Artix 5.6.3

Deployment
Guide: Java

Micro Focus

The Lawn

22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK

http://www.microfocus.com

Copyright © Micro Focus 2015. All rights reserved.

MICRO FOCUS, the Micro Focus logo and Micro Focus Licensing are trademarks or
registered trademarks of Micro Focus IP Development Limited or its subsidiaries or

affiliated companies in the United States, United Kingdom and other countries.
All other marks are the property of their respective owners.

2015-03-12

http://www.microfocus.com/

Contents

Preface. .. oo \Y/
What is Covered in ThiS BOOK \%
Who Should Read This BOOK ... \%
Organization of this GUIdeiiiiiiii i e \Y;
The Artix Documentation Libraryooooiiiiiiiiiiiiiiiiiiiiaans Vi
Further Information and Product SUpportc.ccooviiiiiiiiiiiinnnnnns Vi

Information We Need.o et Vi
Contact INformationt Vii

Artix for Java Configuration Overview 1
Artix Configuration Filesooiiiiiiiii e 1
Making Your Configuration File Available ...l 3

Setting Up Your Environmentcooiviiiiinn... 5
Using the Artix Environment Script.........ooeviiiiiiiiiiiiiiiii e 5
Artix for Java Environment Variableso 5
Customizing your Environment Scriptccooiiiiiiiiiiiiii 6

Configuring Artix ENdpoints.........coeviiiiiiiiiiiiiiann... 9
Configuring Service Providers.........ooiiii e 9

Using the jaxws:endpoint Element ..., 9
Using the jaxws:server Element.........ccoooiiiiiiiiiiiiiii i, 13
AddingFunctionalitytoServiceProviders........cccovvveiiiiiiiiiinnennn... 16
Configuring Consumer Endpointsooeeiiiiiiiiiii i 18
Basic Configuration Propertiesooeeviiiiiiiii i 18

Artix for Java Logging ...c.eeeeuniiiiiiiiiiiiiiiiaaa e 61
Overview of Artix for Java LOgging «..cecevereiimiiiiiiiiiiiiianiinannannnn. 61
Simple Example of Using LOgQiNgcovvieiiiiiiiiiiiiiiiiieeeeaeeenns 62
Defaultlogging.propertiesFile.coooiiiiiir it 63

Configuring Logging Levelsooiiiiiiiii i i 65
Enabling Logging at the Command Lineccoovviiiiiiiiiiinnn... 66
Logging for Subsystems and ServiCes.........oovviiiiiiiiiiiiiiiannnans 66
Logging Message CoNtent.......ccoivieeiiiiiii e eeiaaaaaeas 68

Deploying to the Spring Container 81
0 o o 10 o o o o 81
Running the Spring Container ... 82
Deploying an Artix Endpoint...........oooiiiiiiiiii e 83
Managing the Container using the JMX Console 86
Managing the Container using the Web Service Interface........... 88
Spring Container Definition File, 89
Running Multiple Containers on Same Host.............coceviiiiii.... 91

Artix Deployment Guide: Java iii

Deploying to a Servilet Container......................... 99

[T A g0 To 18 o A o] o [99
Configuring the Servlet Container.............oooiiiiiiiiiiiiiiiiiiiaan. 100
USiNg the CXF SerVIet. reeeees 101
UsSing @ CUSTOM SerVIet ... reeeees 104
Using the Spring Context LiStenerccoovviiiiiiiiiiiiiiiiiniannan... 107
Deploying WS-AdAressing......ccoovviiiiiiiiiiiiiinennnnn. 110
Introduction to WS-AdAreSSiNgoeeuiiiiiiiieiiii i iiaaeaaaaaens 110
WS-Addressing INterCePtOrS ... v aeaeeeans 110
Enabling WS-AdAreSSiNg ...ocvuiiiiiii i et eeeeaeaes 111
Configuring WS-Addressing Attributesccoovvviiiiiiiiiiiiinnnn. 112
Enabling Reliable Messaging...........ccccciiiiviaana... 115
INtroduction tO WS- RM ... 115
WS- RM INtErC P OrS. .ttt ettt ee e ae e aaaeanans 116
ENabling WS- RM et 118
ConfiguriNgWS-RM ... e 121
Configuring Artix-Specific WS-RM Attributesoooeiil. 121
Configuring Standard WS-RM Policy Attributes..................... 122
WS-RM Configuration Use CaSeS......uvviiiiiriiiieeiiiieeiarannnanns 126
Configuring WS-RM PersistenCe.......covviiiiiiiiiiiiiii i iiiiaiiiaaaan, 129
Enabling High Availability 131
Introduction to High Availability ... 131
Enabling HA with Static Failovero, 132
Configuring HA with Static Failovercccoiiiiiiiiiiiiii . 134
Enabling HA with Dynamic Failover...........ccccoiiiiiiiiiiiiiiinnaa. 135
Configuring HA with Dynamic Failovercccoiiiiiiaiia.. 137
Publishing WSDL Contracts.............ccviiiiiviennnn... 139
Artix WSDL Publishing Sernvicecouuiiiiiiiiiiiii i eees 139
Configuring the WSDL Publishing Service.........ccooviiiviiiiii.... 140
Configuring for Use in a Servlet Container.................cevnnnn... 143
Querying the WSDL Publishing Serviceoooviiiiiiiiiiiiiian... 153
Appendix Artix Binding IDscooeiiiiiinna.t 153

iv Artix Deployment Guide: Java

Preface

What is Covered in This Book

This book explains how to configure and deploy Artix for Java
Runtime services and applications, including those written in
JAX-WS and JavaScript.

Who Should Read This Book

The main audience of this book is Artix system
administrators. However, anyone involved in designing a
large-scale Artix solution will find this book useful.

Knowledge of specific middleware or messaging transports is
not required to understand the general topics discussed in
this book. However, if you are using this book as a guide to
deploying runtime systems, you should have a working
knowledge of the middleware transports that you intend to
use in your Artix solutions.

Organization of this Guide

This guide is divided into the following chapters:

Artix Configuration Overview describes Artix Java
configuration files.

Setting Up Your Environment describes how toset up your
Artix Java environment.

Configuring Artix Endpoints describes how to configure
Artix Java endpoints.

Artix Logging describes how to use logging.

Deploying toa Servlet Container describes how todeploy an
Artix Java endpoint toa servlet container.

Deploying WS-Addressing describes how to configure Artix
Java endpoints touse WS-Addressing.

Enabling Reliable Messaging describes how to enable and
configure Web Services Reliable Messaging (WS-RM).

Enabling High Availability describes how to enable and
configure bothstatic failover and dynamic failover.

Publishing WSDL Contracts describes how to enable the Artix
Java WSDL publishing service.

Artix Deployment Guide: Java v

The Artix Documentation Library

Forinformation on the organization of the Artix library, the
document conventionsused, and where to find additional
resources, see Using the Artix Library: Java.

Further Information and Product Support

Additional technical information or advice is available from
several sources.

The product support pages contain a considerable amount of
additional information, such as:

e The WebSync service, where you can download fixes and
documentation updates.

e The Knowledge Base, a large collection of product tips and
workarounds.

e Examples and Utilities, including demos and additional
product documentation.

Note:
Some information may be available only to customers who
have maintenance agreements.

If you obtained this product directly from Micro Focus, contact
us as described on the Micro Focus Web site,
http://www.microfocus.com. If you obtained the product from
another source, such as an authorized distributor, contact
them for help first. If they are unable to help, contact us.

Information We Need

However you contact us, please try to include the information
below, if you have it. The more information you can give, the
better Micro Focus SupportLine can help you. But if you don't
know all the answers, or you think some are irrelevant to
your problem, please give whatever information you have.

e The name and version number of all products that you
think might be causing a problem.

e Your computer make and model.

e Your operating system version number and details of any
networking software you are using.

e The amount of memory in your computer.
e The relevant page reference or section in the

documentation.

vi Artix Deployment Guide: Java

http://communities.progress.com/pcom/docs/DOC-105909
http://www.microfocus.com/

e Your serial number. To find out these numbers, look in the
subject line and body of your Electronic Product Delivery
Notice email that you received from Micro Focus.

Contact information

Our Web site gives up-to-date details of contact numbers and
addresses.

Additional technical information or advice is available from
several sources.

The product support pages contain considerable additional
information, including the WebSync service, where you can
download fixes and documentation updates. To connect, enter
http://www.microfocus.comin your browser to go to the Micro
Focus home page.

If you are a Micro Focus SupportLine customer, please see
your SupportLine Handbook for contact information. You can
download it from our Web site or order it in printed form from
your sales representative. Support from Micro Focus may be
available only to customers who have maintenance
agreements.

You may want to check these URLs in particular:

e http://www.microfocus.com/products/corba/artix.aspx
(trial software download and Micro Focus Community files)

e https://supportline.microfocus.com/productdoc.aspx
(documentation updates and PDFs)

To subscribe to Micro Focus electronic newsletters, use the
online form at:

http://www.microfocus.com/Resources/Newsletters/infocus/newslett
er-subscription.asp

Artix Deployment Guide: Java vii

http://www.microfocus.com/
http://www.microfocus.com/products/corba/artix.aspx
https://supportline.microfocus.com/productdoc.aspx
http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-subscription.asp
http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-subscription.asp

Artix for Java
Configuration
Overview

Artix takes a minimalist approach to requiring configuration.
However, it provides a large number of options for providing
configuration data.

Artix adopts an approach of zero configuration, or
configuration by exception. Configuration is required only if
you want to either customize the runtime to exhibit non-
default behavior or if you want to activate some of the more
advanced features.

Artix for Java supports a number of configuration methods if
you want to change the default behavior, enable specific
functionality or fine-tune a component’s behavior. The
supported configuration methods include:

e Spring XML configuration
e WS-Policy statements
e WSDL extensions

Spring XML configuration is, however, the most versatile way to
configure Artix and is the recommended approach to use.

Artix Configuration Files

Artix for Javaleverages the Spring framework toinject
configuration information intothe runtime whenit startsup. The
XML configuration file used to configure applications is a Spring
XML file that contains some Artix specific elements.

Spring framework

Spring is alayered Java/J2EE application framework. Artix
leverages the Spring core and uses the principles of Inversion of
Control and Dependency Injection.

Formore information on the Spring framework, see http://
www.springframework.org. Of particular relevance is Chapter 3
ofthe Spring reference guide, The loC container.

Formore information oninversion of control and dependency
injection, see http://martinfowler.com/articles/injection.html.

Artix Deployment Guide: Java 1

http://www.springframework.org/
http://www.springframework.org/
http://static.springframework.org/spring/docs/2.0.x/reference/beans.html
http://static.springframework.org/spring/docs/2.0.x/reference/beans.html
http://static.springframework.org/spring/docs/2.0.x/reference/beans.html
http://martinfowler.com/articles/injection.html

Configuration namespace

The core Artix configuration elements are defined in the
http://cxf.apache.org/jaxws namespace. You must add the
entry shown in Example 1 to the beans element of your
configuration file.

Example 1. Namespace

<beans ...

xmlns: jaxws=""http: //cxf .apache .org/ jaxws
—

Advanced features, like WS-Addressing and WS-RM, require the
use of elements in other namespaces. The SOAP and JMS
transports also use elements defined in different namespaces.
Youmust add those namespaces when configuring those
features.

Schema location

Spring XML files use the beans element’s xsi - schemalLocation
attribute to locate the schemas required tovalidate the
elements used in thedocument. The xsi :schemaLocationattribute
is a list of namespaces, and the schema in which the namespace
is defined. Each namespace/schema combination is defined as
a space delimited pair.

Youshould add the Artix configuration schemas to the list of
schemas in the attribute as shown in Example 2.

Example 2. Adding the JAX-WS Schema to the
Configuration File
<beans ...
Xxsi :schemalocation="http: //www.springframework.org/schema/beans

http://ww. springframework.org/schema/beans/spring-beans-
2.0.xsd

http://cxf.apache.org/jaxws

http://cxf.apache. org/schemas/ jaxws -xsd
>

Sample configuration file

Example 3 shows a simplified example of an Artix configuration
file.

2 Artix Deployment Guide: Java

http://cxf.apache.org/jaxws
http://cxf.apache.org/jaxws
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-
http://www.springframework.org/schema/beans/spring-beans-
http://cxf.apache.org/jaxws
http://cxf.apache.org/schemas/jaxws.xsd

Example 3. Artix Configuration File

<beans xmIns="http: //ww .springframework. org/schema/beans™ @
xmlns:xsi="http: //ww .w3.0org/2001/XMLSchema-instance"
xmIns:jaxws="http://cxf.apache.org/jaxws" &

iéi:sehemaLocation="
http://www. springframework.org/schema/beans
http://ww. springframework.org/schema/beans/spring-beans-2 .0 .xsd

http://cxf.apache.org/jaxws &
http://cxf.apache.org/schemas/jaxws. xsd"">

<!-- your configuration goes here! --> @
</beans>

The following describes Example 3:

® An Artix configuration file is actually a Spring XML file. You

must include an opening Spring beanselement that declares
the namespaces and schema files for the child elements that
are encapsulated by the beanselement.

® Before using the Artix configuration elements, you must
declare its namespace in the configuration's root element.

® Inorder forthe runtime and the tooling to ensure that your

configuration file is valid, you need to add the proper entries
to the schema location list.

® Thecontentsof the configuration depends on the behavior
you want exhibited by the runtime. Youcanuse:

e Artix specific elements

e Plain Spring XML bean elements

Making Your Configuration File Available

Youcanmake the configuration file available tothe Artix for Java
runtime in one ofthe following ways:

¢ Name the configuration file cxf.xmland add it your CLASSPATH.

e Use one of the following command-line flags to point tothe
configuration file:

-DcxF.config.file=myCfgResource

-Dcxf.config.-file . ur l=myCfgURL
This allows you to save the configuration file anywhere on
your system and avoid adding it to your CLASSPATH. It also

means you can give your configuration file any name you
want.

Artix Deployment Guide: Java 3

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://cxf.apache.org/jaxws
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
http://cxf.apache.org/jaxws
http://cxf.apache.org/schemas/jaxws.xsd

This is a useful approach for portable JAX-WS applications.
It is also the method used in most of the Artix samples. For
example, in the WS-Addressing sample, locatedin the
InstalIDir/samp les/ws-addressingdirectory, the serverstart
command specifies the server.xml configuration file as
follows:

jJjava -DcxF.config. file=server.xml demo.ws_addressing.server .Server

NOTE: In this example, the start command is run from the directory
in which the server.xml file resides.

¢ Programmatically, by creating a bus and passing the

configuration file location as either a URL or string. For
example:

(new SpringBusFactory())-createBus(URL myCfgURL)
(new SpringBusFactory()) -createBus(String myCfgResource)

4 Artix Deployment Guide: Java

Setting Up Your
Environment

This chapter explains how to set-up your Artix Java runtime
system environment.

Using the Artix Environment Script

Touse the Artix runtime environment, the host computer must
have several environment variables set. Set these variables using
the artix_java_env script.

Running the artix_java_env script

The Artix installation process createsascript named
artix_java_env, whichcapturestheinformation required to
set your host’s environment variables. Running this script
configures your system touse the Artix Java runtime. The
script is located in the instativir/bin folder.

Artix for Java Environment Variables

This sectiondescribes the following environment variables in
more detail:

e ARTIX_JAVA HOME
e CXF_HOME

e JAVA HOME

e ANT_HOME

e PATH

e CAMEL_HOME
NOTE: Youdo nothave tomanually setyour environment variables.

You can configure them during installation, or you canset them later by
running the provided artix_java_env script.

Artix Deployment Guide: Java 5

Environment variables

The environment variables are explained in Table 1.

Table 1. Artix Environment Variables

Variable

Description

ART IX_JAVA_HOME

Specifies the top level of your Artix installation. For
example, on Windows, if you install Artix into the
C:\Artix directory, ARTIX_JAVA HOME should be set
to C:\Artix.

CXF_HOME

Specifies the top level of your Artix installation. For
example, on Windows, if you install Artix into the
C:\Artix directory, CXF_HOME should be set to
C:\Artix.

JAVA_HOME

Specifies the directory path to your system JDK.

ANT_HOME

Specifies the directory path to the ant utility. The
default location is InstallDir\tools\ant.

CAMEL_HOME

Specifies the directory path of the Apache Camel
libraries. The default location is
Instal IDir\lib\camel.

PATH

The Artix bin directories are prepended on the PATH
to ensure that the proper libraries, configuration
files, and utility programs are used.

Customizing your Environment Script

The artix_java_env script sets the Artix environment variables
using values obtained from the installer. The script checks each
one of these settings in sequence, and updates them, where
appropriate.

The artix_java_env scriptis designed to suit most needs.
However, if you want to customize it for your own purposes,
note the points described in this section.

Before you begin

Youcanonly run the artix_java_env scriptonce in any console
session. Ifyou run this script a second time, it exits without
completing. This prevents your environment from becoming
bloated with duplicate information (for example, on your PATHand
CLASSPATH). In addition, if you introduce any errors when
customizing the artix_java_env script, it also exits without
completing.

This feature is controlled by the ARTIX_JAVA ENV_SETVvariable,
which is local tothe artix_java_env script. ARTIX_JAVA ENV_SET
is set to true the first time you run the script in a console; this
causes the script to exit when run again.

6 Artix Deployment Guide: Java

Environment variables

JAVA_HOME defaults to the value obtained from the installer. If you
do not manually set this variable before running
artix_java_env, it takes its value from theinstaller.

Artix Deployment Guide: Java 7

Configuring Artix
Endpoints

Artix endpoints are configured using one of three Spring
configurationelements. The correctelementdepends on what
type of endpoint you are configuring and which features you
wish touse. For consumersyou use the jaxws:clientelement.
For service providers you can use either the jaxws:endpoint
element or the jaxws:server element.

The information used to define an endpoint is typically defined in
the endpoint’s contract. Youcanuse the configurationelement's
tooverride the information in thecontract. Youcanalsouse the
configuration elements to provide information thatis not
provided in the contract.

NOTE: When dealing with endpoints developed using aJava-first
approach it is likely that the SEI serving as the endpoint's contract is
lacking information about the type of binding and transport to use.

Youmust use the configuration elements toactivate advanced
featuressuch as WS-RM. This is done by providing child
elements to the endpoint’'s configuration element.

Configuring Service Providers

Artix has two elements that canbe used to configure aservice
provider:

e jaxws:endpoint
e jaxws:server

The differences between the two elements are largely internal to
the runtime. The jaxws:endpoint element injects properties into
the org.apache.cxf. jaxws. Endpointimpl objectcreatedto support a
service endpoint. The jaxws:server element injects properties
into the org.apache .cxf. jaxws .support. JaxWsServerFactoryBean
object createdto support the endpoint. The Endpointimplobject
passes the configuration data tothe JaxWsServerFactoryBean
object. The JaxWsServerFactoryBeanobject is used tocreate the
actualservice object. Because either configuration element will
configure aservice endpoint, you canchoose based on the
syntax you prefer.

Using the jaxws:endpoint Element

The jaxws:endpointelement is the default element for configuring
JAX-WS service providers. Its attributes and children specify all
of the information needed toinstantiate a service provider.

Artix Deployment Guide: Java 9

Many of the attributes map to information in the service's
contract. The children are used to configure interceptors and
other advanced features.

Identifying the endpoint being configured

For the runtime toapply the configuration tothe proper service
provider, it must be able toidentify it. The basic means for
identifying a service provider is to specify the class that
implements the endpoint. This is done using the jaxws:endpoint
element's implementor attribute.

Forinstances where different endpoint’s share a common
implementation, it is possible to provide different configuration
for eachendpoint. There are two approaches for distinguishing a
specific endpoint in configuration:

e acombination of the serviceNameattribute and the
endpointName attribute

The serviceName attribute specifies the wsdl :serviceelement
defining the service's endpoint. The endpointName attribute
specifies the specific wsdl:portelement defining the service's
endpoint. Both attributes are specified as QNames using
the format ns:name. nsis the namespace of the element and

name is the value of the element’'s name attribute.

TIP: If the wsdl:service element only has one wsdl :port
element, the endpointName attribute can be omitted.

e thename attribute

The name attribute specifies the QName of the specific

wsdl :portelement defining the service's endpoint. The
QName is provided in the format {ns}localrart. nsisthe
namespace of the wsdl :portelement and localPartis the

value of the wsdl :portelement's name attribute.

Attributes

The attributes of the jaxws:endpointelement configure the basic
properties of the endpoint. These properties include the address
of the endpoint, the classthat implements the endpoint, and
the bus that hosts the endpoint.

10 Artix Deployment Guide: Java

Table 2 describes the attribute of the jaxws:endpointelement.

Table 2. Attributes for Configuring a JAX-WS Service
Provider Using the jaxws:endpoint Element

Attribute

Description

id

Specifies a unique identifier that other configuration
elements can use to refer to the endpoint.

implementor

Specifies the class implementing the service. You
can specify the implementation class using either
the class name or an ID reference to a Spring bean
configuring the implementation class. This class
must be on the classpath.

implementorClass

Specifies the class implementing the service. This
attribute is useful when the value provided to the
implementor attribute is a reference to a bean that is
wrapped using Spring AOP.

address

Specifies the address of an HTTP endpoint. This value
overrides the value specified in the services contract.

wsdILocation

Specifies the location of the endpoint's WSDL
contract. The WSDL contract'slocationis relative to
the folder from which the service is deployed.

endpoi ntName

Specifies the value of the service's wsdl :portelement’s

name attribute. Itis specified as aQName using the
format ns:name Where nsis the namespace of the

sdl :portelement.

serviceName

Specifies the value of the service's wsdl :service

element’'s name attribute. It is specified as a QName
using the format ns:name Where nsis the namespace of

the wsdl:service element.

publish

Specifies if the service should be automatically
published. If this is set to false, the developer must
explicitly publish the endpoint as described in
Publishing a Service in Developing Artix
Applications with JAX-WS and JAX-RS

bus

Specifies the ID of the Spring bean configuring the
bus used to manage the service endpoint. This is
useful when configuring several endpoints to use a
common set of features.

bindinguri

Specifies the ID of the message binding the service
uses. A list of valid binding IDs is provided in Artix
Binding IDs.

Artix Deployment Guide: Java 11

Attribute Description

name Specifies the stringified QName of the service's
wsdl:port element. It is specified as a QName using
the format {ns}localPart. ns is the namespace of
the wsdl:port element and localPart is the value of
the wsdl:port element's name attribute.

abstract Specifies if the bean is an abstract bean. Abstract
beans act as parents for concrete bean definitions
and are not instantiated. The default is false.
Setting this to true instructs the bean factory not to
instantiate the bean.

depends-on Specifies a list of beans that the endpoint depends on
being instantiated before it can be instantiated.

createdFromAP I Specifies that the user created that bean using Artix
APIs, such as Endpoint.publish() or Service.getPort().
The default is false.

Setting this to true does the following:

1. Changes the internal name of the bean by
appending .jaxws-endpointto its id

2. Makes the bean abstract

In addition to the attributes listed in Table 2, you might need to
use multiple xmlns:shortnane attributes to declare the namespaces
used by the endpointNameand serviceName attributes.

Example

Example 4 shows the configuration for a JAX-WS endpoint that
specifies the address where the endpoint is published. The
example assumes that youwant to use the defaults forallother
values or that the implementation has specified values in the
annotations.

Example 4. Simple JAX-WS Endpoint Configuration

<beans
... xmIns:jaxws="http://cxf.apache.org/jaxws"
schemalLocation="".. .
http://cxf.apache.org/jaxws http://cxf_apache .org/schemas/ jaxws -xsd
L
<jaxws:endpoint id="example"
imp lementor=""org -apache .cxf.example .Demo ImpI**
address="http://localhost:8080/demo"" />
</beans>

12 Artix Deployment Guide: Java

http://cxf.apache.org/jaxws
http://cxf.apache.org/jaxws
http://cxf.apache.org/schemas/jaxws.xsd

Example 5 shows the configuration for a JAX-WS endpoint whose
contract contains two service definitions. In this case, you must
specify which service definition toinstantiate using the
serviceName attribute.

Example 5. JAX-WS Endpoint Configuration with a Service
Name

<beans ... xmlns:jaxws="http://cxf.apache.org/jaxws"

éc-:ﬁemaLocationz" .-
http://cxf.apache.org/jaxws http://cxf._apache .org/schemas/ jaxws -xsd
"

<jaxws:endpoint id="‘example2"
imp lementor=""org .apache .cxf.examp le .Demo Imp I'*
serviceName=""samp: demoService2"
xmlns:samp="http://org.apache. cxf/wsdl/example" />
</beans>

The xmIns:sampattribute specifies the namespace in which the
WSDL service element is defined.

Using the jaxws:server Element

The jaxws:server elementis an element for configuring JAX-WS
service providers. Itinjects the configuration information into
the org.apache.cxf.jaxws. support. JaxWsServerFactoryBean. This is
an Artix specific object. If you are using apure Spring approach
tobuilding your services, you will not be forced to use Artix
specific APIs tointeract with the service.

The attributes and children of the jaxws:serverelement specify
all of the information needed toinstantiate aservice provider.
The attributes specify the information thatis required to
instantiate an endpoint. The children are used to configure
interceptors and other advanced features.

Identifying the endpoint being configured

In order for the runtime toapply the configuration tothe proper
service provider, it must be able toidentify it. The basic means for
identifying aservice provider is to specify the class that
implements the endpoint. This is done using the jaxws:server
element's serviceBeanattribute.

Forinstances where different endpoint’'s share a common
implementation, it ispossible to provide different configuration
foreachendpoint. There are two approaches for distinguishing a
specific endpoint in configuration:

e acombination of the serviceNameattribute and the
endpointName attribute

The serviceName attribute specifies the wsdl : serviceelement
defining the service's endpoint. The endpointNameattribute
specifies the specific wsdl :portelement defining the service's

Artix Deployment Guide: Java 13

http://cxf.apache.org/jaxws
http://cxf.apache.org/jaxws
http://cxf.apache.org/schemas/jaxws.xsd
http://org.apache.cxf/wsdl/example
http://org.apache.cxf/wsdl/example

endpoint. Both attributes are specified as QNames using
the format ns:name. nsis the namespace of the element and

name is the value of the element's name attribute.

TIP: If the wsdl:service element only has one wsdl :portelement,
the endpointName attribute can be omitted.

e thename attribute

The name attribute specifies the QName of the specific

wsdl :portelement defining the service's endpoint. The
QName is provided in the format {ns}localrart. nsis the
namespace of the wsdl :portelement and localPartis the
value of the wsdl :portelement's name attribute.

Attributes

The attributes of the jaxws:server element configure the basic
properties ofthe endpoint. These properties include the
address of the endpoint, the class that implements the
endpoint, and the bus that hosts the endpoint.

Table 3 describes the attribute of the jaxws:serverelement.

Table 3. Attributes for Configuring a JAX-WS Service
Provider Using the jaxws:server Element

Attribute

Description

id

Specifies a unique identifier that otherconfiguration
elements canuse torefertothe endpoint.

serviceBean

Specifiesthe classimplementing theservice. Youcan
specify the implementation classusing either the
classname oran ID reference to a Spring bean
configuring the imple mentation class. This class must
be on the classpath.

serviceClass

Specifies the class implementing the service. This
attribute is useful whenthe value provided to the
implementor attribute is a reference to a bean that is
wrapped using Spring AOP.

address

Specifies the address of an HTTP endpoint. This
value will override the value specified in the services
contract.

wsdILocation

Specifies the location of the endpoint's WSDL
contract. The WSDL contract'slocation is relative
tothe folder from which the service is deployed.

14 Artix Deployment Guide: Java

Attribute Description

endpoi ntName Specifies the value of the service's wsdl :port element's
name attribute. It is specified as a QName using the
format ns:name, Where nsis the namespace of the
sdl:port element.

serviceName Specifies the value of the service's wsdl :service

element’s name attribute. It is specified as a QName
using the format ns:name, where nsis the namespace of

the wsdl:service element.

start Specifies if the service should be automatically
published. If thisis set to false, the developer must
explicitly publish the endpoint as described in
Publishing a Service in Developing Artix
Applications with JAX-WS and JAX-RS.

bus Specifies the ID of the Spring bean configuring the bus
used to manage the service endpoint. This is useful
when configuring several endpoints to use a common
set of features.

bindingld Specifies the ID of the message binding the service
uses. A list of valid binding IDs is provided in Artix
Binding IDs.

name Specifies the stringified QName of the service's

wsdl:portelement. It is specified as a QName using
the format {ns}localrart, Where nsis the namespace of
the wsdl:port element and localPartis the value of
the wsdl :port element's name attribute.

abstract Specifies if the bean is an abstract bean. Abstract
beans act as parents for concrete bean definitions and
are not instantiated. The default is false. Setting this
to trueinstructs the beanfactory not toinstantiate the
bean.

depends-on Specifies alist of beans that the endpoint depends on
being instantiated before the endpoint canbe
instantiated.

createdFromAP1 |Specifiesthat the usercreated thatbean using Artix
APls, suchasEndpoint.publish() Or Service.getPort().
The default is false.

Setting this to true does the following:

1. Changes the internal name of the bean by
appending .jaxws-endpoint to its id

2. Makes the bean abstract

Artix Deployment Guide: Java 15

In addition to the attributes listed in Table 3, you might need to
use multiple xmlns:shortnane attributes todeclare the namespaces
used by the endpointNameand serviceName attributes.

Example
Example 6 shows the configuration for a JAX-WS endpoint that
specifies the address where the endpoint is published.

Example 6. Simple JAX-WS Server Configuration

<beans ...
xmlns: jaxws="http://cxf.apache.org/jaxws"

éc-:f-lemaLocation:" .- -
http://cxf.apache.org/jaxws http://cxf_apache .org/schemas/ jaxws -xsd
"

<ja-1>-<v-vs:server id=""exampleServer"*
serviceBean="org.apache .cxf.example .Demo Imp 1"
address="http://localhost:8080/demo"* />
</beans>
Adding Functionality to Service Providers

The jaxws:endpoint and the jaxws:server elements provide the
basic configuration information needed toinstantiate aservice
provider. Toadd functionality toyour service provider or to
perform advanced configuration you must add child elements to
the configuration.

Child elements allow you todo the following:

e Change the endpoint's logging behavior

e Addinterceptors tothe endpoint's messaging chain
e Enable WS-Addressing features

e Enable reliable messaging

16 Artix Deployment Guide: Java

xmlns:jaxws=%22http://cxf.apache.org/jaxws%22
xmlns:jaxws=%22http://cxf.apache.org/jaxws%22
http://cxf.apache.org/jaxws
http://cxf.apache.org/schemas/jaxws.xsd

Elements

Table 4 describes the child elements that jaxws:endpoint

supports.
Table 4. Elements Used to Configure JAX-WS Service
Providers
Element Description
Jaxws:handlers Specifies a list of JAX-WS Handlerimplementations
for processing messages. For more information
on JAX-WSHandlerimplementations see Writing
Handlers in Developing Artix Applications
with JAX-WS and JAX-RS.
Jaxws: inInterceptors Specifies a list of interceptors that process
inbound requests.
Jaxws: inFaultinterceptors |Specifies a list of interceptors that process
inbound fault messages.
Jaxws:outlInterceptors Specifies a list of interceptors that process

outbound replies.

Jaxws:

outFaul tinterceptors

Specifies alist of interceptors that process
outbound fault messages.

Jaxws:

binding

Specifies a bean configuring the message binding
used by the endpoint. Message bindings are
configured using impleme ntations of the
org.apache.cxf_binding.BindingFactory interface.

The SOAP binding is configured using the
soap:soapBinding bean.

JaXWS:

dataBrndrng

Specifies the class implementing the data
binding used by the endpoint. This is specified
using an embedded bean definition.

The jaxws:endpoint element does not support
the jaxws:dataBinding element.

Jaxws:

executor

Specifies a Java executor that is used for the
service. This is specified using an embedded bean
definition.

Jaxws:

features

Specifies a list of beans that configure advanced
features of Artix for Java. Youcan provide either
a list of bean references or a list of embedded
beans.

Artix Deployment Guide: Java 17

http://www.iona.com/support/docs/artix/5.5/jaxws_pguide/jaxws_pguide.pdf

Element

Description

Jaxws: invoker Specifies an implementation of the

org.apache.cxf.service.lnvoker interface used by
the service.

The Invoker implementation controls how a
service is invoked. For example, it controls
whether each request is handled by a new
instance of the service implementation or if state
is preserved across invocations.

Jaxws:properties Specifies a Spring map of properties that are

passed along tothe endpoint. These properties
canbe used to control features like enabling
MTOM support.

jaxws: serviceFactory Specifies a bean configuring the

JaxWsServiceFactoryBeanobject used to instantiate
the service.

Configuring Consumer Endpoints

JAX-WS consumerendpoints are configured using the jaxws:client
element. The element's attributes provide the basic information
necessary to createa consumer.

Toadd other functionality, like WS-RM, to the consumer you add
children to the jaxws:client element. Child elements are also
used to configure the endpoint's logging behavior and toinject
other properties into the endpoint's implementation.

Basic Configuration Properties

The attributes described in Table 5 provide the basic
information necessary toconfigure a JAX-WS consumer. You
only need to provide values for the specific properties you want
to configure. Most of the properties have sensible defaults, or
they rely on information provided by the endpoint's contract.

Table 5. Attributes Used to Configure a JAX-WS Consumer
Attribute Description
address Specifies the HTTP address of the endpoint where the
consumer will make requests. This value overrides the
\value set in the contract.
bindingld Specifies the ID of the message binding the consumer
uses. A list of valid binding IDs is provided in Artix
Binding IDs.

18 Artix Deployment Guide: Java

Attribute

Description

bus

Specifies the ID of the Spring bean configuring the bus
managing the endpoint.

endpoi ntName

Specifies the value of the wsdl:port element's name
attribute for the service on which the consumer is
making requests. It is specified as a QName using the
format ns:name, where ns is the namespace of the
sdl:port element.

serviceName

Specifies the value of the wsdl:service element's name
attribute for the service on which the consumer is
making requests. It is specified as a QName using the
format ns:name where ns is the namespace of the
sdl:service element.

username

Specifies the username used for simple
username/password authentication.

Password

Specifies the password used for simple
username/password authentication.

serviceClass

Specifies the name of the service endpoint
interface(SEI).

sdlLocation

Specifies the location of the endpoint's WSDL contract.
The WSDL contract's location is relative to the folder
from which the client is deployed.

Name

Specifies the stringified QName of the wsdl :portelement
for the service on which the consumer is making requests.
It is specified as a QName using the format {ns}l1ocalrart,
where nsis the namespace of the wsdl:portelement and
localPartis the value of the wsdl :portelement’s name
attribute.

IAbstract

Specifies if the bean is an abstract bean. Abstract beans
act as parents for concrete bean definitions and are not
instantiated. The default is false. Setting this to true
instructs the bean factory not to instantiate the bean.

depends-on

Specifies a list of beans that the endpoint depends on
being instantiated before it can be instantiated.

createdFromAP1

Specifies that the user created that bean using Artix APIs
like Service.getPort(). The default is false.

Setting this to true does the following:

1. Changes the internal name of the bean by
appending .jaxws-clientto itsid

3. Makes the bean abstract

In addition to the attributes listed in Table 5 it might be
necessary to use multiple xmlns:shortname attributes to declare the

Artix Deployment Guide: Java 19

namespaces used by the endpointName and the serviceName

attributes.

Adding functionality
Toadd functionality to your consumer or to perform advanced

configuration, you

must add child elements to the configuration.

Child elements allow you todo the following:

e Change the endpoint's logging behavior

e Addinterceptors tothe endpoint's messaging chain

e Enable WS-Addressing features

e Enable reliable messaging

Table 6 describes the child elements you can use to configure

JAX-WS consumer.

Table 6. Elements For Configuring a Consumer Endpoint

Element

Description

Jaxws:binding

Specifies a bean configuring the message
binding used by the endpoint. Message
bindings are configured using implementations
of the org.apache.cxf.binding.BindingFactory
interface.

The SOAP binding is configured using the
soap:soapBinding bean.

Jaxws:dataBinding

Specifies the class implementing the data
binding used by the endpoint. You specify this
using an embedded bean definition. The class
implementing the JAXB data binding is
org.apache.cxf. jaxb.JAXBDataBinding.

Jaxws: features

Specifies a list of beans that configure
advanced features of Artix. You can provide
either a list of bean references or a list of
embedded beans.

Jaxws:handlers

Specifies a list of JAX-WS Handler
implementations for processing messages. For
more information in JAX-WS Handler
implementations see Writing Handlers in
Developing Artix Applications with JAX-WS
and JAX-RS.

Jjaxws: inlnterceptors

Specifies a list of interceptors that process
inbound responses.

Jaxws: inFaultinterceptors

Specifies a list of interceptors that process
inbound fault messages.

20 Artix Deployment Guide: Java

Element Description

jaxws:outInterceptors Specifies a list of interceptors that process
outbound requests.

jjaxws: outFaul tinterceptors [Specifies a list of interceptors that process
outbound fault messages.

jaxws: properties Specifies a map of properties that are passed
to the endpoint.

jaxws: conduitSelector Specifies an))
org.apache.cxf.endpoint.ConduitSelector

implementation for the client to use. A
ConduitSelector implementation will override
the default process used to select the Conduit
object that is used to process outbound
requests.

Example
Example 7 shows a simple consumer configuration.

Example 7. Simple Consumer Configuration
<beans ... xmlns:jaxws="http://cxf.apache.org/jaxws"

é(-:ﬁemaLocationz" .-
http://cxf.apache.org/jaxws http://cxf .apache .org/schemas/ jaxws -xsd
L
<jaxws:client id="bookClient""
serviceClass="'org. apache. cxf.demo .BookCl ientlmpl™
address="http://localhost:8080/books"/>

</beans>

Artix Deployment Guide: Java 21

http://cxf.apache.org/jaxws
http://cxf.apache.org/jaxws
http://cxf.apache.org/schemas/jaxws.xsd

Artix for Java Logging

This chapter describes how to configure logging in the Artix
runtime.

Overview of Artix for Java Logging

Artix for Java uses the Java logging utility, java.util .logging.
Logging is configured in a logging configuration file thatis
written using the standard java.util.Propertiesformat. Torun
logging on an application, you can specify logging
programmatically or by defining a property at the command
that points to thelogging configuration file when you start the
application.

Default logging.properties file

Artix comes with a default 1ogging.propertiesfile, which is
located in your InstallDir/etcdirectory. This file configures both
the output destination for the log messages and the message
level that is published. The default configuration setsthe loggers
to print message flagged with the wARNINGlevel to the console.
You can either use the default file without changingany of the
configurationsettings oryoucanchange the configuration
settings to suit your specific application.

Logging feature

Artix includes a logging feature that can be plugged into your
client or your service to enable logging. Example 8 showsthe
configuration to enable the logging feature.

Example 8. Configuration for Enabling Logging

<jaxws:endpoint. ..>
<jaxws: features>
<bean class="org.apache .cxf.feature.LoggingFeature'/>
</ jaxws:features>
</jaxws:endpoint>

For more information, see Logging Message Content.

Where to begin?
Torun asimple example oflogging follow the instructions
outlined in a Simple Example of Using Logging.

For more information on how logging works in Artix, read this
entire chapter.

More information on java.util.logging

The java.util. logging utility is one of the most widely used Java
logging frameworks. Thereis a lot of information available
online that describes how touse and extend this framework. As
a starting point, however, the following document gives a good

Artix Deployment Guide: Java 61

overview of java.util.logging,
https://docs.oracle.conVjavase/6/docs/api/java/util/logging/p
ackage-summary.html.

Simple Example of Using Logging

Changing the log levels and output destination

Tochange the log level and output destination of the log
messages in the wsdl_first sample application, complete the
following steps:

Run the sample server as described in the Running thedemo
using java section of the README._txtfile in the
InstalIpir/samples/wsdl_first directory. Note that the server
start command specifies the default logging.properties file, as
follows:

Platform

Command

Windows

start java
-Djava.util. logging.config.file=%ART IX_JAVA_HOME%\etc\
logging -properties demo.hw.server._Server

UNIX

Java
-Djava.util. logging.config.file=$ART IX_JAVA HOME/etc/
logging -properties demo.hw.server.Server &

2.

The default 1ogging.propertiesfile is located in the
instalivir/etc directory. It configures the Artix loggers to
print WARNINGlevellog messages to the console. As a result,
you see very little printed tothe console.

Stop the server as described in the README . txtfile.

3. Make acopy of the default logging.properties file, name it
mylogging .propertiesfile, and save it in the same directory as the
default logging.propertiesfile.

4. Change the global logging level and the console logging levels in
your mylogging.properties file to INFO by editing the following lines
of configuration:

-level= INFO
java.util._logging.ConsoleHandler. level = INFO

5. Restart the server using the following command:

Platform

Command

Windows

start java
-Djava.util. logging.config.file=%ART IX_JAVA_HOME%\etc\
mylogging.properties demo.hw.server.Server

UNIX

Java
-Djava.util. logging.config.file=$ART IX_JAVA HOME/etc/
mylogging.properties demo.hw.server.Server &

62 Artix Deployment Guide: Java

https://docs.oracle.com/javase/6/docs/api/java/util/logging/package-summary.html
https://docs.oracle.com/javase/6/docs/api/java/util/logging/package-summary.html

Because you configured the global logging and the console
logger tolog messages of level INFO, yousee a lot more log
messages printed tothe console.

Default logging.properties File

The default logging configuration file, logging.properties,is
locatedin the mstalibir/etc directory. It configures the Artix
loggers to print WARNING levelmessages tothe console. If this
level of logging is suitable for your application, youdo not have
to make any changesto the file before using it. Youcan,
however, change the level of detail in the log messages. For
example, you canchange whether log messages are sent tothe
console, to afile or to both. In addition, you canspecify logging
at the level of individual packages.

NOTE: This sectiondiscusses the configuration properties that appear
in the default logging.propertiesfile. There are, however, many other
java.util .loggingconfiguration properties that you can set. For more
information on the java.util.logging API, see the java.util.logging
javadoc at: https://docs.oracle.conVjavase/6/docs/api/
java/util/logging/package-summary.htmi.

Configuring Logging Output

The Javalogging utility, java.util .logging, uses handler classes to
output log messages. Table 7 shows the handlers that are
configured in the default 1ogging.propertiesfile.

Table 7. Java.util.logging Handler Classes

Handler Class Qutputs to
ConsoleHandler Outputs log messages tothe console
FileHandler Outputs log messages toa file

IMPORTANT: The handler classes must be on the system classpathin
order tobe installed by the Java VM when it starts. This is done when
you set the Artix environment. Fordetails on setting the Artix
environment, see Using the Artix Environment Script.

Configuring the console handler

Example 9 on page 52 shows the code for configuring the
console logger.

Example 9. Configuring the Console Handler

handlers= java.util .logging.ConsoleHandler

Artix Deployment Guide: Java 63

https://docs.oracle.com/javase/6/docs/api/java/util/logging/package-summary.html
https://docs.oracle.com/javase/6/docs/api/java/util/logging/package-summary.html

The console handler also supports the configuration properties
shownin Example 10.

Example 10. Console Handler Properties

jJjava.util .logging.ConsoleHandler_level = WARNING @
java.util .logging.ConsoleHandler.formatter = java.util .logging.SimpleFormatter ®

The configuration properties shown in Example 10 on page 52
can be explained as follows:

(1 The console handler supports aseparate log level

configuration property. This allows you to limit the log
messages printed to the console while the global logging
setting can be different (see Configuring Logging Levels).
The default setting is WARNING.

(2] Specifies the java.util.loggingformatter class that the

console handler classusestoformat the log messages.
The default settingis the
jJava.util._logging.SimpleFormatter.

Configuring the file handler
Example 11 shows code that configures the file handler.

Example 11. Configuring the File Handler

handlers= java.util .logging.FileHandler

The file handler also supports the configuration properties
shown in Example 12.

Example 12. File Handler Configuration Properties

jJjava.util _logging-FileHandler .pattern = %h/java%u.log ®
Java.util .logging-FileHandler .l1imit = 50000 ®

java.util _logging.-FileHandler .count=1 ®

jJava.util _logging.FileHandler .formatter = java.util .logging.XMLFormatter @
The configuration properties shown in Example 12 can be
explained as follows:

(1} Specifies the location and pattern of the output file. The
default setting is your home directory.

(2] Specifies, in bytes, the maximum amount that the

logger writes to any one file. The default setting is 50000.
If you set it to zero, there is no limit on the amount that
the logger writes toany one file.

(3] Specifies how many output files to cycle through. The
default setting is 1.

64 Artix Deployment Guide: Java

(4] Specifies the java.util.loggingformatterclass that the

file handler class uses toformat the log messages. The
default setting is the java.util. logging.XMLFormatter.

Configuring both the console handler and the file handler

Youcanset the logging utility to output log messages toboththe
console and to a file by specifying the console handler and the
file handler, separated by a comma, as shown in Example 13.

Example 13. Configuring Both Console Logging and File
Logging
handlers= java.util.logging.FileHandler, java.util.logging.ConsoleHandler

Configuring Logging Levels

Logging levels

The java.util .logging framework supports the following levels of
logging, from the least verbose tothe most verbose:

e SEVERE
e WARNING
e INFO

e CONFIG
e FINE

e FINER

e FINEST

Configuring the global logging level

To configure the types of event that are logged across all loggers,

configure the global logging level as shown in Example 14.
Example 14. Configuring Global Logging Levels

-level= WARNING

Configuring logging at an individual package level

The java.util. loggingframework supports configuring logging at
thelevel of an individual package. Forexample, the line of code
shown in Example 15 configures logging at a SEVERElevelon
classes in the com.xyz. foopackage.

Example 15. Configuring Logging at the Package Level
com.xyz .foo. level = SEVERE

Artix Deployment Guide: Java 65

Enabling Logging at the Command Line

You can run the logging utility on an application by defining a
java.util. logging.config. fileproperty whenyoustart the
application. You can either specify the default 1ogging.properties
file or a logging.propertiesfile that is unique to that application.

Specifying the log configuration file on application start-up

To specify logging on application start-up add the flag shown in
Example 16 when starting the application.

Example 16. Flag to Start Logging on the Command
Line
-Djava.util .logging. config.fi le=myfile

Logging for Subsystems and Services

Youcanuse the com.xyz .foo. level configuration property
described in Configuring logging at an individual package level
toset fine-grained logging for specified Artix logging subsystems.

Artix logging subsystems

Table 8 shows a list of available Artix logging subsystems.

Table 8. Artix Logging Subsystems

Subsystem Description

org.apache.cxf.aegis Aegis binding

org.apache.cxf.binding. coloc colocated binding

org.apache. cxf.binding. http HTTP binding

org.apache.cxf.binding.object Java Object binding

org.apache. cxf.binding. soap SOAP binding

org.apache.cxf.binding.xml XML binding

org.apache. cxf_bus Artix bus

org.apache.cxf.configuration configuration framework

org.apache. cxf_endpoint server and client endpoints

org.apache.cxf.interceptor interceptors

org.apache.cxf_jaxws Front-end for JAX-WS style message
exchange, JAX-WS handler processing,
and interceptors relating to JAX-WS
and configuration

org.apache.cxf_jca JCA container integration classes

org.apache.cxf.js JavaScript front-end

66 Artix Deployment Guide: Java

Subsystem Description

org.apache. cxf.transport. http HTTP transport

org.apache.cxf_transport.https secure version of HTTP transport,
using HTTPS

org.apache. cxf.transport. jms UMS transport

org.apache.cxf.transport. local transport implementation using local
file system

org.apache.cxf.transport.servlet HTTP transport and servlet
implementation for loading JAX-WS
endpoints into a servlet container

org.apache.cxf.ws .addressing \WS-Addressing implementation
org.apache.cxf.ws.policy \WS-Policy imple mentation
org.apache.cxf.ws.rm WS-ReliableMessaging (WS-RM)

imple mentation

org.apache.cxf.ws._security .wss4j \WSS4J security imple mentation

Example

The WS-Addressing sample is contained in the
InstalIDir/samples/cxf/ws_addressingdirectory. Logging is
configured in the logging.properties file located in that directory.
The relevant lines of configuration are shown in Example 17.

Example 17. Configuring Logging for WS-Addressing
jJava.util._logging.ConsoleHandler. formatter = demos.ws_addressing. common.ConciseFormatter
(-)l-’g-;.apache.cxf-ws.addressing-soap-MAPCodec-Ievel = INFO

The configuration in Example 17 enables the snooping of log

messages relating to WS- Addressing headers, and displays them
tothe console in a concise form.

Forinformation on running this sample, see the README. txtfile
located in the instalbir/samples/ws_addressing directory.

Artix Deployment Guide: Java 67

Logging Message Content

Youcanlog the content of the messages that are sent between a
service and a consumer. For example, you might want to log the
contents of SOAP messages that are being sent between a
service and a consumer.

Configuring message content logging

Tolog the messages that are sent betweena service and a
consumer, and vice versa, complete the following steps:

1. Add the logging feature to your endpoint's configuration.
2. Add the logging feature to your consumer's configuration.
3. Configure the logging system log INFO level messages.

Adding the logging feature to an endpoint

Add the logging feature your endpoint's configuration asshown
in Example 18.

Example 18. Adding Logging to Endpoint Configuration

<jaxws:endpoint ...>
<jaxws:features>
<bean class="org.apache .cxf.feature.LoggingFeature'/>
</jaxws:features>
</jaxws:endpoint>

The example XML shown in Example 18 enables the logging of
SOAP messages.

Adding the logging feature to a consumer

Add the logging feature your client's configuration as shown in
Example 19.

Example 19. Adding Logging to Client Configuration

<jaxws:client .._.>
<jaxws:features>
<bean class="org.apache.cxf.feature.LoggingFeature'/>
</jaxws: features>
</jaxws:client>

The example XML shown in Example 19 enables the logging of
SOAP messages.

Set logging to log INFO level messages

Ensure that the logging.propertiesfile associated with your
service is configured tolog INFO levelmessages, as shown in
Example 20.

Example 20. Setting the Logging Level to INFO

-level= INFO
java.util._logging.ConsoleHandler. level = INFO

68 Artix Deployment Guide: Java

Logging SOAP messages

Tosee the logging of SOAP messages modify the wsdl_first sample
application located in the instatiir/samples/wsdl_firstdirectory,
as follows:

1. Add the jaxws:features element shown in Example 21 tothe
cxf.xml configuration file in the wsdl_first sample's directory:

Example 21. Endpoint Configuration for Logging SOAP
Messages

<jaxws :endpoint name="{http://apache.org/hello world_soap http}SoapPort"
createdFromAP I=""true">
<jaxws:properties>
<entry key="'schema-validation-enabled" value="true" />
</jaxws:properties>
<jaxws :features>
<bean class="org.apache .cxf.feature.LoggingFeature'/>
</jaxws: features>
</jaxws:endpoint>

2. Thesample uses the default 1ogging.propertiesfile, whichis
located in the nstatir/etc directory. Make a copy of this
file and name it mylogging.properties.

3. In the mylogging.propertiesfile, change the logging levels to INFO
by editing the _l1evel and the java.util.logging.ConsoleHandler . level
configuration properties as follows:

.level= INFO java.util.logging.ConsoleHandler.level = INFO
4. Startthe serverusing the new configuration settingsinboththe
cxf._xml file and the mylogging.propertiesfile as follows:

Platform Command

start java

-Djava.util. logging.config.file=%ART IX_JAVA HOME%\etc\
mylogging.properties demo.hw.server.Server

UNIX Java

-Djava.util. logging.config.file=3ART IX_JAVA HOME/etc/
mylogging.properties demo.hw.server.Server &

Windows

5. Start the hello world client using the following command:

Platform Command

Java

-Djava.util. logging.config.file=%ART IX_JAVA HOME%\etc\
mylogging.properties demo.hw.client.Client
\wsdI\hello_world.wsdl

UNIX Java
-Djava.util. logging.config.file=$ART IX_JAVA HOME/etc/

mylogging.properties demo.hw.client.Client
-/wsdl/hello_world.wsdl

Windows

The SOAP messages are logged to the console.

Artix Deployment Guide: Java 69

http://apache.org/hello_world_soap_http

Introduction

Deploying to the
Spring Container

Artix for Java provides a Spring container into which you can
deploy any Spring-based application, including an Artix service
endpoint. This chapter outlines how to deploy and manage an
Artix service endpoint in the Spring container.

Artix includes a Spring container that is a customized version of
the Spring framework. The Spring framework isa general
purpose environment for deploying and running Java
applications. For more information onthe framework, see
www.springframework.org. Thisdocument explains how to
deploy and manage Artix service endpoints in the Spring
container.

Figure 1 shows how to access a deployed Artix endpoint in the
Spring container.

Figure 1. Artix Endpoint Deployed in a Spring Container

/ Spring Container N

(" Deployed WAR file
- } ~ e
Service —
“Greeter” f—
\ A
- ~
SOAP —
N 4 —
i ™y
HTTP
e) (Bean Definition File)

S ’

+ http://localhost:2000

Artix Deployment Guide: Java 81

http://www.springframework.org/

You deploy a Web Archive (WAR) file to the Spring container.
The WAR file contains all of the files that the Spring container
needs torun your application. These include the WSDL file that
defines your service, the code that you generated from the
WSDL file, including the implementation file, and any libraries
that your application requires. It also includes an Artix runtime
Spring-based XML configuration file to configure your
application.

The Spring container loads each WAR file using a unique class
loader. The classloader incorporates afirewall classloader that
ensures that any classes contained in the WAR are loaded
before classes in the parent class loader are loaded.

Sample XML

The example XML used in this chapteris taken from the Spring
container sample application locatedin:

InstallDir/samples/spring_container

Running the Spring Container

This section explains how to run the Spring container using the
spring_container command.

Using the spring_container command

The spring_container command is located in the InstallDir/bin

directory,

and has the following syntax:

spring_container [-config spring-config-url] [-wsdl
container-wsdl-url] [-h] [-verbose] [[start] | [stop]]

Table 9. Spring Container Command Options

Option

Description

-config spring-
config-url

Specifies the URL or file location of the Spring container
configuration file, which is used to launch the Spring container.
T his flag is optional.

By default, the Spring container uses the spring_container.xml
file, which is located in the
InstallDir/containers/spring_container/etc directory.

Youshould only use the -configflagif you are specifying a
different configuration file. For example, see Running Multiple
Containers on Same Host.

82 Artix Deployment Guide: Java

Description

Specifies the URL or file location of the Spring container WSDL
file. This flag is optional.

By default, the Spring container uses the container.wsdl file
located in the Instal IDir/containers/spring_container/etc/wsdl

directory.

Y oushould only use the -wsdl flagif you are specifying a different
Spring container WSDL file. For example, see Running Multiple
Containers on Same Host.

Prints usage summary and exits. This flag is optional.

Specifies verbose mode. This flag is optional.

Option
—wsdl
container-
wsdl-url

-h

-V
<start]|stop>

Starts and stopsthe Spring container. These flags are required to

start and stopthe Spring container respectively.

Starting the Spring container

Tostart the Spring container, run the following command from
the InstallDir/bindirectory:

spring_container start

If you wish to start more than one container on a single host,
see Running Multiple Containers on Same Host.

Stopping the Spring container

Tostopthe Spring container, run the following command from
the InstallDir/bindirectory:

spring_container stop

If you are running more than one container on the same host,
see Running Multiple Containers on Same Host.

Deploying an Artix Endpoint

Deployment steps

The following steps outline, at a high-level, what you must do to
successfully configure and deploy an Artix endpoint tothe
Spring container:

1. Writean Artix configuration file for your application. See
Configuring your application.

2. Build a WAR file that contains the configuration file, the
WSDL file that defines your service, and the code that you
generated from that WSDL file, including the
implementation file, and any libraries that your application
requires. See Building a WAR file.

Artix Deployment Guide: Java 83

3. Deploy the WAR file in one of the following ways:

o Copy the WAR file to the Spring container repository. See
Deploying the WAR file to the Spring repository.

e Use the JMX console. See Managing the Container using
the JMX Console.

e Use the Webservice interface. See Managing the
Container using the Web Service Interface.

Configuring your application

Youmust write an XML configuration file for your application.
The Spring container requires this file to instantiate, configure,
and assemble the beans in your application.

Example 22 shows the spring.xml configuration file used in the
Spring container sample application. Youcanuse any name for
your configuration file, however, it must end with a _xml
extension. This example file is taken from the
InstallDir/samples/spring_container sample application.

Example 22. Configuration File—spring.xml

<?xml version="1.0" encoding="UTF-8"?>
<beans ©@
xmlns=""http ://www. spr ingframework .org/schema/beans""
xmlns:xsi="http: //ww .w3.0rg/2001/XMLSchema-instance""
xmlns: jaxws=""http: //cxf.apache .org/jaxws" xsi :schemalLocation=""
http://cxf.apache.org/jaxws
http://cxf.apache.org/schemas/ jaxws - xsd
http://ww. springframework.org/schema/beans
http://ww. springframework.org/schema/beans/spring-beans.xsd">
<jaxws:endpoint id="SoapEndpoint" &
imp lementor="#SOAPService Impl*
address=""http://local host:9000/SoapContext/SoapPort"
wsd ILocation="hello_wor ld.wsdl" endpointName=""e: SoapPort"
serviceName="'s:SOAPService"
xmlns:e="http://apache.org/hel lo_world_soap_http"
xmlns:s="http://apache.org/hel lo_world_soap_http"/>
<bean i1d="SOAPServicelmpl' class=""demo.hw.server.Greeterimpl'/> &
</beans>

The code shown in Example 22 can be explained as follows:

©® The Spring beans element is required at the beginning of

every Artix configuration file. It is the only Spring element
that you must be familiar with.

® Configures a jaxws:endpoint element that defines a service

and its corresponding endpoints. (For more information on
configuring an Artix jaxws:endpoint element, see Using the
jaxws:endpoint Element.)

IMPORTANT: The location of the WSDL file specified in
the wsdlLocation is relative to the WAR's WEB_ INF/wsd I folder.

84 Artix Deployment Guide: Java

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://cxf.apache.org/jaxws
http://cxf.apache.org/jaxws
http://cxf.apache.org/schemas/jaxws.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://apache.org/hello_world_soap_http
http://apache.org/hello_world_soap_http
http://apache.org/hello_world_soap_http

® Identifies the classthat implements the service.

Building a WAR file

Todeploy your application tothe Spring container you must
build a WAR file that has the following structure and contents:

e META-INF/springshouldinclude your configuration file. The
configuration file must have a .xml extension.

e WEB-INF/classesshould include your Web service
implementation class, and any other classes (including the
class hierarchy) generated by the wsdl2java utility. For
details, see wsdl2java in Artix Java Runtime Command
Reference.

e WEB-INF/wsdl should include the WSDL file that defines the
service that you are deploying.

e WEB-INF/libshould include any JARs required by your
application.

Deploying the WAR file to the Spring repository

The simplest way to deploy an Artix endpoint to the Spring
containeris to:

1. Start the Spring container by running the following
command:

Instal IDir/bin/spring_container start

2. Copy the WAR file to the Spring container repository. The
default location for the repository is
InstalIDir/containers/spring_container/repository.

The Spring container automatically scans the repository for
newly deployed applications. The default value at which it scans
the repository is every 5000 milliseconds.

Using Ant to build aWAR file and deploy to the Spring
container

Youcanuse the Apache ant utility to build the Artix sample
applications. This includes building the WAR files and deploying
them to the Spring container. If you want to use the ant utility
tobuild your application war files fordeployment tothe Spring
container, see the 'create.spring.war' targetin common_bui Id.xml
file located in the Instal IDir/samples directory.

For more information about the ant utility, see
http://ant.apache.org/.

Artix Deployment Guide: Java 85

http://ant.apache.org/

Managing the

Changing the interval at which the Spring container scans
its repository

Youcan change the time interval at which the Spring container
scans the repository by changing the scanlinterval propertyin

the spring_container.xml configuration file. See Example 23 for
more detail.

Changing the default location of the container
repository

Youcanchange the Spring containerrepository location by
changing the value of the containerRepository property in the
spring_container.xml configuration file. See Example 23 for
more detail.

Container using the JMX Console

Youcanuse the JMX console to deploy and manage applications
in the Spring container. The JMX console enables you to deploy
applications, as well as stop, start, remove, and list
applications that are running in the container. Youcan also get
information on the application’s state. The name of the
deployed WAR file is the name given to the application.

Using the JMX console

Touse the JMX console to manage applications deployed tothe
Spring container, do the following:

1. Startthe JMX console by running the following command
from the instalvir/bin directory:

Platform Command
Windows Jjmx_console_start.bat
UNIX Jjmx_console_start.sh

2. Selectthe MBeans tag and expand the bean node toview
the SpringContainer MBean (see Figure 2).

The springContainer MBean is deployed as part of the Spring
container. It provides access to the management interface for the
Spring Container and can be used to deploy, stop, start,

remove and list applications. | can also getinformation on an
application’s state.

86 Artix Deployment Guide: Java

Figure 2. JMX Console—SpringContainer MBean

2 28E 5.0 Ma nitoring & Manzgemaent Consale: service: jmxzrrmi: Afgndiirmi: #localhost: 1099/ jmarmisss. . . r__ﬁlgl

FAHHATHAN

MAAANK

el IES

o= TLIH e =t e
 Tlizar

@z,
&= T nnnade

=73 - wiy

= Joeuarmaary

[l

3

Suiwary [Womenr liresls Classes | Mbsans [L

CAlifaies | Cyratinnr | HmAICes inmn

unHl

kN | i1 | tmng

(52f] sEophpipk: shon [EINES |3

i EREH] 1

M el g =1y

lmenlori RN oy siceianies G

Appileatintma

(REppReTnSTdR |l

=mng 1

¥

4

The operations and their parameters are described in Table 10.

Table 10. JMX Console—SpringContainer MBean Operations

Operation

Description

Parameters

deploy

Deploys an application to
the container repository.
The deploymethod copies a
WAR file from a given URL
or file location and puts
the copy into the container
repository.

location— A URL or file
location that points tothe
application to be deployed.

warFileName — The name of the
WAR file as you want it to
appear in the container
repository.

stopApplication

Stops the specified
application. It does not
remove the application
from the container
repository.

name — Specifies the name of
the application that you want
to stop. The application name
is the same as the WAR file
name.

startApplication

Starts an application that
has previously been
deployed and subsequently
stopped.

name — Specifies the name of
the application that you want
tostart. The application
name is the same as the WAR
file name.

Artix Deployment Guide: Java 87

Operation

Description

Parameters

removeApplication

Stops and removes an
application. It completely
removes anapplication
from the container
repository.

name — Specifies the name of
the application that you want
to stop and remove. The
application name is the same
as the WAR file name.

listApplicationNames

Lists all of the applications
that have been deployed.
The applications can be in
one of three states: start,
stop, or failed. An
application’s name is the
same as its WAR file
name.

None

getApplicationState

Reports whether an
application is running or
not.

name — Specifies the name of
the application whose state
you want toknow. The
application name is the same
as the WAR file name.

Managing the Container using the Web Service

Interface

Youcanuse the Web service interface todeploy and manage
applications in the Spring container. The Web service interface
is specified in the container .wsdl file, which is located in the
InstalIDir/containers/spring_container/etc/wsdl directory of your

installation.

Client tool

Artix does not currently include a client toolfor the Web service
interface. However, youcanwrite one if you are familiar with
Web service development. Please see the container.wsdl file and
Developing Artix Applications with JAX-WS and JAX-RS
for more details.

Changing the port the Web service interface listens on

Tochange the port that the Web service interface listens on, you
must change the port number of the address property in the
spring_container.xml file, as shown:

<jaxws:endpoint id="ContainerService"
imp lementor="#ContainerServicelmp "

address=""http://local host:2222/AdminContext/AdminPort"
>

You do not need to change the container .wsdl file.

88 Artix Deployment Guide: Java

For more information on the spring_container.xml file, see Spring
Container Definition File.

Adding a port
If you want toadd a port, such as a JMS port or an HTTPS port,
add the port details to the container _wsdl file.

Spring Container Definition File

The Spring containeris configured in the spring_container_.xml file
located in the following directory of your installation:

Instal IDir/containers/spring_container/etc

spring_container.xml

The contents of the Spring container configuration file are
shown in Example 23.

Example 23. spring_container.xml

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns: jaxws="http ://cxf.apache. org/jaxws"
xmIns:xsi="http://ww .w3.0rg/2001/XMLSchema-instance"
xmlIns:container="http://schemas . iona.com/soa/container-config"
xsi:schemaLocation="http://www. springframework.org/schema/beans
http: //www . springframework.org/schema/beans/spring-beans-2.0.xsd
http: //cxf _apache.org/jaxws http://cxf.apache .org/schemas/jaxws.xsd
http: //schemas. iona. com/soa/container-config
http://schemas. iona. com/soa/container-config. xsd">

<l-- Bean definition for Container -->

<container:container id="container"
containerRepository="${ART IX_JAVA HOME}/containers/spring_container/repository

scanlnterval="5000"/> ©

<I-- Web Service Container Management -->

<jaxws:endpoint id="ContainerService"” ©
implementor="#ContainerServicelmpl"
address=""http: //localhost:2222/AdminContext/AdminPort"
wsdl Location=""/wsdl/container .wsdl"
endpointName=""e:ContainerServicePort"
serviceName="s:ContainerService"
xmlns:e="http://cxf.iona.com/container/admin®
xmIns:s="http://cxf.iona.com/container/admin/>

<bean id=""ContainerServicelmpl"
class="com.iona.cxf_container .admin.ContainerAdminServicelmpl'>

<property name="‘container'>
<ref bean="container" />
</property>
</bean>

<I-- JMX Container Management -->
<bean id="mbeanServer" class="org.springframework. jmx.support.MBeanServerFactoryBean'"> &

<property name="locateExistingServer IfPossible" value="true" />
</bean>

Artix Deployment Guide: Java 89

http://www.springframework.org/schema/beans
http://cxf.apache.org/jaxws
http://www.w3.org/2001/XMLSchema-instance
http://schemas.iona.com/soa/container-config
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
http://cxf.apache.org/jaxws
http://cxf.apache.org/schemas/jaxws.xsd
http://schemas.iona.com/soa/container-config
http://schemas.iona.com/soa/container-config.xsd
http://cxf.iona.com/container/admin
http://cxf.iona.com/container/admin
http://cxf.iona.com/container/admin

<bean id="exporter" class="'org.springframework.jmx.export.MBeanExporter'>
<property name="beans'>
<map>
<entry key="bean:name=SpringContainer" value-ref="container'"/>
<entry key="‘connector:name=rmi"* value-ref="serverConnector"'/>
</map>
</property>
<property name="server'" ref="mbeanServer'/>
<property name="assembler" ref="assembler" />
</bean>

<bean i1d="assembler' class=
"'org. springframework . jmx. export. assembler. Inter faceBasedVMBean InfoAssembler'>
<property name="interfaceMappings'>
<props>
<prop key="bean:name=SpringContainer'>com.iona.cxf.container .managed .JMXContainer
</prop>
</props>
</property>
</bean>

<bean id="'serverConnector" class=
"'org.-springframework. jmx .support.ConnectorServerfFactory Bean'
depends-on="registry"'>
<property name="serviceUrl" value=
“service:jmx:mi:///jndi/rmi://local
host:1099/jmxrmi/server*/>
</bean>

<bean id="registry" class="'org.springframework.remoting. rmi.RmiRegistryFactoryBean">
<property name="port" value="1099"/>
</bean>
</beans>

The XML shown in Example 23 does the following:

O Defines a bean that encapsulates the logic for the Spring
container. This bean handles the logic for deploying user
applications that are copied to the specified container
repository location. The default container repository
location is
InstalIDir/containers/spring_container/repository. You
can change the repository location by changing the value
of the containerRepository attribute.

The scanlinterval attribute sets the time interval at which
the repository is scanned. It is set in milliseconds. The
default value is set to 5000 milliseconds. Removing this
attribute disables scanning.

® Defines an application that creates a Web service interface
that you can use to manage the Spring container.

The ContainerServicelmpl bean contains the server
implementation code and the container administration
logic.

To change the port on which the Web service interface
listens, change the address property.

90 Artix Deployment Guide: Java

® Defines Spring beans that allow you to use a JMX console
to manage the Spring container.

Formore information, see the JMX chapterofthe Spring 3.0.x
reference document available at
http://static.springframework.org/spring/docs/
3.0.x/reference/jmx.html.

Running Multiple Containers on Same Host

You might want to run more than one instance of a Spring
container on a single host. This allows you to load balance
between multiple containers and also allows you to separate
applications. Setting up multiple Spring containers torun ona
single host requires you to modify eachcontainer's
configuration sothat there are no resource clashes.

Procedure

If you want torun more than one Spring container on the same
host, you must do the following:

1. Make a copy of the container.wsdl file, which is located in
the InstallDir/containers/spring_container/etc/wsdl
directory.

2. In your new copy, my_container.wsdl, change the port on
which the Webservice interface listens from 2222 to another
port by changing the address property as shown below:

<service name="ContainerService'>
<port name="ContainerServicePort" binding="tns:ContainerServiceBinding'>
<soap:address location=""http://localhost:2222/AdminContext/AdminPort"/>
</port>
</service>

3. Make a copy of the spring_container.xmifile, which is located in the
InstallDir/containers/spring_container/etcdirectory.

4. Make the following changestoyour new copy,
my_spring_container.Xxml :

e Container repository location—change the container's
containerRepository property to point to a new repository.
Forexample, youchange:

<container:container id="‘container"

containerRepository="${ARTIX_JAVA HOME}/containers/spring_container/repository"
scanlnterval ="5000"/>

To:
<container:container id="container"

containerRepository=""MyNewContainerRepository/spring_container/repository"
scanlnterval="5000"/>

Artix Deployment Guide: Java 91

http://static.springframework.org/spring/docs/3.0.x/reference/jmx.html
http://static.springframework.org/spring/docs/3.0.x/reference/jmx.html

e Change the port onwhichthe Web service interface listens
by changing the addressproperty as follows:

<jaxws:endpoint id="ContainerService" implementor="#ContainerServicelmpl"
address="" http://localhost:2222/Admi nContext/AdminPort' >0

e Change the JMX port from 1099 to a new port as show in
the following line:

<bean id="serverConnector"
class="org. springframework. jmx .support.ConnectorServerFactoryBean""
depends-on=""registry'>
<property name="serviceUrl"
value="'service:jymx:rmi:///jndi/rmi://1ocal
host:1099/jmxrmi /server'/>

</bean>

e Change the RMI registry port from 1099to a new port as
shown in the following snippet:

<bean id="registry" class="org.springframework.remoting.rmi.
RmiRegistryFactoryBean'>

<property name="port" value="1099"/>

</bean>

5. Make acopy of the JMX console launch
script,jmx_console_start.bat, which is located in the instalbir/bin
directory.

6. Change the following line in the copy of the JMX console launch
script to point to the JMX port that is specified above:

service:jmx:rmi:///jndi/rmi://1ocalhost:1099/jmxrmi/server

7. Start the new container by passing the URL, or file location of its
configurationfile, my_spring_container.xml, to the start_container
script asfollows:

Instal IDir/bin/spring_container -config my_spring contain er.xml start

8. Toview the new container using the JMX console, run the JMX
console launch script created in steps 5 and 6.

9. Stop the new container by passing the URL or file location of its
WSDL file, my_container.wsdl, to the spring_container command.

For example, if the my_container.wsdl file has been saved to
the Instal IDir/containers/spring_container/wsdl directory, run

the following command:

InstalIDir/bin/spring_container -wsdl
..\containers\spring_container\wsdl\my_container.wsdl stop

92 Artix Deployment Guide: Java

Introduction

Deploying to a Servlet
Container

Artix endpoints canbe deployed into any servlet container. Artix
provides astandard servlet adapter thatworksfor mostservice
providers. It is also possible todeploy Artix endpoints using a
Spring context or by creatingacustom servlet toinstantiate the
Artix endpoint.

Servlet containers are acommon platform forrunning Web
services. The Artix runtime's light weight and plugability make it
easy todeploy endpoints into a servlet container. There are
several ways todeploy endpoints into a servlet container:

e an Artix provided servlet adapter class
e acustomservlet
e the Spring servlet context listener

e the Artix JCA connector

NOTE: Not all servlet containers support JCA connectors.

Deploying service providers

The preferred way to deploy a service provider into a servlet
containeris to use the CXF servlet. The CXF servlet only
requires a few additional pieces of configuration todeploy a
service provider into the servlet container. Much of the
additional information is either canned information required
deploy the servlet or Artix configuration for the endpoint.

Itis also possible todeploy aservice provider using any of the
other methods.

Deploying service consumers

Service consumers cannot be deployed using the CXF servlet.
Theycan be deployed using either a customservlet that creates
the required proxies or using the Artix JCA adapter.

Artix Deployment Guide: Java 99

Configuring the Servilet Container

Before you candeploy an Artix endpoint toyour servlet container
you must make the Artix runtime libraries available tothe
container. There are two ways to accomplish this:

1. Addthe required libraries tothe container's shared library
folder

This approach has the advantage of keeping individual WAR
files small. It also ensures that all of the Artix servlets are
using the same version of the libraries.

2. Add the required libraries to each application's WAR file

This approach has the advantage of flexibility. Each WAR can
contain the versions of the libraries it requires.

Required libraries

Artix endpoints require all of the JAR files in the instatiir/lib
directory except the following:

e artix.jar

e It-soa-jaxwsgenerator*._jar
e it-soa-router.jar

e it-soa-transport-mg*

e servlet-api*_jar

e geronimo-servlet_*_jar

e jetty-*_jar

Automating servlet container configuration

The Artix samples directory, instalipir/samples, includes a
common_build.xml file that contains utilities that automates the
configuration of the servlet environment.

One utility is the copy-war-libs Ant target. It copiesthe
required libraries to the folder specifiedin the war-lib. For
example, toinstall the required libraries into a Tomcat 6
installation enter ant copy-war-1ibs -Dwar-I ib=CcATALINA_HOMEN i b.

The other utility is the cxfwar macro. The macro is used to
build the WAR files for all of the Artix samples. Its default
result is to make a WAR containing all of the required libraries.
This behavior canbe changed by setting the without.libs
property totrue.

100 Artix Deployment Guide: Java

Using the CXF Servlet

Artix provides a standard servlet, the CXF servlet, which acts as
an adapter for the Web service endpoints. The CXF servlet is the
easiest method for deploying Web services into a servlet
container.

Figure 3 shows the main components of an Artix endpoint
deployed using the CXF servlet.

Figure 3. Artix Endpoint Deployed in a Servlet Container

Deployed WAR file

' |
Service
“‘Greeter’
A
SOAP
Y A

web.xml oxfaservlet.xml

— ——

CXF Serviet

Artix Java Runtime

http://localhost:8080

e Deployed WAR file —Service providers are deployed tothe
servlet container in a Web Archive (WAR) file. The deployed
WAR file contains:

Artix Deployment Guide: Java 101

o thecompiled code forthe service provider being
deployed

e the WSDL file defining the service
e theArtix configuration file

This file, called cxf-servilet.xml, is standard Artix
configuration file that defines all of the endpoints
contained in the WAR.

o theWebapplication deployment descriptor

All Artix Web applications using the standard CXF servlet
need to load the
org.apache.cxf.transport._servlet.CXFServlet class.

e CXF servlet — The CXF servlet is a standard servlet provided
by Artix. It actsasan adapter for Web service endpoints and
is part of the Artix runtime. The CXF servlet is implemented
by the org.apache.cxf.transport.servlet.CXFServlet class.

Deployment steps
Todeploy an Artix endpoint toa servlet container you must:

e Build a WAR that contains your application and all the
required support files.

e Deploy the WAR file to your servlet container.

Building a WAR

Todeploy your application to a servlet container, you must build
a WAR file.

The WAR file's WEB- INFfolder should include the following:

e cxf-servlet.xml—an Artix configurationfile specifying the
endpoints that plug into the CXF servlet. When the CXF
servlet startsup, it reads the jaxws:endpointelements from
this file, and initializes a service endpoint foreachone. See
Servlet configuration file for more information.

e web.xml—a standard web application file that instructs the
servlet containertoload the
org.apache.cxf.transport.servlet .CXFServlet class.

A reference version of this file is containedin your
instalibir/etc directory. Youcanuse thisreference copy
without making changes toit.

e classes—afolder including your Web service
implementation classand any other classesrequired to
support the implementation.

102 Artix Deployment Guide: Java

e wsdl—afolder including the WSDL file that defines the
service you are deploying.

e lib—afolder including any JARs required by your
application.

Servlet configuration file

The cxf-servlet.xml file is an Artix configuration file that
configures the endpoints that plug into the CXF servlet. When
the CXF servlet starts up it reads the jaxws:endpointelements in
this file and initializes a service endpoint for eachone.

Example 24 on page 88 shows a simple cxf-serviet.xml file.

Example 24. CXF Servilet Configuration File

<?xml version="1.0" encoding="UTF-8"?>
<beans xmIns=""http: //www .springframework. org/schemas/beans' @
xmlns:xsi="http: //ww .w3.0rg/2001/XMLSchema-instance
xmlns: jaxws=""http: //cxf_.apache .org/ jaxws""
xmlns: soap="http://cxf.apache.org/bindings/soap"
Xxsi :schemalLocation=""
http://ww. springframework.org/schema/beans
http://www. springframe work.org/schema/beans/spring-beans-2.0.xsd
http://cxf.apache.org/bindings/soap
http://cxf.apache.org/schemas/configuration/soap -xsd
http://cxf.apache.org/jaxws http://cxf.apache .org/schemas/ jaxws .xsd'>

<jaxws:endpoint ®
id="hello_world"

imp lementor=""demo. hw. server.Greeter Impl*
wsd ILocation="WEB- INF/wsd 1/hel lo_world .wsdl"
address="/hel lo_world">

<jaxws:features>
<bean class="org.apache .cxf.feature.LoggingFeature'/>

</jaxws: features>
</jaxws:endpoint>
</beans>

The code shown in Example 24 is explained as follows:

©® The Spring beans elementis required at the beginning of

every Artix configuration file. It is the only Spring element
that you need tobe familiar with.

® The jaxws:endpointelement defines a service provider

endpoint. The jaxws:endpointelement has the following
attributes:

e id— Sets the endpoint id.

e implementor— Specifies the class implementing the
service. This class needs to be included in the WAR's
WEB- INF/classesfolder.

e wsdlLocation— Specifies the WSDL file that contains the
service definition. The WSDL file location is relative to
the WAR's WEB- INF/wsdl folder.

Artix Deployment Guide: Java 103

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://cxf.apache.org/jaxws
http://cxf.apache.org/bindings/soap
http://www.springframework.org/schema/beans
http://cxf.apache.org/bindings/soap
http://cxf.apache.org/schemas/configuration/soap.xsd
http://cxf.apache.org/jaxws
http://cxf.apache.org/schemas/jaxws.xsd

e address— Specifies the address of the endpoint as
defined in the service's WSDL file that defines service
that is being deployed.

e jaxws:features — Defines features that can be added to
your endpoint.

For more information on configuring a jaxws:endpoint element,
see Using the jaxws:endpoint Element.

Web application configuration

You must include a web.xml deployment descriptor file that
instructs the servilet container to load the CXF servlet. Example
25 shows a web.xmlfile. Itis not necessary to change thisfile. A
reference copyislocated in the InstallDir/etcdirectory.

Example 25. A web.xml Deployment Descriptor File

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE web-app PUBLIC *"-//Sun Microsystems, Inc.//DTD
Web Application 2.3//EN" "http://java.sun.con/dtd/web-app 2 3.dtd">
<web-app>
<display-name>cxf</display-name>
<description>cxf</description>
<servlet>
<servlet-name>cxf</servlet-name>
<di splay-name>cxf</display-name>
<description>Apache CXF Endpoint</description>
<servlet-class>org.apache .cxf.transport.servlet.CXFServlet</servlet-
class>
<load-on-startup>1</load-on-startup>
</servlet>
<servlet-mapping>
<servlet-name>cxf</servlet-name>
<ur l-pattern>/services/*</ur l-pattern>
</servlet-mapping>
<session-config>
<session-timeout>60</session-timeout>
</session-config>

Deploying a WAR file to the servlet container

How you deploy your WAR file depends on the servlet container
that you are using. Forexample, to deploy your WAR file to
Tomcat, you copy it to the Tomcat CATAL INA_HOME/ server /webapp

directory.

Using a Custom Servliet

In some cases, you might want towrite a custom servlet that
deploys Artix enabled endpoints. A common reason is to deploy
Artix client applications into a servlet container. The CXF servlet
does not support deploying pure client applications.

104 Artix Deployment Guide: Java

Procedure

The procedure for using a custom servlet is similar tothe one
for using the default CXF servlet:

1. Implement aservlet thatinstantiatesan Artix enabled
endpoint.

2. Package your servilet in a WAR that contains the Artix
libraries and the configuration needed for your application.

3. Deploy the WAR toyour servlet container.

Differences from using the default servlet

There are a fewimportant differences betweenusing the CXF
servlet and using a customservlet:

e The configuration file is not called cxf-serviet.xml.

The default behavior is similar tothat of a regular Artix
application. It looks for its configuration in a file called WEB-
INF/classes/cxf.xml. If you want tolocate the configuration
in a different file, you can programmatically configure the
servlet toload the configuration file.

e Any paths in the configuration file are relative tothe
servlet’s WEB-INF/classes folder.

Implementing the serviet

Implementing the servlet is easy. Yousimply add logic tothe
servlet’s constructor to instantiate the Artix endpoint. Example
26 shows an example of instantiating a consumer endpoint in a
servlet.

Example 26. Instantiating a Consumer Endpoint in a
Serviet

public class Hel loWorldServlet extends HttpServlet

{ private static Greeter port;
public HelloWorldServiet()
URL wsdIURL = getClass() -getResource("’/hello_world.wsdl');
port = new SOAPService(wsdIURL,

new QName(*'http://apache.org/hello world_soap_http",
""'SOAPService')).getSoapPort();

If you choose not to use the default location for the configuration
file, then you must add code forloading the configuration file. To
load the configuration from a customlocation do the following:

Artix Deployment Guide: Java 105

http://apache.org/hello_world_soap_http

1. Use the servletContextto resolve the file location into a URL.
2. Create a new bus for the application using the resolved URL.
3. Setthe application’s default bus to the newly created bus.

Example 27 on page 92 shows an example ofloading the
configuration from the WEB-INF/client.xml file.

Example 27. Loading Configuration from a Custom Location
public class Hel loWorldServlet extends HttpServlet

public init(ServletConfig cfg)

URL configUrl=cfg.getServletContext().getResource("WEB-
INF/client.xml');

Bus bus = new SpringBusFactory().createBus(url);

BusFactory. setDefaultBus(bus);

}

.

Depending on what other features you want to use, you might
need toadd additional code toyour servilet. For example, if you
want touse WS-Security in a consumer you must add codeto
your servlet toload the credentials and add them toyour
requests.

Building the WAR file

Todeploy your application to a servlet container you must build
a WAR file that has the following directories and files:

e The WEB-INFfolder should include aweb.xml file which
instructs the servlet container to load the customservlet.

e The WEB-INF/classes foldershould include the following:

e The implementation class and any other classes
(including the class hierarchy) generated by the
wsdl2java utility

e Thedefault cxf.xml configurationfile

e Otherresource files that are referenced by the
configuration.

e The WeEB-INF/wsdl folder should include the WSDL file that
defines the service being deployed.

e The wEB-INF/libfolder should include any JARs required by
the application.

106 Artix Deployment Guide: Java

Using the Spring Context Listener

An alternative approach toinstantiating endpoints inside a
servlet container istouse the Spring context listener. The Spring
context listener provides more flexibility in terms of how an
application is wired together. It uses the application's Spring
configuration to determine what object to instantiate and loads
the objectsinto the application context used by the servlet
container.

The added flexibility adds complexity. The application developer
must know exactly what application components need to
loaded. They also must know what Artix components need to be
loaded. If any component is missing, the application will not
load properly and the desired endpoints will not be created.

Procedure

The following steps are involved in building and packaging a Web
application thatusesthe Spring context listener:

1. Develop the application's business logic.

Only the service implementation needs to be developed
service provider endpoints.

The business logic for service consumers should be
encapsulated in a Java class and not as part of the main()
method.

2. Update the application's web.xml file to load the Spring
context listener and the application’'s Spring configuration.

3. Create a Spring configuration file that explicitly loads all of
the application's components and all of the required Artix
components.

4. Package the application into a WAR file for deployment.

Configuring the Web application

The servlet container looks in the WEB- INF/web .xml file to
determine what classes are needed to activate the Web
application. When deploying an Artix based application using
the Spring context listener, the serviet container needs toload
the org.springframework .web. context .ContextLoaderL istener class.
This is specified using the listenerelement and its listener-class
child.

The org. springframework .web .context.ContextLoaderListener class
uses a context parameter called contextConfigLocationto
determine the location of the Spring configuration file. The
context parameter is configured using the context-parameter
element. The context-paramelement has two children that
specify parameters and their values. The param-name element

Artix Deployment Guide: Java 107

specifies the parameter's name. The param-value element specifies
the parameter's value.

Example 28shows aweb.xmlfile that configures the servlet
container toload the Spring listener and a Spring configuration
file.

Example 28. Web Application Configuration for Loading the
Spring Context Listener
<IDOCTYPE web-app
PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java. sun.con/dtd/web-app_2 3.dtd">
<web-app>
<context-param> @
<param-name>contextConfiglLocation</param-name>
<param-value>WEB-INF/beans.xml </param-value>
</context-param>

<listener> ®

<listener-class>org.springframework.web. context.ContextlLoaderListener
</l istener-class>

</l istener>
</v-vét-)—app>
The XML in Example 28 does the following:

® Specifiesthat the Spring context listenerwillload the
application's Spring configuration from WEB-INF/beans.xml.

® Specifiesthatthe servlet containershould load the Spring
context listener.

Creating the Spring configuration

The Spring configuration file for an application using the Spring
context listeneris similar to a standard Artix configuration file.
It uses all of the same endpoint configuration elements
described in Configuring Artix Endpoints. It can also contain
standard Spring beans.

The difference between a typical Artix configuration file and a
configuration file for using the Spring context listeneris that the
Spring context listener configuration must import the
configuration for all of the Artix runtime components usedby the
endpoint's exposed by the application. These components are
imported into the configuration as resources usingan import
element for each component's configuration.

Example 29 shows the configuration for a simple consumer
endpoint being deployed using the Spring context listener.

108 Artix Deployment Guide: Java

http://java.sun.com/dtd/web-app_2_3.dtd
http://java.sun.com/dtd/web-app_2_3.dtd

Example

29. Configuration for a Consumer Deployed into a

Servlet Container Using the Spring Context Listener

<beans ..

<import
<import
<import
<import
binding
<import

>

resource=""classpath: META- INF/cxf/cxf.xml" />
resource=""classpath:META- INF/cxf/cxf-extension- jaxws . xml" />
resource=""classpath: META- INF/cxf/cxf-extension-soap.xml* />
resource=""classpath: META- INF/cxf/cxf-extension-http-

xml™ />
resource=""classpath: META- INF/cxf/cxf-servlet.xml" />

<jaxws:client id="funguy"

</beans>
T

address="http://localhost:9000/funguyTool"
serviceClass="org. laughs. funGuylmpl* />

he importelements at the beginning of Example 29 import the

required Artix component configuration. The required Artix
component configuration files depends on the features being
used by the endpoints. At a minimum, an application in a
servilet container will need the components shown in Example
29.

TIP: Importing the cxf-all.xml configuration file will automatically

import all

of the Artix components.

Building the WAR
Todeploy your application to a servlet container, you must build

a

WAR file. The weB-INF foldershould include the following:

beans .xml —the Spring configuration file configuring the
application’'s beans.

web . xml — the web application file that instructs the servlet
container to load the Spring context listener.

classes— a folder including the Web service implementation
class and any other classes required tosupport the
implementation.

wsdl — a folder including the WSDL file that defines the
service being deployed.

lib— a folder including any JARs required by the
application.

Artix Deployment Guide: Java 109

Deploying WS-
Addressing

Artix supports WS-Addressing for JAX-WS applications. This
chapter explains how to deploy WS-Addressing in the Artix
runtime environment.

Introduction to WS-Addressing

WS-Addressing is a specificationthat allows services to
communicate addressing information in a transport neutral
way. It consists of two parts:

e Astructurefor communicating areference to aWeb service
endpoint

o Asetof Message Addressing Properties (MAP) that associate
addressing information with a particular message

Supported specifications

Artix supports both the WS-Addressing 2004/08 specification
and the WS-Addressing 2005/03 specification.

Further information

For detailed information on WS-Addressing, see the 2004/08
submission at http://www.w3.org/Submission/ws-addressing/.

WS-Addressing Interceptors

In Artix, WS-Addressing functionality is implemented as
interceptors. The Artix runtime uses interceptors tointercept
and work with the raw messages that are being sent and
received. When atransport receives a message, it createsa
message object and sends that message through an interceptor
chain. If the WS-Addressing interceptors are added tothe
application's interceptor chain, any WS-Addressing information
included with a message is processed.

110 Artix Deployment Guide: Java

http://www.w3.org/Submission/ws-addressing/

The WS-Addressing implementation consists of two interceptors,

asdescribed in Table 11.

Table 11. WS-Addressing Interceptors

Interceptor

Description

Properties
messages.

org.apache.cxf.ws_addressing .MAPAggregator (A logical interceptor responsible for
aggregating the Message Addressing

(MAPS) for outgoing

org.apache.cxf.ws.addressing.soap .MAPCodec

headers.

A protocol-specific interceptorresponsible for
encodingand decoding the Message
Addressing Properties (MAPs) as SOAP

Example 30.
Client Configuration

Enabling WS-Addressing

Toenable WS-Addressing the WS-Addressing interceptors must
be added to the inbound and outbound interceptor chains. This

is done in one of the following ways:
e Artix Features

¢ RMAssertion and WS-Policy Framework

e Using Policy Assertion in a WS-Addressing Feature

Adding WS-Addressing as a Feature

WS-Addressing canbe enabled by adding the WS-Addressing
feature tothe client and the server configuration as shown in

Example 30 and Example 31 respectively.

<?xml version="1.0" encoding="UTF-8"?>

client.xml—Adding WS-Addressing Feature to

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http: //ww .w3.0rg/2001/XMLSchema-instance"

xmlns: Jaxws=""http: //cxf_apache .org/ jaxws""

xmlns:wsa=""http: //cxf.apache .org/ws/addressing"

Xsi :schemaLocation=""

http://ww. springframework.org/schema/beans

http://www. springframework.org/schema/beans/spring-

beans. xsd'>

<jaxws:client ...>
<jaxws:features>
<wsa:addressing/>
</jaxws: features>
</jaxws:client>

Artix Deployment Guide: Java 111

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://cxf.apache.org/jaxws
http://cxf.apache.org/ws/addressing
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/beans/spring-beans.xsd

Example 31. server.xml—Adding WS-Addressing Feature to
Server Configuration

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.spr ingframework.org/schema/beans"
xmlns:xsi="http: //ww .w3. org/2001/XMLSchema-instance"
xmlns: jaxws=""http: //cxf.apache .org/ jaxws"
xmlns:wsa=""http: //cxf .apache .org/ws/addressing"
Xxsi :schemalLocation=""

http ://ww .springframework.org/schema/beans http://ww.spring

framework.org/schema/beans/spring-beans. xsd*>

<jaxws:endpoint ...>
<jaxws:features>
<wsa:addressing/>
</jaxws: features>
</jaxws:endpoint>
</beans>

Configuring WS-Addressing Attributes

The Artix WS-Addressing feature element is defined in the
namespace http://cxf.apache.org/ws/addressing. It supports the
two attributes described in Table 12.

Table 12. WS-Addressing Attributes

Attribute Name Value

allowdDuplicates A boolean that determines if duplicate
MessagelDs are tolerated. The default setting is
true.

usingAddressingAdvisory (A poolean thatindicates if the presence of the
UsingAddressingelementin the WSDL is advisory
only; that is, its absence does not prevent the
encoding of WS-Addressing headers.

112 Artix Deployment Guide: Java

http://cxf.apache.org/ws/addressing
http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://cxf.apache.org/jaxws
http://cxf.apache.org/ws/addressing
http://www.springframework.org/schema/beans

Configuring WS-Addressing attributes

Configure WS-Addressing attributes by adding the attribute and
the value you want toset it to the WS-Addressing feature inyour
serveror client configuration file. Forexample, the following
configuration extract setsthe allowDublicates attribute to false
on the server endpoint:

<beans ... xmlns:wsa="http://cxf.apache.org/ws/addressing"
>
<jaxws:endpoint ...>
<jaxws :features>
<wsa:addressing al lowDuplicates="false"'/>
</jaxws: features>
</jaxws:endpoint>
</beans>

Using a WS-Policy assertion embedded in a feature

In Example 32 an addressing policy assertion to enable non-
anonymous responses is embedded in the policieselement.

Example 32. Using the Policies to Configure WS-
Addressing

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://ww .w3.0rg/2001/XMLSchema-instance"
xmlns:wsa="http: //cxf .apache .org/ws/addressing"
xmlns:wsp="http://ww .w3.0rg/2006/07/ws-pol icy""
xmlns:policy="http://cxf.apache.org/policy-config"
xmlns:wsu="http://docs. oasis-open.org/wss/2004/01/oas is-200401-
wss-wssecurity- utility-1.0.xsd"
xmlns: jaxws=""http: //cxf.apache .org/ jaxws""
Xxsi :schemalLocation=""

http://ww.w3 .org/2006/07 /ws-policy

http://ww.w3 .org/2006/07 /ws-policy .xsd
http://cxf.apache.org/ws/addressing

http://cxf.apache. org/schema/ws/addressing. xsd
http://cxf.apache.org/jaxws

http://cxf.apache. org/schemas/ jaxws .xsd

http://ww. springframework.org/schema/beans

http://ww. springframe work.org/schema/beans/spring-beans.xsd">

<jaxws :endpoint
name=""{http://cxf.apache.org/greeter_control}GreeterPort" createdFromAPI=
“"true'>
<jaxws:features>
<policy:policies>
<wsp:Policy
xmlns:wsam="http://ww.w3 .org/2007/02/address ing/metadata’>
<wsam:Addressing>
<wsp:Policy>
<wsam:NonAnonymousResponses/>
</wsp:Pol icy>
</wsam:Addressing>
</wsp:Policy>
<policy:policies>
</jaxws :features>
</jaxws:endpoint>
</beans>

Artix Deployment Guide: Java 113

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://cxf.apache.org/ws/addressing
http://www.w3.org/2006/07/ws-policy
http://cxf.apache.org/policy-config
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
http://cxf.apache.org/jaxws
http://www.w3.org/2006/07/ws-policy
http://www.w3.org/2006/07/ws-policy.xsd
http://cxf.apache.org/ws/addressing
http://cxf.apache.org/schema/ws/addressing.xsd
http://cxf.apache.org/jaxws
http://cxf.apache.org/schemas/jaxws.xsd
http://www.springframework.org/schema/beans
http://cxf.apache.org/greeter_control
http://www.w3.org/2007/02/addressing/metadata
http://cxf.apache.org/ws/addressing

Enabling Reliable
Messaging

Artix supports WS-Reliable Messaging(WS-RM). This chapter
explains how to enable and configure WS-RM in Artix.

Introduction to WS-RM

WS-ReliableMessaging (WS-RM) is a protocolthat ensures the
reliable delivery of messages in adistributed environment. It
enables messages to be delivered reliably betweendistributed
applications in the presence of software, system, or network
failures.

For example, WS-RM can be used toensure that the correct
messages have been delivered across a network exactly once,
and in the correct order.

How WS-RM works

WS-RM ensures the reliable delivery of messages betweena
source and a destination endpoint. The sourceis the initial
sender of the message and the destination is the ultimate
receiver, as shown in Figure 4.

Figure 4. Web Services Reliable Messaging

Initial Sender Ultimate Receiver
™\ ™

Application | ¥ Application
Source 6! 4 Destination

Deliver

=] 53] st

| Transmit

Transmit |<+——— | Recelve
| Acknowledge

The flow of WS-RM messages can be described as follows:

1. The RM source sends a CreateSequence protocol message to
the RM destination. This contains a reference for the
endpoint that receives acknowledgements (the wsrm:AcksTo
endpoint).

2. TheRM destination sends a CreateSequenceResponse protocol
message back to the RM source. This message contains the
sequence ID for the RM sequence session.

Artix Deployment Guide: Java 115

3. The RM source adds an RM sequence header to each message sent
by the application source. This header contains the sequence ID
and a unique message ID.

4. The RM source transmits each message to the RM destination.

5. TheRM destination acknowledges thereceipt of the message from
the RM source by sending messages that contain the RM
SequenceAcknowledgement header.

6. TheRM destination delivers the message tothe application
destination in an exactly-once-in-order fashion.

7. The RM source retransmits a message that it has not yet received
an acknowledgement.

The first retransmission attempt is made aftera base
retransmission interval. Successive retransmission
attempts are made, by default, at exponential back-off
intervals or, alternatively, at fixed intervals. Formore
details, see Configuring WS-RM.

This entire process occurs symmetrically for both the request and
the response message; thatis, in the case of the response
message, the server actsasthe RM source and the client acts
as the RM destination.

WS-RM delivery assurances

WS-RM guarantees reliable message delivery in a distributed
environment, regardless of the transport protocolused. Either
the source or the destination endpoint logs an error if reliable
delivery cannot be assured.

Supported specifications

Artix supports the 2005/02 version of the WS-RM specification,
which is based on the WS-Addressing 2004/08 specification.

Further information

For detailed information on WS-RM, see the specificationat
http://specs.xmlsoap.org/ws/2005/02/rm/ws-
reliablemessaging.pdf.

WS-RM Interceptors

In Artix, WS-RM functionality is implemented as interceptors.
The Artix runtime uses interceptors tointercept and work with
the raw messages that are being sent and received. When a
transport receives a message, it createsamessage object and
sends that message through an interceptor chain. If the
application's interceptor chain includes the WS-RM interceptors,
the application can participate in reliable messaging sessions.
The WS-RM interceptors handle the collectionand aggregation

116 Artix Deployment Guide: Java

http://specs.xmlsoap.org/ws/2005/02/rm/ws-reliablemessaging.pdf
http://specs.xmlsoap.org/ws/2005/02/rm/ws-reliablemessaging.pdf
http://specs.xmlsoap.org/ws/2005/02/rm/ws-reliablemessaging.pdf

ofthe message chunks. They also handle all of the
acknowledgement and retransmission logic.

Artix WS-RM Interceptors

The Artix WS-RM implementation consists of four interceptors,
which are described in Table 13.

Table 13. Artix WS-ReliableMessaging Interceptors

Interceptor Description

org.apache. cxf.ws. rm.RMOutinterceptor Deals with the logical aspects of
providing reliability guarantees for
outgoing messages.

Responsible for sending the
CreateSequence requests and waiting
for their CreateSequenceResponse
responses.

Also responsible for aggregating the
sequence properties—ID and
message nhumber—for an
application message.

org.apache.cxf.ws. rm.RMInInterceptor Responsible for intercepting and
processing RM protocolmessages and
SequenceAcknowledgement messages that
are piggybacked on application
messages.

org.apache.cxf.ws. rm. soap .RMSoapl nterceptor Responsible for encoding and decoding
the reliability properties as SOAP
headers.

org.apache. cxf.ws. rm.Retransmissionlnterceptor [Responsible for creating copies of
application messages for future
resending.

The presence of the WS-RM interceptors on the interceptor
chains ensures that WS-RM protocol messages are exchanged
when necessary. For example, when intercepting the first
application message on the outbound interceptor chain, the
RMOutInterceptor sends a CreateSequence request and waits to
process the original application message until it receives the
CreateSequenceResponse response. In addition, the WS-RM
interceptors add the sequence headers tothe application
messages and, on the destination side, extract themfromthe
messages. Itis not necessary to make any changes toyour
application code to make the exchange of messages reliable.

For more information on how to enable WS-RM, see Enabling
WS-RM.

Artix Deployment Guide: Java 117

Configuring WS-RM Attributes

Youcontrolsequence demarcation and otheraspects of the
reliable exchange through configuration. Forexample, by default
Artix attempts to maximize the lifetime of a sequence, thus
reducing the overhead incurred by the out-of-band WS-RM
protocol messages. Toenforce the use of a separate sequence
per application message configure the WS-RM source’s
sequence termination policy (settingthe maximum sequence
length to1).

Formore information on configuring WS-RM behavior, see
Configuring WS-RM.

Enabling WS-RM

Toenable reliable messaging, the WS-RM interceptors must be
added tothe interceptorchains for both inbound and outbound
messages and faults.

Because the WS-RM interceptors use WS-Addressing, the WS-
Addressing interceptors must also be present on the interceptor
chains.

Youcanensure the presence of these interceptors in one of two
ways:

o Explicitly, by adding them to the dispatch chains using
Spring beans

o Implicitly, using WS-Policy assertions, which cause the Artix
runtime totransparently add theinterceptorson your
behalf.

Spring beans—explicitly adding interceptors

Toenable WS-RM add the WS-RM and WS-Addressing
interceptors to the Artix bus, or to a consumer or service
endpoint using Spring bean configuration. This is the approach
taken in the WS-RM sample thatis found in the
InstalIDir/samples/ws_rmdirectory. The configuration file, ws-
rm.cxF, shows the WS-RM and WS- Addressing interceptors being
added one-by-one as Spring beans (see Example 33).

Example 33. Enabling WS-RM Using Spring Beans

<?xml version="1.0" encoding="UTF-8"7?>
O<beans xmlns="http://www.springframework .org/schema/beans"
xmlns:xsi="http: //ww .w3.0rg/2001/XMLSchema-instance"
Xxsi :schemalocation="http: //www.springframework.org/schema/
beans http://ww .springframework.org/schema/beans/spring-beans. xsd">
2] <bean id="mapAggregator"*

class=""org.apache.cxf.ws.addressing -MAPAggregator" />
<bean 1d="mapCodec" class="org.apache.cxf.ws.addressing.soap-MAPCodec' />
(3] <bean id="rmLogicalOut" class="org.apache .cxf.ws.rm_RMOutlnterceptor">
<property name="bus" ref=""cxf'/>
</bean>
<bean id="rmLogicalln™ class="org.apache.cxf.ws.rm.RMInlnterceptor'>

118 Artix Deployment Guide: Java

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/
http://www.springframework.org/schema/beans/spring-beans.xsd

<property name="bus" ref="cxf'"/>
</bean>
<bean id="rmCodec" class="org.apache.cxf.ws.rm.soap.RMSoap Interceptor'/>
<bean id="cxf'" class="org.apache.cxf_bus.CXFBuslmpl">
(4] <property name="inlInterceptors'>
<list>
<ref bean="mapAggregator'/>
<ref bean="mapCodec"/>
<ref bean="rmLogicalln"/>
<ref bean="rmCodec"/>
</list>
</property>
(5} <property name="inFaultinterceptors'>
<list>
<ref bean="mapAggregator'/>
<ref bean="mapCodec'/>
<ref bean="rmLogicalln"/>
<ref bean="rmCodec"/>
</list>
</property>
(6] <property name="outinterceptors’'>
<list>
<ref bean="mapAggregator'/>
<ref bean="mapCodec'/>
<ref bean="rmLogicalOut"/>
<ref bean="rmCodec"/>
</list>
</property>
(7} <property name="outFaul tinterceptors'>
<list>
<ref bean="mapAggregator'>
<ref bean="mapCodec'/>
<ref bean="rmLogicalOut"/>
<ref bean=""rmCodec"/>
</list>
</property>
</bean>
</beans>

The code shown in Example 33 can be explained as follows:

©® An Artix configuration file is a Spring XML file. You must

include an opening Spring beanselement thatdeclares the
namespaces and schema files for the child elements that are
encapsulated by the beanselement.

® Configures eachofthe WS-Addressing interceptors—

MAPAggregator and MAPCodec. For more information on WS-
Addressing, see Deploying WS-Addressing.

® Configures each of the WS-RM interceptors—
RMOut Interceptor, RMInInterceptor, and RMSoap Interceptor.

® Adds the WS-Addressing and WS-RM interceptors tothe
interceptor chain forinbound messages.

® Addsthe WS-Addressing and WS-RM interceptors tothe
interceptor chain for inbound faults.

Artix Deployment Guide: Java 119

O Addsthe WS-Addressing and WS-RM interceptors tothe
interceptor chain foroutbound messages.

© Addsthe WS-Addressing and WS-RM interceptors tothe
interceptor chain for outbound faults.

WS-Policy framework—implicitly adding interceptors

The WS-Policy framework provides the infrastructure and APIs
that allow you to use WS-Policy. It is compliant with the
November 2006 draft publications of the Web Services Policy
1.5—Framework and Web Services Policy 1.5—Attachment
specifications.

To enable WS-RM using the Artix WS-Policy framework, do the
following:

1. Add the policy feature to your client and server endpoint.

Example 34 shows a reference bean nested within a
jaxws:featureelement. The reference bean specifies the
AddressingPolicy, which is defined as a separate element within
the same configuration file.

Example 34. Configuring WS-RM using WS-Policy

<jaxws:client>
<jaxws:features>
<ref bean="AddressingPolicy'/>
</jaxws:features>
</jaxws:client>
<wsp:Policy
wsu: ld=""AddressingPolicy""
xmlns:wsam=""http ://www.w3 .0rg/2007/02/address ing/metadata">
<wsam: Addressing>
<wsp:Policy>
<wsam :NonAnonymousResponses/>
</wsp:Policy>
</wsam:Addressing>
</wsp:Policy>

Add areliable messaging policy to the wsdl :serviceelement—or
any other WSDL element that can be used asan attachment
point for policy or policy reference elements—to your WSDL file,
as shown in Example 35.

Example 35. Adding an RM Policy to Your WSDL File

<wsp:Policy wsu: Id="RM" xmIns:wsp="http://www.w3.0rg/2006/07/ws-policy"
xmlns:wsu=""http://docs. oasis-open.org/wss/2004/01/oas is-200401-wss-
wssecurity-utility- 1.0.xsd">
<wsam:Addressing
xmlns:wsam=""http ://www.w3 .org/2007/02/address ing/metadata’>
<wsp:Policy/>
</wsam:Addressing>
<wsrmp :RMAssertion
xmlns:wsrmp=""http: //schemas.xmlsoap .org/ws/2005/02/rm/policy"'>
<wsrmp :BaseRetransmissionInterval Milliseconds="10000"/>
</wsrmp:RMAssertion>

120 Artix Deployment Guide: Java

http://www.w3.org/TR/2006/WD-ws-policy-20061117/
http://www.w3.org/TR/2006/WD-ws-policy-20061117/
http://www.w3.org/TR/2006/WD-ws-policy-attach-20061117/
http://www.w3.org/TR/2006/WD-ws-policy-attach-20061117/
http://www.w3.org/2006/07/ws-policy
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-
http://schemas.xmlsoap.org/ws/2005/02/rm/policy

</wsp:Policy>
<wsdl:service name="Rel iableCGreeterService'">
<wsdl:port binding="tns:GreeterSOAPBinding" name="GreeterPort'>
<soap:address
location="http://localhost:9020/SoapContext/GreeterPort'/>
<wsp:Pol icyReference URI="#RM"
xmlns:wsp="http://ww .w3.0rg/2006/07/ws-pol icy'/>
</wsdl :port>
</wsdl :service>

Configuring WS-RM
You can configure WS-RM by:

e SettingArtix-specific attributes thatare defined in the Artix
WS-RM manager namespace,
http://cxf.apache.org/ws/rm/manager.

e Setting standard WS-RM policy attributesthat are defined in
the http://schemas.xmlsoap.org/ws/2005/02/rm/policy
namespace.

Configuring Artix-Specific WS-RM Attributes

To configure the Artix-specific attributes, use the rmManager
Spring bean. Add the following toyour configuration file:

e The http://cxf.apache.org/ws/rm/manager namespace to your
list of namespaces.

e An rmManager Spring bean for the specific attribute that your
want to configure.

Example 36 shows a simple example.

Example 36. Configuring Artix-Specific WS-RM Attributes

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://ww.w3.0org/2001/XMLSchema-instance"
xmlns:wsimm-mgr="http: //cxf.apache .org/ws/rm/manager"
xsi:schemalocation=""http ://ww. springframework .org/schema/beans
http ://ww. springframe work.org/schema/beans/spring-beans. xsd
http://cxf. apache. org/ws/rm/manager
http://cxf.apache.org/schemas/configuration/wsrm-man ager.xsd">
<wsrm-mgr:rmManager>
<I-—
. .-Your configuration goes here
-—>
</wsrm-mgr: rmManager>

Artix Deployment Guide: Java 121

http://www.w3.org/2006/07/ws-policy
http://cxf.apache.org/ws/rm/manager
http://schemas.xmlsoap.org/ws/2005/02/rm/policy
http://cxf.apache.org/ws/rm/manager
http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://cxf.apache.org/ws/rm/manager
http://www.springframework.org/schema/beans
http://cxf.apache.org/ws/rm/manager
http://cxf.apache.org/schemas/configuration/wsrm-man

Children of the rmManager Spring bean

Table 14 shows the child elements of the rmManager Spring
bean, defined in the http://cxf.apache.org/ws/rm/manager

namespace.

Table 14. Children of the rmManager Spring Bean

Element

Description

RMAssertion

An element of type RMAssertion

del iveryAssurance

An element of type DeliveryAssuranceType that
describes the delivery assurance that should

apply

sourcePolicy

An element of type SourcePolicyType that
allows you to configure details of the RM
source

destinationPolicy

An element of type DestinationPolicyType that
allows you to configure details of the RM
destination

Example

Foran example, see Maximum unacknowledged messages

threshold.

Configuring Standard WS-RM Policy Attributes

Youcanconfigure standard WS-RM policy attributes in one of
the following ways:

¢ RMAssertion in rmManager Spring bean

e Policy within a feature

e WSDL file

e External attachment

122 Artix Deployment Guide: Java

http://cxf.apache.org/ws/rm/manager

WS-Policy RMAssertion Children

Table 15 shows the elements defined in the
http://schemas.xmlsoap.org/ws/2005/02/rm/policy namespace:

Table 15. Children of the WS-Policy RMAssertion Element

Name

Description

InactivityTimeout

Specifies the amount of time that must pass
without receiving a message before an endpoint
can consider an RM sequence to have been
terminated due to inactivity.

BaseRetransmissionlinterval

Setsthe interval within which an
acknowledgement must be received by the RM
Source fora given message. If an
acknowledgement is not received within the
time set by the BaseRetransmissioninterval, the
RM Source will retransmit the message.

Exponential Backoff

Indicates the retransmissioninterval will be
adjusted using the commonly known exponential
backoff algorithm (Tanenbaum).

Formore information, see Computer
Networks, Andrew S. Tanenbaum, Prentice Hall
PTR, 2003.

Acknowledgementlnterval

In WS-RM, acknowledgements are sent onreturn
messages or sent stand-alone. Ifareturn
message is not available to send an
acknowledgement, an RM Destination canwait
for up tothe acknowledgement interval before
sending a stand-alone acknowledgement. If
there are no unacknowledged messages, the RM
Destination canchoose not to send an
acknowledgement.

More detailed reference information

Formore detailed reference information, including descriptions
ofeach element’s sub-elements and attributes, please refer to
http:// schemas.xmlsoap.org/ws/2005/02/rm/wsrm-

policy.xsd.

RMAssertion in rmManager Spring bean

Youcanconfigure standard WS-RM policy attributes by adding
an RMAssertion within an Artix rmManager Spring bean. This is the
best approach if you want to keep all of your WS-RM
configuration in the same configuration file; that s, if you want
to configure Artix-specific attributes and standard WS-RM policy
attributes in the same file.

Artix Deployment Guide: Java 123

http://schemas.xmlsoap.org/ws/2005/02/rm/policy
http://schemas.xmlsoap.org/ws/2005/02/rm/wsrm-policy.xsd
http://schemas.xmlsoap.org/ws/2005/02/rm/wsrm-policy.xsd
http://schemas.xmlsoap.org/ws/2005/02/rm/wsrm-policy.xsd

Forexample, the configuration in Example 37 shows:

e A standard WS-RM policy attribute,
BaseRetransmissionlinterval, configured using an RMAssertion
within an rmManager Spring bean.

e AnArtix-specific RM attribute, intraMessageThreshold,
configured inthe same configuration file.

Example 37. Configuring WS-RM Attributes Using an
RMAssertion in an rmManager Spring Bean

<beans xmlns:wsrm-pol icy=""http://schemas.xmlsoap .org/ws/2005/02/rm/policy"
xmlns:wsrm-mgr=""http: //cxf.apache .org/ws/rm/manager""
..
<wsrm-mgr :rmManager id="'org.apache.cxf.ws.rm.RMManager">
<wsrm-policy:RMAssertion>
<wsrm-policy:BaseRetransmissioninterval Milliseconds="4000"/>
</wsrm-policy :RMAssertion>
<wsrm-mgr:destinationPolicy>
<wsrm-mgr:acksPolicy intraMessageThreshold="0" />
</wsrm-mgr: destinationPol icy>
</wsrm-mgr: rmManager>
</beans>

Policy within afeature

You can configure standard WS-RM policy attributes within
features, asshown in Example 38.

Example 38. Configuring WS-RM Attributes as a Policy
within a Feature

<xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmIns:xsi="http://www .w3.0rg/2001/XMLSchema-instance"
xmlIns:wsa="http://cxf.apache.org/ws/addressing"’
xmIns:wsp="http://ww .w3.0rg/2006/07 /ws-policy""
xmlIns:wsu=""http://docs.oasis-open.org/wss/2004/01/o0asis-200401-wss-
wssecurity- utility-1.0.xsd"
xmlIns: jaxws="http://cxf.apache.org/jaxws" Xxsi:schemalLocation=""
http://www.w3.0rg/2006/07/ws-policy http://www.w3.0rg/2006/07/ws-policy.xsd
http://cxf.apache .org/ws/addressing
http://cxf._apache .org/schema/ws/addressing.xsd http://cxf.apache.org/jaxws
http://cxf.apache .org/schemas/jaxws. xsd
http://www.springframework .org/schemas/beans http://www.springframe
work.org/schema/beans/spring-beans.xsd">
<jaxws:endpoint name="{http://cxf.apache.org/greeter_control}GreeterPort
created FromAPI="true">
<jaxws:features>
<wsp:Policy>
<wsrm:RMAssertion xmlns:wsrm=
“http://schemas.xmlsoap.org/ws/2005/02/rm/policy'>
<wsrm:AcknowledgementInterval Milliseconds="200" />
</wsrm:RMAssertion>
<wsam:Addressing xmlns:wsam=
“"http://www.w3.0rg/2007/02/addressing/metadata’>
<wsp:Policy>
<wsam :NonAnonymousResponses/>
</wsp:Policy>

124 Artix Deployment Guide: Java

http://schemas.xmlsoap.org/ws/2005/02/rm/policy
http://cxf.apache.org/ws/rm/manager

</wsam:Addressing>
</wsp:Policy>
</jaxws: features>
</jaxws:endpoint>
</beans>

WSDL file

If you use the WS-Policy framework to enable WS-RM, you can
configure standard WS-RM policy attributesin your WSDL file.
This is a good approach if you want your service to interoperate
and use WS-RM seamlessly with consumers deployed toother
policy-aware Web services stacks.

Foran example, see WS-Policy framework—implicitly adding
interceptors Where the base retransmission interval is configured
in the WSDL file.

External attachment

Youcan configure standard WS-RM policy attributes inanexternal
attachment file. This is a good approach if you cannot, or do not
want to, change your WSDL file.

Example 39 shows an external attachment that enables both
WS-Aand WS-RM (base retransmission interval of 30 seconds)
foraspecific EPR.

Example 39. Configuring WS-RM in an External Attachment

<attachments xmlns:wsp="http://www.w3.0rg/2006/07/ws-policy" xmlns:wsa=
“http: //ww .w3.0rg/2005/08/addressing'>
<wsp :Pol i cyAttachment>
<wsp :Appl iesTo>
<wsa:EndpointReference>
<wsa:Address>http://1ocal host: 9020/ SoapContext/GreeterPort
</wsa:Address>
</wsa: EndpointReference>
</wsp:AppliesTo>
<wsp :Policy>
<wsam: Addressing
xmlns:wsam="http://ww.w3 .0org/2007/02/address ing/metadata’>
<wsp:Policy/>
</wsam:Addressing>
<wsrmp:RMAssertion
xmlns :wsrmp=""http://schemas . xml soap -org/ws/2005/02/rm/pol icy"">
<wsrmp :BaseRetransmissionlnterval Milliseconds="30000"/>
</wsrmp:RMAssertion>
</wsp:Pol icy>
</wsp: Pol icyAttachment>
</attachments>/

Artix Deployment Guide: Java 125

http://www.w3.org/2006/07/ws-policy
http://www.w3.org/2005/08/addressing
http://www.w3.org/2007/02/addressing/metadata
http://schemas.xmlsoap.org/ws/2005/02/rm/policy

WS-RM Configuration Use Cases

This subsection focuses on configuring WS-RM attributes from a
use case point of view. Where an attribute is a standard WS-RM
policy attribute, defined in the
http://schemas.xmlsoap.org/ws/2005/02/rm/policy namespace,
only the example of setting it in an RMAssertionwithin an
rmManager Spring bean is shown. For details of how to set such
attributes as a policy within a feature; ina WSDL file, orin an
external attachment, see Configuring Standard WS-RM Policy
Attributes.

The following use cases are covered:

e Base retransmission interval

e Exponential backoff for retransmission

¢ Acknowledgement interval

e Maximum unacknowledged messages threshold
¢ Maximum length of an RM sequence

e Message delivery assurance policies

Base retransmission interval

The BaseRetransmissionInterval element specifies the interval at
which an RM sourceretransmits a message that has not yet
been acknowledged. It is defined in the
http://schemas.xmlsoap.org/ws/2005/02/rm/wsrm-policy.xsd
schema file. The default value is 3000 milliseconds.

Example 40 shows how toset the WS-RM base retransmission
interval.

Example 40. Setting the WS-RM Base Retransmission
Interval

<beans xmlns:wsrm-pol icy=""http: //schemas.xmlsoap.org/ws/2005/02/rm/policy
..

<wsrm-mgr:rmManager id="org.apache.cxf.ws.rm.RMManager'>
<wsrm-po licy:RMAssertion>
<wsrm-po licy:BaseRetransmissioninterval Milliseconds="4000"/>
</wsrm-policy:RMAssertion>
</wsrm-mgr: rmManager>
</beans>

126 Artix Deployment Guide: Java

http://schemas.xmlsoap.org/ws/2005/02/rm/policy
http://schemas.xmlsoap.org/ws/2005/02/rm/wsrm-policy.xsd
http://schemas.xmlsoap.org/ws/2005/02/rm/policy

Exponential backoff for retransmission

The ExponentialBackoffelement determines if successive
retransmission attempts for an unacknowledged message are
performed at exponential intervals.

The presence of the Exponential Backoff element enables this
feature. An exponential backoffratio of 2is used by default.

Example 41 on page 124 shows how to set the WS-RM
exponential backoff for retransmission.

Example 41. Setting the WS-RM Exponential Backoff
Property

<beans xmlns:wsrm-pol icy="http://schemas.xmlsoap.org/ws/2005/02/rm/pol icy
-

<wsrm-mgr:rmManager id="‘org.apache.cxf.ws.rm.RMManager''>
<wsrm-policy: RMAssertion>
<wsrm-po licy: ExponentialBackoff="4"/>
</wsrm-policy :RMAssertion>
</wsrm-mgr: rmManager>
</beans>

Acknowledgement interval

The Acknowledgementlnterval element specifies the interval at
which the WS-RM destination sends asynchronous
acknowledgements. These are in addition tothe synchronous
acknowledgements that it sends on receipt of an incoming
message. The default asynchronous acknowledgement interval is
0 milliseconds. This means that if the Acknowledgementinterval is
not configured to aspecific value, acknowledgements are sent
immediately (that is, at the first available opportunity).

Asynchronous acknowledgements are sent by the RM
destination only if both of the following conditions are met:

e The RM destination is using a non-anonymous wsrm:acksTo
endpoint.

e The opportunity to piggyback an acknowledgement on a
response message does not occurbefore the expiry of the
acknowledgement interval.

Example 42 shows how to set the WS-RM acknowledgement
interval.

Example 42. Setting the WS-RM Acknowledgement Interval

<beans xmlns:wsrm-pol icy="http://schemas.xmlsoap.org/ws/2005/02/rm/pol icy

-

<wsrm-mgr:rmManager id="'org.apache.cxf.ws.rm.RMManager'>
<wsrm-policy: RMAssertion>

<wsrm-po licy:AcknowledgementiInterval Milliseconds="2000"/>

</wsrm-policy:RMAssertion>

</wsrm-mgr: rmManager>

</beans>

Artix Deployment Guide: Java 127

http://schemas.xmlsoap.org/ws/2005/02/rm/policy
http://schemas.xmlsoap.org/ws/2005/02/rm/policy

Maximum unacknowledged messages threshold

The maxUnacknowl edged attribute sets the maximum number of
unacknowledged messages that canaccrue persequence before
the sequence is terminated.

Example 43 on page 125 shows how to set the WS-RM
maximum unacknowledged messages threshold.

Example 43. Setting the WS-RM Maximum Unacknowledged
Message Threshold

<beans xmlIns:wsrm-mgr=""http://cxf.apache .org/ws/rm/manager
..
<wsrm-mgr:rel iableMessaging>
<wsrm-mgr :sourcePol icy>
<wsrm-mgr:sequenceTerminationPolicy maxUnacknowledged="20" />
</wsrm-mgr: sourcePolicy>
</wsrm-mgr: re liabl eMessaging>
</beans>

Maximum length of an RM sequence

The maxLength attribute sets the maximum length of a WS-RM
sequence. The default value is 0, which means that the length
of a WS-RM sequence is unbound.

When this attribute is set, the RM endpoint creates a new RM
sequencewhen thelimit is reached, and after receiving all of the
acknowledgements for the previously sent messages. The new
message is sent using a new sequence.

Example 44 shows how to set the maximum length of an RM
sequence.

Example 44. Setting the Maximum Length of a WS-RM
Message Sequence

<beans xmIns:wsrm-mgr="http: //cxf .apache .org/ws/rm/manager
>
<wsrm-mgr :reliableMessaging>
<wsrm-mgr:sourcePolicy>
<wsrm-mgr: sequenceTerminationPol icy maxLength=""100" />
</wsrm-mgr :sourcePol icy>
</wsrm-mgr:rel iableMessaging>
</beans>

Message delivery assurance policies

Youcanconfigure the RM destination to use the following
delivery assurance policies:

e AtMostonce— The RM destination delivers the messages tothe
application destination only once. If a message is delivered
more thanonce an error is raised. It is possible that some
messages in a sequence may not be delivered.

e AtLeastOnce— The RM destination delivers the messages to
the application destination at least once. Every message

128 Artix Deployment Guide: Java

http://cxf.apache.org/ws/rm/manager
http://cxf.apache.org/ws/rm/manager

sent will be delivered or an error will be raised. Some
messages might be delivered more than once.

e InOrder — The RM destination delivers the messages to the
application destination in the order that they are sent. This
delivery assurance canbe combined with the AtMostOnceor
AtLeastOnceassurances.

Example 45 shows how to set the WS-RM message delivery
assurance.

Example 45. Setting the WS-RM Message Delivery
Assurance Policy

<beans xmlns:wsrm-mgr="http://cxf.apache .org/ws/rm/manager
—

<wsrm-mgr:rel iableMessaging>
<wsrm-mgr:del iveryAssurance>
<wsrm-mgr:AtLeastOnce />
</wsrm-mgr:de liveryAssurance>
</wsrm-mgr: re liableMessaging>
</beans>

Configuring WS-RM Persistence

The Artix WS-RM features already described in this chapter
provide reliability for casessuchas network failures. WS-RM
persistence provides reliability across other types of failure
such as an RM source or a RM destination crash.

WS-RM persistence involves storing the state of the various RM
endpoints in persistent storage. This enables the endpoints to
continue sending and receiving messages when they are
reincarnated.

Artix enables WS-RM persistence in a configuration file. The
default WS-RM persistence store is JDBC-based. For
convenience, Artixincludes Derby for out-of-the-box
deployment. In addition, the persistent storeis also exposed
using a JavaAPl. Toimplement your own persistence
mechanism, you canimplement one using this API with your
preferred DB.

IMPORTANT: WS-RM persistence is supported for oneway calls only,
and it is disabled by default.

How it works
Artix WS-RM persistence works as follows:

e Atthe RM source endpoint, an outgoing message is

persisted before transmission. Itis evictedfrom the
persistent store afterthe acknowledgement is received.

Artix Deployment Guide: Java 129

http://cxf.apache.org/ws/rm/manager

o Afterarecovery from crash, it recovers the persisted
messages and retransmits until all the messages have been
acknowledged. At that point, the RM sequence is closed.

e At theRM destination endpoint, anincoming message is
persisted, and upon a successfulstore, the
acknowledgement is sent. When a message is successfully
dispatched, it is evicted from the persistent store.

e Afterarecovery from acrash, it recovers the persisted
messages and dispatches them. It also brings the RM
sequence to a state where new messages are accepted,
acknowledged, and delivered.

Enabling WS-persistence

Toenable WS-RM persistence, you must specify the object
implementing the persistent store for WS-RM. Youcan develop
your own or you can use the JDBC based store that comes with
Artix.

The configuration shown below enables the JDBC-based store
that comes with Artix:

<bean id="RMTxStore"

class=""org.apache.cxf.ws. rm. persistence. jdbc.RMTxStore' />

<wsrm-mgr:rmManager id="'org.apache.cxf.ws.rm.RMManager'>
<property name="store" ref="RMTxStore'/>

</wsrm-mgr: rmManager>

Configuring WS-persistence

The JDBC-based store that comes with Artix supports the
properties shown in Table 16.

Table 16. JDBC Store Properties

Attribute Name Type |Default Setting

driverClassName String |org.apache.derby . jdbc.EmbeddedDriver

userName String |null
passWord String |null
url String |jdbc:derby:mdb;create=true

The configurationshownin Example 46 enables the JDBC-based
store that comes with Artix, while setting the driverClassName
and url to non-default values.

Example 46. Configuring the JDBC Store for WS-RM
Persistence

<bean id="RMTxStore" class="org.apache.cxf.ws.rm.persistence.jdbc.RMTxStore">
<property name="driverClassName" value="com.acme.jdbc.Driver'/>

<property name="url" value="jdbc:acme: rmdb;create=true'/>
</bean>

130 Artix Deployment Guide: Java

Enabling High
Availability

This chapter explains how to enable and configure high
availability (HA) in the Artix runtime.

Introduction to High Availability

Scalable and reliable applications require high availability to
avoid any single point of failure in a distributed system. Youcan
protect your system from single points of failure using
replicated services.

Areplicated service is comprised of multiple instances, or
replicas, of the same service. Togetherthese act asasingle
logical service. Clients invoke requests on the replicated
service, and Artix delivers the requests toone of the member
replicas. The routing toa replica is transparent to the client.

HA with static failover

Artix supports HA with static failoverin which replica details are
encoded in the service WSDL file. The WSDL file contains
multiple ports, and possibly multiple hosts, for the same
service. The number of replicas in the cluster remains static as
long as the WSDL file remains unchanged. Changing the cluster
size involves editing the WSDL file.

HA with dynamic failover

Artix also supports HA with dynamic failover. HA with dynamic
failover is one in which number of replicas in a cluster can be
dynamically increased and decreasedsimply by startingand
stopping instances of the serverapplication. The Artix locator
service is central to this feature.

The Artix locatorservice provides a lightweight mechanism for
balancing workloads among a group of services. When several
services with the same service name register with the Artix
locator service, it automatically creates alist of references to
each instance of this service. The locatorhands out references
toclientsusing around-robin or random algorithm. This process
is automatic and invisible to both clients and services.

The discovery mechanism can also be used in failover scenarios.
The Artix locatorservice only hands out references for service
replicas that it believes to be active, on the basis of the

dynamic state of the cluster as maintained by the peer manager
instance collocated with the Artixlocatorservice. Mutual heart-
beating betweenthe peer manager instances associated withthe
Artix locator service and service replicas, allow each todetect
the availability of the other.

Artix Deployment Guide: Java 131

Dynamic failover also has the advantage that cluster membership
is not fixed. It is easy to grow or shrink the cluster size by

simply starting and stopping replica instances. Newly started
replicas transparently register with the Artix locatorservice, and
their references are immediately eligible for discovery by new
clients. Similarly, gracefully shutdown services transparently
deregister themselves with the Artix locator service.

Sample applications

The examples shownin this chapterare takenfromthe HA sample
applications that are located in the /java/samples/hadirectory of
your Artix installation.

Forinformation on how to run these samples applications, see the
README. txt files on the sample directories.

More information about the locator service

For more information on the Artix locator service, including
how to configure it, see the Artix Locator Guide.

Enabling HA with Static Failover
Toenable HA with static failover, you must:
e Encode replica details in your service WSDL file
e Add the clustering feature to your client configuration

Encode replica details in your service WSDL file

Youmust encode the details of the replicas in your cluster in
your service WSDL file. Example 47 shows a WSDL file extract
that defines a service cluster of three replicas.

Example 47. Enabling HA with Static Failover—WSDL File

O<wsdl:service name="ClusteredService'>
2] <wsdl:port binding="tns:Greeter_SOAPBinding" name="Replical">

<soap:address location="http://localhost:9001/SoapContext/Replical"/>
</wsdl :port>

® <wsdl:port binding="tns:Greeter_SOAPBinding" name="Replica2">
<soap:address location="http://localhost:9002/SoapContext/Replica2"/>
</wsdl :port>
(4] <wsdl:port binding="tns:Greeter_SOAPBinding" name="Replica3">

<soap:address location="http://localhost:9003/SoapContext/Replica3"/>
</wsdl :port>

</wsdl :service>

The WSDL extract shown in Example 47 canbe explained as
follows:

132 Artix Deployment Guide: Java

0O Defines aservice, ClusterService, whichis exposed on three

ports:
e Replical
e Replica2

e Replica3

® Defines Replical to expose the ClusterServiceas a SOAP over
HTTP endpoint on port 9001.

® Defines Replica2 to expose the ClusterServiceas a SOAP over
HTTP endpoint on port 9002.

® Defines Replica3toexpose theClusterServiceasaSOAP over
HTTP endpoint on port 9003.

Add the clustering feature to your client configuration

In your client configuration file, add the clustering feature as
shown in Example 48.

Example 48. Enabling HA with Static Failover—Client
Configuration

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.spr ingframework.org/schema/beans
xmlns:xsi="http://ww .w3.org/2001/XMLSchema-instance"
xmlns: jaxws=""http: //cxf_apache .org/ jaxws""
xmlns: clustering="http: //cxf_.apache .org/clustering*
Xxsi :schemalocation="http: //cxf_.apache. org/jaxws
http://cxf.apache.org/schemas/ jaxws -xsd
http://ww. springframework.org/schema/beans
http://ww. springframework.org/schema/beans/spring-beans.xsd">

<jaxws:client name="{http://apache.org/hello_world_soap http}Replical"
createdFromAP I1=""true"">
<jaxws:features>
<clustering:failover/>
</jaxws: features>
</jaxws:client>

<jaxws:client name="{http://apache.org/hello_world_soap http}Replica2"
createdFromAP I1=""true">
<jaxws :features>
<clustering:failover/>
</jaxws: features>
</jaxws:client>

<jaxws:client name="{http://apache.org/hello _world_soap http}Replica3"
createdFromAP I=""true'>
<jaxws:features>
<clustering:failover/>
</jaxws: features>
</jaxws:client>

</beans>

Artix Deployment Guide: Java 133

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://cxf.apache.org/jaxws
http://cxf.apache.org/clustering
http://cxf.apache.org/jaxws
http://cxf.apache.org/schemas/jaxws.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://apache.org/hello_world_soap_http
http://apache.org/hello_world_soap_http
http://apache.org/hello_world_soap_http

Configuring HA with Static Failover

By default, HA with static failover uses a sequential strategy
when selecting areplica service if the original service with
which a client is communicating becomes unavailable or fails.
The sequential strategy selectsareplicaservice in the same
sequential order every time itis used. Selection is determined
by Artix’s internal service model and results in a deterministic
failover pattern.

Configuring arandom strategy

Youcanconfigure HA with static failover to use a random
strategy instead of the sequential strategy whenselectinga
replica. Therandom strategy selects areplica service at random
eachtime aservice becomes unavailable or fails. The choice of
failover target from the surviving members in a clusteris entirely
random.

Toconfigure the random strategy, adding the configuration
shown in Example 49 to your client configuration file:

Example 49. Configuring a Random Strategy for Static
Failover

<beans ...>
(1] <bean id="Random"™ class="org.apache.cxf.clustering.RandomStrategy"'/>

<jaxws:client name="{http://apache.org/hello_world_soap http}Replica3"
createdFromAP I=""true">

<jaxws:features>
<clustering:failover>

2] <clustering:strategy>
<ref bean=""Random"/>
</clustering: strategy>
</clustering: fai lover>
</jaxws: features>
</jaxws:client>
</beans>

The configuration shown in Example 49 can be explained as
follows:

® Defines aRandombean and implementation class that
implements the random strategy.

® Specifies that the random strategy be used when selecting a
replica.

134 Artix Deployment Guide: Java

http://apache.org/hello_world_soap_http

Enabling HA with Dynamic Failover
Toenable HA with dynamic failover, you do the following:
e Configure your service to register with the Artix locator
e Configure your client to use locator meditated failover

e Ensure the Artix locator is running

Configure your service to register with the Artix locator

To configure your service toregister with the Artix locator
service add configuration shown in Example 50 toyourserver
configuration file.

Example 50. Configuring Your Service to Register with the
Locator
<beans xmIns="http://www.springframework.org/schema/beans"

xmlns: locatorEndpo int=""http://com.iona.soa/discovery/locator/endpoint"
..

<I-- Configuration for Locator runtime support -->

(1] <bean id="LocatorSupport"
class=""com.iona.soa.discovery.locator.rt.cxf.LocatorSupport'>
<property name="bus" ref="cxf"/>
<property name="contract'’>
<value>http://localhost:9000/services/LocatorService</value>
</property>
</bean>

<jaxws:endpoint name="‘{http://apache .org/hello world _soap http}SoapPort
createdFromAP I="true">

2] <jaxws:features>
<locatorEndpoint:registerOnPublish monitorLiveness="true"
heartbeatinterval="10001" />

</jaxws: features>
</jaxws:endpoint>

</beans>
The configuration shown in Example 50 is taken from the HA
sample and canbe explained as follows:

® Enables theservice to use the Artix locator service.

® TheregisteronPublishfeature enables the published endpoint
to register with the Artix locatorservice.

Artix Deployment Guide: Java 135

http://www.springframework.org/schema/beans
http://com.iona.soa/discovery/locator/endpoint
http://apache.org/hello_world_soap_http

Configure your client to use locator meditated failover

Toconfigure your client to use locatormediated failover add the
configuration shown in Example 51 to your client configuration
file.

Example 51. Configuring your Client to Use Locator
Mediated Failover
<?xml version="1.0" encoding="UTF-8"?>

<beans xmIns="http://www.springframework.org/schema/beans"
xmlns: clustering="http://cxf_.apache .org/clustering™.. .>

(1] <bean id="LocatorSupport"
class=""com. iona.soa.discovery. locator. rt.cxf. LocatorSupport'>

<property name="bus" ref="cxf'/>

<property name="contract'>

<value>. /wsdl/locator .wsdI</value>
</property>
</bean>

2] <bean id="LocatorMediated"

class=""com. iona.soa.fai lover . locator.rt. cxf._LocatorMediatedStrategy' >
<property name="bus" ref="cxf''/>

</bean>

<jaxws:client name="{http://apache.org/hello_world_soap_ http}SoapPort"
createdFromAP I=""true">
<jaxws:features>
<clustering:failover>
<clustering:strategy>
<ref bean="LocatorMediated"/>
</clustering: strategy>
</clustering:failover>
</jaxws: features>
</jaxws:client>

</beans>
The configuration shown in Example 51 is from the HA sample
and canbe explained as follows:

® Enables the client touse the Artix locator service to find
services.

® Enables failover support using the Artix locatorservice.

Ensure the Artix locator isrunning

Ensure that the Artix locator service is running. Tostart the Artix
locator service, run the following command:

ArtixInstal IDir/java/bin/start_locator .bat

For more information, see the Artix Locator Guide.

136 Artix Deployment Guide: Java

http://www.springframework.org/schema/beans
http://cxf.apache.org/clustering
http://apache.org/hello_world_soap_http

Configuring HA with Dynamic Failover

Youcan change the default behavior of HA with dynamic
failover by configuring the following aspects of the feature:

e Enabling Artix locator to check the state of a registered
service

e Setting the heartbeat interval
e Initial delay in locator response
¢ Maximum number of client retries

e Delay between client retry attemptsSequential backoff in
client retry attempts

Enabling Artix locator to check the state of aregistered
service

The monitorLiveness attribute enables the Artix locatorservice to
check, atregularintervals, whethera registered serviceis still
live or not. Itis disabled by default.

Toenable the Artix locatorservice to monitor the state ofa
registered service, add the following toyour server
configuration file:

<locatorEndpoint: registerOnPubl ish monitorLiveness="true'>

Setting the heartbeat interval

The heartbeatlnterval attribute specifies the frequency, in
milliseconds, at which the Artix locator service checksthe state
of aregistered service. It depends on the monitorLiveness
attribute being set to true. The default value is 10000
milliseconds (10 seconds).

Tochange the default heartbeat interval, add the following to
your server configuration file:

<locatorEndpoint:registerOnPublish monitorLiveness="true"
heartbeatlnterval="10001"/>

Initial delay in locator response

The initialDelay attribute specifies an initial delay, in
milliseconds, in the Artix locatorservice’s response tothe
client’s request for an EPR. The default value is 0.

Tochange theinitial delay in the Artix locator’s response tothe
client’srequest for an EPR, add the following toyour client
configuration file:

<bean id="LocatorMediated" class="com.iona.soa.failover.
locator.rt.cxf.LocatorMediatedStrategy''>

<property name="initialDelay" value="500"/>
</bean>

Artix Deployment Guide: Java 137

Maximum number of client retries

The maxRetries attribute specifies the maximum number of times
that the client retries to connect to a service. The default value
is 3.

Tochange the number of times that the client retries toconnect
toaservice, add the following toyour client configuration file:

<bean id="LocatorMediated" class="com.iona.soa.failover.
locat or.rt.cxf.LocatorMediatedStrategy'>

<property name="maxRetries" value="5"/>
</bean>

Delay between client retry attempts

The intraRetryDelay attribute specifies the delay, in milliseconds,
between the client’s attempts toretry connecting tothe
service. The default value is 5000 milliseconds.

Tochange the delay between a client’s attempts toretry
connectingto a service, add the following toyour client
configuration file:

<bean id="LocatorMediated" class=""com.iona.soa.failover.
locator .rt.cxf.LocatorMediatedStrategy'>

<property name="intraRetryDelay" value="4000"/>
</bean>

Sequential backoff in client retry attempts

The backoffattribute specifies an exponential backoffin the
client’s retry attempts. The default value is 1.0, which
essentially does not exponentially increase the amount of time
betweena client’s retry attempts.

To change the exponential backoff, add the following toyour
client configuration file:

<bean id=""LocatorMediated" class="‘com.iona.soa.failover.
locator .rt.cxf.LocatorMediatedStrategy'>

<property name="backoff" value=""1.2"/>
</bean>

138 Artix Deployment Guide: Java

Publishing WSDL
Contracts

This chapter describeshow to publish WSDL files that correspond
to specific Web services. This enables consumers to access a
WSDL file and invoke on a service.

Artix WSDL Publishing Service

The Artix WSDL publishing service enables Artix processes to
publish WSDL files for specific Web services. Published WSDL
files can be downloaded by consumers or viewed in a Web
browser. They can also be downloaded by Webservice
processes created by othervendor tools.

The WSDL publishing service enables Artix applications to be
used in various deployment models—for example, J2EE—
without the need tospecify file system locations. Itis the
recommended way to publish WSDL files for Artix services.

The WSDL publishing service is implemented by the

com. iona.soa.wsdlpublish.rt.WSDLPublish class. This class can be
loaded by any Artix process that hosts a Web service endpoint.
This includes server applications, Artix routing applications, and
applications that expose a callback object.

Use with endpoint references

It is recommended that you use the WSDL publishing service for
any applications that generate and export references. Touse
references, the consumer must have accesstothe WSDL file
referred toby the reference. The simplest way to accomplish
this is to use the WSDL publishing service.

Figure 5on page 143 shows an example of creatingreferences
withthe WSDL publishing service. The WSDL publishing service
automatically opens aport, from which consumers can
download a copy of the server’s dynamically updated WSDL file.
Generated references have their WSDL location set to the
following URL:

http : //Hostname - WSDLPubl ishPort/QueryString

Hostnameis the server host, WSDLPublishPortis a TCP/IP port used
to serve up the WSDL file, and QueryString is a string that requests
a particular WSDL file (see Querying the WSDL Publishing
Service). If aclient accesses the WSDL location URL, the server
converts the WSDL model to XML on the fly and returns the
WSDL contract ina HTTP message.

Artix Deployment Guide: Java 139

Figure 5. Creating References with the WSDL Publishing

Service
Artix Client Artix Server
e) e N\
[reterenee] 17
WSDL P
Publish Port :
- O — =

WSDL Publishing

Service

Multiple transports

The WSDL publishing service makes the WSDL file available
through an HTTP URL. However, the Web service describedin the

WSDL file canuse a transport otherthan HTTPR.

Configuring the WSDL Publishing Service
To configure the WSDL publishing service in the Artix Java

runtime you must create anArtix Java configuration file toset
the configuration options that are described in this section.

NOTE: Ifyouwanttorun the WSDL publishing service in a servlet
container, referto Configuring for Use in a Serviet Container.

140 Artix Deployment Guide: Java

Configuration file

Example 52 shows an example of such a configuration file. It is
written using plain Spring beans. For more detailed information
on eachof the configuration options, see WSDL publishing
service configuration options.

Example 52. Configuring the WSDL Publishing Service

O<beans xmlns="http://www.springframework .org/schema/beans"
xmlns:xsi="http: //ww .w3.0org/2001/XMLSchema-instance""

xsi :schemalLocation="http: //ww .springframework.org/schema/
beans http://ww.springframework.org/schema/beans/ spring-beans-2.0.xsd"">

2] <bean id="WSDLPubl ishManager"*
class=""com.iona.soa.wsdlpublish. rt WSDLPub lishManager">
<property name="enabled" value="true'/>
<property name="bus"™ ref="cxf'/>
<property name="WSDLPublish" ref="WSDLPublish"/>
</bean>

<bean i1d="WSDLPublish™ class=""com.iona.soa.wsdlpublish.rt.WSDLPublish'>

(3]

(4] <property name="publishPort" value='27220"/>

(5] <property name="publishHostname" value="myhost"/>
(6] <property name="catalogFacility" value="true'/>
(7] <property name="‘processWSDL" value="standard"/>
(6]

<property name="removeSchemas" ref="rschemas'/>
</bean>

© <bean i1d="rschemas" class="'com. iona.cxf.wsdlpublish._.Valuelist"
value="http://cxf.apache.org/ http://schemas. iona.com/*' />

</beans>

The configuration shown in Example 52 can be explained as
follows:

©® Includesan opening Spring beanselement thatdeclares the

namespaces and schema files for the child elements that
are encapsulated by the beanselement.

® Specifies the com. iona.soa.wsdl publ ish. rt.WSDLPubl ishManager

class, which implements the WSDL publishing service
manager. The WSDL publishing service manager enables the
WSDL publishing service.

® Specifies the com.iona.soa.wsdlpublish. rt.WSDLPublish class,
which implements the WSDL publishing service.

® The publishPort property specifies the TCP/IP port on which
the WSDL files are published.

® The publishHostname property specifies the hostname on
which the WSDL publishing service is available.

O ThecatalogFacility property specifies that the catalogfacility
is enabled.

Artix Deployment Guide: Java 141

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/
http://www.springframework.org/schema/beans/
http://schemas.iona.com/

© TheprocessWSDL property specifies the type of processing
thatisdone on the WSDL file before the WSDL file is

published.

® TheremoveSchemas property specifiesa list of the target
namespaces of the extensions that are removed when the
processWSDL property is set to standard. It this example it
references rschemas, which is configured in the next line of

code.

© Configures arschemabean, which specifies the

com. iona.cxf.wsdlpublish.Valuelist class. The

com. iona.cxf.wsdlpublish.valuelistclass has a value attribute,
which you can use tolist the schemas that you want
removed from the WSDL file. In this case,
http://cxf.apache.org/and http://schemas.iona.com/ are

removed.

WSDL publishing service configuration options

Table 17 describes each of the WSDL publishing service
configuration options.

Table 17. WSDL Publishing Service Configuration Options

Configuration
Option

Description

publishPort

An integer that specifies the TCP/IP port that
WSDL files are published on. If the port is in use,
the server process will start and an error message
indicating the address is already in use will be
raised. The default value is 27220.

publishHostname

A string that specifies the hostname on which the
WSDL publishing service is available. The default
value is localhost.

catalogFacil ity

A boolean that whenset to true enables the catalog
facility, and whenset to falsedisables the catalog
facility. A catalog facility provides anotherway to
access WSDL and XML Schema files (as opposed to
on a file system). The default value is true.

142 Artix Deployment Guide: Java

http://cxf.apache.org/
http://schemas.iona.com/

Configuration Description
Option

processWSDL A string that specifies the type of processing that is
done on the WSDL file before the WSDL file is
published.

The processWSDL option has three possible values:
< none—no processing of the WSDL file takes

place; that is, the WSDL document is
published as is.

- artix—the WSDL file is processed sothat relative
paths of imported/included schemas are
modified, and the imported/included schemas
are published on the modified path.

» standard—same as artix, but non-standard
extensions are also removed.

The default setting is artix.

removeSchemas A value list that removes the target namespaces
that are listed when the processWSDL option is
set tostandard. The default settingis
http://cxf.apache.org/and
http://schemas.iona.conv.

Configuring for Use in a Servlet Container

You can run the Artix WSDL publishing service in a servlet
container, such as Tomcat. This section assumes that you
already know how to deploy and run Artix applications in a

servlet container. If not, please refer to Deploying toa Servlet
Container.

Configuration steps

To configure the Artix WSDL publishing service torun in a
servlet container, suchas Tomcat, complete the following steps:

e Create a spring.xml configuration file
e Configure a listener class in the web.xml file

Create a spring.xml configuration file

Create a spring.xml configuration file as shown in Example 53 and
include it in the WweB-INFdirectory of your application WAR file.

Artix Deployment Guide: Java 143

http://cxf.apache.org/
http://schemas.iona.com/

Example 53. Configuring Artix WSDL Publish Service for
Deployment to a Servlet Container

<beansxmIns="http: //www .springframework.org/schema/beans"
xmlns:xsi="http://ww .w3.0org/2001/XMLSchema-instance"
xmlns: jaxws="http: //cxf.apache .org/ jaxws" xsi :schemalLocation=""
http://ww. springframework.org/schema/beans http://ww. springframe
work.org/schema/beans/spring-beans. xsd
http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws .xsd"">

<import resource="classpath:META- INF/cxf/cxf.xml"/>

<import resource="classpath:META- INF/cxf/cxf-extension-soap.xml"/>
<import resource="classpath:META- INF/cxf/cxf-extension-http-binding.xml"/>
<import resource="classpath:META- INF/cxf/cxf-servlet.xml"/>

<bean id="com.iona.soa.wsdlpublish.rt.WSDLPublishManager"
class="'com. iona.soa.wsdlpub lish.rt_WSDLPublishManager'>
<property name="bus" ref="cxf'/>
<property name="WSDLPublish" ref="WSDLPublish"/>
<property name="enabled" value="true"/>
</bean>

<bean id="cxf'" class="org.apache.cxf_bus.CXFBuslmpl"/>

<bean id="WSDLPublish" class="com.iona.soa.wsdlpublish.rt.WSDLPublish">
<property name="deployedInContainer"” value="‘true'/>

</bean>

</beans>

144 Artix Deployment Guide: Java

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://cxf.apache.org/jaxws
http://www.springframework.org/schema/beans
http://cxf.apache.org/jaxws
http://cxf.apache.org/schemas/jaxws.xsd

Configure a listener class in the web.xml file

Add the configuration shownin Example 54 toyour application’s
web . xml file. Include the web.xml file in the WEB-INFdirectory of
your application WAR file.

Example 54. Configuring a Listener Class
<web-app>

<context-param>
<param-name>contextConfiglLocat ion</param-name>
<param-value>WEB-INF/spring.xml</param-value>

</context-param>

<listener>
<listener-class> org.springframework.web.context.ContextlLoaderListener

</listener-class>
</listener>

</web-app>

Querying the WSDL Publishing Service

Each HTTP GET request for a WSDL file must have a query
appended toit. The Artix Java runtime supports RESTful
services and, as aresult, an HTTP GET request is not
automatically destined for the WSDL publishing service.

The WSDL publishing service supports the following queries:
o ?wsdl

Appending ?wsdl to the address returns the WSDL file for the
published endpoint.

e 7?xsd

Appending ?xsd to the address returns the schema file for the
published endpoint.

e ?services

Appending ?servicestothe address returns an HTML
formatted page with a list of all published endpoints and any
resolved schemas. The ?servicesquery is not supported
when the WSDL publishing service is running in a servlet
container.

Example query syntax
The following are examples of query syntax that are serviced:

e Using ?wsdl:

http://local host: 27220/SoapContext2/SoapPort2?wsdl

Artix Deployment Guide: Java 153

e Using ?xsd. If a WSDL file has an imported schema, for
example, schemal.xsd, you can find the schema using the
following query:

http://local host: 27220/SoapContext2/SoapPort2?xsd=
schemal . xsd

e Using ?services:

http://localhost: 27220?services

Returns an HTML page that lists all documents associated
with active services.

Example query syntax when running in aserviet container

The following is an example of the query syntax that you can
use toquery the WSDL publishing service when it is running in
a servlet container. The examples shown refer to Tomcat
running on port 8080:

e Using ?wsdl:
http://host/8080/services/servicename?wsdl

e Using ?xsd. If a WSDL file has an imported schema, for
example, schemal.xsd, you can find the schema using the
following query:

http://host/8080/services/servicename?xsd=schemal .xsd

NOTE: services?is not supported when WSDL publishing service is
running in a servlet container.

154 Artix Deployment Guide: Java

http://host/8080/services/servicename?wsdl
http://host/8080/services/servicename?xsd=schema1.xsd

Appendix
Artix Binding IDs

Table A.1. Binding IDs for Message Bindings

Binding ID

CORBA http://cxt._apache.org/bindings/corba
HTTP/REST http://apache.org/cxf/binding/http

SOAP 1.1 http://schemas.xmlsoap.org/wsdl/soap/http

SOAP 1.1 w/ MTOM http://schemas.xmlsoap.org/wsdl/soap/http?mtom=true

SOAP 1.2 http://www._w3.0rg/2003/05/soap/bind ings/HTTP/

SOAP 1.2 w/ MTOM http://www.w3.0rg/2003/05/soap/bindings/HTTP/?mtom=true

XML http://cxt_apache.org/bindings/xformat

Artix Deployment Guide: Java 153

http://cxf.apache.org/bindings/corba
http://apache.org/cxf/binding/http
http://schemas.xmlsoap.org/wsdl/soap/http
http://schemas.xmlsoap.org/wsdl/soap/http?mtom=true
http://www.w3.org/2003/05/soap/bindings/HTTP/
http://www.w3.org/2003/05/soap/bindings/HTTP/?mtom=true
http://cxf.apache.org/bindings/xformat

	Preface
	What is Covered in This Book
	Who Should Read This Book
	Organization of this Guide
	The Artix Documentation Library
	Further Information and Product Support
	Information We Need
	Contact information

	Artix for Java Configuration Overview
	Artix Configuration Files
	Spring framework
	Configuration namespace
	Schema location
	Sample configuration file

	Making Your Configuration File Available

	Setting Up Your Environment
	Using the Artix Environment Script
	Running the artix_java_env script

	Artix for Java Environment Variables
	Environment variables

	Customizing your Environment Script
	Before you begin
	Environment variables

	Configuring Artix Endpoints
	Configuring Service Providers
	Using the jaxws:endpoint Element
	Identifying the endpoint being configured
	Attributes
	Example

	Using the jaxws:server Element
	Identifying the endpoint being configured
	Attributes
	Example

	Adding Functionality to Service Providers
	Elements

	Configuring Consumer Endpoints
	Basic Configuration Properties
	Adding functionality
	Example

	Artix for Java Logging
	Overview of Artix for Java Logging
	Default logging.properties file
	Logging feature
	Where to begin?
	More information on java.util.logging

	Simple Example of Using Logging
	Changing the log levels and output destination

	Default logging.properties File
	Configuring Logging Output
	Configuring the console handler
	Configuring the file handler
	Configuring both the console handler and the file handler
	Configuring Logging Levels
	Logging levels
	Configuring the global logging level
	Configuring logging at an individual package level

	Enabling Logging at the Command Line
	Specifying the log configuration file on application start-up
	 Example 16. Flag to Start Logging on the Command Line

	Logging for Subsystems and Services
	Artix logging subsystems
	Example

	Logging Message Content
	Configuring message content logging
	Adding the logging feature to an endpoint
	Adding the logging feature to a consumer
	Set logging to log INFO level messages
	Logging SOAP messages

	Deploying to the Spring Container
	Introduction
	Sample XML

	Running the Spring Container
	Using the spring_container command
	Starting the Spring container
	Stopping the Spring container

	Deploying an Artix Endpoint
	Deployment steps
	Configuring your application
	Building a WAR file
	Deploying the WAR file to the Spring repository
	Using Ant to build a WAR file and deploy to the Spring container
	Changing the interval at which the Spring container scans its repository
	Changing the default location of the container repository

	Managing the Container using the JMX Console
	Using the JMX console

	Managing the Container using the Web Service Interface
	Client tool
	Changing the port the Web service interface listens on
	Adding a port

	Spring Container Definition File
	spring_container.xml

	Running Multiple Containers on Same Host
	Procedure

	Deploying to a Servlet Container
	Introduction
	Deploying service providers
	Deploying service consumers

	Configuring the Servlet Container
	Required libraries
	Automating servlet container configuration

	Using the CXF Servlet
	Deployment steps
	Building a WAR
	Servlet configuration file
	Web application configuration
	Deploying a WAR file to the servlet container

	Using a Custom Servlet
	Procedure
	Differences from using the default servlet
	Implementing the servlet
	Building the WAR file

	Using the Spring Context Listener
	Procedure
	Configuring the Web application
	Creating the Spring configuration
	Building the WAR

	Deploying WS-Addressing
	Introduction to WS-Addressing
	Supported specifications
	Further information

	WS-Addressing Interceptors
	Enabling WS-Addressing
	Adding WS-Addressing as a Feature

	Configuring WS-Addressing Attributes
	Configuring WS-Addressing attributes
	Using a WS-Policy assertion embedded in a feature

	Enabling Reliable Messaging
	Introduction to WS-RM
	How WS-RM works
	WS-RM delivery assurances
	Supported specifications
	Further information

	WS-RM Interceptors
	Artix WS-RM Interceptors
	Configuring WS-RM Attributes

	Enabling WS-RM
	Spring beans—explicitly adding interceptors
	WS-Policy framework—implicitly adding interceptors

	Configuring WS-RM
	Configuring Artix-Specific WS-RM Attributes
	Children of the rmManager Spring bean
	Example

	Configuring Standard WS-RM Policy Attributes
	WS-Policy RMAssertion Children
	More detailed reference information
	RMAssertion in rmManager Spring bean
	Policy within a feature
	WSDL file
	External attachment

	WS-RM Configuration Use Cases
	Base retransmission interval
	Exponential backoff for retransmission
	Acknowledgement interval
	Maximum unacknowledged messages threshold
	Maximum length of an RM sequence
	Message delivery assurance policies

	Configuring WS-RM Persistence
	How it works
	Enabling WS-persistence
	Configuring WS-persistence

	Enabling High Availability
	Introduction to High Availability
	HA with static failover
	HA with dynamic failover
	Sample applications
	More information about the locator service

	Enabling HA with Static Failover
	Encode replica details in your service WSDL file
	Add the clustering feature to your client configuration
	Configuring HA with Static Failover
	Configuring a random strategy

	Enabling HA with Dynamic Failover
	Configure your service to register with the Artix locator
	Configure your client to use locator meditated failover
	Ensure the Artix locator is running
	Configuring HA with Dynamic Failover
	Enabling Artix locator to check the state of a registered service
	Setting the heartbeat interval
	Initial delay in locator response
	Maximum number of client retries
	Delay between client retry attempts
	Sequential backoff in client retry attempts

	Publishing WSDL Contracts
	Artix WSDL Publishing Service
	Use with endpoint references
	Multiple transports

	Configuring the WSDL Publishing Service
	Configuration file
	WSDL publishing service configuration options

	Configuring for Use in a Servlet Container
	Configuration steps
	Create a spring.xml configuration file
	Configure a listener class in the web.xml file

	Querying the WSDL Publishing Service
	Example query syntax
	Example query syntax when running in a servlet container

	Appendix Artix Binding IDs

