
Artix 5.6.3

Deployment
Guide: Java

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK

http://www.microfocus.com

Copyright © Micro Focus 2015. All rights reserved.

MICRO FOCUS, the Micro Focus logo and Micro Focus Licensing are trademarks or
registered trademarks of Micro Focus IP Development Limited or its subsidiaries or
affiliated companies in the United States, United Kingdom and other countries.
All other marks are the property of their respective owners.

2015-03-12

http://www.microfocus.com/

Artix Deployment Guide: Java iii

Contents

Preface ... v
What is Covered in This Book .. v
Who Should Read This Book ... v
Organization of this Guide .. v
The Artix Documentation Library .. vi
Further Information and Product Support vi

Information We Need... vi
Contact information ...vii

Artix for Java Configuration Overview1
Artix Configuration Files ... 1
Making Your Configuration File Available 3

Setting Up Your Environment5
Using the Artix Environment Script... 5
Artix for Java Environment Variables .. 5
Customizing your Environment Script 6

Configuring Artix Endpoints...................................9
Configuring Service Providers.. 9

Using the jaxws:endpoint Element .. 9
Using the jaxws:server Element.. 13
Adding Functionality to Service Providers................................... 16

Configuring Consumer Endpoints ... 18
Basic Configuration Properties ... 18

Artix for Java Logging ... 61
Overview of Artix for Java Logging ... 61
Simple Example of Using Logging .. 62
Default logging.properties File ... 63

Configuring Logging Levels .. 65
Enabling Logging at the Command Line 66
Logging for Subsystems and Services 66
Logging Message Content ... 68

Deploying to the Spring Container 81
Introduction ... 81
Running the Spring Container ... 82
Deploying an Artix Endpoint .. 83
Managing the Container using the JMX Console 86
Managing the Container using the Web Service Interface 88
Spring Container Definition File ... 89
Running Multiple Containers on Same Host 91

iv Artix Deployment Guide: Java

Deploying to a Servlet Container 99
Introduction ...99
Configuring the Servlet Container ... 100
Using the CXF Servlet... 101
Using a Custom Servlet .. 104
Using the Spring Context Listener .. 107

Deploying WS-Addressing..................................110
Introduction to WS-Addressing .. 110
WS-Addressing Interceptors .. 110
Enabling WS-Addressing ... 111
Configuring WS-Addressing Attributes 112

Enabling Reliable Messaging115
Introduction to WS-RM ... 115
WS-RM Interceptors... 116
Enabling WS-RM.. 118
Configuring WS-RM .. 121

Configuring Artix-Specific WS-RM Attributes 121
Configuring Standard WS-RM Policy Attributes 122
WS-RM Configuration Use Cases.. 126

Configuring WS-RM Persistence.. 129

Enabling High Availability131
Introduction to High Availability ... 131
Enabling HA with Static Failover ... 132

Configuring HA with Static Failover .. 134
Enabling HA with Dynamic Failover 135

Configuring HA with Dynamic Failover 137

Publishing WSDL Contracts139
Artix WSDL Publishing Service ... 139
Configuring the WSDL Publishing Service 140
Configuring for Use in a Servlet Container.............................. 143
Querying the WSDL Publishing Service 153

Appendix Artix Binding IDs153

Artix Deployment Guide: Java v

Preface
What is Covered in This Book

This book explains how to configure and deploy Artix for Java
Runtime services and applications, including those written in
JAX-WS and JavaScript.

Who Should Read This Book
The main audience of this book is Artix system
administrators. However, anyone involved in designing a
large-scale Artix solution will find this book useful.

Knowledge of specific middleware or messaging transports is
not required to understand the general topics discussed in
this book. However, if you are using this book as a guide to
deploying runtime systems, you should have a working
knowledge of the middleware transports that you intend to
use in your Artix solutions.

Organization of this Guide
This guide is divided into the following chapters:

• Artix Configuration Overview describes Artix Java
configuration files.

• Setting Up Your Environment describes how to set up your
Artix Java environment.

• Configuring Artix Endpoints describes how to configure
Artix Java endpoints.

• Artix Logging describes how to use logging.

• Deploying to a Servlet Container describes how to deploy an
Artix Java endpoint to a servlet container.

• Deploying WS-Addressing describes how to configure Artix
Java endpoints to use WS-Addressing.

• Enabling Reliable Messaging describes how to enable and
configure Web Services Reliable Messaging (WS-RM).

• Enabling High Availability describes how to enable and
configure both static failover and dynamic failover.

• Publishing WSDL Contracts describes how to enable the Artix
Java WSDL publishing service.

vi Artix Deployment Guide: Java

The Artix Documentation Library
For information on the organization of the Artix library, the
document conventions used, and where to find additional
resources, see Using the Artix Library: Java.

Further Information and Product Support
Additional technical information or advice is available from
several sources.

The product support pages contain a considerable amount of
additional information, such as:

• The WebSync service, where you can download fixes and
documentation updates.

• The Knowledge Base, a large collection of product tips and
workarounds.

• Examples and Utilities, including demos and additional
product documentation.

Note:
Some information may be available only to customers who
have maintenance agreements.

If you obtained this product directly from Micro Focus, contact
us as described on the Micro Focus Web site,
http://www.microfocus.com. If you obtained the product from
another source, such as an authorized distributor, contact
them for help first. If they are unable to help, contact us.

Information We Need

However you contact us, please try to include the information
below, if you have it. The more information you can give, the
better Micro Focus SupportLine can help you. But if you don't
know all the answers, or you think some are irrelevant to
your problem, please give whatever information you have.

• The name and version number of all products that you
think might be causing a problem.

• Your computer make and model.

• Your operating system version number and details of any
networking software you are using.

• The amount of memory in your computer.

• The relevant page reference or section in the
documentation.

http://communities.progress.com/pcom/docs/DOC-105909
http://www.microfocus.com/

Artix Deployment Guide: Java vii

• Your serial number. To find out these numbers, look in the
subject line and body of your Electronic Product Delivery
Notice email that you received from Micro Focus.

Contact information

Our Web site gives up-to-date details of contact numbers and
addresses.

Additional technical information or advice is available from
several sources.

The product support pages contain considerable additional
information, including the WebSync service, where you can
download fixes and documentation updates. To connect, enter
http://www.microfocus.com in your browser to go to the Micro
Focus home page.

If you are a Micro Focus SupportLine customer, please see
your SupportLine Handbook for contact information. You can
download it from our Web site or order it in printed form from
your sales representative. Support from Micro Focus may be
available only to customers who have maintenance
agreements.

You may want to check these URLs in particular:

• http://www.microfocus.com/products/corba/artix.aspx
(trial software download and Micro Focus Community files)

• https://supportline.microfocus.com/productdoc.aspx
(documentation updates and PDFs)

To subscribe to Micro Focus electronic newsletters, use the
online form at:

http://www.microfocus.com/Resources/Newsletters/infocus/newslett
er-subscription.asp

http://www.microfocus.com/
http://www.microfocus.com/products/corba/artix.aspx
https://supportline.microfocus.com/productdoc.aspx
http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-subscription.asp
http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-subscription.asp

Artix Deployment Guide: Java 1

Artix for Java
Configuration
Overview
Artix takes a minimalist approach to requiring configuration.
However, it provides a large number of options for providing
configuration data.

Artix adopts an approach of zero configuration, or
configuration by exception. Configuration is required only if
you want to either customize the runtime to exhibit non-
default behavior or if you want to activate some of the more
advanced features.

Artix for Java supports a number of configuration methods if
you want to change the default behavior, enable specific
functionality or fine-tune a component’s behavior. The
supported configuration methods include:

• Spring XML configuration

• WS-Policy statements

• WSDL extensions

Spring XML configuration is, however, the most versatile way to
configure Artix and is the recommended approach to use.

Artix Configuration Files
Artix for Java leverages the Spring framework to inject
configuration information into the runtime when it starts up. The
XML configuration file used to configure applications is a Spring
XML file that contains some Artix specific elements.

Spring framework
Spring is a layered Java/J2EE application framework. Artix
leverages the Spring core and uses the principles of Inversion of
Control and Dependency Injection.

For more information on the Spring framework, see http://
www.springframework.org. Of particular relevance is Chapter 3
of the Spring reference guide, The IoC container.

For more information on inversion of control and dependency
injection, see http://martinfowler.com/articles/injection.html.

http://www.springframework.org/
http://www.springframework.org/
http://static.springframework.org/spring/docs/2.0.x/reference/beans.html
http://static.springframework.org/spring/docs/2.0.x/reference/beans.html
http://static.springframework.org/spring/docs/2.0.x/reference/beans.html
http://martinfowler.com/articles/injection.html

2 Artix Deployment Guide: Java

Configuration namespace
The core Artix configuration elements are defined in the
http://cxf.apache.org/jaxws namespace. You must add the
entry shown in Example 1 to the beans element of your
configuration file.

Example 1. Namespace

Advanced features, like WS-Addressing and WS-RM, require the
use of elements in other namespaces. The SOAP and JMS
transports also use elements defined in different namespaces.
You must add those namespaces when configuring those
features.

Schema location
Spring XML files use the beans element's xsi:schemaLocation
attribute to locate the schemas required to validate the
elements used in the document. The xsi:schemaLocation attribute
is a list of namespaces, and the schema in which the namespace
is defined. Each namespace/schema combination is defined as
a space delimited pair.

You should add the Artix configuration schemas to the list of
schemas in the attribute as shown in Example 2.

Example 2. Adding the JAX-WS Schema to the
Configuration File

Sample configuration file
Example 3 shows a simplified example of an Artix configuration
file.

<beans ...
xmlns:jaxws="http://cxf.apache.org/jaxws
...>

<beans ...
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-
2.0.xsd

http://cxf.apache.org/jaxws
http://cxf.apache.org/schemas/jaxws.xsd
...">

http://cxf.apache.org/jaxws
http://cxf.apache.org/jaxws
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-
http://www.springframework.org/schema/beans/spring-beans-
http://cxf.apache.org/jaxws
http://cxf.apache.org/schemas/jaxws.xsd

Artix Deployment Guide: Java 3

Example 3. Artix Configuration File

The following describes Example 3:

❶ An Artix configuration file is actually a Spring XML file. You
must include an opening Spring beans element that declares
the namespaces and schema files for the child elements that
are encapsulated by the beans element.

❷ Before using the Artix configuration elements, you must
declare its namespace in the configuration's root element.

❸ In order for the runtime and the tooling to ensure that your
configuration file is valid, you need to add the proper entries
to the schema location list.

❹ The contents of the configuration depends on the behavior
you want exhibited by the runtime. You can use:

• Artix specific elements

• Plain Spring XML bean elements

Making Your Configuration File Available
You can make the configuration file available to the Artix for Java
runtime in one of the following ways:

• Name the configuration file cxf.xml and add it your CLASSPATH.

• Use one of the following command-line flags to point to the
configuration file:

-Dcxf.config.file=myCfgResource

-Dcxf.config.file.url=myCfgURL

This allows you to save the configuration file anywhere on
your system and avoid adding it to your CLASSPATH. It also
means you can give your configuration file any name you
want.

<beans xmlns="http://www.springframework.org/schema/beans" ❶
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:jaxws="http://cxf.apache.org/jaxws" ❷
...
xsi:schemaLocation="

 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-2.0.xsd

 http://cxf.apache.org/jaxws ❸
 http://cxf.apache.org/schemas/jaxws.xsd">

<!-- your configuration goes here! --> ❹

</beans>

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://cxf.apache.org/jaxws
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
http://cxf.apache.org/jaxws
http://cxf.apache.org/schemas/jaxws.xsd

4 Artix Deployment Guide: Java

This is a useful approach for portable JAX-WS applications.
It is also the method used in most of the Artix samples. For
example, in the WS-Addressing sample, located in the
InstallDir/samples/ws-addressing directory, the server start
command specifies the server.xml configuration file as
follows:

java -Dcxf.config.file=server.xml demo.ws_addressing.server.Server

NOTE: In this example, the start command is run from the directory
in which the server.xml file resides.

• Programmatically, by creating a bus and passing the
configuration file location as either a URL or string. For
example:

(new SpringBusFactory()).createBus(URL myCfgURL)
(new SpringBusFactory()).createBus(String myCfgResource)

Artix Deployment Guide: Java 5

Setting Up Your
Environment
This chapter explains how to set-up your Artix Java runtime
system environment.

Using the Artix Environment Script
To use the Artix runtime environment, the host computer must
have several environment variables set. Set these variables using
the artix_java_env script.

Running the artix_java_env script
The Artix installation process creates a script named
artix_java_env, which captures the information required to
set your host’s environment variables. Running this script
configures your system to use the Artix Java runtime. The
script is located in the InstallDir/bin folder.

Artix for Java Environment Variables
This section describes the following environment variables in
more detail:

• ARTIX_JAVA_HOME

• CXF_HOME

• JAVA_HOME

• ANT_HOME

• PATH

• CAMEL_HOME

NOTE: You do not have to manually set your environment variables.
You can configure them during installation, or you can set them later by
running the provided artix_java_env script.

6 Artix Deployment Guide: Java

Environment variables
The environment variables are explained in Table 1.

Table 1. Artix Environment Variables

Variable Description

ARTIX_JAVA_HOME Specifies the top level of your Artix installation. For
example, on Windows, if you install Artix into the
C:\Artix directory, ARTIX_JAVA_HOME should be set
to C:\Artix.

CXF_HOME Specifies the top level of your Artix installation. For
example, on Windows, if you install Artix into the
C:\Artix directory, CXF_HOME should be set to
C:\Artix.

JAVA_HOME Specifies the directory path to your system JDK.

ANT_HOME Specifies the directory path to the ant utility. The
default location is InstallDir\tools\ant.

CAMEL_HOME Specifies the directory path of the Apache Camel
libraries. The default location is
InstallDir\lib\camel.

PATH The Artix bin directories are prepended on the PATH
to ensure that the proper libraries, configuration
files, and utility programs are used.

Customizing your Environment Script
The artix_java_env script sets the Artix environment variables
using values obtained from the installer. The script checks each
one of these settings in sequence, and updates them, where
appropriate.

The artix_java_env script is designed to suit most needs.
However, if you want to customize it for your own purposes,
note the points described in this section.

Before you begin
You can only run the artix_java_env script once in any console
session. If you run this script a second time, it exits without
completing. This prevents your environment from becoming
bloated with duplicate information (for example, on your PATH and
CLASSPATH). In addition, if you introduce any errors when
customizing the artix_java_env script, it also exits without
completing.

This feature is controlled by the ARTIX_JAVA_ENV_SET variable,
which is local to the artix_java_env script. ARTIX_JAVA_ENV_SET
is set to true the first time you run the script in a console; this
causes the script to exit when run again.

Artix Deployment Guide: Java 7

Environment variables
JAVA_HOME defaults to the value obtained from the installer. If you
do not manually set this variable before running
artix_java_env, it takes its value from the installer.

Artix Deployment Guide: Java 9

Configuring Artix
Endpoints
Artix endpoints are configured using one of three Spring
configuration elements. The correct element depends on what
type of endpoint you are configuring and which features you
wish to use. For consumers you use the jaxws:client element.
For service providers you can use either the jaxws:endpoint
element or the jaxws:server element.

The information used to define an endpoint is typically defined in
the endpoint's contract. You can use the configuration element's
to override the information in the contract. You can also use the
configuration elements to provide information that is not
provided in the contract.

NOTE: When dealing with endpoints developed using a Java-first
approach it is likely that the SEI serving as the endpoint's contract is
lacking information about the type of binding and transport to use.

You must use the configuration elements to activate advanced
features such as WS-RM. This is done by providing child
elements to the endpoint's configuration element.

Configuring Service Providers
Artix has two elements that can be used to configure a service
provider:

• jaxws:endpoint

• jaxws:server

The differences between the two elements are largely internal to
the runtime. The jaxws:endpoint element injects properties into
the org.apache.cxf.jaxws.EndpointImpl object created to support a
service endpoint. The jaxws:server element injects properties
into the org.apache.cxf.jaxws.support.JaxWsServerFactoryBean
object created to support the endpoint. The EndpointImpl object
passes the configuration data to the JaxWsServerFactoryBean
object. The JaxWsServerFactoryBean object is used to create the
actual service object. Because either configuration element will
configure a service endpoint, you can choose based on the
syntax you prefer.

Using the jaxws:endpoint Element

The jaxws:endpoint element is the default element for configuring
JAX-WS service providers. Its attributes and children specify all
of the information needed to instantiate a service provider.

10 Artix Deployment Guide: Java

Many of the attributes map to information in the service's
contract. The children are used to configure interceptors and
other advanced features.

Identifying the endpoint being configured
For the runtime to apply the configuration to the proper service
provider, it must be able to identify it. The basic means for
identifying a service provider is to specify the class that
implements the endpoint. This is done using the jaxws:endpoint
element's implementor attribute.

For instances where different endpoint's share a common
implementation, it is possible to provide different configuration
for each endpoint. There are two approaches for distinguishing a
specific endpoint in configuration:

• a combination of the serviceName attribute and the
endpointName attribute

The serviceName attribute specifies the wsdl:service element
defining the service's endpoint. The endpointName attribute
specifies the specific wsdl:port element defining the service's
endpoint. Both attributes are specified as QNames using
the format ns:name. ns is the namespace of the element and
name is the value of the element's name attribute.

TIP: If the wsdl:service element only has one wsdl:port
element, the endpointName attribute can be omitted.

• the name attribute

The name attribute specifies the QName of the specific
wsdl:port element defining the service's endpoint. The
QName is provided in the format {ns}localPart. ns is the
namespace of the wsdl:port element and localPart is the
value of the wsdl:port element's name attribute.

Attributes
The attributes of the jaxws:endpoint element configure the basic
properties of the endpoint. These properties include the address
of the endpoint, the class that implements the endpoint, and
the bus that hosts the endpoint.

Artix Deployment Guide: Java 11

Table 2 describes the attribute of the jaxws:endpoint element.

Table 2. Attributes for Configuring a JAX-WS Service
Provider Using the jaxws:endpoint Element

Attribute Description

id Specifies a unique identifier that other configuration
elements can use to refer to the endpoint.

implementor Specifies the class implementing the service. You
can specify the implementation class using either
the class name or an ID reference to a Spring bean
configuring the implementation class. This class
must be on the classpath.

implementorClass Specifies the class implementing the service. This
attribute is useful when the value provided to the
implementor attribute is a reference to a bean that is
wrapped using Spring AOP.

address Specifies the address of an HTTP endpoint. This value
overrides the value specified in the services contract.

wsdlLocation Specifies the location of the endpoint's WSDL
contract. The WSDL contract's location is relative to
the folder from which the service is deployed.

endpointName Specifies the value of the service's wsdl:port element's
name attribute. It is specified as a QName using the
format ns:name where ns is the namespace of the
wsdl:port element.

serviceName Specifies the value of the service's wsdl:service
element's name attribute. It is specified as a QName
using the format ns:name where ns is the namespace of
the wsdl:service element.

publish Specifies if the service should be automatically
published. If this is set to false, the developer must
explicitly publish the endpoint as described in
Publishing a Service in Developing Artix
Applications with JAX-WS and JAX-RS

bus Specifies the ID of the Spring bean configuring the
bus used to manage the service endpoint. This is
useful when configuring several endpoints to use a
common set of features.

bindingUri Specifies the ID of the message binding the service
uses. A list of valid binding IDs is provided in Artix
Binding IDs.

12 Artix Deployment Guide: Java

Attribute Description

name Specifies the stringified QName of the service's
wsdl:port element. It is specified as a QName using
the format {ns}localPart. ns is the namespace of
the wsdl:port element and localPart is the value of
the wsdl:port element's name attribute.

abstract Specifies if the bean is an abstract bean. Abstract
beans act as parents for concrete bean definitions
and are not instantiated. The default is false.
Setting this to true instructs the bean factory not to
instantiate the bean.

depends-on Specifies a list of beans that the endpoint depends on
being instantiated before it can be instantiated.

createdFromAPI Specifies that the user created that bean using Artix
APIs, such as Endpoint.publish() or Service.getPort().
The default is false.

Setting this to true does the following:

1. Changes the internal name of the bean by
appending .jaxws-endpoint to its id

2. Makes the bean abstract

In addition to the attributes listed in Table 2, you might need to
use multiple xmlns:shortName attributes to declare the namespaces
used by the endpointName and serviceName attributes.

Example
Example 4 shows the configuration for a JAX-WS endpoint that
specifies the address where the endpoint is published. The
example assumes that you want to use the defaults for all other
values or that the implementation has specified values in the
annotations.

Example 4. Simple JAX-WS Endpoint Configuration

<beans
... xmlns:jaxws="http://cxf.apache.org/jaxws"
...
schemaLocation="...
http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd
...">

<jaxws:endpoint id="example"
implementor="org.apache.cxf.example.DemoImpl"
address="http://localhost:8080/demo" />

</beans>

http://cxf.apache.org/jaxws
http://cxf.apache.org/jaxws
http://cxf.apache.org/schemas/jaxws.xsd

Artix Deployment Guide: Java 13

Example 5 shows the configuration for a JAX-WS endpoint whose
contract contains two service definitions. In this case, you must
specify which service definition to instantiate using the
serviceName attribute.

Example 5. JAX-WS Endpoint Configuration with a Service
Name

The xmlns:samp attribute specifies the namespace in which the
WSDL service element is defined.

Using the jaxws:server Element

The jaxws:server element is an element for configuring JAX-WS
service providers. It injects the configuration information into
the org.apache.cxf.jaxws.support.JaxWsServerFactoryBean. This is
an Artix specific object. If you are using a pure Spring approach
to building your services, you will not be forced to use Artix
specific APIs to interact with the service.

The attributes and children of the jaxws:server element specify
all of the information needed to instantiate a service provider.
The attributes specify the information that is required to
instantiate an endpoint. The children are used to configure
interceptors and other advanced features.

Identifying the endpoint being configured
In order for the runtime to apply the configuration to the proper
service provider, it must be able to identify it. The basic means for
identifying a service provider is to specify the class that
implements the endpoint. This is done using the jaxws:server
element's serviceBean attribute.

For instances where different endpoint's share a common
implementation, it is possible to provide different configuration
for each endpoint. There are two approaches for distinguishing a
specific endpoint in configuration:

• a combination of the serviceName attribute and the
endpointName attribute

The serviceName attribute specifies the wsdl:service element
defining the service's endpoint. The endpointName attribute
specifies the specific wsdl:port element defining the service's

<beans ... xmlns:jaxws="http://cxf.apache.org/jaxws"
...
schemaLocation="...
http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd
...">

<jaxws:endpoint id="example2"
implementor="org.apache.cxf.example.DemoImpl"
serviceName="samp:demoService2"
xmlns:samp="http://org.apache.cxf/wsdl/example" />
</beans>

http://cxf.apache.org/jaxws
http://cxf.apache.org/jaxws
http://cxf.apache.org/schemas/jaxws.xsd
http://org.apache.cxf/wsdl/example
http://org.apache.cxf/wsdl/example

14 Artix Deployment Guide: Java

endpoint. Both attributes are specified as QNames using
the format ns:name. ns is the namespace of the element and
name is the value of the element's name attribute.

TIP: If the wsdl:service element only has one wsdl:port element,
the endpointName attribute can be omitted.

• the name attribute

The name attribute specifies the QName of the specific
wsdl:port element defining the service's endpoint. The
QName is provided in the format {ns}localPart. ns is the
namespace of the wsdl:port element and localPart is the
value of the wsdl:port element's name attribute.

Attributes
The attributes of the jaxws:server element configure the basic
properties of the endpoint. These properties include the
address of the endpoint, the class that implements the
endpoint, and the bus that hosts the endpoint.

Table 3 describes the attribute of the jaxws:server element.

Table 3. Attributes for Configuring a JAX-WS Service
Provider Using the jaxws:server Element

Attribute Description

id Specifies a unique identifier that other configuration
elements can use to refer to the endpoint.

serviceBean Specifies the class implementing the service. You can
specify the implementation class using either the
class name or an ID reference to a Spring bean
configuring the implementation class. This class must
be on the classpath.

serviceClass Specifies the class implementing the service. This
attribute is useful when the value provided to the
implementor attribute is a reference to a bean that is
wrapped using Spring AOP.

address Specifies the address of an HTTP endpoint. This
value will override the value specified in the services
contract.

wsdlLocation Specifies the location of the endpoint's WSDL
contract. The WSDL contract's location is relative
to the folder from which the service is deployed.

Artix Deployment Guide: Java 15

Attribute Description

endpointName Specifies the value of the service's wsdl:port element's
name attribute. It is specified as a QName using the
format ns:name, where ns is the namespace of the
wsdl:port element.

serviceName Specifies the value of the service's wsdl:service
element's name attribute. It is specified as a QName
using the format ns:name, where ns is the namespace of
the wsdl:service element.

start Specifies if the service should be automatically
published. If this is set to false, the developer must
explicitly publish the endpoint as described in
Publishing a Service in Developing Artix
Applications with JAX-WS and JAX-RS.

bus Specifies the ID of the Spring bean configuring the bus
used to manage the service endpoint. This is useful
when configuring several endpoints to use a common
set of features.

bindingId Specifies the ID of the message binding the service
uses. A list of valid binding IDs is provided in Artix
Binding IDs.

name Specifies the stringified QName of the service's
wsdl:port element. It is specified as a QName using
the format {ns}localPart, where ns is the namespace of
the wsdl:port element and localPart is the value of
the wsdl:port element's name attribute.

abstract Specifies if the bean is an abstract bean. Abstract
beans act as parents for concrete bean definitions and
are not instantiated. The default is false. Setting this
to true instructs the bean factory not to instantiate the
bean.

depends-on Specifies a list of beans that the endpoint depends on
being instantiated before the endpoint can be
instantiated.

createdFromAPI Specifies that the user created that bean using Artix
APIs, such as Endpoint.publish() or Service.getPort().
The default is false.

Setting this to true does the following:

1. Changes the internal name of the bean by
appending .jaxws-endpoint to its id

2. Makes the bean abstract

16 Artix Deployment Guide: Java

In addition to the attributes listed in Table 3, you might need to
use multiple xmlns:shortName attributes to declare the namespaces
used by the endpointName and serviceName attributes.

Example
Example 6 shows the configuration for a JAX-WS endpoint that
specifies the address where the endpoint is published.

Example 6. Simple JAX-WS Server Configuration

Adding Functionality to Service Providers

The jaxws:endpoint and the jaxws:server elements provide the
basic configuration information needed to instantiate a service
provider. To add functionality to your service provider or to
perform advanced configuration you must add child elements to
the configuration.

Child elements allow you to do the following:

• Change the endpoint's logging behavior

• Add interceptors to the endpoint's messaging chain

• Enable WS-Addressing features

• Enable reliable messaging

<beans ...
xmlns:jaxws="http://cxf.apache.org/jaxws"
...
schemaLocation="...
http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd
...">

<jaxws:server id="exampleServer"
serviceBean="org.apache.cxf.example.DemoImpl"
address="http://localhost:8080/demo" />

</beans>

xmlns:jaxws=%22http://cxf.apache.org/jaxws%22
xmlns:jaxws=%22http://cxf.apache.org/jaxws%22
http://cxf.apache.org/jaxws
http://cxf.apache.org/schemas/jaxws.xsd

Artix Deployment Guide: Java 17

Elements
Table 4 describes the child elements that jaxws:endpoint
supports.

Table 4. Elements Used to Configure JAX-WS Service
Providers

Element Description

jaxws:handlers Specifies a list of JAX-WS Handler implementations
for processing messages. For more information
on JAX-WS Handler implementations see Writing
Handlers in Developing Artix Applications
with JAX-WS and JAX-RS.

jaxws:inInterceptors Specifies a list of interceptors that process
inbound requests.

jaxws:inFaultInterceptors Specifies a list of interceptors that process
inbound fault messages.

jaxws:outInterceptors Specifies a list of interceptors that process
outbound replies.

jaxws:outFaultInterceptors Specifies a list of interceptors that process
outbound fault messages.

jaxws:binding Specifies a bean configuring the message binding
used by the endpoint. Message bindings are
configured using implementations of the
org.apache.cxf.binding.BindingFactory interface.
The SOAP binding is configured using the
soap:soapBinding bean.

jaxws:dataBinding
Specifies the class implementing the data
binding used by the endpoint. This is specified
using an embedded bean definition.

The jaxws:endpoint element does not support
the jaxws:dataBinding element.

jaxws:executor Specifies a Java executor that is used for the
service. This is specified using an embedded bean
definition.

jaxws:features Specifies a list of beans that configure advanced
features of Artix for Java. You can provide either
a list of bean references or a list of embedded
beans.

http://www.iona.com/support/docs/artix/5.5/jaxws_pguide/jaxws_pguide.pdf

18 Artix Deployment Guide: Java

Element Description

jaxws:invoker Specifies an implementation of the
org.apache.cxf.service.Invoker interface used by
the service.

The Invoker implementation controls how a
service is invoked. For example, it controls
whether each request is handled by a new
instance of the service implementation or if state
is preserved across invocations.

jaxws:properties Specifies a Spring map of properties that are
passed along to the endpoint. These properties
can be used to control features like enabling
MTOM support.

jaxws:serviceFactory Specifies a bean configuring the
JaxWsServiceFactoryBean object used to instantiate
the service.

Configuring Consumer Endpoints
JAX-WS consumer endpoints are configured using the jaxws:client
element. The element's attributes provide the basic information
necessary to create a consumer.

To add other functionality, like WS-RM, to the consumer you add
children to the jaxws:client element. Child elements are also
used to configure the endpoint's logging behavior and to inject
other properties into the endpoint's implementation.

Basic Configuration Properties

The attributes described in Table 5 provide the basic
information necessary to configure a JAX-WS consumer. You
only need to provide values for the specific properties you want
to configure. Most of the properties have sensible defaults, or
they rely on information provided by the endpoint's contract.

Table 5. Attributes Used to Configure a JAX-WS Consumer

Attribute Description

address Specifies the HTTP address of the endpoint where the
consumer will make requests. This value overrides the
value set in the contract.

bindingId Specifies the ID of the message binding the consumer
uses. A list of valid binding IDs is provided in Artix
Binding IDs.

Artix Deployment Guide: Java 19

Attribute Description

bus Specifies the ID of the Spring bean configuring the bus
managing the endpoint.

endpointName Specifies the value of the wsdl:port element's name
attribute for the service on which the consumer is
making requests. It is specified as a QName using the
format ns:name, where ns is the namespace of the
wsdl:port element.

serviceName Specifies the value of the wsdl:service element's name
attribute for the service on which the consumer is
making requests. It is specified as a QName using the
format ns:name where ns is the namespace of the
wsdl:service element.

username Specifies the username used for simple
username/password authentication.

Password Specifies the password used for simple
username/password authentication.

serviceClass Specifies the name of the service endpoint
interface(SEI).

wsdlLocation Specifies the location of the endpoint's WSDL contract.
The WSDL contract's location is relative to the folder
from which the client is deployed.

Name Specifies the stringified QName of the wsdl:port element
for the service on which the consumer is making requests.
It is specified as a QName using the format {ns}localPart,
where ns is the namespace of the wsdl:port element and
localPart is the value of the wsdl:port element's name
attribute.

Abstract Specifies if the bean is an abstract bean. Abstract beans
act as parents for concrete bean definitions and are not
instantiated. The default is false. Setting this to true
instructs the bean factory not to instantiate the bean.

depends-on Specifies a list of beans that the endpoint depends on
being instantiated before it can be instantiated.

createdFromAPI Specifies that the user created that bean using Artix APIs
like Service.getPort(). The default is false.

Setting this to true does the following:

1. Changes the internal name of the bean by
appending .jaxws-client to its id

3. Makes the bean abstract

In addition to the attributes listed in Table 5 it might be
necessary to use multiple xmlns:shortName attributes to declare the

20 Artix Deployment Guide: Java

namespaces used by the endpointName and the serviceName
attributes.

Adding functionality
To add functionality to your consumer or to perform advanced
configuration, you must add child elements to the configuration.
Child elements allow you to do the following:

• Change the endpoint's logging behavior

• Add interceptors to the endpoint's messaging chain

• Enable WS-Addressing features

• Enable reliable messaging

Table 6 describes the child elements you can use to configure
JAX-WS consumer.

Table 6. Elements For Configuring a Consumer Endpoint

Element Description

jaxws:binding Specifies a bean configuring the message
binding used by the endpoint. Message
bindings are configured using implementations
of the org.apache.cxf.binding.BindingFactory
interface.

The SOAP binding is configured using the
soap:soapBinding bean.

jaxws:dataBinding Specifies the class implementing the data
binding used by the endpoint. You specify this
using an embedded bean definition. The class
implementing the JAXB data binding is
org.apache.cxf.jaxb.JAXBDataBinding.

jaxws:features Specifies a list of beans that configure
advanced features of Artix. You can provide
either a list of bean references or a list of
embedded beans.

jaxws:handlers Specifies a list of JAX-WS Handler
implementations for processing messages. For
more information in JAX-WS Handler
implementations see Writing Handlers in
Developing Artix Applications with JAX-WS
and JAX-RS.

jaxws:inInterceptors Specifies a list of interceptors that process
inbound responses.

jaxws:inFaultInterceptors Specifies a list of interceptors that process
inbound fault messages.

Artix Deployment Guide: Java 21

Element Description

jaxws:outInterceptors Specifies a list of interceptors that process
outbound requests.

jaxws:outFaultInterceptors Specifies a list of interceptors that process
outbound fault messages.

jaxws:properties Specifies a map of properties that are passed
to the endpoint.

jaxws:conduitSelector Specifies an
org.apache.cxf.endpoint.ConduitSelector
implementation for the client to use. A
ConduitSelector implementation will override
the default process used to select the Conduit
object that is used to process outbound
requests.

Example
Example 7 shows a simple consumer configuration.

Example 7. Simple Consumer Configuration

<beans ... xmlns:jaxws="http://cxf.apache.org/jaxws"
...
schemaLocation="...
http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd
...">

<jaxws:client id="bookClient"
serviceClass="org.apache.cxf.demo.BookClientImpl"
address="http://localhost:8080/books"/>

...
</beans>

http://cxf.apache.org/jaxws
http://cxf.apache.org/jaxws
http://cxf.apache.org/schemas/jaxws.xsd

Artix Deployment Guide: Java 61

Artix for Java Logging
This chapter describes how to configure logging in the Artix
runtime.

Overview of Artix for Java Logging
Artix for Java uses the Java logging utility, java.util.logging.
Logging is configured in a logging configuration file that is
written using the standard java.util.Properties format. To run
logging on an application, you can specify logging
programmatically or by defining a property at the command
that points to the logging configuration file when you start the
application.

Default logging.properties file
Artix comes with a default logging.properties file, which is
located in your InstallDir/etc directory. This file configures both
the output destination for the log messages and the message
level that is published. The default configuration sets the loggers
to print message flagged with the WARNING level to the console.
You can either use the default file without changing any of the
configuration settings or you can change the configuration
settings to suit your specific application.

Logging feature
Artix includes a logging feature that can be plugged into your
client or your service to enable logging. Example 8 shows the
configuration to enable the logging feature.

Example 8. Configuration for Enabling Logging

For more information, see Logging Message Content.

Where to begin?
To run a simple example of logging follow the instructions
outlined in a Simple Example of Using Logging.

For more information on how logging works in Artix, read this
entire chapter.

More information on java.util.logging
The java.util.logging utility is one of the most widely used Java
logging frameworks. There is a lot of information available
online that describes how to use and extend this framework. As
a starting point, however, the following document gives a good

<jaxws:endpoint...>
 <jaxws:features>

<bean class="org.apache.cxf.feature.LoggingFeature"/>
 </jaxws:features>
</jaxws:endpoint>

62 Artix Deployment Guide: Java

overview of java.util.logging,
https://docs.oracle.com/javase/6/docs/api/java/util/logging/p
ackage-summary.html.

Simple Example of Using Logging
Changing the log levels and output destination
To change the log level and output destination of the log
messages in the wsdl_first sample application, complete the
following steps:

1. Run the sample server as described in the Running the demo
using java section of the README.txt file in the
InstallDir/samples/wsdl_first directory. Note that the server
start command specifies the default logging.properties file, as
follows:

Platform Command

Windows start java
-Djava.util.logging.config.file=%ARTIX_JAVA_HOME%\etc\
logging.properties demo.hw.server.Server

UNIX Java
-Djava.util.logging.config.file=$ARTIX_JAVA_HOME/etc/
logging.properties demo.hw.server.Server &

The default logging.properties file is located in the
InstallDir/etc directory. It configures the Artix loggers to
print WARNING level log messages to the console. As a result,
you see very little printed to the console.

2. Stop the server as described in the README.txt file.

3. Make a copy of the default logging.properties file, name it
mylogging.properties file, and save it in the same directory as the
default logging.properties file.

4. Change the global logging level and the console logging levels in
your mylogging.properties file to INFO by editing the following lines
of configuration:

5. Restart the server using the following command:

Platform Command

Windows start java
-Djava.util.logging.config.file=%ARTIX_JAVA_HOME%\etc\
mylogging.properties demo.hw.server.Server

UNIX Java
-Djava.util.logging.config.file=$ARTIX_JAVA_HOME/etc/
mylogging.properties demo.hw.server.Server &

.level= INFO
java.util.logging.ConsoleHandler.level = INFO

https://docs.oracle.com/javase/6/docs/api/java/util/logging/package-summary.html
https://docs.oracle.com/javase/6/docs/api/java/util/logging/package-summary.html

Artix Deployment Guide: Java 63

Because you configured the global logging and the console
logger to log messages of level INFO, you see a lot more log
messages printed to the console.

Default logging.properties File
The default logging configuration file, logging.properties, is
located in the InstallDir/etc directory. It configures the Artix
loggers to print WARNING level messages to the console. If this
level of logging is suitable for your application, you do not have
to make any changes to the file before using it. You can,
however, change the level of detail in the log messages. For
example, you can change whether log messages are sent to the
console, to a file or to both. In addition, you can specify logging
at the level of individual packages.

NOTE: This section discusses the configuration properties that appear
in the default logging.properties file. There are, however, many other
java.util.logging configuration properties that you can set. For more
information on the java.util.logging API, see the java.util.logging
javadoc at: https://docs.oracle.com/javase/6/docs/api/
java/util/logging/package-summary.html.

Configuring Logging Output
The Java logging utility, java.util.logging, uses handler classes to
output log messages. Table 7 shows the handlers that are
configured in the default logging.properties file.

Table 7. Java.util.logging Handler Classes

Handler Class Outputs to

ConsoleHandler Outputs log messages to the console

FileHandler Outputs log messages to a file

IMPORTANT: The handler classes must be on the system classpath in
order to be installed by the Java VM when it starts. This is done when
you set the Artix environment. For details on setting the Artix
environment, see Using the Artix Environment Script.

Configuring the console handler
Example 9 on page 52 shows the code for configuring the
console logger.

Example 9. Configuring the Console Handler
handlers= java.util.logging.ConsoleHandler

https://docs.oracle.com/javase/6/docs/api/java/util/logging/package-summary.html
https://docs.oracle.com/javase/6/docs/api/java/util/logging/package-summary.html

64 Artix Deployment Guide: Java

The console handler also supports the configuration properties
shown in Example 10.

Example 10. Console Handler Properties
java.util.logging.ConsoleHandler.level = WARNING ❶
java.util.logging.ConsoleHandler.formatter = java.util.logging.SimpleFormatter ❷

The configuration properties shown in Example 10 on page 52
can be explained as follows:

❶ The console handler supports a separate log level
configuration property. This allows you to limit the log
messages printed to the console while the global logging
setting can be different (see Configuring Logging Levels).
The default setting is WARNING.

❷ Specifies the java.util.logging formatter class that the
console handler class uses to format the log messages.
The default setting is the
java.util.logging.SimpleFormatter.

Configuring the file handler
Example 11 shows code that configures the file handler.

Example 11. Configuring the File Handler
handlers= java.util.logging.FileHandler

The file handler also supports the configuration properties
shown in Example 12.

Example 12. File Handler Configuration Properties
java.util.logging.FileHandler.pattern = %h/java%u.log ❶
java.util.logging.FileHandler.limit = 50000 ❷
java.util.logging.FileHandler.count = 1 ❸
java.util.logging.FileHandler.formatter = java.util.logging.XMLFormatter ❹

The configuration properties shown in Example 12 can be
explained as follows:

❶ Specifies the location and pattern of the output file. The
default setting is your home directory.

❷ Specifies, in bytes, the maximum amount that the
logger writes to any one file. The default setting is 50000.
If you set it to zero, there is no limit on the amount that
the logger writes to any one file.

❸ Specifies how many output files to cycle through. The
default setting is 1.

Artix Deployment Guide: Java 65

❹ Specifies the java.util.logging formatter class that the
file handler class uses to format the log messages. The
default setting is the java.util.logging.XMLFormatter.

Configuring both the console handler and the file handler
You can set the logging utility to output log messages to both the
console and to a file by specifying the console handler and the
file handler, separated by a comma, as shown in Example 13.

Example 13. Configuring Both Console Logging and File
Logging
handlers= java.util.logging.FileHandler, java.util.logging.ConsoleHandler

Configuring Logging Levels

Logging levels
The java.util.logging framework supports the following levels of
logging, from the least verbose to the most verbose:

• SEVERE

• WARNING

• INFO

• CONFIG

• FINE

• FINER

• FINEST

Configuring the global logging level
To configure the types of event that are logged across all loggers,
configure the global logging level as shown in Example 14.

Example 14. Configuring Global Logging Levels
.level= WARNING

Configuring logging at an individual package level
The java.util.logging framework supports configuring logging at
the level of an individual package. For example, the line of code
shown in Example 15 configures logging at a SEVERE level on
classes in the com.xyz.foo package.

Example 15. Configuring Logging at the Package Level
com.xyz.foo.level = SEVERE

66 Artix Deployment Guide: Java

Enabling Logging at the Command Line
You can run the logging utility on an application by defining a
java.util.logging.config.file property when you start the
application. You can either specify the default logging.properties
file or a logging.properties file that is unique to that application.

Specifying the log configuration file on application start-up
To specify logging on application start-up add the flag shown in
Example 16 when starting the application.

 Example 16. Flag to Start Logging on the Command
Line
-Djava.util.logging.config.file=myfile

Logging for Subsystems and Services
You can use the com.xyz.foo.level configuration property
described in Configuring logging at an individual package level
to set fine-grained logging for specified Artix logging subsystems.

Artix logging subsystems
Table 8 shows a list of available Artix logging subsystems.

Table 8. Artix Logging Subsystems

Subsystem Description

org.apache.cxf.aegis Aegis binding

org.apache.cxf.binding.coloc colocated binding

org.apache.cxf.binding.http HTTP binding

org.apache.cxf.binding.object Java Object binding

org.apache.cxf.binding.soap SOAP binding

org.apache.cxf.binding.xml XML binding

org.apache.cxf.bus Artix bus

org.apache.cxf.configuration configuration framework

org.apache.cxf.endpoint server and client endpoints

org.apache.cxf.interceptor interceptors

org.apache.cxf.jaxws Front-end for JAX-WS style message
exchange, JAX-WS handler processing,
and interceptors relating to JAX-WS
and configuration

org.apache.cxf.jca JCA container integration classes

org.apache.cxf.js JavaScript front-end

Artix Deployment Guide: Java 67

Subsystem Description

org.apache.cxf.transport.http HTTP transport

org.apache.cxf.transport.https secure version of HTTP transport,
using HTTPS

org.apache.cxf.transport.jms JMS transport

org.apache.cxf.transport.local transport implementation using local
file system

org.apache.cxf.transport.servlet HTTP transport and servlet
implementation for loading JAX-WS
endpoints into a servlet container

org.apache.cxf.ws.addressing WS-Addressing implementation
org.apache.cxf.ws.policy WS-Policy implementation
org.apache.cxf.ws.rm WS-ReliableMessaging (WS-RM)

implementation
org.apache.cxf.ws.security.wss4j WSS4J security implementation

Example
The WS-Addressing sample is contained in the
InstallDir/samples/cxf/ws_addressing directory. Logging is
configured in the logging.properties file located in that directory.
The relevant lines of configuration are shown in Example 17.

Example 17. Configuring Logging for WS-Addressing
java.util.logging.ConsoleHandler.formatter = demos.ws_addressing.common.ConciseFormatter
...
org.apache.cxf.ws.addressing.soap.MAPCodec.level = INFO

The configuration in Example 17 enables the snooping of log
messages relating to WS-Addressing headers, and displays them
to the console in a concise form.

For information on running this sample, see the README.txt file
located in the InstallDir/samples/ws_addressing directory.

68 Artix Deployment Guide: Java

Logging Message Content
You can log the content of the messages that are sent between a
service and a consumer. For example, you might want to log the
contents of SOAP messages that are being sent between a
service and a consumer.

Configuring message content logging
To log the messages that are sent between a service and a
consumer, and vice versa, complete the following steps:

1. Add the logging feature to your endpoint's configuration.

2. Add the logging feature to your consumer's configuration.

3. Configure the logging system log INFO level messages.

Adding the logging feature to an endpoint
Add the logging feature your endpoint's configuration as shown
in Example 18.

Example 18. Adding Logging to Endpoint Configuration

The example XML shown in Example 18 enables the logging of
SOAP messages.

Adding the logging feature to a consumer
Add the logging feature your client's configuration as shown in
Example 19.

Example 19. Adding Logging to Client Configuration

The example XML shown in Example 19 enables the logging of
SOAP messages.

Set logging to log INFO level messages
Ensure that the logging.properties file associated with your
service is configured to log INFO level messages, as shown in
Example 20.

Example 20. Setting the Logging Level to INFO

<jaxws:endpoint ...>
 <jaxws:features>

<bean class="org.apache.cxf.feature.LoggingFeature"/>
 </jaxws:features>
</jaxws:endpoint>

<jaxws:client ...>
<jaxws:features>

<bean class="org.apache.cxf.feature.LoggingFeature"/>
</jaxws:features>

</jaxws:client>

.level= INFO
java.util.logging.ConsoleHandler.level = INFO

Artix Deployment Guide: Java 69

Logging SOAP messages
To see the logging of SOAP messages modify the wsdl_first sample
application located in the InstallDir/samples/wsdl_first directory,
as follows:

1. Add the jaxws:features element shown in Example 21 to the
cxf.xml configuration file in the wsdl_first sample's directory:

Example 21. Endpoint Configuration for Logging SOAP
Messages

2. The sample uses the default logging.properties file, which is
located in the InstallDir/etc directory. Make a copy of this
file and name it mylogging.properties.

3. In the mylogging.properties file, change the logging levels to INFO
by editing the .level and the java.util.logging.ConsoleHandler.level
configuration properties as follows:

.level= INFO java.util.logging.ConsoleHandler.level = INFO

4. Start the server using the new configuration settings in both the
cxf.xml file and the mylogging.properties file as follows:

Platform Command

Windows start java
-Djava.util.logging.config.file=%ARTIX_JAVA_HOME%\etc\
mylogging.properties demo.hw.server.Server

UNIX Java
-Djava.util.logging.config.file=$ARTIX_JAVA_HOME/etc/
mylogging.properties demo.hw.server.Server &

5. Start the hello world client using the following command:

Platform Command

Windows Java
-Djava.util.logging.config.file=%ARTIX_JAVA_HOME%\etc\
mylogging.properties demo.hw.client.Client
.\wsdl\hello_world.wsdl

UNIX Java
-Djava.util.logging.config.file=$ARTIX_JAVA_HOME/etc/
mylogging.properties demo.hw.client.Client
./wsdl/hello_world.wsdl

The SOAP messages are logged to the console.

<jaxws:endpoint name="{http://apache.org/hello_world_soap_http}SoapPort"
createdFromAPI="true">

<jaxws:properties>
<entry key="schema-validation-enabled" value="true" />

</jaxws:properties>
<jaxws:features>
<bean class="org.apache.cxf.feature.LoggingFeature"/>

</jaxws:features>
</jaxws:endpoint>

http://apache.org/hello_world_soap_http

Artix Deployment Guide: Java 81

Deploying to the
Spring Container
Artix for Java provides a Spring container into which you can
deploy any Spring-based application, including an Artix service
endpoint. This chapter outlines how to deploy and manage an
Artix service endpoint in the Spring container.

Introduction
Artix includes a Spring container that is a customized version of
the Spring framework. The Spring framework is a general
purpose environment for deploying and running Java
applications. For more information on the framework, see
www.springframework.org. This document explains how to
deploy and manage Artix service endpoints in the Spring
container.

Figure 1 shows how to access a deployed Artix endpoint in the
Spring container.

Figure 1. Artix Endpoint Deployed in a Spring Container

http://www.springframework.org/

82 Artix Deployment Guide: Java

You deploy a Web Archive (WAR) file to the Spring container.
The WAR file contains all of the files that the Spring container
needs to run your application. These include the WSDL file that
defines your service, the code that you generated from the
WSDL file, including the implementation file, and any libraries
that your application requires. It also includes an Artix runtime
Spring-based XML configuration file to configure your
application.

The Spring container loads each WAR file using a unique class
loader. The class loader incorporates a firewall class loader that
ensures that any classes contained in the WAR are loaded
before classes in the parent class loader are loaded.

Sample XML
The example XML used in this chapter is taken from the Spring
container sample application located in:

InstallDir/samples/spring_container

Running the Spring Container
This section explains how to run the Spring container using the
spring_container command.

Using the spring_container command
The spring_container command is located in the InstallDir/bin
directory, and has the following syntax:

spring_container [-config spring-config-url] [-wsdl
container-wsdl-url] [-h] [-verbose] [[start] | [stop]]

Table 9. Spring Container Command Options

Option Description
-config spring-
config-url Specifies the URL or file location of the Spring container

configuration file, which is used to launch the Spring container.
This flag is optional.

By default, the Spring container uses the spring_container.xml
file, which is located in the
InstallDir/containers/spring_container/etc directory.

You should only use the -config flag if you are specifying a
different configuration file. For example, see Running Multiple
Containers on Same Host.

Artix Deployment Guide: Java 83

Option Description
-wsdl
container-
wsdl-url

Specifies the URL or file location of the Spring container WSDL
file. This flag is optional.

By default, the Spring container uses the container.wsdl file
located in the InstallDir/containers/spring_container/etc/wsdl
directory.

You should only use the -wsdl flag if you are specifying a different
Spring container WSDL file. For example, see Running Multiple
Containers on Same Host.

-h
Prints usage summary and exits. This flag is optional.

-v
Specifies verbose mode. This flag is optional.

<start|stop>
Starts and stops the Spring container. These flags are required to
start and stop the Spring container respectively.

Starting the Spring container
To start the Spring container, run the following command from
the InstallDir/bin directory:

spring_container start

If you wish to start more than one container on a single host,
see Running Multiple Containers on Same Host.

Stopping the Spring container
To stop the Spring container, run the following command from
the InstallDir/bin directory:

spring_container stop

If you are running more than one container on the same host,
see Running Multiple Containers on Same Host.

Deploying an Artix Endpoint
Deployment steps
The following steps outline, at a high-level, what you must do to
successfully configure and deploy an Artix endpoint to the
Spring container:

1. Write an Artix configuration file for your application. See
Configuring your application.

2. Build a WAR file that contains the configuration file, the
WSDL file that defines your service, and the code that you
generated from that WSDL file, including the
implementation file, and any libraries that your application
requires. See Building a WAR file.

84 Artix Deployment Guide: Java

3. Deploy the WAR file in one of the following ways:

• Copy the WAR file to the Spring container repository. See
Deploying the WAR file to the Spring repository.

• Use the JMX console. See Managing the Container using
the JMX Console.

• Use the Web service interface. See Managing the
Container using the Web Service Interface.

Configuring your application
You must write an XML configuration file for your application.
The Spring container requires this file to instantiate, configure,
and assemble the beans in your application.

Example 22 shows the spring.xml configuration file used in the
Spring container sample application. You can use any name for
your configuration file, however, it must end with a .xml
extension. This example file is taken from the
InstallDir/samples/spring_container sample application.

Example 22. Configuration File—spring.xml
<?xml version="1.0" encoding="UTF-8"?>
<beans ❶

xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:jaxws="http://cxf.apache.org/jaxws" xsi:schemaLocation="

http://cxf.apache.org/jaxws
http://cxf.apache.org/schemas/jaxws.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

<jaxws:endpoint id="SoapEndpoint" ❷
implementor="#SOAPServiceImpl"
address="http://localhost:9000/SoapContext/SoapPort"
wsdlLocation="hello_world.wsdl" endpointName="e:SoapPort"
serviceName="s:SOAPService"
xmlns:e="http://apache.org/hello_world_soap_http"
xmlns:s="http://apache.org/hello_world_soap_http"/>

<bean id="SOAPServiceImpl" class="demo.hw.server.GreeterImpl"/> ❸
</beans>

The code shown in Example 22 can be explained as follows:

❶ The Spring beans element is required at the beginning of
every Artix configuration file. It is the only Spring element
that you must be familiar with.

❷ Configures a jaxws:endpoint element that defines a service
and its corresponding endpoints. (For more information on
configuring an Artix jaxws:endpoint element, see Using the
jaxws:endpoint Element.)

IMPORTANT: The location of the WSDL file specified in
the wsdlLocation is relative to the WAR's WEB_INF/wsdl folder.

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://cxf.apache.org/jaxws
http://cxf.apache.org/jaxws
http://cxf.apache.org/schemas/jaxws.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://apache.org/hello_world_soap_http
http://apache.org/hello_world_soap_http
http://apache.org/hello_world_soap_http

Artix Deployment Guide: Java 85

❸ Identifies the class that implements the service.

Building a WAR file
To deploy your application to the Spring container you must
build a WAR file that has the following structure and contents:

• META-INF/spring should include your configuration file. The
configuration file must have a .xml extension.

• WEB-INF/classes should include your Web service
implementation class, and any other classes (including the
class hierarchy) generated by the wsdl2java utility. For
details, see wsdl2java in Artix Java Runtime Command
Reference.

• WEB-INF/wsdl should include the WSDL file that defines the
service that you are deploying.

• WEB-INF/lib should include any JARs required by your
application.

Deploying the WAR file to the Spring repository
The simplest way to deploy an Artix endpoint to the Spring
container is to:

1. Start the Spring container by running the following
command:

InstallDir/bin/spring_container start

2. Copy the WAR file to the Spring container repository. The
default location for the repository is
InstallDir/containers/spring_container/repository.

The Spring container automatically scans the repository for
newly deployed applications. The default value at which it scans
the repository is every 5000 milliseconds.

Using Ant to build a WAR file and deploy to the Spring
container
You can use the Apache ant utility to build the Artix sample
applications. This includes building the WAR files and deploying
them to the Spring container. If you want to use the ant utility
to build your application war files for deployment to the Spring
container, see the 'create.spring.war' target in common_build.xml
file located in the InstallDir/samples directory.

For more information about the ant utility, see
http://ant.apache.org/.

http://ant.apache.org/

86 Artix Deployment Guide: Java

Changing the interval at which the Spring container scans
its repository
You can change the time interval at which the Spring container
scans the repository by changing the scanInterval property in
the spring_container.xml configuration file. See Example 23 for
more detail.

Changing the default location of the container
repository
You can change the Spring container repository location by
changing the value of the containerRepository property in the
spring_container.xml configuration file. See Example 23 for
more detail.

Managing the Container using the JMX Console
You can use the JMX console to deploy and manage applications
in the Spring container. The JMX console enables you to deploy
applications, as well as stop, start, remove, and list
applications that are running in the container. You can also get
information on the application’s state. The name of the
deployed WAR file is the name given to the application.

Using the JMX console
To use the JMX console to manage applications deployed to the
Spring container, do the following:

1. Start the JMX console by running the following command
from the InstallDir/bin directory:

Platform Command

Windows jmx_console_start.bat

UNIX jmx_console_start.sh

2. Select the MBeans tag and expand the bean node to view

the SpringContainer MBean (see Figure 2).

The SpringContainer MBean is deployed as part of the Spring
container. It provides access to the management interface for the
Spring Container and can be used to deploy, stop, start,
remove and list applications. I can also get information on an
application’s state.

Artix Deployment Guide: Java 87

Figure 2. JMX Console—SpringContainer MBean

The operations and their parameters are described in Table 10.

Table 10. JMX Console—SpringContainer MBean Operations

Operation Description Parameters

deploy Deploys an application to
the container repository.
The deploy method copies a
WAR file from a given URL
or file location and puts
the copy into the container
repository.

location — A URL or file
location that points to the
application to be deployed.

warFileName — The name of the
WAR file as you want it to
appear in the container
repository.

stopApplication Stops the specified
application. It does not
remove the application
from the container
repository.

name — Specifies the name of
the application that you want
to stop. The application name
is the same as the WAR file
name.

startApplication Starts an application that
has previously been
deployed and subsequently
stopped.

name — Specifies the name of
the application that you want
to start. The application
name is the same as the WAR
file name.

88 Artix Deployment Guide: Java

Operation Description Parameters

removeApplication Stops and removes an
application. It completely
removes an application
from the container
repository.

name — Specifies the name of
the application that you want
to stop and remove. The
application name is the same
as the WAR file name.

listApplicationNames Lists all of the applications
that have been deployed.
The applications can be in
one of three states: start,
stop, or failed. An
application’s name is the
same as its WAR file
name.

None

getApplicationState Reports whether an
application is running or
not.

name — Specifies the name of
the application whose state
you want to know. The
application name is the same
as the WAR file name.

Managing the Container using the Web Service
Interface

You can use the Web service interface to deploy and manage
applications in the Spring container. The Web service interface
is specified in the container.wsdl file, which is located in the
InstallDir/containers/spring_container/etc/wsdl directory of your
installation.

Client tool
Artix does not currently include a client tool for the Web service
interface. However, you can write one if you are familiar with
Web service development. Please see the container.wsdl file and
Developing Artix Applications with JAX-WS and JAX-RS
for more details.

Changing the port the Web service interface listens on
To change the port that the Web service interface listens on, you
must change the port number of the address property in the
spring_container.xml file, as shown:

You do not need to change the container.wsdl file.

<jaxws:endpoint id="ContainerService"
implementor="#ContainerServiceImpl"

address="http://localhost:2222/AdminContext/AdminPort"
...>

Artix Deployment Guide: Java 89

For more information on the spring_container.xml file, see Spring
Container Definition File.

Adding a port
If you want to add a port, such as a JMS port or an HTTPS port,
add the port details to the container.wsdl file.

Spring Container Definition File
The Spring container is configured in the spring_container.xml file
located in the following directory of your installation:

InstallDir/containers/spring_container/etc

spring_container.xml
The contents of the Spring container configuration file are
shown in Example 23.

Example 23. spring_container.xml
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:jaxws="http://cxf.apache.org/jaxws"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:container="http://schemas.iona.com/soa/container-config"
xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
 http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd
 http://schemas.iona.com/soa/container-config
 http://schemas.iona.com/soa/container-config.xsd">

 <!-- Bean definition for Container -->
 <container:container id="container"
 containerRepository="${ARTIX_JAVA_HOME}/containers/spring_container/repository"

 scanInterval="5000"/> ❶

 <!-- Web Service Container Management -->

 <jaxws:endpoint id="ContainerService" ❷
 implementor="#ContainerServiceImpl"
 address="http://localhost:2222/AdminContext/AdminPort"
 wsdlLocation="/wsdl/container.wsdl"
 endpointName="e:ContainerServicePort"
 serviceName="s:ContainerService"
 xmlns:e="http://cxf.iona.com/container/admin"
 xmlns:s="http://cxf.iona.com/container/admin"/>

 <bean id="ContainerServiceImpl"
 class="com.iona.cxf.container.admin.ContainerAdminServiceImpl">
 <property name="container">
 <ref bean="container" />
 </property>
 </bean>

<!-- JMX Container Management -->

<bean id="mbeanServer" class="org.springframework.jmx.support.MBeanServerFactoryBean"> ❸

<property name="locateExistingServerIfPossible" value="true" />
</bean>

http://www.springframework.org/schema/beans
http://cxf.apache.org/jaxws
http://www.w3.org/2001/XMLSchema-instance
http://schemas.iona.com/soa/container-config
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
http://cxf.apache.org/jaxws
http://cxf.apache.org/schemas/jaxws.xsd
http://schemas.iona.com/soa/container-config
http://schemas.iona.com/soa/container-config.xsd
http://cxf.iona.com/container/admin
http://cxf.iona.com/container/admin
http://cxf.iona.com/container/admin

90 Artix Deployment Guide: Java

<bean id="exporter" class="org.springframework.jmx.export.MBeanExporter">
<property name="beans">

<map>
<entry key="bean:name=SpringContainer" value-ref="container"/>
<entry key="connector:name=rmi" value-ref="serverConnector"/>
</map>

</property>
<property name="server" ref="mbeanServer"/>
<property name="assembler" ref="assembler" />

</bean>

<bean id="assembler" class=

 "org.springframework.jmx.export.assembler.InterfaceBasedMBean InfoAssembler">
<property name="interfaceMappings">

 <props>
<prop key="bean:name=SpringContainer">com.iona.cxf.container.managed.JMXContainer

 </prop>
 </props>

</property>
</bean>

<bean id="serverConnector" class=
 "org.springframework.jmx.support.ConnectorServerFactory Bean"
 depends-on="registry">

<property name="serviceUrl" value=
 "service:jmx:rmi:///jndi/rmi://local
host:1099/jmxrmi/server"/>
</bean>

<bean id="registry" class="org.springframework.remoting.rmi.RmiRegistryFactoryBean">
<property name="port" value="1099"/>

</bean>
</beans>

The XML shown in Example 23 does the following:

❶ Defines a bean that encapsulates the logic for the Spring
container. This bean handles the logic for deploying user
applications that are copied to the specified container
repository location. The default container repository
location is
InstallDir/containers/spring_container/repository. You
can change the repository location by changing the value
of the containerRepository attribute.

The scanInterval attribute sets the time interval at which
the repository is scanned. It is set in milliseconds. The
default value is set to 5000 milliseconds. Removing this
attribute disables scanning.

❷ Defines an application that creates a Web service interface
that you can use to manage the Spring container.

The ContainerServiceImpl bean contains the server
implementation code and the container administration
logic.

To change the port on which the Web service interface
listens, change the address property.

Artix Deployment Guide: Java 91

❸ Defines Spring beans that allow you to use a JMX console
to manage the Spring container.

For more information, see the JMX chapter of the Spring 3.0.x
reference document available at
http://static.springframework.org/spring/docs/
3.0.x/reference/jmx.html.

Running Multiple Containers on Same Host
You might want to run more than one instance of a Spring
container on a single host. This allows you to load balance
between multiple containers and also allows you to separate
applications. Setting up multiple Spring containers to run on a
single host requires you to modify each container's
configuration so that there are no resource clashes.

Procedure
If you want to run more than one Spring container on the same
host, you must do the following:

1. Make a copy of the container.wsdl file, which is located in
the InstallDir/containers/spring_container/etc/wsdl
directory.

2. In your new copy, my_container.wsdl, change the port on
which the Web service interface listens from 2222 to another
port by changing the address property as shown below:

<service name="ContainerService">
<port name="ContainerServicePort" binding="tns:ContainerServiceBinding">
<soap:address location="http://localhost:2222/AdminContext/AdminPort"/>

</port>
</service>

3. Make a copy of the spring_container.xml file, which is located in the

Ins tallDir/containers/spring_container/etc directory.

4. Make the following changes to your new copy,
my_spring_container.xml:

• Container repository location—change the container's
containerRepository property to point to a new repository.
For example, you change:

<container:container id="container"
containerRepository="${ARTIX_JAVA_HOME}/containers/spring_container/repository"

 scanInterval="5000"/>

To:

<container:container id="container"
containerRepository="MyNewContainerRepository/spring_container/repository"
scanInterval="5000"/>

http://static.springframework.org/spring/docs/3.0.x/reference/jmx.html
http://static.springframework.org/spring/docs/3.0.x/reference/jmx.html

92 Artix Deployment Guide: Java

• Change the port on which the Web service interface listens
by changing the address property as follows:

<jaxws:endpoint id="ContainerService" implementor="#ContainerServiceImpl"
address=" http://localhost:2222/AdminContext/AdminPort">0

• Change the JMX port from 1099 to a new port as show in

the following line:

<bean id="serverConnector"
class="org.springframework.jmx.support.ConnectorServerFactoryBean"
depends-on="registry">
<property name="serviceUrl"
value="service:jmx:rmi:///jndi/rmi://local
host:1099/jmxrmi/server"/>

</bean>

• Change the RMI registry port from 1099 to a new port as

shown in the following snippet:

<bean id="registry" class="org.springframework.remoting.rmi.
RmiRegistryFactoryBean">
<property name="port" value="1099"/>

</bean>

5. Make a copy of the JMX console launch

script,jmx_console_start.bat, which is located in the InstallDir/bin
directory.

6. Change the following line in the copy of the JMX console launch
script to point to the JMX port that is specified above:

service:jmx:rmi:///jndi/rmi://localhost:1099/jmxrmi/server

7. Start the new container by passing the URL, or file location of its

configuration file, my_spring_container.xml, to the start_container
script as follows:

InstallDir/bin/spring_container -config my_spring_contain er.xml start

8. To view the new container using the JMX console, run the JMX
console launch script created in steps 5 and 6.

9. Stop the new container by passing the URL or file location of its
WSDL file, my_container.wsdl, to the spring_container command.

For example, if the my_container.wsdl file has been saved to
the InstallDir/containers/spring_container/wsdl directory, run
the following command:

InstallDir/bin/spring_container -wsdl
..\containers\spring_container\wsdl\my_container.wsdl stop

Artix Deployment Guide: Java 99

Deploying to a Servlet
Container
Artix endpoints can be deployed into any servlet container. Artix
provides a standard servlet adapter that works for most service
providers. It is also possible to deploy Artix endpoints using a
Spring context or by creating a custom servlet to instantiate the
Artix endpoint.

Introduction
Servlet containers are a common platform for running Web
services. The Artix runtime's light weight and plugability make it
easy to deploy endpoints into a servlet container. There are
several ways to deploy endpoints into a servlet container:

• an Artix provided servlet adapter class

• a custom servlet

• the Spring servlet context listener

• the Artix JCA connector

NOTE: Not all servlet containers support JCA connectors.

Deploying service providers
The preferred way to deploy a service provider into a servlet
container is to use the CXF servlet. The CXF servlet only
requires a few additional pieces of configuration to deploy a
service provider into the servlet container. Much of the
additional information is either canned information required
deploy the servlet or Artix configuration for the endpoint.

It is also possible to deploy a service provider using any of the
other methods.

Deploying service consumers
Service consumers cannot be deployed using the CXF servlet.
They can be deployed using either a custom servlet that creates
the required proxies or using the Artix JCA adapter.

100 Artix Deployment Guide: Java

Configuring the Servlet Container
Before you can deploy an Artix endpoint to your servlet container
you must make the Artix runtime libraries available to the
container. There are two ways to accomplish this:

1. Add the required libraries to the container's shared library
folder

This approach has the advantage of keeping individual WAR
files small. It also ensures that all of the Artix servlets are
using the same version of the libraries.

2. Add the required libraries to each application's WAR file

This approach has the advantage of flexibility. Each WAR can
contain the versions of the libraries it requires.

Required libraries
Artix endpoints require all of the JAR files in the InstallDir/lib
directory except the following:

• artix.jar

• it-soa-jaxwsgenerator*.jar

• it-soa-router.jar

• it-soa-transport-mq*

• servlet-api*.jar

• geronimo-servlet_*.jar

• jetty-*.jar

Automating servlet container configuration
The Artix samples directory, InstallDir/samples, includes a
common_build.xml file that contains utilities that automates the
configuration of the servlet environment.

One utility is the copy-war-libs Ant target. It copies the
required libraries to the folder specified in the war-lib. For
example, to install the required libraries into a Tomcat 6
installation enter ant copy-war-libs -Dwar-lib=CATALINA_HOME\lib.

The other utility is the cxfwar macro. The macro is used to
build the WAR files for all of the Artix samples. Its default
result is to make a WAR containing all of the required libraries.
This behavior can be changed by setting the without.libs
property to true.

Artix Deployment Guide: Java 101

Using the CXF Servlet
Artix provides a standard servlet, the CXF servlet, which acts as
an adapter for the Web service endpoints. The CXF servlet is the
easiest method for deploying Web services into a servlet
container.

Figure 3 shows the main components of an Artix endpoint
deployed using the CXF servlet.

Figure 3. Artix Endpoint Deployed in a Servlet Container

• Deployed WAR file — Service providers are deployed to the
servlet container in a Web Archive (WAR) file. The deployed
WAR file contains:

102 Artix Deployment Guide: Java

• the compiled code for the service provider being
deployed

• the WSDL file defining the service

• the Artix configuration file

This file, called cxf-servlet.xml, is standard Artix
configuration file that defines all of the endpoints
contained in the WAR.

• the Web application deployment descriptor

All Artix Web applications using the standard CXF servlet
need to load the
org.apache.cxf.transport.servlet.CXFServlet class.

• CXF servlet — The CXF servlet is a standard servlet provided
by Artix. It acts as an adapter for Web service endpoints and
is part of the Artix runtime. The CXF servlet is implemented
by the org.apache.cxf.transport.servlet.CXFServlet class.

Deployment steps
To deploy an Artix endpoint to a servlet container you must:

• Build a WAR that contains your application and all the
required support files.

• Deploy the WAR file to your servlet container.

Building a WAR
To deploy your application to a servlet container, you must build
a WAR file.

The WAR file's WEB-INF folder should include the following:

• cxf-servlet.xml — an Artix configuration file specifying the
endpoints that plug into the CXF servlet. When the CXF
servlet starts up, it reads the jaxws:endpoint elements from
this file, and initializes a service endpoint for each one. See
Servlet configuration file for more information.

• web.xml — a standard web application file that instructs the
servlet container to load the
org.apache.cxf.transport.servlet.CXFServlet class.

A reference version of this file is contained in your
InstallDir/etc directory. You can use this reference copy
without making changes to it.

• classes — a folder including your Web service
implementation class and any other classes required to
support the implementation.

Artix Deployment Guide: Java 103

• wsdl — a folder including the WSDL file that defines the
service you are deploying.

• lib — a folder including any JARs required by your
application.

Servlet configuration file
The cxf-servlet.xml file is an Artix configuration file that
configures the endpoints that plug into the CXF servlet. When
the CXF servlet starts up it reads the jaxws:endpoint elements in
this file and initializes a service endpoint for each one.

Example 24 on page 88 shows a simple cxf-servlet.xml file.

Example 24. CXF Servlet Configuration File

The code shown in Example 24 is explained as follows:

❶ The Spring beans element is required at the beginning of
every Artix configuration file. It is the only Spring element
that you need to be familiar with.

❷ The jaxws:endpoint element defines a service provider
endpoint. The jaxws:endpoint element has the following
attributes:

• id — Sets the endpoint id.

• implementor — Specifies the class implementing the
service. This class needs to be included in the WAR's
WEB-INF/classes folder.

• wsdlLocation — Specifies the WSDL file that contains the
service definition. The WSDL file location is relative to
the WAR's WEB-INF/wsdl folder.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans" ❶

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance
xmlns:jaxws="http://cxf.apache.org/jaxws"
xmlns:soap="http://cxf.apache.org/bindings/soap"
xsi:schemaLocation="

http://www.springframework.org/schema/beans
http://www.springframe work.org/schema/beans/spring-beans-2.0.xsd
http://cxf.apache.org/bindings/soap
http://cxf.apache.org/schemas/configuration/soap.xsd
http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd">

<jaxws:endpoint ❷
id="hello_world"
implementor="demo.hw.server.GreeterImpl"
wsdlLocation="WEB-INF/wsdl/hello_world.wsdl"
address="/hello_world">

<jaxws:features>
<bean class="org.apache.cxf.feature.LoggingFeature"/>

</jaxws:features>
</jaxws:endpoint>

</beans>

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://cxf.apache.org/jaxws
http://cxf.apache.org/bindings/soap
http://www.springframework.org/schema/beans
http://cxf.apache.org/bindings/soap
http://cxf.apache.org/schemas/configuration/soap.xsd
http://cxf.apache.org/jaxws
http://cxf.apache.org/schemas/jaxws.xsd

104 Artix Deployment Guide: Java

• address — Specifies the address of the endpoint as
defined in the service's WSDL file that defines service
that is being deployed.

• jaxws:features — Defines features that can be added to
your endpoint.

For more information on configuring a jaxws:endpoint element,
see Using the jaxws:endpoint Element.

Web application configuration
You must include a web.xml deployment descriptor file that
instructs the servlet container to load the CXF servlet. Example
25 shows a web.xml file. It is not necessary to change this file. A
reference copy is located in the InstallDir/etc directory.

Example 25. A web.xml Deployment Descriptor File

Deploying a WAR file to the servlet container
How you deploy your WAR file depends on the servlet container
that you are using. For example, to deploy your WAR file to
Tomcat, you copy it to the Tomcat CATALINA_HOME/server/webapp
directory.

Using a Custom Servlet
In some cases, you might want to write a custom servlet that
deploys Artix enabled endpoints. A common reason is to deploy
Artix client applications into a servlet container. The CXF servlet
does not support deploying pure client applications.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD
Web Application 2.3//EN" "http://java.sun.com/dtd/web-app_2_3.dtd">
<web-app>

<display-name>cxf</display-name>
<description>cxf</description>
<servlet>

<servlet-name>cxf</servlet-name>
<display-name>cxf</display-name>
<description>Apache CXF Endpoint</description>
<servlet-class>org.apache.cxf.transport.servlet.CXFServlet</servlet-
class>
<load-on-startup>1</load-on-startup>

</servlet>
<servlet-mapping>

<servlet-name>cxf</servlet-name>
<url-pattern>/services/*</url-pattern>

</servlet-mapping>
<session-config>

<session-timeout>60</session-timeout>
</session-config>

/ b

Artix Deployment Guide: Java 105

Procedure
The procedure for using a custom servlet is similar to the one
for using the default CXF servlet:

1. Implement a servlet that instantiates an Artix enabled
endpoint.

2. Package your servlet in a WAR that contains the Artix
libraries and the configuration needed for your application.

3. Deploy the WAR to your servlet container.

Differences from using the default servlet
There are a few important differences between using the CXF
servlet and using a custom servlet:

• The configuration file is not called cxf-servlet.xml.

The default behavior is similar to that of a regular Artix
application. It looks for its configuration in a file called WEB-
INF/classes/cxf.xml. If you want to locate the configuration
in a different file, you can programmatically configure the
servlet to load the configuration file.

• Any paths in the configuration file are relative to the
servlet’s WEB-INF/classes folder.

Implementing the servlet
Implementing the servlet is easy. You simply add logic to the
servlet’s constructor to instantiate the Artix endpoint. Example
26 shows an example of instantiating a consumer endpoint in a
servlet.

Example 26. Instantiating a Consumer Endpoint in a
Servlet
public class HelloWorldServlet extends HttpServlet
{
private static Greeter port;

public HelloWorldServlet()
{

URL wsdlURL = getClass().getResource("/hello_world.wsdl");

port = new SOAPService(wsdlURL,
new QName("http://apache.org/hello_world_soap_http",
"SOAPService")).getSoapPort();

}

...
}

If you choose not to use the default location for the configuration
file, then you must add code for loading the configuration file. To
load the configuration from a custom location do the following:

http://apache.org/hello_world_soap_http

106 Artix Deployment Guide: Java

1. Use the ServletContext to resolve the file location into a URL.

2. Create a new bus for the application using the resolved URL.

3. Set the application’s default bus to the newly created bus.

Example 27 on page 92 shows an example of loading the
configuration from the WEB-INF/client.xml file.

Example 27. Loading Configuration from a Custom Location

Depending on what other features you want to use, you might
need to add additional code to your servlet. For example, if you
want to use WS-Security in a consumer you must add code to
your servlet to load the credentials and add them to your
requests.

Building the WAR file
To deploy your application to a servlet container you must build
a WAR file that has the following directories and files:

• The WEB-INF folder should include a web.xml file which
instructs the servlet container to load the custom servlet.

• The WEB-INF/classes folder should include the following:

• The implementation class and any other classes
(including the class hierarchy) generated by the
wsdl2java utility

• The default cxf.xml configuration file

• Other resource files that are referenced by the
configuration.

• The WEB-INF/wsdl folder should include the WSDL file that
defines the service being deployed.

• The WEB-INF/lib folder should include any JARs required by
the application.

public class HelloWorldServlet extends HttpServlet
{
public init(ServletConfig cfg)
{
URL configUrl=cfg.getServletContext().getResource("WEB-

INF/client.xml");
Bus bus = new SpringBusFactory().createBus(url);
BusFactory.setDefaultBus(bus);

}

...

}

Artix Deployment Guide: Java 107

Using the Spring Context Listener
An alternative approach to instantiating endpoints inside a
servlet container is to use the Spring context listener. The Spring
context listener provides more flexibility in terms of how an
application is wired together. It uses the application's Spring
configuration to determine what object to instantiate and loads
the objects into the application context used by the servlet
container.

The added flexibility adds complexity. The application developer
must know exactly what application components need to
loaded. They also must know what Artix components need to be
loaded. If any component is missing, the application will not
load properly and the desired endpoints will not be created.

Procedure
The following steps are involved in building and packaging a Web
application that uses the Spring context listener:

1. Develop the application's business logic.

Only the service implementation needs to be developed
service provider endpoints.

The business logic for service consumers should be
encapsulated in a Java class and not as part of the main()
method.

2. Update the application's web.xml file to load the Spring
context listener and the application's Spring configuration.

3. Create a Spring configuration file that explicitly loads all of
the application's components and all of the required Artix
components.

4. Package the application into a WAR file for deployment.

Configuring the Web application
The servlet container looks in the WEB-INF/web.xml file to
determine what classes are needed to activate the Web
application. When deploying an Artix based application using
the Spring context listener, the servlet container needs to load
the org.springframework.web.context.ContextLoaderListener class.
This is specified using the listener element and its listener-class
child.

The org.springframework.web.context.ContextLoaderListener class
uses a context parameter called contextConfigLocation to
determine the location of the Spring configuration file. The
context parameter is configured using the context-parameter
element. The context-param element has two children that
specify parameters and their values. The param-name element

108 Artix Deployment Guide: Java

specifies the parameter's name. The param-value element specifies
the parameter's value.

Example 28shows a web.xml file that configures the servlet
container to load the Spring listener and a Spring configuration
file.

Example 28. Web Application Configuration for Loading the
Spring Context Listener

The XML in Example 28 does the following:

❶ Specifies that the Spring context listener will load the
application's Spring configuration from WEB-INF/beans.xml.

❷ Specifies that the servlet container should load the Spring
context listener.

Creating the Spring configuration
The Spring configuration file for an application using the Spring
context listener is similar to a standard Artix configuration file.
It uses all of the same endpoint configuration elements
described in Configuring Artix Endpoints. It can also contain
standard Spring beans.

The difference between a typical Artix configuration file and a
configuration file for using the Spring context listener is that the
Spring context listener configuration must import the
configuration for all of the Artix runtime components used by the
endpoint's exposed by the application. These components are
imported into the configuration as resources using an import
element for each component's configuration.

Example 29 shows the configuration for a simple consumer
endpoint being deployed using the Spring context listener.

<!DOCTYPE web-app
PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

"http://java.sun.com/dtd/web-app_2_3.dtd">
<web-app>

<context-param> ❶
<param-name>contextConfigLocation</param-name>
<param-value>WEB-INF/beans.xml</param-value>

</context-param>

<listener> ❷
<listener-class>org.springframework.web.context.ContextLoaderListener
</listener-class>

</listener>
...

</web-app>

http://java.sun.com/dtd/web-app_2_3.dtd
http://java.sun.com/dtd/web-app_2_3.dtd

Artix Deployment Guide: Java 109

Example 29. Configuration for a Consumer Deployed into a
Servlet Container Using the Spring Context Listener
<beans ... >

<import resource="classpath:META-INF/cxf/cxf.xml" />
<import resource="classpath:META-INF/cxf/cxf-extension-jaxws.xml" />
<import resource="classpath:META-INF/cxf/cxf-extension-soap.xml" />
<import resource="classpath:META-INF/cxf/cxf-extension-http-
binding.xml" />
<import resource="classpath:META-INF/cxf/cxf-servlet.xml" />

<jaxws:client id="funguy"

address="http://localhost:9000/funguyTool"
serviceClass="org.laughs.funGuyImpl" />

</beans>

The import elements at the beginning of Example 29 import the
required Artix component configuration. The required Artix
component configuration files depends on the features being
used by the endpoints. At a minimum, an application in a
servlet container will need the components shown in Example
29.

TIP: Importing the cxf-all.xml configuration file will automatically
import all of the Artix components.

Building the WAR
To deploy your application to a servlet container, you must build
a WAR file. The WEB-INF folder should include the following:

• beans.xml — the Spring configuration file configuring the
application's beans.

• web.xml — the web application file that instructs the servlet
container to load the Spring context listener.

• classes — a folder including the Web service implementation
class and any other classes required to support the
implementation.

• wsdl — a folder including the WSDL file that defines the
service being deployed.

• lib — a folder including any JARs required by the
application.

110 Artix Deployment Guide: Java

Deploying WS-
Addressing
Artix supports WS-Addressing for JAX-WS applications. This
chapter explains how to deploy WS-Addressing in the Artix
runtime environment.

Introduction to WS-Addressing
WS-Addressing is a specification that allows services to
communicate addressing information in a transport neutral
way. It consists of two parts:

• A structure for communicating a reference to a Web service
endpoint

• A set of Message Addressing Properties (MAP) that associate
addressing information with a particular message

Supported specifications
Artix supports both the WS-Addressing 2004/08 specification
and the WS-Addressing 2005/03 specification.

Further information
For detailed information on WS-Addressing, see the 2004/08
submission at http://www.w3.org/Submission/ws-addressing/.

WS-Addressing Interceptors
In Artix, WS-Addressing functionality is implemented as
interceptors. The Artix runtime uses interceptors to intercept
and work with the raw messages that are being sent and
received. When a transport receives a message, it creates a
message object and sends that message through an interceptor
chain. If the WS-Addressing interceptors are added to the
application's interceptor chain, any WS-Addressing information
included with a message is processed.

http://www.w3.org/Submission/ws-addressing/

Artix Deployment Guide: Java 111

The WS-Addressing implementation consists of two interceptors,
as described in Table 11.

Table 11. WS-Addressing Interceptors

Interceptor Description

org.apache.cxf.ws.addressing.MAPAggregator A logical interceptor responsible for
aggregating the Message Addressing
Properties (MAPs) for outgoing
messages.

org.apache.cxf.ws.addressing.soap.MAPCodec A protocol-specific interceptor responsible for
encoding and decoding the Message
Addressing Properties (MAPs) as SOAP
headers.

Enabling WS-Addressing
To enable WS-Addressing the WS-Addressing interceptors must
be added to the inbound and outbound interceptor chains. This
is done in one of the following ways:

• Artix Features

• RMAssertion and WS-Policy Framework

• Using Policy Assertion in a WS-Addressing Feature

Adding WS-Addressing as a Feature
WS-Addressing can be enabled by adding the WS-Addressing
feature to the client and the server configuration as shown in
Example 30 and Example 31 respectively.

Example 30. client.xml—Adding WS-Addressing Feature to
Client Configuration

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:jaxws="http://cxf.apache.org/jaxws"
xmlns:wsa="http://cxf.apache.org/ws/addressing"
xsi:schemaLocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-
beans.xsd">

<jaxws:client ...>

<jaxws:features>
 <wsa:addressing/>
</jaxws:features>

</jaxws:client>

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://cxf.apache.org/jaxws
http://cxf.apache.org/ws/addressing
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/beans/spring-beans.xsd

112 Artix Deployment Guide: Java

Example 31. server.xml—Adding WS-Addressing Feature to
Server Configuration

Configuring WS-Addressing Attributes
The Artix WS-Addressing feature element is defined in the
namespace http://cxf.apache.org/ws/addressing. It supports the
two attributes described in Table 12.

Table 12. WS-Addressing Attributes

Attribute Name Value

allowDuplicates A boolean that determines if duplicate
MessageIDs are tolerated. The default setting is
true.

usingAddressingAdvisory A boolean that indicates if the presence of the
UsingAddressing element in the WSDL is advisory
only; that is, its absence does not prevent the
encoding of WS-Addressing headers.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:jaxws="http://cxf.apache.org/jaxws"
xmlns:wsa="http://cxf.apache.org/ws/addressing"
xsi:schemaLocation="

http://www.springframework.org/schema/beans http://www.spring
framework.org/schema/beans/spring-beans.xsd">

<jaxws:endpoint ...>
<jaxws:features>

<wsa:addressing/>
</jaxws:features>

</jaxws:endpoint>
</beans>

http://cxf.apache.org/ws/addressing
http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://cxf.apache.org/jaxws
http://cxf.apache.org/ws/addressing
http://www.springframework.org/schema/beans

Artix Deployment Guide: Java 113

Configuring WS-Addressing attributes
Configure WS-Addressing attributes by adding the attribute and
the value you want to set it to the WS-Addressing feature in your
server or client configuration file. For example, the following
configuration extract sets the allowDublicates attribute to false
on the server endpoint:

Using a WS-Policy assertion embedded in a feature
In Example 32 an addressing policy assertion to enable non-
anonymous responses is embedded in the policies element.

Example 32. Using the Policies to Configure WS-
Addressing
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:wsa="http://cxf.apache.org/ws/addressing"
xmlns:wsp="http://www.w3.org/2006/07/ws-policy"
xmlns:policy="http://cxf.apache.org/policy-config"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-wssecurity- utility-1.0.xsd"
xmlns:jaxws="http://cxf.apache.org/jaxws"
xsi:schemaLocation="

http://www.w3.org/2006/07/ws-policy
http://www.w3.org/2006/07/ws-policy.xsd
http://cxf.apache.org/ws/addressing
http://cxf.apache.org/schema/ws/addressing.xsd
http://cxf.apache.org/jaxws
http://cxf.apache.org/schemas/jaxws.xsd
http://www.springframework.org/schema/beans
http://www.springframe work.org/schema/beans/spring-beans.xsd">

 <jaxws:endpoint
name="{http://cxf.apache.org/greeter_control}GreeterPort" createdFromAPI=
"true">
 <jaxws:features>
 <policy:policies>
 <wsp:Policy
xmlns:wsam="http://www.w3.org/2007/02/addressing/metadata">
 <wsam:Addressing>
 <wsp:Policy>
 <wsam:NonAnonymousResponses/>
 </wsp:Policy>
 </wsam:Addressing>
 </wsp:Policy>
 <policy:policies>
 </jaxws:features>
 </jaxws:endpoint>
</beans>

<beans ... xmlns:wsa="http://cxf.apache.org/ws/addressing"
...>

<jaxws:endpoint ...>
<jaxws:features>

<wsa:addressing allowDuplicates="false"/>
</jaxws:features>

</jaxws:endpoint>
</beans>

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://cxf.apache.org/ws/addressing
http://www.w3.org/2006/07/ws-policy
http://cxf.apache.org/policy-config
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
http://cxf.apache.org/jaxws
http://www.w3.org/2006/07/ws-policy
http://www.w3.org/2006/07/ws-policy.xsd
http://cxf.apache.org/ws/addressing
http://cxf.apache.org/schema/ws/addressing.xsd
http://cxf.apache.org/jaxws
http://cxf.apache.org/schemas/jaxws.xsd
http://www.springframework.org/schema/beans
http://cxf.apache.org/greeter_control
http://www.w3.org/2007/02/addressing/metadata
http://cxf.apache.org/ws/addressing

Artix Deployment Guide: Java 115

Enabling Reliable
Messaging
Artix supports WS-Reliable Messaging(WS-RM). This chapter
explains how to enable and configure WS-RM in Artix.

Introduction to WS-RM
WS-ReliableMessaging (WS-RM) is a protocol that ensures the
reliable delivery of messages in a distributed environment. It
enables messages to be delivered reliably between distributed
applications in the presence of software, system, or network
failures.

For example, WS-RM can be used to ensure that the correct
messages have been delivered across a network exactly once,
and in the correct order.

How WS-RM works
WS-RM ensures the reliable delivery of messages between a
source and a destination endpoint. The source is the initial
sender of the message and the destination is the ultimate
receiver, as shown in Figure 4.

Figure 4. Web Services Reliable Messaging

The flow of WS-RM messages can be described as follows:

1. The RM source sends a CreateSequence protocol message to
the RM destination. This contains a reference for the
endpoint that receives acknowledgements (the wsrm:AcksTo
endpoint).

2. The RM destination sends a CreateSequenceResponse protocol
message back to the RM source. This message contains the
sequence ID for the RM sequence session.

116 Artix Deployment Guide: Java

3. The RM source adds an RM Sequence header to each message sent
by the application source. This header contains the sequence ID
and a unique message ID.

4. The RM source transmits each message to the RM destination.

5. The RM destination acknowledges the receipt of the message from
the RM source by sending messages that contain the RM
SequenceAcknowledgement header.

6. The RM destination delivers the message to the application
destination in an exactly-once-in-order fashion.

7. The RM source retransmits a message that it has not yet received
an acknowledgement.

The first retransmission attempt is made after a base
retransmission interval. Successive retransmission
attempts are made, by default, at exponential back-off
intervals or, alternatively, at fixed intervals. For more
details, see Configuring WS-RM.

This entire process occurs symmetrically for both the request and
the response message; that is, in the case of the response
message, the server acts as the RM source and the client acts
as the RM destination.

WS-RM delivery assurances
WS-RM guarantees reliable message delivery in a distributed
environment, regardless of the transport protocol used. Either
the source or the destination endpoint logs an error if reliable
delivery cannot be assured.

Supported specifications
Artix supports the 2005/02 version of the WS-RM specification,
which is based on the WS-Addressing 2004/08 specification.

Further information
For detailed information on WS-RM, see the specification at
http://specs.xmlsoap.org/ws/2005/02/rm/ws-
reliablemessaging.pdf.

WS-RM Interceptors
In Artix, WS-RM functionality is implemented as interceptors.
The Artix runtime uses interceptors to intercept and work with
the raw messages that are being sent and received. When a
transport receives a message, it creates a message object and
sends that message through an interceptor chain. If the
application's interceptor chain includes the WS-RM interceptors,
the application can participate in reliable messaging sessions.
The WS-RM interceptors handle the collection and aggregation

http://specs.xmlsoap.org/ws/2005/02/rm/ws-reliablemessaging.pdf
http://specs.xmlsoap.org/ws/2005/02/rm/ws-reliablemessaging.pdf
http://specs.xmlsoap.org/ws/2005/02/rm/ws-reliablemessaging.pdf

Artix Deployment Guide: Java 117

of the message chunks. They also handle all of the
acknowledgement and retransmission logic.

Artix WS-RM Interceptors
The Artix WS-RM implementation consists of four interceptors,
which are described in Table 13.

Table 13. Artix WS-ReliableMessaging Interceptors

Interceptor Description

org.apache.cxf.ws.rm.RMOutInterceptor Deals with the logical aspects of
providing reliability guarantees for
outgoing messages.

Responsible for sending the
CreateSequence requests and waiting
for their CreateSequenceResponse
responses.

Also responsible for aggregating the
sequence properties—ID and
message number—for an
application message.

org.apache.cxf.ws.rm.RMInInterceptor Responsible for intercepting and
processing RM protocol messages and
SequenceAcknowledgement messages that
are piggybacked on application
messages.

org.apache.cxf.ws.rm.soap.RMSoapInterceptor Responsible for encoding and decoding
the reliability properties as SOAP
headers.

org.apache.cxf.ws.rm.RetransmissionInterceptor Responsible for creating copies of
application messages for future
resending.

The presence of the WS-RM interceptors on the interceptor
chains ensures that WS-RM protocol messages are exchanged
when necessary. For example, when intercepting the first
application message on the outbound interceptor chain, the
RMOutInterceptor sends a CreateSequence request and waits to
process the original application message until it receives the
CreateSequenceResponse response. In addition, the WS-RM
interceptors add the sequence headers to the application
messages and, on the destination side, extract them from the
messages. It is not necessary to make any changes to your
application code to make the exchange of messages reliable.

For more information on how to enable WS-RM, see Enabling
WS-RM.

118 Artix Deployment Guide: Java

Configuring WS-RM Attributes
You control sequence demarcation and other aspects of the
reliable exchange through configuration. For example, by default
Artix attempts to maximize the lifetime of a sequence, thus
reducing the overhead incurred by the out-of-band WS-RM
protocol messages. To enforce the use of a separate sequence
per application message configure the WS-RM source’s
sequence termination policy (setting the maximum sequence
length to 1).

For more information on configuring WS-RM behavior, see
Configuring WS-RM.

Enabling WS-RM
To enable reliable messaging, the WS-RM interceptors must be
added to the interceptor chains for both inbound and outbound
messages and faults.

Because the WS-RM interceptors use WS-Addressing, the WS-
Addressing interceptors must also be present on the interceptor
chains.

You can ensure the presence of these interceptors in one of two
ways:

• Explicitly, by adding them to the dispatch chains using
Spring beans

• Implicitly, using WS-Policy assertions, which cause the Artix
runtime to transparently add the interceptors on your
behalf.

Spring beans—explicitly adding interceptors
To enable WS-RM add the WS-RM and WS-Addressing
interceptors to the Artix bus, or to a consumer or service
endpoint using Spring bean configuration. This is the approach
taken in the WS-RM sample that is found in the
InstallDir/samples/ws_rm directory. The configuration file, ws-
rm.cxf, shows the WS-RM and WS-Addressing interceptors being
added one-by-one as Spring beans (see Example 33).

Example 33. Enabling WS-RM Using Spring Beans
<?xml version="1.0" encoding="UTF-8"?>
❶<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/

beans http://www.springframework.org/schema/beans/spring-beans.xsd">
❷ <bean id="mapAggregator"

class="org.apache.cxf.ws.addressing.MAPAggregator"/>
<bean id="mapCodec" class="org.apache.cxf.ws.addressing.soap.MAPCodec"/>

❸ <bean id="rmLogicalOut" class="org.apache.cxf.ws.rm.RMOutInterceptor">
<property name="bus" ref="cxf"/>

</bean>
<bean id="rmLogicalIn" class="org.apache.cxf.ws.rm.RMInInterceptor">

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/
http://www.springframework.org/schema/beans/spring-beans.xsd

Artix Deployment Guide: Java 119

<property name="bus" ref="cxf"/>
</bean>
<bean id="rmCodec" class="org.apache.cxf.ws.rm.soap.RMSoapInterceptor"/>
<bean id="cxf" class="org.apache.cxf.bus.CXFBusImpl">

❹ <property name="inInterceptors">
<list>

<ref bean="mapAggregator"/>
<ref bean="mapCodec"/>
<ref bean="rmLogicalIn"/>
<ref bean="rmCodec"/>

</list>
</property>

❺ <property name="inFaultInterceptors">
<list>

<ref bean="mapAggregator"/>
<ref bean="mapCodec"/>
<ref bean="rmLogicalIn"/>
<ref bean="rmCodec"/>

</list>
</property>

➏ <property name="outInterceptors">
<list>

<ref bean="mapAggregator"/>
<ref bean="mapCodec"/>
<ref bean="rmLogicalOut"/>
<ref bean="rmCodec"/>

</list>
</property>

❼ <property name="outFaultInterceptors">
<list>

<ref bean="mapAggregator">
<ref bean="mapCodec"/>
<ref bean="rmLogicalOut"/>
<ref bean="rmCodec"/>

</list>
</property>

</bean>
</beans>

The code shown in Example 33 can be explained as follows:

❶ An Artix configuration file is a Spring XML file. You must
include an opening Spring beans element that declares the
namespaces and schema files for the child elements that are
encapsulated by the beans element.

❷ Configures each of the WS-Addressing interceptors—
MAPAggregator and MAPCodec. For more information on WS-
Addressing, see Deploying WS-Addressing.

❸ Configures each of the WS-RM interceptors—
RMOutInterceptor, RMInInterceptor, and RMSoapInterceptor.

❹ Adds the WS-Addressing and WS-RM interceptors to the
interceptor chain for inbound messages.

❺ Adds the WS-Addressing and WS-RM interceptors to the
interceptor chain for inbound faults.

120 Artix Deployment Guide: Java

➏ Adds the WS-Addressing and WS-RM interceptors to the
interceptor chain for outbound messages.

❼ Adds the WS-Addressing and WS-RM interceptors to the
interceptor chain for outbound faults.

WS-Policy framework—implicitly adding interceptors
The WS-Policy framework provides the infrastructure and APIs
that allow you to use WS-Policy. It is compliant with the
November 2006 draft publications of the Web Services Policy
1.5—Framework and Web Services Policy 1.5—Attachment
specifications.

To enable WS-RM using the Artix WS-Policy framework, do the
following:

1. Add the policy feature to your client and server endpoint.

Example 34 shows a reference bean nested within a
jaxws:feature element. The reference bean specifies the
AddressingPolicy, which is defined as a separate element within
the same configuration file.

Example 34. Configuring WS-RM using WS-Policy
<jaxws:client>
 <jaxws:features>

<ref bean="AddressingPolicy"/>
 </jaxws:features>
</jaxws:client>
 <wsp:Policy
 wsu:Id="AddressingPolicy"
 xmlns:wsam="http://www.w3.org/2007/02/addressing/metadata">
 <wsam:Addressing>
 <wsp:Policy>
 <wsam:NonAnonymousResponses/>
 </wsp:Policy>
 </wsam:Addressing>
</wsp:Policy>

Add a reliable messaging policy to the wsdl:service element—or
any other WSDL element that can be used as an attachment
point for policy or policy reference elements—to your WSDL file,
as shown in Example 35.

Example 35. Adding an RM Policy to Your WSDL File
<wsp:Policy wsu:Id="RM" xmlns:wsp="http://www.w3.org/2006/07/ws-policy"

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
wssecurity-utility- 1.0.xsd">

<wsam:Addressing
xmlns:wsam="http://www.w3.org/2007/02/addressing/metadata">

<wsp:Policy/>
</wsam:Addressing>
<wsrmp:RMAssertion
xmlns:wsrmp="http://schemas.xmlsoap.org/ws/2005/02/rm/policy">

<wsrmp:BaseRetransmissionInterval Milliseconds="10000"/>
</wsrmp:RMAssertion>

http://www.w3.org/TR/2006/WD-ws-policy-20061117/
http://www.w3.org/TR/2006/WD-ws-policy-20061117/
http://www.w3.org/TR/2006/WD-ws-policy-attach-20061117/
http://www.w3.org/TR/2006/WD-ws-policy-attach-20061117/
http://www.w3.org/2006/07/ws-policy
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-
http://schemas.xmlsoap.org/ws/2005/02/rm/policy

Artix Deployment Guide: Java 121

</wsp:Policy>
...
<wsdl:service name="ReliableGreeterService">

<wsdl:port binding="tns:GreeterSOAPBinding" name="GreeterPort">
<soap:address
location="http://localhost:9020/SoapContext/GreeterPort"/>
<wsp:PolicyReference URI="#RM"
xmlns:wsp="http://www.w3.org/2006/07/ws-policy"/>

</wsdl:port>
</wsdl:service>

Configuring WS-RM
You can configure WS-RM by:

• Setting Artix-specific attributes that are defined in the Artix
WS-RM manager namespace,
http://cxf.apache.org/ws/rm/manager.

• Setting standard WS-RM policy attributes that are defined in
the http://schemas.xmlsoap.org/ws/2005/02/rm/policy
namespace.

Configuring Artix-Specific WS-RM Attributes

To configure the Artix-specific attributes, use the rmManager
Spring bean. Add the following to your configuration file:

• The http://cxf.apache.org/ws/rm/manager namespace to your
list of namespaces.

• An rmManager Spring bean for the specific attribute that your
want to configure.

Example 36 shows a simple example.

Example 36. Configuring Artix-Specific WS-RM Attributes

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:wsrm-mgr="http://cxf.apache.org/ws/rm/manager"

xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframe work.org/schema/beans/spring-beans.xsd
http://cxf.apache.org/ws/rm/manager
http://cxf.apache.org/schemas/configuration/wsrm-man ager.xsd">
...
<wsrm-mgr:rmManager>
<!--
...Your configuration goes here

-->
</wsrm-mgr:rmManager>

http://www.w3.org/2006/07/ws-policy
http://cxf.apache.org/ws/rm/manager
http://schemas.xmlsoap.org/ws/2005/02/rm/policy
http://cxf.apache.org/ws/rm/manager
http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://cxf.apache.org/ws/rm/manager
http://www.springframework.org/schema/beans
http://cxf.apache.org/ws/rm/manager
http://cxf.apache.org/schemas/configuration/wsrm-man

122 Artix Deployment Guide: Java

Children of the rmManager Spring bean
Table 14 shows the child elements of the rmManager Spring
bean, defined in the http://cxf.apache.org/ws/rm/manager
namespace.

Table 14. Children of the rmManager Spring Bean

Element Description

RMAssertion An element of type RMAssertion

deliveryAssurance An element of type DeliveryAssuranceType that
describes the delivery assurance that should
apply

sourcePolicy An element of type SourcePolicyType that
allows you to configure details of the RM
source

destinationPolicy An element of type DestinationPolicyType that
allows you to configure details of the RM
destination

Example
For an example, see Maximum unacknowledged messages
threshold.

Configuring Standard WS-RM Policy Attributes

You can configure standard WS-RM policy attributes in one of
the following ways:

• RMAssertion in rmManager Spring bean

• Policy within a feature

• WSDL file

• External attachment

http://cxf.apache.org/ws/rm/manager

Artix Deployment Guide: Java 123

WS-Policy RMAssertion Children
Table 15 shows the elements defined in the
http://schemas.xmlsoap.org/ws/2005/02/rm/policy namespace:

Table 15. Children of the WS-Policy RMAssertion Element

Name Description

InactivityTimeout Specifies the amount of time that must pass
without receiving a message before an endpoint
can consider an RM sequence to have been
terminated due to inactivity.

BaseRetransmissionInterval Sets the interval within which an
acknowledgement must be received by the RM
Source for a given message. If an
acknowledgement is not received within the
time set by the BaseRetransmissionInterval, the
RM Source will retransmit the message.

ExponentialBackoff Indicates the retransmission interval will be
adjusted using the commonly known exponential
backoff algorithm (Tanenbaum).

For more information, see Computer
Networks, Andrew S. Tanenbaum, Prentice Hall
PTR, 2003.

AcknowledgementInterval In WS-RM, acknowledgements are sent on return
messages or sent stand-alone. If a return
message is not available to send an
acknowledgement, an RM Destination can wait
for up to the acknowledgement interval before
sending a stand-alone acknowledgement. If
there are no unacknowledged messages, the RM
Destination can choose not to send an
acknowledgement.

More detailed reference information
For more detailed reference information, including descriptions
of each element’s sub-elements and attributes, please refer to
http:// schemas.xmlsoap.org/ws/2005/02/rm/wsrm-
policy.xsd.

RMAssertion in rmManager Spring bean
You can configure standard WS-RM policy attributes by adding
an RMAssertion within an Artix rmManager Spring bean. This is the
best approach if you want to keep all of your WS-RM
configuration in the same configuration file; that is, if you want
to configure Artix-specific attributes and standard WS-RM policy
attributes in the same file.

http://schemas.xmlsoap.org/ws/2005/02/rm/policy
http://schemas.xmlsoap.org/ws/2005/02/rm/wsrm-policy.xsd
http://schemas.xmlsoap.org/ws/2005/02/rm/wsrm-policy.xsd
http://schemas.xmlsoap.org/ws/2005/02/rm/wsrm-policy.xsd

124 Artix Deployment Guide: Java

For example, the configuration in Example 37 shows:

• A standard WS-RM policy attribute,
BaseRetransmissionInterval, configured using an RMAssertion
within an rmManager Spring bean.

• An Artix-specific RM attribute, intraMessageThreshold,
configured in the same configuration file.

Example 37. Configuring WS-RM Attributes Using an
RMAssertion in an rmManager Spring Bean

Policy within a feature
You can configure standard WS-RM policy attributes within
features, as shown in Example 38.

Example 38. Configuring WS-RM Attributes as a Policy
within a Feature
<xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:wsa="http://cxf.apache.org/ws/addressing"
xmlns:wsp="http://www.w3.org/2006/07/ws-policy"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
wssecurity- utility-1.0.xsd"
xmlns:jaxws="http://cxf.apache.org/jaxws" xsi:schemaLocation="

http://www.w3.org/2006/07/ws-policy http://www.w3.org/2006/07/ws-policy.xsd
http://cxf.apache.org/ws/addressing
http://cxf.apache.org/schema/ws/addressing.xsd http://cxf.apache.org/jaxws
http://cxf.apache.org/schemas/jaxws.xsd
http://www.springframework.org/schema/beans http://www.springframe
work.org/schema/beans/spring-beans.xsd">
 <jaxws:endpoint name="{http://cxf.apache.org/greeter_control}GreeterPort"
 created FromAPI="true">
 <jaxws:features>
 <wsp:Policy>
 <wsrm:RMAssertion xmlns:wsrm=
"http://schemas.xmlsoap.org/ws/2005/02/rm/policy">
 <wsrm:AcknowledgementInterval Milliseconds="200" />
 </wsrm:RMAssertion>
 <wsam:Addressing xmlns:wsam=
"http://www.w3.org/2007/02/addressing/metadata">
 <wsp:Policy>
 <wsam:NonAnonymousResponses/>
 </wsp:Policy>

<beans xmlns:wsrm-policy="http://schemas.xmlsoap.org/ws/2005/02/rm/policy"
xmlns:wsrm-mgr="http://cxf.apache.org/ws/rm/manager"

...>
 <wsrm-mgr:rmManager id="org.apache.cxf.ws.rm.RMManager">

<wsrm-policy:RMAssertion>
<wsrm-policy:BaseRetransmissionInterval Milliseconds="4000"/>

</wsrm-policy:RMAssertion>
<wsrm-mgr:destinationPolicy>

<wsrm-mgr:acksPolicy intraMessageThreshold="0" />
</wsrm-mgr:destinationPolicy>

 </wsrm-mgr:rmManager>
</beans>

http://schemas.xmlsoap.org/ws/2005/02/rm/policy
http://cxf.apache.org/ws/rm/manager

Artix Deployment Guide: Java 125

 </wsam:Addressing>
 </wsp:Policy>
 </jaxws:features>
 </jaxws:endpoint>
</beans>

WSDL file
If you use the WS-Policy framework to enable WS-RM, you can
configure standard WS-RM policy attributes in your WSDL file.
This is a good approach if you want your service to interoperate
and use WS-RM seamlessly with consumers deployed to other
policy-aware Web services stacks.

For an example, see WS-Policy framework—implicitly adding
interceptors where the base retransmission interval is configured
in the WSDL file.

External attachment
You can configure standard WS-RM policy attributes in an external
attachment file. This is a good approach if you cannot, or do not
want to, change your WSDL file.

Example 39 shows an external attachment that enables both
WS-A and WS-RM (base retransmission interval of 30 seconds)
for a specific EPR.

Example 39. Configuring WS-RM in an External Attachment
<attachments xmlns:wsp="http://www.w3.org/2006/07/ws-policy" xmlns:wsa=
"http://www.w3.org/2005/08/addressing">
 <wsp:PolicyAttachment>
 <wsp:AppliesTo>

<wsa:EndpointReference>
<wsa:Address>http://localhost:9020/SoapContext/GreeterPort
</wsa:Address>

</wsa:EndpointReference>
 </wsp:AppliesTo>
 <wsp:Policy>

<wsam:Addressing
xmlns:wsam="http://www.w3.org/2007/02/addressing/metadata">

<wsp:Policy/>
</wsam:Addressing>

<wsrmp:RMAssertion
xmlns:wsrmp="http://schemas.xmlsoap.org/ws/2005/02/rm/policy">

<wsrmp:BaseRetransmissionInterval Milliseconds="30000"/>
</wsrmp:RMAssertion>

 </wsp:Policy>
 </wsp:PolicyAttachment>
</attachments>/

http://www.w3.org/2006/07/ws-policy
http://www.w3.org/2005/08/addressing
http://www.w3.org/2007/02/addressing/metadata
http://schemas.xmlsoap.org/ws/2005/02/rm/policy

126 Artix Deployment Guide: Java

WS-RM Configuration Use Cases

This subsection focuses on configuring WS-RM attributes from a
use case point of view. Where an attribute is a standard WS-RM
policy attribute, defined in the
http://schemas.xmlsoap.org/ws/2005/02/rm/policy namespace,
only the example of setting it in an RMAssertion within an
rmManager Spring bean is shown. For details of how to set such
attributes as a policy within a feature; in a WSDL file, or in an
external attachment, see Configuring Standard WS-RM Policy
Attributes.

The following use cases are covered:

• Base retransmission interval

• Exponential backoff for retransmission

• Acknowledgement interval

• Maximum unacknowledged messages threshold

• Maximum length of an RM sequence

• Message delivery assurance policies

Base retransmission interval
The BaseRetransmissionInterval element specifies the interval at
which an RM source retransmits a message that has not yet
been acknowledged. It is defined in the
http://schemas.xmlsoap.org/ws/2005/02/rm/wsrm-policy.xsd
schema file. The default value is 3000 milliseconds.

Example 40 shows how to set the WS-RM base retransmission
interval.

Example 40. Setting the WS-RM Base Retransmission
Interval

<beans xmlns:wsrm-policy="http://schemas.xmlsoap.org/ws/2005/02/rm/policy
...>
<wsrm-mgr:rmManager id="org.apache.cxf.ws.rm.RMManager">

<wsrm-policy:RMAssertion>
<wsrm-policy:BaseRetransmissionInterval Milliseconds="4000"/>

</wsrm-policy:RMAssertion>
</wsrm-mgr:rmManager>
</beans>

http://schemas.xmlsoap.org/ws/2005/02/rm/policy
http://schemas.xmlsoap.org/ws/2005/02/rm/wsrm-policy.xsd
http://schemas.xmlsoap.org/ws/2005/02/rm/policy

Artix Deployment Guide: Java 127

Exponential backoff for retransmission
The ExponentialBackoff element determines if successive
retransmission attempts for an unacknowledged message are
performed at exponential intervals.

The presence of the ExponentialBackoff element enables this
feature. An exponential backoff ratio of 2 is used by default.

Example 41 on page 124 shows how to set the WS-RM
exponential backoff for retransmission.

Example 41. Setting the WS-RM Exponential Backoff
Property

Acknowledgement interval
The AcknowledgementInterval element specifies the interval at
which the WS-RM destination sends asynchronous
acknowledgements. These are in addition to the synchronous
acknowledgements that it sends on receipt of an incoming
message. The default asynchronous acknowledgement interval is
0 milliseconds. This means that if the AcknowledgementInterval is
not configured to a specific value, acknowledgements are sent
immediately (that is, at the first available opportunity).

Asynchronous acknowledgements are sent by the RM
destination only if both of the following conditions are met:

• The RM destination is using a non-anonymous wsrm:acksTo
endpoint.

• The opportunity to piggyback an acknowledgement on a
response message does not occur before the expiry of the
acknowledgement interval.

Example 42 shows how to set the WS-RM acknowledgement
interval.

Example 42. Setting the WS-RM Acknowledgement Interval

<beans xmlns:wsrm-policy="http://schemas.xmlsoap.org/ws/2005/02/rm/policy
...>
<wsrm-mgr:rmManager id="org.apache.cxf.ws.rm.RMManager">

<wsrm-policy:RMAssertion>
<wsrm-policy:ExponentialBackoff="4"/>

</wsrm-policy:RMAssertion>
</wsrm-mgr:rmManager>
</beans>

<beans xmlns:wsrm-policy="http://schemas.xmlsoap.org/ws/2005/02/rm/policy
...>
<wsrm-mgr:rmManager id="org.apache.cxf.ws.rm.RMManager">

<wsrm-policy:RMAssertion>
<wsrm-policy:AcknowledgementInterval Milliseconds="2000"/>
</wsrm-policy:RMAssertion>

</wsrm-mgr:rmManager>
</beans>

http://schemas.xmlsoap.org/ws/2005/02/rm/policy
http://schemas.xmlsoap.org/ws/2005/02/rm/policy

128 Artix Deployment Guide: Java

Maximum unacknowledged messages threshold
The maxUnacknowledged attribute sets the maximum number of
unacknowledged messages that can accrue per sequence before
the sequence is terminated.

Example 43 on page 125 shows how to set the WS-RM
maximum unacknowledged messages threshold.

Example 43. Setting the WS-RM Maximum Unacknowledged
Message Threshold

Maximum length of an RM sequence
The maxLength attribute sets the maximum length of a WS-RM
sequence. The default value is 0, which means that the length
of a WS-RM sequence is unbound.

When this attribute is set, the RM endpoint creates a new RM
sequence when the limit is reached, and after receiving all of the
acknowledgements for the previously sent messages. The new
message is sent using a new sequence.

Example 44 shows how to set the maximum length of an RM
sequence.

Example 44. Setting the Maximum Length of a WS-RM
Message Sequence

<beans xmlns:wsrm-mgr="http://cxf.apache.org/ws/rm/manager
...>
 <wsrm-mgr:reliableMessaging>
 <wsrm-mgr:sourcePolicy>

 <wsrm-mgr:sequenceTerminationPolicy maxLength="100" />
 </wsrm-mgr:sourcePolicy>

 </wsrm-mgr:reliableMessaging>
</beans>

Message delivery assurance policies
You can configure the RM destination to use the following
delivery assurance policies:

• AtMostOnce — The RM destination delivers the messages to the
application destination only once. If a message is delivered
more than once an error is raised. It is possible that some
messages in a sequence may not be delivered.

• AtLeastOnce — The RM destination delivers the messages to
the application destination at least once. Every message

<beans xmlns:wsrm-mgr="http://cxf.apache.org/ws/rm/manager
...>
<wsrm-mgr:reliableMessaging>
 <wsrm-mgr:sourcePolicy>

<wsrm-mgr:sequenceTerminationPolicy maxUnacknowledged="20" />
</wsrm-mgr:sourcePolicy>

</wsrm-mgr:reliableMessaging>
</beans>

http://cxf.apache.org/ws/rm/manager
http://cxf.apache.org/ws/rm/manager

Artix Deployment Guide: Java 129

sent will be delivered or an error will be raised. Some
messages might be delivered more than once.

• InOrder — The RM destination delivers the messages to the
application destination in the order that they are sent. This
delivery assurance can be combined with the AtMostOnce or
AtLeastOnce assurances.

Example 45 shows how to set the WS-RM message delivery
assurance.

Example 45. Setting the WS-RM Message Delivery
Assurance Policy

Configuring WS-RM Persistence
The Artix WS-RM features already described in this chapter
provide reliability for cases such as network failures. WS-RM
persistence provides reliability across other types of failure
such as an RM source or a RM destination crash.

WS-RM persistence involves storing the state of the various RM
endpoints in persistent storage. This enables the endpoints to
continue sending and receiving messages when they are
reincarnated.

Artix enables WS-RM persistence in a configuration file. The
default WS-RM persistence store is JDBC-based. For
convenience, Artix includes Derby for out-of-the-box
deployment. In addition, the persistent store is also exposed
using a Java API. To implement your own persistence
mechanism, you can implement one using this API with your
preferred DB.

IMPORTANT: WS-RM persistence is supported for oneway calls only,
and it is disabled by default.

How it works
Artix WS-RM persistence works as follows:

• At the RM source endpoint, an outgoing message is
persisted before transmission. It is evicted from the
persistent store after the acknowledgement is received.

<beans xmlns:wsrm-mgr="http://cxf.apache.org/ws/rm/manager
...>
<wsrm-mgr:reliableMessaging>

<wsrm-mgr:deliveryAssurance>
<wsrm-mgr:AtLeastOnce />

</wsrm-mgr:deliveryAssurance>
</wsrm-mgr:reliableMessaging>
</beans>

http://cxf.apache.org/ws/rm/manager

130 Artix Deployment Guide: Java

• After a recovery from crash, it recovers the persisted
messages and retransmits until all the messages have been
acknowledged. At that point, the RM sequence is closed.

• At the RM destination endpoint, an incoming message is
persisted, and upon a successful store, the
acknowledgement is sent. When a message is successfully
dispatched, it is evicted from the persistent store.

• After a recovery from a crash, it recovers the persisted
messages and dispatches them. It also brings the RM
sequence to a state where new messages are accepted,
acknowledged, and delivered.

Enabling WS-persistence
To enable WS-RM persistence, you must specify the object
implementing the persistent store for WS-RM. You can develop
your own or you can use the JDBC based store that comes with
Artix.

The configuration shown below enables the JDBC-based store
that comes with Artix:

Configuring WS-persistence
The JDBC-based store that comes with Artix supports the
properties shown in Table 16.

Table 16. JDBC Store Properties

Attribute Name Type Default Setting

driverClassName String org.apache.derby.jdbc.EmbeddedDriver

userName String null

passWord String null

url String jdbc:derby:rmdb;create=true

The configuration shown in Example 46 enables the JDBC-based
store that comes with Artix, while setting the driverClassName
and url to non-default values.

Example 46. Configuring the JDBC Store for WS-RM
Persistence

<bean id="RMTxStore"
class="org.apache.cxf.ws.rm.persistence.jdbc.RMTxStore"/>
<wsrm-mgr:rmManager id="org.apache.cxf.ws.rm.RMManager">

<property name="store" ref="RMTxStore"/>
</wsrm-mgr:rmManager>

<bean id="RMTxStore" class="org.apache.cxf.ws.rm.persistence.jdbc.RMTxStore">
<property name="driverClassName" value="com.acme.jdbc.Driver"/>
<property name="url" value="jdbc:acme:rmdb;create=true"/>

</bean>

Artix Deployment Guide: Java 131

Enabling High
Availability
This chapter explains how to enable and configure high
availability (HA) in the Artix runtime.

Introduction to High Availability
Scalable and reliable applications require high availability to
avoid any single point of failure in a distributed system. You can
protect your system from single points of failure using
replicated services.

A replicated service is comprised of multiple instances, or
replicas, of the same service. Together these act as a single
logical service. Clients invoke requests on the replicated
service, and Artix delivers the requests to one of the member
replicas. The routing to a replica is transparent to the client.

HA with static failover
Artix supports HA with static failover in which replica details are
encoded in the service WSDL file. The WSDL file contains
multiple ports, and possibly multiple hosts, for the same
service. The number of replicas in the cluster remains static as
long as the WSDL file remains unchanged. Changing the cluster
size involves editing the WSDL file.

HA with dynamic failover
Artix also supports HA with dynamic failover. HA with dynamic
failover is one in which number of replicas in a cluster can be
dynamically increased and decreased simply by starting and
stopping instances of the server application. The Artix locator
service is central to this feature.

The Artix locator service provides a lightweight mechanism for
balancing workloads among a group of services. When several
services with the same service name register with the Artix
locator service, it automatically creates a list of references to
each instance of this service. The locator hands out references
to clients using a round-robin or random algorithm. This process
is automatic and invisible to both clients and services.

The discovery mechanism can also be used in failover scenarios.
The Artix locator service only hands out references for service
replicas that it believes to be active, on the basis of the
dynamic state of the cluster as maintained by the peer manager
instance collocated with the Artix locator service. Mutual heart-
beating between the peer manager instances associated with the
Artix locator service and service replicas, allow each to detect
the availability of the other.

132 Artix Deployment Guide: Java

Dynamic failover also has the advantage that cluster membership
is not fixed. It is easy to grow or shrink the cluster size by
simply starting and stopping replica instances. Newly started
replicas transparently register with the Artix locator service, and
their references are immediately eligible for discovery by new
clients. Similarly, gracefully shutdown services transparently
deregister themselves with the Artix locator service.

Sample applications
The examples shown in this chapter are taken from the HA sample
applications that are located in the /java/samples/ha directory of
your Artix installation.

For information on how to run these samples applications, see the
README.txt files on the sample directories.

More information about the locator service
For more information on the Artix locator service, including
how to configure it, see the Artix Locator Guide.

Enabling HA with Static Failover
To enable HA with static failover, you must:

• Encode replica details in your service WSDL file

• Add the clustering feature to your client configuration

Encode replica details in your service WSDL file
You must encode the details of the replicas in your cluster in
your service WSDL file. Example 47 shows a WSDL file extract
that defines a service cluster of three replicas.

Example 47. Enabling HA with Static Failover—WSDL File

The WSDL extract shown in Example 47 can be explained as
follows:

❶<wsdl:service name="ClusteredService">
❷ <wsdl:port binding="tns:Greeter_SOAPBinding" name="Replica1">

<soap:address location="http://localhost:9001/SoapContext/Replica1"/>
</wsdl:port>

❸ <wsdl:port binding="tns:Greeter_SOAPBinding" name="Replica2">
<soap:address location="http://localhost:9002/SoapContext/Replica2"/>

</wsdl:port>

❹ <wsdl:port binding="tns:Greeter_SOAPBinding" name="Replica3">
<soap:address location="http://localhost:9003/SoapContext/Replica3"/>

</wsdl:port>

</wsdl:service>

Artix Deployment Guide: Java 133

❶ Defines a service, ClusterService, which is exposed on three
ports:

• Replica1

• Replica2

• Replica3

❷ Defines Replica1 to expose the ClusterService as a SOAP over
HTTP endpoint on port 9001.

❸ Defines Replica2 to expose the ClusterService as a SOAP over
HTTP endpoint on port 9002.

❹ Defines Replica3 to expose the ClusterService as a SOAP over
HTTP endpoint on port 9003.

Add the clustering feature to your client configuration
In your client configuration file, add the clustering feature as
shown in Example 48.

Example 48. Enabling HA with Static Failover—Client
Configuration

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:jaxws="http://cxf.apache.org/jaxws"
xmlns:clustering="http://cxf.apache.org/clustering"
xsi:schemaLocation="http://cxf.apache.org/jaxws
http://cxf.apache.org/schemas/jaxws.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

<jaxws:client name="{http://apache.org/hello_world_soap_http}Replica1"

createdFromAPI="true">
<jaxws:features>

<clustering:failover/>
</jaxws:features>

</jaxws:client>

<jaxws:client name="{http://apache.org/hello_world_soap_http}Replica2"
createdFromAPI="true">

<jaxws:features>
<clustering:failover/>

</jaxws:features>
</jaxws:client>

<jaxws:client name="{http://apache.org/hello_world_soap_http}Replica3"

createdFromAPI="true">
<jaxws:features>

<clustering:failover/>
</jaxws:features>

</jaxws:client>

</beans>

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://cxf.apache.org/jaxws
http://cxf.apache.org/clustering
http://cxf.apache.org/jaxws
http://cxf.apache.org/schemas/jaxws.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://apache.org/hello_world_soap_http
http://apache.org/hello_world_soap_http
http://apache.org/hello_world_soap_http

134 Artix Deployment Guide: Java

Configuring HA with Static Failover

By default, HA with static failover uses a sequential strategy
when selecting a replica service if the original service with
which a client is communicating becomes unavailable or fails.
The sequential strategy selects a replica service in the same
sequential order every time it is used. Selection is determined
by Artix’s internal service model and results in a deterministic
failover pattern.

Configuring a random strategy
You can configure HA with static failover to use a random
strategy instead of the sequential strategy when selecting a
replica. The random strategy selects a replica service at random
each time a service becomes unavailable or fails. The choice of
failover target from the surviving members in a cluster is entirely
random.

To configure the random strategy, adding the configuration
shown in Example 49 to your client configuration file:

Example 49. Configuring a Random Strategy for Static
Failover

The configuration shown in Example 49 can be explained as
follows:

❶ Defines a Random bean and implementation class that
implements the random strategy.

❷ Specifies that the random strategy be used when selecting a
replica.

<beans ...>
❶ <bean id="Random" class="org.apache.cxf.clustering.RandomStrategy"/>

<jaxws:client name="{http://apache.org/hello_world_soap_http}Replica3"
createdFromAPI="true">

<jaxws:features>
<clustering:failover>

❷ <clustering:strategy>
<ref bean="Random"/>

</clustering:strategy>
</clustering:failover>

</jaxws:features>
</jaxws:client>

</beans>

http://apache.org/hello_world_soap_http

Artix Deployment Guide: Java 135

Enabling HA with Dynamic Failover
To enable HA with dynamic failover, you do the following:

• Configure your service to register with the Artix locator

• Configure your client to use locator meditated failover

• Ensure the Artix locator is running

Configure your service to register with the Artix locator
To configure your service to register with the Artix locator
service add configuration shown in Example 50 to your server
configuration file.

Example 50. Configuring Your Service to Register with the
Locator
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:locatorEndpoint="http://com.iona.soa/discovery/locator/endpoint"
...>

<!-- Configuration for Locator runtime support -->

❶ <bean id="LocatorSupport"
 class="com.iona.soa.discovery.locator.rt.cxf.LocatorSupport">

<property name="bus" ref="cxf"/>
<property name="contract">

<value>http://localhost:9000/services/LocatorService</value>
</property>

</bean>

<jaxws:endpoint name="{http://apache.org/hello_world_soap_http}SoapPort"
createdFromAPI="true">

❷ <jaxws:features>
<locatorEndpoint:registerOnPublish monitorLiveness="true"

heartbeatInterval="10001" />
</jaxws:features>

</jaxws:endpoint>

</beans>

The configuration shown in Example 50 is taken from the HA
sample and can be explained as follows:

❶ Enables the service to use the Artix locator service.

❷ The registerOnPublish feature enables the published endpoint
to register with the Artix locator service.

http://www.springframework.org/schema/beans
http://com.iona.soa/discovery/locator/endpoint
http://apache.org/hello_world_soap_http

136 Artix Deployment Guide: Java

Configure your client to use locator meditated failover
To configure your client to use locator mediated failover add the
configuration shown in Example 51 to your client configuration
file.

Example 51. Configuring your Client to Use Locator
Mediated Failover
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:clustering="http://cxf.apache.org/clustering"...>

❶ <bean id="LocatorSupport"
class="com.iona.soa.discovery.locator.rt.cxf.LocatorSupport">

<property name="bus" ref="cxf"/>
<property name="contract">

<value>./wsdl/locator.wsdl</value>
</property>

</bean>

❷ <bean id="LocatorMediated"

class="com.iona.soa.failover.locator.rt.cxf.LocatorMediatedStrategy">
<property name="bus" ref="cxf"/>
...

</bean>

<jaxws:client name="{http://apache.org/hello_world_soap_http}SoapPort"
createdFromAPI="true">

<jaxws:features>
<clustering:failover>

<clustering:strategy>
<ref bean="LocatorMediated"/>

</clustering:strategy>
 </clustering:failover>

</jaxws:features>
</jaxws:client>

</beans>

The configuration shown in Example 51 is from the HA sample
and can be explained as follows:

❶ Enables the client to use the Artix locator service to find
services.

❷ Enables failover support using the Artix locator service.

Ensure the Artix locator is running
Ensure that the Artix locator service is running. To start the Artix
locator service, run the following command:

ArtixInstallDir/java/bin/start_locator.bat

For more information, see the Artix Locator Guide.

http://www.springframework.org/schema/beans
http://cxf.apache.org/clustering
http://apache.org/hello_world_soap_http

Artix Deployment Guide: Java 137

Configuring HA with Dynamic Failover

You can change the default behavior of HA with dynamic
failover by configuring the following aspects of the feature:

• Enabling Artix locator to check the state of a registered
service

• Setting the heartbeat interval

• Initial delay in locator response

• Maximum number of client retries

• Delay between client retry attemptsSequential backoff in
client retry attempts

Enabling Artix locator to check the state of a registered
service
The monitorLiveness attribute enables the Artix locator service to
check, at regular intervals, whether a registered service is still
live or not. It is disabled by default.

To enable the Artix locator service to monitor the state of a
registered service, add the following to your server
configuration file:

<locatorEndpoint:registerOnPublish monitorLiveness="true">

Setting the heartbeat interval
The heartbeatInterval attribute specifies the frequency, in
milliseconds, at which the Artix locator service checks the state
of a registered service. It depends on the monitorLiveness
attribute being set to true. The default value is 10000
milliseconds (10 seconds).

To change the default heartbeat interval, add the following to
your server configuration file:

Initial delay in locator response
The initialDelay attribute specifies an initial delay, in
milliseconds, in the Artix locator service’s response to the
client’s request for an EPR. The default value is 0.

To change the initial delay in the Artix locator’s response to the
client’s request for an EPR, add the following to your client
configuration file:

<locatorEndpoint:registerOnPublish monitorLiveness="true"
heartbeatInterval="10001"/>

<bean id="LocatorMediated" class="com.iona.soa.failover.
locator.rt.cxf.LocatorMediatedStrategy">

<property name="initialDelay" value="500"/>
</bean>

138 Artix Deployment Guide: Java

Maximum number of client retries
The maxRetries attribute specifies the maximum number of times
that the client retries to connect to a service. The default value
is 3.

To change the number of times that the client retries to connect
to a service, add the following to your client configuration file:

Delay between client retry attempts
The intraRetryDelay attribute specifies the delay, in milliseconds,
between the client’s attempts to retry connecting to the
service. The default value is 5000 milliseconds.

To change the delay between a client’s attempts to retry
connecting to a service, add the following to your client
configuration file:

Sequential backoff in client retry attempts
The backoff attribute specifies an exponential backoff in the
client’s retry attempts. The default value is 1.0, which
essentially does not exponentially increase the amount of time
between a client’s retry attempts.

To change the exponential backoff, add the following to your
client configuration file:

<bean id="LocatorMediated" class="com.iona.soa.failover.
locat or.rt.cxf.LocatorMediatedStrategy">

<property name="maxRetries" value="5"/>
</bean>

<bean id="LocatorMediated" class="com.iona.soa.failover.
locator.rt.cxf.LocatorMediatedStrategy">

<property name="intraRetryDelay" value="4000"/>
</bean>

<bean id="LocatorMediated" class="com.iona.soa.failover.
locator.rt.cxf.LocatorMediatedStrategy">

<property name="backoff" value="1.2"/>
</bean>

Artix Deployment Guide: Java 139

Publishing WSDL
Contracts
This chapter describes how to publish WSDL files that correspond
to specific Web services. This enables consumers to access a
WSDL file and invoke on a service.

Artix WSDL Publishing Service
The Artix WSDL publishing service enables Artix processes to
publish WSDL files for specific Web services. Published WSDL
files can be downloaded by consumers or viewed in a Web
browser. They can also be downloaded by Web service
processes created by other vendor tools.

The WSDL publishing service enables Artix applications to be
used in various deployment models—for example, J2EE—
without the need to specify file system locations. It is the
recommended way to publish WSDL files for Artix services.

The WSDL publishing service is implemented by the
com.iona.soa.wsdlpublish.rt.WSDLPublish class. This class can be
loaded by any Artix process that hosts a Web service endpoint.
This includes server applications, Artix routing applications, and
applications that expose a callback object.

Use with endpoint references
It is recommended that you use the WSDL publishing service for
any applications that generate and export references. To use
references, the consumer must have access to the WSDL file
referred to by the reference. The simplest way to accomplish
this is to use the WSDL publishing service.

Figure 5 on page 143 shows an example of creating references
with the WSDL publishing service. The WSDL publishing service
automatically opens a port, from which consumers can
download a copy of the server’s dynamically updated WSDL file.
Generated references have their WSDL location set to the
following URL:

http://Hostname:WSDLPublishPort/QueryString

Hostname is the server host, WSDLPublishPort is a TCP/IP port used
to serve up the WSDL file, and QueryString is a string that requests
a particular WSDL file (see Querying the WSDL Publishing
Service). If a client accesses the WSDL location URL, the server
converts the WSDL model to XML on the fly and returns the
WSDL contract in a HTTP message.

140 Artix Deployment Guide: Java

Figure 5. Creating References with the WSDL Publishing
Service

Multiple transports
The WSDL publishing service makes the WSDL file available
through an HTTP URL. However, the Web service described in the
WSDL file can use a transport other than HTTP.

Configuring the WSDL Publishing Service
To configure the WSDL publishing service in the Artix Java
runtime you must create an Artix Java configuration file to set
the configuration options that are described in this section.

NOTE: If you want to run the WSDL publishing service in a servlet
container, refer to Configuring for Use in a Servlet Container.

Artix Deployment Guide: Java 141

Configuration file
Example 52 shows an example of such a configuration file. It is
written using plain Spring beans. For more detailed information
on each of the configuration options, see WSDL publishing
service configuration options.

Example 52. Configuring the WSDL Publishing Service

The configuration shown in Example 52 can be explained as
follows:

❶ Includes an opening Spring beans element that declares the
namespaces and schema files for the child elements that
are encapsulated by the beans element.

❷ Specifies the com.iona.soa.wsdlpublish.rt.WSDLPublishManager
class, which implements the WSDL publishing service
manager. The WSDL publishing service manager enables the
WSDL publishing service.

❸ Specifies the com.iona.soa.wsdlpublish.rt.WSDLPublish class,
which implements the WSDL publishing service.

❹ The publishPort property specifies the TCP/IP port on which
the WSDL files are published.

❺ The publishHostname property specifies the hostname on
which the WSDL publishing service is available.

➏ The catalogFacility property specifies that the catalog facility
is enabled.

❶<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/

beans http://www.springframework.org/schema/beans/ spring-beans-2.0.xsd">

❷ <bean id="WSDLPublishManager"
 class="com.iona.soa.wsdlpublish.rt.WSDLPublishManager">

<property name="enabled" value="true"/>
<property name="bus" ref="cxf"/>
<property name="WSDLPublish" ref="WSDLPublish"/>

</bean>

❸ <bean id="WSDLPublish" class="com.iona.soa.wsdlpublish.rt.WSDLPublish">

❹ <property name="publishPort" value="27220"/>
❺ <property name="publishHostname" value="myhost"/>
➏ <property name="catalogFacility" value="true"/>
❼ <property name="processWSDL" value="standard"/>

❽ <property name="removeSchemas" ref="rschemas"/>
</bean>

 ➒ <bean id="rschemas" class="com.iona.cxf.wsdlpublish.Valuelist"

value="http://cxf.apache.org/ http://schemas.iona.com/"/>

</beans>

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/
http://www.springframework.org/schema/beans/
http://schemas.iona.com/

142 Artix Deployment Guide: Java

❼ The processWSDL property specifies the type of processing
that is done on the WSDL file before the WSDL file is
published.

❽ The removeSchemas property specifies a list of the target
namespaces of the extensions that are removed when the
processWSDL property is set to standard. It this example it
references rschemas, which is configured in the next line of
code.

➒ Configures a rschema bean, which specifies the
com.iona.cxf.wsdlpublish.Valuelist class. The
com.iona.cxf.wsdlpublish.Valuelist class has a value attribute,
which you can use to list the schemas that you want
removed from the WSDL file. In this case,
http://cxf.apache.org/ and http://schemas.iona.com/ are
removed.

WSDL publishing service configuration options
Table 17 describes each of the WSDL publishing service
configuration options.

Table 17. WSDL Publishing Service Configuration Options

Configuration
Option

Description

publishPort An integer that specifies the TCP/IP port that
WSDL files are published on. If the port is in use,
the server process will start and an error message
indicating the address is already in use will be
raised. The default value is 27220.

publishHostname A string that specifies the hostname on which the
WSDL publishing service is available. The default
value is localhost.

catalogFacility A boolean that when set to true enables the catalog
facility, and when set to false disables the catalog
facility. A catalog facility provides another way to
access WSDL and XML Schema files (as opposed to
on a file system). The default value is true.

http://cxf.apache.org/
http://schemas.iona.com/

Artix Deployment Guide: Java 143

Configuration
Option

Description

processWSDL A string that specifies the type of processing that is
done on the WSDL file before the WSDL file is
published.

The processWSDL option has three possible values:

• none—no processing of the WSDL file takes
place; that is, the WSDL document is
published as is.

• artix—the WSDL file is processed so that relative
paths of imported/included schemas are
modified, and the imported/included schemas
are published on the modified path.

• standard—same as artix, but non-standard
extensions are also removed.

The default setting is artix.

removeSchemas A value list that removes the target namespaces
that are listed when the processWSDL option is
set to standard. The default setting is
http://cxf.apache.org/ and
http://schemas.iona.com/.

Configuring for Use in a Servlet Container
You can run the Artix WSDL publishing service in a servlet
container, such as Tomcat. This section assumes that you
already know how to deploy and run Artix applications in a
servlet container. If not, please refer to Deploying to a Servlet
Container.

Configuration steps
To configure the Artix WSDL publishing service to run in a
servlet container, such as Tomcat, complete the following steps:

• Create a spring.xml configuration file

• Configure a listener class in the web.xml file

Create a spring.xml configuration file
Create a spring.xml configuration file as shown in Example 53 and
include it in the WEB-INF directory of your application WAR file.

http://cxf.apache.org/
http://schemas.iona.com/

144 Artix Deployment Guide: Java

Example 53. Configuring Artix WSDL Publish Service for
Deployment to a Servlet Container

<beansxmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:jaxws="http://cxf.apache.org/jaxws" xsi:schemaLocation="

http://www.springframework.org/schema/beans http://www.springframe
work.org/schema/beans/spring-beans.xsd
http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd">

<import resource="classpath:META-INF/cxf/cxf.xml"/>
<import resource="classpath:META-INF/cxf/cxf-extension-soap.xml"/>
<import resource="classpath:META-INF/cxf/cxf-extension-http-binding.xml"/>
<import resource="classpath:META-INF/cxf/cxf-servlet.xml"/>

<bean id="com.iona.soa.wsdlpublish.rt.WSDLPublishManager"

class="com.iona.soa.wsdlpub lish.rt.WSDLPublishManager">
<property name="bus" ref="cxf"/>
<property name="WSDLPublish" ref="WSDLPublish"/>
<property name="enabled" value="true"/>

</bean>

<bean id="cxf" class="org.apache.cxf.bus.CXFBusImpl"/>
<bean id="WSDLPublish" class="com.iona.soa.wsdlpublish.rt.WSDLPublish">

<property name="deployedInContainer" value="true"/>
</bean>

</beans>

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://cxf.apache.org/jaxws
http://www.springframework.org/schema/beans
http://cxf.apache.org/jaxws
http://cxf.apache.org/schemas/jaxws.xsd

Artix Deployment Guide: Java 153

Configure a listener class in the web.xml file
Add the configuration shown in Example 54 to your application’s
web.xml file. Include the web.xml file in the WEB-INF directory of
your application WAR file.

Example 54. Configuring a Listener Class

Querying the WSDL Publishing Service
Each HTTP GET request for a WSDL file must have a query
appended to it. The Artix Java runtime supports RESTful
services and, as a result, an HTTP GET request is not
automatically destined for the WSDL publishing service.

The WSDL publishing service supports the following queries:

• ?wsdl

Appending ?wsdl to the address returns the WSDL file for the
published endpoint.

• ?xsd

Appending ?xsd to the address returns the schema file for the
published endpoint.

• ?services

Appending ?services to the address returns an HTML
formatted page with a list of all published endpoints and any
resolved schemas. The ?services query is not supported
when the WSDL publishing service is running in a servlet
container.

Example query syntax
The following are examples of query syntax that are serviced:

• Using ?wsdl:

http://localhost:27220/SoapContext2/SoapPort2?wsdl

<web-app>
...

<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>WEB-INF/spring.xml</param-value>

</context-param>

<listener>
<listener-class> org.springframework.web.context.ContextLoaderListener
</listener-class>

</listener>

</web-app>

154 Artix Deployment Guide: Java

• Using ?xsd. If a WSDL file has an imported schema, for
example, schema1.xsd, you can find the schema using the
following query:

http://localhost:27220/SoapContext2/SoapPort2?xsd=
schema1.xsd

• Using ?services:

http://localhost:27220?services

Returns an HTML page that lists all documents associated
with active services.

Example query syntax when running in a servlet container
The following is an example of the query syntax that you can
use to query the WSDL publishing service when it is running in
a servlet container. The examples shown refer to Tomcat
running on port 8080:

• Using ?wsdl:

http://host/8080/services/servicename?wsdl

• Using ?xsd. If a WSDL file has an imported schema, for
example, schema1.xsd, you can find the schema using the
following query:

http://host/8080/services/servicename?xsd=schema1.xsd

NOTE: services? is not supported when WSDL publishing service is
running in a servlet container.

http://host/8080/services/servicename?wsdl
http://host/8080/services/servicename?xsd=schema1.xsd

Artix Deployment Guide: Java 153

Appendix
Artix Binding IDs

Table A.1. Binding IDs for Message Bindings

Binding ID

CORBA http://cxf.apache.org/bindings/corba

HTTP/REST http://apache.org/cxf/binding/http

SOAP 1.1 http://schemas.xmlsoap.org/wsdl/soap/http

SOAP 1.1 w/ MTOM http://schemas.xmlsoap.org/wsdl/soap/http?mtom=true

SOAP 1.2 http://www.w3.org/2003/05/soap/bindings/HTTP/

SOAP 1.2 w/ MTOM http://www.w3.org/2003/05/soap/bindings/HTTP/?mtom=true

XML http://cxf.apache.org/bindings/xformat

http://cxf.apache.org/bindings/corba
http://apache.org/cxf/binding/http
http://schemas.xmlsoap.org/wsdl/soap/http
http://schemas.xmlsoap.org/wsdl/soap/http?mtom=true
http://www.w3.org/2003/05/soap/bindings/HTTP/
http://www.w3.org/2003/05/soap/bindings/HTTP/?mtom=true
http://cxf.apache.org/bindings/xformat

	Preface
	What is Covered in This Book
	Who Should Read This Book
	Organization of this Guide
	The Artix Documentation Library
	Further Information and Product Support
	Information We Need
	Contact information

	Artix for Java Configuration Overview
	Artix Configuration Files
	Spring framework
	Configuration namespace
	Schema location
	Sample configuration file

	Making Your Configuration File Available

	Setting Up Your Environment
	Using the Artix Environment Script
	Running the artix_java_env script

	Artix for Java Environment Variables
	Environment variables

	Customizing your Environment Script
	Before you begin
	Environment variables

	Configuring Artix Endpoints
	Configuring Service Providers
	Using the jaxws:endpoint Element
	Identifying the endpoint being configured
	Attributes
	Example

	Using the jaxws:server Element
	Identifying the endpoint being configured
	Attributes
	Example

	Adding Functionality to Service Providers
	Elements

	Configuring Consumer Endpoints
	Basic Configuration Properties
	Adding functionality
	Example

	Artix for Java Logging
	Overview of Artix for Java Logging
	Default logging.properties file
	Logging feature
	Where to begin?
	More information on java.util.logging

	Simple Example of Using Logging
	Changing the log levels and output destination

	Default logging.properties File
	Configuring Logging Output
	Configuring the console handler
	Configuring the file handler
	Configuring both the console handler and the file handler
	Configuring Logging Levels
	Logging levels
	Configuring the global logging level
	Configuring logging at an individual package level

	Enabling Logging at the Command Line
	Specifying the log configuration file on application start-up
	 Example 16. Flag to Start Logging on the Command Line

	Logging for Subsystems and Services
	Artix logging subsystems
	Example

	Logging Message Content
	Configuring message content logging
	Adding the logging feature to an endpoint
	Adding the logging feature to a consumer
	Set logging to log INFO level messages
	Logging SOAP messages

	Deploying to the Spring Container
	Introduction
	Sample XML

	Running the Spring Container
	Using the spring_container command
	Starting the Spring container
	Stopping the Spring container

	Deploying an Artix Endpoint
	Deployment steps
	Configuring your application
	Building a WAR file
	Deploying the WAR file to the Spring repository
	Using Ant to build a WAR file and deploy to the Spring container
	Changing the interval at which the Spring container scans its repository
	Changing the default location of the container repository

	Managing the Container using the JMX Console
	Using the JMX console

	Managing the Container using the Web Service Interface
	Client tool
	Changing the port the Web service interface listens on
	Adding a port

	Spring Container Definition File
	spring_container.xml

	Running Multiple Containers on Same Host
	Procedure

	Deploying to a Servlet Container
	Introduction
	Deploying service providers
	Deploying service consumers

	Configuring the Servlet Container
	Required libraries
	Automating servlet container configuration

	Using the CXF Servlet
	Deployment steps
	Building a WAR
	Servlet configuration file
	Web application configuration
	Deploying a WAR file to the servlet container

	Using a Custom Servlet
	Procedure
	Differences from using the default servlet
	Implementing the servlet
	Building the WAR file

	Using the Spring Context Listener
	Procedure
	Configuring the Web application
	Creating the Spring configuration
	Building the WAR

	Deploying WS-Addressing
	Introduction to WS-Addressing
	Supported specifications
	Further information

	WS-Addressing Interceptors
	Enabling WS-Addressing
	Adding WS-Addressing as a Feature

	Configuring WS-Addressing Attributes
	Configuring WS-Addressing attributes
	Using a WS-Policy assertion embedded in a feature

	Enabling Reliable Messaging
	Introduction to WS-RM
	How WS-RM works
	WS-RM delivery assurances
	Supported specifications
	Further information

	WS-RM Interceptors
	Artix WS-RM Interceptors
	Configuring WS-RM Attributes

	Enabling WS-RM
	Spring beans—explicitly adding interceptors
	WS-Policy framework—implicitly adding interceptors

	Configuring WS-RM
	Configuring Artix-Specific WS-RM Attributes
	Children of the rmManager Spring bean
	Example

	Configuring Standard WS-RM Policy Attributes
	WS-Policy RMAssertion Children
	More detailed reference information
	RMAssertion in rmManager Spring bean
	Policy within a feature
	WSDL file
	External attachment

	WS-RM Configuration Use Cases
	Base retransmission interval
	Exponential backoff for retransmission
	Acknowledgement interval
	Maximum unacknowledged messages threshold
	Maximum length of an RM sequence
	Message delivery assurance policies

	Configuring WS-RM Persistence
	How it works
	Enabling WS-persistence
	Configuring WS-persistence

	Enabling High Availability
	Introduction to High Availability
	HA with static failover
	HA with dynamic failover
	Sample applications
	More information about the locator service

	Enabling HA with Static Failover
	Encode replica details in your service WSDL file
	Add the clustering feature to your client configuration
	Configuring HA with Static Failover
	Configuring a random strategy

	Enabling HA with Dynamic Failover
	Configure your service to register with the Artix locator
	Configure your client to use locator meditated failover
	Ensure the Artix locator is running
	Configuring HA with Dynamic Failover
	Enabling Artix locator to check the state of a registered service
	Setting the heartbeat interval
	Initial delay in locator response
	Maximum number of client retries
	Delay between client retry attempts
	Sequential backoff in client retry attempts

	Publishing WSDL Contracts
	Artix WSDL Publishing Service
	Use with endpoint references
	Multiple transports

	Configuring the WSDL Publishing Service
	Configuration file
	WSDL publishing service configuration options

	Configuring for Use in a Servlet Container
	Configuration steps
	Create a spring.xml configuration file
	Configure a listener class in the web.xml file

	Querying the WSDL Publishing Service
	Example query syntax
	Example query syntax when running in a servlet container

	Appendix Artix Binding IDs

