
Borland
VisiBroker® 7.0

VisiTransact Guide

Borland Software Corporation
20450 Stevens Creek Blvd., Suite 800

Cupertino, CA 95014 USA
www.borland.com

Refer to the file deploy.html for a complete list of files that you can distribute in accordance with the
License Statement and Limited Warranty.

Borland Software Corporation may have patents and/or pending patent applications covering subject
matter in this document. Please refer to the product CD or the About dialog box for the list of applicable

patents. The furnishing of this document does not give you any license to these patents.

Copyright 1999–2006 Borland Software Corporation. All rights reserved. All Borland brand and product
names are trademarks or registered trademarks of Borland Software Corporation in the United States

and other countries. All other marks are the property of their respective owners.

Microsoft, the .NET logo, and Visual Studio are either registered trademarks or trademarks of Microsoft
Corporation in the United States and/or other countries.

For third-party conditions and disclaimers, see the Release Notes on your product CD.

VB70Transact
March 2006

2 VisiBroker Vis iTransact Guide

i

Contents

Chapter 1
Introduction to Borland VisiBroker 1
VisiBroker Overview 1

VisiBroker features. 2
VisiBroker Documentation 2

Accessing VisiBroker online help topics in the
standalone Help Viewer 3

Accessing VisiBroker online help topics from within
the VisiBroker Console 3

Documentation conventions 4
Platform conventions 4

Contacting Borland support 4
Online resources. 5
World Wide Web 5
Borland newsgroups 5

Chapter 2
VisiTransact basics 7
What is VisiTransact? 7
VisiTransact architecture 8

VisiTransact Transaction Service 8
Database integration (Solaris only) 8
VisiBroker Console 9
VisiBroker ORB 9

VisiTransact features 10
VisiTransact CORBA compliance 10
Monitoring tools 10
Minimum overhead with a light footprint 10
Flexible deployments 10
Support for open transaction processing standards .

11
Full support for multithreading 11
Extensions to the OMG specification 11
VisiTransact and the CORBAservices specification .

11

Chapter 3
Overview of transaction processing 13
What are transactions in a distributed environment? . 13
What is CORBA? 14
What is the CORBA Transaction Service? 14
Model for a basic transaction 14

Beginning the transaction 16
Issuing requests to transactional objects 16
Completing a transaction 17

Chapter 4
C++ quick start with VisiTransact 19
Overview of the example 19
Files for the C++ quick start example 20
Prerequisites for running the example 21
What you will learn in this example 21
Writing the quick start IDL 22
Writing the transaction originator (transfer client

program). . 23
Initializing the ORB 23

Binding to the Bank object 23
Beginning the transaction 24
Obtaining references to transactional objects (source

and destination accounts). 24
Invoking methods (debit() and credit()) on the

transactional (account) objects 26
Committing or rolling back the transaction 26
Handling exceptions 26

Writing the bank_server program 27
Writing the Bank object 29

Understanding the BankImpl class hierarchy. . . 29
Implementing the Bank object and its get_account()

method . 29
Writing the transactional object (Account) 31

Understanding the AccountImpl class hierarchy . 31
Making the Account object a transactional object 31
Implementing the Account object and its methods 31

Building the example. 33
Selecting a Makefile 33
Compiling the example with make 34

Running the example 34
Starting the Smart Agent (osagent) 34
Starting the VisiTransact Transaction Service . . 34
Starting the storage_server program 35
Starting the bank_server program 35
Running the Transaction Originator (transfer Client

Program) . 35
Results . 35

Viewing the complete example 36
IDL for the quick start example 36
Transfer client program 37
bank_server program. 39
Bank and account (transactional) objects 40

Chapter 5
Creating a transactional object 45
Inheriting transactional object interfaces. 45
Implementing transactional object interfaces 45
Transactional POA policy interfaces 46

OTSPolicy . 46
InvocationPolicy 46
NonTxTargetPolicy 46

Affected Server Behaviors 46
Affected Client Behaviors 46
Dealing with UNSHARED transactions 47

Chapter 6
Determining your approach to transactions
49

Transaction management approaches. 49
Direct vs. indirect context management 49
Implicit vs. explicit propagation 50
Context management and propagation. 51

Indirect context management with implicit
propagation 51

ii

Indirect context management with explicit
propagation 51

Direct context management with implicit
propagation 51

Direct context management with explicit
propagation 51

In-process vs. out-of-process VisiTransact transaction
service . 51

Multithreading . 52
Integrating existing applications and transactional

systems . 52
Using a combination of approaches 52
Implementing transactions for the web 53
Building C++ VisiTransact applications 53

Using stand-alone VisiTransact Transaction Service
instances. . 53

Embedding a VisiTransact Transaction Service
instance in your application 54

Binding to the embedded instance of the
VisiTransact Transaction Service 54

Using header files supplied with VisiTransact . . . 55

Chapter 7
Creating and propagating VisiTransact-
managed transactions 57

Introducing Current as used in VisiTransact-managed
transactions . 57

How does Current work? 58
Obtaining a Current object reference 58
Working with the Current interface and its methods.

59
Multiple threads participating in the same transaction

60
Using multiple transactions within a context or thread

60
Discovering an instance of the VisiTransact

Transaction service 61
Propagating VisiTransact-managed transactions. . . 62
Ensuring a transaction is in progress 62
Marking a transaction for rollback 63
Obtaining transaction information 64
Extensions to the Current interface. 64

Chapter 8
Other methods of creating and propagating
transactions 67

Introduction . 67
Creating transactions with the TransactionFactory . . 68
Gaining control of a transaction with the control object.

69
Explicitly propagating transactions from the originator70
Changing from explicit propagation to implicit 71
Getting the explicit context from Current 72
Committing or rolling back transactions with Terminator

72
Marking a transaction for rollback 73
Obtaining transaction information 73

Chapter 9
Transaction completion 75
Transaction completion 75

How does the VisiTransact Transaction Service
ensure completion?. 75

How does the VisiTransact Transaction Service
ensure checked behavior? 76

Heuristic completion. 78
Enabling heuristic reporting to your application . .79
OTS exceptions 80

Chapter 10
Coordinating transaction completion with
Resource objects 81

Understanding transaction completion 81
Participating in transaction completion 82

Resource object is registered for the transaction .83
Transaction originator initiates transaction

completion .83
Terminator tells Resource objects to prepare . . .84
Resource objects return a vote to the terminator .84
Terminator decides whether to commit or roll back 85
Resource objects vote to commit the transaction .85
Summary of steps for two-phase commit 86

Summary of steps for single-phase commit86
Summary of steps for a rollback 86
Participating in transaction recovery after failure. .86

Chapter 11
Managing heuristic decisions 89
What is a heuristic decision? 89
What is the heuristic.log file? 90
Interpreting the heuristic log. 91
What to do once the problem has been isolated . . .91

Chapter 12
Implementing Synchronization objects 93
What are Synchronization objects?93

Using Synchronization objects before the commit
protocol . .93

Using Synchronization objects after rollback or
commit .94

Registering Synchronization objects94
How failures affect Synchronization objects 95

The role of Synchronization objects in transaction
objects . .95

Chapter 13
Backward compatibility and migration 97
Backward compatibility 97

OTS1.1 Clients vs OTS1.2 Servers 97
OTS1.1 Servers vs OTS1.2 Clients 97

Migration. .98

Chapter 14
Session Manager overview 99
How are databases integrated into a VisiTransact

application? .99

iii

What is the Session Manager? 100
Opening a connection to a database 100
Connection profiles 101
Configuring connections 101
Associating a connection with a transaction . . . 101
Registering Resources 101
Releasing Connections 102
Pooling connections 102
Managing thread requirements 102

Global transactions using XA protocol 103
What is the XA Resource Director?. 103

Distributed transaction recovery 103
DirectConnect Session Managers 104

Registering Resources 105
Deployment issues. 105

Restrictions on DirectConnect access transactions 105
Coexistence: DirectConnect and XA access

transactions . 106

Chapter 15
Integrating VisiTransact with databases
using the Session Manager 107

Evaluating the impact of integrating VisiTransact with
databases using XA 108

Using XA adds overhead 108
Requiring high availability 108
Locked or unavailable data 108
Yielding some control 108

Evaluating the impact of integrating VisiTransact with
databases using DirectConnect 109

Preparing databases 109
Connection profile sets 110

Modifying connection profiles used by Session
Manager clients 110

Modifying connection profiles used by XA Resource
Directors . 110

Using the XA Resource Director 111
Deploying an XA Resource Director 111
Starting an XA Resource Director 111
How the XA Resource Director uses connection

profiles . 111
Deploying client-side libraries 112
Shutting down an XA Resource Director remotely. .

112
Registering the XA Resource Director with the OAD

112
Starting Session Manager-based application processes

113
Checking for the default path to persistent store files

113
Forcing heuristics 114
Performance tuning 114

For XA . 114
Session Manager Configuration Server. 114

Directory structure for persistent store files . . . 114
Deploying persistent store files 116

Option 1: Persistent store files on a shared file
system 116

Option 2: Persistent store files on each node 116

Option 3: Set of persistent store files copied to
each node 116

Starting the Session Manager Configuration Server
manually . 117

Shutting down the Configuration Server 117
Security . 117

Chapter 16
Data access using the Session Manager
119

Preparing for integration 119
Using the Session Manager: Summary of steps . . 120
Obtaining a ConnectionPool object reference 120

Using ConnectionPool object references 121
Obtaining a Connection object from the Connection

Pool . 121
Using explicit transaction contexts 121
Optimizing connection pooling 122

Getting a native connection handle 122
Using the native connection handle 122
Threading requirements 122

Releasing a connection 123
De-allocating the instance of Connection 124
Viewing exceptions 124
Viewing attributes 125
Obtaining Session Manager information. 126
Using hold() and resume() 126

Using hold(). 127
Using resume() 127

Example of a simple integration 128
XA implementation issues 129

Completing or recovering a transaction 129
DirectConnect implementation issues 129

Completing or recovering a transaction 130
Changing from DirectConnect to XA. 130

Chapter 17
Pluggable Database Resource Module for
VisiTransact 131

Concepts. . 131
What is pluggable database resource module? . 131
Structural descriptions 132

Connection Management 132
Writing a Pluggable Module 135

The Connection Profiles 135
The Interface Definition 135
The Single Function 136
The ITSDataConnection class 136

Native handle acquisition interface 136
Local transaction connection and completion

interface 136
Global transaction connection and completion

interface 137
Building and Running. 138

Running Applications using the pluggable
modules 138

Programming restrictions 139
Known limitations 139

iv

Chapter 18
Using the VisiBroker Console 141
Overview of the VisiBroker Console 141

Transaction Services section 141
Session Manager Profile Sets section. 142

Starting the VisiBroker Console 142
Starting a VisiTransact Transaction Service . . . 142
Starting the Session Manager Configuration Server

142
Launching the VisiBroker Console 142

Using the Transaction Services section 143
Locating an instance of the Transaction Service 143
Monitoring transactions 143
Refreshing the transaction list 144
Displaying details for specific transactions . . . 144
Controlling specific transactions. 144

Resolving hung or in-doubt transactions . . . 145
Filtering the transaction list 145
Viewing heuristic transactions 145
Viewing heuristic details 146
Viewing the message log 146
Filtering the message logs 146
Trimming the message log 147

Using the Session Manager Profile Sets section . . 147
What are connection profiles?. 147
Gaining access to the Session Manager

Configuration Server 148
Creating and configuring a new connection profile .

148
Editing an existing connection profile 149
Filtering the connection profiles 149
Deleting a connection profile 149
Refreshing the list of connection profiles 149

Chapter 19
Server Application Model 151
Server Application transaction and database

management 151
Requirements before reading this section. . . . 152
Concepts and terminology. 152

Scenarios of global transaction and PMT 153
Client-initiated global 2PC and 1PC transactions 153
Transparent server-initiated transactions with PMT .

154
PMT overview 155

PMT transaction attribute values 156
A simple example 158
PMT::Current and connection name 159

XA resources configuration 160
xa-resource-descriptor 160
xa-resource 160
xa-connection 161
xa-resource-alias 162
An example of XA resource descriptor 163

VisiTransact properties 164
vbroker.its.its6xmode=< false|true> 164
vbroker.its.verbose=<false|true> 164
vbroker.its.xadesc=<xa-resource xml file name> 164

RM recovery utility 165

Chapter 20
XA Session Manager for Oracle OCI,
version 9i Client 167

Overview . 167
Who should read this chapter 168

Oracle9i software requirements 168
Client requirements 168
Server requirements 168

Oracle9i installation and configuration issues 169
Installation requirements 169
Database configuration 169
DBA_PENDING_TRANSACTIONS view 169

Required environment variables. 170
Session Manager connection profile attributes . . . 170
Using the Session Manager with the OCI 9i API . . 171
Programming restrictions 171
Troubleshooting 172

VisiTransact message log 172
Using the xa_trc files 172
Distributed update problems 172
Data access failures 172

Lock from in-doubt transaction 172
Transaction timeout 173

Oracle error messages. 173
Forcing heuristic completion. 173

Chapter 21
DirectConnect Session Manager for Oracle
OCI, version 9i Client 175

Overview . 175
Who should read this chapter 176

Oracle9i software requirements 176
Client requirements 176
Server requirements 176

Oracle9i installation and configuration issues 176
Installation requirements 176
Database configuration 177

Required environment variables. 177
Session Manager connection profile attributes . . . 177
Using the Session Manager with the OCI 9i API . . 178
Programming restrictions 178
Troubleshooting 178

VisiBroker VisiTransact message log 178
Oracle error messages. 179

Chapter 22
Commands, utilities, arguments, and
environment variables 181

Overview of VisiTransact commands 181
vbconsole . 182

Syntax. . 182
Example. 182
Arguments 182

ots . 182
Syntax. . 182
Example. 182
Arguments 182

smconfig_server 183

v

Syntax . 183
Example 183
Arguments 183

vshutdown . 184
Syntax . 184
Example 184
Arguments 184

xa_resdir . 185
Syntax . 185
Example 185
Arguments 185

VisiTransact utilities 186
smconfigsetup 186

Creating a profile for use with the Session
Manager 186

Command-line arguments for applications 187
Passing command-line arguments to ORB_init()

using argc and argv 187
Arguments for applications that originate

transactions 187
Arguments for applications with an embedded

VisiTransact Transaction Service instance . . . 188
Arguments for applications that use the Session

Manager . 189
Environment variables 189

Chapter 23
Error codes 191
VisiTransact common error codes 191
VisiTransact Transaction Service error codes. . . . 192
Session Manager error codes 194
VisiTransact transaction log error codes 197

Chapter 24
Problem determination 199
General approaches 199
Dealing with problems in transactions 199

Index 201

vi

 1: In troduct ion to Bor land Vis iBroker 1

Introduction to Borland VisiBroker
For the CORBA developer, Borland provides VisiBroker for Java, VisiBroker for C++,
and VisiBroker for .NET to leverage the industry-leading VisiBroker Object Request
Broker (ORB). These three facets of VisiBroker are implementations of the CORBA 2.6
specification.

VisiBroker Overview
VisiBroker is for distributed deployments that require CORBA to communicate between
both Java and non-Java objects. It is available on a wide range of platforms (hardware,
operating systems, compilers and JDKs). VisiBroker solves all the problems normally
associated with distributed systems in a heterogeneous environment.

VisiBroker includes:

– VisiBroker for Java, VisiBroker for C++, and VisiBroker for .NET, three
implementations of the industry-leading Object Request Broker.

– VisiNaming Service, a complete implementation of the Interoperable Naming
Specification in version 1.3.

– GateKeeper, a proxy server for managing connections to CORBA Servers behind
firewalls.

– VisiBroker Console, a GUI tool for easily managing a CORBA environment.

– Common Object Services such as VisiNotify (implementation of Notification Service
Specification), VisiTransact (implementation of Transaction Service Specification),
VisiTelcoLog (implementation of Telecom Logging Service Specification), VisiTime
(implementation of Time Service Specification), and VisiSecure.

2 VisiBroker Vis iTransact Guide

VisiBroker Documentat ion

VisiBroker features

VisiBroker offers the following features:

– “Out-of-the-box” security and web connectivity.

– Seamless integration to the J2EE Platform, allowing CORBA clients direct access to
EJBs.

– A robust Naming Service (VisiNaming), with caching, persistent storage, and
replication for high availability.

– Automatic client failover to backup servers if primary server is unreachable.

– Load distribution across a cluster of CORBA servers.

– Full compliance with the OMG's CORBA 2.6 Specification.

– Integration with the Borland JBuilder integrated development environment.

– Enhanced integration with other Borland products including Borland AppServer.

VisiBroker Documentation
The VisiBroker documentation set includes the following:

– Borland VisiBroker Installation Guide—describes how to install VisiBroker on your
network. It is written for system administrators who are familiar with Windows or
UNIX operating systems.

– Borland Security Guide—describes Borland's framework for securing VisiBroker,
including VisiSecure for VisiBroker for Java and VisiBroker for C++.

– Borland VisiBroker for Java Developer's Guide—describes how to develop
VisiBroker applications in Java. It familiarizes you with configuration and
management of the Visibroker ORB and how to use the programming tools. Also
described is the IDL compiler, the Smart Agent, the Location, Naming and Event
Services, the Object Activation Daemon (OAD), the Quality of Service (QoS), the
Interface Repository, and the Interface Repository, and Web Service Support.

– Borland VisiBroker for C++ Developer's Guide—describes how to develop VisiBroker
applications in C++. It familiarizes you with configuration and management of the
Visibroker ORB and how to use the programming tools. Also described is the IDL
compiler, the Smart Agent, the Location, Naming and Event Services, the OAD, the
QoS, Pluggable Transport Interface, RT CORBA Extensions, and Web Service
Support.

– Borland VisiBroker for .NET Developer's Guide—describes how to develop
VisiBroker applications in a .NET environment.

– Borland VisiBroker for C++ API Reference—provides a description of the classes
and interfaces supplied with VisiBroker for C++.

– Borland VisiBroker VisiTime Guide—describes Borland's implementation of the
OMG Time Service specification.

– Borland VisiBroker VisiNotify Guide—describes Borland's implementation of the
OMG Notification Service specification and how to use the major features of the
notification messaging framework, in particular, the Quality of Service (QoS)
properties, Filtering, and Publish/Subscribe Adapter (PSA).

– Borland VisiBroker VisiTransact Guide—describes Borland's implementation of the
OMG Object Transaction Service specification and the Borland Integrated
Transaction Service components.

 1: In troduct ion to Bor land Vis iBroker 3

VisiBroker Documentat ion

– Borland VisiBroker VisiTelcoLog Guide—describes Borland's implementation of the
OMG Telecom Log Service specification.

– Borland VisiBroker GateKeeper Guide—describes how to use the VisiBroker
GateKeeper to enable VisiBroker clients to communicate with servers across
networks, while still conforming to the security restrictions imposed by web browsers
and firewalls.

The documentation is typically accessed through the Help Viewer installed with
VisiBroker. You can choose to view help from the standalone Help Viewer or from
within a VisiBroker Console. Both methods launch the Help Viewer in a separate
window and give you access to the main Help Viewer toolbar for navigation and
printing, as well as access to a navigation pane. The Help Viewer navigation pane
includes a table of contents for all VisiBroker books and reference documentation, a
thorough index, and a comprehensive search page.

Important

Updates to the product documentation, as well as PDF versions, are available on the
web at http://www.borland.com/techpubs.

Accessing VisiBroker online help topics in the standalone Help
Viewer

To access the online help through the standalone Help Viewer on a machine where the
product is installed, use one of the following methods:

Windows

– Choose Start|Programs|Borland Deployment Platform|Help Topics

– or, open the Command Prompt and go to the product installation \bin directory,
then type the following command:

help

UNIX

Open a command shell and go to the product installation /bin directory, then enter
the command:

help

Tip

During installation on UNIX systems, the default is to not include an entry for bin in
your PATH. If you did not choose the custom install option and modify the default for
PATH entry, and you do not have an entry for current directory in your PATH, use ./
help to start the help viewer.

Accessing VisiBroker online help topics from within the
VisiBroker Console

To access the online help from within the VisiBroker Console, choose Help|Help
Topics.

The Help menu also contains shortcuts to specific documents within the online help.
When you select one of these shortcuts, the Help Topics viewer is launched and the
item selected from the Help menu is displayed.

4 VisiBroker Vis iTransact Guide

Contact ing Bor land support

Documentation conventions

The documentation for VisiBroker uses the typefaces and symbols described below to
indicate special text:

Platform conventions

The VisiBroker documentation uses the following symbols to indicate platform-specific
information:

Contacting Borland support
Borland offers a variety of support options. These include free services on the Internet
where you can search our extensive information base and connect with other users of
Borland products. In addition, you can choose from several categories of telephone
support, ranging from support on installation of Borland products to fee-based,
consultant-level support and detailed assistance.

For more information about Borland's support services or contacting Borland Technical
Support, please see our web site at: http://support.borland.com and select your
geographic region.

When contacting Borland's support, be prepared to provide the following information:

– Name

– Company and site ID

– Telephone number

– Your Access ID number (U.S.A. only)

– Operating system and version

– Borland product name and version

– Any patches or service packs applied

– Client language and version (if applicable)

– Database and version (if applicable)

– Detailed description and history of the problem

Convention Used for

italics Used for new terms and book titles.

computer Information that the user or application provides, sample command lines
and code.

bold computer In text, bold indicates information the user types in. In code samples, bold
highlights important statements.

[] Optional items.

... Previous argument that can be repeated.
| Two mutually exclusive choices.

Symbol Indicates

Windows All supported Windows platforms.

Win2003 Windows 2003 only

WinXP Windows XP only

Win2000 Windows 2000 only

UNIX UNIX platforms

Solaris Solaris only

Linux Linux only

 1: In troduct ion to Bor land Vis iBroker 5

Contact ing Bor land support

– Any log files which indicate the problem

– Details of any error messages or exceptions raised

Online resources

You can get information from any of these online sources:

World Wide Web
http://www.borland.com

Online Support

http://support.borland.com (access ID required)

Listserv

To subscribe to electronic newsletters, use the online form at:

http://www.borland.com/products/newsletters

World Wide Web

Check http://www.borland.com/bes regularly. The VisiBroker Product Team posts white
papers, competitive analyses, answers to FAQs, sample applications, updated
software, updated documentation, and information about new and existing products.

You may want to check these URLs in particular:

– http://www.borland.com/products/downloads/download_visibroker.html (updated
VisiBroker software and other files)

– http://www.borland.com/techpubs (documentation updates and PDFs)

– http://info.borland.com/devsupport/bdp/faq/ (VisiBroker FAQs)

– http://community.borland.com (contains our web-based news magazine for
developers)

Borland newsgroups

You can participate in many threaded discussion groups devoted to the Borland
VisiBroker. Visit http://www.borland.com/newsgroups for information about joining user-
supported newsgroups for VisiBroker and other Borland products.

Note

These newsgroups are maintained by users and are not official Borland sites.

6 VisiBroker Vis iTransact Guide

 2: Vis iTransact basics 7

VisiTransact basics
This section introduces VisiBroker VisiTransact, a complete C++ transaction
management solution for transactions with CORBA applications over the Internet or
intranets. This chapter describes the VisiTransact features and architectural
components.

What is VisiTransact?
VisiTransact provides a complete solution for distributed transactional CORBA
applications. Implemented on top of the VisiBroker ORB, VisiTransact simplifies the
complexity of distributed transactions by providing an essential set of services: a
transaction service, recovery and logging, integration with databases and legacy
systems (Solaris platform only), and administration facilities.

It provides OMG OTS 1.2 compliant transaction service functionality, the VisiTransact
Transaction Service, for C++ only. On the Solaris platform VisiTransact supplies an
Integrated Transaction Service (ITS) which includes the XA Resource Director,
Session Manager Configuration Server, Session Manager for Oracle9i, and a
Pluggable Resource Interface for enabling Session Manager to work with the database
of your choice.

Note

VisiTransact does not provide the capability to create Java transactional applications.
Borland AppServer provides this capability.

8 VisiBroker Vis iTransact Guide

Vis iTransact archi tecture

VisiTransact architecture
VisiTransact supplies the following components to provide a complete solution for the
management of distributed transactions:

– VisiTransact Transaction Service

– Database integration (Solaris only)

– VisiBroker Console

As shown in the following figure, VisiTransact provides components to be used for
distributed transactional CORBA applications and is implemented on top of the
VisiBroker ORB.

Figure 2.1 VisiTransact architecture

VisiTransact Transaction Service

The VisiTransact Transaction Service—conforming to the final OMG Transaction
Service specification version 1.2 document—manages transaction completion.

VisiTransact is provided as a shared library and an executable. This flexible
architecture allows you to deploy the VisiTransact Transaction Service instance as a
standalone process or embed the instance in your C++ application. You can load
balance transactions by using multiple instances of the VisiTransact Transaction
Service on your network.

VisiTransact relies on the osagent (SmartAgent) to start up and to ensure there is only
one instance of the Transaction Service. The vshutdown utility also relies on the osagent
to find the Transaction Service and shut it down.

Database integration (Solaris only)

The database integration components help you integrate transactional applications on
Solaris platforms with databases and other Resource Managers. The following
components are included for database integration:

– Session Manager, XA Implementation (Oracle9i only). The Session Manager XA
implementation allows an application to obtain a VisiTransact-enabled connection to
an Oracle9i database. The Session Manager handles all XA calls, and enables the
VisiTransact Transaction Service to coordinate transactions across Resources. The
Session Manager also provides database connection pooling. Additionally, the
Session Manager Configuration Server enables you to create connection profiles
using the VisiBroker Console.

 2: Vis iTransact basics 9

VisiTransact archi tecture

– Session Manager, DirectConnect Implementation (Oracle9i only). The
DirectConnect implementation of the Session Manager provides non-XA access to
Resources. It consists of a single application server process that contains a Session
Manager with embedded single-phase Resources. This architecture provides
improved performance because it performs a single-phase commit.

– Session Manager Configuration Server. The Session Manager Configuration
Server enables you to create Session Manager connection profiles using the
VisiBroker Console. For more information about the Session Manager Configuration
Server, see “Session Manager Configuration Server”.

– Pluggable Resource Interface. The Pluggable Resource Interface gives you the
capability to enable Session Manager to work with the database of your choice. It is a
component that implements a set of predefined interfaces to allow transactional
applications to use databases other than Oracle9i as their persistent storage in
transactions managed by VisiTransact. For more information about the Pluggable
Resource Interface, see “Pluggable Database Resource Module for VisiTransact.”

– XA Resource Director. The XA Resource Director manages all interactions with a
particular Resource Manager that is participating in one or more transactions. It
handles all transactions with a specific Resource Manager (for example an Oracle9i
database) on the network. The XA Resource Director bridges the VisiTransact and X/
Open transaction environments, which allows for interoperability between the
VisiTransact Resource model and the X/Open Distributed Transaction Protocol
(DTP) Resource Manager model. For more information about the VisiTransact
Resource model, see “What is the XA Resource Director?”.

VisiBroker Console

The VisiBroker Console is a graphical tool used in managing distributed transactions
over the network and configuring connection profiles for use with specific databases. It
can be used to monitor and control the status and completion of transactions. Using the
Console you can create Session Manager connection profiles with the Session
Manager Configuration Server. For more information about the VisiTransact section of
the VisiBroker Console, see “Using the VisiBroker Console.”

VisiBroker ORB

The VisiBroker ORB provides the functionality and benefits of its implementation to
applications using VisiTransact for distributed transaction management. The ORB
provides many features to VisiTransact applications, including: thread-pooling,
multiplexed and recycled connections, load balancing, and fault tolerance. Many of
these features are typically part of a transaction processing monitor.

VisiTransact uses OMG portable interceptors, a powerful feature of the VisiBroker
ORB, to implement its functionality. VisiTransact users can also take advantage of
interceptors to customize transactional applications.

10 VisiBroker Vis iTransact Guide

VisiTransact features

VisiTransact features
VisiTransact manages the completion of flat transactions using a one-phase or two-
phase commit protocol, as appropriate. If there is only one Resource involved with a
transaction, the one-phase commit protocol will be used.

In addition to the distributed transaction management features described in CORBA's
Transaction Service specification, VisiTransact also provides extensions to the
specification. These extensions and other features are described in the following
sections.

VisiTransact CORBA compliance

VisiTransact is fully compliant with the CORBA 2.6 specification from the Object
Management Group (OMG). For more details, refer to the CORBA specification located
at http://www.omg.org.

VisiTransact is also compliant with the CORBAservices specification for the transaction
service version 1.2 from the OMG. “VisiTransact and the CORBAservices
specification” lists decisions made by VisiTransact for several options accorded by the
specification.

Monitoring tools

Using the Console you can monitor and control the status and completion of
transactions, as well as manage the size and location of log files.

Minimum overhead with a light footprint

Depending on your system requirements, you can have as many VisiTransact
Transaction Service instances as you need on your network. The VisiTransact
Transaction Service does not have to reside on every host machine in your
environment.

The Session Manager (available on Solaris only) also saves system resources by
pooling database connections, and reusing connections across requests.

Flexible deployments

VisiTransact optimizes deployment by providing you with three choices:

– Linking your application/business objects in directly with the VisiTransact
Transaction Service.

– Deploying your application/business objects on the same machine with the
VisiTransact Transaction Service.

– Deploying your application/business objects on any machine regardless of the
location of the VisiTransact Transaction Service.

For scalability and fault tolerance, you can deploy multiple instances of business
objects and multiple instances of the VisiTransact Transaction Service on multiple
machines.

On Solaris platforms, if you have a single Oracle9i database, you can achieve an even
greater performance gain by linking the following into a single process:

– Application code
– VisiTransact Transaction Service
– Session Manager (for Oracle9i databases on Solaris platforms only)

 2: Vis iTransact basics 11

VisiTransact features

Support for open transaction processing standards

Currently, VisiTransact supports the OMG's CORBAservices Transaction Service and
the XA protocol open transaction processing standards.

Full support for multithreading

Because VisiTransact supports multithreading, your business object can be
multithreaded and, therefore, it can handle multiple requests simultaneously.

Extensions to the OMG specification

VisiTransact provides several extensions to the OMG CORBAservices specification to
simplify development. For example, VisiTransact extends the current interface to
provide the begin_with_name() method that allows you to assign a user-defined name to
a transaction. These supplemental methods are designated in Transaction Service
interfaces and classes with the icon.

VisiTransact and the CORBAservices specification

See the table below for information about how VisiTransact implements certain options
of the CORBAservices specification.

Option VisiTransact Decision

An implementation of the Transaction Service is not
required to support synchronization.

VisiTransact fully supports Synchronization objects (the
Synchronization interface).

The Unavailable exception is raised if the Transaction
Service implementation chooses to restrict the availability
of the transaction context.

VisiTransact will not raise the Unavailable exception
because it does not restrict the availability of the
transaction context.

An implementation of the Transaction Service is not
required to initialize the transaction context of every
request handler.

VisiTransact default behavior is only to initialize the
transaction context if the interface supported by the target
object is derived from the TransactionalObject interface.
VisiTransact can be configured to initialize the transaction
context of all requests. See “Creating and propagating
VisiTransact-managed transactions.”

An implementation of the Transaction Service may restrict
the ability for some or all of these (Coordinator, Terminator
and Control) objects to be transmitted to or used in other
execution environments, to enable it to guarantee
transaction integrity.

VisiTransact does not impose any restrictions on the ability
of the Coordinator, Terminator or Control objects to be
transmitted to or used in other execution environments.
See “How does the VisiTransact Transaction Service
ensure completion?” for discussion of how to obtain
checked behavior.

It is implementation-specific whether the Transaction
Service itself monitors the participants in a transaction for
failures or inactivity. Some implementations of the
Transaction Service impose constraints on the use of the
Transaction Service interfaces in order to guarantee
integrity equivalent to that provided by the interfaces which
support the X.Open DTP transaction model. This is called
checked behavior.

VisiTransact does not impose constraints, but supports
checked behavior in VisiTransact-managed transactions
as described in “How does the VisiTransact Transaction
Service ensure checked behavior?”

Some implementations of the Transaction Service may
allow transactions to be terminated by Transaction Service
clients other than the one which created the transaction.

VisiTransact allows termination of a transaction by any
object that uses the Terminator interface for the transaction
(for example, non VisiTransact-managed transactions).
However, VisiTransact restricts termination of a
transaction when using the Current interface to the client
thread that created the transaction.

12 VisiBroker Vis iTransact Guide

VisiTransact features

A TransactionFactory is located using the FactoryFinder
interface of the life cycle service and not by the
resolve_initial_ references() operation on the ORB.

Locate a VisiTransact TransactionFactory using the
VisiBroker ORB discovery facilities, such as the bind()
method.

A Transaction Service implementation may optionally use
the Event Service to report heuristic decisions.

VisiTransact does not use the Event Service to report
heuristic decisions.

An implementation of the Transaction Service is not
required to support nested transactions.

No major databases support nested transactions at this
time. Therefore, VisiTransact does not support nested
transactions.

Option VisiTransact Decision

 3: Overview of t ransact ion processing 13

Overview of transaction processing
This section provides an overview of transactions and how they are processed. It
explains transactions, CORBA, the components of the CORBA Transaction Service,
and the process for a basic transaction.

What are transactions in a distributed environment?
In a distributed objects world, a transaction is a unit of work composed of a set of
operations on objects. A familiar example is transferring money from one bank account
to another. The transfer is two separate actions—a debit from one account, and a
credit to another—that comprise a single transaction.

Figure 3.1 Example of a transaction

In this scenario, which implements a flat transaction model, both actions must be
completed for the desired result to be achieved. If Action 1 is completed, but Action 2 is
not, the customer loses money. If Action 1 is not completed, but Action 2 is, the bank
loses money. Therefore, flat transactions are an all-or-nothing proposition—either all
steps of a transaction must complete, or none of the steps must complete.

Note

There is another type of transaction—a nested transaction—that does not require that
all steps of a transaction are completed. However, VisiTransact Transaction Manager
does not support nested transactions.

14 VisiBroker Vis iTransact Guide

What is CORBA?

Many things can happen to prevent all steps of a transaction from completing such as
application logic, server failure, hardware failure, and network interruptions. Because of
these unpredictable environment factors, transactions must adhere to the following
properties, called ACID properties, to ensure the consistency, reliability, and integrity of
applications:

– Atomicity. If a transaction is completed successfully (it commits) all of the actions
associated with the transaction are performed. Otherwise, if the transaction is not
completed successfully, none of the actions are performed and the transaction is
rolled back.

– Consistency. All actions that comprise a transaction must be performed accurately
so that the system moves from one consistent state to another. In the bank example,
this means that the total money in both accounts before the transaction begins is the
same as the total money in both accounts after the transaction completes.

– Isolation. This means that intermediate results performed by a transaction are not
visible outside the transaction until the entire transaction completes.

– Durability. The results of a transaction are persistent.

Transactions do not always involve the transfer of funds as in the banking example we
have just covered. Transactions are necessary for all sorts of business activities. For
example, an online bookstore needs transactions to perform many activities including:
ordering books from suppliers, transferring inventory from suppliers, updating available
quantities of books accurately, charging customers appropriately for purchases, and
fulfilling customer orders. All of these actions, and a multitude of others, may need to
be executed within a transaction.

What is CORBA?
The Common Object Request Broker Architecture (CORBA) specification was adopted
by the Object Management Group (OMG) to ensure a common approach to
implementing and managing distributed objects. CORBA uses an object-oriented
approach for creating software components that can be reused and shared between
applications. Each object encapsulates the details of its inner workings and presents a
well defined interface, which reduces application complexity. The cost of developing
applications is also reduced, because once an object is implemented and tested, it can
be used over and over again.

What is the CORBA Transaction Service?
The CORBA Transaction Service, defined by the OMG, enables mission-critical
applications in distributed environments by providing transactional integrity. It defines
IDL interfaces that allow multiple distributed objects to participate in a transaction, and
enable a distributed application to handle transaction completion over the Internet and
intranets.

Borland's implementation of the CORBA Transaction Service is embodied in the
VisiTransact Transaction Service, a component of the Transaction Management
architecture.

Model for a basic transaction
The VisiTransact Transaction Service can be used to manage the completion of a
transaction. It works with objects at the ORB level to coordinate and manage a
transaction's commit or rollback. The ORB enables the VisiTransact Transaction
Service to propagate the transaction context to each object participating in the
transaction. To accomplish this, the VisiTransact Transaction Service interfaces with
participants of the transaction at specific points in the transaction management
process.

In a distributed application, a transaction can involve multiple objects performing
multiple requests. The objects that are involved can play a number of different roles.

 3: Overview of t ransact ion processing 15

Model for a basic t ransact ion

For example, an object that begins a transaction is called the transaction originator.
The following table provides descriptions of these roles.

The VisiTransact Transaction Service interacts with an application when the
transaction originator begins the transaction, as transactional information is
propagated to transactional objects, and finally, coordinates the transaction's
completion (commit or rollback) across multiple objects.

Although this chapter does not address it, most transactions involve persistent data
(such as databases). For these types of transactions, there are two additional
participant roles—Resource and Recoverable Server. These roles are discussed in
“Coordinating transaction completion with Resource objects.”

Role of Participant Description

Transactional Client A transactional client is the user's interface to a transactional
application. Sometimes the transactional client is also the transaction
originator.

Transaction Originator A transaction originator is the object that begins a transaction. A
transaction originator is not necessarily a transactional client—it
might be a transactional server that originates a transaction.

Transactional Object A transactional object is an object whose behavior is affected by the
transaction, but has no recoverable state of its own. Although a
transactional object does not participate in the completion of a
transaction, it can force the transaction to rollback. See “Coordinating
transaction completion with Resource objects” for information about
recoverable objects, or objects whose recoverable state is affected
by the transaction.

Transactional Server A transactional server is a collection of one or more transactional
objects.

16 VisiBroker Vis iTransact Guide

Model for a basic t ransact ion

Beginning the transaction

When an object initiates a transaction, an instance of the VisiTransact Transaction
Service begins a transaction for a transaction originator and establishes a transaction
context. The transaction context is then associated with the originator's thread of
control that was issued by the VisiBroker ORB. The transaction context contains
transaction information, including an object transaction identifier (OTRID) that uniquely
identifies the transaction.

Figure 3.2 Beginning the transaction

In step 1 of the figure above, the transaction originator registers with the VisiTransact
Transaction Service its desire to begin a transaction. The VisiTransact Transaction
Service answers this request with step 2 by returning a transaction context to the
transaction originator.

Issuing requests to transactional objects

As the transaction originator issues requests to transactional objects in Step 3, each of
these requests is also associated with the transaction context. Using the ORB, the
VisiTransact Transaction Service propagates the transaction context to all objects
participating in the transaction.

Figure 3.3 Issuing requests to transactional objects and passing the transaction context

Note

The transaction context is passed as a Service Context in the GIOP request and
response headers. This makes its propagation completely transparent, and is
compliant with the CORBAservices specification for interoperability between
Transaction Service implementations.

 3: Overview of t ransact ion processing 17

Model for a basic t ransact ion

Completing a transaction

A transaction can be completed in the following ways:

– The transaction originator commits the transaction. This is the typical scenario.

– Any component in the application, as long as Current is not used, can complete the
transaction.

– The transaction times out.

If a commit is requested and all participating Resources agree to commit, then the
changes are committed. If any participant votes for rollback, then the transaction is
rolled back.

If completion is not requested by the application, the VisiTransact Transaction Service
will rollback the transaction when the timeout period expires.

Figure 3.4 Completing the transaction

18 VisiBroker Vis iTransact Guide

 4: C++ quick start with Vis iTransact 19

C++ quick start with VisiTransact
This section describes the development of distributed, object-based transactional
applications with VisiTransact using a C++ sample application.

Overview of the example
The scenario for the C++ quick start example involves a bank that has several
accounts. During a transaction, money is transferred between at least two of these
accounts—depending upon the parameters passed to the client program.

The programs for the quick start are:

– transfer. This program takes input from the command line about how much money
should be transferred between which accounts. It then begins the transaction and
performs the requested transfer. After all requested transfers have completed, it
requests to complete the transaction (either commit or rollback).

– bank_server. This program binds to a Storage object and creates a Bank object with
the name entered at the command line.

– storage_server. This program implements a Storage object for the non-database
quick start, ensures that changes made during the transaction to balances are stored
persistently (if committed), or that the account balances are returned to their state
before the transaction (if rolled back).

20 VisiBroker Vis iTransact Guide

Fi les for the C++ quick start example

The objects for the quick start are:

– Bank. This object provides access to existing Account objects. It creates instances
of the Account object for accounts that exist in the Storage object.

– Account. This object lets you view the balance for an account, and credit or debit an
account's balance. It uses the Storage object to interact with persistent data.

– Storage. The purpose of this object is to abstract data access into one object that
makes changes to data on behalf of the accounts.

– StorageServerImpl. This implementation of the Storage object contains a
lightweight Resource (FakeResourceImpl) that simply updates balances in memory.
It is only provided to help you get up and running quickly with VisiTransact.

Figure 4.1 Components of the quick start example

Files for the C++ quick start example
If you do not know the location of the VisiTransact package, see your system
administrator. The files listed in the following table are included for the example.

Note

To aid in portability, the example files use the .C extension on both Windows and UNIX
so that there can be a common Makefile.

File Description

quickstart.idl The IDL for the quickstart example that defines the required interfaces for
objects.

transfer.C The client program that gathers input from the user, and is the originator of
a VisiTransact-managed transaction that invokes transactional server
objects as part of the transaction.

storage_server.C The server program that creates Storage objects. In this example, the
Storage object is a simple implementation that updates balances in
memory and outputs them. The storage_server is only provided to get you
up and running quickly.

storage_server.h Contains the specification of the Storage object.

bank_server.C The server program that creates the Bank object with information from the
storage_server or storage_ora program, and makes it available to client
programs.

bank.h The specification of the Bank and Account objects.

bank.C Contains the implementations of the Bank and Account interfaces. The
Bank object creates transactional objects (Account objects). The Account
object is the transactional object that calls on the Storage object to credit
or debit account balances.

Makefile Used to build all the test targets.

Makefile.cpp Used to build all the test targets.

../itsmk Specific make definitions for platforms supported

 4: C++ quick start wi th Vis iTransact 21

Prerequis i tes for running the example

Prerequisites for running the example
You must install the VisiTransact product, and the VisiBroker C++ Developer (ORB).
You must also start an instance of the VisiTransact Transaction Service, as described
in “Running the example”.

What you will learn in this example
Here are the steps to implement the C++ quick start:

1 Implement a simple interface in IDL that defines the three objects (Bank, Account,
and Storage) required for the transactional application. See “Writing the quick start
IDL”.

2 Implement the client program and transaction originator (transfer). Gather input from
the user about which accounts to use, and how much money to transfer; initialize
the ORB, begin a transaction, bind to a Bank object, obtain a reference to a
transactional object (Account), perform actions with the transactional object
(Account), commit or rollback the transaction, and handle exceptions. See “Writing
the transaction originator (transfer client program)”.

3 Implement the bank_server program. Initialize the ORB, create a Bank and access
a Storage object, register the Bank object with the POA, and prepare to receive
requests. See “Writing the bank_server program”.

4 Implement the Bank. Instantiate and return a transactional object (Account) upon
request. See “Writing the Bank object”.

5 Implement a transactional object (Account). Handle requests to view account
balances, and credit or debit account balances. See “Writing the transactional object
(Account)”.

6 Implement a Storage object. Access and update data as requested by business
(Account) objects.

7 Build the example. To create the client program, we must compile and link the client
program code with the client stub. To create the server programs, we must compile
and link the server code with the client and server skeletons. See “Building the
example”.

8 Run the example. Start the Smart Agent, the VisiTransact Transaction Service,
server programs, and the client program. See “Running the example”.

22 VisiBroker Vis iTransact Guide

Wri t ing the quick start IDL

Writing the quick start IDL
The first step to creating a transactional application with VisiTransact is to specify all of
your interfaces using the CORBA Interface Definition language (IDL). IDL is language-
independent and has a syntax similar to C++, but can be mapped to a variety of
programming languages.

The example below shows the contents of the quickstart.idl file which defines the
three objects required for the quick start example—Bank, Account, and Storage.

// quickstart.idl
#include "CosTransactions.idl"
#pragma prefix "visigenic.com"

module quickstart
{
 //requires
 interface Account
 {
 float balance();
 void credit(in float amount);
 void debit(in float amount);
 };

 exception NoSuchAccount
 {
 string account_name;
 };

 interface Bank
 {
 Account get_account(in string account_name)
 raises(NoSuchAccount);
 };

 typedef sequence<string> AccountNames;

 //adapts
 interface Storage
 {
 float balance(in string account)
 raises(NoSuchAccount);
 void credit(in string account, in float amount)
 raises(NoSuchAccount);
 void debit(in string account, in float amount)
 raises(NoSuchAccount);
 AccountNames account_names();
 };

};

The interface specification you create in IDL is used by the VisiBroker ORB's idl2cpp
compiler to generate C++ stub routines for the client application, and skeleton code for
the objects. The stub routines are used by the client program for all method
invocations. You use the skeleton code, along with code you write, to create the server
programs that implement the objects.

The code for the client and servers, once completed, is used as input to your C++
compiler and linker to produce your client and server programs.

 4: C++ quick start wi th Vis iTransact 23

Writ ing the transact ion or ig inator (t ransfer c l ient program)

Writing the transaction originator (transfer client program)
The file named transfer.C contains the implementation of the transaction originator,
which also happens to be the client program. As discussed in “Overview of transaction
processing,” the transaction originator is not always the client program. The transfer
client program performs a single VisiTransact-managed transaction (see “Creating and
propagating VisiTransact-managed transactions” for details). For information on how to
manage transactions in other ways, see “Other methods of creating and propagating
transactions.”

The client program performs these steps:

1 Initializes the ORB.

2 Binds to the Bank object named at the command line.

3 Begins a transaction.

4 Obtains a reference to the transactional objects (the source and destination Account
objects) named at the command line.

5 Invokes the debit() and credit() methods on the Account objects for each set of
source/destination/amount entries to the transfer client program. It prints out the
current balances for each Account before and after the transfer.

6 Commits or rolls back the transaction.

7 Handles exceptions.

Initializing the ORB

The first task that your transaction originator needs to do is initialize the ORB, as
shown in the example below. As a component of VisiBroker, command-line arguments
for VisiTransact are supplied to VisiTransact through the VisiBroker ORB initialization
call ORB_init(). Therefore, in order for arguments specified on the command line to
have effect on the VisiTransact operation in a given application process, applications
must pass the original argc and argv arguments to ORB_init() from the main program.

...
int main(int argc, char* const* argv)
{
 try
 {
 // Initialize the ORB.
 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);
...

The ORB_init() function will parse both ORB arguments and VisiTransact arguments,
removing them from the argv vector before returning.

Binding to the Bank object

Before the transfer client program can invoke methods on the transactional (Account)
objects, it must first use the _bind() method to establish a connection to the Bank
object. The implementation of the _bind() method is generated automatically by the
idl2cpp compiler. The _bind() method requests the ORB to locate and establish a
connection to the Bank object.

The following example shows how to bind to the Bank object as specified in the
bank_name parameter passed at the command line when the transfer client program is
started. Notice how a _var is used to facilitate memory management.

const char *bank_name = argv[1];
 //Locate the bank.
 Quickstart::Bank_var bank;
 //Get the Bank ID
 PortableServer::ObjectId_var bankId =

24 VisiBroker Vis iTransact Guide

Wri t ing the t ransact ion or ig inator (t ransfer c l ient program)

 PortableServer::string_to_ObjectId(bank_name);
 try
 {
 bank = quickstart::Bank::_bind("/bank_agent_poa", bankId);
 //bank = quickstart::Bank::_bind(bank_name);
 }
 catch (CORBA::Exception &ex)
 {
 const char *name;
 (bank_name == 0) ? name="NULL" : name=bank_name;
 cerr << "Unable to bind to Bank \"" << name << "\": " << ex << endl;
 return 1;
 }

Beginning the transaction

Before beginning a transaction, you must obtain a transaction context. VisiTransact-
managed transactions are handled transparently to your application with Current—an
object which maintains a unique transaction for each active thread. To use a
VisiTransact-managed transaction, you must obtain a reference to this Current object.
The Current object is valid for the entire process under which you create it, and can be
used in any thread.

The next example shows how to obtain a VisiTransact-managed transaction. First an
object reference is obtained for the TransactionCurrent object using the
CORBA::ORB::resolve_initial_references() method. The Current object returned from
this method is then narrowed to the specific CosTransactions::Current object using the
narrow() method. See the VisiBroker documentation for a full description of the
resolve_initial_references()and narrow() methods.

// Start a transaction.
CosTransactions::Current_var current;
{
 CORBA::Object_var initRef =
 orb->resolve_initial_references("TransactionCurrent");
 current = CosTransactions::Current::_narrow(initRef);
}
...

To perform work that is managed by VisiTransact, you must first begin a transaction
using the Current interface's begin() method. Only one transaction can be active within
a thread at a time. The following example shows how to begin a VisiTransact-managed
transaction.

...
CosTransactions::Current_var current;
...
current->begin();
...

Obtaining references to transactional objects (source and
destination accounts)

Once you bind to the Bank object, you can obtain a reference to the transactional
(Account) objects specified when the transfer program is started. Within the transfer
program, these references are obtained using the get_account() method in the Bank
interface. The example below shows the relevant code from the transfer program.

...
try
{
 for(CORBA::ULong i = 2; i < (CORBA::ULong)argc; i += 3)
 {

 4: C++ quick start wi th Vis iTransact 25

Writ ing the transact ion or ig inator (t ransfer c l ient program)

 const char* srcName = argv[i];
 const char* dstName = argv[i + 1];
 float amount = (float)atof(argv[i + 2]);

 quickstart::Account_var src = bank->get_account(srcName);
 quickstart::Account_var dst = bank->get_account(dstName);
 ...
 }
}
catch(const quickstart::NoSuchAccount& e)
{
 cout << "Exception: " << e << endl;
 commit = 0;
}
catch(const CORBA::SystemException& e)
{
 cout << "Exception: " << e << endl;
 commit = 0;
}
...

In the above example, the transfer client program loops through its input arguments
(received at the command line when the program started), and calls get_account() for
each source and destination account name entered. If the account name entered is
valid, the Bank object returns a corresponding Account object. See “Implementing the
Bank object and its get_account() method” for details on the Bank object's
get_account() method.

Notice that if an invalid account name was entered, an error message is printed and
the value of the commit variable is set to false. Likewise, if a system exception is raised
when performing the invocation of get_account(), an error message is printed and the
value of the commit variable is set to false. See “Committing or rolling back the
transaction” to find out how the commit variable is used for transaction completion.

26 VisiBroker Vis iTransact Guide

Wri t ing the t ransact ion or ig inator (t ransfer c l ient program)

Invoking methods (debit() and credit()) on the transactional
(account) objects

Once the transfer client program has established a connection with the source and
destination Account objects, the debit() and credit() methods of the Account interface
can be invoked for each source/destination/amount triplet that was entered when the
transfer program was started.

The debit() and credit() methods are invoked from within the transfer program's
main try() clause using the information returned to the src and dst variables by the
invocation of the get_account() method shown in the previous example. The next
example shows the parts of the try() clause that invoke credit() and debit().

try
{
 for(CORBA::ULong i = 2; i < (CORBA::ULong)argc; i += 3)
 {
 ...
 src->debit(amount);
 dst->credit(amount);
 ...
 }
}
...

Committing or rolling back the transaction

Once a transaction has begun, it must be committed or rolled back to complete the
transaction. If an originator of a VisiTransact-managed transaction does not complete
the transaction, the VisiTransact Transaction Service will rollback the transaction after
a timeout period. However, it is important to commit or rollback transactions so that
hung transactions do not consume system resources.

The example below shows how the transfer program uses the commit variable to
decide whether to commit or rollback the transaction. If the commit variable is 1 (true),
the transaction is committed. If the commit variable is 0 (false), the transaction is rolled
back. In the next example, the 0 sent to commit() means that heuristics will not be
reported. See “Transaction completion” for information about heuristics.

...
CORBA::Boolean commit = 1;
...
if(commit)
{
 cout << "*** Committing transaction ***" << endl;
 current->commit(0);
}
else
{
 cout << "*** Rolling back transaction ***" << endl;
 current->rollback();
}
...

Handling exceptions

The following example shows the outer try and catch statements for the transfer client
program. Notice how these statements are used to detect any failures (CORBA or
application exceptions), print a message, and return.

try
{
 ...

 4: C++ quick start wi th Vis iTransact 27

Wri t ing the bank_server program

}
catch(const CORBA::Exception& e)
{
 cerr << "Exception: " << e << endl;
 return 1;
}
catch(...)
{
 cerr << "Unknown Exception caught" << endl;
 return 1;
}
return 0;
...

Writing the bank_server program
The bank_server program performs these steps in the main routine:

1 Initializes the ORB.

2 Obtains a Storage object and instantiates a Bank object with it.

3 Registers the Bank object with the ORB and POA.

4 Enters a loop waiting for client requests.

The argc and argv parameters passed to the ORB_init() methods are the same
parameters that are passed to the main routine. These parameters can be used to
specify options for the ORB.

int main(int argc, char* const* argv)
{
 try
 {
 // Initialize the ORB.
 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);
...

28 VisiBroker Vis iTransact Guide

Wri t ing the bank_server program

Next, the myPOA that is to be used to activate the Storage object is created. The
bank_server program then obtains a Storage object, and retrieves account information
from it. Using the account information, the bank_server program instantiates the Bank
object. Lastly, the bank_server program calls the orb->run() method to start the event
loop that receiveclient requests.

const char* bank_name = argv[1];
 // get a reference to the root POA
 CORBA::Object_var obj = orb->resolve_initial_references("RootPOA");
 PortableServer::POA_var rootPOA = PortableServer::POA::_narrow(obj);

 CORBA::PolicyList policies;
 policies.length(1);
 policies[(CORBA::ULong)0] = rootPOA->create_lifespan_policy(
 PortableServer::PERSISTENT);
 // get the POA Manager
 PortableServer::POAManager_var poa_manager = rootPOA->the_POAManager();

 // Create myPOA with the right policies
 PortableServer::POA_var myPOA = rootPOA->create_POA("bank_agent_poa",
 poa_manager,
 policies);
 // Get the Bank Id
 PortableServer::ObjectId_var bankId =
 PortableServer::string_to_ObjectId(bank_name);

 // Get a storage object for the bank.
 quickstart::Storage_var storage = quickstart::Storage::_bind("/

bank_storage_poa", bankId);

 // Create the bank servant
 PortableServer::ServantBase_var bankServant = new BankImpl(bank_name,
storage, orb);

 // Decide on the ID for the servant
 PortableServer::ObjectId_var managerId =
 PortableServer::string_to_ObjectId(bank_name);

 // Activate the servant with the ID on myPOA
 myPOA->activate_object_with_id(managerId, bankServant);

 // Activate the POA Manager
 poa_manager->activate();

 CORBA::Object_var reference = myPOA->servant_to_reference(bankServant);
 cout << reference << " is ready" << endl;

 // Wait for incoming requests
 orb->run();

 4: C++ quick start wi th Vis iTransact 29

Wri t ing the Bank object

Writing the Bank object
There are a few tasks you must do to implement the Bank object:

– Derive the BankImpl class from the POA_quickstart::Bank skeleton class.

– Implement the Bank object that produces the transactional (Account) objects.

Understanding the BankImpl class hierarchy

The BankImpl class that you implement is derived from the POA_quickstart::Bank class
that was generated by the idl2cpp compiler. The following example shows the BankImpl
class.

class BankImpl : public POA_quickstart::Bank
{
private:
 quickstart::AccountNames_var _account_names;
 quickstart::Storage_var _storage;
 AccountRegistry _accounts;
 PortableServer::POA_var _account_poa;
public:
 BankImpl(const char* bank_name,
 quickstart::Storage* storage, CORBA::ORB* orb);
 virtual ~BankImpl();
 virtual quickstart::Account* get_account(const char* account_name);
};

Implementing the Bank object and its get_account() method

The BankImpl interface defines its constructor and destructor. The constructor creates a
Bank object with the name provided when the bank_server program is started
(bank_name). It also creates an instance of AccountRegistry which is used to keep trace
of all instantiated Account objects. The account names are obtained from the Storage
object.

BankImpl::BankImpl(const char* bank_name,
 quickstart::Storage* storage, CORBA::ORB* orb)
{
 _account_names = storage->account_names();
 _storage = quickstart::Storage::_duplicate(storage);

 PortableServer::POA_var root_poa =
 PortableServer::POA::_narrow(orb->resolve_initial_references("RootPOA"));
 CORBA::PolicyList policies;
 policies.length(2);
 CORBA::Any policy_value;
 policy_value <<= CosTransactions::REQUIRES;
 policies[0] = orb->create_policy(CosTransactions::OTS_POLICY_TYPE,
 policy_value);
 policies[1] =
 root_poa-
>create_implicit_activation_policy(PortableServer::IMPLICIT_ACTIVATION);
 _account_poa = root_poa->create_POA("account_poa",
 PortableServer::POAManager::_nil(),
 policies);
 _account_poa->the_POAManager()->activate();
 return;
}

BankImpl::~BankImpl()
{
}

30 VisiBroker Vis iTransact Guide

Wri t ing the Bank object

The next example shows the Bank object's get_account() method. Note that the
get_account() method performs a check to see if the account exists, else it will create a
new account. If it does not, a NoSuchAccount exception is thrown.

quickstart::Account_ptr
BankImpl::get_account(const char* account_name)
{
 // Lookup the account in the account dictionary.
 PortableServer::ServantBase_var servant = _accounts.get(account_name);
 CORBA::Boolean foundAccount = 0;

 if (servant == PortableServer::ServantBase::_nil()) {
 for(CORBA::ULong i = 0; !foundAccount && i < _account_names->length(); i++)
{
 if (!strcmp(_account_names[i], account_name)) {
 servant = new AccountImpl(account_name, _storage);

 // Print out the new account
 cout << "Created " << account_name << "'s account." << endl;

 // Save the account in the account dictionary.
 _accounts.put(account_name, servant);
 foundAccount = 1;
 }
 }
 if (!foundAccount) {
 throw quickstart::NoSuchAccount(account_name);
 return 0;
 }
 }

 try {
 CORBA::Object_var ref = _account_poa->servant_to_reference(servant);
 quickstart::Account_var account = quickstart::Account::_narrow(ref);
 cout << "account generated." << endl;
 return quickstart::Account::_duplicate(account);
 }
 catch(const CORBA::Exception& e) {
 cerr << "_narrow caught exception: " << e << endl;
 return quickstart::Account::_nil();
 }
 throw quickstart::NoSuchAccount(account_name);
 return 0;
}

 4: C++ quick start wi th Vis iTransact 31

Wri t ing the t ransact ional object (Account)

Writing the transactional object (Account)
There are a few tasks you must complete to implement the transactional (Account)
object:

– Derive the AccountImpl class from the POA_quickstart::Account class.

– Implement the Account object with implementations for the balance(), credit(), and
debit() methods that invoke the Storage object.

Understanding the AccountImpl class hierarchy

The AccountImpl class that you implement is derived from the POA_quickstart::Account
class that was generated by the idl2cpp compiler. Refer to the first code example in the
previous section. The account_poa has a policy OTS_POLICY_TYPE of REQUIRE
defined, hence all objects that are activated on this poa will need to be transactional
objects. Hence, account.

class AccountImpl : public POA_quickstart::Account
{
private:
 CORBA::String_var _account_name;
 quickstart::Storage_var _storage;
public:
 AccountImpl(const char* account_name,
 quickstart::Storage* storage);
 virtual CORBA::Float balance();
 virtual void credit(CORBA::Float amount);
 virtual void debit(CORBA::Float amount);
private:
 virtual void markForRollback();
};

Making the Account object a transactional object

To make an object transactional two things must be done:

– Create a poa with OTS_POLICY_TYPE with values REQUIRE or ADAPT.

– Use the poa to activate the object

The _account_poa was created during the construction of the BankImpl object. Refer to
the first code sample in “Implementing the Bank object and its get_account() method”.
In the get_account() function, whenever a new account is needed it will be activated
using the _account_poa. This makes the Account object a transactional object.

Implementing the Account object and its methods

As shown in the following example, the AccountImpl class defines its constructor which
creates an Account object with the account_name and storage parameters provided by
the Bank object.

AccountImpl::AccountImpl(const char* account_name,
 quickstart::Storage* storage)
{
 _account_name = CORBA::strdup(account_name);
 _storage = quickstart::Storage::_duplicate(storage);
}

As shown in the next example, the Account class also implements a markForRollback()
method. When invoked, this method calls rollback_only() to force the transaction
originator to rollback the transaction.

32 VisiBroker Vis iTransact Guide

Wri t ing the t ransact ional object (Account)

void AccountImpl::markForRollback()
{
 try
 {
 CORBA::ORB_var orb = CORBA::ORB_init();
 CORBA::Object_var initRef =
 orb->resolve_initial_references("TransactionCurrent");
 CosTransactions::Current_var current =
 CosTransactions::Current::_narrow(initRef);
 current->rollback_only();
 }
 catch(const CosTransactions::NoTransaction&)
 {
 throw CORBA::TRANSACTION_REQUIRED();
 }
}

Notice how the markForRollback() method obtains a handle to the TransactionCurrent
object, and then narrows to a Current object so that it can call current-
>rollback_only(). Since the Account object is not the transaction originator, it cannot
invoke rollback()—with VisiTransact-managed transactions, only the transaction
originator can complete the transaction.

As shown in the next example, the Account object also implements the balance(),
credit(), and debit() methods:

– The balance() method requests the current balance for the Account object from the
Storage object.

– The credit() method requests that the Storage object increment the balance by the
amount parameter.

– The debit() method requests that the Storage object decrease the balance by the
amount parameter.

Note

Although the Account object for the quick start example could easily interact with the
database itself, the example is architected to mirror real-world scenarios where a back-
end data access object is used by multiple business logic objects. This makes it easy
to change your database in the future, if it is necessary to do so.

CORBA::Float AccountImpl::balance()
{
 try
 {
 return _storage->balance(_account_name);
 }
 catch(const quickstart::NoSuchAccount& e)
 {
 cerr << "Account::balance: " << e << endl;
 markForRollback();
 return 0;
 }
}

void

AccountImpl::credit(CORBA::Float amount)
{
 if(amount < 0)

 4: C++ quick start wi th Vis iTransact 33

Bui ld ing the example

 {
 cerr << "Account::credit: Invalid amount: " << amount << endl;
 markForRollback();
 }
 try
 {
 _storage->credit(_account_name, amount);
 }
 catch(const quickstart::NoSuchAccount& e)
 {
 cerr << "Account::credit: " << e << endl;
 markForRollback();
 }
}

void
AccountImpl::debit(CORBA::Float amount)
{
 if(amount < 0 || balance() - amount < 0)
 {
 cerr << "Account::debit: Invalid amount: " << amount << endl;
 markForRollback();
 }
 try
 {
 _storage->debit(_account_name, amount);
 }
 catch(const quickstart::NoSuchAccount& e)
 {
 cerr << "Account::debit: " << e << endl;
 markForRollback();
 }
}

Building the example
The transfer.C file that you created and the generated quickstart_c.C file are
compiled and linked together to create the client program. The bank_server.c file that
you created, along with the generated quickstart_s.C, quickstart_c.C, and bank.C
files, are compiled and linked to create the bank_server program. Because Current is
a pseudo object and VisiTransact-managed transactions use the Current object, the
client program and server programs must also be linked with the VisiTransact
its_support library.

Selecting a Makefile

The <install_dir>/examples/vbe/its/ directory of your VisiTransact release contains a
Makefile for this example. This directory also contains a itsmk file which is included by
the Makefile and defines all site-specific settings. You may need to customize the
itsmk file. The itsmk file assumes that VisiTransact has been installed in the default
installation directory for VisiBroker.

34 VisiBroker Vis iTransact Guide

Running the example

Compiling the example with make

WinNT: Assuming the VisiBroker ORB and VisiTransact distribution was installed in
C:\vbroker, use the following commands:

prompt> C:
prompt> cd c:\vbroker\examples\vbe\its
prompt> nmake cpp

The Visual C++ nmake command, a standard facility, runs the idl2cpp compiler and then
compiles each file.

Assuming the VisiBroker ORB and VisiTransact distribution was installed in /usr/local/
vbroker, issue these commands:

prompt> cd /usr/local/vbroker/examples/vbe/its
prompt> make cpp

In this example, make is the standard UNIX facility.

Running the example
Now that you have compiled the necessary components, you are ready to run your first
VisiTransact application.

Starting the Smart Agent (osagent)

Before you attempt to run VisiTransact transactional applications, you must first start
the VisiBroker Smart Agent on at least one host in your local network.

If the Smart Agent has not been set up as a Windows NT service, use the following
command to start the Smart Agent:

WinNT: prompt> osagent

For UNIX, use the following command to start the Smart Agent:

UNIX: prompt> osagent

While running the example, you only need to start the Smart Agent once.

Starting the VisiTransact Transaction Service

You must start an instance of the VisiTransact Transaction Service to enable
transactions across the network. To do so, use the following command:

prompt> ots

While running the example, you only need to start the VisiTransact Transaction Service
once.

 4: C++ quick start wi th Vis iTransact 35

Running the example

Starting the storage_server program

Start the storage_server program at the command line by typing the following:

prompt> storage_server MyBank

The argument MyBank is the name of the Bank.

Starting the bank_server program

Start the bank_server program at the command line by typing the following:

prompt> bank_server MyBank

In the above example, the argument is the name of the Bank.

Note

Make sure the PATH environment variable includes the path to the VisiTransact directory
(where the binaries are located). On Solaris, make sure the LD_LIBRARY_PATH
environment variable includes the path to the VisiTransact shared libraries.

Running the Transaction Originator (transfer Client Program)

Start the transfer program at the command line with the name of the bank, followed by
the source account, destination account, and amount of money you wish to transfer.

prompt> transfer MyBank Paul John 20

You can include multiple transfers within one execution of the transfer program. To do
so, include the source account, destination account, and amount in sequence for each
transfer:

prompt> transfer MyBank Paul John 20 Ringo George 40

Results

Running the transfer client program with “MyBank Paul John 20” results in the
following output from the transfer client program:

Account Balance
======= =======
Paul 100.0
John 100.0
*** Transfer $20.0 from Paul's account to John's account ***
Account Balance
======= =======
Paul 80.0
John 120.0
*** Committing transaction ***

36 VisiBroker Vis iTransact Guide

Viewing the complete example

Figure 4.2 Visual depiction of the calls the application makes in the quick start example

Viewing the complete example
The following sections show the complete code for the quick start application.

IDL for the quick start example

// quickstart.idl
#include "CosTransactions.idl"
#pragma prefix "visigenic.com"

module quickstart
{
 //requires
 interface Account
 {
 float balance();
 void credit(in float amount);
 void debit(in float amount);
 };

 exception NoSuchAccount
 {
 string account_name;
 };

 interface Bank
 {

 4: C++ quick start wi th Vis iTransact 37

Viewing the complete example

 Account get_account(in string account_name)
 raises(NoSuchAccount);
 };

 typedef sequence<string> AccountNames;

 //adapts
 interface Storage
 {
 float balance(in string account)
 raises(NoSuchAccount);
 void credit(in string account, in float amount)
 raises(NoSuchAccount);
 void debit(in string account, in float amount)
 raises(NoSuchAccount);
 AccountNames account_names();
 };
};

Transfer client program

The following example shows the complete transfer client program in the transfer.C
file.

// transfer.C

#include "quickstart_c.hh"

USE_STD_NS

int
main(int argc, char* const* argv)
{
 try
 {
 // Initialize the ORB.
 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

 // Check the command line arguments
 if (argc % 3 != 2)
 {
 cerr << "Usage: " << argv[0] <<
 " <bank-name> [<src> <dst> <amount>] ..." << endl;
 return 1;
 }

 // parse first arg
 const char *bank_name = argv[1];

 // Locate the bank.
 quickstart::Bank_var bank;

 // Get the Bank Id
 PortableServer::ObjectId_var bankId =
 PortableServer::string_to_ObjectId(bank_name);

 try
 {
 bank = quickstart::Bank::_bind("/bank_agent_poa", bankId);
 // bank = quickstart::Bank::_bind(bank_name);
 }
 catch (CORBA::Exception &ex)
 {
 const char *name;
 (bank_name == 0) ? name="NULL" : name=bank_name;

38 VisiBroker Vis iTransact Guide

Viewing the complete example

 cerr << "Unable to bind to Bank \"" << name << "\": " << ex << endl;
 return 1;
 }

 // Start a transaction.
 CosTransactions::Current_var current;
 {
 CORBA::Object_var initRef =
 orb->resolve_initial_references("TransactionCurrent");
 current = CosTransactions::Current::_narrow(initRef);
 }

 current->begin();

 CORBA::Boolean commit = 1;
 try
 {
 for(CORBA::ULong i = 2; i < (CORBA::ULong)argc; i += 3)
 {
 const char* srcName = argv[i];
 const char* dstName = argv[i + 1];
 float amount = (float)atof(argv[i + 2]);

 quickstart::Account_var src = bank->get_account(srcName);
 quickstart::Account_var dst = bank->get_account(dstName);

 cout << "Account\tBalance" << endl;
 cout << "=======\t=======" << endl;
 cout << srcName << "\t" << src->balance() << endl;
 cout << dstName << "\t" << dst->balance() << endl;
 cout << "\n*** Transfer $" << amount << " from " <<
 srcName << "'s account to " <<
 dstName << "'s account ***\n" << endl;

 src->debit(amount);
 dst->credit(amount);

 cout << "Account\tBalance" << endl;
 cout << "=======\t=======" << endl;
 cout << srcName << "\t" << src->balance() << endl;
 cout << dstName << "\t" << dst->balance() << endl;
 }
 }
 catch(const quickstart::NoSuchAccount& e)
 {
 cout << e << endl;
 commit = 0;
 }
 catch(const CORBA::SystemException& e)
 {
 cout << "Exception: " << e << endl;
 commit = 0;
 }

 // Commit or rollback the transaction.
 if(commit)
 {
 cout << "*** Committing transaction ***" << endl;
 current->commit(0);
 }
 else
 {
 cout << "*** Rolling back transaction ***" << endl;
 current->rollback();
 }

 4: C++ quick start wi th Vis iTransact 39

Viewing the complete example

 }

 catch(const CORBA::Exception& e)
 {
 cerr << "Exception: " << e << endl;
 return 1;
 }
 catch(...)
 {
 cerr << "Unknown Exception caught" << endl;
 return 1;
 }
 return 0;
}

bank_server program

The following example shows the bank_server program in the bank_server.C file.

// bank_server.C

#include "bank.h"

USE_STD_NS

int
main(int argc, char* const* argv)
{
 try
 {
 // Initialize the ORB.
 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

 // Check the command line arguments
 if(argc != 2)
 {
 cerr << "Usage: " << argv[0] << " <bank-name>" << endl;
 return 1;
 }
 const char* bank_name = argv[1];

 // get a reference to the root POA
 CORBA::Object_var obj = orb->resolve_initial_references("RootPOA");
 PortableServer::POA_var rootPOA = PortableServer::POA::_narrow(obj);

 CORBA::PolicyList policies;
 policies.length(1);
 policies[(CORBA::ULong)0] = rootPOA->create_lifespan_policy(
 PortableServer::PERSISTENT);

 // get the POA Manager
 PortableServer::POAManager_var poa_manager = rootPOA->the_POAManager();

 // Create myPOA with the right policies
 PortableServer::POA_var myPOA = rootPOA->create_POA("bank_agent_poa",
 poa_manager,
 policies);
 // Get the Bank Id
 PortableServer::ObjectId_var bankId =
 PortableServer::string_to_ObjectId(bank_name);

 // Get a storage object for the bank.
 quickstart::Storage_var storage = quickstart::Storage::_bind("/

40 VisiBroker Vis iTransact Guide

Viewing the complete example

bank_storage_poa", bankId);

 // Create the bank servant
 PortableServer::ServantBase_var bankServant = new BankImpl(bank_name,

storage, orb);

 // Decide on the ID for the servant
 PortableServer::ObjectId_var managerId =
 PortableServer::string_to_ObjectId(bank_name);

 // Activate the servant with the ID on myPOA
 myPOA->activate_object_with_id(managerId, bankServant);

 // Activate the POA Manager
 poa_manager->activate();

 CORBA::Object_var reference = myPOA->servant_to_reference(bankServant);
 cout << reference << " is ready" << endl;

 // Wait for incoming requests
 orb->run();
 }
 catch(const CORBA::Exception& e)
 {
 cerr << "Exception: " << e << endl;
 return 1;
 }
 catch(...)
 {
 cerr << "Unknown Exception caught" << endl;
 return 1;
 }
 return 0;
}

Bank and account (transactional) objects

The example below shows the AccountRegistry, Bank, and Account classes in the
bank.h file.

// bank.h

#include "quickstart_s.hh"
#include <vport.h>

// The AccountRegistry is a holder of Bank account implementations
class AccountRegistry
{
 public:
 AccountRegistry() : _count(0), _max(16), _data((Data*)NULL)
 {
 _data = new Data[16];
 }

 ~AccountRegistry() { delete[] _data; }

 void put(const char* name, PortableServer::ServantBase_ptr servant) {

 VISMutex_var lock(_lock);

 if (_count + 1 == _max) {
 Data* oldData = _data;

 4: C++ quick start wi th Vis iTransact 41

Viewing the complete example

 _max += 16;
 _data = new Data[_max];
 for (CORBA::ULong i = 0; i < _count; i++)
 _data[i] = oldData[i];
 delete[] oldData;
 }

 _data[_count].name = name;
 servant->_add_ref();
 _data[_count].account = servant;
 _count++;
 }

 PortableServer::ServantBase_ptr get(const char* name) {

 VISMutex_var lock(_lock);

 for (CORBA::ULong i = 0; i < _count; i++) {
 if (strcmp(name, _data[i].name) == 0) {
 _data[i].account->_add_ref();
 return _data[i].account;
 }
 }
 return PortableServer::ServantBase::_nil();
 }

 private:
 struct Data {
 CORBA::String_var name;
 PortableServer::ServantBase_var account;
 };

 CORBA::ULong _count;
 CORBA::ULong _max;
 Data* _data;
 VISMutex _lock; // Lock for synchronization
};

class BankImpl : public POA_quickstart::Bank
{
private:
 quickstart::AccountNames_var _account_names;
 quickstart::Storage_var _storage;
 AccountRegistry _accounts;
 PortableServer::POA_var _account_poa;
public:
 BankImpl(const char* bank_name,
 quickstart::Storage* storage, CORBA::ORB* orb);
 virtual ~BankImpl();
 virtual quickstart::Account* get_account(const char* account_name);
};

class AccountImpl : public POA_quickstart::Account
{
private:
 CORBA::String_var _account_name;
 quickstart::Storage_var _storage;
public:
 AccountImpl(const char* account_name,
 quickstart::Storage* storage);
 virtual CORBA::Float balance();
 virtual void credit(CORBA::Float amount);
 virtual void debit(CORBA::Float amount);

42 VisiBroker Vis iTransact Guide

Viewing the complete example

private:
 virtual void markForRollback();
};

The next example shows the BankImpl and AccountImpl classes in the bank.C file.

// bank.C

#include "bank.h"

USE_STD_NS

BankImpl::BankImpl(const char* bank_name,
 quickstart::Storage* storage, CORBA::ORB* orb)
{
 _account_names = storage->account_names();
 _storage = quickstart::Storage::_duplicate(storage);

 PortableServer::POA_var root_poa =
 PortableServer::POA::_narrow(orb->resolve_initial_references("RootPOA"));
 CORBA::PolicyList policies;
 policies.length(2);
 CORBA::Any policy_value;
 policy_value <<= CosTransactions::REQUIRES;
 policies[0] = orb->create_policy(CosTransactions::OTS_POLICY_TYPE,
 policy_value);
 policies[1] = root_poa-
>create_implicit_activation_policy(PortableServer::IMPLICIT_ACTIVATION);
 _account_poa = root_poa->create_POA("account_poa",
 PortableServer::POAManager::_nil(),
 policies);
 _account_poa->the_POAManager()->activate();
 return;
}

BankImpl::~BankImpl()
{
}

quickstart::Account_ptr
BankImpl::get_account(const char* account_name)
{
 // Lookup the account in the account dictionary.
 PortableServer::ServantBase_var servant = _accounts.get(account_name);
 CORBA::Boolean foundAccount = 0;

 if (servant == PortableServer::ServantBase::_nil()) {
 for(CORBA::ULong i = 0; !foundAccount && i < _account_names->length(); i++)
{
 if (!strcmp(_account_names[i], account_name)) {
 servant = new AccountImpl(account_name, _storage);

 // Print out the new account
 cout << "Created " << account_name << "'s account." << endl;

 // Save the account in the account dictionary.
 _accounts.put(account_name, servant);

 4: C++ quick start wi th Vis iTransact 43

Viewing the complete example

 foundAccount = 1;
 }
 }
 if (!foundAccount) {
 throw quickstart::NoSuchAccount(account_name);
 return 0;
 }
 }

 try {
 CORBA::Object_var ref = _account_poa->servant_to_reference(servant);
 quickstart::Account_var account = quickstart::Account::_narrow(ref);
 cout << "account generated." << endl;
 return quickstart::Account::_duplicate(account);
 }
 catch(const CORBA::Exception& e) {
 cerr << "_narrow caught exception: " << e << endl;
 return quickstart::Account::_nil();
 }
 throw quickstart::NoSuchAccount(account_name);
 return 0;
}

AccountImpl::AccountImpl(const char* account_name,
 quickstart::Storage* storage)
{
 _account_name = CORBA::strdup(account_name);
 _storage = quickstart::Storage::_duplicate(storage);
}

void
AccountImpl::markForRollback()
{
 try
 {
 CORBA::ORB_var orb = CORBA::ORB_init();
 CORBA::Object_var initRef =
 orb->resolve_initial_references("TransactionCurrent");
 CosTransactions::Current_var current =
 CosTransactions::Current::_narrow(initRef);
 current->rollback_only();
 }
 catch(const CosTransactions::NoTransaction&)
 {
 throw CORBA::TRANSACTION_REQUIRED();
 }
}

CORBA::Float
AccountImpl::balance()
{
 try
 {
 return _storage->balance(_account_name);
 }

44 VisiBroker Vis iTransact Guide

Viewing the complete example

 catch(const quickstart::NoSuchAccount& e)
 {
 cerr << "Account::balance: " << e << endl;
 markForRollback();
 return 0;
 }
}

void
AccountImpl::credit(CORBA::Float amount)
{
 if(amount < 0)
 {
 cerr << "Account::credit: Invalid amount: " << amount << endl;
 markForRollback();
 }
 try
 {
 _storage->credit(_account_name, amount);
 }
 catch(const quickstart::NoSuchAccount& e)
 {
 cerr << "Account::credit: " << e << endl;
 markForRollback();
 }
}

void
AccountImpl::debit(CORBA::Float amount)
{
 if(amount < 0 || balance() - amount < 0)
 {
 cerr << "Account::debit: Invalid amount: " << amount << endl;
 markForRollback();
 }
 try
 {
 _storage->debit(_account_name, amount);
 }
 catch(const quickstart::NoSuchAccount& e)
 {
 cerr << "Account::debit: " << e << endl;
 markForRollback();
 }
}

 5: Creat ing a transact ional object 45

Creating a transactional object
The creation of a transactional object for C++ server and clients can be achieved in two
ways: by inheriting transactional object interfaces or by direct implementation.

Inheriting transactional object interfaces
By inheriting of CosTransactions::TransactionalObject interfaces in the object
interfaces will define the object to be a transactional object in the C++ server and client.

Implementing transactional object interfaces
The other way, which is compliant to OMG OTS 1.2 specification and illustrated in the
C++ example, will allow C++ server and clients to define their transactional object to
enhance its transaction controls. With these new improvements, servers are able to
force a transaction requirement upon a target object by setting appropriate policies for
it. Meanwhile, clients should have to make corresponding invocations according to the
target object's requirement, with some new client side policies to regulate their
behaviors. Thus a strong semantic control is guaranteed.

It also provide the support for policy creation and policy check on both client and server
sides. It safeguards the transactional object reference creation and transactional
invocations in a distributive transaction environment.

46 VisiBroker Vis iTransact Guide

Transact ional POA pol icy inter faces

Transactional POA policy interfaces

OTSPolicy

This policy is used to describe the shared transaction behavior of a target object. It has
three possible values:

– REQUIRES – the target object need a transaction to be present with the incoming calls.

– FORBIDS – no transaction should be present with the invocations on the target object.

– ADAPTS – the target object is sensitive to the presence or absence of a current
transaction.

InvocationPolicy

This policy specifies what kind of transactions the target object supports. A target
object can choose to supported SHARED transaction model, UNSHARED transaction
model, or EITHER of them by setting the invocation policies with the corresponding
values.

Note:

When defining both OTSPolicy and InvocationPolicy for a target object, not all
combinations are valid. Please see the OMG OTS specification version 1.2 for detail.
Any one of invalid combinations in policy creation will result in an InvalidPolicy
exception.

NonTxTargetPolicy

This policy is used to PERMIT a client invocation on a non-transactional target object
during an active transaction or to PREVENT the client from doing it. Any client
invocation that conflicts with the policy will get an INVALID_TRANSACTION exception.

Affected Server Behaviors
A new transactional server should use OTSPolicy and InvocationPolicy (optional) to
control the transactional behaviors of the objects it creates. The previously specified
TransactionalObject should not be used in the new server.

To create an object with needed transactional behaviors, a server must create POAs
with proper policies. A POA uses the policy values with which it is created to control the
object reference creation. VisiTransact Transaction Manager will examine the validity
of those policies and then do one of the following:

1 if all policies are valid, a POA with specified policies is created for object activation
and reference creation;

2 if policies are invalid, an exception is raised; or

3 if OTSPolicy is absent on creating a POA, VisiTransact Transaction Manager
provides a default value. (FORBIDS).

In the absence of InvocationPolicy, objects thus created should be treated as if they
support the InvocationPolicy of EITHER.

Affected Client Behaviors
Clients shall make invocations under circumstances conforming to the requirements of
the target objects. Otherwise they will get exceptions from VisiTransact Transaction
Manager.

 5: Creat ing a t ransact ional object 47

Deal ing with UNSHARED transact ions

For an object that REQUIRES transactions, a call on it must happen within the scope of
an active transaction, for example, the calling thread must be associated with an active
transaction.

For an object that FORBIDS transactions, a call on it must be made outside the scope
of any active transaction, for example, the calling thread is associated with no
transaction.

For an object that ADAPTS transactions, a call on it is allowed in either case. However,
the target object will behave differently depending on whether the incoming call is
associated with an active transaction or not.

During an active transaction, the client uses the NonTxTargetPolicy to manipulate calls
on non-transactional objects. If a client doesn't set the policy, the default value for this
is PERMIT.

Dealing with UNSHARED transactions
The support for UNSHARED transactions is not fully provided with this release
because the current Visibroker has a model of Asynchronous Method Invocation called
NativeMessaging that is different from OMG AMI model. So VisiTransact Transaction
Manager servers and clients shouldn't directly participate in an unshared transaction.

However, the InvocationPolicy of any valid values can be created successfully for a
POA at the server side irrespective of this limitation.

48 VisiBroker Vis iTransact Guide

 6: Determining your approach to t ransact ions 49

Determining your approach to
transactions
This section provides an overview of the directions you can take when building
transactional applications with VisiTransact Transaction Manager.

Transaction management approaches
A program can choose the type of context management it will use, and the method of
context propagation used to transmit the transactional context to other objects. Using a
type of context management does not restrict your choice of transaction propagation.

Direct vs. indirect context management

The CORBAservices Transaction Service specification from OMG defines the following
types of context management:

– Indirect Context Management. With indirect context management, an application
uses the Current object provided by the Transaction Service to associate the
transaction context with the application thread of control and manage it.

– Direct Context Management. In direct context management, an application
manipulates the Control and other objects associated with the transaction.

Using indirect context management simplifies programming, and enables your
application to take advantage of performance enhancements and optimizations that
are possible when the VisiTransact Transaction Service controls the transaction
context. For example, VisiTransact-managed transactions take advantage of the
underlying VisiBroker ORB to minimize remote calls. Further, VisiTransact-managed
transactions save system resources by caching the propagation context and
transaction context at the application end, thereby eliminating unnecessary remote
calls to retrieve this data.

Direct context management might be more convenient if you are using explicit
propagation or you are trying to use multiple VisiTransact Transaction Service
instances to originate transactions. In addition, if you do not want to link in VisiTransact
libraries, you must use direct context management. In rare circumstances you may
want to use your own stubs from your own IDL files rather than use VisiTransact
libraries. The only way you can use your own stubs is by using direct context

50 VisiBroker Vis iTransact Guide

Transact ion management approaches

management. If you use indirect context management, you use Current; when you use
Current, you use VisiTransact libraries.

If you use direct context management, or a mixture of both context management
modes, you must ensure transactional integrity for your application. Once you use
direct context management, the VisiTransact Transaction Service has lost the ability to
check transaction completeness. See “How does the VisiTransact Transaction Service
ensure checked behavior?” for more information about checked behavior.

Implicit vs. explicit propagation

The CORBAservices Transaction Service specification from OMG defines the following
propagation types:

– Implicit propagation. With implicit propagation, requests are implicitly associated
with the application's transaction—meaning they share the application's transaction
context. The transaction context is transmitted implicitly to the participating objects
by the VisiTransact Transaction Service, without direct intervention by the
transaction originator. An object that supports implicit propagation would not typically
expect to receive any Transaction Service object as an explicit parameter.

– Explicit propagation. With explicit propagation, the transaction originator (and
potentially participating transactional objects) propagates a transaction context by
passing objects defined by the Transaction Service as explicit parameters.

The major advantage to implicit propagation is that the VisiTransact Transaction
Service handles transaction propagation for you. Another advantage is that implicit
propagation does not require you to change the signatures of existing methods to
support transactions—by making the object transactional, you enable all of the object's
methods to be executed as part of a transaction.

Explicit propagation also has its advantages. First, it allows you to mix transactional
and non-transactional methods within an object. This is useful if you want to have
transactional semantics for one method but not for others in a transaction.

Secondly, you might use explicit propagation is if you require interoperability with
CORBA 1.x implementations (such as VisiBroker 2.0). Because explicit propagation
does not require cooperation between the ORB and the Transaction Service, it can be
used for this kind of backward-compatibility.

A third reason for using explicit propagation is that it allows other objects to terminate
transactions. In other words, explicit propagation enables you to pass the Terminator to
another transaction participant; this enables the participant to terminate the
transaction.

 6 : Determining your approach to t ransact ions 51

In-process vs. out-of-process Vis iTransact t ransact ion service

Context management and propagation

A client may use either direct or indirect context management with either implicit or
explicit propagation. This results in several ways in which client applications may
communicate with transactional objects:

– Indirect Context Management with Implicit Propagation
– Indirect Context Management with Explicit Propagation
– Direct Context Management with Implicit Propagation
– Direct Context Management with Explicit Propagation

Indirect context management with implicit propagation
The client application uses methods on the Current object to create and control its
transactions. When it issues requests on transactional objects, the transaction context
associated with the current thread is implicitly propagated to the object.

VisiTransact-managed transactions fall into this category. With VisiTransact-managed
transactions, VisiTransact guarantees checked behavior. For more information about
checked behavior, see “How does the VisiTransact Transaction Service ensure
checked behavior?”.

Note

Indirect context management with implicit propagation is not exactly the same as
VisiTransact-managed transactions. VisiTransact-managed transactions specifically
dictate the use of Current::begin followed by implicit propagation.

See “Creating and propagating VisiTransact-managed transactions” for details on
using VisiTransact-managed transactions.

Indirect context management with explicit propagation
The client uses a combination of the Current, Control, and other objects which describe
the state of the transaction. A client application that uses the Current object (and
therefore, is also automatically using implicit propagation) can use explicit propagation
by gaining access to the Control object with the Current::getControl() method. It can
use a VisiTransact Transaction Service object as an explicit parameter to a
transactional object. This is explicit propagation.

Direct context management with implicit propagation
The client uses a combination of the Current, Control, and other objects which describe
the state of the transaction. A client that accesses the VisiTransact Transaction Service
objects directly can use the Current::resume() method to set the implicit transaction
context associated with its thread. This allows the client to invoke methods of objects
that require implicit propagation of the transaction context.

Direct context management with explicit propagation
The client application directly accesses the Control object and the other objects which
describe the state of the transaction. To propagate the transaction to an object, the
client must include the appropriate VisiTransact Transaction Service object as an
explicit parameter of a method.

See “Other methods of creating and propagating transactions” for details on managing
transactions from your application.

In-process vs. out-of-process VisiTransact transaction service
If most of your transactions are isolated to, and used within, a single process, you may
decide to use an in-process instance of the VisiTransact Transaction Service.
However, this means that the requirements for transactions (i.e., high availability)—
usually handled by a stand-alone instance of the VisiTransact Transaction Service—
can only be met if the application process remains running when transactions are in

52 VisiBroker Vis iTransact Guide

Mult i threading

progress. This requirement is especially important if other applications (outside of the
process) are using the instance of the VisiTransact Transaction Service that you have
embedded within your application process. See “Embedding a VisiTransact
Transaction Service instance in your application”.

You can use multiple instances of the VisiTransact Transaction Service on your
network. To make the behavior of your transactions more predictable, you can specify
which instance of the VisiTransact Transaction Service your transaction originator will
use.

– You can control the instance of the VisiTransact Transaction Service used by
arguments passed to ORB_init() or by how you set the Current interface attributes.
The Current attributes will override any arguments passed to ORB_init(). This will
only take effect for subsequent transactions using Current::begin().

– For direct context management, bind by name to the appropriate instance of the
TransactionFactory.

See “Discovering an instance of the VisiTransact Transaction service” for an
explanation of how to set the -Dvbroker.ots.currentName argument.

Multithreading
VisiTransact is multithreaded. Multithreaded applications benefit from the features of
the underlying VisiBroker ORB including its thread pooling and connection
management capabilities.

Although the thread and connection management of the VisiBroker ORB can conserve
system resources, the thread pooling strategy could be a disadvantage if you need
control over which thread is assigned to a particular transaction. With the thread
pooling model, a worker thread is assigned for each client request, but only for the
duration of that particular request. Consider other threading models offered by
VisiBroker if you need more control. Also note that thread safety issues may arise if
other libraries are not thread safe.

Integrating existing applications and transactional systems
You can integrate several external transactional systems using other CORBA
Transaction Services. Since VisiTransact is fully CORBA 2.6-compliant, it is
interoperable with other CORBA 2.6-compliant implementations of the OMG CORBA
Transaction Service specification. VisiTransact provides valuable extensions to the
CORBAservices specification (useful methods such as begin_with_name(), and other
features) that cannot be handled by other transaction service implementations.

In addition, you can use any CORBAservices-compliant resource provided by yourself,
a third-party, or a database vendor.

Another option is to implement your own Resource using the Resource interface. This
option requires complex programming because logging and recovery, heuristics, and
other necessary coding is not handled for you.

Using a combination of approaches
You can mix and match any of the approaches described in this chapter to suit the
purposes of your distributed, transactional application.

– Mixing various types of transaction approaches. For example, you might have a
transaction using explicit propagation and then switch to implicit. See “Changing from
explicit propagation to implicit” for more information.

– Integrating multiple systems with your VisiTransact application. For example,
you can use databases, transaction processing monitors, and messaging software in
your transactional application—and integrate them all with VisiTransact.

 6 : Determining your approach to t ransact ions 53

Implement ing transact ions for the web

Implementing transactions for the web
If you are developing a web-based transactional application, you may decide to use
web browsers as a front-end to the application, and leave the transaction origination
and other logic to a server-based object.

Keeping the VisiTransact transaction within the boundaries of the Web server's local
network means that you gain performance advantages because of the locality of the
VisiTransact Transaction Service and the transaction participants. Also, you provide
local autonomy of transactions within one company's control. With this application
architecture, communication problems across external networks will not affect
transaction completion or integrity.

Building C++ VisiTransact applications
When designing C++ applications that use VisiTransact you can use standalone
instances of the VisiTransact Transaction Service, or embed instances of the
VisiTransact Transaction Service in your C++ application components.

The following sections describe these alternatives in greater detail.

Using stand-alone VisiTransact Transaction Service instances

Most VisiTransact applications will use an instance of the VisiTransact Transaction
Service that is running on the network—rather than embedding an instance in their
process. When the application is executed it can use any available VisiTransact
Transaction Service instance, or control the instance of the VisiTransact Transaction
Service that is used.

A C++ program that uses the VisiTransact Transaction Service interfaces must be
linked with its_support.lib (its_support.so on Solaris).

Note

If the program only uses direct context management with explicit propagation, it can
use the stubs and header files generated from the CosTransactions.idl or
VISTransactions.idl files.

54 VisiBroker Vis iTransact Guide

Bui ld ing C++ VisiTransact appl icat ions

Embedding a VisiTransact Transaction Service instance in your
application

Embedding a VisiTransact Transaction Service instance in a C++ executable entails
linking in ots_r.lib (ots_r.so on Solaris) and its_support.lib (its_support.so on
Solaris) libraries with your application. Adding these libraries to the link line embeds an
instance of the VisiTransact Transaction Service in the application's process.

If you link with VisiTransact libraries, you must include the _c.hh and _s.hh files
provided by VisiTransact. You cannot generate your own stub files. This is to ensure
you are using versions of the headers that are compatible with the objects embedded
in VisiTransact libraries. You must perform this step if you link with the VisiTransact
libraries.

Additionally, you must explicitly initialize and terminate the instance of the VisiTransact
Transaction Service from your application as described in the following steps:

1 Include visits.h in your C++ application.

2 Initialize the VisiTransact server components with ORB_init(). Invoke
VISTransactionService::init() to initialize the VisiTransact Transaction Service
instance. This must happen after the ORB_init() invocation. For example:

 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);
 VISIts::init(argc, argv);

3 Invoke VISTransactionService::terminate() to shutdown the VisiTransact
Transaction Service instance.

4 You must have the following in the link line:

UNIX:ots_r.so

WinNT:ots_r.lib

Note

ots64_r.so and its_support64.so on 64 bit platform. ots_r.a(ots64_r.a) and
its_support.a(its_support64.a) on AIX and ots_r.sl(ots64_r.sl) and
its_support.sl(its_support64.sl) on HP-UX.

5 Confirm that the VisiTransact Transaction Service is up and running by using
osfind.

The example below shows an application that embeds the VisiTransact Transaction
Service.

// Application main
#include <visits.h> // for VISIts
#include <corba.h>

int main(int argc, char** argv)
{
 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);
 VISTransactionService::init(argc, argv);
 // the main work of the application is now performed
 ...
 VISTransactionService::terminate();
}

Binding to the embedded instance of the VisiTransact Transaction
Service

When you have the VisiTransact Transaction Service embedded in the application
server, you must make sure that the client binds to the correct instance of the
VisiTransact Transaction Service. To do so, you must specify the name of the

 6 : Determining your approach to t ransact ions 55

Bui ld ing C++ Vis iTransact appl icat ions

VisiTransact Transaction Service when starting the client application using certain
command-line arguments. This name must match the one that is embedded in the
application server.

Note

If you are creating transactions directly from the TransactionFactory rather than using
Current, then the client will have to bind to the correct TransactionFactory. Refer to the
semantics for binding to any CORBA object to make sure the client binds to the correct
object.

Using header files supplied with VisiTransact

To compile a C++ source file that will link with its_support.lib or ots_r.lib, you must
include the version of CosTransactions_c.hh or VISTransactions_c.hh supplied by
VisiTransact, not an IDL client stub header file that you generate from
CosTransactions.idl or VISTransactions.idl. (The objects you will link against in the
VisiTransact-supplied libraries are valid only against the header files used to build
them.) Any application using the Current interface will be linking against these libraries.

56 VisiBroker Vis iTransact Guide

 7: Creat ing and propagat ing Vis iTransact-managed t ransact ions 57

Creating and propagating
VisiTransact-managed transactions
This section focuses on using the Current interface in VisiTransact-managed
transactions. It includes information about how to gain access to a VisiTransact-
managed transaction with Current, and begin, rollback, and commit the transaction
using the methods in the Current interface. It also explains how transactional objects
can share in a VisiTransact-managed transaction.

Introducing Current as used in VisiTransact-managed transactions
With VisiTransact-managed transactions you are using the Current interface for all
transaction management. You are beginning transactions using Current and you are
using Current for the implicit transaction propagation. This means that you will always
originate your transactions using Current::begin().

Current is an object that is valid for the entire process and manages the association of
each thread's transaction context. Each thread has its own independent, isolated
association with a transaction context.

In VisiTransact-managed transactions, transaction participants share the same
transaction context because VisiTransact transparently forwards the transaction
context to each participant. This means that the state of a transaction is maintained as
the originator calls on other objects to perform actions, which may in turn call other
objects.

Figure 7.1 How VisiTransact manages transactions by forwarding the transaction context

1 The transaction originator requests that Object A performs the doWork() method.

58 VisiBroker Vis iTransact Guide

Introducing Current as used in Vis iTransact-managed t ransact ions

2 Object A requests that Object B performs the doMoreWork() method.

3 Object B returns its results to Object A.

4 Object A returns its results to the transaction originator.

In all four steps, the VisiTransact Transaction Service automatically and transparently
propagates the transaction context between the transactional objects. If the first
transactional object makes a subsequent request of another object, the transaction
context flows on to this second object, as is shown in steps 1 to 4 in the figure above. If
an object is not a transactional object, it does not receive the context, and, therefore, it
cannot forward the context to any other object.

How does Current work?

VisiTransact-managed transactions are made possible with the Current object. The
Current interface defines methods that simplify transaction management for most
applications.

The Current interface is supported by a pseudo object whose behavior depends upon,
and may alter, the transaction context associated with the invoking thread. Because
Current is not a CORBA object, it cannot be accessed remotely.

Figure 7.2 Using a global Current object to start transactions across threads in a process

A new transaction created with the begin() method is associated with the specific
thread that called the method. A thread can be associated with only one transaction at
a time. If a thread exits, or if the transaction originator's thread returns without
completing the transaction, then any active transaction left associated with the thread
will timeout and be rolled back.

Note

The application does not need to implement critical sections to ensure synchronization
between threads when using the Current object.

Obtaining a Current object reference

To gain access to a VisiTransact-managed transaction, you must obtain an object
reference to the Current object. The Current object reference is valid throughout the
process. The following steps describe the general process for obtaining a reference to
a Current object, and are include code examples.

1 Call the ORB resolve_initial_references() method. This method obtains a reference
to the Current object.

2 Narrow the returned object to a CosTransactions::Current or
VISTransactions::Current object.

When you narrow to CosTransactions::Current, you specify your use of the original set
of methods provided by the CosTransactions module. When you narrow to
VISTransactions::Current, you specify the original set and the extensions to the Current
interface provided by VisiTransact.

See “Extensions to the Current interface” for descriptions of VisiTransact extensions to
the Current interface.

The following example shows examples of these alternatives in C++.

 7 : Creat ing and propagat ing VisiTransact-managed transact ions 59

Introducing Current as used in Vis iTransact-managed t ransact ions

// To use OMG-compliant methods and behavior
CORBA::Object_var
 obj = orb->resolve_initial_references("TransactionCurrent");
CosTransactions::Current_var
 current = CosTransactions::Current::_narrow(obj);
// To use OMG behavior on CosTransactions methods and also use the
// additional VisiTransact methods
CORBA::Object_var
obj = orb->resolve_initial_references("TransactionCurrent");
VISTransactions::Current_var
 current = VISTransactions::Current::_narrow(obj);

Working with the Current interface and its methods

The Current interface offers several methods for managing the current thread or
context's transaction. The table below describes these methods.

See Extensions to the Current interface for descriptions of VisiTransact extensions to
the Current interface.

Method Description

begin() Creates a new transaction. The SubtransactionsUnavailable exception
will be raised if a transaction is already in progress. The transaction
created will have a timeout from the last call to set_timeout(). If
set_timeout() is not issued, the default timeout value of the
VisiTransact Transaction Service is used.

commit(in boolean
report_heuristics)

Completes the transaction. Only the originator can call this method.
The transaction is rolled back if it cannot be committed.

rollback() Rolls back the transaction. Only the originator can call this method.

rollback_only() Modifies the transaction so that it will be rolled back. This method is
used by participants other than the originator to ensure that the
transaction will be rolled back.

get_status() Returns the status of the transaction. If there is no transaction in
progress, the StatusNoTransaction value is returned.

get_transaction_name() Returns the transaction name—this is a descriptive string assigned to
the transaction either by the VisiTransact Transaction Service or the
user. If there is no transaction in progress, an empty string is returned.

set_timeout() Sets a timeout period by which any new transactions in the process
must complete. If the timeout is set to 0, it sets any subsequent
transaction that is begun to the default transaction timeout for the
VisiTransact Transaction Service instance that it uses. If the timeout is
greater than 0, it sets the new timeout to the specified number of
seconds. If the seconds parameter exceeds the maximum timeout
valid for VisiTransact Transaction Service instance being used, then
the new timeout is set to that maximum, to bring it in range. When a
transaction created by a subsequent call to begin() in any thread in the
process takes longer to start transaction completion than the
established timeout, it will be rolled back. Otherwise, the timeout is
ignored. The timeout does not affect transactions that are already in
progress.

get_control() Returns a Control object that represents the transaction context
currently associated with the process or thread. This Control object
can be used to resume this transaction context if the transaction
context is suspended, or to perform explicit propagation.

suspend() Suspends the current transaction. This method returns a Control
object that represents the transaction context currently associated
with the process or thread. This object can be used to resume this
transaction context.

resume() Resumes a suspended transaction or associates a transaction
context with the process or thread.

60 VisiBroker Vis iTransact Guide

Introducing Current as used in Vis iTransact-managed t ransact ions

Note

If you use get_control(), suspend() or resume(), it might affect checked behavior. For
more information, see “How does the VisiTransact Transaction Service ensure
checked behavior?”.

As shown the following example, you can use the methods shown in the table above to
perform actions with VisiTransact-managed transactions. This example shows the
MyBank interface for the transactional object which defines the withdraw() method.

#include <CosTransactions.idl>

interface MyBank
{
 float balance(in long accountNo);
 boolean withdraw(in long accountNo, in float amount);
};

The next example shows an example of an originator beginning a transaction and
calling the withdraw() method on the MyBank transactional object. Then the originator
either commits or rolls back the transaction.

...
 // get object reference to my object implementation
 MyBank_var bank = MyBank::_bind();

 // start a transaction
 current->begin();

 if(bank->withdraw(10, 444))
 {
 // invoke a CORBA request
 current->commit(0);
 }
 else
 {
 current->rollback();
 }
...

If an originator begins a transaction, it must commit or rollback the transaction. The
VisiTransact Transaction Service will rollback the transaction if it times out. For
example, a situation when a transaction may time out is if the originator's thread dies
before the transaction is committed or rolled back.

Multiple threads participating in the same transaction

If you have a process and want to use multiple threads in the same transaction, you
must pass the transaction context to each of the threads. In the typical scenario, you
will start with a thread that has the transaction context—either because it is the
originator and invoked Current::begin(), or because an operation passed the
transaction context to it (implicitly or explicitly) and it needs to propagate that context to
the other threads. This can be achieved by making the transaction's Control object
available to the other threads and they can invoke Current::resume() specifying that
Control object. Note that VisiTransact cannot provide checked behavior in this case.

Using multiple transactions within a context or thread

Note

This release of the VisiTransact Transaction Service does not support nested
transactions. However, the procedure described in this section can be used to enable
multiple transactions per thread or context.

 7 : Creat ing and propagat ing VisiTransact-managed transact ions 61

Introducing Current as used in Vis iTransact-managed t ransact ions

You can manage multiple transactions within a thread; however, a thread can have
only one active transaction at a time. The suspend() method is used to disassociate the
current context, and resume() is used to associate another context. The table in
“Working with the Current interface and its methods” describes the methods used to
implement multiple transactions within a thread.

The following example shows an example of an object that originates multiple
transactions from within a thread. This example illustrates that the
MyBank_impl::withdraw() method can suspend the transaction in which the method was
called, start a new transaction, and then resume the earlier transaction.

CORBA::Boolean MyBank_impl::withdraw(CORBA::Long accountNo,
 CORBA::Float amount)
{
 try
 {
 // check to see if a transaction has been started
 CORBA::Object_var
 obj = orb->resolve_initial_references("TransactionCurrent");
 CosTransactions::Current_var
 current = CosTransactions::Current::_narrow(obj);
 // Suspend the current transaction. If there is no current transaction,
 the control will be null.
 CosTransactions::Control_var control = current->suspend();
 // start a new transaction
 try
 {
 current->begin();
 // do your logic
 current->commit(0);
 }
 catch(...)
 {
 // resume earlier transaction
 current->resume(control);
 throw;
 }
 }
 catch(..) { }
}

Discovering an instance of the VisiTransact Transaction service

By default, the first time you start a transaction with begin() an instance of the
VisiTransact Transaction Service is found using the Smart Agent. For details on the
Smart Agent, see the VisiBroker Developer's Guide.

You can control the instance of the VisiTransact Transaction Service used with
arguments passed to ORB_init(), or by how you set the VISTransactions::Current
interface arguments. The Current arguments will override any arguments passed to
ORB_init(). The arguments will only take effect for subsequent transactions that use
Current::begin().

The arguments that you can set are:

– Host Name. The Smart Agent will find any available VisiTransact Transaction
Service instance that is located on the specified host.

– VisiTransact Transaction Service Name. The Smart Agent will find the named
VisiTransact Transaction Service instance anywhere on the network.

– IOR. VisiTransact uses the specified IOR for the requested Transaction Service
(CosTransactions::TransactionFactory) to locate the desired instance of a Transaction
Service implementation on the network. This argument enables VisiTransact to
operate without the use of a Smart Agent (osagent).

62 VisiBroker Vis iTransact Guide

Propagat ing Vis iTransact-managed t ransact ions

If you specify a combination of Host Name and VisiTransact Transaction Service
Name, the Smart Agent will find the named VisiTransact Transaction Service instance
on the named host. If you specify the IOR with either the Host Name or VisiTransact
Transaction Service Name, the Smart Agent will find the VisiTransact Transaction
Service instance by IOR only—it ignores the Host Name and VisiTransact Transaction
Service Name.

The following table lists the arguments you can use to specify an instance of the
VisiTransact Transaction Service.

The following example shows how to specify an instance of the VisiTransact
Transaction Service by name using the ots_name argument of the
VISTransactions::Current interface.

...
CORBA::Object_var obj =
 orb->resolve_initial_references("TransactionCurrent");
CosTransactions::Current_var current =
 VISTransactions::Current::_narrow(obj);

// to set the VisiTransact Transaction Service instance
current->ots_name("MyTxnSvc");
...

Propagating VisiTransact-managed transactions
To enable implicit propagation, a participant must be a transactional object—it must
inherit from CosTransactions::TransactionalObject or define the OTSPolicy object with
either the REQUIRE or ADAPT value. To enlist another participant in a transaction, the
object enlisting the other participant must have a transaction associated with the
current thread.

There are three ways a transaction is associated with the current thread:

– If a participant in a transaction implicitly receives the transaction context from
another object.

– If a new transaction is started using Current::begin().

– If a transactional object context has been associated with the thread using
Current::resume().

Ensuring a transaction is in progress
If a participant requires a transaction, it should verify that a transaction is not currently
in progress before beginning a new transaction. If a participant attempts to begin a new
transaction when a transaction is already running, the VisiTransact Transaction
Service throws a CosTransactions::SubtransactionsUnavailable exception. A participant
that begins a new transaction must also rollback or commit the transaction before
returning.

The following example illustrates how a server object ensures that its work is done as a
transaction and avoids starting a new transaction when a transaction is already in
progress.

CORBA::Boolean MyBank_impl::withdraw(CORBA::Long accountNo,
 CORBA::Float amount)
{

Characteristic Argument to ORB_init() VISTransactions::Current Interface

Host Name -Dvbroker.ots.currentHost ots_host

VisiTransact Transaction
Service Name

-Dvbroker.ots.currentName ots_name

IOR -Dvbroker.ots.currentFactory ots_factory

 7 : Creat ing and propagat ing VisiTransact-managed transact ions 63

Marking a t ransact ion for ro l lback

 // get ORB instance
 CORBA::ORB_ptr orb = CORBA::ORB_init();

 // get Current reference
 CORBA::Object_var
 obj = orb->resolve_initial_references("TransactionCurrent");
 CosTransactions::Current_var
 current = CosTransactions::Current::_narrow(obj);

 CORBA::Boolean startFlag = 0;//use to signal creation of the transaction
 CORBA::Boolean status = 0;
 try
 {
 // check to see if a transaction has been started
 if(current->get_status() == CosTransactions::StatusNoTransaction)
 {
 current->begin();
 startFlag = 1; //we started and now own the current transaction
 }
 if(balance(accountNo) > amount)
 {
 // withdraw logic
 ...
 status = 1;
 }
 }
 catch(...) { }
 if(startFlag && status)
 {
 current->commit();
 }
 else if(startFlag)
 {
 current->rollback();
 }
 return status;
}

Marking a transaction for rollback
When using Current, only an originator can terminate the transaction with commit() or
rollback(). In this case, if a participant does not want the transaction to commit, it can
use the rollback_only() method from the Current interface. When the rollback_only()
method is called by a participant, the transaction associated with the target object is
modified so that the only possible outcome is to rollback the transaction.

When invoking rollback_only(), the CosTransactions::NoTransaction exception is raised
if there is no transaction in progress. The following example shows how a participant
would use the rollback_only() method.

...
CosTransactions::Current_var current;
current->rollback_only();
...

64 VisiBroker Vis iTransact Guide

Obtaining transact ion informat ion

Obtaining transaction information
A participant can obtain information about the current transaction such as its
transaction name or transaction status using methods in the Current interface. The
following table discusses these methods.

The get_status() method can return one of the following values:

– StatusActive

– StatusCommitted

– StatusCommitting

– StatusMarkedRollback

– StatusNoTransaction

– StatusPrepared

– StatusPreparing

– StatusRolledBack

– StatusRollingBack

– StatusUnknown

Extensions to the Current interface
VisiTransact has an extended interface that provides arguments for specifying an
instance of the VisiTransact Transaction Service, as well as additional methods. See
“Discovering an instance of the VisiTransact Transaction service” for information on the
VISTransactions::Current arguments. The following table shows the methods in the
VisiTransact-extended Current interface in the VISTransactions.idl file. For more
information about the Current interface, see Current interface in the VisiBroker for C++
API Reference.

Method Description

get_status() Returns the status of a transaction associated with the current thread.

get_transaction_name() Returns a printable string describing the transaction associated with
the current thread.

Method Description

begin_with_name() Enables its caller to pass a user-defined informational transaction
name. For example, this helps with diagnostics because the user-
defined transaction name is included in the value returned by the
get_transaction_name() method. The name also helps with
administration, because the Console will report the name in the
detailed information about an outstanding transaction.

get_txcontext() Returns a PropagationContext which can be used by one
VisiTransact Transaction Service domain to export a transaction
to a new VisiTransact Transaction Service domain.

register_resource() Registers a Resource for a recoverable object. This method is a
shortcut for using the Control and Coordinator objects to register a
Resource for a recoverable object. It returns a Recovery
Coordinator object that can be used to help coordinate recovery.
Most applications will not normally call this method. See
“Coordinating transaction completion with Resource objects” for
information about Resources.

 7 : Creat ing and propagat ing VisiTransact-managed transact ions 65

Extensions to the Current inter face

register_synchronization() Registers a synchronization object. This method is a short-cut for
using the Control and Coordinator object to register a
Synchronization object. See “Implementing Synchronization
objects” for details on Synchronization objects.

get_otid() Provides the object transaction ID (otid) through the Current
interface as a convenience. This avoids going to the Coordinator
and looking through a PropagationContext. The otid is used to
identify a transaction to a recoverable object. Most applications
will not normally call this method.

Method Description

66 VisiBroker Vis iTransact Guide

 8 : Other methods of creat ing and propagat ing t ransact ions 67

Other methods of creating and
propagating transactions
This section focuses on the other facilities available for managing transactions. It
includes information on using the VisiTransact Transaction Service interfaces—
TransactionFactory, Control, Coordinator, and Terminator.

Introduction
Although typically you will use the Current interface to manage transactions, there are
several other approaches to transaction management you can use:

– Indirect Context Management with Explicit Propagation. The client uses a
combination of the Current, Control, and other objects which describe the state of the
transaction. A client application that uses the Current object (and therefore, is also
automatically using implicit propagation) can use explicit propagation by gaining
access to the Control object with the Current::getControl() method. It can use a
VisiTransact Transaction Service object as an explicit parameter to a transactional
object. This is explicit propagation.

– Direct Context Management with Implicit Propagation. The client uses a
combination of the Current, Control, and other objects which describe the state of the
transaction. A client that accesses the VisiTransact Transaction Service objects
directly can use the Current::resume() method to set the implicit transaction context
associated with its thread. This allows the client to invoke methods of objects that
require implicit propagation of the transaction context.

– Direct Context Management with Explicit Propagation. The client application
directly accesses the Control object and the other objects which describe the state of
the transaction. To propagate the transaction to an object, the client must include the
appropriate VisiTransact Transaction Service object as an explicit parameter of a
method.

68 VisiBroker Vis iTransact Guide

Creat ing t ransact ions wi th the Transact ionFactory

Managing transactions with these approaches means using these interfaces:

– TransactionFactory. This interface defines methods that allow a transaction originator
to begin a transaction. To view the TransactionFactory interface, see “Creating
transactions with the TransactionFactory”.

– Control. This interface allows an application to explicitly manage or propagate a
transaction context. To view the Control interface, see “Gaining control of a
transaction with the control object”.

– Terminator. This interface enables an application to commit or rollback transactions.
Typically, its methods are used by transaction originators—however, by propagating
the Control or Terminator object, any transaction participant can commit or rollback
the transaction. To view the Terminator interface, see “Committing or rolling back
transactions with Terminator”.

– Coordinator. This interface enables a participant to determine the status of a
transaction, discover the transaction name, obtain the transaction context, as well as
designate that a transaction should be rolled back from a participant other than the
transaction originator. See “Marking a transaction for rollback” and “Obtaining
transaction information” for information on methods in the Coordinator interface.

Creating transactions with the TransactionFactory
The TransactionFactory interface is provided to allow the transaction originator to begin
a transaction. As shown in the following example, this CosTransactions interface
provides two methods—create() and recreate(). The create() method is used to start
a new transaction. The recreate() method is used to create a transaction's Control
object from a propagation context and is not typically used by a normal application.

module CosTransactions
{
 interface TransactionFactory
 {
 Control create(in unsigned long time_out);
 Control recreate(in PropagationContext ctx);
 };
};

VisiTransact also supplies an extension to the TransactionFactory interface that allows
a transaction to be created using a specific name—create_with_name(). Naming a
transaction is useful for tracking the progress of a particular transaction, as well as
debugging its execution.

module VISTransactions
{
 // TransactionFactory
 // This extends the CosTransactions::TransactionFactory by
 // allowing someone to create a transaction with a user-defined
 // name that can be used for debugging, error reporting, etc.

 interface TransactionFactory : CosTransactions::TransactionFactory
 {
 CosTransactions::Control create_with_name(in unsigned long time_out,
 in string userTransactionName);
 };
};

 8 : Other methods of creat ing and propagat ing transact ions 69

Gaining contro l of a t ransact ion wi th the contro l object

The following table defines the methods for creating transactions with
TransactionFactory.

For more information about the TransactionFactory interface, see TransactionFactory
interface in the VisiBroker for C++ API Reference.

The following example shows how to begin a new transaction that uses the default
timeout period.

...
CosTransactions::TransactionFactory_var txnFactory;
CosTransactions::Control_var control;
control = txnFactory->create_with_name(0,"BankTransfer#1");
 //use default
 //timeout value
...

Note

The PropagationContext can be obtained from an existing transaction using the
CosTransactions:Coordinator::get_txcontext() method described in “Obtaining
transaction information”.

Gaining control of a transaction with the control object
The Control interface allows an application to obtain the Terminator and Coordinator
object references in order to explicitly manage or propagate a transaction context. An
object supporting the Control interface is associated with one specific transaction.

The following example shows the Control interface.

module CosTransactions
{
 interface Control
 {
 Terminator get_terminator()
 raises(Unavailable);
 Coordinator get_coordinator()
 raises(Unavailable);
 };
};

Method Description

create(in unsigned long time_out) Creates a new transaction and returns a Control object
which can be used to manage participation in the new
transaction. If time_out is set to 0 seconds, the default
timeout for the instance of the VisiTransact Transaction
Service is used.

create_with_name(in unsigned long
time_out, in string
userTransactionName)

Creates a new transaction with a user-defined name as
supplied in the userTransactionName argument.

recreate(in PropagationContext ctx) Creates a new representation of an existing transaction
as defined by the PropagationContext (the transaction
context) and returns a Control object. The Control object
can be used to manage or control participation in the
existing transaction.

70 VisiBroker Vis iTransact Guide

Expl ic i t ly propagat ing transact ions f rom the or ig inator

The table below defines the methods for the Control interface.

To obtain references to Terminator and Coordinator objects, you would include
statements similar to those shown in the following example in your originator code.
These objects are distinct because most methods only require one of them.

...
CosTransactions::Control_var control
CosTransactions::Terminator_var newTranTerminator;
CosTransactions::Coordinator_var newTranCoordinator;

newTranTerminator = control->get_terminator();
newTranCoordinator = control->get_coordinator();
...

Explicitly propagating transactions from the originator
With transactions originated using the TransactionFactory, the transaction originator
handles transactions using several VisiTransact Transaction Service interfaces.
Through these interfaces, more than one transaction may be managed at a time by the
transaction originator.

In these types of transactions, participants of a transaction share the same transaction
context because the originator forwards the transaction context to each participant
through an explicit parameter that is part of the IDL signature for all the operations.
This means that the state of a transaction is maintained as the originator calls on other
objects to perform actions, which may in turn call other objects using the same
parameter. Note that the figure below shows the context being passed between
transaction participants from within method calls.

Note

With transactions originated using the TransactionFactory, you can use implicit
propagation. See “Changing from explicit propagation to implicit”.

Method Description

get_terminator() Returns a Terminator object which supports operations to end the
transaction. The Terminator object can be used to rollback or commit the
transaction associated with the Control object. The
CosTransactions::Unavailable exception is raised if the Control object cannot
provide the Terminator object.

get_coordinator() Returns a Coordinator object which supports operations needed by
Resources to participate in a transaction. The Coordinator object can be
used to register Resources for the transaction associated with the Control
object. The CosTransactions::Unavailable exception is raised if the Control
object cannot provide the Coordinator object.

 8 : Other methods of creat ing and propagat ing transact ions 71

Changing f rom expl ic i t propagat ion to impl ic i t

Figure 8.1 How the transaction context is explicitly propagated

1 The transaction originator requests that Object A performs the doWork() method,
passing a Control object or Coordinator object.

2 Object A requests that Object B performs the doMoreWork() method, and also passes
it the Control or Coordinator object, allowing Object B to operate as part of the
existing transaction.

3 Object B returns its results to Object A.

4 Object A returns its results to the transaction originator.

To explicitly propagate a transaction to participants of a transaction, the originator must
include the Control, Coordinator, or Terminator object as an explicit parameter to
remote invocations of transactional objects.

– If you pass a Terminator object, you give the participant the limited ability to
terminate the transaction—they cannot do anything else.

– If you pass a Coordinator object, you allow the remote object to be a participant in
the transaction, but do not give the ability to terminate the transaction. Passing the
Coordinator allows the remote object to ensure that the transaction is rolled back.

– If you pass a Control object, you give the participant the abilities of both the
Coordinator and Terminator objects.

The example below shows the Control object, control, being passed as an explicit
parameter to the withdraw() method of the remote transactional object.

...
CosTransactions::Control_var control;
CORBA:Boolean didSucceed;
didSucceed=bank->withdraw(10, 444, control) // invoke a CORBA request
...

Changing from explicit propagation to implicit
You may want to start a transaction with explicit propagation and then switch to implicit.
To set up your implicit transaction context, pass the Control object into
Current::resume(). See “Using multiple transactions within a context or thread” for
details on using Current::resume() and Current::suspend().

72 VisiBroker Vis iTransact Guide

Gett ing the expl ic i t context f rom Current

Getting the explicit context from Current
If you start a transaction with implicit propagation and later want to get the transaction
context explicitly, use Current::get_control().

Committing or rolling back transactions with Terminator
The Terminator interface supports operations to commit or rollback a transaction.
Typically, these operations are used by the transaction originator. The following
example shows the Terminator interface.

module CosTransactions
{
 interface Terminator
 {
 void commit(in boolean report_heuristics)
 raises (HeuristicMixed, HeuristicHazard);
 void rollback();
 };
};

The following table defines the methods provided by the Terminator interface.

The next example shows the MyBank interface for the transactional object which the
originator is accessing to perform actions.

#include <CosTransactions.idl>

interface MyBank {
 float balance(in long accountNo,
 in CosTransactions::Coordinator coord);
 boolean withdraw(in long accountNo,
 in float amount,
 in CosTransactions::Control control);
};

Method Description

commit
(in boolean
report_heuristics)

Commits the transaction if the transaction has not been marked as rollback
only, and if all of the participants in the transaction agree to commit.
Otherwise, the transaction is rolled back and the
CORBA::TRANSACTION_ROLLEDBACK exception is raised. When the transaction is
committed, all changes to recoverable objects made in the scope of the
transaction are made permanent and visible to other transactions or
clients.

If the report_heuristics parameter is true, the VisiTransact Transaction
Service will report inconsistent outcomes using the
CosTransactions::HeuristicMixed and CosTransactions::HeuristicHazard
exceptions.

rollback() Rolls back the transaction. When a transaction is rolled back, all changes
to recoverable objects made in the scope of the transaction are rolled
back.

 8 : Other methods of creat ing and propagat ing transact ions 73

Marking a t ransact ion for ro l lback

The following example shows how an originator either commits or rolls back a
transaction involving the MyBank transactional object. This example is specific for
working with transactions in the withdraw() method. Note that the balance() method
would not be allowed to terminate the transaction since it is only passed the
Coordinator.

...
CORBA::Boolean didSucceed;
...
 CosTransactions::Terminator_var
 txnTerminator=control->get_terminator();

 if(didSucceed)
 { // invoke a CORBA request
 try
 {
 txnTerminator->commit(1);
 }
 catch(CORBA::TRANSACTION_ROLLEDBACK&)
 {
 // Return failure.
 }
 }
 else
 {
 txnTerminator->rollback();
 }
...

See “Heuristic completion” for details about heuristic completion when committing a
transaction.

Marking a transaction for rollback
If the participant does not want the transaction to commit, it can use the
rollback_only() method from the Coordinator interface. When the rollback_only()
method is called by a participant, the transaction associated with the current thread is
modified so that the only possible outcome is to rollback the transaction. The
CosTransactions::Inactive exception is raised if the transaction has already been
prepared. The example below shows how a participant would use the rollback_only()
method.

...
CosTransactions::Coordinator_var coord;
coord->rollback_only();
...

Obtaining transaction information
A participant can obtain information about a transaction such as the transaction name
or transaction status, or obtain the transaction context for a transaction using methods
in the Coordinator interface. The following table describes these methods.

Method Description

get_status() Returns the status of a transaction associated with the current
thread.

get_transaction_name() Returns a printable string describing the transaction associated with
the current thread.

get_txcontext() Returns a PropagationContext object.

74 VisiBroker Vis iTransact Guide

Obtaining transact ion informat ion

The get_status() method can return one of the following values:

– StatusActive

– StatusCommitted

– StatusCommitting

– StatusMarkedRollback

– StatusNoTransaction

– StatusPrepared

– StatusPreparing

– StatusRolledBack

– StatusRollingBack

– StatusUnknown

 9: Transact ion complet ion 75

Transaction completion
This section provides information about transaction completion, explains heuristic
completion, and provides information necessary for multithreaded applications.

Transaction completion
Transaction completion is a sequence of steps that the VisiTransact Transaction
Service goes through when it receives a request to either commit or rollback the work
of a transactional application. The request for completion can be initiated in different
circumstances:

– The transaction originator initiates completion by invoking either commit() or
rollback().

– A transaction timeout occurs and triggers completion.

– During recovery of the VisiTransact Transaction Service, incomplete transactions
(found in the log records) are reinstantiated and transaction completion is resumed.

How does the VisiTransact Transaction Service ensure
completion?

When a transaction originator requests to commit or roll back a transaction, the
VisiTransact Transaction Service initiates the completion procedure for the transaction.
Assume there are two Resources that are involved in a single transaction. When a
request to commit arrives, the VisiTransact Transaction Service will initiate a two phase
commit procedure to coordinate the completion.

If the transaction completes by successfully executing the two phase commit
procedure without failure, the originator is notified with the outcome. If the transaction
cannot complete due to a specific reason—for example, when one of the Resources is
not available in the commit phase of the two phase procedure—the VisiTransact
Transaction Service cannot complete the transaction and it will place the transaction in
a Retry Queue for later attempts. When a transaction is placed in the Retry Queue, the
transaction is not dispatched immediately for completion. There is a programmed delay
between each retry attempt to prevent degradation of system performance. The
minimum time between retry attempts is 15 seconds and the maximum is 900 seconds.
The first retry attempt will start after 15 seconds and for the subsequent attempts, the
delay is increased until it reaches 900 seconds. After that, the retry attempts are every
900 seconds. If a retry attempt is made due to a timeout or a recovery, the first retry

76 VisiBroker Vis iTransact Guide

Transact ion complet ion

attempt is dispatched immediately without waiting for the 15 seconds delay. During
retry attempts, the VisiTransact Transaction Service executes only those portions of a
transaction that have not yet been completed. The transaction remains in the Retry
Queue until it completes or until a “Stop Completion” command is issued by the
VisiBroker Console. If you query from the Console for a list of transactions, the
transactions with several retry attempts are highlighted.

Retry attempt scenarios are as follows:

– A transaction timeout occurs. If a timeout period has been specified for a
transaction and the transaction does not complete within this limit, the transaction is
placed in the Retry Queue. If the transaction has entered the completion stage when
the timeout expires, the timeout will be ignored by the VisiTransact Transaction
Service. You can set the default timeout for the VisiTransact Transaction Service at
the command line.

– A Resource is unavailable. A Resource that is involved in the transaction is
temporarily not available due to a communication failure or because the Resource
server is down. The transaction is placed in the Retry Queue until it completes.

– The VisiTransact Transaction Service recovers and decision records show
transactions are incomplete. During recovery, the information is gathered from the
transaction log about the transactions that were incomplete when the VisiTransact
Transaction Service went down. If the decision records indicate that the transaction
has not completed yet, they are placed in the Retry Queue for completion.

How does the VisiTransact Transaction Service ensure checked
behavior?

The VisiTransact Transaction Service implements full Distributed Transaction
Processing (DTP) checked behavior to provide an extra level of transaction integrity.
Checked behavior protects against loss to data integrity by ensuring that all
transactional requests made by the application have completed their processing before
the transaction is committed. This guarantees that a commit will not succeed unless all
transaction participants have completed the processing of their transactional requests.
Checked behavior occurs by default when all requests are synchronous.

Checked behavior is enforced for VisiTransact-managed transactions involved with
deferred synchronous requests: transactions are rolled back if there are pending
replies when a commit() is issued. If the request handler of a transactional object
makes a deferred synchronous request and replies before the deferred synchronous
request returns, the transaction is marked for rollback.

VisiTransact does not enforce checked behavior on one-way requests.

 9: Transact ion complet ion 77

Transact ion complet ion

The example below shows the client code for checked behavior when you have a
deferred synchronous request and the reply returns after commit() is invoked. Checked
behavior is successful—the transaction is rolled back.

...
 // get reference to the Current
 ...

 // begin a transaction
 current->begin();

 // create a dynamic request
 CORBA::Request_var bankRequest = bank->_request("withdraw");
 CORBA::NVList_ptr arguments = bankRequest->arguments();

 CORBA::Any_var amt = new CORBA::Any();
 *amt<<= ((float)1000.00);

 arguments->add_value("amount", amt, CORBA::ARG_IN);

 ...

 //invoke deferred synchronous request
 bankRequest->send_deferred();

 //forget to get the response
 // commit the txn
 try
 {
 current->commit(0);
 }
 catch(CORBA::TRANSACTION_ROLLEDBACK& e)
 {
 cerr << "SUCCESS, commit check worked()" << endl;
 }
...

The example below shows the client code for checked behavior when you have a
deferred synchronous request and the reply returns before commit() is invoked.
Checked behavior is successful—the transaction is committed.

...
 // case where request arrived before commit
 current->begin();

 cerr << " === Invoking a dii deferred sync request" << endl;
 bankRequest->send_deferred();

 try {
 //wait for reply
 bankRequest->get_response();
 current->commit(0);
 }
 catch(CORBA::TRANSACTION_ROLLEDBACK& e)
 {
 cerr << "FAILURE, TRANSACTION_ROLLEDBACK not expected" << endl;
 }

 }

78 VisiBroker Vis iTransact Guide

Heur ist ic complet ion

Heuristic completion
Heuristic completion is when a transaction attempts to complete and one of its
participating Resources makes a heuristic decision during the completion stage. An
heuristic decision is a unilateral decision made by one or more Resources to commit or
rollback updates without regard to the outcome determined by the transaction
manager.

Heuristic decisions typically only occur during unusual circumstances that prevent
normal processing, such as a network failure, or if the coordinator does not complete
the two-phase commit process in a timely manner. When a heuristic decision is made
there is a risk the decision is different from the outcome determined by the transaction
manager, resulting in a loss of data integrity.

The types of heuristic outcome exceptions that are returned by the resources are:

– HeuristicRollback - The commit operation on Resource reports that a heuristic
decision was made and that all relevant updates have been rolled back.

– HeuristicCommit - The rollback operation on Resource reports that a heuristic
decision was made and all relevant updates have been committed.

– HeuristicMixed - The Resource has committed some relevant updates, and rolled
back others.

– HeuristicHazard - The Resource does not know the result of at least one relevant
update (the disposition of all relevant updates is not known). For the updates that are
known, either all have been committed or all have been rolled back.

A Resource can make a heuristic decision at any point during two-phase commit. For
example, if the Terminator does not complete the two-phase commit in a timely
manner, a Resource can elect to make a heuristic decision. A heuristic decision is a
way that a Resource object can break guarantees it made during the two-phase
commit process (that is, when it returned VoteCommit during prepare()).

However, if a Resource has replied VoteCommit to the Terminator, and then
subsequently makes a heuristic decision, it is still responsible for reporting its action
regarding the transaction. The following may occur when the Terminator eventually
requests that the Resource rollback or commit:

– The heuristic decision may be consistent with the outcome. If this is the case,
the transaction can be completed normally, and the Resource may “forget” about the
transaction and the heuristic decision. The Terminator does not need to be informed
of the heuristic decision since it was consistent with the outcome of the transaction.

– The heuristic decision may differ from the outcome. In this case, the Resource
consults its record of the heuristic outcome (which it previously placed in the stable
storage), and returns one of the heuristic outcome exceptions (HeuristicCommit,
HeuristicRollback, HeuristicMixed or HeuristicHazard) when completion continues.

– The heuristic outcome details must be retained in stable storage until the Resource
is instructed to “forget” the transaction by the Coordinator.

 9: Transact ion complet ion 79

Heurist ic complet ion

Enabling heuristic reporting to your application

A transaction originator can request to receive heuristic reporting by setting the
report_heuristics parameter of the commit() method to true. Notice the following code
sample shows the commit() method as commit(1) for C++.

Handling heuristic reporting

 ...
 if (bank->withdraw(10,444)) //invoke the withdraw method.
 {
 try
 {
 current->commit(1); //The parameter 1 requests the server to
 //return the heuristic outcomes if there are
any.
 }
 catch (const CosTransactions::NoTransaction& e)
 {
 //commit was issued when there is no transaction
 //Handle it.

 }
 catch (const CosTransactions::HeuristicMixed& e)
 {
 //Heuristic decision was made. Some of the relevant updates
 //have been committed and others may have rolled back.
 //Handle it.
 }
 catch (const CosTransaction::HeuristicHazard& e)
 {
 //Heuristic decision was made. The relevant updates that
 //have been made either all have been committed or rolledback.
 //Handle it.
 }
 }
 else
 {
 current->rollback();
 }

A Resource can handle heuristic reporting programmatically, or can require the
intervention of a system administrator.

80 VisiBroker Vis iTransact Guide

Heur ist ic complet ion

OTS exceptions

Additional OTS exceptions are:

– SubtransactionsUnavailable – This exception is raised if the client thread already
has an associated transaction and the transaction service implementation does not
support nested transactions.

– NotSubtransaction – This exception is raised if the current transaction is not a
subtransaction.

– Inactive – This exception is raised in a few scenarios whereby no action is taken
when the current context is not right for the command issued.

– NotPrepared – This exception is raised when a transaction is not prepared (for two-
phase commit transactions only).

– NoTransaction – This exception is raised when there is no transaction associated
with the client thread.

– Unavailable – This exception is raised when the application can't get hold of
propagation context.

– SynchronizationUnavailable – This exception is raised if the system does not
support synchronization.

 10: Coordinat ing t ransact ion complet ion wi th Resource objects 81

Coordinating transaction completion
with Resource objects
This section provides information about how you can participate in one- and two-phase
commits using Resource object(s).

Understanding transaction completion
The transaction process described in “Model for a basic transaction” was a simple
example that did not involve data. The following diagram expands on that earlier
example to show the objects that are necessary when transactions involve data—
Recoverable Server, Recoverable Object, Recovery Coordinator, and Resource object.
In practice, several of these objects are encapsulated by transactional software for
data, as shown in the figure below. These objects are shown so that you will
understand the process going on underneath, and will recognize these interfaces in the
IDL.

If you are using VisiTransact-managed transactions, this diagram also shows you the
back-end objects (Coordinator, Terminator, and Recovery Coordinator) that the
VisiTransact Transaction Service uses to perform the work of two-phase commits. You
only manage these object directly if you are not using VisiTransact-managed
transactions.

Figure 10.1 Objects involved in two-phase commit

82 VisiBroker Vis iTransact Guide

Part ic ipat ing in t ransact ion complet ion

The table below describes the objects involved in two-phase commit.

Participating in transaction completion
“Completing a transaction” is where two-phase commit diverges from the simple
example addressed in “Model for a basic transaction”. When the VisiTransact
Transaction Service executes the two-phase commit process, it ensures that the entire
transaction is either rolled back or committed atomically. In the first phase of the two-
phase commit process, the Terminator asks the participants of the transaction if they
can prepare the transaction to commit. If all participants vote that they can, the
Terminator then tells all participants to commit the transaction during the second
phase. If at least one participant votes that it is not prepared to commit, the Terminator
instructs the participants to rollback the transaction.

Note

If a transactional application only involves one Resource, the VisiTransact Transaction
Service initiates a one-phase commit process rather than a two-phase commit process.

The following sections expand on the concept of completing a transaction to explain
the process of two-phase commit.

Object Description

Coordinator Facilitates registration of recoverable objects with a transaction, and
manages coordination between transactions.

Terminator Coordinates the termination of a transaction—it ensures that
participants either all commit or all rollback the work of a transaction.

Recoverable Server A collection of one or more objects. At least one of the objects is
recoverable.

Recoverable data Data, such as a table in a database, whose content is affected by
the completion of the transaction. Not all recoverable objects will
implement a CORBA interface.

Resource Object Represents the relationship between the VisiTransact Transaction
Service and a recoverable object for the life of a transaction. One
Resource object is required for each recoverable object participating
in a transaction.

Transactional Software
for Data

A collection of objects (Recoverable Server, Recoverable Data,
Transactional Object, and Resource Object) used to access data
either in a database, file system, or other service such as the
VisiBroker Naming Service.

Recovery Coordinator Used in case of failure by Resource objects to determine the
outcome of the transaction, and to coordinate the recovery process
with the VisiTransact Transaction Service.

 10: Coordinat ing transact ion complet ion wi th Resource objects 83

Part ic ipat ing in t ransact ion complet ion

Resource object is registered for the transaction

Resource objects must be registered for all recoverable data involved in the
transaction. The transactional object registers the Resource with the transaction's
Coordinator for the recoverable data.

Figure 10.2 Registering a Resource object for recoverable data

Transaction originator initiates transaction completion

The transaction originator notifies the Terminator that it wishes to complete the
transaction, which initiates the two-phase commit process with the VisiTransact
Transaction Service. This step replaces step 4 in “Completing a transaction”.

Figure 10.3 Transaction completion initiated by the transaction originator

In this step, the same action is taking place, but you see behind the scenes that the
invocation of commit() is actually handled by the Terminator.

84 VisiBroker Vis iTransact Guide

Part ic ipat ing in t ransact ion complet ion

Terminator tells Resource objects to prepare

Once the Terminator receives notice that the transaction originator wishes to commit
the transaction, the Terminator contacts all Resource objects participating in the
transaction, and notifies them they must prepare to commit the transaction. To do so,
the Terminator invokes the prepare() method on all Resource objects registered with
the transaction.

Figure 10.4 Terminator asks Resource objects to prepare to commit the transaction

Note

If only one Resource is registered with the Coordinator, the Terminator performs a one-
phase commit as an optimization. To do so, it invokes commit_one_phase() on the
Resource rather than invoking prepare() and then commit().

Any exception that occurs during the prepare phase causes a rollback of the
transaction.

Resource objects return a vote to the terminator

When Resource objects are told to prepare, they respond to the Terminator with a vote:

– VoteCommit means the Resource guarantees that it can commit the transaction
when asked, even if there is a failure after prepare().

– VoteRollback means the Resource requires the transaction to rollback, and is
proceeding to rollback its own data.

– VoteReadOnly means that the Resource does not have persistent data affected by
the transaction. There, it is independent of the two-phase commit—the two-phase
commit does not affect its state.

If the Resource returns VoteRollback or VoteReadOnly, it will not be contacted again
by the VisiTransact Transaction Service, and can safely destroy itself.

For this example, let's assume that both Resource A and Resource B return
VoteCommit.

 10: Coordinat ing transact ion complet ion wi th Resource objects 85

Part ic ipat ing in t ransact ion complet ion

Figure 10.5 Resources return a vote to the Terminator

Terminator decides whether to commit or roll back

Based on the votes received by the Resource objects, the Terminator determines
whether the transaction will be committed or rolled back. At this point, the completion
decision is made and logged. If any of the Resource objects return VoteRollback, raise
exceptions, or invoke rollback_only(), the transaction will be rolled back by the
Terminator.

If the transaction decision was to rollback, the Terminator invokes rollback() on all
Resources—except those that returned VoteRollback or VoteReadOnly. If the decision
is to commit, the Terminator invokes commit() on all Resources, and the two-phase
commit process is finished.

For this example, both Resource objects involved with the transaction returned
VoteCommit, so the Terminator object requests that the Resource objects commit the
transaction.

Figure 10.6 Second phase of two-phase commit is initiated

Resource objects vote to commit the transaction

When a Resource object commits a transaction, it makes any data changed by the
transaction visible to all readers of the data—the data stored by the recoverable object
is changed according to the outcome of the transaction. Also, the Resource object
stores other information in case of failure. Lastly, once the transaction has been
committed, all objects associated with the transaction are removed (i.e. the
Coordinator, Terminator, and Recovery Coordinator).

Figure 10.7 Resource objects commit the changes made during the transaction

86 VisiBroker Vis iTransact Guide

Summary of steps for s ingle-phase commit

Summary of steps for two-phase commit

As shown by the previous sections, the steps for two-phase commit are:

1 Resource objects are registered for the transaction.

2 Transaction originator initiates transaction completion.

3 Terminator tells Resource objects to prepare.

4 Resource objects return a vote to the Terminator.

5 The Terminator decides whether to commit or rollback.

6 The Terminator tells Resource objects to commit or rollback.

Summary of steps for single-phase commit
The steps for a single-phase commit are:

1 Resource object is registered for the transaction.

2 Transaction originator initiates transaction completion.

3 Terminator tells the Resource object to commit one phase.

4 Resource object returns a vote to the Terminator.

5 The Terminator decides whether to commit or rollback.

6 The Terminator tells the Resource object to commit or rollback.

Summary of steps for a rollback

The steps for a rollback are:

1 Resource objects are registered for the transaction.

2 Transaction originator initiates transaction completion.

3 Terminator tells Resource objects to rollback.

Participating in transaction recovery after failure

If the VisiTransact Transaction Service (or its host) experiences a failure once the
decision to commit the transaction has been logged, the Terminator proceeds to invoke
commit() on all Resources once the VisiTransact Transaction Service and participating
Resource objects are running again.

If the decision was to rollback, and the VisiTransact Transaction Service (or its host)
experiences a failure, the VisiTransact Transaction Service considers the transaction
to be rolled back once it is running again. This is because the VisiTransact Transaction
Service does not keep track of Resources when a transaction is marked for rollback,
and therefore it cannot proactively tell Resources to rollback. Instead, Resources must
use the Recovery Coordinator (specifically, the replay_completion() method) to find out
that the transaction rolled back.

If a VisiTransact Transaction Service fails before a Resource object has committed but
after it has been prepared and the VisiTransact Transaction Service has not yet logged
the decision, then the Resource is responsible for contacting the Recovery Coordinator
and initiating transaction completion.

If a failure occurs and the Terminator cannot reach a registered Resource, the
Terminator must keep trying to contact the Resource until it can be reached. In this
way, atomic transactions are guaranteed because Resource objects will be restarted,
and the VisiTransact Transaction Service will ensure that recoverable objects complete
the transaction in conformance with the outcome.

 10: Coordinat ing transact ion complet ion wi th Resource objects 87

Summary of steps for s ingle-phase commit

These basic rules apply to transaction recovery following a failure of the VisiTransact
Transaction Service:

– If the decision to commit the transaction has been logged, the Terminator invokes
commit() on all Resources, and the two-phase commit process is finished.

– If the Terminator only contains heuristic information, nothing happens.

– If the transaction is marked for rollback before the failure, it is lost and therefore
rolled back.

– If a registered Resource exists but cannot be reached, the Terminator must keep
trying to contact the Resource until it can be reached.

88 VisiBroker Vis iTransact Guide

 11: Managing heur ist ic decis ions 89

Managing heuristic decisions
This chapter provides information about the heuristic decisions that you must manage
for your transactional applications.

What is a heuristic decision?
A heuristic decision is a unilateral decision made by one or more transaction
participants to commit or rollback updates without first obtaining the consensus
outcome determined by the VisiTransact Transaction Service. Heuristic decisions are
typically made in unusual circumstances, such as communication failures, that prevent
normal processing. When a heuristic decision is made, there is a risk that the decision
will differ from the consensus outcome, resulting in a loss of data integrity.

The types of heuristic outcome exceptions that can be returned are:

– HeuristicRollback. The participant rolled back all relevant updates.

– HeuristicCommit. The participant committed all relevant updates.

– HeuristicMixed. The participant has committed some relevant updates, and rolled
back others.

– HeuristicHazard. The participant does not know the result of at least one relevant
update.

For more information about heuristic decisions and exceptions, see “Transaction
completion.”

90 VisiBroker Vis iTransact Guide

What is the heurist ic . log f i le?

What is the heuristic.log file?
VisiBroker VisiTransact produces one heuristic log per instance of the VisiTransact
Transaction Service, located by default in <VBROKER_ADM>/its/
transaction_service/<transaction_service_name>/heuristic.log. This log is saved
in text format and can be viewed, but should not be edited. The heuristic log contains
records for any heuristically-completed transaction associated with the VisiTransact
Transaction Service instance.

A heuristic log record contains information which is global to the transaction:

– Exception. The exception that was reported back to the transaction originator, if
requested. This appears before the Transaction Info portion of the log record; for
example: CosTransactions::HeuristicHazard Exception.

– Transaction Name. The name of the transaction (either user-defined, or assigned
by the VisiTransact Transaction Service). This appears in the name field of the
Transaction Info portion of the log record; for example, Update_Inventory_Database.

– Transaction Identifier. The ASCII version of the transaction identifier (otid). This
appears in the id field of the Transaction Info portion of the log record.

– Host of Transaction Originator. The IP address of the host machine where the
transaction originator is located. This appears in the host field of the Originator Info
portion of the log record.

The heuristic log also contains the following information for each Resource in the
Participant Info sections of the log record:

– Resource Name. The name of the Resource object registered with the VisiTransact
Transaction Service instance that made the heuristic decision. This appears in the
name field.

– Resource Host. The IP address of the host on which the Resource is located. This
appears in the host field.

– Resource IOR. The interoperable object reference (IOR) of the Resource. This
appears in the ior field.

– Resource Vote. The vote sent by the Resource when asked to prepare to commit.
This appears in the voteForPrepare field.

– Resource Decision. The heuristic decision made by the Resource (for example,
OutcomeHeuristicHazard or OutcomeHeuristicMixed). This appears in the outcome
field.

You can archive the heuristic log file by moving it to a different location, if you have the
appropriate file permissions. If you do this, the next time a heuristic occurs, the
VisiTransact Transaction Service instance will recreate the heuristic log file. You can
also make backup copies of the log by copying the log file to an alternate location. This
is useful if you want to keep a daily backup of the heuristic log for your records.

Caution

Do not edit the heuristic.log file.

 11: Managing heur ist ic decis ions 91

Interpret ing the heur ist ic log

Interpreting the heuristic log
Assume that a transaction named Update_Inventory_Database has begun. Two
Resources are registered with this transaction—inventory and customer. As part of
the transaction completion, these Resources are asked to prepare to commit the
transaction, and both Resources return a vote of VoteCommit. The VisiTransact
Transaction Service then requests that the Resources commit the transaction. The
customer Resource commits successfully and returns, but the inventory Resource
makes a heuristic decision and returns with an exception of HeuristicHazard.

The following heuristic log shows what would appear in the heuristic log for this
transaction. Notice that the exception returned to the transaction originator is
CosTransactions::HeuristicHazard. The boldface type marks the location of the
information described in “What is the heuristic.log file?”. Extra white space has been
added to the example heuristic log entry for easier viewing.

06/02/98, 14:43:43.587, gemini, /net/gemini/vsi2/its/dev/jmitra/vbroker/adm/../
bin/ots,
>None, 0, 0, Error, TransactionService, 4004,
at 0X000001, 0X04110FA4, 896823823, >587
CosTransactions::HeuristicHazard Exception:

Transaction Info:
name = Update_Inventory_Database
Id =
_56495349_01000000_ce400ff2_0000cac1_67656d69_6e695f6f_74730000_00000000_000
00000_00000000_00000000_00000000_3574720f_0000e845_00000000_00000000

Originator Info:
host = 206.64.15.75

Participant Info:
name = inventory
host = 206.64.15.75
ior =
IOR:002020200000002549444c3a73797374656d5f746573742f44756d6d7950617274696369
70656e743a312e3000202020000000010000000000000062000100000000000d3230362e3634
2e31352e373500000f730000004600504d43000000000000002549444c3a73797374656d5f74
6573742f44756d6d795061727469636970656e743a312e30000000000000000e746573745265
736f757263653100
voteForPrepare = VoteCommit
outcome = OutcomeHeuristicHazard

Participant Info:
name = customer
host = 206.64.15.75
ior =
IOR:002020200000002549444c3a73797374656d5f746573742f44756d6d7950617274696369
70656e743a312e3000202020000000010000000000000062000100000000000d3230362e3634
2e31352e373500000f730000004600504d43000000000000002549444c3a73797374656d5f74
6573742f44756d6d795061727469636970656e743a312e30000000000000000e746573745265
736f757263653200
voteForPrepare = VoteCommit
outcome = OutcomeNone

What to do once the problem has been isolated
Once you've determined the nature of the problem by looking through the heuristic log,
you can do several things to correct the problem.

92 VisiBroker Vis iTransact Guide

What to do once the problem has been isolated

The first thing to do is to match the transaction name and transaction identifier found in
the heuristic log with the transaction identifier in the log on the Resource side (that is,
the database log). Once you've located the problem, you can correct it manually on the
Resource side. For example, as described in “Interpreting the heuristic log” you would
locate Update_Inventory_Database in the Resource log, and take steps to manually
commit the changes to the inventory Resource.

 12: Implement ing Synchronizat ion objects 93

Implementing Synchronization
objects
This section provides information about how you can implement Synchronization
objects.

What are Synchronization objects?
A Synchronization object enables an object to be notified before the start of, and after
the end of, the transaction's completion. The figure below shows how typical
Synchronization objects fit into the architecture of a transactional application.

Figure 12.1 How typical Synchronization objects fit within the transactional application

The before_completion() method is invoked after the application invokes commit(), but
before the VisiTransact Transaction Service begins transaction completion. The
before_completion() method is not invoked for a rollback request. The
after_completion() method is always invoked during normal processing.

Synchronization objects are not recoverable. If an instance of the VisiTransact
Transaction Service fails, Synchronization objects will not be contacted.

Using Synchronization objects before the commit protocol

With the before_completion() method, Synchronization objects can perform processing
after the work of a transaction has been done, but before the commit protocol starts
(i.e. before prepare() or commit_one_phase). For example, you can:

– Improve performance. You can cache changes during interactions with a
transactional object, and then use the Synchronization object to flush the changes to
disk, and even register a Resource. The advantage is that you do not have a
Resource object or an open database connection until you need one.

– Trigger additional work. For example, you can write a record to an audit database
and register that database as a Resource from the Synchronization object.

94 VisiBroker Vis iTransact Guide

What are Synchronizat ion objects?

– Check the transaction's integrity. You can verify that all of the necessary
operations were performed. For example, you might verify that the balance of an
account was updated, and that the balance change was recorded in a history table.

Using Synchronization objects after rollback or commit

With the after_completion() method, Synchronization objects can do work after the
transaction has been completed; that is, after the Terminator tells Resources to
commit(), rollback(), or commit_one_phase(). You might use Synchronization objects to
perform the following types of actions:

– Perform cleanup. For example, you might release memory objects.

– Notify other processes of the transaction completion. For example, the
Synchronization object might send the results of the transaction as an event to an
event channel, or communicate the results of the transaction to another object whose
processing depends on the outcome of the transaction. The status condition is either
StatusCommitted or StatusRolledBack.

Registering Synchronization objects

You register a Synchronization object with the CosTransactions::Coordinator using one
of the following methods:

– CosTransactions::Coordinator::register_synchronization()

– VISTransactions::Current::register_synchronization()

Irrespective of whether the transactional application uses VisiTransact-managed or
explicitly propagated transactions, the VisiTransact Transaction Service uses implicit
propagation to pass transaction information to Synchronization objects.

When a Synchronization object has been registered and a request to commit the
transaction is made, the Terminator automatically invokes before_completion() on any
Synchronization objects before actually performing the completion. You determine
what happens during the before_completion() invocation from within your
Synchronization object. When all registered Synchronization objects have completed,
the Terminator proceeds with its transaction completion. A rollback can be ensured by
invoking rollback_only() (on the VISTransactions::Current or
CosTransactions::Coordinator) from a before_completion() method. Additionally, any
exception thrown by a before_completion() method (including
CORBA::TRANSACTION_ROLLEDBACK) will cause the transaction to be rolled back.

If any of the Synchronization objects mark the transaction for rollback, the Terminator
stops invoking before_completion() on the remaining Synchronization objects. Because
any Synchronization object can invoke rollback_only(), invoking commit() does not
guarantee the transaction will commit.

The next time the Terminator interacts with Synchronization objects is after transaction
completion; that is, it has received all commit(), commit_one_phase(), or rollback()
responses from Resource objects. At this time, the Terminator automatically invokes
after_completion() on all registered Synchronization objects and passes them the
transaction outcome as status. You determine what happens during the
after_completion() invocation from within your Synchronization object.

The following figure shows a time line for the various invocations during the two-phase
commit process when Synchronization objects involved.

 12: Implement ing Synchronizat ion objects 95

The ro le of Synchronizat ion objects in t ransact ion objects

Figure 12.2 Time line for two-phase commit with Synchronization objects

How failures affect Synchronization objects

If a Synchronization object is unavailable when the Terminator attempts to invoke its
before_completion() method, the transaction will be rolled back. Any Synchronization
objects that have not been contacted will not have before_completion() invoked on
them. If any Synchronization object is unavailable when the VisiTransact Transaction
Service tries to invoke after_completion(), it is ignored.

When the VisiTransact Transaction Service instance recovers, it does not remember
Synchronization objects, and will only replay completion and not Synchronization
objects.

The role of Synchronization objects in transaction objects
If you want your transactional object to be notified of the outcome of a transaction, it
must provide a Synchronization interface. The VisiTransact Transaction Service
notifies Synchronization objects of how a transaction completed when it invokes the
after_completion() method.

96 VisiBroker Vis iTransact Guide

 13: Backward compatib i l i ty and migrat ion 97

Backward compatibility and
migration

Backward compatibility

OTS1.1 Clients vs OTS1.2 Servers

OTS1.1 clients can safely call methods on the objects at OTS1.2 servers provided that
those server objects have ADAPTS OTS policy values in their IORs.

If the objects obtained from OTS1.2 servers have REQUIRES OTS policy values in
their IORs, any invocation on those objects must happen within the scope of an active
transaction. Also, if the objects obtained from OTS1.2 servers have FORBIDS OTS
policy values in their IORs, any invocation on those objects must happen outside the
scope of an active transaction.

OTS1.1 Servers vs OTS1.2 Clients

OTS1.2 clients can work well with OTS1.1 servers, as if they are OTS1.1 clients.
However, OTS1.2 clients do not unconditionally propagate the transaction context, in
contrast to the OTS1.1 clients.

In cases where call-backs are used, the call-back object that an OTS1.2 client passes
to an OTS1.1 server must be of type TransactionalObject if the client wants the
transaction context to be propagated with the call back from the OTS1.1 server.

98 VisiBroker Vis iTransact Guide

Migrat ion

Migration
This section describes migration from traditional definition of Transactional object to
one using of polices

Transactional Objects that are created using version VBE 5.1 or earlier, will be using
the definition of inheriting CosTransactions::TransactionalObject interface. In order to
take advantage of the ability to control the transactional behaviour, it is needed to
migrate use the approach of defining of VisiTransact policies.

The steps are as follows:

1 Remove the TransactionalObject interface from all your idl files. Use proper
OTSPolicy values to control transactional requirements for all target objects.
Unshared transaction model is not supported in this release, so for Invocation
Policy, only SHARED and EITHER are meaningful. Users can choose not to set
explicit values for this policy; in that case VisiTransact will set the Invocation Policy
for each target object with a value of EITHER.
However, users are free to set Invocation Policy for a target object and VisiTransact
will check its validity against the OTSPolicy value.

2 Use proper NonTxTargetPolicy at client side to control the invocations on non-
transactional objects.

3 Use CORBA::ORB::create_policy() method to create corresponding policies.

4 Compile the code with new VisiTransact libraries.

 14: Session Manager overview 99

Session Manager overview
This chapter explains the general process for integrating databases with an
VisiTransact-based application. It describes the Session Manager and XA Resource
Director in detail.

Note

Session Manager is supported on the Solaris platform only.

How are databases integrated into a VisiTransact application?
VisiBroker VisiTransact enables easy integration of a DBMS with the VisiTransact
Transaction Service, an application, and transactional objects. The Session Manager
and its associated Resources provide complete transactional access to the DBMS. Full
two-phase commit capability is supported by the XA implementations of the Session
Manager and its Resource implementation (the XA Resource Director). Alternatively,
the DirectConnect version of the Session Manager provides optimized transactional
access to a single database using an integrated Resource, but require a more
restrictive programming model. The Session Manager is always deployed by being
embedded in your application programs.

The Session Manager is an implementation of a pseudo-IDL interface allowing C++
applications to obtain pre-configured database connections. The Session Manager
insulates applications from the database-specific requirements for connection handles,
thread management, transaction association, and Resource registration. Once a
connection is obtained using the Session Manager, the transaction is coordinated
automatically by the VisiTransact Transaction Service. The application developer is
free from creating code that incorporates the database's participation in the
transaction—the application code only needs to address issues concerning the data
access it requires from the database.

Note

VisiBroker VisiTransact's DBMS integration strategy is part of a larger integration
strategy. You can also integrate VisiTransact with systems that use popular transaction
processing monitors (Tuxedo, CICS, and IMS) and messaging software (MQSeries) on
many platforms including mainframes.

Currently, the Session Manager provides connectivity with Oracle9i, and the Pluggable
Resource Interface allows you to create session management for the database of your

100 VisiBroker Vis iTransact Guide

What is the Session Manager?

choice. See “Pluggable Database Resource Module for VisiTransact” for more
information about the Pluggable Resource Interface.

What is the Session Manager?
The Session Manager is a multi-function component that provides an interface for
managing transactional database connections.

Note

To use the VisiTransact Transaction Service you are not required to use the Session
Manager. Other vendors may provide a component that performs the same
functionality as the Session Manager. The VisiTransact Transaction Service works with
any comparable component that is compliant with the OMG Transaction Service
specifications. If you choose to use the XA implementation of the Session Manager,
you must use the XA Resource Director too—they are interdependent. Currently, the
Session Manager and XA Resource Director work only with the VisiBroker VisiTransact
Transaction Service.

The Session Manager provides the following functions:

– Opens a connection to a specific type of database or obtains an open connection
from its connection pool.

– Associates the connection with the current transaction context.

– Registers the appropriate Resource with the Coordinator. Registers the XA
Resource Director for the XA implementation. Registers the local integrated
Resource for the DirectConnect Session Manager implementation.

– Pools connections so they can be re-used.

– Manages connection threading requirements.

The Session Manager is linked with applications that use it. Using the Session
Manager may require certain command-line parameters to be used when starting
these application processes. For information about the command-line parameters, see
“Commands, utilities, arguments, and environment variables.”

Opening a connection to a database

The Session Manager allows an application to obtain a VisiTransact-enabled
connection to a specific type of database. This connection is created using a
connection profile you have previously configured. See the information about
configuration in the section that follows. Once the connection is made, the VisiTransact
Transaction Service, in conjunction with the Session Manager, handles the transaction
coordination.

How do the application and Session Manager work together? The application uses
resolve_initial_references() to obtain a reference to the Session Manager's
ConnectionPool object. The application provides the ConnectionPool with the
appropriate configuration profile name and the ConnectionPool obtains a connection to
the database using the configuration in that profile. The ConnectionPool then returns a
Connection object which represents this database connection to the application.

 14: Session Manager overv iew 101

What is the Session Manager?

Figure 14.1 The Session Manager gets a connection handle and passes the handle to the application
code. The application code talks to the database directly through this connection handle.

In order to do database work, the application then requests the native database handle
from the Connection object. Subsequently, the application code talks to the database
directly through this native connection handle. For example, if you are using Oracle,
the application code makes direct OCI calls.

For more specific information about using the Session Manager API to get a
connection to the database, see “Data access using the Session Manager.”

Programming restrictions vary according to the specific Session Manager
implementation your application is using. For information on programming
requirements and limitations while using the database's native API to do the work of
the transaction (SQL statements, etc.), see “XA Session Manager for Oracle OCI,
version 9i Client” and “DirectConnect Session Manager for Oracle OCI, version 9i
Client.”

Connection profiles

All the information needed for the connection is kept in connection profiles. Each profile
has a unique name and consists of attributes such as the database login ID. The set of
attributes varies depending on the Session Manager implementation. For more
information, see “XA Session Manager for Oracle OCI, version 9i Client” and
“DirectConnect Session Manager for Oracle OCI, version 9i Client.”

Configuring connections

Use the VisiBroker Console to create and configure connection profiles. The
connection profile has all the required attributes to make a connection to the database.
For more information about the VisiBroker Console, see “Using the VisiBroker
Console.”

Associating a connection with a transaction

The Session Manager associates transactions with the database work performed on a
database connection—your application does not have to provide this function. This
association is maintained until the application releases the Session Manager
connection.

Registering Resources

The Session Manager automatically registers the appropriate Resources with the
Coordinator—application developers do not need to add anything to their code for
Resource registration. While the DirectConnect implementation contains the Resource
object invisibly embedded in the Session Manager implementation, the XA
implementation uses an external process called the XA Resource Director. The XA
Resource Director must be available to use the XA version of the Session Manager.
For information about starting an XA Resource Director, see “Integrating VisiTransact
with databases using the Session Manager.”

102 VisiBroker Vis iTransact Guide

What is the Session Manager?

Releasing Connections

The Session Manager requires that a Connection object be released when the
application completes a unit of work against that connection. For implicit transaction
contexts, the connection must be released before the transaction is disassociated from
that thread. This disassociation occurs:

– In calls to transactional objects, when the call returns to the client.

– When the transaction is completed (commit() or rollback()).

– When the transaction is suspended.

When the application releases the connection, the Session Manager frees the
database connection for use by other transactions.

Note

After releasing the connection, the application may not continue to use that particular
Connection object or its associated native connection handle. To perform further work
on that transaction or other transactions, the application must obtain a new Connection
object.

Pooling connections

The Session Manager pools connections automatically. You do not have to add
anything to your application code. When an application releases a connection, the
Session Manager does not automatically close it. Rather, it keeps it in the connection
pool. When there is another request for a connection, the pool will attempt to reuse
connections. It will only open a new connection when there are no available compatible
connections.

Within the same transaction, you can obtain and release Connection objects as many
times as you need to complete work. Since the Session Manager ConnectionPool is
more efficient when Connection objects are released after completing a unit of work, do
not wait until the entire transaction is complete before releasing Connection objects.

Note

Because the DirectConnect implementation of the Session Manager uses a single
connection to perform work for a transaction, the ConnectionPool can not reuse any
connection until the transaction is complete. The connection is returned to the pool for
reuse after the transaction is committed or rolled back.

Managing thread requirements

The Session Manager manages any connection threading requirements imposed by
the database. Since the details about keeping connections with particular threads are
incompletely specified by XA, DBMS companies have interpreted the XA requirements
for threading behavior differently. For example, when using Oracle, a connection
opened using XA requires that every single call for the rest of that connection's life has
to be on that same thread. This makes it difficult to integrate with other software which
manages threads according to its own policies.

The Session Manager makes sure that your application will always get a connection
handle that works with the current thread.

Not all database connections have threading restrictions. When restrictions do not
exist, the Session Manager pools connections more efficiently. For more information,
see “Data access using the Session Manager.”

 14: Session Manager overv iew 103

Global t ransact ions using XA protocol

Global transactions using XA protocol
Note

The Session Manager and XA Resource Director are not restricted to DBMSs or
RDBMSs. They work with any Resource Managers that support XA protocol. Resource
Managers are commonly thought to be databases but they include any XA-compliant
Resource that is able to participate in a two-phase commit. Another example of a
Resource Manager is a message queue.

XA is an accepted industry standard protocol specified by X/Open to allow Transaction
Managers to coordinate global (two-phase commit) transactions. Most RDBMS
vendors support XA as a way for external transaction coordinators (like the
VisiTransact Transaction Service or TP Monitors) to control transaction completion.

Both the Session Manager and the XA Resource Director “speak” XA. Generally, they
speak different pieces of XA. The part of XA that has to do with associating work with a
transaction is facilitated by the Session Manager. The part of XA that has to do with
transaction completion and recovery is performed by the XA Resource Director.

The Session Manager, in conjunction with the VisiTransact Transaction Service,
performs the XA interface calls to include, in the transaction, the application's work on
that database.

The XA Resource Director performs the two-phase commit for the database as
instructed by the transaction's Terminator, and participates in recovery by acting as a
bridge between the VisiTransact Transaction Service and the XA-compliant database.
The XA Resource Director is deployed as a standalone process.

There should be one XA Resource Director instantiation (or process) deployed for each
database.

What is the XA Resource Director?
Note

The XA Resource Director is used with the XA implementation of the Session
Manager. You do not use the XA Resource Director with DirectConnect Session
Manager deployments.

For transaction completion and recovery, the XA Resource Director bridges the
VisiTransact and X/Open transaction environments, which allows for interoperability
between Resource objects and the XA-compliant database. (The Session Manager
does the bridging for associating application work with the transaction.) The Resource
Director is a persistent object which acts as an intermediary during commit, rollback, or
recovery for all transactions using a specific database on a network.

One XA Resource Director is associated with each database server. The Session
Manager tells the VisiTransact Transaction Service which Resource Director will
coordinate the completion of the transaction. After all the work has been done, the
VisiTransact Transaction Service communicates with the Resource Director and tells it
to commit or rollback the transaction.

Note

You do not have to implement an XA Resource Director or register it with the
VisiTransact Transaction Service. It is done for you automatically; however, the system
administrator must ensure that the XA Resource Director is available whenever the
database is running.

Distributed transaction recovery

The XA Resource Director ensures that all transactions in its associated database,
which were initiated by the VisiTransact Transaction Service, will be completed either
by commit or rollback. The transactions will be completed regardless of failure caused
by the VisiTransact Transaction Service, the XA Resource Director, or the Resource

104 VisiBroker Vis iTransact Guide

DirectConnect Session Managers

Manager. Any transaction not completed at the time of failure will be resolved when
these three components are back up and running.

For more information about the rules used during transaction completion or a two-
phase commit, see “Transaction completion” and “Coordinating transaction completion
with Resource objects.”

DirectConnect Session Managers
When only one application server talking to one database is involved in a transaction,
the DirectConnect Session Manager is an alternative to using global (two-phase
commit) transactions as provided by the XA implementation of the Session Manager.
This consists of a single process containing a Session Manager with embedded
Resources. For optimum performance, an VisiTransact Transaction Service instance is
linked with the application code; however, this is not required. A transaction using the
DirectConnect Session Manager is considered a local transaction because all of the
components of the transaction are located locally in one process. With DirectConnect
access transactions one process talks to one database. All of the work for a particular
transaction is done on one physical database connection. The connection uses the
same connection profile whenever the database is accessed for the same transaction.
The benefit of this type of architecture is a gain in performance because it performs a
single-phase commit only. It also allows transactional semantics for work done on
databases which do not support two-phase commit.

Note

When using the DirectConnect Session Manager implementation, you do not need the
services of the XA Resource Director. The Session Manager uses an internal,
transparent Resource implementation.

The single application server process is a multi-threaded process that includes all the
methods that might be used in a particular transaction. This process talks to a single
database. Additional Resources are not allowed—databases or other types of
Resources like message queues. For example, if you are doing a debit and credit
transaction, instead of having your debit/credit application server processes on
different machines, they are in a single process on one machine. The debit/credit
process can talk to the single database across a network. But, a transaction talks to
one database only. All the interactions with that one database happen with that one
process.

Figure 14.2 A DirectConnect access transaction with all components of the transaction in one process

The DirectConnect Session Manager can take advantage of several performance
optimizations. When you use a single application server process with a database as
the only participant in the transaction, the transaction (via VisiTransact) performs a
single phase commit. If the VisiTransact Transaction Service is embedded, the
Session Manager does all the Resource registrations and all the work of the
transaction locally to that process. The Session Manager, the VisiTransact Transaction
Service instance, and the debit/credit process are all within the same application server
process so they are not talking to each other across a network or across process
boundaries. Additionally, because of the single phase commit, the VisiTransact
Transaction Service need not log to the disk. Consequently, there is a performance
gain.

The other advantage when using DirectConnect access transactions is that it is a
simpler to get them up and running. You do not have to install the XA client library or
the components that enable global transactions. For example, if using XA access

 14: Session Manager overv iew 105

Restr ict ions on DirectConnect access t ransact ions

transactions with Oracle, you have to install Oracle's distributed option; with
DirectConnect access transactions, this is unnecessary.

Note

The XA Resource Director is not used with the DirectConnect Session Manager. The
Resource object used is built in to the DirectConnect implementation of the Session
Manager.

When the application requests database access through the Session Manager, the
ConnectionPool object allocates a database connection for that transaction. Unlike XA
connections, the DirectConnect connection remains allocated to that transaction until
the whole transaction is done. The application follows the same procedure (as it would
with a distributed transaction) to get a connection and release a connection.
Consequently, the VisiTransact Transaction Service knows what transaction and
database is associated with a particular connection. When the request for a commit
comes through, the Resource object that is embedded in the Session Manager gets
that same physical connection and does a single phase commit or rollback on the
transaction.

In other words, because the Session Manager manages connections, every time the
application invokes getConnection() for the same transaction, it will get the same
connection. The server can have many calls for the same transaction and all the work
happens within the same transaction even though the application code did not have to
maintain connection state.

Registering Resources

If you try to register a Resource (register_resource() call) after a DirectConnect
Resource has already been registered, this results in a CORBA::BAD_PARAM exception. In
other words, the VisiTransact Transaction Service will not accept any
register_resource() calls after a DirectConnect connection has been used.

If getConnection() attempts to obtain a DirectConnect connection, and a Resource has
already been registered with the Coordinator, the request will fail throwing a
VISSessionManager::Error exception.

Deployment issues

You can choose to configure a stand-alone or embedded VisiTransact Transaction
Service instance. If you embed an VisiTransact Transaction Service in a single
application server, you may realize performance gains when processing a
DirectConnect access transaction.

Restrictions on DirectConnect access transactions
In order to obtain the performance gains of DirectConnect access transactions, there
are several restrictions that apply:

– Only one application server can be involved in a transaction.

– Only one Resource (Session Manager or other) may be involved in a transaction.

– Only one thread at a time can obtain a connection for a particular transaction. Once
getConnection() has been invoked, no other thread will be able to obtain a connection
for that transaction until the connection has been released.

– Since it is a single connection, anything the application does that alters a property in
that connection (which some database calls do) sustains through the life of the
connection. If the application uses a different thread later or performs a different unit
of work, the properties on the connection will remain as set earlier. Because
connections are reused, this could also affect work on subsequent transactions.

106 VisiBroker Vis iTransact Guide

Coexistence: DirectConnect and XA access t ransact ions

Coexistence: DirectConnect and XA access transactions
The design of the Session Manager allows for the coexistence of DirectConnect and
XA access transactions in the same process. Certain database implementations will
not allow the mixing of DirectConnect and XA access transactions from the same
process. For example, the Oracle9i DirectConnect and XA implementations are not
compatible in the same process, so VisiTransact will prevent you from mixing these
two implementations. See “XA Session Manager for Oracle OCI, version 9i Client” and
“DirectConnect Session Manager for Oracle OCI, version 9i Client” for details on
specific implementations of the Session Manager.

 15: Integrat ing Vis iTransact wi th databases using the Session Manager 107

Integrating VisiTransact with
databases using the Session
Manager
This chapter provides information you need to administer VisiTransact transactional
applications that integrate with databases.

To integrate VisiTransact with databases, the database administrator is responsible for
these tasks:

1 Evaluating the impact of integrating VisiTransact with databases.

2 Making sure databases are ready for integration with VisiTransact.

3 Setting up Session Manager Configuration Servers.

4 Configuring the connection profiles.

5 Deploying and setting up the XA Resource Directors. This involves starting the XA
Resource Directors and registering them with the VisiBroker Object Activation
Daemon (OAD) if appropriate. This step is only necessary when using the XA
implementation of the Session Manager.

6 Starting the application objects that embed the Session Manager.

These tasks are described in detail in the sections that follow. Some of the information
is presented in separate sections for XA and DirectConnect. The database
administrator has other tasks in addition to the ones listed above. Additional tasks are
as follows:

– Handling heuristics.

– Tuning for gains in performance.

– Managing connection profile persistent store files.

These additional tasks are described in detail later on in the chapter.

108 VisiBroker Vis iTransact Guide

Evaluat ing the impact of in tegrat ing Vis iTransact wi th databases using XA

Evaluating the impact of integrating VisiTransact with databases
using XA

One of an administrator's most important tasks is to evaluate the impact of processing
distributed transactions in a particular site's environment. Certain circumstances are
inherent when processing distributed transactions. Processing a distributed transaction
may not always be appropriate for the database your company is using. While making
your evaluation, consider the following:

– Using the XA protocol adds overhead.

– The database must have a high degree of availability during two-phase commits.

– Data may be locked or unavailable for longer periods, reducing potential
concurrency.

– The database is involved in a more sophisticated transaction. It may have to work
with other application components.

These items are discussed in the following sections.

Using XA adds overhead

Generally, there is extra overhead when communicating with the database using the
XA protocol and XA interface calls. The overhead incurred for XA is as follows:

– A round trip to the database to perform the association with the transaction.

– A round trip to the VisiTransact Transaction Service to register the database's
participation in the transaction.

– One or two round trips from the VisiTransact Transaction Service to the XA
Resource Director to perform the prepare and commit processing.

With VisiTransact, the calls to associate and disassociate only happen to those
database connections that the application has specifically requested to use at that
time. Overhead does not incur for Resource Managers that have not been used.

Requiring high availability

If the VisiTransact Transaction Service invokes two-phase commit on a set of
databases, and if any are unavailable during the prepare phase, the transaction is
rolled back. Any productive work done during those transactions is lost.

Locked or unavailable data

Performing a two-phase commit may cause concurrency bottlenecks. Between data
being locked and committed, the database prevents anyone from reading or modifying
data which is locked by that particular transaction. For example, if you lock data in a
row because you updated it, it will not be available for someone else to modify until you
commit the transaction. This reduces concurrency.

Note

The behavior of databases locking data varies widely—a row or more of data could be
locked depending on the database and the application.

Yielding some control

When evaluating the advantages and disadvantages of processing distributed
transactions, consider that the scope of administrative tasks has increased. This
causes a different set of advantages and disadvantages. You lose some control
because you cannot force completion after the prepare phase has started. This is

 15: Integrat ing Vis iTransact wi th databases using the Session Manager 109

Evaluat ing the impact of in tegrat ing VisiTransact wi th databases using DirectConnect

because the scope is wider and there are other components to consider. If the two-
phase commit is interrupted, a heuristic outcome occurs. You can force a heuristic
outcome using database utilities.

For more information about how the VisiTransact Transaction Service handles
heuristics, see “Transaction completion”.

Evaluating the impact of integrating VisiTransact with databases
using DirectConnect

There are fewer administration duties for DirectConnect transactions than for XA
transactions.

Restrictions when using DirectConnect are as follows:

– Only one Resource (the DirectConnect Resource) can participate in the transaction.

– The transaction work with one database is restricted to one process.

Advantages to using DirectConnect are:

– Simpler deployment scenarios

– Reduced RPCs to the database for XA coordination

Preparing databases
Before you can use the features in the Session Manager, check with the database
administrator that the database has the required software subsets for distributed
transaction access. Your database administrator may need to modify your database
installation by loading additional libraries, running SQL scripts in the database,
modifying configuration parameters for the database server, and installing client-side
libraries. For more information, see “XA Session Manager for Oracle OCI, version 9i
Client” and “DirectConnect Session Manager for Oracle OCI, version 9i Client.”

In general, for DirectConnect, there are no additional steps in preparing your database
because the connections are regular user connections.

110 VisiBroker Vis iTransact Guide

Connect ion prof i le sets

Connection profile sets
For the Session Manager to connect to a database, it must be supplied with information
about how to make that connection. The information is packaged into a set of attributes
called the connection profile. Connection profiles are created using the VisiBroker
Console, or using the smconfigsetup utility, and saved onto disk so that they can be
persistently stored and retrieved by the Session Managers running in the application
servers. Because the connection profiles are available on disk, the Configuration
Servers do not have to be running continuously. A profile set (logical grouping of
connection profiles) is associated with the same Configuration Server. Each
Configuration Server is identified by a unique name. This section provides information
to help you manage connection profile persistent store files.

Note

You may want to decouple changes made to profile attributes by an application's
Session Manager from the profile attributes used by the XA Resource Director. To do
so, create separate connection profiles for the Session Manager and the XA Resource
Director.

The profile sets are stored in persistent storage files. You can locate the persistent
storage files in the default location, or you can use different locations and then point to
these locations using the argument -Dvbroker.sm.pstorePath.

Modifying connection profiles used by Session Manager clients

To modify a connection profile used by Session Manager clients:

1 Change the connection profile using the VisiBroker Console.

2 Shut down any application processes which use this connection profile.

3 Restart the application processes.

Modifying connection profiles used by XA Resource Directors

To modify a connection profile used by the XA Resource Director:

1 Change the connection profile using the VisiBroker Console.

2 Shut down any application processes which use the affected XA Resource Director.

3 Shut down and restart the XA Resource Director.

Note

While it is possible to leave the application processes running, transactions which
attempt completion while the XA Resource Director is shut down may be rolled back.

 15: Integrat ing Vis iTransact wi th databases using the Session Manager 111

Using the XA Resource Director

Using the XA Resource Director
The XA Resource Director is used in conjunction with the XA implementation of the
Session Manager for transaction completion and recovery processing. The XA
Resource Director is deployed as a standalone program.

If you are using the DirectConnect implementation of the Session Manager, an XA
Resource Director is unnecessary.

Deploying an XA Resource Director

Deploy an instance of the XA Resource Director for each database server accessible
from VisiBroker VisiTransact. The XA Resource Director should be running whenever
the database server is running if the XA implementations are being used. This way the
Resource Director is available to take part in the completion and recovery protocols.

We recommend that only one XA Resource Director be deployed for each database for
the same OSAGENT_PORT. Having multiple XA Resource Directors on the same
OSAGENT_PORT for the same database is inefficient because, although they are
successful at committing and rolling back transactions during normal operation, they
also duplicate recovery operations if the VisiTransact Transaction Service goes down
and comes back up. This results in overloading the VisiTransact Transaction Service
with replay requests when it has finished its internal recovery cycle.

Starting an XA Resource Director

Start the XA Resource Director with the following command:

prompt>xa_resdir -Dvbroker.sm.profileName=<profile>
 [-Dvbroker.sm.pstorePath=<path>] [-Dvbroker.sm.configName=<name>]

The following table describes the start-up parameters for the XA Resource Director.

For information about what defaults are used if you do not specify the -
Dvbroker.sm.pstorePath parameter, see “Checking for the default path to persistent
store files”. For information about how to set up a Session Manager connection profile,
see “Using the Session Manager Profile Sets section”.

How the XA Resource Director uses connection profiles

Besides creating connection profiles for the Session Manager, you must create them
for the XA Resource Directors as well. Depending on what attributes they need for
configuring connections, the Resource Director may use the same profile as some of
the Session Managers use; it might use a profile that none of the Session Managers
use. While there might be multiple profiles that Session Managers use to contact one
database, the XA Resource Director for that database uses only one profile.

Parameter Description

-Dvbroker.sm.profileName=<profile> The name of the Session Manager connection profile you
want to use to establish a connection with the database.
This is required.

-Dvbroker.sm.pstorePath=<path> The path to the directory where the persistent store files
are located. By default, the persistent store files are
located in <VBROKER_ADM>/its/session_manager/.

-Dvbroker.sm.configName=<name> The name of the Session Manager Configuration Server
you're using. By default, the name assigned to the
Session Manager Configuration Server is <host>_smcs
where host is the name of the server on which you
created the Session Manager connection profile. This can
also be thought of as the profile set name.

112 VisiBroker Vis iTransact Guide

Using the XA Resource Director

Deploying client-side libraries

The Session Manager and the XA Resource Director must be able to access the client-
side database libraries, including the XA client-side library for the databases that the
Session Manager and XA Resource Director objects will be accessing.

Shutting down an XA Resource Director remotely

To shut down an XA Resource Director remotely, use the following command:

prompt> vshutdown -type rd [-name <ITS_XA_Resource_Director_name>]

The XA Resource Director's type (rd) is a required argument.

You can find the name of the Resource Director by either using the osfind command,
or by looking at the connection profile. To avoid confusion, it is best to name the
Resource Director the same name as its connection profile and database name. See
“vshutdown” for more details on using the vshutdown command.

Registering the XA Resource Director with the OAD

To start the XA Resource Director without operator intervention, register it with the
VisiBroker OAD (Object Activation Daemon). Implementations of the XA Resource
Director can be registered using the oadutil reg command-line interface.

The syntax for registering an XA Resource Director with the OAD is as follows:

oadutil reg -i visigenic.com/VISSessionManagerSupport/ImplicitResource
-o <resource_director_name> -cpp <installation_dir_path>/bin/xa_resdir -a
-Dvbroker.sm.profileName=<profile> -a -Dvbroker.sm.pstorePath=<path> -a -
Dvbroker.sm.configName=lt;name>

The following table describes the parameters for registering the XA Resource Director
with the OAD.

Note

For description of the profile, path, and name parameters, see “Starting an XA
Resource Director”.

Parameter Description

resource_director_name This is the name of the XA Resource Director you wish to register with
the OAD, and the object name that will be activated. We recommend
that the profile used to start the Resource Directors be named the
same as the Resource Director name in the profile, and reflect the
database name. In installations with multiple databases, this makes it
easy to associate Resource Directors with profile names.

 15: Integrat ing Vis iTransact wi th databases using the Session Manager 113

Start ing Session Manager-based appl icat ion processes

The connection profile used to start the XA Resource Director should be named the
same as the XA Resource Director name in the profile. Additionally, it should be the
same as the database name. In installations with multiple databases, this makes it
easy to associate XA Resource Directors with profile names.

See “Using the Session Manager Profile Sets section” for details on how to set up a
Session Manager connection profile.

Note

The OAD must be running before you can use any of the OAD commands. Refer to
Starting the OAD in the VisiBroker for C++ Developer's Guide for instructions on
starting the OAD. When registering an object implementation, use the same object
name that is used when the implementation object is constructed.

Starting Session Manager-based application processes
It is not necessary for an administrator to explicitly start up the Session Manager. The
Session Manager is started and initialized automatically in the programs in which it is
used. The ORB initialization accesses the command-line arguments that contain the
connection profile attributes and any other options relating to the Session Manager.

If you want to use a path other than the default, or a profile set name other than the
default, use the following arguments when starting the application so that the persistent
store of connection profile attributes is used:

-Dvbroker.sm.pstorePath=<path> -Dvbroker.sm.configName=<name>

The path argument is not required. If you do not specify a path argument, see
“Checking for the default path to persistent store files” for information about how the
Session Manager and the Session Manager Configuration Server check for the default
path and profile set name.

Note

See “Starting an XA Resource Director” for a description of the command-line
arguments to application for the Session Manager.

Checking for the default path to persistent store files

When using the Session Manager, the -Dvbroker.sm.pstorePath argument is not
required. If you do not specify the path argument, the Session Manager and the
Session Manager Configuration Server check the following settings in this order:

1 What you set in the command-line argument for -Dvbroker.sm.pstorePath. If you did
not specify the path at the command line, it checks:

2 What was set with the VBROKER_ADM environment variable. This is the default when
you accept all the defaults during installation. VisiTransact puts the persistent store
files in subdirectory its/session_manager under VBROKER_ADM.

114 VisiBroker Vis iTransact Guide

Forcing heur ist ics

Forcing heuristics
You may use database utilities to monitor transactions after they reach the prepare
phase. In some cases, you may need to interfere to resolve transactions; for example,
in the case of long-lived failures with the VisiTransact Transaction Service or one of its
participants, or a failure in network connectivity. When a database administrator
intervenes to commit or roll back a prepared transaction without using the VisiTransact
Transaction Service, the resulting state is called a heuristic. This means that the
database may have completed the transaction in a way different than the VisiTransact
Transaction Service has. Most databases which support two-phase commits have
interfaces for forcing heuristics.

For more information about how the VisiTransact Transaction Service handles
heuristics, see “Transaction completion.”

Performance tuning
When you have the VisiTransact Transaction Service embedded in the application
server, the client should ensure that it binds to the correct instance of the VisiTransact
Transaction Service to realize the potential performance gains.

See “Embedding a VisiTransact Transaction Service instance in your application” for
more information on embedding an VisiTransact Transaction Service in your
application server.

For XA

Reducing network traffic increases performance when using the VisiTransact
Transaction Service with distributed transactions. To reduce network traffic, you can
locate some of the components on the same node as the VisiTransact Transaction
Service instance, or on the same node as the database. Communication occurs
between the Session Manager and the VisiTransact Transaction Service, the Session
Manager and the database, the VisiTransact Transaction Service and the XA
Resource Director, and the XA Resource Director and the database. Localizing these
components on the same node will reduce network traffic. Consider trying to locate the
transactional objects which use the Session Manager on the same node with the
VisiTransact Transaction Service or the database, and locate the XA Resource
Director with the database or with the VisiTransact Transaction Service.

Session Manager Configuration Server
The Session Manager Configuration Server represents one set of connection profiles
and servers as the agent for VisiBroker Console. Its purpose is to provide network
access for the VisiBroker Console to the connection profiles.

Directory structure for persistent store files

By default, the persistent store files are located on disk in the connection profile set
subdirectories. You can use the default directory or specify another one. The default
path may be overridden during installation, or when using the command line flag -
Dvbroker.sm.pstorePath, or with any process that uses the Session Manager (including
the XA Resource Director).

 15: Integrat ing Vis iTransact wi th databases using the Session Manager 115

Session Manager Conf igurat ion Server

For information about how the Session Manager and the Session Manager
Configuration Server checks for the default path to the persistent store files, see
“Checking for the default path to persistent store files”.

Caution

There is a directory called install under the session_manager directory. Do not
change anything in the install directory or add files to it manually. This directory is
created automatically when you install VisiTransact.

When you create a connection profile with the VisiBroker Console, a corresponding file
is created in a subdirectory in the session_manager/config directory. The name of
subdirectory file corresponds with the Session Manager Configuration Server's name
and can be considered the profile set name. By default, the Configuration Server's
name consists of <host>_smcs where host is the name of the machine where the
Configuration Server resides. For example, if the machine's name is athena, the
Configuration Server is named athena_smcs. In the subdirectory for the Configuration
Server, the connection profiles are stored, one per file. You can give the connection
profiles significant names like test_oracle_xa. The name you give a connection profile
using the VisiBroker Console is automatically assigned to its associated persistent
store file. You do not have to manually create the persistent store files—they are
created by the Session Manager Configuration Server when you use the VisiBroker
Console. VisiTransact adds the extension .cfg to the persistent store file, as shown in
the following example.

test_oracle_xa.cfg

Note

When you create names for the connection profiles using the VisiBroker Console, the
case sensitivity rules for these names are the same as the rules used by your file
system where these names are stored. For example, on UNIX if you mix the upper and
lower case when you assign the connection profile name, that is what you must use
when you try to find it later.

While the persistent store files are binary and cannot be edited by hand, it is possible to
copy them to alternate locations as backups. Or, you can copy an entire
<configuration_server> subdirectory to another location and rename it with a different
profile set name.

It is possible to partition connection profile sets so that you have multiple connection
profile sets on the same node. Unless there is a strong reason for doing this, it usually
has few advantages. If you have more than one profile set on a node, a subdirectory is
created in the session_manager/config (even on different nodes) directory for each
profile set. Do not create multiple profile sets with the same name since you will not be
able to distinguish them from the ones you create with the VisiBroker Console.

Note

A process using the Session Manager can only access one connection profile set by
going to the default location, or to any location you have specified using command-line
arguments. It is confined to that namespace for the default location, or location
specified by the command-line arguments. It cannot access locations that are not
specified. For example, an instance of a Session Manager in a particular application
process may only access the Marketing connection profile set. It may not access the
Payroll connection profile set.

116 VisiBroker Vis iTransact Guide

Session Manager Conf igurat ion Server

Deploying persistent store files

Every node which is running an application that uses the Session Manager must be
able to read the persistent store files from disk. Consequently, you have several
options when deploying the persistent store files:

– Option 1: One Configuration Server exists on one of the nodes in a connected group
of nodes. The on-disk set of persistent store files is shared through a shared file
system.

– Option 2: A uniquely-named Configuration Server and its on-disk set of persistent
store files exist on each node.

– Option 3: One Configuration Server is shared by a connected group of nodes. There
is no shared file system. When the on-disk set of persistent store files changes, you
must manually copy the sets of persistent store files from the master location to the
other nodes.

Option 1: Persistent store files on a shared file system
The preferred method of deployment is to place the set of persistent store files on a
shared file system. When VisiTransact is installed, a Session Manager Configuration
Server with an associated on-disk set of persistent store files is deployed on only one
node. When installing VisiTransact on the node which runs the Session Manager
Configuration Server, you can specify the directory structure for the persistent store
files so that it will be created in this shared disk.

After installation, the VisiBroker Console can be used to update all Session Manager
connection profiles that are used on this network. They will all appear in one set of
connection profiles. Application servers which use the Session Manager on other
nodes must be configured so that when they start up they look at the shared disk
containing the persistent store (using -Dvbroker.sm.pstorePath=<path>). When you use
the VisiBroker Console to update connection profiles, the modified profile will be seen
by application servers when they start up.

Note

Because the connection profiles are shared with this option, it is very important that
there is only one instance of the Session Manager Configuration Server used in this
group of nodes.

Option 2: Persistent store files on each node
Each node that runs the Session Manager has its own Configuration Server and set of
persistent store files. One VisiBroker Console on the network can make modifications
to each on-disk persistent store file. If you update a connection profile on one node,
you have to update it on the other nodes through the VisiBroker Console so that the
other nodes are updated with the change too.

This option has the advantage that no disk sharing is needed, but adds much
complexity in synchronizing the connection profiles across many nodes. Neither the
VisiBroker Console nor the Session Manager Configuration Server processes can
synchronize different on-disk sets of connection profiles.

Option 3: Set of persistent store files copied to each node
To distribute the on-disk cache around the network, you can create a master set of
persistent store files and manually copy them to each node. Like the previous option,
this option has the disadvantage of trying to keep numerous nodes synchronized.
However, it may be easier to copy the profile files using operating system or network
copy commands than to update each persistent store file using the VisiBroker Console.

Note

You can copy all persistent store files in a Configuration Server subdirectory or just one
persistent store file at a time. You must copy the entire install subdirectory too if it does
not already exist in the target location.

 15: Integrat ing Vis iTransact wi th databases using the Session Manager 117

Session Manager Conf igurat ion Server

Starting the Session Manager Configuration Server manually

Once a Session Manager Configuration Server is registered with the OAD, the OAD
can start it automatically; however, if you would like to start the Configuration Server
manually, use the following command:

prompt>smconfig_server [-Dvbroker.sm.pstorePath=<path>] [-
Dvbroker.sm.configName=<name>]

The following table describes the start-up parameters for the Session Manager
Configuration Server.

Shutting down the Configuration Server

You may want to shut down the Session Manager Configuration Server for the
following reasons:

– If you need to perform maintenance.

– If an error occurs.

– If you need to reboot the machine the server is on.

Use this command when you want to shut down a Session Manager Configuration
Server manually:

prompt>vshutdown -type smcs [-name <smcs_name>]

The Session Manager Configuration Server name should be the one used in the
command-line argument -Dvbroker.ots.configName when you started the Configuration
Server, or the default name which is <host>_smcs.

Note

If someone else is using the VisiBroker Console to change or create a connection
profile that is associated with the same Session Manager Configuration Server that you
are trying to shut down, the Session Manager Configuration Server will finish the work
and then will shut down.

See “vshutdown” for more information on the vshutdown command.

Security

Database passwords are secure in the sense that they are not displayed through the
VisiBroker Console. Applications which link with the Session Manager are able to
query cleartext versions of database passwords. Since read access to the
configuration files is required of these applications, you can control access to database
passwords by restricting access to the connection profile persistent store files. It is up
to the application developer and system administrator to provide proper file access
permissions and develop applications which do not disclose password information to
unauthorized users.

Parameter Description

-Dvbroker.sm.pstorePath Provide the path to the directory where the persistent store files are
located. By default, the persistent store files are located in
<VBROKER_ADM>/its/session_manager.

-Dvbroker.sm.configName Provide the name of the Session Manager Configuration Service
you're using. By default, the name assigned to the Session Manager
Configuration Server is <host>_smcs where host is the name of the
server on which you created the Session Manager profile.

118 VisiBroker Vis iTransact Guide

 16: Data access using the Session Manager 119

Data access using the Session
Manager
This chapter explains how to use the Session Manager to manage connections
between transactional objects and databases in a distributed environment—this
includes DirectConnect and XA access. It assumes that you are familiar with the
CORBA Transaction Service specification, and database concepts.

Note

Session Manager is supported on the Solaris platform only.

The Session Manager includes the following interfaces:

– Connection—represents a transactional database connection.

– ConnectionPool—allocates a connection from the pool.

For an overview about the Session Manager and the XA Resource Director, see
“Session Manager overview.”

Preparing for integration
Before you can use the features in the Session Manager, you must do the following:

– Install your database. It may require special configurations depending on whether
you are processing XA access transactions or depending on the other components in
your environment. For more information, see “XA Session Manager for Oracle OCI,
version 9i Client” and “DirectConnect Session Manager for Oracle OCI, version 9i
Client.”

– Ensure that your VisiTransact system administrator has created connection profile(s)
for the Session Manager. If you are processing XA access transactions, your
VisiTransact system administrator must create a connection profile for the XA
Resource Director as well.

– Verify that your application uses the Session Manager (ConnectionPool and
Connection interfaces) to obtain connection handles. To obtain connections, use

120 VisiBroker Vis iTransact Guide

Using the Session Manager: Summary of steps

connection profiles by name—the name that was given to the connection profile via
the VisiBroker Console.

– For XA implementations of the Session Manager: Check with your VisiTransact
system administrator that an instance of the XA Resource Director is deployed and
running for each database that is accessible from VisiBroker VisiTransact. See
“Integrating VisiTransact with databases using the Session Manager” for more
information.

– Check that your application ensures a transaction is in progress. You must have an
active transaction (implicit or explicit context) on the current thread. This ensures that
Resources are included in a VisiBroker VisiTransact transaction. See “Creating and
propagating VisiTransact-managed transactions” for a description of VisiTransact-
managed transactions or see “Other methods of creating and propagating
transactions” for a description of how to manage transactions in other ways.

Using the Session Manager: Summary of steps
The following steps summarize how to work with the Session Manager.

1 Obtain a ConnectionPool object reference.

2 Ensure that there is an active transaction.

3 Obtain a Connection object for the appropriate connection profile from the
ConnectionPool.

4 Get a native connection handle from the Connection object using
getNativeConnectionHandle().

5 Use the native connection handle to access data.

6 Release the Session Manager Connection object, and cleanup any copies of the
native connection handle.

7 De-allocate the Connection object.

Note

You can execute lots of pieces of work for a single transaction. Because connections
are pooled, you should keep a Connection object for a short while and not hold onto it.
You can get Connection object as often as needed within a single transaction.

The following sections detail each step.

Obtaining a ConnectionPool object reference
The following steps describe the general process for obtaining a reference to the
ConnectionPool object, and are followed by a code example.

1 Call the ORB resolve_initial_references() method, passing the object type
VISSessionManager::ConnectionPool.

2 Narrow the returned object to a VISSessionManager::ConnectionPool. The following is
an example of obtaining a ConnectionPool object reference in C++.

{
CORBA::ORB_var orb = CORBA::ORB_init();
CORBA::Object_var initRef =
 orb->resolve_initial_references("VISSessionManager::ConnectionPool");
VISSessionManager::ConnectionPool_var pool =
 VISSessionManager::ConnectionPool::_narrow(initRef);

 16: Data access using the Session Manager 121

Obtain ing a Connect ion object f rom the Connect ion Pool

 ...
}

Using ConnectionPool object references

The ConnectionPool object reference is valid for the entire process under which you
create it; you can use it in any thread. You can either make multiple calls to obtain
references to the ConnectionPool object or use just one reference throughout the
entire process, saving duplicate resolve_initial_references() calls.

Obtaining a Connection object from the Connection Pool
Once the application has obtained a reference to the ConnectionPool object, the
getConnection() call can be used to obtain a Connection object which represents this
database connection to the application. It is at this point that the Session Manager
binds a database connection with a Connection object.

The getConnection() call requires an active implicit transaction context. The
getConnectionWithCoordinator()call can be used to explicitly specify a transaction using
its Coordinator. For more information about getConnectionWithCoordinator(), see
“Using explicit transaction contexts”.

The getConnection() method does the following:

1 Obtains a database connection.

If there is a free connection in the pool with the same connection profile, the pool
returns that connection. If there is no free connection with a matching connection
profile available, the Session Manager creates a new connection. The connection is
created using an appropriate method for the specific Session Manager
implementation.

Note

You cannot override connection attributes programmatically.

2 Associates the work performed on this connection with the transaction.

3 Registers the appropriate Resource object with the VisiTransact Transaction
Service.

The following code sample shows how to get a Connection object to represent a
connection.

...
VISSessionManager::ConnectionPool_var pool;
// Ask the pool for a database connection
VISSessionManager::Connection_var conn = pool->getConnection("quickstart");
...

Any errors that happen during any of the steps will be returned as exceptions to
getConnection() or getConnectionWithCoordinator(). If any of these steps fail, the
Session Manager will throw an exception rather than returning a Connection object.

Using explicit transaction contexts

You can get a connection for an explicit transaction context by using
getConnectionWithCoordinator(). The getConnectionWithCoordinator() method is used
for the following reasons:

– To get a Connection object when there is no active implicit transaction context.

– To get a Connection object and use it with a transaction other than the currently
active implicit transaction context.

122 VisiBroker Vis iTransact Guide

Gett ing a nat ive connect ion handle

If you call getConnectionWithCoordinator() and pass in a Coordinator reference, the
Session Manager will use the Coordinator to perform all the tasks it normally would do
with the implicit context. Instead of using an implicit VisiTransact-managed transaction,
the Session Manager uses the explicitly-stated transaction Coordinator. The
connection will be set with this transaction Coordinator until you release the
connection.

The following code sample shows getConnectionWithCoordinator() passing transaction
context via the Coordinator.

...
VISSessionManager::ConnectionPool_var pool;
// Ask the pool for a database connection using the "quickstart" profile
VISSessionManager::Connection_var conn =
 pool->getConnectionWithCoordinator("quickstart", coordinator);
...

For more information about explicit propagation of transaction context, see “Other
methods of creating and propagating transactions.”

Optimizing connection pooling

The Session Manager automatically keeps a pool of connections and returns
connections to applications based on a set of attributes. For efficient connection
pooling, the application should use the same connection profile and attributes for all
connections to a single data source.

Getting a native connection handle
To use a connection represented by a Connection object, the application must obtain a
native connection handle from the Connection object using the
getNativeConnectionHandle() method. Subsequently, the application code talks to the
database directly through this native connection handle. This native connection handle
can then be used to do normal data access. In other words, you can do the work in the
database API with which you are familiar.

The following code sample shows how to get a connection handle to an Oracle
database for use with the OCI interface.

...
VISSessionManager::Connection_var conn;
 // get an Oracle OCI connection handle
 handles = (SampleOraHandle *) smconn->getNativeConnectionHandle();
...

Using the native connection handle

You can use the connection handle obtained through the Session Manager the way
you would use any native connection handle: using the native database API. However,
some actions are disallowed when using the Session Manager. For all
implementations, all calls to the database which have an effect on the transactional
state are prohibited, including any calls which begin, commit, or roll back a transaction.
Such calls affect the transactional integrity of the work. Transactional effects may be
hidden. For example, DDL statements (like create table) in Oracle force an implicit
commit call. For more information about actions that are prohibited, see “XA Session
Manager for Oracle OCI, version 9i Client” and “DirectConnect Session Manager for
Oracle OCI, version 9i Client.”

Threading requirements

The Session Manager automatically manages the database connection's thread
requirements, if there are any. The isSupported() method may be used with the
thread_portable argument to determine whether connections may be used on other

 16: Data access using the Session Manager 123

Releasing a connect ion

threads. In general, the connection returned by the getConnection() method is only
valid on the thread used to acquire it; the application may not use the connection
handle on any other thread. There may be relaxed restrictions for some
implementations. For more information about thread requirements for a specific
database, see “XA Session Manager for Oracle OCI, version 9i Client” and
“DirectConnect Session Manager for Oracle OCI, version 9i Client.”

Releasing a connection
Calling release() on a Connection object ends the association of the transaction with a
particular connection. Releasing the Connection object does not close the underlying
database connection; the connection is returned to the pool for re-use. After releasing
a Connection object, the application may not use the native connection handle or
Connection object again. If you decide to perform more work on this transaction, you
can obtain another Connection object.

There are two methods available for releasing a connection: release() and
releaseAndDisconnect(). For usage, see the following table.

Generally, the native connection handle is a pointer. Therefore, you should set to null
any copy you have of that pointer when releasing the connection.

If you are implementing an IDL interface call, you must release() or hold() the
connection before returning from that call. Failure to do so will circumvent the Session
Manager's ability to avoid lost connections due to unreliable clients, and to enforce
threading restrictions imposed by some database implementations.

The application must not attempt to disconnect using the database API. It should use
release() or releaseAndDisconnect().

Caution

If the application uses a connection handle after a release method is called,
unpredictable results will occur.

The following table explains the behavior of the release() and releaseAndDisconnect()
methods.

The following code sample shows an example of code that releases a transaction
successfully.

...
VISSessionManager::Connection_var conn;
conn->release(VISSessionManager::Connection::MarkSuccess);
...

Method Behavior

release(in ReleaseType type) When the application invokes release(), it must use one of the
two enumerated values. If the application uses release() with
MarkSuccess, the connection is disassociated from the transaction
successfully and the connection returns to the pool.

The application uses release() with MarkForRollback to mark the
transaction for rollback only. The Session Manager signals to
the database and the VisiTransact Transaction Service that the
transaction will be rolled back. The application would take such
an action when it detects a condition which would invalidate the
integrity of the transaction.

releaseAndDisconnect() This method may be used if the application detects something
wrong with the connection to force the connection to close and
to notify the VisiTransact Transaction Service that the
transaction is marked for rollback only.

124 VisiBroker Vis iTransact Guide

De-al locat ing the instance of Connect ion

De-allocating the instance of Connection
The release() call does not release the Connection object in the sense of the CORBA
_release method. It indicates to the ConnectionPool that the connection will no longer
be needed by the application. The application will still need to de-allocate the
Connection object. Because these are CORBA objects, you cannot call delete() on
them. To ensure the safest management of the Connection object, hold it in a
Connection_var. When the Connection_var is destructed, everything gets cleaned up.
For the ConnectionPool object, hold it in a ConnectionPool_var.

Note

If release() is not called on a Connection object, the default destructor releases the
connection and marks the transaction RollbackOnly. This is an easy way to make sure
that all abnormal exits from this method keep the transaction from proceeding. If the
application can maintain transactional integrity without rolling back, its own exception
handling should release the connection explicitly, marking it for success where
appropriate.

Viewing exceptions
Session Manager objects may throw exceptions. The exceptions are defined in IDL.
Therefore, the exceptions are handled in the standard CORBA way—the ORB is
responsible for transmitting the information back to the caller.

If your application receives the ProfileError exception, there are two fields in the
exception: a reason and an error code. You can look at these fields to see information
about the error.

If your application receives the Error exception, you need to see how long the
sequence of ErrorInfos is by invoking the exception.info.length() method on the
ErrorInfos sequence. Once you know the length, you can step through each ErrorInfo
in the sequence.

Exception Behavior

VISSessionManager::Error This exception is defined in the VISSessionManager module and
contains a sequence of ErrorInfo structures. An ErrorInfo is a
struct of reason, subsystem, and error code.

VISSessionManager::
ConnectionPool::ProfileError

This exception is defined in the ConnectionPool interface and
consists of a reason and a code.

 16: Data access using the Session Manager 125

Viewing att r ibutes

The following code sample shows an example of code that catches exceptions in
connection calls.

...
 try
 {
 CORBA::ORB_var orb = CORBA::ORB_init();
 CORBA::Object_var object =
 orb->resolve_initial_references("VISSessionManager::ConnectionPool");
 pool = VISSessionManager::ConnectionPool::_narrow(object);

 conn = pool->getConnection("quickstart");

 lda_ptr = (Lda_Def*) conn->getNativeConnectionHandle();
 }
 catch (VISSessionManager::ConnectionPool::ProfileError &ex)
 {
 cerr << "Profile error: " << ex.code << ex.reason << endl;

 conn->releaseAndDisconnect();

 throw ApplicationException(); //This error is defined by the application
 }
 catch (VISSessionManager::Connection::Error &ex)
 {
 cerr << "Session Manager error: " << endl;

 int len = ex.info.length();
 for (CORBA::ULong i=0; i<len; i++)
 {
 cerr << ex.info[i].subsystem << "-" << ex.info[i].code
 << ": " << ex.info[i].reason << endl;
 }
 conn->releaseAndDisconnect();

 throw ApplicationException(); //This error is defined by the application
 }
...

Viewing attributes
There are two methods you can use to view connection profile attributes. They are
used for different purposes: one is used when a connection is currently allocated, the
other is used when there is no connection allocated.

For more information about getAttribute() and getProfileAttributes(), and for a list of
the connection attributes common to all supported databases, see
VISSessionManager module in the VisiBroker for C++ API Reference.

Method Behavior

VISSessionManager::
Connection::getAttributes()

This method returns the values of configuration profile attributes
for a connection that is currently allocated. This method is in the
Connection interface.

VISSessionManager::
ConnectionPool::
getProfileAttributes()

This method may be used to query attributes in a connection
profile without allocating a connection. You may want to use this
method to evaluate which connection profile you want to use.
This method is in the ConnectionPool interface.

126 VisiBroker Vis iTransact Guide

Obtaining Session Manager informat ion

Obtaining Session Manager information
To obtain information such as the version of the Session Manager, whether the hold()
method is supported or not, or the database's threading policy, use the following
methods:

string* getInfo(in string info_type)
boolean isSupported(in string support_type)

The following information types are common to all the Session Managers:

– "version"—Returns the version number of the generic Session Manager. The
version number is returned in a 5-field string which is standard in the VisiBroker utility
vbver. This info_type does not return specific information about which component
you are talking to. This information is to be used for informational purposes.

– "version_rm"—Returns the version number of the Resource Manager-specific
component of the Session Manager. This information is to be used for informational
purposes.

The following support types are available for all types of Session Managers:

– "hold"—Returns true if the hold() method is supported; otherwise, returns false.

– "thread_portable"—Returns true if the connections are restricted to the thread that
made the connection; otherwise, returns false.

The following code sample is an example for using getInfo().

...
VISSessionManager::Connection_var conn;
CORBA::String_var info = conn->getInfo("version");
...

Using hold() and resume()
These methods are used to maintain ownership of a Session Manager Connection
when the thread of control returns to a client.

Method Behavior

VISSessionManager::Connection::hold() This method notifies the Session Manager that the
thread of control is leaving the current process and
intends to return.

VISSessionManager::Connection::resume() This method is used after a hold() to indicate to the
Session Manager that the thread of control for this
Connection is now back in process.

 16: Data access using the Session Manager 127

Using hold() and resume()

Using hold()

The Session Manager requires that it be notified if no thread in the current process is
active with respect to this connection. The main reason for this restriction is that if the
requester fails or is otherwise unable to return to this process to release its Resources,
the Session Manager must be able to clean up any resources used for this connection.
If the Session Manager does not have knowledge of whether or not the application is
still actively using the connection, it cannot dissociate the transaction and proceed with
cleanup.

There is another more subtle reason to use hold(). Some database connections are
restricted in their use to a particular thread. Here is an example of what may happen:

– A client makes an interface call to the server.

– The client obtains a Connection object through the Session Manager.

– Later, the client makes another interface call to the same server hoping to perform
more work on that transaction. This call may occur on a different thread, depending
on the behavior of the BOA used in the server process.

Using hold() gives the Session Manager a chance to inform the application that
making a second interface call to the same server may not be supported for some
Session Manager implementations which do not allow the connection to be used on
another thread.

Note

Using hold() monopolizes the connection and affects performance; use hold() only
when it is necessary.

The timeout parameter specifies the time in seconds that the Session Manager should
wait before timing out the connection and cleaning up its resources. As part of the
cleanup process, the connection is returned to the ConnectionPool and the transaction
is marked for rollback.

Your application can send multiple hold() requests with no intervening resume() calls. If
hold() is called twice, the timer is reset with the new value at each call. For example, if
you send hold(60) at 8:42:30, it would expire at 8:43:30. However, if you subsequently
invoke hold(45) at 8:42:50, the timer would expire at 8:43:35 because it had been reset
by the second hold() call.

Note

Some database Session Manager implementations may not support this method. Your
application can use isSupported() to query whether the Session Manager supports the
hold() method or not. Also you can find more information about this in “XA Session
Manager for Oracle OCI, version 9i Client” and “DirectConnect Session Manager for
Oracle OCI, version 9i Client.”

Before the Connection object or the corresponding database connection handle can be
used again, resume() must be called on the Connection object.

Using resume()

The resume() cancels the timer associated with the hold() and guarantees that the
Session Manager will not modify the underlying connection in any way that would
cause conflicts with an active application. Calling resume() when the Connection has
not been placed in the hold state results in a VISSessionManager::Error exception, but
does not modify the transaction or connection state.

Note

Between the hold() and resume() calls, the application is not allowed to make any other
calls on the Connection object or its associated native database handle. If the hold()
call timer expires in this interval, the Session Manager has the right to release the
connection and mark the transaction for rollback. This is to ensure that Resources held

128 VisiBroker Vis iTransact Guide

Example of a s imple integrat ion

in the application server by that transaction are not left forever if a client dies or never
calls again.

Example of a simple integration
The following code sample shows an example program that integrates a DBMS using
the Session Manager.

...
void applicationWork(CosTransactions::Coordinator *coordinator)
{
 VISSessionManager::ConnectionPool_var pool;
 //get the ConnectionPool reference
 try
 {
 CORBA::ORB_var orb = CORBA::ORB_init();
 CORBA::Object_var initRef =
 orb->resolve_initial_references("VISSessionManager::ConnectionPool");
 pool = VISSessionManager::ConnectionPool::_narrow(initRef);
 }
 catch (CORBA::Exception &ex)
 {
 cout << "Corba exception obtaining reference to ConnectionPool"
 << endl;
 cout << ex << endl;
 throw ApplicationException();
 }
 //Declare the Connection_var on the stack to ensure that it destructs.
 VISSessionManager::Connection_var conn;
 Lda_Def *lda_ptr = 0;
 try
 {
 // Ask the pool for a database connection
 // Use the database profile "quickstart"
 conn = pool->getConnection("quickstart");

 // get a connection handle to use for native Oracle OCI calls
 lda_ptr = (Lda_Def*) conn->getNativeConnectionHandle();
 }
 catch(const VISSessionManager::ConnectionPool::ProfileError& ex)
 {
 // we received an error with this profile.
 cerr << "Profile error:\n";
 << " " << ex.code
 << ": " << ex.reason
 << endl;
 throw ApplicationException();
 // This would be something an application would define.
 }
}
 catch(const VISSessionManager::Error& ex)
 {
 cerr << "Session Manager error:\n";
 // print out all the error messages
 for(CORBA::ULong i = 0; i < ex.info.length(); i++)
 {
 cerr << " " << ex.info[i].subsystem
 << "-" << ex.info[i].code
 << ": " << ex.info[i].reason

 16: Data access using the Session Manager 129

XA implementat ion issues

 << endl;
 }

 throw ApplicationException();
 // This would be something an application would define.
 }

 //use lda to access Oracle data.
 ...

 // If they got here, no unhandled exceptions occurred.
 // Release the connection successfully
 conn->release(VISSessionManager::Connection::MarkSuccess);
}

XA implementation issues
The XA implementation supports full participation in VisiTransact transactions. When
using the XA implementation of the Session Manager, some tasks are different than
when you are using the DirectConnect implementation. This section provides
information about XA-implementation issues.

Completing or recovering a transaction

The Session Manager automatically registers the XA Resource Director with the
VisiTransact Transaction Service during the getConnection() call. The Resource
Director is ready and waiting for transaction completion (commit or rollback). Once all
of the work of the transaction is done and the application invokes commit() or
rollback(), the VisiTransact Transaction Service calls the Resource Director to either
commit or rollback the transaction. Depending on the circumstances, the Resource
Director may coordinate recovery. The Resource Director handles all recovery
between XA Resources (the databases) and the VisiTransact Transaction Service
without administrator intervention.

For more information about transaction completion and two-phase commit, see
“Transaction completion” and “Coordinating transaction completion with Resource
objects.” For more information about the Resource Director, see “Session Manager
overview.”

DirectConnect implementation issues
When using the DirectConnect implementation of the Session Manager, some tasks
are different than when you are using the XA implementation.

In DirectConnect transactions, the connection has one of the following type of states:

– Available and unassociated. The connection is available for any transaction.

– Available, but associated with a particular transaction. This connection is unavailable
for other transactions, but can be acquired and used for the same transactions.

– In use. This connection is unavailable for other threads or transactions.

These last two states provide behavior that serializes access for clients. Access needs
to be serialized because two different threads should not be able to use the same
connection at the same time. Therefore, two different threads cannot do work on one of
these DirectConnect connections at the same time for the same transaction.

Since the transaction state or Resource state is being maintained in a single process, if
any element fails, the transaction is rolled back. If the failure occurs during the commit
phase, you may not be able to tell if the transaction was committed or not. The commit()
may receive either CosTransactions::HeuristicHazard or CORBA::TRANSACTION_ROLLEDBACK,
depending on whether the VisiTransact Transaction Service knows what happened.

130 VisiBroker Vis iTransact Guide

Changing f rom DirectConnect to XA

Completing or recovering a transaction

For DirectConnect transactions, the commit process is a single phase commit. The
Resource that is involved is a single phase Resource embedded in the Session
Manager. The connection that has been doing the work up until the time to commit will
be available in that process (as long as the process stays up) to commit the
transaction's work. Once the VisiTransact Transaction Service has been told to
commit, it will tell the Resource to perform a single-phase commit, Once the commit
happens, the connection is freed and returns to the pool to do work for a different
transaction.

If the application server containing the DirectConnect Session Manager goes down,
the single phase Resource is forgotten and the transaction is rolled back.

Note

The application must have already invoked release() or releaseAndDisconnect() before
the commit so that the connection can be freed up.

Changing from DirectConnect to XA
If you originally develop your application for a DirectConnect environment and then
want to use it in an XA environment, there should be no code changes necessary.
There is just one basic rule that you should follow: Conform to the programming
restrictions for both DirectConnect and XA. The only change necessary to convert from
DirectConnect to XA is to use a connection profile configured for the XA
implementation of the Session Manager. You must then deploy an XA Resource
Director if one is not already deployed for that database.

 17: Pluggable Database Resource Module for Vis iTransact 131

Pluggable Database Resource
Module for VisiTransact
The pluggable database resource module, a.k.a. Pluggable Resource Interface, is a
component that implements a set of predefined interfaces to allow transactional
applications to use databases as their persistent storage in transactions managed by
Borland VisiTransact.

The examples given in this document are for the Oracle9i database, but you can use
the Pluggable Resource Interface to manage transactions with the database of your
choice.

Concepts

What is pluggable database resource module?

The pluggable database resource module is a component that implements a set of
predefined interfaces to allow transactional applications to use databases as their
persistent storage in transactions managed by Borland VisiTransact.

Developers who want to use a specific type of database have to implement the module.
After a module has been properly implemented and compiled, the Session Manager's
Connection Manager will load the module into application.

The pluggable modules are provided in the form of shared libraries. Once the Session
Manager's Connection Manager loads a module in, it will interact with the module by
the predefined interfaces. Those predefined interfaces enable the Session Manager's
Connection Manager to carry out tasks necessary for a transaction, including:
obtaining a physical connection from the supported database for the transactional
application to manipulate data; informing the database of the association, dissociation,
and the decision (commit or rollback) of a transaction; and disconnecting from the
database when it is no longer needed.

The predefined interfaces are simple and standard-based, which support two kinds of
transactions, that is, local transactions (Direct connections or DCs) and global
transactions (XA connections). Direct connections are used when there is only one
resource in a transaction. In that case it doesn't need to coordinate the commitment of
multiple resources so VisiTransact will send commit or roll back directly to the
database. XA connections are used when more than one databases are involved in a

132 VisiBroker Vis iTransact Guide

Connect ion Management

single global transaction. VisiTransact uses the XA interface defined in the X-Open
specification to coordinate the databases to complete a global transaction.

Using pluggable module technique of Borland VisiTransact, a developer can easily
integrate different databases into VisiTransact-managed transactional applications.

Structural descriptions

The following figure shows the basic model for the pluggable modules.

Figure 17.1 The pluggable database resource support module

The transaction application is a program that usually initializes transactions to carry out
safe business tasks. The session manager's connection manager sits between the
transaction application and the pluggable modules to take care of the connection and
association issues for the access to a database in transactions. The various pluggable
modules are loaded by the application in time of need, through which all specific
databases can be reached.

The session manager's connection manager also caches the live connections for
reuse, thus improving the performance. It also communicates with VisiTransact to
register resource objects.

For XA connections a separate component, resource director, is used.

Connection Management
When a transactional application for the first time starts a transaction and get a
connection with a specified profile name, the session manager's connection manager
will load the right pluggable module into the process according to the profile. The
session manager's connection manager makes connection to the database through the
module and wraps the physical link into a standard connection object, and then
associates it with the transaction. After that, it returns the connection object to the
application.

Once the connection object is got, the application is safe to use it to update
transactional data in the database. When a part of work is finished, the application
must release the connection. This allows the session manager's connection manager
to either recollect the resources allocated to the connection object or make the current
connection available to other tasks.

Each time a connection object is created, it is associated with a specific configure
profile which contains information necessary for the Session Manager Connection
Manager to make a physical connection to a database. The Session Manager
Connection Manager also associates some attributes with the connection object, such
as transaction context, internal connection states, and timeout.

 17: Pluggable Database Resource Module for Vis iTransact 133

Connect ion Management

A connection obtained from the Session Manager Connection Manager is valid until it
is released, disconnected, or finished with the completion of the associated
transaction.

When a pluggable connection object is released, it is pooled for reuse. However the
pooling and reuse mechanism is different between the DC and XA connections.

For a DC connection, the following table gives the detail about how a connection is
used, pooled and reused.

Interface call (clients)
Session Manager Connection
Manager Plug-in module Database

getConnection()
getConnectionWithCoordinator()

It searches the pool for available
connection, if found, associates
it with the transaction, and then
returns it.
If no connection available in the
pool, it will load the plug-in
module in and get a connection
through the module, and then
create a new connection object
and return it to the client.

It will be loaded into the
session manager for the
new connection. When
the session manager
reuses a connection, it
doesn't call into the plug-
in module.

It accepts the connect
request from the plug-in
module. Then the client
may use the connection
to update data in the
tables.

release() It dissociates the connection
from the transaction and put the
connection to the connection
pool.

- -

releaseAndDisconnect() It first dissociates the connection
with the transaction, rollback the
current transaction and then
disconnect from the database
through the plug-in module.

It is called to rollback the
transaction and
disconnect from the
database. (the rollback
call is from VisiTransact)

It accepts the rollback
request and the
disconnect request from
the plug-in module and
release the connection.

hold() It sets the connection to be in
hold state. Any subsequent calls
(except resume) will cause an
exception. After the timeout
expires, the session manager
will restore the connection.

- During the hold state,
the database receives
no request.

resume() The connection is resumed and
the client can use it again.

- The database may
receive native calls from
the client to update the
tables.

transaction commit (from
VisiTransact)

- The commit() interface
will be called.

The database will
commit any changes in
this transaction.

transaction rollback (from
VisiTransact)

The transaction is rolled back
and the connection is put to the
connection pool. (for reuse).

The rollback() interface
will be called.

The database will roll
back any changes made
in this transaction.

134 VisiBroker Vis iTransact Guide

Connect ion Management

For an XA connection, the following table shows the mechanism.

One major difference between XA and DC connections are their thread models. For
DC connections, once the application get a connection from a thread, it can pass the
connection object to any thread in the process as long as the specific database allows
it to do so; for XA connections, the Session Manager Connection Manager obtains
connections for different threads and then associates each connection object, as well
as the thread who requires the connection, with the global transaction managed by
VisiTransact. Passing an XA connection object across threads may get unexpected
results and therefore is strongly discouraged.

Interface call (clients)
Session Manager Connection
Manager Plug-in module Database

getConnection()
getConnectionWithCoordinator()

It searches the thread local pool
for a reusable connection. If
none available, create a new
connection in the pool and
associate the connection (as
well as the thread) with the
transaction.

To establish a XA
connection, the
xa_switch() interface will
be called to get an
pointer to the xa switch
structure. Then the
xa_open_string() will be
called to obtain the
string for the opening of
a resource manager in
the database.

An xa connection will be
opened and associated
with the current calling
thread.

release() The calling thread is dissociated
with the transaction. The
connection object is made
available for reuse in the pool.

No specific interface will
be called. The
necessary calls will be
made through the xa
switch.

The opened resource
will be suspended from
the current transaction.

releaseAndDisconnect() The calling thread is dissociated
with the transaction and the
connection is closed.

The xa_close_string()
interface will be called
for the string used to
close the connection.
Other necessary calls
will be made through the
xa switch.

The xa connection for
the resource in the
database is closed.

transaction commit (from
VisiTransact)

The resource director will get a
connection on behave of the
transaction and complete the 2-
PC commit using xa interfaces.
The connection object will later
be recollected in the pool and
made ready for reuse.

No specific interface will
be called. The
necessary calls will be
made through the xa
switch.

The database will
receive XA calls from
the resource director
and commit the changes
made to the data.

transaction rollback (from
VisiTransact)

The resource director will get a
connection on behalf of the
transaction and roll back the
transaction using xa interfaces.
The connection object will later
be recollected in the pool and
made ready for reuse.

No specific interface will
be called. The
necessary calls will be
made through the xa
switch.

The database will
receive xa calls from the
resource director and
roll back the changes
made to the data.

 17: Pluggable Database Resource Module for Vis iTransact 135

Wri t ing a Pluggable Module

Writing a Pluggable Module

The Connection Profiles

Each connection that the pluggable modules provides is associated with a configure
profile, which contains the necessary information for the Session Manager Connection
Manager to get a connection. This information is given in the following table:

When an application calls getConnection() interface (defined in
VISSessionManager.idl), it must supply a configure profile name for the session
manager connection manager to load the right module and make the connections. So
before starting your application, the corresponding configure profiles must be created.

To create a profile, use the smconfigsetup tool included in the product.

To start the smconfigsetup tool, follow these steps:

1 Start osagent.

2 Start smconfig_server.

3 Start smconfigsetup.

After starting the smconfigsetup tool, it will give you a list of options that you can use to
manage your profiles. Select option 7 to create a configure profile for the pluggable
modules. Then you can follow the prompt to give all your information defined in the
above table in order. The tool will save the profile in the specified location for session
manager.

The Interface Definition

The interfaces that a pluggable module need to implement are defined in a single
header file.

In this header file, a function that Session Manager Connection Manager used to get a
connection object from and a connection class are defined. A pluggable module does
not need to implement all the interfaces. Some of the interface are compulsory, some
are optional, based on the type of connection the module is going to support.

Name Value Meaning

Profile name a string of maximum
length 63 (ASCII
characters)

The profile name is the name of the file
that stores these configuration
information. Meanwhile it uniquely
represents a kind of connections within
the application.

Database type a string of maximum
length 63 (ASCII
characters)

This is a informative string that tells
which database the pluggable module
supports.

version information a string of maximum
length 63 (ASCII
characters)

Informative string showing the version
info of the database.

pluggable module
name

a string of maximum
length 63 (ASCII
characters)

The name of the pluggable module. The
session manager will load the module of
this name into the process when
necessary.

connection parameter a string of maximum
length 256 (ASCII
characters)

A string parameter the session manager
passes to the getITSDataConnection() call
in the pluggable module to get a new
connection. This will give the module a
way to customize different types of
connections it can produce. (please refer
to the example included in the product
for detail.)

136 VisiBroker Vis iTransact Guide

Wri t ing a Pluggable Module

The Single Function

Any pluggable module must implement this function.

The function GetITSDataConnection() is defined as follows:

extern "C"
ITSDataConnection* GetITSDataConnection(const char* param);

This function, when called by Session Manager Connection Manager, must return a
new object that represents a new connection. If an existing connection is reused, the
session manager connection manager never calls the function again for it. The function
uses C calling convention.

This function takes a string as its only parameter. Users are free to specify this
parameter in a configuration file to control the properties of the connections
corresponding to the profile, if any. The Session Manager Connection Manager will get
this parameter from the profile and passes it as the argument to this function.

The return value is a pointer to an object of type ITSDataConnection which contains the
connection related interfaces that a pluggable module should implement.

This function can be taken as the entry point of a pluggable support module - the first
call by the module loader (which is the Session Manager Connection Manager). The
session manager connection manager relies on this function to get an object for
connection management.

The ITSDataConnection class

This class is defined below.

class ITSDataConnection
{
 public:
 virtual void connect() = 0;
 virtual void disconnect() = 0;
 virtual void rollback() = 0;
 virtual void commit() = 0;
 virtual xa_switch_t* xa_switch() { return 0; }
 virtual const char* xa_open_string() { return 0; }
 virtual const char* xa_close_string() { return 0; }
 virtual void* native_handle() { return 0; }
};

The methods in ITSDataConnection class can be divided into three groups:

1 native handle acquisition interface

2 local transaction connection and completion interface

3 global transaction connection and completion interface

Native handle acquisition interface
void* native_handle();

This function is used to get access to the native APIs for a database supported by the
module. The return value is a void pointer, allowing the implementation to return
anything necessary to manipulate data in the database. A transactional application can
obtain this pointer through getNativeConnectionHandle(), in which the Session
Manager Connection Manager will call the native_handle() and return the pointer back
to the application.

Any pluggable module must implement this function.

Local transaction connection and completion interface
Pluggable modules that support the local transaction must implement these functions.

 17: Pluggable Database Resource Module for Vis iTransact 137

Wri t ing a Pluggable Module

These four methods is used by Session Manager Connection Manager to inform the
database of the start and completion of local transactions.

void connect();
When it is called, it establishes the connection to the database and tells the database
that a local transaction begins.

void disconnect();
When it is called, it means the connection, if established, is no longer needed. So the
connection can be closed.

void rollback();
It tells the database to commit the transaction.

void commit();
It tells the database to rollback the transaction.

Global transaction connection and completion interface
Pluggable modules that support global transactions must implement the functions.

The session manager uses X-open's XA interface to talk to a XA conformable
database.

xa_switch_t* xa_switch();
All the Session Manager Connection Manager need from the pluggable module is a
pointer to a xa_switch_t data structure which contains all the XA APIs as defined in the
xa.h. The xa_switch() function is just for this purpose. Whenever being called, it must
returns a valid pointer to this data.

Usually the specific database implements and exposes the xa_switch_t to its clients.
The name of that data struct varies from database to database. For example, Oracle9i
implements its xa_switch_t as a global variable named xaosw.

This function is also used by Session Manager Connection Manager to judge the type
of a connection. If the function returns zero, the session manager will treat the
connection as DC type, otherwise it takes the connection as XA type.

Pluggable modules that support global transactions must implement the function and
must not return zero.

138 VisiBroker Vis iTransact Guide

Wri t ing a Pluggable Module

const char* xa_open_string();
When called, it returns a string used as argument to xa_open() call.

const char* xa_close_string();
When called, it returns a string used as argument to xa_close() call.

The two methods are called by the session manager to get database specific
parameters to open or close a XA connection to a database. The returned string from
the xa_open_string() call will be used in the call on xa_open() and the returned string
from the xa_close_string() is used in xa_close().

Once called for an XA connection, the session manager will keep the returned values
for later use. The implementation does not need to keep the validity of the returned
pointer all the time.

Building and Running

1 Include the required header files.

Compiling the pluggable module doesn't need any VisiTransact specific libraries.
However, you have to include the itsdataconnection.h in your source file. The xa.h is
a standard XA header that needed to be in your include path. Usually databases
which support the XA interface provide the xa.h in their installation directory.

2 Make sure the needed libraries are available.

No VisiTransact specific libraries are needed during the compile time. However, you
may need the database specific libraries. For example if you want to support the
oracle9i database in your pluggable module and use OCI, you have to put the
oracle9i client library in your library path and link it with your code.

3 Build the pluggable module.

The pluggable modules must be in form of shared libraries. Different compilers have
different flags that control the build target type. Please refer to our examples to see
the flags needed to build a shared library.

Running Applications using the pluggable modules
A transactional application need not have the knowledge of the pluggable modules.
However, it may need to know the interface of the native handle for accessing data in
databases. Building the application does not need to link with any pluggable modules
as those modules, when needed, will be dynamically loaded into the process in the run
time. Therefore, before you start the application make sure that the pluggable modules
are in the library path so that the Session Manager Connection Manager can
successfully loaded them in.

 17: Pluggable Database Resource Module for Vis iTransact 139

Programming restr ic t ions

Programming restrictions
When using the DirectConnect profile, the following operations should not be called in
the application: “Connection Operation”, “Transaction Operations”, and “Implicit
Operations”. Similarly, there is another set of programming restrictions when using the
XA profile. See “Programming restrictions” and “Programming restrictions” for more
information.

Known limitations
In any plug-in session manager, the VISSessionManager::Connnection::isSupported()
API will have static return values. In the case of DC connection, isSupported(“hold”)
will return true and isSupported("thread_portable") will return true. In the case of XA
connection, isSupported("hold") will return false and isSupported("thread_portable")
will return false.

In any plug-in session manager, the
VISSessionManager::Connection::getInfo("version_rm") will now return NULL. As the
information is not applicable in the case of a plug-in session manager.

140 VisiBroker Vis iTransact Guide

 18: Using the VisiBroker Console 141

Using the VisiBroker Console
This chapter provides information about the VisiBroker Console including: managing
transactions with the VisiTransact Transaction Service, tracking heuristic completions,
viewing error messages, and configuring a connection to a database for data access
using the Session Manager Configuration Server.

Overview of the VisiBroker Console
The VisiBroker Console provides you with an easy way to graphically monitor
transaction status, view heuristic logs, view message logs, and configure database
access. The VisiTransact functionality of the VisiBroker Console is divided into the
following three sections:

– Transaction Services section

– Session Manager Profile Sets section

Transaction Services section
The Transaction Services section lets you manage VisiTransact Transaction Service
instances and their transactions over the network. Also, you can monitor the status of
and control the completion of transactions running under the VisiTransact Transaction
Service instance you choose to monitor.

When you select the Transaction Services section, it displays all the instances of the
VisiTransact Transaction Service that are running at that particular OSAGENT_PORT.

When you select an instance of the VisiTransact Transaction Service, the right panel
displays three tabs. You can move between these tabs to:

– View transactions. The Transactions tab lets you view information about the
transactions for this instance of the VisiTransact Transaction Service. You can also
view transaction details, force the transaction to roll back or commit, or shutdown the
VisiTransact Transaction Service.

– Monitor heuristics. The Heuristics tab lets you view information about heuristic
outcomes for VisiTransact transactions. You can view the specific details for each
participant of a transaction that had a heuristic outcome. For more information about
heuristics, see “Managing heuristic decisions.”

– View log messages. The Message Logs tab lets you view the error, warning, and
information messages in the Message Log for all VisiTransact components on the
same node as that instance of the VisiTransact Transaction Service.

142 VisiBroker Vis iTransact Guide

Start ing the Vis iBroker Console

Session Manager Profile Sets section

The Session Manager Profile Sets section lets you create, configure, and edit
connection profiles for the Session Manager. The Session Manager provides pre-
configured database connections to applications and XA Resource Directors.

Starting the VisiBroker Console
Before you start the VisiBroker Console, make sure that you start either an instance of
an VisiTransact Transaction Service, or an instance of an Session Manager
Configuration Server. See “Starting a VisiTransact Transaction Service” and “Starting
the Session Manager Configuration Server” for instructions.

Starting a VisiTransact Transaction Service

The VisiTransact Transaction Service may have been started by the OAD. However,
you can start the Transaction Service manually by using this command:

prompt>ots

For a complete list of the options for the OTS command, see “ots”.

Note

If the VisiTransact Transaction Service you want to manage is not running or is not on
your network, then it will not appear in the list of VisiTransact Services you can manage
with the VisiBroker Console. You can use the osfind utility to determine if the instance
of the VisiTransact Transaction Service is running on your network.

Starting the Session Manager Configuration Server

The Session Manager Configuration Server may have been started by the OAD.
However, you can start the Session Manager Configuration Server manually by using
this command:

prompt>smconfig_server

For a complete list of the options for the smconfig_server see “smconfig_server”.

Launching the VisiBroker Console

In Windows, you can click the Borland Management Console icon, found in the Borland
Deployment Platform program group, and select the VisiBroker icon in the left-side
navigation bar on the Console.

Alternatively, at the command prompt in either Windows or UNIX, type the following
command:

vbconsole

The VisiBroker Console screen displays.

 18: Using the Vis iBroker Console 143

Using the Transact ion Services sect ion

Using the Transaction Services section
You use the features in the Transaction Services section to monitor and manage
transaction information for the VisiTransact Transaction Service you selected, to
resolve the status of a transaction by committing or rolling back the transaction, and to
shutdown an instance of the Transaction Service, monitor heuristics, and view
messages.

For more information on using the Transaction Services section, see one of the
following sections:

– Locating an instance of the Transaction Service

– Monitoring transactions

– Refreshing the transaction list

– Displaying details for specific transactions

– Controlling specific transactions

– Filtering the transaction list

– Viewing heuristic transactions

– Viewing heuristic details

– Viewing the message log

– Filtering the message logs

Locating an instance of the Transaction Service

To view a list of transactions for a specific VisiTransact Transaction Service, you must
choose from the list of VisiTransact Transaction Service instances running on your
network. If you want to switch to another instance, you can select a VisiTransact
Transaction Service from the ones listed under Transaction Services. However, you
can view only the transactions for one instance of the VisiTransact Transaction Service
at a time in the Transactions tab.

Monitoring transactions

The Transactions tab displays a list of transactions for the VisiTransact Transaction
Service you select. This lets you keep track of which transactions have not completed.
From this list of transactions, you can view the current status and periodically, you can
refresh the view to track the most current information. Use the following instructions to
monitor transactions:

1 Select the instance of the VisiTransact Transaction Service you want to monitor
from the list under Transaction Services. A list of transactions for that instance
displays in the table.

The list provides you with the following information for each transaction:

– Transaction Name
– Status
– Host of the Transaction Originator
– Age in seconds
– The number of times transaction completion was attempted

1 To sort the list of transactions in ascending order, click on the header of the column
you want to sort.

The status bar at the bottom of the screen provides additional information about the
number of transactions, filtering status, and current system activity.

144 VisiBroker Vis iTransact Guide

Using the Transact ion Services sect ion

Refreshing the transaction list

You can refresh the list of transactions by clicking the Refresh button on the toolbar in
the main window. Transactions that have completed will no longer display in the table.

Displaying details for specific transactions

You can use the Transactions tab to view the details of a specific transaction. This
detailed information can provide you with insight so you can resolve the status of the
transaction.

To view detail for a specific transaction select the row from the list of all the
transactions.

The bottom table in the Transaction view tab displays the following information for each
participant in the selected transaction:

– IOR of the Participants
– Host of the participant
– Vote for Prepare
– Outcome

The PrepareVote column contains the participant's vote. The possible values are:

– Unknown
– ReadOnly
– Commit
– Rollback

The last three values will only appear if the transaction has been prepared.

The Outcome column contains the outcome of the commit phase for a participant. The
possible values are:

– None
– Commit
– Rollback
– HeuristicCommit
– HeuristicRollback
– HeuristicMixed
– HeuristicHazard

Note

For more information on heuristics and the heuristic logs, see “Managing heuristic
decisions.”

Controlling specific transactions

In the Transactions tab, you can resolve the status of a transaction that has not
completed by using the Force Rollback or Stop Completion functions.

– Force Rollback can be used on any transaction that has not finished the prepare
phase of completion.

– Stop Completion tells the VisiTransact Transaction Service to stop attempting to
complete the transaction. To stop the completion of a transaction, click Stop
Completion.

 18: Using the Vis iBroker Console 145

Using the Transact ion Services sect ion

Resolving hung or in-doubt transactions
If the transaction does not complete in a reasonable amount of time or if the outcome is
in doubt, you can resolve it by either stopping or rolling back the transaction. Use the
following instructions to resolve the transaction:

1 Use the instructions in “Displaying details for specific transactions” to view the
details of the transaction in question.

2 Resolve the transaction by choosing either to rollback or to stop committing.

– To rollback the transaction, click Force Rollback.

If the transaction has progressed beyond the prepare phase of completion but
still exists, then the Transaction Is In Second-Phase dialog box displays
indicating that you cannot rollback the transaction.

If the transaction no longer exists, then the Transaction Not Found dialog box
displays indicating that the completed transaction cannot be rolled back.

– To stop the completion of a transaction, click Stop Completion.

If the VisiTransact Transaction Service does not know about this transaction (for
example, possibly because it has already completed) then the Unknown
Transaction dialog box displays indicating that you can no longer resolve the
transaction.

Filtering the transaction list

You can filter the transactions that you view in the Transactions tab by clicking Filter
Transactions.

The Filter dialog box lets you set the filter value option in minutes and seconds. Only
those transactions older than the age filter value will be displayed.

To cancel the filter option, click Filter Off from the Transactions tab.

Viewing heuristic transactions

The Heuristics tab lets you view the transactions that had heuristic outcomes and were
placed in the heuristic log. To view this information:

1 Click the Heuristics tab.

VisiTransact produces one heuristic log per instance of the Transaction Service,
referred to as the heuristic.log file. By default, the path to this directory is
<VBROKER_ADM>/its/transaction_service/<transaction_service name>/
heuristic.log. The Heuristics tab provides the following information for each item
listed:

– transaction's name

– originator

– time of the heuristic outcome

1 To cancel the list of transactions from loading in the tab, click Cancel Refresh.

146 VisiBroker Vis iTransact Guide

Using the Transact ion Services sect ion

Viewing heuristic details

You can use the Heuristics tab to view the details of a specific heuristic completion.
These details provide you with information so you can resolve the transaction.

To view the detail for a specific heuristic decision, select the row in the list of all the
heuristic decisions.

The bottom table in the Heuristics view tab displays the following information for the
selected transaction:

– Participant

– Host

– PrepareVote

– Outcome

– Last Exception (This is the last exception that occurred before the heuristic
occurred.)

Note

The number appearing in the header corresponds to the heuristic's place in the list of
heuristics. The number for the first heuristic in the list is 1 (one).

The PrepareVote column contains the participant's vote. The possible values are
Commit or Rollback.

The Outcome column contains the outcome of the commit phase for a participant. The
possible values are HeuristicCommit, HeuristicRollback, HeuristicHazard,
HeuristicMixed, or None, which means that there were no heuristics for that participant.

Note

For more information on heuristics and the heuristic logs, see “Managing heuristic
decisions.”

Viewing the message log

A message log is created for every physical machine running a VisiTransact
Transaction Service. The message logs are located in <VBROKER_ADM>/its/
message.log.

To view a list of messages for the node on which the selected Transaction Service
resides, you must use the Message Log tab. The Message Log displays these
messages:

– Error
– Information
– Warning

Filtering the message logs

You can filter the messages in the message log by clicking Filter Messages.

This displays the Filter dialog box.

You can filter messages as follows:

– By specifying a time window

– By specifying the type of message to be displayed

– By entering other criteria in the Source, Category, Code or Host fields (information
entered in these fields is case sensitive)

To stop filtering, click Filter Off.

 18: Using the Vis iBroker Console 147

Using the Session Manager Prof i le Sets sect ion

Trimming the message log

You can permanently remove entries from the message log. All messages older than
the date and time you select will be removed permanently from the message log. To
trim the message log:

1 Click Trim Message Log to view the Trim dialog box.

The Trim dialog box opens.

2 Set the date and time criteria and click OK. The date reads as month, day, and year.
The time reads as hours, minutes, and seconds.

Using the Session Manager Profile Sets section
The Session Manager Profile Sets section lets you access the Session Manager
Configuration Server. Do not confuse this with the Session Manager.

The Session Manager Configuration Server reads and writes connection profiles to the
persistent store file. Once you have gained access to the Session Manager
Configuration Server, you can create and configure a new connection profile or edit an
existing connection profile. For more information about the Session Manager
Configuration Server, see “Integrating VisiTransact with databases using the Session
Manager.” For more information on using the VisiBroker Console to configure
connection profiles, see the following sections:

– Gaining access to the Session Manager Configuration Server

– Creating and configuring a new connection profile

– Editing an existing connection profile

What are connection profiles?

A connection profile consists of all the required connection attributes to make a
connection to a particular database. For more information, see “Session Manager
overview.”

Attributes required to create Session Manager Configuration Profiles are specific to the
type of database to which you are connecting. For example, to integrate VisiBroker
VisiTransact with an Oracle DBMS, you must use the Session Manager for Oracle OCI.
Then you may create a connection profile using a combination of attributes that are
common to all databases, plus specific ones for Oracle.

Currently, the Session Manager provides connectivity with Oracle9i databases. See
“XA Session Manager for Oracle OCI, version 9i Client” and “DirectConnect Session
Manager for Oracle OCI, version 9i Client” for more information.

The Pluggable Resource Interface provides the capability to create a Session Manager
to integrate with the database of your choice. See “Pluggable Database Resource
Module for VisiTransact” for more information.

148 VisiBroker Vis iTransact Guide

Using the Session Manager Prof i le Sets sect ion

Gaining access to the Session Manager Configuration Server

Make sure that you have started the Session Manager Configuration Server, as
described in “Starting the Session Manager Configuration Server”.

To gain access to the Session Manager Configuration Server, choose a Session
Manager Configuration Server under Session Manager Profile Sets.

The profile names and details for connection profiles managed by the selected Session
Manager Configuration Server appear in a table in the right hand panel.

Creating and configuring a new connection profile

Before you can create a new connection profile, you must gain access to the Session
Manager Configuration Server, as described in “Gaining access to the Session
Manager Configuration Server”.

Note

Alternatively, you can use the smconfigsetup utility to create connection profiles. See
smconfigsetup for more information.

To create and configure a new connection profile, perform the following steps:

1 To create a new profile, click New in the right hand panel.

The New Profile dialog box appears.

Note

You can create a new profile based on an existing one by selecting the profile you
wish to copy and clicking Duplicate. You can keep the same attribute settings or
change them. However, you must give this new profile a unique name.

2 Enter a unique profile name in the New Profile Name field.

3 Select a database type from the DB Type drop down list box.

The database type indicates the kind of database and transactional access type for
the connection profile. Each database type has particular attributes associated with
it. Entering the database type will determine which attributes display in the
Connection Profile Editor screen.

4 Click OK.

The Connection Profile Editor dialog box appears.

5 Fill in the Database Name field.

This field requires a value that is database dependent.

6 In the User Name and Password fields, enter the user name and password for the
database.

7 Click Save.

Once you have saved, the values are written to the persistent store file and any
Session Manager or XA Resource Director that has access can read from that file.

 18: Using the Vis iBroker Console 149

Using the Session Manager Prof i le Sets sect ion

Editing an existing connection profile

Before you can edit an existing connection profile, you must gain access to the Session
Manager Configuration Server. For information on how to gain access, see “Gaining
access to the Session Manager Configuration Server”.

To edit an existing connection profile, perform the following steps:

1 To edit an existing profile, select the profile you want to edit from the list.

2 Click Open.

The Connection Profile Editor dialog box appears.

3 Make your changes in the Connection Profile Editor screen

4 Click Save.

See “Modifying connection profiles used by Session Manager clients” for details on
when the new values will take effect.

Filtering the connection profiles

When you first access connection profiles for a Session Manager Configuration Server,
it displays profiles that are common to all database types.

1 To filter the profiles by database, select a database type from the DB Type drop
down list box.

Only profiles for the selected database type display in the tab.

Each database type has particular attributes associated with it. For example, if you
select Oracle as the DB Type, you will only see the profiles (containing attributes)
associated with Oracle databases. If there are attributes specific to Oracle
databases, columns are added to the right of the common attribute columns.

2 If you want to see profiles for all databases, you can select All in the DB Type drop
down list box.

Deleting a connection profile

To delete a connection profile, select it and click Delete. A confirmation dialog box
appears to confirm your decision.

Refreshing the list of connection profiles

Click Refresh to update the list of connection profiles for the selected Session Manager
Configuration Server.

150 VisiBroker Vis iTransact Guide

 19: Server Appl icat ion Model 151

Server Application Model
This section describes the server application model supported by VisiTransact, as well
as the XA configuration. With this model, the transaction logic becomes transparent to
application business logic.

Server Application transaction and database management
The OMG Object Transaction Service (OTS) specification (version 1.4 or below)
standardizes the following aspects of distributed transactional applications:

– A CORBA distributed transaction application management model, which is an OMG
version of the X/Open DTP model, expressed in form of OMG IDL.

– A transactional interoperable protocol, in terms of IDL interfaces and service context,
between application clients, transaction coordinators and participating transactional
resource managers in the DTP model. This protocol is supported by various OTS
implementations and by JTS implementations.

– An implicit and an explicit transactional application programming model, presented in
IDL interfaces and local objects (CosTransactions::Current).

OTS does not address application server-side database integration and the implicit
transaction programming model. On the server side, by OMG OTS specification,
applications are responsible for database connection and transaction control explicitly
through the XA interface.

Using the ITS server application model, transaction control (and database connection)
does not need to be handled by servant business logic implementation, but becomes
an attribute setting specified as POA creation policy.

152 VisiBroker Vis iTransact Guide

Server Appl icat ion t ransact ion and database management

Requirements before reading this section

This section assumes the following knowledge:

– Database and Embedded SQL You must know how to use database tools (such as
Oracle sqlplus) to create, browse and manipulate database tables. You should be
able to program in embedded SQL, and build applications with the database-
provided embedded SQL to C++ pre-compiler (such as Oracle proc).

– XML and DTD You must know how to use XML to describe XA configurations and
you must understand Data Type Definition (DTD).

– OMG and the Distributed Transaction Process (DTP) of X/Open You should
know the DTP architecture concepts and terminology, as well as the client side
implicit transaction programming model (using the transaction Current interface to
start and end a transaction). You do not need to read through and understand the
entire OMG OTS specification.

– XA and database connection configuration You must be able to make minor
modifications to XA and database configurations.

Understanding the terminology of Container Managed Transaction (CMT), a concept of
EJB and CCM, and the concepts of implementation, deployment, and application
assembly in either EJB or CCM will help you use the information in this section.

Concepts and terminology

The following terminology is used in this section:

– Client A CORBA application. See Client-initiated transaction (CIT) below for more
information.

– AP A CORBA client application that can initiate a transaction.

– Server A CORBA server application that implements business logic. See RM and
Server-initiated transaction (SIT) below for more information..

– TM A Transaction Manager that coordinates global transactions. Typically, it is a
stand-alone server process (such as a VisiTransact OTS server). In-proc TM is also
supported in VisiTransact (ots.dll/so), but is not recommended.

– RM A Resource Manager. In OMG OTS, RM usually refers to a database server. RM
can also refer to an application server that uses SQL to access a database.

– 1PC One phase commit, involving a single RM, committed without a preparation
stage.

– 2PC Two phase commit, involving multiple RMs, committed with a preparation stage.

– Global transaction A transaction that can involve multiple RMs. Usually, but not
necessarily, a global transaction needs to be coordinated by a TM and use a 2PC
protocol to commit. See Local Transaction Optimization (LTO) below for more
information. By default, all transactions described in this section are global
transactions (initiated either by the client or the server).

– Local transaction A transaction, which only involves one single RM, restricted in
one thread of control, and not coordinated by TM.

– Client-initiated transaction (CIT) Also known as a Client Demarcated Transaction,
this term refers to a global transaction initiated and terminated by a client. Client-
initiated transactions must be coordinated by a TM.

– Server-initiated transaction (SIT) Also known as a Server Demarcated
Transaction, this term refers to a global transaction initiated and terminated by a
server PMT engine transparently when handling a client request. The boundary of
this transaction is the given client request. The transaction starts before performing

 19: Server Appl icat ion Model 153

Scenarios of global t ransact ion and PMT

the business logic, and ends before replying to client. A server-initiated transaction is
global, but not necessarily coordinated by a remote TM.

Note

SIT is a popular transaction model that is well documented and widely used in EJB
and CCM (CORBA Component Model)

– Local Transaction Optimization (LTO) A technique that allows a server to initiate
and terminate a global transaction locally without involving a TM, if it only accesses
one local RM (database). Server would only export a SIT to TM and evolve it into a
true global transaction when server makes a forward call to a second RM (another
transaction object outside the process). J2EE document presents a possible
scenario of LTO, but not applicable to OTS implementation. Therefore,
VisiTransact’s LTO uses a different technology to ensure it is OMG compliant,
interoperable and applicable to other OTS implementations.

– PMT POA Managed Transaction. A server side transaction and database integration
engine. PMT separates and hides all database connection and transaction details
from application business logic developers. With PMT, servant implementation
business logic does not need to hardcode database connection and transaction logic
within its implementation. Database connection and transaction control are
independent of business logic, and can be configured and reconfigured during
application assembling. With PMT, a given business logic implementation can
involve both CIT and SIT. In addition, different operation signatures of a given object
can be configured with different transaction attributes.

– CosTransactions::Current A single object for client applications, in an implicit
transaction model, to initiate and manipulate thread-specific global transaction. A
server implementation can also use this object to retrieve thread-specific information
about the global transaction it currently involves. The CosTransactions::Current can
be retrieved from ORB using the resolve_initial_references() method.

– PMT::Current: A single object for a server application to retrieve information about
thread specific database connection and transaction arranged by PMT engine. The
retrieved information, such as connection name, is necessary for the SQL AT clause.
Other retrieved information is useful for PMT diagnosis. PMT::Current object
instance can be retrieved from PMT::Current::instance().

– XA: An API standardized by X/Open. XA API drivers (usually shared libraries) are
provided by database vendors. PMT uses these drivers to manipulate database
connections and transactions. With PMT, XA (as well as database connections and
transactions) are transparent to application developers. It is the responsibility of the
application assembler to configure XA correctly. See “XA resources configuration” for
more information.

– Session Manager (SM) A service used in previous releases. To use this service in
this release, you must set the vbroker.its.its6xmode property to true. See
“VisiTransact properties” for more information.

– Resource Director (RD) A service used in previous releases. To use this service in
this release, you must set the vbroker.its.its6xmode property to true. See
“VisiTransact properties” for more information.

Scenarios of global transaction and PMT

Client-initiated global 2PC and 1PC transactions

In the OTS and X/Open DTP model, a distributed transaction means a global
transaction initiated by a client. In this case, a client contacts a TM to initiate and end
(commit or rollback) a transaction, regardless of whether it is 2PC (figure 1) or 1PC
(figure 2).

154 VisiBroker Vis iTransact Guide

Scenarios of g lobal t ransact ion and PMT

Figure 19.1 Client-Initiated Transaction with Two RM Participants

Transparent server-initiated transactions with PMT

The PMT hides all transaction aspects from business logic developers and provides an
optimized way to perform client-initiated or server-initiated global transactions.

For example, in a server-initiated transaction, PMT uses the local transaction
optimization to initiate a global transaction locally, as shown in the following figure.

 19: Server Appl icat ion Model 155

PMT overview

The locally-initiated global transaction is exported to an external TM before the server
makes a forward invocation to another external transactional object, as shown in step 5
of the following figure.

Figure 19.2 Server-Initiated Transaction with One RM Participant, with Local Transaction Optimization

PMT completely hides database access and transaction details. The server side
implementation only needs to write Embedded SQL (or ODBC/CLI) to access an
unspecified database, without specific database connection and transaction control
statements. All database connection and transaction management tasks are
performed, implicitly, by PMT integrated in the server-side ORB and POA engine.
Consequently, the deposit() code is simplified, as shown in the following example:

void BankImpl::deposit(const char* id, float amount) {
 EXEC SQL BEGIN DECLARE SECTION;
 const char* account_id = id;

float deposit_amount = amount;
EXEC SQL END DECLARE SECTION;

 EXEC SQL UPDATE account_table
 WHERE account_id = :account_id
 SET balance = balance + :deposit_amount;
}

There is neither connection management nor transaction management code. This
same business logic implementation can be used transparently in either client-initiated
or server-initiated transactions.

PMT overview
PMT is set up programmatically. The server setup and transaction attribute
configuration must be arranged in conventional POA creation code, namely POA
creation policy.

PMT is modeled after the widely used Container Managed Transaction (CMT) of EJB
and CCM. Therefore, most CMT concepts and features are directly applicable to PMT.

Note

Applications should not explicitly suspend or resume a transaction or obtain a
transaction coordinator/termintator on a POA implicit managed transaction (PMT).

156 VisiBroker Vis iTransact Guide

PMT overview

PMT transaction attribute values

In PMT, servant implementations only implement business logic. Details of
transactions they are going to involve are determined by the transaction attribute
assigned to specific objects and methods described in the policy of the POA
PMT_ATTRS_TYPE. Using the POA policy, you can configure the transaction
attributes as follows:

– PMT_NotSupported
The propagation context is not copied to transaction current. POA neither joins the
client’s transaction (T1), nor starts a server to initiate a new global transaction (T2).
This is the default PMT attribute. This setting should be used for non-transactional
methods to avoid the overhead of associating a current worker thread with a global
transaction.

– PMT_Required
POA joins or propagates the client-initiated global transaction (T1), if the request
from the client carries a global transaction context. Otherwise, POA initiates and
ends a new global transaction (T2) for that request. This is the most useful PMT
attribute setting for transactional methods. It ensures the business logic will always
be performed with an XA connection and within a transaction. This attribute is
referred as “AUTOTRAN” in classic TP products.

– PMT_Supports
POA joins or propagates the client-initiated global transaction (T1), if the request
from client carries a global transaction context. Otherwise, if the request is not within
a CIT, the POA does not start a transaction. When combined with a null XA resource
(described in “XA resources configuration”), this PMT setting is typically used for
transaction propagation.

– PMT_RequiresNew
POA does not join or propagate a global transaction of a client, but always initiates
and ends a new global transaction (T2) on each client request. To improve
performance, use this PMT setting for all business logic with only a perform read
(query) operation on backend databases.

– PMT_Mandatory
POA always joins or propagates the global transactions of a client, if it is in a context.
Otherwise, if the client did not start a transaction, POA raises an exception.

– PMT_Never
POA raises an exception if it is in a client transaction context.

Note

PMT only applies to remote requests. Co-located invocations (although dispatched via
POA), remain in client’s transaction, if any, regardless of the PMT setting. When POA
initiated server transaction (T2) has not yet been exported to an external TM, calling
method on transaction Current within servant implementation is prohibited.

The following table summarizes the PMT transaction attribute mode and its semantic
behavior.

PMT Attribute Mode Client's Transaction POA's Transaction
NotSupported None

T1
None
None

Required None
T1

T2
T1

Supports None
T1

None
T1

RequiresNew None
T1

T2
T2

Mandatory None
T1

TRANSACTION_REQUIRED
T1

 19: Server Appl icat ion Model 157

PMT overview

In a programmatic approach, an application can specify transaction attributes for a
given POA and for given objects, at POA creation time, by specifying the PMT attribute
policy.

The value of the PMT attribute POA creation policy is a sequence of PMTAttr structure,
defined as follows:

 module VISTransactions {
 …
 enum PMTMode {

PMT_NotSupported = 1,
 PMT_Required = 2;

 PMT_Supports = 3;
 PMT_RequiresNew = 4;

 PMT_Mandatory = 5;
 PMT_Never = 6;

 };

 struct PMTAttr {
 CORBA::OctetSequence oid;

 string method_name;

 PMTMode mode;

 string xa_resource;
 };

 typedef sequence<PMTAttr> PMTAttrSeq;

 };

In this definition of a PMTAttr structure:

– The oid file specifies the ID of the object this PMT attribute setting applies to. If the
oid is an empty sequence (zero length), this attribute setting applies to all objects of
this POA. See the list of dynamic rules for more details.

– The method_name field specifies the request’s operation name this PMT attribute
setting applies to. If method_name is set to *, this attribute setting will apply to all
request operations sending to objects of this POA.

– The mode field specifies the mode of this PMT mode attribute setting.

– The xa_resource field specifies the name of a preconfigured XA resource to be
associated. For more information, see “XA resources configuration”. If this field is an
empty string or null, a PortableServer::POA::InvalidPolicy exception is raised on
create_POA(). Literal null is a special reserved xa-resource name. This name
cannot be used to name a physical XA resource in an XA resource descriptor, but
can only be used as value of the xa_resource field of PMTAttr. When a request
condition matches one of the given PMTAttr with xa_resource field equal to null, the
PMT engine does not associate the request processing worker thread with any
physical XA connection. Instead, the PMT engine only ensures that the associated
OTS context is propagated if the servant implementation method makes a forward
invocation to the next tier. See the oci example in the <installation_directory>\
examples\vbroker\Transaction directory.

It is possible that none, one, or two PMT attribute settings apply to a request. The PMT
engine uses the following rules, in sequence, to decide which PMT mode or attribute
should be applied:

1 For oneway methods, pseudo methods, or IDL interface attribute set/get methods,
PMT mode NotSupported is applied, regardless the PMT attribute setting.

Never None
T1

None
INVALID_TRANSACTION

PMT Attribute Mode Client's Transaction POA's Transaction

158 VisiBroker Vis iTransact Guide

PMT overview

2 PMT attribute, its oid field exactly matches the request target’s object id and its
method_name field exactly matches the request’s operation name, is applied.

3 PMT attribute, its oid field exactly matches the request target’s object ID, and has a
wildcard (*) in the method_name field, is applied.

4 PMT attribute, its method_name field exactly matches the request’s operation
name, and has an empty oid field (indicating a wildcard), is applied.

5 PMT attribute, which has an empty oid field (indicating a wildcard) and a wildcard (*)
in the method_name field, is applied.

6 PMT mode NotSupported is applied if none of the other rules applies.

PMT is independent of OMG standardized POA OTS policy. A Server side transaction
engine first checks the target POA's OTS policy against the received request context,
and decides whether to raise an OMG-specified exception (INVALID_TRANSACTION
or TRANSACTION_REQUIRED). If no exception is raised, the request is forwarded to
PMT.

– If an OTS policy is not specified as an attribute of the POA creation element, and a
PMT policy is specified (other than with an empty PMTAttr sequence), it implies OTS
ADAPTS.

– If neither an OTS nor a PMT policy is specified (or if the PMT policy is specified with
an empty PMTAttr sequence), it implies an OTS policy of NONE, and the OTS
component is not added to exporting IORs.

A simple example

CORBA::PolicyList policies;
policies.length(1);

PortableServer::ObjectId_var objId=
PortableServer::string_to_ObjectId("account_object");
PMTAttrSeq pmt_seq;
pmt_seq.length(1);

pmt_seq[0].oid = (CORBA::OctetSequence&) objId;
pmt_seq[0].method_name = (const char*)“withdraw”;
pmt_seq[0].mode = VISTransactions::PMT_Required;
pmt_seq[0].xa_resource = (const char*)“account_storage”;

CORBA::Any policy_value;
 policy_value <<= pmt_seq;
 policies[0] = orb->create_policy(VISTransactions::PMT_ATTRS_TYPE,
policy_value);

// Create myPOA with the right policies
 PortableServer::POA_var myPOA = rootPOA->create_POA("account_server_poa",
 poa_manager,
 policies);

In this example:

– A POA, which is PMT-enabled and has the name account_server_poa, is created.

– Invocations on the target object with an ID of account_server_poa, an operation equal
to withdraw is performed with the PMT_Required policy. It will either join the client-
initiated transaction (T1), or, if the client did not initiate one, POA initiates a new
global transaction (T2).

– An xa-resource with the name account_storage is used by this transaction.

 19: Server Appl icat ion Model 159

PMT overview

PMT::Current and connection name

OMG OTS defines the CosTransactions::Current object for an application to retrieve
information and manipulate thread specific client-initiated transactions.

PMT also provides an additional object, PMT::Current, for applications to retrieve
information about the transaction and connection associated to the thread by POA.

class PMT_Current {
 public:
 static const PMT_Current* instance();

 const char* resourceName() const;
 const char* connectionName() const;

 // XA diagnoses

 const xid_t* xid() const;
 int rmid() const;

 // PMT diagnoses (these two method does not raise exception)

 int attribute() const;

 int decision() const;

;

The name of the connection associated to the current work thread is returned by
connectionName() of the current object. This name can be used to instruct an
embedded SQL statement to use a specified connection, with either the AT <conn_name>
clause or the SET CONNECTION <conn_name> statement, as shown in the following
example:

void BankImpl::deposit(const char* id, float amount) {
 EXEC SQL BEGIN DECLARE SECTION;
 const char* account_id = id;

 float deposit_amount = amount;
 const char* conn = current->connectionName();

 EXEC SQL END DECLARE SECTION;

 EXEC SQL AT :conn UPDATE account_table
 WHERE account_id = :account_id
 SET balance = balance + :deposit_amount;

}

The connection name is similar to the concept of connection handle in Call Level
Interface (CLI).

The AT clause in the previous example is optional in some cases. For example, Oracle
has the concept of default connection, which is the connection last opened by the
thread-of-control. If an embedded SQL does not have the AT clause, Oracle uses the
default connection. Other databases, such as Sybase, do not have the concept of
default connection, and Borland recommends using the AT clause or SET
CONNECTION statement with those databases.

The following additional PMT::Current methods are used for diagnostic purposes.

– const char* PMT::Current::resourceName() const:
Returns the XA resource name used by associated XA connection. See “XA
resources configuration” for more information.

– const xid_t* PMT::Current::xid() const:
Returns the XID of the transaction associated with the current thread. If no
transaction is associated, this method raises a CosTransactions::unavailable
exception.

– int rmid() const;
Returns the XA resource manager ID of the XA connection associated with the

160 VisiBroker Vis iTransact Guide

XA resources conf igurat ion

current thread. If no XA connections and no transactions are associated, this method
raises a CosTransactions::Unavailable exception.

– int attribute() const;
Returns the PMT attribute mode of the PMT attribute that matches or wildcard
matches with the current {POA, oid, method-name} triplex. If PMT is not enabled on
the POA, the return value is 0.

– int decision() const;
Returns a value 1 or 2, indicating the current thread is associated with a client or
server-initiated transaction. If PMT is not enabled on the POA, the return value is 0.

XA resources configuration

xa-resource-descriptor

In VisiTransact, XA resources are also configured using an XML description named xa-
resource-descriptor. An xa-resource-descriptor is the root element of an xa-resource-
descriptor XML file, which typically has following structure:

<?xml version="1.0"?>
<!DOCTYPE xa-resource-descriptor SYSTEM "xaresdesc.dtd">

<!-- an example of xa-resource-descriptor -->
<xa-resource-descriptor>

 …

</xa-resource-descriptor>

The <xa-resource-descriptor> root element can have one or multiple <xa-resource>
sub-elements, and follow by zero or multiple <xa-resource-alias> elements with the
following structure:

<!ELEMENT xa-resource-descriptor
 (xa-resource+,

 xa-resource-alias*)
>

xa-resource

An <xa-resource> defines and configures an XA resource supplier. Its sub-elements,
<xa-connection> define connections to be opened on the given xa-resource. The DTD
of an <xa-resource> is:

!ELEMENT xa-resource
 (xa-connection+)
>&
ATTLIST xa-resource
 name CDATA "default"
 xa-library CDATA #IMPLIED
 xa-switch CDATA #REQUIRED
 xa-conn-scope (thread|process) #REQUIRED
>

An <xa-resource> specifies one or more <xa-connection> sub-elements. It can be
used to configure the following attributes:

– name
Specifies a unique name for this xa-resource. This name is used by the PMT
<transaction> element to decide which xa-resource the dispatched request should be
associated with. The default value is default.

 19: Server Appl icat ion Model 161

XA resources conf igurat ion

– xa-library
Specifies the library file name of the XA API library, provided by database vendor. If
this attribute is left out, the engine will try to resolve the XA from the application
executable module itself.

– xa-switch: Specifies the symbol of the xa_switch_t variable. For example, for
Oracle XA, the symbol is xaosw, for Informix, the symbol is infx_xa_switch, and for
DB2, the symbol is db2xa_switch.

– xa-conn-scope: Specifies the scope of XA connection provided by the XA library.
This depends on the XA API library that is used, and on the used XA open string (the
info attribute in the <xa-connection> element).

Avoid the xa-conn-scope=”process” mode for Oracle XA because the Oracle XA library
is not thread-safe when “+Threads=false”.

xa-connection

The <xa-connection> element specifies a given XA connection’s name and xa_open
info string. The DTD of <xa-connection> element is:

<!ELEMENT xa-connection
 EMPTY
>
<!ATTLIST xa-connection
 name CDATA #IMPLIED
 info CDATA #REQUIRED
>

– name
Name of the connection. This name is returned from PMT::Current::connectName()
method when the connection is associated with the thread. You must ensure that this
name is consistent with the name assigned in the info string.

Database xa-library xa-switch xa-conn-scope

Oracle 9 and 10 libcIntsh.so/sl/a
Oraclient9.dll

Xaosw “thread”, if info contains
“+Threads=true”

“process” if info contains
“+Threads=false”

Informix 7 [lib]infxxa.[extension] infx_xa_switch “thread”

DB2 8 [lib]db2.[extension] db2xa_switch

Direct Connection
Driver

“process”

XA API Info substring specifying connection name

Oracle XA “+DB=<name>”

Informix XA “+CON=<name>”

Sybase XA “-N=<name>”

DB2 XA “DB=<name>”

162 VisiBroker Vis iTransact Guide

XA resources conf igurat ion

– info
The string passed to xa_open(). The information specified by this string is XA
provider dependent. The following table shows typical setting templates:

Using the information you provide, the PMT XA engine opens XA open connections. If
the value of the xa-conn-scope attribute of <xa-resource> is process, VisiTransact opens
one specified connection and associates it to one thread at a time. If the value of this
attribute is thread, VisiTransact opens a connection per-work-thread when associating
the given worker thread to a transaction.

xa-resource-alias

An <xa-resource-alias> element defines an alias name to a previously-defined <xa-
resource> element:

<!ELEMENT xa-resource-alias
 EMPTY
>
<!ATTLIST xa-resource-alias
 name CDATA #REQUIRED
 xa-resource CDATA #REQUIRED
>

– name
The xa-resource’s alias name

– xa-resource
The actual xa-resource that this alias points to.

When the name of an xa-resource-alias is referred to by a PMT <transaction>
element’s xa-resource attribute, the actual xa-resource is used.

XA API Typical info string template (items inside the [] are optional)

Oracle XA “Oracle_XA+Acc=P/[<uid>]/
[<pwd>]+SqlNet=<dblink>+SesTm=<timeout>[+Threads=<true|false>]
[+LogDir=<dir>][+DbgFlag=<0x0 to 0x7>][+DB=<conn_name>]”

Informix XA “[DB=<dbname>][;USER=<uid>][;PASSWD=<pwd>][;RM=<server>][;CON=<
conn_name>]”

Sybase XA “-U<uid> -P<pwd> [-L<logfile>] [-T<traceflg>] [-V12] [-O<1|-1>] [-N<lrm>]”

DB2 XA “[UID=<uid>][,PWD=<pwd>][,TPM<tpm>][,DB=<conn_name>]”

 19: Server Appl icat ion Model 163

XA resources conf igurat ion

An example of XA resource descriptor

The following example shows a comprehensive description of an xa-resource-
descriptor:

<?xml version="1.0"?>
<!DOCTYPE xa-resource-descriptor SYSTEM "xaresdesc.dtd">

<!-- an example of xa-resource-descriptor -->
<xa-resource-descriptor>

 <!-- 1. list of xa resources -->
 <xa-resource
 name="oracle"
 xa-switch="xaosw"
 xa-conn-scope="thread"
 <
 <!- 2. list of xa connections -->
 <xa-connection
 info=
 "Oracle_XA+Acc=P/scott/
tiger+SesTm=10+SqlNet=ora92a+Threads=true"
 />
 </xa-resource>

 <!-- 3. list of resource alias(es) -->
 <xa-resource-alias
 name="default"
 xa-resource="oracle"
 />

 <xa-resource-alias
 name="account-storage"
 xa-resource="oracle"
 />

</xa-resource-descriptor>

In the previous example:

– The xa-resource-descriptor contains a single xa-resource, with the name oracle.

– The xa-resource specifies the xa-switch symbol xaosw, but not the xa-library file
name. Therefore, VisiTransact resolves the xa switch within the current executable
module, rather than from an external loaded library. This is a typical usage scenario
because it is likely that the application has already linked with the client library of the
database, which is likely to contain the needed XA API.

– The xa-conn-scope is set to thread. This is consistent with the +Threads=true
substring in the xa-connection’s info attribute. In this case, VisiTransact opens one
dedicated XA connection per worker-thread when associating the thread with a
transaction.

– The xa-connection element omitted the name attribute, as well as the +DB=<name>
substring in the info string. This is a typical usage scenario for an Oracle XA
application under thread mode. The embedded SQL assumes the default
connection. Applications do not need to use the AT clause.

– An <xa-resource-alias> element is defined with the name default and points to the
oracle <xa-resource> defined previously. Whenever a PMT <transaction> element is

164 VisiBroker Vis iTransact Guide

Vis iTransact propert ies

defined with the <xa-resource> name default, the referenced oracle xa-resource is
used.

– An additional <xa-resource-alias> element is defined with the name account-storage
and points to the oracle <xa-resource> defined previously. Whenever a PMT
<transaction> element is defined with the <xa-resource> name account-storage, the
referenced oracle xa-resource is used.

VisiTransact properties

vbroker.its.its6xmode=< false|true>

If set to false, all VisiTransact PMT functions and optimizations are enabled. If set to
true, PMT enhancements and optimizations are disabled, and the following deprecated
features are enabled:

– The transactional application uses in-proc OTS.

– The POA is not created with OTS policy, but the object on that POA is inherited from
CosTransactions::TransactionalObject.

– The application uses NonTxTargetPolicy on the client side.

– The application uses the SessionManager.

– The VisiTransact OTS server is used by VBJ Java clients and VBJ Servers.

This property is available for performance comparison, bug isolation, and backward
compatibility requirements. The default value is false.

vbroker.its.verbose=<false|true>

If set to true, VisiTransact prints low level exception and warning runtime information.
The default value is false.

vbroker.its.xadesc=<xa-resource xml file name>

Specifies the XA-resource configuration file using this property. The default value is
itsxadesc.xml.

 19: Server Appl icat ion Model 165

RM recovery ut i l i ty

RM recovery utility
The two-phase commit mechanism ensures that all nodes either commit or perform a
rollback together. During the course of two-phase commit, if a failure occurs because
of a network problem, database crash, or an unhandled software error, the transaction
becomes in doubt and the resources in the database are locked and are not freed. To
solve this problem VisiTransact comes with an RM recovery utility.
rmrecover(rmrecover.exe on Windows), along with automatic TM recovery.

Borland recommends that you execute this utility for each Resource Manager involved
in the transaction before restarting a VisiTransact application server that terminated in
a failure.

The usage of rmrecover is:

% rmrecover <xa_resource_desc.xml> [<options>]

– <xa_resource_desc.xml> is the xa resource configuration used by the RM to connect
to the database.

– <options> specifies the xa-resource name.

To run the rmrecover utility, complete the following steps:

1 Modify the user ID and password in <xa_resource_desc.xml> to obtain database
administrative rights.

2 Configure the oracle client library in <xa_resource_desc.xml> as appropriate for the
operating system:

– For Windows: xa-library="oraclient9.dll"

– For Unix: xa-library="libclntsh.so"

1 Start Transaction Service, ots (ots.exe on Windows) on a specific port ots -
Dvbroker.se.iiop_tp.scm.iiop_tp.listener.port=<port number>

2 Start the rmrecover utility rmrecover -ORBInitRef
VisiTransactionService=corloc::<host>:<port>/VisiTransactionService
<xa_resource_desc.xml> <xa-resource name>

The RM recover utility contacts the database and fetches the list of transactions that
are in doubt and either commits or rolls back each transaction.

166 VisiBroker Vis iTransact Guide

 20: XA Session Manager for Oracle OCI, version 9 i Cl ient 167

XA Session Manager for Oracle OCI,
version 9i Client
This chapter covers issues relating to using the Oracle9i version of the Oracle Call
Interface (OCI) database with the XA Session Manager implementation. This chapter
contains the following sections:

– Overview

– Oracle9i software requirements

– Oracle9i installation and configuration issues

– Required environment variables

– Session Manager connection profile attributes

– Programming restrictions

– Troubleshooting

Overview
This chapter provides you with information on the specific database issues and
requirements for using the Oracle9i version of the Oracle Call Interfaces (OCI) and the
Oracle9i database with the VisiTransact using XA transaction coordination. This
includes software requirements, installation and configuration information, Session
Manager and XA Resource Director configuration attributes, and programming
restrictions.

VisiTransact transactional data access occurs through the use of the Session Manager
for OCI and the Oracle XA libraries. A connection to the database is established when
the application requests a Connection object from the Session Manager. The
application can then obtain a native handle, which can be used for making normal OCI
calls.

The information covered in this chapter focuses on the specific requirements for
accessing an Oracle DBMS with VisiTransact using the standard XA commit protocol.
To properly install and configure Oracle, you need to follow the instructions in the
documentation shipped with your Oracle database.

168 VisiBroker Vis iTransact Guide

Oracle9i sof tware requirements

Who should read this chapter

System administrators and database administrators responsible for administering this
database should read this chapter before installing and configuring the DBMS if it will
be used for transaction processing. In particular, refer to the sections identified below.
Application developers building applications with VisiTransact should review the
information in “Programming restrictions”.

Oracle9i software requirements
You must install the Oracle9i client libraries on every machine on which you will run the
XA Resource Director or an application built using the Session Manager. The XA
Resource Director and the Session Manager are components of VisiTransact.

The following sections list database client and server requirements by platform.

Client requirements

The following Oracle client components for Oracle OCI must be installed and
configured on each node which runs the XA Resource Director or an application built
using the Session Manager:

– Oracle OCI, version 9i must be installed on Solaris

– Oracle XA Libraries

Server requirements

The following Oracle server components must be installed and configured on each
database server machine:

– Oracle Server, version 9i

– Oracle Distributed Database option

Sections
System

administrators
Database

administrators
Application
developers

Oracle9i Software Requirements X X

Oracle9i Installation and Configuration Issues X X

Required Environment Variables,
Troubleshooting

X X X

Session Manager Connection Profile
Attributes

X X

Programming Restrictions X X

Troubleshooting X X X

 20: XA Session Manager for Oracle OCI, version 9 i Cl ient 169

Oracle9i instal lat ion and conf igurat ion issues

Oracle9i installation and configuration issues
The following sections identify Oracle installation and configuration software issues.

Installation requirements

To install Oracle, you will need the following:

– Oracle installation and configuration guide

– Corresponding release bulletins

Database configuration

Use the init.ora parameters, described in the following table, to help configure your
database for use with the XA Session Manager for Oracle OCI.

With VisiTransact, the number of distributed transactions is limited by the database
init.ora parameter transactions. Transactions remain active from the time of the first
getConnection() or getConnectionWithCoordinator() call until the commit or rollback is
complete. The default setting for transactions is generally set too low for use with the
Session Manager. The default is system dependent.

With Oracle OCI, each distributed transaction, as opposed to a connection, consumes
a database session. Make sure that init.ora parameters, sessions and processes, are
set high enough to accommodate the distributed transactions as well as other
applications' sessions.

The use of distributed transactions like XA may restrict the use of other Oracle features
on some platforms. For instance, the use of the Oracle Parallel Server option may be
restricted on some platforms.

Note

See Oracle documentation for information on how to set init.ora parameters and for
information about the interaction of Oracle XA with other Oracle features, including
Oracle Parallel Server and Oracle Replication.

DBA_PENDING_TRANSACTIONS view

The view, DBA_PENDING_TRANSACTION is used during recovery processing by the
XA Resource Director to synchronize transaction information between the database
and the VisiTransact Transaction Service. All users specified as Oracle userids in
Oracle9i Session Manager profiles must be granted the SELECT privilege on this view.

To make sure that the permissions to the view are correct and that recovery processing
can take place, log into Oracle using SQL*Plus as the userid for the XA Resource
Director and perform the following query:

select count (*) from SYS.DBA_PENDING_TRANSACTIONS;

If you receive Oracle error “ORA-00942: the table or view does not exist,” then the XA
Resource Director will not be able to access this view. The user can either logon as
user sys or system or connect internally from the server manager to grant the select
privilege on this view to the appropriate user.

init.ora parameter Description

transactions The number of distributed transactions in which the database can
concurrently participate.

sessions The total number of user and system sessions.

processes See the Oracle9i Server Administrator's Guide for more information
on setting this parameter.

distributed_lock_timeout The amount of time in seconds for distributed transactions to wait
for locked resources.

170 VisiBroker Vis iTransact Guide

Required environment var iables

Required environment variables
The PATH environment variable needs to include the path to the Oracle client directory
where the database client libraries are installed, as well as the path to the Session
Manager libraries.

LD_LIBRARY_PATH
PATH

Add $ORACLE_HOME/bin to your PATH and $ORACLE_HOME/lib32 (or
$ORACLE_HOME/lib for 64 bit applications) to your LD_LIBRARY_PATH. For
example, with the Borne shell:

LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:${ORACLE_HOME}/lib32
PATH=${ORACLE_HOME}/bin:${PATH}

Session Manager connection profile attributes
The following table contains the configuration profile attributes which are specific to the
XA Session Manager for Oracle OCI.

Table 20.1 XA Session Manager connection profile attributes

Attribute UI label Description Range

heartbeat_retry_period Heartbeat Retry
Period

The number of seconds between heartbeats to
the VisiTransact Transaction Service instance
after a missed heartbeat. Used to detect the
reactivation of an instance of the VisiTransact
Transaction Service in order to begin
recovery. Used in the Resource Director only.

> 0

heartbeat_watch_period Heartbeat Watch
Period

The number of seconds between heartbeats to
the VisiTransact Transaction Service instance.
Used to automatically detect VisiTransact
Transaction Service instance failures. Used in
the Resource Director only.

> 0

oracle_txn_idle_timeout Transaction Idle
Timeout

The timeout (in seconds) that an unprepared
transaction can be idle before Oracle rolls
back the transaction. When using this
attribute, consider the timeout period set for
the VisiTransact Transaction Service.

> 0

oracle_xa_logdir Log Directory Path Path to the directory where the Oracle XA log
files are to be written.

0 to 256 characters
long

resource_director_name Resource Director The name of the Resource Director to be
used.

1 to 128 characters
long

native_handle_type Native Handle
Type

The type of the native connection handle
requested by the application.

Valid values are
Lda_Def and
ITSoracle9i_handles

 20: XA Session Manager for Oracle OCI, version 9 i Cl ient 171

Using the Session Manager wi th the OCI 9i API

Using the Session Manager with the OCI 9i API
In Oracle9i, the OCI interface has been completely rewritten. With this new interface,
several handles are needed in order to executed SQL statements. In order to use this
API with the Session Manager, perform the following steps:

1 In the connection profile, set the attribute native_handle_type to
ITSoracle9i_handles.

2 Include the file, ora9i_sessmgr.h, in the application source to define the object
ITSoracle9i_handles.

3 Cast the return value of Connection::getNativeConnectionHandle() to the type
ITSoracle9i_handles * (a pointer to an object of type ITSoracle9i_handles).

4 Use accessor methods provided by the class ITSoracle9i_handles to obtain the
various handles needed. These methods are:

– OCISvcCtx *getSvcCtx();

– OCIEnv *getEnv();

– OCIError *getError();

Do not attempt to deallocate the objects obtained through the ITSoracle9i_handles
object; these object instances are managed by the Session Manager.

Programming restrictions
The following restrictions apply when programming an application for transaction
processing:

– You must use a Connection object in the thread in which it was created.
This is a restriction of the Oracle9i XA implementation that means that you can only
use the native connection handle obtained from a Connection object instance in the
thread that obtained the object. Using this connection handle on any other threads
will cause unexpected results.

– Do not use DDL statements in your application.
This restriction means that DDL SQL statements will not be supported in the Oracle
XA application. This is because a DDL SQL statement such as CREATE TABLE performs
an implicit commit. Any required DDL statements must be performed by a process
which does not use the XA protocol.

The following operations, shown in the following table, cannot be used on connections
obtained through the Session Manager.

Operations Disallowed SQL commands 9i API disallowed OCI calls

Connection Operations CONNECT OCISvcCtxLogon
OCISvcCtxLogoff

Transaction Operations COMMIT

ROLLBACK

SAVEPOINT

SET TRANSCTION
(READ ONLY|READWRITE|USE
ROLLBACK SEGMENT)

OCITransCommit

OCITransRollback

OCIStmtExecute in OCI_COMMIT_ON_
SUCCESS mode

Implicit Operations DDL SQL statements
(for example, CREATE TABLE,
CREATE INDEX)

172 VisiBroker Vis iTransact Guide

Troubleshoot ing

Troubleshooting
This section identifies problems that could occur when using the XA Session Manager
for Oracle OCI with the Oracle database and provides you with suggestions for
troubleshooting the problem.

VisiTransact message log

The VisiTransact message log may contain Session Manager and native Oracle error
messages when a connection or transaction error happens.

Using the xa_trc files

If errors occur that indicate problems with the XA code, more information on any Oracle
errors can be found in the xa_*.trc files. These files will be placed in the log directory
specified in the defined connection profile. If a log directory is not specified in the
Session Manager connection profile, the xa_*.trc files will be placed in the
$ORACLE_HOME/rdbms/log directory if $ORACLE_HOME is available, or in the
current directory if $ORACLE_HOME is not available, when the process is started.

Note

If a directory is specified but does not exist, there will be no log file and you will not
receive a warning.

Distributed update problems

A network or system failure can cause the following types of problems:

– A prepare or commit being processed may not be completed at all nodes of the
session when a failure occurs.

– If a failure persists (for example, if the network is down for a extended period), the
data exclusively locked by in-doubt transactions (prepared, but not committed or
rolled back) is not available for statements of other transactions.

Note

See Oracle documentation for more information on the behavior of distributed updates
where one Oracle node serves as a subcoordinator for another Oracle database.

Data access failures

When a user issues a SQL statement, Oracle9i attempts to lock the required data to
successfully execute the statement. However, if the requested data is being handled by
statements of other uncommitted transactions and continues to remain locked for long
periods of time, a timeout occurs.

Lock from in-doubt transaction
A query or DML statement that requires locks on a local database may be blocked
indefinitely due to the locked resources of an in-doubt distributed transaction. In this
case, the following error message is returned to the user:

ORA-01591: lock held by in-doubt distributed transaction <IDt>

In this case, the SQL statement is rolled back immediately. The rollback of the SQL
statement does not automatically force a rollback of the transaction. The application
that executed the statement can try to re-execute the statement later. If the lock
persists, the user should contact an Administrator to report the problem, including the
ID of the in-doubt distributed transaction.

 20: XA Session Manager for Oracle OCI, version 9 i Cl ient 173

Forcing heurist ic complet ion

An in-doubt transaction is a transaction in the prepared state that has not been
committed or rolled back.

Transaction timeout
A DML statement that requires locks on a remote database may be blocked if another
transaction currently has locks on the requested data. If these locks continue to block
the requesting SQL statement, a timeout occurs, the statement is rolled back and the
following error message is returned to the user.

ORA-02049: timeout: distributed transaction waiting for lock

In this case, the SQL statement is rolled back immediately. The rollback of the SQL
statement does not automatically force a rollback of the transaction. The application
should proceed as if a deadlock has been encountered. The application that executed
the statement can try to re-execute the statement at a later time. If the lock persists, the
user should contact an administrator to report the problem.

The timeout interval described in the above situation can be controlled with the
initialization parameter distributed_lock_timeout. This interval is in seconds. For
example, to set the timeout interval for an instance to 30 seconds, include the following
line in the associated parameter file:

DISTRIBUTED_LOCK_TIMEOUT=30

With the above timeout interval, the timeout errors discussed in the previous section
occur if a transaction cannot proceed after 30 seconds of waiting for unavailable
resources.

See “Database configuration” for a description of the distributed_lock_timeout
parameter.

Oracle error messages

The VisiTransact Message Log contains Oracle error messages which could help you
troubleshoot connections and transaction errors including the following:

Forcing heuristic completion
Use COMMIT FORCE <local transaction id> or ROLLBACK FORCE <local transaction
id>—where <local transaction id> comes from the dba_2pc_pending table—to force
completion of a heuristic transaction. Refer to Oracle9i Distributed Database Systems
documentation for more information.

Error message Description Solution

ORA-12154 The process limit for file
descriptors (ulimit) on
Solaris is set too low for
multithreaded applications.

Check profile name for correct database name.

Check the tnsnames.ora file for matching
service names entry.

Check that the database and Oracle listener
process are up.

Check that you have set your File Descriptor
limit (ulimit), on Solaris, high enough to assure
that you can open connections.

See the Solaris Operating System
documentation for information on setting the
ulimit command.

174 VisiBroker Vis iTransact Guide

 21: DirectConnect Session Manager for Oracle OCI, version 9 i Cl ient 175

DirectConnect Session Manager for
Oracle OCI, version 9i Client
This chapter covers issues relating to using the Oracle9i version of the Oracle Call
Interface (OCI) database with the DirectConnect Session Manager implementation.
This chapter contains the following sections:

– Overview

– Oracle9i software requirements

– Oracle9i installation and configuration issues

– Required environment variables

– Session Manager connection profile attributes

– Programming restrictions

– Troubleshooting

Overview
This chapter provides you with information on the specific database issues and
requirements for using the Oracle9i version of the Oracle Call Interface (OCI) and the
Oracle9i database with the DirectConnect Session Manager implementation. This
includes software requirements, installation and configuration information, Session
Manager configuration attributes, and programming restrictions. This is in contrast to
other DirectConnect Session Manager implementations described in this manual.

VisiBroker VisiTransact transactional data access occurs through the use of the
Session Manager for OCI and the Oracle libraries. A connection to the database is
established when the application requests a Connection object from the Session
Manager. The application can then obtain a native handle, which can be used for
making normal OCI calls.

The information covered in this chapter focuses on the specific requirements for
accessing an Oracle DBMS with VisiBroker VisiTransact. To properly install and
configure Oracle, you need to follow the instructions in the documentation shipped with
your Oracle database.

For more information about the DirectConnect Session Manager implementation, see
“Session Manager overview” and “Data access using the Session Manager.”

176 VisiBroker Vis iTransact Guide

Oracle9i sof tware requirements

Who should read this chapter

System administrators and database administrators responsible for administering this
database should read this chapter before installing and configuring the DBMS if it will
be used for transaction processing. In particular, refer to the sections identified below.
Application developers building applications with VisiTransact should review the
information in Programming restrictions.

Oracle9i software requirements
You must install the Oracle9i client libraries on every machine on which you will run an
application built using the Session Manager. The Session Manager is a component of
VisiBroker VisiTransact.

The following sections list database client and server requirements by platform.

Client requirements

The following Oracle client components for Oracle OCI must be installed and
configured on each node which runs an application built using the Session Manager:

– Oracle OCI, version 9i must be installed on Solaris

Server requirements

UNIX
The following Oracle server component must be installed and configured on each
database server machine:

– Oracle9i Server

Oracle9i installation and configuration issues
The following sections identify Oracle installation and configuration software issues.

Installation requirements

To install Oracle, you will need the following:

– Oracle installation and configuration guide

– Corresponding release bulletins

Sections
System

administrators
Database

administrators
Application
developers

Oracle9i Software Requirements X X

Oracle9i Installation and Configuration Issues X X

Required Environment Variables,
Troubleshooting

X X X

Session Manager Connection Profile
Attributes

X X

Programming Restrictions X X

 21: DirectConnect Session Manager for Oracle OCI, vers ion 9 i Cl ient 177

Required environment var iables

Database configuration

Use the init.ora parameters, described in the following table, to help configure your
database for use with the DirectConnect Session Manager for Oracle OCI.

With the DirectConnect Session Manager for Oracle OCI, each transaction consumes
a database session. Make sure that init.ora parameters, sessions and processes, are
set high enough to accommodate the transactions as well as other application
sessions.

Each connection opened by the DirectConnect Session Manager will require a session
until the transaction completes. Therefore, the sessions parameter should be set to a
number higher than the maximum number of concurrent DirectConnect transactions
that you expect will access the database.

Note

See the Oracle documentation for information on how to set init.ora parameters.

Required environment variables
The PATH environment variable needs to include the path to the Oracle client directory
where the database client libraries are installed, as well as the path to the Session
Manager libraries.

UNIX:

LD_LIBRARY_PATH
PATH

Add ORACLE_HOME /bin to your PATH and $ORACLE_HOME/lib32 (or
$ORACLE_HOME/lib for 64 bit applications) to your LD_LIBRARY_PATH. For
example, with the Bourne shell:

LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:${ORACLE_HOME}/lib32
PATH=${ORACLE_HOOME}/bin:${PATH}

Session Manager connection profile attributes
The following table contains the configuration profile attributes which are specific to the
XA Session Manager for Oracle OCI.

The following table contains the attributes for the XA Session Manager for Oracle OCI.

init.ora parameter Description

sessions The total number of user and system sessions.

processes See the Oracle9i Server Administrator's Guide for more information on
setting this parameter.

Attribute UI label Description Range

native_handle_type Native Handle
Type

The type of the native
connection handle requested by
the application.

Valid values are
Lda_Def and
ITSOracle9i_handles.

178 VisiBroker Vis iTransact Guide

Using the Session Manager wi th the OCI 9i API

Using the Session Manager with the OCI 9i API
In Oracle9i, the OCI interface has been completely rewritten. With this new interface,
several handles are needed in order to executed SQL statements. In order to use this
API with the Session Manager, perform the following steps:

1 In the connection profile, set the attribute native_handle_type to ITSOracle9i_handles.

2 Include the file, ora9i_sessmgr.h, in the application source to define the object
ITSOracle9i_handles.

3 Cast the return value of Connection::getNativeConnectionHandle() to the type
ITSOracle9i_handles * (a pointer to an object of type ITSOracle9i_handles).

4 Use accessor methods provided by the class ITSOracle9i_handles to obtain the
various handles needed. These methods are:

– OCISvcCtx *getSvcCtx();

– OCIEnv *getEnv();

– OCIError *getError();

Do not attempt to deallocate the objects obtained through the ITSOracle9i_handles
object; these object instances are managed by the Session Manager.

Programming restrictions
The following restrictions apply when programming an application for transaction
processing with VisiBroker VisiTransact and Oracle OCI.

Since the VisiTransact Transaction Service and the Session Manager control
connection and transaction management, platforms should not use the disallowed
operations shown in the following table:

Troubleshooting
This section identifies problems that could occur when using the DirectConnect
Session Manager for Oracle OCI with the Oracle database and provides you with
suggestions for troubleshooting the problem.

VisiBroker VisiTransact message log

The VisiTransact message log may contain Session Manager and native Oracle error
messages when a connection or transaction error happens.

Operations Disallowed SQL commands 9i API disallowed OCI calls

Connection Operations CONNECT OCISvcCtxLogon
OCISvcCtxLogoff

Transaction Operations COMMIT

ROLLBACK

SAVEPOINT

SET TRANSACTION

OCITransCommit

OCITransRollback

OCIStmtExecute
in OCI_COMMIT_ON_SUCCESS mode

Implicit Operations DDL SQL Statements
(for example, CREATE TABLE)

 21: DirectConnect Session Manager for Oracle OCI, vers ion 9 i Cl ient 179

Troubleshooting

Oracle error messages

The VisiTransact message log and the VISSessionManager::Error exceptions also
contain Oracle error messages which could help you troubleshoot connections and
transaction errors including the following:

Error message Description Solution

ORA-01017 Invalid username/
password

Check connection profile for correct user name and
password.

ORA-12154 Cannot resolve
service name

Check profile name for correct database name.

Check the tnsnames.ora file for matching service
names entry.

Check that the database and Oracle listener process are
up.

Check that you have set your File Descriptor limit
(ulimit), on Solaris, high enough to assure that you can
open connections.

See the Solaris Operating System documentation for
information on setting the ulimit command.

180 VisiBroker Vis iTransact Guide

 22: Commands, ut i l i t ies, arguments, and environment var iables 181

Commands, utilities, arguments, and
environment variables
This appendix provides information about arguments for VisiTransact commands and
ORB_init() and environment variables used with VisiTransact.

Overview of VisiTransact commands
The commands in the next few sections relate to one another as described in the
following table.

VisiTransact component Related commands

VisiBroker Console “vbconsole”.
This command starts the VisiBroker Console.

VisiTransact Transaction
Service

“ots”.
This command starts an instance of the VisiTransact Transaction
Service.

“vshutdown”.
This command shuts down an instance of the VisiTransact
Transaction Service.

Session Manager “xa_resdir”.
This command starts an instance of the XA Resource Director,
part of the Session Manager.

“smconfig_server”.
This command starts an instance of the Session Manager
Configuration Server.

“vshutdown”.
This command shuts down an instance of the XA Resource
Director or Session Manager Configuration Server.

Session Manager
Coniguration Setup

“smconfigsetup”.
This utilty creates the connection profile for use with the Pluggable
Resource Interface for creating a customized Session Manager.

182 VisiBroker Vis iTransact Guide

Overview of Vis iTransact commands

vbconsole

This command invokes the VisiBroker Console, and can be run on any node that has
the executable for the VisiBroker Console installed. The VisiBroker Console does not
have to be local to the VisiTransact Transaction Service or Session Manager
Configuration Server instances that it administers. However, to administer these
instances, they must be running when the VisiBroker Console is started.

Syntax
prompt>vbconsole

Example
prompt>vbconsole

Arguments
None.

ots

This command starts an instance of the VisiTransact Transaction Service.

Syntax
prompt>ots [-Dvbroker.ots.defaultTimeout=<seconds>]
 [-Dvbroker.ots.defaultMaxTimeout=<seconds>]
 [-Dvbroker.ots.name=<transaction_service_name>]
 [-Dvbroker.ots.logDir=<directory_name>]
 [-Dvbroker.log.enable=<Boolean>]
 [vbroker.ots.logPurgeTransactions=<true|false>]
 [vbroker.ots.logSleep=<milliseconds>]
 [vbroker.ots.logCache=<cache_size_in_kilobytes>]
 [vbroker.ots.logUnit=<transaction_log_size>]

Example
prompt>ots -Dvbroker.ots.defaultTimeout=60 -Dvbroker.ots.defaultMaxTimeout=120
-Dvbroker.ots.name=Sales -Dvbroker.log.enable=true

Arguments
The following arguments can be used with this command.

Argument Description

-Dvbroker.ots.defaultTimeout=<seconds> Sets the default transaction timeout value for
this VisiTransact Transaction Service
instance. If not set, this defaults to 600
seconds.

-Dvbroker.ots.defaultMaxTimeout=<seconds> Sets the maximum allowed transaction
timeout value for this VisiTransact
Transaction Service instance. If not set, this
defaults to 3600 seconds.

-Dvbroker.ots.name=<transaction_service_name> Sets the name of the VisiTransact Transaction
Service instance used when registering its
interface with the Smart Agent. The default is
<host_name>_ots.

 22: Commands, ut i l i t ies, arguments, and environment var iables 183

Overview of Vis iTransact commands

smconfig_server

This command is used to start an instance of the Session Manager Configuration
Server. You use the Session Manager Configuration Server as the agent to create a
connection profile that accesses your database.

Syntax
prompt>smconfig_server [-Dvbroker.sm.pstorePath=<path>]
 [-Dvbroker.sm.configName=<name>] [-m{32|64}]

Example
prompt>smconfig_server -Dvbroker.sm.pstorePath=C:\vbroker\adm\its\
session_manager
-Dvbroker.sm.configName=athena_smcs -m64

Arguments
The following arguments can be used with this command.

-Dvbroker.ots.logDir=<directory_name> Names the directory in which logs and logger
information are kept. If you do not specify, the
default is <VBROKER_ADM>\its\
<transaction_service_name>\logger.

-Dvbroker.log.enable=<Boolean> To see the debug log statements from this
service, set this property to true. For the
various source names options for debug log
filtering, see the Debug Logging properties
section of the VisiBroker for C++ Developer's
Guide.

vbroker.ots.logPurgeTransactions=<true|false> Indicates whether transaction logs are new
files.

vbroker.ots.logSleep=<milliseconds> Indicates the number of milliseconds of sleep
time before checking if the cache is full and
needs to flush into physical file. The default
is 0.

vbroker.ots.logCache=<cache_size_in_kilobytes> Indicates the size of cache before flushing into
the physical file. The default is 64k.

vbroker.ots.logUnit=<transaction_log_size> Indicates the size of the log file. The default
is 8M.

Argument Description

-Dvbroker.sm.pstorePath=<path> Provide the path to the directory where the persistent store
files are located. By default, the persistent store files are
located in <VBROKER_ADM>\its\session_manager.

-Dvbroker.sm.configName=<name> Provide the name of the Session Manager Configuration
Server you're using. By default, the name assigned to the
Session Manager Configuration Server is <host>_smcs
where host is the name of the host on which you created the
Session Manager profile.

-m{32|64} Generates 32-bit or 64-bit shared plug-in libraries name into
the profiles.

■ -m32 used for 32-bit naming

■ -m64 used for 64-bit naming

Argument Description

184 VisiBroker Vis iTransact Guide

Overview of Vis iTransact commands

vshutdown

This command can be used to shutdown the VisiTransact Transaction Service, XA
Resource Director, and the Session Manager Configuration Server.

If it is used to shutdown an instance of the VisiTransact Transaction Service, it defaults
to allow the VisiTransact Transaction Service to wait for outstanding transactions to
complete before shutting down, but will not accept any new transactions. You can
direct the instance of the VisiTransact Transaction Service to shutdown without
resolving transactions by using the optional -immediate argument.

Note

You can use this command to shutdown an instance of the VisiTransact Transaction
Service that is embedded within an application process provided the -
OTSexit_on_shutdown argument was passed to the application's ORB_init() method. For
information about shutting down an instance of the VisiTransact Transaction Service
that is embedded in an application process, see “Arguments for applications with an
embedded VisiTransact Transaction Service instance”.

Syntax
prompt>vshutdown -help
prompt>vshutdown -type <object_type>
 [-name <object_name>]
 [-host <host_name>]
 [-immediate]
 [-noprompt]

Example
prompt>vshutdown -type ots -name myTxnSvc

Arguments
The following arguments can be used with this command.

Argument Description

-help Use this argument to display the usage information for this command. If
you use this argument, vshutdown ignores all other arguments and just
gives you usage information.

-type Valid types are:

■ ots for VisiTransact Transaction Service

■ rd for XA Resource Director

■ smcs for Session Manager Configuration Server

If you specify only the type, vshutdown lists all the services of that
particular type and prompts you whether to shut them down or not.

-name <object_name> The name of the object to be shutdown. By default vshutdown looks up
all the objects of the specified type and prompts you whether to shut
them down or not.

-host <host_name> The host machine where the service resides that you wish to shutdown.
By default vshutdown locates all the objects of a particular type and
name (if mentioned) on the network and prompts you whether to shut
them down or not.

-immediate Use this argument to direct the instance of the VisiTransact Transaction
Service to shutdown immediately without resolving any outstanding
transactions.

-noprompt Use this argument if you do not want to be prompted for confirmation
when you get a list of all object types, names, or hosts to be shut down.

 22: Commands, ut i l i t ies, arguments, and environment var iables 185

Overview of Vis iTransact commands

xa_resdir

This command is used to start an instance of the XA Resource Director. You must
have already created a connection profile that accesses your database using the
VisiBroker Console.

Syntax
prompt>xa-resdir -Dvbroker.sm.profileName=<profile>
 [-Dvbroker.sm.pstorePath=<path>]
 [-Dvbroker.sm.configName=<name>]
 [-Dvbroker.sm.connectionIdleTimeout=<seconds>]

Example
prompt>xa-resdir -Dvbroker.sm.profileName=quickstart
 -Dvbroker.sm.pstorePath=C:\vbroker\adm\its\session_manager
 -Dvbroker.sm.configName=athena_smcs

Arguments
The following arguments can be used with this command.

Argument Description

-Dvbroker.sm.profileName=<profile> Provide the name of the Session Manager
connection profile you want to use to establish a
connection with the database. This is required.

-Dvbroker.sm.pstorePath=<path> Provide the path to the directory where the
persistent store files are located. By default, the
persistent store files are located in
<VBROKER_ADM>\its\session_manager.

-Dvbroker.sm.configName=<name> Provide the name of the Session Manager
Configuration Server you're using. By default,
the name assigned to the Session Manager
Configuration Server is <host>_smcs where
host is the name of the server on which you
created the Session Manager profile.

-Dvbroker.sm.connectionIdleTimeout=<seconds> Provide the number of seconds a connection
may stay idle and unassociated with a
transaction before being closed automatically
by the Session Manager ConnectionPool. This
is used to shrink the number of connections in
the pool when they are unused. This parameter
defaults to 300 seconds.

186 VisiBroker Vis iTransact Guide

Vis iTransact ut i l i t ies

VisiTransact utilities

smconfigsetup

The smconfigsetup utility allows you to create connection profiles. The following
procedure is provided as a guide when using it to create profiles for use with the
Session Manager. The bold type indicates entries from the user. The profile is created
upon exit from the smconfigsetup utiltiy.

Creating a profile for use with the Session Manager
To create profile for use with the Session Manager:

1 Enter smconfigsetup at the command prompt.

prompt>smconfigsetup

2 Enter the number 1 (one) to create a profile.

Do you wish to
(0) Quit
(1) Add a profile
(2) List all profiles
(3) List attributes of a profile
(4) Copy a profile
(5) Delete a profile
(6) Create metadata files
(7) Add pluggable data resources

Enter the number of your selection: 1

3 Enter the number corresponding to the database type.

2 known Session Manager implementations:
(0) Oracle OCI 9i DirectConnect
(1) Oracle OCI 9i XA

Please enter the database type you are trying to create: 0

4 Enter a connection profile name.

Please enter the name for the new profile: quickstart

5 Enter a database name.

Attribute name "database_name"
New value for attribute Database Name (default value) : itso9idb

6 Enter the user name.

Attribute name "userid"
New value for attribute User Name (default value) : scott

7 Enter the user's password.

Attribute name "password"
New value for attribute Password (default value) : tiger

8 Enter the Native Handle Type.

Attribute name "native_handle_type"
New value for attribute Native Handle Type
(default value <ITSoracle9i_handles>) : ITSoracle9i_handle

 22: Commands, ut i l i t ies, arguments, and environment var iables 187

Command-l ine arguments for appl icat ions

9 Enter 0 (zero) to exit the utility.

Do you wish to
(0) Quit
(1) Add a profile
(2) List all profiles
(3) List attributes of a profile
(4) Copy a profile
(5) Delete a profile
(6) Create metadata files
(7) Add pluggable data resources

Enter the number of your selection: 0

Bye!

The profile is created upon exit from the smconfigsetup utiltiy.

Command-line arguments for applications
You can pass arguments to ORB_init() which affect the VisiTransact Transaction
Service and your application components. The following sections explain these
options.

Passing command-line arguments to ORB_init() using
argc and argv

As a component of VisiBroker, command line arguments are passed to VisiTransact
components through the VisiBroker ORB initialization call ORB_init(). Therefore, in
order for arguments specified on the command line to have effect on the VisiTransact
operation in a given application process, applications must pass the original argc and
argv arguments to ORB_init() from the main program. For example,

int main(int argc, char * const* argv)
{
 try
 {
 // initialize the ORB
 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);
 }
...
}

The ORB_init() function will parse both ORB arguments and VisiTransact arguments,
removing them from the argv vector before returning.

Arguments for applications that originate transactions

By default, the first time you start a transaction with Current::begin(), an instance of
the VisiTransact Transaction Service is found using the Smart Agent. You can specify
an instance of the VisiTransact Transaction Service to use, and the timeout value for
transactions, by using the arguments described in this section.

You pass these arguments at the command line when starting your transactional
server manually. Your application handles these command-line input arguments using
the ORB_init() method as described in “Passing command-line arguments to
ORB_init() using argc and argv”.

188 VisiBroker Vis iTransact Guide

Command-l ine arguments for appl icat ions

The following table explains the arguments that can be passed to ORB_init() from the
command line for applications that originate transactions.

For example, to start the billing C++ transactional server that uses the Accounting
VisiTransact Transaction Service, you would use the following command:

prompt>billing -Dvbroker.ots.currentName=Accounting

To start the Billing transactional server that uses the Accounting VisiTransact
Transaction Service, and has a timeout period of 2400 seconds, you would use this
command

prompt>billing -Dvbroker.ots.currentName=Accounting -
Dvbroker.ots.currentTimeout=2400

If you specify a combination of -Dvbroker.ots.currentHost and
-Dvbroker.ots.currentName, the Smart Agent will find the named VisiTransact
Transaction Service instance on the named host. If you specify the
-Dvbroker.ots.currentFactory with either the -Dvbroker.ots.currentHost or
-Dvbroker.ots.currentName, the Smart Agent will find the VisiTransact Transaction
Service instance by IOR only—it ignores the other arguments.

Arguments for applications with an embedded VisiTransact
Transaction Service instance

You can specify an instance of the VisiTransact Transaction Service to use with the
arguments described in this section. You can also specify whether your application
process will be brought down when the embedded instance of the VisiTransact
Transaction Service terminates.

You pass these arguments at the command line when starting your transactional
server manually. Your application handles these command-line input arguments using
the ORB_init() method as described in “Passing command-line arguments to
ORB_init() using argc and argv”.

The following table explains the arguments that can be passed to ORB_init() from the
command line for applications that embed an instance of the VisiTransact Transaction
Service.

Argument to ORB_init() Description

-Dvbroker.ots.currentFactory VisiTransact uses the specified IOR for the requested
Transaction Service (CosTransactions::TransactionFactory) to
locate the desired instance of the VisiTransact Transaction
Service on the network. This argument enables VisiTransact to
operate without the use of a Smart Agent (osagent).

-Dvbroker.ots.currentHost The Smart Agent will find any available VisiTransact
Transaction Service instance that is located on the specified
host.

-Dvbroker.ots.currentName The Smart Agent will find the named VisiTransact Transaction
Service instance anywhere on the network.

-Dvbroker.ots.currentTimeout Sets the transaction timeout value for Current. If the transaction
is still alive after the timeout expires, the transaction is
automatically rolled back.

Argument to ORB_init() Description

-Dvbroker.ots.defaultTimeout=<seconds> Sets the default transaction timeout value for
this VisiTransact Transaction Service instance.
If not set, this defaults to 600 seconds.

-Dvbroker.ots.defaultMaxTimeout=<seconds> Sets the maximum allowed transaction timeout
value for this VisiTransact Transaction Service
instance. If not set, this defaults to 3600
seconds.

-Dvbroker.ots.name=<transaction_service_name> Sets the name of the VisiTransact Transaction
Service instance used when registering its
interface with the Smart Agent. The default is
<host_name>_ots.

 22: Commands, ut i l i t ies, arguments, and environment var iables 189

Environment var iables

Arguments for applications that use the Session Manager

By default, the Session Manager Configuration Server for the machine where the
Session Manager connection profile was created is used—<host>_smcs. The
persistent store classes are located in <VBROKER_ADM>\its\session_manager by
default.

You pass these arguments at the command line when starting your transactional
server manually. Your application handles these command-line input arguments using
the ORB_init() method as described in “Passing command-line arguments to
ORB_init() using argc and argv”.

The following table explains the arguments that can be passed to ORB_init() from the
command line for applications that use the Session Manager.

Environment variables
The following environment variable can be set for VisiBroker VisiTransact.

-Dvbroker.ots.logDir=<directory_name> Names the directory in which logs and logger
information are kept. If you do not specify, the
default is <VBROKER_ADM>\its\
<transaction_service_name>\logger.

-Dvbroker.ots.exitOnShutdown If set to true, this will terminate your in-process
instance of the VisiTransact Transaction
Service and bring down your application
process as well when the VisiTransact
Transaction Service is shut down remotely
using vshutdown or the VisiBroker Console.

If it is either not set or set to false, this will
deactivate the VisiTransact Transaction
Service objects registered with the Smart
Agent but will NOT bring down your application
process.

Argument to ORB_init() Description

-Dvbroker.sm.configName The name of the Session Manager Configuration Server
(profileset). By default, this value is <host>_smcs where
host is the name of the server on which you created the
Session Manager profile.

-Dvbroker.sm.pstorePath The path to the directory where the persistent store
classes are located. By default, this is
<VBROKER_ADM>\its\session_manager.

-Dvbroker.sm.connectionIdleTimeout Provide the number of seconds a connection may stay
idle and unassociated with a transaction before being
closed automatically by the Session Manager
ConnectionPool. This is used to shrink the number of
connections in the pool when they are unused. This
parameter defaults to 300 seconds.

Argument to ORB_init() Description

Environment variable Description

VBROKER_ADM Defines the path to the directory where ITS-specific files are stored.

190 VisiBroker Vis iTransact Guide

Environment var iables

 23: Error codes 191

Error codes
This appendix provides information about error codes for VisiTransact.

VisiTransact common error codes
The following table lists common error codes for VisiTransact.

Table 23.1 Common error codes for VisiTransact

Error
code Description Possible causes Solutions

201 Permission to
access the file or
directory is denied.

The process does not have the necessary
permissions for accessing the file or
directory.

Change the file or directory permissions to
allow the process to access it.

202 The process cannot
open the requested
file.

The file is in the wrong directory.

The process does not have permission to
access the file.

Verify that the file is in the correct directory,
and try again.

Change the file permissions to allow the
process to access it.

203 An error occurred
while reading the file.

The process does not have permission to
read the file.

Change the file permissions to allow the
process to read the file.

204 An error occurred
while writing to the
file.

The process has read-only permission—it
does not have permission to write to the
file.

The storage is full, and the system does
not have enough room to write the
changes to the file.

Change the file permissions to allow the
process to write to the file.
Clean up the storage, and then try again.

801 An error occurred
while attempting to
list an object of the
given type.

No Location Service is available.

No Smart Agent is running.

The process is experiencing a
communication problem.

Verify that a Location Service is available.
See the VisiBroker ORB documentation for
details.

Start the Smart Agent using the osagent
command. See the VisiBroker ORB
documentation for details.

Verify that all required processes are
running, and all machines are up, and try
again.

192 VisiBroker Vis iTransact Guide

Vis iTransact Transact ion Service error codes

VisiTransact Transaction Service error codes
The following table lists the error codes for the VisiTransact Transaction Service.

Error
code Description Possible causes Solutions

4000 An instance of the
VisiTransact Transaction
Service was started
successfully.

This is an informational message only. This message requires no action.

4001 An instance of the
VisiTransact Transaction
Service is shutting down
by request.

An administrator or other individual has
shutdown the instance of the
VisiTransact Transaction Service using
either the vshutdown command, Ctrl+C,
or the kill command.

This message requires no action.

4002 The instance of the
VisiTransact Transaction
Service is prepared to
shutdown, but is waiting for
outstanding transactions to
enter the completion stage
before exiting.

The request to shutdown the instance
of the VisiTransact Transaction Service
was issued without the -immediate
argument, allowing the instance to let
outstanding transactions enter the
completion stage before exiting.

This message requires no action.

If you want to shutdown an instance of
the VisiTransact Transaction Service
without allowing outstanding
transactions to enter the completion
stage, use the -immediate argument
when issuing the vshutdown
command.

4003 The instance of the
VisiTransact Transaction
Service is shutting down
without waiting for
outstanding transactions to
enter the completion
stage.

The request to shutdown the instance
of the VisiTransact Transaction Service
was issued with the -immediate
argument, allowing the instance to
shutdown without letting outstanding
transactions enter the completion
stage.

This message requires no action.

If you want to shutdown an instance of
the VisiTransact Transaction Service
and allow outstanding transactions to
enter the completion stage, issue the
vshutdown command without the
-immediate argument.

4004 A HeuristicHazard
exception was raised by a
Resource. For complete
details on this exception,
see the output of the
heuristic log file.

A Resource made a heuristic decision
and does not know the outcome of at
least one relevant update.

There is a possible loss of data
integrity. Look up the error in the
heuristic log, and notify your database
administrator of the transaction
identifier. Your database administrator
will need to locate this error on the
Resource and correct any problems
manually.

4005 A HeuristicCommit
exception was raised by a
Resource. For complete
details on this exception,
see the output of the
heuristic log file.

A Resource made a heuristic decision
to commit all relevant updates.

There is a possible loss of data
integrity. Look up the error in the
heuristic log, and notify your database
administrator of the transaction
identifier. Your database administrator
will need to locate this error on the
Resource and correct any problems
manually.

4006 A HeuristicRollback
exception was raised by a
Resource. For complete
details on this exception,
see the output of the
heuristic log file.

A Resource made a heuristic decision
to rollback all relevant updates.

There is a possible loss of data
integrity. Look up the error in the
heuristic log, and notify your database
administrator of the transaction
identifier. Your database administrator
will need to locate this error on the
Resource and correct any problems
manually.

4007 A HeuristicMixed
exception was raised by a
Resource. For complete
details on this exception,
see the output of the
heuristic log file.

A Resource made a heuristic decision
which differs from the outcome of the
transaction. Some updates have been
committed, others have been rolled
back.

There is a possible loss of data
integrity. Look up the error in the
heuristic log, and notify your database
administrator of the transaction
identifier. Your database administrator
will need to locate this error on the
Resource and correct any problems
manually.

 23: Error codes 193

VisiTransact Transact ion Service error codes

4008 An exception was caught
and ignored during the
callback for a specific
alarm (listed in the
message).

This message could be thrown for
various reasons, including running out
of system resources.

Ignore this message.

4009 An internal application
error occurred.

An internal module of VisiTransact
Transaction Manager, used by several
VisiTransact components, could not be
initialized due to an unknown exception.

Contact VisiBroker Technical Support.

4010 An internal application
error occurred, as
described in the message.

An internal module of VisiTransact
Transaction Manager, used by several
VisiTransact components, could not be
initialized due to the exception listed in
the message.

Contact VisiBroker Technical Support.

4011 An exception occurred
while parsing the
initialization arguments
listed in the message.

The wrong command-line arguments
were entered when executing a
VisiTransact command.

Verify the command-line arguments,
and try again. See “Commands, utilities,
arguments, and environment variables.”

4012 An exception occurred
while parsing some
initialization arguments,
but it is unknown which
arguments were incorrect.

The wrong command-line arguments
were entered when executing a
VisiTransact command.

Verify the command-line arguments,
and try again. See “Commands, utilities,
arguments, and environment variables.”

4014 An initialization failure
(specified in the message)
occurred while starting an
instance of the
VisiTransact Transaction
Service.

The wrong configuration file was used,
or incorrect values were entered for
initialization parameters.

An internal application error has
occurred.

Verify you are using the correct
configuration file, and are entering
correct values for the initialization
parameters.

Contact VisiBroker Technical Support.

4015 A runtime exception
occurred within a running
instance of the
VisiTransact Transaction
Service.

An internal application error has
occurred.

Contact VisiBroker Technical Support.

4016 The default transaction
timeout has been changed
to the value of the
maximum transaction
timeout.

The value of the default transaction
timeout was higher than the value of the
maximum transaction timeout.

Verify that you have coordinated your
timeout settings between your
applications and any command-line
arguments you are using when starting
instances of the VisiTransact
Transaction Service.

4017 An invalid value was
provided for the default
transaction timeout. The
timeout value was reset to
600 seconds.

When setting the default timeout value,
a zero or a negative value was
provided. The default timeout value
must be at least 1 second.

When setting the default timeout value,
make sure to set it to a value greater
than or equal to 1 second. The
recommended value is 600 seconds.

4018 An unexpected exception
was received by the
VisiTransact Transaction
Service during transaction
completion. The
VisiTransact Transaction
Service will retry
transaction completion.

An internal application error has
occurred.

Contact VisiBroker Technical Support.

4019 An unexpected CORBA
exception was received by
the VisiTransact
Transaction Service during
transaction completion.
The VisiTransact
Transaction Service will
retry transaction
completion.

An internal application error has
occurred.

Contact VisiBroker Technical Support.

Error
code Description Possible causes Solutions

194 VisiBroker Vis iTransact Guide

Session Manager error codes

Session Manager error codes
The table lists the error codes for the Session Manager.

Error
code Description Possible causes Solutions

6001 The Session Manager
could not allocate the
necessary memory.

Your system may have run out of
memory.

Make memory available by increasing swap
spaces and shutting down unnecessary
processes.

6002 Profiles are
incompatible because
they are using different
implementations of the
Session Manager.

An application is attempting to
use one profile which specifies
the XA Session Manager for OCI
in the same process with a profile
which specifies the
DirectConnect Session Manager
for Oracle OCI.

Ensure that only one type of Oracle connection is
used with the Session Manager in one process.

6003 The Session Manager
could not load a
necessary library.

The PATH or LIBRARY_PATH
environment variables may not
be set correctly, or the
associated libraries may be
missing.

Be sure to set environment variables correctly. If
this does not correct the problem, you may need
to reinstall VisiBroker VisiTransact and the
VisiBroker ORB.

6004 The Session Manager
could not locate a
needed function symbol
in the loaded library.

Not all required database
libraries could be found.

The loaded library file may be
corrupted.

Verify that the PATH (Windows NT) and the
LD_LIBRARY_PATH (Solaris) environment
variables include the path to your database
libraries.

Check that the database client libraries are
available.

Reinstall the VisiBroker ORB and VisiBroker
VisiTransact software.

6005 The Session Manager
could not open a
connection to the
database.

The database may be
unavailable.

You may be using an invalid user
name or password.

The database software may not
be correctly installed or
configured.

Verify that the database is up and running.

Check the Session Manager connection profile to
verify that the database name, user name, and
password are entered correctly.

Verify that your database software is installed
and configured correctly.

6006 An error occurred during
the initialization phase
of an attempt by the
Session Manager to
connect to the
database.

The version of your database
software is incompatible with the
Session Manager.

Consult “XA Session Manager for Oracle OCI,
version 9i Client” and “DirectConnect Session
Manager for Oracle OCI, version 9i Client” to be
sure that you are using the supported versions of
the database software.

6007 A connection
association error
occurred when the
Session Manager
attempted to allocate a
database connection.

The database server may be
unavailable, or may be
misconfigured.

You may have used an invalid
Coordinator when using non-ITS-
managed transactions.

Check with the database administrator to ensure
that the database server is up and running; check
“XA Session Manager for Oracle OCI, version 9i
Client” and “DirectConnect Session Manager for
Oracle OCI, version 9i Client” for database
configuration requirements.

Be sure to use a valid Coordinator in any
invocations of the getConnection() method.

6008 The limit on the
maximum number of
connections has been
reached.

The maximum number of
connections has been reached.

The database server is
overloaded.

Raise the limit for the maximum number of
connections to this database.

Reduce the load on the database server.

6009 Another thread already
holds the connection to
the database for this
transaction.

You are using the DirectConnect
Session Manager, and have
attempted to connect to the
database more than once for the
transaction.

If you are using the Direct Connect Session
Manager, be sure to use only one Connection
object at a time for a transaction.

 23: Error codes 195

Session Manager error codes

6010 The Session Manager
could not retrieve the
database's native
connection handle from
the XA libraries.

The version of your database
software is incompatible with the
Session Manager.

Consult “XA Session Manager for Oracle OCI,
version 9i Client” and “DirectConnect Session
Manager for Oracle OCI, version 9i Client” to be
sure that you are using the supported versions of
the database software.

6011 The thread that
acquired the connection
is not the same thread
as the one currently
trying to operate on it.

You may be trying to share a
connection among threads.

See “XA Session Manager for Oracle OCI,
version 9i Client” and “DirectConnect Session
Manager for Oracle OCI, version 9i Client” for
restrictions.

6012 The Session Manager
could not register the
Resource Director
specified in the
connection profile.

The Resource Director is not
running at the specified
OSAGENT_PORT.

The name of the Resource
Director is incorrectly specified in
the connection profile.

Make sure that an instance of the Resource
Director is running at the specified
OSAGENT_PORT. See “Starting an XA
Resource Director”.

Verify that the name entered in the Resource
Director Name field of the connection profile is
correct. See “Integrating VisiTransact with
databases using the Session Manager” for
instructions.

6013 A transaction context
was not established
when the connection
was requested.

The transaction context did not
exist when getConnection() was
invoked because begin() was not
called before it.

Make sure your program invokes begin() before
calling getConnection().

6014 An invalid value was
specified for the
SMconnection_idle_timeou
t attribute.

A negative value was specified
for SMconnection_idle_timeout.

Specify a positive value for this attribute.

6015 The Session Manager
could not validate the
explicit Coordinator
used.

You are processing a transaction
with explicit propagation, and
passed a Coordinator object to
the Session Manager for a
transaction that rolled back
already.

When processing a transaction with explicit
propagation, you must ensure that the
Coordinator object you pass is valid.

6016 An error occurred during
the connection release
process.

When the Session Manager was
releasing the connection, the
connection somehow became
invalid—perhaps due to a
database server crash.

Check that your database server process is still
running.

6017 The Session Manager
could not perform the
requested disconnect
from the database.

When the Session Manager was
releasing the connection, the
connection somehow became
invalid—perhaps due to a
database server crash.

Check that your database server process is still
running.

6018 The Session Manager
encountered an
unknown attribute in the
connection profile.

Perhaps you are using an older
connection profile that is
incompatible with this version of
the Session Manager.

The connection profile may be
corrupted.

Recreate the connection profile using the
VisiBroker Console. See “Integrating
VisiTransact with databases using the Session
Manager.”

Recreate the connection profile using the
VisiBroker Console. (See above)

6019 A profile attribute that is
necessary for obtaining
a connection is not set.

The connection profile does not
have a value for this connection
attribute.

The connection profile may be
corrupted.

Use the VisiBroker Console to verify the settings
in your connection profile.

Recreate the connection profile using the
VisiBroker Console.

6020 The infotype for an
argument passed to the
getInfo() method is
invalid.

The getInfo() invocation in your
program is passing an incorrect
infotype.

See getInfo() in the VisiBroker for C++ API
Reference for common infotypes accepted by the
getInfo() method. See “XA Session Manager for
Oracle OCI, version 9i Client” and
“DirectConnect Session Manager for Oracle OCI,
version 9i Client” for database-specific infotypes
that are accepted.

Error
code Description Possible causes Solutions

196 VisiBroker Vis iTransact Guide

Session Manager error codes

6021 The hold() operation is
not supported.

The application called hold() on a
connection which does not
support that operation.

Use isSupported() to determine connections for
which this operation is valid.

6022 The connection profile
name passed as an
argument to a method
invocation is invalid.

A method invocation in your
application passes an invalid
connection profile name
(generally a null, or a string of 0
length).

Verify that the method uses a valid connection
profile name. Also use the VisiBroker Console to
verify that the connection profile is indeed set up.

6024 The Session Manager
was unable to obtain a
connection because it
reached its maximum
wait time for an
available connection.

A deadlock has occurred
between the current thread
(which is requesting a
connection) and another thread
(which holds the requested
connection). To resolve the
deadlock, the current thread has
been removed from the queue.

To optimize your code for deadlock avoidance,
implement a retry loop that invokes
getConnection() until it is successful. See “Data
access using the Session Manager” for
information.

6025 An invalid argument
was passed at the
command line.

A command-line argument may
have been misspelled.

Verify the spelling of all command-line
arguments. See “Commands, utilities,
arguments, and environment variables.”

6026 An invalid value was
specified for a
command-line
argument.

An invalid value was specified for
a command-line argument.

Verify the valid values for all command-line
arguments. See “Commands, utilities,
arguments, and environment variables.”

6032 A commit has been
attempted for this
Resource, but has
failed.

Illegal database operations were
attempted during the commit,
and the database rejected these
operations.

See “XA Session Manager for Oracle OCI,
version 9i Client” and “DirectConnect Session
Manager for Oracle OCI, version 9i Client” for
troubleshooting information about the Session
Manager for your database.

6033 A rollback has been
attempted on this
Resource, but has
failed.

Illegal database operations were
attempted during the rollback,
and the database rejected these
operations.

See “XA Session Manager for Oracle OCI,
version 9i Client” and “DirectConnect Session
Manager for Oracle OCI, version 9i Client” for
troubleshooting information about the Session
Manager your database.

6034 The error messages
shown are native to the
database you are using.

Native connection or transaction
management calls to the
database failed.

See “XA Session Manager for Oracle OCI,
version 9i Client” and “DirectConnect Session
Manager for Oracle OCI, version 9i Client” for
troubleshooting information about the Session
Manager for your database.

6035 An internal error
occurred.

An internal application error has
occurred in the Session
Manager.

Contact VisiBroker Technical Support.

6040 The Session Manager
could not register a
Resource with an
instance of the
VisiTransact
Transaction Service.

An instance of the VisiTransact
Transaction Service is not
running at the specified
OSAGENT_PORT.

Make sure that an instance of the VisiTransact
Transaction Service is running at the specified
OSAGENT_PORT.

6042 The specified Resource
Director is unavailable.

An instance of the Resource
Director is not running at the
specified OSAGENT_PORT.

Make sure that an instance of the Resource
Director is running at the specified
OSAGENT_PORT.

6043 An error occurred during
recovery.

The XA Resource Manager for
the database is not running.

The XA Resource Manager for
the database experienced an
error.

Make sure the database's XA Resource Manager
is running and available.

Check the database error log for a more specific
indication of the error that occurred.

6046 The XA calls of the
Session Manager have
returned the error code
listed in the message.

A database error occurred. See “Problem determination” for troubleshooting
tips.

Error
code Description Possible causes Solutions

 23: Error codes 197

VisiTransact t ransact ion log error codes

VisiTransact transaction log error codes
The following table lists error codes for the VisiTransact transaction log.

6047 The Session Manager
for Sybase CTLib has
detected two
connections with same
LRM name, but different
user names and
passwords.

Two connection profiles in the
same server process share the
same database name, but have
different passwords.

Create a new connection profile for one of these
profiles that uses a different LRM. Modify your
server process to use the new connection profile
where appropriate.

6048 The connection profile
has an unrecognized
format.

Perhaps foreign files were written
to the directory where the
persistent store files are located,
or the connection profile has
been otherwise corrupted.

Recreate the connection profile using the
VisiBroker Console.

6049 The Session Manager
could not open the
connection profile.

There could be a file permission
problem.

Be sure that the file has the correct permissions.

6050 The Session Manager
encountered an error
while reading the
connection profile.

Perhaps foreign files were written
to the directory where the
persistent store files are located,
or the connection profile has
been otherwise corrupted.

Recreate the connection profile using the
VisiBroker Console.

6051 The Session Manager
encountered an error
while writing to the
connection profile.

Perhaps the file or directory does
not have the correct permissions.

The disk is full, and the Session
Manager cannot save the
connection profile.

You may have specified an
incorrect path to the connection
profile.

Be sure that the file and directory have the
correct permissions.

Free disk space so that the Session Manager
can save the connection profile to disk.

Be sure to specify the correct path.

6052 The specified path is
invalid.

You may have specified an
incorrect path to the connection
profile.

Be sure to specify the correct path.

6053 The specified
connection profile
already exists.

You have tried to create a
connection profile with a name
that is already taken.

Choose a different name for this connection
profile, or delete the other connection profile.

6054 The specified
connection profile does
not exist.

Perhaps you have misspelled the
connection profile name.

Check that you have correctly specified the
connection profile name.

6055 The connection profile
could not be removed.

Perhaps the file or directory does
not have the correct permissions.

Be sure that the file and directory have the
correct permissions.

6056 The XA Resource
Director was given an
DirectConnect (non-XA)
Session Manager
connection profile.

You attempted to start an XA
Resource Director with a
connection profile created for the
DirectConnect Session Manager.

Make sure to start the XA Resource Director with
a connection profile that was created for the XA
Session Manager.

6058 Previous hold() call has
timed out; connection
must be released.

The timeout value supplied to the
hold() call has expired and the
connection object may no longer
be used.

Call release() on this connection and call
getConnection() again if still required.

Error
code Description Possible causes Solutions

Error
code Description Possible causes Solutions

8001 An internal error
occurred in the logger
module. See the
message log for details.

See the error text in
the message log.

If you cannot resolve this error
from the error text displayed in the
message log, contact VisiBroker
Technical Support.

198 VisiBroker Vis iTransact Guide

Vis iTransact t ransact ion log error codes

 24: Problem determinat ion 199

Problem determination
This appendix provides information about how you can determine the causes of
failures. It focuses on developer-specific issues of problem determination, spending
more time on development rather than deployment.

General approaches
A starting point to help research problems you might be encountering is the host's
message log located in vbroker\adm\its.

Dealing with problems in transactions
There are a few typical problems that can occur within applications that use
transactions and VisiBroker VisiTransact:

– The transaction experiences a timeout. There are several situations related to the
expiration of a timeout. A transaction may have timed out and rolled back before the
transaction originator issued commit(), or you may have received a
CORBA::OBJECT_NOT_EXIST exception when trying to register a Resource. If you
experience these problems, make sure that your timeout period is long enough.

– The VisiTransact Transaction Service disappears. If the VisiTransact Transaction
Service instance is restarted or fails while a transaction is underway, you may
temporarily receive a CORBA::NO_IMPLEMENT exception when invoking VisiTransact
methods.

– A Resource Director is unavailable. The Session Manager will throw a
VISSessionManager::Error exception if it cannot find an XA Resource Director when
the Session Manager attempts to obtain a new connection to a Resource Manager.
Additionally, the VisiTransact Transaction Service should roll the transaction back if a
participating Resource Director is unavailable at prepare time. (This is the same
behavior experienced when any other Resource is unavailable at commit time.)

200 VisiBroker Vis iTransact Guide

Deal ing wi th problems in t ransact ions

– You receive a CosTransactions::NoTransaction exception. You will get this
exception if there is no transaction context. It means that your application tried to
attempt a connection without first beginning a transaction.

– Session Manager configuration files are unavailable. You might be requesting
the wrong connection profile.

I n d e x 201

Symbols
[] brackets 4
| vertical bar 4

Numerics
2PC summary 86

A
applications in C++ 53

embedding 54
standalone 53

approaching transactions 49
arguments 181, 187
attirbutes

viewing 125
attributes

Session Manager Connection Profile for Oracle
XA 170, 177

B
backward compatibility 97
Borland Developer Support, contacting 4
Borland Technical Support, contacting 4
Borland Web site 4, 5

C
C++ example 19
C++ exmaple

binding 23
building 33
committing and rolling back 26
files 20
handling exceptions 26
IDL 22
invoking methods 26
objective 21
obtaining references 24
ORB initialization 23
overview 19
prerequisites 21
running 34
Smart Agent 34
transaction beginning 24
transaction originator 23
write the bank object 29
write the bank server 27
write the transactional object 31

C++ VisiTransact applications 53
checked behavior, ensuring 76
class

ITSDataConnection 136
client behaviors

policy interfaces 46
client requirements

Oracle7 with DirectConnect 176
client-side, deploying 112
codes

error 191
command-line arguments 187

commands 181
overview 181

commands, conventions 4
commit 85
commit vote 85
committing with Terminator 72
compatability 97
completion 75

coordinating with Resource objects 81
ensuring 75
participating 82
understanding 81

completion issues 129, 130
completion, heuristic 78
configuartion server 117
configuration

database configuration with Oracle
DirectConnect 177

issues with Oracle DirectConnect 176
issues with Oracle XA 169
Oracle with XA 169

connection
releasing 123

Connection deallocation 124
connection handle

native 122
connection management 132
Connection object

obtaining 121
connection pool 102
connection pooling

optimizing 122
connection profile

configuring 148
creating 148
deleting 149
editing 149
filtering 149
refreshing 149

connection profile sets 110
connection profiles 101, 135, 147

XA Resource Director 111
connection profiles, modifying 110
ConnectionPool reference

obtaining 120
using 121

connections, associating with transactions 101
connections, configuring 101
connections, releasing 102
console 141

locating transaction service instances 143
overview 141
session manager 142
starting 142
transaction services section 141, 143

context
multiple transactions 60

context management 51
direct and indirect 49

context, getting explicit from Current 72
contexts

explicit transaction 121

Index

202

control object 69
CORBA compliance 10
CORBA overview 14
CORBA transaction service 14
CORBAservices specification 11
creating transactions 57, 67
Current

getting explicit context 72
interface 59
obtaining reference 58
using 57, 58

Current extensions 64

D
data access failures

lock from in-doubt transactions 172
transaction timeout 173
with Oracle OCI and XA 172

database configuration
for Oracle DirectConnect 177
Oracle with XA 169

database connection
opening 100

database integration 8, 107, 109
database integration with VisiTransact 99
database integration with XA 108
database issues

for Oracle Call Interface (OCI) 167
with Oracle OCI with the DirectConnect Session

Manager 175
database preparation 109
database resources

pluggable 131
deployment issues 105
Developer Support, contacting 4
DirectConnect 109

session Manager with Oracle OCI 175
DirectConnect and XA coexistence 106
DirectConnect issues 129
DirectConnect restrictions 105
DirectConnect Session Manager 175
DirectConnect session managers 104
directory structure 114
disappearing transactions 199
distributed transactions 13
distributed update problems

with Oracle XA 172
documentation 2

accessing Help Topics 3
Borland Security Guide 2
on the web 5
.pdf format 3
platform conventions used in 4
type conventions used in 4
updates on the web 3
VisiBroker for C++ API Reference 2
VisiBroker for C++ Developer's Guide 2
VisiBroker for Java Developer's Guide 2
VisiBroker for .NET Developer's Guide 2
VisiBroker GateKeeper Guide 3
VisiBroker Installation Guide 2
VisiBroker VisiNotify Guide 2
VisiBroker VisiTelcoLog Guide 2
VisiBroker VisiTime Guide 2
VisiBroker VisiTransact Guide 2

E
embedded instance of VisiTransact 54
ensuring transactions 62
environment variables 181, 189

required with Oracle and XA 170
required with Oracle9i and DirectConnect 177

error codes 191
Session Manager 194
transaction log 197
transaction service 192

error messages
message log 172, 178
Oracle OCI trace files 172
Oracle OCI with DirectConnect 179
Oracle OCI with XA 173

example in C++ 19
binding 23
building 33
committing and rolling back 26
files 20
handling exceptions 26
IDL 22
invoking methods 26
objective 21
obtaining references 24
ORB initialization 23
overview 19
prerequisites 21
running 34
Smart Agent 34
transaction beginning 24
transaction originator 23
write the bank object 29
write the bank server 27
write the transactional object 31

example integration 128
exception

NoTransaction 199
exceptions 124

OTS 80
explicit context, getting from Current 72
explicit propagation 70
explicit to implicit 71
explicit transaction contexts 121
extensions to Current 64

F
failure recovery 86
filtering message logs 146
filtering transactions 145
forcing heuristics 114

H
handle

native connection 122
header files 55
Help Topics, accessing 3
heuristic

forcing completion with Oracle OCI and XA 173
heuristic completion 78
heuristic log, interpreting 91
heuristic reporting, enabling 79
heuristic.log file 90
heuristics 89

203

introduction 89
heuristics, forcing 114
heuristics, viewing 145, 146
hung transactions 145

I
in-doubt transactions 145
in_doubt transactions

with Oracle OCI and XA 172
information, obtaining 64, 73
init.ora

with Oracle DirectConnect 177
with Oracle XA 169

init.ora parameters 169
installation

issues with Oracle DirectConnect issues 176
issues with Oracle XA 169
requirements for Oracle 169
requirements for Oracle9i 176

instance, discovering 61
integrating applications 52
integration example 128
integration preparation 119
interface

native handle acquisition 136
interface definition 135
interface, Current 59
InvocationPolicy interface 46
ITSDataConnection class 136

L
libraries, deploying 112
log, heuristic 90
log, heuristic, interpreting 91

M
marking transactions for rollback 63, 73
message log 146

Message Log 172
VisiTransact Message Log 178

message log filtering 146
message log, trimming 147
migration 97
migration from transaction object 98
multiple threads 60
multiple transactions 60
multithreading 11
multithreading transactions 52

N
name, transaction, obtaining 73
native connection handle 122
native handle acquisition interface 136
Newsgroups 5
NonTxTargetPolicy interface 46
NoTransaction exception 199

O
OAD, registering XA Resource Director with 112
obtaining Current object reference 58
obtaining transaction information 64
OCI 167
OMG extensions 11

online Help Topics, accessing 3
open standards transaction processing 11
optimizing connection pooling 122
ORA-01017 179
ORA-12154 173, 179
Oracle

client requirements with XA 168
configuration

issues with XA 169
database configuration for Oracle XA 169
installation issues with XA 169
installation requirements for Oracle with XA 169
programming restrictions with Oracle XA 171
required environment variables for XA 170
server requirements with XA 168
software requirements for XA 168
troubleshooting with XA 172
using the XA Session Manager 167

Oracle Call Interface 167
Oracle database integration 8
Oracle OCI

client requirements with DirectConnect 176
disallowed OCI calls with XA 171
error messages 172, 178
error messages with DirectConnect 179
error messages with XA 173
forcing heuristic completion 173
server requirements with DirectConnect 176
software requirements with DirectConnect 176
software requirements with XA 168

Oracle requirements
Oracle with XA 168

Oracle XA
database configuration 169

Oracle XA Session Manager 167
Oracle7

software requirements for DirectConnect 176
Oracle9i

configuration issues
with DirectConnect 176

database configuration with DirectConnect 177
installation issues with DirectConnect 176
installation requirements for Oracle9i with

DirectConnect 176
programming restrictions with Oracle

DirectConnect 178
required environment variables with

DirectConnect 177
troubleshooting with DirectConnect 178
troubleshooting with XA 178

OTS
starting 142

ots 181, 182
OTS exceptions 80
OTS policy interface 46
overview 1

CORBA 14
transaction processing 13

P
PDF documentation 3
performance tuning 114
performance tuning for Session Manager 114
performance tuning for XA 114
persistent store 114

204

persistent store copied 116
persistent store files 113
persistent store on each node 116
persistent store, deploying 116
persistent store, shared file system 116
pluggable database resources 131
pluggable module, writing 135
Pluggable Resource Interface API

programming restrictions 139
policy interfaces

InvocationPolicy 46
NonTxTargetPolicy 46
OTS 46
transaction object 46

policy migration 98
pooling

connection optimizing 122
pooling connections 102
preparation, Resource 84
profile sets 147
programming restrictions

disallowed calls 171
Pluggable Resource Interface API 139
using Oracle with Oracle XA Session Manager 171
using Oracle9i with Oracle DirectConnect Session

Manager 178
propagating transactions 57, 62, 67
propagation 51

implicit and explicit 50
propagation, explicit 70
propagation, explicit to implicit 71

R
recorvery, transaction 103
recovery from failure 86
recovery issues 129, 130
registration, Resource 83
releasing connections 102
reporting, enabling heuristic 79
requirements

installation issues with Oracle 176
installation with Oracle 169
Oracle software with XA 168

Resource Director unavailable 199
Resource objects, coordinating completion 81
Resource preparation 84
Resource registration 83
resource registration 101

DirectConnect 105
Resource vote return 84
rollback 85
rollback summary 86
rollback, marking 63
rollback, marking for 73
rolling back with Terminator 72

S
server behaviors

policy interfaces 46
server requirements

Oracle with XA Session Manager 168
Oracle9i with DirectConnect 176

Session Manager 107
arguments 189

connection profile attributes for Oracle XA 170, 177
definition 100
obtaining information 126
overview 99
summary 120
troubleshooting 199
using 119

session manager configuration server 142
session manager configuration server access 148
Session Manager connection profiles 147
Session Manager performance 114
Session Manager processes, starting 113
session manager profile sets 147
session manager security 117
single function 136
single-phase commit summary 86
smconfig_server 117, 142, 181, 183
smconfigsetup 181, 186
software requirements

client requirements with Oracle DirectConnect 176
client with Oracle XA 168
Oracle7 with DirectConnect 176
server requirements with Oracle DirectConnect 176
server with Oracle XA 168

Software updates 5
status, transaction, obtaining 73
Support, contacting 4
switching

DirectConnect to XA 130
XA to DirectConnect 130

symbols
brackets [] 4
ellipsis ... 4
vertical bar | 4

Synchronization
affected by failures 95
implementating objects 93
overview 93
registering objects 94
role in transaction objects 95
using after rollback or commit 94
using before commit 93

T
Technical Support, contacting 4
Terminator interface 72
Terminator, committing with 72
Terminator, rolling back with 72
thread

multiple transactions 60
thread management 102
threading requirements 122
threads, multiple 60
timeout

transactions timeouts with Oracle OCI and XA 173
timeouts 199
transaction

model 14
VisiTransact basics 7

transaction contexts
explicit 121

transaction details 144
transaction exceptions 124
transaction list, refreshing 144
transaction monitoring 143

205

transaction object
creation 45
implementing interfaces 45
inheriting interfaces 45
policy interfaces 46

transaction processing
open standards 11

transaction processing overview 13
transaction service

starting 142
TransactionFactory 68
transactions

approach 49
distributed 13
integrating applications 52
multithreading 52
web 53

transactions, controlling 144
transactions, creating 67
transactions, ensuring 62
transactions, propagating 62, 67
trimming message log 147
troubleshooting 199

data access failures 172
distributed update problems with Oracle XA 172
forcing heuristic completion 173
lock from in-doubt transactions 172
Message Log 172
Oracle OCI and DirectConnect error messages 179
Oracle OCI error messages with XA 173
Oracle OCI trace files 172
Oracle OCI with DirectConnect Session

Manager 178
Oracle OCI with XA Session Manager 172, 178
Oracle with XA Session Manager 172
Oracle9i with DirectConnect Session Manager 178
Oracle9i with XA Session Manager 178
transaction timeout 173
VisiTransact Message Log 178

tuning performance 114
tuning performance for Session Manager 114
tuning performance for XA 114
two-phase commit summary 86

U
unshared transactions 47
using Current 57, 58
utilities 181, 186

V
vbconsole 181, 182
VisiBroker console 9, 141
VisiBroker ORB 9
VisiBroker overview 1
VisiTransact

architecture 8
basics 7
CORBA compliance 10
database integration 8
features 10
monitoring 10
starting 142
transaction service 8

vote return from Resource 84

vshutdown 181, 184

W
web transactions 53
World Wide Web

Borland documentation on the 5
Borland newsgroups 5
Borland updated software 5

X
XA 108

Oracle transaction coordination 167
XA and DirectConnect coexistence 106
XA implications 108
XA issues 129
XA performance 114
XA protocol 103
XA Resource Director 103

connection profiles 111
deploying 111
registering with OAD 112
shutting down 112
starting 111
using 111

XA Session Manager 167
xa_resdir 181, 185
xa_trc file

Oracle OCI with XA 172

206

	Introduction to Borland VisiBroker
	VisiBroker Overview
	VisiBroker features

	VisiBroker Documentation
	Accessing VisiBroker online help topics in the standalone Help Viewer
	Accessing VisiBroker online help topics from within the VisiBroker Console
	Documentation conventions
	Platform conventions

	Contacting Borland support
	Online resources
	World Wide Web
	Borland newsgroups

	VisiTransact basics
	What is VisiTransact?
	VisiTransact architecture
	VisiTransact Transaction Service
	Database integration (Solaris only)
	VisiBroker Console
	VisiBroker ORB

	VisiTransact features
	VisiTransact CORBA compliance
	Monitoring tools
	Minimum overhead with a light footprint
	Flexible deployments
	Support for open transaction processing standards
	Full support for multithreading
	Extensions to the OMG specification
	VisiTransact and the CORBAservices specification

	Overview of transaction processing
	What are transactions in a distributed environment?
	What is CORBA?
	What is the CORBA Transaction Service?
	Model for a basic transaction
	Beginning the transaction
	Issuing requests to transactional objects
	Completing a transaction

	C++ quick start with VisiTransact
	Overview of the example
	Files for the C++ quick start example
	Prerequisites for running the example
	What you will learn in this example
	Writing the quick start IDL
	Writing the transaction originator (transfer client program)
	Initializing the ORB
	Binding to the Bank object
	Beginning the transaction
	Obtaining references to transactional objects (source and destination accounts)
	Invoking methods (debit() and credit()) on the transactional (account) objects
	Committing or rolling back the transaction
	Handling exceptions

	Writing the bank_server program
	Writing the Bank object
	Understanding the BankImpl class hierarchy
	Implementing the Bank object and its get_account() method

	Writing the transactional object (Account)
	Understanding the AccountImpl class hierarchy
	Making the Account object a transactional object
	Implementing the Account object and its methods

	Building the example
	Selecting a Makefile
	Compiling the example with make

	Running the example
	Starting the Smart Agent (osagent)
	Starting the VisiTransact Transaction Service
	Starting the storage_server program
	Starting the bank_server program
	Running the Transaction Originator (transfer Client Program)
	Results

	Viewing the complete example
	IDL for the quick start example
	Transfer client program
	bank_server program
	Bank and account (transactional) objects

	Creating a transactional object
	Inheriting transactional object interfaces
	Implementing transactional object interfaces
	Transactional POA policy interfaces
	OTSPolicy
	InvocationPolicy
	NonTxTargetPolicy

	Affected Server Behaviors
	Affected Client Behaviors
	Dealing with UNSHARED transactions
	Determining your approach to transactions
	Transaction management approaches
	Direct vs. indirect context management
	Implicit vs. explicit propagation
	Context management and propagation
	Indirect context management with implicit propagation
	Indirect context management with explicit propagation
	Direct context management with implicit propagation
	Direct context management with explicit propagation

	In-process vs. out-of-process VisiTransact transaction service
	Multithreading
	Integrating existing applications and transactional systems
	Using a combination of approaches
	Implementing transactions for the web
	Building C++ VisiTransact applications
	Using stand-alone VisiTransact Transaction Service instances
	Embedding a VisiTransact Transaction Service instance in your application
	Binding to the embedded instance of the VisiTransact Transaction Service
	Using header files supplied with VisiTransact

	Creating and propagating VisiTransact-managed transactions
	Introducing Current as used in VisiTransact-managed transactions
	How does Current work?
	Obtaining a Current object reference
	Working with the Current interface and its methods
	Multiple threads participating in the same transaction
	Using multiple transactions within a context or thread
	Discovering an instance of the VisiTransact Transaction service

	Propagating VisiTransact-managed transactions
	Ensuring a transaction is in progress
	Marking a transaction for rollback
	Obtaining transaction information
	Extensions to the Current interface
	Other methods of creating and propagating transactions
	Introduction
	Creating transactions with the TransactionFactory
	Gaining control of a transaction with the control object
	Explicitly propagating transactions from the originator
	Changing from explicit propagation to implicit
	Getting the explicit context from Current
	Committing or rolling back transactions with Terminator
	Marking a transaction for rollback
	Obtaining transaction information
	Transaction completion
	Transaction completion
	How does the VisiTransact Transaction Service ensure completion?
	How does the VisiTransact Transaction Service ensure checked behavior?

	Heuristic completion
	Enabling heuristic reporting to your application
	OTS exceptions

	Coordinating transaction completion with Resource objects
	Understanding transaction completion
	Participating in transaction completion
	Resource object is registered for the transaction
	Transaction originator initiates transaction completion
	Terminator tells Resource objects to prepare
	Resource objects return a vote to the terminator
	Terminator decides whether to commit or roll back
	Resource objects vote to commit the transaction
	Summary of steps for two-phase commit

	Summary of steps for single-phase commit
	Summary of steps for a rollback
	Participating in transaction recovery after failure

	Managing heuristic decisions
	What is a heuristic decision?
	What is the heuristic.log file?
	Interpreting the heuristic log
	What to do once the problem has been isolated
	Implementing Synchronization objects
	What are Synchronization objects?
	Using Synchronization objects before the commit protocol
	Using Synchronization objects after rollback or commit
	Registering Synchronization objects
	How failures affect Synchronization objects

	The role of Synchronization objects in transaction objects
	Backward compatibility and migration
	Backward compatibility
	OTS1.1 Clients vs OTS1.2 Servers
	OTS1.1 Servers vs OTS1.2 Clients

	Migration
	Session Manager overview
	How are databases integrated into a VisiTransact application?
	What is the Session Manager?
	Opening a connection to a database
	Connection profiles
	Configuring connections
	Associating a connection with a transaction
	Registering Resources
	Releasing Connections
	Pooling connections
	Managing thread requirements

	Global transactions using XA protocol
	What is the XA Resource Director?
	Distributed transaction recovery

	DirectConnect Session Managers
	Registering Resources
	Deployment issues

	Restrictions on DirectConnect access transactions
	Coexistence: DirectConnect and XA access transactions
	Integrating VisiTransact with databases using the Session Manager
	Evaluating the impact of integrating VisiTransact with databases using XA
	Using XA adds overhead
	Requiring high availability
	Locked or unavailable data
	Yielding some control

	Evaluating the impact of integrating VisiTransact with databases using DirectConnect
	Preparing databases
	Connection profile sets
	Modifying connection profiles used by Session Manager clients
	Modifying connection profiles used by XA Resource Directors

	Using the XA Resource Director
	Deploying an XA Resource Director
	Starting an XA Resource Director
	How the XA Resource Director uses connection profiles
	Deploying client-side libraries
	Shutting down an XA Resource Director remotely
	Registering the XA Resource Director with the OAD

	Starting Session Manager-based application processes
	Checking for the default path to persistent store files

	Forcing heuristics
	Performance tuning
	For XA

	Session Manager Configuration Server
	Directory structure for persistent store files
	Deploying persistent store files
	Option 1: Persistent store files on a shared file system
	Option 2: Persistent store files on each node
	Option 3: Set of persistent store files copied to each node

	Starting the Session Manager Configuration Server manually
	Shutting down the Configuration Server
	Security

	Data access using the Session Manager
	Preparing for integration
	Using the Session Manager: Summary of steps
	Obtaining a ConnectionPool object reference
	Using ConnectionPool object references

	Obtaining a Connection object from the Connection Pool
	Using explicit transaction contexts
	Optimizing connection pooling

	Getting a native connection handle
	Using the native connection handle
	Threading requirements

	Releasing a connection
	De-allocating the instance of Connection
	Viewing exceptions
	Viewing attributes
	Obtaining Session Manager information
	Using hold() and resume()
	Using hold()
	Using resume()

	Example of a simple integration
	XA implementation issues
	Completing or recovering a transaction

	DirectConnect implementation issues
	Completing or recovering a transaction

	Changing from DirectConnect to XA
	Pluggable Database Resource Module for VisiTransact
	Concepts
	What is pluggable database resource module?
	Structural descriptions

	Connection Management
	Writing a Pluggable Module
	The Connection Profiles
	The Interface Definition
	The Single Function
	The ITSDataConnection class
	Native handle acquisition interface
	Local transaction connection and completion interface
	Global transaction connection and completion interface

	Building and Running
	Running Applications using the pluggable modules

	Programming restrictions
	Known limitations
	Using the VisiBroker Console
	Overview of the VisiBroker Console
	Transaction Services section
	Session Manager Profile Sets section

	Starting the VisiBroker Console
	Starting a VisiTransact Transaction Service
	Starting the Session Manager Configuration Server
	Launching the VisiBroker Console

	Using the Transaction Services section
	Locating an instance of the Transaction Service
	Monitoring transactions
	Refreshing the transaction list
	Displaying details for specific transactions
	Controlling specific transactions
	Resolving hung or in-doubt transactions

	Filtering the transaction list
	Viewing heuristic transactions
	Viewing heuristic details
	Viewing the message log
	Filtering the message logs
	Trimming the message log

	Using the Session Manager Profile Sets section
	What are connection profiles?
	Gaining access to the Session Manager Configuration Server
	Creating and configuring a new connection profile
	Editing an existing connection profile
	Filtering the connection profiles
	Deleting a connection profile
	Refreshing the list of connection profiles

	Server Application Model
	Server Application transaction and database management
	Requirements before reading this section
	Concepts and terminology

	Scenarios of global transaction and PMT
	Client-initiated global 2PC and 1PC transactions
	Transparent server-initiated transactions with PMT

	PMT overview
	PMT transaction attribute values
	A simple example
	PMT::Current and connection name

	XA resources configuration
	xa-resource-descriptor
	xa-resource
	xa-connection
	xa-resource-alias
	An example of XA resource descriptor

	VisiTransact properties
	vbroker.its.its6xmode=< false|true>
	vbroker.its.verbose=<false|true>
	vbroker.its.xadesc=<xa-resource xml file name>

	RM recovery utility
	XA Session Manager for Oracle OCI, version 9i Client
	Overview
	Who should read this chapter

	Oracle9i software requirements
	Client requirements
	Server requirements

	Oracle9i installation and configuration issues
	Installation requirements
	Database configuration
	DBA_PENDING_TRANSACTIONS view

	Required environment variables
	Session Manager connection profile attributes
	Using the Session Manager with the OCI 9i API
	Programming restrictions
	Troubleshooting
	VisiTransact message log
	Using the xa_trc files
	Distributed update problems
	Data access failures
	Lock from in-doubt transaction
	Transaction timeout

	Oracle error messages

	Forcing heuristic completion
	DirectConnect Session Manager for Oracle OCI, version 9i Client
	Overview
	Who should read this chapter

	Oracle9i software requirements
	Client requirements
	Server requirements

	Oracle9i installation and configuration issues
	Installation requirements
	Database configuration

	Required environment variables
	Session Manager connection profile attributes
	Using the Session Manager with the OCI 9i API
	Programming restrictions
	Troubleshooting
	VisiBroker VisiTransact message log
	Oracle error messages

	Commands, utilities, arguments, and environment variables
	Overview of VisiTransact commands
	vbconsole
	Syntax
	Example
	Arguments

	ots
	Syntax
	Example
	Arguments

	smconfig_server
	Syntax
	Example
	Arguments

	vshutdown
	Syntax
	Example
	Arguments

	xa_resdir
	Syntax
	Example
	Arguments

	VisiTransact utilities
	smconfigsetup
	Creating a profile for use with the Session Manager

	Command-line arguments for applications
	Passing command-line arguments to ORB_init() using argc and argv
	Arguments for applications that originate transactions
	Arguments for applications with an embedded VisiTransact Transaction Service instance
	Arguments for applications that use the Session Manager

	Environment variables
	Error codes
	VisiTransact common error codes
	VisiTransact Transaction Service error codes
	Session Manager error codes
	VisiTransact transaction log error codes
	Problem determination
	General approaches
	Dealing with problems in transactions
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

