
Artix 5.6.3

Session Manager
Guide: C++

ii

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK

http://www.microfocus.com
Copyright © Micro Focus 2015. All rights reserved.
MICRO FOCUS, the Micro Focus logo and Micro Focus Licensing are
trademarks or registered trademarks of Micro Focus IP Development
Limited or its subsidiaries or affiliated companies in the United States,
United Kingdom and other countries.
All other marks are the property of their respective owners.

2015-02-11

Contents
Preface..v
Contacting Micro Focus ... vi

Introduction..1
What is the Session Manager? ..1
Session Manager WSDL Contract...5

Configuring and Deploying the Session Manager7
Deploying the Session Manager...7
Registering a Server with the Session Manager ...11
Configuring the Simple Policy Plug-in ...12
Implementing your own Policy Plug-In ...13
Fault Tolerance ...15
Adding SOAP 1.2 Support...15

Using the Session Manager from an Artix Client17
Implementing a C++ Client ..17
Migrating from Earlier Versions ...23

Using the Session Manager from a non-Artix Client.............29
Implementing a .NET Client ..29
Implementing an Axis Client ...32

Index ..35
 Artix Session Manager Guide C++ ii i

iv Artix Session Manager Guide C++

Preface

What is Covered in this Book
This book describes how to use the Artix session manager.

Who Should Read this Book
This book is intended for use by anyone who wants to use the
Artix session manager.

How to Use this Book
This book is divided into the following chapters:
• Introduction, which gives an overview of the Artix session

manager.
• Configuring and Deploying the Session Manager, which

describes how to configure and deploy the Artix session
manager.

• Using the Session Manager from an Artix Client, which
describes how to write a C++ client of a session managed
service.
In addition it covers important migration information about
moving from Artix 3 to Artix 4 or higher.

• Using the Session Manager from a non-Artix Client, which
describes how to write both a .NET client and an Axis client of
a session managed service.

The Artix Documentation Library
For information on the organization of the Artix library, the
document conventions used, and where to find additional
resources, see Using the Artix Library, available with the Artix
documentation at
https://supportline.microfocus.com/productdoc.aspx.
 Artix Session Manager Guide C++ v

https://supportline.microfocus.com/productdoc.aspx

Contacting Micro Focus
Our Web site gives up-to-date details of contact numbers and
addresses.

Further Information and Product
Support
Additional technical information or advice is available from several
sources.
The product support pages contain a considerable amount of
additional information, such as:
• The WebSync service, where you can download fixes and

documentation updates.
• The Knowledge Base, a large collection of product tips and

workarounds.
• Examples and Utilities, including demos and additional

product documentation.
To connect, enter http://www.microfocus.com in your browser to go to
the Micro Focus home page.
Note:
Some information may be available only to customers who have
maintenance agreements.
If you obtained this product directly from Micro Focus, contact us
as described on the Micro Focus Web site, http://www.microfocus.com. If
you obtained the product from another source, such as an
authorized distributor, contact them for help first. If they are
unable to help, contact us.

Information We Need
However you contact us, please try to include the information
below, if you have it. The more information you can give, the
better Micro Focus SupportLine can help you. But if you don't
know all the answers, or you think some are irrelevant to your
problem, please give whatever information you have.
• The name and version number of all products that you think

might be causing a problem.
• Your computer make and model.
• Your operating system version number and details of any

networking software you are using.
• The amount of memory in your computer.
• The relevant page reference or section in the documentation.
• Your serial number. To find out these numbers, look in the

subject line and body of your Electronic Product Delivery
Notice email that you received from Micro Focus.
 vi Artix Session Manager Guide C++

http://www.microfocus.com
http://www.microfocus.com

Contact information
Our Web site gives up-to-date details of contact numbers and
addresses.
Additional technical information or advice is available from several
sources.
The product support pages contain considerable additional
information, including the WebSync service, where you can
download fixes and documentation updates. To connect, enter
http://www.microfocus.com in your browser to go to the Micro Focus
home page.
If you are a Micro Focus SupportLine customer, please see your
SupportLine Handbook for contact information. You can download
it from our Web site or order it in printed form from your sales
representative. Support from Micro Focus may be available only to
customers who have maintenance agreements.
You may want to check these URLs in particular:
• http://www.microfocus.com/products/corba/artix.aspx (trial software

download and Micro Focus Community files)
• https://supportline.microfocus.com/productdoc.aspx (documentation

updates and PDFs)
To subscribe to Micro Focus electronic newsletters, use the online
form at:

http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-subscriptio
n.asp
Artix Session Manager Guide C++ vii

http://www.microfocus.com
http://www.microfocus.com/products/corba/artix.aspx
https://supportline.microfocus.com/productdoc.aspx
http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-subscription.asp

 viii Artix Session Manager Guide C++

Introduction
The Artix session manager enables Web service clients to hold
conversations with stateful servers. Client requests are identified as being
part of a session and the server can hold state information relating to the
client by identifying the requests as part of that client’s session. In
addition, the session manager controls the number of concurrent clients
that can access a Web service and the amount of time allocated to each
session.

What is the Session Manager?
The Artix session manager is implemented as a group of plug-ins
that work together to manage the number of concurrent clients
allowed to connect to a group of services. An Artix plug-in is a
code library that can be loaded into an Artix application at
runtime. The session manager plug-ins work together to control
how long a client has access to a service before it has to request
an extension. In addition, the session manager notifies all
registered services of session state changes, including when
sessions begin and when they end.
This section gives an overview of the session manager’s use cases
and describes the plug-ins and how they work together in a
deployed system.

Use cases
The Artix session manager supports the following use cases:

Limiting the amount of time a client is connected to a service
You can use the Artix session manager to control the amount of
time a client has access to a service. This is useful when you do
not want clients to have unrestricted access to a service. For
example, you might want to limit the amount of time available to
complete a request form to five minutes. Clients can request
session extensions.

Limiting the number of concurrent client connections to a
service
You can specify how many concurrent connections are permitted
to a service. For example, if your services are running on old
hardware you could ensure higher performance by limiting the
number of connections to a small number.

Stateful services
You can write services that store state data across multiple
invocations. This is possible because clients of session managed
services include identity details with each invocation. Using the
session manager’s callback mechanism, you can destroy any state
information for a client once the client’s session expires.
 Artix Session Manager Guide C++ 1

How the session manager works
Using a developer assigned group name, Artix servers register
during start-up with the session manager. The session manager
maintains a list of servers that register under the same group
name. Servers that register under the same group name do not
need to offer the same Web service.
Client applications contact the session manager and obtain a
session ID for a specific group of servers. Client applications
embed the session ID in a context, which must be included with all
requests to begin, renew, or terminate a session. The session
manager sends the clients a collection of endpoint references to all
members of the group and the client determines what Web service
is represented by each reference and uses the appropriate
reference to instantiate a proxy and invoke on the Web service.
The client includes the session ID with each invocation.

Session manager plug-ins
The two main session manager plug-ins are:

The session manager also includes a simple policy plug-in:

The simple policy plug-in is an implementation of the Artix session
manager’s SessionManagementPolicyCallback interface. You can
create your own session policies by implementing this interface.
For more detail, see “Implementing your own Policy Plug-In” on
page 13.

How do the plug-ins interact?
Figure 1 on page 3 shows how the session manager plug-ins are
deployed in an Artix system. The session manager service plug-in
and the simple policy plug-in are both deployed into the same
Artix bus process.

Session manager
service plug-in
(session_manager_service)

This is the central service plug-in. It
accepts and tracks service registration,
hands out sessions to clients, accepts or
denies session renewal, and notifies
session endpoint managers of session
state changes, including when sessions
begin and when they end.

Session endpoint
manager plug-in
(session_endpoint_manager)

This is the portion of the session
manager that resides in a registered
service. It registers its location with the
service plug-in, and accepts or rejects
client requests based on the validity of
their session headers.

Session manager simple
policy plug-in
(sm_simple_policy)

This provides control over the allowable
duration for a session and the
maximum number of concurrent
sessions allowed for each group.
 2 Artix Session Manager Guide C++

In this example, these plug-ins are deployed in the Artix
container. Although they can be deployed in any Artix process, the
recommended approach is to use the Artix container. The session
manager service plug-in and the simple policy plug-in interact to
ensure that the session manager does not hand out sessions that
violate the policies established by the simple policy plug-in. The
simple policy plug-in makes all the decisions on which sessions are
permitted. The session manager service queries this policy on all
decisions. Artix provides a default implementation in the simple
policy plug-in. You can, however, also write your own policy
plug-in.
The endpoint manager plug-ins are deployed into the server
processes that contain session managed services. A process can
host two services (for example, Service C and Service D in
Figure 1 on page 3), but the process can have only one endpoint
manager. The endpoint manager plug-ins are in constant
communication with the session manager service plug-in to report
on endpoint health. They also receive information on new sessions
that have been granted to the managed services, and check on
the health of the session manager service.

Figure 1: Session Manager Plug-ins
Artix Session Manager Guide C++ 3

What are sessions?
The session manager controls access to services by handing out
sessions to clients that request access to the services. A session is
a pass that provides access to the services in a specific group for a
specific amount of time.
For example, the following process is used when a client
application wants to use the services in a group named sales:
1. The client application asks the session manager for a session

with the sales group.
2. The session manager checks and see if the sales group has an

available session and, if so, it returns a session ID and the list
of sales service references to the client.

3. The session manager notifies the endpoint managers in the
sales group that a new session has been issued. It also
supplies a new session ID, and a duration for which the
session is valid.

4. When the client makes requests on the services in the sales
group, it must include the session information as part of the
request.

5. The endpoint manager for the services checks the session
information to ensure it is valid. If it is, the request is
accepted. If it is not, the request is rejected.

6. If the client wants to continue using the sales services beyond
the duration of its session, the client must ask the session
manager to renew its session before the session expires.

7. Lastly, when a client’s session has expired, it must request a
new one.

What are groups?
The Artix session manager does not pass out sessions for each
individual service that is registered with it. Instead, services are
registered as part of a group, and sessions are handed out for the
group. A group is a collection of services that are managed as one
unit by the session manager. While the session manager does not
specify that the services in a group must be related, it is
recommended that the endpoints have some relationship.
A service’s group affiliation is controlled by the configuration scope
in which it is run. To change a service’s group, edit the following
value in the process configuration scope:

This specifies the default group name for the services instantiated
by the server.

plugins:session_endpoint_manager:default_group
 4 Artix Session Manager Guide C++

Set up steps
You set up the server side of the session manager using
configuration. You do not need to write any dedicated server code.
See “Configuring and Deploying the Session Manager” on page 7
for more detail.
Session manager enabling a client requires dedicated coding. See
“Using the Session Manager from an Artix Client” on page 17 and
“Using the Session Manager from a non-Artix Client” on page 29
for details.

Demonstrations
Artix includes a number of session manager demonstrations,
which are located in the following directory of your Artix
installation:

For details on how to run the demos, see the README.txt file
located in this directory.

Session Manager WSDL Contract
The session manager service is described in the
session-manager.wsdl contract, which defines the public interface
through which the service can be accessed either locally or
remotely. A copy of the session manager WSDL contract is stored
in the following directory of your Artix installation:

The session manager WSDL file defines two port types:
• SessionManager port type
• SessionEndpointManager port type

SessionManager port type
The SessionManager port type includes operations through which a
server process registers and deregisters its endpoint manager and
endpoints with the session manager. In addition, it includes
operations through which client applications can manage sessions
and retrieve a collection of references to all server endpoints
registered under a common group name. As an Artix developer
you need only understand and use the following operations:
• beginSession—a request-response operation used by a client

process to initiate a session. If the request to initiate a session
is rejected, the session manager returns a BeginSessionFault.

• renewSession—a request-response operation used by a client
process to renew a session. If the request to renew is
rejected, the session manager returns a RenewSessionFault.

• endSession—a one-way operation used by a client process to
terminate a session.

InstallDir/samples/advanced/session_management

InstallDir/wsdl/session-manager.wsdl
Artix Session Manager Guide C++ 5

• getAllServiceEndpoints—a request-response operation used
by a client process to obtain the collection of endpoint
references belonging to a specific group. If the request is
rejected, the session manager returns the
GetAllEndpointsFault.

SessionEndpointManager port type
The SessionEndpointManager port type includes operations through
which the session manager communicates session related events
to the session endpoint manager associated with a registered
service. As an Artix developer, you do not need to use the
operations included in this port type.

Binding and protocol
The session manager is accessed through the SOAP binding and
over the HTTP protocol.
 6 Artix Session Manager Guide C++

Configuring and
Deploying the Session
Manager
This chapter explains how to configure and deploy the session manager.

Deploying the Session Manager
The Artix session manager is implemented using Artix plug-ins.
This means that any Artix application can host the session
manager’s core functionality by loading the
session_manager_service plug-in. However, it is recommended that
you deploy the session manager using the Artix container.
This section describes how to configure and deploy the session
manager using the Artix container. It also explains how you can
deploy the session manager using dynamic port allocation or using
a fixed port, and how you can use the container service to shut
down a running session manager.

If you are new to Artix configuration and
deployment
If you are new to Artix configuration and deployment, you should
read the introductory chapters of the Configuring and
Deploying Artix Solutions, C++ Runtime guide.

Artix container
The Artix container is an executable, it_container, that provides a
basic environment in which to run Web services. Service
implementations are loaded into the container as plug-ins.
For more information on the Artix container, see the Deploying
Services in an Artix Container chapter in the Configuring and
Deploying Artix Solutions, C++ Runtime guide.

Demo configuration file
The session manager demo includes an example session manager
configuration file, called session_management.cfg, which is located
in the following directory of your Artix installation:

The configuration examples given in this chapter are taken from
this file.

InstallDir/samples/advanced/session_management/etc
 Artix Session Manager Guide C++ 7

Configuring the session manager to run
in the container
To configure the session manager service, ensure that the
session_manager_service plug-in is included in the session manager
service configuration scope, for example:

The session_manager_service plug-in implements the session
manager service functionality.
In this example the sm_simple_policy plug-in is also included in the
orb_plugins list. If you want to customize settings for this policy,
see “Configuring the Simple Policy Plug-in” on page 12.
You can write your own session management policy plug-in and,
by adding it to the orb_plugins list, configure the session manager
to use it. For more detail see “Implementing your own Policy
Plug-In” on page 13.
If you do not specify a policy plug-in, the sm_simple_policy plug-in
is loaded automatically by the session manager service.

Configuring a dynamic port
By default, the session manager is configured for deployment on a
dynamic port. In the default session manager WSDL contract, the
addressing information is as follows:

The highlighted part shows the address. The localhost:0 port
means that when you activate the session manager service, the
operating system assigns a port dynamically on startup.
Because the port is assigned dynamically, you must ensure that
your clients obtain a reference to the updated contract when it is
assigned a port.
For details of using the Artix locator to do this, see the Artix
Locator Guide.

session_management {
 ...
 sm_service{
 orb_plugins = ["xmlfile_log_stream", "wsdl_publish",

"session_manager_service", "sm_simple_policy"];
 ...
 };

Example 1: Session Manager Service on Dynamic Port

<service name="SessionManagerService">
 <port binding="sm:SessionManagerBinding"

name="SessionManagerPort">
 <soap:address

location="http://localhost:0/services/sessionManagement/
 sessionManagerService"/>
 </port>
</service>
 8 Artix Session Manager Guide C++

Configuring a fixed port
There are two ways of configuring the session manager for
deployment on a well-known fixed port. You can either edit the
default session-manager.wsdl contract, or you can create a new
session-manager.wsdl contract for your application.

Editing the default session manager contract
To edit the default session-manager.wsdl contract, perform the
following steps:
1. Open the session-manager.wsdl contract in any text editor. It is

located in the following directory of your Artix installation:

2. Edit the soap:address attribute at the bottom of the contract to
specify the correct address. Example 2 shows a modified
session manager service contract entry. The highlighted part
has been modified to point to the desired address.

Creating a new session manager contract
To create a new session-manager.wsdl contract, perform the
following steps:
1. Copy the default session-manager.wsdl contract to another

location, and open it in any text editor.
2. Edit the soap:address attribute at the bottom of the contract to

specify the correct address. Example 2 shows a modified
session manager service contract entry. The highlighted part
has been modified to point to the desired address.

3. In your configuration file, in the application’s scope, add a
new bus:initial_contract:url:sessionmanager variable that points
to your edited WSDL contract. For example:

The default bus:initial_contract:url:sessionmanager variable is in
the Artix global scope, which ensures that every application
has access to the contract. Specifying a new contract in your
application scope overrides the global session manager
contract for your application.

When the session manager has been correctly configured, it can
be started like any other application. The only difference is that
the session manager must be started before any servers that need
to register with it.

InstallDir/wsdl/session-manager.wsdl

Example 2: Session Manager Service on Fixed Port

<service name="SessionManagerService">
 <port binding="sm:SessionManagerBinding"

name="SessionManagerPort">
 <soap:address

location="http://localhost:8080/services/sessionManagement
/sessionManagerService"/>

 </port>
</service>

bus:initial_contract:url:sessionmanager =
"c:\myapp/wsdl/session-manager.wsdl";
Artix Session Manager Guide C++ 9

Deploying the session manager using the
container
To deploy the default session manager in the container, perform
the following steps:
1. Run the session manager in the Artix container; for example:

♦ -ORBname specifies the configuration scope under which the
container runs the session manager.

♦ -ORBdomain_name specifies the name of the configuration
file that stores the configuration information.

♦ -ORBconfig_domains_dir specifies the directory where Artix
searches for the configuration file.

2. Ask the container to publish the live version of the session
manager WSDL that you use to initialize your clients. For
example:

The above command retrieves the session manager’s
activated WSDL contract. This is the contract in which 0 ports
are dynamically updated with the actual port that the service
runs on. In this example, it_container_admin writes the
contract to the sessionmanager-activated.wsdl file in the etc
subdirectory.

3. Lastly, you must ensure that your clients use the updated
WSDL file at runtime.

For more information on the Artix container and its command-line
parameters, see the Deploying Services in an Artix Container
chapter in the Configuring and Deploying Artix Solutions,
C++ Runtime guide.

Deploying the session manager in the
container on a fixed port
Alternatively, you can use the -port option to specify that the
container runs a service on a fixed port. For example:

In this example, any services that run in the container, and have
default contracts with a port of 0, will not use port 9000.

it_container -ORBname demos.session_management.sm_service
-ORBdomain_name session_management
-ORBconfig_domains_dir ../../etc -publish

it_container_admin -container
../../etc/ContainerService.url -publishwsdl -service
{http://ws.iona.com/sessionmanager}SessionManagerServi
ce -file ..\..\etc\sessionmanager-activated.wsdl

it_container -port 9000 -ORBname demo.sessionmanager.service
-ORBdomain_name session_management -ORBconfig_domains_dir
../../etc -publish
 10 Artix Session Manager Guide C++

You can manually update the WSDL used by your client to 9000, or
you can publish the WSDL from the container using
it_container_admin with the -publishwsdl option, shown in “Deploying
the session manager using the container” on page 10.

Shutting down the session manager
To shut down the session manager, use the Artix container’s
shutdown option, for example:

Registering a Server with the Session Manager
For a server to use the session manager it must register itself with
a running session manager. Enabling a server to register itself
with the session manager is done through configuration. You do
not have to write any special server code. Once registered with a
session manager, the services only accept client requests that
contain valid session headers. All clients that want to access the
services must be written to support session managed services.
Any server hosting services that are to be managed by the session
manager must load the session_endpoint_manager plug-in. The
session_endpoint_manager enables the server to register with a
running session manager. When a server registers an endpoint
with the session manager, the session manager creates an
association between the group name under which the server
process registered and a reference to the endpoint.

Configuring the server
Add the session_endpoint_manager to the plug-ins listed under the
orb_plugins configuration entry within the configuration scope
under which the server process runs. Example 3 shows the
configuration scope of a server that hosts services managed by
the session manager.

In this example, a server loaded into the server configuration
scope is managed by the session manager at the location specified
in your session-manager.wsdl contract. Its endpoint manager

it_container_admin -shutdown

Example 3: Server Configuration Scope

session_management {
...
 server
 {
 orb_plugins = ["xmlfile_log_stream", "wsdl_publish",

"session_endpoint_manager"];

 plugins:session_endpoint_manager:default_group="SM_Demo";
 };
...
}

Artix Session Manager Guide C++ 11

comes up at the address specified in session-manager.wsdl. In this
example, by default, all services instantiated by the server belong
to the SM_Demo session manager group.

Using a copy of session-manager.wsdl
If you are using a copy of the default session manager contract to
specify a fixed port, your server configuration must also specify
the location of the contract. For example:

This is not necessary if you are using a dynamic port, or have
updated the default contract with a fixed port. The Artix global
scope bus:initial_contract:url:sessionmanager setting is used instead.

Server registration
When a properly configured server starts up, it automatically
registers with the session manager specified by the contract
pointed to by bus:initial_contract:url:sessionmanager.

Configuring the Simple Policy Plug-in
The Artix session manager provides a simple policy callback
plug-in (sm_simple_policy). This enables you to control the allowable
duration for a session, and the maximum number of concurrent
sessions allowed for each group.

Session properties
The simple policy plug-in provides default values for the following
session properties:
• Maximum number of concurrent sessions in a given group

(default is 1).
• Minimum allowed timeout for a session (default is 1 second).
• Maximum allowed timeout for a session (default is 600

seconds).
You can override these defaults using the following configuration
variables:

All values must be non-negative. You must configure the
max_session_timeout to be greater than or equal to
min_session_timeout. A value of 0 means an unlimited timeout.

bus:initial_contract:url:sessionmanager =
"c:\myapp/wsdl/session-manager.wsdl";

plugins:sm_simple_policy:max_concurrent_sessions
plugins:sm_simple_policy:min_session_timeout
plugins:sm_simple_policy:max_session_timeout
 12 Artix Session Manager Guide C++

Implementing your own session
management policies
The simple policy callback plug-in is an implementation of the
Artix session manager’s SessionManagementPolicyCallback
interface. You can create your own session management policy by
implementing this interface. For more detail, see “Implementing
your own Policy Plug-In” on page 13.

Implementing your own Policy Plug-In
You can create your own session management policy plug-in by
implementing the SessionManagementPolicyCallback interface and
packaging it as a plug-in. This section explains how.

Procedure
To create your own session management policy plug-in complete
the following steps:
1. Implement the SessionManagementPolicyCallback interface,

shown in Example 4.

The SessionManagementPolicyCallback interface is contained in
the it_bus_services/session_manager_service.h header file.

2. Write a plug-in. For information on writing a plug-in, see the
introductory chapters of the Developing Advanced Artix
Plug-ins in C++ guide.

Example 4: SessionManagementPolicyCallback Interface

class SessionManagementPolicyCallback
{
 public:
 virtual void
 begin_session(
 const IT_Bus::String& group,
 const IT_Bus::String& id,
 const IT_Bus::ULong& preferred_renew_timeout,
 IT_Bus::ULong& allocated_renew_timeout
) IT_THROW_DECL((SessionCreationException)) = 0;

 virtual void
 renew_session(
 const IT_Bus::String& group,
 const IT_Bus::String& id,
 const IT_Bus::ULong& preferred_renew_timeout,
 IT_Bus::ULong& allocated_renew_timeout
) IT_THROW_DECL((SessionRenewException)) = 0;

 virtual void
 end_session(
 const IT_Bus::String& group,
 const IT_Bus::String& id
) = 0;
};
Artix Session Manager Guide C++ 13

3. Integrate your session manager policy and your plug-in by
registering your SessionManagementPolicyCallback
implementation in your plug-in, as shown in Example 5.

The register and deregister policy static methods shown are
contained in the it_bus_services/session_manager_service.h
header file.

4. Deploy your session management policy plug-in with the
session manager by listing it in the same orb_plugins list as
the session manager service, and by providing Artix with the
root name of the plug-in library, as shown in Example 6 on
page 14.

Now when the session manager receives requests for new
sessions, your session management policy implementation will be
consulted.

Example 5: Registering your Session Management Policy

void
MySessionsPolicyBusPlugIn::bus_init(
) IT_THROW_DECL((Exception))
{
 Bus_ptr bus = get_bus();

 m_policy = new MySessionPolicy();

 SessionManagerService::register_policy_callback(bus,

*m_policy);
}

void
MySessionsPolicyBusPlugIn::bus_shutdown(
) IT_THROW_DECL((Exception))
{
 SessionManagerService::deregister_policy_callback(get_bus());
}

Example 6: Deploying your Session Management Policy Plug-in

Artix domain configuration file
session_management {
 ...
 sm_service{
 orb_plugins = ["xmlfile_log_stream",

"session_manager_service", "my_policy_plugin_name"];

plugins:my_policy_plugin_name:shlib_name="root_library_name"

};
 14 Artix Session Manager Guide C++

Fault Tolerance
Enterprise deployments demand that applications can cleanly
recover from occasional failures. The Artix session manager is
designed to recover from the two most common failures:
• Failure of a registered endpoint.
• Failure of the session manager itself.

Endpoint failure
When an endpoint gracefully shuts down, it notifies the session
manager that it is no longer available. The session manager
removes the endpoint from its list so it can not give a client a
reference to a dead endpoint. However, when an endpoint fails
unexpectedly, it cannot notify the session manager and the
session manager can unknowingly give a client an invalid
reference causing the failure to cascade.
To decrease the risk of passing invalid references to clients, the
session manager occasionally pings all of its registered endpoint
managers to see if they are still running. If an endpoint manager
does not respond to a ping, the session manager removes that
endpoint manager’s references.
You can adjust the interval between session manager pings by
setting the plugins:session_manager:peer_timeout configuration
variable. The default setting is 4 seconds. For more information,
see the Artix Configuration Reference, C++ Runtime.

Service failure
If the session manager fails, all of the references to the registered
services are lost and the active services are no longer registered.
After the session manager misses its ping interval, the endpoint
managers periodically attempt to re-register with the session
manager until they are successful. This ensures that the active
services re-register with the session manager when it restarts.
You can adjust the interval between the endpoint manager’s pings
of the session manager by setting the configuration variable
plugins:session_endpoint_manager:peer_timeout. The default
setting is 4 seconds. For more information, see the Artix
Configuration Reference, C++ Runtime.

Adding SOAP 1.2 Support
The default session-manager.wsdl file shipped with Artix contains a
SOAP 1.1 binding and a SOAP 1.1 service. As of release 4.1, Artix
supports SOAP 1.2 bindings as well.
If your site requires the use of SOAP 1.2 bindings for
communication with the session manager, follow these steps:
1. Make a copy of the default session-manager.wsdl file.
2. Edit your copy to include a SOAP 1.2 binding. See the SOAP

1.2 chapter of Bindings and Transports, C++ Runtime for
guidelines on adding a SOAP 1.2 binding.
Artix Session Manager Guide C++ 15

3. Use the bus:initial_contract:url configuration variable to
point to the location of your edited session-manager.wsdl file,
or use one of several WSDL publishing methods described in
“Accessing Contracts and References” in Configuring and
Deploying Artix Solutions, C++ Runtime.
For SOAP 1.2 both the session manager and the session
endpoint manager need to be updated to a SOAP 1.2 binding;
for example:

SOAP 1.2 considerations
The SOAP 1.2 binding in Artix 4.1 (or higher) supports endpoint
references (EPRs) only in the format defined by the
WS-Addressing standard, and no longer supports the deprecated
proprietary Artix references. Artix’s SOAP 1.1 binding supports
both EPRs and the Artix references used by Artix 3.0 and earlier.
This means that an Artix 4.1 (or higher) session manager that
uses the SOAP 1.2 binding cannot support connections from Artix
4.0 and 3.0 clients, because those versions of Artix do not support
SOAP 1.2. Thus, when defining your Artix 4.1 (or higher) session
manager, if your site intends to maintain backward compatibility
with Artix 4.0 and Artix 3.0 clients, do not also use a SOAP 1.2
binding. The configuration step described in “Artix 4.1 and 4.2
session manager setup for backward compatibility” on page 25 is
not compatible with a SOAP 1.2 binding.

bus:initial_contract:url:sessionmanager =
"session-manager12.wsdl";

bus:initial_contract:url:sessionendpointmanager =
"session-manager12.wsdl";
 16 Artix Session Manager Guide C++

Using the Session
Manager from an Artix
Client
Clients that want to use the Artix session manager must include code
dedicated to that task. This chapter outlines how to write an Artix session
manager client and in C++. In addition, it describes migration scenarios
that deal with how to best migrate Artix 3.x applications to Artix 4 or
higher.

Implementing a C++ Client
Clients that want to make requests on session managed services
must be designed explicitly to interact with the Artix session
manager and must pass session headers to the session managed
services. This section describes how to write a session manager
client in C++.

Demonstration code
The code examples in this section are taken from the session
manager demo’s C++ client code. The C++ client makes a
request on a business service that is managed by the Artix session
manager. The complete client code can be found in the following
directory of your Artix installation:

Implementing a C++ session client
There are eight steps a client takes when making requests on a
session managed service. They are:
1. Instantiate a proxy for the session management service.
2. Start a session for the desired service’s group using the

session manager proxy.
3. Obtain the list of endpoints available in the group.
4. Create a service proxy from one of the endpoints in the group.
5. Build a session header to pass to the service.
6. Invoke requests on the endpoint using the proxy.
7. Renew the session as needed.
8. End the session using the session manager proxy when

finished with the services.

InstallDir/samples/advanced/session_management/
cxx/client
 Artix Session Manager Guide C++ 17

Instantiating a proxy
Before a client can request a session from the session manager, it
must create a proxy to forward requests to the running session
manager. To do this the client creates an instance of
SessionManagerClient using the session manager’s contract name,
session-manager.wsdl.
Example 7 shows the C++ code for instantiating a session
manager proxy.

Start a session
After instantiating a session manager proxy, a client can then start
a session for the desired service’s group using the session
manager’s beginSession() function. The beginSession() function
has the following signature:

The beginSession() function takes the following input parameters:
• endpoint_group—the endpoint group name, which corresponds

to the default group name set in the server’s configuration
scope as described in “Registering a Server with the Session
Manager” on page 11.

• preferred_renew_timeout—the preferred session duration in
seconds. If the specified duration is less than the value
specified by the session manager’s min_session_timeout
configuration setting, it will be set to the configured minimum
value. If the specified duration is higher than the value
specified by the session manager’s max_session_timeout
configuration setting, it will be set to the configured max
value.

And the following output parameter:
• session_info—a sequence complex type that contains the

session id, session_id, and the actual assigned session
duration, renew_timeout.

Example 7: Instantiating a Session Manager Proxy—C++

// C++
SessionManagerClient session_mgr;
SessionManagerClient* session_mgr_ptr = &session_mgr;

// C++
virtual void
beginSession(
 const IT_Bus::String &endpoint_group,
 const IT_Bus::ULong preferred_renew_timeout,
 SessionInfo &session_info
) IT_THROW_DECL((IT_Bus::Exception)) = 0;
 18 Artix Session Manager Guide C++

Example 8 shows the C++ client code to begin a session for the
SM_Demo group.

Get a list of endpoints in the group
The session manager hands out sessions for a group of services.
To get an individual service on which the client can make
requests, the client needs to get a list of the services in the group.
The session manager proxy’s getAllServiceEndpoints() function
returns a list of all endpoints registered to the specified group. The
getAllServiceEndpoints() function has the following signature:

The getAllServiceEndpoints() function takes the following input
parameter:
• session_id—the session ID for which you are requesting

services (obtained in the previous step).
And the following output parameter:
• endpoints—the list of services available. If the group has no

services, the list will be empty.

Example 8: Beginning a Session—C++

// C++
...
IT_Bus_Services::IT_SessionManager::SessionId group_session;

int
main(int argc, char* argv[])
{
 ...
 // Begin a session
 session_mgr.beginSession("SM_Demo", 20, session_info);
 cout << "Begin session invoked" << endl;

 // Retrieve the session ID from the response
 group_session = session_info.getsession_id();
 cout << "Got session!" << endl << endl;
 ...
}

// C++
virtual void
getAllServiceEndpoints(
 const SessionId &session_id,
 ServiceEndpointList &endpoints
) IT_THROW_DECL((IT_Bus::Exception)) = 0;
Artix Session Manager Guide C++ 19

Example 9 shows the C++ code for getting the list of services in a
group.

Create a proxy for the requested service
The client can use any of the services returned by
getAllServiceEndpoints() to instantiate a service proxy.
The session manager returns the services in the order the services
registered with the session manager. Clients are, therefore,
responsible for circulating through the list. Otherwise they will all
make requests on only one service in the group. In addition,
because the session manager does not force all members of a
group to implement the same interface, you might need to have
your clients to check each service to see if it implements the
correct interface by checking the reference’s service name as
shown in Example 10 on page 20.

Example 9: Retrieving the List of Services in a Group—C++

//C++
// Get the endpoints for the session.
IT_Bus_Services::IT_SessionManager::ServiceEndpointList

endpoint_list;

// Must provide the session ID
// Without a valid session ID, the session manager will refuse
// the request
session_mgr.getAllServiceEndpoints(
 group_session,
 endpoint_list
);

Example 10: Checking the Service Reference for its Interface—C++

//C++
#include <it_bus/wsaddressing_util.h>

using namespace WS_Addressing;

EndpointReferenceType& endpoint = endpoint_list[0];
QName service_name =

EndpointReferenceUtil::get_service_qname(endpoint);

if (service_name == "", "SOAPService",
"http://www.iona.com/session_management")

{
 // Instantiate a SOAPService proxy
}
else
{
 // do something else
}

 20 Artix Session Manager Guide C++

Example 11 shows the client code for creating a GreeterClient
proxy from an endpoint reference.

Create a session header
Services that are being managed by the session manager will only
accept requests that include a valid session header. Example 12
shows how to send the session ID in a header by initializing the
sessionIDContext header context.

Example 11: Instantiate a Proxy Server—C++

// C++
GreeterClient client(endpoint_list[0], bus);

Example 12: Initialize the sessionIDContext Header Context

// C++
using namespace session_management;
using namespace IT_Bus;
using namespace IT_Bus_Services::IT_SessionManager;
...
const QName DEMO_SESSION_ID_CONTEXT_NAME(
 "",
 "sessionIDContext",
 "http://ws.iona.com/sessionmanager"
);
...
// The session name and session group must be added to each
// request Without valid entries, the session endpoint manager
// will reject the request
ContextRegistry* registry = bus->get_context_registry();
ContextCurrent& current = registry->get_current();
ContextContainer* request_contexts = current.request_contexts();

AnyType* attr = request_contexts->get_context(
 DEMO_SESSION_ID_CONTEXT_NAME,
 true
);

if (0 == attr)
{
 cerr << endl << "Error : Unable to access Session Context"
 << endl;
 return -1;
}

SessionId* session_attr = dynamic_cast<SessionId*> (attr);
if (0 == session_attr)
{
 cerr << endl << "Error : Unable to cast Session Context"
 << endl;
 return -1;
}
session_attr->setname(group_session.getname());
session_attr->setendpoint_group(
 group_session.getendpoint_group()
);
Artix Session Manager Guide C++ 21

For more details about the context API used in this example, see
the Artix Contexts chapter of the Developing Artix Applications
in C++ guide.

Make requests on service proxy
Once the session information is added to the proxy’s port
information, the client can invoke operations on the endpoint as it
would a non-managed service. If the endpoint rejects the request
because the client’s session is not valid, an exception is raised.

Renewing a session
If a client is going to use a session for a longer than the duration
the session was granted, the client must renew its session or the
session will timeout. A session is renewed using the session
manager proxy’s renewSession() function. The renewSession()
function has the following signature:

The renewSession() function takes the following input parameter:
• session_info—a sequence complex type that contains the

session id, session_id, and the preferred session duration,
renew_timeout.

And the following output parameter
• renew_timeout—the actual assigned session duration, in

seconds.
If the renewal is unsuccessful, an
IT_Bus_Services::renewSessionFaultException is raised.

End the session
When a client is finished with a session managed service, it should
explicitly end its session. This ensures that the session is freed up
immediately. A session is ended using the session manager
proxy’s endSession() function. The endSession() function has the
following signature:

// C++
virtual void
renewSession(
 const SessionInfo &session_info,
 IT_Bus::ULong &renew_timeout
) IT_THROW_DECL((IT_Bus::Exception)) = 0;

// C++
virtual void
endSession(
 const SessionId &session_id
) IT_THROW_DECL((IT_Bus::Exception)) = 0;
 22 Artix Session Manager Guide C++

Example 13 on page 23 shows how to end a session.

Migrating from Earlier Versions
With the release of Artix 4.0 and subsequent releases, the
following changes might affect any existing Artix applications:
• Session manager API name changes were made in compliance

with the wrapped doc-literal convention.
• Artix switched from using a proprietary reference format to

using the standard WS_Addressing endpoint reference format.
If you have existing applications that use the old session manager
APIs and the old proprietary reference format, you might want to
consider migrating those applications to use the new APIs and
WS_Addressing.
For WS_Addressing migration information, see the Endpoint
References chapter in the Developing Artix Application in C++
guide. This section describes the session manager API migration
scenarios.

New session manager API
Artix 4.0 and subsequent releases include a new version of the
session-manager.wsdl file. The operations contained in this new
WSDL file conform with the wrapped doc-literal convention.
Specifically:
• The begin_session() operation has been replaced with

beginSession().
• The end_session() operation has been replaced with

endSession().
• The renew_session() operation has been replaced with

renewSession().
• The get_all_endpoints() operation has been replaced with

getAllServiceEndpoints(). The get_all_endpoint() operation
returns an EndpointList of old style References. The
getAllServiceEndpoints() operation returns a
ServiceEndpointList of WS-Addressing type
EndpointReferenceType.

The new session-manager.wsdl file is located in the following
directory of your Artix installation:

Example 13: Ending a Session—C++

//C++
cout << "Ending session" << endl;
session_mgr.endSession(group_session);

InstallDir/wsdl
Artix Session Manager Guide C++ 23

In Artix 4.0 and subsequent releases, by default, the session
manager resolves its service contract against this
session-manager.wsdl file and, therefore, supports the new API.
The default Artix configuration file, artix.cfg, points to the new
session manager WSDL file as follows:

Migrating to new session manager APIs
If you have an existing application that you want to migrate to
Artix 4.0 or higher, you can switch to using the new APIs by
changing the following aspects of your application:
• Replace begin_session() with beginSession()
• Replace end_session() with endSession()
• Replace renew_session() with renewSession()
• Replace get_all_endpoints() with getAllServiceEndpoints()

Using a mixture of old and new session
manager APIs
Artix 4.0 and subsequent releases include a second
session-manager.wsdl file that supports both the old and the new
APIs. To use the session manager with Artix 3 clients, you must
start the session manager with this session-manager.wsdl file. It is
located in the following directory of your Artix installation:

You can configure the session manager to use this
session-manager.wsdl file by setting the
bus:initial_contract:url:sessionmanager configuration variable as
follows:

Alternatively, you can set it as a command-line argument when
launching a server:

bus:initial_contract:url:sessionmanager =
"InstallDir/wsdl/session-manager.wsdl";

InstallDir\wsdl\oldversion

bus:initial_contract:url:sessionmanager =
"InstallDir/wsdl/oldversion/

 session-manager.wsdl";

-BUSservice_contract
InstallDir/wsdl/oldversion/session-manager.wsdl

Note: The session manager and the endpoints it manages are
tightly coupled and, therefore, must be the same version.
 24 Artix Session Manager Guide C++

Artix 4.1 and 4.2 session manager setup
for backward compatibility
The artix.cfg file included with Artix 4.1, 4.2 and higher has a
new configuration entry, bus:non_compliant_epr_format. The
default artix.cfg sets this entry by default to "false". This setting
allows for greater interoperability between Artix and Web services
software from other vendors.
If your site uses a session manager, session manager enabled
services, and session manager enabled clients all built with Artix
4.1 or higher, then no further configuration is necessary.
If your site uses a session manager build with Artix 4.1 or higher,
with services and clients from Artix 4.0 and 3.0.x, then you must
add one configuration entry in your Artix configuration. Add the
line to the session_management.sm_service scope of the
configuration file that controls your instance of the session
manager. The line to add is:

bus:non_compliant_epr_format = "true";

Note: The session manager demos that ship with Artix
4.1, 4.2 and higher do not have this line added to their
session_management.cfg files.
Artix Session Manager Guide C++ 25

For example, the following configuration file extract shows an
edited session_management.cfg file for the primary session manager
demo that allows Artix 3.x and 4.0 clients to connect to and use
an Artix 4.1 or higher session manager:

Disabling session manager support for
Artix 3
When you have all Artix client applications migrated to Artix 4 or
higher, the backward compatibility feature of the Artix 4 session
manager is no longer necessary for your site. However, there is no
need to disable the backward compatibility feature, and the Artix 4
or higher session manager performance is not improved by
disabling backward compatibility.

demos {
 session_management {

 plugins:xmlfile_log_stream:use_pid = "true";

 client
 {
 orb_plugins = ["xmlfile_log_stream"];
 };

 sm_service
 {
 bus:initial_contract:url:sessionmanager =

"../../etc/session-manager.wsdl";

 plugins:sm_simple_policy:max_concurrent_sessions = "1";
 plugins:sm_simple_policy:min_session_timeout = "1";
 plugins:sm_simple_policy:max_session_timeout = "600";

 orb_plugins = ["xmlfile_log_stream", "wsdl_publish",
"session_manager_service", "sm_simple_policy"];

 bus:non_compliant_epr_format = "true";

 };

 server
 {
 orb_plugins = ["xmlfile_log_stream",

"session_endpoint_manager"];

 bus:initial_contract:url:sessionmanager =
"../../etc/session-manager.wsdl";

 plugins:session_endpoint_manager:default_group = "SM_Demo";
 };

 };
};
 26 Artix Session Manager Guide C++

If you prefer to disable this feature, you can use a local
configuration scope to override the Artix root configuration. In
your local scope, set the WSDL path to empty for the Artix
3-compatible version of the session manager, using a line like the
following:

bus:qname_alias:sessionmanager_oldversion = "";
Artix Session Manager Guide C++ 27

 28 Artix Session Manager Guide C++

Using the Session
Manager from a
non-Artix Client
Non-Artix clients can also use the session manager to make requests on
managed services. This chapter outlines how to implement a .NET client
and an Axis client.

Implementing a .NET Client
.NET clients can use the session manager to make requests on
managed services, using the Bus.Services.dll library. This is
because the Artix session manager uses SOAP headers to pass
session tokens between clients and services. The session manager
also has a number of methods for managing active sessions. The
Artix .Net plug-in is Web Services Enhancements 2.0 (WSE 2.0)
compliant. Users can enable session by constructing a session
filter and appending it to a SOAP output filter using WSE 2.0 APIs.
The helper classes included in the Bus.Services library simplify
working with the session manager by providing native .Net calls to
access the session manager. They also handle session renewal
and attaching session headers to outgoing requests.

What you need before starting
Before starting to develop a client that uses the Artix session
manager you need:
• A means for contacting a deployed Artix session manager.

This can be one of the following:
♦ An Artix reference
♦ An HTTP address
♦ A local copy of the session manager WSDL contract

• A locally accessible copy of the WSDL contract that defines the
service that you want the client to invoke upon.

• To install WSE 2.0 SP3 before starting an Artix .NET session
manager client.

Demonstration code
The code examples in this section are taken from the session
manager demo’s .NET client code. The .NET client makes a
request on a business service that is managed by the Artix session
manager. The complete client code can be found in the following
directory of your Artix installation:

InstallDir\samples\advanced\session_management\
dotnet\client
 Artix Session Manager Guide C++ 29

Procedure
To develop a .Net client that uses the Artix session manager do
the following:
1. Create a new project in Visual Studio.
2. Right-click the folder for you new project and select Add

Reference from the pop-up menu.
3. Click Browse on Add Reference window.
4. In the file selection window browse to your Artix installation

and select the Bus.Services.dll from the InstallDir\utils\.NET
directory.

5. Click OK to return to the Visual Studio editing area.
6. Right-click the folder for your new project and select Add

Web Reference from the pop-up menu.
7. In the Address: field of the browser, enter the full pathname

of the contract for the service on which you are going to make
requests.

8. Click Add Reference to return to the Visual Studio editing
area.

9. Open the .cs file generated for the contract you imported.
10. Locate the class declaration for the service on which you

intend to make requests. The class declaration will look similar
to that shown in Example 14.

11. Change the class’ base type from
System.Web.Services.Protocols.SoapHttpClientProtocol to
Microsoft.Web.Services2.WebServicesClientProtocol. The
resulting class declaration will look similar to that shown in
Example 15.

Reassigning the service proxy class to the Artix specific base
class adds
methods to the proxy that allow it to work with the session
manager.

12. Add a new C# class to your project.
13. Add the statement using Bus.Services; after the statement

using System;.

Example 14: .Net Service Proxy Class Declaration

public class SOAPService :
 System.Web.Services.Protocols.SoapHttpClientProtocol {

Example 15: .Net Session Managed Proxy Class Declaration

public class SOAPService :
 Microsoft.Web.Services2.WebServicesClientProtocol {
 30 Artix Session Manager Guide C++

14. Create a service proxy for the Artix session manager by
instantiating an instance of the Bus.Services.SessionManager
class as shown in Example 16.

The constructor’s parameter is the HTTP address of a
deployed session manager. The SessionManager class also has
a construct that takes an Artix reference for use with the Artix
locator.

15. Create a new Artix session by instantiating an instance of
Bus.Services.Session as shown in Example 17.

The constructor takes three parameters:
♦ An instantiated SessionManager object.
♦ A string identifying the group for which the client wants a

session; in this example, the group name is SM_Demo.
♦ The default timeout value, in seconds, for the session.
Once the session is created, the session will automatically
attempt to renew itself until the session is closed. The client
does not need to worry about renewing the session.

16. Get a list of the references for the endpoints that are in the
session’s
group using the SessionManager.get_all_endpoints() function
as shown in Example 18.

The get_all_endpoints() function takes the session ID of the
session and returns an array of Artix references. Each entry in
the array contains the endpoint of one member of the group
for which the session was requested.

17. Create a .Net proxy for the service on which you are going to
make requests as you normally would.

18. Change the value of the proxy’s .Url member to the SOAP
address of one of the Artix references returned from the
session manager as shown in Example 19.

How you determine which member of the returned array
contains the desired endpoint is an implementation detail
beyond the scope of this discussion.

Example 16: Instantiating a Session Manager Proxy in .Net

SessionManager sessionManager = new SessionManager
("http://localhost:9007/services/sessionManagement/

 sessionManagerService");

Example 17: Creating a New Session

Session session = new Session(sessionManager, "SM_Demo",
20);

Example 18: Getting the Endpoint References

Bus.Services.Types.EndpointReferenceType[] refs =
sessionManager.getAllServiceEndpoints(sessionId);

Example 19: Changing the URL of a .Net Service Proxy to Use a Reference

simpleService.Url = refs[0].Address.Value;
Artix Session Manager Guide C++ 31

19. Instruct the proxy to include the session header in all of its
requests by
adding a session filter on the proxy output SOAP filters as
shown in Example 20.

Once you have made the above call, all requests made by the
proxy will contain an Artix session header. The session
manager uses the session header to validate the client’s
requests against the list of valid sessions.

20. Make requests on the service as you would normally.
21. When you are done with the service, end the session by

calling EndSession() on the session object, as shown in
Example 21:

Implementing an Axis Client
An Axis client can use the session manager to invoke on managed
services. The Artix session manager uses SOAP headers to pass
session tokens between clients and services. Therefore, when
writing an Axis client, you must insert session tokens into SOAP
headers programmatically in order to invoke on services managed
by session manger.

Demonstration code
The code examples in this section are taken from the session
manager demo’s Axis client code. The Axis client makes a request
on a business service that is managed by the Artix session
manager. The complete client code can be found in the following
directory of your Artix installation:

Axis version
Axis version 1.3 is used in the demo.

Example 20: Setting a Proxy’s Session Header

simpleService.Pipeline.OutputFilters.Add(new
Bus.Services.SessionFilter(session));

Example 21: Ending a Session

session.EndSession()

Note: For a complete list of available classes and
methods, see the docs.xml file, which is generated during
the Bus.Services build. It is available in the following
directory of your Artix installation:
InstallDir\utils\.NET

InstallDir/samples/advanced/session_management/axis/
client
 32 Artix Session Manager Guide C++

Procedure
To develop an Axis client that uses Artix session manager do the
following:
1. Generate Axis stub code from the Artix session manager

WSDL file as shown in Example 22:

The session-manager.wsdl file is available in the following directory
of your Artix installation:

2. Generate Axis stub code from the WSDL file for the service on
which you want your client to invoke, as shown in
Example 23:

In this example, the session_management.wsdl file is part of the
session manager demo and describes the business service on
which the client ultimately invokes. It is available in the
following directory of your Artix installation:

3. Retrieve a session manager service endpoint as shown in
Example 24:

4. Instantiate a session manager proxy as shown in Example 25:

Example 22: Generating Axis Stub Code for Session Manager

Java org.apache.axis.wsdl.WSDL2Java
..\etc\session-manager.wsdl

InstallDir/wsdl

Example 23: Generating Axis Stub Code for the Target Web Service

Java org.apache.axis.wsdl.WSDL2Java
..\etc\session_management.wsdl

InstallDir/samples/advanced/session_management/etc

Example 24: Retrieving a Session Manager Service Endpoint

java.lang.String url =
get_soap_address("../etc/session-manager.wsdl",
service, port);

java.net.URL endpoint = new java.net.URL(url);

Example 25: Instantiating a Session Manager Proxy

SessionManagerService smsl = new
SessionManagerServiceLocator();

SessionManagerBindingStub sm_binding =
(SessionManagerBindingStub)smsl.getSessionManagerPort

 (endpoint);
Artix Session Manager Guide C++ 33

5. Start a new session as shown in Example 26:

6. Retrieve the session ID and all the endpoints as shown in
Example 27:

7. Retrieve the first endpoint as shown in Example 28:

8. Insert the session ID into the SOAP header of the Axis client
request as shown in Example 29:

You must insert the session context into the SOAP header
programmatically for each invocation. Otherwise, the invocation
will fail.
9. Invoke on the endpoint, as shown in Example 30:

10. End the session, as shown in Example 31:

Example 26: Starting a Session

SessionInfo session_response = null;

session_response = sm_binding.beginSession("SM_Demo", new
org.apache.axis.types.UnsignedLong(20));

Example 27: Retrieving a Session ID and the Endpoints

SessionId session_id = session_response.getSession_id();
EndpointReferenceType[] endpoints =

sm_binding.getAllServiceEndpoints(session_id);

Example 28: Retrieving the Business Service Endpoint

EndpointReferenceType epr_ref = endpoints[0];
String url = epr_ref.getAddress().get_value().toString();
java.net.URL simple_endpoint = new java.net.URL(url);

Example 29: Inserting the Session ID into the Axis Client Request SOAP Header

String ns = "http://ws.iona.com/sessionmanager";
header = new

org.apache.axis.message.SOAPHeaderElement(ns, "id",
session_response.getSession_id());

proper_call.addHeader(header);

Example 30: Invoking on the Business Service

String _return = (String)proper_call.invoke(new
java.lang.Object[] {});

Example 31: Ending the Session

sm_binding.endSession(session_id);
 34 Artix Session Manager Guide C++

Index
Symbols
.NET client 29

demo code 29

A
APIs

new in Artix 4.0 23
Artix 4.1

special configuration for Artix 4.0 and
3.x clients 25

Artix 4.2
special configuration for Artix 4.0 and
3.x clients 25

Artix container 10
Axis client 32

demo code 32

B
beginSession() 5

C++ 18
migrating from Artix 3 23, 24

begin_session()
migrating to Artix 4 23, 24

BeginSessionFault 5
binding and protocol

used by session manager 6
bus:initial_contract:url:sessionmanager 9

, 12, 24

C
C++ client

demo code 17
implementing 17

configuration
for Artix 4.1 session manager 25
for Artix 4.2 session manager 25

D
demonstrations 5
documentation

.pdf format vii
updates on the web vii

dynamic port
configuring the session manager to
use 8

E
endpoint_group 18
EndpointReferenceType 23
endpoints 19
endSession() 5, 22

C++ 22
migrating from Artix 3 23, 24
end_session()

migrating to Artix 4 23, 24

F
fixed port

configuring session manager to use 9,
10

G
get_all_endpoints()

migrating to Artix 4 23, 24
GetAllEndpointsFault 6
getAllServiceEndpoints() 6

C++ 19, 20
migrating from Artix 3 23, 24

I
IT_Bus_Services::renewSessionFaultExce
ption 22

it_container 10
it_container_admin 10

M
migration

from Artix 3 to Artix 4 23

O
ORBconfig_domains_dir 10
ORBdomain_name 10
ORBname 10
orb_plugins 8, 11

P
plug-ins 2

how they interact 2
plugins:session_endpoint_manager:defau
lt_group 4, 11

plugins:session_endpoint_manager:peer_
timout 15

plugins:session_manager:peer_timeout 1
5

plugins:sm_simple_policy:max_concurre
nt_sessions 12

plugins:sm_simple_policy:max_session_ti
meout 12, 18

plugins:sm_simple_policy:min_session_ti
meout 12, 18

preferred_renew_timeout 18

R
renewSession() 5
Artix Session Manager Guide C++ 35

C++ 22
migrating from Artix 3 24
migrating to Artix 4 23

renew_session()
migrating to Artix 4 23, 24

RenewSessionFault 5
renew_timeout 18, 22

S
ServiceEndpointList 23
session

what is a 4
session_endpoint_manager 2, 11
SessionEndpointManager port type 6
session_id 18, 19, 22
sessionIDContext 21
session_info 18, 22
SessionManagementPolicyCallback 13
session management policy plug-in

implementing your own 13
sm_simple_policy 12

session-manager.wsdl 5, 9, 11, 12, 23, 24
location 5

SessionManagerClient
C++ 18

SessionManager port type 5
session_manager_service 2, 8
shutdown

using container 11
sm_simple_policy 2, 8

configuring 12
soap:address 9
SOAP 1.2 15

W
WS_Addressing 23
 36 Artix Session Manager Guide C++

	Preface
	Contacting Micro Focus

	Introduction
	What is the Session Manager?
	Session Manager WSDL Contract

	Configuring and Deploying the Session Manager
	Deploying the Session Manager
	Registering a Server with the Session Manager
	Configuring the Simple Policy Plug-in
	Implementing your own Policy Plug-In
	Fault Tolerance
	Adding SOAP 1.2 Support

	Using the Session Manager from an Artix Client
	Implementing a C++ Client
	Migrating from Earlier Versions

	Using the Session Manager from a non-Artix Client
	Implementing a .NET Client
	Implementing an Axis Client

	Index

