientRequestInterceptor implementation
*/

/**
* This is similar to VisiBroker 4.x ClientRequestInterceptor,
*
* public void preinvoke_premarshal(org.omg.CORBA.Object target,
 String operation,
* ServiceContextListHolder service_contexts_holder, Closure
 closure);
*/

 24: Using Portable Interceptors 339

Example: c l ient_server

public void send_request(ClientRequestInfo ri) throws ForwardRequest {
 System.out.println("=====> SampleClientInterceptor id " +
 ri.request_id() +
 " send_request => " + ri.operation() +
 ": target = " + ri.target());
}

/**
* There is no equivalent interface for VisiBroker 4.x
* ClientRequestInterceptor.
*/
public void send_poll(ClientRequestInfo ri) {
 System.out.println("=====> SampleClientInterceptor id " +
 ri.request_id() +
 " send_poll => " + ri.operation() +
 ": target = " + ri.target());
}

/**
* This is similar to VisiBroker 4.x ClientRequestInterceptor,
*
* public void postinvoke(org.omg.CORBA.Object target,
* ServiceContext[] service_contexts, InputStream payload,
* org.omg.CORBA.Environment env, Closure closure);
*
* with env not holding any exception value.
*/
public void receive_reply(ClientRequestInfo ri) {
 System.out.println("=====> SampleClientInterceptor id " +
 ri.request_id() +
 " receive_reply => " + ri.operation());
}

/**
* This is similar to VisiBroker 4.x ClientRequestInterceptor,
*
* public void postinvoke(org.omg.CORBA.Object target,
* ServiceContext[] service_contexts, InputStream payload,
* org.omg.CORBA.Environment env, Closure closure);
*
* with env holding the exception value.
*/
public void receive_exception(ClientRequestInfo ri) throws ForwardRequest {
 System.out.println("=====> SampleClientInterceptor id " +
 ri.request_id() +
 " receive_exception => " + ri.operation() +
 ": exception = " + ri.received_exception());
}

/**
* This is similar to VisiBroker 4.x ClientRequestInterceptor,
*
* public void postinvoke(org.omg.CORBA.Object target,
* ServiceContext[] service_contexts, InputStream payload,
* org.omg.CORBA.Environment env, Closure closure);
*
* with env holding the exception value.
*/

340 VisiBroker for Java Developer’s Guide

Example: c l ient_server

public void receive_other(ClientRequestInfo ri) throws ForwardRequest {
 System.out.println("=====> SampleClientInterceptor id " +
 ri.request_id() +
 " receive_reply => " + ri.operation() +
 ": exception = " + ri.received_exception() +
 ", reply status = "+ getReplyStatus(ri));
}

protected String getReplyStatus(RequestInfo ri) {
 switch(ri.reply_status()) {
 case SUCCESSFUL.value:
 return "SUCCESSFUL";
 case SYSTEM_EXCEPTION.value:
 return "SYSTEM_EXCEPTION";
 case USER_EXCEPTION.value:
 return "USER_EXCEPTION";
 case LOCATION_FORWARD.value:
 return "LOCATION_FORWARD";
 case TRANSPORT_RETRY.value:
 return "TRANSPORT_RETRY";
 default:
 return "invalid reply status id";
 }
 }
}

On the server-side interceptor, the following request interceptor point will be triggered
in relation to its events.

receive_request_service_contexts—provides an interception point for getting service
context information from the incoming request and transferring it to
PortableInterceptor::Current slot. This interception point is called before the Servant
Manager. For more information, see “Using servants and servant managers”.

Implementation of the void receive_request_service_contexts
(ServerRequestInfo ri) interface

public void receive_request_service_contexts(ServerRequestInfo ri) throws
ForwardRequest {
 ...

receive_request—provides an interception point for querying all the information,
including operation parameters.

Implementation of the void receive_request (ServerRequestInfo ri) interface
public void receive_request(ServerRequestInfo ri) throws ForwardRequest {
 ...

send_reply—provides an interception point for querying reply information and modifying
the reply service context after the target operation has been invoked and before the
reply is returned to the client.

Implementation of the void receive_reply (ServerRequestInfo ri)interface
public void send_reply(ServerRequestInfo ri) {
 ...

send_exception—provides an interception point for querying the exception information
and modifying the reply service context before the exception is raised to the client.

 24: Using Portable Interceptors 341

Example: c l ient_server

Implementation of the void receive_exception (ServerRequestInfo ri)
interface

public void send_exception(ServerRequestInfo ri) throws ForwardRequest {
 ...

send_other—provides an interception point for querying the information available when
a request results in something other than a normal reply or an exception. For example,
a request could result in a retry (such as, a GIOP Reply with a LOCATION_FORWARD status
was received); or, on asynchronous calls, the reply does not immediately follow the
request, but control is returned to the client and an ending interception point is called.

Implementation of the void receive_other (ServerRequestInfo ri) interface
public void send_other(ServerRequestInfo ri) throws ForwardRequest {
 ...

All the interception points allow both the client and server to obtain different types of
information at different points of an invocation. In the example, this information is
displayed as a debugging tool.

The following code example shows the complete implementation of the server-side
request interceptor:

// SampleServerInterceptor.java

import org.omg.PortableInterceptor.*;
import org.omg.Dynamic.*;
import java.io.PrintStream;

public class SampleServerInterceptor extends org.omg.CORBA.LocalObject
implements ServerRequestInterceptor {

 private String _name = null;

 public SampleServerInterceptor() {
 this("SampleServerInterceptor");
 }

 public SampleServerInterceptor(String name) {
 _name = name;
 }
/**
* InterceptorOperations implementation
*/
public String name() {
 return _name;
}

public void destroy() {
 System.out.println("=====>SampleServerLoader: Interceptors unloaded");
}

/**
* ServerRequestInterceptor implementation
*/

/**
* This is similar to VisiBroker 4.x ServerRequestInterceptor,
*
* public void preinvoke(org.omg.CORBA.Object target, String operation,
* ServiceContext[] service_contexts, InputStream payload, Closure closure);
*/

public void receive_request_service_contexts(ServerRequestInfo ri)
 throws ForwardRequest {

342 VisiBroker for Java Developer’s Guide

Example: c l ient_server

 System.out.println("=====> SampleServerInterceptor id " + ri.request_id() +
 " receive_request_service_contexts => " + ri.operation());
}

/**
* There is no equivalent interface for VisiBroker 4.x
* SeverRequestInterceptor.
*/
public void receive_request(ServerRequestInfo ri)
 throws ForwardRequest {
 System.out.println("=====> SampleServerInterceptor id " + ri.request_id() +
 " receive_request =>" + ri.operation() +
 ": object id = " + ri.object_id() +
 ", adapter_id = " + ri.adapter_id());
}

/**
* There is no equivalent interface for VisiBroker 4.x
* SeverRequestInterceptor.
*/
public void send_reply(ServerRequestInfo ri) {
 System.out.println("=====> SampleServerInterceptor id " + ri.request_id() +
 " send_reply =>" + ri.operation());
}

/**
* This is similar to VisiBroker 4.x ServerRequestInterceptor,
*
* public void postinvoke_premarshal(org.omg.CORBA.Object target,
* ServiceContextListHolder service_contexts_holder,
* org.omg.CORBA.Environment env, Closure closure);
*
* with env holding the exception value.
*/
public void send_exception(ServerRequestInfo ri)
 throws ForwardRequest {
 System.out.println("=====> SampleServerInterceptor id " + ri.request_id() +
 " send_exception =>" + ri.operation() +
 ": exception = " + ri.sending_exception() +
 ", reply status = " + getReplyStatus(ri));
}

/**
* This is similar to VisiBroker 4.x ServerRequestInterceptor,
*
* public void postinvoke_premarshal(org.omg.CORBA.Object target,
* ServiceContextListHolder service_contexts_holder,
* org.omg.CORBA.Environment env, Closure closure);
*
* with env holding the exception value.
*/
public void send_other(ServerRequestInfo ri) throws ForwardRequest {
 System.out.print("=====> SampleServerInterceptor id " + ri.request_id() +
 " send_other =>" + ri.operation() +
 ": exception = " + ri.sending_exception() +
 ", reply status = " + getReplyStatus(ri));
}

 24: Using Portable Interceptors 343

Example: c l ient_server

protected String getReplyStatus(RequestInfo ri) {
 switch(ri.reply_status()) {
 case SUCCESSFUL.value:
 return "SUCCESSFUL";
 case SYSTEM_EXCEPTION.value:
 return "SYSTEM_EXCEPTION";
 case USER_EXCEPTION.value:
 return "USER_EXCEPTION";
 case LOCATION_FORWARD.value:
 return "LOCATION_FORWARD";
 case TRANSPORT_RETRY.value:
 return "TRANSPORT_RETRY";
 default:
 return "invalid reply status id";
 }
 }
}

Developing the Client and Server Application

After the interceptor classes are written, you need to register them with their respective
client and server applications.

The OMG specification has been strictly followed to implement the mappings of
register_orb_initializer, which is registered using Java ORB properties. In the
example, the client and server applications actually read the property files,
client.properties, and server.properties containing the property

org.omg.PortableInterceptor.ORBInitializerClass.<Service>

where <Service> is the string name of a class which implements
org.omg.PortableInterceptor.ORBInitializer. In this case, the two classes are
SampleClientLoader and SampleServerLoader.

IF you choose to write your application without reading any properties from a file, you
can also use the command line option. To do so, run the application with the following
parameters:

vbj -Dorg.omg.PortableInterceptor.ORBInitializerClass.SampleClientLoader=
SampleClientLoader Client
vbj -Dorg.omg.PortableInterceptor.ORBInitializerClass.SampleServerLoader=
SampleServerLoader Server

344 VisiBroker for Java Developer’s Guide

Example: c l ient_server

Implementation of the client application
// Client.java

import org.omg.PortableServer.*;

import java.util.Properties;
import java.io.FileInputStream;

public class Client {

 private static Properties property = null;

 public static void main(String[] args) {
 try {
 property = new Properties();
 property.load(new FileInputStream("client.properties"));

 // Initialize the ORB.
 org.omg.CORBA.ORB orb=org.omg.CORBA.ORB.init(args, property);
 // Get the manager Id
 byte[] AccountManagerId="BankManager".getBytes();
 // Locate an account manager. Give the full POA name and the servant ID.
 Bank.AccountManager manager =
 Bank.AccountManagerHelper.bind(orb, "/bank_client_server_poa",
 AccountManagerId);
 // use args[0] as the account name, or a default.
 String name = null;
 name = args.length > 0 ? args[0] : "Jack B. Quick";
 // Request the account manager to open a named account.
 Bank.Account account = manager.open(name);
 // Get the balance of the account.
 float balance = account.balance();
 // Print out the balance.
 System.out.println("The balance in " + name + "'s account is $" +
 balance);
 }
 catch(Exception e) {
 e.printStackTrace();
 }
 }
}

 24: Using Portable Interceptors 345

Example: c l ient_server

Implementation of the server application
// Server.java

import org.omg.PortableServer.*;
import java.util.Properties;
import java.io.FileInputStream;

public class Server {

 private static Properties property = null;

 public static void main(String[] args) {
 try {
 property = new Properties();
 property.load(new FileInputStream("server.properties"));

 // Initialize the ORB.
 org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args, property);
 // get a reference to the root POA
 POA rootPOA =
POAHelper.narrow(orb.resolve_initial_references("RootPOA"));

 // Create policies for our persistent POA
 org.omg.CORBA.Policy[] policies = {
 rootPOA.create_lifespan_policy(LifespanPolicyValue.PERSISTENT)
 };

 // Create myPOA with the right policies
 POA myPOA = rootPOA.create_POA("bank_client_server_poa",
 rootPOA.the_POAManager(), policies);

 // Create Account servants
 AccountManagerImpl managerServant = new AccountManagerImpl();
 byte[] managerId = "BankManager".getBytes();
 myPOA.activate_object_with_id(managerId, managerServant);
 rootPOA.the_POAManager().activate();

 //Announce Servants are ready
 System.out.println(myPOA.servant_to_reference(managerServant) + " is
 ready.");
 // Wait for incoming requests
 orb.run();
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 }
}

346 VisiBroker for Java Developer’s Guide

Example: c l ient_server

Compilation procedure

To compile the Java example, simply execute the following commands:

Windows

<install_dir>\examples\vbe\pi\client_server> vbmake

or double-click the batch file icon if the environment variable, <install_dir>\bin, has
already been added to the environment variable, PATH).

UNIX

<install_dir>/examples/vbe/pi/client_server> make -f Makefile.java

Execution or deployment of Client and Server Applications

To run the Java example with Portable Interceptor installed, start the Server and Client
as follows:

Windows

Open two console windows:

<install_dir>\examples\vbe\pi\client_server> start vbj Server (running under a
new command prompt window)
<install_dir>\examples\vbe\pi\client_server> vbj Client John (using a given
name)

or

<install_dir>\examples\vbe\pi\client_server> vbj Client(using the default name)

UNIX

Open two console shells:

<install_dir>/examples/vbe/pi/client_server> vbj Server(in the first window)
<install_dir>/examples/vbe/pi/client_server> vbj Client John (in the second
window, using a given name)

or

<install_dir>/examples/vbe/pi/client_server> vbj Client (in the second window,
using the default name)

 25: Using Vis iBroker Interceptors 347

Using VisiBroker Interceptors
This section provides an overview of the VisiBroker Interceptors (Interceptors)
framework, walks through a Interceptor example, and describes some advanced
features such as Interceptor factories and chaining Interceptors. This section also
covers the expected behaviors when both Portable Interceptors and VisiBroker
Interceptors are used in the same service.

Interceptors overview
Similar to Portable Interceptors, VisiBroker Interceptors offers VisiBroker ORB services
a mechanism to intercept normal flow of execution of the ORB. There are two kinds of
VisiBroker Interceptors:

– Client Interceptors are system-level Interceptors which are called when a method is
invoked on a client object.

– Server Interceptors are system-level Interceptors which are called when a method is
invoked on a server object.

To use VisiBroker Interceptors, you declare a class which implements one of the
Interceptor interfaces. Once you have instantiated an Interceptor object, you register it
with its corresponding Interceptor manager. Your Interceptor object is then notified by
its manager when, for example, an object has had one of its methods invoked or its
parameters marshalled or demarshalled.

An important difference between VisiBroker interceptors and Portable interceptors is
that VisiBroker interceptors do not get invoked for co-located calls. Therefore, users
have to make a cautious decision when choosing which interceptor to use.

Note

If you want to intercept an operation request before it is marshalled on the client side or
if you want to intercept an operation request before it is processed on the server side,
use object wrappers, described in “Using object wrappers.”

348 VisiBroker for Java Developer’s Guide

Interceptor inter faces and managers

Interceptor interfaces and managers
Interceptor developers derive classes from one or more of thle following base
Interceptor API classes which are defined and implemented by the VisiBroker.

– Client Interceptors:

– BindInterceptor

– ClientRequestInterceptor

– Server Interceptors:

– POALifeCycleInterceptor

– ActiveObjectLifeCycleInterceptor

– ServerRequestInterceptor

– IORCreationInterceptor

– ServiceResolver Interceptor

Client Interceptors

There are currently two kinds of client Interceptor and their respective managers:

– BindInterceptor and BindInterceptorManager

– ClientRequestInterceptor and ClientRequestInterceptorManager

For more details about client Interceptors, see “Using Portable Interceptors.”

BindInterceptor
A BindInterceptor object is a global Interceptor which is called on the client side before
and after binds.

package com.inprise.vbroker.InterceptorExt;
public interface BindInterceptor {
 public IORValue bind(IORValue ior,
 org.omg.CORBA.Object target,
 boolean rebind,
 Closure closure);
 public IORValue bind_failed(IORValue ior,
 org.omg.CORBA.Object target,
 Closure closure);
 public void bind_succeeded(IORValue ior,
 org.omg.CORBA.Object target,
 int Index,
 InterceptorManagerControl control,
 Closure closure);
 public void exception_occurred(IORValue ior,
 org.omg.CORBA.Object target,
 org.omg.CORBA.Environment env,
 Closure closure);
}

ClientRequestInterceptor
A ClientRequestInterceptor object may be registered during a bind_succeeded call of a
BindInterceptor object, and it remains active for the duration of the connection. Two of
its methods are called before the invocation on the client object, one
(preinvoke_premarshal) before the parameters are marshalled and the other
(preinvoke_postmarshal) after they are. The third method (postinvoke) is called after the
request has completed.

 25: Using VisiBroker Interceptors 349

Interceptor in terfaces and managers

package com.inprise.vbroker.InterceptorExt;
public interface ClientRequestInterceptor {
 public void preinvoke_premarshal(org.omg.CORBA.Object target,
 String operation,
 ServiceContextListHolder service_contexts_holder,
 Closure closure);
 public void preinvoke_postmarshal(org.omg.CORBA.Object target,
 OutputStream payload,
 Closure closure);
 public void postinvoke(org.omg.CORBA.Object target,
 ServiceContext[] service_contexts,
 InputStream payload,
 org.omg.CORBA.Environment env,
 Closure closure);
 public void exception_occurred(org.omg.CORBA.Object target,
 org.omg.CORBA.Environment env,
 Closure closure);
}

Server Interceptors

There are the following kinds of server Interceptors:

– POALifeCycleInterceptor and POALifeCycleInterceptorManager

– ActiveObjectLifeCycleInterceptor and ActiveObjectLifeCycleInterceptorManager

– ServerRequestInterceptor and ServerRequestInterceptorManager

– IORCreationInterceptor and IORCreationInterceptorManager

For more details about server Interceptors see “Using Portable Interceptors.”

POALifeCycleInterceptor
A POALifeCycleInterceptor object is a global Interceptor which is called every time a
POA is created (using the create method) or destroyed (using the destroy method).

package com.inprise.vbroker.InterceptorExt;
public interface POALifeCycleInterceptor {
 public void create(org.omg.PortableServer.POA poa,
 org.omg.CORBA.PolicyListHolder policies_holder,
 IORValueHolder iorTemplate,
 InterceptorManagerControl control) ;
 public void destroy(org.omg.PortableServer.POA poa);
}

350 VisiBroker for Java Developer’s Guide

Interceptor inter faces and managers

ActiveObjectLifeCycleInterceptor
An ActiveObjectLifeCycleInterceptor object is called whenever an object is added to
the Active Object Map (using the create method) or after an object has been
deactivated and etherealized (using the destroy method). The Interceptor may be
registered by a POALifeCycleInterceptor on a per-POA basis at POA creation time. This
Interceptor may only be registered if the POA has the RETAIN policy.

package com.inprise.vbroker.InterceptorExt;
public interface ActiveObjectLifeCycleInterceptor {
 public void create(byte[] oid,
 org.omg.PortableServer.Servant servant,
 org.omg.PortableServer.POA adapter);
 public void destroy (byte[] oid,
 org.omg.PortableServer.Servant servant,
 org.omg.PortableServer.POA adapter);
}

ServerRequestInterceptor
A ServerRequestInterceptor object is called at various stages in the invocation of a
server implementation of a remote object before the invocation (using the preinvoke
method) and after the invocation both before and after the marshalling of the reply
(using the postinvoke_premarshal and postinvoke_premarshal methods respectively).
This Interceptor may be registered by a POALifeCycleInterceptor object at POA
creation time on a per-POA basis.

package com.inprise.vbroker.InterceptorExt;
public interface ServerRequestInterceptor {
 public void preinvoke(org.omg.CORBA.Object target,
 String operation,
 ServiceContext[] service_contexts,
 InputStream payload,
 Closure closure);
 public void postinvoke_premarshal(org.omg.CORBA.Object target,
 ServiceContextListHolder service_contexts_holder,
 org.omg.CORBA.Environment env,
 Closure closure);
public void postinvoke_postmarshal(org.omg.CORBA.Object target,
 OutputStream payload,
 Closure closure);
public void exception_occurred(org.omg.CORBA.Object target,
 org.omg.CORBA.Environment env,
 Closure closure);
}

Note

If an org.omg.CORBA.SystemException or any sub-classes (for example
org.omg.CORBA.NO_PERMISSION) is raised on the server side, the exception should not be
encrypted. This is because the ORB uses some of these exceptions internally (for
example TRANSIENT for doing automatic rebind).

IORCreationInterceptor
An IORCreationInterceptor object is called whenever a POA creates an object
reference (using the create method). This Interceptor may be registered by a
POALifeCycleInterceptor at POA creation time on a per-POA basis.

package com.inprise.vbroker.InterceptorExt;
public interface IORCreationInterceptor {
 public void create(org.omg.PortableServer.POA poa,
 IORValueHolder ior);
}

 25: Using VisiBroker Interceptors 351

Interceptor in terfaces and managers

Service Resolver Interceptor

This Interceptor is used to install a user service that you can then dynamically load.

public interface ServiceResolverInterceptor {
 public org.omg.CORBA.Object resolve (java.lang.String name):
}
public interface ServiceResolverInterceptorManager extends
 com.inprise.vbroker.interceptor.InterceptorManager {
 public void add (java.lang.String name,
 com.inprise.vbroker.interceptor.ServiceResolverInterceptor \interceptor)
;
 pubic void remove (java.lang.String name):
}

When you call resolve_initial_references, the resolve on all installed services gets
called. The resolve then can return the appropriate object.

To write service initializers, you must obtain a ServiceResolver after getting an
InterceptorManagerControl to be able to add your services.

Default Interceptor classes

VisiBroker provides default Interceptor Java classes that you can extend and
implement. These default Interceptor classes offer the same methods as the
Interceptor interfaces; however, when you extend the default Interceptor class, you can
choose which methods to implement or override. When you use these classes, you can
accept the default behavior that they provide or change it.

– DefaultBindInterceptor class

– DefaultClientInterceptor class

– DefaultServerInterceptor class

Registering Interceptors with the VisiBroker ORB

Each Interceptor interface has a corresponding Interceptor manager interface which is
used to register your Interceptor objects with the VisiBroker ORB. The following steps
are necessary to register an Interceptor:

1 Get a reference to an InterceptorManagerControl object by calling the
resolve_initial_references method on an ORB object with the parameter
VisiBrokerInterceptorControl.

2 Call the get_manager method on the InterceptorManagerControl object with one of the
String values in the following table which shows the String values to pass to the
get_manager method of the InterceptorManagerControl object. (Be sure to cast the
object reference to its corresponding Interceptor manager interface.)

3 Create an instance of your Interceptor.

Table 25.1 String values of the InterceptorManagerControl object

Value Corresponding Interceptor interface

ClientRequest ClientRequestInterceptor

Bind BindInterceptor

POALifeCycle POALifeCycleInterceptor

ActiveObjectLifeCycle ActiveObjectLifeCycleInterceptor

ServerRequest ServerRequestInterceptor

IORCreation IORCreationInterceptor

ServiceResolver ServiceResolverInterceptor

352 VisiBroker for Java Developer’s Guide

Example Interceptors

4 Register your Interceptor object with the manager object by calling the add method.

5 Load your Interceptor objects when running your client and server programs.

Creating Interceptor objects

Finally, you need to implement a factory class which creates instances of your
Interceptors and registers them with the VisiBroker ORB. Your factory class must or
implement the ServiceLoader interface.

package com.inprise.vbroker.interceptor;
public interface ServiceLoader {
 // This method is called by the ORB when ORB.init() is called.
 public abstract void init(org.omg.CORBA.ORB orb);
 // Called after ORB.init() is done but control hasn't been returned to
 // the user. Can be used to disable certain resources that were only
 // made available to other service inits.
 public abstract void init_complete(org.omg.CORBA.ORB orb);
 // Called when the orb is being shutdown.
 public abstract void shutdown(org.omg.CORBA.ORB orb);
}

Note

You can also create new instances of your Interceptors and register them with the
VisiBroker ORB from within other Interceptors as in the examples in “Example
Interceptors”.

Loading Interceptors

To load your Interceptor, you must set the vbroker.orb.dynamicLibs property. This
property can be set either in the properties file (see “VisiBroker properties”) or be
passed into the VisiBroker ORB using the -D option.

Example Interceptors
The example Interceptor in this section uses all of the Interceptor API methods (listed
in “Using Portable Interceptors”) so that you can see how these methods are used, and
when they are invoked.

Example code

In “Code listings”, each of the Interceptor API methods is simply implemented to print
informational messages to the standard output.

The following example applications are located in the directory:

<install_dir>\examples\vbe\interceptors\

– active_object_lifecycle

– client_server

– ior_creation

– encryption

 25: Using VisiBroker Interceptors 353

Example Interceptors

Client-server Interceptors example
To run the example, compile the files as you normally would. Then start up the server
and the client as follows:

prompt>vbj -Dvbroker.orb.dynamicLibs=SampleServerLoader Server
prompt>vbj -Dvbroker.orb.dynamicLibs=SampleClientLoader Client John

You specify as VisiBroker ORB services the two classes which implement the
ServiceLoader interface.

Note

The ServiceInit class used in VisiBroker 3.x is replaced by implementing two
interfaces: ServiceLoader and ServiceResolverInterceptor. For an example of how to do
this, see “ServiceResolverInterceptor example”.

The results of executing the example Interceptor are shown in the following table. The
execution by the client and server is listed in sequence.

Since the OAD is not running, the bind call fails and the server proceeds. The client
binds to the account object, and then calls the balance method. This request is received
by the server, processed, and results are returned to the client. The client prints the
results.

As demonstrated by the example code and results, the Interceptors for both the client
and server are installed when the respective process starts. Information about
registering an interceptor is covered in “Registering Interceptors with the VisiBroker
ORB”.

ServiceResolverInterceptor example
The following code provides an example of how to implement a ServiceLoader interface:

Client Server

============>SampleServerLoader: Interceptors
loaded============> In POA /. Nothing to do.============>
In POA bank_agent_poa, 1 ServerRequest interceptor
installedStub [repository_id=IDL:Bank/AccountManager:
1.0,key=ServiceId[service=/bank_agent_poa,id= {11 bytes:
[B][a][n][k][M][a][n][a][g][e][r]}]] is ready.

Bind Interceptors loaded==========> SampleBindInterceptor
bind==========> SampleBindInterceptor
bind_succeeded==========> SampleClientInterceptor id
MyClientInterceptor preinvoke_premarshal=> open==========>
SampleClientInterceptor id MyClientInterceptor
preinvoke_postmarshal

============> SampleServerInterceptor id
MyServerInterceptor preinvoke => openCreated john's
account: Stub[repository_id=IDL:Bank/Account:1.0,
key=TransientId[poaName=/,id={4 bytes: (0)(0)(0)(0)},
sec=0,usec=0]]

============> SampleClientInterceptor id
MyClientInterceptor postinvoke============>
SampleBindInterceptor bind============>
SampleBindInterceptor bind_succeeded============>
SampleClientInterceptor id MyClientInterceptor
preinvoke_premarshal => balance ============>
SampleClientInterceptor id MyClientInterceptor
preinvoke_postmarshal

============> SampleServerInterceptor id
MyServerInterceptor postinvoke_premarshal============>
SampleServerInterceptor id MyServerInterceptor
postinvoke_postmarshal

============> SampleClientInterceptor id
MyClientInterceptor postinvoke The balance in john's
account is $245.64

354 VisiBroker for Java Developer’s Guide

Example Interceptors

import com.inprise.vbroker.properties.*;
import com.inprise.vbroker.interceptor.*;
import com.inprise.vbroker.InterceptorExt.*;

public final class UtilityServiceLoader implements ServiceLoader,
 ServiceResolverInterceptor {
 private com.inprise.vbroker.orb.ORB _orb = null;
 private String[] _serviceNames = { "TimeService", "WeatherService"};

 public void init(org.omg.CORBA.ORB orb) {
 // Just in case they are needed by resolve()
 _orb = (com.inprise.vbroker.orb.ORB) orb;

 PropertyManager pm = _orb.getPropertyManager();
 // use the PropertyManager to query property settings
 // if needed (not used in this example)

 /**** Installing the Initial Reference *****/
 InterceptorManagerControl control = _orb.interceptorManager();
 ServiceResolverInterceptorManager manager =

(ServiceResolverInterceptorManager)control.get_manager("ServiceResolver");
 for (int i = 0; i < _serviceNames.length; i++) {
 manager.add(_serviceNames[i], this);
 }
 /**** end of installation ***/

 if (_orb.debug)
 _orb.println("UtilityServices package has been initialized");
 }

 public void init_complete(org.omg.CORBA.ORB orb) {
 // can be used for post-initialization processing if desired
 }

 public void shutdown(org.omg.CORBA.ORB orb) {
 _orb = null;
 _serviceNames = null;
 }

 public org.omg.CORBA.Object resolve(java.lang.String service) {
 org.omg.CORBA.Object srv = null;
 byte[] serviceId = service.getBytes();
 try {
 if (service == "TimeService") {
 srv = UtilityServices.TimeServiceHelper.bind(_orb, "/
time_service_poa", serviceId);
 }
 else if (service == "WeatherService") {
 srv = UtilityServices.WeatherServiceHelper.bind(_orb,"/
weather_service_poa",
 serviceId);
 }
 } catch (org.omg.CORBA.SystemException e) {
 if (_orb.debug)
 _orb.println("UtilityServices package resolve error: " + e);
 srv = null;
 }

 return srv;
 }
}

 25: Using VisiBroker Interceptors 355

Example Interceptors

Code listings

SampleServerLoader
The SampleServerLoader object is responsible for loading the POALifeCycleInterceptor
class and instantiating an object. This class is linked to the VisiBroker ORB
dynamically by vbroker.orb.dynamicLibs. The SampleServerLoader class contains the
init method which is called by the VisiBroker ORB during initialization. Its sole purpose
is to install a POALifeCycleInterceptor object by creating it and registering it with the
InterceptorManager.

import java.util.*;
import com.inprise.vbroker.orb.*;
import com.inprise.vbroker.interceptor.*;
import com.inprise.vbroker.PortableServerExt.*;
public class SampleServerLoader implements ServiceLoader {
 public void init(org.omg.CORBA.ORB orb) {
 try {
 InterceptorManagerControl control =
 InterceptorManagerControlHelper.narrow(

orb.resolve_initial_references("VisiBrokerInterceptorControl"));
 // Install a POA interceptor
 POALifeCycleInterceptorManager poa_manager =
 (POALifeCycleInterceptorManager)
control.get_manager("POALifeCycle");
 poa_manager.add(new SamplePOALifeCycleInterceptor());
 } catch(Exception e) {
 e.printStackTrace();
 throw new org.omg.CORBA.INITIALIZE(e.toString());
 }
 System.out.println("============>SampleServerLoader:Interceptors
loaded");
 }
 public void init_complete(org.omg.CORBA.ORB orb) {
 }
 public void shutdown(org.omg.CORBA.ORB orb) {
 }
}

356 VisiBroker for Java Developer’s Guide

Example Interceptors

SamplePOALifeCycleInterceptor
The SamplePOALifeCycleInterceptor object is invoked every time a POA is created or
destroyed. Because we have two POAs in the client_server example, this Interceptor
is invoked twice, first during rootPOA creation and then at the creation of myPOA. We
install the SampleServerInterceptor only at the creation of myPOA.

import com.inprise.vbroker.interceptor.*;
import com.inprise.vbroker.PortableServerExt.*;
import com.inprise.vbroker.IOP.*;
public class SamplePOALifeCycleInterceptor implements POALifeCycleInterceptor {
 public void create(org.omg.PortableServer.POA poa,
 org.omg.CORBA.PolicyListHolder policies_holder,
 IORValueHolder iorTemplate,
 InterceptorManagerControl control) {
 if(poa.the_name().equals("bank_agent_poa")) {
 // Add the Request-level interceptor
 SampleServerInterceptor interceptor =
 new SampleServerInterceptor("MyServerInterceptor");
 // Get the IORCreation interceptor manager
 ServerRequestInterceptorManager manager =

(ServerRequestInterceptorManager)control.get_manager
("ServerRequest");

 // Add the interceptor
 manager.add(interceptor);
 System.out.println("============>In POA " + poa.the_name() +
 ", 1 ServerRequest interceptor installed");
 } else
 System.out.println("============>In POA " + poa.the_name

() + ". Nothing to do.");
 }
 public void destroy(org.omg.PortableServer.POA poa) {
 // To be a trace!
 System.out.println("============> SamplePOALifeCycleInterceptor

destroy");
 }
}

 25: Using VisiBroker Interceptors 357

Example Interceptors

SampleServerInterceptor
The SampleServerInterceptor object is invoked every time a request is received at or a
reply is made by the server.

import com.inprise.vbroker.interceptor.*;
import com.inprise.vbroker.IOP.*;
import com.inprise.vbroker.CORBA.portable.*;
public class SampleServerInterceptor implements ServerRequestInterceptor {
 private String _id;
 public SampleServerInterceptor(String id) {
 _id = id;
 }
 public void preinvoke(org.omg.CORBA.Object target,
 String operation,
 ServiceContext[] service_contexts,
 InputStream payload,
 Closure closure) {
 // Put the _id of this ServerRequestInterceptor into the closure object
 closure.object = new String(_id);
 System.out.println("============> SampleServerInterceptor id " +
 closure.object + " preinvoke => " + operation);
 }
 public void postinvoke_premarshal(org.omg.CORBA.Object target,
 ServiceContextListHolder service_contexts_holder,
 org.omg.CORBA.Environment env,
 Closure closure) {
 System.out.println("============> SampleServerInterceptor id " +
 closure.object + " postinvoke_premarshal");
 }
 public void postinvoke_postmarshal(org.omg.CORBA.Object target,
 OutputStream payload,
 Closure closure) {
 System.out.println("============> SampleServerInterceptor id " +
 closure.object + " postinvoke_postmarshal");
 }
 public void exception_occurred(org.omg.CORBA.Object target,
 org.omg.CORBA.Environment env,
 Closure closure) {
 System.out.println("============> SampleServerInterceptor id " +
 closure.object + " exception_occurred");
 }
}

358 VisiBroker for Java Developer’s Guide

Example Interceptors

SampleClientInterceptor
The SampleClientInterceptor is invoked every time a request is made by or a reply is
received at the client.

import com.inprise.vbroker.interceptor.*;
import com.inprise.vbroker.IOP.*;
import com.inprise.vbroker.CORBA.portable.*;
public class SampleClientInterceptor implements ClientRequestInterceptor {
 private String _id;
 public SampleClientInterceptor(String id) {
 _id = id;
 }
 public void preinvoke_premarshal(org.omg.CORBA.Object target,
 String operation,
 ServiceContextListHolder service_contexts_holder,
 Closure closure) {
 // Put the _id of this ClientRequestInterceptor into the closure object
 closure.object = new String(_id);
 System.out.println("============> SampleClientInterceptor id " +
 closure.object +
 " preinvoke_premarshal => " + operation);
 }
 public void preinvoke_postmarshal(org.omg.CORBA.Object target,
 OutputStream payload,
 Closure closure) {
 System.out.println("============> SampleClientInterceptor id " +
 closure.object + " preinvoke_postmarshal");
 }
 public void postinvoke(org.omg.CORBA.Object target,
 ServiceContext[] service_contexts,
 InputStream payload,
 org.omg.CORBA.Environment env,
 Closure closure) {
 System.out.println("============> SampleClientInterceptor id " +
 closure.object + " postinvoke");
 }
 public void exception_occurred(org.omg.CORBA.Object target,
 org.omg.CORBA.Environment env,
 Closure closure) {
 System.out.println("============> SampleClientInterceptor id " +
 closure.object + " exception_occurred");
 }
}

 25: Using VisiBroker Interceptors 359

Example Interceptors

SampleClientLoader
The SampleClientLoader is responsible for loading BindInterceptor objects. This class is
linked to the VisiBroker ORB dynamically by vbroker.orb.dynamicLibs. The
SampleClientLoader class contains the bind and bind_succeeded methods. These
methods are called by the ORB during object binding. When the bind succeeds,
bind_succeeded will be called by the ORB and a BindInterceptor object is installed by
creating it and registering it the InterceptorManager.

import java.util.*;
import com.inprise.vbroker.orb.*;
import com.inprise.vbroker.interceptor.*;
import com.inprise.vbroker.PortableServerExt.*;
public class SampleClientLoader implements ServiceLoader {
 public void init(org.omg.CORBA.ORB orb) {
 try {
 InterceptorManagerControl control =
 InterceptorManagerControlHelper.narrow(

orb.resolve_initial_references("VisiBrokerInterceptorControl"));
 BindInterceptorManager bind_manager =
 (BindInterceptorManager) control.get_manager("Bind");
 bind_manager.add(new SampleBindInterceptor());
 } catch(Exception e) {
 e.printStackTrace();
 throw new org.omg.CORBA.INITIALIZE(e.toString());
 }
 System.out.println("Bind Interceptors loaded");
 }
 public void init_complete(org.omg.CORBA.ORB orb) {
 }
 public void shutdown(org.omg.CORBA.ORB orb) {
 }
}

360 VisiBroker for Java Developer’s Guide

Example Interceptors

SampleBindInterceptor
The SampleBindInterceptor is invoked when the client attempts to bind to an object. The
first step on the client side after ORB initialization is to bind to an AccountManager object.
This bind invokes the SampleBindInterceptor and a SampleClientInterceptor is installed
when the bind succeeds.

import com.inprise.vbroker.interceptor.*;
import com.inprise.vbroker.IOP.*;
public class SampleBindInterceptor implements BindInterceptor {
 public IORValue bind(IORValue ior, org.omg.CORBA.Object target,
 boolean rebind, Closure closure) {
 // To be a trace!
 System.out.println("============> SampleBindInterceptor bind");
 return null;
 }
 public IORValue bind_failed(IORValue ior, org.omg.CORBA.Object target,
 Closure closure) {
 // To be a trace!
 System.out.println("============> SampleBindInterceptor bind_failed");
 return null;
 }
 public void bind_succeeded(IORValue ior, org.omg.CORBA.Object target,
 int Index, InterceptorManagerControl control,
 Closure closure) {
 // To be a trace!
 System.out.println("============> SampleBindInterceptor bind_succeeded");
 // Create the Client Request interceptor:
 SampleClientInterceptor interceptor =
 new SampleClientInterceptor("MyClientInterceptor");
 // Get the manager
 ClientRequestInterceptorManager manager =

(ClientRequestInterceptorManager)control.get_manager("ClientRequest");
 // Add CRQ to the list:
 manager.add(interceptor);
 }
 public void exception_occurred(IORValue ior, org.omg.CORBA.Object target,
 org.omg.CORBA.Environment env,
 Closure closure) {
 // To be a trace!
 System.out.println("=========> SampleBindInterceptor exception_occured");
 }
}

 25: Using VisiBroker Interceptors 361

Passing informat ion between your Interceptors

Passing information between your Interceptors
Closure objects are created by the ORB at the beginning of certain sequences of
Interceptor calls. The same Closure object is used for all calls in that particular
sequence. The Closure object contains a single public data field object of type
java.lang.Object which may be set by the Interceptor to keep state information. The
sequences for which Closure objects are created vary depending on the Interceptor
type. In the ClientRequestInterceptor, a new Closure is created before calling
preinvoke_premarshal and the same Closure is used for that request until the request
completes, successfully or not. Likewise, in the ServerInterceptor, a new Closure is
created before calling preinvoke, and that Closure is used for all Interceptor calls related
to processing that particular request.

For an example of how Closure is used, see the examples in the following directory:

<install_dir>/examples/vbe/interceptors/client_server

The Closure object can be cast to ExtendedClosure to obtain response_expected and
request_id as follows:

int my response_expected =
 ((ExtendedClosure)closure).reqInfo.response_expected;
int my request_id =
 ((ExtendedClosure)closure) .reqInfo.request_id;

Using both Portable Interceptors and VisiBroker Interceptors
simultaneously

Both Portable Interceptors and VisiBroker Interceptors can be installed simultaneously
with the VisiBroker ORB. However, as they have different implementations, there are
several rules of flow and constrains that developers need to understand when using
both Interceptors, as described in the following.

Order of invocation of interception points

The order of invocation of interception points follows the interception point ordering
rules of individual versions of Interceptors, regardless of whether the developer
actually chooses to install one of more than one version.

Client side Interceptors

When both Portable Interceptors and VisiBroker client side Interceptors are installed,
the order of events, (assuming no Interceptor throws an exception) is:

1 send_request (Portable Interceptor), followed by preinvoke_premarshal (Interceptors)

2 construct request message

3 preinvoke_postmarshal (Interceptor)

4 send request message and wait for reply

5 postinvoke (Interceptor), followed by received_reply/receive_exception/receive_other
(Portable Interceptor) depending on the type of reply.

Server side Interceptors

When both Portable Interceptors and VisiBroker server side Interceptors are installed,
the order of events is received (locate requests do not fire Interceptors, which is the
same as VisiBroker behavior), assuming no Interceptor throws an exception, is:

1 received_request_service_contexts (Portable Interceptor), followed by preinvoke
(Interceptor)

362 VisiBroker for Java Developer’s Guide

Using both Portable Interceptors and Vis iBroker Interceptors s imultaneously

2 servantLocator.preinvoke (if using servant locator)

3 receive_request (Portable Interceptor)

4 invoke operation on servant

5 postinvoke_premarshal (Interceptor)

6 servantLocator.postinvoke (if using servant locator)

7 send_reply/send_exception/send_other, depending on the outcome of the request

8 postinvoke_postmarshal (Interceptor)

Order of ORB events during POA creation

The order of ORB events during creation of a POA is listed as follows:

1 An IOR template is created based on profiles of server engines servicing the POA.

2 An Interceptors' POA life cycle Interceptors' create() method is invoked. This
method can potentially add new policies or modify the IOR template created in the
previous step.

3 A Portable Interceptor's IORInfo object is created and the IORInterceptors'
establish_components() method is invoked. This interception point allows the
Interceptor to query the policies passed to create_POA() and those added in the
previous step, and also add components to the IOR template based on those
policies.

4 An object reference factory and object reference template for the POA are created,
and the Portable Interceptor's IORInterceptors' components_established() method is
invoked. This interception point allows the Interceptor to change the POA's object
reference factory, which will be used to manufacture object references.

Order of ORB events during object reference creation

The following events occur during calls to POA that create object reference, such as
create_reference(), create_reference_with_id().

1 Call the object reference factory's make_object() method to create the object
reference (this does not call the VisiBroker IOR creation Interceptors, and the
factory may be user -supplied). If there are no VisiBroker IOR creation Interceptors
installed, this should be the object reference returned to the application; otherwise,
proceed to step 2.

2 Extract the IOR from the delegate of the returned object reference, and call the
VisiBroker IOR creation Interceptors' create() method.

3 IOR from step 2 is returned as the object reference to the caller of
create_reference(), create_reference_with_id()

 26: Using object wrappers 363

Using object wrappers
This section describes the object wrapper feature of VisiBroker, which allows your
applications to be notified or to trap an operation request for an object.

Object wrappers overview
The VisiBroker object wrapper feature allows you to define methods that are called
when a client application invokes a method on a bound object or when a server
application receives an operation request. Unlike the interceptor feature which is
invoked at the VisiBroker ORB level, object wrappers are invoked before an operation
request has been marshalled. In fact, you can design object wrappers to return results
without the operation request having ever been marshalled, sent across the network, or
actually presented to the object implementation. For more information about VisiBroker
Interceptors, see “Using VisiBroker Interceptors.”

Object wrappers may be installed on just the client-side, just the server-side, or they
may be installed in both the client and server portions of a single application.

The following are a few examples of how you might use object wrappers in your
application:

– Log information about the operation requests issued by a client or received by a
server.

– Measure the time required for operation requests to complete.

– Cache the results of frequently issued operation requests so results can be
immediately returned, without actually contacting the object implementation each
time.

Note

Externalizing a reference to an object for which object wrappers have been installed,
using the VisiBroker ORB Object's object_to_string method, will not propagate those
wrappers to the recipient of the stringified reference if the recipient is a different
process.

Typed and un-typed object wrappers

VisiBroker offers two kinds of object wrappers: typed and untyped. You can mix the use
of both of these object wrappers within a single application. For information on typed

364 VisiBroker for Java Developer’s Guide

Untyped object wrappers

wrappers, see “Typed object wrappers”. For information on untyped wrappers, see
“Untyped object wrappers”. The following table summarizes the important distinctions
between these two kinds of object wrappers.

Special idl2java requirements

Whenever you plan to use typed or untyped object wrappers, you must ensure that you
use the -obj_wrapper option with the idl2java compiler when you generate the code for
your applications. This will result in the generation of:

– An object wrapper base class for each of your interfaces.

– Additional Helper class methods for adding or removing object wrappers.

Object wrapper example applications

The sample client and server applications used to illustrate both the typed and untyped
object wrapper concepts in this section are located in the following directory:

<install_dir>\examples\vbe\interceptors\objectWrappers\

Untyped object wrappers
Untyped object wrappers allow you to define methods that are to be invoked before an
operation request is processed, after an operation request is processed, or both.
Untyped wrappers can be installed for client or server applications and you can also
install multiple versions.

You may also mix the use of both typed and untyped object wrappers within the same
client or server application.

By default, untyped object wrappers have a global scope and will be invoked for any
operation request. You can design untyped wrappers so that they have no effect for
operation requests on object types in which you are not interested.

Note

Unlike typed object wrappers, untyped wrapper methods do not receive the arguments
that the stub or object implementation would receive nor can they prevent the
invocation of the stub or object implementation.

The following figure shows how an untyped object wrapper's pre_method is invoked
before the client stub method and how the post_method is invoked afterward. It also
shows the calling sequence on the server-side with respect to the object
implementation.

Features Typed Untyped

Receives all arguments that are to be passed to the stub. Yes No

Can return control to the caller without actually invoking the next wrapper,
the stub, or the object implementation.

Yes No

Will be invoked for all operation requests for all objects. No Yes

 26: Using object wrappers 365

Untyped object wrappers

Figure 26.1 Single untyped object wrapper

Using multiple, untyped object wrappers

Figure 26.2 Multiple untyped object wrappers

Order of pre_method invocation

When a client invokes a method on a bound object, each untyped object wrapper
pre_method will receive control before the client's stub routine is invoked. When a server
receives an operation request, each untyped object wrapper pre_method will be invoked
before the object implementation receives control. In both cases, the first pre_method to
receive control will be the one belonging to the object wrapper that was registered first.

Order of post_method invocation

When a server's object implementation completes its processing, each post_method will
be invoked before the reply is sent to the client. When a client receives a reply to an
operation request, each post_method will be invoked before control is returned to the
client. In both cases, the first post_method to receive control will be the one belonging to
the object wrapper that was registered last.

366 VisiBroker for Java Developer’s Guide

Using untyped object wrappers

Note

If you choose to use both typed and untyped object wrappers, see “Combined use of
untyped and typed object wrappers” for information on the invocation order.

Using untyped object wrappers
The following are the required steps for using untyped object wrappers. Each step is
discussed in further detail in the following sections.

1 Identify the interface, or interfaces, for which you want to create a untyped object
wrapper.

2 Generate the code from your IDL specification using the idl2java compiler with the -
obj_wrapper option.

3 Create an implementation for your untyped object wrapper factory, derived from the
UntypedObjectWrapperFactory class.

4 Create an implementation for your untyped object wrapper, derived from the
UntypedObjectWrapper class.

5 Modify your client or server application to access the appropriate type of
ChainUntypedObjectWrapperFactory.

6 Modify your application to create your untyped object wrapper factory.

7 Use the ChainUntypedObjectWrapperFactory add method to add your factory to the
chain.

Implementing an untyped object wrapper factory

The implementation of the TimingUnTypedObjectWrapperFactory, part of the
objectWrappers sample applications, shows how to define an untyped object wrapper
factory, derived from the UntypedObjectWrapperFactory.

Your factory's create method will be invoked to create an untyped object wrapper
whenever a client binds to an object or a server invokes a method on an object
implementation. The create method receives the target object, which allows you to
design your factory to not create an untyped object wrapper for those object types you
wish to ignore. It also receives an enum specifying whether the object wrapper created
is for the server side object implementation or the client side object.

The following code sample illustrates an example of the TimingObjectWrapperFactory,
which is used to create an untyped object wrapper that displays timing information for
method calls.

package UtilityObjectWrappers;
import com.inprise.vbroker.interceptor.*;
public class TimingUntypedObjectWrapperFactory implements
 UntypedObjectWrapperFactory {
 public UntypedObjectWrapper create(org.omg.CORBA.Object target,
 com.inprise.vbroker.interceptor.Location loc) {
 return new TimingUntypedObjectWrapper();
 }
}

 26: Using object wrappers 367

Using untyped object wrappers

Implementing an untyped object wrapper

The following code sample shows the implementation of the TimingObjectWrapper. Your
untyped wrapper must be derived from the UntypedObjectWrapper class, and you may
provide an implementation for both the pre_method or post_method methods in your
untyped object wrapper.

Once your factory has been installed, either automatically by the factory's constructor
or manually by invoking the ChainUntypedObjectWrapper::add method, an untyped object
wrapper object will be created automatically whenever your client binds to an object or
when your server invokes a method on an object implementation.

The pre_method shown in the following code sample obtains the current time, saves it in
a private variable, and prints a message. The post_method also obtains the current time,
determines how much time that has elapsed since the pre_method was called, and
prints the elapsed time.

package UtilityObjectWrappers;
import com.inprise.vbroker.interceptor.*;
Public class TimingUntypedObjectWrapper implements UntypedObjectWrapper {
 private long time;
 public void pre_method(String operation,
 org.omg.CORBA.Object target,
 Closure closure) {
 System.out.println("Timing: " +
 ((com.inprise.vbroker.CORBA.Object) target)._object_name() + "->"
 + operation + "()");
 time = System.currentTimeMillis();
 }
 public void post_method(String operation,
 org.omg.CORBA.Object target,
 org.omg.CORBA.Environment env,
 Closure closure) {
 long diff = System.currentTimeMillis() - time;
 System.out.println("Timing: Time for call \t" +
((com.inprise.vbroker.CORBA.Object)
 target)._object_name() + "->" + operation + "() = " + diff + "
ms.");
 }
}

pre_method and post_method parameters
Both the pre_method and post_method receive the parameters shown in the following
table.

Creating and registering untyped object wrapper factories

The following code shows a portion of the sample file UntypedClient.java, which shows
the creation and installation of two untyped object wrapper factories for a client. The
factories are created after the VisiBroker ORB has been initialized, but before the client
binds to any objects.

// UntypedClient.java
import com.inprise.vbroker.interceptor.*;

Parameter Description

operation Name of the operation that was requested on the target object.

target Target object.

closure Area where data can be saved across method invocations for this wrapper.

environment post_method only parameter used to inform the user of any exceptions that might
have occurred during the previous steps of the method invocation.

368 VisiBroker for Java Developer’s Guide

Using untyped object wrappers

Public class UntypedClient {
 public static void main(String[] args) throws Exception {
 // Initialize the ORB.
 org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,null);
 doMain (orb, args);
 }
 public static void domain(org.omg.CORBA.ORB orb, String[] args) throws
 Exception {
 ChainUntypedObjectWrapperFactory Cfactory =
 ChainUntypedObjectWrapperFactoryHelper.narrow(

orb.resolve_initial_references("ChainUntypedObjectWrapperFactory")
);
 Cfactory.add(new UtilityObjectWrappers.TimingUntypedObjectWrapperFactory(),
 Location.CLIENT);
 Cfactory.add(new

UtilityObjectWrappers.TracingUntypedObjectWrapperFactory(),
 Location.CLIENT);
 // Locate an account manager... .
 }
}

The following code sample illustrates the sample file UntypedServer.Java, which shows
the creation and registration of untyped object wrapper factories for a server. The
factories are created after the VisiBroker ORB is initialized, but before any object
implementations are created.

// UntypedServer.java
import com.inprise.vbroker.interceptor.*;
import org.omg.PortableServer.*;
Import com.inprise.vbroker.PortableServerExt.BindSupportPolicyValue;
import com.inprise.vbroker.PortableServerExt.BindSupportPolicyValueHelper;
import com.inprise.vbroker.PortableServerExt.BIND_SUPPORT_POLICY_TYPE;
public class UntypedServer {
 public static void main(String[] args) throws Exception {
 // Initialize the ORB.
 org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,null);
 ChainUntypedObjectWrapperFactory Sfactory =
 ChainUntypedObjectWrapperFactoryHelper.narrow
(orb.resolve_initial_references("ChainUntypedObjectWrapperFactory"));
 Sfactory.add(new
 UtilityObjectWrappers.TracingUntypedObjectWrapperFactory(),
 Location.SERVER);
 // get a reference to the root POA
 POA rootPOA =

POAHelper.narrow(orb.resolve_initial_references("RootPOA"));
 // Create a BindSupport Policy that makes POA register each servant
 // with osagent
 org.omg.CORBA.Any any = orb.create_any();
 BindSupportPolicyValueHelper.insert(any,
 BindSupportPolicyValue.BY_INSTANCE);
 org.omg.CORBA.Policy bsPolicy =
 orb.create_policy(BIND_SUPPORT_POLICY_TYPE.value, any);
 // Create policies for our testPOA
 org.omg.CORBA.Policy[] policies = {
 rootPOA.create_lifespan_policy
 (LifespanPolicyValue.PERSISTENT), bsPolicy
 };
 // Create myPOA with the right policies
 POA myPOA = rootPOA.create_POA("bank_agent_poa",

 26: Using object wrappers 369

Typed object wrappers

 rootPOA.the_POAManager(),
 policies);

 // Create the account manager object.
 AccountManagerImpl managerServant = new AccountManagerImpl();
 // Decide on the ID for the servant
 byte[] managerId = "BankManager".getBytes();
 // Activate the servant with the ID on myPOA
 myPOA.activate_object_with_id(managerId, managerServant);
 // Activate the POA manager
 rootPOA.the_POAManager().activate();
 System.out.println("AccountManager: BankManager is ready.");
 for(int i = 0; i < args.length; i++) {
 if(args[i].equalsIgnoreCase("-runCoLocated")) {
 if(args[i+1].equalsIgnoreCase("Client")){
 Client.doMain(orb, new String[0]);
 } else if(args[i+1].equalsIgnoreCase("TypedClient")){
 TypedClient.doMain(orb, new String[0]);
 }
 if(args[i+1].equalsIgnoreCase("UntypedClient")){
 UntypedClient.doMain(orb, new String[0]);
 }
 System.exit(1);
 }
 }
 // Wait for incoming requests
 orb.run();
 }
}

Removing untyped object wrappers

The ChainUntypedObjectWrapperFactory class remove method can be used to remove an
untyped object wrapper factory from a client or server application. You must specify a
location when removing a factory. This means that if you have added a factory with a
location of Both , you can selectively remove it from the Client location, the Server
location, or Both.

Note

Removing one or more object wrapper factories from a client will not affect objects of
that class that are already bound by the client. Only subsequently bound objects will be
affected. Removing object wrapper factories from a server will not affect object
implementations that have already been created. Only subsequently created object
implementations will be affected.

Typed object wrappers
When you implement a typed object wrapper for a particular class, you define the
processing that is to take place when a method is invoked on a bound object. The
following figure shows how an object wrapper method on the client is invoked before
the client stub class method and how an object wrapper on the server-side is invoked
before the server's implementation method.

Note

Your typed object wrapper implementation is not required to implement all methods
offered by the object it is wrapping.

370 VisiBroker for Java Developer’s Guide

Typed object wrappers

You may also mix the use of both typed and untyped object wrappers within the same
client or server application. For more information, see “Combined use of untyped and
typed object wrappers”.

Figure 26.3 Single typed object wrapper registered

Using multiple, typed object wrappers

You can implement and register more than one typed object wrapper for a particular
class of object, as shown in the following figure.

On the client side, the first object wrapper registered is client_wrapper_1, so its
methods will be the first to receive control. After performing its processing, the
client_wrapper_1 method may pass control to the next object's method in the chain or it
may return control to the client.

On the server side, the first object wrapper registered is server_wrapper_1, so its
methods will be the first to receive control. After performing its processing, the
server_wrapper_1 method may pass control to the next object's method in the chain or it
may return control to the servant.

Figure 26.4 Multiple, typed object wrappers registered

 26: Using object wrappers 371

Using typed object wrappers

Order of invocation

The methods for a typed object wrapper that are registered for a particular class will
receive all of the arguments that are normally passed to the stub method on the client
side or to the skeleton on the server side. Each object wrapper method can pass
control to the next wrapper method in the chain by invoking the parent class' method,
super.<method_name> . If an object wrapper wishes to return control without calling the
next wrapper method in the chain, it can return with the appropriate return value.

A typed object wrapper method's ability to return control to the previous method in the
chain allows you to create a wrapper method that never invokes a client stub or object
implementation. For example, you can create an object wrapper method that caches
the results of a frequently requested operation. In this scenario, the first invocation of a
method on the bound object results in an operation request being sent to the object
implementation. As control flows back through the object wrapper method, the result is
stored. On subsequent invocations of the same method, the object wrapper method
can simply return the cached result without actually issuing the operation request to the
object implementation.

If you choose to use both typed and untyped object wrappers, see “Combined use of
untyped and typed object wrappers” for information on the invocation order.

Typed object wrappers with co-located client and servers

When the client and server are both packaged in the same process, the first object
wrapper method to receive control will belong to the first client-side object wrapper that
was installed. The following figure illustrates the invocation order.

Figure 26.5 Typed object wrapper invocation order

Using typed object wrappers
The following are the required steps for using typed object wrappers. Each step is
discussed in further detail in the following sections.

1 Identify the interface, or interfaces, for which you want to create a typed object
wrapper.

2 Generate the code from your IDL specification using the idl2java compiler with the -
obj_wrapper option.

3 Derive your typed object wrapper class from the <interface_name>ObjectWrapper
class generated by the compiler, and provide an implementation of those methods
you wish to wrap.

4 Modify your application to register the typed object wrapper.

Implementing typed object wrappers

You derive typed object wrappers from the <interface_name>ObjectWrapper class that is
generated by the idl2java compiler.

The following code sample shows the implementation of a typed object wrapper for the
Account interface in Java.

372 VisiBroker for Java Developer’s Guide

Using typed object wrappers

Notice that this class is derived from the AccountObjectWrapper interface and provides a
simple caching implementation of the balance method, which provides these
processing steps:

1 Check the _initialized flag to see if this method has been invoked before.

2 If this is the first invocation, the balance method on the next object in the chain is
invoked and the result is saved to _balance, the _initialized flag is set to true, and
the value is returned.

3 If this method has been invoked before, simply return the cached value.

package BankWrappers;
public class CachingAccountObjectWrapper extends Bank.AccountObjectWrapper {
 private boolean _initialized = false;
 private float _balance;
 public float balance() {
 System.out.println("+ CachingAccountObjectWrapper: Before calling|

balance:
 ");
 try {
 if(!_initialized) {
 _balance = super.balance();
 _initialized = true;
 } else {
 System.out.println("+ CachingAccountObjectWrapper: Returning Cached
 value");
 }
 return _balance;
 } finally {
 System.out.println("+ CachingAccountObjectWrapper: After calling
 balance: ");
 }
 }
}

Registering typed object wrappers for a client

A typed object wrapper is registered on the client-side by invoking the
addClientObjectWrapperClass method in Java that is generated for the class by the
idl2java compiler. Client-side object wrappers must be registered after the ORB.init
method has been called, but before any objects are bound. The following code sample
shows a portion of the TypedClient.java file that creates and registers a typed object
wrapper.

// TypedClient.java
import com.inprise.vbroker.interceptor.*;
Public class TypedClient {
 public static void main(String[] args) throws Exception {
 // Initialize the ORB.
 org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,null);
 domain (orb, args);
 }
 public static void domain(org.omg.CORBA.ORB orb, String[] args) {
 // Add a typed object wrapper for Account objects
 Bank.AccountHelper.addClientObjectWrapperClass(orb,
 BankWrappers.CachingAccountObjectWrapper.class);
 // Locate an account manager.
 Bank.AccountManager manager =
 Bank.AccountManagerHelper.bind(orb, "BankManager");
 ...
 }
}

 26: Using object wrappers 373

Using typed object wrappers

The VisiBroker ORB keeps track of any object wrappers that have been registered for it
on the client side. When a client invokes the _bind method to bind to an object of that
type, the necessary object wrappers will be created. If a client binds to more than one
instance of a particular class of object, each instance will have its own set of wrappers.

Registering typed object wrappers for a server

As with a client application, a typed object wrapper is registered on the server side by
invoking the addServerObjectWrapperClass method offered by the Helper class. Server
side, typed object wrappers must be registered after the ORB.init method has been
called, but before an object implementation services a request. The following code
sample shows a portion of the TypedServer.java file that installs a typed object wrapper.

// TypedServer.java
import org.omg.PortableServer.*;
import com.inprise.vbroker.PortableServerExt.BindSupportPolicyValue;
import com.inprise.vbroker.PortableServerExt.BindSupportPolicyValueHelper;
import com.inprise.vbroker.PortableServerExt.BIND_SUPPORT_POLICY_TYPE;
public class TypedServer {
 public static void main(String[] args) throws Exception {
 // Initialize the ORB.
 org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,null);
 // Add two typed object wrappers for AccountManager objects
 Bank.AccountManagerHelper.addServerObjectWrapperClass(orb,
 BankWrappers.SecureAccountManagerObjectWrapper.class);
 Bank.AccountManagerHelper.addServerObjectWrapperClass(orb,
 BankWrappers.CachingAccountManagerObjectWrapper.class);
 // get a reference to the root POA
 POA rootPOA =

POAHelper.narrow(orb.resolve_initial_references("RootPOA"));
 // Create a BindSupport Policy that makes POA register each servant
 // with osagent
 org.omg.CORBA.Any any = orb.create_any();
 BindSupportPolicyValueHelper.insert(any,
 BindSupportPolicyValue.BY_INSTANCE);
 org.omg.CORBA.Policy bsPolicy =
 orb.create_policy(BIND_SUPPORT_POLICY_TYPE.value, any);
 // Create policies for our testPOA
 org.omg.CORBA.Policy[] policies = {
 rootPOA.create_lifespan_policy(LifespanPolicyValue.PERSISTENT),
 bsPolicy
 };
 // Create myPOA with the right policies
 POA myPOA = rootPOA.create_POA("lilo", rootPOA.the_POAManager(),

policies
);
 // Create the account manager object.
 AccountManagerImpl managerServant = new AccountManagerImpl();
 // Decide on the ID for the servant
 byte[] managerId = "BankManager".getBytes();
 // Activate the servant with the ID on myPOA
 myPOA.activate_object_with_id(managerId, managerServant);
 // Activate the POA manager
 rootPOA.the_POAManager()Activate();
 System.out.println("AccountManager: BankManager is ready.");

 For(int i = 0; i < args.length; i++) {
 if (args[i].equalsIgnoreCase("-runCoLocated")) {
 if(args[i+1].equalsIgnoreCase("Client")){
 Client.doMain(orb, new String[0]);

374 VisiBroker for Java Developer’s Guide

Using typed object wrappers

 } else if(args[i+1].equalsIgnoreCase("TypedClient")){
 TypedClient.doMain(orb, new String[0]);
 }
 if(args[i+1].equalsIgnoreCase("UntypedClient")){
 UntypedClient.doMain(orb, new String[0]);
 }
 System.exit(1);
 }
 }
 // Wait for incoming requests
 orb.run();
 }
}

If a server creates more than one instance of a particular class of object, a set of
wrappers will be created for each instance.

 26: Using object wrappers 375

Combined use of untyped and typed object wrappers

Removing typed object wrappers

The Helper class also provides methods for removing a typed object wrapper from a
client or server application.

Note

Removing one or more object wrappers from a client will not affect objects of that class
that are already bound by the client. Only subsequently bound objects will be affected.
Removing object wrappers from a server will not affect object implementations that
have already serviced requests. Only subsequently created object implementations will
be affected.

Combined use of untyped and typed object wrappers
If you choose to use both typed and untyped object wrappers in your application, all
pre_method methods defined for the untyped wrappers will be invoked prior to any typed
object wrapper methods defined for an object. Upon return, all typed object wrapper
methods defined for the object will be invoked prior to any post_method methods defined
for the untyped wrappers.

The sample applications Client.java and Server.java make use of a sophisticated
design that allows you to use command-line properties to specify which, if any, typed
and untyped object wrappers are to be used.

Command-line arguments for typed wrappers

The typed wrappers may are enabled by specifying the following on the command-line:

1 -Dvbroker.orb.dynamicLibs=BankWrappers.Init

2 Using one or more of the properties described in the following table.

BankWrappers properties Description

-DCachingAccount[=<client|server>] Installs a typed object wrapper that caches the
results of the balance method for a client or a
server. If no value for sub-property is specified,
both the client and server wrappers are installed.

-DCachingAccountManager[=<client|server>] Installs a typed object wrapper that caches the
results of the open method for a client or a server. If
no value for the sub-property is specified, both the
client and server wrappers are installed.

-DSecureAccountManager[=<client|server>] Installs a typed object wrapper that detects
unauthorized users passed on the open method for
a client or a server. If no value for sub-property is
specified, both the client and server wrappers are
installed.

376 VisiBroker for Java Developer’s Guide

Combined use of untyped and typed object wrappers

Initializer for typed wrappers

The typed wrappers are defined in the BankWrappers package and include a service
initializer, BankWrappers/Init.java, as shown in the following code. This initializer will be
invoked if you specify -Dvbroker.orb.dynamicLibs=BankWrappers.Init on the command-
line when starting the client or server with vbj. Various typed object wrappers can be
installed, based on the command-line properties you supply.

package BankWrappers;
import java.util.*;
import com.inprise.vbroker.orb.ORB;
import com.inprise.vbroker.properties.PropertyManager;
import com.inprise.vbroker.interceptor.*;
public class Init implements ServiceLoader {
 com.inprise.vbroker.orb.ORB _orb;
 public void init(final org.omg.CORBA.ORB orb) {
 _orb = (ORB) orb;
 PropertyManager pm = _orb.getPropertyManager();
 // install my CachingAccountObjectWrapper
 String val = pm.getString("CachingAccount", this.toString());
 Class c = CachingAccountObjectWrapper.class;
 if(!val.equals(this.toString())) {

 if(val.equalsIgnoreCase("client")) {
 Bank.AccountHelper.addClientObjectWrapperClass(orb, c);
 } else if(val.equalsIgnoreCase("server")) {
 Bank.AccountHelper.addServerObjectWrapperClass(orb, c);
 } else {
 Bank.AccountHelper.addClientObjectWrapperClass(orb, c);
 Bank.AccountHelper.addServerObjectWrapperClass(orb, c);
 }
 }
 // install my CachingAccountManagerObjectWrapper
 val = pm.getString("CachingAccountManager", this.toString());
 c = CachingAccountManagerObjectWrapper.class;
 if(!val.equals(this.toString())) {
 if(val.equalsIgnoreCase("client")){
 Bank.AccountManagerHelper.addClientObjectWrapperClass(orb, c);
 } else if(val.equalsIgnoreCase("server")) {
 Bank.AccountManagerHelper.addServerObjectWrapperClass(orb, c);
 } else {
 Bank.AccountManagerHelper.addClientObjectWrapperClass(orb, c);
 Bank.AccountManagerHelper.addServerObjectWrapperClass(orb, c);
 }
 }
 // install my CachingAccountManagerObjectWrapper
 val = pm.getString("SecureAccountManager",
 this.toString());
 c = SecureAccountManagerObjectWrapper.class;
 if(!val.equals(this.toString())) {
 if(val.equalsIgnoreCase("client")){
 Bank.AccountManagerHelper.addClientObjectWrapperClass(orb, c);
 } else if(val.equalsIgnoreCase("server")) {
 Bank.AccountManagerHelper.addServerObjectWrapperClass(orb, c);
 } else {
 Bank.AccountManagerHelper.addClientObjectWrapperClass(orb, c);
 Bank.AccountManagerHelper.addServerObjectWrapperClass(orb, c);
 }
 }
 }
 public void init_complete(org.omg.CORBA.ORB orb) {}
 public void shutdown(org.omg.CORBA.ORB orb) {}
}

 26: Using object wrappers 377

Combined use of untyped and typed object wrappers

Command-line arguments for untyped wrappers

The untyped wrappers may are enabled by specifying the following on the command-
line:

1 -Dvbroker.orb.dynamicLibs=UtilityObjectWrappers.Init

2 Using one or more of the properties summarized in the following table.

Initializers for untyped wrappers

The untyped wrappers are defined in the UtilityObjectWrappers package and include a
service initializer, UtilityObjectWrappers/Init.java, shown below. This initializer will be
invoked if you specify -Dvbroker.orb.dynamicLibs=UtilityObjectWrappers.Init on the
command-line when starting the client or server with vbj. The Command-line properties
for enabling or disabling UtilityObjectWrappers table summarizes the command-line
arguments that you can use to install the various untyped object wrappers.

package UtilityObjectWrappers;
import java.util.*;
Import com.inprise.vbroker.orb.ORB;
import com.inprise.vbroker.properties.PropertyManager;
import com.inprise.vbroker.interceptor.*;
Public class Init implements ServiceLoader {
 com.inprise.vbroker.orb.ORB _orb;
 public void init(final org.omg.CORBA.ORB orb) {
 _orb = (ORB) orb;
 PropertyManager PM= _orb.getPropertyManager();
 try {
 ChainUntypedObjectWrapperFactory factory =
 ChainUntypedObjectWrapperFactoryHelper.narrow(

orb.resolve_initial_references("ChainUntypedObjectWrapperFactory"));
 // install my Timing ObjectWrapper
 String val = pm.getString("Timing", this.toString());
 if(!val.equals(this.toString())) {
 UntypedObjectWrapperFactory f= new
 TimingUntypedObjectWrapperFactory();
 if(val.equalsIgnoreCase("client")){
 factory.add(f, Location.CLIENT);
 } else if(val.equalsIgnoreCase("server")) {
 factory.add(f, Location.SERVER);
 } else {
 factory.add(f, Location.BOTH);
 }
 }

 // install my Tracing ObjectWrapper
 val = pm.getString("Tracing", this.toString());
 if(!val.equals(this.toString())) {
 UntypedObjectWrapperFactory f= new
TracingUntypedObjectWrapperFactory();
 if(val.equalsIgnoreCase("client")){
 factory.add(f, Location.CLIENT);
 } else if(val.equalsIgnoreCase("server")) {

UtilityObjectWrappers properties Description

-DTiming[=<client|server>] Installs an untyped object wrapper that timing information
for a client or a server. If no value for the sub-property is
specified, both the client and server wrappers are
installed.

-DTracing[=<client|server>] Installs an untyped object wrapper that tracing information
for a client or a server. If no value for the sub-property is
specified, both the client and server wrappers are
installed.

378 VisiBroker for Java Developer’s Guide

Combined use of untyped and typed object wrappers

 factory.add(f, Location.SERVER);
 } else {
 factory.add(f, Location.BOTH);
 }
 }
 } catch(org.omg.CORBA.ORBPackage.InvalidName e) {
 return;
 }
 }
 public void init_complete(org.omg.CORBA.ORB orb) {}
 public void shutdown(org.omg.CORBA.ORB orb) {}
}

Executing the sample applications

Before executing the sample applications, make sure that an osagent is running on
your network. For more information, see “Starting a Smart Agent (osagent)”. You can
then execute the server application without any tracing or timing object wrappers by
using the following command:

prompt> vbj Server

Note

The server is designed as a co-located application. It implements both the server and a
client.

From another window, you can execute the client application without any tracing or
timing object wrappers to query the balance in a user's account using the following
command:

prompt> vbj Client John

You can also execute the following command if you want a default name to be used:

prompt> vbj Client

Turning on timing and tracing object wrappers
To execute the client with untyped timing and tracing object wrappers enabled, use the
following command:

prompt> vbj -Dvbroker.orb.dynamicLibs=UtilityObjectWrappers.Init
 -DTiming=client\
 -DTracing=client Client John

To execute the server with untyped wrappers for timing and tracing enabled, use the
following command:

prompt> vbj -Dvbroker.orb.dynamicLibs=UtilityObjectWrappers.Init
 -DTiming=server\
 -DTracing=server Server

Turning on caching and security object wrappers
To execute the client with the typed wrappers for caching and security enabled, use
this command:

prompt> vbj -Dvbroker.orb.dynamicLibs=BankWrappers.Init -
DCachingAccount=client\
 -DCachingAccountManager=client\
 -DSecureAccountManager=client
 Client John

 26: Using object wrappers 379

Combined use of untyped and typed object wrappers

To execute the server with typed wrappers for caching and security enabled, use the
followiong command:

prompt> vbj -Dvbroker.orb.dynamicLibs=BankWrappers.Init
 -DCachingAccount=server \
 -DCachingAccountManager=server \
 -DSecureAccountManager=server \
 Server

Turning on typed and untyped wrappers
To execute the client with all typed and untyped wrappers enabled, use the following
command:

prompt> vbj -DOvbroker.orb.dynamicLibs=BankWrappers.Init,
 UtilityObjectWrappers.Init \
 -DCachingAccount=client \
 -DCachingAccountManager=client\
 -DSecureAccountManager=client \
 -DTiming=client \
 -DTracing=client \
 Client John

To execute the server with all typed and untyped wrappers enabled, use the following
command:

prompt> vbj -Dvbroker.orb.dynamicLibs=BankWrappers.Init,
 UtilityObjectWrappers.Init \
 -DCachingAccount=server \
 -DCachingAccountManager=server\
 -DSecureAccountManager=server \
 -DTiming=server \
 -DTracing=server \
 Server

Executing a CO-located client and server
The following command will execute a CO-located server and client with all typed
wrappers enabled, the untyped wrapper enabled for just the client, and the untyped
tracing wrapper for just the server:

prompt> vbj -Dvbroker.orb.dynamicLibs=BankWrappers.Init,
 UtilityObjectWrappers.Init \
 -DCachingAccount -DSecureAccountManager \
 -DTiming=client -DTracing=server \
 Server -runCoLocated Client

Specifying the -runCoLocated command-line option allows you to execute the client and
server within the same process.

Property Description

-runCoLocated Client Executes the Server.java and the Client.java within the same
process.

-runCoLocated TypedClient Executes the Server.java and the TypedClient.java within the
same process.

-runCoLocated UntypedClient Executes the Server.java and the UntypedClient.java within the
same process.

380 VisiBroker for Java Developer’s Guide

 27: Event Queue 381

Event Queue
This section provides information about the Event Queue feature. This feature is
provided for the server-side only.

A server can register listeners to the event queue based on event types that the server
is interested and therefore can process those events when the server needs to do so.

Event types
Currently, connection event type is the only event type generated.

Connection events

There are two connection events that the VisiBroker ORB will generate and push to the
registered connection event, as follows:

– Connection established: indicates that a new client is connected to the server
successfully.

– Connection closed: indicates that an existing client is disconnected from the server.

382 VisiBroker for Java Developer’s Guide

Event l is teners

Event listeners
A server implements and registers listeners with the VisiBroker ORB based on event
types the server needs to process. The connection event listener is the only event
listener supported.

IDL definition

The interface definitions are as follows:

module EventQueue {
 // Connection event types
 enum EventType {UNDEFINED, CONN_EVENT_TYPE};
 // Peer (Client) connection info
 struct ConnInfo {
 string ipaddress; // in %d.%d.%d.%d format
 long port;
 long connID;
 };
 // Marker interface for all types of event listeners
 local interface EventListener {};
 typedef sequence<EventListener> EventListeners;
 // connection event listener interface
 local interface ConnEventListener : EventListener{
 void conn_established(in ConnInfo info);
 void conn_closed(in ConnInfo info);
 };
 // The EventQueue manager
 local interface EventQueueManager : interceptor::InterceptorManager {
 void register_listener(in EventListener listener, in EventType type);
 void unregister_listener(in EventListener listener, in EventType type);
 EventListeners get_listeners(in EventType type);
 };
};

The details of the interface definitions are described in the following sections.

ConnInfo structure
The ConnInfo structure contains the following client connection information.

EventListener interface
The EventListener interface section is the marker interface for all types of event
listeners.

Parameter Description

ipaddress stores the client ip address

port stores the client port number

connID stores the per server unique identification for this client connection

 27: Event Queue 383

Event l is teners

ConnEventListeners interface
The ConnEventListeners interface defines the following operations.

The server-side application is responsible for the implementation of the
ConnEventListener interface as well as the processing of the events being pushed into
the listener.

EventQueueManager interface
The EventQueueManager interface is used as a handle by the server-side implementation
for the registration of event listeners. This interface defines the the following
operations.

How to return the EventQueueManager

An EventQueueManager object is created upon ORB initialization. Server-side
implementation returns the EventQueueManager object reference using the following
code:

com.inprise.vbroker.interceptor.InterceptorManagerControl control =
 com.inprise.vbroker.interceptor.InterceptorManagerControlHelper.narrow(
 orb.resolve_initial_references("VisiBrokerInterceptorControl"));
EventQueueManager manager =
 (EventQueueManager)control.get_manager("EventQueue");
EventListener theListener = ...
manager.register_listeners(theListener);

Event Queue code samples

This section contains some code samples for registering EventListeners and
implementing a connection EventListener.

Operation Description

void conn_established (in ConnInfo info) This operation is called back by the VisiBroker ORB
to push the connection established event. The
VisiBroker ORB fills in the client connection
information into the in ConnInfo info parameter and
passes this value into the callback operation.

void conn_closed (in ConnInfo info) This operation is called back by the VisiBroker ORB
to push the connection closed event. The VisiBroker
ORB fills in the client connection information into the
in ConnInfo info parameter and passes this value into
the callback operation.

Operation Description

void register_listener (in EventListener
listener, in EventType type)

This operation is provided for the registration of an
event listener with the specified event type.

EventListeners get_listeners (in
EventType type)

This operation returns the list of registered event
listeners for the specified type.

void unregister_listener (in EventListener
listener, in EventType type)

This operation removes a pre-registered listener
of the specified type.

384 VisiBroker for Java Developer’s Guide

Event l is teners

Registering EventListeners
The SampleServerLoader class contains the init() method which is called by the ORB
during initialization. The purpose of the ServerLoader is to register an EventListener by
creating and registering it to the EventQueueManager.

import com.inprise.vbroker.EventQueue.*;
import com.inprise.vbroker.interceptor.*;
import com.inprise.vbroker.PortableServerExt.*;
public class SampleServerLoader implements ServiceLoader {
 public void init(org.omg.CORBA.ORB orb) {
 try {
 InterceptorManagerControl control =
 InterceptorManagerControlHelper.narrow(
 orb.resolve_initial_references("VisiBrokerInterceptorControl"));
 EventQueueManager queue_manager =
 (EventQueueManager) control.get_manager("EventQueue");
 queue_manager.register_listener((EventListener)new
 ConnEventListenerImpl(),EventType.CONN_EVENT_TYPE);
 }
 catch(Exception e) {
 e.printStackTrace();
 throw new org.omg.CORBA.INITIALIZE(e.toString());
 }
 System.out.println("============>SampleServerLoader: ConnEventListener
 registered");
 }
 public void init_complete(org.omg.CORBA.ORB orb) {
 }
 public void shutdown(org.omg.CORBA.ORB orb) {
 }
}

Implementing EventListeners
The ConnEventListenerImpl contains a connection event listener implementation
sample. The ConnEventListener interface implements the conn_established and
conn_closed operations at the server-side application. For more information, see
“ConnEventListeners interface”. The implementation enables the connection to idle for
30000 milliseconds while waiting for a request at the server-side. These operations are
called when the connection is established by the client and when the connection is
dropped, respectively.

import com.inprise.vbroker.EventQueue.*;
import org.omg.CORBA.LocalObject;

public class ConnEventListenerImpl extends LocalObject implements
ConnEventListener {
 public void conn_established(ConnInfo info) {
 System.out.println("Received conn_established: address = " +
 info.ipaddress + " port = " + info.port +
 " connID = " + info.connID);
 System.out.println("Processing the event ...");
 try {
 Thread.sleep(30000);
 } catch (Exception e) { e.printStackTrace(); }
 }
 public void conn_closed(ConnInfo info) {
 System.out.println("Received conn_closed: address = " +
 info.ipaddress+ " port = " + info.port +
 " connID = " + info.connID);
 }
}

 28: Using RMI over I IOP 385

Using RMI over IIOP
This section describes the VisiBroker for Java tools which enable you to use RMI over
IIOP, and also describes the setup permissions required when running Java applets
that use RMI-IIOP.

Overview of RMI over IIOP
RMI (remote method invocation) is a Java mechanism which allows objects to be
created and used in a distributed environment. In this sense, RMI is a VisiBroker ORB,
which is language-specific (Java) and non-CORBA compliant. The OMG has issued a
specification, the Java language to IDL Mapping, which allows Java classes written
using RMI to interoperate with CORBA objects using the IIOP encoding.

Setting up Java applets with RMI-IIOP

You can run an applet that uses RMI-IIOP. However, you need to set the permissions
in Reflect and Runtime. These permissions are set in the java.policy file located in the
JRE installed directory. The following is an example of how to set the permissions in
the java.policy file:

grant codeBase "http://xxx.xxx.xxx.xxx:8088/-" {
permission java.lang.reflect.ReflectPermission "suppressAccessChecks";

permission java.lang.RuntimePermission "accessDeclaredMembers";
};

java2iiop and java2idl tools

VisiBroker has two compilers which allow you to adapt your existing Java classes to
work with other objects using the VisiBroker ORB.

– The java2iiop compiler lets you adapt your RMI-compliant classes to use IIOP by
generating all the proper skeleton, stub, and helper classes.

– The java2idl compiler generates IDL from your Java classes, allowing you to
implement them in languages other than Java.

386 VisiBroker for Java Developer’s Guide

Using java2i iop

Using java2iiop
The java2iiop compiler lets you define interfaces and data types in Java, rather than
IDL, that can then be used as interfaces and data types in CORBA. The compiler does
not read Java source code (java files) or IDL, but rather Java bytecode (class files). The
compiler then generates IIOP-compliant stubs and skeletons needed to do all the
marshalling and communication required for CORBA.

Supported interfaces

When you run the java2iiop compiler, it generates the same files as if you had written
the interface in IDL. All primitive data types like the numeric types (short, int, long,
float, and double), string, CORBA objects or interface objects, Any objects, typecode
objects are understood by the java2iiop compiler and mapped to the corresponding
IDL types.

You can use java2iiop on any Java class or interface. For example, if a Java interface
adheres to one of the following rules:

– Extends java.rmi.Remote and all of its methods throw java.rmi.RemoteException

– Extends org.omg.CORBA.Object

then, java2iiop will translate the interface to a CORBA interface in IDL.

The following code sample illustrates a Java RMI interface. This code example can be
found in:

<install_dir>/vbe/examples/rmi-iiop/

public interface Account extends java.rmi.Remote {
 String name() throws java.rmi.RemoteException;
 float getBalance() throws java.rmi.RemoteException;
 void setBalance(float bal) throws java.rmi.RemoteException;
}

Running java2iiop

You must compile your Java classes before you can use the java2iiop compiler. Once
you have generated bytecode, you can run java2iiop to generate client stubs, server
skeletons, and the associated auxiliary files.

For example, after running java2iiop on the Account.class file found in

<install_dir>/vbe/examples/rmi-iiop/Bank/

you would have the following files:

– _Account_Stub

– AccountHelper

– AccountHolder

– AccountPOA

– Account_Tie

– AccountOperations

 28: Using RMI over I IOP 387

Using java2i iop

Reverse mapping of Java classes to IDL
When mapping IDL interfaces to Java classes, using the idl2java compiler, the
interface name may use any of the generated classes suffixes (for example, Helper,
Holder, POA, and so on), and the idl2java tool will handle the situation correctly by
mangling the interface name (prefixing an underscore “_” to the identifier).

For example, if you define both a Foo and a FooHolder interface in IDL, idl2java will
generate, amongst others, Foo.java, FooHolder.java, _FooHolder.java, and
_FooHolderHolder.java files.

On the other hand, when generating IIOP-compliant Java classes from RMI Java
classes, using the java2iiop compiler, the tool cannot generate the mangled classes.

So, when declaring interfaces which use reserved suffixes, you cannot have them in
the same package as the interface with the same name, (for example, you can not
have a Foo and a FooHolder class in the same package when using the java2iiop
compiler).

Completing the development process

After generating the associated files from your interfaces, you need to provide
implementations for the interfaces. Follow these steps:

1 Create an implementation for the interface classes.

2 Compile your server class.

3 Write and compile your client code.

4 Start the Server program.

5 Run the Client program.

Note

If you attempt to marshal a non-conforming class, an org.omg.CORBA.MARSHAL: Cannot
marshal non-conforming value of class <class name> will be thrown. For instance, if you
create the following two classes,

// This is a conforming class
public class Value implements java.io.Serializable {
 java.lang.Object any;
 ...
}
// This is a non-conforming class
public class Something {
...
}

and then attempt the following,

Value val = new Value();
val.any = new Something();

You will raise an org.omg.CORBA.MARSHAL exception when you attempt to marshal val.

388 VisiBroker for Java Developer’s Guide

RMI-I IOP Bank example

RMI-IIOP Bank example
This code example is located in the following directory:

<install_dir>/vbe/examples/rmi-iiop/

The Account interface extends the java.rmi.Remote interface and is implemented by the
AccountImpl class.

The Client class (below) first creates all the specified Account objects with the
appropriate balances by creating AccountData objects for each account and passing
them to the AccountManager to create the accounts. It then confirms that the balance
is correct on the created account. The client then queries the AccountManager for a list
of all the accounts, and proceeds to credit $10.00 to each account. It then verifies if the
new balance on the account is accurate.

public class AccountImpl extends Bank.AccountPOA {
 public AccountImpl(Bank.AccountData data) {
 _name = data.getName();
 _balance = data.getBalance();
 }
 public String name() throws java.rmi.RemoteException {
 return _name;
 }
 public float getBalance() throws java.rmi.RemoteException {
 return _balance;
 }
 public void setBalance(float balance) throws java.rmi.RemoteException {
 _balance = balance;
 }
 private float _balance;
 private String _name;
}

The Client class:

public class Client {
 public static void main(String[] args) {
 try {
 // Initialize the ORB.
 org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,null);
 // Get the manager Id
 byte[] managerId = "RMIBankManager".getBytes();
 // Locate an account manager. Give the full POA name and the

servant ID.
 Bank.AccountManager manager =
 Bank.AccountManagerHelper.bind(orb, "/rmi_bank_poa", managerId);
 // Use any number of argument pairs to indicate name,balance of

accounts to create
 if (args.length == 0 || args.length % 2 != 0) {
 args = new String[2];
 args[0] = "Jack B. Quick";
 args[1] = "123.23";
 }
 int i = 0;
 while (i < args.length) {
 String name = args[i++];
 float balance;
 try {
 balance = new Float(args[i++]).floatValue();
 } catch (NumberFormatException n) {
 balance = 0;
 }

 28: Using RMI over I IOP 389

Supported data types

Bank.AccountData data = new Bank.AccountData(name, balance);
 Bank.Account account = manager.create(data);
 System.out.println("Created account for " + name

 + " with opening balance of $" + balance);
 }
 java.util.Hashtable accounts = manager.getAccounts();
 for (java.util.Enumeration e = accounts.elements();

e.hasMoreElements();) {
 Bank.Account account =

Bank.AccountHelper.narrow((org.omg.CORBA.Object)e.nextElement());
 String name = account.name();
 float balance = account.getBalance();
 System.out.println("Current balance in " + name + "'s account is

$" + balance);
 System.out.println("Crediting $10 to " + name + "'s account.");
 account.setBalance(balance + (float)10.0);
 balance = account.getBalance();
 System.out.println("New balance in " + name + "'s account is

$" + balance);
 }
 } catch (java.rmi.RemoteException e) {
 System.err.println(e);
 }
 }
}

Supported data types
In addition to all of the Java primitive data types, RMI-IIOP supports a subset of Java
classes.

Mapping primitive data types

Client stubs generated by java2iiop handle the marshalling of the Java primitive data
types that represent an operation request so that they may be transmitted to the object
server. When a Java primitive data type is marshalled, it must be converted into an
IIOP-compatible format. The following table summarizes the mapping of Java primitive
data types to IDL/IIOP types.

Java type IDL/IIOP type

void void

boolean boolean

byte octet

char char

short short

int long

long long long

float float

double double

java.lang.String CORBA::WStringValue

java.lang.Object any

java.io.Serializable any

java.io.Externalizable any

390 VisiBroker for Java Developer’s Guide

Supported data types

Mapping complex data types

This section shows how the java2iiop compiler can be used to handle complex data
types.

Interfaces
Java interfaces are represented in IDL as CORBA interfaces, and they must inherit
from the org.omg.CORBA.Object interface. When passing objects that implement these
interfaces, they are passed by reference.

Arrays
Another complex data type that may be defined in classes is an array. If you have an
interface or definitions that use arrays, the arrays map to CORBA boxed sequence of
boxed type.

 29: Using the dynamical ly managed types 391

Using the dynamically managed
types
This section describes the DynAny feature of VisiBroker, which allows you to construct
and interpret data types at runtime.

DynAny interface overview
The DynAny interface provides a way to dynamically create basic and constructed data
types at runtime. It also allows information to be interpreted and extracted from an Any
object, even if the type it contains was not known to the server at compile-time. Using
the DynAny interface, you can build powerful client and server applications that create
and interpret data types at runtime.

DynAny examples

Example client and server applications that illustrate the use of DynAny are included as
part of the VisiBroker distribution. The examples are located in the following directory:

<install_dir>\examples\vbe\dynany\

These example programs are used to illustrate DynAny concepts throughout this
section.

392 VisiBroker for Java Developer’s Guide

DynAny types

DynAny types
A DynAny object has an associated value that may either be a basic data type (such as
boolean, int, or float) or a constructed data type. The DynAny interface, its methods and
classes are also documented in the VisiBroker API References. “Programmer tools for
Java” provides methods for determining the type of the contained data as well as for
setting and extracting the value of primitive data types.

Constructed data types are represented by the following interfaces, which are all
derived from DynAny. Each of these interfaces provides its own set of methods that are
appropriate for setting and extracting the values it contains.

DynAny usage restrictions

A DynAny object may only be used locally by the process which created it. Any attempt
to use a DynAny object as a parameter on an operation request for a bound object or to
externalize it using the ORB.object_to_string method will cause a MARSHAL exception to
be raised.

Furthermore, any attempt to use a DynAny object as a parameter on DII request will
cause a NO_IMPLEMENT exception to be raised.

This version does not support the long double and fixed types as specified in CORBA
2.6.

Creating a DynAny

A DynAny object is created by invoking an operation on a DynAnyFactory object. First
obtain a reference to the DynAnyFactory object, and then use that object to create the
new DynAny object.

// Resolve Dynamic Any Factory
DynAnyFactory factory =
 DynAnyFactoryHelper.narrow(
 orb.resolve_initial_references("DynAnyFactory"));
byte[] oid = "PrinterManager".getBytes();
// Create the printer manager object.
PrinterManagerImpl manager =
 new PrinterManagerImpl((com.borland.vbroker.CORBA.ORB) orb,
 factory, serverPoa, oid);
// Export the newly create object.
serverPoa.activate_object_with_id(oid, manager);
System.out.println(manager + " is ready.");

Initializing and accessing the value in a DynAny

The DynAny.insert_<type> methods allow you to initialize a DynAny object with a variety
of basic data types, where <type> is boolean, octet, char, and so on. Any attempt to
insert a type that does not match the TypeCode defined for the DynAny will cause an
TypeMismatch exception to be raised.

Interface TypeCode Description

DynArray _tk_array An array of values with the same data type that has a fixed number
of elements.

DynEnum _tk_enum A single enumeration value.

DynFixed _tk_fixed Not supported.

DynSequence _tk_sequence A sequence of values with the same data type. The number of
elements may be increased or decreased.

DynStruct _tk_struct A structure.

DynUnion _tk_union A union.

DynValue _tk_value Not supported.

 29: Using the dynamical ly managed types 393

Constructed data types

The DynAny::get_<type> methods in C++ or the DynAny.get_<type> methods in Java
allow you to access the value contained in a DynAny object, where <type> is boolean,
octet, char, and so on. Any attempt to access a value from a DynAny component which
does not match the TypeCode defined for the DynAny will cause a TypeMismatch exception
to be raised.

The DynAny interface also provides methods for copying, assigning, and converting to or
from an Any object. The sample programs, described in “DynAny example client
application” and “DynAny example server application”, provide examples of how to use
some of these methods.

Constructed data types
The following types are derived from the DynAny interface and are used to represent
constructed data types.

Traversing the components in a constructed data type

Several of the interfaces that are derived from DynAny actually contain multiple
components. The DynAny interface provides methods that allow you to iterate through
these components. The DynAny-derived objects that contain multiple components
maintain a pointer to the current component.

DynEnum

The DynEnum interface represents a single enumeration constant. Methods are provided
for setting and obtaining the value as a string or as an integral value.

DynAny method Description

rewind Resets the current component pointer to the first component. Has no effect
if the object contains only one component.

next Advances the pointer to the next component. If there are no more
components or if the object contains only one component, false is returned.

current_component Returns a DynAny object, which may be narrowed to the appropriate type,
based on the component's TypeCode.

seek Sets the current component pointer to the component with the specified,
zero-based index. Returns false if there is no component at the specified
index. Sets the current component pointer to -1 (no component) if specified
with a negative index.

394 VisiBroker for Java Developer’s Guide

DynAny example IDL

DynStruct

The DynStruct interface represents a dynamically constructed struct type. The
members of the structure can be retrieved or set using a sequence of NameValuePair
objects. Each NameValuePair object contains the member's name and an Any containing
the member's Type and value.

You may use the rewind, next, current_component, and seek methods to traverse the
members in the structure. Methods are provided for setting and obtaining the
structure's members.

DynUnion

The DynUnion interface represents a union and contains two components. The first
component represents the discriminator and the second represents the member value.

You may use the rewind, next, current_component, and seek methods to traverse the
components. Methods are provided for setting and obtaining the union's discriminator
and member value.

DynSequence and DynArray

A DynSequence or DynArray represents a sequence of basic or constructed data types
without the need of generating a separate DynAny object for each component in the
sequence or array. The number of components in a DynSequence may be changed, while
the number of components in a DynArray is fixed.

You can use the rewind, next, current_component, and seek methods to traverse the
members in a DynArray or DynSequence.

DynAny example IDL
The following code sample shows the IDL used in the example client and server
applications. The StructType structure contains two basic data types and an
enumeration value. The PrinterManager interface is used to display the contents of an
Any without any static information about the data type it contains.

// Printer.idl
module Printer {
 enum EnumType {first, second, third, fourth};
 struct StructType {
 string str;
 EnumType e;
 float fl;
 };
 interface PrinterManager {
 void printAny(in any info);
 oneway void shutdown();
 };
};

 29: Using the dynamical ly managed types 395

DynAny example c l ient appl icat ion

DynAny example client application
The following code sample shows a client application that can be found in the following
VisiBroker distribution directory:

<install_dir>\examples\vbe\dynany\

The client application uses the DynStruct interface to dynamically create a StructType
structure.

The DynStruct interface uses a sequence of NameValuePair objects to represent the
structure members and their corresponding values. Each name-value pair consists of a
string containing the structure member's name and an Any object containing the
structure member's value.

After initializing the VisiBroker ORB in the usual manner and binding to a PrintManager
object, the client performs the following steps:

1 Creates an empty DynStruct with the appropriate type.

2 Creates a sequence of NameValuePair objects that will contain the structure
members.

3 Creates and initializes Any objects for each of the structure member's values.

4 Initializes each NameValuePair with the appropriate member name and value.

5 Initializes the DynStruct object with the NameValuePair sequence.

6 Invokes the PrinterManager.printAny method, passing the DynStruct converted to a
regular Any.

Note

You must use the DynAny.to_any method to convert a DynAny object, or one of its derived
types, to an Any before passing it as a parameter on an operation request.

The following code sample is an example of a client application that uses DynStruct:

// Client.java
import org.omg.DynamicAny.*;
public class Client {
 public static void main(String[] args) {
 try {
 // Initialize the ORB.
 org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args, null);
 DynAnyFactory factory =
 DynAnyFactoryHelper.narrow(
 orb.resolve_initial_references("DynAnyFactory"));
 // Locate a printer manager.
 Printer.PrinterManager manager =
 Printer.PrinterManagerHelper.bind(orb, "PrinterManager");
 // Create Dynamic struct
 DynStruct info =
 DynStructHelper.narrow(factory.create_dyn_any_from_type_code
 (Printer.StructTypeHelper.type()));
 // Create our NameValuePair sequence (array)
 NameValuePair[] NVPair = new NameValuePair[3];
 // Create and initialize Dynamic Struct data as any's
 org.omg.CORBA.Any str_any = orb.create_any();
 str_any.insert_string("String");
 org.omg.CORBA.Any e_any = orb.create_any();
 Printer.EnumTypeHelper.insert(e_any, Printer.EnumType.second);
 org.omg.CORBA.Any fl_any = orb.create_any();
 fl_any.insert_float((float)864.50);
 NVPair[0] = new NameValuePair("str", str_any);

396 VisiBroker for Java Developer’s Guide

DynAny example server appl icat ion

 NVPair[1] = new NameValuePair("e", e_any);
 NVPair[2] = new NameValuePair("fl", fl_any);
 // Initialize the Dynamic Struct
 info.set_members(NVPair);
 manager.printAny(info.to_any());
 manager.shutdown();
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 }
}

DynAny example server application
The following code sample shows a server application that can be found in the
following VisiBroker distribution directory:

<install_dir>\examples\vbe\dynany\

The server application performs the following steps.

1 Initializes the VisiBroker ORB.

2 Creates the policies for the POA.

3 Creates a PrintManager object.

4 Exports the PrintManager object.

5 Prints a message and waits for incoming operation requests.

// Server.java
import java.util.*;
import org.omg.DynamicAny.*;
import org.omg.PortableServer.*;
import com.borland.vbroker.PortableServerExt.*;
public class Server {
 public static void main(String[] args) {
 try {
 // Initialize the ORB.
 org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,null);
 // Resolve Root POA
 POA rootPoa =
 POAHelper.narrow(orb.resolve_initial_references(
 "RootPOA"));
 rootPoa.the_POAManager().activate();
 // Create a BindSupport Policy that makes POA register
 // each servant with osagent
 org.omg.CORBA.Any any = orb.create_any();
 BindSupportPolicyValueHelper.insert(any,
 BindSupportPolicyValue.BY_INSTANCE);
 org.omg.CORBA.Policy bsPolicy =
 orb.create_policy(BIND_SUPPORT_POLICY_TYPE.value, any);
 // Create policies for our testPOA
 org.omg.CORBA.Policy[] policies = {
 rootPoa.create_lifespan_policy(LifespanPolicyValue.PERSISTENT),
 bsPolicy
 };
 // Create managerPOA with the right policies

 29: Using the dynamical ly managed types 397

DynAny example server appl icat ion

POA serverPoa =
 rootPoa.create_POA(
 "serverPoa",
 rootPoa.the_POAManager(),
 policies);
 // Resolve Dynamic Any Factory
 DynAnyFactory factory =
 DynAnyFactoryHelper.narrow(
 orb.resolve_initial_references("DynAnyFactory"));
 byte[] oid = "PrinterManager".getBytes();
 // Create the printer manager object.
 PrinterManagerImpl manager =
 new PrinterManagerImpl((
 com.borland.vbroker.CORBA.ORB) orb,
 factory,
 serverPoa,
 oid);
 // Export the newly create object.
 serverPoa.activate_object_with_id(oid, manager);
 System.out.println(manager + " is ready.");
 // Wait for incoming requests
 orb.run();
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 }
}

The following code sample shows how the PrinterManager implementation follows
these steps in using a DynAny to process the Any object, without any compile-time
knowledge of the type the Any contains.

1 Creates a DynAny object, initializing it with the received Any.

2 Performs a switch on the DynAny object's type.

3 If the DynAny contains a basic data type, simply prints out the value.

4 If the DynAny contains an Any type, creates a DynAny for it, determines it's contents,
and then prints out the value.

5 If the DynAny contains an enum, creates a DynEnum for it and then prints out the string
value.

6 If the DynAny contains a union, creates a DynUnion for it and then prints out the union's
discriminator and the member.

7 If the DynAny contains a struct, array, or sequence, traverses through the contained
components and prints out each value.

// PrinterManagerImpl.java
import java.util.*;
import org.omg.DynamicAny.*;
import org.omg.PortableServer.*;
public class PrinterManagerImpl extends Printer.PrinterManagerPOA {
 private com.borland.vbroker.CORBA.ORB _orb;
 private DynAnyFactory _factory;
 private POA _poa;
 private byte[] _oid;

398 VisiBroker for Java Developer’s Guide

DynAny example server appl icat ion

public PrinterManagerImpl(com.borland.vbroker.CORBA.ORB orb,
 DynAnyFactory factory, POA poa, byte[] oid) {
 _orb = orb;
 _factory = factory;
 _poa = poa;
 _oid = oid;
 }
 public synchronized void printAny(org.omg.CORBA.Any info) {
 // Display info with the assumption that we don't have
 // any info statically about the type inside the any
 try {
 // Create a DynAny object
 DynAny dynAny = _factory.create_dyn_any(info);
 display(dynAny);
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 }
 public void shutdown() {
 try {
 _poa.deactivate_object(_oid);
 System.out.println("Server shutting down");
 _orb.shutdown(false);
 }
 catch (Exception e) {
 System.out.println(e);
 }
 }
 private void display(DynAny value) throws Exception {
 switch(value.type().kind().value()) {
 case org.omg.CORBA.TCKind._tk_null:
 case org.omg.CORBA.TCKind._tk_void: {
 break;
 }
 case org.omg.CORBA.TCKind._tk_short: {
 System.out.println(value.get_short());
 break;
 }
 case org.omg.CORBA.TCKind._tk_ushort: {
 System.out.println(value.get_ushort());
 break;
 }
 case org.omg.CORBA.TCKind._tk_long: {
 System.out.println(value.get_long());
 break;
 }
 case org.omg.CORBA.TCKind._tk_ulong: {
 System.out.println(value.get_ulong());
 break;
 }
 case org.omg.CORBA.TCKind._tk_float: {
 System.out.println(value.get_float());
 break;
 }
 case org.omg.CORBA.TCKind._tk_double: {
 System.out.println(value.get_double());
 break;
 }

 29: Using the dynamical ly managed types 399

DynAny example server appl icat ion

case org.omg.CORBA.TCKind._tk_boolean: {
 System.out.println(value.get_boolean());
 break;
 }
 case org.omg.CORBA.TCKind._tk_char: {
 System.out.println(value.get_char());
 break;
 }
 case org.omg.CORBA.TCKind._tk_octet: {
 System.out.println(value.get_octet());
 break;
 }
 case org.omg.CORBA.TCKind._tk_string: {
 System.out.println(value.get_string());
 break;
 }
 case org.omg.CORBA.TCKind._tk_any: {
 DynAny dynAny = _factory.create_dyn_any(value.get_any());
 display(dynAny);
 break;
 }
 case org.omg.CORBA.TCKind._tk_TypeCode: {
 System.out.println(value.get_typecode());
 break;
 }
 case org.omg.CORBA.TCKind._tk_objref: {
 System.out.println(value.get_reference());
 break;
 }
 case org.omg.CORBA.TCKind._tk_enum: {
 DynEnum dynEnum = DynEnumHelper.narrow(value);
 System.out.println(dynEnum.get_as_string());
 break;
 }
 case org.omg.CORBA.TCKind._tk_union: {
 DynUnion dynUnion = DynUnionHelper.narrow(value);
 display(dynUnion.get_discriminator());
 display(dynUnion.member());
 break;
 }
 case org.omg.CORBA.TCKind._tk_struct:
 case org.omg.CORBA.TCKind._tk_array:
 case org.omg.CORBA.TCKind._tk_sequence: {
 value.rewind();
 boolean next = true;
 while(next) {
 DynAny d = value.current_component();
 display(d);
 next = value.next();
 }
 break;
 }
 case org.omg.CORBA.TCKind._tk_longlong: {
 System.out.println(value.get_longlong());
 break;
 }
 case org.omg.CORBA.TCKind._tk_ulonglong: {
 System.out.println(value.get_ulonglong());
 break;
 }

400 VisiBroker for Java Developer’s Guide

DynAny example server appl icat ion

 case org.omg.CORBA.TCKind._tk_wstring: {
 System.out.println(value.get_wstring());
 break;
 }
 case org.omg.CORBA.TCKind._tk_wchar: {
 System.out.println(value.get_wchar());
 break;
 }
 default:
 System.out.println("Invalid type");

 }
 }
}

 30: Using valuetypes 401

Using valuetypes
This section explains how to use the valuetype IDL type in VisiBroker.

Understanding valuetypes
The valuetype IDL type is used to pass state data over the wire. A valuetype is best
thought of as a struct with inheritance and methods. Valuetypes differ from normal
interfaces in that they contain properties to describe the valuetype's state, and contain
implementation details beyond that of an interface.

Valuetype IDL code sample

The following IDL code declares a simple valuetype:

module Map {
 valuetype Point {
 public long x;
 public long y;
 private string label;
 factory create (in long x, in long y, in string z);
 void print();
 };
};

Valuetypes are always local. They are not registered with the VisiBroker ORB, and
require no identity, as their value is their identity. They can not be called remotely.

402 VisiBroker for Java Developer’s Guide

Understanding valuetypes

Concrete valuetypes

Concrete valuetypes contain state data. They extend the expressive power of IDL
structs by allowing:

– Single concrete valuetype derivation and multiple abstract valuetype derivation
– Multiple interface support (one concrete and multiple abstract)
– Arbitrary recursive valuetype definitions
– Null value semantics
– Sharing semantics

Valuetype derivation
You can derive a concrete valuetype from one other concrete valuetype. However,
valuetypes can be derived from multiple other abstract valuetypes.

Sharing semantics
Valuetype instances can be shared by other valuetypes across or within other
instances. Other IDL data types such as struct, union, or sequence cannot be shared.
Valuetypes that are shared are isomorphic between the sending context and the
receiving context.

In addition, when the same valuetype is passed into an operation for two or more
arguments, the receiving context receives the same valuetype reference for both
arguments.

Null semantics
Null valuetypes can be passed over the wire, unlike IDL data types such as structs,
unions, and sequences. For instance, by boxing a struct as a boxed valuetype, you can
pass a null value struct. For more information, see “Boxed valuetypes”.

Factories
Factories are methods that can be declared in valuetypes to create valuetypes in a
portable way. For more information on Factories, see “Implementing factories”.

Abstract valuetypes

Abstract valuetypes contain only methods and do not have state. They may not be
instantiated. Abstract valuetypes are a bundle of operation signatures with a purely
local implementation.

For instance, the following IDL defines an abstract valuetype Account that contains no
state, but one method, get_name:

abstract valuetype Account{
 string get_name();
}

Now, two valuetypes are defined that inherit the get_name method from the abstract
valuetype:

valuetype savingsAccount:Account{
 private long balance;
}
valuetype checkingAccount:Account{
 private long balance;
}

These two valuetypes contain a variable balance, and they inherit the get_name method
from the abstract valuetype Account.

 30: Using valuetypes 403

Implement ing valuetypes

Implementing valuetypes
To implement valuetypes in an application, do the following:

1 Define the valuetypes in an IDL file.

2 Compile the IDL file using idl2java

3 Implement your valuetypes by inheriting the valuetype base class.

4 Implement the Factory class to implement any factory methods defined in IDL.

5 Implement the create_for_unmarshal method.

6 If necessary, register your Factory with the VisiBroker ORB.

7 Either implement the _add_ref, _remove_ref, and _ref_countvalue methods or derive
from CORBA::DefaultValueRefCountBase.

Defining your valuetypes

In the IDL sample (for more information, see “Valuetype IDL code sample”), you define
a valuetype named Point that defines a point on a graph. It contains two public
variables, the x and y coordinates, one private variable that is the label of the point, the
valuetype's factory, and a print method to print the point.

Compiling your IDL file

When you have defined your IDL, compile it using idl2java to create source files. You
then modify the source files to implement your valuetypes.

If you compile the IDL shown in “Valuetype IDL code sample”, your output consists of
the following files:

– Point.java
– PointDefaultFactory.java
– PointHelper.java
– PointHolder.java
– PointValueFactory.java

Inheriting the valuetype base class

After compiling your IDL, create your implementation of the valuetype. The
implementation class will inherit the base class. This class contains the constructor that
is called in your ValueFactory, and contains all the variables and methods declared in
your IDL.

In the obv\PointImpl.java, the PointImpl class extends the Point class, which is
generated from the IDL.

Inheriting the valuetype base class:

public class PointImpl extends Point {
 public PointImpl() {}
 public PointImpl(int a_x, int a_y, String a_label) {
 x = a_x;
 y = a_y;
 label = a_label;
 }
 public void print () {
 System.out.println("Point is [" + label + ": (" + x + ", " + y + ")]");
 }
}

404 VisiBroker for Java Developer’s Guide

Implement ing factor ies

Implementing the Factory class

When you have created an implementation class, implement the Factory for your
valuetype.

In the following example, the generated Point_init class contains the create method
declared in your IDL. This class extends org.omg.CORBA.portable.ValueFactory . The
PointDefaultFactory class implements PointValueFactory as shown in the following
example.

public class PointDefaultFactory implements PointValueFactory {
 public java.io.Serializable read_value (org.omg.CORBA.portable.InputStream
is) {
 java.io.Serializable val = new PointImpl(); // Called the implementation
 class
 // create and initialize value
 val = ((org.omg.CORBA_2_3.portable.InputStream)is).read_value(val);
 return val;
 }
 // It is up to the user to implement the valuetype however they want:
 public Point create (int x,
 int y,
 java.lang.String z) {
 // IMPLEMENT:
 return null;
 }
}

PointImpl() is called to create a new valuetype, which is read in from the InputStream
by read_value.

You must call read_value or your Factory will not work, and you may not call any other
method.

Registering your Factory with the VisiBroker ORB

To register your Factory with the VisiBroker ORB, call ORB.register_value_factory. This
is required only if you do not name your factory valuetypenameDefaultFactory. For more
information on registering Factories, see “Registering valuetypes”.

Implementing factories
When the VisiBroker ORB receives a valuetype, it must first be demarshaled, and then
the appropriate factory for that type must be found in order to create a new instance of
that type. Once the instance has been created, the value data is unmarshaled into the
instance. The type is identified by the RepositoryID that is passed as part of the
invocation. The mapping between the type and the factory is language specific.

VisiBroker version 4.5 or later version will generate the correct signatures for either the
JDK 1.3 or JDK 1.4 default value factory method. Existing (version 4.0) generated code
is not designed to run under JDK 1.3, unless you modify the default value factory
method signature as shown below. If you use your existing code with JDK 1.3 and do
not modify default value factory, the code will not compile or will throw a NO_IMPLEMENT
exception. Consequently, we recommend that you regenerate your code to generate
the correct signatures.

The following code sample shows how you should modify the default value factory
method signature to make sure that it compiles under JDK 1.3:

public class PointDefaultFactory implements PointValueFactory {
 public java.io.Serializable read_value (
 org.omg.CORBA_2_3.portable.InputStream is) {
 java.io.Serializable val = new PointImpl();
 // create and initialize value

 30: Using valuetypes 405

Boxed valuetypes

 // It is very important that this call is made.
 val = ((org.omg.CORBA_2_3.portable.InputStream)is).read_value(val);
 return val;
 }
 public Point create (int x, int y, java.lang.String z) {
 // IMPLEMENT:
 return NO_IMPLEMENT;
 }
}

Factories and valuetypes

When the VisiBroker ORB receives a valuetype, it will look for that type's factory. It will
look for a factory named <valuetype>DefaultFactory. For instance, the Point valuetype's
factory is called PointDefaultFactory. If the correct factory doesn't conform to this
naming schema (<valuetype>DefaultFactory), you must register the correct factory so
the VisiBroker ORB can create an instance of the valuetype.

If the VisiBroker ORB cannot find the correct factory for a given valuetype, a MARSHAL
exception is raised, with an identified minor code.

Registering valuetypes

Each language mapping specifies how and when registration occurs. If you created a
factory with the <valuetype>DefaultFactory naming convention, this is considered
implicitly registering that factory, and you do not need to explicitly register your factory
with the VisiBroker ORB.

To register a factory that does not conform to the <valuetype>DefaultFactory naming
convention, call register_value_factory. To unregister a factory, call
unregister_value_factory on the VisiBroker ORB. You can also lookup a registered
valuetype factory by calling lookup_value_factory on the VisiBroker ORB.

Boxed valuetypes
Boxed valuetypes allow you to wrap non-value IDL data types as valuetypes. For
example, the following IDL boxed valuetype declaration,

valuetype Label string;

is equivalent to this IDL valuetype declaration:

valuetype Label{
 public string name;
}

By boxing other data types as valuetypes, it allows you to use valuetype's null
semantics and sharing semantics.

Valueboxes are implemented purely with generated code. No user code is required.

Abstract interfaces
Abstract interfaces allow you to choose at runtime whether the object will be passed by
value or by reference.

Abstract interfaces differ from IDL interfaces in the following ways:

– The actual parameter type determines whether the object is passed by reference or
a valuetype is passed. The parameter type is determined based on two rules. It is
treated as an object reference if it is a regular interface type or sub-type, the interface
type is a sub-type of the signature abstract interface type, and the object is already
registered with the VisiBroker ORB. It is treated as a value if it can not be passed as

406 VisiBroker for Java Developer’s Guide

Abstract inter faces

an object reference, but can be passed as a value. If it fails to pass as a value, a
BAD_PARAM exception is raised.

– Abstract interfaces do not implicitly derive from org.omg.CORBA.Object because they
can represent either object references or valuetypes. Valuetypes do not necessarily
support common object reference operations. If the abstract interface can be
successfully narrowed to an object reference type, you can invoke the operations of
org.omg.CORBA.Object .

– Abstract interfaces may only inherit from other abstract interfaces.

– Valuetypes can support one or more abstract interfaces.

For example, examine the following abstract interface.

abstract interface ai{
};
interface itp : ai{
};
valuetype vtp supports ai{
};
interface x {
 void m(ai aitp);
};
valuetype y {
 void op(ai aitp);
};

For the argument to method m:

– itp is always passed as an object reference.

– vtp is passed as a value.

 30: Using valuetypes 407

Custom valuetypes

Custom valuetypes
By declaring a custom valuetype in IDL, you bypass the default marshalling and
unmarshalling model and are responsible for encoding and decoding.

custom valuetype customPoint{
 public long x;
 public long y;
 private string label;
 factory create(in long x, in long y, in string z);
};

You must implement the marshal and unmarshal methods from the CustomMarshal
interface.

When you declare a custom valuetype, the valuetype extends org.omg.CORBA.portable.
CustomValue, as opposed to org.omg.CORBA.portable.StreamableValue, as in a regular
valuetype. The compiler does not generate read or write methods for your valuetype.

You must implement your own read and write methods by using org.omg.CORBA.
portable.DataInputStream and org.omg.CORBA.portable.DataOutputStream to read and
write the values, respectively.

Truncatable valuetypes
Truncatable valuetypes allow you to treat an inherited valuetype as its parent.

The following IDL defines a valuetype checkingAccount that is inherited from the base
type Account and can be truncated in the receiving object.

valuetype checkingAccount: truncatable Account{
 private long balance;
}

This is useful if the receiving context doesn't need the new data members or methods
in the derived valuetype, and if the receiving context isn't aware of the derived
valuetype. However, any state data from the derived valuetype that isn't in the parent
data type will be lost when the valuetype is passed to the receiving context.

Note

You cannot make a custom valuetype truncatable.

408 VisiBroker for Java Developer’s Guide

 31: Using URL naming 409

Using URL naming
This section explains how to use the URL Naming Service which allows you to
associate a URL (Uniform Resource Locator) with an object's IOR (Interoperable
Object Reference). Once a URL has been bound to an object, client applications can
obtain a reference to the object by specifying the URL as a string instead of the object's
name. If you want client applications to locate objects without using the osagent or a
CORBA Naming Service, specifying a URL is an alternative.

URL Naming Service
The URL Naming Service is a simple mechanism that lets a server object associate its
IOR with a URL in the form of a string in a file. Client programs can then locate the
object using the URL pointing to the file containing the stringified URL on the web
server. The URL Naming Service supports the http URL scheme for registering objects
and locating an object by the URL.

This URL name service provides a way to locate objects without using the Smart Agent
or a CORBA Naming Service. It enables client applications to locate objects provided
by any vendor.

Note

The VisiBroker URL Naming supports whatever form of URL handling that your Java
environment supports.

URL Naming Service examples

The code for the URL Naming Service examples are located in your VisiBroker
distribution in the following directory:

<install_dir>\examples\vbe\basic\bank_URL

The following is the IDL specification for this service. IDL sample (WebNaming module)

// WebNaming.idl
#pragma prefix "borland.com"
module URLNaming {
 exception InvalidURL{string reason;};
 exception CommFailure{string reason;};
 exception ReqFailure{string reason;};
 exception AlreadyExists{string reason;};

410 VisiBroker for Java Developer’s Guide

Register ing objects

 abstract interface Resolver {
 // Read Operations
 Object locate(in string url_s)
 raises (InvalidURL, CommFailure, ReqFailure);
 // Write Operations
 void force_register_url(in string url_s, in Object obj)
 raises (InvalidURL, CommFailure, ReqFailure);
 void register_url(in string url_s, in Object obj)
 raises (InvalidURL, CommFailure, ReqFailure, AlreadyExists);
 };
};

Registering objects
Object servers register objects by binding to the Resolver and then using the
register_url or the force_register_url method to associate a URL with an object's
IOR. register_url is used to associate a URL with an object's IOR if no prior
association exists. Using the force_register_url method associates a URL with an
object's IOR regardless of whether an URL has already been bound to that object. If
you use the register_url method under the same circumstances, an AlreadyExists
exception is raised.

For an example illustrating the server-side use of this feature, see “URL Naming
Service examples”. This example uses force_register_url. For force_register_url to
be successful, the web server must be allowed to issue HTTP PUT commands.

Note

To get a reference to the Resolver, use the VisiBroker ORB's
resolve_initial_references method, as shown in the example.

...
public class Server {
 public static void main(String[] args) {
 if (args.length == 0) {
 System.out.println("Usage: vbj Server <URL string>");
 return;
 }
 String url = args[0];
 try {
 // Initialize the ORB.
 org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,null);
 // get a reference to the root POA
 POA rootPOA =

POAHelper.narrow(orb.resolve_initial_references("RootPOA"));
 // Create the servant
 AccountManagerImpl managerServant = new AccountManagerImpl();
 // Decide on the ID for the servant
 byte[] managerId = "BankManager".getBytes();
 // Activate the servant with the ID on myPOA
 rootPOA.activate_object_with_id(managerId, managerServant);
 // Activate the POA manager
 rootPOA.the_POAManager().activate();
 // Create the object reference
 org.omg.CORBA.Object manager =
 rootPOA.servant_to_reference(managerServant);
 // Obtain the URLNaming Resolver
 Resolver resolver = ResolverHelper.narrow(
 orb.resolve_initial_references("URLNamingResolver"));
 // Register the object reference (overwrite if exists)
 resolver.force_register_url(url, manager);
 System.out.println(manager + " is ready.");
 // Wait for incoming requests
 orb.run();

 31: Using URL naming 411

Locat ing an object by URL

} catch (Exception e) {
 e.printStackTrace();
 }
 }
}

In this code sample args[0] is of the form:

http://<host_name>:<http_server_port>/<ior_file_path>/<ior_file_name>

The ior_file_name is the user-specified file name where the stringified object reference
is stored. The suffix of the ior_file_name must be .ior if the Gatekeeper will be used
instead of an HTTP server. An example using the Gatekeeper and its default port
number is as follows:

http://mars:15000/URLNaming/Bank_Manager.ior

Locating an object by URL
Client applications do not need to bind to the Resolver, they simply specify the URL
when they call the bind method, as shown in the following code sample. The bind
accepts the URL as the object name. If the URL is invalid, an InvalidURL exception is
raised. The bind method transparently callslocate() for you.

// ResolverClient.java
import com.borland.vbroker.URLNaming.*;
public class ResolverClient {
 public static void main(String[] args) {
 if (args.length == 0) {
 System.out.println("Usage: vbj Client <URL string> [Account name]");
 return;
 }
 String url = args[0];
 try {
 // Initialize the ORB.
 org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,null);

For an example of how to use locate(), see the following code sample.

 // Obtain the URLNaming Resolver
 Resolver resolver = ResolverHelper.narrow(
 orb.resolve_initial_references("URLNamingResolver"));
 // Locate the object
 Bank.AccountManager manager =
 Bank.AccountManagerHelper.narrow(resolver.locate(url));
 // use args[0] as the account name, or a default.
 String name = args.length > 1 ? args[1] : "Jack B. Quick";
 // Request the account manager to open a named account.
 Bank.Account account = manager.open(name);
 // Get the balance of the account.
 float balance = account.balance();
 // Print out the balance.
 System.out.println("The balance in " + name + "'s account is $" +
balance);
 } catch(Exception e) {
 e.printStackTrace();
 }
 }
}

Obtaining an object reference using the Resolver.locate method:

// Client.java
public class Client {
 public static void main(String[] args) {

412 VisiBroker for Java Developer’s Guide

Locat ing an object by URL

 if (args.length == 0) {
 System.out.println("Usage: vbj Client <URL string> [Account name]");
 return;
 }
 String url = args[0];
 // Initialize the ORB.
 org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,null);
 // Locate the object
 Bank.AccountManager manager = Bank.AccountManagerHelper.bind(orb, url);
 // use args[0] as the account name, or a default.
 String name = args.length > 1 ? args[1] : "Jack B. Quick";
 // Request the account manager to open a named account.
 Bank.Account account = manager.open(name);
 // Get the balance of the account.
 float balance = account.balance();
 // Print out the balance.
 System.out.println("The balance in " + name + "'s account is $" +
balance);
 }
}

 32: Bid irect ional Communicat ion 413

Bidirectional Communication
This section explains how to establish bidirectional connections in VisiBroker without
using the GateKeeper.

Note

Before enabling bidirectional IIOP, please read about “Security considerations”

Using bidirectional IIOP
Most clients and servers that exchange information by way of the Internet are typically
protected by corporate firewalls. In systems where requests are initiated only by the
clients, the presence of firewalls is usually transparent to the clients. However, there
are cases where clients need information asynchronously, that is, information must
arrive that is not in response to a request. Client-side firewalls prevent servers from
initiating connections back to clients. Therefore, if a client is to receive asynchronous
information, it usually requires additional configuration.

In earlier versions of IIOP and VisiBroker, the only way to make it possible for a server
to send asynchronous information to a client was to use a client-side GateKeeper to
handle the callbacks from the server.

If you use bidirectional IIOP, rather than having servers open separate connections to
clients when asynchronous information needs to be transmitted back to clients (these
would be rejected by client-side firewalls anyway), servers use the client-initiated
connections to transmit information to clients. The CORBA specification also adds a
new policy to portably control this feature.

Because bidirectional IIOP allows callbacks to be set up without a GateKeeper, it
greatly facilitates deployment of clients.

414 VisiBroker for Java Developer’s Guide

Bidirect ional Vis iBroker ORB propert ies

Bidirectional VisiBroker ORB properties
The following properties provide bidirectional support:

vbroker.orb.enableBiDir=client|server|both|none

vbroker.se.<sename>.scm.<scmname>.manager.exportBiDir=true|false

vbroker.se.<sename>.scm.<scmname>.manager.importBiDir=true|false

enableBiDir property
The vbroker.orb.enableBiDir property can be used on both the server and the client to
enable bidirectional communication. This property allows you to change an existing
unidirectional application into a bidirectional one without changing any code. The
following table describes the vbroker.orb.enableBiDir property value options:

exportBiDir property
The vbroker.se.<sename>.scm.<scmname>.manager.exportBiDir property is a client-side
property. By default, it is not set to anything by the VisiBroker ORB.

Setting it to true enables creation of a bidirectional callback POA on the specified
server engine.

Setting it to false disables creation of a bidirectional POA on the specified server
engine.

importBiDir property
The vbroker.se.<se-name>.scm.<scm-name>.manager.importBiDir property is a server-
side property. By default, it is not set to anything by the VisiBroker ORB.

Setting it to true allows the server-side to reuse the connection already established by
the client for sending requests to the client.

Setting it to false prevents reuse of connections in this fashion.

Note

These properties are evaluated only once—when the SCMs are created. In all cases,
the exportBiDir and importBiDir properties on the SCMs govern the enableBiDir
property. In other words, if both properties are set to conflicting values, the SCM-
specific properties take effect. This allows you to set the enableBiDir property globally
and specifically turn off BiDir in individual SCMs.

Value Description

client Enables bidirectional IIOP for all POAs and for all outgoing connections. This setting is
equivalent to creating all POAs with a setting of the BiDirectional policy to both and
setting the policy override for the BiDirectional policy to both on the VisiBroker ORB
level. Furthermore, all created SCMs will permit bidirectional connections, as if the
exportBiDir property had been set to true for every SCM.

server Causes the server to accept and use connections that are bidirectional. This is
equivalent to setting the importBiDir property on all SCMs to true.

both Sets the property to both client and server.

none Disables bidirectional IIOP altogether. This is the default value.

 32: Bid i rect ional Communicat ion 415

About the BiDirect ional examples

About the BiDirectional examples
Examples demonstrating use of this feature are installed as part of your VisiBroker
distribution in subdirectories in the following location:

<install_dir>\examples\vbe\bidir-iiop

All the examples are based on a simple stock quote callback application:

1 The client creates a CORBA object that processes stock quote updates.

2 The client sends the object reference of this CORBA object to the server.

3 The server invokes this callback object to periodically update stock quotes.

In the sections that follow, these examples are used to explain different aspects of the
bidirectional IIOP feature.

Enabling bidirectional IIOP for existing applications
You can enable bidirectional communication in existing VisiBroker for Java and C++
applications without modifying any source code. A simple callback application that
does not use bidirectional IIOP at all is located in the following directory:

<install_dir>\examples\vbe\bidir-iiop\basic

To enable bidirectional IIOP for the callback example, you set the
vbroker.orb.enableBiDir property as follows:

1 Make sure the osagent is running.

2 Start the server.

UNIX

prompt> vbj -Dvbroker.orb.enableBiDir=server Server &

Windows

prompt> start vbj -Dvbroker.orb.enableBiDir=server Server

3 Start the client.

prompt> vbj -Dvbroker.orb.enableBiDir=client RegularClient

The existing callback application now uses bidirectional IIOP and works through a
client-side firewall.

Explicitly enabling bidirectional IIOP
The client in directory <install_dir>\examples\vbe\bidir-iiop\basic is derived from the
RegularClient described in “Enabling bidirectional IIOP for existing applications”,
except that this client enables bidirectional IIOP programmatically.

The changes required are in the client code only. To convert the unidirectional client
into a bidirectional client, all you need to do is:

1 Include the BiDirectional policy in the list of policies for the callback POA.

2 Add the BiDirectional policy to the list of overrides for the object reference that refers
to the server for which we want to enable bidirectional IIOP.

3 Set the exportBiDir property to true in the client.

416 VisiBroker for Java Developer’s Guide

Expl ic i t ly enabl ing bid i rect ional I IOP

In the following code sample, the code that implements bidirectional IIOP is displayed
in bold:

public static void main (String[] args) {

try {
 org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args, null);
 org.omg.PortableServer.POA rootPOA =
 org.omg.PortableServer.POAHelper.narrow(
 orb.resolve_initial_references("RootPOA"));
 org.omg.CORBA.Any bidirPolicy = orb.create_any();
 bidirPolicy.insert_short(BOTH.value);
 org.omg.CORBA.Policy[] policies = {
 //set bidir policy
 orb.create_policy(BIDIRECTIONAL_POLICY_TYPE.value, bidirPolicy)
 };
 org.omg.PortableServer.POA callbackPOA =
 rootPOA.create_POA("bidir", rootPOA.the_POAManager(), policies);
 QuoteConsumerImpl c = new QuoteConsumerImpl();
 callbackPOA.activate_object(c);
 callbackPOA.the_POAManager().activate();
 QuoteServer serv =
 QuoteServerHelper.bind(orb, "/QuoteServer_poa",
 "QuoteServer".getBytes());
 serv=QuoteServerHelper.narrow(serv._set_policy_override(
 policies, org.omg.CORBA.SetOverrideType.ADD_OVERRIDE));
 serv.registerConsumer(QuoteConsumerHelper.narrow(
 callbackPOA.servant_to_reference(c)));
 System.out.println("Client: consumer registered");
 //sleeping for 60 seconds, receiving message
 try{
 Thread.currentThread().sleep(60*1000);
 }
 catch(java.lang.InterruptedException e){ }
 serv.unregisterConsumer(QuoteConsumerHelper.narrow(
 callbackPOA.servant_to_reference(c)));
 System.out.println("Client: consumer unregistered. Good bye.");
 orb.shutdown(true);
...

Unidirectional or bidirectional connections

A client connection can be either unidirectional or bidirectional. A server can use a
bidirectional connection to call back the client without opening a new connection.
Otherwise, the connection is considered unidirectional.

 32: Bid i rect ional Communicat ion 417

Secur i ty considerat ions

Enabling bidirectional IIOP for POAs

The POA on which the callback object is hosted must enable bidirectional IIOP by
setting the BiDirectional policy to BOTH. This POA must be created on an SCM which
has been enabled for bidirectional support by setting the
vbroker.<sename>.scm.<scmname>.manager.exportBiDir property on the SCM manager.
Otherwise, the POA will not be able to receive requests from the server over a client-
initiated connection.

If a POA does not specify the BiDirectional policy, it must not be exposed in outgoing
connections. To satisfy this requirement, a POA which does not have the BiDirectional
policy set cannot be created on a server engine which has even one SCM whose
exportBiDir property is set. If an attempt is made to create a POA on a unidirectional
SE, an InvalidPolicy exception is raised, with the ServerEnginePolicy in error.

Note

Different objects using the same client connection may set conflicting overrides for the
BiDirectional policy. Nevertheless, once a connection is made bidirectional, it always
remains bidirectional, regardless of the policy effective at a later time.

Once you have full control over the bidirectional configuration, you enable bidirectional
IIOP on the iiop_tp SCM only:

prompt> vbj -Dvbroker.se.iiop_tp.scm.iiop_tp.manager.exportBiDir=
true Client

Security considerations
Use of bidirectional IIOP may raise significant security issues. In the absence of other
security mechanisms, a malicious client may claim that its connection is bidirectional
for use with any host and port it chooses. In particular, a client may specify the host
and port of security-sensitive objects not even resident on its host. In the absence of
other security mechanisms, a server that has accepted an incoming connection has no
way to discover the identity or verify the integrity of the client that initiated the
connection. Further, the server might gain access to other objects accessible through
the bidirectional connection. This is why use of a separate, bidirectional SCM for
callback objects is encouraged. If there are any doubts as to the integrity of the client, it
is recommended that bidirectional IIOP not be used.

For security reasons, a server running VisiBroker will not use bidirectional IIOP unless
explicitly configured to do so. The property vbroker.<se>.<sename>.scm.<scmname>.
manager.importBiDir gives you control of bidirectionality on a per-SCM basis. For
example, you might choose to enable bidirectional IIOP only on a server engine that
uses SSL to authenticate the client, and to not make other, regular IIOP connections
available for bidirectional use. (See “Bidirectional VisiBroker ORB properties” for more
information.) In addition, on the client-side, you might want to enable bidirectional
connections only to those servers that do callbacks outside of the client firewall. To
establish a high degree of security between the client and server, you should use SSL
with mutual authentication (set vbroker.security.peerAuthenticationMode to
REQUIRE_AND_TRUST on both the client and server).

418 VisiBroker for Java Developer’s Guide

 33: Using the BOA with Vis iBroker 419

Using the BOA with VisiBroker
This section describes how to use the BOA with VisiBroker.

Note

BOA support is provided as backward compatibility for VisiBroker version 4.0 (CORBA
spec. 2.1) and 3.x versions. For current CORBA specification support, see “Using
POAs.”

Compiling your BOA code with VisiBroker
If you have existing BOA code that you developed with a previous version of
VisiBroker, you can continue to use it with the current version as long as you keep the
following in mind:

– To generate the necessary BOA base code, you must use the “-boa” option with the
idl2java tool. For more information on using idl2java to generate the code, see “IDL
to Java mapping.”

– Because the BOA_init() is no longer available under org.omg.CORBA.ORB, you must
cast the VisiBroker ORB to com.borland.vbroker.CORBA.ORB.

– Because the BOA class is no longer available in the org.omg.CORBA package, you must
now refer to it in the com.borland.vbroker.CORBA package. For more information on the
VisiBroker ORB package, see VisiBroker for Java APIs.

Supporting BOA options
All BOA command line options supported by VisiBroker 4.x are still supported.

Limitations in using the BOA
Two features are not supported with VisiBroker 4.x BOA:

– Persistent DSI objects are not supported.

– _boa() on DSI objects is not supported.

420 VisiBroker for Java Developer’s Guide

Using object act ivators

Using object activators
BOA object activators are supported by VisiBroker. However, these activators can be
used only with BOA, not POA. The POA uses servant activators and servant locators in
place of object activators.

In this release of VisiBroker, the Portable Object Adaptor (POA) supports the features
that were provided by the BOA in VisiBroker 3.x releases. For backward compatibility
reasons, you may still use the object activators with your code.

Naming objects under the BOA
Though the BOA is deprecated in VisiBroker, you may still use it in conjunction with the
Smart Agent to specify a name for your server objects which may be bound to in your
client programs.

Object names

When creating an object, a server must specify an object name if the object is to be
made available to client applications through the osagent. When the server calls the
BOA.obj_is_ready method, the object's interface name will only be registered with the
VisiBroker osagent if the object is named. Objects that are given an object name when
they are created return persistent object references, while objects which are not given
object names are created as transient.

Note

If you pass an empty string for the object name to the object constructor in VisiBroker
for Java, a transient object is created (an object which is not registered with the Smart
Agent). If you pass a null reference to the constructor, a transient object is created.

The use of an object name by your client application is required if it plans to bind to
more than one instance of an object at a time. The object name distinguishes between
multiple instances of an interface. If an object name is not specified when the bind()
method is called, the osagent will return any suitable object with the specified interface.

Note

In VisiBroker 3.x, it was possible to have a server process that provided different
interfaces, all of which had the same object name, but in the current version of
VisiBroker, different interfaces may not have string-equivalent names.

 34: Using object act ivators 421

Using object activators
This section describes how to use the VisiBroker object activators.

In this release, as well as the VisiBroker 4.1 release and later, the Portable Object
Adaptor (POA) supports the features that were provided by the BOA in the VisiBroker
3.x and 4.0 releases. For backward compatibility reasons, you may still use the object
activators as described in this section with your code. For more information on how to
use the BOA activators with this release, see “Using the BOA with VisiBroker.”

Deferring object activation
You can defer activation of multiple object implementations using service activation
with a single Activator when a server needs to provide implementations for a large
number of objects.

Activator interface
You can derive your own interface from the Activator class. This allows you to
implement the activate and deactivate methods that the VisiBroker ORB will use for
the DBObjectImpl object. You can then delay the instantiation of the DBObjectImpl object
until the BOA receives a request for that object. It also allows you to provide clean-up
processing when the BOA deactivates the object.

This code sample shows the Activator interface, which provide methods invoked by
the BOA to activate and deactivate an VisiBroker ORB object.

package com.borland.vbroker.extension;
public interface Activator {
 public abstract org.omg.CORBA.Object activate(ImplementationDef impl);
 public abstract void deactivate(org.omg.CORBA.Object obj, ImplementationDef
impl);
}

422 VisiBroker for Java Developer’s Guide

Using the serv ice act ivat ion approach

The following code sample shows you how to create an Activator for the DBObjectImpl
interface.

// Server.java
import com.borland.vbroker.extension.*;
...
class DBActivator implements Activator {
 private static int _count;
 private com.borland.vbroker.CORBA.BOA _boa;
 public DBActivator(com.borland.vbroker.CORBA.BOA boa) {
 _boa = boa;
 }
 public org.omg.CORBA.Object activate(
 com.borland.vbroker.extension.ImplementationDef impl) {
 System.out.println("Activator called " + ++_count + " times");
 byte[] ref_data = ((ActivationImplDef) impl).id();
 DBObjectImpl obj = new DBObjectImpl(new String(ref_data));
 _boa.obj_is_ready(obj);
 return obj;
 }
 public void deactivate(org.omg.CORBA.Object obj,
 com.borland.vbroker.extension.ImplementationDef impl) {
 // nothing to do here...
 }
}
...

Using the service activation approach
Service activation can be used when a server needs to provide implementations for a
large number of objects (commonly thousands of objects, possibly millions) but only a
small number of implementations need to be active at any specific time. The server can
supply a single Activator which is notified whenever any of these subsidiary objects
are needed. The server can also deactivate these objects when they are not in use.

For example, you might use service activation for a server that loads object
implementations whose states are stored in a database. The Activator is responsible
for loading all objects of a given type or logical distinction. When VisiBroker ORB
requests are made on the references to these objects, the Activator is notified and
creates a new implementation whose state is loaded from the database. When the
Activator determines that the object should no longer be in memory and, if the object
had been modified, it writes the object's state to the database and releases the
implementation.

Figure 34.1 Process of Deferring Activation for a Service

 34: Using object act ivators 423

Using the service act ivat ion approach

Deferring object activation using service activators

Assuming the objects that will make up the service have already been created, the
following steps are required to implement a server that uses service activation:

1 Define a service name that describes all objects activated and deactivated by the
Activator.

2 Provide implementations for the interface which are service objects, rather than
persistent objects. This is done when the object constructs itself as an activatable
part of a service.

3 Implement the Activator which creates the object implementations on demand. In
the implementation, you derive an Activator interface from extension::Activator,
overriding the activate and deactivate methods.

4 Register the service name and the Activator interface with the BOA.

Example of deferred object activation for a service

The following sections describe the odb example for service activation which is located
in the following VisiBroker directory:

<install_dir>/examples/vbe/boa/odb

This directory contains the following files:

The odb example shows how an arbitrary number of objects can be created by a single
service. The service alone is registered with the BOA, instead of each individual object,
with the reference data for each object stored as part of the IOR. This facilitates object-
oriented database (OODB) integration, since you can store object keys as part of an
object reference. When a client calls for an object that has not yet been created, the
BOA calls a user-defined Activator. The application can then load the appropriate
object from persistent storage.

In this example, an Activator is created that is responsible for activating and
deactivating objects for the service named “DBService.” References to objects created
by this Activator contain enough information for the VisiBroker ORB to relocate the
Activator for the DBService service, and for the Activator to recreate these objects on
demand.

The DBService service is responsible for objects that implement the DBObject interface.
An interface (contained in odb.idl) is provided to enable manual creation of these
objects.

odb.idl interface
The odb.idl interface enables manual creation of objects that implement the DBObject
odb interface.

interface DBObject {
 string get_name();
};
typedef sequence<DBObject> DBObjectSequence;

Name Description

odb.idl IDL for DB and DBObject interfaces.

Server.java Creates objects using service activators, returns IORs for the objects, and
deactivates the objects.

Creator.java Calls the DB interface to create 100 objects and stores the resulting stringified
object references in a file (objref.out).

Client.java Reads the stringified object references to the objects from a file and makes calls
on them, causing the activators in the server to create the objects.

Makefile When make or nmake (on Windows) is invoked in the odb subdirectory, builds the
following client and server programs:
 Server, Creator, and Client.

424 VisiBroker for Java Developer’s Guide

Using the serv ice act ivat ion approach

interface DB {
 DBObject create_object(in string name);
};

The DBObject interface represents an object created by the DB interface, and can be
treated as a service object.

DBObjectSequence is a sequence of DBObjects. The server uses this sequence to keep
track of currently active objects.

The DB interface creates one or more DBObjects using the create_object operation. The
objects created by the DB interface can be grouped together as a service.

Implementing a service activator
Normally, an object is activated when a server instantiates the classes implementing
the object, and then calls obj_is_ready followed by impl_is_ready . To defer activation
of objects, it is necessary to gain control of the activate method that the BOA invokes
during object activation. You obtain this control by deriving a new class from
com.borland.vbroker.extention.Activator and overriding the activate method, using
the overridden activate method to instantiate classes specific to the object.

In the odb example, the DBActivator class derives from
com.borland.vbroker.extenstion.Activator , and overrides the activate and deactivate
methods. The DBObject is constructed in the activate method.

Th following code sample is an example of overriding activate and deactivate.

// Server.java
class DBActivator implements Activator {
 private static int _count;
 private com.borland.vbroker.CORBA.BOA _boa;
 public DBActivator(com.borland.vbroker.CORBA.BOA boa) {
 _boa = boa;
 }
 public org.omg.CORBA.Object activate(
 com.borland.vbroker.extension.ImplementationDef impl) {
 System.out.printIn("Activator called " + ++_count + " times");
 byte[] ref_data = ((ActivationImplDef) impl).id();
 DBObjectImpl obj = new DBObjectImpl(new String(ref_data));
 _boa.obj_is_ready(obj);
 return obj;
 }
 public void deactivate(org.omg.CORBA.Object obj, ImplementationDef impl) {
 // nothing to do here...
 }
}

When the BOA receives a client request for an object under the responsibility of the
Activator, the BOA invokes the activate method on the Activator. When calling this
method, the BOA uniquely identifies the activated object implementation by passing
the Activator an ImplementationDef parameter, from which the implementation can
obtain the ReferenceData , the requested object's unique identifier.

The following code sample gives you an example of implementing a server activator.

public org.omg.CORBA.Object activate(ImplementationDef impl) {
 System.out.println("Activator called " + ++_count + " times");
 byte[] ref_data = ((ActivationImplDef) impl).id();
 DBObjectImpl obj = new DBObjectImpl(new String(ref_data));
 _boa.obj_is_ready(obj);
 return obj;
}

Instantiating the service activator
The DBActivator service activator is responsible for all objects that belong to the
DBService service. All requests for objects of the DBService service are directed through

 34: Using object act ivators 425

Using the service act ivat ion approach

the DBActivator service activator. All objects activated by this service activator have
references that inform the VisiBroker ORB that they belong to the DBService service.

The following code sample creates and registers the DBActivator service activator with
an impl_is_ready call in the main server program.

public static void main(String[] args) {
 org.omg.CORBA.ORB orb = ORB.init(args, null);
 com.borland.vbroker.CORBA.BOA boa = ((com.borland.vbroker.orb.ORB
)orb).BOA_init();
 DB db = new DBImpl("Database Manager");
 boa.obj_is_ready(db);
 boa.impl_is_ready("DBService", new DBActivator(boa));
}

Note

The call to impl_is ready is a variation on the usual call to impl_is_ready . It takes two
arguments:

– Service name.

– Instance of an Activator interface that will be used by the BOA to activate objects
belonging to the service.

Using a service activator to activate an object
Whenever an object is constructed, obj_is_ready must be explicitly invoked in activate.
There are two calls to obj_is_ready in the server program. One call occurs when the
server creates a service object and returns an IOR to the creator program.

public DBObject create_object(String name) {
 System.out.println("Creating: " + name);
 DBObject dbObject = new DBObjectImpl(name);
 _boa().obj_is_ready(dbObject, "DBService", name.getBytes());
 return dbObject;
}

The second occurrence of obj_is_ready is in activate, and this needs to be explicitly
called.

426 VisiBroker for Java Developer’s Guide

 35: CORBA except ions 427

CORBA exceptions
This section provides information about CORBA exceptions that can be thrown by the
VisiBroker ORB, and explains possible causes for VisiBroker throwing them.

CORBA exception descriptions
The following table lists CORBA exceptions, and explains reasons why the VisiBroker
ORB might throw them.

Exception Explanation Possible causes

CORBA::BAD_CONTEXT An invalid context has been
passed to the server.

An operation may raise this exception if a client
invokes the operation, but the passed context does
not contain the context values required by the
operation.

CORBA::BAD_INV_ORDER The necessary prerequisite
operations have not been called
prior to the offending operation
request.

An attempt to call the CORBA::Request::get_response()
or CORBA::Request::poll_response() methods may
have occurred prior to actually sending the request.
An attempt to call the exception::get_client_info()
method may have occurred outside of the
implementation of a remote method invocation. This
function is only valid within the implementation of a
remote invocation. An operation was called on the
VisiBroker ORB that was already shut down.

CORBA::BAD_OPERATION An invalid operation has been
performed.

A server throws this exception if a request is
received for an operation that is not defined on that
implementation's interface. Ensure that the client
and server were compiled from the same IDL. The
CORBA::Request::return_value() method throws this
exception if the request was not set to have a return
value. If a return value is expected when making a
DII call, be sure to set the return value type by
calling the CORBA::Request::set_return_type() method.

428 VisiBroker for Java Developer’s Guide

CORBA except ion descr ipt ions

CORBA::BAD_PARAM A parameter passed to the
VisiBroker ORB is invalid.

Sequences throw CORBA::BAD_PARAM if an access is
attempted to an invalid index. Make sure you use the
length() method to set the length of the sequence
before storing or retrieving elements of the
sequence.

The VisiBroker ORB throws this exception if null
reference is passed. An attempt may have been
made to insert a null object reference into an Any.

An attempt was made to send a value that is out of
range for an enumerated data type.

An attempt may have been made to construct a
TypeCode with an invalid kind value.

Using the DII and one way method invocations, an
OUT argument may have been specified. An interface
repository throws this exception if an argument
passed into an IR object's operation conflicts with its
existing settings. See the compiler errors for more
information.

CORBA::BAD_QOS Quality of service cannot be
supported.

Can be raised whenever an object cannot support
the quality of service required by an invocation
parameter that has a quality of service semantics
associated with it.

CORBA::BAD_TYPECODE The ORB has encountered a
malformed type code.

CORBA::CODESET_INCOMPATIBLE Communication between client
and server native code sets fails
because the code sets are
incompatible.

The code sets used by the client and server cannot
work together. For instance, the client uses ISO
8859-1 and the server uses the Japanese code set.

CORBA::COMM_FAILURE Communication is lost while an
operation is in progress, after
the request was sent by the
client, but before the reply has
been returned.

This exception is raised if communication is lost
while an operation is in progress, after the request
was sent by the client, but before the reply from the
server has been returned to the client.

CORBA::DATA_CONVERSION The VisiBroker ORB cannot
convert the representation of
marshaled data into its native
representation or vice-versa.

An attempt to marshal Unicode characters with
Output.write_char() or Output.write_stringfails.

CORBA::IMP_LIMIT An implementation limit was
exceeded in the VisiBroker ORB
run time.

The VisiBroker ORB may have reached the
maximum number of references it can hold
simultaneously in an address space. The size of the
parameter may have exceeded the allowed
maximum. The maximum number of running clients
and servers has been exceeded.

CORBA::INITIALIZE A necessary initialization has not
been performed.

The ORB_init() method may not have been called. All
clients must call the ORB_init() method prior to
performing any VisiBroker ORB-related operations.
This call is typically made immediately upon
program startup at the top of the main routine.

CORBA::INTERNAL An internal VisiBroker ORB error
has occurred.

An internal VisiBroker ORB error may have
occurred. For instance, the internal data structures
of the VisiBroker ORB may have been corrupted.

Exception Explanation Possible causes

 35: CORBA except ions 429

CORBA except ion descr ipt ions

CORBA::INTF_REPOS An instance of the Interface
Repository could not be located.

If an object implementation cannot locate an
interface repository during an invocation of the
get_interface() method, this exception will be thrown
to the client. Ensure that an Interface Repository is
running, and that the requested object's interface
definition has been loaded into the Interface
Repository.

CORBA::INV_FLAG An invalid flag was passed to an
operation.

A Dynamic Invocation Interface request was created
with an invalid flag.

CORBA::INV_IDENT An IDL identifier is syntactically
invalid.

An identifier passed to the interface repository is not
well formed. An illegal operation name is used with
the Dynamic Invocation Interface.

CORBA::INV_OBJREF An invalid object reference has
been encountered.

The VisiBroker ORB will throw this exception if an
object reference is obtained that contains no usable
profiles. The ORB::string_to_object() method will
throw this exception if the stringified object reference
does not begin with the characters "IOR:".

CORBA::INV_POLICY An invalid policy override has
been encountered.

This exception can be thrown from any invocation. It
can be raised when an invocation cannot be made
due to an incompatibility between policy overrides
that apply to the particular invocation.

CORBA::INVALID_TRANSACTION A request carried an invalid
transaction context.

This exception could be raised if an error occurred
while trying to register a Resource.

CORBA::MARSHAL Error marshalling parameter or
result.

A request or reply from the network is structurally
invalid. This error typically indicates a bug in either
the client-side or server-side run time. For example,
if a reply from the server indicates that the message
contains 1000 bytes, but the actual message is
shorter or longer than 1000 bytes, the VisiBroker
ORB raises this exception. A MARSHAL exception can
also be caused by using the DII or DSI incorrectly.
For example, if the type of the actual parameters
sent does not agree with IDL signature of an
operation.

CORBA::NO_IMPLEMENT The requested object could not
be located.

Indicates that even though the operation that was
invoked exists (it has an IDL definition), no
implementation for that operation exists. For
example, a NO_IMPLEMENTATION is raised when
a server doesn't exist or is not running when a client
initiates a bind.

CORBA::NO_MEMORY The VisiBroker ORB runtime has
run out of memory.

CORBA::NO_PERMISSION The caller has insufficient
privileges to complete an
invocation.

The Object::get_implementation() and
BOA::dispose() methods throw this exception if they
are called on the client side. It is only valid to call
these methods within the server that activated the
object implementation.

An object other than the transaction originator has
attempted Current::commit() or Current::rollback().

CORBA::NO_RESOURCES A necessary resource could not
be acquired.

If a new thread cannot be created, this exception will
be thrown. A server will throw this exception when a
remote client attempts to establish a connection if
the server cannot create a socket—for example, if
the server runs out of file descriptors. The minor
code contains the system error number obtained
after the server's failed ::socket() or ::accept() call.
A client will similarly throw this exception if a
::connect() call fails due to running out of file
descriptors.

Exception Explanation Possible causes

430 VisiBroker for Java Developer’s Guide

CORBA except ion descr ipt ions

CORBA::NO_RESPONSE A client attempts to retrieve the
result of a deferred synchronous
call, but the response for the
request is not yet available.

If BindOptions are used to set timeouts, this
exception is raised when send and receive calls do
not occur within the specified time.

CORBA::OBJ_ADAPTER An administrative mismatch has
occurred.

A server has attempted to register itself with an
implementation repository under a name that is
already in use, or is unknown to the repository. The
POA has raised an OBJ_ADAPTER error due to problems
with the application's servant managers.

CORBA::OBJECT_NOT_EXIST The requested object does not
exist.

A server throws this exception if an attempt is made
to perform an operation on an implementation that
does not exist within that server. This will be seen by
the client when attempting to invoke operations on
deactivated implementations. For instance, if an
attempt to bind to an object fails, or an auto-rebind
fails, OBJECT_NOT_EXIST will be raised

CORBA::PERSIST_STORE A persistent storage failure has
occurred.

Attempts to establish a connection to a database
has failed, or the database is corrupt.

CORBA::REBIND The client has received an IOR
which conflicts with QOS
policies.

Thrown anytime the client gets an IOR which will
conflict with the QOS policies that have been set. If
the Rebind Policy has a value of
NO_REBIND,NO_CONNECT, or VB_NOTIFY_REBIND and an
invocation on a bound object reference results in an
object forward or a location forward message.

CORBA::TIMEOUT The VisiBroker ORB timed out
an operation

When attempting to establish a connection or
waiting for a request/reply, if the operation does not
complete before the specified time, a TIMEOUT
exception is thrown. CORBA::TIMEOUT has the
following minor codes:

■ 0x56420001: connection timed out (could not
connect within the connection timeout)

■ 0x56420002: request timed out (could not send
the request within the timeout specified)

■ 0x56420003: Reply timed out (the reply was not
received within the round trip timeout specified)

CORBA::TRANSACTION_REQUIRED The request has a null
transaction context, and an
active transaction is required.

A method was invoked that must execute as part of
a transaction, but no transaction was active on the
client thread.

CORBA::TRANSACTION_ROLLEDBACK The transaction associated with
a request has already been
rolled back, or marked for roll
back.

A requested operation could not be performed
because the transaction has already been marked
for rollback.

CORBA::TRANSACTION_MODE Raised by the VisiBroker ORB,
when it detects a mismatch
between the TransactionPolicy in
the IOR and the current
transaction mode.

Exception Explanation Possible causes

 35: CORBA except ions 431

CORBA except ion descr ipt ions

CORBA::TRANSACTION_UNAVAILABLE Raised by the VisiBroker ORB,
when it cannot process a
transaction service context
because its connection to the
Transaction Service has been
abnormally terminated.

CORBA::TRANSIENT An error has occurred, but the
VisiBroker ORB believes it is
possible to retry the operation.

A communications failure may have occurred and
the VisiBroker ORB is signalling that an attempt
should be made to rebind to the server with which
communications have failed. This exception will not
occur if the BindOptions are set to false with the
enable_rebind() method, or the RebindPolicy is
properly set.

CORBA::UNKNOWN The VisiBroker ORB could not
determine the thrown exception.

The server throws something other than a correct
exception, such as a Java runtime exception. There
is an IDL mismatch between the server and the
client, and the exception is not defined in the client
program. In DII, if the server throws an exception not
known to the client at the time of compilation and the
client did not specify an exception list for the
CORBA::Request. Set the property vbroker.orb.warn=2
on the server to see which runtime exception caused
the problem.

Exception Explanation Possible causes

System exception Minor code Explanation

BAD_PARAM 1 Failure to register, unregister, or lookup the value factory

BAD_PARAM 2 RID already defined in the interface repository

BAD_PARAM 3 Name already used in the context in the interface repository

BAD_PARAM 4 Target is not a valid container

BAD_PARAM 5 Name clash in inherited context

BAD_PARAM 6 Incorrect type for abstract interface

MARSHAL 1 Unable to locate value factory

NO_IMPLEMENT 1 Missing local value implementation

NO_IMPLEMENT 2 Incompatible value implementation version

BAD_INV_ORDER 1 Dependency exists in the interface repository preventing the
destruction of the object

BAD_INV_ORDER 2 Attempt to destroy indestructible objects in the interface
repository

BAD_INV_ORDER 3 Operation would deadlock

BAD_INV_ORDER 4 VisiBroker ORB has shut down

OBJECT_NOT_EXIST 1 Attempt to pass a deactivated (unregistered) value as an
object reference

432 VisiBroker for Java Developer’s Guide

Heurist ic OMG-speci f ied except ions

Heuristic OMG-specified exceptions
A heuristic decision is a unilateral decision made by a participant in a transaction to
commit or rollback updates without first obtaining the consensus outcome determined
by the VisiTransact Transaction Service. See the VisiTransact Guide for more
information about heuristics.

The following table lists heuristic exceptions as defined by the OMG CORBAservices
specification, and explains reasons why they might be thrown.

Exception Description Possible causes

CosTransactions::
HeuristicCommit

A heuristic decision was
made and all relevant
updates have been
committed by the Resource.

The VisiTransact Transaction Service
invoked rollback() on a Resource object
that already made a heuristic decision to
commit its work. The Resource raises the
HeuristicCommit exception to indicate its
state to the VisiTransact Transaction
Service.

CosTransactions::
HeuristicHazard

A Resource may or may not
have made a heuristic
decision, and does not know
if all relevant updates have
been made. For updates that
are known, all have been
committed or rolled back.
This exception takes priority
over HeuristicMixed.

The VisiTransact Transaction Service
invokes commit() or rollback() on a
Resource object that may or may not have
made a heuristic decision.

The Resource raises this exception to
indicate to the VisiTransact Transaction
Service that its own state is not entirely
known. The VisiTransact Transaction
Service returns this exception to the
application if it does not know if all
Resources have made updates.

CosTransactions::
HeuristicMixed

A heuristic decision was
made, and some relevant
updates have been
committed, and others have
been rolled back.

The VisiTransact Transaction Service
invokes commit() or rollback() on a
Resource object that has made a heuristic
decision, but not made all the relevant
updates.

The Resource raises this exception to
indicate to the VisiTransact Transaction
Service that its state is not entirely
consistent. The VisiTransact Transaction
Service returns this exception to the
application if it receives mixed responses
from Resources.

CosTransactions::
HeuristicRollback

A heuristic decision was
made and all relevant
updates have been rolled
back by the Resource.

The VisiTransact Transaction Service
invokes commit() on a Resource object that
has made a heuristic decision to rollback
its work. The Resource raises the
HeuristicRollback exception to indicate its
state to the VisiTransact Transaction
Service.

 35: CORBA except ions 433

Other OMG-speci f ied except ions

Other OMG-specified exceptions
The following table lists other exceptions as defined by the OMG CORBAservices
specification, and explains reasons why the VisiTransact Transaction Service might
throw them. For more information see “Overview of transaction processing.”.

Exception Description Possible causes

CosTransactions::Inactive The transaction has
already been prepared
or terminated.

This exception could be raised if
register_synchronization() is
invoked after the transaction has
already been prepared.

CosTransactions::InvalidControl An invalid Control has
been passed.

This exception is raised when
resume() is invoked and the
parameter is not a null object
reference, and is also not valid
in the current execution
environment.

CosTransactions::NotPrepared A Resource has not
been prepared.

An invocation of
replay_completion() or commit()
on a Resource that has not yet
prepared will result in this
exception.

CosTransactions::NoTransaction No transaction is
associated with the
client thread.

The commit(), rollback(), or
rollback_only() methods may
raise this exception if there is no
transaction associated with the
client thread at invocation.

CosTransactions::NotSubtransaction The current transaction
is not a subtransaction.

This exception is not raised by
VisiTransact Transaction
Manager since nested
transactions are not supported.
The NoTransaction exception is
raised instead.

CosTransactions::
SubtransactionsUnavailable

The client thread
already has an
associated transaction.
The VisiTransact
Transaction Service
does not support
nested transactions.

A subsequent begin() invocation
was performed after a
transaction was already begun.
If your transactional object
needs to operate within a
transaction, it must first check to
see if a transaction has already
begun before invoking begin().

The create_subtransaction()
method was invoked, but
VisiTransact Transaction
Manager does not support
subtransactions.

CosTransactions::
SynchronizationUnavailable

The Coordinator does
not support
Synchronization
objects.

This exception is not raised by
VisiTransact Transaction
Manager since Synchronization
objects are supported.

434 VisiBroker for Java Developer’s Guide

Other OMG-speci f ied except ions

CosTransactions::Unavailable The requested object
cannot be provided.

The Control object cannot
provide the Terminator or
Coordinator objects when
Control::get_terminator() or
Control::get_coordinator() are
invoked.

The VisiTransact Transaction
Service restricts the availability
of the PropagationContext, and
will not return it upon an
invocation of
Coordinator::get_txcontext().

CORBA::WrongTransaction Raised by the ORB
when returning the
response to a deferred
synchronous request.
This exception can
only be raised if the
request is implicitly
associated with the
current transaction at
the time the request
was issued.

The get_response() and
get_next_response() methods
may raise this exception if the
transaction associated with the
request is not the same as the
transaction associated with the
invoking thread.

Exception Description Possible causes

 36: Web Services Overview 435

Web Services Overview
A Web Service is an application component that you can describe, publish, locate, and
invoke over a network using standardized XML messaging. Defined by new
technologies like SOAP, Web Services Description Language (WSDL), and Universal
Discovery, Description and Integration (UDDI), this is a new model for creating e-
business applications from reusable software modules that are accessed on the World
Wide Web and also providing a means for integration of older disparate applications.

Web Services Architecture

The standard Web Service architecture consists of the three roles that perform the web
services publish, find, and bind operations:

– The Service Provider registers all available web services with the Service Broker

The Service Provider hosts the web service and makes it available to clients via the
Web. The Service Provider publishes the web service definition and binding
information to the Universal Description, Discovery, and Integration (UDDI) registry.
The Web Service Description Language (WSDL) documents contain the information
about the web service, including its incoming message and returning response
messages.

– The Service Broker publishes the web services for the Service Requestor to access.
The information published describes the web service and its location. Apart from
publishing the web service, it also co-ordinates in hosting the web service.

The Service Broker manages the interaction between the Service Provider and
Service Requestor. The Service Broker makes available all service definitions and
binding information. Currently, SOAP (an XML-based, messaging and encoding
protocol format for exchange of information in a decentralized, distributed
environment) is the standard for communication between the Service Requestor
and Service Broker.

– The Service Requestor interacts with the Service Broker to find the web services.
The Service Requestor can then bind or invoke the web services.

The Service Requestor is a client program that consumes the web service. The
Service Requestor finds web services by using UDDI or through other means, such
as email. It then binds or invokes the web service.

436 VisiBroker for Java Developer’s Guide

VisiBroker Web Services Archi tecture

Standard Web Services Architecture

VisiBroker Web Services Architecture
There are two aspects to the architecture:

– Exposing the CORBA interface for Service Requestors to make invocations using
WSDL.

– Providing a runtime environment for enabling CORBA objects to be accessible for
the Service Requestors through SOAP/HTTP. This involves the infrastructure to
support Services Providers and a Service Broker.

The first aspect is achieved by using a Web Service development tool that converts an
IDL interface to a WSDL document using the standard as specified by OMG’s CORBA
to WSDL/SOAP Inter-working specification (Version 1.1). Service Requestors or Web
Services clients to make invocations can use the generated WSDL using SOAP over
HTTP/HTTPS as transport.

To provide a Web services runtime, VisiBroker uses Apache Axis technology to handle
the intricacies of a Services Broker. Using a proprietary type-specific bridge (generated
by the tool), deployed stateless CORBA objects can be made accessible. The type-
specific bridge instances act as the Service Providers bringing forward the functionality
of the CORBA object back end to the Service Requestors.

 36: Web Services Overview 437

VisiBroker Web Services Archi tecture

Web Services Artifacts

The figure below explains the Web Services development tool provided with VisiBroker
that generates the WSDL document and the Bridge code from an IDL file. The WSDL
document is useful for the Services Requesters and along with the service description;
it also provides the SOAP binding information, which allows any SOAP compliant client
to make invocation.

The generated bridge artifact is actually a language/type-specific service provider
component that gets deployed in the Service Broker (Axis runtime) and an instance of
this is responsible for adapting the incoming SOAP message from the Service
Requester to a bound CORBA object.

Web Service Runtime

To explain the runtime behavior, the figure below shows a SOAP client making use of
the generated WSDL to make SOAP/HTTP or SOAP/HTTPS invocations on three
CORBA objects exposed as Web Services in VisiBroker for C++, Java and a pre 7.0
VisiBroker process.

VisiBroker for Java process comes with the infrastructure for HTTP/SOAP and HTTPS/
SOAP listeners, which are by default turned off. By setting the command line property
vbroker.ws.enable=true, HTTP/SOAP runtime infrastructure can be started. With web
services enabled, HTTPS/SOAP infrastructure in VisiBroker for Java can be activated
using the property vbroker.security.disable=false. Once the infrastructure is started, the
Service providers (bridge) for the CORBA objects can be deployed using Axis’s WSDD
mechanism. Using few VisiBroker proprietary CORBA object binding related WSDD
elements, the deployed bridge instances can be bound to CORBA objects and any
SOAP invocations on the bridge is adapted to an in-process CORBA invocation. The
bridge in reality is a morph of the Axis’s server side generated code, with each web
service implementation skeleton mapped to a method on a type specific CORBA object
stub. Because the bridge is generated directly from IDL, all the type-safety and fidelity
of IDL types is inherently built in. Also, because the bridge is loaded in the same
process as the CORBA objects, all invocation on the CORBA object from the bridge is
optimized because of VisiBroker’s “inprocess” bidder.

In the figure the cloud “Ax” depicts the Axis + HTTP listener component loaded into the
VisiBroker process. “Ob” cloud depicts a CORBA object inside the ORB. The
association between the “Ax” and “Ob” cloud as shown by the two small circles
between them indicates the deployment of a bridge on the Axis runtime exposing the
CORBA object to Service Requesters. Existing CORBA clients can continue making

438 VisiBroker for Java Developer’s Guide

VisiBroker Web Services Archi tecture

GIOP over IIOP invocations through the GIOP/IIOP listener as usual without
any impact.

To support exposing CORBA objects in Pre 7.0 VisiBroker deployments, the bridge can
be deployed on an Axis instance running externally to the VisiBroker process. The only
difference in this case is that that SOAP to GIOP adaptation will be remote and hence
will be over the wire. In the above figure, this is shown by deploying the bridge on Axis
for Java embedded in Apache Tomcat. The cloud “Ob” indicates the CORBA object
instance running on a remote Pre 7 VisiBroker Process and the request from the bridge
comes in through the GIOP/IIOP end point.

The figure below explains the components inside a VisiBroker process. The “Axis
runtime” cloud contains the Axis runtime, the HTTP listener along with the SOAP
request dispatcher. A CORBA object inside the process is exposed as a Web Service
by deploying its Service provider or the bridge as a Web Service using the Axis WSDD
mechanism. When a SOAP client makes an invocation on the Web Service, the HTTP
listener picks up the SOAP request and the request is passed to the dispatcher. The
dispatcher invokes on the Axis runtime passing in the SOAP request. The Axis runtime
decodes the SOAP request and makes invocation on an instance of the deployed
Service provider (bridge). The bridge then makes use of the binding information
provided in the WSDD to bind to the actual CORBA object and make the CORBA
invocation.

 36: Web Services Overview 439

VisiBroker Web Services Archi tecture

In the above context, the Service Broker includes only a SOAP node on a HTTP
transport. Other services needed for a Web Services deployment such as a UDDI
service etc are not provided. Various implementations of these are available and can
easily be used.

440 VisiBroker for Java Developer’s Guide

Exposing a CORBA object as Web Service

Exposing a CORBA object as Web Service
To expose a CORBA object as a Web Service in VisiBroker for Java, the following
steps need to be performed:

1 Development

a Generate the server-side servant skeletons

b Generate the interface type-specific Java bridge from the IDL file

c Generate WSDL document for the IDL interface from the IDL file

2 Deployment

a Enable/Configure Web Service Runtime

b Deploy the bridge classes in the VisiBroker process using Axis WSDD
mechanism.

This section illustrates an example provided in the “vbe/ws/bank” sub directory of
examples directory (SOAP over HTTPS example for VisiBroker for Java server
processes can be found under the directory “security/ws/animal”). This example is an
adaptation of the “vbe/basic/bank_agent” example and consists of two interfaces
Account and AccountManager. The AccountManager allows for creation of new named
accounts. If an account for a particular name already exists, the account is retrieved
without creating a new account. Account interface allows for querying of balance in the
account. The Server sets up a POA under the root POA and activates an object
implementing the AccountManager interface. On making the open operation on this
object, separate objects implementing Account interface are created, stored and
returned. The code sample shown below illustrates the two interfaces.

// Bank.idl
module Bank {
 interface Account {

 float balance();
 };
 interface AccountManager {

 Account open(in string name);
 };

};

In this example, it will be shown how this stateful application can be enhanced to
support SOA using Web Services. As a first step in the development, the stateful
operations need to be converted to a coarser grained abstraction suitable for SOA. The
interface shown below is one such example. This interface as shown, supports a single
operation that opens a named account if the account does not already exist and returns
the balance in the account.

// BankWebService.idl
module BankWebService {
 interface AccountManagerWebService {

 // opens account if not already opened, and returns balance
 float openAndQueryBalance(in string name);

 };
};

A CORBA object is then implemented which implements this interface, which internally
uses the Account and AccountManager interfaces and activated on a known POA with
a well known object ID.

Once the server has been enhanced to for stateless operations, web service support
can be implemented as illustrated in the following sections.

Development

1 Generating the server POA servant code

 36: Web Services Overview 441

Exposing a CORBA object as Web Service

Using the idl2java compiler, generate the server side skeleton classes for the
CORBA interfaces Account and AccountManager in Bank.idl, and
AccountManagerWebService in BankWebService.idl.

prompt> idl2java Bank.idl
prompt> idl2java BankWebService.idl

2 Generating the Java interface type specific bridge

Using the idl2wsj compiler with –gen_java_bridge option, the Java bridge for all
interfaces can be generated. The following command will generate bridge code for
BankWebService.idl in a file named AccountManagerWebService.java. This code is
opaque to the applications and should not be changed.

prompt> idl2wsj –gen_java_bridge BankWebService.idl

3 Generating WSDL from IDL

In addition to bridge code, idl2wsj in step 2 will also generate a WSDL document for
the IDL file according to OMG’s CORBA to WSDL/SOAP Inter-working specification
(version 1.1). This WSDL document can then be published through external means
to potential Web Service clients or Client development teams. idl2wsj can also be
used to generate only WSDL document as follows:

prompt> idl2wsj BankWebService.idl

The generated bridge code is then deployed as a Web Service.

For a complete list of the options available, refer the idl2wsj section of “Programmer
tools for Java” chapter.

Deployment

1 The first step is to deploy WSDD document in AXIS run-time. WSDD or Web
Service Deployment Descriptor is a standard Axis means to instruct on deployment
related information. A WSDD (deploy.wsdd) for the bridge is created during the
bridge creation. A sample WSDD is shown below which aims to deploy a Web
Service hosted in a CORBA object with object id “BankManagerWebService”.

<?xml version="1.0" encoding="UTF-8"?>
<deployment xmlns="http://xml.apache.org/axis/wsdd/"
 xmlns:java="http://xml.apache.org/axis/wsdd/providers/java">

 <service
 name="BankWebService.AccountManagerWebServicePort"
 provider="java:VISIBROKERPROVIDER">
 <namespace>

 http://BankWebService.AccountManagerWebService
 </namespace>
 <parameter

 name="className"
 value="[package].BankWebService_AccountManagerWebService "/>

 <operation name="openAndQueryBalance">
 <parameter qname="name" type="tns:string"

 xmlns:tns="http://www.w3.org/2001/XMLSchema/"/>
 </operation>

 </service>
</deployment>

442 VisiBroker for Java Developer’s Guide

SOAP/WSDL compat ib i l i ty

2 Create a property file server.prop to set up the Web Service runtime. Following is a
sample property file. The following properties configure the Service Broker to start
up a HTTP server on host 143.186.141.54 at port 19000. The connection manager
is set up to allow maximum of 30 concurrent connections with 300 seconds to mark
the connection idle time. The thread pool to service the incoming SOAP request is
setup to have maximum of 300 threads with thread idle time set to 300 seconds. For
a complete list of configurable properties, refer the “Web Service Runtime
Properties” section of “VisiBroker properties” chapter.

vbroker.ws.enable=true
vbroker.se.ws.host=143.186.141.54
vbroker.se.ws.scm.ws_ts.listener.port=19000
vbroker.se.ws.scm.ws_ts.manager.connectionMax=30
vbroker.se.ws.scm.ws_ts.manager.connectionMaxIdle=300
vbroker.se.ws.scm.ws_ts.dispatcher.threadMin=0
vbroker.se.ws.scm.ws_ts.dispatcher.threadMax=300
vbroker.se.ws.scm.ws_ts.dispatcher.threadMaxIdle=300

3 Run the Server as follows:

prompt> vbj –DORBpropStorage=server.prop Server

4 The generated bridge code can be deployed with deploy.wsdd (generated with
bridge) in AXIS runtime using AXIS utility AdminClient as follows:

prompt> java org.apache.axis.client.AdminClient
 –lhttp:// 143.186.141.54:19000/axis/ deploy.wsdd

SOAP/WSDL compatibility
SOAP version 1.1 and WSDL version 1.1 is supported.

Index 443

Symbols
[] brackets 4
| vertical bar 4

A
abstract interfaces 55, 405
abstract valuetypes 402
account.idl

files produced from account_c.cc 17
files produced from account_c.hh 17
files produced from account_s.cc 17
files produced from account_s.hh 17

AccountManager interface, DSI 320
activate() method 421
activating objects 287

arguments passed by OAD 288
deferring 421
deferring with service activators 423

activation 9
service activation 422

Activator class
deactivating an ORB object 421
deferring object activation 421, 423

ActiveObjectLifeCycleInterceptor 349
class 348

adapter
Naming Service 205
VisiNaming Service 205

adapters, DII 302
adding fields to user exceptions 90
administration commands

oadutil list 282
oadutil unreg 289
osfind 177

Agent interface 181
agent, reporting 177
agentaddr file, specifying IP addresses 174
Any

Any type DSI 320
Any type mapping 59
class 308
object 302

application development costs, reducing 7
applications

defining object interfaces 16
deploying 22
enabling bidirectional IIOP 415
locating osagent via vbj command 35
running 21
starting client program 22
starting server object 21
starting Smart Agent 21
thread pool 127
thread-per-session 129

arguments, -ORBshmsize 35
arrays, mapping 48
asynchronous communication 413
authentication

bidirectional IIOP 417
Naming Service client 218
VisiNaming client 218

authorization
method level for the Naming Service 220
method level for VisiNaming 220
Naming Service method level 218
VisiNaming method level 218

B
backing store 203

improving performance 208
backingStoreType 75
backward compatibility, Event Service 229
BAD_CONTEXT exception 427
BAD_INV_ORDER exception 427
BAD_OPERATION exception 427
BAD_PARAM exception 427
BAD_TYPECODE exception 427
basic types, IDL types 41
bidirectional IIOP 413

enabling for existing applications 415
examples 415, 416
InvalidPolicy exception 417
POAs 417
security 417
unidirectional connections 416

BiDirectional policy 417
bidirectional properties 414
bidirectional SCM 413, 417
bind

generic object references 305
nsutil 195
process 144

bind process
actions performed by _bind() 144
binding to objects 144
connection to objects established 144
proxy object created 144

bind(), osagent 169
bind_context, nsutil 195
binding, ORB’s tasks 177
BindInterceptor, class 348
bind_new_context, nsutil 195
BOA

backward support 421
binding 177
class moved 419
compiling code 419
limitations in using 419
naming objects 420
object activators 420, 421
options 419
supported options 419
using with VisiBroker 419

BOA_init, change to package 419
boolean type,mapping 45
Borland Developer Support, contacting 4
Borland Technical Support, contacting 4
Borland Web site 4, 5
bound objects, determining location and state 146
boxed valuetypes 405
bridges, DII 302
broadcast address 173
broadcast messages 167

Index

444 VisiBroker for Java Developer’s Guide

C
caching facility 208
Caffeine compiler, description 32
catching exceptions

modifying object to 90
system exceptions 88
user exceptions 90

ChainUntypedObjectWrapper 367
char type, mapping 45
class

ActiveObjectLifeCycleInterceptor 348
Any 308
BindInterceptor 348
ClientRequestInterceptor 325, 348
Codec 329
CodecFactory 329
CreationImplDef 286
DefaultBindInterceptor 351
DefaultClientInterceptor 351
DefaultServerInterceptor 351
DynamicImplementation 316
Interceptor 324
IORCreationInterceptor 348
IORInterceptor 328
NamedValue 307
Naming Context 197
NVList 320
NVList ARG_IN parameter 320
NVList ARG_INOUT parameter 320
NVList ARG_OUT parameter 320
ORBInitializer 330
ORBInitInfo 330
ORInfoExt 332
POALifeCycleInterceptor 348
PullConsume 237
PullConsumerPOA 237
PullSupplierPOA 235
Repository 299
Request 305
ServerRequest 319
ServerRequestInterceptor 348
TypeCode 309

classes
default Interceptor 351
PICurrent 328
_tie 139

CLASSPATH 35
classpath 37
client

authentication Naming Service 218
bidirectional connection to server 416
bidirectional IIOP 413
implementing 18
initializing the ORB 143
Interceptors 347
locating osagent via vbj command 35
receiving asynchronous information 413
referencing a Server Manager 244
runtime 155
unidirectional connection to server 416
using the DII 304
using thread pool 127
using thread-per-session 129

client and server, running 21, 23
client request interceptors, examples 337

client stubs, generating 17
ClientRequestInterceptor 348

class 325, 348
implementing 336

clients, building with Dynamic Invocation Interface 302
client-side in-process connection, properties 81
Cluster Manager interface 212
cluster, creating in a Naming Server 212
ClusterManager 210
clusters 210
code

building 21
building with nmake 21
building with vbmake 21
compiling BOA 419
generation 17

code set support 154
classification 154
conversion code set 154
native code set 154
negotiation 154
transmission code set 154
types 154

Codec 329
class 329
interface 329

CodecFactory 329
class 329
interface 329

commands
idl2ir 28, 29
idl2java 29
java2idl 31
java2iiop 32
vbj 35

commands, conventions 4
COMM_FAILURE exception 427
Common Object Request Broker. See CORBA
compilers

IDL, feature summary 9
java2idl 385
java2iiop 385
nmake 21
vbmake 21

compiling BOA code 419
completion status 87

obtaining for system exceptions 87
complex name 192
connecting

client applications with objects 7
point-to-point communications 174
Smart Agents on different local networks 171

connection management 9, 129
properties 133

connections
garbage collection 136
managing, feature summary 9

ConnEventListener interface 382
connID 382
ConnInfo 382

connID 382
ipaddress 382
port 382

constants, mapping 47
constructed types mapping 48
Container class 245

Index 445

Index

container, Server Manager 244
conversion code set 154
CORBA

Common Object Request Broker Architecture 7
defined 7
definition 139
description of 7
exceptions 427
VisiBroker compliance 11

corbaloc URL 196
corbaname URL 196
CosNaming operations, supported by VisiNaming 195
CosNaming, calling from the command line 194
creating software components 7
CreationImplDef class 286

activation_policy property 286
args property 286
env property 286
path_name property 286

CreationImplDef struct, activating an object 287
Current interface 328
custom valuetypes 407

D
DATA_CONVERSION exception 427
DataExpress adapter 203
deactivate() method 421
default factories 405
DefaultBindInterceptor class 351
DefaultClientInterceptor class 351
DefaultServerInterceptor class 351
deferring object activation 423

service activation 423
delegation, with server implementations 57
deployment, description 22
destroy, nsutil 195
Developer Support, contacting 4
development, defining object interfaces 16
DII 10

Any objects 302
asynchronous requests 311
building clients 302
client 304
concepts 302
creating a DII request 306
creating a request 305
disadvantages 301
examples 304
feature summary 10
generating portable stubs 32
generic object reference 305
initializing a request 305
Interface Repository 293, 312
NamedValue class 308
NamedValue interface 308
NVList objects 303
overview 301
receiving multiple requests 311, 312
receiving replies 304
receiving results 310
Reply recieving options 302
Request interface 305

Request objects 302
Request sending options 302
send_deferred method 311
sending a request 310
sending multiple requests 311
sending requests 303
send_oneway method 311
setting request arguments 307
Typecode objects 302
using idl2java compiler 304
using request objects 302
using the create_request method 306
using the _request method 306

disabling Smart Agent 168
dispatch policies and properties 131
dispatch policy

thread pool 131
thread-per-session 133

Dispatcher properties 119
distributed applications, development process for 15
documentation 2

accessing Help Topics 3
Borland Security Guide 2
on the web 5
.pdf format 3
platform conventions used in 4
type conventions used in 4
updates on the web 3
VisiBroker for C++ API Reference 2
VisiBroker for C++ Developer's Guide 2
VisiBroker for Java Developer's Guide 2
VisiBroker for .NET Developer's Guide 2
VisiBroker GateKeeper Guide 3
VisiBroker Installation Guide 2
VisiBroker VisiNotify Guide 2
VisiBroker VisiTelcoLog Guide 2
VisiBroker VisiTime Guide 2
VisiBroker VisiTransact Guide 2

domains, running multiple 170
DSI

AccountManager interface 320
activating objects 320
Any type 320
BAD_OPERATION exception 320
compiling object servers 316
creating object implementations dynamically 316
deriving classes 316
deriving from DynamicImplementation class 316
examples 316
feature summary 10
implementing server object 319
input parameters 320
inter-protocol bridging 315
object dynamic creation 316
overview 315
processing input in DSI 320
protocol bridging 315
return values 320
scope resolution operator 318
ServerRequest class 319
using idl2java compiler 315

-D_VIS_INCLUDE_IR flag 299

446 VisiBroker for Java Developer’s Guide

Dynamic Invocation Interface. See DII
Dynamic Skeleton Interface. See DSI
DynamicImplementation class 316

example of deriving from 316
DynAny

access and initializing 392
creating 392
initializing and accessing the value 392
overview 391
types 392

DynAny interface 391
constructed data types 393
current_component method 393
DynAnyFactory object 392
DynArray data type 394
DynEnum interface 393
DynSequrence data type 394
DynStruct interface 394, 395
DynUnion interface 394
example application 394
example client application 395
example IDL 394
example server application 396
examples 391
NameValuePair 395
next method 393
restrictions 392
rewind method 393
seek method 393
to_any method 395

DynArray data type 394
DynEnum interface 393
DynSequence data type 394
DynStruct interface 394
DynUnion interface 394

E
effective policies 147
enableBiDir property 414
enums mapping 48
environment variables

for OAD 280
OSAGENT_ADDR 174
OSAGENT_LOCAL_FILE 173

event channel 233
in-process implementation 241

event listeners 382
ConnInfo 382

Event queue 381
code samples 383
connection EventListener 383
connection events 381
ConnEventListener interface 382
event listeners 382
event types 381
EventListener interface 382
EventQueueManager interface 382
overview 381
registering EventListeners 383

Event Service
communication models 231
examples 234
in-process event channel 242
overview 229
pull model 232

push model 232
setting queue length 240
starting 240

event types 381
connection types 381

EventChannel 232
EventLibrary 241, 242
EventListener 382

implementing a connection 383
registering 383

EventQueueManager interface 382
example

DynAny IDL 394
oadutil unreg utility 290

example application
building the example 21
compiling 21
defining object interfaces 16
deploying the application 22
development process 15
generating client stubs 17
implementing the client 18
implementing the server 20
running the example 21
server servants 17
starting the server 21
with VisiBroker 15
writing account interface in IDL 17

examples
activating objects 421, 423
activation 423
bidirectional IIOP 415
deferred method in object activation 423
DSI 316
Interceptors 352
Interface Repository 299
IR 299
Naming Service 222
object wrappers 364
odb 423
Portable Interceptors 333
push consumer 234
push supplier 234
request interceptors 337
RMI-IIOP 386, 388
Server Manager 251
Smart Agent localaddr file 173
_tie class 139
URL Naming Service 409
using the DII 304
VisiBroker Interceptors 352
VisiNaming Service 222

exceptions
adding fields to user exceptions 90
catching user exceptions 90
completion status for exceptions 87
CORBA 427
CORBA overview 85
CORBA-defined system exceptions 85
handling 87
heuristic 432
InvalidPolicy 417
Java IDL system 59
mapping 58
narrowing to system exceptions 88
system 59

Index 447

Index

SystemException class 85
throwing 89
user-defined 59

exportBiDir property 414

F
Factories 402

default 405
implementing 404
valuetypes 404

Factory class 404
factory_name 195
failover

Naming Service 215
VisiNaming Service 215

fault tolerance 8
Naming Service 215
replicating objects registered with OAD 175
VisiNaming Service 215

features of VisiBroker 8
activating objects and implementations 9
compilers, IDL 9
connection management 9
dynamic invocation 10
IDL compilers 9
IDL interface to Smart Agent 9
implementation activation 9
implementation repository 10
interface repository 10
Location Service 9
multithreading 9
object activation 9
object database integration 10
Smart Agent architecture 8
thread management 9

file extensions 17
files

impl_rep 279
localaddr 173
produced by compiling 17
produced by idl compiler 17

floating point, mapping 45
FREE_MEM exception 427

G
garbage collection 136
Generic object testers, DII 302
get_listeners 382
_get_policy 147
globally scoped objects, Smart Agent registration 165

H
handling system exceptions 87
Help Topics, accessing 3
Helper classes, mapping 46
heuristic exceptions 432
Holder classes, mapping 42

I
id field, NameComponent 192

IDL
compilers 17
constructs represented in Interface Repository 293
creating from Java 31
defining one-way methods 162
DynAny example 394
example specification 158
generating Java code 29
information contained in IR 293
interface inheritance 162
mapping constants 47
mapping constructed types 48
mapping interfaces 53, 56
mapping modules 40
mapping names to Java 39
mapping nested types 60
mapping parameters 55
mapping to Java 16, 39
mapping typedefs 60
mapping types 41
OAD interface 291
reserved names 40
reserved words 40
Server Manager 245
specifying objects 17
type extensions 41
using Java to define IDL 32

IDL file, #pragma mechanisms 282
IDL type

basic types 41
boolean 45
char 45
complex 60
floating point type 45
Holder classes 42
integer type 45
octet 45
simple 60
string 45
wstring 45

idl2cpp compiler 17
attribute methods 162
defining one-way methods 162
generating code 158
interface inheritance 162

idl2ir 28
command info 28, 29
description 28, 29
options 28

idl2ir compiler 295
command info 11
description 11

idl2java
command info 29
generating portable stubs for DII 29
options 29

idl2java compiler
generating stub code using DII 304
generating stub code using DSI 315
-portable flag 304, 315

IIOP
bidirectional examples 415, 416

448 VisiBroker for Java Developer’s Guide

enabling bidirectional 415
using bidirectional 413

implementation
activation 9
connections with Smart Agents 165
fault tolerance 175
stateless, invoking methods on 175
support 9
unregistering with the OAD 288

Implementation Repository 10
feature summary 10
for OAD 282
impl_rep file 279
listing contents 290
removed when unregistered with the OAD 288
specifying directory with OAD 280
stored registration information 279
unregistering objects 289
using OAD 280

implementations
binding 177
reporting 177
unregistering with OAD 289, 290
using delegation 57
using thread-per-session 129

implementing
the server 20
valuetypes 403

IMP_LIMIT exception 427
impl_rep file 279
import statements

Naming service 221
VisiNaming Service 221

importBiDir 417
importBiDir property 414
inheritance

allowing from implementations 139
implementing servers 56
interface 162

inheritance of interfaces, specifying 162
INITIALIZE exception 427
In-memory adapter 203
in-process event channel 241, 242
input parameters, processing in DSI 320
input/output arguments for method invocation

requests 307
instances

determining for object reference 145
finding with Location Service 179

integer mapping 45
interception points

order of invocation 361
request interception points 325, 326
ServerRequestInterceptor 326

Interceptor
class 324
default Interceptor classes 351
interface 324

Interceptor interface
example 352
registering with the ORB 351

Interceptor objects, creating 352
Interceptors

ActiveObjectLifeCycleInterceptor 349
and client side Portable Interceptors 361
and server side Portable Interceptors 361

API classes 348
BindInterceptor 348
client 348
client Interceptors 347
ClientRequestInterceptor 348
creating Interceptor objects 352
example program 352
interfaces 348
IORCreationInterceptor 350
loading 352
managers 348
overview 347
passing data between 361
POALifeCycleInterceptor 349
registering Interceptors with the ORB 351
server 349
server Interceptors 347
ServerRequestInterceptor 350
ServiceResolverInterceptor 351
using 347
using with Porable Interceptors 361

interceptors
customizing the ORB 10
IOR 323

interface
attributes 162
Codec 329
CodecFactory 329
Current 328
defining in IDL 17
inheritance 162
Interceptor 324
IORInterceptor 328
looking up 299
ORBInitializer 330
ORBInitInfo 330
ORInfoExt 332

Interface Definition Language. See IDL
interface name

converting to repository ID 281
defining 158
obtaining 145
unregistering objects with OAD 289

Interface Repository 10
accessing object information 299
contents 297
contents of 293
creating 294
description 293
examples 299
feature summary 10
_get_interface() method 294
identifying objects within 297
inherited interfaces 298
populating with idl2ir 11, 28, 29
properties 79
structure 296
types of objects stored in 297
updating contents with idl2ir 295
viewing contents of 295

interface scope mapping 58
InterfaceDef object, in Interface Repository 293
*_interface_name() method 145
interfaces

ConnEventListeners 382
descriptions of in Interface Repository 293

Index 449

Index

EventListener 382
EventQueueManager 382
mapping 53, 56
NamingContextExt 198
Quality of Service 147
reporting 177
specifying inheritance 162
using java2iiop 390

INTERNAL exception 427
interoperability 13

ORB interoperability 13
with other ORB products 14
with VisiBroker for C++ 13
with VisiBroker for Java 13

INTF_REPOS exception 427
InvalidPolicy exception 417
INVALID_TRANSACTION exception 427
InvalidURL exception 411
INV_FLAG exception 427
INV_INDENT exception 427
INV_OBJREF exception 427
invocation feature summary 10
invoke() method 315, 316

example of implementing 316
IOR interceptors 323
IORCreationInterceptor 350

class 348
IORInfoExt class 332
IORInterceptor

class 328
interface 328

IP subnet mask
broadcast messages specifying scope of 171
localaddr file 173

ipaddress 382
IR

accessing object information 299
contents 297
description 293
examples 299
identifying objects within 297
inherited interfaces 298
structure 296
types of objects stored in 297
See also Interface Repository

ir2idl 29
options 29

ir2idl utility, viewing contents of IR 295
irep tool

creating an Interface Repository 294
creating Interface Repository 294
viewing Interface Repository 295

_is_a() method 145
_is_bound() method 146
_is_local() method 146
_is_remote() method 146

J
Java

creating an IDL file from Java 31
defining IDL interfaces 32
generating code from IDL file 29

Java Development Kit (JDK) 13
mapping from IDL 39
null 44
RMI over IIOP properties 63
runtime environment 13
starting the interpreter via vbj 35

Java applets, setting up with RMI-IIOP 385
java2idl 385

command info 31
description 31
options 31

java2iiop 385
command info 32
generating portable stubs for DII 32
mapping complex data types 390
mapping primitive types 389
options 32

JDBC adapter 203
JDBC Adapter properties 75
jdbcDriver 75
JVM 38

K
kind field, NameComponent 192

L
list, nsutil 195
Listener properties 118
listener threads 124
load balancing

migrating objects between hosts 176
Naming Service 213
using Location Service 180
VisiNaming Service 213

Local interfaces 55
localaddr file, specifying interface usage 173
Location Service 179

Agent interface 181
components of agent 181
enhanced object discovery 9
feature summary 9
properties 71
trigger 183
triggers 181

location service, Smart Agent 166
location, determining for an object reference 146
loginPwd 75

M
makefile sample for Solaris 21
mapping 46

abstract interfaces 55
Any type 59
arrays 48
boolean type 45
char type 45
constants 47
constructed types 48
enums 48
exceptions 58
floating point 45

450 VisiBroker for Java Developer’s Guide

Holder classes 42
IDL names 39
IDL type 41
integer 45
interface scope 58
interfaces 53
local interfaces 55
modules 40
nested types 60
octet 45
passing parameters 55
reserved names 40
reserved words 40
sequences 48
string 45
structs 48
typedefs 60
unions 48

MARSHAL exception 427
marshalling, using java2iiop 389
maxQueueLength 240
messages

broadcast 167
broadcasting via vbj command 35

method 147
method level authorization, Naming Service 218
methods

activate() 421
boa.obj_is_ready() 316
deactivate() 421
defining one-way 162
example of implementing invoke() 316
_get_policy 147
*_interface_name() 145
invoke() 315, 316
_is_a() 145
_is_bound() 146
_is_local() 146
_is_remote() 146
*_object_name() 145
objects maintaining state 175
*object_to_string() 145
ORB_init(), ORBshmsize 35
*_repository_id() 145
_set_policy_override method 147
stateless objects, invoking on 175
string_to_object() 145

migrating
instantiated objects 176
objects 176
objects between hosts 176
objects registered with OAD 176
objects with state 176

modifying object to throwing exceptions 89
ModuleDef object in Interface Repository 293
modules, mapping 40
multihomed hosts 172

specifying interface usage 173
multithreading 123

feature summary 9

N
name

complex 192
defined 192

resolution 192
simple 192
stringified 192

Name, binding names to objects 189
NameComponent

defined 192
id field 192
kind field 192

NamedValue
class 307
objects 307
pair 307

namespace 189
Naming Context class 197
naming contexts, default 198
Naming Service

adapters 205
bootstrapping 196, 220
caching facility 208
client authentication 218
clusters 210
configuring 193
configuring to use SSL 219
CosNaming operations supported 195
creating a cluster 212
default naming context 198
enabling security (C++) 219
enabling security (Java) 219
examples 222
failover 215
fault tolerance 215
import statements 221
initializing in Java 198
installing 193
load balancing 213
method level authorization 218, 220
OMG compliant features 221
pluggable backing store 203
properties 200
properties file 205
properties for SSL (C++) 219
properties for SSL (Java) 219
sample programs 222
security 218
shutting down 195
starting 193, 194
URL 409
using SSL 219
VisiBroker ORB extensions 221

naming service properties 72
NamingContext

bootstrapping 191
factories 191

NamingContextExt 198
NamingContexts

defined 191
use by client applications 191
use by object implementations 191

narrowing exceptions to system exception 88
native code set 154
Native Messaging 255
nested types, mapping 60
network, reporting objects and services 177
new_context, nsutil 195
Newsgroups 5
nmake compiler 21

Index 451

Index

nmake, compiling with 21
NO_IMPLEMENT exception 427
NO_MEMORY exception 427
NO_PERMISSION exception 427
NO_RESOURCES exception 427
NO_RESPONSE exception 427
nsutil 194

bind 195
bind_context 195
bind_new_context 195
destroy 195
list 195
new_context 195
rebind 195
rebind_context 195
resolve 195
shutdown 195
unbind 195

null
Java 44
semantics 405
valuetypes 402

NVList class 320
ARG_IN parameter 320
ARG_INOUT parameter 320
ARG_OUT parameter 320
implementing a list of arguments 307

NVList object 303

O
OAD

and osagent 167
and Smart Agent 167
and the Smart Agent 280
arguments passed by 288
IDL interface to 291
Implementation Repository 279
impl_rep file 279
interface names 281
listing objects 282
migrating objects registered with 176
oadutil list 282
overview 280
programming interface 291
properties 79
registering objects 283, 287
registration information 279
replicating objects registered with 175
repository IDs 281
setting the activation policy 287
specifying time-out 280
starting 280
storing registration info 282
unregistering objects 288

OAD command, setting environment variables 280
oadj, reporting 177
oadutil

listing objects registered with OAD 282
unregistering implementations 289

oadutil list 282
oadutil tool

displaying contents of Implementation
Repository 290

registering object implementations 279
OBJ_ADAPTOR exception 427
object

accessing information from Interface
Repository 299

activating 423
changing characteristics dynamically 287
connecting to with OAD 167
connections with Smart Agents 165
dynamic creation with DSI 316
finding with Location Service 179
listing 282
multiple instances 286
registering 287
replicating 175
reporting objects on a network 177
setting the activation policy 287
specifying in IDL 17
state invoking methods on 175
stateless, invoking methods on 175
unregistering with the OAD 288
using CreationImplDef struct 287

object activation 9
defering 421
example of deferred method 423
service activation 422
support 9

Object Activation Daemon. See OAD
object activators 421
Object Database Activator, feature summary 10
object discovery, enhanced with the Location Service 9
object implementation

changing dynamically 287
fault tolerance 175
implementations that maintain state 175

Object Management Group 7
object migration 176
object names

obtaining 145
qualifying binding with 144

object reference
checking equivalent implementations 145
converting to string 145
converting to super-type 146
converting type 146
determining instance of type 145
determining location 146
determining state 146
determining type 145
narrowing 146
obtaining hash value 145
obtaining interface name 145
obtaining object name 145
obtaining repository id 145
operations on 145
sub-type 145
using the _is_a() method 145
widening 146

object references, persistent 420
object registration, changing 287

452 VisiBroker for Java Developer’s Guide

Object Request Broker. See ORB
object wrappers

adding factories 367
adding typed wrappers 372
co-located client and server 371
customizing the ORB 10
deriving a typed wrapper 371
description 363
example programs 364
idl2java requirement 364
implementing untyped 366
installing untyped 367
overview 363
post_method 365
pre_method 365
removing typed wrappers 375
removing untyped factories 369
running sample applications 378
typed 363, 369
typed order of invocation 371
un-typed 363
untyped 364
untyped factory 366
using both typed and untyped wrappers 375
using multiple typed 370
using untyped 366

OBJECT_NOT_EXIST exception 427
object-oriented approach, software component

creation 7
objects

associating a URL 409
binding 177
executable's path 287
locating using URL 409
registering 286

*object_to_string() method 145
ObjectWrapper 371
octet, mapping 45
OMG 7

Common Object Services specification 231
Event Service 229
Notification Service 229

OMG compliant features
Naming Service 221
VisiNaming Service 221

one-way methods, defining 162
online Help Topics, accessing 3
open() method 320
OpenLDAP 208
OperationDef object in Interface Repository 293
operator, scope resolution 318
ORB

binding to objects 144
client runtime 155
connection to objects during bind process 144
creating proxy 177
customizing with interceptors and object

wrappers 10
definition 177
domains 170
function of 7
initializing 93, 143
interoperability 13
object implementations 282
properties 65
resolve_initial_references 196

ORBDefaultInitRef property 197
ORB_init() method, -ORBshmsize 35
ORBInitializer

class 330
implementing 335
interface 330
registering 331
registration 335

ORBInitInfo
class 330
interface 330

ORBInitRef 194
ORBInitRef property 196
ORInfoExt interface 332
osagent

bind() 169
binding 177
checking client existing (heartbeat) 169
detecting other agents 171
disabling 168, 169
ensuring availability 169
locating objects 167
object name 420
reporting 177
Smart Agent 165
starting 168
starting Smart Agents with 21
verbose output 168

OSAgent (Smart Agent), VisiBroker architecture 8
osagent log file, options 169
OSAgent, locating via vbj command 35
OSAGENT_ADDR 35
OSAGENT_ADDR environment variable 174
OSAGENT_LOCAL_FILE environment variable 173
OSAGENT_PORT 35
osfind, command info 177
overrides policy 147
overview 1

VisiNaming Service 189

P
parameters, mapping 55
PDF documentation 3
persistent objects, ODA feature summary 10
PERSIST_STORE exception 427
PICurrent class 328
pluggable backing store

configuration 205
properties file 205
types 203

POA
activating 104
activating objects 105, 108
activating with default servant 106
Active Object Map 100
adapter activator 100
adapter activators 121
and Server Engine 116
BiDirectional policy 417
creating 94, 101, 103
deactivating objects 107
definition 99
dispatcher properties 119
dispatching properties 115
enabling bidirectional IIOP 417

Index 453

Index

etherealize 100
incarnate 100
listener port property 119
listener properties 118
listening properties 115
managing POAs 113
ObjectID 100
POA manager 100, 113
policies 101
Policy 100
processing requests 121
properties 69
rootPOA 100, 104
servant 100
servant manager 100
servant managers 108
ServantLocators 111
Server Connection Managers 118
transient object 100
using servants 108

POALifeCycleInterceptor 349
class 348

point-to-point communication 174
policies 147

effective 147
POA 101

policy overrides 147
poolSize 75
port number, listener 119
portability, server-side 10
Portable Interceptors

creating 329
Current 328
examples 333
extensions 332
interception points 326
Interceptor 324
IOR Interceptor 328
IOR interceptors 323
limitations 333
overview 323
PICurrent 328
POA scoped server request 332
registering 330
request interception points 325
request interceptor 325
request interceptors 323
ServerRequestInterceptor 326
system exception 332
types 323

Portable Object Adapter. See POA
#pragma mechanisms 282
process, bind 144
programmer tools

idl2ir 28
ir2idl 29

properties
client-side in-process connection 81
DataExpress adapter 75
dispatcher 119
enableBiDir 414
Interface Repository 79

Java RMI over IIOP 63
JDBC adapter 75
JNDI adapter 75
listener 118
Location Service 71
Naming Service 200
naming service 72
OAD 79
ORB 65
ORBDefaultInitRef 197
ORBInitRef 196
POA 69
POA dispatching 115
POA listening 115
QoS 81
Server Manager 70
server-side server engine 81
server-side thread Pool BOA_TP connection 84
server-side thread pool IIOP_TP connection 83
server-side thread session BOA_TS connection 83
server-side thread session IIOP_TS connection 82
setting connection management 133
Smart Agent 64
SVCnameroot 196
thread management 134
URL Naming 81
vbroker.naming.cache 208
vbroker.naming.enableSlave 215
vbroker.naming.propBindOn 213
vbroker.naming.serverAddresses 215
vbroker.naming.serverClusterName 215
vbroker.naming.serverNames 215
vbroker.naming.slaveMode 215
vbroker.orb.dynamicLibs 352
vbroker.orb.enableBiDir 414
vbroker.orb.enableServerManager 249
vbroker.serverManager.enableOperations 249
vbroker.serverManager.enableSetProperty 249
vbroker.serverManager.name 244
VisiBroker BiDirectional 414
VisiNaming Service 72, 200

properties file, VisiNaming Service 205
proxy

consumer 230
supplier 230

proxy object, created during binding process 144
proxy objects, binding 177
ProxyPullConsumer 232
ProxyPullSupplier 232
ProxyPushConsumer 232
ProxyPushSupplier 232
pull

consumer 232
model 232
supplier 232

PullConsume 237
PullModel 235
PullSupplierPOA class 235
PullSupply 235, 237
push

consumer 232
model 232

454 VisiBroker for Java Developer’s Guide

push supplier 232
example 234
implementin 234

PushConsumer, example 234
PushModel 235

class 234
PushSupplier

implementing 234
interface 234

Q
Quality of Service (Qos) 147

interfaces 147
properties 81

queue length, setting 240

R
rebind, nsutil 195
rebind_context, nsutil 195
rebinds, enabling in Smart Agent 175
reducing application development costs 7
ref_data parameter 286
reference data 286
registering objects using oadutil 283
register_listener 382
registration

OAD Implementation Repository 279
Smart Agents 165

Remote Method Invocation. See RMI
Reply recieving options 302
Repository class 299
repository id, obtaining 145, 281
*_repository_id() method 145
Request class 305
request interceptor 325
request interceptors 323

examples 337, 341
interception points 325, 326
POA scoped server request 332
ServerRequestInterceptor 326

Request object 302
request objects, DII 302
Request sending options 302
RequestInterceptor, implementing 336
REQUIRE_AND_TRUST 417
reserved keywords 40
reserved names, mapping 40
reserved words, mapping 40
resolve, nsutil 195
Resolver interface, associating a URL with an

object 410
RMI 385
RMI over IIOP 385

See also RMI-IIOP
RMI-IIOP 385

examples 386, 388
java applets 385
Java classes supported 389
java2idl 385
java2iiop 385
java2iiop interfaces 386
java.policy file 385
mapping IDL interfaces to Java classes 387
overview 385

running java2iiop 386
setting applet permissions 385

root NamingContext 191
rootPOA 104
RoundRobin

Naming Service 213
VisiNaming Service 213

running applications, starting client program 22
runtime, client 155

S
sample programs

Naming Service 222
VisiNaming Service 222

SCM, bidirectional IIOP 413
scope resolution operator 318
security

bidirectional IIOP 417
Naming Service 218
Naming Service client authentication 218
Naming Service method level authorization 218
VisiNaming Service 218
VisiNaming Service client authentication 218
VisiNaming Service method level authorization 218

security (C++)
enabling in Naming Service 219
enabling in VisiNaming 219

security (Java)
enabling in Naming Service 219
enabling in VisiNaming 219

sequences, mapping 48
server

and receiving client requests 93
bidirectional IIOP 413
implementing 20
initiating connections to clients 413
registering with the OAD 288
sending asynchronous info. to clients 413
Server Manager 244
setting the activation policy 287
setup 93
unidirectional connection to clients 416
waiting for client requests 96

Server Connnection Managers and POAs 118
Server Engine and POAs 116
server Interceptors 347
Server Manager

accessibility 249
Container class 245
Container interface 245
container methods for Java 245
containers 244
custom containers 253
enabling 243
examples 251
getting started 243
IDL definition 249
obtaining a reference 244
overview 243
properties 70
Storage interface 245, 248
writing custom containers 254

Server Manager IDL 245
server request interceptors

examples 337, 341

Index 455

Index

POA scoped 332
server servants, generating 17
ServerRequest class 319
ServerRequestInterceptor 350

class 348
implementing 336
interception points 326

servers
callbacks without a GateKeeper 413
example of tie mechanism 140
threading considerations 133
using inheritance 56

server-side
portability 10
server engine properties 81
thread Pool BOA_TP connection properties 84
thread pool IIOP_TP connection properties 83
thread session BOA_TS connection properties 83
thread session IIOP_TS connection properties 82

service activation
deferring object activation 423
example 423
implementing deferred 423

ServiceInit class 352
ServiceLoader interface 352
ServiceResolverInterceptor 351
services, reporting services on a network 177
_set_policy_override method 147
sharing semantics 405
shutdown, nsutil 195
simple name 192
skeletons 17
Smart Agent

about 165
and OAD 167, 280
availability 169
best practices 166
bind() 169
binding 177
checking client existing (heartbeat) 169
communication 167
connecting on different networks 171
connecting to objects with OAD 167
cooperation with other agents 167
detecting other agents 171
disabling 168, 169
fault tolerance for objects 175
feature summary 8
locating 167
Location Service 179
location service 166
multihomed hosts 172
Naming Service load balancing 213
object name 420
objects removed from 288
osagent 165
OSAGENT_ADDR environment variable 174
OSAGENT_LOCAL_FILE file 173
point-to-point communication 174
properties 64
reregistration of objects automatically 169
running under multiple domains 170

specifying interface usage 173
starting 168
starting multiple instances 167
verbose output 168

Smart Agent (OSAgent) architecture 8
Software updates 5
specifying IP addresses 174
SSL

bidirectional IIOP 417
configuring the Naming Service 219
configuring VisiNaming 219
Naming Service 219
VisiNaming 219

state, determining for an object reference 146
stateless objects, invoking methods on 175
status completion, obtaining for system exceptions 87
Storage interface 248

Server Manager 245
string

converting to object references 145
mapping 45

stringification, using object_to_string() method 145
stringified names 192
string_to_object() method 145
structs. mapping 48
stub, routines 17
stubs, generating portable for DII 29, 32
subnet mask 171, 173
supplier-consumer communication model 229
suppliers, connecting to an EventChannel 233
Support, contacting 4
support, implementation and object activation 9
SVCnameroot 194
SVCnameroot property 196
symbols

brackets [] 4
ellipsis ... 4
vertical bar | 4

system exception, Portable Interceptors 332
system exceptions

BAD_CONTEXT 427
BAD_INV_ORDER 427
BAD_OPERATION 427
BAD_PARAM 427
BAD_QOS 427
BAD_TYPECODE 427
catching 88
COMM_FAILURE 427
CompletionStatus values 87
CORBA-defined 85
DATA_CONVERSION 427
FREE_MEM 427
handling 87
IMP_LIMIT 427
INITIALIZE 427
INTERNAL 427
INTF_REPOS 427
INVALID_TRANSACTION 427
INV_FLAG 427
INV_INDENT 427
INV_OBJREF 427
mapping Java 59

456 VisiBroker for Java Developer’s Guide

MARSHAL 427
narrowing exceptions to 88
NO_IMPLEMENT 427
NO_MEMORY 427
NO_PERMISSION 427
NO_RESOURCES 427
NO_RESPONSE 427
OBJ_ADAPTOR 427
OBJECT_NOT_EXIST 427
obtaining completion status 87
PERSIST_STORE 427
SystemException class 85
TRANSACTION_MODE 427
TRANSACTION_REQUIRED 427
TRANSACTION_ROLLEDBACK 427
TRANSACTION_UNAVAILABLE 427
TRANSIENT 427
UNKNOWN 427

T
Technical Support, contacting 4
thread management 9
thread policies 125
thread pool dispatch policy 131
threading

dispatch policies and properties 131
garbage collection 136
listener threads 124
properties 134
thread policies 125
thread pool policy 125
thread-per-session policy 129
using synchronized block 133
using threads 123
worker threads 124, 125, 129

thread-per-session
dispatch policy 133
implementation 129

threads
multithreading, feature summary 9
using 123

throwing user exceptions 89
_tie class 139

delegator implementation 139
examples 139

tools
administration 12
CORBA services 11
idl2cpp 17
idl2ir 11, 28, 29
idl2java 29
java2idl 31
java2iiop 32
oadutil 283
oadutil unreg 289
osfind 177
programming 11
vbj 35

TRANSACTION_MODE exception 427
TRANSACTION_REQUIRED exception 427
TRANSACTION_ROLLEDBACK exception 427
TRANSACTION_UNAVAILABLE exception 427
TRANSIENT exception 427
transmission code set 154
trigger 181, 183

creating 183
truncatable valuetypes 407
type

Any 320
determining for an object reference 145
determining instance 145
determining sub-type 145
extensions 41

TypeCode class 309
Typecode object 302
typecodes, represented in Interface Repository 293
typedefs, mapping 60
types

DynAny 392
mapping 41

U
UDP protocol 167
unbind, nsutil 195
unions, mapping 48
UNKNOWN exception 427
unregistered_listener 382
unregistering objects

OAD 288
using oadutil 289

untyped object wrappers 364
UntypedObjectWrapper

post_method 367
pre_method 367

URL Naming properties 81
URL Naming Service 409

associating a URL with an object 410
examples 409
InvalidURL exception 411
locating an object 411

user exceptions
adding fields to 90
adding to fields 90
defining 89
modifying object to catch 90
modifying object to throwing exceptions 89
UserException class 89

utilities
idl2ir 295
irep 294
osagent 21

V
valuetypes 401

abstract 402
abstract interfaces 405
base classes 403
boxed 405
compiling the IDL file 403
concrete 402
custom 407
CustomMarshal interface 407
defining 403
derivation 402
Factories 402
factories 402, 405
implementation class 403
implementing 403
implementing factories 404

Index 457

Index

implementing the Factory class 404
inheriting valuetype base classes 403
isomorphic 402
marshal method 407
marshalling 407
null 402
null semantics 405
overview 401
read methods 407
registering 405
registering Factory with the ORB 404
shared 402
sharing semantics 405
truncatable 407
unmarshal method 407
unmarshalling 407
write methods 407

vbj command description 35
vbmake, compiling with 21
vbroker.naming.backingStore 75
vbroker.naming.cache 208
vbroker.naming.enableSlave property 215
vbroker.naming.jdbcDriver 75
vbroker.naming.loginName 75
vbroker.naming.loginPwd 75
vbroker.naming.poolSize 75
vbroker.naming.propBindOn 213
vbroker.naming.serverAddresses property 215
vbroker.naming.serverClusterName property 215
vbroker.naming.serverNames property 215
vbroker.naming.slaveMode property 215
vbroker.naming.url 75
vbroker.orb.dynamicLibs property 352
vbroker.orb.enableBiDir property 414
vbroker.orb.enableServerManager property 249
vbroker.security.peerAuthenticationMode 417
vbroker.serverManager.enableOperations

property 249
vbroker.serverManager.enableSetProperty

property 249
vbroker.serverManager.name property 244
version of product 11, 29, 31, 32, 35
VisiBroker

BOA backward compatibility 419
CORBA compliance 11
described 8
example application 15
features of 8

VisiBroker Interceptors (Interceptors) 347
VisiBroker Interceptors example 352
VisiBroker ORB extensions

Naming Service 221
VisiNaming Service 221

VisiBroker ORB, initializing 143
VisiBroker overview 1
VisiNaming

bootstrapping 220
caching facility 208
configuring OpenLDAP 208
configuring to use SSL 219
method level authorization 220
properties for SSL (C++) 219

properties for SSL (Java) 219
using SSL 219

VisiNaming Service
adapters 205
bootstrapping 196
client authentication 218
clusters 210
configuring 193
CosNaming operations supported 195
creating a cluster 212
default naming context 198
examples 222
failover 215
fault tolerance 215
import statements 221
initializing in Java 198
installing 193
load balancing 213
master/slave mode 217
method level authorization 218
nsutil utility 194
OMG compliant features 221
overview 189
pluggable backing store 203
properties 72, 200
properties file 205
sample programs 222
security 218
shutting down 195
starting 193, 194
VisiBroker ORB extensions 221

VISObjectWrapper
ChainUntypedObjectWrapper 367
UntypedObjectWrapper 367
UntypedObjectWrapperFactory 366

Visual C++ nmake compiler 21

W
web naming, associating a URL with an object 409
web sites, CORBA specification 11
Windows services

console mode 168
osagent 168

words, reserved 40
worker threads 124
World Wide Web

Borland documentation on the 5
Borland newsgroups 5
Borland updated software 5

wstring, mapping 45

458 VisiBroker for Java Developer’s Guide

	Introduction to Borland VisiBroker
	VisiBroker Overview
	VisiBroker features

	VisiBroker Documentation
	Accessing VisiBroker online help topics in the standalone Help Viewer
	Accessing VisiBroker online help topics from within the VisiBroker Console
	Documentation conventions
	Platform conventions

	Contacting Borland support
	Online resources
	World Wide Web
	Borland newsgroups

	Understanding the CORBA model
	What is CORBA?
	What is VisiBroker?
	VisiBroker Features
	VisiBroker's Smart Agent (osagent) Architecture
	Enhanced Object Discovery Using the Location Service
	Implementation and Object Activation Support
	Robust thread and connection management
	IDL compilers
	Dynamic invocation with DII and DSI
	Interface and implementation repositories
	Server-side portability
	Customizing the VisiBroker ORB with interceptors and object wrappers
	Event Queue
	Backing stores in the Naming Service
	Defining interfaces without IDL
	GateKeeper

	VisiBroker CORBA compliance
	VisiBroker Development Environment
	Programmer's tools
	CORBA services tools
	Administration Tools

	Java Development Environment
	Java 2 Standard Edition
	Java Runtime Environment
	What's Required for GateKeeper
	Java-enabled Web browser

	Interoperability with VisiBroker
	Interoperability with other ORB products
	IDL to Java mapping
	Developing an example application with VisiBroker
	Development process
	Step 1: Defining object interfaces
	Writing the account interface in IDL

	Step 2: Generating client stubs and server servants
	Files produced by the idl compiler

	Step 3: Implementing the client
	Client.java
	Binding to the AccountManager object
	Obtaining an Account object
	Obtaining the balance

	AccountManagerHelper.java
	Other methods

	Step 4: Implementing the server
	Server programs

	Step 5: Building the example
	Compiling the example

	Step 6: Starting the server and running the example
	Starting the Smart Agent
	Starting the server
	Running the client

	Deploying applications with VisiBroker
	VisiBroker Applications
	Deploying applications
	Environment variables
	Support service availability
	Using vbj
	Running the application
	Executing client Applications
	Executing server applications in Java

	Programmer tools for Java
	Options
	General options

	idl2ir
	ir2idl
	idl2java
	java2idl
	java2iiop
	vbj
	vbjc
	Specifying the classpath
	Specifying the JVM
	idl2wsj
	IDL to Java mapping
	Names
	Reserved names
	Reserved words
	Modules
	Basic types
	IDL type extensions
	Holder classes
	Java null

	Boolean
	Char
	Octet
	String
	WString
	Integer types
	Floating point types

	Helper classes
	Constants
	Constants within an interface
	Constants NOT within an interface

	Constructed types
	Enum
	Struct
	Union
	Sequence
	Array

	Interfaces
	Abstract interfaces
	Local interfaces
	Passing parameters
	Server implementation with inheritance
	Server implementation with delegation
	Interface scope

	Mapping for exceptions
	User-defined exceptions
	System exceptions
	Mapping for the Any type
	Mapping for certain nested types
	Mapping for Typedef
	Simple IDL types
	Complex IDL types

	VisiBroker properties
	JAVA RMI over IIOP properties
	Smart Agent and Smart Agent communication properties
	VisiBroker ORB properties
	POA properties
	ServerManager properties
	Additional Properties
	Properties related to Server-side resource usage
	Properties related to Client-side resource usage
	Properties related to the Smart Agent (Smart Agent)

	Location Service properties
	Event Service properties
	Naming Service (VisiNaming) properties
	Pluggable Backing Store Properties
	Default properties common to all adapters
	JDBC Adapter properties
	DataExpress Adapter properties
	JNDI adapter properties
	VisiNaming Service Security-related properties

	OAD properties
	Interface Repository properties
	Client-side IIOP connection properties
	URL Naming properties
	QoS-related Properties
	Client-side in-process connection properties
	Server-side server engine properties
	Server-side thread session IIOP_TS/IIOP_TS connection properties
	Server-side thread session BOA_TS/BOA_TS connection properties
	Server-side thread pool IIOP_TP/IIOP_TP connection properties
	Server-side thread pool BOA_TP/BOA_TP connection properties
	Handling exceptions
	Exceptions in the CORBA model
	System exceptions
	SystemException class
	Obtaining completion status
	Catching system exceptions
	Downcasting exceptions to a system exception
	Catching specific types of system exceptions

	User exceptions
	Defining user exceptions
	Modifying the object to raise the exception
	Catching user exceptions
	Adding fields to user exceptions

	Server basics
	Overview
	Initializing the VisiBroker ORB
	Creating the POA
	Obtaining a reference to the root POA
	Creating the child POA
	Implementing servant methods

	Creating and Activating the Servant
	Activating the POA

	Activating objects
	Waiting for client requests
	Complete example
	Using POAs
	What is a Portable Object Adapter?
	POA terminology
	Steps for creating and using POAs

	POA policies
	Creating POAs
	POA naming convention
	Obtaining the rootPOA
	Setting the POA policies
	Creating and activating the POA

	Activating objects
	Activating objects explicitly
	Activating objects on demand
	Activating objects implicitly
	Activating with the default servant
	Deactivating objects

	Using servants and servant managers
	ServantActivators
	ServantLocators

	Managing POAs with the POA manager
	Getting the current state
	Holding state
	Active state
	Discarding state
	Inactive state

	Listening and Dispatching: Server Engines, Server Connection Managers, and their properties
	Server Engine and POAs
	Associating a POA with a Server Engine
	Defining Hosts for Endpoints for the Server Engine

	Server Connection Managers
	Manager
	Listener
	Dispatcher

	When to use these properties

	Adapter activators
	Processing requests
	Managing threads and connections
	Using threads
	Listener thread, dispatcher thread, and worker threads
	Thread policies
	Thread pool policy
	Thread-per-session policy
	Connection management
	ServerEngines
	ServerEngine properties

	Setting dispatch policies and properties
	Thread pool dispatch policy
	Thread-per-session dispatch policy
	Coding considerations

	Setting connection management properties
	Valid values for applicable properties
	Effects of property changes
	Dynamically alterable properties
	Determining whether property value changes take effect
	Impact of changing property values

	High scalability configuration for VisiBroker for Java (using Java NIO)
	Garbage collection
	How ORB garbage collection works
	Properties related to ORB garbage collection

	Using the tie mechanism
	How does the tie mechanism work?
	Example program
	Location of an example program using the tie mechanism
	Changes to the server class
	Changes to the AccountManager
	Changes to the Account class
	Building the tie example

	Client basics
	Initializing the VisiBroker ORB
	Binding to objects
	Action performed during the bind process

	Invoking operations on an object
	Manipulating object references
	Converting a reference to a string
	Obtaining object and interface names
	Determining the type of an object reference
	Determining the location and state of bound objects
	Narrowing object references
	Widening object references

	Using Quality of Service (QoS)
	Understanding Quality of Service (QoS)
	Policy overrides and effective policies

	QoS interfaces
	org.omg.CORBA.Object
	com.borland.vbroker.CORBA.Object (Borland)
	org.omg.CORBA.PolicyManager
	org.omg.CORBA.PolicyCurrent
	com.borland.vbroker.QoSExt.DeferBindPolicy
	com.borland.vbroker.QoSExt.ExclusiveConnectionPolicy
	com.borland.vbroker.QoSExt::RelativeConnectionTimeoutPolicy
	org.omg.Messaging.RebindPolicy
	org.omg.CORBA.Messaging.RelativeRequestTimeoutPolicy
	org.omg.CORBA.Messaging.RelativeRoundTripTimeoutPolicy
	org.omg.CORBA.Messaging.SyncScopePolicy

	Exceptions

	Code Set support
	Types of Code Sets
	Native Code Set
	Conversion Code Set (CCS)
	Transmission Code Set (TCS)

	Code Set Negotiation
	Supported Code Sets

	Deploying client-only applications using Client Runtime
	Usage

	Using IDL
	Introduction to IDL
	How the IDL compiler generates code
	Example IDL specification

	Looking at the generated code
	_<interface_name>Stub.java
	<interface_name>.java
	<interface_name>Helper.java
	<interface_name>Holder.java
	<interface_name>Operations.java
	<interface_name>POA.java
	<interface_name>POATie.java

	Defining interface attributes in IDL
	Specifying one-way methods with no return value
	Specifying an interface in IDL that inherits from another interface
	Using the Smart Agent
	What is the Smart Agent?
	Best practices for Smart Agent configuration and synchronization
	General guidelines
	Load balancing/ fault tolerance guidelines
	Location service guidelines
	When not to use a Smart Agent

	Locating Smart Agents
	Locating objects through Smart Agent cooperation
	Cooperating with the OAD to connect with objects
	Starting a Smart Agent (osagent)
	Verbose output
	Disabling the agent

	Ensuring Smart Agent availability
	Checking client existence

	Working within VisiBroker ORB domains
	Connecting Smart Agents on different local networks
	How Smart Agents detect each other

	Working with multihomed hosts
	Specifying interface usage for Smart Agents

	Using point-to-point communications
	Specifying a host as a runtime parameter
	Specifying an IP address with an environment variable
	Specifying hosts with the agentaddr file

	Ensuring object availability
	Invoking methods on stateless objects
	Achieving fault-tolerance for objects that maintain state
	Replicating objects registered with the OAD

	Migrating objects between hosts
	Migrating objects that maintain state
	Migrating instantiated objects
	Migrating objects registered with the OAD

	Reporting all objects and services
	Binding to Objects
	Using the Location Service
	What is the Location Service?
	Location Service components
	What is the Location Service agent?
	Obtaining addresses of all hosts running Smart Agents
	Finding all accessible interfaces
	Obtaining references to instances of an interface
	Obtaining references to like-named instances of an interface

	What is a trigger?
	Looking at trigger methods
	Creating triggers
	Looking at only the first instance found by a trigger

	Querying an agent
	Finding all instances of an interface
	Finding interfaces and instances known to Smart Agents

	Writing and registering a trigger handler
	Using the VisiNaming Service
	Overview
	Understanding the namespace
	Naming contexts
	Naming context factories
	Names and NameComponent
	Name resolution
	Stringified names
	Simple and complex names

	Running the VisiNaming Service
	Installing the VisiNaming Service
	Configuring the VisiNaming Service
	Starting the VisiNaming Service
	Starting the VisiNaming Service with the vbj command

	Invoking the VisiNaming Service from the command line
	Configuring nsutil
	Running nsutil
	Shutting down the VisiNaming Service using nsutil

	Bootstrapping the VisiNaming Service
	Calling resolve_initial_references
	Using -DSVCnameroot
	Using -DORBInitRef
	Using a corbaloc URL
	Using a corbaname URL

	-DORBDefaultInitRef
	Using -DORBDefaultInitRef with a corbaloc URL
	Using -DORBDefaultInitRef with corbaname

	NamingContext
	NamingContextExt
	Default naming contexts
	Obtaining the default naming context
	Obtaining naming context factories

	VisiNaming Service properties
	Pluggable backing store
	Types of backing stores
	In-memory adapter
	JDBC adapter
	DataExpress adapter
	JNDI adapter

	Configuration and use
	Properties file
	JDBC Adapter properties
	DataExpress Adapter properties
	JNDI adapter properties

	Configuration for OpenLDAP
	Caching facility
	Important Notes for users of Caching Facility

	Object Clusters
	Object Clustering criteria
	Cluster and ClusterManager interfaces
	IDL Specification for the Cluster interface
	IDL Specification for the ClusterManager interface
	IDL Specification for the NamingContextExtExtended interface

	Creating an object cluster
	Explicit and implicit object clusters

	Load balancing
	Object failover
	Pruning stale object references in VisiNaming object clusters

	VisiNaming Service Clusters for Failover and Load Balancing
	Configuring the VisiNaming Service Cluster
	Configuring the VisiNaming Service in Master/Slave mode
	Starting up with a large number of connecting clients
	VisiNaming service federation

	VisiNaming Service Security
	Naming client authentication
	Configuring VisiNaming to use SSL
	Method Level Authorization

	Import statements
	Sample programs
	Binding a name example

	Configuring VisiNaming with JdataStore HA
	Create a DB for the Primary mirror
	Invoke JdsServer for each listening connection
	Configure JDataStore HA
	Run the VisiNaming Explicit Clustering example
	Run the VisiNaming Naming Failover example

	Using the Event Service
	Overview
	Proxy consumers and suppliers
	OMG Common Object Services specification

	Communication models
	Push model
	Pull model

	Using event channels
	Creating event channels
	Examples of push supplier and consumer
	Push supplier and consumer example
	Running the Push model example
	Running the PullModel example
	Running the PullView example
	PullSupply
	Executing PullSupply
	Implementation of the pull and try_pull methods
	Main method of PullSupply
	PullConsume
	Executing PullConsume

	Starting the Event Service
	Setting the queue length

	In-process event channel
	Using the in-process Event Channel
	Java EventLibrary class
	Java example

	Import statements
	Using the VisiBroker Server Manager
	Getting Started with the Server Manager
	Enabling the Server Manager on a server
	Obtaining a Server Manager reference
	Working with Containers
	The Storage Interface

	The Container Interface
	Container class
	Container Methods for Java
	Methods related to property manipulation and queries
	Methods related to operations
	Methods related to children containers
	Methods related to storage

	The Storage Interface
	Storage Interface Class and Methods
	Storage Class
	Storage Interface Methods

	Limiting access to the Server Manager
	Server Manager IDL

	Server Manager examples
	Obtaining the reference to the top-level container
	Getting all the containers and their properties
	Getting and Setting properties and saving them into the file
	Invoking an operation in a Container
	Custom Containers

	Using VisiBroker Native Messaging
	Introduction
	Two-phase invocation (2PI)
	Polling-Pulling and Callback models
	Non-native messaging and IDL mangling
	Native Messaging solution
	Request Agent
	Native Messaging Current
	Core operations

	StockManager example
	Polling-pulling model
	Callback model

	Advanced Topics
	Group polling
	Cookie and reply de-multiplexing in reply recipients
	Evolving invocations into two-phases
	Reply dropping
	Manual trash collection
	Unsuppressed premature return mode
	Suppress poller generation in callback model

	Native Messaging API Specification
	Interface RequestAgentEx
	create_request_proxy()
	destroy_request()

	Interface RequestProxy
	the_receiver
	poll()
	destroy()

	Local interface Current
	suppress_mode()
	wait_timeout
	the_cookie
	request_tag
	the_poller
	reply_not_available

	Interface ReplyRecipient
	reply_available()

	Semantics of core operations

	Native Messaging Interoperability Specification
	Native Messaging uses native GIOP
	Native Messaging service context
	NativeMessaging tagged component

	Using Borland Native Messaging
	Using request agent and client model
	Start the Borland Request Agent
	Borland Request Agent URL
	Using the Borland Native Messaging client model

	Borland Request Agent vbroker properties
	vbroker.requestagent.maxThreads
	vbroker.requestagent.maxOutstandingRequests
	vbroker.requestagent.blockingTimeout
	vbroker.requestagent.router.ior
	vbroker.requestagent.listener.port
	vbroker.requestagent.requestTimeout

	Interoperability with CORBA Messaging

	Using the Object Activation Daemon (OAD)
	Automatic activation of objects and servers
	Locating the Implementation Repository data
	Activating servers

	Using the OAD
	Starting the OAD

	Using the OAD utilities
	Converting interface names to repository IDs
	Listing objects with oadutil list
	Registering objects with oadutil
	Example: Specifying repository ID
	Example: Specifying IDL interface name
	Remote registration to an OAD
	Using the OAD without using the Smart Agent
	Using the OAD with the Naming Service

	Distinguishing between multiple instances of an object
	Setting activation properties using the CreationImplDef class
	Dynamically changing an ORB implementation
	OAD Registration using OAD::reg_implementation
	Example of object creation and registration
	Arguments passed by the OAD

	Un-registering objects
	Un-registering objects using the oadutil tool
	Unregistration example

	Unregistering with the OAD operations
	Displaying the contents of the Implementation Repository

	IDL interface to the OAD
	Using Interface Repositories
	What is an Interface Repository?
	What does an Interface Repository contain?
	How many Interface Repositories can you have?

	Creating and viewing an Interface Repository with irep
	Creating an Interface Repository with irep
	Viewing the contents of the Interface Repository

	Updating an Interface Repository with idl2ir
	Understanding the structure of the Interface Repository
	Identifying objects in the Interface Repository
	Types of objects that can be stored in the Interface Repository
	Inherited interfaces

	Accessing an Interface Repository
	Interface Repository example program
	Using the Dynamic Invocation Interface
	What is the dynamic invocation interface?
	Introducing the main DII concepts
	Using request objects
	Encapsulating arguments with the Any type
	Options for sending requests
	Options for receiving replies

	Steps for invoking object operations dynamically
	Example programs for using the DII
	Using the idl2java compiler

	Obtaining a generic object reference
	Creating and initializing a request
	Request interface
	Ways to create and initialize a DII request
	Using the create_request method
	Using the _request method
	Example of creating a Request object
	Setting arguments for the request
	Implementing a list of arguments with the NVList
	Setting input and output arguments with the NamedValue Class

	Passing type safely with the Any class
	Representing argument or attribute types with the TypeCode class

	Sending DII requests and receiving results
	Invoking a request
	Sending a deferred DII request with the send_deferred method
	Sending an asynchronous DII request with the send_oneway method
	Sending multiple requests
	Receiving multiple requests

	Using the interface repository with the DII
	Using the Dynamic Skeleton Interface
	What is the Dynamic Skeleton Interface?
	Using the idl2java compiler

	Steps for creating object implementations dynamically
	Example program for using the DSI

	Extending the DynamicImplementation class
	Example of designing objects for dynamic requests
	Specifying repository ids

	Looking at the ServerRequest class
	Implementing the Account object
	Implementing the AccountManager object
	Processing input parameters
	Setting the return value

	Server implementation
	Using Portable Interceptors
	Portable Interceptors overview
	Types of interceptors
	Types of Portable Interceptors

	Portable Interceptor and Information interfaces
	Interceptor class
	Request Interceptor
	ClientRequestInterceptor
	Client-side rules
	ServerRequestInterceptor
	Server-side rules

	IOR Interceptor
	Portable Interceptor (PI) Current
	Codec
	CodecFactory
	Creating a Portable Interceptor
	Example: Creating a PortableInterceptor

	Registering Portable Interceptors
	Registering an ORBInitializer
	Example: Registering ORBInitializer

	VisiBroker extensions to Portable Interceptors
	POA scoped Server Request Interceptors
	Inserting and extracting system exceptions

	Limitations of VisiBroker Portable Interceptors implementation
	ClientRequestInfo limitations
	ServerRequestInfo limitations

	Portable Interceptors examples
	Example: client_server
	Objective of example
	Importing required packages
	Client-side request interceptor initialization and registration to the ORB
	Implementing the ORBInitializer for a server-side Interceptor
	Implementing the RequestInterceptor for client- or server-side Request Interceptor
	Implementing the ClientRequestInterceptor for Client
	Implementation of the public void send_request(ClientRequestInfo ri) interface
	Implementation of the void send_poll(ClientRequestInfo ri) interface
	Implementation of the void receive_reply(ClientRequestInfo ri) interface
	Implementation of the void receive_exception(ClientRequestInfo ri) interface
	Implementation of the void receive_request_service_contexts (ServerRequestInfo ri) interface
	Implementation of the void receive_request (ServerRequestInfo ri) interface
	Implementation of the void receive_reply (ServerRequestInfo ri)interface
	Implementation of the void receive_exception (ServerRequestInfo ri) interface
	Implementation of the void receive_other (ServerRequestInfo ri) interface

	Developing the Client and Server Application
	Implementation of the client application
	Implementation of the server application

	Compilation procedure
	Execution or deployment of Client and Server Applications

	Using VisiBroker Interceptors
	Interceptors overview
	Interceptor interfaces and managers
	Client Interceptors
	BindInterceptor
	ClientRequestInterceptor

	Server Interceptors
	POALifeCycleInterceptor
	ActiveObjectLifeCycleInterceptor
	ServerRequestInterceptor
	IORCreationInterceptor

	Service Resolver Interceptor
	Default Interceptor classes
	Registering Interceptors with the VisiBroker ORB
	Creating Interceptor objects
	Loading Interceptors

	Example Interceptors
	Example code
	Client-server Interceptors example
	ServiceResolverInterceptor example

	Code listings
	SampleServerLoader
	SamplePOALifeCycleInterceptor
	SampleServerInterceptor
	SampleClientInterceptor
	SampleClientLoader
	SampleBindInterceptor

	Passing information between your Interceptors
	Using both Portable Interceptors and VisiBroker Interceptors simultaneously
	Order of invocation of interception points
	Client side Interceptors
	Server side Interceptors
	Order of ORB events during POA creation
	Order of ORB events during object reference creation

	Using object wrappers
	Object wrappers overview
	Typed and un-typed object wrappers
	Special idl2java requirements
	Object wrapper example applications

	Untyped object wrappers
	Using multiple, untyped object wrappers
	Order of pre_method invocation
	Order of post_method invocation

	Using untyped object wrappers
	Implementing an untyped object wrapper factory
	Implementing an untyped object wrapper
	pre_method and post_method parameters

	Creating and registering untyped object wrapper factories
	Removing untyped object wrappers

	Typed object wrappers
	Using multiple, typed object wrappers
	Order of invocation
	Typed object wrappers with co-located client and servers

	Using typed object wrappers
	Implementing typed object wrappers
	Registering typed object wrappers for a client
	Registering typed object wrappers for a server
	Removing typed object wrappers

	Combined use of untyped and typed object wrappers
	Command-line arguments for typed wrappers
	Initializer for typed wrappers
	Command-line arguments for untyped wrappers
	Initializers for untyped wrappers
	Executing the sample applications
	Turning on timing and tracing object wrappers
	Turning on caching and security object wrappers
	Turning on typed and untyped wrappers
	Executing a CO-located client and server

	Event Queue
	Event types
	Connection events

	Event listeners
	IDL definition
	ConnInfo structure
	EventListener interface
	ConnEventListeners interface
	EventQueueManager interface

	How to return the EventQueueManager
	Event Queue code samples
	Registering EventListeners
	Implementing EventListeners

	Using RMI over IIOP
	Overview of RMI over IIOP
	Setting up Java applets with RMI-IIOP
	java2iiop and java2idl tools

	Using java2iiop
	Supported interfaces
	Running java2iiop
	Reverse mapping of Java classes to IDL

	Completing the development process

	RMI-IIOP Bank example
	Supported data types
	Mapping primitive data types
	Mapping complex data types
	Interfaces
	Arrays

	Using the dynamically managed types
	DynAny interface overview
	DynAny examples

	DynAny types
	DynAny usage restrictions
	Creating a DynAny
	Initializing and accessing the value in a DynAny

	Constructed data types
	Traversing the components in a constructed data type
	DynEnum
	DynStruct
	DynUnion
	DynSequence and DynArray

	DynAny example IDL
	DynAny example client application
	DynAny example server application
	Using valuetypes
	Understanding valuetypes
	Valuetype IDL code sample
	Concrete valuetypes
	Valuetype derivation
	Sharing semantics
	Null semantics
	Factories

	Abstract valuetypes

	Implementing valuetypes
	Defining your valuetypes
	Compiling your IDL file
	Inheriting the valuetype base class
	Implementing the Factory class
	Registering your Factory with the VisiBroker ORB

	Implementing factories
	Factories and valuetypes
	Registering valuetypes

	Boxed valuetypes
	Abstract interfaces
	Custom valuetypes
	Truncatable valuetypes
	Using URL naming
	URL Naming Service
	URL Naming Service examples

	Registering objects
	Locating an object by URL
	Bidirectional Communication
	Using bidirectional IIOP
	Bidirectional VisiBroker ORB properties
	About the BiDirectional examples
	Enabling bidirectional IIOP for existing applications
	Explicitly enabling bidirectional IIOP
	Unidirectional or bidirectional connections
	Enabling bidirectional IIOP for POAs

	Security considerations
	Using the BOA with VisiBroker
	Compiling your BOA code with VisiBroker
	Supporting BOA options
	Limitations in using the BOA
	Using object activators
	Naming objects under the BOA
	Object names

	Using object activators
	Deferring object activation
	Activator interface
	Using the service activation approach
	Deferring object activation using service activators
	Example of deferred object activation for a service
	odb.idl interface
	Implementing a service activator
	Instantiating the service activator
	Using a service activator to activate an object

	CORBA exceptions
	CORBA exception descriptions
	Heuristic OMG-specified exceptions
	Other OMG-specified exceptions
	Web Services Overview
	Web Services Architecture
	Standard Web Services Architecture

	VisiBroker Web Services Architecture
	Web Services Artifacts
	Web Service Runtime

	Exposing a CORBA object as Web Service
	Development
	Deployment

	SOAP/WSDL compatibility

