
COBOL Analyzer 2.1

COBOL Analyzer 2.1

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK
http://www.microfocus.com

Copyright © Micro Focus 2009-2017. All rights reserved.

MICRO FOCUS, the Micro Focus logo and COBOL Analyzer are trademarks or registered
trademarks of Micro Focus IP Development Limited or its subsidiaries or affiliated
companies in the United States, United Kingdom and other countries.

All other marks are the property of their respective owners.

2017-12-03

ii

Contents

Installation Guide ... 10
Overview ... 10

Installation Tasks .. 10
Deployment .. 11
Database Setup ..12

Hardware and Software Requirements ... 13
Repository Server Hardware Requirements ...13
Repository Server Software Requirements ..13
CA Server Hardware Requirements ...14
CA Server Software Requirements .. 14
CA Client Hardware Requirements .. 15
CA Client Software Requirements ..15

CA Performance Optimization Guidelines ...16
Choosing Hardware Configuration ... 16
Software Configuration ...20

Installing and Uninstalling COBOL Analyzer ...21
Installing CA on the Server or Client .. 21
Uninstalling COBOL Analyzer .. 21

Post-Installation Administrative Tasks ... 22
Configuring COBOL Analyzer .. 22
Licensing .. 22
Configuring an ODBC Data Source Name ...23
Creating a Shared Folder for Workspaces ... 25
Upgrading Workspaces .. 25

Troubleshooting the Installation ...26
Troubleshooting Workspace Access ...26

Getting Started ... 27
Introducing COBOL Analyzer ..27

COBOL Analyzer Products ...27
How COBOL Analyzer Models Applications ...28
Workspaces and Projects ...29
Single-User versus Multiuser Environments ...30
Multiuser Environment Basics .. 30

COBOL Analyzer Basics ... 33
Creating a Workspace in Oracle or DB2 .. 33
Creating a Workspace in SQL Server .. 34
Creating a Workspace Using the Workspace Build Wizard36
Designating Users for Security Policies ..36
Refreshing the Workspace Path ...37
Connecting to a Workspace in Oracle or DB/2 ...37
Connecting to a Workspace in SQL Server ..38
Opening a Workspace ..39
Registering Source Files .. 39
Queue Processor ... 43
Check Workspace Queue ...43
Manage Queue ...44
Verifying Source Files ...44
Quick Inventory ...45
Using the COBOL Analyzer Main Window ... 45
Using Tool Windows ... 56
Setting Options ...57

Contents | 3

Working with Reports and Diagrams ..61
Using the Guide for a Tool ..61
Purge Activity Log .. 61

Preparing Projects ... 63
Registering Source Files ...63

Host Environment Source Compatibility ...64
Setting Registration Options: Extensions Tab .. 66
Setting Registration Options: Source Files Tab ..67
Creating New Source Files ...67
Refreshing Source Files ... 68
Using Source Synchronization ... 68
Exporting Source Files from a Workspace ...69
Deleting Objects from a Workspace ...69
Deleting a Workspace .. 69
Japanese Language Support ... 69

Setting Up Projects ... 70
Creating Projects ..70
Sharing Projects ...70
Protecting Projects ... 70
Moving or Copying Files into Projects .. 70
Including Referenced and Referencing Objects in a Project 71
Removing Unused Support Objects from a Project ..71
Emptying a Project ... 71
Deleting a Project ... 72

Verifying Source Files ... 72
Enabling Parallel Verification .. 72
Invalidating Files Before Reverification ...73
Setting Workspace Verification Options: Legacy Dialects Tab 74
Setting Workspace Verification Options: Settings Tab ..76
Setting Workspace Verification Options: Parallel Verification Tab 81
Setting Project Verification Options .. 81
Identifying System Programs ... 85
Specifying Boundary Decisions ..85
Performing Post-Verification Program Analysis .. 86

Using Post-Verification Reports .. 87
Viewing Verification Reports ...87
Viewing CRUD Reports ..88

Inventorying Applications .. 89
Using Reference Reports ... 90
Using Orphan Analysis Reports ...92
Resolving Decisions ... 94

Identifying Interfaces for Generic API Analysis ... 97
Identifying Unsupported API Calls to the Parser .. 98
Using Expressions ..103
Understanding Decisions ... 107
Understanding Conditions .. 107
Usage Example .. 108

Analyzing Projects ... 110
Managing Tags ..110

Understanding the Tag Manager Window .. 110
Creating Tags ... 112
Specifying Access to Tags ..112
Assigning Tags ... 112
Removing Tags ...113
Creating Relationships Between Tags ..114
Deleting Tags ..115

4 | Contents

Creating Tag Queries ... 115
Deleting Tag Queries ..116
Refreshing the Tag Manager Window .. 116
Cleaning Up the Tag Manager Window ..116
Generating Reports ..116

Analyzing Relationship Flows ... 116
Understanding Relationship Flow Diagrams .. 117
Understanding Diagram Scopes .. 117
Understanding Diagram Layouts .. 117
Generating a Diagram for the Selected Project ..118
Generating a Diagram for Objects Copied and Pasted onto the Canvas 118
Understanding the Diagrammer Window ..118
Excluding Objects Outside the Project ... 122
Showing Incomplete Composite Relationships .. 122
Colorizing Project Boundaries ..122
Showing and Hiding Object Labels .. 122
Working with Groups .. 123
Black-Boxing Tagged Objects ...123
Filtering Objects ... 124
Clustering Objects ..125
Setting Diagrams User Preferences ... 126
Using the Scope Editor ...127
Pruning a Scope ...133
Mirroring a Scope ...133

Analyzing Global Data Flow .. 133
Understanding the Global Data Flow Panes .. 133
Data Flow Relationships ...134
Assigning Business Names Manually .. 136
Setting Global Data Flow User Preferences ...136
Setting Global Data Flow Project Options .. 136

Estimating Complexity and Effort .. 137
Viewing Complexity Metrics ..137
Setting Complexity Metrics User Preferences .. 138
Estimating Effort ...138
Setting Effort Estimation Options ... 139
Specifying the Change Magnitude for a Source File .. 139

Identifying Classes of Data Items with Change Analyzer ..139
Understanding Data Item Classification ... 140
Getting Started in Change Analyzer ...140

Repository Exchange Protocol Syntax ..145
Query Syntax ... 145
Example 1 .. 147
Example 2 .. 147

Portability Assessment ..148
Quality Assessment .. 148

Analyzing Programs ...149
Introducing Interactive Analysis ...149

Understanding Interactive Analysis Models ..149
Using the Interactive Analysis Main Window ..150
Using Basic Navigation Controls .. 151
Using the Properties Window ...151
Assigning Business Names Manually .. 152

Understanding Program Context ...153
Using the Source Pane ..153
Using the Context Pane ..155
Using the Objects Pane ..156

Contents | 5

Using the Watch Pane ..156
Using the Screen Pane ...157
Using the Bird's Eye Pane ..158
Using the Model Reference Pane ...158

Performing Advanced Searches ..159
Defining a Search Filter ..159
Executing Advanced Searches ...164
Advanced String Attribute Operations .. 165
Working with Advanced Search Criteria ...165

Staging Program Analysis with Code Search ... 167
Getting Started in Code Search ... 167
Understanding the Code Search Pane ...168
Executing Code Search Searches ..169
Using Construct Lists to Narrow a Code Search ..170
Searching for Similar Constructs in Code Search .. 171
Extracting Business Rules in Code Search ..171
Generating an Impact Subtree Report in Code Search 172
Marking and Colorizing Constructs in Code Search .. 172
Creating Projects in Code Search .. 173
Generating Metrics and Detailed Reports .. 173
Running Code Search Reports in the Main Window ..173
Running Code Search Reports in Interactive Analysis ...175

Analyzing Impact Traces ... 175
Generating an Impact Trace ... 175
Understanding the Hierarchical View ... 176
Understanding the Diagram View ...176
Data Flow Relationships ...176
Setting Impact Pane User Preferences .. 178
Setting Impact Pane Project Options: Processing Tab ... 178
Setting Impact Pane Project Options: Relationships Tab 179
Setting Impact Pane Project Options: Impact Reports Tab 181
Exporting and Importing an Impact Trace .. 181
Generating a Subtree Report ... 181
Generating a Pane Report ... 182
Generating an Affected Code Report (COBOL Only) ...183

Analyzing Program Control Flows ...183
Using the Program Control Flow Pane ... 183
Using the Execution Path Pane .. 186
Using the Flowchart Pane .. 187
Using the Animator ...189

Setting Up a Glossary ... 190
Understanding the Glossary Pane ... 190
Searching for Terms ... 191
Assigning Business Attributes .. 193
Extracting Business Names from Screens ... 194
Importing and Exporting Business Attributes ... 194
Propagating Business Names .. 195
Deleting Business Attributes .. 195
Setting Glossary Workspace Options ...196
Refreshing a Glossary ..196
Generating Glossary Reports ...196

Extracting Business Rules .. 196
Understanding Business Rules .. 197
Extracting Business Rules Manually .. 199
Performing Basic Tasks in the Rules Pane ...200
Editing Rule Attributes ..202

6 | Contents

Propagating Rule Attributes ... 204
Identifying Triggered Rule Sets .. 205
Identifying I/O Data Elements ...205
Identifying Control Conditions .. 207
Searching for Rules ..208
Batch Processing Rule Attributes ...210
Synchronizing Sources ...211
Validating Rule Segments after Refreshing or Editing Code211
Setting Business Rule Manager Project Options ... 211
Customizing Rule Attributes ... 213
Generating Reports ..214

Using the Batch Duplicate Finder ..215
Finding Duplicates ..215
Marking Items for Comparison ... 215
Setting BDF Search Options .. 216

Creating Components ..219
Introducing Component Maker ..219

Componentization Methods ..219
Componentization Outputs ...219
Component Maker Basics .. 220

Setting Component Maker Options ... 224
Setting General Options ... 224
Setting Interface Options ..225
Setting Optimize Options ..225
Setting Document Options ... 227
Setting Component Type-Specific Options ...228
Setting Component Conversion Options .. 228

Eliminating Dead Code ... 228
Generating Dead Code Statistics ... 228
Understanding Dead Code Elimination .. 229
Extracting Optimized Components ...229

Technical Details ... 230
Verification Options .. 230
Keep Legacy Copybooks Extraction Option .. 232
How Parameterized Slices Are Generated for Cobol Programs233
Setting a Specialization Variable to Multiple Values ...234
Arithmetic Exception Handling ... 235

Using the Batch Refresh Process ...237
Using the Batch Refresh Process ... 237

Understanding the Batch Refresh Process .. 237
Configuring the Batch Refresh Process ... 237
Preparing Files for Batch Refresh Processing ... 241
Enabling Parallel Verification .. 241
Executing the Batch Refresh Process ..242
Producing Utilities for BRP ... 243
Guidelines for BRP Utilities .. 244

Using Batch Scripts ...249
AddNew.bj .. 249
AffectedCodeReport.bj ...249
AnalyzeProgram.bj ... 250
ApplyPCF.bj ..251
BusinessRulesReport.bj ...252
BusinessRulesValidation.bj .. 252
ChangeTraffic.bj ... 253
CheckQueue.bj ...254
ClipperDetails.bj ... 255

Contents | 7

ClipperMetrics.bj ...255
ClipperMultiSearch.bj ... 256
ClipperSearch.bj ...256
tpc_CodeSearchReport.bj ..257
ComplexityReport.bj ... 258
CreatePCF.bj .. 258
CreateWS.bj ... 258
CRUDReport.bj .. 260
DBA.Cobol.bj ..260
DCE.bj .. 261
DiagramCallie.bj ... 262
DiagramFlowchart.bj .. 263
DiagramProject.bj ...263
DiagramTS.bj ..265
EffortReport.bj .. 265
ExecutiveReport.bj ... 266
ExportDescriptions.bj ... 266
ExportRules.bj ..267
ExportScreens.bj ..267
GenScreens.bj ..268
ImpactReport.bj ..268
ImpactReportFromList.bj .. 269
ImportRules.bj .. 270
IncludeReferences.bj ..271
Invalidate.bj .. 271
InventoryReport.bj ..272
MFCobolCLink.bj ..273
Populate.bj ..273
ProcessChangeUnit.bj ..274
ReferenceReport.bj .. 274
Refresh.bj ... 275
Register.bj .. 276
Related.bj ... 277
ResolveDecisions.bj ... 278
RestoreDecisions.bj ... 279
RXP.bj ...280
SaveDecisions.bj .. 280
SetChangeDate.bj .. 281
SetProject.bj ... 281
TagCmd.bj .. 282
Unregister.bj ... 282
UpdateOnly.bj ...283
UpdateTrendingSnapshot.bj ... 284
Upgrade.bj ..284
Verify.bj ... 285

Executing Batch Scripts .. 286
Example: Generating Reports ..286
Example: Executing Repository Queries ..287
Example: Creating Diagrams ... 288
Example: Performing an Advanced Search ..288

Using Architecture Modeler ...290
Introducing Architecture Modeler ... 290
Opening Architecture Modeler ... 290
Understanding the Application-Level Metamodel ..291

Entity Type Properties .. 291
Entity Type Attributes ..293

8 | Contents

Relationship Type Properties ... 293
Defining an Extension with Architecture Modeler ..294

Loading a Metamodel ...295
Saving the Extended Metamodel ... 295
Adding a Sample Source File ...295
Defining Entity Types ..297
Defining Relationship Types ... 298
Architecture Modeler Internal Language Functions Description 298
Mapping Regular Expressions to Text File Searches ...300
Mapping XPath Queries to XML File Searches ..302
Exporting the Extended Metamodel ... 308
Reconfiguring COBOL Analyzer ...308
Troubleshooting the Extended Metamodel ... 308

Using Galleries ..309
Support Notes ...310

Supported Languages ...310
Supported Features by Language ...313
C/C++ Support .. 318

Registering C/C++ Files ... 318
Verifying C/C++ Files ..318

COBOL Support ..319
Object-Oriented Statements ...319
Separators Must Be Followed by Blanks ..319
Copybooks in Different Partitioned Datasets ..319
Copybooks in a Library ...320
How COBOL Analyzer Calculates COBOL Dead Code Statistics320
Special Handling of Cobol Program Complexity Metrics321
Possible Padding in MOVE Statements ..321

Hogan Framework Support ... 321
Overview .. 322
Inputs: Hogan Configuration File Preparation .. 322
Validating CA Format Using HoganFileConvertor .. 326
Troubleshooting Hogan Framework Support .. 329

Java Support ... 329
JSP Support ..330

Resolving the Location of Java Types and Packages Referenced in JSP Files ... 330
.NET Support .. 331
PL/SQL Support ..331
SQL Support ... 331

Renaming DCLGEN Include Files ..331
Prefixes for SQL Names ...332

VB Support ..332
Generating Library Description Files ..332
Restrictions on Visual Basic Support .. 333

Contents | 9

Installation Guide

Overview
This manual describes how to install and configure Micro Focus COBOL Analyzer (CA), a suite of software
products for analyzing and modernizing legacy applications.

COBOL Analyzer provides insight into the technical reality of complex application portfolios, including

• Tools for application and program level understanding, utilizing extensive metrics, reports, diagrammatic
views and querying tools to support myriad of business initiatives.

• Quality Assessment with standard code quality queries to serve as a guidance to a code quality practice
in both development and maintenance phases.

• Portability Assessment to help you generate various HTML reports to identify points of interest for
migrations.

• In depth analysis tools to promote efficiency in the performance of daily tasks such as field changes,
understanding of data propagation through a program, and dead code removal.

Business Rule Manager mines business logic from program code and encapsulates the logic in business
rules.

While all products are installed with COBOL Analyzer, each product is licensed separately.

CA can be deployed in a multi-user environment or single users with a local database. The multi-user
environment gives users access to a common repository of application objects. Repository setup is the
responsibility of a master user, leaving team members free to focus on their tasks. The database for the
repository is assumed to be the customer's own.

CA installations consist of the following components:

• The CA Server which hosts CA workspace files and related support files.
• CA Clients which host the link files used to connect to workspaces on the server.
• For single user setups, the CA software is installed on the developer's machine and includes an option

to install a local database.

This manual also describes how to install and configure the database client used to connect to repositories,
for sites at which the database client is not already installed. If you store repositories in Oracle or DB2, a
database client must be installed wherever the CA client or CA server is installed.

Installation Tasks
The table below describes the tasks involved in installing COBOL Analyzer and the order in which the tasks
must be performed.

Task Order Notes

Install CA on Server 1 This is for multi-user environments only.

Install CA on Clients 2 The CA package optionally installs SQL Server Express.
This is enough for a small sized repository (up to 10 GB).

Each task is described and explained in the chapters of the Installation Guide.

10 | Installation Guide

Deployment
The figure below shows the standard CA deployment scenario. The role each machine performs and its
key relationships are described in the following sections.

Mainframe and Network Server
The mainframe typically hosts the application to be modeled in CA. Application source files are
downloaded from the mainframe (and, if necessary, a network server) to the CA server via FTP or SFTP.

Repository Server
The Repository Server hosts the database for one or more multiuser repositories, one repository per CA
workspace. This server provides centralized, network-accessible storage for parsed data and analysis
output.

CA Server
The CA Server hosts workspaces, workspace support files (including the copies of application source files
CA creates at workspace loading), and workspace output. This server leverages multiple processes to
enhance parsing performance in online or batch mode.

Parsed data is sent via ODBC to the repository server. Some analysis output is stored on the CA server as
well.

Note: In a multi-user environment, the CA Server cannot reside on the same machine as the CA
Repository. The installation program is the same for the CA client and CA server.

CA Client
CA Clients host the link files that let team members connect to workspaces on the CA server. These clients
access repository data stored in the repository server via ODBC.

Note: The installation program is the same for the CA client and CA server.

Single User Installation
You can configure COBOL Analyzer to build a workspace on one machine for a single user. You can use
Microsoft SQL Server Express - installed by default - to create a workspace on your local machine. CA

Installation Guide | 11

creates a database for the workspace "on the fly," with no intervention on your part. If you do use SQL
Server Express, bear in mind that the Windows user who creates the workspace must have been
configured with appropriate permissions in SQL Server Express. The user who installed SQL Server
Express will always have the appropriate permissions. See the SQL Server Express documentation for
configuration instructions.

Restriction: The database size limit when using the SQL Server Express option is 10 GB.

Database Setup
If you use Microsoft SQL Server, the DBA must set up a SQL Server database for each workspace
repository you plan to create. CA users typically supply Windows credentials to access the repository.

SQL Server Database Setup
If you use Microsoft SQL Server, you must set up a SQL Server database for each workspace repository
you plan to create. If CA users will connect to the repository through a SQL Server login account, make
sure the server authentication property is set to SQL Server and Windows Authentication mode, as
described below.

The following instructions assume you are using the SQL Server Management Studio tool for SQL Server
2008. The procedure for the SQL Server Management Studio Express tool for SQL Server 2005 is similar.

Note: For Windows XP installations using the Italian locale, you must set the Time format in the
Control Panel Regional Language Options to "HH:mm:ss" before attempting to verify an CA
workspace with a SQL Server repository. Click Settings > Control Panel > Regional and Language
Options > Customize > Time and choose "HH:mm:ss" from the Time format drop-down.

1. Choose Start > Programs > Microsoft SQL Server 2008 > SQL Server Management Studio.

2. In the Connect to Server screen, select:

• Database engine in the Server type drop-down.
• The server on which you want to create the repository database in the Server name drop-down.
• Windows Authentication in the Authentication drop-down.

3. Click Connect. The Microsoft SQL Server Management Studio window opens. In the Object Explorer
pane, expand the folder for the server. Click Databases and choose New Database... from the right-
click menu. The New Database window opens.

4. Select the General page. In the Database name field, enter the name of the database for the
repository. Modify the logical name and initial sizes of the database and log files if needed, then click
OK. The new database is displayed in the Object Explorer pane.

Note: Check the SQL Server Management Studio documentation for details on other database
settings.

5. If CA users will connect to the workspace repository through a Windows user account, skip the
remaining steps. If CA users will connect to the workspace repository through an SQL Server login
account, click the server name in the Object Explorer pane and choose Properties from the right-click
menu. The Server Properties window opens.

6. Select the Security page. In the Server authentication area, select SQL Server and Windows
Authentication mode, then click OK.

7. In the Object Explorer pane, click Security > Logins and choose New Login... from the right-click
menu. The Login - New window opens.

8. Select the General page. In the Login name field, enter the database login name, then choose SQL
Server authentication. Enter the password for the database login in the Password and Confirm
password fields, then click OK. The new login is displayed in the Object Explorer pane.

12 | Installation Guide

9. In the Object Explorer pane, expand the database you created for the workspace repository. Click
Security > Users and choose New User... from the right-click menu. The Database User - New window
opens.

10.Select the General page. Define the database user:

• In the User name field, enter the database user name.
• In the Login name field, enter the database login name. Use the browse button to browse for the

login name.

Note: You specify the login name, not the database user name, when you create or connect to
a workspace, so it is usually best to make the user name and login name the same.

• In the Database role membership pane, check db_owner, then click OK. The new user is displayed
in the Object Explorer pane.

Tip: You can use the same login and database user for multiple databases/workspaces.

You can configure COBOL Analyzer to build a workspace on one machine for a single user. You can use
Microsoft SQL Server Express - installed by default - to create a workspace on your local machine. CA
creates a database for the workspace "on the fly," with no intervention on your part. If you do use SQL
Server Express, bear in mind that the Windows user who creates the workspace must have been
configured with appropriate permissions in SQL Server Express. The user who installed SQL Server
Express will always have the appropriate permissions. See the SQL Server Express documentation for
configuration instructions.

Restriction: The database size limit when using the SQL Server Express option is 10 GB.

Hardware and Software Requirements
The following sections describe the hardware, disk space, operating system, and software requirements for
CA installations.

Repository Server Hardware Requirements
The table below lists the hard drive storage requirements for the Repository Server. For other hardware
recommendations, check with support services.

Type Requirement Notes

Hard Drive Storage Variable Minimum of 20 GB disk space needed for the
software installation of the RDBMS and the
CA template database. Plus approximately
60x the size in bytes of the application source
code modeled in CA (e.g., 100 MB source =
6 GB).

Repository Server Software Requirements
The table below lists the software requirements for the Repository Server.

Type Requirement

SQL Server MS SQL Server 2005, 2008, 2012 or 2016

Installation Guide | 13

CA Server Hardware Requirements
The table below lists the hardware requirements for CA Server installations. Hardware requirements may
vary depending on the size of the application you are analyzing.

Type Requirement Notes

Processor 2.6 GHz Dual Core or 2x 3.0+ GHz
Processors

Dual processing capability with multiple cores
in a processor or separate physical
processors.

Physical Memory 3 GB RAM

Virtual Memory 1 GB to 3 GB

Hard Drive Storage Variable For CA workspaces, approximately 40x size
in bytes of the application source code
modeled in CA (for example, 100 MB source
= 4 GB).

For CA software, minimum 200 MB.

CA Server Software Requirements
The table below lists the software requirements for CA Server installations.

Type Requirement

Operating System Microsoft Windows Server 2008, 32-bit and 64-bit

Microsoft Windows Server 2012, 32-bit and 64-bit

Microsoft Windows 7, 32-bit and 64-bit

Microsoft Windows 8, 32-bit and 64-bit

Microsoft Windows 10, 32-bit and 64-bit

Pre-Requisite Software Note: The pre-requisite software is automatically
installed by the installer.

• Windows Installer 4.5
• Primary Interoperability Assemblies 2005 1.0.0
• Sentinel RMS License Manager
• .NET Framework 3.5 Service Pack 1

Note: On Windows Server 2008 and Windows
Server 2012, .NET Framework is a feature and
installing it is different from that on older versions.
For information on how to enable it, see the
Microsoft Support Blog.

• .Net Framework 4.0
• Visual C++ 2005 Redistributable SP1 8.0_2.0.0
• Visual C++ 2010 Redistributable 10.0_2.0.0
• Visual C++ 2012 Redistributable 11.0.61030
• SQL Server 2008 R2 Express (optional install, Windows 7

pre-SP1 only)
• SQL Server 2012 Express (optional install)

Internet Explorer 6.0 or higher (optional) Required to view HTML report outputs.

14 | Installation Guide

http://www.microfocus.com/docs/links.asp?ea=net35server2008r2

Type Requirement

Microsoft Office (optional) Required by CA tools with reporting capabilities to save to
Microsoft Office file formats. Excel is required for standard
deviation charts in the Executive Report.

Microsoft Visio (optional) Required to generate output as Microsoft Visio .VSD files.

Note: Visio .VDX files are XML-based and may be
generated without Visio being installed on the CA client.

JRE 7 or higher (optional) Required for Java parsing.

CA Client Hardware Requirements
The table below lists the hardware requirements for CA Client installations. Hardware requirements may
vary depending on the size of the application you are analyzing.

Type Requirement Notes

Processor 3.0 GHz Processor Single processor (single or dual core).

Physical Memory 1GB RAM

Virtual Memory 1GB to 3GB

Hard Drive Storage Variable For CA software, minimum 200MB.

CA Client Software Requirements
The table below lists the software requirements for CA Client installations.

Type Requirement

Operating System Microsoft Windows Server 2008, 32-bit and 64-bit

Microsoft Windows Server 2012, 32-bit and 64-bit

Microsoft Windows 7, 32-bit and 64-bit

Microsoft Windows 8, 32-bit and 64-bit

Microsoft Windows 10, 32-bit and 64-bit

Pre-Requisite Software Note: The pre-requisite software is automatically
installed by the installer.

• Windows Installer 4.5
• Primary Interoperability Assemblies 2005 1.0.0
• Sentinel RMS License Manager
• .NET Framework 3.5 Service Pack 1

Note: On Windows Server 2008 and Windows
Server 2012, .NET Framework is a feature and
installing it is different from that on older versions.
For information on how to enable it, see the
Microsoft Support Blog.

• .Net Framework 4.0
• Visual C++ 2005 Redistributable SP1 8.0_2.0.0
• VisualC++ 2010 Redistributable 10.0_2.0.0
• Visual C++ 2012 Redistributable 11.0.61030
• SQL Server 2008 R2 Express (optional install, Windows 7

pre-SP1 only)
• SQL Server 2012 Express (optional install)

Installation Guide | 15

http://www.microfocus.com/docs/links.asp?ea=net35server2008r2

Type Requirement

Internet Explorer 6.0 or higher (optional) Required to view HTML report outputs.

Microsoft Office (optional) Required by CA tools with reporting capabilities to save to
Microsoft Office file formats. Excel is required for standard
deviation charts in the Executive Report.

Microsoft Visio (optional) Required to generate output as Microsoft Visio .VSD files.

Note: Visio .VDX files are XML-based and may be
generated without Visio being installed on the CA
Client.

JRE 7 or higher (optional) Required for Java parsing.

CA Performance Optimization Guidelines
This section describes the optimal performance environments in which to run COBOL Analyzer, including
selecting the right hardware configuration for specific types of usage, and optimizing the CA configuration
for the selected configuration. The suggestions for performance improvements are focused on the
repository build phase of the workspace.

The most time-consuming and hardware-intensive aspects of running COBOL Analyzer are the source
verification and database loading during the workspace build phase. The guidelines include suggestions for
improving performance by using multiple Queue Processors and taking advantage of multiple CPU cores,
using the parallel verification option which determines the number of used Queue Processors, and
guidelines for defining the number of Queue Processors needed for a given configuration of available
machines and database server power.

There are two deployment scenarios for COBOL Analyzer:

• Single User - this is typically a mobile user, such as a consultant on a laptop, who uses the repository
for demonstration or assessment purposes.

• Enterprise Installations - several computers are used (one for a database server, one for workspace and
multiple user machines).

Choosing Hardware Configuration

Single User (One Machine)

Minimum Hardware Requirements

Type Requirement Notes

Processor 1.8 GHz, minimum dual core

Physical Memory 2 GB RAM

Hard Drive Storage HDD with at least 20 GB free space For CA workspaces, approximately
60x size in bytes of the application
source code modeled in CA (for
example, 100 MB source = 6 GB).

With this minimum hardware configuration you can run COBOL Analyzer and analyze sources.

16 | Installation Guide

Suggested Upgrades

The analysis time increases when the number of analyzed sources rises. To reduce the analysis time we
recommend you use one of the suggested upgrades:

1. A high speed Solid State Drive (SSD) for storing database tables. This can be added as an external
drive; however USB 3.0 or eSATA must be used. This will improve the verification performance by 25%
over the minimum configuration.

2. Use a quad core processor such as Intel Core i7 2670QM or any other quad core QE/QM processor.
This improves the verification performance by 50% over the minimum system configuration.

Note: You must run additional Queue Processors to benefit from the additional cores. See the
Choosing the Optimal Amount Of Queue Processors section for details.

Note: Improved verification performance means that if the project verification takes 100 minutes, and
you get 33% performance improvement, the verification time is reduced to 67 minutes.

Recommended Configuration 1

This configuration gives 33% improved verification performance. The changes from the minimum
configuration are marked in bold.

Type Requirement Notes

Processor 2.0 GHz, 2 cores

Physical Memory 4 GB

Hard Disk Drive SSD with at least 20 GB free space For CA workspaces, approximately
60x size in bytes of the application
source code modeled in CA (for
example, 100 MB source = 6 GB).

Recommended Configuration 2

Recommended Configuration 2 gives 50% improved performance of verification. The changes from the
minimum configuration are marked in bold.

Type Requirement Notes

Processor 2.0 GHz, 4 cores

Physical Memory 4 GB

Hard Disk Drive Any type with at least 20 GB free
space

For CA workspaces, approximately
60x size in bytes of the application
source code modeled in CA (for
example, 100 MB source = 6 GB).

Performance Configuration

The Performance Configuration is a combination of all upgrades. It gives 66% improved verification
performance. The changes from the minimum configuration are marked in bold.

Type Requirement Notes

Processor 2.0 GHz, 4 cores

Physical Memory 4 GB

Hard Disk Drive SSD with at least 20 GB free space For CA workspaces, approximately
60x size in bytes of the application

Installation Guide | 17

Type Requirement Notes

source code modeled in CA (for
example, 100 MB source = 6 GB).

Enterprise Installation (Multiple Users Using Separate Database
Server)
A typical environment where large projects will be verified on a regular basis usually consists of 3 types of
components:

1. Database server (MS SQL Server).
2. CA server with the workspace files. This is the machine where CA is installed and where the CA

workspace folder is located.

Note: There can be more than one workspace.

3. Processing node(s). This is one or more computers running Queue Processors, or hosting the users of
the tool.

Database Server

Minimum hardware requirements

Type Requirement Notes

Processor 2.6 GHz Dual Core or 2x 3.0+ GHz
Processors

Dual processing capability with
multiple cores in a processor or
separate physical processors.

Physical Memory 3 GB RAM

Hard Disk Drive For CA workspaces, approximately
60x size in bytes of the application
source code modeled in CA (for
example, 100 MB source = 6 GB).

The minimum configuration can be up to four concurrent Queue Processors while providing reasonable
response time. To improve performance, one of the following upgrades should be used:

1. Use faster storage, for example use SSD or storage arrays in RAID0. SSD improves the performance of
verification by 33%. 2x SCSI 15000 rpm gives a similar performance improvement.

2. Use 8 GB of RAM. Increasing the amount of RAM improves the performance of verification by 15%
when using more Queue Processors.

3. Network latency between database server and repository server and users should be less than 1ms.

Recommended hardware configuration

This is the recommended hardware configuration. The changes from the minimum configuration are
marked in bold.

Type Requirement Note

Processor 2.6 GHz Dual Core or 2x 3.0+ GHz
Processors

Dual processing capability with
multiple cores in a processor or
separate physical processors.

Physical Memory 8 GB RAM

18 | Installation Guide

Type Requirement Note

Hard Disk Drive SSD or SCSI 15000 rpm in RAID0 For CA workspaces, approximately
60x size in bytes of the application
source code modeled in CA (for
example, 100 MB source = 6 GB).

Performance Configuration

You get 33% improved performance of verification.

Type Requirement Note

Processor Xeon CPU E5310 or Core i7 3770

Physical Memory 8 GB

Hard Disk Drive 2x SCSI 15000 rpm RAID0 or 240GB
SSD

Note: Performance configuration can support up to 16 concurrent Queue Processors. Note that user
activity through the online tool should be counted as an active Queue Processor.

CA and Workspace Server

The repository server stores the COBOL Analyzer workspace folder and files. It is shared on the network
so that other users can access it.

Warning: Micro Focus does not recommend combining the CA server and database server (and even
processing node) for machines with limited resources.

Minimum hardware requirements for Repository Server are:

Type Requirement Note

Hard Disk Drive Minimum of 20 GB disk space
needed for the software installation of
the database software.

For CA workspaces, approximately
60x size in bytes of the application
source code modeled in CA (for
example, 100 MB source = 6 GB).

Storing your workspace on an SSD
drive improves verification
performance by 5%-15%, depending
on your project.

Processing Node/Nodes

This is the machine that runs the Queue Processors and the processes that they kick off. The minimum
configuration lets you run a single Queue Processor.

Minimum System Requirements

Type Requirement

Processor 3.0 GHz single core or 2 GHz dual core

Physical Memory 2 GB

Virtual Memory 1 GB to 3 GB

Hard Disk Drive 1 GB

Installation Guide | 19

The minimum system lets you analyze small volumes of sources and use the basic functionality of the tool.
To determine the optimal amount of Queue Processors for your Processing node see Choosing the
Optimal Amount of Queue Processors. To improve the performance, some of the following upgrades can
be used:

1. Use more CPUs or CPU cores. COBOL Analyzer scales very well so the performance improvement
matches the CPU cores added - verification performance is improved by 90% when CPU cores are
doubled. The limit is eight physical cores that exclude hyper threading, with 16 queue processors. Each
concurrent Queue Processor instance needs up to an additional 2GB of RAM. Make sure your database
server can support the additional Queue Processors, see Database Server.

2. Use more computers as processing nodes.

Recommended Configuration (66% improved performance of verification)

Type Requirement

Processor 3 GHz quad core CPU

Physical Memory 4 GB

Hard Disk Drive 4 GB

As these processing nodes communicate extensively with the database server, a low-latency network is
required between processing node(s) and database server.

Note: For best results, the computers must be on the same local network. You can use a repository
server or a database server (or both) as processing nodes, provided that MS Windows is installed.

Software Configuration

Verification Information
Verification is the process of analyzing the code loaded into CA. The verification process demands a lot of
CPU power. COBOL Analyzer is designed to use a single CPU core for the main application, but each
Queue Processor can run on a separate CPU core. The Queue Processors can even run on multiple
computers to help with the verification database loading. There are two ways of initiating the verification
process. The first is the online tool (COBOL Analyzer) and the second is through the Batch Refresh
Process (BRP).

Parallel Verification
By default COBOL Analyzer uses serial verification both for the online tool and for BRP. If you have a
multicore CPU, it is better to use parallel verification.

To enable it in COBOL Analyzer:

1. Click Options > Workspace Options.
2. Click Verification > Parallel Verification tab.
3. Select either

• Run Parallel Verification in the online tool
• Run Parallel Verification in BRP

4. Adjust the Minimum Queue Processors to improve performance when using an optimized number of
CPU cores.

Note: On a quad core CPU you get up to 4 times better performance provided that you use the
optimal number of Queue Processors.

20 | Installation Guide

Choosing the Optimal Number of Queue Processors
The optimal number of Queue Processors is related to the number of physical CPU cores available.

If you have X physical CPU cores you should use at least X Queue Processors. Using more Queue
Processors than physical CPU cores slightly increases performance but depending on your system setup it
could also slow down the verification because of the large number of concurrent IO operations.

Note: Micro Focus recommends using <number-of-physical-CPU-cores> multiplied by two.

Using More Computers
You can start a new Queue Processor on another computer to help the current verification.

Note: CA must be installed on the computer that launches a Queue Processor.

1. Open Micro Focus COBOL Analyzer Administration and click Administer > Build New Connection.
This creates a local .rwp file to connect to the workspace that needs help during the verification and
database loading.

2. Click Administer > Launch Queue Processor. The Launch Queue Processor window opens.
3. Specify the local .rwp file for the workspace and enter the number of Queue Processors that you want

to start.

Installing and Uninstalling COBOL Analyzer
Before running an installation program described in this section, make sure you have administrative
permissions for the machine on which you are performing the installation. If you do not have administrative
permissions, the installation program will not let you continue.

Note: You can run the Windows Installer (.msi) installation programs "silently." That is particularly
useful when you are installing clients on a network. Check with support services for the appropriate
sequence of commands.

Installing CA on the Server or Client
The CA Server hosts CA workspace files and related support files. CA Clients host the link files used to
connect to workspaces on the server. Follow the instructions in this section to install CA on the client or
server. The Micro Focus License Manager is packaged with the installation.

Note: Having the CA server and the database on separate machines could improve performance. The
installation program is the same for the CA client and CA server.

1. Double-click COBOLAnalyzer.exe. Note that there might be a version number in the name of
the .exe file.

2. Change the installation directory if not installing to the default location.

3. Select which optional installs you want to include:

• Microsoft SQL Server - Express Edition

4. Read the End User License Agreement and check I agree to the End User License Agreement.
5. Click Install.

Uninstalling COBOL Analyzer
Follow the instructions below to uninstall an COBOL Analyzer product. Make sure you close any open CA
programs before running the uninstall program.

Installation Guide | 21

1. Click Start > Control Panel > Programs > Programs and Features > Uninstall a program
2. In the Uninstall or change a program window, right-click the product you want to uninstall, then click

Uninstall. You are prompted to confirm that you want to uninstall the product. Click Uninstall.

Post-Installation Administrative Tasks
Before you can work in COBOL Analyzer, you must complete the basic administrative tasks described in
this section. You are prompted to perform the first of these tasks, configuring the CA, when you complete
the installation.

Configuring COBOL Analyzer
Use the Configuration Manager in the COBOL Analyzer Administration tool to configure CA options and
displays for the programming languages, dialects, character sets, and products in use at your site.

If you configure your CA for COBOL, for example, you will see only the CA options and displays
appropriate for COBOL modernization. You need to configure your CA for PL/I as well, you can come back
to the Configuration Manager later and select PL/I in addition to COBOL.

1. Open the Configuration Manager window.

• If you are installing CA, the Configuration Manager window opens after you finish the installation.
• If you have previously installed CA and want to reconfigure it, choose Start > Programs > Micro

Focus > > Administration. The COBOL Analyzer Administration window opens. In the Administer
menu, choose Configure Micro Focus . The Configuration Manager window opens.

Note: If CA is open, you are prompted to exit. Click OK, then close CA.

2. Select each programming language, dialect, and character set in use at your site. Select each CA
product you want to use at your site. The core Application Analyzer product is always selected. Select
Additional Tools to enable tools not used in typical CA configurations. When you are satisfied with your
choices, click OK.

Note: If you modify your CA configuration, make sure you upgrade workspaces created under the
previous configuration.

Licensing
Although COBOL Analyzer and Business Rule Manager) are both installed by the COBOL Analyzer
installer, each product is licensed separately. Follow the instructions in the topics listed below to manage
your licenses.

Upgrading Customers
A customer upgrading from Modernization Workbench version 3.1 or later may use the existing license key
to enable COBOL Analyzer for the same number of users.

Concurrent Use
You can license COBOL Analyzer and Business Rule Manager for concurrent use. In this mode, one
license key for the purchased number of end users will be registered to a license server and each user
instance will contact it for authorization.

COBOL Analyzer Licensing
A Sentinel RMS license server is installed with COBOL Analyzer.

Depending on the licensing model in use at your site, you can manage your license:

22 | Installation Guide

• Locally, using the installed Sentinel RMS license server.
• Remotely, using a Sentinel RMS license server that has been configured to manage licenses centrally.

Note: The remote license server uses the same software as the local license server that is
installed with COBOL Analyzer.

You will need to apply a license in the Micro Focus License Administration to use COBOL Analyzer. To start
the Micro Focus License Administration, choose Start > All Programs > Micro Focus License Manager
> License Administration.

• If you use a local license server, you can apply a license using an authorization code or a licensing file
in the Install tab of the License Administration.

• Authorization code: Enter the 16-character license authorization code for COBOL Analyzer, then
click Authorize.

• Licensing file: Enter your downloaded license file (.mflic) by browsing or dropping the file, then click
Install Licenses.

• If you use a remote license server, click Options > Advanced Configuration, then click Change in the
License server field. Enter the IP address or server name of the license server, then click Save.

Your License System Administrator can tell you which licensing model your site uses and provide you with
the name of the remote license server if needed. For complete information, including how to configure a
remote license server, refer to the help provided with the License Administration tool.

Business Rule Manager Licensing
Trial licenses are not provided for Business Rule Manager. Before you can work with it, you must enter the
16-character license authorization code:

• Choose Start > Programs > Micro Focus License Manager > License Management System. In the
Licensing System Administration tool, click the Authorize tab, then enter the authorization code in the
Enter authorization code field and click Authorize.

Configuring an ODBC Data Source Name
An ODBC data source name (DSN) is a set of credentials for connecting with a database instance. If you
use Oracle or DB2, you must configure a DSN for the database that holds your workspace repositories.

Configuring an Oracle ODBC Data Source Name
To configure an Oracle Data Source Name (DSN), you must have specified a TNS Service Name for the
database in which your workspace repositories will be stored. This is the TNS Service Name you entered
when you installed the repository client.

Check the file tnsnames.ora in Repository_Client_HOME to make sure the TNS Service Name exists.
The entry should look like this, where RMWPROD is the TNS Service Name:

 RMWPROD
 (DESCRIPTION=
 (ADDRESS_LIST=
 (ADDRESS=(PROTOCOL=TCP)(HOST=tiger)(PORT=1521))
)
 (CONNECT_DATA=
 (SID=lnx)
)
)

You will also need to obtain a database user ID and password from your DBA to configure the Oracle DSN.

Note: Keep the DSN handy. You will need to specify it when you create an CA workspace. For
instructions on how to create a workspace, see Getting Started in the CA documentation set.

Installation Guide | 23

1. In the Windows Control Panel, double-click Administrative Tools. The Administrative tools window
opens.

2. Double-click Data Sources (ODBC). The ODBC Data Source Administrator window opens.

3. Select the System DSN tab and click Add. The Create New Data Source dialog opens.

4. Select an appropriate Oracle driver and click Finish. The Oracle ODBC Driver Configuration window
opens.

5. Specify the following information in the Oracle ODBC Driver Configuration window:

• In the Data Source Name field, enter a name of your choice to identify the data source. If your DBA
has supplied a common DSN for use across the enterprise, enter it here.

• In the Description field, enter an optional description for the data source.
• In the TNS Service Name drop-down, select the TNS Service Name for the database in which your

workspace repositories will be stored. If no choices are shown, or if you are unsure which name to
select, contact your DBA.

• In the User ID field, enter the database user ID supplied by your DBA.

6. Click Test Connection. The Oracle ODBC Driver Connect window opens.

7. In the Oracle ODBC Driver Connect window the Service Name and User ID fields are prefilled with the
information you supplied in the Oracle ODBC Driver Configuration window. Enter the password for your
user ID and click OK. You are notified that the connection was created successfully. Click OK.

Note: If you receive an error, verify the driver configuration settings and retest the connection. See
your DBA if the problem persists.

8. Click OK to exit the Driver Configuration window. Then click OK again to exit the ODBC Data Source
Administrator window.

Configuring a DB2 ODBC Data Source Name
You will need the following information from your DBA to configure a DB2 ODBC data source name (DSN):

• The name of the database in which your workspace repositories will be stored.
• The host name for the computer on which the database resides.
• The port number for communications with the host, if it is not the standard port number.

Note: Keep the DSN handy. You will need to specify it when you create an CA workspace. For
instructions on how to create a workspace, see Getting Started in the CA documentation set.

1. In the Windows Control Panel, double-click Administrative Tools. The Administrative tools window
opens.

2. Double-click Data Sources (ODBC). The ODBC Data Source Administrator window opens.

3. Select the System DSN tab and click Add. The Create New Data Source window opens.

4. Select IBM DB2 ODBC DRIVER - DB2COPY1 and click Finish. The ODBC IBM DB2 Driver
configuration dialog opens.

5. In the Data Source Name field, enter a name of your choice to identify the data source. If your DBA has
supplied a common DSN for use across the enterprise, enter it here.

6. In the Description field, enter an optional description for the data source.

7. In the Database alias field, select an existing database alias from the drop-down, then click OK.

8. If a database alias has not been defined, click Add. The CLI/ODBC Settings window opens.

9. In the Data Source tab, the Data source name and Description fields are pre filled with the information
you supplied in the ODBC IBM DB2 Driver configuration dialog. In the User ID field, enter your domain
user name. In the Password field, enter your domain user password. The fields are case-sensitive.

10.Select the TCP/IP tab and specify the following information:

• In the Database name field, enter the name of the database in which your workspace repositories
will be stored.

24 | Installation Guide

• In the Database alias field, enter a database alias.
• In the Host name field, enter the host name for the computer on which the database resides.
• In the Port number field, enter the port number for communications with the host. Use the standard

port number of 50000 unless otherwise instructed by your DBA.

11.Click OK. You are returned to the ODBC Data Source Administrator window. Select the new data
source name and click Configure. The CLI/ODBC Settings window for the data source opens.

12.In the Data Source tab, the Data source name and Description fields are pre filled with the information
you supplied in the ODBC IBM DB2 Driver configuration dialog. In the User ID field, enter your domain
user name. In the Password field, enter your domain user password. The fields are case-sensitive.
Click Connect to test the database connection. You are notified that the connection was created
successfully. Click OK.

Note: If you receive an error, verify the driver configuration settings and retest the connection. See
your DBA if the problem persists.

13.Click OK to exit the CLI/ODBC Settings window. Then click OK again to exit the ODBC Data Source
Administrator window.

Creating a Shared Folder for Workspaces
The folder in which you plan to create workspaces must be shared with team members. It is typically more
convenient to share the folder before you create workspaces, but you can do it afterward if necessary, then
refresh the workspace path as described in Getting Started in the CA documentation set.

Follow the instructions below to create a shared folder for workspaces. You must be an administrator to
create a shared folder.

1. On the CA server, create a folder for CA workspaces.

2. Select the folder and choose Sharing and Security from the right-click menu. The Properties dialog for
the folder opens. In the Sharing tab for the Properties dialog, select Share this folder on the network
(or, on a machine in a Windows domain, Share this folder). Enter the share name in the Share name
field and click Apply.

Note: Do not embed spaces in the share name. Doing so may cause other users to be unable to
access the folder.

3. Click Permissions. The Permissions for Folder dialog opens. Specify the appropriate permissions for
users sharing the folder and click OK.

Upgrading Workspaces
When you modify your CA configuration, you must upgrade every workspace created with the previous
configuration. Only the master user can upgrade a workspace.

1. Choose Start > All Programs > Micro Focus > COBOL Analyzer > COBOL Analyzer
Administration. The CA Administration window opens.

2. In the Administration window, choose Administer > Upgrade Workspace. The Upgrade workspace
dialog opens.

3. Choose the workspace you want to upgrade, then click Open. A Workspace Upgrade window opens.

4. Click Start to begin the upgrade. In the Workspace Upgrade window you see the upgrade process (The
parts that are being upgraded are highlighted and the checkbox next to each upgraded part is checked
when the upgrade is complete.) You can Pause the upgrade and Resume it later.

Note: Upgrades that have stopped due to an error can be reset from the File menu.

5. (optional) Click Workspace Upgrade > File >Export DDL Script to export the DDL script to perform
the upgrade and give it to a DBA.

Installation Guide | 25

Troubleshooting the Installation
Follow the instructions in this section to troubleshoot an CA installation.

Troubleshooting Workspace Access
The folder in which you plan to create workspaces must be shared with team members. If users are unable
to access workspaces, it may be because:

• You have not shared the folder for workspaces. Share the folder, then refresh the workspace path as
described in Getting Started in the CA documentation set.

• You shared the folder for workspaces after creating a workspace. Refresh the workspace path as
described in Getting Started in the CA documentation set.

• You embedded spaces in the value of the Share name field for the folder. Remove the spaces, then
refresh the workspace path as described in Getting Started in the CA documentation set.

26 | Installation Guide

Getting Started

Introducing COBOL Analyzer
Micro Focus COBOL Analyzer (CA) offers centralized storage and analysis of enterprise application
portfolios:

• Language-specific parsers generate a common repository of application objects, in the industrial-
strength DBMS of your choice.

• Sophisticated analysis tools give you convenient interactive access to the repository, in a multiuser
environment that facilitates exchange of information and insight across the enterprise.

The result is a single easy-to-use interface in which you analyze assets written in modern languages like
Java and C# alongside assets written in legacy languages like COBOL and PL/I. And in which you perform
the analysis with industry-leading tools that offer deep, detailed, and comprehensive insight into complex
modern distributed applications.

COBOL Analyzer Products
COBOL Analyzer is a suite of PC-based software products for storing, analyzing, and re-architecting
enterprise applications. The products are deployed in an integrated environment with access to a common
repository of program objects. Language-specific parsers generate repository models that serve as the
basis for a rich set of diagrams, reports, and other documentation. Each product is separately licensed.

Getting Started | 27

COBOL Analyzer
COBOL Analyzer is a robust set of non-invasive interactive tools that work with source code, system files,
DDL, screen maps, and more. Use it for analyzing and documenting legacy systems at both the application
and program levels.

Use COBOL Analyzer at the application level to:

• Create diagrams of applications.
• Perform change analysis across applications.
• Estimate application complexity and effort.

Use COBOL Analyzer at the program level to:

• Perform program analysis in stages.
• Perform impact analysis on a program.
• Model and search the repository.

Enterprise View
Enterprise View (EV) is a Web server-based tool that offers IT executives "at-a-glance" application portfolio
management (APM). EV charts and tables provide powerful graphical insight into APM trends and current
status, on dashboards that make it easy to drill down from the "big picture" captured at the highest level to
the lower-level details that support it.

With EV you can:

• Create, distribute, and gather responses to surveys about your organization’s application portfolio and
business processes.

• Mine application complexity metrics from the CA repository.
• Track survey and repository metrics in EV's rich variety of interactive charts, displayed on dashboards

structured to show the rollup of data from lower to higher levels.

For users who need to drill down even deeper into an application portfolio, EV lets you search, filter, and
analyze CA repository data. You can:

• Query the repository for information about application objects.
• Search, browse, and edit business rules and triggers.

Business Rule Manager
Business rule mining encapsulates your application’s business logic, making the application easier to
understand, document, and test. It lowers the risk and cost of maintenance and enhancement, and ensures
that all business logic is implemented in modernization efforts.

A business rule is a named container for program code that performs a discrete task in a business process.
It identifies and documents the code segment that performs this task. A business rule named Calculate
Date Difference, for example, might consist of this segment:

COMPUTE WS-DATE-VARIANCE = WS-C-CARD-DATE-CCYYMM - WS-TODAYS-DATE-CCYYMM.

Business Rule Manager (BRM) offers a powerful set of tools for autodocumenting, business rules. You can
batch edit rule attributes; create custom attributes suited to your particular needs; match input/output data
elements with the business names you’ve assigned to them in your project glossary; and much more.

How COBOL Analyzer Models Applications
COBOL Analyzer is a model-based technology that generates information about legacy applications at two
levels:

28 | Getting Started

• Application-level information describes the relationships between the objects that comprise an
application: its programs, copybooks, JCLs, BMS files, and so forth.

• Object-level information describes the relationships between the abstract syntactical constructs that
comprise an object: its sections, paragraphs, statements, conditions, variables, and so forth.

At both levels, the models are conceived as Entity Relationship Diagrams (ERDs). Each object or construct
the parser generates is modeled as an entity in one of the diagrams. The models are represented in tree
form to users.

Understanding Application-Level Information
The object model for an application defines the relationships between the objects that comprise the
application. These can be physical objects, like program source files or JCLs, or logical objects that identify
abstract program elements: entry points, data stores, screens, jobs, and the like.

The relationships between objects describe the ways in which they interact. In the figure, the source file
GSS.CBL defines the GSS program. The program, in turn, reads the data file GSS.FCSTSEC.

Understanding Object-Level Information
The construct model for an object defines its syntax. It shows in abstract form how the syntactical
constructs that comprise the object (its sections, paragraphs, statements, conditions, variables, and so
forth) are related. A variable, for example, can be related in the construct model to its declaration, a
dataport (if it is used in an I/O statement), or a condition (if the condition uses an expression of which the
variable forms a part).

The figure shows a portion of the construct model for the GSS program. The model shows that the
program executes a PERFORM statement if the value of the variable EIBRESP satisfies the condition
EIBRESP NOT EQUAL DFHRESP(NORMAL).

If you are interested in investigating other uses of EIBRESP in the program, you can navigate to the
declaration of the variable in the construct model, and from the declaration to each instance of the
variable’s use in the program.

Workspaces and Projects
COBOL Analyzer uses the familiar notions of workspace and project to help users organize application
source files conveniently. A workspace is a named container for one or more applications. Every
workspace has a corresponding database repository of model objects.

You can divide a workspace up into projects that represent different applications or different portions of an
application. You might have a project for the batch portion of an application and another project for the

Getting Started | 29

online portion, for example. You can also use a project to collect items for discrete tasks: all the source files
affected by a change request, for example.

When you set up a workspace in COBOL Analyzer, the system creates a default project with the same
name as the workspace. You can create new projects and move or copy entities between projects as
needed.

A workspace can contain objects coded in different programming languages. You can create multiple
workspaces on the same machine.

Single-User versus Multiuser Environments
COBOL Analyzer can be deployed in a single-user or multiuser environment:

• In a single-user environment, the workspace repository resides on the local machine, and can be
accessed by the owner of the machine only. Limited facilities exist for sharing work with other users.

• In a multiuser environment, the workspace repository resides on a database server, and can be
accessed by any user with appropriate database privileges.

Most installations deploy COBOL Analyzer in a multiuser environment. Single-user mode typically is
reserved for special needs.

The guidelines that follow for multiuser environments apply equally to single-user environments. For
installation instructions, see the installation guide for your product.

Multiuser Environment Basics
A multiuser COBOL Analyzer environment gives members of a development team common access to a
workspace repository on a database server. Workspace setup is the responsibility of a master user, leaving
team members free to focus on their tasks. Common access makes it easy to share insights across the
team, and ensures that team members view the same source and work with the same option settings.

Deployment Scenario
The figure below shows a standard deployment scenario for the COBOL Analyzer multiuser environment.
The role each machine performs and its key relationships are described below. Keep in mind that the view
is logical. Machine roles can be combined or separated as required.

30 | Getting Started

Mainframe and Network Server

The mainframe hosts the application to be modeled in COBOL Analyzer. Application source files are
downloaded from the mainframe (and, if necessary, a network server) to the COBOL Analyzer server via
FTP or SFTP.

COBOL Analyzer Server

The COBOL Analyzer server hosts workspaces, workspace support files (including the copies of
application source files the product creates at workspace loading), and workspace output. This server
leverages multiple processes to enhance parsing performance in online or batch mode.

Parsed data is sent via ODBC to the database server. Some analysis output is stored on the CA server as
well.

Database Server

The database server hosts the database for one or more multiuser repositories. This server provides
centralized, network-accessible storage for parsed data and analysis output.

The CA server, Enterprise View Web Server, and CA clients access the database server via ODBC. For
guidance on database setup, see the installation guide for your product.

COBOL Analyzer Client

CA clients host the link files that let team members connect to workspaces on the CA server. These clients
access repository data stored in the database server via ODBC.

Enterprise View Web Server

The Enterprise View web server hosts services used by intranet and internet clients to display charts and
to access web-based view of repositories.

Enterprise View Web Client

Enterprise View web clients provide multiuser access to charts and workspace repository data via the
Enterprise View web server.

CA Privileges
Privileges in a multiuser environment work on two assumptions:

• Team members typically do not need to modify files until they have completed analysis and are ready to
test a proposed change.

• The team lead is best situated to make the change and reverify the modified file.

For these reasons, the CA multiuser environment has no need for file checkout and locking of the kind seen
in conventional multiuser environments.

Understanding Master Users

The user who creates a workspace on a COBOL Analyzer server machine is referred to as its owner.
Initially, only the owner has master user privileges for the workspace.

The master user can delete the workspace, upgrade the workspace configuration, register and verify
source files, modify source, autoresolve decisions, perform restricted Code Search searches, create,
assign, and delete tags, and so forth. The master user can also designate new master users for the
workspace.

Ordinary users connect to the workspace from COBOL Analyzer client machines. These users can perform
any task not restricted to the master user: analyze programs, mine business rules, extract components,
and so forth.

Getting Started | 31

If you do not have master user privileges for a workspace, you will not see menu choices for privileged
methods. The same team member can be a master user for one workspace and an ordinary user for
another.

Understanding Workspace Security Policies

When you create a workspace, you can choose from two workspace security policies:

• The Simple Security Policy recognizes two classes of users, master users and ordinary users.
• The Three-Group Security Policy recognizes a third class of users, subject matter experts (SMEs), with

special privileges to create, assign, and delete tags.

In each policy, the master user can create new master users.

Using the Optional File Server

When you create a workspace, you can restrict Windows access to workspace source files to master
users, while using the optional File Server to make the source files available in CA only to ordinary users.
As long as you set up workspace folder privileges correctly, ordinary users can view and analyze sources
in the product, but cannot access them otherwise. For file server installation instructions, see the
installation guide for your product.

Public and Private Visibility

In a multiuser environment, the user who creates a workspace resource (a project or a Code Search list,
for example) is referred to as its owner. Only the owner can share the resource with other users.

A shared, or public, resource is visible to other members of your team. A private resource is not. If a public
resource is protected, team members can view but not edit or delete the resource. A Code Search list, for
example, is always protected.

You can turn sharing on and off in the tool you use to create the resource. Look for a symbol like this one

for a shared project to indicate that the resource is shared.

Protecting Projects

By default, projects are unprotected: any user to whom the project is visible can add source files, include or
exclude objects.

Note: Only a master user or the owner of a shared unprotected project can delete it.

The project owner or master user can designate a project as protected, in which case no user can delete or
modify the project, including the project owner or master user: the project is read-only, until the project
owner or master user turns protection off.

Turn on protection by selecting the project in the Repository pane and choosing Project > Toggle
Protection. Choose Project > Toggle Protection again to turn it off. Look for a symbol like this one to
indicate that a project is protected.

Dropping Indexes
If you are a master user with responsibility for verifying source files in a multiuser environment, you will
almost always want to drop database indexes to improve verification performance. You will be prompted to
drop indexes when you verify the application, or you can drop indexes at a time of your own choosing by
selecting Prepare > Drop Repository Indexes.

When you drop indexes, you are prompted to restore the indexes when you analyze the files. If you want to
restore indexes at a time of your own choosing, choose Prepare > Restore Repository Indexes.

32 | Getting Started

Computing Statistics
You typically need to gather statistics for your system before the optimizer for your RDBMS can determine
the most efficient way to execute SQL statements. If you are a master user with responsibility for verifying
source files in a multiuser environment, you will almost always want to gather system statistics after
verification to improve performance of the COBOL Analyzer analysis tools.

Note: Check with your DBA before gathering system statistics. In Oracle, you must have
GATHER_SYSTEM_STATISTICS privileges to execute this method. Make sure to restore indexes
before gathering system statistics.

To gather system statistics, choose Prepare > Compute Database Statistics. You can view the generated
statistics in your RDBMS.

COBOL Analyzer Basics
This section describes elementary CA tasks: how to create a workspace and project, register and verify
source files, use the browser and other CA windows, set options, and export system diagrams and reports.

Creating a Workspace in Oracle or DB2
You create a workspace on the COBOL Analyzer server machine. Other users connect to the workspace
from COBOL Analyzer client machines. The workspace repository resides on a database server, and can
be accessed by any user with database privileges to the repository.

Note: Do not modify the name of the workspace after you create it. Doing so will cause unpredictable
results.

Before creating a workspace, you must configure an ODBC data source name (DSN) for the database that
holds the workspace repository, as described in the installation guide for your product. You will need the
following DSN configuration information to create the workspace:

• The data source name.
• The database schema name your DBA created for the repository.
• The database user name and password that give access to the schema.
• If required by your DBMS, the name of the tablespace your DBA created for the repository. If the DBA

also created a tablespace for database indexes, you will need the name of that tablespace as well.

The folder in which you plan to create workspaces must be shared with team members. It’s usually more
convenient to share the folder before you create workspaces, but you can do it afterward if necessary, then
refresh the workspace path.

It is the responsibility of the workspace creator to designate users for security policies. Perform this task as
soon as you have finished creating the workspace, then periodically edit the list of users as required.

1. Choose Start > All Programs > Micro Focus > COBOL Analyzer > COBOL Analyzer
Administration. The Administration window opens.

2. Choose Administer > New Workspace. The Create new workspace dialog opens.

3. In the Create new workspace dialog, double-click the New Workspace icon for the RDBMS in use at
your site or select it and click OK. The New workspace dialog opens.

4. In the New workspace dialog, choose the location for the workspace in the Save in drop-down. In the
File name field, enter the name of the workspace. Choose a name that describes the legacy application
as closely as possible. Click Save. The Define Connection Parameters dialog opens.

5. In the Define Connection Parameters dialog, click the Connection tab. On the Connection tab, enter:

• The ODBC data source name you defined at ODBC data source configuration. If you have not
defined a data source name, or want to use a different data source name, click ODBC Manager to

Getting Started | 33

open the data source name configuration dialog, then follow the instructions for ODBC data source
configuration in the installation guide for your product.

• The database schema name your DBA created for the workspace repository.
• The database user name and password that give access to the schema.
• If required by your DBMS, the name of the tablespace your DBA created for the repository. If your

DBA also created a tablespace for database indexes, enter the name of that tablespace in the
Tablespace for Indexes field. These fields are displayed only for DBMSs that require a tablespace
name to be specified.

6. Click the Security tab. In the Policies list box, select:

• Simple Security Policy if you want to enforce a workspace security policy that recognizes two
classes of users, master users and ordinary users.

• Three-Group Security Policy if you want to enforce a workspace security policy that recognizes a
third class of users, subject matter experts (SMEs), with special privileges to create, assign, and
delete tags.

7. In the Files access group box on the Security tab, select:

• Direct sources access via Windows share if your site does not restrict Windows access to
workspace source files to the master user.

• Secure sources access via CA file server if your site restricts Windows access to workspace
source files to the master user, while using the optional file server to make the source files available
in the product to ordinary users. Make sure the values for the server name and port number fields
are correct.

Note: For File Server installation and setup instructions, see the installation guide for your product.

8. Click OK.

Note: If you created the workspace in a non-shared folder, you are warned to that effect and
prompted to share the folder. After you share the folder, make sure to refresh the workspace path.

You are notified that the workspace was created successfully. COBOL Analyzer creates a workspace
file (.rwp) and a folder with the same name in the specified location. The workspace folder contains
support files and subfolders for CA output. A project with the same name as the workspace is displayed
in the Repository Browser.

Creating a Workspace in SQL Server
You create a workspace on the COBOL Analyzer server machine. Other users connect to the workspace
from COBOL Analyzer client machines. The workspace repository resides on a database server, and can
be accessed by any user with database privileges to the repository.

Note: Do not modify the name of the workspace after you create it. Doing so will cause unpredictable
results.

The folder in which you plan to create workspaces must be shared with team members. It’s usually more
convenient to share the folder before you create workspaces, but you can do it afterward if necessary, then
refresh the workspace path.

It is the responsibility of the workspace creator to designate users for security policies. Perform this task as
soon as you have finished creating the workspace, then periodically edit the list of users as required.

You can use Microsoft SQL Server Express to create a workspace on your local machine. COBOL
Analyzer creates a database for the workspace "on the fly," with no intervention on your part. If you do use
SQL Server Express, keep in mind that the Windows user who creates the workspace must have been
configured with appropriate permissions in SQL Server Express. The user who installed SQL Server
Express will always have the appropriate permissions. See the SQL Server Express documentation for
configuration instructions.

34 | Getting Started

Note: For Windows XP installations using the Italian locale, you must set the Time format in the
Control Panel Regional Language Options to "HH:mm:ss" before attempting to verify an CA
workspace with a SQL Server repository. Click Settings > Control Panel > Regional and Language
Options > Customize > Time and choose "HH:mm:ss" from the Time format drop-down.

1. Choose Start > All Programs > Micro Focus > COBOL Analyzer > COBOL Analyzer
Administration. The Administration window opens.

2. Choose Administer > New Workspace. The Create new workspace dialog opens.
3. In the Create new workspace dialog, double-click the New Workspace icon for the RDBMS in use at

your site or select it and click OK. The New workspace dialog opens.
4. In the New workspace dialog, choose the location for the workspace in the Save in drop-down. In the

File name field, enter the name of the workspace. Choose a name that describes the legacy application
as closely as possible. Click Save. The Define Connection Parameters dialog opens.

Note: This dialog does not open for Microsoft SQL Server Express. The product starts creating the
workspace immediately.

5. In the Define Connection Parameters dialog, click the Connection tab. Define the connection:

• In the Server field, enter the server name. The server name must be of the form <machine>\<SQL
server>.

• In the Database Name field, enter the database name your DBA created for the workspace
repository.

• In the Integrated Security drop-down, select the integrated security provider interface in use at your
site. Choose:

• Windows Authentication if users connect to the workspace repository through a Windows user
account.

• Server Authentication if users connect to the workspace repository through an SQL Server
login account.

• If you chose Server Authentication, enter the database login name in the User Name field and the
login password in the Password field.

Note: The database user name and login name are typically, but not always, the same. If you
have trouble connecting, it may be because you are specifying the database user name rather
than the login name.

6. Click the Security tab. In the Policies list box, select:

• Simple Security Policy if you want to enforce a workspace security policy that recognizes two
classes of users, master users and ordinary users.

• Three-Group Security Policy if you want to enforce a workspace security policy that recognizes a
third class of users, subject matter experts (SMEs), with special privileges to create, assign, and
delete tags.

7. In the Files access group box on the Security tab, select:

• Direct sources access via Windows share if your site does not restrict Windows access to
workspace source files to the master user.

• Secure sources access via CA file server if your site restricts Windows access to workspace
source files to the master user, while using the optional file server to make the source files available
in the product to ordinary users. Make sure the values for the server name and port number fields
are correct.

Note: For File Server installation and setup instructions, see the installation guide for your product.

8. Click OK.

Note: If you created the workspace in a non-shared folder, you are warned to that effect and
prompted to share the folder. After you share the folder, make sure to refresh the workspace path.

You are notified that the workspace was created successfully. COBOL Analyzer creates a workspace
file (.rwp) and a folder with the same name in the specified location. The workspace folder contains

Getting Started | 35

support files and subfolders for CA output. A project with the same name as the workspace is displayed
in the Repository Browser.

Creating a Workspace Using the Workspace Build
Wizard
The Workspace Build Wizard helps you create an COBOL Analyzer workspace. Stepping through it, you
add your source files, associate files with source types and analyze the files so that they are ready to be
used in COBOL Analyzer.

Note: To use the wizard, you must have SQL Server Express installed on the machine.

Designating Users for Security Policies
When you create a workspace, you choose from two workspace security policies:

• The Simple Security Policy recognizes two classes of users, master users and ordinary users.
• The Three-Group Security Policy recognizes a third class of users, subject matter experts (SMEs), with

special privileges to create, assign, and delete tags.

In each policy, the master user can create new master users.

Designating Users in a Simple Security Policy
A Simple Security Policy recognizes two classes of users, master users and ordinary users. Initially, only
the workspace creator has master user privileges. The master user can designate new master users as
described in this section.

1. Choose Start > All Programs > Micro Focus > COBOL Analyzer > COBOL Analyzer
Administration. The Administration window opens.

2. Choose Administer > Edit Users. The Edit Users dialog opens.

3. In the Edit Users dialog, select the workspace (.rwp file) for which you want to edit users and click
Open. The Security dialog opens.

4. The Security dialog displays a list of users who have connected to the workspace in the Known Users

list box and a list of master users in the Master Users list box. Select a known user and click the

button to move the known user into the list of master users. Select a master user and click the button
to move the master user into the list of known users.

Note: Click Refresh at any time to update the lists.

5. To create a new master user, click (New User...) in the Master User list box. A dialog opens prompting
you to enter the name of the new master user. Enter the name and click OK.

6. When you are satisfied with your entries, click Close.

Designating Users in a Three-Group Security Policy
A Three-Group Security Policy recognizes a third class of workspace users in addition to master users and
ordinary users: subject matter experts (SMEs), with special privileges to create, assign, and delete tags.
Initially, only the workspace creator has master user privileges. The master user can designate SMEs and
new master users as described in this section.

1. Choose Start > All Programs > Micro Focus > COBOL Analyzer > COBOL Analyzer
Administration. The Administration window opens.

2. Choose Administer > Edit Users. The Edit Users dialog opens.

36 | Getting Started

3. In the Edit Users dialog, select the workspace (.rwp file) for which you want to edit users and click
Open. The Security dialog opens.

4. The Subject Matter Experts and Master Users tabs of the Security dialog display a list of users who
have connected to the workspace in the Known Users list box and a list of subject matter experts and

master users, respectively, in the opposite list box. Select a known user and click the button to move
the known user into the list of subject matter experts or master users. Select a master user and click the

 button to move the subject matter expert or master user into the list of known users.

Note: Click Refresh at any time to update the lists.

5. To create a new subject matter expert or master user, click (New User...) in the Subject Matter Experts
or Master Users list box. A dialog opens prompting you to enter the name of the new subject matter
expert or master user. Enter the name and click OK.

6. When you are satisfied with your entries, click Close.

Refreshing the Workspace Path
The folder in which you plan to create workspaces must be shared with team members. It’s usually more
convenient to share the folder before you create workspaces, but you can do it afterward if necessary, then
refresh the workspace path as described below. You can also use the refresh path feature when you move
a workspace.

Note: For instructions on how to share a workspace folder, see the installation guide for your product.

1. Click Start > All Programs > Micro Focus > COBOL Analyzer > COBOL Analyzer Administration.
The Administration window opens.

2. Click Administer > Refresh Workspace Path. The Select workspace dialog opens.

3. Select the workspace (.rwp file) you want to refresh and click Open. The Workspace directory network
path dialog opens. The Workspace directory network path dialog opens.

4. In the Workspace directory network path dialog, enter the path of the workspace in the text field. The
path must be of the form \machine_name\share_name\workspace_folder_name, where
machine_name is the name of the machine where the shared folder resides, share_name is the value
of the Share name field on the Sharing tab of the Properties dialog for the shared folder, and
workspace_folder_name is the name of the folder for the workspace.

Note: The shared folder is the folder that contains the .rwp file for the workspace, not the
workspace folder. The workspace folder (containing support files and subfolders for CA output)
resides on the same level as the .rwp file.

5. Click OK.

Connecting to a Workspace in Oracle or DB/2
Once a workspace has been created on the COBOL Analyzer server machine, other users can connect to
the workspace from CA clients. When you connect to a workspace, you create a link file with connection
information that points to the workspace. Because the connection information is already stored in the file,
you don’t have to enter it again when you reopen the workspace connection. Like a workspace file, a link
file has a .rwp extension.

Before connecting to a workspace, you must configure an ODBC data source name (DSN) for the
database that holds the workspace repository you want to link to, as described in the installation guide for
your product. You will need the following DSN configuration information to connect to the workspace:

• The data source name.
• The database schema name your DBA created for the repository you want to link to.
• The database user name and password that give access to the schema.

Getting Started | 37

1. Choose Start > All Programs > Micro Focus > COBOL Analyzer. The Open Existing workspace
dialog opens above the COBOL Analyzer main window. Click Cancel to dismiss the dialog.

2. Choose File > Build New Connection. The Define Server Workspace Connection dialog opens.

3. In the Define Server Workspace Connection dialog, select the ODBC driver for the RDBMS in use at
your site in the Database Provider drop-down. In the Required Parameters group box, enter:

• The ODBC data source name you defined at ODBC data source configuration. If you have not
defined a data source name, or want to use a different data source name, click ODBC Manager to
open the data source name configuration dialog, then follow the instructions for ODBC data source
configuration in the installation guide for your product.

• The database schema name your DBA created for the workspace repository.
• The database user name and password that give access to the schema.

Note: The Tablespace and Tablespace for Indexes fields are for future use.

4. When you are satisfied with your entries in the Define Server Workspace Connection dialog, click the
Browse button for the Save Link As (.rwp) field. The Save Server Workspace Connectivity dialog
opens.

5. In the Save Server Workspace Connectivity dialog, choose the location for the workspace link in the
Save in drop-down. In the File name field, enter the name of the link. Click Save. The linked workspace
opens in the COBOL Analyzer main window. CA creates a link file (.rwp) in the specified location.

Connecting to a Workspace in SQL Server
Once a workspace has been created on the COBOL Analyzer server machine, other users can connect to
the workspace from CA clients.

If you use the local MS SQL connection, you need db_owner permissions, because this type of connection
creates a database. But if you use the left option, MS SQL via OLE DB, you need a database already
created by an administrator. For this database you may have less permissions and the roles can be:
db_writer and db_reader.

To grant permissions, run these queries:

USE mydatabase;
GRANT ALTER TO myuser;
GRANT REFERENCES TO myuser;
GO

ALTER permissions are required when upgrading, or using Configuration Manager in the Administration
tool. ALTER is also needed by the Batch Refresh Process and Code Search.

When you connect to a workspace, you create a link file with connection information that points to the
workspace. Because the connection information is already stored in the file, you don’t have to enter it again
when you reopen the workspace connection. Like a workspace file, a link file has a .rwp extension.

1. Choose Start > All Programs > Micro Focus > COBOL Analyzer. The Open Existing workspace
dialog opens above the COBOL Analyzer main window. Click Cancel to dismiss the dialog.

2. Choose File > Build New Connection. The Define Server Workspace Connection dialog opens.

3. In the Define Server Workspace Connection dialog, click the Connection tab. Define the connection:

• In the Server field, enter the server name. The server name must be of the form <machine>\<SQL
server>.

• In the Database Name field, enter the database name your DBA created for the workspace
repository.

• In the Integrated Security drop-down, select the integrated security provider interface in use at your
site. Choose:

• Windows Authentication if you connect to the workspace repository through a Windows user
account.

38 | Getting Started

• Server Authentication if you connect to the workspace repository through an SQL Server login
account.

• If you chose Server Authentication, enter the database login name in the User Name field and the
login password in the Password field.

Note: The database user name and login name are typically, but not always, the same. If you
have trouble connecting, it may be because you are specifying the database user name rather
than the login name.

4. When you are satisfied with your entries in the Define Server Workspace Connection dialog, click the
Browse button for the Save Link As (.rwp) field. The Save Server Workspace Connectivity dialog
opens.

5. In the Save Server Workspace Connectivity dialog, choose the location for the workspace link in the
Save in drop-down. In the File name field, enter the name of the link. Click Save. The linked workspace
opens in the COBOL Analyzer main window. CA creates a link file (.rwp) in the specified location.

Opening a Workspace
The procedure for opening a workspace is the same whether you created the workspace or simply
connected to it. You can also open a workspace by double-clicking it in the file system. You don’t have to
close a workspace before opening another workspace.

1. Choose Start > All Programs > Micro Focus > COBOL Analyzer. The Open Existing workspace
dialog opens above the COBOL Analyzer main window.

Note: If COBOL Analyzer is already open, choose File > Open Workspace.

2. Click the tab you want to work in:

• In the Existing tab, choose the drive and folder for the workspace you want to open. A list of
workspaces in the selected folder is displayed in the righthand pane. Double-click the workspace you
want to open, or select it and click OK.

• In the Recent tab, double-click the recently opened workspace you want to open, or select it and
click OK.

Note: If you created the workspace in a previous release of COBOL Analyzer, the system prompts
you to upgrade the workspace to the new release. Click Yes.

The workspace is displayed in the COBOL Analyzer window. If a workspace was already open in the
window, the selected workspace replaces it.

Registering Source Files
Before you can analyze application source files in COBOL Analyzer, you need to load, or register, the
source files in a workspace.

Note: In a multiuser environment, only a master user can register source files.

The CA creates copies of the registered files on the server machine (or locally in a single-user
environment) in the Sources folder for the workspace. These are the files you view and edit in the CA tools.
You can restore a file to its original state, update it to its current state, or export it as necessary.

Source files must have recognized DOS file extensions before they can be registered. You can view and
add to the recognized extensions in the Workspace Registration options window. Files without extensions
are checked for content, and if the content is recognized, the files are registered with appropriate
extensions appended.

CA assumes that input source files are ASCII files in DOS format. Occasionally, files may be converted
incorrectly from other formats to DOS-based ASCII with an extra special character (like “M”) at the end of

Getting Started | 39

each line. While COBOL Analyzer accepts these files as input, some CA tools may not work correctly with
them. Make sure all source files are in valid ASCII format.

You can register source files in compressed formats (ZIP or RAR), as well as uncompressed formats.
COBOL Analyzer automatically unpacks the compressed file and registers its contents.

Note: CA extracts compressed source files using the command line syntax for archiver versions most
widely in use. If you use newer archiver versions, specify the command line syntax in the Archivers
tab of the User Preferences window.

Workspace Registration options determine registration behavior. The default values for these options are
preset based on your configuration and should be appropriate for most installations.

1. In the Repository Browser, create a project for the source files you want to register, or use the default
project. To create a project, choose Project > New Project. The Create Project dialog opens. Enter the
name of the new project and click OK. The new project is displayed in the Repository Browser.

2. Select the project in the Repository Browser, then copy-and-paste (Ctrl+C and Ctrl+V) or drag-and-
drop (if UAC is disabled) the file or folder for the source files you want to register onto the Repository
Browser. You are notified that you have registered the files successfully and are prompted to verify the
files. Click Close. The Repository Browser displays the contents of the new workspace either by folder,
or by type, depending on the tab you have selected - Folders or Types. The former displays the
contents of the repository in the same folder structure as the one they have on the host environment,
the latter displays them by object type.

Note: When updating or adding new sources through the CA main window, the files or folders
being registered will be included into the selected folder in the Folders view. Registration into the
Types view will copy the selected files and folders directly to the root Sources folder, i.e. they will
not be copied into any other existing folders. If you are registering files or folders in Folders view,
make sure you've selected in the tree the exact folder in which you want them to be registered. If
you haven't selected any folder, they will be copied into the root Sources folder.

Important: Before registering your source files, you must create a folder structure that replicates
the original. This helps to avoid errors when you work with homonyms. Micro Focus recommends
putting each application in a separate folder, putting system files that are common for more than
one application in one directory. After you do that, register your sources by selecting the folders
and including them in the project as described in step 2.

Note: In the notification dialog, select Never ask again if you do not want to be prompted to verify
files. On the Environment tab of the User Preferences window, select Ask user about verification
if you want to be prompted again.

Host Environment Source Compatibility
When you register your source files, it is essential that they are organized in the same folder structure as
the one on your host environment. This allows CA to create the correct relationships when connecting
programs with their copybooks, JCLs with the proper version of the procedures that are used, etc. Run-
time connections are also established based on this structure. Furthermore, this structure allows for having
several members with the same name, i.e. homonyms.

The sources to be loaded into CA should be in folders named after the PDS libraries on the Mainframe and
those folders should be the ones loaded.

Example

There is an enterprise organization with 3 data centers: Data Center 1 with one Mainframe, Data Center 2
with two Mainframes, and Data Center 3 with one Mainframe.

The following image shows the folders in a Windows environment:

40 | Getting Started

And this is what the three data center folders look like after they have been copied to the workspace:

Getting Started | 41

Resolving Include Files

When trying to resolve include files (copybooks, PL/I includes, JCL procedures, etc.), the CA Parser will
look at all folders trying to find names that match the included file. If only one match is found, it will use that
file. If more than one match is found, CA Parser takes the following steps to resolve which of the matching
include files is the one to use:

1. It checks if one of the folders is listed under Search Path in the Homonyms tab in Project Options.
The folder can be listed as:

• an absolute location:

C:\Workspaces\FS Doc\Sources\Data Center 1\DC1 Mainframe 1\SYS1.COPYLIB

• or as a relative location under the Sources folder:

Data Center 1\DC1 Mainframe 1\SYS1.COPYLIB

2. It looks for proximity of the included file to the including file in the source folder structure:

• First it looks at files that are in the same folder as the "including" source.
• Then it looks at files in the dependent folders.
• And then - up the folder hierarchy.

42 | Getting Started

3. Finally folder names will be matched and the "include" folder that has a name with a better match to the
source folder name will be selected.

Resolving Program-to-Program Calls

When resolving call relationships between programs, it is possible to reach a point where there is more
than one candidate for a called program. In this case CA works the same way as with includes (see
Resolving Include Files), but since the program objects themselves don't have folders, the folders of the
source files that generated them are used.

Note: This same algorithm applies to any relations between non-legacy entities (e.g. PROGRAM
reads TABLE, TRANSACTION starts PROGRAM, etc.).

Resolving Control Cards

Control cards can be any members explicitly mentioned in the JCL. When parsing JCLs, CA will look for a
file with the member name in the JCL in a folder with a name matching the PDS name from the mainframe.

Resolving JCL Procedures

When looking for JCL procedures, the parser uses the JCLLIB statement, if present. If there is only one
copy of the searched procedure, that copy is used. Otherwise, if more than one copy is available, the
libraries specified with the JCLLIB statement are used to pick the right one.

Example:

Path to the JCL file: <workspace_path>\Sources\APP1\MYJCL\MYJOB.JCL

//MYJOB1 JOB ...
//MYLIBS1 JCLLIB ORDER=CAMPBEL.PROCS.JCL
//S1 EXEC PROC=MYPROC1

In this case the procedure <workspace_path>\Sources
\APP1\CAMPBEL.PROCS.JCL\MYPROC1, if present, will be used.

Queue Processor
There are various ways to set parameters for the Queue Processor.

To launch the Queue Processor

1. Start CA Administration.
2. Open Administer > Launch Queue Processor or press F7.

The Launch Queue Processor window opens.
3. In the Serve workspace field type the name of the workspace you want to use or press the ... button to

browse for a workspace.
4. Check the Processing Mode - Conversion, Verification or both.
5. Choose the number of processors to start . The number depends on your system capabilities.
6. Check Produce Log File if you want to produce a log file and then click OK to start the verification or

Cancel to quit.

Check Workspace Queue
Check workspace Queue displays the queued processes that are waiting in queue for the current
workspace. To view them:

1. Open Start > All Programs > Micro Focus > COBOL Analyzer > COBOL Analyzer Administration.
2. Select Tools > Check Workspace Queue. The Select workspace window opens.

Getting Started | 43

3. Select a workspace file (.rwp) and click Open. A message with the number of queued records is
displayed.

Manage Queue
1. Click Start > All Programs > Micro Focus > COBOL Analyzer > COBOL Analyzer Administration to

start the COBOL Analyzer Administration. Manage Queue shows the processes that are waiting to be
processed. After the Queue processor has finished the list is automatically cleared.

2. Click Tools > Manage Queue. The Manage Queue window opens.

It contains a list of all processes waiting to be processed by the Queue Processor. The available actions
are:

• File > Close - closes the window.
• Record > Delete - if you delete an item from the list it remains unverified and you must re-verify the

sources again.
• Record > Unlock - unlocks records that are locked due to some verification error.
• Record > Select All - selects all records from the queue list.
• Record > Unselect All - deselects all records from the queue.
• Queue > Refresh - refreshes the queue list.
• Queue > Show All - shows all records for the queued processes.
• Queue > Auto Refresh - automatically refreshes the list.

Verifying Source Files
Parsing, or verifying, an application source file generates the object model for the file. Only a master user
can verify source files.

You can verify a single file, a group of files, all the files in a folder, or all the files in a project. It’s usually
best to verify an entire project. COBOL Analyzer parses the files in appropriate order, taking account of
likely dependencies between file types.

Note: You need not verify copybooks. Copybooks are parsed when the including source file is
verified.

If your RPG or AS/400 Cobol application uses copy statements that reference Database Description
or Device Description files, or if your MCP Cobol application uses copy statements that reference
DMSII DASDL files, you need to generate copybooks for the application before you verify program
files.

Workspace and Project Verification options determine verification behavior. The default values for these
options are preset based on your configuration and should be appropriate for most installations.

1. In the Repository Browser, select the project, folder, or files you want to verify and choose Prepare >
Verify.

2. You are prompted to drop repository indexes to improve verification performance. Click Yes. You will be
prompted to restore the indexes when you analyze the files.

The parser builds an object model for each successfully verified file. For an unsuccessfully verified file, the
parser builds an object model for as much of the file as it understands.

How Verification Results Are Indicated
If you have not verified a workspace file, the file is displayed in the Repository pane in bold type. Since the
system has not generated an object model of the file’s contents, only the file itself is displayed.

A verified file shows all the objects in the model generated for the file. Verification results are denoted as
follows:

44 | Getting Started

• A blue dot means that the parser has verified the file successfully.
• A red dot means that the parser has encountered an error in the file.
• A yellow dot means that the parser has encountered an error in the file, but that the file has been

successfully verified under the relaxed parsing option.

Note: When you edit a file, the modified file and any dependent files are invalidated, and need to be
verified again. You can learn more about how objects are invalidated and how the system refreshes
the repository in Preparing Projects in the product documentation set.

Quick Inventory
Quick Inventory is a project related option that automatically registers and verifies referenced files using
JCL or PCT files as a starting point. Start by enabling and configuring Quick Inventory, register the JCL or
PCT files to be used as the starting points, then verify those files. If you have set all paths correctly, the
product will register and verify the external files. COBOL Analyzer finds its dependencies registers them in
the project, and verifies them.

To enable Quick Inventory:

1. In COBOL Analyzer open Options > Project Options.
2. On the Quick Inventory tab check Enable Quick Inventory and click Apply.

Quick Inventory first searches the workspace and if the files are not found there you need to specify the
directory where your sources are located. There is a list of pre-defined source types that are supported by
COBOL Analyzer.

To edit, add, delete or select a search path where you want the Quick Inventory to look for sources:

1. In COBOL Analyzer open Options > Project Options.

Click the Quick Inventory tab.
2. There is a list with pre-defined search paths suggestions with the names of the object types most

commonly used. Select a suggestion, right-click the selected suggestion and then click Edit.

a. Enter the search path to the sources. For example: COBOL = c:\Sources
\COBOL_Applications_Directory.

Note: Make sure you enter the correct path. Otherwise CA is not able to find the sources.

b. Press Enter, then check the search path to select it and click Apply.
3. If the sources are located in more than one directory (for example if you need to search in more than

one COBOL directory outside the workspace), you have to add another entry to the Search Path list.
Right-click in the list of suggested directories and then click Add. A new item is created in the list. Enter
the values you need. For example: COBOL = C:\Sources\COBOL_Applications_Directory_1.

Add a new entry for each separate directory you need to search.
4. To delete an entry select it and right-click on it, then click Delete.
5. Click OK to save the changes, or Cancel to undo them and get back to the main COBOL Analyzer

window.

Using the COBOL Analyzer Main Window
The COBOL Analyzer main window lets you view and edit projects, set product options, and open CA tools.
The window’s state is saved across sessions.

Open a pane in the main window by selecting the appropriate choice in the View menu. Resize a pane by
using the mouse to grab its border with another pane, called a splitter, and dragging it to a new location.
Close a pane by clicking the button in the upper right corner.

When you start COBOL Analyzer for the first time, the main window displays the following panes:
Repository Browser, Getting Started, Chart Viewer and Activity Log.

Getting Started | 45

The Getting Started pane gives you basic information about some of the main features and provides quick
access to them.

The other panes are described in the topics below.

Menus
COBOL Analyzer menus let you access COBOL Analyzer tools and other product functionality. Menus are
displayed only for the products you have enabled in the Configuration Manager. The table below shows the
relationship between products and menus.

Note: The screens shown in the product documentation set display the menu bar with all products
installed.

Most COBOL Analyzer menu choices have equivalent choices in the right-click menu. Menu selections for
panes in the main window are available only if the pane has the focus.

Product Menu

COBOL Analyzer Analyze

Enterprise View Profile

Business Rule Manager Extract

Toolbars
You can access a COBOL Analyzer menu function by clicking its tool bar icon. The tool tip for an icon tells
you what it does. Place your cursor over the icon for a moment. The tool tip will display.

A tool bar is displayed only if its corresponding menu is displayed. You can change the position of a tool bar
by grabbing the delimiter at the left of the tool bar and dragging it to a new location.

Project Filtering
Filter the projects in the repository browser to see only the one(s) that you want to work with. The Project
filter field is on the toolbar. Enter the name of the project you want to see in the Project filter and all other
project will be hidden. The filter string is saved when closing and reopening the workspace. To clear the
filter, delete the text in the input box and press Enter.

Use wildcards and regular expressions to refine the project filtering.

Note: An asterisk wildcard is assumed at the end of the filter name.

Example

If you have 5 projects named Project 1 through Project 5 and enter Project [1-3] in the
project filter, only Project 1, Project 2, and Project 3 will be shown in the browser. If no
projects match the filter, the Browser will be empty.

Using the Repository Browser Pane
The Repository Browser pane shows the contents of the repository for the current workspace. It has two
tabs:

Folders Displays the contents of the repository in the same folder structure as the one they have in the
host environment. This allows for elements with the same name (homonyms) to be loaded and
displayed.

Types Displays the contents of the repository by project, object type, and object relationship.

Each of the two tabs consists of the following elements:

46 | Getting Started

Browser Shows the objects in the repository of the current workspace in a tree structure. Depending on
the tab you have selected in the Repository Browser pane, the contents are displayed either by
type or by folder.

Search Lets you execute various searches in the repository of the current workspace.

In the Browser window, hover your cursor over an object to display a tool tip that describes the object in
more detail.

Using the Search Assistant

The Search Assistant is integrated in the Repository pane. It searches all sources in the current
workspace. The results are displayed in a tree in the browser window, either by type or by folder,
depending on the tab you have selected in the Repository pane - Folders or Types. The information in the
tree is grouped in three levels:

• Project level - shows the projects that contain objects
• Folder level - shows the relative folder structure. If there are more than one folder levels they are

grouped and displayed with slashes - Folder1/Folder2/Folder3(n). The number in brackets
indicates the number of search result objects in the folder.

• Object level - shows the objects that are the result of the search.

You can customize the search options in Options > User Preferences > Search Assistant where you can
choose the object types filter. You can also set the maximum time a search can take as well as the
maximum number of results that are displayed in Options > Workspace Options > Search Assistant.

To use the Search Assistant:

1.
Type in a search string in the search box and click . The search returns all workspace objects
whose names match the search criteria.

2. Drill down the tree to see the relationship types and available methods for the objects.
3. Double-click an object in the search result tree to see its source code.

Note: To see the source code of a declaration, double-click it or right-click and select Go To
Source.

4. Right-click the search result objects in the Browser to see the list of available context-sensitive actions
for the selected objects.

Note: Not all of the context menu options available in the Repository Browser are available in the
search results tree.

Note: Multiselect is also available for the items in the search result tree.

To reset a search or change the search criteria in the search field:

1. Click the "x" button in the left corner of the search field.

The search is reset and the last Browser view you used is displayed.

COBOL Analyzer keeps a history of the searches you have done so when you start typing a search string,
it lets you select from a list of search strings you have previously used that begin with the same characters
as the ones you have typed.

Using the Browser

The Browser displays the sources in the repository of the current workspace, organized in a tree.
Depending on the tab you have selected in the Repository pane, the contents are displayed either by type
or by folder. Switch between them to browse the repository in different ways.

• Type view - shows the object model for the workspace, organized in a tree form by project, object type,
and object relationship.

Getting Started | 47

• Folder view - shows the sources in the tree in the same folder structure as the one they have in the host
environment.

Note: When you work with homonyms, you will see a number in parentheses after the name of the
object if there is more than one instance of it.

Selecting Objects

Select an object in the Browser by clicking it with the left mouse button. You can select all, select multiple,
or type-ahead select.

Use the Select choices in the Edit menu to select objects based on their verification status. The choices
operate on the entire list in the Search tab and on the objects under the selected workspace, project, or
folder in the Browser.

The Project drop-down displays the current project. You can navigate quickly to another project in the
Browser by clicking the project name in the drop-down.

Note: In the Folders view, you can use mutliselect for objects in different folders on the same level.

You cannot use multiselect for child and parent nodes.

You cannot use multiselect across projects.

Selecting All

To select all the objects in the tree or all the objects in the selected node, choose Edit > Select All. To
deselect the objects, choose Edit > Unselect All.

Selecting Multiple

To select a range of objects, hold down the Shift key, click the first object in the range, then click the last
object in the range. To select objects that are not in a range, hold down the Control key, then click each
object you want to select.

Using the Type-Ahead Select Functions

Use the simple type-ahead select function to select displayed objects as you type. To use the simple
function, make sure the Browser tab is current, then type the characters you want to match.

Note: You cannot use the simple type-ahead select function in the Search tab.

Use the advanced type ahead select function to select objects in the Browser or Search tab whether or not
they are currently displayed. To use the advanced function, click an object that has the same type as the

object you want to select, then click the button next to the button at the bottom of the Repository

pane (or if the filter subtree function is enabled, next to the button). From the drop-down menu, choose:

• Select to match text explicitly.
• Wildcard Select to match text using wildcard patterns.

Enter the text you want to match in the field next to the button. The tool selects matched objects as

you type, as long as they are in the same subtree. Click the button to repeat the select with the same
criterion.

To select multiple objects, enter the text you want to match in the field next to the button, then click the

adjacent button. From the drop-down menu, choose:

• Select All to select multiple objects that match text explicitly.

48 | Getting Started

• Wildcard Select All to select multiple objects that match text using wildcard patterns.

The tool selects matched objects as long as they are in the same subtree. Click the button to repeat
the select with the same criterion.

Expanding Subtrees

Click the symbol next to an item to expand its subtree one level. Click the symbol to collapse the
subtree one level.

In the Repository Browser, select an item and choose Expand Subtree in the right-click menu to expand
all its subtree levels in a single step. Select an item and choose Save Subtree in the right-click menu to
export the label text for expanded subtree levels to a text file.

Note: For subtrees with a great many objects, you can improve browser display performance by
filtering the subtree and/or by lowering the fetch buffer size in the General tab of the Workspace
Options window.

Filtering Subtrees

For a subtree with a great many objects, you can improve browser display performance by showing only
objects of interest in the subtree. To filter out objects from a subtree, select the subtree, then enter the text

you want to match in the field next to the button at the bottom of the Repository pane (or if the type-

ahead select function is enabled, next to the button). Click the adjacent button and choose Filter
from the drop-down menu.

The tool filters out unmatched objects from the subtree, and places a symbol next to the subtree in the
browser display. The filter and filter text are persistent for the subtree across sessions. To remove the filter
and its text, enter an empty string in the text field and choose Filter again.

Refreshing the Browser

In a multiuser environment, you need to refresh the browser after another user adds, deletes, or modifies a
workspace file. Choose View > Refresh Browser to refresh the browser.

Viewing the Entire Workspace

By default, the Browser tab displays repository trees for projects only. These trees show only objects you
can act on in the browser. To view all the objects in the workspace, choose View > Entire Workspace, or
select (none) in the Project drop-down. Choose View > Entire Workspace again, or select a project in
the Project drop-down, to display the project only.

Using the Legacy Search Tab

The Legacy Search tab displays a sorted list of workspace objects returned by a search filter. Select
objects in the Legacy Search tab the same way you do in the Browser tab.

To execute an existing search filter, choose Edit > Search Criteria. In the Filter Name drop-down, choose
the filter for the search, then click Find. The results are returned in the Search tab.

Note: By default, the results list shows two attributes of an object: its name and file type. Use the
General tab of the Workspace Options window to display additional attributes.

Creating a Search Filter

You can use predefined filters to search for objects in the Repository pane or create your own filters. You
cannot modify a predefined filter.

Getting Started | 49

1. Choose Edit > New Criteria. The Search dialog opens.

2. Choose any allowed combination of the following:

• To filter on object type, select the Entity Type check box and choose the entity type in the pane
below.

• To filter on object name, select the Object Name Like check box and enter a matching pattern for
the name in the accompanying field. You can use wildcard patterns allowed in LIKE statements by
Visual Basic for Applications (VBA).

• To filter on verification status, select the Where Parse Status check box and choose the status in
the group box below.

• To filter on a text string in the source, select the Scan Legacy Sources For check box, then specify
the search criterion. Select the check boxes below the drop-down if you want the search to match
case, skip comments, and/or match whole lines.

50 | Getting Started

3. In the Filter Name drop-down, enter the name of the search filter and click Save.

4. To edit a search filter, select it in the Filter Name drop-down and follow the instructions for creating a
filter. To delete a search filter, select it in the Filter Name drop-down and click Delete. To clear a search
filter, select it in the Filter Name drop-down and click Clear.

Note: To execute a search directly from the Search dialog, select the search filter in the Filter
Name drop-down and click Find. The results are returned in the Search tab.

Specifying a Search Criterion

Follow these instructions to specify a search criterion in find and replace operations and in search filters.

1. Click the radio button for the type of pattern matching you want to use.

2. In the combo box:

• Select the pattern for the text you want to match. The drop-down lists matching patterns from
previous searches.

• Enter a new matching pattern by typing in the combo box. You can enter plain character strings,
Posix regular expressions, or wildcard patterns allowed in LIKE statements by Visual Basic for

Applications (VBA). For regular expressions and wildcard patterns, click the button next to the
drop-down to display a pop-up menu of elements you can insert in the pattern. Click an element to
insert it. The matching pattern is saved when you execute the search.

Using Wildcard Patterns in Searches

In most searches you perform in the CA tools, you can use wildcard patterns allowed in LIKE statements
by Visual Basic for Applications (VBA). The table below shows the wildcard characters and what they
match.

Character Matches

? Any single character.

* Zero or more characters.

Any single digit (0–9).

[charlist] Any single character in charlist.

[!charlist] Any single character not in charlist.

To match the special characters left bracket ([), question mark (?), number sign (#), and asterisk (*),
enclose them in brackets. The right bracket (]) cannot be used within a group to match itself, but it can be
used outside a group as an individual character.

Specify a range of characters in a charlist by using a hyphen (–) to separate the upper and lower bounds of
the range. [A-Z], for example, results in a match if the corresponding character position in a string contains
any uppercase letters in the range A–Z. You can specify multiple ranges in brackets without delimiters.

Finding and Replacing Text in Source Files

You can find and replace text in source files from the Browser or Search tab of the Repository pane. Use
the Editor to replace text in a selection of source code.

1. In the Browser or Search tab, select the source files or the node that contains the source files you want
to search and choose:

• Edit > Find if you simply want to search.
• Edit > Replace if you want to search and replace.

2. The Find and Replace dialog opens. Click the tab for the operation you want to perform.

Getting Started | 51

Note: The find functionality in the Find tab is bidirectional. You can search up or down, and specify
that the search wrap. The find functionality in the Replace tab is unidirectional. Otherwise, the find
functionality is identical in each tab. The remaining steps assume that you want to both search and
replace.

3. In the Find What combo box, specify the search criterion. Select the check boxes below the drop-down
if you want the search to match case and/or match whole words.

4. In the Replace With combo box, select the replacement text. The drop-down lists text strings from
previous replace operations. Enter new replacement text by typing in the combo box. If you used regular

expressions for the find, click the button next to the drop-down to display a list of elements you can
insert in the replacement text field.

5. Click Find Next. When the search finds a match, click Replace. You are prompted to confirm the
replacement. Click Yes. Click Find Next again to find the next match, or click Replace All to replace all
matching text.

Using the Editor and Viewer
The Editor lets you view and edit the source code for a file. The Viewer lets you view renderings of logical
objects like screens and transformation target models. Double-click a file in the Repository pane to view it
in the Editor or Viewer. Choose File > Recent Sources to open a file from a list of recently opened files.

Editing Source

Edit file source as you would text in a word processor (cut-and-paste, drag-and-drop, undo, and so forth).
Click File > Save to save your changes. Edits are saved in the copy of the file maintained in the
\Workspace\Source subfolder.

Note: When you edit a file, the modified file and any dependent files are invalidated, and need to be
verified again. Only a master user can edit and verify source in a multiuser environment.

Finding and Replacing Source in a Selection

To find and replace source in a selection of text, select the text, then follow the instructions for the source
file find and replace function.

Viewing a List of Errors

For a source files with errors or warnings, right-click in the Editor and choose:

• Errors > View Errors from the popup menu to list the errors and warnings in a separate pane below the
Editor. Choose Edit > Errors > View Errors again to hide the pane.

• Errors > Next Error from the popup menu to navigate to the offending source code for the next error in
the list.

• Errors > Previous Error to navigate to the offending source code for the previous error in the list.
• Errors > Severity Filter from the popup menu to filter the list by severity.

Note: You can set a severity filter for all your workspaces in the Editor User Preferences.

• Errors > Copy Errors in the pop-up menu to copy the list of errors and warnings to the clipboard.

To hide the Editor and show only the list of errors and warnings for the selected file, right-click in the
Repository pane and choose Show Errors in the pop-up menu. Double-click the source file in the
Repository pane to show the Editor again.

Extracting and Expanding Copybooks (Cobol, MFS Only)

To extract source code as a copybook, select the code you want to extract, then choose Edit > Extract
Copybook. A dialog box opens, where you can enter the name of the new copybook. Click OK. The new
copybook is added to the repository and the extracted code is replaced by a COPY statement referencing
the new copybook.

52 | Getting Started

To expand COPY statements, choose Edit > Expand Copy Statements. The added lines of code are
highlighted and a comment line is inserted to identify the source copybook.

Commenting Out Source

To comment out a block of source, select the block and choose Edit > Comment Block. To uncomment
the block, select it and choose Edit > Uncomment Block.

Printing Source

To print the source for a file, choose File > Print.

Setting Editor User Preferences

Use the Editor tab of the User Preferences window to specify the display characteristics of the Editor.

1. Choose Tools > User Preferences. The User Preferences window opens. Click the Editor tab.

2. In the Font drop-down, select the display font for source code.

3. Select the Colorize Text check box if you want to use a color scheme to identify source elements, then
specify the color of each source element.

4. In the Show Errors pane, select the check box for each type of error you want to show in the error list.

Specifying the Color of Items

You use a standard Windows color control to specify a color scheme for source elements and other items.
Use the Palette tab to select a color from the Windows palette. Use the System tab to match the color of a
standard Windows element. Depending on the element, you can specify the foreground color, background
color, and/or font color.

Using the Chart Viewer
The Chart Viewer in the main window lets you view information about the objects in the workspace in the
form of various charts. You can choose between two types of views: Interactive Chart View, which is the
default one, and Report Chart View.

To switch between the two views, use the drop-down list at the top of the Chart Viewer.

To change the default chart view, go to Options > User Preferences > Environment > Chart Viewer and
select a new default view from the drop-down list. Note that there is also an option letting you choose
whether to have the Chart Viewer displayed when you start CA or not.

Note: To open Chart Viewer when it's not displayed in the main window, go to View > Chart Viewer.

To refresh the charts, click .

Interactive Chart View

The Interactive Chart View provides information about the objects in the workspace in the form of
interactive charts. Clicking the charts lets you drill down and access more detailed information in the form

of charts and tables. To drill back up, click .

Right-clicking in the tables lets you select from a number of options: edit, copy or delete objects, include in
or exclude from the project, assign tags, view properties. You can also choose to have the files shown in
the Repository Browser pane or to open Interactive Analysis. The last option in the context menu, Query
Repository, lets you view additional information about the object such as: dependent or used sources,
direct references and what the legacy source is.

There are four main pie charts:

Getting Started | 53

• Object Types - a pie chart representation of the types of objects and their number. Clicking on any
segment opens the Average Lines of Code chart which is a representation of all objects of the
selected type grouped by the number of lines of code. Clicking on a segment in this chart displays a
table with a list of all objects that fit into this segment as well as information about them such as: type,
source name, source path and lines of code.

• Cyclomatic Complexity - presents the cyclomatic complexity index for programs of all types. Clicking
on a segment in this chart displays a list of programs that fit the selected cyclomatic complexity index
boundary. The list is presented in a table containing information such as: type, program name,
cyclomatic complexity, maintainability index and legacy name.

• Average Modifications - represents the objects that have been modified grouped by the number of
modifications. Clicking on a segment drills down to the Object Types chart. Clicking further opens a
table with information about object type, source name and source path.

• Average Modification Date - represents the number of files of all types that have been modified within
specific time periods. Clicking on a segment drills down to the Object Types chart. Clicking further
opens a table with information about object type, source name and source path.

Report Chart View

The Report Chart View displays information about the objects in the workspace in three charts: Object
Types, Inventory Report and Complexity Report.

The Object Types is a pie chart representation of the types of objects and their number.

The Inventory Report Chart shows the number of objects that are verified, unverified, erroneous and
relaxed, grouped by type.

The Complexity Report chart provides additional information about the various types of objects such as
number of source lines, lines with comments, blank lines and include statements.

Using the Object Information Pane
The Object Information pane displays comments you have entered for an object. Select an object in the
Repository pane and choose View > Object Information to show the Object Information pane.

Enter comments for an object by selecting the object in the Repository pane and choosing Properties in
the right-click menu. In the Description tab, enter your comment in the text area and click OK.

Note: You cannot use this method to enter comments for a workspace (that is, when an entire
workspace is displayed in the Repository Browser). Use the General tab of the Workspace Options
window to enter comments for a workspace.

Viewing Object Properties
The properties of an object describe its characteristics: its language, complexity metrics, relationships, and
the like. Select an object in the Repository pane and choose View > Properties to display a set of tabs
with object properties. The table below describes the tabs in the Properties window.

Note: In other CA tools, use the right-click menu or the View menu to display the properties of the
selected object.

Tab Description

Description Displays comments you have entered for the object.

General Displays the name and other general information for the object.

Internal Displays verification option settings and other internal information for
the object.

System Displays system information for the object.

Statistic Displays the complexity metrics for the object and their values.

54 | Getting Started

Tab Description

Relationships Displays the relationships of the object. Only the first relationship level
is shown but if you want to explore a particular branch you can do it by
double-clicking the object. Select Restricted to the current project
to restrict relationships to those in the current project. Select
Workspace wide to show all the relationships of the object in the
workspace.

Object Tags Displays the tags assigned to the object.

Viewing Inventory Reports
Inventory Reports give high-level statistics for source file types in the current workspace: number of files of
each type, whether verified, number of lines of source code (verified files only), and the like. To generate an
Inventory Report, choose Prepare > Inventory Report. The table below describes the columns in the
Inventory Report.

Column Description

Type The source file type.

Source Lines The number of lines of source code in verified files of the specified
type.

Quantity The number of source files of the specified type.

Unverified The number of source files of the specified type for which verification
was not attempted.

Note: Copybooks do not need to be verified. Copybooks are
parsed when the including source file is verified.

Verified The number of successfully verified source files of the specified type.

Erroneous The number of unsuccessfully verified source files of the specified
type.

Relaxed The number of source files of the specified type that were verified
despite errors, under the relaxed parsing option.

Missing The number of missing support files (copybooks, JCL procedures, and
the like).

Viewing Key Object Relationships with Query Repository
The Query Repository feature lets you home in on key relationships of an object: all the programs that call
another program, or all the programs that update a data store, for example. From the results, you can
launch further queries without having to return to the Repository Browser. You can create printable
relationship reports and export them to a variety of standard formats.

1. In the Repository pane, select the workspace, project, folder, files, or objects you want to view
relationships for and choose Query Repository > <Relationship> in the right-click menu. The Query
Repository results pane opens over the Editor/Viewer.

2. To launch a query from the results, select one or more objects in the right-hand column and choose
Query Repository > <Relationship> in the right-click menu.

Using the Activity Log
The Activity Log is a chronological record of your activities in the current session. Choose View > Activity
Log to show the Activity Log pane.

Getting Started | 55

Viewing Errors

If the parser generated errors or warnings for a file, double-click the Activity Log entry for the file or select
the entry and choose Expand in the right-click menu to show a list of the errors and/or warnings. Double-
click a message to navigate to the offending source in the Editor. Choose Collapse in the right-click menu
to collapse the list.

Viewing History

To view Activity Log entries across sessions, choose History in the right-click menu. Click a date to view
the session log. To clear the session log, right-click in the log and choose Clear Log in the pop-up menu.
To clear a log entry, select the entry and choose Delete in the right-click menu.

Copying Records

To copy Activity Log records to the clipboard, select the records and choose Copy in the right-click menu.

Generating Reports

To generate a report from the Activity Log, right-click in the log and choose Report in the pop-up menu.

Clearing the Log

To clear the Activity Log, right-click in the log and choose Clear Log in the pop-up menu. To clear a log
entry, select the entry and choose Delete in the right-click menu.

Hiding a Column

To hide a column in the Activity Log, right-click in the log and deselect the column name in the Columns
choice in the pop-up menu. Select the column name to show the column again.

Creating a To Do List
A to do list is a record of tasks you need to perform before completing your project. You can create a to do
list for a workspace, project, folder, source file, or extracted object.

1. In the Repository Browser, select a workspace, project, folder, source file, or generated object and
choose View > ToDo List. The ToDo List window opens.

2. If you selected:

• A workspace, project, or folder, choose Edit > Add to enter a task for the item and all the items it
contains. Otherwise, choose Add forItem to enter a task for the workspace, project, or folder only.

• A source file or generated object, choose Edit > Add to enter a task for the item.

3. The New Properties dialog opens. In the Subject field, enter the name of the task. In the Content field,
enter a description of the task. Click OK. The task is listed in the ToDo List window.

Viewing a To Do List
To view the to do list for an item, select the item in the Repository Browser and choose View > ToDo List.
Use the options in the ToDo List window Edit menu to mark a task as done, delete a task, or view its
properties. You can generate a report from a to do list by choosing File > Report.

Using Tool Windows
When you open a COBOL Analyzer tool, the window for the tool appears above the product main window.
Simply move the tool window if you want to work in the main window again. A tool window’s state is saved
across sessions. Close a tool window by clicking the button in the upper righthand corner.

Tool windows are modeless: in principle, you can open as many tool windows as you want. In practice,
COBOL Analyzer will prompt you to close an “unprotected” tool window if the activity you want to perform

56 | Getting Started

could result in a repository change. An unprotected tool window cannot be updated to reflect a concurrent
repository change.

In tool windows with lists, you can select all, select multiple, size columns, and sort by column.

Resizing Panes
Resize a pane in a tool window by using the mouse to grab its border with another pane, called a splitter,
and dragging the border to a new location. To control how panes are resized when you resize the window,
select the splitter and choose one of the following in the right-click menu:

• For a vertical splitter, Keep First preserves the size of the panes to the left of the splitter. For a
horizontal splitter, Keep First preserves the size of the panes above the splitter.

• For a vertical splitter, Keep Second preserves the size of the panes to the right of the splitter. For a
horizontal splitter, Keep Second preserves the size of the panes below the splitter.

• Keep Proportion preserves the length and width ratio of the panes on either side of the splitter.

Moving Panes
Move a pane in the window by grabbing its title bar to show the “virtual rectangle” for the pane. The virtual
rectangle is a dotted color frame that you can drag to the position in the window at which you want the
pane to appear. When you are satisfied with the new position, release the mouse button. The other panes
in the window are adjusted as necessary.

Note: You may have to drag the virtual rectangle beyond the edge of the tool window to achieve the
effect you want.

To swap the positions of the panes on either side of a splitter, select the splitter and choose Swap in the
right-click menu. To change the color of the splitter when it is selected (and of its virtual rectangle), select
the splitter and choose Color in the right-click menu. Use the standard Windows color control to specify the
color.

Setting Options
COBOL Analyzer options control the look and feel of the product tools and how they perform their tasks.
The Tools menu gives you access to three sets of options:

• Workspace Options control the appearance and behavior of CA tools for the current workspace.
• Project Options control the appearance and behavior of CA tools for the current project.
• User Preferences control the appearance and behavior of the Editor, Interactive Analysis, and Change

Analyzer across workspaces, and miscellaneous other tasks.

Each tool has an Options choice in the View menu that lets you set the options for that tool.

Note: Many options are preset based on your choices in the COBOL Analyzer Configuration
Manager. For more information, see the installation guide for your product.

Tool options are described in detail in the relevant sections of the documentation set. This section shows
you how to manage option sets and how to set general CA and environment options

Managing Option Sets
An option set is a particular configuration of settings for one of the option groupings. In a given Project
Options set, for example, you might choose to show GO TO statements in the Interactive Analysis Program
Control Flow tool, while in the other Project Options sets you would not.

Option sets let you switch back and forth between configurations in the same session, without having to
change settings manually. You can also use them to ensure uniform results across your team by sharing
customized settings with team members.

Getting Started | 57

Understanding the Options Manager Window

Use the Options Manager to define custom options sets. Choose Options > Options Manager to open the
Options Manager window.

The figure below shows the Options Manager window at startup, with the tab for the Workspace Options
grouping selected. For each grouping, there is an initial read-only default option set, denoted by a
symbol, that reflects your current CA configuration. The active option set is displayed in bold type in the
Options Manager tab for the grouping. You make an option set active by assigning it. Assignments persist
across COBOL Analyzer sessions.

The user who defines a custom option set is referred to as its owner. Only the owner can share a custom
option set with other users, as indicated by a symbol. A shared option set cannot be deleted or
unshared if it is being used. The Used By drop-down at the bottom of the owner’s Options Manager
window lists the names of option set users. The owner’s name appears in the Owner column in the Options
Manager window displayed to other users (but not in the owner’s Options Manager window).

The initial default option set is always shared with other users. An owner can designate another option set
as the default, provided the option set is shared. The new default option set will automatically be assigned
to every user who has not explicitly defined a custom option set. A default option set cannot be modified or
deleted.

Creating an Option Set

If there is only a “(Default)” option set for the grouping, select it and click Edit. Otherwise, select any option
set and click Edit. Options Manager displays the available tabs for the selected options grouping.

Modify the options displayed on each tab as necessary and click Apply. When you are satisfied with your
choices, click OK. The new option set is displayed in the Options Manager window with the name of the
grouping.

58 | Getting Started

Note: If a default option set already uses one of the grouping names, Options Manager prepends
“Copy of” to the name.

Renaming an Option Set

To rename an option set, select it and click Rename. The system displays the current name in an edit box.
Enter the new name in the edit box and click outside the box.

Editing an Option Set

To edit an option set, select it and click Edit, then follow the instructions for creating an option set. You
cannot edit a default option set.

Copying an Option Set

To copy an option set, select it and click Copy. Options Manager prepends “Copy of” to the name of the
copied option set.

Deleting an Option Set

To delete an option set, select it and click Delete. You cannot delete a default option set, or a shared option
set that has been assigned by another user.

Sharing an Option Set

To share an option set, select it and click Sharing. The button is a toggle. Select it again to revoke sharing.
You cannot revoke sharing for an option set that has been assigned by another user.

Making an Option Set the Default

To make a custom option set the default, share it first, then select it and click Default.

Note: In the Project Options tab, a dialog opens that prompts you to select or create a new project.
Select the project and click OK.

The new default option set is automatically assigned to every user who has not explicitly defined a custom
option set. A default option set cannot be modified or deleted.

Assigning an Option Set

To make an option set active, select it and click Assign.

Note: In the Project Options tab, a dialog opens that prompts you to select or create a new project.
Select the project and click OK.

Importing and Exporting Option Sets

To import an option set, click Import. A Load dialog opens, where you can specify the option set you want
to import.

To export an option set, select it and click Export. A Save dialog opens, where you can specify the name
and location of the option set.

Setting General Options
Use the General tab of the Workspace Options window to specify the description of the workspace
displayed in the Object Information pane, the attributes displayed in the Repository pane Search tab, and
the browser fetch buffer size.

1. Choose Options > Workspace Options. The Workspace Options window opens. Click the General tab.

Getting Started | 59

2. In the Workspace description field, enter a description of your workspace. This description is shown in
the Object Information pane.

3. In Repository Browser (Search), check the boxes for the object attributes that should be displayed in the
Search tab of the Repository pane. Click Select All to check all the attributes.

Note: Only attributes in the repository model for an object are displayed. That is, if you choose
Cyclomatic Complexity, and only JCL files appear in the Search tab results list, the attribute will not
be displayed in the list, because Cyclomatic Complexity is not an attribute of a JCL file.

4. In the Browser Fetch Buffer Size field, enter the size of the buffer COBOL Analyzer uses to populate
the repository tree. When you expand a node in the Repository Browser, COBOL Analyzer populates
the display from a buffer that contains the objects last fetched from the repository. For very large
repositories, you may want to lower the buffer size so that you can work with objects in the Repository
Browser while the product performs subsequent fetches.

Setting Environment User Preferences
Use the Environment tab of the User Preferences window to specify whether you want to be prompted to
verify source files after registering them and the scope of relationships shown in the Object Properties
window.

1. Choose Options > User Preferences > Environment.

2. In After new files are registered, choose:

• Verify registered files if you want COBOL Analyzer to verify files after they have been registered.
• Ask user about verification if you want to be prompted to verify files after they have been

registered. Available whether or not Verify registered files is selected.

3. From the Code Search Report Options you can select whether to be prompted that queries will be run
on all programs when you try to run a Code Search report for a project.

4. The Chart Viewer options let you select:

• Show Chart Viewer on startup - if you want to have the Chart Viewer displayed when you start CA.
• Default Chart View - if you want to change the default chart view.

5. In Show relationships in the object properties view window, choose whether you want to restrict the
relationships displayed in the Relationships tab of the Object Properties window:

• Restricted to the current project if you want to restrict the relationships of the object to those in the
current project.

• Workspace wide if you want to display all the relationships of the object in the current workspace.

6. Select a main menu scheme: simplified or classic.

7. For Java support, specify the path of the folder for the Java Runtime Environment (JRE) on your
machine in the Path to JRE Folder field. If you do not enter a path, the current version specified in the
Windows registry is used. You must use JRE version 1.5 or later.

Note: If your application was compiled with a previous version of the JRE, specify the path of the
Java SE runtime library (rt.jar) used to compile the application in the Enter classpath to JAR
Files and/or path to external Java file root directories field in Workspace Options > Verification
> Settings.

Setting Archivers User Preferences
The CA registration process extracts compressed source files using the command line syntax for archiver
versions most widely in use. Use the Archivers tab of the User Preferences window to specify the
command line syntax for newer archiver versions.

1. Choose Options > User Preferences. The User Preferences window opens. Click the Archivers tab.

2. In the Command Line for Archiver drop-down, choose the archiver whose command line syntax you
want to specify.

60 | Getting Started

3. In the Unpack All field, enter the command line syntax for the unpack all operation.

4. In the Extract File field, enter the command line syntax for the extract file operation.

Setting Export Options
Use the Export Options tab of the Project Options window to specify where COBOL Analyzer stores
generated files. The default location is the \<Workspace Home>\Output folder.

1. Choose Options > Project Options. The Project Options window opens. Click the Export Options tab.

2. In the Target directory field, enter the folder you want COBOL Analyzer to store generated files in.

3. Deselect the Move Files check box if you want to copy generated files to both the default and the
specified directories.

Adding a Selectable Item
Many options windows allow you to add an item to a list of available items. In the Extensions tab of the
Workspace Registration options, for example, you can add an extension to the list of recognized
extensions.

Add an item by right-clicking in the selection pane and choosing Add in the pop-up menu. The CA displays
an empty text field next to a selected check box. Enter the name of the item in the text field and click
outside the field.

Note: If you are entering a file extension, make sure to enter the dot (.).

Edit an item by selecting it and choosing Edit in the right-click menu. Delete an extension by selecting it
and choosing Delete in the right-click menu.

Working with Reports and Diagrams
When you generate a diagram or report in the COBOL Analyzer, you typically have the option of saving it to
a file or printing it. You can save to a wide variety of standard formats.

Note: Word must be installed to save reports to RTF and Word. Excel must be installed to save
reports to Excel, CSV, and TXT. Visio 2002 must be installed to save a diagram to Visio. Visio 2002 is
not required to save to Visio XML.

Click Page Setup in a report window to set up the page for a printed report. Click Print to print the report.
The Print dialog opens, where you can set options for the print job. Click OK.

Click Save in a report window to export a report. A Save As dialog opens, where you can specify the name,
location, and file type of the report.

Using the Guide for a Tool
Many COBOL Analyzer tools have guides that you can use to get started quickly in the tool. The guides are
help-like systems with hyperlinks that you can use to access functions otherwise available only in menus
and other program controls.

To open the guide for a tool, choose View > Guide. Use the table of contents in the Page drop-down to
navigate quickly to a topic.

Purge Activity Log
Activity Log grows in size. To remove unwanted information, use Purge Activity Log to permanently delete
contents from the database.

1. Open Micro Focus COBOL Analyzer Administration.

Getting Started | 61

2. Click Tools > Purge Activity Log. The Purge Activity Log window opens.

3. Select a date from which to delete Activity Log data.

• Click Delete to proceed with log deletion. This will actually delete items from the Activity Log history
table in the database.

• Click Close to exit without any change.

62 | Getting Started

Preparing Projects

Registering Source Files
Before you can analyze application source files in COBOL Analyzer, you need to load, or register, the
source files in a workspace.

Note: In a multiuser environment, only a master user can register source files.

The CA creates copies of the registered files on the server machine (or locally in a single-user
environment) in the Sources folder for the workspace. These are the files you view and edit in the CA tools.
You can restore a file to its original state, update it to its current state, or export it as necessary.

Source files must have recognized DOS file extensions before they can be registered. You can view and
add to the recognized extensions in the Workspace Registration options window. Files without extensions
are checked for content, and if the content is recognized, the files are registered with appropriate
extensions appended.

CA assumes that input source files are ASCII files in DOS format. Occasionally, files may be converted
incorrectly from other formats to DOS-based ASCII with an extra special character (like “M”) at the end of
each line. While COBOL Analyzer accepts these files as input, some CA tools may not work correctly with
them. Make sure all source files are in valid ASCII format.

You can register source files in compressed formats (ZIP or RAR), as well as uncompressed formats.
COBOL Analyzer automatically unpacks the compressed file and registers its contents.

Note: CA extracts compressed source files using the command line syntax for archiver versions most
widely in use. If you use newer archiver versions, specify the command line syntax in the Archivers
tab of the User Preferences window.

Workspace Registration options determine registration behavior. The default values for these options are
preset based on your configuration and should be appropriate for most installations.

1. In the Repository Browser, create a project for the source files you want to register, or use the default
project. To create a project, choose Project > New Project. The Create Project dialog opens. Enter the
name of the new project and click OK. The new project is displayed in the Repository Browser.

2. Select the project in the Repository Browser, then copy-and-paste (Ctrl+C and Ctrl+V) or drag-and-
drop (if UAC is disabled) the file or folder for the source files you want to register onto the Repository
Browser. You are notified that you have registered the files successfully and are prompted to verify the
files. Click Close. The Repository Browser displays the contents of the new workspace either by folder,
or by type, depending on the tab you have selected - Folders or Types. The former displays the
contents of the repository in the same folder structure as the one they have on the host environment,
the latter displays them by object type.

Note: When updating or adding new sources through the CA main window, the files or folders
being registered will be included into the selected folder in the Folders view. Registration into the
Types view will copy the selected files and folders directly to the root Sources folder, i.e. they will
not be copied into any other existing folders. If you are registering files or folders in Folders view,
make sure you've selected in the tree the exact folder in which you want them to be registered. If
you haven't selected any folder, they will be copied into the root Sources folder.

Important: Before registering your source files, you must create a folder structure that replicates
the original. This helps to avoid errors when you work with homonyms. Micro Focus recommends
putting each application in a separate folder, putting system files that are common for more than

Preparing Projects | 63

one application in one directory. After you do that, register your sources by selecting the folders
and including them in the project as described in step 2.

Note: In the notification dialog, select Never ask again if you do not want to be prompted to verify
files. On the Environment tab of the User Preferences window, select Ask user about verification
if you want to be prompted again.

Host Environment Source Compatibility
When you register your source files, it is essential that they are organized in the same folder structure as
the one on your host environment. This allows CA to create the correct relationships when connecting
programs with their copybooks, JCLs with the proper version of the procedures that are used, etc. Run-
time connections are also established based on this structure. Furthermore, this structure allows for having
several members with the same name, i.e. homonyms.

The sources to be loaded into CA should be in folders named after the PDS libraries on the Mainframe and
those folders should be the ones loaded.

Example

There is an enterprise organization with 3 data centers: Data Center 1 with one Mainframe, Data Center 2
with two Mainframes, and Data Center 3 with one Mainframe.

The following image shows the folders in a Windows environment:

And this is what the three data center folders look like after they have been copied to the workspace:

64 | Preparing Projects

Resolving Include Files
When trying to resolve include files (copybooks, PL/I includes, JCL procedures, etc.), the CA Parser will
look at all folders trying to find names that match the included file. If only one match is found, it will use that
file. If more than one match is found, CA Parser takes the following steps to resolve which of the matching
include files is the one to use:

1. It checks if one of the folders is listed under Search Path in the Homonyms tab in Project Options.
The folder can be listed as:

• an absolute location:

C:\Workspaces\FS Doc\Sources\Data Center 1\DC1 Mainframe 1\SYS1.COPYLIB

• or as a relative location under the Sources folder:

Data Center 1\DC1 Mainframe 1\SYS1.COPYLIB

2. It looks for proximity of the included file to the including file in the source folder structure:

• First it looks at files that are in the same folder as the "including" source.
• Then it looks at files in the dependent folders.

Preparing Projects | 65

• And then - up the folder hierarchy.
3. Finally folder names will be matched and the "include" folder that has a name with a better match to the

source folder name will be selected.

Resolving Program-to-Program Calls
When resolving call relationships between programs, it is possible to reach a point where there is more
than one candidate for a called program. In this case CA works the same way as with includes (see
Resolving Include Files), but since the program objects themselves don't have folders, the folders of the
source files that generated them are used.

Note: This same algorithm applies to any relations between non-legacy entities (e.g. PROGRAM
reads TABLE, TRANSACTION starts PROGRAM, etc.).

Resolving Control Cards
Control cards can be any members explicitly mentioned in the JCL. When parsing JCLs, CA will look for a
file with the member name in the JCL in a folder with a name matching the PDS name from the mainframe.

Resolving JCL Procedures
When looking for JCL procedures, the parser uses the JCLLIB statement, if present. If there is only one
copy of the searched procedure, that copy is used. Otherwise, if more than one copy is available, the
libraries specified with the JCLLIB statement are used to pick the right one.

Example:

Path to the JCL file: <workspace_path>\Sources\APP1\MYJCL\MYJOB.JCL

//MYJOB1 JOB ...
//MYLIBS1 JCLLIB ORDER=CAMPBEL.PROCS.JCL
//S1 EXEC PROC=MYPROC1

In this case the procedure <workspace_path>\Sources
\APP1\CAMPBEL.PROCS.JCL\MYPROC1, if present, will be used.

Setting Registration Options: Extensions Tab
Source files must have recognized DOS file extensions before they can be registered. Files without
extensions are checked for content, and if the content is recognized, the files are registered with
appropriate extensions appended.

Files with unknown extensions are flagged, provided that you uncheck Ignore Unknown and Overloaded
Extensions on the Extensions tab of the Workspace Registration options window. If a file fails to register
because its extension is unknown, simply add the extension to the list of recognized extensions on the
Extensions tab and register the file again.

1. Choose Options > Workspace Options. The Workspace Options window opens. Click the Registration
tab, then the Extensions tab.

2. In the Source Type pane, select the source file type whose extensions you want to view. The extensions
for the file type are listed in the Extensions pane. Select each extension you want the system to
recognize. Add extensions as necessary.

Note: If a source file does not specify an extension when it references an included file, the
verification process assumes that the included file has one of the recognized extensions. If multiple
included files have the same name but different extensions, the system registers the file with the
first extension in the list.

3. Check Ignore Unknown and Overloaded Extensions if you do not want the registration process to
issue warnings about unrecognized and overloaded extensions. An overloaded extension is one
assigned to more than one file type.

66 | Preparing Projects

4. For COBOL programs and copybooks, check Remove Sequence Numbers if you want the system to
replace preceding enumeration characters, or sequence numbers, with blanks. Sequence numbers are
removed only from the source file versions maintained by the product.

Setting Registration Options: Source Files Tab
If your legacy application executes on a mainframe, it’s usually best to convert the application source to
workstation encoding. If that’s not practical, you can have COBOL Analyzer convert it for you, using the
options on the Registration > Source Files tab of the Workspace Options window.

1. Choose Options > Workspace Options. The Workspace Options window opens. Click the Registration
tab, then the Source Files tab.

2. In the Legacy Source Encoding group box, choose:

• Workstation if the source is workstation-encoded. For DBCS configurations, if Japanese-language
source files were downloaded in workstation (text) mode, specify how DBCS escape control
characters were handled.

• Mainframe if the source is mainframe-encoded. When this option is selected, the registration
process automatically converts source files to workstation-encoding. Only the source files
maintained by COBOL Analyzer are converted.

3. In the Object System Encoding group box, choose:

• English - US (ANSI MS-1252) if the original source was U.S. English ANSI-encoded (Unisys 2200
and HP3000 Cobol).

• English - US (EBCDIC-CCSID-37) if the original source was U.S. English EBCDIC-encoded (IBM
Cobol).

• Japanese (EBCDIC-CCSID-930, 5026) if the original source was Japanese EBCDIC-encoded,
CCSID-930, 5026 (DBCS configurations only).

• Japanese (EBCDIC-CCSID-939, 5035) if the original source was Japanese EBCDIC-encoded,
CCSID-939, 5035 (DBCS configurations only).

During analysis and transformation, hexadecimal literals in Cobol programs and BMS files are
translated into character literals using this setting.

Note: Do not change these settings after source files are registered in a workspace.

4. Check Strip trailing numeration if you want the system to strip trailing numeration characters (columns
73 through 80) from source lines. Trailing numeration characters are removed only from the source files
maintained by CA.

5. Check Expand tabulation symbols if you want the system to replace tabulation symbols with a
corresponding number of spaces. Tabulation symbols are replaced only in the source files maintained
by CA. You must select this option if you want to view Interactive Analysis information for C or C++
programs.

6. Check Do not invalidate dependent files if you do not want the system to invalidate files that are
dependent on a file you are refreshing. Normally, the system invalidates all dependent files. Selecting
this option shifts the burden of determining which files need to be invalidated (and reverified) onto the
user. If you select this option and know that a file is affected by a change in the file being refreshed, you
must reverify the affected file.

Creating New Source Files
To create a new source file, select the project for the source file in the Repository Browser and choose File
> New. A dialog box opens, where you can specify the file name (with extension) and source file type. To
create a new source file with the same content as an existing file, select the file and choose File > Save
As. The system automatically registers the created files and stores them in the appropriate folder.

Preparing Projects | 67

Refreshing Source Files
Use the COBOL Analyzer refresh feature to update registered source files to their current state. You can
refresh all of the objects in a project or folder, or only selected objects.

The refresh looks for updated legacy source in the original location of the file or, for unresolved source, the
location you specified in Workspace Options > Registration > Source Files. Once it finds the source, it
overwrites the version of the file maintained by the system.

If the files you are refreshing have previously been verified, the system invalidates the files and all the files
that depend on them. Invalidating a file restores it to its state before it was verified, deleting the object
model the parser created for the file. The invalidated files are displayed in bold type in the Repository
Browser. Reverify the invalidated files.

Note:

If the refreshed file is unresolved, the referring source is not invalidated. To resolve the refreshed file,
reverify both the unresolved file and the referring source.

1. In the Repository Browser, select the project, folder, or file you want to refresh and choose File >
Refresh Sources from Disk.

Note: If you are licensed to use the Batch Refresh feature, you can perform the refresh in batch
mode. Contact support services for more information.

2. You are prompted to confirm that you want to refresh the selected files. Click Yes.

The system overwrites the workspace source files.

Using Source Synchronization
Source Synchronization checks if the source files registered in COBOL Analyzer have been modified or
deleted from their original location. It also detects if new files or folders have been added to a folder
registered in CA.

To use Source Synchronization, do one of the following:

• Select Workspace > Source Synchronization.
•

Click .

If there are any new, modified or deleted files or folders, Source Synchronization informs you about that
and asks you if you want to synchronize the workspace. To view the updates, click Show Changes. Click
Close to go back to the Source Synchronization window.

If you click Yes, the new files will be added to the workspace and verified, the modified files be updated
and re-verified, and the deleted files will be removed.

Source Synchronization Settings
To set Source Synchronization options, go to Options > Workspace Options > Registration > Source
Synchronization.

In this tab you can select to check for updated sources automatically. If you do so, you must select whether
to have the checks performed periodically or at a specific time. If you want to have periodic checks, you
must select an interval. The default is 20 hours. When this option is selected, the check is added as a task
to the Windows Task Scheduler.

Another option in this tab is to select to execute a batch file on the files in the original source location
before the workspace is synchronized.

68 | Preparing Projects

If you select Synchronize the workspace after checking for outdated sources without asking me,

every time you click or select Workspace > Source Synchronization the workspace will be
automatically synchronized.

In this tab you can also choose whether to unregister from the workspace the files deleted from the original
source location.

Source Synchronization and Impact Analysis
If you select a file that has been modified in the original location and try to run Impact Analysis, you will be
notified that it has been changed and will be asked to synchronize the workspace.

Note: If you have selected the Synchronize the workspace after checking for outdated sources
without asking me option in Options > Workspace Options > Registration > Source
Synchronization, the workspace will be synchronized when you try to run Impact Analysis on a
modified file.

The Source Synchronization window also pops up when you try to select a file that has been modified in
the Objects pane in Interactive Analysis.

Exporting Source Files from a Workspace
To export the workspace source for a project or file to a new location, select the project or file in the
Repository Browser and click File > Export Sources. A dialog box opens, where you can specify the
location.

Deleting Objects from a Workspace
To delete an object from a workspace, select it and choose File > Delete from Workspace. To delete a
folder and all its contents from a workspace, select it and choose File > Delete Contents from
Workspace.

Deleting a Workspace
To delete a workspace, choose Administer > Delete Workspace... in the COBOL Analyzer Administration
tool. A Delete workspace dialog opens, where you can select the workspace you want to delete.

Note: Only a master user can delete a workspace in a multiuser environment.

Japanese Language Support
COBOL Analyzer provides full support for mainframe-based Cobol or PL/I Japanese-language applications.
Make sure you set Windows system and user locales to Japanese before registering source files.

You can register Japanese source files downloaded in text or binary mode:

• Source files downloaded in text (workstation) mode must be in Shift-JIS encoding. If Shift-Out and Shift-
In delimiters were replaced with spaces or removed during downloading, COBOL Analyzer restores
them at registration.

• Source files downloaded in binary (mainframe) mode are recoded by COBOL Analyzer from EBCDIC to
Shift-JIS encoding at registration.

Use the options on the Registration > Source Files tab of the Workspace Options window to specify how
DBCS escape control characters were handled in source file downloaded in text mode:

• Replaced with spaces if DBCS escape control characters were replaced with spaces.
• Removed if DBCS escape control characters were removed.

Preparing Projects | 69

• Retained or not used if DBCS escape control characters were left as is or were not used.

We recommend you preserve delimiters during download. Replacing delimiters with spaces during
download generally yields better restoration results than removing them.

In all COBOL Analyzer tools that offer search and replace facilities, you can insert Shift-Out and Shift-In
delimiters into patterns using Ctrl-Shift-O and Ctrl-Shift-I, respectively. You need only insert the delimiters if
you are entering mixed strings.

Setting Up Projects
Workspace projects typically represent different portions of the application modeled in the workspace. You
might have a project for the batch portion of the application and another project for the online portion. You
can also use a project to collect items for discrete tasks: all the source files affected by a change request,
for example.

Creating Projects
When you set up a workspace in COBOL Analyzer, the system creates a default project with the same
name as the workspace. Create projects in addition to the default project when you need to analyze
subsystems separately or organize source files in more manageable groupings.

1. Choose Project > New project. The Create Project dialog opens.

2. Enter the name of the new project and click OK. The new project is displayed in the Repository
Browser. The project is selected by default.

Sharing Projects
In a multiuser environment, the user who creates a project is referred to as its owner. Only the owner can
share the project with other users.

A shared, or public, project is visible to other members of your team. A private project is not. If the project is
not protected, these team members can delete the project, add source files, or remove source files.

Projects are private by default. Turn on sharing by choosing Project > Toggle Sharing. Choose Project >

Toggle Sharing again to turn it off. A symbol indicates that the project is shared.

Protecting Projects
By default, projects are unprotected: any user to whom the project is visible can add source files, include or
exclude objects.

Note: Only a master user or the owner of a shared unprotected project can delete it.

The project owner or master user can designate a project as protected, in which case no user can delete or
modify the project, including the project owner or master user: the project is read-only, until the project
owner or master user turns protection off.

Turn on protection by selecting the project in the Repository pane and choosing Project > Toggle
Protection. Choose Project > Toggle Protection again to turn it off. Look for a symbol like this one to
indicate that a project is protected.

Moving or Copying Files into Projects
Copy the contents of a project, folder, or file to a different project by selecting it and dragging and dropping
the selection onto the project, or by using the Edit menu choices to copy and paste the selection. Use the

70 | Preparing Projects

Project menu choices described below to move selections, or to include referenced or referencing objects
in a move or copy.

Note: In other CA tools, use the right-click menu or the File menu to include files in projects.

1. In the Repository Browser, select the project, folder, or file you want to move or copy, then choose
Project > Copy Project Contents (if you selected a project) or Project > Include into Project (if you
selected a folder or file). The Select Project window opens.

2. In the Select Project window, select the target project. Click New to create a new project.

3. Select either:

• Include All Referenced Objects if you want to include objects referenced by the selected object
(the Cobol copybooks included in a Cobol program file, for example).

• Include All Referencing Objects if you want to include objects that reference the selected object.

Note: This feature is available only for verified files.

4. Select:

• Copy to copy the selection to the target project.
• Move From Current Project to move the selection to the target project.
• Move From All Projects to move the selection from all projects to the target project.

5. Click OK to move or copy the selection.

Including Referenced and Referencing Objects in a
Project
After verifying a project, you can ensure a closed system by including referenced or referencing objects in
the project. The objects to be included must also have been verified, so it's best to verify every project in
the workspace before including objects.

You can include all referencing objects or only “directly referencing” objects: if program A calls program B,
and program B calls program C, A is said to directly reference B and indirectly reference C.

To include in a project:

• Every object referenced by the objects in the project (including indirectly referenced objects), select the
project in the Repository Browser and choose Project > Include All Referenced Objects.

• Every object that references the objects in the project (including indirectly referencing objects), select
the project in the Repository Browser and choose Project > Include All Referencing Objects.

• Every object that directly references the objects in the project, select the project in the Repository
Browser and choose Project > Include Directly Referencing Objects.

Removing Unused Support Objects from a Project
To move unused support objects (Cobol copybooks, JCL procedures, PL/I include files, and so forth) from a
project to the workspace, select the project in the Repository Browser and choose Project > Compact
Project.

Emptying a Project
To empty a project (without deleting the project or its contents from the workspace), select the project and
choose Project > Empty Project Contents.

Preparing Projects | 71

Deleting a Project
To delete a project from a workspace (without deleting its source files from the workspace), select it and
choose either File > Delete from Workspace or Project > Delete Project.

Note: Only the owner of a project can delete it.

Verifying Source Files
Parsing, or verifying, an application source file generates the object model for the file. Only a master user
can verify source files.

You can verify a single file, a group of files, all the files in a folder, or all the files in a project. It’s usually
best to verify an entire project. COBOL Analyzer parses the files in appropriate order, taking account of
likely dependencies between file types.

Note: You need not verify copybooks. Copybooks are parsed when the including source file is
verified.

If your RPG or AS/400 Cobol application uses copy statements that reference Database Description
or Device Description files, or if your MCP Cobol application uses copy statements that reference
DMSII DASDL files, you need to generate copybooks for the application before you verify program
files.

Workspace and Project Verification options determine verification behavior. The default values for these
options are preset based on your configuration and should be appropriate for most installations.

1. In the Repository Browser, select the project, folder, or files you want to verify and choose Prepare >
Verify.

2. You are prompted to drop repository indexes to improve verification performance. Click Yes. You will be
prompted to restore the indexes when you analyze the files.

The parser builds an object model for each successfully verified file. For an unsuccessfully verified file, the
parser builds an object model for as much of the file as it understands.

Enabling Parallel Verification
Parallel verification typically improves verification performance for very large workspaces by using multiple
execution agents, called Queue Processor, to process source files concurrently. You can start any number
of Queue Processors on the local machine, remote machines, or some combination of local and remote
machines. You can run parallel verification online in the COBOL Analyzer or in batch mode with the Batch
Refresh Process (BRP).

Important: When you run parallel verification on more than one machine, you need to make sure that
workspace and project verification options are set identically on each machine. The easiest way to do
this is to log in as the same Windows user on each machine. Alternatively, you can define a default
option set that is automatically assigned to every user in the environment who has not explicitly
defined a custom option set. See the related topics for more information on option sets.

You enable parallel verification in three steps:

• Select the parallel verification method and the minimum number of concurrent Queue Processors on the
Verification > Parallel Verification tab of the Workspace Options.

• Start the Queue Processors on the local and/or remote machines. If you start fewer than the minimum
number of Queue Processors specified on the Parallel Verification tab, the verification process starts the
needed Queue Processors automatically on the local machine.

72 | Preparing Projects

• Verify the workspace online in the COBOL Analyzer or in batch mode using the Batch Refresh Process
(BRP).

Note: Verification results are reported in the Activity Log History window. They are not reported in the
Activity Log itself (for online verification) or BRP log files (for batch verification). You can also use a
Verification Report to view the results.

Follow the instructions below to launch Queue Processors and to specify the type of work they perform.
You can launch multiple Queue Processors on the same machine. Once the minimum number of Queue
Processors has been started, you can launch them at any point in the verification process.

1. In the COBOL Analyzer Administration window, choose Administer > Launch Queue Processor. The
Launch Queue Processor window opens.

2. In the Serve workspace combo box, specify the workspace to be processed.

3. In the Processing Mode pane, select any combination of:

• Conversion to perform operations used to generate a Interactive Analysis construct model.
• Verification to perform verification operations.
• Code Search Query to perform Code Search searches in offline mode.

4. Select Produce Log File to generate a log file for parallel verification. The log file has a name of the
form <workspace_name>HCC.<random_number>.log and is stored at the same level as the workspace
(.rwp) file.

5. Click OK. The product launches the Queue Processor. Click the button on the Windows toolbar to
view the Queue Processor window.

Note: Once verification has started, you can change the processing mode for a Queue Processors
by selecting the appropriate choice in the Processing menu in the Queue Processor window.

Invalidating Files Before Reverification
Invalidating a source file restores it to its state before it was verified, deleting the object model the parser
created for the file. COBOL Analyzer automatically invalidates previously verified files when you reverify
them.

When reverifying sources in the repository, all selected objects are invalidated prior to being verified. When
the reverification is cancelled, all selected objects that were not verified, are invalidated.

You can save time reverifying very large applications by invalidating some or all of the source files in them
before you reverify. You can invalidate:

• The entire workspace in the COBOL Analyzer Administration tool. Choose Administer > Invalidate
Workspace. The Select workspace dialog opens, where you can select the workspace you want to
invalidate.

• Selected projects, folders, or files in the COBOL Analyzer Repository pane. Select the items you want to
invalidate and choose File > Invalidate Selected Objects.

Invalidated files are displayed in bold type in the Repository pane.

Note: To improve performance when reverifying objects in the repository, all selected objects will be
invalidated prior to being verified. When the reverification is cancelled, all selected objects that were
not verified will be invalidated.

Note: Invalidating an entire workspace is significantly faster than invalidating projects, folders, or files.

You must be a master user to invalidate source files.

The invalidate workspace process opens several console windows displaying the progress of
component tasks. Close these windows manually when invalidation is complete.

Preparing Projects | 73

Setting Workspace Verification Options: Legacy
Dialects Tab
Use the Verification > Legacy Dialects tab of the Workspace Options window to identify the dialect of the
source files in your application.

1. Choose Options > Workspace Options. The Workspace Options window opens. Click the Verification
tab, then the Legacy Dialects tab.

2. In the Source Type pane, select the source file type whose dialect you want to specify, then select the
dialect in the dialect pane.

3. Set verification options for the dialect. The table below shows the available options.

Option Dialect Description

48-character set All PL/I Specifies that the parser handle the 48-character
set used with older hardware for logical operators.

Allow long copybook names COBOL/390, Enterprise
COBOL

Specifies that the parser allow references to
copybooks with names longer than 8 characters.
The reference is flagged as unresolved.

Note: By default, names longer than 8
characters are truncated in the parse tree.

Allow long program names COBOL/390, Enterprise
COBOL

Specifies that the parser allow references to
programs with names longer than 8 characters.
The reference is flagged as unresolved.

Note: By default, names longer than 8
characters are truncated in the parse tree.

ASCII Compatibility Unisys 2200 UCS COBOL Specifies that the parser ensure consistency with
the ASCII version of Unisys COBOL. Emulates
behavior of compiler COMPAT option.

Binary Storage Mode ACUCOBOL-GT®, Micro
Focus COBOL

Specifies the binary storage mode: Word (2, 4, or
8 bytes) or Byte (1 to 8 bytes).

Compiler Directives All COBOL Specifies directives to be used during compilation.
To add a directive, right-click in the Compiler
Directives field and select Add from the context
menu. The format is: <directive>="<value>".

Using the context menu you can also delete, edit,
select, unselect, move up/down the directives.

Note: Project-level compiler directives
override workspace-level directives.

COPY REPLACING Substitutes
Partial Words

All COBOL Specifies that the application was compiled with
partial-word substitution enabled for COPY
REPLACE operations.

COPY statements as in
COBOL-68

All COBOL Specifies that the application was compiled with
the OLDCOPY option set.

Currency Sign All COBOL, all PL/I Specifies the national language currency symbol.

Data File Assignment Micro Focus COBOL Specifies the setting of the compiler ASSIGN
option: Dynamic or External.

Decimal Separator All Natural Specifies the type of the Decimal Separator.
Leading and trailing commas are not supported

74 | Preparing Projects

Option Dialect Description

as decimal separators, only the full format [0-9]...,
[0-9]... is supported.

Note: Mixing decimal-separator commas
and item separator commas (i.e. in lists)
cannot be done directly (as per Natural
documentation), so commas that are list
separators should be surrounded by at
least one space, preferably two (leading
and trailing). This is required to parse
ambiguous commas like those separating
numeric literals, which have comma as the
decimal point.

When the decimal point is set to a period, comma
is no longer recognized as the decimal separator
and is treated as a list separator, thus producing
syntax errors for numeric values with comma as
the decimal separator.

Note: When the option is set to comma, a
dot is still recognized as a valid separator.
The option does not disable the dot but
enables the comma as an additional
separator.

Enable MF comments Micro Focus COBOL Specifies that the application contains comments
in the first position.

Extralingual Characters All PL/I Add the specified lower-case national language
characters to the supported character set. Do not
separate characters with a space.

Extralingual Upper Characters All PL/I Add the specified upper-case national language
characters to the supported character set. Do not
separate characters with a space.

Graphical System ACUCOBOL-GT® Specifies that the application was executed on a
graphical rather than character-based system.

In Margins All Specifies the current margins for source files.

Line Number Step All Natural Specifies the line-numbering increment to use in
restoring stripped line numbers in Natural source
files: User defined, to use the line-numbering
increment you specify. If you select User defined,
enter the increment in the Value field.

Logical Operators All PL/I Specifies handling of logical operator characters
used in source files: Characters, to use the logical
operator characters you specify. If you select
Characters, specify the characters used for NOT
and OR operations.

Out Margins All PL/I Specifies the margins for components to be
created with the COBOL Analyzer Component
Maker tool.

PERFORM behavior ACUCOBOL-GT®, Micro
Focus COBOL

Specifies the setting of the compiler PERFORM-
type option: Stack, to allow recursive
PERFORMS, or All exits active, to disallow them.

Picture clause N-symbol COBOL/390, Enterprise
COBOL

Specifies the national language behavior of
picture symbol N and N-literals: DBCS or

Preparing Projects | 75

Option Dialect Description

National. Emulates behavior of compiler
NSYMBOL option.

Preserve dialect for verified
objects

All COBOL Specifies that the parser reverify COBOL files with
the same dialect it used when the files were
verified first.

RM/COBOL compatibility ACUCOBOL-GT® Specifies that the parser ensure proper memory
allocation for applications written for Liant RM/
COBOL. Emulates behavior of -Ds compatibility
option.

Source Format ACUCOBOL-GT® Specifies the ACUCOBOL-GT® source format:
ANSI, Long or Terminal.

SQL Dialect All SQL Specifies the SQL dialect. The options are:
Standard SQL, DB2 for AS/400, Unisys RDMS.
For ANSI SQL-92 and DB2 for OS/390 use
Standard SQL.

Support Hogan Framework All COBOL Specifies that the parser create relationships for
Hogan COBOL and Hogan batch applications.
Specify the full path of the folder for Hogan
Framework configuration files in the Hogan Files
Location field. For more information, see "Hogan
Framework Support."

Treat COMP-1/COMP-2 as
FLOAT/DOUBLE

ACUCOBOL-GT® Specifies that the parser treat picture data types
with COMP-1 or COMP-2 attributes as FLOAT or
DOUBLE, respectively.

Unisys MCP Control Options Unisys MCP COBOL-74,
Unisys MCP COBOL-85

Specifies that the application was compiled with
control options set or reset as specified. Add
control options as necessary.

Setting Workspace Verification Options: Settings Tab
Use the Verification > Settings tab of the Workspace Options window to specify verification behavior for
the workspace. Among other tasks, you can:

• Enable staged parsing, which may improve verification performance by letting you control which
verification stages the parser performs.

• Enable relaxed parsing, which lets you verify source despite errors.

1. Click Options > Workspace Options. The Workspace Options window opens. Click the Verification
tab, then the Settings tab.

2. In the Source Type pane, select the source file type whose verification options you want to specify.

3. Set verification options for the source file type. The table below shows the available options.

Note: Click the More or Details button if an option listed below does not appear on the Settings
tab.

Option Source File Description

Allow Implicit Instream Data JCL Specifies that a DD * statement be inserted
before implicit instream data if the statement was
omitted from JCL.

Allow Keywords to Be Used as
Identifiers

COBOL, Copybook Enables the parser to recognize COBOL
keywords used as identifiers.

76 | Preparing Projects

Option Source File Description

At Sign System Definition File Specifies the national language character for the
at symbol.

C/C++ Parser Parameters C, C++ Specifies the parameters used to compile the
application. You can also specify these
parameters in the Project Verification options, in
which case the project parameters are used for
verification.

Create Alternative Entry Point COBOL Specifies that an additional entry point be created
with a name based on the conversion pattern you
enter in the Conversion Pattern field. Supports
systems in which load module names differ from
program IDs. For assistance, contact support
services.

Cross-reference Report TWS Schedule Specifies the full path of the TWS cross-reference
report (.xrf).

Currency Sign System Definition File Specifies the national language character for the
currency symbol.

Debugging Lines COBOL Specifies parsing of debugging lines: Off, to parse
lines as comments; On, to parse lines as normal
statements; Auto, to parse lines based on the
program debugging mode.

Detect Potential Code
Anomalies

COBOL Enables generation of Interactive Analysis
information on potential code anomalies.

Enable Interactive Analysis COBOL, Natural, PL/I,
RPG, JCL

Enables generation of Interactive Analysis
information.

Enable Quoted SQL Identifiers Assembler File, COBOL,
DDL, PL/I

Enables the parser to recognize quoted SQL
identifiers. Strings delimited by double quotation
marks are interpreted as object identifiers.

Enable Reference Reports COBOL, Control
Language, ECL, JCL,
Natural, PL/I, RPG, W.L.

Enables generation of complete repository
information for logical objects.

Enter classpath to JAR Files
and/or path to external Java file
root directories

Java Specifies any combination of:

• JAR files containing class libraries referenced
in the Java application, or Zip files containing
external Java files referenced in the
application. Alternatively, specify the path of
the folder for the JAR or Zip files, then select
Include Jar/Zip Files From Directories.

• Paths of the root folders for external Java files
referenced in the application.

Note: This option is checked after the
identical option in the project verification
options. Setting the project verification
option effectively overrides the setting
here.

Extralingual Characters System Definition File Adds the specified lower-case national language
characters to the supported character set. Do not
separate characters with a space.

Preparing Projects | 77

Option Source File Description

Extralingual Upper Characters System Definition File Adds the specified upper-case national language
characters to the supported character set. Do not
separate characters with a space.

Generate program entry points
for functions with same name as
file

C Specifies that a program entry point be created
for the function that has the same name as the
file. Typically used to trace calls to C programs
from COBOL, PL/I, Natural, RPG, or Assembler
programs.

Generate program entry points
for main functions

C Specifies that a program entry point be created
for functions named "main". Typically used to
trace calls to C programs from COBOL, PL/I,
Natural, RPG, or Assembler programs.

Ignore Duplicate Entry Points All Enables the parser to recognize duplicate entry
points defined by the COBOL statement ENTRY
‘PROG-ID’ USING A, or its equivalent in other
languages. The parser creates an entry point
object for the first program in which the entry
point was encountered and issues a warning for
the second program. To use this option, you must
select Enable Reference Reports. You cannot use
this option to verify multiple programs with the
same program ID.

Ignore Text After Column 72 DDL Allows the parser to ignore trailing enumeration
characters (columns 73 through 80) in source
lines.

Imply CMPAT=Yes PSB Specifies that CMPAT=Yes is assumed even if it
hasn't been set in PSBGEN. When CMPAT=Yes
is specified, it instructs IMS to generate an I/O
PCB for all uses, even in environments where it is
not used, such as batch or CICS. If you use this
option, you won't need to recompile the program
between batch and online executions.

Import instream data from DSN JCL Imports data sets in HyperCode:

• Instream data sets.
• Control card patterns.

Note: This option can increase the
verification time of JCL and also increase
the size of the database.

Libraries support Natural Enables Natural library support. For more
information, see "Natural Support" in the online
help.

List of Include Directories C, C++ Specifies the full path of the folders for include
files (either original folders or Repository Browser
folders if the include files were registered).
Choose a recognized folder in the List of Include
Directories pane. Add folders as necessary. You
can also specify these folders in the Project
Verification options, in which case the parser
looks only for the folders for the project.

Number Sign System Definition File Specifies the national language character for the
number symbol.

Perform Dead Code Analysis COBOL, PL/I, RPG Enables collection of dead code statistics.

78 | Preparing Projects

Option Source File Description

Perform DSN Calling Chains
Analysis

Control Language, ECL,
JCL, WFL

Enables analysis of dataset calling chains.

Perform System Calls Analysis JCL Enables analysis of system program input data to
determine the application program started in a
job step.

Relaxed Parsing AS400 Screen, BMS,
COBOL, Copybook, CSD,
DDL, Device Description,
DPS, ECL, MFS, Natural,
Netron Specification
Frame, PL/I

Enables relaxed parsing.

Relaxed Parsing for Embedded
Statements

Assembler File, COBOL,
PL/I

Enables relaxed parsing for embedded SQL,
CICS, or DLI statements.

Resolve Decisions Automatically Control Language, WFL Enables automatic decision resolution.

Show Macro Generation C, C++ Specifies whether to display statements that
derive from macro processing in Interactive
Analysis.

Sort Program Aliases JCL Enables batch sort card analysis. Choose a
recognized sort utility in the Sort Program Aliases
pane. Add sort utilities as necessary.

SQL Statements Processor COBOL Specifies whether the SQL Preprocessor or
Coprocessor was used to process embedded
SQL statements.

System Procedures JCL Specifies the system procedures referenced by
JCL files. Add system procedures as necessary.

Timeout in seconds to stop
verification execution

All The number of seconds to wait before stopping a
stalled verification process.

Treat every file with main
procedure as a program

C, C++ Specifies whether to treat only files with main
functions as programs.

Trim Date from Active Schedule
Names

TWS Schedule Specifies whether to append the effective date
range to a TWS jobstream object.

Truncate Names of Absolute
Elements

ECL Allows the parser to truncate suffixes in the
names of COBOL programs called by ECL.
Specify a suffix in the adjoining text box.

Use Database Schema Assembler File, COBOL,
PL/I

Specifies whether to associate a program with a
database schema. When this option is selected,
the parser collects detailed information about
SQL ports that cannot be determined from
program text (SELECT *). If the schema does not
contain the items the SQL statement refers to, an
error is generated.

Workstation Report TWS Schedule Specifies the full path of the TWS workstation
report (.wdr).

Enabling Staged Parsing
File verification generates repository information in four stages, as described in this section. You can
control which stage the CA parser performs by setting the staged parsing options on the Settings tab for
Workspace Verification options. That may save you time verifying very large applications.

Preparing Projects | 79

Rather than verify the application completely, you can verify it one or two stages at a time, generating only
as much information as you need at each point. When you are ready to work with a full repository, you can
perform the entire verification at once, repeating the stages you’ve already performed and adding the
stages you haven’t.

Basic Repository Information

To generate basic repository information only, deselect Enable Interactive Analysis, Enable Reference
Reports, and Perform Dead Code Analysis on the Workspace Verification options Settings tab. The
parser:

• Generates relationships between source files (COBOL program files and copybooks, for example).
• Generates basic logical objects (programs and jobs, for example, but not entry points or screens).
• Generates Defines relationships between source files and logical objects.
• Calculates program complexity.
• Identifies missing support files (COBOL copybooks, JCL procedures, PL/I include files, and so forth).

Note: If you generate only basic repository information when you verify an application, advanced
program analysis information is not collected, regardless of your settings in the Project Options
Verification tab.

Full Logical Objects Information

To generate complete repository information for logical objects, select Enable Reference Reports on the
Workspace Verification options Settings tab. Set this option to generate all relationships between logical
objects, and to enable non-Interactive Analysis tools, including Reference Reports and Orphan Analysis.

Note: If you select this staged parsing option only, verify all legacy objects in the workspace
synchronously to ensure complete repository information.

Interactive Analysis Information

To generate an Interactive Analysis construct model, select Enable Interactive Analysis on the
Workspace Verification options Settings tab. An Interactive Analysis construct model defines the
relationships between the constructs that comprise the file being verified: its sections, paragraphs,
statements, conditions, variables, and so forth.

To generate Interactive Analysis information on potential code anomalies, select Detect Potential Code
Anomalies on the Workspace Verification options Settings tab.

Note: If you do not generate Interactive Analysis information when you verify an application, impact
analysis, data flow, and execution flow information is not collected, regardless of your settings on the
Project Verification options tab.

Dead Code Statistics

To generate dead code statistics, and to set the Dead attribute to True for dead constructs in Interactive
Analysis, select Perform Dead Code Analysis on the Workspace Verification options > Settings tab. The
statistics comprise:

• Number of dead statements in the source file and referenced copybooks. A dead statement is a
procedural statement that can never be reached during program execution.

• Number of dead data elements in the source file and referenced copybooks. Dead data elements are
unused structures at any data level, all of whose parents and children are unused.

• Number of dead lines in the source file and referenced copybooks. Dead lines are source lines
containing dead statements or dead data elements.

You can view the statistics in the Statistic tab of the Properties window for an object or in the Complexity
Metrics tool.

80 | Preparing Projects

Enabling Relaxed Parsing
The relaxed parsing option lets you verify a source file despite errors. Ordinarily, the parser stops at a
statement when it encounters an error. Relaxed parsing tells the parser to continue to the next statement.

Use relaxed parsing when you are performing less rigorous analyses that do not need every statement to
be modeled (estimating the complexity of an application written in an unsupported dialect, for example).
Select Relaxed Parsing or Relaxed Parsing for Embedded Statements as appropriate on the
Workspace Verification options Settings tab.

Note: Relaxed parsing may affect the behavior of other tools. You cannot generate component code,
for example, from source files verified with the relaxed parsing option.

Truncating Names of Absolute Elements
If you are verifying ECL files for an application in which absolute element names differ from program IDs,
you can tell the parser to truncate suffixes in the names of Cobol programs called by ECL. Select Truncate
Names of Absolute Elements on the Workspace Verification options Settings tab for the ECL file.

If a Cobol program named CAP13MS.cob, for example, defines the entry point CAP13M, and an ECL
program named CAP13M.ecl executes an absolute element called CAP13MA, then setting this option
causes the parser to create a reference to the entry point CAP13M rather than CAP13MA.

Setting Workspace Verification Options: Parallel
Verification Tab
Use the Verification > Parallel Verification tab of the Workspace Options window to enable online or
batch parallel verification and to specify the minimum number of Queue Processors CA should expect.

Important: When you run parallel verification on more than one machine, you need to make sure that
workspace and project verification options are set identically on each machine. The easiest way to do
this is to log in as the same Windows user on each machine. Alternatively, you can define a default
option set that is automatically assigned to every user in the environment who has not explicitly
defined a custom option set. See the related topics for more information on option sets.

1. Choose Options > Workspace Options. The Workspace Options window opens. Click the Verification
tab, then the Parallel Verification tab.

2. Select:

• Run Parallel Verification in the Online Tool to enable parallel verification online. In the Minimum
Queue Processors combo box, specify the minimum number of concurrent Queue Processors the
product should expect.

• Run Parallel Verification in BRP to enable parallel verification in the Batch Refresh Process (BRP)
tool. In the Minimum Queue Processors combo box, specify the minimum number of concurrent
Queue Processors CA should expect.

Note: Before running verification, start the necessary Queue Processors on the local and/or
remote machines. If you start fewer than the minimum number of Queue Processors, the
verification process starts the required Queue Processors automatically on the local machine.

Setting Project Verification Options
Use the Verification tab of the Project Options window to specify verification behavior for the selected
project. Among other tasks, you can:

• Specify how the parser treats environment-related code.
• Specify the conditional constants the parser uses to compile programs in the project.

Preparing Projects | 81

• Specify schedule IDs for CA-7 jobs triggered by datasets.
• Optimize verification for advanced program analysis.

1. Choose Options > Project Options. The Project Options window opens. Click the Verification tab.

2. In the Source Type pane, select the source file type whose verification options you want to specify.

3. Set verification options for the source file type. The table below shows the available options.

Note: Click the Environments, CopyLibs, Advanced, or Cobol Dialect button if an option listed
below does not appear on the Verification tab.

Option Source File Description

AIM/DB Environment COBOL Specifies how the parser treats AIM/DB-
environment-related code or its absence.

CICS Environment COBOL Specifies how the parser treats CICS-environment-
related code or its absence.

Compiler Directives COBOL Specifies directives to be used during compilation.
To add a directive, select Use project-specific
compiler directives, then right-click in the
Compiler Directives field and select Add from the
context menu. The format is:
<directive>="<value>".

Using the context menu you can also delete, edit,
select, unselect, move up/down the directives.

Note: Project-level compiler directives
override workspace-level directives.

Context-Sensitive Value
Analysis

COBOL Specifies that the parser perform context-sensitive
automatic decision resolution for Unisys MCP
COMS analysis. Choosing this option may degrade
verification performance.

Dialect Specific Options COBOL Specifies dialect-specific options, including the
conditional constants the parser uses to compile
programs in the project. Select the Cobol dialect,
then choose the constant in the Macro Settings
pane. Add constants as necessary.

DMS Environment COBOL Specifies how the parser treats DMS-environment-
related code or its absence.

DMSII Environment COBOL Specifies how the parser treats DMSII-
environment-related code or its absence.

DPS routines may end with error COBOL Specifies that the parser perform call analysis of
Unisys 2200 DPS routines that end in an error.
Error-handling code for these routines is either
analyzed or treated as dead code.

Enable Data Element Flow COBOL Enables the Global Data Flow, Change Analyzer,
and impact trace tools.

Enable Execution Flow COBOL Enables the Execution Path tool.

Enable Impact Report COBOL Enables the impact trace tools. You must also set
Enable Data Element Flow to perform impact
analysis.

IDMS Environment COBOL Specifies how the parser treats IDMS-environment-
related code or its absence.

82 | Preparing Projects

Option Source File Description

IMS Environment COBOL Specifies how the parser treats IMS-environment-
related code or its absence.

List of Include Folders COBOL For applications using copybooks registered with
the Preserve Folder Structure option, specifies
the full path of folders for copybooks. Choose a
recognized folder in the List of Include Folders
pane. Add folders as necessary.

Note: Use this option to verify applications
with identically named copybooks in
different Partitioned Data Sets (PDS) on the
mainframe. The order of folders in the list
must correspond to the order of PDS files in
the mainframe compilation job.

Maximum Number of Variable’s
Values

COBOL Specifies the maximum number of values to be
calculated for each variable during verification for
advanced program analysis. Limit is 200.

Maximum Size of Variable to Be
Calculated

COBOL Specifies the maximum size in bytes for each
variable value to be calculated during verification
for advanced program analysis.

Override CICS Program
Terminations

COBOL Specifies that the parser interpret CICS RETURN,
XCTL, and ABEND commands as not terminating
program execution. Error-handling code after these
statements is either analyzed or treated as dead
code.

Perform COMS Analysis COBOL Specifies that the parser define relationships for
Unisys MCP COMS SEND statements.

Perform Generic API Analysis COBOL Specifies that the parser define relationships with
objects passed as parameters in calls to
unsupported program interfaces, in addition to
relationships with the called programs themselves.

Perform Program Analysis COBOL Enables program analysis and component
extraction features.

Perform Unisys Common-
Storage Analysis

COBOL Specifies that the parser include in the analysis for
Unisys COBOL files variables that are not explicitly
declared in CALL statements, but that participate
in interprogram communications. You must set this
option to include Unisys COBOL common storage
variables in impact traces and global data flow
diagrams.

Perform Unisys TIP and DPS
Calls Analysis

COBOL Specifies that the parser perform Unisys 2200 TIP
and DPS call analysis.

Report Writer Environment COBOL Specifies how the parser treats Report Writer-
environment-related code or its absence.

Resolve Decisions Automatically COBOL Specifies that the parser autoresolve decisions
after successfully verifying files.

SQL Environment COBOL Specifies how the parser treats SQL-environment-
related code or its absence.

Support CICS HANDLE
statements

COBOL Specifies that the parser detect dependencies
between CICS statements and related error-
handling statements.

Preparing Projects | 83

Option Source File Description

Use overwritten VALUEs COBOL Specifies that the parser use constants from
VALUE clauses as known values even if they are
overwritten in the program by unknown values.

Use VALUEs from Linkage
Section

COBOL Specifies that advanced analysis tools not ignore
parameter values in the Linkage Section.

Specifying the Processing Environment
The COBOL Analyzer parser autodetects the environment in which a file is intended to execute, based on
the environment-related code it finds in the file. To ensure correct data flow, it sets up the internal parse
tree for the file in a way that emulates the environment on the mainframe.

For Cobol CICS, for example, the parser treats an EXEC CICS statement or DFHCOMMAREA variable as
CICS-related and, if necessary:

• Adds the standard CICS copybook DFHEIB to the workspace.
• Declares DFHCOMMAREA in the internal parse tree.
• Adds the phrase Procedure Division using DFHEIBLK, DFHCOMMAREA to the internal parse tree.

Autodetection is not always appropriate. You may want the parser to treat a file as a transaction-processing
program even in the absence of CICS- or IMS-related code, for example. For each autodetected
environment on the Project Verification options tab, select:

• Auto, if you want the parser to autodetect the environment for the file.
• Yes, if you want to force the parser to treat the file as environment-related even in the absence of

environment-related code.
• No, if you want to force the parser to treat the file as unrelated to the environment even in the presence

of environment-related code. The parser classifies environment-related code as a syntax error.

Specifying Conditional Compiler Constants
Compiler constant directives let you compile programs conditionally. Specify the conditional constants the
parser uses to compile programs in the project in the Dialect Specific Options for your dialect on the
Project Verification options tab. For Micro Focus COBOL, two formats are supported:

• constant_name=value (where no space is allowed around the equals sign). In the following example, if
you specify WHERE=PC on the Project Verification options tab, the source that follows the $if clause is
compiled:

$if WHERE="PC"
 evaluate test-field
 when 5 perform test-a
 end-evaluate

• constant_name. In the following example, if you specify NOMF on the Project Verification options tab,
the source that follows the $if clause is compiled:

$if NOMF set
 $display Not MF dialect
 go to test-a test-b depending on test-field
 $end

Optimizing Verification for Advanced Program Analysis
When you enable advanced program analysis options for COBOL projects, the parser calculates constant
values for variables at every node in the Interactive Analysis parse tree. For this reason very large COBOL
applications may encounter performance or memory problems during verification.

You may be able to improve verification performance and avoid out-of-memory problems by manipulating
the Maximum Number of Variable’s Values and Maximum Size of Variable to Be Calculated options in

84 | Preparing Projects

the Project Verification Options tab. The lower the maximums, the better performance and memory
usage you can expect.

For each setting, you are warned during verification about variables for which the specified maximum is
exceeded. It’s usually best to increase the overflowed maximum and re-verify the application.

Identifying System Programs
A system program is a generic program provided by the underlying operating system and used in
unmodified form in the legacy application: a mainframe sort utility, for example. You need to identify system
programs to the parser so that it can distinguish them from application programs and create relationships
for them with their referencing files.

The most convenient way to identify the system programs your application uses is to run an unresolved
report after verification. Once you learn from the report which system programs are referenced, you can
identify them in the System Programs tab of the Workspace Options window and reverify any one of their
referencing source files.

Note: The reference report tool lets you bring up the System Programs tab of the Workspace Options
window while you are in the tool itself. Choose View > System Programs in the reference report
window to display the tab.

1. Choose Options > Workspace Options. The Workspace Options window opens. Click the System
Programs tab.

2. In the System Program Patterns pane, select the patterns that match the names of the system
programs your application uses. Add patterns as necessary.

Specifying Boundary Decisions
Specify a boundary decision object if your application uses a method call to interface with a database,
message queue, or other resource. Suppose the function f1f() in the following example writes to a queue
named abc:

int f1f(char*)
{
 return 0;
}
int f2f()
{
 return f1f(“abc”);
}

As far as the parser is concerned, f1f(“abc”) is a method call like any other method call. There is no
indication from the code that the called function is writing to a queue.

When you specify the boundary decisions for a workspace, you tell the parser to create a decision object of
a given resource type for each such call. Here is the decision object for the write to the queue:

int f2f().InsertsQueue.int f1f(char*)

You can resolve the decision objects to the appropriate resources in the Decision Resolution tool.

1. Choose Options > Workspace Options. The Workspace Options window opens. Click the Boundary
Decisions tab.

2. In the Decision Types pane, select the decision types associated with called procedures in your
application. For the example, you would select the Queue decision type.

3. In the righthand pane, select each signature of a given method type you want to associate with the
selected decision type. For the example, the method type signature would be int f1f(char*). Add

Preparing Projects | 85

signatures as necessary. Do not insert a space between the parentheses in the signature. You can use
wildcard patterns allowed in LIKE statements by Visual Basic for Applications (VBA).

Note: Keep in mind that the signatures of C or C++ functions can contain an asterisk (*) character,
as in the example. So if you specify a signature with a * character, you may receive results
containing not only the intended signatures but all signatures matching the wildcard pattern. Delete
the unwanted decision objects manually.

4. Select the project, folder, or source files for the application and choose:

• Prepare > Verify if the source files have not been verified.
• Prepare > Apply Boundary Decisions if the source files have been verified, but boundary

decisions have not been specified for the application, or the specification has changed.

A decision object is added to the tree for the source files in the Repository Browser.

Performing Post-Verification Program Analysis
Much of the performance cost of program verification for COBOL projects is incurred by the advanced
program analysis options in the Project Verification Options window. These features enable impact
analysis, data flow analysis, and similar tasks.

You can improve verification performance by postponing some or all of advanced program analysis until
after verification. As long as you have verified source files with the Enable Reference Reports and Enable
Interactive Analysis workspace verification options, you can use the post-verification program analysis
feature to collect the remaining program analysis information without having to re-verify your entire legacy
program.

To perform post-verification program analysis, select the project verification options for each program
analysis feature you want to enable. In the Repository Browser, select the programs you want to analyze
(or the entire project) and click Prepare > Analyze Program.

The system collects the required information for each analysis feature you select. And it does so
incrementally: if you verify a COBOL source file with the Enable Data Element Flow option selected, and
then perform post-verification analysis with both that option and the Enable Impact Analysis option
selected, only impact analysis information will be collected.

The same is true for information collected in a previous post-verification analysis. In fact, if all advanced
analysis information has been collected for a program, the post-verification analysis feature simply will not
start. In that case, you can only generate the analysis information again by reverifying the program.

Restrictions on Cobol Post-Verification Program Analysis
With the exception of Enable Impact Report and Enable Execution Flow, you should select all of the
Perform Program Analysis options you are going to need for Cobol program analysis the first time you
collect analysis information, whether during verification or subsequent post-verification analysis.This is
because, with the exception of Enable Impact Report and Enable Execution Flow, selecting any of the
options dependent on the Perform Program Analysis project verification option, whether during a
previous verification or a previous program analysis, results in none of the information for those options
being collected in a subsequent post-verification program analysis.

Therefore if you verify a program with the Resolve Decisions Automatically option selected, then perform
a subsequent program analysis with the Perform Generic API Analysis option selected, API analysis
information is not collected, whereas if you perform the subsequent program analysis with the Enable
Impact Report option selected, impact analysis information is collected.

Similarly, if you perform program analysis with the Enable Impact Report option selected, then perform a
subsequent program analysis with the Enable Parameterization of Components option selected, no
parameterization information is collected, whereas if you perform the subsequent program analysis with the
Enable Execution Flow option selected, execution flow information is collected.

86 | Preparing Projects

Restrictions on PL/I Post-Verification Program Analysis
For PL/I programs, selecting Resolve Decisions Automatically causes information for Enable Data
Element Flow also to be collected, whether or not it already has been collected. Select these options
together when you perform program analysis.

Using Post-Verification Reports
Use COBOL Analyzer post-verification reports to check verification results, perform detailed executive
assessments of the application, and view key data operations:

• Verification Reports offer a convenient way to analyze project verification results.
• Executive Reports offer HTML views of application inventories that a manager can use to assess the

risks and costs of supporting the application.
• CRUD Reports show the data operations each program in the project performs, and the data objects on

which the programs operate.

Viewing Verification Reports
Use Verification Reports to display the verification errors and warnings for each source file in the selected
project and to navigate to the offending code in source. To open the Verification Report window, select a
project in the Repository Browser and choose Prepare > Verification Report. The verification report is
displayed in the Verification Report window.

To show the verification report for a different project, select the project in the Projects drop-down on the
toolbar. To refresh the report after reverifying a file, click File > Refresh Errors.

Errors Pane
The Errors pane of the Verification Report window displays the errors and warning for the project, sorted by

the Files Affected column. Click to display the errors for the project. Click to display
the warnings for the project. The buttons are toggles. Click the buttons again to hide errors or warnings.

Click an error or warning to display the affected files in the Files Affected pane and to highlight each
instance of offending code in the Source pane. Mark an error or warning to mark the affected files in the
Files Affected pane. The table below describes the columns in the Errors pane.

Column Description

Severity The severity of the error or warning.

Number The error or warning number.

Count The number of occurrences of errors or warnings of this type in the
project.

Files Affected The number of files affected by the error or warning.

Sample Text The text of the error or warning message. If there are multiple
occurrences of the error or warning, and the text of the message
differs among occurrences, then the text of a sample occurrence.

Files Affected Pane
The top portion of the Files Affected pane displays the files affected by the error or warning selected in the
Errors pane, the verification status of the file, and the numbers of occurrences of the error and warning in
the file. Click a file to display the occurrences in the Details portion of the Files Affected pane. Select Show
All Errors to display every error and warning for the selected file.

Preparing Projects | 87

Errors are indicated with a symbol. Warnings are indicated with a symbol. Click an occurrence of an
error or warning to navigate to the offending code in the Source pane.

Source Pane
The Source pane displays view-only source for the file selected in the Files Affected pane. Offending code
is highlighted in red.

Usage is similar to that for the COBOL Analyzer Interactive Analysis Source pane. For more information,
see Analyzing Programs in the product documentation set.

Marking Items
To mark an item, place a check mark next to it. To mark all the items in the selected tab, choose Edit >
Mark All. To unmark all the items in the selected tab, choose Edit > Unmark All.

Including Files into Projects
In very large workspaces, you may find it useful to move or copy files into different projects based on the
errors they contain. Follow the instructions below to move or copy files listed in a Verification Report into a
project.

1. In the Files Affected pane, mark the items you want to move and choose File > Include Into Project.
The Select Project window opens.

2. In the Select Project window, select the target project. Click New to create a new project.

3. Select either:

• Include All Referenced Objects if you want to include objects referenced by the selected object
(the Cobol copybooks included in a Cobol program file, for example).

• Include All Referencing Objects if you want to include objects that reference the selected object.

Note: This feature is available only for verified files.

4. Select:

• Copy to copy the selection to the target project.
• Move From Current Project to move the selection to the target project.
• Move From All Projects to move the selection from all projects to the target project.

5. Click OK to move or copy the selection.

Generating HTML Reports
To generate HTML reports of Verification Report results, choose File > Report > <Report Type>. Before
generating the Details for Checked Files report, mark each file on which you want to report.

Tip: The Missing Files report is a convenient alternative to an Unresolved Report when you are
interested only in missing source files, and not in unresolved objects like system programs.

Viewing CRUD Reports
The CRUD Report for a project shows the data operations each program in the project performs, and the
data objects on which the programs operate. To generate a CRUD Report, select a project in the
Repository Browser and choose Prepare > CRUD Report. The figure below shows a CRUD Report.

Project options on the Report > CRUD Report tab determine the data operations and program-to-data
object relationships displayed in CRUD reports. To refresh the report after modifying display options,
choose File > Refresh in the CRUD Report window. To generate the report in HTML, choose File >
Report.

88 | Preparing Projects

Note: The IMS data column of the CRUD report behaves differently from the columns for other data
types. What appears in the IMS data column cells depends on what can be determined. If the
segment can be determined, the cell is populated with the PSB name and segment name. Otherwise,
the segment name is left blank. The format is xxxxxx.yyyyyyy, where xxxxxx is the PSB name
and yyyyyyy is the segment name or blank if the segment cannot be determined.

Setting CRUD Report Options
Use the Report > CRUD Report tab of the Project Options window to specify the data operations and
program-to-data object relationships displayed in CRUD Reports.

1. Choose Options > Project Options. The Project Options window opens. Click the Report tab, then the
CRUD Report tab.

2. Place a check mark next to each type of program-to-data object relationship you want to display.

3. Place a check mark next to each type of data operation you want to display.

Inventorying Applications
Users often ask why the COBOL Analyzer parser encounters errors in working production systems. The
reasons usually have to do with the source file delivery mechanism: incorrect versions or copybooks,
corruption of special characters because of source code ambiguities, FTP errors, and so forth.

Use COBOL Analyzer inventory analysis tools to ensure that all parts of your application are available to
the parser:

• Reference Reports let you track referential dependencies in verified source.

Preparing Projects | 89

• Orphan Analysis lets you analyze and resolve objects that do not exist in the reference tree for any top-
level program object, so-called orphans. Orphans can be removed from a system without altering its
behavior.

• Decision Resolution identifies and lets you resolve dynamic calls and other relationships that the parser
cannot resolve from static sources in Cobol, PL/I, and Natural programs.

Using Reference Reports
When you verify a legacy application, the parser generates a model of the application that describes the
objects in the application and how they interact. If a Cobol source file contains a COPY statement, for
example, the system creates a relationship between the file and the Cobol copybook referenced by the
statement. If the copybook doesn’t exist in the repository, the system flags it as missing by listing it with a

 symbol in the tree view of the Repository Browser.

Reference Reports let you track these kinds of referential dependencies in verified source:

• An Unresolved Report identifies missing application elements.
• An Unreferred Report identifies unreferenced application elements.
• A Cross-reference Report identifies all application references.
• An External Reference Report identifies references in object-oriented applications to external files that

are not registered in the workspace, such as .java, Java Archive (JAR), or C++ include files (assuming
you have identified the locations of these files in the Workspace Verification options window for the
source files). These references are not reported as unresolved in the Unresolved Report.

Tip: The Missing Files report in the Verification Report tool is a convenient alternative to an
Unresolved Report when you are interested only in missing source files, and not in unresolved objects
like system programs.

Understanding the Reference Reports Window
Use Reference Reports to track referential dependencies in verified project source. To open the Reference
Reports window, select a project in the Repository Browser and choose Prepare > Reference Reports.

When the Reference Reports window opens, choose the Reference Report type in the Report type drop-
down. To limit the report to references in the current project, choose View > Restrict References to
Project. To generate the report in HTML, choose File > Report.

The figure below shows an Unreferred Report window. The windows for the other reports are similar. By
default, all Reference Report panes are displayed. Select the appropriate choice in the View menu to hide
a pane. Select the choice again to show the pane.

90 | Preparing Projects

Main Pane

The Main pane displays the objects in the Reference Report and their relationships. The table below
describes the columns in the Main pane.

Column Report Type Description

Object Name All The name of the unresolved, unreferenced, cross-
referenced, or externally referenced object.

Object Type All The entity type of the unresolved, unreferenced,
cross-referenced, or externally referenced object.

Legacy Object Unreferred Report, Cross-
reference Report

The source file that contains the unreferenced or
cross-referenced object.

Source Unreferred Report, Cross-
reference Report

The location in the workspace folder of the source
file that contains the unreferenced or cross-
referenced object.

Referred by Unresolved Report, Cross-
reference Report, External
Reference Report

The name of the referring object.

Referring Object Type Unresolved Report, Cross-
reference Report, External
Reference Report

The entity type of the referring object.

Relationship Unresolved Report, Cross-
reference Report, External
Reference Report

The relationship between the unresolved, cross-
referenced, or externally referenced object and the
referring object.

Preparing Projects | 91

Column Report Type Description

Object Description All The description of the unresolved, unreferenced,
cross-referenced, or externally referenced object
entered by the user on the Description tab of the
Object Properties window.

Preview Pane

The Preview pane lets you browse Interactive Analysis information for the object selected in the Report
pane. The information available depends on the type of object selected. You see only source code for a
copybook, for example, but full Interactive Analysis information for a program. Choose the information you
want to view for the object from the Source drop-down.

Setting Reference Reports Options
Use the Report > Reference Reports tab of the Project Options window to specify the entity types for
which reference report information is collected.

1. Choose Options > Project Options. The Project Options window opens. Click the Report tab, then the
Reference Reports tab.

2. Place a check next to each type of entity you want to be included in reference reports.

Using Orphan Analysis Reports
An object that does not exist in the reference tree for any top-level object is called an orphan. Orphans can
be removed from a system without altering its behavior. Use the Orphan Analysis tool to find orphans.

What’s the difference between an orphan and an unreferenced object?

• All unreferenced objects are orphans.
• Not every orphan is unreferenced.

Suppose an unreferred report shows that the copybook GSS3.CPY is not referenced by any object in the
project. Meanwhile, a cross-reference report shows that GSS3.CPY references GSS3A.CPY and
GSS3B.CPY.

These copybooks do not appear in the unreferred report because they are referenced by GSS3.CPY. Only
orphan analysis will show that the two copybooks are not in the reference tree for the GSS program and,
therefore, can be safely removed from the project.

Understanding the Orphan Analysis Window
Use the Orphan Analysis tool to determine whether an object exists in the reference tree for a top-level
program object. To open the Orphan Analysis tool window, select a project in the Repository Browser and
choose Prepare > Orphan Analysis.

Project options on the Report > Orphan Analysis tab specify the search filter for the report. To refresh the
report after modifying the options, choose Orphans > Refresh in the Orphan Analysis window. To
generate the report in HTML, choose File > Save Report As.

Note: The Filter, Startup, and Find panes let you use hyperlinks to set up and apply the Orphan
Analysis search filter. Use these panes instead of the options window if you prefer.

The figure below shows the Orphan Analysis window. By default, all Orphan Analysis panes are displayed.
Select the appropriate choice in the View menu to hide a pane. Select the choice again to show the pane.

92 | Preparing Projects

Found Objects Pane

The Found Objects pane shows the name, type, and source location of orphans. To show the list of
orphans only, deselect View > Report View.

Orphan Source Pane

The Orphan Source pane lets you browse Interactive Analysis information for the object selected in the
Found Objects pane. The information available depends on the type of object selected. You see only
source code for a copybook, for example, but full Interactive Analysis information for a program. Choose
the information you want to view for the object from the Source drop-down.

Setting Orphan Analysis Options
Use the Report > Orphan Analysis tab of the Project Options window to specify the search filter for an
Orphan Analysis report.

1. Choose Options > Project Options. The Project Options window opens. Click the Report tab, then the
Orphan Analysis tab.

2. In the Startup pane, click Select Startup Types. The Startup dialog opens.

3. In the Startup dialog, set up a search filter for the startup objects in the orphan analysis. You can filter
on entity type, entity name, or both:

• To filter on entity type, place a check next to the entity type you want to search for in the Roots pane.

Preparing Projects | 93

• To filter on entity name, place a check next to a recognized matching pattern in the Like pane, the
Unlike pane, or both. Add patterns as necessary. You can use wildcard patterns allowed in LIKE
statements by Visual Basic for Applications (VBA).

4. When you are satisfied with your choices in the Startup dialog, click OK.
5. In the Find pane, define the terms of the search by selecting the appropriate choice in the

Relationships to Checked Startups drop-down, the Relationships to Unchecked Startups drop-
down, or both.

6. In the Entities pane, click Displayed Types. The Entities dialog opens. In the Entities dialog, place a
check next to each type of entity to include in the report. When you are satisfied with your choices in the
Entities dialog, click OK.

Deleting Orphans from a Project
To delete an orphan from a project (but not the workspace), select the orphan in the Found Objects pane
and choose Orphans > Exclude from Project.

Deleting Orphans from a Workspace
To delete an orphan from the workspace, select the orphan in the Found Objects pane and choose
Orphans > Delete from Workspace.

Resolving Decisions
You need to have a complete picture of the control and data flows in a legacy application before you can
diagram and analyze the application. The parser models the control and data transfers it can resolve from
static sources. Some transfers, however, are not resolved until run time. Decision resolution lets you
identify and resolve dynamic calls and other relationships that the parser cannot resolve from static
sources.

Understanding Decisions
A decision is a reference to another object, a program or screen, for example, that is not resolved until run
time. Consider a Cobol program that contains the following statement:

CALL ‘NEXTPROG’.

The COBOL Analyzer parser models the transfer of control to program NEXTPROG by creating a Calls
relationship between the original program and NEXTPROG.

But what if the statement read this way instead:

CALL NEXT.

where NEXT is a field whose value is only determined at run time. In this case, the parser creates a Calls
relationship between the program and an abstract decision object called PROG.CALL.NEXT, and lists the

decision object with a icon in the tree view of the Repository Browser.

The Decision Resolution tool creates a list of such decisions and helps you navigate to the program source
code that indicates how the decision should be resolved. You may learn from a declaration or MOVE
statement, for example, that the NEXT field takes either the value NEXTPROG or ENDPROG at run time.
In that case, you would resolve the decision manually by telling the system to create resolves to
relationships between the decision and the programs these literals reference.

Of course, where there are hundreds or even thousands of such decisions in an application, it may not be
practical to resolve each decision manually. In these situations, you can use the autoresolve feature to
resolve decisions automatically.

The Decision Resolution tool analyzes declarations and MOVE statements, and any other means of
populating a decision point, to determine the target of the control or data transfer. The tool may not be able

94 | Preparing Projects

to autoresolve every decision, or even every decision completely, but it should get you to a point where it is
practical to complete decision resolution manually.

Understanding the Decision Resolution Tool Window
Use the Decision Resolution tool to view and manually resolve decisions. To open the Decision Resolution
tool window, select a project in the Repository Browser and choose Prepare > Resolve Decisions.

To save decision resolutions to the repository, choose File > Save. To generate the Decision Resolution
report in HTML, choose File > Report.

The figure below shows the Decision Resolution window. By default, all Decision Resolution panes are
displayed. Select the appropriate choice in the View menu to hide a pane. Select the choice again to show
the pane.

Decision List Pane

The Decision List pane displays the decisions in the project. To filter the list, choose the type of decision
you want to display in the Decision Type drop-down. The table below describes the columns in the
Decision List pane.

Column Description

Name The name of the object that contains the decision.

Type The type of the object that contains the decision.

Variable The program variable that requires the decision.

Preparing Projects | 95

Column Description

Completed Whether the decision has been resolved.

Unreachable Whether the decision is in dead code.

Manual Whether the decision was resolved manually.

Resolved to The target object the variable resolves to (an entry point, for
example). An unresolved decision contains the grayed-out text Some
Object.

Available Targets Pane

For the selected decision type, the Available Targets pane lists the objects in the workspace to which the
decision can be resolved. To resolve a decision to an available target, select the decision in the Decision
List pane and place a check next to the target.

To limit the targets to objects in the current project, choose View > Restrict to Current Project. To delete
a decision resolution, uncheck the target. To undo changes, choose Edit > Undo all changes.

Source Pane

The Source pane lets you browse Interactive Analysis information for the object selected in the Decision
List pane. The information available depends on the type of object selected. You see only source code for a
copybook, for example, but full Interactive Analysis information for a program. Select the information you
want to view for the object from the drop-down in the upper lefthand corner of the pane.

Resolving Decisions Manually
Follow the instructions below to resolve decisions manually to targets in or out of the workspace.

1. To resolve decisions to available targets, select one or more entries in the Decision List pane and check
one or more target objects in the Available Targets pane. If you link an entry to multiple targets, the
Decision Resolution tool creates as many entries in the Decision List pane as there are targets.

Note: If you are linking an entry to multiple targets, you can save time by selecting the targets and
choosing Edit > Link Selected Targets. You can also choose Edit > Copy to copy selected
targets to the clipboard, then Edit > Paste to link the targets to an entry.

2. To resolve decisions to targets not in the workspace, select one or more entries in the Decision List
pane and choose Edit > Link New Target. The Link New Target window opens.

3. In the Link New Target window, enter the name of the new target in the field on the righthand side of the
window, or populate the field by clicking a literal in the list of program literals on the Literals tab. Filter
the list by using:

• The Minimum Literal Length slider to specify the minimum number of characters the literal can
contain.

• The Maximum Literal Length slider to specify the maximum number of characters the literal can
contain.

• The Names Like field to enter a matching pattern for the literal. You can use wildcard patterns
allowed in LIKE statements by Visual Basic for Applications (VBA).

4. Check Completed if you want the resolution to be marked as completed. When you are satisfied with
your entry, click OK.

Restoring Manually Resolved Decisions
Reverifying a file invalidates all of its objects, including its manually resolved decisions. The decision
persistence feature lets you restore manually resolved decisions when you return to the Decision
Resolution tool.

96 | Preparing Projects

After reverifying a file for which you have manually resolved decisions, reopen the Decision Resolution tool.
A dialog box prompts you to restore manually resolved decisions. Click Yes if you want to restore the
decisions. Click No otherwise.

Note: Check Don’t show me again if you want the Decision Resolution tool to open without
prompting you to restore manually resolved decisions. In the Decision Resolution Tool tab of the User
Preferences window, check Ask before restoring previous manual changes if you want to be
prompted again.

Resolving Decisions Automatically
You can autoresolve decisions during verification by setting the Resolve decisions automatically option
on the Verification tab of the Project Options window for a source file type.

For programs only, you can autoresolve decisions after verification by selecting the project, folder, or files
for which you want to autoresolve decisions and choosing Prepare > AutoResolve Decisions. Only a
master user can autoresolve decisions in a multiuser environment.

Note: Decision Resolution cannot autoresolve every decision. The target name may be read from a
data file, for example.

Setting Decision Resolution Tool User Preferences
Use the Decision Resolution Tool tab of the User Preferences window to specify whether you want to be
prompted to restore invalidated manually resolved decisions when you reopen the Decision Resolution
tool.

1. Choose Tools > User Preferences. The User Preferences window opens. Click the Decision
Resolution Tool tab.

2. Select Ask before restoring previous manual changes if you want to be prompted to restore
manually resolved decisions when you reopen the Decision Resolution tool.

Identifying Interfaces for Generic API Analysis
Use the Generic API Analysis feature if your legacy program calls an unsupported API to interface with a
database manager, transaction manager, or similar external facility. In this call, for example:

CALL 'XREAD' using X

where X refers to a table name, the call to XREAD is of less interest than its parameter, the table the called
program reads from. But because the parser does not recognize XREAD, only the call is modeled in the
CA repository.

You enable the Generic API Analysis feature by identifying unsupported APIs and their parameters in the
file \<CA Home>\Data\Legacy.xml. Before you verify your application, set Perform Generic API
Analysis on the Verification tab of the Project Options window. That option tells the parser to define
relationships with the objects passed as parameters in the calls, in addition to relationships with the
unsupported APIs themselves.

This section shows you how to identify the programs and parameters to the parser before verifying your
application. You can specify both object and construct model information, and create different relationships
or entities for the same parameter in a call.

Attention:

The specification requires a thorough understanding of the COBOL Analyzer repository models. For
background information on the repository models, see the following documentation sections:

• How COBOL Analyzer Models Applications in Getting Started.

Preparing Projects | 97

• Understanding the Application-Level Metamodel in Using Architecture Modeler
• Using the Model Reference Pane in Interactive Analysis

Note: Only the predefined definitions described in this section are guaranteed to provide consistent
data to CA databases.

Note: For altered Legacy.xml files: The Legacy.xml file that resides in the \<CA Home>\Data
directory gets overwritten when a new HotFix is installed. To preserve the changes made to the file:

1. Create an empty file Legacy.xml in the workspace directory. You can use the \<CA Home>
\Data\Legacy.xml.user file as a template.

2. Add only the tags that need to be added or altered
3. Save the file and verify the sources.

We do not recommend copying the \<CA Home>\Data\Legacy.xml file to the workspace directory and
then altering it as needed, since the altered file is merged with the original file every time the parsers are
required to read them. An example of a user-defined Legacy.xml is:

<Legacy>
 <Cobol>
 <OverloadedDiagnostics>
 <msg num="2054" sev="2"/>
 </OverloadedDiagnostics>
 </Cobol>
</Legacy>

Identifying Unsupported API Calls to the Parser
Follow the instructions in the steps below and the detailed specifications in the following sections to identify
unsupported API calls to the parser. For each call, you need to define an entry in \<COBOL Analyzer
Home>\Data\Legacy.xml that specifies at a minimum:

• The name of the called program and the method of invocation in the <match> tag.
• The program control flow in the <flow> tag, and the direction of the data flow through the parameters of

interest in the <param> subtags.
• How to represent the call in the object model repository in the <rep> tag, and in the construct model

repository in the <hc> tag.

Use the optional <vars> tag to extract values of a specified type, size, and offset from a parameter for use
in a <rep> or <hc> definition.

Most repository entities can be represented in a <rep> or <hc> definition with the predefined patterns in
\<COBOL Analyzer Home>\Data\Legacy.xml.api. These patterns do virtually all of the work of the
specification for you, supplying the relationship of the entity to the called program, its internal name, and so
forth.

The syntax for specifying predefined patterns in a <rep> or <hc> definition is described in the section for
the tag. Consult Legacy.xml.api for supported patterns and for required parameters and values.

1. Open the file \<COBOL Analyzer Home>\Data\Legacy.xml in an editor.
2. Locate the <GenericAPI> section for the language and dialect you use.
3. Create entries for each unsupported API call, following the specifications in the sections below and the

samples of Generic API usage in Legacy.xml.
4. Click Options > Project Options > Verification tab. Click Advanced in the Advanced Program

Analysis section, then check Perform Generic API Analysis and then click OK.
5. Verify the project.

Using the API Entry Tag
The name attribute of the <API Entry> tag is the name of the entry, used for error diagnostics only.

98 | Preparing Projects

Using the match Tag
The stmt attribute of the <match> tag identifies the method of invocation: a CALL, LINK, or XCTL
statement. The value attribute of the <name> subtag identifies the name of the program to be matched. It
can also be used to specify an alternative name for the entry.

Note: The name of the program to be matched must be unique in the <GenericAPI> section. If names
are not unique, the parser uses the last entry in which the name appears.

Example

<match stmt="CALL">
 <name value="XREAD"/>
</match>

Using the flow Tag
The <flow> tag characterizes the program control flow. The halts attribute of the <flow> tag specifies
whether the calling program terminates after the call:

• yes, if control is not received back from the API.
• no (the default), if the calling program returns normally.

The <param> subtag identifies characteristics of the call parameters. Attributes are:

• index is the index of the parameter that references the item of interest, beginning with 1. Use an asterisk
(*) to specify all parameters not specified directly.

• usage specifies the direction of the data flow through the parameter: r for input, w for output, rw for
input/output. Unspecified parameters are assumed to be input/output parameters.

Note: halts is supported only for call statements. For PL/I, input parameters are treated as input/
output parameters.

Example

<flow halts='no'>
 <param index='1' usage='r'/>
 <param index='2' usage='r'/>
 <param index='3' usage='rw'/>
 <param index='*' usage='rw'/>
</flow>

Using the vars Tag
Use the <vars> tag to extract values of a specified type, size, and offset from a call parameter. You can
then refer to the extracted values in the <rep> and <hc> tags using the %var_name notation.

The <arg> subtag characterizes the argument of interest. Attributes are:

• var specifies the variable name.
• param specifies the index of the parameter.
• type specifies the variable type.
• offset specifies the offset of the field in bytes.
• bitoffset specifies the offset of the field in bits.
• size specifies the size of the field in bytes.
• bitsize specifies the size of the field in bits.

Preparing Projects | 99

Additional attributes for PL/I are:

• len specifies the size of a character or bit string field.
• mode specifies the binary or decimal mode for a numeric field.
• scale specifies the scale of a fixed-point numeric field.
• prec specifies the precision of a fixed-point or floating-point numeric field.
• varying specifies whether a bit string variable is encoded as a varying-length string in the structure (yes

or no, the default).

Supported data types are described in the language-specific sections below.

Example

Suppose a call to a database-entry API looks like this:

CALL 'DBNTRY' USING DB-USER-ID
 DB-XYZ-REQUEST-AREA
 XYZ01-RECORD
 DB-XYZ-ELEMENT-LIST.

If the second parameter contains a 3-character table name in bytes 6-8, the following definition extracts the
name for use as the right end of a relationship:

<vars>
 <arg var='TableName'
 param='2'
 type='auto'
 offset='5'
 size='3'/>
</vars>
<rep>
 <rel>
 <target type='TABLE'
 name='%TableName'/>
 .
 .
 .
 </rel>
</rep>

COBOL-Specific Usage

For COBOL, use the following data types in the <vars> tag:

• data extracts a subarea of the parameter as raw byte data. You must specify the size and offset.
• auto automatically determines the type of the variable, using the offset. If that is not possible, auto looks

for a matching variable declaration and uses its type. You must specify the offset.
• int behaves as auto, additionally checking that the resulting value is a valid integer and converting it to

the canonical form. Offset defaults to 0.

Note: Do not use auto when the content of a numeric field is binary. Use int. The parser extracts the
binary content and converts it to the corresponding numeric string.

bitoffset and bitsize are currently not supported.

auto is not always reliable. Use data whenever possible.

PL/I-Specific Usage

For PL/I, use the following data types in the <vars> tag:

100 | Preparing Projects

• data extracts a subarea of the parameter as raw byte data. You must specify the size and offset.
• char specifies a character variable, with attribute varying if the string is encoded as a varying-length

string in the structure. Offset defaults to 0, and size is specified via the required len attribute, which
specifies the string length.

• bit specifies a bit string variable, with attribute varying if the string is encoded as a varying-length string
in the structure. Offset defaults to 0, and size is specified via the required len attribute, which specifies
the string length in bits.

• fixed specifies a fixed-point numeric variable, with attributes mode (binary or decimal, the default), scale
(default 0), and prec (precision, default 5). Offset defaults to 0, and size is overridden with a value
calculated from the type.

• float specifies a floating-point numeric variable, with attributes mode (binary or decimal, the default) and
prec (precision, default 5). Offset defaults to 0, and size is overridden with a value calculated from the
type.

Note: Do not use bitoffset and bitsize for types other than bit string.

Natural-Specific Usage

For Natural, use the auto data type in the <vars> tag. auto automatically determines the type of the
variable, using the offset. If that is not possible, auto looks for a matching variable declaration and uses its
type. You must specify the offset.

Using the rep and hc Tags
Use the <rep> tag to represent the API call in the object model repository. Use the <hc> tag and the
<attr> subtag to represent the construct model (HyperCode) attributes of entities defined in the call.

You can use predefined or custom patterns to specify the relationship of interest. Expressions let you
extract parameter values and context information for use in specifications of entity or relationship
characteristics.

Use the case statement to produce relationships between programs. When a Legacy.xml value resolves
to "__fail__" in a case statement, the relationship will not be produced. For example:

<progname switch-var='%fname'>
 <case eq='LINKDATA' value='%pname' type='Calls' params='%3'/>
 <case eq='LINK' value='%pname' type='Calls' params='%3'/>
 <case eq='READQTS' value='__fail__' type='__fail__'/>
</progname>

will not produce a relationship for 'READQTS'

Using Predefined Patterns

Most repository entities can be represented with the predefined patterns in \<CA Home>\Data
\Legacy.xml.api. These patterns do virtually all of the work of the specification for you, supplying the
relationship of the entity to the called program, its internal name, and so forth. They are guaranteed to
provide consistent data to CA databases.

To specify a predefined pattern, use the pattern name as a tag (for example, <tip-file>) anywhere you might
use a <rel> tag. If the predefined pattern is specified at the top level of the entry, the parser creates a
relationship with the calling program. If the predefined pattern is nested in an entity specification, the parser
creates a relationship with the parent entity.

Each pattern has parameters that you can code as XML attributes or as subtags. So:

<transaction name='%2' params='' hc-kind='dpsSETRX'/>

Preparing Projects | 101

is equivalent to:

<transaction params=''>
 <name value='%2'/>
 <hc-kind value ='dpsSETRX'/
</transaction>

Use the subtag method when a parameter can have multiple values:

<file filename= '%2' data-record='%3'>
 <action switch-var='%op'>
 <case eq='1' value='Reads'/>
 <case eq='2' value='Reads'/>
 <case eq='4' value='Updates'/>
 <case eq='28' value='Inserts'/>
 </action>
 <hc-kind switch-var='%op'>
 <case eq='1' value='fcssRR'/>
 <case eq='2' value='fcssRL'/>
 <case eq='4' value='fcssWR'/>
 <case eq='28' value='fcssAW'/>
 </hc-kind>
</file>

Look at Legacy.xml.api for further details of predefined pattern usage and for required parameters and
values.

Using Custom Patterns

Use custom patterns only when a predefined pattern is not available. Custom patterns are not guaranteed
to provide consistent data to CA databases.

Using the entity Subtag

The <entity> subtag represents an entity in the object model repository. Attributes are:

• type specifies the entity type.
• name specifies the entity name.
• produced optionally indicates whether the entity is extracted, in which case it is deleted from the

repository when the source file is invalidated (yes or no, the default).

Use the <attr> subtag to specify entity attributes. Attributes of the subtag are:

• name specifies the attribute name.
• value contains an expression that defines the attribute value.
• join specifies the delimiter to use if all possible variable values are to be joined in a single value.

Use the <cond> subtag to specify a condition.

Using the rel Subtag

The <rel> subtag represents a relationship in the object model repository. Attributes are:

• name specifies the relationship end name, which can be unrolled into a separate tag like the name or
type of an entity.

• decision specifies a decision.

The <target> and <source> subtags represent, respectively, the right and left ends of the relationship.
These subtags are equivalent in function and syntax to the <entity> tag. Use the <cond> subtag to specify
a condition.

102 | Preparing Projects

Note: As a practical matter, you will almost never have occasion to use the <entity> subtag.

If the <rel> subtag is specified at the top level of the entry, and no <source> tag is specified, the parser
creates the relationship with the calling program; otherwise, it creates the relationship between the
<source> and <target> entities. If the <rel> subtag is nested in an entity specification, the parser creates
the relationship with the parent entity.

Example

Assume that we know that the second parameter in the API call described earlier for the <vars> tag
contains a variable in bytes 1-3 that specifies the CRUD operation, in addition to the variable in bytes 6-8
specifying the table name. The following definition extracts the CRUD operation and table name:

<vars>
 <arg var='%OpName'
 param='2'
 type='data'
 offset='0'
 size='3'/>
 <arg var='TableName'
 param='2'
 type='auto'
 offset='5'
 size='3'/>
</vars>
<rep>
 <rel>
 <target type='TABLE'
 name='%TableName'/>
 <name switch-var='%OpName'>
 <case eq='RED' value='ReadsTable'/>
 <case eq='UPD' value='UpdatesTable'/>
 <case eq='ADD' value='InsertsTable'/>
 <case eq='DEL' value='DeletesTable'/>
 </name>
 </rel>
</rep>

Using Expressions
Expressions let you extract parameter values and context information for specifications of entity or
relationship characteristics. You can use simple variable names in expressions, or apply a primitive function
call to a variable.

Basic Usage
Use the %var_name or %parameter_number notation to define variables for parameter values. The number
corresponds to the index of the parameter; parameters are indexed beginning with 1. Negative numbers
index from the last parameter to the first.

Variables with names beginning with an underscore are reserved for special values. They generally have
only one value. The table below describes the reserved variable names.

Name Description

_line, _col Line and column numbers of the call in source code.

_file Index of the file in the file table.

_uid UID of the node of the call in the syntax tree.

_fail A permanently undefined variable. Use it to cause explicit failure.

Preparing Projects | 103

Name Description

_yes A non-empty string for use as a true value.

_no An empty string for use as a false value.

_pgmname Name of the calling program.

_hcid HyperCode ID of the call node.

_varname nn If parameter number nn is passed using a simple variable reference
(not a constant or an expression), this substitution variable contains
its name. Otherwise, it is undefined.

Simple Notation

The simplest way to use a variable is to include it in an attribute value, prefixed with the percent character
(%). (%% denotes the character itself.) If the character directly after the % is a digit or a minus sign (-), the
end of the variable name is considered to be the first non-digit character. Otherwise, the end of the name is
considered to be the first non-alphanumeric, non-underscore character. In:

'%abc.%2def'

the first variable name is abc and the second is 2. It is also possible to specify the end of the variable name
explicitly by enclosing the name in curly brackets:

'%{abc}.%{2}def'

When evaluated, a compound string like this produces a string value that concatenates variable values and
simple text fragments, or fails if any of the variables is undefined.

Switch Usage

Use a switch-var attribute instead of the value attribute when a tag expects a value with a compound string
expression. The switch-var attribute contains a single variable name (which may be prefixed by %, but
cannot be enclosed in curly brackets). Use <case>, <undef>, or <default> subtags to specify switch cases.
These tags also expect the value attribute, so switches can be nested:

<name switch-var='%var'>
 <case eq='value1' value='...'/>
 <case eq='value2' switch-var='%var2'>
 <undef value='...'/>
 </case>
 <undef value='...'/>
 <default value='...'/>
</name>

When a switch is evaluated, the value of the variable specified using the switch-var attribute is matched
against the literal specified in the <case> tags. The literal must be the same size as the variable. (The
literals value1 and value2 in the example assume that var is defined as having six bytes.) If an
appropriate case is found, the corresponding case value is evaluated.

Set the value and type of the variable to __fail__ (two underscores) if you do not want a relationship to
be produced for the variable:

<progname switch-var="%fname">
 <case eq="LINKDATA" value="%pname" type="Calls" params="%3" />
 <case eq="LINK" value="%pname" type="Calls" params="%3" />
 <case eq="READQTS" value="__fail__" type="__fail__" />
 <default value="" />
 </progname>

104 | Preparing Projects

If the variable is undefined, and the <undef> tag is specified, its value is used; if not, the switch fails.
Otherwise, if the <default> case is specified, it is used; if not, the switch fails.

Fallback Chain Usage

Whenever multiple tags specifying a single attribute are presented in a <name>, <type>, or <case>/
<undef>/<default> specification, those tags are joined into a fallback chain. If an entry in the chain fails,
evaluation proceeds to the next entry. Only when the last entry of the chain fails is the failure propagated
upward:

<name value='%a'/>
<name value='%b'/>
<name value='UNKNOWN'/>

If %a is defined, the name is its value. Otherwise, if %b is defined, the name is %b. Finally, if both are
undefined, the name is UNKNOWN.

Fallback Semantics for Attributes

To determine the value of an attribute, the <attr> definitions for that attribute are processed one by one in
order of appearance within the parent tag. For each definition, all combinations of variables used within it
are enumerated, and all non-fail values produced are collected into a set:

• If the set contains exactly one value, it is taken as the value of the attribute.
• If the set contains multiple values, and the <attr> tag has a join attribute specified, the values are

concatenated using the value of the join attribute as a delimiter, and the resulting string is used as the
value for the repository attribute.

• Otherwise, the definition fails, and the next definition in the sequence is processed. If there are no
definitions left, the attribute is left unspecified.

This behavior provides a way to determine if the variable has a specific value in its value set. The following
example sets the attribute to False if the first parameter can be undefined, to True otherwise:

<attr name='Completed' switch-var='%1'>
 <undef value='False'/>
</attr>
<attr name='Completed' value='True'/>

Using a Function Call
When a variable name contains commas, it is split into a sequence of fragments at their boundaries, and
then interpreted as a sequence of function names and their parameters. In the following example:

%{substr,0,4,myvar}

the substr function extracts the first four characters from the value of %myvar. The table below describes
the available functions.

Functions can be nested by specifying additional commas in the last argument of the preceding function. In
the following example:

%{int,substr,0,4,map}
switch-var='trim,substr,4,,map'

the first line takes the first four characters of the variable and converts them to a canonical integer, the
second line takes the remainder, removes leading and trailing spaces, and uses the result in a switch, and
so forth.

Preparing Projects | 105

Function Description

substr,<start>,<size>,<variable> Extracts a substring from the value of the variable. The substring
begins at position <start> (counted from 0), and is <size> characters
long. If <size> is an empty string, the substring extends up to the end
of the value string.

int,<variable> Interprets the value of the variable as an integer and formats it in
canonical form, without preceding zeroes or explicit plus (+) sign. If
the value is not an integer, the function fails.

trim,<variable> Removes leading and trailing spaces from a string value of the
variable.

const,<string> or =,<string> Returns the string as the function result.

warning,<id-num>[,<variable>] Produces the warning specified by <id-num>, a numeric code that
identifies the warning in the backend.msg file, and returns the value
of the variable. If the variable is not specified, the function fails. So %
{warning,12345} is equivalent to %{warning,12345,_fail}.

lookup, <file>, <keyCol>, <valueCol>,
<variable>

Looks up a value from a comma-separated value (CSV) file. The CSV
file is located on disk at <file>. For each line in that file, <keyCol>
specifies the column (counted from 0) containing the key to match
against <variable> and <valueCol> specifies the column containing
the value to return. If <keyCol> is an empty string, column 0 is
assumed. If <valueCol> is an empty string, column 1 is assumed. If
no matching row is found in the file, an empty string is returned.

upper, <variable> Returns the value of the variable converted to all upper-case
characters.

lower, <variable> Returns the value of the variable converted to all lower-case
characters.

Understanding Enumeration Order
If the definition of the name of a relationship or the name or type of an entity contains substitution variables
that have several possible values, the parser enumerates the possible combinations. The loops are
performed at the boundary of the innermost <entity> or <rel> tag that contains the reference. (Loops for the
target or source are raised to the <rel> level.)

Once the value for a variable has been established at a loop insertion point, it is propagated unchanged to
the tags within the loop tag. So an entity attribute specification that refers to a variable used in the name of
the entity will always use the exact single value that was used in the name.

If the expression for a name or type fails, the specified entity or relationship is locked out from processing
for the particular combination of values that caused it to fail. This behavior can be used to completely block
whole branches of entity/relationship definition tags:

<entity ...>
 <type switch-var='%a'>
 <case eq='1' value='TABLE'/>
 </type>
 <rel name='InsertsTable'/>
</entity>
<entity ...>
 <type switch-var='%a'>
 <case eq='2' value='MAP'/>
 </type>
 <rel name='Sends'..../>
</entity>

106 | Preparing Projects

If %a is 1, the first declaration tree is used, and the table relationship is generated; the second declaration
is blocked. If %a is 2, the second declaration tree is used, and the map relationship is generated; the first
declaration is blocked.

Note: These enumeration rules require that the value of a repository entity attribute not depend on
variables used in the name of an enclosing <rel> tag, unless that variable is also used in the name of
the entity itself. Otherwise, the behavior is undefined.

Understanding Decisions
A decision is a reference to another object (a program or screen, for example) that is not resolved until run
time. If there are multiple possible combinations of values of variables used in the name of the target entity,
or if some of the variables are undefined, the parser creates a decision entity, replacing the named
relationship with a relationship to the decision and a set of relationships from the decision to each instance
of the target entity.

When you use the <rel> tag at the top level of the repository definition, you can specify a decision attribute
that tells the parser to create a decision regardless of the number of possible values:

• yes means that a decision is created regardless of the number of possible values.
• no means that a decision is never created (multiple values results in multiple direct relationships).
• auto means that a decision is created if more than one possible value exists, and is not created if there

is exactly one possible value.

Both the relationship name and the type of the target entity must be specified as plain static strings, without
any variable substitutions or switches:

<rep>
 <rel name='ReadsDataport' decision='yes'>
 <target type='DATAPORT' name='%_pgmname.%x'/>
 </rel>
</rep>

Understanding Conditions
The <cond> subtag specifies a condition that governs the evaluation of declarations in its parent <entity> or
<relationship> tag. The evaluation semantics of the tag follow the semantics for the <attr> tag: a non-empty
string as a result indicates that the condition is true, an empty string or a failure indicates that the condition
is false. Multiple <cond> tags can be specified, creating a fallback chain with <attr>-style fallback
semantics.

Notice in the example given in the section on decisions that the parser creates a decision entity even when
the name of the target resolves to a single value. Use a <cond> subtag in the relationship definition to
avoid that:

<rel name='ReadsDataportDecision'>
 <cond if-multi='%x' value='%_yes'/>
 <target type='DECISION'>
 <attr name='HCID' value='%_hcid'/>
 <attr name='DecisionType' value='DATAPORT'/>
 <attr name='AKA'
 value='%_pgmname.ReadsDataport.%_varname1'/>
 <attr name='AKA'
 value='%_pgmname.ReadsDataport.'/>
 <attr name='VariableName' value='%_varname1'/>
 <attr name='Completed' if-closed='%x'
 value='True'/>
 <rel name='ResolvesToDATAPORT'>
 <target type='DATAPORT'
 name='%_pgmname.%x'/>

Preparing Projects | 107

 </rel>
 </target>
</rel>
<rel name='ReadsDataport'>
 <cond if-single='%x' value='%_yes'/>
 <target type='DATAPORT' name='%_pgmname.%x'/>
</rel>

This repository definition produces the same result as the example in the section on decisions, except that
no decision is created when the name of the target resolves to a single value.

_yes and _no are predefined variables that evaluate, respectively, to a non-empty and empty string for true
and false, respectively. The if-single attribute means that the <cond> tag should be interpreted only if the
specified variable has a single defined value. The if-multi attribute means that the <cond> tag should be
interpreted if the variable has multiple values, none, or can be undefined. The if-closed attribute blocks the
<cond> tag if the variable has an undefined value.

Note: if-single, if-multi, and if-closed can also be used with the <attr> tag.

Conditions have join set to an empty string by default, resulting in a _yes outcome if any combination of
values of the variables used in switches within causes it to evaluate to _yes. If a particular condition
definition should fail when some of the values evaluate to _no and others to _yes, use a yes-only='yes'
attribute specification. That causes join to be unset, and the condition to give a non-fail outcome only when
all values evaluate to _yes.

In a relationship definition, <cond> determines whether the relationship is generated. For a decision
relationship, it also determines whether the decision entity should be generated.

In an entity definition, <cond> governs all attribute and subrelationship definitions in the tag, and the
creation of the entity in case of a standalone entity. For an entity specified in a <target> or <source> tag,
instantiation of the relationship automatically spawns the corresponding entity, meaning that a false
condition on the source or target of a relationship does not prevent creation of corresponding entities.

Usage Example
The following example illustrates use of the Generic API Analysis feature:

<APIEntry name='Call another program'>
 <match stmt="CALL">
 <name value="INVOKEPGM"/>
 </match>
 <flow halts='no'>
 <param index='1' usage='r'/>
 <param index='*' usage='w'/>
 </flow>
 <vars>
 <arg var='a' param='2' type='bit' len='5'/>
 </vars>
 <rep>
 <rel name='CallsDecision'>
 <target type='DECISION'>
 <attr name='AKA'
 value='%_pgmname.
 Calls.INVOKEPGM(%_varname1)'/>
 <attr name='AKA'
 value='%_pgmname.
 Calls.INVOKEPGM'/>
 <attr name='DecisionType'
 value='PROGRAMENTRY'/>
 <attr name='HCID' value='%_hcid'/>
 <attr name='VariableName'

108 | Preparing Projects

 value='%_varname1'/>
 <attr name='Completed' switch-var='1'>
 <undef value='False'/>
 </attr>
 <attr name='Completed' value='True'/>
 <rel name='ResolvesToProgramEntry'>
 target type='PROGRAMENTRY'
 name='%1'/>
 </rel>
 </target>
 </rel>
 </rep>
 <hc>
 <attr name='test' switch-var='%a' join=','
 <case eq='00101' value='X'/>
 <undef value='?'/>
 <default value='%a'/>
 </attr>
 </hc>
</APIEntry>

Preparing Projects | 109

Analyzing Projects

Managing Tags
You use a simple tagging language to identify workspace objects as members of functional, structural, or
other types of groupings. After you set up these groupings, you can chart them in EV or “black-box” them in
the Diagrammer.

Each member of a grouping is identified by a tag, "Payroll," for example. Each grouping can, in turn,
reference a more inclusive grouping, "HR," for instance. The figure below shows the tag hierarchy for a
typical enterprise:

In fact, this is the default tag structure that ships with CA. The "Enterprise" tag is the root of the structure.
The "Finance," "HR," and "Sales" tags represent departments in the enterprise. The "Accounting,"
"Payroll," and "CRM" tags are the applications owned by the departments.

Understanding the Tag Manager Window
Use the Tag Manager to create and assign tags to objects, and create relationships between tags. To open
the Tag Manager, click Analyze > Tag Manager.

The figure below shows the Tag Manager window. The Objects List pane shows repository objects and
their tags. Your selections in the other Tag Manager panes filter the objects displayed in the Objects List
pane.

By default, all Tag Manager panes are displayed. Select the appropriate choice in the View menu to hide a
pane. Select the choice again to show the pane.

110 | Analyzing Projects

Note: When you launch a query based on All Types selection in the Object Types pane, a dialog
opens prompting that you are about to run a long running query and asking if you want to proceed.
This message appears only when the query is likely to run for more than a few seconds. If you choose
not to run it, the Object List's header turns red to indicate that the displayed information does not
match the query.

Object List Pane
The Object List pane displays workspace objects filtered by your selections in the Category, Project, Object
Types, Search, and/or Query panes; or by your selections in the Tags pane.

By default, the Object List pane displays up to 100 repository objects and their tags. Click next to the

 icon on the toolbar and choose one of:

• More Objects in the drop-down menu to display the next 100 objects that match the filter criteria.
• All Objects in the drop-down menu to display all the objects that match the filter criteria.

Category Pane
The Category pane displays the categories you can use to filter objects in the Object List pane:

• All Objects comprises source and generated objects in the workspace.
• Generated Objects comprises generated objects in the workspace.
• Legacy Objects comprises source objects in the workspace.

Analyzing Projects | 111

Projects Pane
The Projects pane displays the workspace projects you can use to filter objects in the Object List pane.
Entire Workspace comprises all the projects in the workspace.

Object Types Pane
The Object Types pane displays the object types you can use to filter objects in the Object List pane.

Search Pane
The Search pane lets you filter the objects in the Object List pane using wildcard patterns allowed in LIKE
statements by Visual Basic for Applications (VBA). Enter the pattern in the Object Name field. The Object
List pane is refreshed as you type.

Note: In large repositories, the Object List pane may not immediately refresh as you type. Press the
Enter key to instantly display matching objects for the current string.

Query Pane
The Query pane lets you filter the objects in the Object List pane using complex queries. Select a query to
filter the Object List by its terms. Select another query and choose one of:

• Add Tags > with <And> in the right-click menu to add its results to the results of previous queries.
• Add Tags > with <Or> in the right-click menu to compare its results with the results of previous queries.

Tags Pane
The Tags pane lists the tags in the workspace. To view the objects that have tags assigned, select one or
more tags and the result will be displayed in the Object List pane.

Creating Tags
To create a tag, choose Edit > Create in the Tag Manager window. A dialog box prompts you to enter the
name of the new tag. Enter the name and click OK. The tag is displayed in the Tags pane.

Specifying Access to Tags
By default, the tags you create are public. To make a tag private, that is, visible only to you, select it and
choose Set Access > Private in the right-click menu. To make the tag public again, choose Set Access >
Public in the right-click menu.

Note: Tags shipped with the product are always public. You cannot change their access.

Assigning Tags
You can assign tags to objects individually, or to all the objects generated from a source file. You can also
assign tags to objects in the Repository pane, by selecting the objects and choosing Assign/Remove Tags
in the right-click menu. Select a project or folder to assign tags to every first-level object in the project or
folder.

1. In the Object List pane, select the object(s) you want to assign a tag and choose Edit > Assign/
Remove Tags. The Entity Tag Browser window opens.

112 | Analyzing Projects

2. In the Entity Tag Browser window, select the tag(s) you want to assign and click Assign.

3. If you are assigning a tag to a legacy source file, check Apply to Derived Objects to assign the
selected tag(s) to all objects generated from the source file.

4. Click OK to assign the selected tags.

The Object Tag column for the selected object(s) is updated to show the assigned tag(s) in the Objects List
pane.

Removing Tags
Removing a tag simply “unassigns” the tag from the selected object. The tag is not deleted from the
repository. You can also remove tags from objects in the Repository pane, by selecting the objects and
choosing Assign/Remove Tags in the right-click menu. Select a project or folder to remove tags from
every first-level object in the project or folder.

1. In the Object List pane, select the object(s) for which you want to remove tags and choose Edit >
Assign/Remove Tags. The Entity Tag Browser window opens.

Analyzing Projects | 113

2. In the Entity Tag Browser window, select the tag(s) you want to remove and click Remove.

3. If you are removing a tag from a legacy source file, check Apply to Derived Objects to remove the
selected tag(s) from all objects generated from the source file.

4. Click OK to remove the selected tags.

The Object Tag column for the selected object(s) is updated in the Objects List pane.

Creating Relationships Between Tags
The relationships between tags define the tag hierarchy. Create relationships between tags as described
below.

1. Choose Edit > Reference in the Tag Manager window. The References window opens.

114 | Analyzing Projects

2.
In the References window, click the button on the toolbar.

3. The Select dialog opens. Select the tags you want to create relationships between and click OK.

Note: You can also draw relationships between tags by clicking the button on the toolbar.
Select the first tag in the relationship and drag the mouse to the second tag in the relationship,
then release the mouse button. See the Diagrammer help for instructions on how to use the other
diagramming functions in the References window.

The tool draws a line between the referenced tags. To delete a relationship line, select it and click the
button on the toolbar.

Deleting Tags
To delete tags from the repository, select them in the Tags pane and choose Edit > Delete Tags. You can
also delete tags in the References window, by selecting them and clicking the button on the toolbar.

Creating Tag Queries
Use tag queries to filter the objects in the Object List pane in more complex ways than the other panes
allow. Create a tag query as described below.

1. Choose Query > New Query in the Tag Manager window. A dialog box prompts you to enter the name
of the new query. Enter the name and click OK. The query is displayed in the Query pane.

2. Select the query in the Query pane and choose Query > Edit Query. The Query window opens.

Analyzing Projects | 115

3. Define the terms of the query. Click in the term field you want to define, then select the tag you want to
add to the term definition and click Add. Tags added to the same term are ORed. Tags added to a
different term are ANDed. Click Clear to clear the term definition.

4. When you are satisfied with the query definition, click OK.

Deleting Tag Queries
To delete a tag query, select it and choose Delete in the right-click menu.

Refreshing the Tag Manager Window
To refresh the Tag Manager window with the latest information from the repository, including changes made

by other users, click the button next to the button on the toolbar and click Refresh in the drop-
down menu. If objects have been deleted from the repository, they will remain visible in the Object List
pane until you clean up the Tag Manager window.

Cleaning Up the Tag Manager Window
When objects are deleted from the repository, Tag Manager continues to display them in the Object List

pane until you clean up the Tag Manager window. To clean up the window, click next to the button
on the toolbar and click Clean Up in the drop-down menu.

Note: This feature is only available to master users. Running a clean up may take several minutes,
depending on the size of your repository.

Generating Reports
To generate an HTML report for all objects currently displayed in the Object List pane, choose File > Save
Report.

Analyzing Relationship Flows
Use the Diagrammer to view the relationships between objects in a scope, a data flow or call map, for
example. These relationships describe the ways in which objects in the scope interact. In the data flow

116 | Analyzing Projects

fragment below, for example, the GSS2 program reads the file GSS2.STATEMS. The file, in turn, is
assigned to the CXXCP.OPK00.SNFILE data store.

The Diagrammer’s high-level analysis of relationships lets you quickly trace the flow of information in an
application. You can use it to view program to program calls; program, transaction, and screen flows; job,
program, and data store flows; and much more.

Understanding Relationship Flow Diagrams
Relationship flow diagrams use boxes and lines to show the relationships between objects in a scope.
Depending on the Diagrammer mode, you can display the relationships for:

• All the objects in the selected project.
• Only the objects you copy and paste onto the canvas.

In each mode, all related workspace objects are included in the diagram. In copy-and-paste mode, you can
add objects to an existing diagram and expand the diagram one level at a time.

Objects are color-coded, based on a color scheme of your choosing. If you have assigned business names
to objects, their business names appear in the diagram as well as their technical names. You can “black-
box” items in higher-level groupings that make it easy to visualize their roles in your application, cluster
highly related objects, filter drivers and utilities, and much more.

Understanding Diagram Scopes
The scope of a diagram determines the relationships it displays. To view a diagram of the relationships,
select the scope in the Scope drop-down and choose Scope > View Scope.

The Diagrammer provides default scopes that you can use for most analysis tasks, but you can create your
own scopes if you like. You might want to exclude data stores from a data flow, or include source files in a
call map. Use the Scope Editor to create your own scopes.

Understanding Diagram Layouts
Diagrammer layout styles are designed to produce aesthetically pleasing, easy-to-understand diagrams for

a wide variety of needs. To choose a layout style, click on the button for the active layout style, then
select the layout style in the drop-down menu. The following styles are available:

• The Circular Layout style organizes nodes in clusters of related objects.
• The Hierarchical Layout style organizes nodes in precedence relationships, with levels for parent

and child object types.
• The Orthogonal Layout style organizes nodes in relationships drawn with horizontal and vertical

lines only.
•

The Symmetric Layout style (the default) organizes nodes based on symmetries detected in their
relationships.

Note: The symmetric style typically offers the best performance for very large diagrams.

Analyzing Projects | 117

• The Tree Layout style organizes nodes in parent-child relationships, with child nodes arranged on
levels farther from the root node than their parents.

Click a layout style button in the drop-down to change the style after a diagram is drawn.

Generating a Diagram for the Selected Project
Follow the instructions below to generate a relationship flow diagram for the selected project. You can
exclude related workspace objects that are not in the project, colorize project boundaries, and show
incomplete relationship chains. You can use tags to “black-box” objects in the diagram.

Note: The Browser pane and project drop-down list in Diagrammer will use the same project filter
from the main window when Diagrammer is opened. Any changes made to the project selection or
project filter in the main window after Diagrammer is opened will not be reflected in Diagrammer.

1. Chose the type of the diagram - Project Based or Entity Based.

2. Select a Project from the drop-down list.

3. In the Scope drop-down, choose the scope of the diagram.

4. Select a Group By criterion from the drop-down list.

5. On the Diagram pane tool bar, choose the layout style for the diagram.

6. In the Project drop-down or Browser pane, select the project.

7. Click Build Diagram on the Diagrammer tool bar. The diagram is displayed.

Generating a Diagram for Objects Copied and Pasted
onto the Canvas
Follow the instructions below to generate a relationship flow diagram for objects copied and pasted onto
the canvas. In this mode, you can expand the diagram one level at a time and add objects to an existing
diagram. You can exclude related workspace objects that are not in the project, colorize project boundaries,
and show incomplete relationship chains. You can use tags to “black-box” objects in the diagram.

1. In the Scope drop-down, choose the scope of the diagram.

2. On the Diagram pane tool bar, choose the layout style for the diagram.

3. In the Browser pane, select the startup objects for the diagram, then press CTRL-C to copy them onto
the clipboard.

Note: Make sure to select startup objects in the diagram’s intended scope. Most scopes include
logical objects rather than source files.

4. To show the entire relationship flow for the selected objects, choose View > Auto Expand. Turn off
Auto Expand if you want to expand the diagram one level at a time after it is drawn. Only immediate
relationships of the selected objects are drawn initially.

5. Click in the Diagram pane, then choose Diagram > Paste or press CTRL-V to paste the objects onto
the Diagrammer canvas.

6. Repeat the preceding step for each object whose relationships you want to add to the diagram. The
diagram is automatically redrawn.

Understanding the Diagrammer Window
Use the Diagrammer to view the relationships between application objects interactively. To open the
Diagrammer, select a project in the Repository Browser and choose Analyze > Diagrammer.

By default all panes in the Diagrammer are empty. Select the attributes for your diagram and click Build
Diagram to create the diagram. Select the appropriate choice in the View menu to hide a pane. Select the
choice again to show the pane.

118 | Analyzing Projects

Diagram Pane
The Diagram pane displays the diagram for the selected scope. To save a diagram in one of the supported

diagram formats, click the on the Diagram pane tool bar. To save a diagram in one of the supported

image formats, click the on the Diagram pane tool bar.

To print a diagram, click the button on the Diagram pane tool bar. To preview the printed diagram, click

the button on the Diagram pane tool bar.

Selecting an Object or Relationship

To enable select mode, click the button on the Diagram pane tool bar.

• To select an object in a diagram, click it on the diagram canvas. Use Ctrl-click to select multiple objects,
or click a blank area of the canvas, then drag the mouse over multiple objects to “lasso” the objects.
Selected objects are displayed with handles that you can use to size the object.

• To select a relationship in a diagram, click it on the diagram canvas. The selected relationship is
displayed in blue.

Searching for an Object

To search for an object in a diagram, enter the text you want to match in the Search field on the
Diagrammer tool bar and press Enter. You can use wildcard patterns allowed in LIKE statements by Visual
Basic for Applications (VBA).

Navigating to an Object from a Relationship

To navigate to the diagram object on the left side of a relationship, select the relationship and choose
Locate Left in the right-click menu. To navigate to the diagram object on the right side of a relationship,
select the relationship and choose Locate Right in the right-click menu.

Note: Use the Overview pane to navigate to general locations in a diagram.

Expanding and Collapsing Relationships

To expand the incoming relationships for an object in a diagram generated in copy-and-paste mode, select
the object on the diagram canvas and choose Expand > Expand Incoming in the right-click menu. To
expand the outgoing relationships, select the object on the diagram canvas and choose Expand > Expand
Outgoing in the right-click menu.

To collapse the incoming relationships for an object, select the object on the diagram canvas and choose
Collapse > Collapse Incoming in the right-click menu. To expand the outgoing relationships, click the
object on the diagram canvas and choose Collapse > Collapse Outgoing in the right-click menu.

Moving an Object or Relationship

To move an object or relationship in a diagram, select it and drag it to the desired location on the diagram
canvas.

Resizing an Object

To resize an object in a diagram, select it on the diagram canvas and drag one of its handles to the desired
location.

Hiding an Object

To hide objects on the canvas, select an object and choose:

Analyzing Projects | 119

• Hide > Selected in the right-click menu to hide the selected object.
• Hide > Incoming in the right-click menu to hide incoming nodes of the selected object.
• Hide > Outgoing in the right-click menu to hide outgoing nodes of the selected object.

To display the object again, double-click the button for a related object.

Deleting an Object or Relationship

To delete an object or a relationship in a diagram, select it on the diagram canvas and choose Delete
Selected in the right-click menu.

Assigning Tags

You can assign tags manually in Diagrammer or automatically, to all the objects in a cluster. Follow the
instructions below to assign tags manually.

1. Select the objects you want to assign tags on the diagram canvas and click Assign Tags in the right-
click menu. The Entity Tag Browser window opens.

2. In the Entity Tag Browser window, select the tag(s) you want to assign and click Assign.

3. If you are assigning a tag to a legacy source file, check Apply to Derived Objects to assign the
selected tag(s) to all objects generated from the source file.

4. Click OK to assign the selected tags.

Assigning Business Names

To assign a business name and business description to an object, select the object and choose Set
Business Attributes in the right-click menu. A dialog box opens, where you can enter the business name
and business description. To unassign a business name or business description, simply delete the value in
the dialog box.

Note: If multiple objects are selected, Diagrammer displays the dialog box as many times as there are
objects.

Displaying Labels for Multiple Relationships

The Diagrammer denotes that an object has multiple relationships with another object by displaying a
number in parentheses (n) along the relationship line, where n represents the number of relationships.
Double-click the parenthesis to display the relationship labels. Double-click the relationship labels to hide
them again.

Hiding Relationship Labels

To hide relationship labels on the canvas, click the button on the tool bar and choose Hide

Relationship Labels in the drop-down menu. To show the relationship labels again, click the button
on the tool bar and choose Show Relationship Labels in the drop-down menu. To show hidden nodes as

well as hidden relationship labels, click the button on the tool bar and choose Unhide All in the drop-
down menu.

Displaying the Legend for a Diagram

To display the legend for a diagram, click the button on the tool bar and choose Show Legend in the
drop-down menu.

120 | Analyzing Projects

Zooming

To zoom in interactive mode, click button on the Diagram pane tool bar, then drag the mouse over the
diagram to zoom in on it.

To zoom in marquee mode, click button on the Diagram pane tool bar, then drag the mouse over the
diagram to draw a marquee. The Diagrammer displays the portion of the diagram inside the marquee.

To fit the diagram in the Diagram pane, click the button on the Diagram pane tool bar.

Moving a Diagram

To move a diagram in the Diagram pane, click the button on the Diagram pane tool bar to choose
panning mode, then hold down the left mouse button and drag the mouse to move the diagram.

Clearing a Diagram

To clear the Diagram pane, choose Diagram > Clear.

Saving a Diagram

Click the button on the Diagram pane tool bar to save a diagram in one of the supported diagram
types. A Save dialog opens, where you can specify the name, type, and location of the file.

Click the button on the Diagram pane tool bar to save a diagram in one of the supported image types.
A Save dialog opens, where you can specify the image type and characteristics. You may also change the
name and location of the file.

Printing a Diagram

Click the button on the Diagram pane tool bar to print a diagram. A Print dialog opens, where you can

specify the properties of the print job. Click the button to preview the printed diagram.

Generating Diagram Reports

Choose File > Save Type Report to display a printable report based on a diagram. Choose File > Save
Blackbox Interface Report to display a printable report showing the relationships between objects in
different black boxes. In the printable report, click Print to print the report. Click Save to export the report to
HTML, Excel, RTF, Word, or formatted text.

Browser Pane
The Browser pane displays the workspace repository in tree form. The current project is expanded one
level when you first open the Diagrammer.

Note: To improve Diagrammer startup performance in your next session, hide the Browser pane
before you end your current session. Click the close box in the upper righthand corner to hide the
pane. To show the pane again, choose View > Browser.

Relationships Pane
The Relationships pane displays the relationships in the selected scope, as they appear from left to right in
the diagram. Select the relationship for an object in the Relationships pane to navigate to the object in the
Diagram pane.

The list includes relationship chains, or composite relationships, such as
Program[IsDefinedInCobol]Cobol[Includes]Copybook[GeneratesTargetXml]TargetXML. If you chose View >

Analyzing Projects | 121

Potential Incomplete Composite Relationships when you drew the diagram, the list shows incomplete
relationship chains, in which the final object in the chain is unresolved or otherwise unavailable.

Quick View Pane
The Quick View pane lets you browse Interactive Analysis information for the object selected in the
Diagram pane. The information available depends on the type of object selected. You see only source code
for a copybook, for example, but full Interactive Analysis information for a program. Select the information
you want to view for the object from the drop-down in the upper lefthand corner of the pane.

Overview Pane
The Overview pane lets you navigate to a general location in a diagram. It displays the entire diagram, with
a frame surrounding the portion of the diagram visible in the Diagram pane. Drag the frame to the area of
the diagram you want to view in the Diagram pane. Diagrammer displays the selected area in the Diagram
pane.

Excluding Objects Outside the Project
To restrict the diagram to related objects in the current project, choose View > Exclude Objects Outside
Project. Otherwise, all related workspace objects are included in the diagram.

Showing Incomplete Composite Relationships
A composite relationship defines the indirect interaction of two objects. If a job runs a program entry point
that belongs to a program, for example, the relationship between the job and program is said to be
composite: defined by the chain of relationships between the job and program.

To show incomplete relationship chains in the diagram and list of relationships, choose View > Potential
Incomplete Composite Relationships. Intermediate objects in the chain are displayed even if the final
object in the chain is unresolved or otherwise unavailable. Relationships are displayed in red in the
diagram.

Colorizing Project Boundaries
Boundary objects are objects with relationships to objects outside the project. To colorize boundary objects
in the diagram, choose View > Project Boundary Entities. Boundary objects are displayed in the diagram
with a red border. Related external objects are displayed in the diagram with a blue border.

Showing and Hiding Object Labels
The View > Show in Label menu choice controls the labels displayed for objects in a diagram. Choose
one of:

• View > Show in Label > Show Type to display the type of an object in its label.
• View > Show in Label > Show Name to display the name of an object in its label.
• View > Show in Label > Show Business Name to display the business name of an object in its label.
• View > Show in Label > Show Business Description to display the business description of an object

in its label.

A check mark next to a choice means that the label will be displayed. The choices are toggles. Click the
choice again to hide the information in the label.

122 | Analyzing Projects

Working with Groups
Grouping objects reduces diagram clutter and makes it easy to visualize the roles of the grouped objects in
your application. Groups are automatically created when you black-box tagged objects and when you filter
or cluster objects.

Grouping and Ungrouping Objects

To group objects manually, select the objects on the diagram canvas, then click the button on the tool
bar and choose Group Selected in the drop-down menu. Inclusive groups are allowed.

To ungroup objects, select the group on the diagram canvas, then click the button on the tool bar and
choose Ungroup Selected in the drop-down menu.

Expanding and Collapsing Groups
Expand a group to view its contents. Collapse a group to hide its contents.

• If a group is collapsed (including a group in a more inclusive group), double-click it to expand its
contents. To expand all the groups in an inclusive group, select the group on the diagram canvas, then

click the button on the tool bar and choose Expand Groups in the drop-down menu.
• If a group is expanded (including a group in a more inclusive group), double-click it to collapse it. To

collapse all the groups in an inclusive group, select the group on the diagram canvas, then click the
button on the tool bar and choose Collapse Groups in the drop-down menu.

To view a diagram consisting only of objects in a group, select the group and choose Navigate to Child

Diagram in the right-click menu. To restore the full diagram, click the button on the tool bar and
choose Return to Parent in the drop-down menu.

Moving Objects Between Groups

To move objects between groups, expand the groups, then click the button on the toolbar. Select the
object you want to move and drag it to the new group.

Naming Groups
To rename a group, select it and choose Rename Group in the right-click menu.

Note: The name does not persist after ungrouping. You cannot rename a black box.

Deleting Groups
To delete a group, select it and choose Delete Group in the right-click menu. You are prompted to confirm
the deletion. Click Yes.

Black-Boxing Tagged Objects
The deeper your understanding of your application, the more confidently you can abstract from its lower-
level details to a “bigger picture” view, one that organizes related programs in functional, structural, or other
types of groupings: a Customer Maintenance subsystem, for example, in an Order Acceptance application.
This is the kind of view a subject matter expert uses to evaluate whether an application does everything it
is supposed to do, in the appropriate order.

The Diagrammer black-box feature lets you assign lower-level objects to higher-level groupings that make it
easy to visualize their roles in your application. Your diagram might have one black box for the Customer

Analyzing Projects | 123

Maintenance subsystem, another for the Order Entry subsystem, and so forth. Because the details of these
relationships are hidden in the black box until you need to view them, the subject matter expert can home
in quickly on the higher-order functions you have abstracted from them.

You use the Tag Manager to identify the items in each higher-level grouping. Each grouping can, in turn,
reference a more inclusive grouping. If you assign the Customer Maintenance tag to one set of programs,
for example, and the Order Entry tag to another, and both tags reference the Application Functions tag,
then when you choose Application Functions in the Diagrammer Group By drop-down, the Diagrammer
puts the programs in black boxes named Application Functions Customer Maintenance and Application
Functions Order Entry.

1. To black-box objects in a diagram, choose the tag for the objects in the Group By drop-down.

Note: To show only top-level tags in the drop-down, choose View > Root Tags Only.

2. Generate the diagram in project or copy-and-paste mode. The figure below shows expected results.

Filtering Objects
A driver is an object with many outputs, a startup program, for example. A utility is an object with many
inputs, DATEFMT, for example. Filtering drivers and utilities from large diagrams reduces diagram clutter
and typically provides a better picture of what your application does.

124 | Analyzing Projects

You set thresholds for filtering in the Diagrams User Preferences. If you set the driver threshold for outgoing
relationships to 40, for example, then any object with 40 or more outgoing relationship will be considered a
driver and displayed outside the main relationship flow. The driver and its related nodes in the relationship
flow appear with a symbol in the diagram. Click the symbol to display the relationships for the driver
and its related nodes again.

You generate a filtered diagram the same way you generate any diagram. The only difference is that when
the filtering thresholds are met, Diagrammer displays the Large Dataset Returned dialog. Choose Enable
Node Filtering in the dialog to draw the diagram with the filter applied. Choose Disable Node Filtering

and Clustering in the dialog to draw the diagram without the filter applied. A symbol on the tool bar
indicates that a diagram is filtered.

Tip: Use the Filter Override options on the drop-down menu to override the thresholds in the
Diagrams User Preferences. If the diagram has already been generated, choosing an override option
redraws the diagram with the new filter applied.

Setting Filter Overrides
Use the Filter Override Options window to override the filtering thresholds in the Diagrams User
Preferences. If the diagram has already been generated, choosing an override option redraws the diagram
with the new filter applied.

Note: These settings do not persist between Diagrammer sessions.

1.
Click on the tool bar and choose Filter Override Options in the drop-down. The Filter Override
Options window opens.

2. Select Filters Enabled to enable filtering.

3. Select Hide Utilities to hide objects with many inputs, DATEFMT, for example. Specify the filtering
thresholds for inputs and outputs:

• In the Incoming Relationships field, enter the filtering threshold for incoming relationships.
• In the Outgoing Relationships field, enter the filtering threshold for outgoing relationships.

4. Select Hide Drivers to hide objects with many outputs, a startup program, for example. Specify the
filtering thresholds for inputs and outputs:

• In the Incoming Relationships field, enter the filtering threshold for incoming relationships.
• In the Outgoing Relationships field, enter the filtering threshold for outgoing relationships.

5. Select Hide High Input Nodes to hide objects with many inputs that do not meet the incoming
relationship threshold for utilities. Specify the thresholds for inputs in the With Incoming Relationships
field.

6. Select Hide High Output Nodes to hide objects with many outputs that do not meet the outgoing
relationships threshold for drivers. Specify the thresholds for outputs in the With Outgoing
Relationships field.

Tip: Select Reset Values to restore the filtering thresholds to
their settings in the Diagrams User Preferences.

Clustering Objects
Clustering objects on a diagram groups them by their degree of relatedness. Once clusters are generated,
you can move objects in and out of the groups, name the groups, and create new clusters as needed.
When you are satisfied that a cluster meets your needs, you can assign an existing tag to its members or
generate a tag from the cluster itself, each member of which receives the tag.

Analyzing Projects | 125

To enable clustering click and then click Clustering Options. Check if the appropriate filtering
thresholds are met, drivers and utilities are grouped in special clusters named "Drivers" and "Utilities." A
third special cluster, "Miscellaneous Components," contains relationship flows with too few objects to
cluster.

You generate a clustered diagram the same way you generate any diagram. The only difference is that
Diagrammer displays the Large Dataset Returned dialog. Choose Enable Node Clustering in the dialog to
draw the diagram with clustering applied. Choose Disable Node Filtering and Clustering in the dialog to
draw the diagram without clustering applied.

Creating Clusters Manually
To create a cluster manually, right-click on white space on the Diagrammer canvas. The Clustering dialog
opens. Select Create New Cluster, then enter the cluster name in the Cluster Name field. Click OK.

Generating Tags from Clusters
To generate tags based on cluster names, right-click on white space on the Diagrammer canvas. The
Clustering dialog opens. Select Create Tags from Clusters, then enter the name of the parent tag in the
Top Level tag field.

Note: The parent tag is required.

Click OK. Each member of a cluster is assigned a tag based on the cluster name.

Setting Clustering Factors
Use the Clustering Options window to specify values to use when factoring how closely related cluster
objects are.

Note: These settings do not persist between Diagrammer sessions.

1.
Click on the tool bar and choose Clustering Options. The Clustering Options window opens.

2. In the Quality drop-down, select one of:

• Draft for the lowest clustering quality and best performance.
• Proof for the highest clustering quality and worst performance.
• Medium for the best balance of clustering quality and performance.

3. In the Balance combo box, specify the clustering balance factor. The higher the balance factor, the
lower the number of relationships between objects in different clusters.

4. In the Cluster Size Factor combo box, specify the clustering size factor. The higher the clustering size
factor, the larger and fewer the clusters.

5. In the Max Number of Clusters combo box, specify the maximum number of clusters. A value of 0
means any number of clusters.

6. In the Min Number of Clusters combo box, specify the minimum number of clusters. A value of 0
means any number of clusters.

Setting Diagrams User Preferences
Use the Diagrams tab of the User Preferences window to specify the color-coding used in relationship flow
diagrams, the thresholds for clustering and filtering, and performance limits for large diagrams.

1. Choose Tools > User Preferences. The User Preferences window opens. Click the Diagrams tab.

2. Select Prompt When Diagram Mode Changes to be prompted when you switch between a diagram
generated for a project and a diagram generated for copied-and-pasted objects.

126 | Analyzing Projects

3. In the Color Scheme pane, click the object type whose color you want to edit. The current background
color of the type (if any) is displayed in the Color drop-down.

4. Click the adjacent button and choose ForeColor from the pop-up menu if you want to specify the
color of the caption for the object type, or BackColor if you want to specify the color of the background
for the object type.

5. In the Shape drop-down, select the shape of the object type in the diagram. Select Lock Shape Aspect
to specify that the shape not be adjusted to fit the caption.

6. Click Performance button. The Performance Option Limits dialog opens.

7. Deselect Relayout Subgraphs if you do not want child groups to be redrawn when you choose a new
layout style.

Note: Selecting this option may result in poor performance for very large diagrams.

8. In the Maximum relationships to return from repository field, enter the maximum number of
relationships to display in the diagram. Relationships are truncated when the maximum is exceeded.

Note: Setting this option too high may result in poor performance for very large diagrams.

9. In the Force Symmetric Layout (all relationships) field, enter the maximum number of relationships to
display in the diagram before forcing symmetric layout style.

Note: Symmetric layout style typically offers the best performance for very large diagrams. Setting
this option too high may result in poor performance for very large diagrams.

10.In the Offer Auto Clustering Layout (all relationships) field, enter the maximum number of
relationships to display in the diagram before offering to perform clustering.

11.Select Filter Options Enabled to enable filtering.

12.In the Hide Drivers (all relationships) field, enter the maximum number of relationships to display in
the diagram before filtering drivers. (A driver is an object with many outputs, a startup program, for
example.) Specify the filtering thresholds for inputs and outputs:

• In the Incoming Relationships field, enter the filtering threshold for incoming relationships.
• In the Outgoing Relationships field, enter the filtering threshold for outgoing relationships.

13.In the Hide Utilities (all relationships) field, enter the maximum number of relationships to display in
the diagram before filtering utilities. (A utility is an object with many inputs, DATEFMT, for example.)
Specify the filtering thresholds for inputs and outputs:

• In the Incoming Relationships field, enter the filtering threshold for incoming relationships.
• In the Outgoing Relationships field, enter the filtering threshold for outgoing relationships.

14.In the Hide High Output Nodes (all relationships) field, enter the maximum number of relationships to
display in the diagram before filtering objects with many outputs that do not meet the outgoing
relationships threshold for drivers. Specify the filtering thresholds for outputs in the Outgoing
Relationships field.

15.In the Hide High Input Nodes (all relationships) field, enter the maximum number of relationships to
display in the diagram before filtering objects that do not meet the incoming relationship threshold for
utilities. Specify the filtering threshold for inputs in the Incoming Relationships field.

Using the Scope Editor
Use the Scope Editor to manage the scopes in your repository, create custom composite relationships, and
define relationship filters. To open the Scope Editor, choose Scope > Scope Editor. The Scope Editor
opens, with the workspace scopes listed in the lefthand pane and their relationships in the righthand pane.
The figure below shows the Scope Editor.

Analyzing Projects | 127

Understanding the Lefthand Pane of the Scope Editor
The lefthand pane of the Scope Editor window lists every scope in the repository. The table below
describes the columns in the lefthand pane.

Column Description

Scope The name of the scope. Scopes are color-coded as follows:

• Blue means that the scope is available in the Diagrammer Scope
drop-down.

• Gray means that the scope is not available in the Scope drop-
down, because it is hidden or because it is a private scope owned
by another user. You can copy a private scope, then edit it as you
would your own scope

• Red means that the scope has no relationships associated with it.

Type The type of the scope, public or private. The type determines
availability of the scope in the Diagrammer Scope drop-down:

• A public scope is available to every user of the workspace.
• A private scope is available only to its owner. You can copy a

private scope, then edit it as you would your own scope.

Owner The owner of the scope. SYSTEM denotes a default scope.

Hide Whether the scope is hidden in the Diagrammer Scope drop-down. A
check mark means that the scope is hidden.

Understanding the Righthand Pane of the Scope Editor
The righthand pane of the Scope Editor window lists every relationship in the repository. The table below
describes the columns in the righthand pane.

128 | Analyzing Projects

Column Description

Use Whether the relationship is used in the selected scope. A check mark
means that the relationship is used.

Relationship Name The name of the relationship. Relationships for which a filter has
been defined are color-coded magenta.

Left Entity The entity on the left end of the relationship. Entities for which a
relationship filter has been defined are color-coded magenta. A tool
tip displays the text of the condition.

Caption The caption of the relationship.

Right Entity The entity on the right end of the relationship. Entities for which a
relationship filter has been defined are color-coded magenta. A tool
tip displays the text of the condition.

Class The class of the relationship, basic or composite:

• A basic relationship defines the direct interaction of two objects: a
program and a program entry point, for example.

• A composite relationship defines the indirect interaction of two
objects. If a job runs a program entry point that belongs to a
program, for example, the relationship between the job and
program is said to be composite: defined by the chain of
relationships between the job and program.

Occurs The number of times a basic relationship occurs in the repository. For
composite relationships, N/A, indicated with an asterisk (*).

Managing Scopes
Use the Scope Editor to edit the Diagrammer Scope drop-down, view scope diagrams, create, edit, copy,
and delete scopes, import and export scopes, and more.

Hiding a Scope in the Scope Drop-down

To hide a scope in the Diagrammer Scope drop-down (but not remove it from the repository), select the
scope in the Scope Editor and put a check mark next to it in the Hide column.

Displaying Only the Relationships Used in a Scope

To display only the relationships used in a scope, select the scope in the Scope Editor and click Hide
Unused button in the righthand pane.

Hiding Empty Relationships

To hide relationships that have no instances in the repository, click the Hide Empty button in the righthand
pane.

Viewing a Diagram of a Scope

To view the diagram of a scope, select the scope in the Scope Editor and choose File > Diagram. You can
also view a scope diagram by selecting the scope in the Diagrammer Scope drop-down and choosing
Scope > View Scope.

Viewing a Diagram of a Composite Relationship

To view the diagram of a composite relationship, select the relationship in the Scope Editor and choose
Diagram in the right-click menu.

Analyzing Projects | 129

Creating a Scope

To create a scope, choose File > New Scope. A dialog box prompts you to enter the name, optional
caption, class, and owner of the scope. Enter the requested information and click Save.

Specifying the Relationships in a Scope

To specify the relationships in a scope, select the scope in the Scope Editor and put a check mark in the
Use column next to each relationship you want to include in the scope. To save the scope, choose File >
Save.

Note: You can specify relationships only for a scope you own.

Editing Scope Details

To edit the name, caption, class, and owner of a scope, select the scope in the Scope Editor and choose
File > Edit. A dialog box displays the current details for the scope. Enter the new information and click
Save.

Note: You can edit details only for a scope you own.

Copying a Scope

To copy a scope, select the scope in the Scope Editor and choose File > Copy. A dialog box prompts you
to enter the name, optional caption, class, and owner of the new scope. Enter the requested information
and click Save. You can copy default scopes and public or private scopes owned by another user, then edit
them as you would your own scope.

Deleting a Scope

To delete a scope, select the scope in the Scope Editor and choose File > Delete.

Note: You can delete only a scope you own.

Deleting a Composite Relationship

To delete a composite relationship, select the relationship in the Scope Editor and choose Delete in the
right-click menu.

Note: You can delete only a composite relationship you own.

Importing and Exporting Scopes

To import a scope from an XML file, choose File > Import. A dialog opens, where you can specify the
scope you want to import. The type of an imported scope defaults to public. The owner defaults to the
current user.

Note: If a scope or relationship being imported conflicts with an existing scope or relationship, you are
notified and the conflicting item is ignored.

To export a scope to an XML file, select the scope in the Scope Editor and choose File > Export Selected.
A Save dialog opens, where you can specify the name and location of the scope. To export all the scopes
in the repository to an XML file, choose File > Export All.

Hiding Columns in the Scope Editor

To hide a column in the Scope Editor, deselect the column name in the View menu.

130 | Analyzing Projects

Creating Custom Composite Relationships
A composite relationship defines the indirect interaction of two objects. If a job runs a program entry point
that belongs to a program, for example, the relationship between the job and program is said to be
composite: defined by the chain of relationships between the job and program.

You can use the default composite relationships provided with the system, or use the Scope Editor to
create custom composite relationships. Custom composite relationships are available to all users of the
workspace.

Note: Custom composite relationships are not copied or exported when a scope is copied or
exported.

1. In the Scope Editor, choose File > New Relationship.

2. The New Relationship Wizard opens. In the Enter Relationship Name field, enter the name of the
composite relationship, then select the object you want to appear on the left side of the relationship
chain in the Select First Entity pane. Click Next.

3. In the Select relationship pane, select the relationship you want to appear next in the relationship chain.
Click Next.

4. Repeat the preceding step for each relationship you want to include in the chain. When you are satisfied
with your choices, click Finish. The New Relationship Wizard closes and the new composite
relationship is added to the Scope Editor window.

Defining a Relationship Filter
You can define a relationship filter by setting conditions for either side of the relationships defined in a
scope you own. You might want a scope to be restricted to programs that have a cyclomatic complexity
greater than 300 and that are defined in COBOL source files, for example. The example below shows you
how to do that step by step.

Condition definitions are based on the Repository Exchange Protocol (RXP), an XML-based API that you
can use to interact with application-level information in the workspace repository.

In the Scope Editor, relationships and entities for which a filter has been defined are color-coded magenta.
A tool tip over the filtered entity displays the text of the condition.

1. In the Scope Editor, select the relationship you want to set conditions for and choose:

• Left Cond in the right-click menu to qualify the entity on the left side of the relationship.
• Right Cond in the right-click menu to qualify the entity on the right side of the relationship.

2. The Condition window opens. In the Condition window, click:

• attribute to qualify the entity according to the value of a given attribute. Programs that have a
cyclomatic complexity greater than 300, for example.

• has (not) related object to qualify the entity according to a given relationship type. Programs
defined in COBOL source files, for example.

• add AND condition to qualify the entity according to inclusive criteria using an AND operator.
Programs that have a cyclomatic complexity greater than 300 and that are defined in COBOL source
files, for example.

• add OR condition to qualify the entity according to exclusive criteria using an OR operator.
Programs that have a cyclomatic complexity greater than 300 or that are defined in COBOL source
files, for example.

3. The Condition window displays the shell definition for the selected condition. The following steps
describe how to qualify the program entity using an AND operator. The procedure for other entities and
conditions is similar.

Analyzing Projects | 131

4. In the definition for the AND condition, click attribute. The definition for the attribute condition is
displayed:

<attr name="..." op="..." arg="..." negate="..."/>

Note: Click the X in a definition to delete the condition.

5. Click the ellipsis (…) in name="…". The User Input dialog opens. In the User Input dialog, select the
Program entity in the Choose entity drop-down and the Cyclomatic Complexity attribute in the
Attributes for Program drop-down, then click OK. The attribute is added to the condition definition.

Note: Click Delete in the User Input dialog to delete the criterion defined in the dialog.

6. Click the ellipsis (…) in op="…". The User Input dialog opens. In the Choose new value drop-down,
choose the greater than (>) symbol, then click OK. The greater than symbol is added to the condition
definition.

7. Click the ellipsis (…) in arg="…". The User Input dialog opens. In the Enter new value drop-down,
enter 300, then click OK. The new value is added to the condition definition:

<attr name="Cyclomatic Complexity" op=">" arg="300"
negate="..."/>

Note:

In a condition definition, negate means “not the specified criterion.” Programs that do not have a
cyclomatic complexity greater than 300, for example. Click the ellipsis (…) in negate="…" to set
its value to true. Ignore the field otherwise.

8. In the definition for the AND condition, click has (not) related object. The definition for the relationship
type condition is displayed:

<hasrelated negate="...">

9. In the choices for the relationship type condition, click define relationship type.

10.The choices for the relationship type are displayed. Click define relationship. The definition for the
relationship type is displayed:

<rel name="..." negate="..."/>

11.Click the ellipsis (…) in name="…". The User Input dialog opens. In the Choose entity drop-down,
select the Program entity. In the Relations for Program drop-down, select the IsDefinedInCobol
relationship, then click OK. The relationship is added to the condition definition:

- <hasrelated negate="...">
- <reltype>
<rel name="IsDefinedInCobol" negate="..."/>
</reltype>
</hasrelated>

12.The AND condition is now complete. The diagram scope will be restricted to programs that have a
cyclomatic complexity greater than 300 and that are defined in COBOL source files. The full condition
looks like this:

- <cond>
<and negate="...">
<attr name="Cyclomatic Complexity" op=">"
arg="300" negate="..."/>
- <hasrelated negate="...">
- <reltype>
<rel name="IsDefinedInCobol"
negate="..."/>

132 | Analyzing Projects

</reltype>
</hasrelated>
</and>
</cond>

Pruning a Scope
You can prune relationships from a scope you own directly in the Diagrammer window. When you prune a
scope, keep in mind that:

• You are deleting relationships from the current scope exactly as if you were deleting them in the Scope
Editor window. For that reason, you might want to save the original scope with a different name and use
the renamed scope as the basis for the pruned diagram.

• All the relationships of the selected type are deleted for the selected object, not just the single
relationship you selected in the diagram.

1. To prune a scope, select the relationship you want to prune in the diagram and choose:

• Prune type for right object in the right-click menu to delete from the current scope all relationships
of the selected type for the right object in the relationship.

• Prune type for left object in the right-click menu to delete from the current scope all relationships of
the selected type for the left object in the relationship.

2. Generate the diagram in project or copy-and-paste mode. The Diagrammer deletes the relationships
from the redrawn diagram.

Mirroring a Scope
By default, Diagrammer shows the flow of relationships from a diagrammed object rather than to a
diagrammed object. Choose Scope > Mirror Scope to show the flow of relationships to the object. Choose
Scope > Mirror Scope again to return to the original view.

Analyzing Global Data Flow
The Global Data Flow traces incoming and outgoing data flows for a program variable up to a dataport, an
I/O statement or call to or from another program. You can view the memory allocation and offset for the
variable to determine how changes to the variable may affect other variables, and trace assignments to and
from the variable across programs.

Note: Projects must have been verified with the Enable Data Element Flow option set in the Project
Verification options.

The Global Data Flow tool is available in Interactive Analysis by clicking View > Data Flow.

Understanding the Global Data Flow Panes
Use the Global Data Flow panes to trace incoming and outgoing data flows for a program variable up to a
dataport, an I/O statement or call to or from another program. To open the Global Data Flow panes, select
a program in the Repository Browser and choose View > Data Flow.

By default, all Global Data Flow panes are displayed. If you want to show/hide one of the panes click View
and then click the name of the pane you want to hide/show.

Data View Pane
For the selected program, the Data View pane shows variable structures, substructures, and fields in
hierarchical order from left to right. Double-click a variable name to generate a data flow diagram for the
variable in the Data Flow pane, and a list of offsets and memory allocations for the variable and any related
variables in the Origin pane.

Analyzing Projects | 133

Data Flow Pane
For the variable selected in the Data View pane, the Data Flow pane displays a diagram that traces its
incoming and outgoing data flows up to a dataport, an I/O statement or call to or from another program.
The selected variable is displayed in red, constants in gray, and dataports in blue.

Note: Make sure you have enabled incoming and/or outgoing data flows appropriately in the Global
Data Flow project options.

Two diagram views are available:

• The Expanded View displays as many nodes for the selected variable as it has assignments.
• The Compact View displays a single node, regardless of the number of assignments.

Click the tab for the view you want to display.

Select a dataport and choose Data Flow > Reconstruct to display the data flow diagram for the variable
identified at the dataport. Select a relationship line to display all the statements that determine the data
flow between variables in the Origin pane.

Place your cursor over a variable for a moment to display a tool tip that identifies the memory offset and
allocation for the variable. The diagram uses COBOL Analyzer common diagramming features.

Origin Pane
For the variable selected in the Data View or Data Flow panes, the Origin pane displays a list of offsets and
memory allocations for the variable and any related variables. For the dataport selected in the Data Flow
pane, it displays related variables. For the relationship selected in the Data Flow pane, it displays the
intraprogram or interprogram relationship detected by data flow analysis.

Data Flow Relationships
The table below describes the intraprogram and interprogram relationships detected by the data flow
analysis tools.

Relationship Definition Type Icon Description

calls N/A interprogram N/A A parameter passed in a call to
another program.

cast MOVE A TO B with
data conversion

intraprogram A data item moved to a data item
of a different type.

common area
transitions

N/A interprogram N/A For Unisys 2200 Cobol, a
common-storage data area item
passed in a call to another
program. Perform Unisys
Common-Storage Area Analysis
must be set in the project
verification options.

comp STRING A ... INTO
B

intraprogram An arbitrary computation. The
result is produced by applying
complex rules to the argument,
such as STRING.

comp+ ADD A TO B intraprogram An addition-like operation: ADD,
SUBTRACT, or corresponding
parts of COMPUTE.

134 | Analyzing Projects

Relationship Definition Type Icon Description

comp* MULTIPLY A BY B intraprogram A multiplication-like operation:
MULTIPLY, DIVIDE, or
corresponding parts of
COMPUTE.

comp@ MOVE ARRAY
(IDX) TO A

intraprogram An operation with array elements.

cond IF A = B ... intraprogram Comparison of data items with a
symmetric relationship.

cond* IF A * X = B ... intraprogram Comparison of a multiple of a data
item with another data item.

const cond IF A = 1 ... intraprogram Comparison of a data item with a
constant.

const.move MOVE 1 TO B intraprogram A constant moved into a data item.

const.comp ADD 1 TO B intraprogram An arithmetic operation with
constants.

const.init 03 A ... VALUE 1 intraprogram A data item initialized by a
constant.

DMS records N/A interprogram N/A For Unisys 2200 Cobol, data
communication via Unisys DMS
database records.

files N/A interprogram N/A Data communication via files.
Traced only when corresponding
JCL, ECL, FCT, or CSD files are
verified.

files in jobs N/A interprogram N/A Data flow in JCL datasets when
files is selected.

input port N/A intraprogram A data item in which data is
received.

move MOVE A TO B intraprogram A data item moved to a data item
of the same type.

network records N/A interprogram N/A For Unisys 2200 Cobol, data
communication via network
records.

output port N/A intraprogram A data item from which data is
sent.

screens N/A interprogram N/A Data sent to a screen by one
program and received in a screen
by another.

screen definitions N/A interprogram N/A Data flow in screen fields when
screens is selected.

start N/A intraprogram The startup item in an Impact pane
consolidated analysis.

Analyzing Projects | 135

Relationship Definition Type Icon Description

used MOVE ... TO A ...
MOVE A TO ...

intraprogram A value assigned in a statement
used as an argument in another
statement.

Assigning Business Names Manually
To assign a business name and business description to an object, select the object and choose Set
Business Attributes in the right-click menu. A dialog box opens, where you can enter the business name
and business description. To unassign a business name or business description, simply delete the value in
the dialog box.

Setting Global Data Flow User Preferences
Use the Interactive Analysis > Data View tab of the User Preferences window to specify the color-coding
used in the Data View pane and the order of display of variables with the same offset.

1. Choose View > User Preferences. The User Preferences window opens. Click the Interactive
Analysis > Data View tab.

2. In the Same offset order group box, specify the order you want variables with the same offset to be
displayed in the Data View pane. Choose:

• Data item size if you want variables with the same offset to be displayed in size order, largest to
smallest.

• Appearance in the source code if you want variables with the same offset to be displayed in the
order they appear in the source code.

3. Click the arrow beside the drop-downs for Free Space Color, Used Space Color, and FILLER Color
to specify the color of each item in the Data View pane.

4. Select Display Business Names to display business names for objects in the Data View pane.

Setting Global Data Flow Project Options
Use the Global Data Flow tab of the Project Options window to specify whether data flow diagrams include
literals, variable values set at initialization, and Unisys Cobol common storage variables; whether they
show incoming, outgoing, and recursive data flows; and the number of nodes they display.

1. Choose Options > Project Options. The Project Options window opens. Click the Global Data Flow
tab.

2. In the Relationships pane, choose any combination of:

• Literal Flow to include literals in the data flow diagram for the selected variable
• Initial Values to include variable values set at initialization in the data flow diagram for the selected

variable.
• Common Area Transition to include Unisys Cobol common storage variables in the data flow

diagram for the selected variable. Common storage variables are not explicitly declared in CALL
statements.

Note: To include Unisys Cobol common storage variables, you must have verified the project with
the Perform Unisys Common-Storage Analysis option set in the project verification options.

3. In the Directions pane, choose any combination of:

• Causes to generate data flows into the selected variable.
• Consequences to generate data flows from the selected variable.
• Self-Dependencies to show recursive data flows for the selected variable.

136 | Analyzing Projects

4. In the Node Limit combo box, enter the maximum number of diagram nodes you want to display. You
might restrict the number of nodes to improve performance or make the diagram easier to read. You can
also use the slider on the Node Limit tool bar to adjust the number of displayed nodes.

Note: All children of a parent node are displayed even if some of them exceed the specified
maximum.

Estimating Complexity and Effort
COBOL Analyzer Legacy Estimation tools let you compare programs based on weighted values for
selected complexity metrics. The metrics used in the calculation are a combination of industry standard
and COBOL Analyzer-generated statistics. Based on the comparison, you can develop a credible estimate
of the time required to satisfy a change request or perform other maintenance tasks.

Note: For definitions of the supported complexity metrics, see the "Complexity Metrics" section of this
help.

Viewing Complexity Metrics
Use the Complexity Metrics report to compare raw complexity values for the objects in your project. To
open the Complexity Metrics report, select a project in the Repository Browser and choose Analyze >
Complexity.

When the Complexity Metrics window opens, choose the type of object you want to compare in the Entity
Type drop-down. To generate the report in HTML, choose File > Report. The figure below shows the
Complexity Metrics window.

Analyzing Projects | 137

Setting Complexity Metrics User Preferences
Use the Complexity Metrics tab of the User Preferences window to specify the metrics displayed in the
Complexity Metrics report for each type of object in your application.

1. Choose Tools > User Preferences. The User Preferences window opens. Click the Complexity Metrics
tab.

2. In the Source Type drop-down, select the type of object you want to display complexity metrics for.

3. In the Attributes pane, select each complexity metric you want to be displayed for the selected object
type.

Estimating Effort
Use the Effort Estimation tool to compare source files based on weighted values for selected complexity
metrics. To open the Effort Estimation tool, select a project in the Repository Browser and choose Analyze
> Effort.

Select the source files types to be included in the calculation and the weighted values for the metrics in the
Effort Estimation options. When you are satisfied with your selections, choose File > Compute Effort.

When the effort estimation report is displayed, select a source file in the Effort pane to show the effort
statistics for its generated objects in the Details pane and the Interactive Analysis information for the file in
the Preview pane. To generate the report in HTML, choose File > Report. The figure below shows the
Effort Estimation window.

138 | Analyzing Projects

Setting Effort Estimation Options
Use the Effort Estimation tab of the Project Options window to specify the file types included in the effort
estimation calculation and the complexity metrics for each type. These options also control the percentage
factor for the change magnitudes used in the calculation.

1. Choose Options > Project Options. The Project Options window opens. Click the Effort Estimation
tab.

2. In the Factors pane, select each source file type you want to include in the calculation.

3. For each source file type selected in the Factors pane, click Attributes to edit the complexity metrics
used in the calculation.

4. In the Attributes window, select each complexity metric you want to use in the calculation, then enter its
weight in the Weighting Factor field. For example, if you want Cyclomatic Complexity to have twice the
weight of Conditional Complexity, set the weighting factor for Cyclomatic Complexity to 2 and the
weighting factor for Conditional Complexity to 1.

5. To set the percentage factor for the change magnitudes used in the calculation, enter the percentage
you want to be applied in the combo box for each change magnitude.

Specifying the Change Magnitude for a Source File
Suppose you are planning to implement a change request and want to know how long it will take to
complete the change. In that situation, you typically run an effort estimation report for your project based on
weighted values for selected complexity metrics.

But what if your own analysis of the project shows that a given program will actually take much less time to
change than the weighted calculation would suggest. The program might have thousands of source lines,
for example, increasing its calculated complexity, while actually being very easy to modify.

A change magnitude is a way of overriding the calculated value for a source file. Your "subjective" estimate
of the effort involved, Small, Medium, Large, Extra Large, becomes an input to the effort calculation, along
with the weighted values.

You can specify a change magnitude in the Interactive Analysis Source or Context pane, or in the Effort
Estimation tool itself. Select the source file and choose Set Change Magnitude in the right-click menu. Set
the change magnitude to S for Small, M for Medium, L for Large, or XL for Extra Large. The effort
estimation calculation for the selected file is automatically updated.

Identifying Classes of Data Items with Change Analyzer
Change Analyzer identifies the class of data items used to perform a business function in a legacy
application. Amongst other uses, it lets you answer the kind of “What if?” questions posed in the past by
industry-wide changes for Y2K, Zip+4, and the Euro dollar: “What if I change the type of this variable, or
the length of this field? What other fields in the class will I also have to change?”

For each field in the class, you can use Change Analyzer to perform an impact trace that shows the flow of
data to the field, and to detect and resolve program ports. You can generate reports showing source
entities that might require modification, lines of affected code, and the like.

Note: Projects must have been verified with the Enable Data Element Flow option set (see Setting
Project Verification Options).

The project options on the Impact > Relationships tab of the Project Options window control the
relationships detected during synonym and impact trace processing.

Analyzing Projects | 139

Understanding Data Item Classification
Suppose your organization is considering adding support for a new currency and that you are going to
have to expand the existing exchange rate data field from 9(5)V9(3) to 9(5)V9(6) to accommodate the
currency. You will need to know the data fields that are affected in the database, intermediate fields that
might contain or use the exchange rate field in calculations, and so forth.

Seed Fields

Use Change Analyzer to search for the exchange rate field. The object of the search is called a seed field:

• If the application uses field names like EX-RATE, EXCH-RATE, EXCHANGE-RATE, and RATE-OF-
EXCHG, you would search for data names that contain *EXCH* or *RATE*.

• If you know that some fields already contain the required number of decimal positions, and are
interested only in those that don’t, you might further limit the search by filtering on the PICTURE clause
format of the variable, selecting only data items that have a format of 9(5)V9(3).

• You might limit the search even further by choosing fields that have a given initial value.
• If you know there are data fields that will meet the search criteria for name, but are not what you are

looking for, you might set up a list of names to exclude, such as INTEREST-RATE and *PRORATE*.

Synonyms

Once you have found the exchange rate field, you can use Change Analyzer to detect its synonyms. A
synonym is a data field whose value is related to the value of a seed field: a field whose value is assigned
by a MOVE or REDEFINE statement, for example. In these cases, if you increase the size of the seed field,
you will probably need to increase the size of its synonyms as well.

Analyzing Seed Fields and Synonyms

Not every seed field or synonym will be affected by a proposed change. You need to examine the source
code for each instance of the field carefully in the Change Analyzer Source pane and in the Interactive
Analysis tools accessible from the Source pane. You may want to perform an impact trace showing the flow
of data to the field as documentation, or to ensure that you have accounted for each instance.

Seed Lists

Once you determine which fields are affected by a proposed change, you can move the fields between
seed lists: Working and Affected, for example. You can generate reports based on your lists, as well as
reports showing the affected source code in context.

Getting Started in Change Analyzer

Sample Usage of Change Analyzer
This section describes a sample use of Change Analyzer that should help you get oriented in the tool.
Assume that you want to evaluate the impact of changing the YEAR field in your application.

1. In the Repository Browser, select the project you want to analyze and choose Analyze > Change
Analyzer. The Change Analyzer window opens.

2. Go to Tools > Analysis Options, select Use Cross Program Analysis and click OK

3.

Select a file from the list of programs and click (Step 1: Populate starting point list). A message
informing you that any existing lists will be deleted pops up. Click OK.

140 | Analyzing Projects

4. When the Search window opens, click on the tool bar to define a new criterion. In the New Criterion
dialog, enter YEAR and click OK. The YEAR criterion is displayed in the list of recognized criteria in the
Change Analyzer tab in the Search window.

5. In the Change Analyzer tab, select the YEAR criterion and then enter the following search text for the
criterion in the Name Like tab: *DATE*.

6. Click Find All Constructs. You are informed about the number of constructs found.

7. Click OK. The Starting point tab is now populated with the seed fields for the criterion.

8.

Click and then All Programs (all starting points). If a messages pops up informing you that
cross-program is enabled and the analysis might take excessive amount of time, click OK. The Find
Synonyms dialog opens.

9. Specify the depth of synonym processing in the Depth combo box, then click OK. The Lists pane is now
populated with tabs with synonyms for each of the seed fields found in the first step of the analysis.

Note: Depth refers to both depth level of flow IN and OUT of the target field. The default value is 5.
This means that Change Analyzer will search for synonyms of the selected field five levels up and
five levels down from the current one. The maximum depth is 100.

10.Select a seed field to navigate to its declaration in the Source pane. Examine the declaration to
determine whether the field will be affected by the proposed change.

11.Right-click a seed field in any of the Affected by lists and choose Trace in the right-click menu. Change
Analyzer displays the synonyms for the selected field in the Impact Tracing pane.

12.Examine the declaration for each synonym to determine whether the field will be affected by the
proposed change.

13.Optionally you can create a new list using Lists > Add List and move any of the seed fields there to
better suit your needs. For information on how to do it, see Moving or Copying Fields between Lists
below.

14.Choose Tools > Reports. The Report Selection dialog opens. In the Report Type drop-down, select
Report on the Whole List and click OK and then Yes if a message pops up asking you if you want to
continue. Change Analyzer displays the report for the Affected list.

15.You can now print or save the report.

Understanding the Change Analyzer Window
Use the Change Analyzer to identify classes of data items. To open the Change Analyzer, select a project
in the Repository Browser and choose Analyze > Change Analyzer.

By default you see four panes which you can adjust - Programs, Lists, Synonyms and Ports, and Source.

Programs Pane

The Programs pane lists each program in the selected project and the number of fields the program has in
the selected list.

Lists Pane

The Lists pane displays the lists for the project. The number in parentheses after the list name indicates the
number of fields the list contains for the selected program. Each list is displayed in a separate tab in the
lists pane.

There is a default list called Starting point that is displayed in the Lists pane when you start Change
Analyzer. You can create as many lists as you need and move items from one list to another to suit your
specific needs for analyzing your changes.

Click each list to view its contents. Select a field to navigate to its declaration in the Source pane.

Analyzing Projects | 141

The table below describes the columns in the Lists pane. You can filter a column by clicking an item in the

 drop-down for the column.

Tip: The Comment column is especially useful for filtering lists. You can put your own comments in it
that will help you in your working process.

Column Description

Name The name of the field.

Length The length of the field.

Value The value of the field.

Picture The format of the field.

Normalized Picture The normalized picture of the field.

Comment The comment for the field.

Program File The program in which the field is used.

File The source file that contains the declaration for the field.

Creating Lists

There are a number of ways to create a new list in Change Analyzer:

• Click List > Add List in the menu bar.
• Pres Ctrl+N.
• Click .

The default name of the list is NewListn. You can change it in the process of creation.

To rename an existing list, select it in the Lists pane, click List > Rename List, enter the new name in the
Rename List dialog and then click OK.

Deleting Lists

To delete a list:

1. Right-click a list in the Lists pane and select Lists > Remove List.
2. Click Yes when prompted to confirm that you want to delete the list.

Selecting Fields

Click a field in the list to select it. Use Ctrl + click to select multiple fields. Use Shift + click to select a
range of fields. To select all the fields on a list, click the tab for the list and click Lists > Select All.

Editing the Comment for a Field

To edit the comment for a field, select the field and click Lists > Comment.... A dialog opens where you
can edit the comment.

Moving or Copying Fields between Lists

To move fields between lists, select the fields, then click Lists > Move to. The Move/Copy List Items dialog
opens. In the Select Method drop-down, select Move to move the selected fields or Copy to copy the
fields. In the To List pane, select the target list and click OK.

Performing Set Operations with Lists

To join lists using AND or OR operations, or to subtract the contents of one list from another, choose Lists
> Set Operations. The List Set Operations dialog opens. In the Left pane, select the list on the left side of

142 | Analyzing Projects

the set operation. In the Right pane, select the list on the right side of the set operation. In the Destination
pane, select the target list. Select the operation you want to perform in the Choose Operation drop-down
and click OK.

Deleting Fields

To delete a field from a list:

1. Select a field from the list.
2. Click Lists > Clear and then choose between:

• This Term Only to remove the selected field.
• All List Contents to clear the whole list.

Impact Tracing Pane

The Impact Tracing pane shows in a tree view the impact traces of the fields in the Lists pane.

To display the synonyms and/or the impact traces, select the field in the Lists pane and click Trace in the
Impact Tracing pane.

To delete an impact trace, select it in the tree and click Delete.

To clear the Impact Traces tree, click Delete All.

Source Pane

The Source pane lets you browse information for the object selected in the Lists or the Impact Tracing
pane. You can select the information you want to view for the object from the drop-down in the upper
lefthand corner of the pane. The available options are:

Source
Context
Code Search
Bird's Eye
Program Control Flow
Flowchart
Data View
Data Flow
Impact
Diagrammer
Properties.

Usage is similar to that for the Source pane in Interactive Analysis. For Interactive Analysis usage
information, see Analyzing Programs in the product documentation set.

Searching for Seed Fields in Change Analyzer
The Change Analyzer search facility contains two tabs:

• The General tab opens the Interactive Analysis advanced search facility.
• The Change Analyzer tab opens a scoped version of the advanced search facility for Change Analyzer.

Ordinarily, the scoped version of the tool should be sufficient for most searches. If you are already familiar
with the advanced search facility, however, you may want to use it instead of the scoped tool.

Note: Change Analyzer returns only constants and literals found in the Procedure section.

Analyzing Projects | 143

1.

Select a file from the list of programs and click (Step 1: Populate starting point list). A message
informing you that any existing lists will be deleted pops up. Click OK.

2. The Change Analyzer Search window opens. Click the Change Analyzer tab. The Change Analyzer tab
displays a list of recognized search criteria.

Note: Define a new criterion as described in the help for the advanced search facility.

3. Select a criterion to edit its definition in the tabs in the right portion of the window. Each tab specifies a
condition in the definition. The definition can consist of any combination of conditions.

4. For each condition, enter a list of patterns you want to match, one pattern per line. You can use wildcard
patterns allowed in LIKE statements by Visual Basic for Applications (VBA). Select:

• Name Like to specify patterns that are like the name of the field you are searching for.
• Name Not Like to specify patterns that are unlike the name of the field you are searching for.
• Picture Like to specify patterns that are like the format of the field you are searching for.
• Value Like to specify patterns that are like the initial value of the field you are searching for.

5. Select Use OR Connection Between Lists if you want the conditions defined in the tabs to be ORed. If
you do not select this option, the conditions are ANDed.

6. Select Used Data Items Only if you want the search results to consist only of fields that are used in the
selected programs. If you do not select this option, search results include fields that are declared but not
used.

7. In the Search In drop-down on the tool bar, you can choose from the following:

• The selected file only.
• The selected file with all included files.
• The selected construct - Declaration.
• All objects in the project.
• A Code Search report.

8. Click Find All Constructs to execute the search.

Change Analyzer returns the seed fields for the criterion in the starting point list. Any previous results are
deleted.

Creating Projects in Change Analyzer
You can create a project directly in Change Analyzer from the results of your analysis. The project contains
only source files with fields in the selected list.

1. Click Tools > Add to Project. The Select List window opens.

2. Select the List you want to add to the new project and click OK. The New Project Dialog opens.

3. Enter the name of the new project in the text field and click OK.

4. The Change Magnitude window opens. Select Automatically calculate change magnitude if you want
Change Analyzer to set change magnitudes for the listed source files based on the ranges specified in
the fields below the check box. The Change Analyzer settings will override any existing change
magnitudes for the files.

5. Click OK. The new project is created.

Setting Change Analyzer Options
To specify the default depth of synonym and impact trace processing and the amount of information to
display:

1. Click Options > Project Options. The Project Options window opens. Click the Change Analyzer tab.

144 | Analyzing Projects

Note: You can also set the Change Analyzer from the Change Analyzer window . To do so, select
Tools > Analysis Options.

2. In the Synonyms pane, specify the depth of synonym and impact trace processing in the Default Depth
combo box. In this pane you can also select to use file descriptors in the analysis, use cross-program
analysis and/or if you want to have a cross-program analysis warning before starting the analysis.

3. In the Affected Code Report pane, specify in the Neighborhood Size combo box the number of lines of
unaffected code you want the Affected Code report to display above and below the line of affected code.
(The line of affected code is displayed in bold in the report.) Select Show unused datanames if you
want the report to include unused data fields.

Generating Change Analyzer Reports
To generate HTML reports in Change Analyzer, click Tools > Reports. The Report Selection dialog opens.
In the Select Lists pane, select the list you want to report on, then select the report type in the Report Type
drop-down. Choose:

• Report on the Whole List to report the contents of the list.
• Report on Selected Program to report the contents of the list filtered by the program selected in the

Programs pane.
• Metrics Report to report, for each program with a list item, the percentage of declarations in the list

relative to the total number of declarations in the program.
• Affected Code Report to report, for each program with a list item, code that would be impacted by

changing the definition or usage of items in the list. The line of affected code is displayed in bold in the
report.

Note: Use Change Analyzer project options to specify the amount of information to display in the
Affected Code Report.

Click Generate Report. Change Analyzer displays the report.

Repository Exchange Protocol Syntax
The Repository Exchange Protocol (RXP) is an XML-based API that you can use to interact with
application-level information in the workspace repository. This part of the documentation describes the
RXP query syntax and provides examples of its use.

Query Syntax
An RXP query consists of the tags and attributes described in this section.

Query

<query [name='QueryName']> { Object } </query>

Objects

<object [global='false']>
[<objecttype> ObjectTypeCondition </objecttype>]
[<cond> Condition </cond>]
[<fetchtype as='FieldName'/>]
[<fetchid as='FieldName'/>]
[<fetchdisplay as='FieldName'/>]
[<fetchorigin as='FieldName'/>]
[<fetchsource as='FieldName'/>]
[<fetchsize as='FieldName'/>]
{ <fetchconst type='FieldType' value='Constant'

Analyzing Projects | 145

as='FieldName'/> }
{ <fetchattr attr='AttrName' as='FieldName'/> }
[<related [countas='FieldName'][optional='true']>
RelatedSpec
</related>]
</object>

ObjectTypeCondition

<typeset flag='FlagName' [negate='true']/>
| <type name='EntityName' [negate='true']/>
| <and [negate='true']> { ObjectTypeCondition }
</and>
| <or [negate='true']> { ObjectTypeCondition }
</or>

RelatedSpec

[<reltype> RelTypeCondition </reltype>]
[<cond> Condition </cond>]
[<fetchtype as='FieldName'/>]
{ <fetchattr attr='AttrName' as='FieldName'/> }
Object

RelTypeCondition

<relset flag='RelFlagName' [negate='true']
[incoming='true']/>
| <rel name='RelationName' [negate='true']/>
| <and [negate='true']> { RelTypeCondition } </and>
| <or [negate='true']> { RelTypeCondition } </or>

Condition

<attr name='AttrName' op='Operation'
arg='Argument' [negate='true']/>
| <hasrelated [negate='true']> RelatedSpec
</hasrelated>
| <id equals='Integer' [negate='true']/>
| <id in='Integer{,Integer}' [negate='true']/>
| <source equals='String' [negate='true']/>
| <source in='String{,String}' [negate='true']/>
| <origin equals='SID' [negate='true']/>
| <origin in='SID{,SID}' [negate='true']/>
| <and [negate='true']> { Condition } </and>
| <or [negate='true']> { Condition } </or>

EntityName

The name of a repository entity.

AttrName

The name of an entity attribute.

FieldName

The field name of the returned record set.

146 | Analyzing Projects

Operation

= | <> | > | >= | < | <= | like | in | between

FlagName

LEGACY | PROGRAMCODE | SYSTEM | KNOWLEDGE | GENERATED | EXTRACT | COMPOSITE

RelFlagName

REFER | USE | GENERATE | PRODUCE

RelationName

The name of a relationship.

Argument
The argument of the operation. Depends on both argument type and operation.

QueryName

A string.

Example 1
This example queries the repository for the object ID and parse status of the GSS.cbl source file:

<query name="Select a COBOL object by name">
 <object>
 <objecttype>
 <type name="COBOL"/>
 </objecttype>
 <fetchid as="ID"/>
 <fetchattr name="ParseStatus" as="Parsed"/>
 <cond>
 <attr name="Name" op="=" arg="GSS.cbl"/>
 </cond>
 </object>
</query>

Example 2
This example queries the repository for copybooks used in three Cobol programs:

<query name="Find COPYBOOKs used in given programs">
 <object>
 <objecttype>
 <type name="COBOL"/>
 </objecttype>
 <cond>
 <attr name="Name" op="in"
 arg="'GSS1.CBL','GSS2.CBL','GSS3.CBL'"/>
 </cond>
 <related>
 <reltype>
 <relset flag="USE"/>
 </reltype>
 <object>
 <fetchid as="ID2"/>
 <fetchtype as="ObjectType2"/>
 <fetchdisplay as="ObjectName2"/>

Analyzing Projects | 147

 </object>
 </related>
 </object>
</query>

Portability Assessment
Portability Assessment lets you quickly generate HTML reports to identify points of interest for migrations.
All reports are presented under an easy to navigate main page. To run the report:

• Start COBOL Analyzer.
• Click Reports > Portability Assessment.

The Portability Assessment window opens.
• Select the types of HTML reports you want to generate. Use the checkbox next to each report or check

Enable/Disable All.
• Enter the Folder Name and Folder Location where the report will be generated.
• Click Start to generate the reports or Close to quit.

When the report is ready a message is displayed asking if you want to see the report.
• Click Yes to view the report.

The results are displayed in your browser. Navigate through the reports. Check Hide empty reports to
hide/display empty reports. The reports are organized in tables. Click on the heading of the columns to
sort the data.

Note: Some of the reports may be available as advanced search queries in Interactive Analysis or
in the Repository Browser > Query Repository feature. Running these queries interactively or
editing them will not affect the results generated in the Portability Assessment report.

Quality Assessment
Quality Assessment lets you quickly generate HTML reports to monitor applications for conformity to quality
rules or to identify candidates for quality improvements. All reports are presented under an easy to
navigate main page. To run the report:

• Start COBOL Analyzer.
• Click Reports > Quality Assessment.

The Quality Assessment window opens.
• Select the types of HTML reports you want to generate. Use the checkbox next to each report or check

Enable/Disable All.
• Enter the Folder Name and Folder Location where the report will be generated.
• Click Start to generate the reports or Close to quit.

When the report is ready a message is displayed asking if you want to see the report.
• Click Yes to view the report.

The results are displayed in your browser. Navigate through the reports. Check Hide empty reports to
hide/display empty reports. The reports are organized in tables. Click on the heading of the columns to
sort the data.

Note: Some of the reports may be available as advanced search queries in Interactive Analysis.
Running these queries interactively or editing them will not affect the results generated in the
Quality Assessment report.

148 | Analyzing Projects

Analyzing Programs

Introducing Interactive Analysis
Much of the power of COBOL Analyzer resides in a set of program analysis tools collectively called
Interactive Analysis. Interactive Analysis lets you analyze legacy programs interactively, by examining
synchronized, complementary views of the same information: source, context, impacts, and so forth. You
can use Interactive Analysis to analyze procedure and data flows, stage program analyses, create a project
glossary, extract business rules, and much more.

Interactive Analysis is designed primarily for programs, but you can also use it to analyze map files, JCL or
ECL files, IDMS schemas, and the like.

Understanding Interactive Analysis Models
For each object that comprises an application, Interactive Analysis generates a construct model that
defines its syntax. The construct model shows in abstract form how the syntactical constructs that
comprise the object (its sections, paragraphs, statements, conditions, variables, and so forth) are related.

A variable, for example, can be related in the construct model to its declaration, a dataport (if it is used in
an I/O statement), or a condition (if the condition uses an expression of which the variable forms a part).
You view the construct model for a source file in theInteractive Analysis Context pane.

The figure below shows a portion of the construct model for the GSS5.CBL program. The model shows that
the program executes a PERFORM statement if the value of the variable EIBRESP satisfies the condition
EIBRESP NOT EQUAL DFHRESP(NORMAL).

If you are interested in investigating other uses of EIBRESP in the program, you can navigate to the
declaration of the variable in the construct model. Select EIBRESP in the Context pane and choose Edit >
Declaration.

Analyzing Programs | 149

From the declaration, you can generate a list of instances in which the variable is used. Select the
declaration in the Context pane and choose Edit > Instances.

Select an instance in the list to navigate to that instance in the construct model.

Using the Interactive Analysis Main Window
The Interactive Analysis main window consists of a series of panes that offer complementary views of code
constructs in the selected source file. The display in each pane is synchronized with the others: selecting a
construct in one pane automatically moves the cursor to the construct in the other panes.

You can invoke Interactive Analysis directly by selecting a source file in the Repository Browser and
choosing Analyze > Interactive Analysis. Interactive Analysis is also available within the project analysis
tools (Diagrammer, Change Analyzer, and so forth) but "silently," that is, without your ever actually invoking
it as such. Tool usage is identical in either case.

The first time you open Interactive Analysis it displays the Source and Context panes. Select the
appropriate choice in the View menu to show the other panes. A pane is available only if the view it offers
is relevant for the source file type selected in the Objects pane. You will not see the Program Control Flow
pane, for example, if a JCL file is selected in Objects pane. Choose the type of file to display in the drop-

150 | Analyzing Programs

down under the title bar of the Objects pane. Select the file you want to open in the list below the drop-
down.

Use the choices at the top of the View menu to configure the panes in logical groupings. Choose Control
Flow, for example, to view the Source, Flowchart, Program Control Flow, and Animator panes. You can
hide a pane by clicking the close box in the upper right-hand corner. Edit menu choices and pane-specific
menu choices have equivalent choices in the right-click menu.

Tip: Double-click the title bar of a pane to maximize the pane in Interactive Analysis, hiding any other
open panes. Double-click the title bar again to restore the previous view.

The Interactive Analysis window's state (size, location, configuration, and option settings) is saved across
sessions. Interactive Analysis provides access to the product Activity Log and relevant options windows. To
view these items, select the appropriate choice in the View menu.

Note: Usage for the Data View and Data Flow panes is identical to that for the corresponding panes
in the Global Data Flow tool. For more information, see Analyzing Projects in the product
documentation set.

For Component pane usage, see Creating Components in the product documentation set.

Using Basic Navigation Controls
Interactive Analysis offers Explorer-style navigation controls on the tool bar, with corresponding choices in
the Edit menu:

•
Click the button on the tool bar to navigate backward in the history of your selections in the

Interactive Analysis window (regardless of the pane in which they were made). Click the adjacent
button to display the selection history in a drop-down menu. Choose a selection by clicking it in the
menu.

•
Click the button on the tool bar to navigate forward in the history of your selections in the Interactive

Analysis window (regardless of the pane in which they were made). Click the adjacent button to
display the selection history in a drop-down menu. Choose a selection by clicking it in the menu.

•
Click the button on the tool bar to navigate to the parent of the selected construct in the parse tree.

Click the adjacent button to display all of the ancestors of the selected construct in a drop-down
menu. Choose a selection by clicking it in the menu.

Using the Properties Window
The Interactive Analysis Properties window for a construct identifies its attributes and related constructs.
Attributes are the construct's type, name, location, and characteristics. Related constructs are the
constructs with which the construct interacts. The Properties window is not modal, so you can leave it up
throughout your Interactive Analysis session.

Opening the Properties Window
You can open the Properties window from any Interactive Analysis pane except the Model Reference pane.
Select the construct whose properties you want to view and choose Properties in the right-click menu. The
Properties window opens.

Analyzing Programs | 151

Viewing and Navigating to Related Constructs
To view related constructs in the Properties window, click the tab for the type of related constructs you want
to view. Click a related construct to navigate to it in the Source or Context panes.

Note: Click the button in the Properties window to navigate back to the original construct.

Opening a Properties Window for a Related Construct
To open a Properties window for a related construct, select the related construct in the Properties window
and choose Properties in the right-click menu.

Tip: Click the button to "pin" a Properties window, so that it remains open when you open
another Properties window. Click the button again to unpin the window.

Assigning Business Names Manually
To assign a business name and business description to an object, select the object and choose Set
Business Attributes in the right-click menu. A dialog box opens, where you can enter the business name
and business description. To unassign a business name or business description, simply delete the value in
the dialog box.

152 | Analyzing Programs

Understanding Program Context
The Interactive Analysis panes described in this chapter offer a set of complementary views of legacy
source code. Together these views provide all the information you need to understand the context of a
program item:

• The Source pane displays view-only source for the selected file.
• The Context pane displays the same code in hierarchical form, in a parse tree that defines the

relationships between the code constructs that comprise the source.
• The Objects pane lists the files in the project. Select a file to open it in the Source or Context panes.
• The Watch pane displays program context in summary fashion, showing, in a single view, object model

context for the selected source file and construct model context for the selected construct.
• The Screen pane displays the screen object defined in the selected map file, complementing the

"bottom-up" analysis of application business processes in the Source and Context panes with a "top-
down" view that lets you navigate quickly to an item of interest.

Using the Source Pane
The Source pane displays view-only source for the selected file. The name of the file appears in the File
drop-down.

You can display the source code for an included file by choosing the file in the File drop-down. Use the
Objects pane to select a different file.

Note: Use the Editor in the COBOL Analyzer main window to modify program source code.

Navigating and Searching for Source

Click in the Source pane to navigate to a construct. Enter a line number in the field next to the button
and click the button or press Enter to navigate to the line. Tool tips show line numbers in the source file
when you scroll the Source pane vertically.

Analyzing Programs | 153

Using the Simple Search Facility

Interactive Analysis provides simple and advanced search facilities for source code. To use the simple

search facility, enter the text for the search in the field next to the button on the tool bar. Interactive

Analysis locates text matches as you type. Click the button or press Enter to navigate to the next
matching construct.

To view matching constructs in a list, click the adjacent button. From the drop-down menu, choose:

• Find All to display pattern matches in a list.
• Wildcard Find All to display wildcard pattern matches in a list. You can use wildcard patterns allowed

in LIKE statements by Visual Basic for Applications (VBA).
• Recent Search List to display the results of the last simple search.

Double-click an item in a list to navigate to it in the Source pane.

Navigating to Related Constructs

The Edit menu lists choices corresponding to each type of relationship the selected construct has with
other constructs in the parse tree. If you select a variable in the Source pane, for example, the Edit menu
shows Conditions, Port, and Declaration choices. The choices are grayed-out if no relationships of the
given type exist for the selected construct.

To view all the constructs in the source file that have a given relationship with a construct, select the
construct in the Source pane and choose the appropriate relationship in the Edit menu:

• If only one construct has the specified relationship, Interactive Analysis simply moves the cursor to that
construct in every open Interactive Analysis pane.

• If more than one construct has the specified relationship, Interactive Analysis opens a list of related
constructs in the Properties window and moves the cursor to the first item in the list in every open
Interactive Analysis pane. To navigate to another item in the list, choose it in the Properties window.

Navigating to Multiple Occurrences of an Included Construct

If an included file is referenced multiple times in a program (in different structures, for example), you can
use the arrows in the upper right-hand corner of the Source pane to navigate between each occurrence of
an included construct in the Context pane.

In the Source pane, click on the construct in the included file. The numbers in the upper right-hand corner
show the sequence number of the current construct versus the total number of constructs. The notation
"2/3," for example, identifies the second occurrence of a construct that occurs three times. Use the arrows
to navigate between each occurrence.

Selecting and Copying Code
There are two ways to select and copy code in the Source pane, as construct or as text. The one you
choose depends on the task you want to perform.

Selecting and Copying Constructs

Click inside a construct in the Source pane to select it. The selected construct is highlighted. The number
of the first line of the selection is displayed in the Ln field above the source code. To copy the construct to
the clipboard, choose Copy Selected Construct in the Source menu.

Selecting and Copying Text

Copy code as text when you are assigning code segments to business rules manually and want to select
either more or less code than a construct contains. To select a code segment as text, click-and-drag from
the first line of the segment to the last line of the segment. The selected text is highlighted in blue. To copy
the selected segment to the clipboard, choose Source > Copy Selected Text.

154 | Analyzing Programs

Tip: Click the minus sign (-) next to a paragraph, procedure, or data definition to collapse its contents.
Click the plus sign (+) to expand its contents.

Setting Source Pane User Preferences
Use the Interactive Analysis > Source tab of the User Preferences window to specify the color-coding used
in the Source pane and other display features.

1. Choose Tools > User Preferences. The User Preferences window opens. Click the Interactive Analysis
> Source tab.

2. Select Iconic cursor to specify that the icon for a selected construct (for a data port, for example)
replace the standard cursor.

3. In the Selected Construct Color field, click the adjacent button to edit the color used to highlight
the selected construct.

4. In the List Highlighting Color field, click the adjacent button to edit the color used to highlight lists.

5. In the Color Scheme pane, click the construct types whose text you want to colorize, or click Select All
to select all the construct types. The current color of the selected types (if any) is displayed in the Fore

Color drop-down. Click the adjacent button to edit the color of the construct types.

6. Select Display Business Names to display business names rather than original identifiers in the
Context pane.

Collapsing and Expanding Paragraphs or Subprograms
In very long programs, it may be helpful to display the names of paragraphs or subprograms only and hide
their source code. To collapse paragraphs or subprograms, choose Edit > Collapse All. Click the plus sign
(+) next to a collapsed paragraph or subprogram to show its source code again. To show the source code
for all collapsed paragraphs or subprograms, choose Edit > Expand All.

Showing Source Code Boundaries
To demarcate source code from leading and trailing enumeration characters in source lines, choose Edit >
Show Boundaries.

Using the Context Pane
The Context pane displays the parse tree for the selected source file. The parse tree displays source code
constructs (sections, paragraphs, statements, conditions, variables, and so forth) in hierarchical form,
making it easy to locate code constructs quickly. Constructs are displayed in the order they appear in your
code.

Note: Interactive Analysis adds artificial "owning" sections or paragraphs to the parse tree as
necessary. An added, or faked, section or paragraph is denoted in the parse tree with a leading
underscore: _S1, for example.

The scope of the parse tree determines the constructs and relationships it displays: all constructs, only
control statements, only declarations, and so forth. Scopes include the lists Interactive Analysis generates
when you perform advanced searches, navigate to a related construct, or identify candidates in Code
Search. Choose the scope of the parse tree in the Scopes drop-down on the Context pane tool bar.

Click the plus sign (+) next to a construct to expand its hierarchy. Click the minus sign (-) to collapse the
hierarchy. The Edit menu lists every relationship type for the construct selected in the Context pane.

Perform other tasks as you do in the Source pane. Select Display Business Names in the User
Preferences for the Source pane to display business names rather than original identifiers in the Context
pane.

Analyzing Programs | 155

Using the Objects Pane
The Objects Pane lists the files in the selected project. To view the files you want:

1. Select a type from the drop-down list.

Note: The drop-down menu shows only types that have objects in the project.

2. (optional) Enter a search criteria.

Note: You can use wildcard characters in the search.

3. Click Search.

The first 100 rows matching the search criteria will be displayed.
4. (optional) Click View More to load another 100 objects to the list.

Note: Once all objects have been loaded the button becomes inactive.

Using the Watch Pane
The Watch pane displays current program context in summary form, showing, in a single view, object
model context (Level 1) for the selected source file and construct model context (Level 2) for the selected
construct. Both the content of the Watch pane and its layout are customizable with the externalized XML
queries and CSS stylesheets provided with the product. For more information, contact support services.

Follow the instructions below to view current context summaries in the Watch pane.

1. Select the source file you want to view in the Objects pane.

156 | Analyzing Programs

2. Select the construct you want to view in the Source or Context pane.
3. Click the button in the Watch pane to refresh the display:

• The object model context (Level 1) displays the logical object extracted from the selected source file
and its key metrics and relationships.

• The construct model context (Level 2) displays the selected construct, its business name, its location
in source, and other characteristics. For a variable, click the Build link to view a summary of impact
trace results:

• Data Source displays the flow of data through each port in the trace to the originating port.
• Data Destination displays the flow of data through each port in the trace to the destination port.
• Received Values displays the value of the watched variable at each location in the impact trace.

4. Click the Hide link to hide a summary. Click the Show link to restore a summary.
5. Click the button to save the contents of the Watch pane to an HTML file. The Save Watch View dialog

opens, where you can specify the name and folder of the HTML file. The report opens when the save
operation is complete.

Using the Screen Pane
The Screen pane displays the screen object defined in the selected map file. It complements the "bottom-
up" analysis of application business processes in the Source and Context panes with a "top-down" view
that lets you navigate quickly to data items of interest in your application.

To view a screen object in the Screen pane, select the map file in the Objects pane, then select the screen
in the Source or Context panes. Choose Screen > Best Fit to fit the screen to the Screen pane. Choose
Screen > Actual Size to restore the screen to its actual size.

Gray areas on the Screen pane represent screen fields. Click on a field or screen label to select it. Select a
field and choose Data Items in the right-click menu to view the declarations for the field in the Properties
window.

Manually Extracting Business Names for Program Variables
One of the most powerful features of COBOL Analyzer lets you auto-extract screen labels as business
names for program variables. For each screen field with a label immediately to its left in the Screen pane,
the Glossary tool generates a business name for the program variable whose value is displayed in the field.

Analyzing Programs | 157

If the screen field has the label Customer Number, for example, Glossary assigns the business name
"Customer Number" to the variable whose value is displayed in the field.

Occasionally, however, you may need a finer-grained approach than the auto-extract feature offers. The
field of interest may not be immediately to the right of the label, or the field may have no label at all. In
these situations, you can extract business names for program variables manually in the Screen pane.

1. Double-click a screen label and select the portion of the label you want to use as the business name,
then click Ctrl+C.

Note: You don't have to use the screen label. You can put any text on the clipboard and assign it
as the business name.

2. Select the field of interest and click Ctrl+V. Interactive Analysis paints a yellow box in the lower lefthand
corner of the field to indicate that the program variable for the field has been assigned a business name.
Double-click the field to navigate to the variable in the Glossary.

Using the Bird's Eye Pane
The Bird's Eye pane lets you quickly identify the location of a code construct relative to the entire program
and any included files. Click a construct in the Source or Context panes to view its location in the Bird's Eye
pane.

Using the Model Reference Pane
The Model Reference pane displays the Interactive Analysis metamodel in text and diagram form. Check
the model reference embedded in the advanced search utility for the data types and definitions of construct
attributes you use in searches.

158 | Analyzing Programs

Performing Advanced Searches
The Interactive Analysis Advanced Search facility distills the parse tree metamodel into a series of prompts
that help you build complex filters for construct searches. It also offers predefined filters that you can use to
search for dead code, hard-coded constants, nested conditionals, file and screen reads and writes,
program calls, SQL ports, and more.

Note: Certain performance-intensive searches, with criteria such as Contains or Is Nested In, may be
restricted to the master user.

You typically use the batch advanced search facility, embedded in the Code Search pane, to find constructs
in all files of a given type in your project. But you can also use standalone advanced search to find
constructs in a single file.

Note: The Change Analyzer tab opens a scoped version of the Advanced Search facility for Change
Analyzer. For Change Analyzer usage, see Analyzing Projects in the product documentation set.

Defining a Search Filter
The Advanced Search facility uses the attributes and relationships of a construct to define the conditions
you set in your search for the construct. As an example of how the facility works, let's look at how you might
define a search filter for the conditions a program uses to validate the variable EIBRESP.

1. Select the file you want to search in the Objects pane, then choose Edit > Find. The Search window
opens.

Note: Skip this step if you are using Code Search to perform a batch search.

2. Click the General tab.

Analyzing Programs | 159

3. In the General tab, select a folder for the new criterion, then click the button on the tool bar. The New
Criterion dialog opens. Enter Field Validation in the text field and click OK. Interactive Analysis creates
the Field Validation criterion in the selected folder.

160 | Analyzing Programs

4. Click the here link in the righthand pane of the Search window. The Select Construct Types window
opens.

Analyzing Programs | 161

5. Select Condition in the list of constructs in the lefthand pane. In the righthand pane, review the
definition of a condition in the parse tree metamodel, then click OK. Interactive Analysis adds the
condition construct to the filter definition in the righthand pane of the Search window:

Find All Condition

6. Click the All link. The Condition window opens.

162 | Analyzing Programs

7. In the Condition window, choose:

• Relationship in the Applies to drop-down.
• Is Nested In in the Relationship Type list box.
• If Statement in the Entity Type list box.

Click OK. Interactive Analysis adds the relationship to the filter definition in the righthand pane of the
Search window:

Find Condition
which is nested in any IF statement

8. Click the any link. The Condition window opens. In the Condition window, choose:

• Relationship in the Applies to drop-down.
• Contains in the Relationship Type list box.
• Perform in the Entity Type list box.

Click OK. Interactive Analysis adds the relationship to the filter definition in the righthand pane of the
Search window:

Find Condition
which is nested in IF statement which contains any
Perform

9. Click the any link. The Condition window opens. In the Condition window, choose:

• Attribute in the Applies to drop-down.
• Caption in the Name list box.
• Like in the Operations drop-down.

Enter *ERROR* in the Values field and click OK. Interactive Analysis adds the attribute to the filter
definition in the righthand pane of the Search window:

Find Condition
which is nested in IF statement which contains
Perform such that Caption Like "*ERROR*"

Analyzing Programs | 163

Note: Except for the # symbol, you can use wildcard patterns allowed in LIKE statements by
Visual Basic for Applications (VBA). Consult the Model Reference pane for attribute values.

10.Click the is nested in link. In the pop-up menu, choose And. The Condition window opens. In the
Condition window, choose:

• Relationship in the Applies to drop-down.
• Contains in the Relationship Type list box.
• Variable in the Entity Type list box.

Click OK. Interactive Analysis adds the relationship to the filter definition in the righthand pane of the
Search window:

Find Condition
which is nested in IF statement which contains
Perform such that Caption Like "*ERROR*"
and
which contains any Variable

11.Click the any link. The Condition window opens. In the Condition window, choose:

• Attribute in the Applies to drop-down.
• Caption in the Name list box.
• Like in the Operations drop-down.

Enter *EIB* in the Values field and click OK. Interactive Analysis adds the attribute to the filter
definition in the righthand pane of the Search window:

Find Condition
which is nested in IF statement which contains
Perform such that Caption Like "*ERROR*"
and
which contains Variable such that Caption Like "*EIB*"

Note: To edit an element in the filter definition, select its link and choose Edit in the pop-up menu.
To delete an element from the filter definition, select its link and choose Delete in the pop-up
menu.

12.Enter a description of the filter definition in the Description pane.

13.Click on the tool bar to save the filter definition.

14.Click Find All Constructs to start the search.

Note: Check Run as Offline Job to run the search in background mode. You will see a message
Code Search job was successfully submitted to the Queue.

Executing Advanced Searches
You can execute an advanced search in standalone mode, against the file or construct selected in the
Source or Context pane, or in batch mode, in the embedded search pane in Code Search.

1. In the Search In drop-down on the tool bar, choose:

• Source file name with all included files if you want to execute the search against the selected
source file and any included files.

• Source file name only if you want to execute the search against the selected source file only.
• Selected Construct - Construct if you want to execute the search against the construct selected in

the Source or Context panes.

2. Choose the criterion for the search you want to execute from the list of criteria in the lefthand pane.

3. Select Case Sensitive Search if you want the search to match case.

4. Select Find All Constructs. Interactive Analysis displays a dialog box with the results of the search.
Click OK. The dialog and Search window are dismissed. Interactive Analysis displays the results in a list
named Last Search Results in the Internal category in Code Search.

164 | Analyzing Programs

Advanced String Attribute Operations
The advanced string attribute operations can be set when you execute Code Search and when you have
defined a search filter.

Note: The operations are available only for string objects.

You can execute a Code Search using different criteria. When you set a condition to search string
attributes, you can specify the following operations:

Like / Not Like Performs a wildcard (mask) match where ? (question mark) represents any
single character and * (asterisk) represents any character sequence.

Example:

• Select Name from the Name list, then select Like from the Operations drop-
down list, and then write * DAY in the values field. The new criterion returns
all names ending with "DAY".

• If the search criterion is: "Name" like "???DAY", the search finds all 6
character long names ending with "DAY".

Regular Expression Performs regular expression matching. This function uses syntax specific to the
RDBMS (for further information see Regular expression support for CA).

Example (Oracle only): "Name" matches "^Ste(v|ph)en", will match names which
begin with "Ste" and end with "en" with either "v" or "ph" in between, so both
"Steven" and "Stephen" will be selected.

Length is Less than /
Length is Greater
than

Compares attribute value lengths.

Example: "Name" length is "6", finds all 6 character long names.

Match other attribute
value/ Do not match
other attribute value

Compares two attribute values.

Example: "Name" matches attribute "JobName", finds all names matching the
"JobName" as well.

Contain other
attribute value/ Do
not contain other
attribute value

Checks if an attribute value contains another attribute value.

Example: "Name" contains attribute "JobName", finds all names which also
contain "JobName" value.

Partial Attribute
match

Partial Match compares part of an attribute value with another part of another
attribute value.

Example: "Name" pos 10-12 matches pos 5-7 of "JobName", finds all names
where the value from character position 10 to 12 matches the "JobName" value
from character position 5 to 7.

Working with Advanced Search Criteria
This section describes common tasks you perform with advanced search criteria.

Creating a Search Criterion

To create a search criterion, select the folder for the new criterion in the General tab, then click the
button on the tool bar. The New Criterion dialog opens. Enter the name of the criterion in the text field and
click OK.

Analyzing Programs | 165

Editing a Search Criterion
To edit a search criterion, select the criterion, then select the link for the element you want to change in the
filter definition. Choose Edit in the pop-up menu to edit the element, or Delete to delete the element.

Tip: To restore the original definition of a predefined search criterion, select the criterion and click the

 button on the tool bar.

Copying a Search Criterion

To copy a search criterion, select the criterion and click the button on the tool bar. The New Criterion
dialog opens. Enter the name of the new criterion in the text field and click OK.

Saving a Search Criterion

To save a search criterion, select the criterion and click the button on the tool bar. The criterion is
available to every project in the workspace.

Deleting a Search Criterion

To delete a search criterion, select the criterion and click the button on the tool bar. You are prompted
to confirm the deletion. Click OK.

Note: You cannot delete a predefined search criterion.

Creating a Folder for Search Criteria

To create a folder for search criteria, click the button on the tool bar. The New Folder dialog opens.
Enter the name of the new folder in the text field and click OK. The new folder appears in alphabetical
order in the tree in the lefthand pane of the window. Drag-and-drop search criteria to move them to the
folder. You can create folders within folders.

To copy a folder and all its contents, select the folder and click the button on the tool bar. The New
Folder dialog opens. In the text field, enter text to be prepended to the folder name and to the names of
each of its subfolders and search criteria, and click OK.

To modify a folder name, click in the name area for the folder to make the name editable, enter the new

name, and press Enter. To delete a folder, select it and click the button on the tool bar. You are
prompted to confirm the deletion. Click OK.

Saving a Search Criterion as HTML

To save a search criterion in an HTML file, select the criterion and click the button on the tool bar. The
Save Criteria dialog opens, where you can specify the name and folder for the HTML file.

Exporting and Importing a Search Criterion

To export a search criterion to an XML file, select the criterion and click the button on the tool bar. The
Export Criteria dialog opens, where you can specify the name and folder for the XML file.

To import a search criterion, click the button on the tool bar. The Import Criteria dialog opens, where
you can select the criterion you want to import.

166 | Analyzing Programs

Staging Program Analysis with Code Search
Use the Code Search pane to stage the results of a batch search as input for subsequent tasks: viewing
source and context, colorizing sliced code, extracting business rules, and the like. A system analyst, for
example, might use Code Search to create a list of programs impacted by a change request, then create a
project that contains only the source files for those programs.

Code Search searches are executed against the current project. You can also execute searches against
the results of a previous search.

Note: Certain performance-intensive Code Search searches, with criteria such as Contains or Is
Nested In, may be restricted to the master user.

Getting Started in Code Search
Code Search is project related. It executes a search over all verified files in the project.

This section describes a sample use of Code Search that should help you get oriented in the tool. Assume
that you want to create business rules for segments of code that write to a file.

1. In the Code Search pane, click the Top view link. The Top view opens.

2. Double-click the Rule Finder category. The Rule Finder view opens.

3. Click the button on the tool bar. The New List dialog opens.

4. Enter File Writes and click OK. An empty list named File Writes is added to the Rule Finder view.

5.
Select the File Writes list, then click the button next to the button on the tool bar. In the drop-
down, choose the type of object you want to execute the search against, COBOL File in our example.
The Search window opens.

6. In the Search In drop-down, select All Objects.

7. Expand the Data Ports folder in the lefthand pane, then expand the Files folder. Select the predefined
File Writes criterion and click Find All Constructs. Interactive Analysis displays a dialog box with the
results of the search operation. Click OK. A message with the number of constructs found is displayed.
Click OK. The Search window is dismissed and the results of the search are displayed in a Code
Search view, named after the File Writes list.

Note: Modify the predefined search criterion or create your own search criterion as you do in the
Advanced Search facility.

Tip: To add a construct manually to the list for a source file, select the source file in the File Writes

view, select the construct in the Source or Context panes, then click the button on the tool bar.

8. Click the button next to the button on the tool bar and choose Create Rules in the drop-down
menu. A message saying You are about to generate templated business rules into a specified rule set.
Continue? Click Yes to continue. The Create Rule Set window opens.

9. Select an existing Business Function from the drop-down list or create New one:
a) If you choose New, the Business Function window opens.
b) Enter Business Area (or select one from the drop-down list).
c) Enter Name.
d) (Optional) Enter Technical Description.
e) (Optional) Enter Business Description.
f) Click OK to create the business function and to return to the Create Rule Set window.

The newly created Business Function is selected. The Name field is populated with File Writes from
Rule Finder (which shows the information from the Code Search pane). Optionally fill in the Technical
Description and Business Description fields. Click OK.

Analyzing Programs | 167

The Create Rules From List window opens.

10.Select Business Function from the drop-down list or create New.

11.Select Rule Set from the drop-down list or create a New one.

12.The Name template is automatically populated with CHECK IN [FileName] AT [FromRow] AS
[Caption]

13.Enter the Business Description Template (optional).

14.Enter the Technical Description Template (optional).

15.If needed, edit the New Attributes.

16.Click OK. Creating Rules for File Writes. You then get a message telling you the number of rules that
have been created.

Understanding the Code Search Pane
Interactive Analysis lists offer convenient ways to navigate program code and record the results of program
analyses. Use the hierarchy of views in the Code Search pane to display Interactive Analysis lists and
perform other list-related tasks:

• The Top view displays the folders, or categories, for lists.
• The Category view displays the lists in the selected category.
• The List view displays source files with non-zero counts in the selected list.
• The File view displays each construct in the list for the selected source file. Click a construct in the list to

navigate to it in other Interactive Analysis panes.

Each view gives you access to the next-level view in the hierarchy. Click the label for a view to navigate to

it. Double-click an item in the view to drill down to the next view in the hierarchy. Click the button on
the tool bar to navigate to the parent of the current view.

Working with Categories
The Top view of the Code Search pane displays the categories for Interactive Analysis lists. Categories are
displayed only for lists you can create for the source file type selected in the Objects pane.

You can use predefined categories or create your own. All predefined categories are shared. Use the
General and Internal categories for unenumerated tasks.

Note: Interactive Analysis puts the results of standalone advanced searches in a predefined list called
Last Search Results in the Internal categories.

To create a category, select the parent category and click Code Search > Add. The New category dialog
opens, where you can specify the new category name. A list with the category name is automatically
created in the category. To edit the category name, click the name and type over it in the text box.

By default, user-defined categories are not shared. To share a user-defined category, select it and click the

 button on the tool bar. A symbol indicates that the category is shared. Click the button again to
turn sharing off.

Note: Sharing a user-defined category automatically makes its parent categories shared. Unsharing a
user-defined category automatically makes its children unshared.

Working with Lists
The Category view of the Code Search pane displays the lists in the selected category. You can use
predefined lists or create your own. Use Code Search to populate lists.

168 | Analyzing Programs

Creating a List

To create a list, double-click the category for the list in the Top view and choose Code Search > Add. The
New List dialog opens, where you can specify the name of the new list.

Deleting a List

To delete a list, select it and click the button on the tool bar. You are prompted to confirm the deletion.
Click OK.

Copying a List

To copy a list, select it and click the button on the tool bar. In the Top view, select the category you want

to copy the list into and click the button. The Copy List dialog opens, where you can enter the name of
the new list. You can copy a list into the same category.

Sharing a List

By default, lists are not shared. To share a list, select it and click the

 button on the tool bar. A symbol indicates that the list is shared. Click the button again to turn
sharing off.

Adding a Construct to a List Manually

To add a construct to a list, select a source file in the List view, then choose a construct in the Source or

Context panes. Click the button on the tool bar to add the construct to the list of constructs for the
selected file.

Deleting a Construct from a List

To delete a construct from a list, select the construct in the File view and click the button on the tool
bar. You are prompted to confirm the deletion. Click OK.

Executing Code Search Searches
Code Search is project related. It executes a search over all verified files in the project. All categories,
criteria and lists with results are global options for all repository projects and show the results for the
current search. After completing the search, the result is saved in the List View. The last executed search
can be used as a starting point for the next search and can be accumulated with the new one by checking
Accumulate search results in the search view. Otherwise the previous content from the list will be lost.

Use a Code Search to generate Code Search lists. You can modify the predefined search criteria or create
your own criteria as needed. You can use a construct list itself to narrow the search.

1.
Select a list, then click the button next to the button on the tool bar. In the drop-down, choose
the type of object you want to execute the search against. The Search window opens.

2. In the Search In drop-down, select:

• All Sources to execute the search against all the sources of the specified type in the project.
• A list if you want to execute the search only against sources of the specified type with non-zero

counts in the selected list. If you select Rule Finder.File Writes, for example, the search will be
executed only against sources of the specified type with non-zero counts in the File Writes list in the
Rule Finder folder.

3. Choose the criterion for the search you want to execute from the list of criteria in the lefthand pane.
Modify the predefined criteria or create your own criteria as needed.

Analyzing Programs | 169

4. Select Accumulate Search Results if you want the results of the search to be added to the results of
the previous search. Otherwise, the new results overwrite the previous results.

5. Select:

• Find All Constructs if you want Interactive Analysis to create for each searched file a list of all the
constructs found by the search.

• List Sources Only if you want Interactive Analysis simply to indicate for each searched file (with the
notation >0) whether the construct of interest exists in the file.

Interactive Analysis displays a dialog box with the results of the search operation. Click OK. The Search
window is dismissed and the results of the search are displayed in the List view.

Using Construct Lists to Narrow a Code Search
Once you have generated a construct list in Code Search, you can use the list itself as a condition of a
search. That is, you can use the search results to refine a subsequent search.

Suppose you have performed a Code Search for duplicate paragraphs in COBOL programs, storing the
results in a list called Matched Paragraphs in the General folder. The next step might be to search for all
PERFORM statements that reference the duplicate paragraphs. The example below shows how you might
use a Code Search list of duplicate paragraphs as a condition of the search.

1.
Select a list, then click the button next to the button on the tool bar. In the drop-down, choose
the type of object you want to execute the search against. The Search window opens.

2. Select a folder for the new criterion in the General tab, then click the button on the tool bar. The New
Criterion dialog opens. Enter Perform Duplicates in the text field and click OK. Interactive Analysis
creates the Perform Duplicates criterion in the selected folder.

3. Click the here link in the righthand pane of the Search window. The Select Construct Types window
opens.

4. Select Perform in the list of constructs in the lefthand pane, then click OK. Interactive Analysis adds the
condition construct to the filter definition in the righthand pane of the Search window:

Find All Perform

5. Click the All link. The Condition window opens. Choose:

• Relationship in the Applies to drop-down.
• Called Paragraph in the Relationship Type list box.

6. Click OK. Interactive Analysis adds the relationship to the filter definition in the righthand pane of the
Search window:

Find Perform
which has related any Paragraph (as Called Paragraph)

7. Click the any link. The Condition window opens. Choose:

• List in the Applies to drop-down.
• General.Matched Paragraphs in the Name drop-down.

You can filter out list constructs by selecting Does not belong to the list in the Condition window.

8. Click OK. Interactive Analysis adds the list to the filter definition in the righthand pane of the Search
window:

Find Perform
which has related Paragraph (as Called Paragraph)
which is in list
 General.Matched Paragraphs

9. Execute the search. Interactive Analysis displays a dialog box with the results of the search operation.
Click OK. The Search window is dismissed and the results of the search are displayed in the List view.

170 | Analyzing Programs

Tip: As a practical matter, you would probably also want to search for GO TO statements that
reference the duplicate paragraphs. You could simply add the results of this search to the results of
the search for PERFORM statements by using the Accumulate Search Results button.

Searching for Similar Constructs in Code Search
To search for similar constructs, select a construct in the Source or Context panes, then select a list. Click

the button on the tool bar. The New Criterion dialog opens. Enter a criterion name or accept the
default.

The Search window opens with a predefined search criterion that will generate a list of constructs similar to
the selected construct. The new criterion is added to the General tab of the advanced search facility. Edit
the criterion if necessary, then execute the search.

Extracting Business Rules in Code Search
To extract business rules for multiple constructs, use the following method:

• Generate rules for listed constructs in a specified rule set. When you choose this option, you batch
process rule attributes in the generation step.

Tip: As long as the Rules pane is open, you can generate a rule for a single construct by selecting the
construct in the File view and choosing Rule > Create Rule.

Generating Business Rules in a Specified Rule Set
Follow the instructions below to generate rules in a specified rule set with predefined attributes. Code
Search creates a rule for each construct in the Code Search list.

1. Select a list in the Rule Finder category, then click the button next to the button on the tool bar
and choose Create Rules in the drop-down menu. The Select Method dialog opens.

2. In the Select Method dialog, select templated rules into a specified rule set and click OK. The Create
Rule Set window opens.

3. In the Business Function drop-down, select the business function for the rule set. The current
business function is displayed. To create a new business function, click New.

4. In the Name field, enter the name of the rule set for the rules you want to create and click OK. The
Create Rules From List window opens.

Analyzing Programs | 171

5. In the Name Template combo box, select a template for the rule name attribute from the drop-down, or
enter a template manually. Templates derive from the list in the Rule Defaults tab in the Project options
for Business Rule Manager. If you enter a template manually in Code Search, the new template is
added to the list.

6. On the Business Description Template and Technical Description Template tabs, enter templates for the
description and business description attributes, respectively.

7. On the New Attributes tab, specify the value for each attribute you want to set in the selected rules.

8. Select the checkbox at the bottom if you want to replace variable names with business names
(regardless of the template used).

9. When you are satisfied with your entries in the Create Rules From List window, click OK. Interactive
Analysis displays an informational message that tells you how many rules it created. Click OK.

Generating an Impact Subtree Report in Code Search
To generate an impact subtree report for all the constructs in a list, select the list in the Impact Report

category, then click the button next to the button on the tool bar and choose Create Impact
SubTree Report in the drop-down menu. A Save As dialog opens, where you can specify the name,
location, and file type of the report.

Marking and Colorizing Constructs in Code Search
The Components pane lets you create a self-contained program, called a component, from the sliced code
or simply generate a Interactive Analysis list of sliced constructs for further analysis. You can mark and
colorize the list constructs in the Interactive Analysis Source pane.

To mark and colorize list constructs in the Source pane, select the list and click the button on the tool

bar. To mark and colorize sliced constructs in a single file, select the file in the List view and click the

172 | Analyzing Programs

button. To mark and colorize a single construct, select it in the File view and click the button. Click the

 button again to turn off marking and colorizing.

Creating Projects in Code Search
You can create a project based on the results of a Code Search analysis.

1. Select a list, then click the button next to the button on the tool bar and choose Create Project in
the drop-down menu. The New Project dialog opens. Enter the name of the new project in the text field
and click OK.

2. The Change Magnitude window opens. Select Automatically calculate change magnitude if you want
Code Search to set change magnitudes for the listed source files based on the ranges specified in the
fields below the check box. Modify the ranges as needed. The Code Search settings will override any
existing change magnitudes for the files.

If you want COBOL source files with 6 to 10 constructs to have a Large change magnitude, for example,
set the range for Medium to less than 6 and the range for Large to less than 11.

3. When you are satisfied with your choices, click OK.

Generating Metrics and Detailed Reports
Use Code Search to show the distribution of list instances across a project and view the details for each
instance. The following reports are available:

• For each list in the selected category, the Metrics Report shows the number of list items in each

program. To generate a Metrics Report, select a category in the Top view, then click the button next

to the button on the tool bar and choose Metrics report in the drop-down menu.
• For each source file in the selected list, the Details Report shows the constructs in the list, their type,

and their location in the file. You can customize the report to include any Interactive Analysis attribute

related to the constructs. To generate a Details Report, select a list in the Folder view, then click the

button next to the button on the tool bar and choose Detailed report in the drop-down menu. In the
Select Attributes dialog, choose the construct attributes you want to view in the report.

Running Code Search Reports in the Main Window
COBOL Analyzer lets you select and run a set of Code Search queries from the Repository Browser. You
can execute these sets of queries (Code Search reports) on a selection of files that belong to different
projects and different object types. The selected queries can be predefined and/or created by you.

Creating a Code Search Report
To create a custom report:

1. Select objects from the Repository Browser.

Note: You can select objects from different projects with different object types. If you don't select
files but a project, the report will be run for all programs in it.

2. Select Code Search Reports > Code Search Reports... from the Reports menu or from the context
menu in the Repository Browser.

3. When the Code Search Reports window opens, expand the list box. It lets you choose from a few items:
<New Report>, previously-created reports (if any), Performance optimization queries and Migrate
Net Express to VC. Select<New Report>.

4. Select categories and subcategories of queries from the tree structure. Note that when you select a
category, you automatically select all it subcategories.

Analyzing Programs | 173

The Only show queries for project/object types is checked by default and the queries displayed in
the tree structure are only the ones for the project/object types that you have selected. If you uncheck
this option, all possible queries will be displayed.

When Only show selected queries for saved reports is checked and you have selected an already
saved report from the list at the top, only the queries selected for it will be displayed. If you are creating
a new report, all queries are shown in the tree.

5. In the Report name field write a name for the custom report or use the default one. The report name
must be unique and not used for any other report.

6. Select a save location for the report. The default one is the Output\Custom Reports folder of the
workspace.

7. From the options below you can choose if you want to generate an HTML report and if you want to
make the report available to other users.

8. Click Save to save the report.
9. Click Run to save and run the report.

Note: The report is generated in a folder with the same name as the report. It has a date/time stamp
so as to avoid overwriting.

Note: The last ten reports that were run will be saved and you can access them from the Repository
Browser by right-clicking and then selecting Code Search Reports. Running the report a report from
the list of previously-created reports will show results but no report file will be generated.

Working with Saved Reports
You can edit, delete or make copies of already created and saved reports from the Code Search Reports
window.

To make edits to a saved report, select one from the list box, make any necessary changes in the list of
selected queries, report name, save location and any of the other options.

You can also choose to overwrite the changes when running the report by selecting the checkbox next to
the Save button.

To create a copy of a report but use a different name, click Copy Report.

To delete a saved report click Delete Selected Report.

Code Search Report Results
After you run a report, the output is saved in the selected location and the Code Search Reports window
closes and the Queue Processor pops up. To view the report results, double-click the Activity Log line
which shows that the report was successfully executed or from the View menu select Custom Report
Results

The results are displayed in a tree view. Double-clicking a file in the tree, opens the source editor pane.

To open Interactive Analysis for a file, right-click it and select Interactive Analysis.

The Code Search Report Results window lets you view previously run reports by selecting them from the
drop-down list at the top. The report titles contain information about the execution date and time. You can
also choose to re-run a report, generate an HTML report and/or export for the Eclipse plugin.

To re-run a report, click .

To generate an HTML report, click .

To export for the Eclipse plugin, click

Storing Code Search Reports
You can store a predefined set of Code Search queries and a previously generated report as a custom
report which can be later used to generate a Code Search report. These can be shared or private. The

174 | Analyzing Programs

predefined reports need to be added in the HCSearch.xml file and will be loaded in the database as the
standard queries.

Running Code Search Reports in Interactive Analysis
You can run Code Search reports in Interactive Analysis by clicking . If you click the button next to

the , you can select one of the following options:

• Code Search Report for Project
• Code Search Report for Current Object
• Code Search Report for Code Search Selection

When the report has been executed, a message will pop up asking if you want to load the results. Click Yes
and the results will be loaded in the Code Search pane.

Analyzing Impact Traces
An impact trace describes the flow of data within and between programs in an application: how data items
exchange values, use each other in computations, and so forth. If you are extracting business rules, for
example, you might want to view an impact trace to make sure that a segment encapsulates all of the
business logic for a candidate rule. Or you might want to use a scoped trace to help locate candidates that
exhibit a particular type of relationship.

You can analyze the entire tree for a trace, or a consolidated tree that displays only the ports and leaf
nodes traversed in the trace. Options let you filter out unwanted relationships or variables. You can save
trace results and restore them in a later session.

Note: Projects must have been verified with the Enable Impact Report and Enable Data Element
Flow options set in the Project Verification options.

Generating an Impact Trace
The Interactive Analysis Impact pane displays a hierarchical view and diagram of an impact trace. Both
views show the flow of data to or from a startup item.

1. In the Interactive Analysis Source or Context pane, select the construct that contains the startup item or
items and choose View > Impact. The Impact pane opens.

2. Choose:

• Impact > Backward Analysis to view the flow of data into the startup items.
• Impact > Forward Analysis to view the flow of data out of the startup items.

Note: Once a trace is generated, click the or buttons on the tool bar to reverse the direction
of the trace.

3. Choose:

• Impact > Detailed Analysis to generate the entire tree for a trace.
• Impact > Consolidated Analysis to generate a consolidated tree that displays only the ports and

leaf nodes traversed in the trace. Only the subtrees for ports are displayed.

Interactive Analysis displays the trace results. Click the plus sign (+) next to an item to expand its
hierarchy. Click the minus sign (-) to collapse the hierarchy.

4. Click the Diagrammatic View tab to display the impact trace in a diagram.

5. Select an item in the trace and repeat the procedure to start a trace for that item. The new trace is
displayed below the previous trace.

Analyzing Programs | 175

6. To delete a trace, select its startup item and choose Impact > Remove Root. To clear the pane, choose
Impact > Remove All.

Understanding the Hierarchical View
In the hierarchical view, each line in the trace contains a symbol indicating the type of relationship the
affected data item has with the previous item and a label showing the details of the relationship. Options
give you complete control over the information displayed in the label. The table shows the meaning of the
typefaces used in the labels.

Typeface Meaning

bold An item that has not been visited by the trace.

gray A repeated item.

blue A repeated item at a different location.

bold blue A repeated item at a different location that has not been visited by the trace.

red An item filtered out of the trace.

Understanding the Diagram View
In the diagram view, each box in the trace contains the data item name and the name of the program it
belongs to (unless the parent item belongs to the same program). Relationship lines contain the name of
the relationship. Options let you display the memory offset and size of a data item. Place your cursor over a
variable for a moment to display the memory offset and size in a tool tip. The table shows the meaning of
the colors used in the diagram.

Color Meaning

red outline Startup item.

blue background An item that has not been visited by the trace.

black outline An item filtered out of the trace.

Data Flow Relationships
The table below describes the intraprogram and interprogram relationships detected by the data flow
analysis tools.

Relationship Definition Type Icon Description

calls N/A interprogram N/A A parameter passed in a call to
another program.

cast MOVE A TO B with
data conversion

intraprogram A data item moved to a data item
of a different type.

common area
transitions

N/A interprogram N/A For Unisys 2200 Cobol, a
common-storage data area item
passed in a call to another
program. Perform Unisys
Common-Storage Area Analysis
must be set in the project
verification options.

comp STRING A ... INTO
B

intraprogram An arbitrary computation. The
result is produced by applying

176 | Analyzing Programs

Relationship Definition Type Icon Description

complex rules to the argument,
such as STRING.

comp+ ADD A TO B intraprogram An addition-like operation: ADD,
SUBTRACT, or corresponding
parts of COMPUTE.

comp* MULTIPLY A BY B intraprogram A multiplication-like operation:
MULTIPLY, DIVIDE, or
corresponding parts of
COMPUTE.

comp@ MOVE ARRAY
(IDX) TO A

intraprogram An operation with array elements.

cond IF A = B ... intraprogram Comparison of data items with a
symmetric relationship.

cond* IF A * X = B ... intraprogram Comparison of a multiple of a data
item with another data item.

const cond IF A = 1 ... intraprogram Comparison of a data item with a
constant.

const.move MOVE 1 TO B intraprogram A constant moved into a data item.

const.comp ADD 1 TO B intraprogram An arithmetic operation with
constants.

const.init 03 A ... VALUE 1 intraprogram A data item initialized by a
constant.

DMS records N/A interprogram N/A For Unisys 2200 Cobol, data
communication via Unisys DMS
database records.

files N/A interprogram N/A Data communication via files.
Traced only when corresponding
JCL, ECL, FCT, or CSD files are
verified.

files in jobs N/A interprogram N/A Data flow in JCL datasets when
files is selected.

input port N/A intraprogram A data item in which data is
received.

move MOVE A TO B intraprogram A data item moved to a data item
of the same type.

network records N/A interprogram N/A For Unisys 2200 Cobol, data
communication via network
records.

output port N/A intraprogram A data item from which data is
sent.

screens N/A interprogram N/A Data sent to a screen by one
program and received in a screen
by another.

Analyzing Programs | 177

Relationship Definition Type Icon Description

screen definitions N/A interprogram N/A Data flow in screen fields when
screens is selected.

start N/A intraprogram The startup item in an Impact pane
consolidated analysis.

used MOVE ... TO A ...
MOVE A TO ...

intraprogram A value assigned in a statement
used as an argument in another
statement.

Setting Impact Pane User Preferences
Use the Interactive Analysis > Impact tab of the User Preferences window to control the level of detail
provided in the label for each relationship type in the trace: whether to show or hide the locations of
variables in source, their memory offsets and sizes, and so forth. You can also use these options to specify
the level of detail to include in an Impact Subtree Report.

1. Choose Tools > User Preferences. The User Preferences window opens. Click the Interactive Analysis
> Impact tab.

2. Click the tab for the type of object whose relationship labels and report attributes you want to specify.

3. In the Root field, edit the template for the startup item label. Items preceded by a backslash are
replaced with attributes reported in the Subtree Report. You can modify unescaped text as necessary.

4. In the Relationship pane, select a relationship, then edit the template for its label in the Backward
Analysis or Forward Analysis fields as appropriate. Items preceded by a backslash are replaced with
attributes reported in the Subtree Report. You can modify unescaped text as necessary.

5. Click More in the Report Attributes pane. In the Report Attributes dialog, select the attributes you want
to include in the Subtree Report.

6. Choose Display Business Names if you want to display business names in the impact trace rather
than original identifiers.

Setting Impact Pane Project Options: Processing Tab
Use the Impact > Processing tab of the Project Options window to specify the variables to filter out of the
trace, whether nested data items or redefines are treated as startup items, and whether recursive impacts
or controlled dependency relationships are included in the trace.

1. Choose Options > Project Options. The Project Options window opens. Click the Impact >
Processing tab.

2. Choose any combination of:

• Add to Roots Data Item Subitems if you want the trace to include, as startup items, data items in
nested declarations of the startup items.

• Add to Roots Data Item Redefines if you want the trace to include, as startup items, data items
that redefine the selected startup items.

• Process Immediate Fields Individually if you want the trace to treat each subitem of the startup
item as a root. The startup item is not included in the trace.

• Self-Dependencies if you want the trace to include recursive impacts on data items.
• Controlled Conditions if you want the trace to include controlled dependency relationships for data

items, such as that between A and B in IF ... A THEN MOVE... TO B. In this example, B depends on
A, since B is assigned a value under the control of a condition that depends on A. Choose:

• Include Implicit Conditions if you want the trace to include relationships derived from implicit
control conditions. In the following example, statement (1) is explicitly controlled by the condition
A > 0 because it is nested in the IF statement. Statement (2) is implicitly controlled by the

178 | Analyzing Programs

condition because, on the one hand, there is no surrounding IF statement but, on the other hand,
control may not reach the statement if the condition is not satisfied:

IF A > 0 THEN
MOVE A TO B (1)
ELSE
GOBACK.
MOVE B TO C. (2)

• Include Calculation of Conditions if you want the trace to show how the controlling data item is
calculated.

3. In the Variable Name Filters pane, select the patterns that match the names of the variables you want to
filter out of the impact trace. Recognized patterns are listed in the pane. Add patterns as necessary. You
can use wildcard patterns allowed in LIKE statements by Visual Basic for Applications (VBA).

Setting Impact Pane Project Options: Relationships
Tab
Use the Impact > Relationships tab of the Project Options window to specify the intraprogram and
interprogram data flow relationships to include in the trace. The table below describes the intraprogram and
interprogram relationships detected by the data flow analysis tools.

1. Choose Options > Project Options. The Project Options window opens. Click the Impact >
Relationships tab.

2. In the Intraprogram pane, place a check mark next to each intraprogram data flow relationship you want
the trace to include.

3. In the Interprogram pane, place a check mark next to each interprogram data flow relationship you want
the trace to include.

4. Remove the check mark next to Show All Used if you want the trace to include only used nodes that
are necessary to its calculation.

Relationship Definition Type Icon Description

calls N/A interprogram N/A A parameter passed in a call to
another program.

cast MOVE A TO B
with data
conversion

intraprogram A data item moved to a data item
of a different type.

common area
transitions

N/A interprogram N/A For Unisys 2200 Cobol, a
common-storage data area item
passed in a call to another
program. Perform Unisys
Common-Storage Area
Analysis must be set in the
project verification options.

comp STRING A ...
INTO B

intraprogram An arbitrary computation. The
result is produced by applying
complex rules to the argument,
such as STRING.

comp+ ADD A TO B intraprogram An addition-like operation: ADD,
SUBTRACT, or corresponding
parts of COMPUTE.

comp* MULTIPLY A BY B intraprogram A multiplication-like operation:
MULTIPLY, DIVIDE, or
corresponding parts of
COMPUTE.

Analyzing Programs | 179

Relationship Definition Type Icon Description

comp@ MOVE ARRAY
(IDX) TO A

intraprogram An operation with array elements.

cond IF A = B ... intraprogram Comparison of data items with a
symmetric relationship.

cond* IF A * X = B ... intraprogram Comparison of a multiple of a
data item with another data item.

const cond IF A = 1 ... intraprogram Comparison of a data item with a
constant.

const.move MOVE 1 TO B intraprogram A constant moved into a data
item.

const.comp ADD 1 TO B intraprogram An arithmetic operation with
constants.

const.init 03 A ... VALUE 1 intraprogram A data item initialized by a
constant.

DMS records N/A interprogram N/A For Unisys 2200 Cobol, data
communication via Unisys DMS
database records.

files N/A interprogram N/A Data communication via files.
Traced only when corresponding
JCL, ECL, FCT, or CSD files are
verified.

files in jobs N/A interprogram N/A Data flow in JCL datasets when
files is selected.

input port N/A intraprogram A data item in which data is
received.

move MOVE A TO B intraprogram A data item moved to a data item
of the same type.

network records N/A interprogram N/A For Unisys 2200 Cobol, data
communication via network
records.

output port N/A intraprogram A data item from which data is
sent.

screens N/A interprogram N/A Data sent to a screen by one
program and received in a screen
by another.

screen definitions N/A interprogram N/A Data flow in screen fields when
screens is selected.

start N/A intraprogram The startup item in an Impact
pane consolidated analysis.

used MOVE ... TO A ...
MOVE A TO ...

intraprogram A value assigned in a statement
used as an argument in another
statement.

180 | Analyzing Programs

Setting Impact Pane Project Options: Impact Reports
Tab
Use the Impact > Impact Reports tab of the Project Options window to exclude repeated items from the
Impact Subtree Report and to limit the depth of the trace in all reports.

1. Choose Options > Project Options. The Project Options window opens. Click the Impact > Impact
Reports tab.

2. Select Output duplicates in the SubTree report if you want to include repeated items in the Impact
Subtree Report.

3. Select Limit Impact Depth if you want to limit the depth of the trace reported, then specify the
maximum depth of the trace in the Max Depth combo box.

Exporting and Importing an Impact Trace
To export an impact trace in XML format, select its startup item and click the button on the tool bar. A
Save As dialog opens, where you can specify the name and location of the impact trace.

To import a saved impact trace, click the button on the tool bar. An Open dialog appears, where you
can select the trace to import.

Generating a Subtree Report
A Subtree Report shows the trace for a subtree in XML format or in a database. To generate a Subtree

Report, click the button next to the button on the tool bar and choose SubTree Report in the drop-
down menu. A Save As dialog opens, where you can specify the name, location, and file type of the report.

The following table shows the columns displayed in the database report format. You can control the level of
detail displayed in the report in the Impact Pane User Preferences.

Note: The attributes listed in the table are a superset of the attributes listed in the Impact Pane User
Preferences. Database IDs refer to IDs generated for the database report format.

Attribute Description

CallStack Not used.

Cnt Not used.

Col Number of the source column that contains the beginning
of the affected data item.

Context Internal ID of the context for the affected data item.

DeclHCID Internal ID of the declaration for the affected data item.

Depth The depth of the trace.

Direction The direction of the trace, forward or backward.

Duplicate Indicates that the affected data item is repeated in the
trace.

EntityType Construct type of the affected data item.

Excluded Indicates that the affected data item is filtered from the
trace.

File Name of the file that contains the affected data item.

Analyzing Programs | 181

Attribute Description

FromSel Character offset from the start of the file to the beginning
of the affected data item, counting from 0.

HCID Internal ID of the affected data item.

ID Database ID of the affected data item.

JobName Name of the job that contains the affected data item.

JobStepID Database ID of the job step that contains the affected
data item.

Keyword The operation on the affected data item.

Ln Number of the source line that contains the affected data
item.

Name Name of the affected data item.

ObjName Name of the object that contains the affected data item.

ObjType Type of the object that contains the affected data item.

Offset Memory offset of the affected data item.

OS Memory offset and size in bytes of the affected data item,
separated by a colon (:).

PortFlag Port type of the affected data item: I for input, O for
output, N for not a port.

PortName Name of the port referenced in the operation identified by
the Keyword.

PrevID Database ID of the affected data item's parent node.

RelType Data flow relationship type for the affected data item.

RootID Database ID of the root node of the tree.

Size Size in bytes of the affected data item.

SourceID Database ID of the file that contains the affected data
item.

SourceText Text of the source line that contains the affected data
item.

SourceType Source type of the file that contains the affected data
item.

StepName Name of the job step that contains the affected data item.

StepNum (also Step) Number of the job step that contains the affected data
item.

ToSel Character offset from the start of the file to the end of the
affected data item, counting from 0.

Generating a Pane Report
A Pane Report shows the entire tree for a trace in XML format. To generate a Pane Report, click the

button next to the button on the tool bar and choose Pane Report in the drop-down menu. A Save As
dialog opens, where you can specify the name, location, and file type of the report.

182 | Analyzing Programs

Generating an Affected Code Report (COBOL Only)
An Affected Code Report shows code that would be impacted by changing a data item's definition or usage

(COBOL only). To generate an Affected Code Report, click the button next to the button on the tool
bar and choose Affected Code Report in the drop-down menu. A Save As dialog opens, where you can
specify the name, location, and file type of the report.

Analyzing Program Control Flows
Control flows describe the processing paths in a program. Call flows, decision flows, and statement flows
each offer a different way of understanding the procedures in a program. Interactive Analysis offers the
following tools for analyzing program control flows:

• The Program Control Flow pane displays a diagram that shows the call flow for paragraphs in a COBOL
program, subroutines in an RPG program, or procedures in a PL/I or Natural program.

• The Execution Path pane displays a hierarchical view and diagram that show the conditions that
determine the flow of control in a COBOL or PL/I program.

• The Flowchart pane displays a diagram that shows the flow of control between statements in a COBOL
paragraph or PL/I procedure, or between steps in a job or JCL procedure.

• The Animator lets you step through COBOL or Natural code displayed in a Interactive Analysis pane.

Using the Program Control Flow Pane
The Program Control Flow pane displays a diagram that shows the call flow for paragraphs in a COBOL
program, subroutines in an RPG program, or procedures in a PL/I or Natural program. The flow is traced
from a seed item to a called external program, subroutine, or procedure (if any).

Call relationship lines are color-coded as specified in the table below.

Color Relationship

Green GO TO

Red Fall Thru

Brown PERFORM

Blue External call

The toolbar at the top of the pane displays icons used in the main Diagrammer window. For Diagrammer
usage, see Analyzing Projects in the product documentation set.

Analyzing Programs | 183

Drawing the Diagram
To display a call flow diagram in the Program Control Flow pane, select the seed item in the Source or
Context panes. The diagram is automatically redrawn when you select a new seed item in the Source or
Context pane, unless the new seed already appears in the current diagram. To redraw the diagram in that

case, select the new seed item in the diagram and click the button on the toolbar at the bottom of the
pane.

Choosing the Diagram View
The Program Control Flow pane offers two views of program control flows, a subgraph view and a subtree
view. The figures below show the same paragraphs in both views.

Subgraph View

The subgraph view offers a cyclic representation of the information in the diagram. Items are drawn once.

Relationship lines cross. Subgraph views are often easier to understand than subtree views. Click the
button on the toolbar at the bottom of the pane to select the subgraph view.

184 | Analyzing Programs

Subtree View

The subtree view offers a linear representation of the information in the diagram. Items are drawn as many
times as necessary. Relationship lines do not cross. Use this view if too many intersecting lines make a

subgraph view hard to read. Click the button on the toolbar at the bottom of the pane to select the
subgraph view.

Selecting Items
Select an internal item in a call flow diagram to navigate to it in the Source and Context panes. For Cobol,
select an external program to display it in the Source and Context panes. For PL/I and Natural, select an
external procedure and choose Switch to Procedure in the right-click menu to display it in the Source and
Context panes. Select a relationship line to navigate to the call in the Source and Context panes.

Setting Program Control Flow User Preferences
Use the Interactive Analysis > Program Control Flow tab of the User Preferences window to specify the
default box color for items in subgraph views and the color of the selected item in subgraph views. You can
also specify the number of visited nodes that Program Control Flow displays in different colors in subtree
views. For both views, you can specify that business names replace original identifiers in the diagram.

1. Click Tools > User Preferences. The User Preferences window opens. Click the Interactive Analysis >
Program Control Flow tab.

2. The current default background color of the box representing an item in the subgraph view is displayed
in the Default Box Color drop-down. The current background color of the box representing the selected

Analyzing Programs | 185

item in the subgraph view is displayed in the Selected Box Color drop-down. Click the adjacent
button to edit the color of the boxes.

3. In the Track Length combo box, enter the number of visited nodes in the subtree view that Program
Control Flow displays in different colors.

4. Select Display Business Names to display business names rather than original identifiers in the
Program Control Flow pane.

Setting Program Control Flow Project Options
Use the Program Control Flow tab of the Project Options window to control the depth of the flow trace: how
many calling and called nodes in a sequence the diagram displays to and from the seed item. You can also
limit the relationship types the diagram displays and filter out items by name.

1. Choose Options > Project Options. The Project Options window opens. Click the Program Control
Flow tab.

2. In the Connections pane, select the relationship types you want to view in the diagram. Select:

• Show GO TO to show GO TO relationships.
• Show Performs to show PERFORMS relationships.
• Show External Calls to show external call relationships.
• Show Follows to show Fall Thru relationships.
• Merge Duplicate Links to show a single relationship line rather than multiple lines when constructs

are connected by identical call relationships.

3. In the Neighborhood Size pane, use the Call Depth and Caller Depth sliders to specify the depth of the
flow trace: how many calling and called nodes in a sequence, respectively, the diagram displays to and
from the seed item.

Note: If Program Control Flow loads too slowly in subgraph mode, set these options to values
lower than 5.

4. In the Paragraph Name Filters pane, select the pattern that matches the names of items you want to
exclude from the diagram. The recognized patterns are listed in the Paragraph Name Filters pane. Add
patterns as needed.

Using the Execution Path Pane
The Execution Path pane displays a hierarchical view and diagram of the conditions that determine the
control flow in a program. Each view traces the control flow from the first involved condition to the seed
construct selected in the Source or Context pane. The seed construct can be either a paragraph or
statement. Use an execution path to ensure that a code segment encapsulates all of the business logic for
a candidate business rule.

Note: For a COBOL program, the Execution Path tool may give incorrect results if the program
contains a paragraph that is used in multiple PERFORM statements or in some combination of
PERFORM and GO TO statements.

1. Select the seed construct in the Source or Context pane.

2. Choose Execution Path > Analyze Selected Construct. Interactive Analysis displays the execution
path for the seed construct

Tip: Click the button on the tool bar to copy the execution path to the clipboard with all
formatting preserved.

186 | Analyzing Programs

3. Click the Diagrammatic View tab to display the execution path in a diagram. The seed construct is
displayed in red. The tool bar displays icons used in the common diagrammer. For more information,
see Analyzing Projects in the product documentation set.

Using the Flowchart Pane
The Flowchart pane displays a diagram that shows the flow of control between statements in a Cobol
paragraph or PL/I procedure, or between steps in a job or JCL procedure. The label of the box representing
an item in the flow contains the text of the item.

PERFORM statements are displayed with a blue label. GO TO, RETURN, and STOP RUN statements are
displayed with a red label. Conditions or conditional statement are displayed in boxes with a green
background. Captions along relationship lines show the conditions or blocks that determine the flow. Select
a statement or condition to navigate to it in the Source and Context panes.

Job step relationships are collapsed in a group. Double-click the maximize button for the group to expand
the relationships. Double-click the minimize button for the group to collapse the relationships.

Analyzing Programs | 187

Options control grouping of same-level statements and whether business names are displayed. The toolbar
at the top of the pane displays icons used in the main Diagrammer window. For Diagrammer usage, see
Analyzing Projects in the product documentation set.

Drawing the Diagram
To display a flowchart diagram in the Flowchart pane, select the paragraph, procedure, job, or JCL
procedure you want to analyze in the Source or Context panes. The diagram is automatically redrawn
when you select a new startup item in the Source or Context pane.

Setting Flowchart User Preferences
Use the Interactive Analysis > Flowchart tab of the User Preferences window to control grouping of same-
level statements and whether business names are displayed.
1. Choose Tools > User Preferences. The User Preferences window opens. Click the Interactive Analysis

> Flowchart tab.

188 | Analyzing Programs

2. Select Group Same Level Names to collapse same-level statements in a group. Double-click the
maximize button for the group to expand the statements. Double-click the minimize button for the group
to collapse the statements.

3. Select Display Business Names to display business names rather than original identifiers in the
Flowchart pane.

Using the Animator
The Animator lets you step through the code displayed in a Interactive Analysis pane. You can choose
program branches yourself, or have the animator choose them randomly.

Tip: The Animator is especially useful in tracking execution paths in Program Control Flow subgraph
views.

1. Select the construct you want to start the animation from in the Source or Context pane.

2.
Click the button on the tool bar if you want Animator to choose logical branches randomly.

Tip: Use the slider at the right of the tool bar to set the speed of the animation.

3. Click the button on the tool bar to start the animation. If you are choosing program branches
yourself, Animator stops at each condition it encounters and displays a pop-up menu that prompts you
to choose a logical branch. Click the branch you want to go down, or click Break to pause the
animation.

Interactive Analysis populates the top part of the Animator window with each condition it encounters, the
logical branch that you or the Animator chose, and the paragraph that contains the condition.

4. In the Context pane at the bottom of the window, click the appropriate tab to view exit points, altered GO
TOs, or the call stack for the paragraph currently being executed. You can hide the Context pane by
choosing the Animator > Show Context. Choose it again to show the Context pane.

Analyzing Programs | 189

Tip: Click the button on the tool bar to step through the code manually. Each time you click the

button the Animator steps into the next piece of program code. Click the button if you want to
step through the code manually but step over PERFORM statements.

5. Click the button on the tool bar to pause the animation. Click the button to restart the animation.

Click the button to stop the animation.

6. To save the animation results:

• To an Interactive Analysis list, click the button next to the button on the tool bar and choose
Save Trace As List in the drop-down menu. You can view the list in the Internal category in Code
Search.

• To XML, click the button next to the button on the tool bar and choose Save Trace As XML
in the drop-down menu. A Save As dialog opens, where you can specify the name and location of
the results report.

7. Click the to delete the results from the Animator window.

Setting Up a Glossary
Use the Glossary pane to create a dictionary, or glossary, of meaningful names for items of interest in your
workspace: data elements, paragraphs, programs, screens, tables, and the like. A glossary is especially
useful for assigning business names to identifiers: natural language names that make it easy to document
and retrieve business rules. The field PLC_NUM, for example, might have the business name Policy
Number.

The Glossary pane lets you assign business names to identifiers manually or in batch mode. You can auto-
extract business names from screens, import business names into a glossary from a file, and much more.

Note:

• The scope for Glossary is the whole workspace.
• We recommend that any mass updates should be done by a master user while no one else is

updating the Glossary.
• Mass update functions such as Generate Business Names, Propagate Business Names, and

Import Business Attributes should not be executed by more than one master user at a time, from
one Interactive Analysis instance.

• All mass delete operations (Delete All, Delete Manual, Delete Automatic and so on) are
Workspace wide operations and we recommended that these be performed only by the master
user.

• Users should not perform any update/delete functions while a mass update is in progress.

Understanding the Glossary Pane
A term is the name of an item of interest in your workspace. The Glossary pane automatically generates a
list of terms for the file selected in the Objects pane and any included files. Glossary search facilities let you
home in on terms of interest in the workspace.

The Glossary tool consists of two panes:

• The Terms pane displays the terms in the selected file, filtered by your choices in the workspace options
for the Glossary pane.

• The Search Result pane displays the terms returned by the most recent Glossary search. The scope of
the search is workspace-wide, unless you use the advanced search feature to filter explicitly by project.

Each pane displays the term type, the business name and description assigned to the term, and how the
business name and description were assigned (Manual, Automatic, Extracted from Screen, or From

190 | Analyzing Programs

Propagation). To hide a pane, choose Glossary > View Terms or Glossary > View Search Result, as
appropriate. Deselect the menu item to show the pane again.

To synch the Terms pane with other Interactive Analysis panes, choose Glossary > Synchronize with
other views. Select a term in the Terms pane to navigate to the term in other Interactive Analysis panes.
Deselect Glossary > Synchronize with other views to turn off synchronization.

Note: Turning off synchronization may improve Glossary performance for very large workspaces.

Searching for Terms
Glossary search facilities let you home in on terms of interest in your workspace:

• Use a simple search to perform coarse-grained searches for terms.
• Use an advanced search to perform narrowly targeted searches for terms.

The scope of all searches is workspace-wide, unless you use the advanced search feature to filter explicitly
by project. Results are returned in the Search Result pane. To clear the Search Result pane, choose
Glossary > Clear Search Result.

Using the Simple Search Facility
Use a simple search to perform coarse-grained searches for terms. Follow the instructions below to use the
simple search facility.

1. Enter the text for the search (or select the text of a recent search) in the Search combo box on the tool
bar. You can use wildcard patterns allowed in LIKE statements by Visual Basic for Applications (VBA).

Note: Select a column heading and click the button on the tool bar, then enter text in the
Search combo box to scroll intelligently to items in that column. The tool matches text as you type.

2.
Click the button on the tool bar to match business names only. Click both the button and the

 button to match terms and business names (search terms are ORed).

3. Click the button on the tool bar. The results of the search are displayed in the Search Result pane.

Using the Advanced Search Facility
Use an advanced search to perform narrowly targeted searches for terms. Follow the instructions below to
use the advanced search facility.

1. Choose Glossary > Advanced Search. The Advanced Search dialog opens.

Analyzing Programs | 191

2. You can create a new search filter or edit an existing search filter:

• To create a new search filter, enter the name of the filter in the Filter Name combo box.
• To edit an existing search filter, select the filter in the Filter Name combo box.

Note: To save a search filter, choose Filter > Save Current Filter. To delete a search filter,
choose Filter > Delete Filter. To restore a filter to its initial values, choose Filter > Reset Values.

3. To filter on source file type, select the type in the Source Type drop-down.

4. To filter on source file name, select the File Name check box, then select the matching pattern for the
name in the combo box below. Enter a new matching pattern by typing in the combo box. You can use

wildcard patterns allowed in LIKE statements by Visual Basic for Applications (VBA). Click the button

192 | Analyzing Programs

next to the drop-down to display a pop-up menu of elements you can insert in the pattern. Click an
element to insert it. The matching pattern is saved when you save or execute the filter.

5. To filter on tags, select each tag you want to filter on in the With Tags pane. The search will return
matching repository objects that have been assigned the tag and matching HyperCode constructs
contained in repository objects that have been assigned the tag.

6. To filter on projects, select the Project check box, then select the projects in the list pane below.

7. To filter on repository object type, select each object type you want to filter on in the Repository Entities
pane.

8. To filter on HyperCode construct type, select each construct type you want to filter on in the Hypercode
Entities pane.

Note: Both repository and Hypercode entities are filtered by your choices in the workspace options
for the Glossary pane.

9. To filter on the text for a term and/or business name, enter a matching pattern for the text in the combo
boxes for terms and/or business names in the Where pane. You can enter plain character strings or
wildcard patterns.

a) Click the radio button for the type of pattern matching you want to use.
b) For wildcard patterns, click the button next to the drop-down to display a list of elements you can

insert in the pattern. Click an element to insert it. You can use wildcard patterns allowed in LIKE
statements by Visual Basic for Applications (VBA). The matching pattern is saved when you save or
execute the filter.

c) In the Condition drop-down, select AND if you want the search terms to be ANDed, or OR if you
want the search terms to be ORed.

d) Select the Match Case check box if you want the search to match case.

10.Click OK to execute the filter. The Glossary tool displays the search results in the Search Result pane.

Note: If you execute another advanced search with the same criteria for the term or business
name, the contents of the Search Result pane act as a filter. If you don't want to filter on existing
results, choose Glossary > Clear Search Result to clear the Search Result pane.

Creating a List of Search Results
To create a Code Search list containing search results, choose Glossary > Add to Code Search List.
Specify the list name in the New list dialog box and click OK. The list is displayed in the Glossary category
in Code Search.

Assigning Business Attributes
You can assign business names manually or in batch mode. You can also export terms and business
attributes from the glossary for one workspace for import into the glossary of another.

Assigning Business Names Manually
To assign a business name and business description to an object, select the object and choose Set
Business Attributes in the right-click menu. A dialog box opens, where you can enter the business name
and business description. To unassign a business name or business description, simply delete the value in
the dialog box.

Assigning Business Names in Batch Mode
Ordinarily, you will want to assign business names in batch mode rather than manually. In the batch
interface, you enter replacement text for each token or string you want to change in a term. For the string
NUM, for example, you would enter the replacement text Number. You can also modify business names
themselves in batch mode.

Analyzing Programs | 193

A token is an element in a program identifier delimited by a hyphen (-) or underscore (_). In the identifier
WS01-CUST-FIELD, for example, there are three tokens: WS01, CUST, and FIELD.

1. Choose Glossary > Generate/Modify Business Names. The Maintain Business Names dialog opens.

2.
Click the button on the toolbar to enable business name generation.

3. Click the button on the toolbar to enable token or string replacement. The button is a toggle.

4. In the Token/String field, enter the token or string you want to replace. You can use wildcard patterns
allowed in LIKE statements by Visual Basic for Applications (VBA). In the Replacement field, enter the
replacement string. Repeat the procedure for each token or string you want to replace.

Note: Click the button on the toolbar to clear the dialog. Click the button on the toolbar to

save the list of entries to a file. Click the button on the toolbar to load a list of entries into the
dialog.

5. Select Overwrite existing business names if you want existing business names to be overwritten by
the matching text.

6. Click OK. The Glossary tool automatically generates business names for each term that contains the
token or string, replacing the string with the text you specified.

7. To modify business names, click the button on the toolbar, then repeat the procedure described
above for string replacement.

Extracting Business Names from Screens
One of the most powerful features of COBOL Analyzer lets you auto-extract screen labels as business
names for program variables. For each screen field with a label immediately to its left in the Screen pane,
the Glossary tool generates a business name for the program variable whose value is displayed in the field.
If the screen field has the label Customer Number, for example, Glossary assigns the business name
"Customer Number" to the variable whose value is displayed in the field.

To extract business names from all the screens in the workspace, choose Glossary > Extract From All
Screens. To extract business names only from the screen selected in the Source or Context panes, choose
Glossary > Extract From Current Screen.

Importing and Exporting Business Attributes
You can export terms and business attributes from the glossary for one workspace for import into the
glossary of another. You can also import terms and business attributes propagated programmatically. Term

194 | Analyzing Programs

(source), business name (replacement), and business description (description) must appear in XML file
format as follows:

<glossary>
 <item source="CUST_INFO" replacement="CUSTOMERINFORMATION"
 description="customer information"/>
 ...
</glossary>

To export business attributes, choose Glossary > Export Business Attributes. A save as dialog opens,
where you can specify the name and location of the file to export.

To import business attributes, choose Glossary > Import Business Attributes. An open dialog displays,
where you can specify the file to import. You are prompted to confirm whether you want to overwrite
existing business attributes. Select Overwrite existing business attributes if you want to replace existing
business attributes as well as add new ones. Click OK.

Propagating Business Names
You can propagate the business name for one identifier to a related identifier with an identical meaning in
the data flow. Business names can be propagated in either direction of the relationship and transitively:

• For the statements MOVE A to B and MOVE B to C, if A has a business name, it is propagated to B and
C.

• For the statements MOVE A to B and MOVE B to C, if C has a business name, it is propagated to B and
A.

No business name is assigned to a variable if it receives values from variables with different business
names:

Working-Storage Section.
10 Cust-No PIC 9(7).
10 Ord-No PIC 9(7).
10 Display-No PIC 9(7).

Procedure Division.
...
Move Cust-No to Display-No.
Display Display-No.
Move Ord-No to Display-No.
Display Display-No.
...

If Cust-No has the business name Customer Number, and Ord-No has the business name Order Number,
no business name is assigned to Display-No, since it receives values from variables with different business
names.

To propagate business names from all existing business names, choose Glossary > Propagate All. To
propagate business names from selected business names, choose a single business name in the Terms
pane or multiple business names in the Search Result pane and choose Glossary > Propagate Selected.
To propagate only from business names assigned in a specific way, choose Glossary > Propagate
<Assignment Method>.

Deleting Business Attributes
To delete business attributes for a given term, select the term in the Terms or Search Result pane and
choose Set Business Attributes in the right-click menu. The Set Business Attributes dialog opens, where
you can delete the values in the Business Name and Description fields.

To delete all business names, right-click in the Terms or Search Result pane and choose Delete Business
Names > Delete All Business Names in the pop-up menu. To delete only business names assigned in a

Analyzing Programs | 195

specific way, right-click in the Terms or Search Result pane and choose Delete Business Names > Delete
<Assignment Method> in the pop-up menu.

To delete all business descriptions, right-click in the Terms or Search Result pane and choose Delete All
Descriptions in the pop-up menu.

Note: Mass delete operations are workspace-wide, and should normally be performed by the master
user only.

Setting Glossary Workspace Options
Use the Glossary tab of the Workspace Options window to filter the objects and constructs available in the
Terms pane and the Advanced Search dialog, and to specify the types of data flow relationships for which
business names are propagated.

1. Choose Options > Workspace Options. The Workspace Options window opens. Click the Glossary
tab.

2. Click the Entities tab, then the Hypercode tab. In the Source Type pane, select the source file type
whose constructs you want to include, then select the constructs in the HyperCode Entities pane.

3. Click the Repository tab. Select each type of repository object you want to include.

4. Click the Propagation tab. Select each data flow relationship you want to propagate business names
for.

Note: Click Select All to select all the items on a tab. Click Select All again to deselect all the
items.

Refreshing a Glossary
You need to refresh a glossary if, during the current Glossary session, you assign a business name to an
object in another tool and want the change to be reflected in the glossary. To refresh a glossary, choose
Glossary > Refresh Glossary.

Generating Glossary Reports
The Glossary tool offers two reports:

• The Terms report prints the contents of the Terms pane. To generate a Terms report, choose Glossary
> Terms Report.

• The Search report prints the contents of the Search Result pane. To generate a Search report, choose
Glossary > Search Report.

Extracting Business Rules
Much of the code in a legacy application, by some estimates as much as 80%, is devoted to tasks with only
a marginal relationship to the business logic of the application. Business rule extraction lets you separate
the application's business logic from data transfer and other tasks.

That makes the application easier to understand, document, maintain, and modernize. It also makes it
easier to determine the overlap between legacy applications on the one hand, and any gaps in their
functionality on the other.

Business Rule Manager (BRM) lets you batch edit rule attributes; create custom attributes suited to your
particular needs; match input/output data elements with the business names you've assigned to them in
your project glossary; and much more.

196 | Analyzing Programs

Understanding Business Rules
A business rule is a named container for program code that performs a discrete task in a business process.
The rule identifies and documents the code segment that performs this task. A business rule named
Calculate Date Difference, for example, might consist of this segment:

COMPUTE WS-DATE-VARIANCE =
WS-C-CARD-DATE-CCYYMM - WS-TODAYS-DATE-CCYYMM.

A business rule can contain one segment only. The same segment can be assigned to different rules.
Rules are identified in the Rules pane with a symbol.

How Business Rules Are Organized
You organize business rules in rule sets. A rule set typically consists of rules executed together, such that if
one rule is executed, all are executed (the statements in a paragraph, for example). Think of a rule set as a

business process, like Validate Input or Update File. Rule sets are identified in the Rules pane with a
symbol.

You organize rule sets, in turn, in business functions. A business function typically defines the order in
which processes are triggered. Think of a business function as a use case, like Insert Customer or Update
Order. Business functions are identified in the Rules pane with a symbol.

Business function names must be unique in the workspace. The same rule set can exist in multiple
business functions; the same rule can exist in multiple rule sets. The figure below shows the Interactive
Analysis Rules pane with a typical hierarchy of business functions, rule sets, and business rules.

Analyzing Programs | 197

How to Assign Segments to Business Rules
You create business rules from code segments identified manually in source. Use a Code Search list to
generate business rules in a specified rule set with predefined attributes.

Understanding Business Rule Attributes
Business rule attributes define the characteristics of the rule: its name, classification, status, business
description, and the like. You can view rule attributes in the righthand pane of the Rules window.

Tip: Use the Technical Description, Business Description, Audit, Classification, Status, and Transition
attributes for a business function or rule set to indicate that a value applies for all the rules included in
the business function or rule set.

You can propagate rule attribute values to one or more rules, and you can use a variety of methods to
batch edit rule attributes:

• Code Search lets you generate business rules in a specified rule set with predefined attributes.
• The search facility in the Rules pane lets you locate existing rules with common characteristics, which

you can then modify in bulk with the Change Rules feature.

You can modify attribute characteristics and valid values, and you can create custom attributes suited to
your particular needs.

198 | Analyzing Programs

Understanding Triggers, I/O Data Elements, and Control Conditions
In addition to the attributes of a rule, the righthand pane of the Rules window displays the input/output data
elements of the rule, its control conditions, and whether it triggers a rule set:

• I/O data elements identify the input, output, and input/output fields for a rule.
• Control conditions identify the conditions that govern the execution of a rule. A rule may be executed, for

example, only when the value of the State Field is California. Rules that execute conditionally are

identified in the Rules pane with symbol.
• A trigger is a rule that causes another business process to be started. After the triggered process

completes, the triggering process may either continue or terminate. The Valid Phone Number rule in the
rule set Validate Input might trigger the rule set Update File, for example. Triggering rules are identified
in the Rules pane with a symbol.

Understanding the Rules Pane Display
The lefthand portion of the Rules pane displays the business functions in your workspace in tree form:

• The Grouping tab lists rules in the order you created them manually, organized by business function and
rule set.

• The Triggering tab lists rules in a hierarchy of triggers, in which each triggering rule can be a parent to
triggering rules that depend on it in program logic.

The righthand pane displays the attributes and other characteristics of the business function, rule set, or
rule selected in the lefthand pane.

Extracting Business Rules Manually
The following instructions describe how to assign a rule segment at the same time as you create a rule.
You can also assign a segment after creating a rule.

Analyzing Programs | 199

1. In the Source pane, select the segment you want to assign to a business rule. In the Rules pane, select
the business function or rule set (if any) for the new rule, then choose Create Rule in the Rules menu.
The Create Business Rule dialog opens.

Tip: You can select a code segment as construct or text. Select a segment as text when you want
to select either more or less code than a construct contains. To select a segment as text, click-and-
drag from the first line of the segment to the last line of the segment. The segment is highlighted in
blue. To select a segment as construct, click inside the construct in the Source pane. The segment
is highlighted in yellow.

2. In the Business Function drop-down, select the business function for the rule. The current business
function is displayed. To create a new business function, click New, then follow the instructions for
creating business functions.

3. In the Rule Set drop-down, select the rule set for the rule. The current rule set is displayed. To create a
new rule set, click New, then follow the instructions for creating rule sets.

4. Specify the rule's attributes:

• In the Name field, enter the name of the rule.
• On the Business Description tab, enter the business description for the rule.
• On the Technical Description tab, enter the technical description for the rule.
• On the Attributes tab, specify the remaining attributes of the rule.

5. Click OK.

Performing Basic Tasks in the Rules Pane
The lefthand pane of the Rules window lists every business rule in the current project, organized by
business function and rule set. To see their attributes in the righthand pane, select:

• A business function.
• A rule set. If a rule set is triggered by a rule, the trigger is listed in the lower portion of the righthand

pane.
• A rule to view its attributes and its segment in the Interactive Analysis Source and Context panes.

Creating Business Functions
To create a business function, choose Rules > Create Business Function. The Business Function dialog
opens. In the Business Function dialog, enter the attributes of the new business function and click OK.

Creating Rule Sets
To create a rule set, select the business function for the rule set in the lefthand pane and choose Rules >
Create Rule Set. The Create Rule Set dialog opens, with the current business function displayed in the
Business Function drop-down. Select another business function if necessary, then enter the attributes of
the new rule set and click OK.

Selecting Rules for Batch Processing
There are four ways to select rules for Batch Processing:

Default
selection (using
only the mouse)

It marks the current node with all its child nodes. In case of reused rule set, it selects
all instances. In the Triggering pane, all nodes down the triggering chains are
checked.

Check a rule to make it a candidate for batch processing. Check a rule set to select all
rules in it. Check a business function to select all the rule sets and rules in it.

200 | Analyzing Programs

To check all rules, click Rules > Select All. Click Rules > Unselect All to clear the
selection. To invert the current selection, so that unselected rules are selected and
selected rules are unselected, click Rules > Invert Selection.

Note: Click Rules > Selected Only to display only the checked business
functions, rule sets, or rules (and their parents or children) in the Rules pane.

Using the Shift
key

Shift + click marks only the current node.

Using the Ctrl
key

Ctrl + click marks the current node and all its sibling nodes.

Using Ctrl +
Shift keys

Ctrl + Shift + click marks the current node with all its child nodes. In the Triggering
pane, the check does not affect the triggering chains.

Moving or Copying Rules or Rule Sets
To move or copy rules, place a check mark next to the rules and click Rules > Copy/Move Selected
Rules. The Copy/Move Selected Rules dialog opens, where you can specify the rule set for the rules and
whether you want to move or copy them.

To move or copy rule sets, check the rule sets and click Rules > Copy/Move Selected Rule Sets. The
Copy/Move Selected Rule Sets dialog opens, where you can specify the business function for the rule sets
and whether you want to move, copy, or reuse them. For copied rule sets, a number in curly brackets ({n})
is appended to the name to guarantee uniqueness. For reused rule sets, no change is made to the name.

Note: If you attempt to delete a reused rule set, you are prompted to confirm whether you want to
delete every instance or only the selected instance.

Copying a Rule or Rule Set with a Different Name
To copy a rule with a different name, select the rule and choose Rules > Copy/Move. The Copy/Move
dialog opens, where you can specify the rule set for the rule and the new name of the rule.

Note: If you select Move rather than Copy in this dialog, the rule is moved unchanged to the new
location.

To copy a rule set with a different name, select the rule set and choose Rules > Copy/Move. The Copy/
Move dialog opens, where you can specify the business function for the rule set and the new name of the
rule set. You can also specify a technical description or business description. The rules in the rule set are
not copied to the new location.

Note: If you select Move rather than Copy in this dialog, the rule set and all its rules are moved
unchanged to the new location.

Deleting Rules, Rules Sets, and Business Functions
To delete a rule, rule set, or business function, select it and choose Rules > Delete. You are prompted to
confirm the deletion. Click OK. You cannot delete a non-empty rule set or business function. To undo the
deletion, choose Rules > Undo Delete.

Changing the Order of Rules and Rule Sets
To move a rule up in the sequence for its rule set, select it and choose Rules > Move Up in Sequence. To
move a rule down in the sequence for its rule set, select it and choose Rules > Move Down in Sequence.
You can also use these menu choices to move a selected rule set up or down in the sequence for its
business function.

Tip: For reporting purposes, it's usually best to list rules in order of execution.

Analyzing Programs | 201

Exporting Rules, Rule Sets, and Business Functions
To export rules, rule sets, or business functions to an ERD file, for import to another workspace or a third-
party tool, select the items you want to export and choose Rules > Rule Export. You are prompted to
continue. Click Yes. The Export Objects dialog opens, where you can specify the name and folder for the
ERD file.

Note: Only the parents of exported items are exported. Children are not. That is, if you export a
business function, only the business function is exported. If you export a rule set, only the rule set and
its business function are exported.

Importing Rules, Rule Sets, and Business Functions
To import rules, rule sets, or business functions from an ERD file, choose Rules > Rule Import. The
Import Rules dialog opens, where you can specify the name and folder for the ERD file.

Parents are also imported. If the parent for an imported item already exists in the workspace and has
different children, the item is added to the existing children.

Note: If the segment for an imported rule does not exist in the workspace, the segment validity
attribute for the rule is set to False.

Assigning Segments to Existing Rules
To assign a segment to an existing rule (whether or not a segment has already been assigned to it), select
the rule, then select the segment in the Source pane. Choose Rules > Assign segment.

Deleting a Segment from a Rule
To delete a segment from a rule, select the rule and choose Rules > Delete segment.

Flagging Segments in Source
To place a symbol in the Interactive Analysis Source pane display next to each line in the assigned

segment, click the button on the tool bar.

Viewing the Activity Log

To view a chronological record of your activities for a rule, select the rule and choose Rules > Activity
Log.

Editing Rule Attributes
Before a rule will be useful to other members of your organization, you need to define its attributes: what
task the rule performs, whether it has been approved, the last time it was validated, and so forth. You can
view rule attributes in the righthand pane of the Interactive Analysis Rules window.

Tip: Use the Technical Description, Business Description, Audit, Classification, Status, and Transition
attributes for a business function or rule set to indicate that a value applies for all the rules included in
the business function or rule set. Use the Business Area attribute of a business function to classify
business functions as members of a still broader category of activity, such as Customer Management.

You can propagate rule attribute values to one or more rules, and you can use a variety of methods to
batch edit rule attributes:

• Code Search lets you generate business rules in a specified rule set with predefined attributes.
• The search facility in the Rules pane lets you locate existing rules with common characteristics, which

you can then modify in bulk with the Change Rules feature.

202 | Analyzing Programs

You can modify attribute characteristics and valid values, and you can create custom attributes suited to
your particular needs.

Editing System Attributes
The names and characteristics of system attributes cannot be modified. The values for many of these
attributes are set programmatically.

Editing the Name Attribute

You specify the name of a business function, rule set, or rule when you create it. To edit the Name attribute,
enter a new name in the Name field.

Editing the Business Area Attribute

The Business Area attribute of a business function identifies the business activity of which the business
function is a part, such as Customer Management. To edit the Business Area attribute, enter appropriate
text in the Business Area field.

Editing the Technical Description Attribute

The Technical Description attribute identifies the role of a rule in program logic. To edit the Technical
Description attribute, enter appropriate text in the Technical Description tab.

Editing the Business Description Attribute

The Business Description attribute identifies the business role of a rule. To edit the Business Description
attribute, enter appropriate text in the Business Description tab.

Editing the To Be Reviewed By Attribute

The To Be Reviewed By attribute identifies the business analyst responsible for reviewing and approving a
rule. To edit the To Be Reviewed By attribute, enter appropriate text in the To Be Reviewed By field.

Editing the Program Attribute

The Program attribute identifies the program that contains the rule segment. The value is supplied when
you assign a segment to a rule.

Editing the Segment Validity Attribute

Refreshing or editing source code may result in a mismatch between rules and segments. Lines of code
may have been added or deleted during the refresh or edit, causing a rule to no longer to be synchronized
with its segment after re-verification.

The Segment Validity attribute specifies whether a rule segment is valid. The value is supplied when a
segment is validated or invalidated.

Editing the Last Validation Time Attribute

The Last Validation Time attribute identifies the date and time a rule segment was last validated. The value
is supplied when a segment is validated.

Editing User-Defined Attributes
User-defined attributes can be renamed, defined with different values, or deleted altogether. Their default
names and values are described below.

Analyzing Programs | 203

Editing the Audit Attribute

Newly created rules are considered unapproved, pending a decision that the rule represents valid business
logic. The Audit attribute identifies whether the rule has been audited and approved. To edit the Audit
attribute, choose one of the following from the Audit drop-down:

• Not Approved if the rule has not been accepted as valid business logic.
• Approved if the rule has been accepted as valid business logic.

Editing the Classification Attribute

The Classification attribute identifies the programming task a rule performs. To edit the classification
attribute, choose one of the following from the Classification drop-down:

• I/O if the rule performs an input or output function.
• Calculation if the rule performs a calculation.
• Security if the rule performs a security function.
• Decision if the rule resolves a decision.
• Validation if the rule performs validation.
• Flow if the rule performs a data flow function.

Editing the Status Attribute

The Status attribute identifies the status of a rule in a code extraction or other project. To edit the Status
attribute, choose one of the following from the Status drop-down:

• (none) if the rule has no extraction status.
• Extracted if the rule has been extracted, but not accepted or rejected.
• Working if the rule is still being extracted.
• Accepted if the rule has been accepted.
• Rejected if the rule has been rejected.

Editing the Transition Attribute

The Transition attribute identifies the status of a rule in an application redevelopment project. To edit the
Transition attribute, choose one of the following from the Transition drop-down:

• Valid as is, if the rule is valid for redevelopment.
• Complete, if the rule has been redeveloped.
• Obsolete, if the rule is obsolete.
• Requires modification, if the rule requires modification for redevelopment.
• Duplicate, if the item is a duplicate of a rule being used for redevelopment.

Propagating Rule Attributes
Follow the steps below to propagate one or more attribute values for a rule to another rule or to a group of
rules:

1. Select the rules to which you want to propagate attribute values.

2. Click the rule whose attribute values you want to propagate and choose Rules > Propagate from
Highlighted to Selected. You are prompted to continue. Click Yes. The Attribute Propagation window
opens.

204 | Analyzing Programs

3. In the Attribute Propagation window, place a check mark next to each attribute whose value you want to
propagate, then click OK.

Identifying Triggered Rule Sets
A trigger is a rule that causes another business process to be started. After the triggered process
completes, the triggering process may either continue or terminate. The Valid Phone Number rule, for
example, in the rule set Validate Input might trigger the rule set Update File.

The Triggers field for a rule identifies the rule set the rule triggers. Triggering rules are identified in the
Rules pane with a symbol. A rule set can be triggered by multiple rules. A rule can trigger the rule set it
belongs to.

If a rule set is triggered by a rule, the trigger is listed in the lower portion of the right-hand pane for the rule
set. Double-click the name of a trigger in the list to navigate to the corresponding rule in the lefthand pane.

1.
Select the triggering rule and click the button next to the Triggers field in the right-hand pane. The
Select Triggered Rule Set window opens.

Note: Alternatively, you can access the Select Triggered Rule Set functionality from the context
menu in the Rules pane from the drop-down menu of the toolbar button Change Rule Attributes.

2. Select Triggered Rule Set. To create a new rule set for the rule to trigger, click New, then follow the
instructions for creating a rule set.

Identifying I/O Data Elements
I/O data elements identify the input, output, and input/output fields in the code for a rule. You can specify
the fields manually.

Use the autoretrieve feature to match I/O data elements with the business names you've assigned to them
in your project glossary. A business name identifies the business function of a variable in natural language,
and is invaluable in documenting and retrieving business rules. The field PLC_NUM, for example, might
have the business name Policy Number.

Analyzing Programs | 205

Tip: Use the I/O Data Elements tab for a business function or rule set to specify the data elements for
all the rules included in the business function or rule set.

Identifying I/O Data Elements Manually
Follow the instructions below to identify I/O data elements manually.

1. Select a business function, rule set, or rule, then right-click in the I/O Data Elements tab and choose
Create in the pop-up menu. The I/O Data Element dialog opens.

2. In the Name field, enter the name of the data element as it appears in the code.

3. In the Kind group box, choose:

• I/O for an input and output field.
• Input for an input field.
• Output for an output field.

4. In the Business Name area, select:

• Auto if you want to automatically retrieve the business name for the I/O element from your project
glossary.

• Manually if you want to enter the business name for the I/O element by hand. Enter the name in the
field below the radio button.

5. In the Description field, enter a description of the I/O element.

6. Click OK to dismiss the dialog and return to the Rules window. The specified field is listed in the I/O
Data Elements tab in the righthand pane of the window.

7. Repeat this procedure for each field you want to add to the rule.

Tip: To edit a field in the table, select the field and choose Edit in the right-click menu. The I/O
Data Element dialog opens, where you can make the necessary changes. To delete a field, select
it and choose Delete in the right-click menu.

Autodetecting I/O Data Elements
To autodetect I/O data elements, select a rule or several rules, then right-click in the I/O Data Elements tab
and choose Detect I/O Data Elements in the pop-up menu. You are prompted to continue. Click Yes.

206 | Analyzing Programs

Note: Alternatively, you can do this by selecting Detect I/O Data Elements from the context menu in
the Rules pane or from the drop-down menu of the toolbar button Change Rule Attributes.

When the autodetect process is complete, a dialog box displays the number of autodetected I/O elements.
Click OK. Click the I/O Data Elements tab in the right-hand pane of the Rules window to view the
autodetected I/O elements.

To roll back automatic detection, select a rule or several rules, then right-click in the I/O Data Elements tab
and choose Undo I/O Detection in the pop-up menu.

Note: Alternatively, you can do this by selecting Undo Last I/O Detection from the context menu in
the Rules pane or from the drop-down menu of the toolbar button Change Rule Attributes.

Note: When you verify the project, set Enable Impact Report and Enable Data Element Flow in the
project verification options to enable the autodetect method for I/O data elements.

The method is based on a set of heuristics designed to produce reasonable output. Results may need
to be verified by a detailed impact analysis. For more information on the heuristics, contact support
services.

Retrieving Business Names for I/O Data Elements
To match I/O data elements with the business names you've assigned to them in your project glossary,
select a business function, rule set, or rule, then right-click in the I/O Data Elements tab and choose
Populate I/O Business Names in the pop-up menu. You are prompted to continue. Click Yes.

When the autoretrieve process is complete, a dialog box displays the number of autoretrieved I/O business
names. Click OK. Click the I/O Data Elements tab in the righthand pane of the Rules window to view the
autoretrieved business names.

Identifying Control Conditions
Control conditions identify the conditions that govern the execution of a rule. A rule may be executed, for
example, only when the value of the State field is California. Rules that execute conditionally are identified

in the Rules pane with symbol.

Tip: Use the Control Conditions tab for a business function or rule set to specify the control conditions
for all the rules included in the business function or rule set.

Use the autoreplace feature to replace variable names in control conditions with the business names
you've assigned to them in your project glossary. A business name identifies the business function of a
variable in natural language, and is invaluable in documenting and retrieving business rules. The field
PLC_NUM, for example, might have the business name Policy Number.

Tip: Move a control condition up or down in the Control Conditions tab by selecting it and choosing
Move Up or Move Down in the right-click menu.

Specifying Control Conditions
Follow the instructions below to specify control conditions for a rule.

1. Select a business function, rule set, or rule, then right-click in the Control Conditions tab and choose
Create Control Condition in the pop-up menu. The Control Condition dialog opens.

Note: Alternatively, you can do this by selecting Create Control Condition from the context menu
in the Rules pane or from the drop-down menu of the toolbar button Change Rule Attributes.

2. In the Name field, enter the name of the data item evaluated by the condition as it appears in the code.

3. In the Operator drop-down, choose the operator for the comparison that determines whether the
condition is met.

4. In the Argument field, enter the constant value to which the data item is compared. The value may be
the name of another field.

Analyzing Programs | 207

5. In the Description field, enter a description of the control condition.

6. Click OK to dismiss the dialog and return to the Rules window. The specified condition is listed in the
Control Conditions tab in the righthand pane of the window.

Tip: To edit a field in the table, select the field and choose Edit in the right-click menu. The Control
Condition dialog opens, where you can make the necessary changes. To delete a field, select it
and choose Delete in the right-click menu.

7. Repeat this procedure for each control condition you want to add to the rule.

Autoreplacing Variable Names in Control Conditions with Business
Names
To autoreplace variable names in control conditions with their business names in a project glossary, select
a business function, rule set, or rule, then right-click in the Control Conditions tab and choose Substitute
Business Names in the pop-up menu. You are prompted to continue. Click Yes.

When the autoreplace process is complete, a dialog box displays the number of autoreplaced variable
names. Click OK.

Searching for Rules
Use the search facility in the Rules pane to find rules based on segment location and/or attribute values.
Use the Change Rules feature to batch edit the rules returned by the search.

Note: There is also a simple search option, under the Rules toolbar, that selects business functions,
rules sets and rules that match the search string. It is case-sensitive and is available for the Grouping
tab only, however results appear as checked in the Triggering tab as well.

1. Select a business function, rule set, or rule and choose Rules > Start Search. The Rule Search
window opens.

208 | Analyzing Programs

2. To search for rules by segment location, select Location of Rule Segments, then choose:

• Covering the Current Line if you want to find rules with a segment that contains the line of code
selected in the Source pane.

• Relating to the Program if you want to find rules related to a given program. Select the program in
the adjacent drop-down.

3. To search for rules by attribute value, select:

• The type of object that contains the attribute in the Type combo box.
• The attribute in the Name drop-down.
• The operator for the attribute value comparison in the Operator drop-down.
• The value of the attribute in the Value drop-down.

Click Add. The search criterion is added to the list box below the drop-downs. Repeat this step for each
attribute you want to search by. Select a criterion and click Remove to delete the criterion from the list
box.

4. To search only the selected rules, select Among Selected Rules.

5. To find rules in the triggering hierarchy for the selection, select Propagate Selection down Triggering
Chains.

6. To invert the search, so that rules not identified by the search criterion are found, choose Invert
Selection when Done.

7. To save the search criteria you have chosen, click Save. This button is active only when the list of
conditions is not empty. The criteria are saved to a file whose name contains the current date and time.

Analyzing Programs | 209

Example: SearchCriterion_2014-Jan-16_04-24-22.BRM.xml. By default it is saved in the
workspace directory.

8. To load saved search criteria, click Load, select the file where the search criteria are saved and click
Open.

9. When you are satisfied with your entries in the Rule Search window, click Find. The search facility
automatically selects the check box for each rule returned by the search.

Batch Processing Rule Attributes
Use the Change Rules feature to batch process rule attributes. You can select batch-processing candidates
manually, or use the search facility to select candidates automatically.

Note: Attributes of I/O data elements and control conditions can only be used to replace a Business
Description or Technical Description. If there are multiple instances of I/O data elements or control
conditions, they are displayed in the Business Description or Technical Description on separate lines.

1. Select the check box for each rule you want to batch process. If you are batch processing rules returned
by a search, the check boxes are already selected.

2. Click Rules > Change Rule Attributes. You are prompted to continue. Click Yes. The Change Rules
window opens.

3. In the Attribute drop-down, select the attribute you want to batch edit. In the Find What field, enter a
pattern for the search text. In the Replace With field, enter a pattern for the replacement text. You can
use any combination of text and bracketed attribute names. For attributes with enumerated values, click
the arrow button next to the Find What and Replace With fields to display the values in a drop-down.
For the remaining attributes, click the arrow button to display the available attributes in a drop-down.
Select an item in a drop-down to populate the adjacent field.

4. When you are satisfied with your entries in the Change Rules window, click Replace. BRM modifies the
selected rules. Click Close to dismiss the window and return to the Rules pane.

Usage Example
Suppose you wanted to use the Change Rules feature to rename two rules:

Rule 1 of program ABC
Rule 2 of program XYZ

as follows:

Rule 1 extracted from the ABC program
Rule 2 extracted from the XYZ program

1. Check Rule 1 of program ABC and Rule 2 of program XYX.

2. Choose Rules > Change Rule Attributes. You are prompted to continue. Click Yes. The Change Rules
window opens.

3. In the Select Attribute field, choose the name attribute.

4. In the Find What field, enter:

of program [Program]

5. In the Replace With field, enter:

extracted from the [Program] program

Substituting a Business Name for an I/O Element in an Attribute Value
You can substitute a business name for an I/O element in an attribute value by appending "/bus" to the
attribute name in either the Find What or Replace With fields in the Change Rules window.

Suppose the Catalog-Master variable has the business name Master Catalog. Now you want to replace the
existing Business Description for the Rewrite Catalog-Master rule with the text "Rewrite Master Catalog."

210 | Analyzing Programs

You would select the Business Description attribute in the Select Attribute field and enter in the Replace
With field:

[Name/bus]

Synchronizing Sources
Suppose a rule set in the current project is triggered by a rule in another project. When you synchronize
sources, BRM includes the program that contains the segment for the triggering rule in the current project.
To synchronize sources, choose Rules > Sync Sources.

Validating Rule Segments after Refreshing or Editing
Code
Refreshing or editing source code may result in a mismatch between a rule and its segment. Lines of code
may have been added or deleted during the refresh or edit, causing a rule to no longer to be synchronized
with the segment after reverification.

BRM automatically handles invalidated segments based on your instructions in the Business Rule Manager
> Automatic Rule Validation tab of the Project options window. Use the procedure below when you need to
override the specified handling for a rule.

1. Select the rules you want to validate and choose Rules > Validate. You are prompted to continue. Click
Yes. The Automatic Rule Validation dialog opens.

2. In the Actions for invalid segments pane, select:

• Leave segment, set Valid to false if you want BRM to keep the invalid segment with the rule, but
set the Segment Validity attribute of the rule to Invalid.

• Delete segment, set Valid to true if you want BRM to delete the invalid segment from the rule and
set the Segment Validity attribute of the rule to Valid.

• Try to match if you want BRM to resynchronize the segment with the rule.

3. Place a check mark next to Collapse spaces in strings if you have added spaces to strings in
segments and want BRM to ignore the spaces.

4. Click OK.

When the validation process is complete, a dialog box displays the number of validated rules. Click OK.
The Segment Validity attribute for the rules is updated.

Limitations on Automatic Rule Validation
Automatic rule validation will fail to resynchronize a segment if the segment has been modified in any way
during the refresh or edit (if a line has been inserted in the segment code, for example, or if the text of a
line has been changed). You must re-synchronize these segments manually. Blank lines are OK.

Note, too, that if the code for a segment is duplicated in a program, the autovalidation method will
synchronize the rule with the instance of the duplicated code nearest to its previous location, whether or
not that instance was originally associated with the rule. The rule will be the same, but the program context
may be different from the one you intended. Here, too, you will have to recreate the rule manually.

Setting Business Rule Manager Project Options
Project options for Business Rule Manager determine:

• The rule name templates available when you use Code Search to create rules in a specified rule set.
• How BRM handles invalidated rule segments.
• Whether BRM automatically includes triggered rule sets when it performs a rule export.

Analyzing Programs | 211

Setting Options on the Rule Defaults Tab
Use the Business Rule Manager > Rule Defaults tab of the Project options window to define the rule
name templates available when you use Code Search to create rules in a specified rule set.

1. Choose Options > Project Options. The Project Options window opens. Click the Business Rule
Manager > Rule Defaults tab.

2. The Rule Defaults tab displays the rule name templates available when you use Code Search to create
rules in a specified rule set. Add templates as necessary.

Defining Rule Name Templates

Use the Business Rule Manager > Rule Defaults tab of the Project options window to define the rule name
templates available when you use Code Search to create rules in a specified rule set.

You can use any combination of text and bracketed property names in a rule name template. So if you are
creating rules for data ports, the entry:

File Write [Caption]

might produce the following rule names:

File Write REWRITE CATALOG-MASTER
File Write REWRITE FCOST-MASTER-REC
File Write WRITE DATASET('INVOICE')

Valid properties are any property of a construct, plus:

• Program: the name of the program that contains the construct.
• FileName: the name of the source file that contains the construct.
• FromRow: the number of the first line in the source that contains the construct.
• Caption: the label of the construct in the parse tree.

You can substitute a business name for an I/O element in a property value by appending "/bus" to the
property name. If the CATALOG-MASTER variable has the business name MASTER CATALOG:

File Write [Caption/bus]

produces the output:

File Write REWRITE MASTER CATALOG

Setting Options on the Automatic Rule Validation Tab
Refreshing or editing source code may result in a mismatch between a rule and its segment. Lines of code
may have been added or deleted during the refresh or edit, causing a rule to no longer to be synchronized
with the segment after reverification. BRM automatically handles invalidated segments based on your
instructions in the Business Rule Manager > Automatic Rule Validation tab of the Project options
window.

1. Choose Options > Project Options. The Project Options window opens. Click the Business Rule
Manager > Automatic Rule Validation tab.

2. In the Actions for invalid segments pane, select:

• Leave segment, set Valid to false if you want BRM to keep the invalid segment with the rule, but
set the Segment Validity attribute of the rule to Invalid.

• Delete segment, set Valid to true if you want BRM to delete the invalid segment from the rule and
set the Segment Validity attribute of the rule to Valid.

• Try to match if you want BRM to resynchronize the segment with the rule.

3. Place a check mark next to Collapse spaces in strings if you have added spaces to strings in
segments and want BRM to ignore the spaces.

212 | Analyzing Programs

Setting Options on the Rule Export Tab
Use the Business Rule Manager > Rule Export tab of the Project options window to specify whether
BRM automatically includes triggered rule sets when it performs a rule export.

1. Choose Options > Project Options. The Project Options window opens. Click the Business Rule
Manager > Rule Export tab.

2. In the Close Dependencies pane, select:

• Only Selected if you want BRM to export only the selected rules.
• Including Triggered Rule Set if you want BRM to include triggered rule sets when it performs the

rule export.

Customizing Rule Attributes
Use the COBOL Analyzer Administration tool to modify characteristics and valid values of user-defined
attributes, and to create custom attributes suited to your particular needs. Custom attributes are available
to each workspace you create in the product.

The attribute definitions are stored in a file with a name of the form *.Repstry.xml. You can create multiple
custom attribute files if you want, and switch back and forth between them as needed. COBOL Analyzer
applies the most recently saved definitions to your business rules.

Choose Rules > Extended Rule Attributes to open a limited version of this tool in which you can modify
or delete the values for character-type attributes. If you delete values in use in existing business functions,
rule sets, or rules, the default value of the attribute is restored.

Note: You must upgrade workspaces after customizing rule attributes. For upgrade instructions, see
the installation manual for your product.

1. In the COBOL Analyzer Administration window, choose Administer > Edit Rule Attributes.

• If you have never customized attributes, the Extended Rule Attributes window opens automatically
with the default attributes.

• If you have already customized attributes, and Administer > Use Latest File is not selected, an
Open dialog appears where you can select the *.Repstry.xml file that contains the customized
attributes you want to modify. The Extended Rule Attributes window opens.

• If you have already customized attributes, and Administer > Use Latest File is selected, the
Extended Rule Attributes window opens with the customized attributes for the *.Repstry.xml file you
last saved in the window.

2. Click the Business Function, Rule Set, or Business Rule tab as appropriate.

3. To modify an existing attribute, select the attribute in the lefthand pane, then edit the characteristics or
values you want to modify in the righthand pane. To remove an attribute, select it and click Remove.

4. To create a new attribute, click Add, then edit the characteristics of the new attribute as necessary. The
new attribute is added to the list in the lefthand pane.

Tip: To add a value in the Values pane, go to the end of any line containing a value, press Enter to
create a new line, and type in the new value.

5. When you are satisfied with your entries, click OK. A Save As dialog opens, where you can specify the
name and location of the *.Repstry.xml file. COBOL Analyzer applies the definitions to your business
functions, rule sets, or rules.

Tip: To switch to the definitions in a different **.Repstry.xml file, deselect Administer > Use Latest
File, open the file in the Edit Rule Attributes window, and click OK (whether or not you make
changes to the file). Then save the file in the Save As dialog.

You must upgrade workspaces after customizing rule attributes. For upgrade instructions, see the
installation manual for your product.

Analyzing Programs | 213

Generating Reports
BRM reports make it easy to develop the kind of detailed specification you'll need for a code extraction or
redevelopment project. The following reports are available:

• The Business Rules Report lists the business function, rule set, segments, attributes, data elements,
and control condition definitions of selected rules.

• The Process Outline Report shows the call context in which rules are executed.
• The Coverage Report shows the percentage of program logic (including blank lines and comments) that

contains rule segments.

Generating Business Rule Reports
Business Rule Reports list the business function, rule set, segments, attributes, data elements, and control
condition definitions of selected rules. Options let you filter out rules from the report and control the
attributes displayed in the report.

1. Select the business functions, rule sets, or rules you want to report on, click the button on the tool
bar, and choose Business Rule Report in the pull-down menu. The Configure Report Options window
opens.

2. Select:

• Report rules with technical description if you want only rules with a technical description to be
included in the report.

• Report rules with business description if you want only rules with a business description to be
included in the report.

• Report all rules with all description types if you want all rules to be included in the report.

3. Place a check mark next to Print additional rule attributes if you want to display other rule attributes in
the report.

•
In the righthand pane, select each attribute you want to display in the report and click the button
to move the attribute into the lefthand pane. Attributes appear in the report in the order they are

listed in the lefthand pane. Click the button to move all the attributes into the lefthand pane.
•

In the lefthand pane, select an attribute and click the button to move the attribute back into the

righthand pane. Click the button to move all the attributes into the righthand pane.

4. Click OK. The Business Rule Report window opens.

Generating Process Outline Reports
Process Outline Reports show the context in which rules are executed. The report lists every paragraph in
the selected program, the call flow, or process outline, of the paragraph, every rule with a segment that
starts in the paragraph, and the segment itself.

To generate a Process Outline Report, select the program you want to report on, click the button on the
tool bar, and choose Process Outline Report in the pull-down menu. The Process Outline Report window
opens.

Generating Coverage Reports
The Coverage Report shows the percentage of program logic (including blank lines and comments) that
contains rule segments. The report lists the programs in the project, the total number of lines of code they
contain, the number of lines of code with program logic, the number of business rule segments the program
contains, and the percentage of program logic that contains business rule segments.

214 | Analyzing Programs

To generate a Coverage Report, click the button on the tool bar and choose Coverage Report in the
pull-down menu. The Coverage Report window opens.

Using the Batch Duplicate Finder
Use the Batch Duplicate Finder (BDF) to perform sophisticated comparisons of similarly structured
paragraphs. You can also use it to analyze paragraphs or procedures across workspaces, and to compare
entire programs for their similarity.

Finding Duplicates
Follow the instructions below to find duplicate paragraphs with BDF. Make sure you verify the workspace
files you plan to compare before running the tool.

1. If BDF is not already open, double-click the file \<CA Home>\Bin\BDF.exe. If BDF is already open,
choose Options > Startup Options. In either case, the BDF scope window opens.

2. In the BDF scope window, specify the scope of the comparison:

• In the Select Model drop-down, select the object model for the workspace(s) to be analyzed.
• In the Select Unit drop-down, select the unit of comparison: Paragraph/Procedure or Program.
• Select Compare Across Two Workspaces if you want to perform the comparison across

workspaces.
• Select Show Paragraph List to view a list of paragraphs in the workspace(s) to be analyzed. You

must choose this option if you want to select and mark the paragraphs to compare. Otherwise, all
paragraphs are marked for comparison.

Tip: For extremely large workspaces, deselect Show Paragraph List to avoid the performance
cost of loading paragraphs in the BDF main window.

3. Click OK. The BDF main window opens.

4. Choose File > Open Workspace. The Open Workspace dialog opens. Select the workspace (.rwp) for
the comparison, then click Open.

Note: If you are performing the comparison across workspaces, the Open Workspace dialog
appears again. Select the second workspace and click Open.

5. The Select Projects window opens. Select the projects for the comparison, then click OK.

Note: If you are performing the comparison across workspaces, the Select Projects window
appears again. Select the projects for comparison from the second workspace and click Open.

6. If you are performing the comparison in a single workspace, BDF loads the units of comparison in the
List pane. If you are performing the comparison across workspaces, BDF loads the units of comparison
for the first workspace at the top of the List pane with a value of A in the Workspace column, and for the
second workspace at the bottom of the List pane with a value of B in the Workspace column.

Tip: Click an item to view its source in the Text pane. Select the appropriate choice in the View
menu to show or hide a pane.

7. Set BDF search options.

8. Select and mark the items you want to compare, then choose File > Find Duplicates.

BDF writes the results to the output file specified in the BDF search options. The output file renders the
results in tab-delimited text. Use a spreadsheet editor to view and manipulate the results.

Marking Items for Comparison
For small projects, you can mark the items you want to compare manually. For larger projects, you can
mark the items in batch mode, by defining a mask with the Select Paragraphs or Select Programs feature.

Analyzing Programs | 215

Marking Items Manually
Place a check mark next to an item to mark it. To mark all the items in a section, choose List > Check All.
To unmark all the items in the section, choose List > Uncheck All.

To mark selected items in a section, select the items and choose List > Check Selected. To unmark
selected items in the section, choose List > Uncheck Selected.

Note: To select a range of items, hold down the Shift key, click the first item in the range, then click the
last item in the range. To select items that are not in a range, hold down the Control key, then click
each item you want to select.

Marking Items in Batch Mode
To mark items in batch mode, choose List > Select Paragraphs or List > Select Programs. The BDF
Define Mask window opens.

Enter the mask for the items you want to select in the Paragraph name Like field, then click OK. You can
use wildcard patterns allowed in LIKE statements by Visual Basic for Applications (VBA).

Deselect Paragraph Action or Program Action to select items that do not match the mask. To mark the
items selected with the mask, choose Check Selected in the List menu.

Setting BDF Search Options
BDF search options control the types of comparison BDF performs, the columns it displays in the output,
the name and location of the output file, and how it handles copybooks.

1. Choose Options > Search Options. The BDF Options window opens.

2. In the BDF Options window, choose General Analysis if you want to compare items on the basis of the
minimum number of executable statements they contain. Enter the number in the Minimum Paragraph
Size or Minimum Program Size field. An entry of 0 means that all items satisfy the test.

3. Choose the type of comparison you want to perform. If a pair of paragraphs or programs fails to satisfy
the specified value for the comparison, the pair is excluded from the report. Select:

• Paragraph Analysis or Program Analysis if you want to compare the statements in the pair for
their minimum similarity on the Levenshtein edit distance metric. Select Perform Exact Text Match
if you want to compare the entire text of the pair (including paragraph names, parameter names,
comments, and blank lines) for exact matches.

Tip: Select Compact Report if you want the output to show items with 100% similarity in a
numbered group, rather than with a line for each pair.

• Common Part Analysis if you want to compare the statements in the pair for their minimum

similarity on the longest common sequence (LCS) metric.

4. For either type of comparison, select Perform Data Flow Analysis if you want to perform an additional
test to determine whether similar items perform data flow operations with the same pattern.

5. In the Output File Name field, enter the pathname of the BDF output file. In the Directory for
temporary files field, enter the pathname of the directory for temporary files.

216 | Analyzing Programs

6. Specify copybook handling. Select:

• Exclude paragraphs in all copybook to copybook comparisons if you want to prevent
comparison of a paragraph in a copybook against any paragraph from any copybook, including the
same copybook.

• Disable same copybook comparison if you want to prevent comparison of a paragraph in a
copybook against any paragraph in the same copybook.

7. In the Report Columns group box, select:

• Copybook to include the Copybook column in the output.
• Coordinates to include source code coordinates in the output.
• Number of statements to include the number of statements in an item in the output.
• Number of common statements to include the number of common statements in an item in the

output.

Understanding Paragraph or Program Analysis
Select Paragraph Analysis or Program Analysis in the BDF search options if you want to compare items
for their minimum similarity on the Levenshtein edit distance metric, namely, the number of operations
needed to transform one item into the other, where an operation is an insertion, deletion, or substitution of
a single character. The formula for this comparison type is:

output = 100 -(d/Max(a,b)) * 100

where d is the Levenshtein edit distance, a is the length of item A, and b is the length of item B.

Note: Only the statements themselves, not their parameters, are considered in performing the
comparison.

Enter the minimum similarity in the Minimum Similarity field. A value of 100 means that only items
containing exactly the same statements in exactly the same order satisfy the test. Enter 0 to disable the
test.

Tip: You cannot use this comparison type to find paragraphs that CONTAIN or are INCLUDED in
other paragraphs.

Understanding Common Part Analysis
Select Common Part Analysis in the BDF search options if you want to compare items for their minimum
similarity on the longest common sequence (LCS) metric, namely, the number of characters in the longest
sequence of characters the items have in common. The formula for this comparison type is:

output = (L/Min(a,b)) * 100

where L is the LCS, a is the length of item A, and b is the length of item B.

Note: Only the statements themselves, not their parameters, are considered in performing the
comparison.

Enter the minimum similarity in the Minimum Similarity field. A value of 100 means that only items
containing exactly the same statements in exactly the same order satisfy the test. Enter 0 to disable the
test.

Tip: Use this comparison type to narrow the items of interest to those with common character
sequences.

Understanding Data Flow Analysis
For either Paragraph/Program Analysis or Common Part Analysis, select Perform Data Flow Analysis in
the BDF search options to perform an additional test to determine whether similar items perform data flow
operations with the same pattern. In data pattern analysis, if item A contains:

MOVE A TO B
MOVE B TO C

Analyzing Programs | 217

and item B contains:

MOVE X TO Y
MOVE Y TO Z

their data pattern is regarded as identical. Whereas if item A contains:

MOVE A TO B
MOVE B TO C

and item B contains:

MOVE X TO Y
MOVE X TO Z

their data pattern is regarded as different.

218 | Analyzing Programs

Creating Components

Introducing Component Maker
The Component Maker tool includes the Dead Code Elimination slicing algorithm that lets you remove all of
the dead code from a program. You can create a self-contained program, called a component from the
sliced code or simply generate a Interactive Analysis list of sliced constructs for further analysis. You can
mark and colorize the constructs in the Interactive Analysis Source pane.

Componentization Methods
The supported componentization methods slice logic not only from program executables but associated
include files as well. Dead Code Elimination is an optimization tool built into the main methods and offered
separately in case you want to use it on a standalone basis.

Note: Component Maker does not follow CALL statements into other programs to determine whether
passed data items are actually modified by those programs. It makes the conservative assumption
that all passed data items are modified. That guarantees that no dependencies are lost.

Dead Code Elimination (DCE)
Dead Code Elimination is an option in each of the main component extraction methods, but you can also
perform it on a standalone basis. For each program analyzed for dead code, standalone DCE generates a
component that consists of the original source code minus any unreferenced data items or unreachable
procedural statements.

Note: Use the batch DCE feature to find dead code across your project. If you are licensed to use the
Batch Refresh Process (BRP), you can use it to perform dead code elimination across a workspace.

Language Support
The following table describes the extraction methods available for Component Maker-supported languages.

Method COBOL PL/I Natural RPG

Dead Code
Elimination

Yes Yes Yes Yes

Componentization Outputs
The first step in the componentization process, called extraction, generates the following outputs:

• The source file that comprises the component.
• An abstract repository object, or logical component, that gives you access to the source file in COBOL

Analyzer.
• A Interactive Analysis list of sliced constructs, which you can mark and colorize in the Interactive

Analysis Source pane.

Note: Sliced data declarations are not marked and colorized.

The second step, called conversion, registers the source files in your repository, creating repository objects
for the generated components and their corresponding copybooks.

Creating Components | 219

Component Maker lets you execute the extraction and conversion steps independently or in combination,
depending on your needs:

• If you want to analyze the components further, transform them, or even generate components from
them, you will want to register the component source files in your repository and verify them, just as you
would register and verify a source file from the original legacy application.

• If you are interested only in deploying the components in your production environment, you can skip the
conversion step and avoid cluttering your repository.

The figure below shows how the componentization outputs are represented in the Repository Browser after
conversion and verification of a COBOL component called DaysInYearCalc. PRODUPD is the program the
component was extracted from.

Component Maker Basics
Component Maker is a Interactive Analysis-based tool that you can invoke from within Interactive Analysis
itself:

• Start the tool in Interactive Analysis by selecting the program you want to slice in the COBOL Analyzer
Repository Browser and choosing Analyze > Interactive Analysis. In the Interactive Analysis window,
choose View > Components.

Note: Choose View > Logic Analyzer if you are using Logic Analyzer.

The Components pane consists of a hierarchy of views that let you specify the logical components you
want to manipulate:

• The Types view lists the types of logical components you can create.
• The List view displays logical components of the selected type.
• The Details view displays the details for the selected logical component in two tabs, Properties and

Components. The Properties tab displays extraction properties for the logical component. The
Components tab lists the files generated for the logical component.

Getting Started in the Components Pane
You do most of your work in Component Maker in the Components pane. To illustrate how you extract a
logical component in the Components pane, let's look at the simplest task you can perform in Component
Maker, Dead Code Elimination (DCE).

Note: The following exercise deliberately avoids describing the properties and options you can set for
DCE. See the relevant help topics for details.

1. In the Components pane, double-click Dead Code Elimination. The DCE pane opens. This view shows
the DCE-based logical components created for the programs in the current project.

220 | Creating Components

Tip: Click the button on the tool bar to restrict the display to logical components created for the
selected program.

2. Select the program you want to analyze for dead code in the Interactive Analysis Objects pane and click

the button. To analyze the entire project of which the program is a part, click the button.

3. A dialog opens where you can enter the name of the new component in the text field. Click OK.
Component Maker adds the new components to the list of components. If you selected batch mode,
Component Maker creates a logical component for each program in the project, appending _n to the
name of the component.

4. Double-click a component to edit its properties. The Component of program field contains the name of
the selected program.

5. In the Entry Point to use field, click the link for the current selection and choose the entry point you
want to use in the pop-up menu. To unset an entry point, click it and choose Unset in the pop-up menu.

Note: This field is shown only for COBOL programs.

6. In the Description field, click the here link to open a text editor where you can enter a description of the
component. The description appears in the box below the Description field in the Properties tab and in
the Description property for the logical component repository object.

7.
Click the button on the tool bar to navigate to the list of components, then repeat the procedure for
each component you want to extract.

8. In the list of components, select each component you want to extract and click the button on the tool
bar. You are prompted to confirm that you want to extract the components. Click OK.

9. The Extraction Options dialog opens. Set extraction options as described in the relevant help topic.
When you are satisfied with your choices, click Finish.

10.Component Maker performs the extraction. You are notified that the extraction is complete. If the
extraction completed without errors or warnings, click OK to continue. If the extraction completed with
errors or warnings, click Yes to view the errors or warnings in the Activity Log. Otherwise, click No.

11.Assuming the extraction executed without errors, the view shown in the figure below opens. Click the
Components tab to display a list of the component source files that were generated for the logical
component and an audit report if you requested one. Click an item in the list to view the read-only text
for the item.

Creating Components | 221

Creating Components
To create a component, select the program you want to slice in the Interactive Analysis Objects pane. In

the Types view, select the type of logical component you want to create and click the button on the tool

bar. (You can also click the button in the List or Details view.) A dialog opens where you can enter the
name of the new component in the text field. Click OK.

Extracting Components
To extract a single logical component, select the component you want to extract in the List view and click

the button on the tool bar. To extract multiple logical components, select the type of the components

you want to extract in the Types view and click the button. You are prompted to confirm that you want to
continue. Click OK.

Tip: Logical components are converted as well as extracted if the Convert Resulting Components
to Legacy Objects is set in the Component Conversion Options pane.

Converting Components
To convert a single logical component, select the component you want to convert in the List view and click

the button on the tool bar. To convert multiple logical components, select the type of the components

you want to convert in the Types view and click the button. You are prompted to confirm that you want
to continue. Click OK.

Deleting Components

To delete a logical component, select it in the List view and click the button on the tool bar.

Note: Deleting a logical component does not delete the component and copybook repository objects.
You must delete these objects manually in the Repository Browser.

Viewing the Text for Generated Files
To view the read-only text for a generated file, click the file in the list of generated files for in the
Components tab.

Tip: You can also view the text for a generated file in the COBOL Analyzer main window. In the
Repository Browser Logical Component folder, click the component whose generated files you want to
view.

Restricting the Display to Program-Related Components

To restrict the display to logical components of a given program, select the program and click the
button on the tool bar. The button is a toggle. Click it again to revert to the generic display.

Working with Interactive Analysis Lists
When you extract a logical component, Component Maker generates a Interactive Analysis list of sliced
constructs. The list has the same name as the component. You can view the list in the Logic Analyzer
folder in Code Search.

To mark and colorize sliced constructs in the list, select the list in Code Search and click the button on
the tool bar. To mark and colorize sliced constructs in a single file, select the file in the List view and click

222 | Creating Components

the button. To mark and colorize a single construct, select it in the File view and click the button.

Click the button again to turn off marking and colorizing.

Viewing Audit Reports
An audit report contains a list of changed and deleted lines in the source files (including copybooks) from
which a logical component was extracted. The report has a name of the form <component>.audit.txt. Click
the report in the Components tab to view its text.

An audit report optionally includes reason codes explaining why a line was changed or deleted. A reason
code is a number keyed to the explanation for a change (for example, reason code 12 for computation-
based componentization is RemoveUnusedVALUEs).

Generating Coverage Reports
A coverage report shows the extent to which a source program has been "componentized":

• The top-left pane lists each component of a given type extracted from the program.
• The bottom-left pane lists the paragraphs in the program. Click on a paragraph to navigate to it in the

righthand pane.
• The righthand pane displays the text of the program with extracted code shaded in pink. The numbers

to the left of the extracted code identify the component to which it was extracted.

Creating Components | 223

To generate coverage reports, click on the Component Maker tool bar. The reports are listed in the
Generated Document folder in the Repository Browser. Report names are of the form <program>-
<method>-Coverage. Double-click a report to view it in a Web browser.

Note: Reports are created for each program in the current project.

Setting Component Maker Options
It's a good idea to become familiar with the component extraction options before beginning your work in
Component Maker. Each extraction method has a different set of options, and each set differs for the
supported object types. Extraction options are project-based, so they apply to every program in the current
COBOL Analyzer project.

You can set Component Maker extraction options in the standard Project Options window or in the
extraction options dialog that opens when you create a component. To open the standard Project Options
window, choose Options > Project Options. In the Project Options window, click the Component Maker
tab.

Setting General Options
The table below describes the Component Maker General extraction options.

Option Language Description

Add Program Name as Prefix COBOL, Natural, PL/I, RPG Prepend the name of the sliced program to the
component name you specified when you created

224 | Creating Components

Option Language Description

the component, in the form <program>
$<component>.

Generate Slice COBOL, Natural, PL/I, RPG Generate both a Interactive Analysis list of sliced
constructs and a component.

Keep Legacy Copybooks COBOL, RPG Do not generate modified copybooks for the
component. Modified copybooks have names of
the form <copybook>-<component>-n, where n is a
number ensuring the uniqueness of the copybook
name when multiple instances of a copybook are
generated for the same component.

Note: Component Maker issues a warning
if including the original copybooks in the
component would result in an error.

Keep Legacy Includes PL/I Do not generate modified program include files for
the component. The layout and commentary of the
sliced program is preserved.

Keep Legacy Macros PL/I Do not expand macros for the component. The
layout and commentary of the sliced program is
preserved.

Preserve Legacy Includes Natural Do not generate modified program include files for
the component.

Rename Program Entries COBOL Prepend the name of the component to inner entry
points, in the form <component>-<entrypoint>. This
ensures that entry point names are unique and that
the COBOL Analyzer parser can verify the
component successfully. Unset this option if you
need to preserve the original names of the inner
entry points.

Setting Interface Options
The table below describes the Component Maker Interface extraction options.

Option Language Description

Blocking COBOL If you are performing a parameterized
computation-based extraction and want to use
blocking, click the More button. A dialog opens,
where you can select the blocking option and the
types of statements you want to block.

Note: Choose Use Blocking from
Component Definitions if you want to block
statements in a Interactive Analysis list.

Create CICS Program COBOL Create COMMAREAS for parameter exchange in
generated slices.

Generate Parameterized
Components

COBOL Extract parameterized slices.

Setting Optimize Options
The table below describes the Component Maker Optimize extraction options.

Creating Components | 225

Option Language Description

No changes Cobol, Natural, RPG Do not remove unused data items from the
component.

Preserve Original Paragraphs Cobol Generate paragraph labels even for paragraphs
that are not actually used in the source code (for
example, empty paragraphs for which there are no
PERFORMs).

Note: This option also affects refactoring.
When the option is set, paragraphs in the
same "basic block" are defragmented
separately. Otherwise, they are
defragmented as a unit.

Remove Redundant NEXT
SENTENCE

Cobol Remove NEXT SENTENCE clauses by changing
the bodies of corresponding IF statements, such
that:

IF A=1
 NEXT SENTENCE
ELSE
 ...
END-IF.

is generated as:

IF NOT (A=1)
 ...
END-IF.

Remove/Replace Unused Fields
with FILLERs

Cobol, Natural, RPG Remove unused any-level structures and replace
unused fields in a used structure with FILLERs. Set
this option if removing a field completely from a
structure would adversely affect memory
distribution.

Note: If you select Keep Legacy copybooks
in the General component extraction
options, Component Maker removes or
replaces with FILLERs only unused inline
data items.

Remove Unreachable Code Cobol, RPG Remove unreachable procedural statements.

Remove Unused Any-Level
Structures

Cobol, Natural, RPG Remove unused structures at any data level, if all
their parents and children are unused. For the
example below, D, E, F, and G are removed:

DEFINE DATA LOCAL
1 #A
 2 #B
 3 #C
 2 #D
 3 #E
 3 #F
1 #G

Remove Unused Level-1
Structures

Cobol, Natural, RPG Remove only unused level-1 structures, and then
only if all their children are unused. If, in the
following example, only B is used, only G is
removed:

DEFINE DATA LOCAL
1 #A

226 | Creating Components

Option Language Description

 2 #B
 3 #C
 2 #D
 3 #E
 3 #F
1 #G

Replace Section PERFORMs by
Paragraph PERFORMs

Cobol Replace PERFORM section statements by
equivalent PERFORM paragraph statements.

Roll-Up Nested IFs Cobol Roll up embedded IF statements in the top-level IF
statement, such that:

IF A=1
 IF B=2

is generated as:

IF (A=1) AND (B=2)

Setting Document Options
The table below describes the Component Maker Document extraction options.

Option Language Description

Comment-out Sliced-off Legacy
Code

COBOL, RPG Retain but comment out unused code in the
component source. In the Comment Prefix field,
enter descriptive text (up to six characters) for the
commented-out lines.

Emphasize Component/Include
in Coverage Report

COBOL, Natural, PL/I, RPG Generate a Interactive Analysis list of sliced
constructs and colorize the constructs in the
Coverage Report.

Generate Audit Report COBOL Generate an audit report.

Generate Support Comments COBOL, RPG Include comments in the component source that
identify the component properties you specified,
such as the starting and ending paragraphs for a
structure-based COBOL component.

Include Reason Codes COBOL Include reason codes in the audit report
explaining why a line was changed or deleted.

Note: Generating reason codes is very
memory-intensive and may cause crashes
for extractions from large programs.

List Options in Component
Header and in Separate
Document

COBOL, RPG Include a list of extraction option settings in the
component header and in a separate text file. The
text file has a name of the form
<component>.BRE.options.txt.

Mark Modified Legacy Code COBOL, RPG Mark modified code in the component source. In
the Comment Prefix field, enter descriptive text
(up to six characters) for the modified lines.

Print Calculated Values as
Comments

COBOL For domain-based component extraction only,
print the calculated values of variables as
comments. Alternatively, you can substitute the
calculated values of variables for the variables
themselves.

Creating Components | 227

Option Language Description

Use Left Column for Marks COBOL, RPG Place the descriptive text for commented-out or
modified lines in the lefthand column of the line.
Otherwise, the text appears in the righthand
column.

Setting Component Type-Specific Options
Component type-specific extraction options determine how Component Maker performs tasks specific to
each componentization method.

Setting Component Conversion Options
The table below describes the Component Maker Component Conversion extraction options.

Option Language Description

Convert Resulting Components Cobol, Natural, PL/I, RPG Convert as well as extract the logical component.

Keep Old Legacy Objects Cobol, Natural, PL/I, RPG Preserve existing repository objects for the
converted component (copybooks, for example). If
you select this option, delete the repository object
for the component itself before performing the
extraction, or the new component object will not
be created.

Remove Components after
Successful Conversion

Cobol, Natural, PL/I, RPG Remove logical components from the current
project after new component objects are created.

Replace Old Legacy Objects Cobol, Natural, PL/I, RPG Replace existing repository objects for the
converted component.

Note: This option controls conversion
behavior even when you perform the
conversion independently from the
extraction. If you are converting a
component independently and want to
change this setting, select Convert
Resulting Components to Legacy Objects,
specify the behavior you want, and then
deselect Convert Resulting Components to
Legacy Objects.

Eliminating Dead Code
Dead Code Elimination (DCE) is an option in each of the main component extraction methods, but you can
also perform it on a standalone basis. For each program analyzed for dead code, DCE generates a
component that consists of the original source code minus any unreferenced data items or unreachable
procedural statements. Optionally, you can have DCE comment out dead code in Cobol and Natural
applications, rather than remove it.

Note: Use the batch DCE feature to find dead code across your project. If you are licensed to use the
Batch Refresh Process (BRP), you can use it to perform dead code elimination across a workspace.

Generating Dead Code Statistics
Set the Perform Dead Code Analysis option in the project verification options if you want the parser to
collect statistics on the number of unreachable statements and dead data items in a program, and to mark

228 | Creating Components

the constructs as dead in Interactive Analysis. You can view the statistics in the Legacy Estimation tool, as
described in Analyzing Projects in the product documentation set.

Note: You do not need to set this option to perform dead code elimination in Component Maker.

For COBOL programs, you can use a DCE coverage report to identify dead code in a source program. The
report displays the text of the source program with its "live," or extracted, code shaded in pink.

Understanding Dead Code Elimination
Let's look at a simple before-and-after example to see what you can expect from Dead Code Elimination.

Before:
WORKING-STORAGE SECTION.

 01 USED-VARS.
 05 USED1 PIC 9.

 01 DEAD-VARS.
 05 DEAD1 PIC 9.
 05 DEAD2 PIC X.

 PROCEDURE DIVISION.

 FIRST-USED-PARA.
 MOVE 1 TO USED1.
 GO TO SECOND-USED-PARA.
 MOVE 2 TO USED1.

 DEAD-PARA1.
 MOVE 0 TO DEAD2.

 SECOND-USED PARA.
 MOVE 3 TO USED1.
 STOP RUN.

After:
WORKING-STORAGE SECTION.

 01 USED-VARS.
 05 USED1 PIC 9.

 PROCEDURE DIVISION.

 FIRST-USED-PARA.
 MOVE 1 TO USED1.
 GO TO SECOND-USED-PARA.

 SECOND-USED PARA.
 MOVE 3 TO USED1.
 STOP RUN.

Extracting Optimized Components
Follow the instructions below to extract optimized components for all supported languages.

1. Select the program you want to analyze for dead code in the Interactive Analysis Objects pane and click

the button. To analyze the entire project of which the program is a part, click the button.

2. A dialog opens where you can enter the name of the new component in the text field. Click OK.
Component Maker adds the new components to the list of components. If you selected batch mode,

Creating Components | 229

Component Maker creates a logical component for each program in the project, appending _n to the
name of the component.

3. In the Entry Point to use field, click the link for the current selection and choose the entry point you
want to use in the pop-up menu. To unset an entry point, click it and choose Unset in the pop-up menu.

4. In the Description field, click the here link to open a text editor where you can enter a description of the
component. The description appears in the box below the Description field in the Properties tab and in
the Description property for the logical component repository object.

5. Click the button on the tool bar to start extracting the logical component. You are prompted to
confirm that you want to continue. Click OK.

6. The Extraction Options dialog opens. Set options for the extraction and click Finish.

7. Component Maker performs the extraction. You are notified that the extraction is complete. If the
extraction completed without errors or warnings, click OK to continue. If the extraction completed with
errors or warnings, click Yes in the notification dialog to view the errors or warnings in the Activity Log.
Otherwise, click No.

Technical Details
This appendix gives technical details of Component Maker behavior for a handful of narrowly focused
verification and extraction options; for Cobol parameterized slice generation; and for Cobol arithmetic
exception handling.

Verification Options
This section describes how a number of verification options may affect component extraction. For more
information on the verification options, see Preparing Projects in the product documentation set.

Use Special IMS Calling Conventions
Select Use Special IMS Calling Conventions in the project verification options if you want to show
dependencies and analyze CALL 'CBLTDLI' statements for the CHNG value of their first parameter, and if
the value of the third parameter is known, then generate Calls relationship in the repository.

For example:

MOVE 'CHNG' TO WS-IMS-FUNC-CODE
MOVE 'MGRW280' TO WS-IMS-TRANSACTION
CALL 'CBLTDLI' USING WS-IMS-FUNC-CODE
 LS03-ALT-MOD-PCB
 WS-IMS-TRANSACTION

When both WS-IMS-FUNC-CODE = 'CHNG' and WS-IMS-TRANSACTION have known values, the
repository is populated with the CALL relationship between the current program and the WS-IMS-
TRANSACTION <value> program (in the example, 'MGRW280').

Override CICS Program Terminations
Select Override CICS Program Terminations in the project verification options if you want the parser to
interpret CICS RETURN, XCTL, and ABEND commands in Cobol files as not terminating program
execution.

If the source program contains CICS HANDLE CONDITION handlers, for example, some exceptions can
arise only on execution of CICS RETURN. For this reason, if you want to see the code of the
corresponding handler in the component, you need to check the override box. Otherwise, the call of the
handler and hence the handler's code are unreachable.

230 | Creating Components

Support CICS HANDLE Statements
Select Support CICS HANDLE statements in the project verification options if you want the parser to
recognize CICS HANDLE statements in Cobol files. EXEC CICS HANDLE statements require processing
to detect all dependencies with error-handling statements. That may result in adding extra paragraphs to a
component.

Perform Unisys TIP and DPS Calls Analysis
Select Perform Unisys TIP and DPS Calls Analysis in the project verification options if you are working
on a project containing Unisys 2200 Cobol files and need to perform TIP and DPS calls analysis.

This analysis tries to determine the name (value of the data item of size 8 and offset 20 from the beginning
of form-header) of the screen form used in input/output operation (at CALL 'D$READ', 'D$SEND', 'D
$SENDF', 'D$SENDF1') and establish the repository relationships ProgramSendsMap and
ProgramReadsMap between the program being analyzed and the detected screen.

For example:

01 SCREEN-946.
 02 SCREEN-946-HEADER.
 05 FILLER PIC X(2)VALUE SPACES.
 05 FILLER PIC 9(5)COMP VALUE ZERO.
 05 FILLER PIC X(4)VALUE SPACES.
 05 S946-FILLER PIC X(8) VALUE 'DPSSWS'
 05 S946-NUMBER PIC 9(4) VALUE 946.
 05 S946-NAME PIC X(8) VALUE 'SCRN946'.
CALL 'D$READ USING DPS-STATUS, SCREEN-946.

Relationship ProgramSendsMap is established between the program and screen 'SCRN946'.

Note: Select DPS routines may end with error if you want to perform call analysis of DPS routines
that end in an error.

Perform Unisys Common-Storage Analysis
Select Perform Unisys Common-Storage Analysis in the project verification options if you want the
system to include in the analysis for Unisys Cobol files variables that are not explicitly declared in CALL
statements. This analysis adds implicit use of variables declared in the Common Storage Section to every
CALL statement of the program being analyzed, as well as for its PROCEDURE DIVISION USING phrase.
That could lead to superfluous data dependencies between the caller and called programs in case the
called program does not use data from Common Storage.

Relaxed Parsing
The Relaxed Parsing option in the workspace verification options lets you verify a source file despite
errors. Ordinarily, the parser stops at a statement when it encounters an error. Relaxed parsing tells the
parser to continue to the next statement.

For code verified with relaxed parsing, Component Maker behaves as follows:

• Statements included in a component that contain errors are treated as CONTINUE statements and
appear in component text as comments.

• Dummy declarations for undeclared identifiers appear in component text as comments.
• Declarations that are in error appear in component text as they were in the original program. Corrected

declarations appear in component text as comments.
• Commented-out code is identified by an extra comment line: "COBOL Analyzer assumption".

Creating Components | 231

PERFORM Behavior for Micro Focus Cobol
For Micro Focus Cobol applications, use the PERFORM behavior option in the workspace verification
options window to specify the type of PERFORM behavior the application was compiled for. You can select:
• Stack if the application was compiled with the PERFORM-type option set to allow recursive

PERFORMS.
• All exits active if the application was compiled with the PERFORM-type option set to not allow

recursive PERFORMS.
For non-recursive PERFORM behavior, a COBOL program can contain PERFORM mines. In informal
terms, a PERFORM mine is a place in a program that can contain an exit point of some active but not
current PERFORM during program execution.

The program below, for example, contains a mine at the end of paragraph C. When the end of paragraph C
is reached during PERFORM C THRU D execution, the mine "snaps" into action: control is transferred to
the STOP RUN statement of paragraph A.

A.
 PERFORM B THRU C.
 STOP RUN.
 B.
 PERFORM C THRU D.
 C.
 DISPLAY 'C'.
 * mine
 D.
 DISPLAY 'D'.

Setting the compiler option to allow non-recursive PERFORM behavior where appropriate allows the
COBOL Analyzer parser to detect possible mines and determine their properties. That, in turn, lets
Component Maker analyze control flow and eliminate dead code with greater precision. To return to our
example, the mine placed at the end of paragraph C snaps each time it is reached: such a mine is called
stable. Control never falls through a stable mine. Here it means that the code in paragraph D is
unreachable.

Keep Legacy Copybooks Extraction Option
Select Keep Legacy Copybooks in the General extraction options for Cobol if you want Component Maker
not to generate modified copybooks for the component. Component Maker issues a warning if including the
original copybooks in the component would result in an error.

Example 1:
[COBOL]
01 A PIC X.
PROCEDURE DIVISION.
COPY CP.
[END-COBOL]
[COPYBOOK CP.CPY]
STOP RUN.
DISPLAY A.
[END-COPYBOOK CP.CPY]

For this example, Component Maker issues a warning for an undeclared identifier after Dead Code
Elimination.

Example 2:
[COBOL]
PROCEDURE DIVISION.
COPY CP.
STOP RUN.
P.

232 | Creating Components

[END-COBOL]
[COPYBOOK CP.CPY]
DISPLAY "QA is out there"
STOP RUN.
PERFORM P.
[END-COPYBOOK CP.CPY]

For this example, Component Maker issues a warning for an undeclared paragraph after Dead Code
Elimination.

Example 3:
[COBOL]
working-storage section.
copy file.
PROCEDURE DIVISION.
p1.
 move 1 to a.
p2.
 display b.
 display a.
p3.
 stop run.
[END-COBOL]
[COPYBOOK file.cpy]
01 a pic 9.
01 b pic 9.
[END-COPYBOOK file.cpy]

For this example, the range component on paragraph p2 looks like this:

[COBOL]
WORKING-STORAGE SECTION.
 COPY FILE1.
 LINKAGE SECTION.
 PROCEDURE DIVISION USING A.
[END-COBOL]
while, with the option turned off, it looks like this:
[COBOL]
WORKING-STORAGE SECTION.
 COPY FILE1-A$RULE-0.
 LINKAGE SECTION.
 COPY FILE1-A$RULE-1.
[END-COBOL]

That is, turning the option on overrides the splitting of the copybook file into two files. Component Maker
issues a warning if that could result in an error.

How Parameterized Slices Are Generated for Cobol
Programs
The specifications for input and output parameters are:

• Input

A variable of an arbitrary level from the LINKAGE section or PROCEDURE DIVISION USING is
classified as an input parameter if one or more of its bits are used for reading before writing.

A system variable (field of DFHEIB/DFHEIBLK structures) is classified as an input parameter if the
Create CICS Program option is turned off and the variable is used for writing before reading.

• Output

A variable of an arbitrary level from the LINKAGE section or PROCEDURE DIVISION USING is
classified as an output parameter if it is modified during component execution.

Creating Components | 233

A system variable (a field of DFHEIB/DFHEIBLK structures) is classified as an output parameter if the
Create CICS Program option is turned off and the variable is modified during component execution.

• For each input parameter, the algorithm finds its first usage (it does not have to be unique, the algorithm
processes all of them), and if the variable (parameter from the LINKAGE section) is used for reading,
code to copy its value from the corresponding field of BRE-INPUT-STRUCTURE is inserted as close to
this usage as possible.

• The algorithm takes into account all partial or conditional assignments for this variable before its first
usage and places PERFORM statements before these assignments.

If a PERFORM statement can be executed more than once (as in the case of a loop), then a flag
variable (named BRE-INIT-COPY-FLAG-[<n>] of the type PIC 9 VALUE 0 is created in the WORKING-
STORAGE section, and the parameter is copied into the corresponding variable only the first time this
PERFORM statement is executed.

• For all component exit points, the algorithm inserts code to copy all output parameters from working-
storage variables to the corresponding fields of BRE-OUTPUT-STRUCTURE.

Variables of any level (rather than only 01-level structures together with all their fields) can act as
parameters. This allows exclusion of unnecessary parameters, making the resulting programs more
compact and clear.

For each operator for which a parameter list is generated, the following transformations are applied to
the entire list:

• All FD entries are replaced with their data descriptions.
• All array fields are replaced with the corresponding array declarations.
• All upper-level RENAMES clauses are replaced with the renamed declarations.
• All upper-level REDEFINES clauses with an object (including the object itself, if it is present in the

parameter list) are replaced with a clause of a greater size.
• All REDEFINES and RENAMES entries of any level are removed from the list.
• All variable-length arrays are converted into fixed-length of the corresponding maximal size.
• All keys and indices are removed from array declarations.
• All VALUE clauses are removed from all declarations.
• All conditional names are replaced with the corresponding data items.

Setting a Specialization Variable to Multiple Values
For Domain-Based Componentization, Component Maker lets you set the specialization variable to a range
of values (between 1 and 10 inclusive, for example) or to multiple values (not only CHECK but CREDIT-
CARD, for example). You can also set the variable to all values not in the range or set of possible values
(every value but CHECK and CREDIT-CARD, for example).

Component Maker uses multiple values to predict conditional branches intelligently. In the following code
fragment, for example, the second IF statement cannot be resolved with a single value, because of the two
conflicting values of Z coming down from the different code paths of the first IF. With multiple values,
however, Component Maker correctly resolves the second IF, because all the possible values of the
variable at the point of the IF are known:

IF X EQUAL Y
 MOVE 1 TO Z
ELSE
 MOVE 2 TO Z
DISPLAY Z.
IF Z EQUAL 3
 DISPLAY "Z=3"
ELSE
 DISPLAY "Z<>3"

Keep in mind that only the following COBOL statements are interpreted with multiple values:

234 | Creating Components

• COMPUTE
• MOVE
• ADD
• SUBTRACT
• MULTIPLY
• DIVIDE

That is, if the input of such a statement is defined, then, after interpretation, its output can be defined as
well.

Single-Value Example:

MOVE 1 TO Y.
MOVE 1 TO X.
ADD X TO Y.
DISPLAY Y.
IF Y EQUAL 2 THEN...

In this fragment of code, the value of Y in the IF statement (as well as in DISPLAY) is known, and so the
THEN branch can be predicted.

Multiple-Value Example:

IF X EQUAL 0
 MOVE 1 TO Y
ELSE
 MOVE 2 TO Y.
ADD 1 TO Y.
IF Y = 10 THEN... ELSE...

In this case, Component Maker determines that Y in the second IF statement can equal only 2 or 3, so the
statement can be resolved to the ELSE branch.

The statement interpretation capability is available only when you define the specialization variable
"positively" (as equalling a range or set of values), not when you define the variable "negatively" (as not
equalling a range or set of values).

Arithmetic Exception Handling
For Cobol, the ADD, COMPUTE, DIVIDE, MULTIPLY, and SUBTRACT statements can have ON SIZE
ERROR and NOT ON SIZE ERROR phrases. The phrase ON SIZE ERROR contains an arithmetic
exception handler.

Statements in the ON SIZE ERROR phrase are executed when one of the following arithmetic exception
conditions take place:

• The value of an arithmetic operation result is larger than the resultant-identifier picture size.
• Division by zero.
• Violation of the rules for the evaluation of exponentiation.

For MULTIPLY arithmetic statements, if any of the individual operations produces a size error condition, the
statements in the ON SIZE ERROR phrase is not executed until all of the individual operations are
completed.

Control is transferred to the statements defined in the phrase NOT ON SIZE ERROR when a NOT ON
SIZE ERROR phrase is specified and no exceptions occurred. In that case, the ON SIZE ERROR is
ignored.

Component Maker specialization processes an arithmetic statement with exception handlers in the
following way:

• If a (NOT) ON SIZE ERROR condition occurred in some interpreting pass, then the arithmetic statement
is replaced by the statements in the corresponding phrase.

Creating Components | 235

• Those statements will be interpreted at the next pass.

236 | Creating Components

Using the Batch Refresh Process

Using the Batch Refresh Process
The COBOL Analyzer (CA) Batch Refresh Process (BRP) lets you register and verify source files in batch
mode. You typically use this process when sources on the mainframe have changed, and you need to
synchronize the modified sources with the sources you are working with in CA. You can also use BRP to
perform analysis and reporting functions.

Understanding the Batch Refresh Process
Provides an overview of the Batch Refresh Process.

The Batch Refresh Process (BRP) is a utility that supports the synchronization of sources from a
mainframe or enterprise server with the CA repositories representing those sources. BRP is installed with
the CA server.

BRP is responsible for updating the workspace with sources provided to it from the mainframe and
verifying all unverified sources. Optionally, BRP can be configured to run any required source code pre-
processing, as well as certain analysis and reporting functions.

When sources are updated to a workspace, CA determines whether or not to load the file. When the name
of the incoming file matches the name of a file currently in the workspace, the two files are compared. If
they are different, the incoming file will replace the existing file. If they are the same, no change is made. If
the incoming file does not currently have a match in the workspace, the file is added to the default project.
The default project is a project with the same name as the workspace. If this project does not exist, it is
automatically created.

Updating a source in a workspace causes that source to be invalidated. Any sources that are dependent
upon the updated file will also be invalidated. For example, an update to a copybook will cause all the
COBOL files that use the copybook to become invalidated. That, in turn, will cause all JCL files that
execute the programs in the source files to become invalidated. Once the update phase is completed, all
invalidated and unverified sources in the workspace will be verified.

Configuring the Batch Refresh Process
The Batch Refresh Process is installed with the CA server. For each workspace it processes, BRP refers to
an initialization file containing configuration settings. Use the BRP Configurator in the COBOL Analyzer
Administration tool on the CA server to modify the initialization file settings.

1. In the CA Administration tool, choose Administer > Configure BRP. The BRP Configurator opens.

2. In the Current BRP Configurations pane, choose the BRP configuration file you want to edit and click
Edit.

Note: If the BRP configuration you want to edit is not listed in the pane, click Find to locate the file
in the file system.

3. To create a new configuration, click Add. A Select Workspace dialog box opens, where you can specify
the workspace (.rwp) file you want to configure for BRP.

Note: To copy a configuration, select it and click Copy. To delete a configuration, select it and click
Delete.

4. The main BRP Configurator window opens, with a tab for each configuration task:

Using the Batch Refresh Process | 237

• On the General tab, set basic BRP initialization values (required).
• On the User Exit tab, identify any user exits you have created to extend or modify BRP functionality

(optional).
• On the Advanced tab, enable BRP support for IMS Analysis, Executive Report, and WebGen

(optional).

5. When you are satisfied with you entries on each tab, click OK.

Configuring General Settings
Set required BRP initialization values on the General tab. The settings are described in the table below.

Setting Description

CA Install Path Specifies the path of the CA installation folder.

BRP Install Path Specifies the path of the BRP installation folder. This
folder must contain the Reports, PreparedSources,
Staging, Utility, and Working folders. Use override
parameters for folders in a different location.

Workspace Path Specifies the path of the folder for the workspace to be
refreshed. This folder is at the same level as the
workspace (.rwp) file.

Obsolete Processing Check this box to turn on obsolete processing. Obsolete
processing automatically determines which source files
are no longer part of a "live" application and moves them
to another project. Sources are determined to be
obsolete by virtue of being absent from the set of
incoming sources for a BRP run.

Obsolete Project If Obsolete Processing is selected, specifies the project
to which obsolete source files will be moved.

Obsolete Exclusions File If Obsolete Processing is selected, specifies a text file
that lists files that should be ignored during obsolete
processing. This mechanism is intended to avoid having
CA generated or provided files classified as obsolete. For
example, CA-provided system copybooks or DASDL-
generated copybooks. The text file should be formatted
with a single file name per line. This mechanism is also
useful when there are sources that are particularly
difficult to provide on an ongoing basis or if a source is
generated during runtime in the application.

Configuring User Exits
Identify user exits you have created to extend or modify BRP functionality on the User Exit tab. A user exit
is a point in the standard BRP processing when a user-supplied set of commands is executed. Typically the
commands execute utilities that accomplish tasks ranging from source code pre-processing to specialized
report generation.

Understanding Exits

There are seven user exits in BRP. Each is named and corresponds to a major division of processing, or
step, in a BRP run. The names are listed below in the order they are executed:

• Setup
• Init (Initialization)
• Staging
• Update
• Verification

238 | Using the Batch Refresh Process

• Generation
• End

With the exception of the Setup and End user exits, each is executed as the very first task of the
corresponding BRP step. For example, in the Generation step the Generation user exit is executed followed
by executive report generation and WebGen generation.

There are some essential tasks that occur during the Setup step that make it impractical for user exit
execution to be first. The Setup step is where the main BRP log is opened and all parameter values are
generated, if necessary, and checked for validity. The Setup user exit occurs after the log file is created, but
before parameter values are generated and checked.

The End user exit occurs at the very end of the BRP run. There are no tasks that occur after it other than
closing the main BRP log file.

Which user exit should be used to execute a particular piece of functionality depends upon the task that
needs to be accomplished. For example, source code pre-processing usually needs to occur prior to the
sources being loaded into the workspace. This would make the Staging or Update user exits ideal.
However, it is best to do source code pre-processing once all sources are in a single spot and are
guaranteed to have proper file extensions. That would eliminate the Staging user exit, since it is during
Staging that file extensions are added, if necessary. Therefore, the best place to execute source code pre-
processing utilities is the Update user exit.

Other common uses of user exits are to run specific reporting or analysis functions. These typically require
that the verification step has been completed. Therefore, the Generation user exit will typically work best for
these situations.

Configuring Exits

Configuring a user exit involves two separate tasks:

• Creating a BRP-enabled utility to accomplish the task at hand.
• Pointing the user exit to that utility.

Creating a BRP-enabled utility is a non-trivial task. Guidelines and information on this subject can be found
in the section Producing Utilities for BRP. Use the User Exit tab of the BRP Configurator to point a user exit
to the corresponding BRP-enabled utility.

Note: In the default configuration the Generation user exit is configured and provides a useful
example.

BRP contains anchor points for all seven user exits. The DOS batch file should be named for the user exit it
corresponds to and it should be located in the BRP Utilities folder. Be sure to specify a full and complete
path to the DOS file. Relative paths may not work properly in this context.

The DOS batch file must contain the actual commands that the user exit will execute. This also provides
the opportunity to do more than one task in any given user exit.

BRP checks any enabled user exit INI file parameter value for validity during the Setup step. If the value
does not point to an existing file, BRP will quit with a severe error.

Configuring Advanced Settings
Configure settings on the Advanced tab to improve verification performance and enable support for IMS
Analysis, Executive Report, and WebGen. The settings are described in the table below.

Setting Description

Launch standalone Queue Processor Check this box to launch the Queue Processor. Using the
Queue Processor generally improves verification
performance.

Using the Batch Refresh Process | 239

Setting Description

Number of extra Queue Processors If Launch standalone Queue Processor is selected,
click the arrow buttons to specify the number of additional
Queue Processors you want to launch.

Generate PCF Generate the project control file (PCF) before updating
the sources and/or after verification.

Drop indices Controls the dropping of indices before verifying.

Auto - drops the indices only if WS objects count is
above 256

Yes - always drop indices

No - do not drop indices

Clean Queue before processing All items in the queue will be deleted when the Queue
Processor is launched.

Wait for Queue to become empty before processing If there are items to be processed in the Queue when the
Queue Process is launched, the batch refresh process
will wait until the Queue is cleared.

Wait until Queue is processed Check this box to force BRP to wait until the Queue
Processor(s) queue is empty.

Timeout in minutes If Wait until Queue is processed is selected, click the
arrow buttons to specify the time in minutes BRP should
wait for the count on the Processor(s) queue to change. If
the count does not change within the specified time, BRP
resumes. Sixty minutes is recommended.

Run IMS Analysis Check this box to enable IMS Analysis.

Restore indices Restore indices after verification

Run WebGen Check this box to enable WebGen.

Run Executive Report Check this box to enable Executive Report.

Report Folder Specifies the folder to store the Executive Report in. Use
the Browse button to locate the folder.

Debug Check this box to enable debug mode, in which additional
messages are written to the BRP log.

BRP Logging
At the beginning of every BRP run a timestamp value is generated, consisting of the date and time. That
timestamp is used throughout the run in order to uniquely identify and group the logs and information
generated. Each run creates log files as well as other pieces of information. The timestamp for the run is
added to the beginning of the filename for each log. All logs and information files are typically written to the
Reports folder of the BRP install directory.

The main BRP log is, by default, named BRP log.txt, although the name can be altered by changing the
command that is found in the runBRP.bat file in the BRP install directory. If more than one BRP installation
is present, add the name of the workspace being refreshed to the main BRP log name.

The main BRP log contains basic information on when each major step of the run starts and finishes, as
well as any relevant summary or diagnostic information. This is the log to check to determine whether the
BRP run completed successfully or not. A run to completion will result in the last message in the log
indicating the process finished successfully. Log messages marked "ERROR" should be reviewed. These
are problems that were encountered, but they are not bad enough to cause BRP to abend. Messages
marked as "SEVERE" are issues encountered that required BRP to abend. These should be investigated
and corrected.

240 | Using the Batch Refresh Process

In addition to the main BRP log, the Update Log.txt and Verify Log.txt are also generated. These, as their
names indicate, document the results of the update and verification steps respectively. The update log
contains an entry for each file that is added to the workspace, whether by virtue of being different (updated)
or new (added). Files that are processed during update that have unknown file extensions will also be
documented in this log. Files that are processed and rejected because they are not different from the
version in the workspace are not documented. The verification log lists the verification status of each file
that is processed during verification. Summary statistics appear at the end of the log.

The remainder of the logs and files that are generated during a BRP run are there to provide in-depth
information for troubleshooting if there is a problem during the run. If there is a problem that requires the
attention of support services, please be sure to include all the logs and files from a run. Sorting the file
names in the Reports directory by name will naturally group them together.

Preparing Files for Batch Refresh Processing
Organize your sources in folders in a structure that reflects your enterprise organization and place those
folders under the prepared sources folder (…\Workspaces\BRP_ws\PreparedSources). The BRP
process will not remove the folders after registering the files, allowing you to keep adding or changing files
in the structure.

Note: If your files have very long file names (248 characters for file name and 260 characters for
absolute path + file name), we recommend moving your BRP working folder closer to the root
directory. For example, move C:\Workspaces\BRP_Training\ to C:\BRP_Training\ or even
C:\BRP_T. This is especially applicable for files with nested folder structure as part of their file
names.

Enabling Parallel Verification
Parallel verification typically improves verification performance for very large workspaces by using multiple
execution agents, called Queue Processor, to process source files concurrently. You can start any number
of Queue Processors on the local machine, remote machines, or some combination of local and remote
machines. You can run parallel verification online in the COBOL Analyzer or in batch mode with the Batch
Refresh Process (BRP).

Important: When you run parallel verification on more than one machine, you need to make sure that
workspace and project verification options are set identically on each machine. The easiest way to do
this is to log in as the same Windows user on each machine. Alternatively, you can define a default
option set that is automatically assigned to every user in the environment who has not explicitly
defined a custom option set. See the related topics for more information on option sets.

You enable parallel verification in three steps:

• Select the parallel verification method and the minimum number of concurrent Queue Processors on the
Verification > Parallel Verification tab of the Workspace Options.

• Start the Queue Processors on the local and/or remote machines. If you start fewer than the minimum
number of Queue Processors specified on the Parallel Verification tab, the verification process starts the
needed Queue Processors automatically on the local machine.

• Verify the workspace online in the COBOL Analyzer or in batch mode using the Batch Refresh Process
(BRP).

Note: Verification results are reported in the Activity Log History window. They are not reported in the
Activity Log itself (for online verification) or BRP log files (for batch verification). You can also use a
Verification Report to view the results.

Follow the instructions below to launch Queue Processors and to specify the type of work they perform.
You can launch multiple Queue Processors on the same machine. Once the minimum number of Queue
Processors has been started, you can launch them at any point in the verification process.

1. In the COBOL Analyzer Administration window, choose Administer > Launch Queue Processor. The
Launch Queue Processor window opens.

Using the Batch Refresh Process | 241

2. In the Serve workspace combo box, specify the workspace to be processed.

3. In the Processing Mode pane, select any combination of:

• Conversion to perform operations used to generate a Interactive Analysis construct model.
• Verification to perform verification operations.
• Code Search Query to perform Code Search searches in offline mode.

4. Select Produce Log File to generate a log file for parallel verification. The log file has a name of the
form <workspace_name>HCC.<random_number>.log and is stored at the same level as the workspace
(.rwp) file.

5. Click OK. The product launches the Queue Processor. Click the button on the Windows toolbar to
view the Queue Processor window.

Note: Once verification has started, you can change the processing mode for a Queue Processors
by selecting the appropriate choice in the Processing menu in the Queue Processor window.

Executing the Batch Refresh Process
The BRP Configurator creates a runBRP.bat file and saves it to the location specified in the BRP Install
Path configuration option. Executing this batch file will start a BRP run.

The batch file executes the runBRP.exe executable file with appropriate parameters. The command format
is as follows:

runBRP.exe <INI file> <log file>

where INI file is the path to the BRP initialization file and log file is a path to the main BRP log file.

Note: The workspace is locked while BRP runs. It cannot be accessed by users. In the event of BRP
failure, you can unlock the workspace by choosing Administer > Unlock Workspace in the
Administration tool.

A full BRP run will produce several detailed log files in addition to the main BRP log. These detail files will
always be written to the Reports folder. The main BRP log also is written to the Reports folder by default.

Note: Running multiple BRP processes simultaneously on the same workspace is not supported.

Adding Source File Extensions
It is recommended that source files coming into BRP have proper file extensions already in place. In some
cases, however, this is not possible and BRP can add them if needed. There is no need to configure
initialization file parameters to use the functionality.

To have BRP add the file extensions, you must separate the sources, by type, into separate folders in the
PreparedSources directory. Each folder must be named for the source type it contains and the source type
name must correspond to CA source type names.

CA source type names can be determined by examining the folder names found in the Sources folder of a
workspace directory. If the workspace already contains a source of a particular type, there will be a folder
in the Sources directory corresponding to that source type. For example, Cobol files are found in the Cobol
folder. The precise file extension that is added for any particular source type is determined by the
configuration of the Registration Extensions tab in the target workspace's workspace options. The first
defined file extension for each source type will be the extension that is added by BRP. For example, Cobol
File has three default file extensions listed: .cbl, .cob, and .ccp. Since .cbl is listed first, that is the extension
used by BRP. The order that these values appear in the workspace options can be changed by removing
extensions and adding them back in.

Note that file extensions are added onto the file without regard for any currently existing file extension if this
functionality is used. For example, if the files in a folder named Cobol currently have a .txt extension (which
is commonly added by some mainframe FTP applications), each file would end up having an extension
like .txt.cbl. Various source file naming conventions include multiple "dots" in the source name. Since this

242 | Using the Batch Refresh Process

scenario is unpredictable and varies widely, it is risky and impractical to have BRP strip any possible
existing file extensions.

If there is a mix of sources with and without file extensions, BRP can handle this. Any files with proper
extensions should be placed in the PreparedSources directory directly, as normal. Any files that need
extensions should be dealt with as described above.

BRP Logging
At the beginning of every BRP run a timestamp value is generated, consisting of the date and time. That
timestamp is used throughout the run in order to uniquely identify and group the logs and information
generated. Each run creates log files as well as other pieces of information. The timestamp for the run is
added to the beginning of the filename for each log. All logs and information files are typically written to the
Reports folder of the BRP install directory.

The main BRP log is, by default, named BRP log.txt, although the name can be altered by changing the
command that is found in the runBRP.bat file in the BRP install directory. If more than one BRP installation
is present, add the name of the workspace being refreshed to the main BRP log name.

The main BRP log contains basic information on when each major step of the run starts and finishes, as
well as any relevant summary or diagnostic information. This is the log to check to determine whether the
BRP run completed successfully or not. A run to completion will result in the last message in the log
indicating the process finished successfully. Log messages marked "ERROR" should be reviewed. These
are problems that were encountered, but they are not bad enough to cause BRP to abend. Messages
marked as "SEVERE" are issues encountered that required BRP to abend. These should be investigated
and corrected.

In addition to the main BRP log, the Update Log.txt and Verify Log.txt are also generated. These, as their
names indicate, document the results of the update and verification steps respectively. The update log
contains an entry for each file that is added to the workspace, whether by virtue of being different (updated)
or new (added). Files that are processed during update that have unknown file extensions will also be
documented in this log. Files that are processed and rejected because they are not different from the
version in the workspace are not documented. The verification log lists the verification status of each file
that is processed during verification. Summary statistics appear at the end of the log.

The remainder of the logs and files that are generated during a BRP run are there to provide in-depth
information for troubleshooting if there is a problem during the run. If there is a problem that requires the
attention of support services, please be sure to include all the logs and files from a run. Sorting the file
names in the Reports directory by name will naturally group them together.

Producing Utilities for BRP
The following are guidelines for producing utilities for BRP. These guidelines apply for any utility. Currently
these utilities are normally written by support services and partners.

Versioning
Each utility needs a version number. The version number should be the date of the last modification made
to the utility, formatted as follows:

yyyymmdd

The version number must appear in the first line of the log file that the utility produces.

Logging
Log files are often the only way to get reliable data. The task of analyzing output can become easier when
the log files are used and recording appropriate levels of output.

At a minimum log files need to contain:

Using the Batch Refresh Process | 243

• Utility name
• Utility version
• Parameter names and values
• Record of files modified/written (when appropriate)
• Record of individual changes made to modified files (when appropriate)
The log message format should be as follows:

hh:mm:ss<tab>message type<tab>message

Message types can include INFO, WARN, ERROR, SEVERE, or DEBUG. These are generally self-
explanatory, but SEVERE should not be used unless there is an abend (in Perl the die() command). Add
new message types if the situation calls for it. For example, BRP has a SETUP message type.

Source, Executable, and CFG Files
Utilities are produced by support services and partners and are delivered as a compiled executable with
documentation and, if necessary, a CFG file.

Guidelines for BRP Utilities
This section focuses on guidelines for utilities that need to be "enabled" for BRP. The only difference is
where input is coming from, output is going to, and how parameters are provided.

BRP and Non-BRP Modes
In general, any utility created for BRP should also be able to be run in a standalone manner; that is, it
should run outside of and separate from BRP as well. Typically this means getting parameters from a CFG
file. This is already being done for all pre-processing type utilities right now. There are occasional situations
where this is not practical. The utility needs to be able to determine whether it is being executed in a BRP
context or not. If the stand-alone mode requires a CFG file, the absence of a CFG file parameter can serve
as a trigger for BRP-mode execution. Where this will not work, the first parameter of the utility should be
"BRP" to trigger BRP-mode execution.

Using User Exits
There are several user exit points in BRP. At different user exits potential input files are in different places
and output requirements are different as well. Knowing which user exit a utility is going to be run from is
crucial. It is recommended that support services be consulted regarding which user exit to employ for a
particular task. The majority of user exit utilities are source code pre-processors and all use the Update
user exit.

Parameter Data
Parameter data typically comes from any of three general sources: command line, CFG file, or DOS
environment variables. The first two are straightforward. DOS environment variables are easily acquired by
capturing the output of the DOS set command with the following line of Perl code:

$dos_env_vars_str = `set`;

Note: The special characters preceding and following the word "set" are not single quote characters;
they are "backtick" characters.

The parameter values that drive a BRP run are made available to a user exit via DOS environment
variables. BRP generates a DOS batch file that contains commands to set DOS environment variables.
The user exit command is added to the end of the generated batch file and the batch file is executed using
the backtick operator in Perl. The backtick operator executes a DOS command (in BRP the path to a batch
file) in a shell "nested" inside of the shell of the BRP executable. The environment variables set up for a
user exit only exist during the execution of that user exit. The environment variable commands are re-
generated and run for each user exit.

244 | Using the Batch Refresh Process

In general, the format of parameter names and values should be standardized. BRP job parameters are of
the form:

Parameter Name = Parameter Value

DOS environment variables and CFG file parameters are formatted in the same way. Command line
parameters should follow the same standard. In general, command line parameters need to override the
same named parameter from a CFG file or DOS environment. This allows a way to alter behavior in cases
where the user may not have direct control over all the values.

Logging
In addition to the general logging guidelines, the name of the log file and where it is written need to be
addressed in BRP-mode utilities.

The log file name pattern is:

(timestamp)UtilityName Log.txt

where UtilityName is obvious and timestamp is a BRP environment parameter (BRP_TIMESTAMP) that
identifies all logs for a BRP run.

Input/Output
Input and output locations will change depending on what files are needed and which user exit the utility is
run from. Most utilities (source code pre-processing) will be running from the Update user exit.

The sources coming into the BRP process will be in the following path:

BRP_STAGINGDIR\BRP_TIMESTAMP

where BRP_STAGINGDIR is a full path referring to the Staging folder of a BRP install and
BRP_TIMESTAMP holds the timestamp value for the current BRP run.

Output sources must be written back to this same location. However, to maintain integrity should the user-
exit utility fail or otherwise not finish, it is recommended that output sources be written to the BRP Working
folder (BRP_WORKINGDIR) and only when processing is completed should they then be copied back to
the proper output location. A subfolder should be created in the Working folder for this purpose using the
following format:

timestamp_UtilityName

This naming convention is required.

Returning Values
BRP determines the return state of a user exit by examining all the output written to the "console"
(STDOUT in Perl terminology) by the commands executed by the user exit. The examination is done after
the user exit completes execution and control returns back to the BRP run. If there is no output BRP
assumes the user exit commands completed successfully. If there is any output found BRP assumes there
was a SEVERE level error and will immediately stop the run.

BRP will include any output it finds in a SEVERE level message in the main BRP log. Any user exit
executed utility should be sure to make effective use of this behavior. User exits do not have any
knowledge of what commands or utilities they are executing. Therefore a message written to the console
should contain the utility or command name along with an appropriately brief message. The details behind
a utility failure can be included in the utility's own log.

BRP Environment Parameters
BRP parameter values are split into two groups. Ones prefixed with "BRP_" are for BRP specific values.
Those prefixed with "EXT_" are for source file extension definitions. The tables below list all variables that
are set by BRP for use by user exits along with a short description. Any path value will be fully qualified
unless otherwise noted.

Using the Batch Refresh Process | 245

The following parameter uniquely identifies a BRP run.

Name Description

BRP_TIMESTAMP Timestamp value that uniquely identifies a BRP run and
the logs that are generated during that run.

The following parameters are the paths to log files from BRP runs. Note that all the references to specific
jobs are default settings only. There are very few cases where these exact jobs will not be used, but they
do exist.

Name Description

BRP_APPLYOBSOLETEPCFLOGFILE Log from ApplyPCF.bj job for applying the
BRP_OBSOLETEPCF file.

BRP_BWGLOGFILE Log from BWG.exe (Batch WebGen).

BRP_CREATEBEGINPCFLOGFILE Log from CreatePCF.bj job. This is run at the beginning of
the BRP run and creates the file BRP_BEGINPCF.

BRP_CREATEENDPCFLOGFILE Log from CreatePCF.bj job. This is run just before
verification and creates the file BRP_ENDPCF.

BRP_EXECREPORTLOGFILE Log for the ExecutiveReport.bj job.

BRP_GETEXTLOGFILE Log for the GetExtensions2.mbu job. This is run at the
beginning of the BRP and creates the file
BRP_FILEEXTFILE. See the section below on extension
values for more information.

BRP_IMSANALYSISLOGFILE Log for the IMS Analysis.bj job.

BRP_UPDATELOGFILE Log for the UpdateOnly.bj job.

BRP_VERIFYLOGFILE Log for the VerifyOnly2.bj job.

The following parameters are for the various PCF files that are generated and used during a BRP run.

Name Description

BRP_BEGINPCF Generated at the beginning of a BRP run. Used for many
purposes in BRP including determining obsolete sources.

BRP_ENDPCF Generated toward the end of a BRP run, after the
BRP_OBSOLETEPCF is applied and before verification.

BRP_OBSOLETEPCF Generated during a Master BRP run if
BRP_OBSOLETEPROCESSING is set to 1. This will shift
sources missing from the current incoming set of files to
the project specified in BRP_OBSOLETEPROJECT.

The following parameters are data files that BRP uses, flags that turn certain processing on or off, BRP
install folders, and other various values.

Name Description

BRP_DROPIND Flag (1/0) that drops database indexes to improve
verification and IMS Analysis performance.

BRP_LAUNCHHCC Flag (1/0) that launches the Queue Processor to improve
verification performance.

BRP_WAITHCC Time in minutes to wait for Queue Processor to respond.

BRP_BRPLOGFILE Main log file for a BRP run.

246 | Using the Batch Refresh Process

Name Description

BRP_BRPINSTALLPATH Path where BRP is installed. This is specified in the BRP
initialization file. BRP will derive the path values for the
six BRP folders (PreparedSources, Reports, Staging,
Utilities, and Working) based off this path if they are not
specified in the initialization file.

BRP_PREPAREDSOURCESDIR Path where sources coming into BRP start off. In cases
where a utility is in place to handle getting the sources off
a server or mainframe this is the location where those
sources are copied to.

BRP_REPORTDIR Path to the folder where all log files are written to. Other
resource files created during a BRP run are also written
here including all PCF files, file extension data file and all
generated user exit batch files.

BRP_RMWINSTALLPATH Path to the install folder for CA.

BRP_STAGINGDIR Folder where sources reside for updating to the
workspace. Sources will actually be in a subfolder that is
named with the BRP timestamp and not the Staging
folder directly. This is also where the majority of source
pre-processing utilities will look for inputs and write
outputs.

BRP_UTILITIESDIR Path to directory that contains all the executables the
BRP will need along with extra resource files and the
static user exit batch files.

BRP_WORKINGDIR Folder user exit utilities should use for any work they
need to perform.

BRP_WORKSPACEDIR Path to the target workspace.

BRP_FILEEXTFILE File containing the file extension definitions for the target
workspace.

BRP_LASTRUNFILE Text file containing the timestamp of the last BRP run that
completed execution.

BRP_OBSOLETEEXCLUSIONSFILE File that lists any files that should be excluded from
obsolete processing. Typically this includes files
generated by CA (ex. DASDL copybooks), but is often
used for client-specific sources as well.

BRP_BRPRUNTYPE Must be set to "Master".

BRP_DEBUG Flag (1/0) that will increase the amount of messaging
written to the main BRP log. Typically this is always set to
1.

BRP_LASTRUNTIMESTAMP The timestamp value of the last BRP run that completed
execution.

BRP_OBSOLETEPROCESSING Flag (1/0) that turns obsolete processing on or off. When
it is turned on the incoming set of files will be compared
against the set of file currently in the target workspace.
Any files currently in the workspace, but not in the
incoming set of files will be moved to an obsolete project
(named in the BRP_OBSOLETEPROJECT parameter).

BRP_OBSOLETEPROJECT Name of a project where obsolete sources will be moved
to.

BRP_SITE Documentation parameter that is set in the BRP
initialization file. The value here will be written to the

Using the Batch Refresh Process | 247

Name Description

beginning of the main BRP log file. It is used mainly for
support purposes to ensure that initialization and log files
produced by a client match up.

The following parameters contain the command that will be executed by BRP. Typically this will specify a
static DOS batch file (as opposed to the generated batch file BRP generates for each user exit). The static
batch file is used so that multiple commands can be executed in a single user exit. These parameters will
only exist if the user exit is being used. Below is a complete list of all user exit parameters, but it will be rare
to see them all at once. They are listed in the order they would be executed in a BRP run. There is one
user exit for each major step of the BRP. They always are the first task that is done in each step.

Name Description

BRP_USEREXIT_SETUP

BRP_USEREXIT_INIT

BRP_USEREXIT_STAGING

BRP_USEREXIT_UPDATE

BRP_USEREXIT_VERIFICATION

BRP_USEREXIT_GENERATION

BRP_USEREXIT_END

The following parameters contain information on the source file extensions that are valid for each legacy
file type for the target workspace. The exact parameters that will be here depend upon what options are
activated for the target workspace.

Name Description

 Parameter Names The general format of the parameter names is EXT_type,
where type is the name of the corresponding directory in
the workspace Sources folder. Note that in the past this
name is not necessarily the same as the type name
found in a PCF file. For example, PL/I included sources
are contained in the Sources folder PLIInclude, but that
source type is named "PLINC" in PCF files.

 Parameter Values The extension values are separated by a single space
and will be in the same order they appear in the
workspace options window.

Example: EXT_COBOL = cbl cob ccp C74

Testing
Testing user exit utilities can be challenging. The easiest way to do this is to use one of the DOS batch files
generated for each enabled user exit during a BRP run. These files will contain all the parameters and the
values can be changed to suit the needs of the testing requirements. Replace the last command in the file
with whatever command is necessary. In a Perl context we would use:

perl -d myUtility.pl

Note that a DOS command window will not execute one of these generated batch files when they have
same filename the BRP run assigns (for example, (timestamp)UserExit.bat). This is due to some intrinsic
interpretation of the leading "(timestamp)" in the file name. Simply delete this portion of the file name and
the batch file will work normally.

248 | Using the Batch Refresh Process

Using Batch Scripts
Use the batch job scripts supplied with COBOL Analyzer in BRP user exits or on a standalone basis. The
scripts are located in \<CA Home>\Scripts\BRP.

Only scripts recommended for use by clients are described. Unless otherwise specified, tool options set in
the COBOL Analyzer govern the behavior of the scripts. The default project referred to in the descriptions
is the project with the same name as the workspace.

The notification file available in some scripts summarizes job execution. A sample notification file for the
Verify.bj script follows. The notification file indicates that eight source files were verified successfully and
two were verified with errors.

Date: 10/28/2009
Workspace C:\Workspaces\Training
Status of the Verification step:
successful - 8
with errors - 2
failed - 0

AddNew.bj

Action

Register new source files only. Use:

• Register.bj to register new source files and refresh updated source files.
• UpdateOnly.bj to refresh updated source files only.
• Refresh.bj to register and verify new and updated source files.
• Verify.bj to verify registered source files.

Syntax

AddNew Workspace Dir [Entity] [Project] [Detailed]

Required Parameters Description

Workspace Workspace file (.rwp).

Dir Staging directory for incoming source files.

Optional Parameters Description

Entity * or entity type of source files. Default is *.

Project Project. Default is the default project.

Detailed Log file.

AffectedCodeReport.bj

Action

Generate an Affected Code Report in MS Word format. The report shows code that would be impacted by
changing a data item's definition or usage. The data item is called a seed field.

Using the Batch Refresh Process | 249

Syntax

AffectedCodeReport Workspace Model SearchPattern CriterionName [Accumulate]
[Detailed]

Required Parameters Description

Workspace Workspace file (.rwp).

Model Interactive Analysis model for the source files to be
searched.

SearchPattern Search criterion for the seed field.

CriterionName Name of the search criterion for the seed field.

ListName Name of the list. It can be [WS.User].Change
Analyzer.Working or [WS.User].Change
Analyzer.Affected, where [WS.User] is the
name of the system where the Affected Code Report is
created.

aCategoryName Name of the category. For now it can only be Change
Analyzer.

outPutPath Output Directory. If it is left blank, the report will be
displayed instead of being saved to a file.

Optional Parameters Description

Accumulate Whether to append the results to existing results, True or
False. Default is False.

Detailed Log file.

AnalyzeProgram.bj

Action

Generate Interactive Analysis information for the workspace.

Syntax

AnalyzeProgram Workspace [Project] [Notify] [Detailed] [Drop] [LaunchHHC]
[ExtraHHC] [StopHHC] [Wait]

Required Parameters Description

Workspace Workspace file (.rwp).

Optional Parameters Description

Project Project. Default is the default project.

Notify Notification file.

Detailed Log file.

250 | Using the Batch Refresh Process

Oracle Only Parameters Description

Drop Whether to drop repository indexes. Specify:

• Auto, to let the script determine whether to drop
repository indexes based on the number of files to be
processed.

• Yes, to drop repository indexes.
• No, to not drop repository indexes.

Dropping repository indexes generally improves
performance when a large number of files need to be
processed. Dropped indexes are restored when
processing is complete. Default is No.

LaunchHHC Whether to launch the Queue Processor, Yes or No.
Launching the Queue Processor generally improves
performance. Default is No.

ExtraHHC If LaunchHHC is specified, the number of additional
Queue Processors to launch.

StopHHC Whether to stop the Queue Processor(s) when
processing is complete, Yes or No.

Wait Whether to wait until the Queue Processor(s) queue is
empty. Specify:

• Yes, to wait indefinitely.
• No, to not wait.
• The number of seconds to wait for the count on the

queue to change. If the count does not change within
the specified time, BRP resumes. Sixty minutes is
recommended. 0 means no timeout.

ApplyPCF.bj

Action

Assign source files to projects based on a project control file (PCF). A project control file identifies the
projects to which source files belong. It specifies the path to the source files rather than just their names so
as to avoid issues resulting from having files with homonymous names.

ApplyPCF.bj differs from SetProject.bj in that it does not allow you to assign source files to projects
additively. Use CreatePCF.bj or Related.bj to create a project control file.

Syntax

ApplyPCF Workspace ProjectCF [Detailed]

Required Parameters Description

Workspace Workspace file (.rwp).

ProjectCF Project control file (.pcf).

Optional Parameters Description

Detailed Log file.

Using the Batch Refresh Process | 251

BusinessRulesReport.bj

Action

Generate a Business Rules Report. The report lists the business functions, rule sets, segments, attributes,
data elements, and control conditions of business rules in the workspace.

Syntax

BusinessRulesReport Workspace File [Project] [Detailed]

Required Parameters Description

Workspace Workspace file (.rwp).

File Output file. The format of the report depends on the
extension. Supported extensions
are .html, .htm, .xls, .rtf, .doc, .txt, and .csv.

Optional Parameters Description

Project Project. Default is the default project.

Detailed Log file.

BusinessRulesValidation.bj

Action

Indicate whether business rule segments no longer are valid. An invalid segment is out of synch with the
rule, typically because lines of code have been added or deleted during a refresh or edit. Optionally, specify
how to handle invalid segments.

Syntax

BusinessRulesValidation Workspace [Action] [Project] [Detailed]

Required Parameters Description

Workspace Workspace file (.rwp).

Optional Parameters Description

Action How to handle invalid segments. Specify:

• leave, to retain the invalid segment but set the rule
Segment Validity attribute to Invalid.

• delete, to delete the invalid segment and set the rule
Segment Validity attribute to Invalid.

• valid, to resynchronize the segment, subject to the
limitations described in Analyzing Programs in the
product documentation set.

The values are case-sensitive.

Project Project. Default is the default project.

252 | Using the Batch Refresh Process

Optional Parameters Description

Detailed Log file.

ChangeTraffic.bj

Action

Generate change traffic metrics. Change Traffic metrics compare the source files currently in a workspace
with the source files in a change unit:

• At the tag level, the number of new, modified, and deleted files in the change unit.
• At the object level, the number of new, modified, deleted, and moved lines in the modified files, and the

number of lines in the new and deleted files.

Important: An additional module required for generating the object level Change Traffic metrics is not
included in the COBOL Analyzer installer. It is called diff and is a source comparison tool that has
been developed as an open source module using GnuWin. As such, it is free to download, but is not
something that Micro Focus can distribute.

Diff can create metrics to show differences between two source modules. These metrics are then
gathered by ChangeTraffic.bj and loaded into CA via the Enterprise View core module apm-
core.jar.

To download and install diff:

1. Go to http://www.microfocus.com/docs/links.asp?ea=gnuwin .
2. Go to the latest available version (currently it is 2.8.7.1) and select the executable to download. In

this case it is diffutils-2.8.7-1.exe.
3. Run the executable to install diff.
4. Go to its installation directory. By default it is: C:\Program Files (x86)\GnuWin32\bin.
5. Copy diff.exe into the CA bin directory. By default it is: C:\Program Files (x86)\Micro

Focus\COBOL Analyzer\Bin.

Once diff has been placed in the CA bin directory, ChangeTraffic.bj can be run as part of Batch
Refresh Process to compare the files that are currently in a workspace against the files that are about
to be loaded into CA.

The change unit comprises the new and modified source files, and optionally a change unit description file,
named Configuration.txt. Use the change unit description file to:

• List the source files to be deleted, in the form DELETED:filename.
• Assign the change metrics a date other than the date the script is executed. Specify the date in the form

DATE: YYYY-MM-DD HH24:MI:SS.

For example:

DATE: 2010-03-15 17:12:13
DELETED:MYPROG.CBL
DELETED:MYCOPY.CPY

Note: Generating or importing change traffic metrics does not physically delete source files from the
workspace. Use ProcessChangeUnit.bj with a change unit description file to delete source files
from the workspace.

The output of ChangeTraffic.bj is an XML file that can be imported into the repository in online mode
using the Enterprise View Configuration interface, or in batch mode using the following command:

java -jar avmcore-Panther.jar "workspace" "outputfile"

where workspace is the name of the workspace and outputfile is the XML output file.

Using the Batch Refresh Process | 253

http://www.microfocus.com/docs/links.asp?ea=gnuwin

Note: Enterprise View must be installed before you run the import command.

Syntax

ChangeTraffic UDCFolder SourceFolder XMLOutputFile ProjectName UDCName
[Detailed]

Required Parameters Description

UDCFolder Dedicated folder for the change unit.

SourceFolder \Sources folder for the workspace.

XMLOutputFile Output file.

ProjectName Name of tag for the application.

UDCName Name of tag for the change unit. Use this argument to
distinguish between change units. Enter an empty string
if you do not want to specify a change unit tag.

Optional Parameters Description

Detailed Log file.

CheckQueue.bj

Action

Check whether the Queue Processor(s) queue is empty.

Syntax

CheckQueue Workspace [Project] [Detailed] [Wait]

Required Parameters Description

Workspace Workspace file (.rwp).

Optional Parameters Description

Project Project. Default is the default project.

Detailed Log file.

Oracle Only Parameters Description

Wait Whether to wait until the Queue Processor(s) queue is
empty. Specify:

• Yes, to wait indefinitely.
• No, to not wait.
• The number of seconds to wait for the count on the

queue to change. If the count does not change within
the specified time, BRP resumes. Sixty minutes is
recommended. 0 means no timeout.

254 | Using the Batch Refresh Process

ClipperDetails.bj

Action

Generate a Code Search Details Report. For each source file in the specified Code Search list, the report
shows the constructs in the list, their type, and their location in the file. You can customize the report to
include any Interactive Analysis attribute related to the constructs.

Syntax

ClipperDetails Workspace Model ListName Category FileName Attrs [Project]
[Detailed]

Required Parameters Description

Workspace Workspace file (.rwp).

Model Interactive Analysis model for the listed source files.

ListName Name of the list. The list is assumed to be owned by the
current user. If it is owned by another user, append a
vertical bar (|) and the user name.

Category List category.

FileName Output file. The format of the report depends on the
extension. Supported extensions
are .html, .htm, .xls, .rtf, .doc, .txt, and .csv.

Attrs String containing Interactive Analysis attributes to include
in the report, separated by a vertical line (|).

Optional Parameters Description

Project Project. Default is the default project.

Detailed Log file.

ClipperMetrics.bj

Action

Generate a Code Search Metrics Report. For each list in the specified Code Search category, the Metrics
Report shows the number of list items in each program in the workspace.

Syntax

ClipperMetrics Workspace Model Category FileName [Project] [Detailed]

Required Parameters Description

Workspace Workspace file (.rwp).

Model Interactive Analysis model for the listed source files.

Category List category.

Using the Batch Refresh Process | 255

Required Parameters Description

FileName Output file. The format of the report depends on the
extension. Supported extensions
are .html, .htm, .xls, .rtf, .doc, .txt, and .csv.

Optional Parameters Description

Project Project. Default is the default project.

Detailed Log file.

ClipperMultiSearch.bj

Action

Execute a Code Search with multiple criteria. The results are displayed in the specified Code Search list.

Syntax

ClipperMultiSearch Workspace Criteria Model ListName Category [Project]
[Accumulate] [Detailed]

Required Parameters Description

Workspace Workspace file (.rwp).

Criteria File containing the search criteria, one per line. Specify
the full path name of the criterion in the Interactive
Analysis Advanced Search tool, including the tab name
(General) and any folder names. For example,
General:Coding Standards\MOVE Statements\Possible
Data Padding. Follow the notation specified exactly.

Model Interactive Analysis model for the listed source files.

ListName Name of the list. The list is assumed to be owned by the
current user. If it is owned by another user, append a
vertical bar (|) and the user name.

Category List category.

Optional Parameters Description

Project Project. Default is the default project.

Accumulate Whether to append the results to existing results, True or
False. Default is False.

Detailed Log file.

ClipperSearch.bj

Action

Execute a Code Search search. The results are displayed in the specified Code Search list.

256 | Using the Batch Refresh Process

Syntax

ClipperSearch Workspace Criterion Model ListName Category [Project]
[Accumulate] [Detailed]

Required Parameters Description

Workspace Workspace file (.rwp).

Criterion Full path name of the search criterion in the Interactive
Analysis Advanced Search tool, including the tab name
(General) and any folder names. For example,
General:Coding Standards\MOVE Statements\Possible
Data Padding. Follow the notation specified exactly.

Model Interactive Analysis model for the source files to be
searched.

ListName Name of the list. The list is assumed to be owned by the
current user. If it is owned by another user, append a
vertical bar (|) and the user name.

Category Category of the list.

Optional Parameters Description

Project Project to execute search for.

Accumulate Whether to append the results to existing results, True or
False. Default is False.

Detailed Log file.

tpc_CodeSearchReport.bj

Action

Generate a Code Search report.

Syntax

CodeSearchReport Workspace ReportName Project [Folder]

Required Parameters Description

Workspace Workspace file (.rwp).

ReportName Name of the Code Search report.

Project Project. Default is the default project.

Optional Parameters Description

Folder Output directory where the HTML report will be stored. If
there is no value provided for Folder, the HTML report
won't be created.

Using the Batch Refresh Process | 257

ComplexityReport.bj

Action

Generate a Complexity Metrics Report. The report shows complexity metrics for objects of the specified
type.

Syntax

ComplexityReport Workspace File [Entity] [Project] [Detailed]

Required Parameters Description

Workspace Workspace file (.rwp).

File Output file. The format of the report depends on the
extension. Supported extensions
are .html, .htm, .xls, .rtf, .doc, .txt, and .csv.

Optional Parameters Description

Entity Entity type of objects to report on. Default is program.

Project Project. Default is the default project.

Detailed Log file.

CreatePCF.bj

Action

Create a project control file (PCF) for a workspace. A project control file identifies the projects to which
source files belong. It specifies the path to the source files rather than just their names so as to avoid
issues resulting from having files with homonymous names. Use ApplyPCF.bj or SetProject.bj to assign
source files to projects based on the project control file.

Syntax

CreatePCF Workspace Out [Detailed]

Required Parameters Description

Workspace Workspace file (.rwp).

Out Project control file (.pcf).

Optional Parameters Description

Detailed Log file.

CreateWS.bj

Action

Create a workspace.

258 | Using the Batch Refresh Process

Syntax

CreateWS Workspace [DB] [Detailed]]
/* Oracle */DSN Schema Password [User]
/* DB/2 */DSN Schema Password [User] [TableSpace] [IndexSpace]
/* SQL Server */Server Database Password User

Required Parameters Description

Workspace Workspace file (.rwp).

Optional Parameters Description

DB * or database type: Oracle, DB2, or MSSQL. Default is *.

Detailed Log file.

Oracle Required Parameters Description

DSN ODBC data source name (DSN) for the database that
holds the repository.

Schema Database schema name for the repository.

Password Database password that gives access to the schema.

Oracle Optional Parameters Description

User Database user name that gives access to the schema.

DB/2 Required Parameters Description

DSN ODBC data source name (DSN) for the database that
holds the repository.

Schema Database schema name for the repository.

Password Database password that gives access to the schema.

DB/2 Optional Parameters Description

User Database user name that gives access to the schema.

TableSpace Name of the tablespace for the repository.

IndexSpace Name of the tablespace for database indexes.

SQL Server Required Parameters Description

Server Name of the server.

Database Name of the database.

Password Password that gives access to the database.

User User name that gives access to the database.

Using the Batch Refresh Process | 259

CRUDReport.bj

Action

Generate a CRUD Report. The report shows the data operations programs perform (Insert, Read, Update,
or Delete) and the data objects on which the programs operate.

Syntax

CRUDReport Workspace File [Project] [Detailed]

Required Parameters Description

Workspace Workspace file (.rwp).

File Output file. The format of the report depends on the
extension. Supported extensions
are .html, .htm, .xls, .rtf, .doc, .txt, and .csv.

Optional Parameters Description

Project Project. Default is the default project.

Detailed Log file.

DBA.Cobol.bj

Action

Perform domain-based analysis of Cobol programs. Domain-based analysis "slices out" a specialized
program based on the values of one or more variables.

An input file in CSV format identifies the slice parameters. Each line contains the following information:

ProgName,SliceName,DataItem,FileName,Row,Col,Comparison,Value,LowerValue,Upper
Value

where:

• ProgName is the name of the program from which the slice will be extracted.
• SliceName is the name of the slice.
• DataItem is the name of the specialization variable.
• FileName is the name of the source file containing the specialization variable.
• Row is the row number of the specialization variable in the source file.
• Col is the column number of the specialization variable in the source file.
• Comparison is the comparison type: "equals" sets the specialization variable to the values specified in

Value; "not equals" sets the specialization variable to every value but the values specified in Value.
• Value is the value to set the specialization variable to.
• If Value is omitted, LowerValue is the lower value of the range of values to set the specialization variable

to.
• If Value is omitted, UpperValue is the upper value of the range of values to set the specialization

variable to.

Multiple locations can be specified for a slice. Multiple conditions can be set for a location. All content is
case-sensitive.

260 | Using the Batch Refresh Process

Input File Sample

DAYOFWEEK,Domain1,YEAR,DayOfWeek.cbl,12,12,equals,2000,,
DAYOFWEEK,Domain1,YEAR,DayOfWeek.cbl,12,12,equals,,2002,2005
DAYOFWEEK,Domain1,MONTH,DayOfWeek.cbl,13,12,equals,4,,
DAYOFWEEK,Domain1,MONTH,DayOfWeek.cbl,13,12,equals,5,,
DAYOFWEEK,Domain1,MONTH,DayOfWeek.cbl,65,19,equals,5,,
DAYOFWEEK,Domain1,MONTH,DayOfWeek.cbl,65,19,equals,6,,
DAYOFWEEK,Domain1,MONTH,DayOfWeek.cbl,95,15,equals,7,,
DAYOFWEEK,Domain1,MONTH,DayOfWeek.cbl,95,15,equals,,1,3
DAYOFWEEK,Domain2,YEAR,DayOfWeek.cbl,81,15,equals,,2001,2010
GSS,Domain3,GSS1003-CMD-CODE-I,GSS.cbl,186,16,equals,"ENTER",,

Syntax

DBA.Cobol Workspace List [Options] [Export] [Notify] [Detailed]

Required Parameters Description

Workspace Workspace file (.rwp).

List CSV file with slice parameters.

Optional Parameters Description

Options Options script file. Default values for options usually are
acceptable. Contact support services for special needs.

Export Destination folder for slices. Results normally are viewed
in CA Component Maker.

Notify Notification file.

Detailed Log file.

DCE.bj

Action

Perform dead-code elimination (DCE) for programs in source files of the specified type. For each program
analyzed for dead code, DCE generates a component that consists of the original source code minus any
unreferenced data items or unreachable procedural statements.

Syntax

DCE Workspace Entity [Options] [Pattern] [Project] [Detailed]

Required Parameters Description

Workspace Workspace file (.rwp).

Entity Interactive Analysis model for the source files to be
analyzed for dead code. Valid values are COBOL, PL|1,
NATURAL, and NATSUBROUTINE.

Using the Batch Refresh Process | 261

Optional Parameters Description

Options Options script file. Default values for options usually are
acceptable. Contact support services for special needs.

Pattern Pattern for naming generated components. The pattern
may contain any valid symbols. An asterisk (*) is replaced
with the name of the analyzed program. If the argument is
omitted, component names are generated in the form
BREnn, where nn is an incrementing number.

Project Project. Default is the default project.

Detailed Log file.

DiagramCallie.bj

Action

Generate Program Control Flow Diagrams for the workspace. The diagrams show the call flow for
paragraphs in a COBOL program, subroutines in an RPG program, or procedures in a PL/I or Natural
program.

The subgraph mode offers a cyclic representation of the information in the diagram. Items are drawn once.
Relationship lines cross. Subgraph views are often easier to understand than subtree views.

The subtree mode offers a linear representation of the information in the diagram. Items are drawn as
many times as necessary. Relationship lines do not cross. Use this view if too many intersecting lines make
a subgraph view hard to read.

Syntax

DiagramCallie Workspace [Pattern] [Mode] [Project] [Detailed]

Required Parameters Description

Workspace Workspace file (.rwp).

Optional Parameters Description

Pattern Pattern for naming the generated diagrams, consisting of
the output folder, file name pattern, and extension. For
example, D:*.emf. The file name pattern may contain any
valid symbols. An asterisk (*) is replaced with the name
of the analyzed object. The format of the diagram
depends on the
extension: .dgm.xml, .bmp, .jpg, .vsd, .vdx, or .emf.
Default is\WorkspaceFolder\Output\ObjectName.bmp.

Mode Mode of the diagram, subgraph or subtree.

Project Project. Default is the default project.

Detailed Log file.

262 | Using the Batch Refresh Process

DiagramFlowchart.bj

Action

Generate Flowchart Diagrams for the workspace. The diagrams show the flow of control between
statements in a Cobol paragraph or PL/I procedure, or between steps in a job or JCL procedure.

Syntax

DiagramFlowchart Workspace [Pattern] [Project] [Detailed]

Required Parameters Description

Workspace Workspace file (.rwp).

Optional Parameters Description

Pattern Pattern for naming the generated diagrams, consisting of
the output folder, file name pattern, and extension. For
example, D:*.emf. The file name pattern may contain any
valid symbols. An asterisk (*) is replaced with the name
of the analyzed object. The format of the diagram
depends on the
extension: .dgm.xml, .bmp, .jpg, .vsd, .vdx, or .emf.
Default is\WorkspaceFolder\Output\ObjectName.bmp.

Project Project. Default is the default project.

Detailed Log file.

DiagramProject.bj

Action

Generate a relationship flow diagram for the specified project. Use DiagramTS.bj to generate a relationship
flow diagram for each workspace object of a specified type.

Syntax

DiagramProject Workspace Scope [Pattern] [Tag] [Layout] [Project] [OptionSet]
[Detailed][ReportType]

Required Parameters Description

Workspace Workspace file (.rwp).

Scope Diagram scope (including user-defined scopes).

Optional Parameters Description

Pattern Pattern for naming the generated diagram, consisting of
the output folder, file name pattern, and extension. For
example, D:*.emf. The file name pattern may contain any
valid symbols. An asterisk (*) is replaced with the name of
the project. The format of the diagram depends on the

Using the Batch Refresh Process | 263

Optional Parameters Description

extension: .dgm.xml, .bmp, .jpg, .vsd, .vdx, or .emf.
Default is \WorkspaceFolder\Output\ProjectName.bmp.

Tag Tag used to black-box objects in the diagram. If related
objects are contained in different black boxes, generates
a Blackbox Interface Report. The report is stored in the
folder location specified in Pattern, with the name
DiagramName-ProjectName-BlackBoxRpt.csv. Report
types are described in ReportType below.

Layout Diagram layout: circular, hierarchical, orthogonal,
symmetric, or tree.

Project Project. Default is the default project.

OptionSet Whether to use the current settings in the interactive
Diagrammer tool for auto expand, project boundary
entities, and potential incomplete composite relationships,
or the default settings:

• *interactive, to specify the current settings.
• *default, to specify the default settings.

Default is *default.

Detailed Log file.

ReportType Type of Blackbox Interface Report. A Blackbox Interface
Report lists the relationships between objects in different
black boxes. Specify:

• Full, to generate the report with a row for each
relationship. A row contains:

• The black box tag structure for the left and right
objects in the relationship.

• The entity types and names of the left and right
objects in the relationship.

• The relationship name.
• Distinct, to generate the report with a row for each

blackbox interface (effectively collapsing the rows for
relationships with the same interface). A row contains:

• The black box tag structure for the left and right
objects in the relationship.

• The relationship name.
• The number of distinct objects with the left black

box tag structure.
• The number of distinct objects with the right black

box tag structure.
• The number of occurrences of the relationship.

Default is Full. Omitting the parameter is the same as
specifying Full.

Note: This parameter must be specified last in the
list of parameters.

264 | Using the Batch Refresh Process

DiagramTS.bj

Action

Generate a relationship flow diagram for each object of the specified type in the workspace. Specify a
project to limit the diagrams to objects in the project. Use DiagramProject.bj to generate a relationship flow
diagram for an entire project.

Syntax

DiagramTS Workspace Scope [Pattern] [Entity] [Tag] [Layout] [Project]
[OptionSet] [Detailed]

Required Parameters Description

Workspace Workspace file (.rwp).

Scope Diagram scope (including user-defined scopes).

Optional Parameters Description

Pattern Pattern for naming the generated diagrams, consisting of
the output folder, file name pattern, and extension. For
example, D:*.emf. The file name pattern may contain any
valid symbols. An asterisk (*) is replaced with the name
of the analyzed object. The format of the diagram
depends on the
extension: .dgm.xml, .bmp, .jpg, .vsd, .vdx, or .emf.
Default is\WorkspaceFolder\Output\ObjectName.bmp.

Entity * or entity type of source files. Default is *.

Tag Tag used to black-box objects in the diagrams.

Layout Diagram layout: circular, hierarchical, orthogonal,
symmetric, or tree.

Project Project. Default is the default project.

OptionSet Whether to use the current settings in the interactive
Diagrammer tool for auto expand, project boundary
entities, and potential incomplete composite
relationships, or the default settings:

• *interactive, to specify the current settings.
• *default, to specify the default settings.

Default is *default.

Detailed Log file.

EffortReport.bj

Action

Generate an Effort Estimation Report. The report compares source files based on weighted values for
selected complexity metrics.

Using the Batch Refresh Process | 265

Syntax

EffortReport Workspace File [Project] [Detailed]

Required Parameters Description

Workspace Workspace file (.rwp).

File Output file. The format of the report depends on the
extension. Supported extensions
are .html, .htm, .xls, .rtf, .doc, .txt, and .csv.

Optional Parameters Description

Project Project. Default is the default project.

Detailed Log file.

ExecutiveReport.bj

Action

Generate an Executive Report. The report provides HTML views of application inventories that a manager
can use to assess the risks and costs of supporting the application.

Syntax

ExecutiveReport Workspace Folder [Project] [Detailed]

Required Parameters Description

Workspace Workspace file (.rwp).

File Output file. The format of the report depends on the
extension. Supported extensions
are .html, .htm, .xls, .rtf, .doc, .txt, and .csv.

Optional Parameters Description

Project Project. Default is the default project.

Detailed Log file.

ExportDescriptions.bj

Action

Export object descriptions to an ERD file.

Syntax

ExportDescriptions Workspace ERD [Entity] [Project] [Detailed]

266 | Using the Batch Refresh Process

Required Parameters Description

Workspace Workspace file (.rwp).

ERD ERD file.

Optional Parameters Description

Entity * or entity type of the objects to export descriptions for.
Default is *.

Use the flag attribute of an entity type to specify all entity
types with that flag, for example:

*LEGACY

which specifies all entity types with the LEGACY flag. For
more on flags, see Software Development Toolkit,
available from support services.

Project Project. Default is the default project.

Detailed Log file.

ExportRules.bj

Action

Export business rules to an ERD file.

Syntax

ExportRules Workspace FileName [Detailed]

Required Parameters Description

Workspace Workspace file (.rwp).

FileName ERD file.

Optional Parameters Description

Detailed Log file.

ExportScreens.bj

Action

Export renderings for screens in the workspace.

Syntax

ExportScreens Workspace [Pattern] [Output] [Project] [Detailed]

Required Parameters Description

Workspace Workspace file (.rwp).

Using the Batch Refresh Process | 267

Optional Parameters Description

Pattern Pattern for naming screen renderings, consisting of the
output folder, file name pattern, and extension. For
example, D:*.rtf. The file name pattern may contain any
valid symbols. An asterisk (*) is replaced with the name
of the screen. The format of the renderings depends on
the extension. Supported extensions are .rtf and .doc.

Output Output folder if not specified in Pattern.

Project Project. Default is the default project.

Detailed Log file.

GenScreens.bj

Action

Generate screens from Device Description files.

Syntax

GenScreens Workspace [Entity] [Condition] [Project] [Notify] [Detailed]

Required Parameters Description

Workspace Workspace file (.rwp).

Optional Parameters Description

Entity * or entity type of source files. Default is *.

Condition Scope of source. Use the Repository Exchange Protocol
(RXP) to code the condition. For more information, see
Analyzing Projects in the COBOL Analyzer
documentation set. Default is project.

Project Project. Default is the default project.

Notify Notification file.

Detailed Log file.

ImpactReport.bj

Action

Generate an Impact Subtree Report. The report shows the impact trace subtree for the specified data item
occurrence in XML format or in a database.

Note: ImpactReport.bj has to be run against the usage of a variable and it will not run from the
definition of a variable.

Syntax

ImpactReport Workspace Entity Name HCID FileName [Direction] [Project]
[Detailed]

268 | Using the Batch Refresh Process

Required Parameters Description

Workspace Workspace file (.rwp).

Entity Legacy source type, e.g. COBOL.

Name Legacy source name.

HCID HCID of the data item occurrence. It will only be set if the
source file has been verified. Alternatively, use the
following arguments:

• Var, to specify the variable name.
• Source, to specify the relative path of the source file

containing the data item occurrence. It has the same
value as the Source attribute in the General tab of the
file properties. To see the value, right-click the object
in the Repository pane, select Properties and then
the General tab.

• Ln, to specify the line in the source file that has the
variable usage that the report is to be run against.

• Col, to specify the column on the line in the source file
that has the variable usage that the report is to be run
against.

FileName Output file. The format of the report depends on the
extension. Supported extensions are .xml and .mdb.

Optional Parameters Description

Direction Direction of the trace:

• F or 1, to specify a forward trace.
• B or 0, to specify a backward trace.

Forward is the default.

Project Project. Default is the default project.

Detailed Log file.

ImpactReportFromList.bj

Action

Generate an Impact Subtree Report from a Code Search list. The report shows the impact trace subtrees
for occurrences of data items in the list in XML format or in a database.

Syntax

ImpactReportFromList Workspace Model ListName Category Output [Direction]
[Split] [Project] [Detailed]

Required Parameters Description

Workspace Workspace file (.rwp).

Model Interactive Analysis model for the listed source files.

Using the Batch Refresh Process | 269

Required Parameters Description

ListName Name of the list. The list is assumed to be owned by the
current user. If it is owned by another user, append a
vertical bar (|) and the user name.

Category List category.

Output Output file. The format of the report depends on the
extension. Supported extensions are .xml and .mdb.
When Split is set to Y, the path of the folder for .mdb
output files.

Optional Parameters Description

Direction Direction of the trace:

• F or 1, to specify a forward trace.
• B or 0, to specify a backward trace.

Forward is the default.

Split Whether to use the split program method, Y or N. The
split program method generates a separate .mdb output
file for each program that contains a data item occurrence
in the list. N is the default.

Project Project. Default is the default project.

Detailed Log file.

ImportRules.bj

Action

Import business rules from an ERD file.

Syntax

ImportRules Workspace FileNames [Mode] [Detailed]

Required Parameters Description

Workspace Workspace file (.rwp).

FileNames File name of ERD file, or a pattern to match ERD file
names.

Optional Parameters Description

Mode How to handle rules that have the same internal names
as existing rules. Specify:

• Creating, to create rules with unique internal names,
whether or not they have the same internal names.

• Replacing, to replace existing rules whether or not
they have been updated.

• Updating, to replace existing rules only when they
have been updated.

270 | Using the Batch Refresh Process

Optional Parameters Description

The update test is against the Last Validation Time
attribute. Replacing is the default.

Detailed Log file.

IncludeReferences.bj

Action

Include referenced or referencing objects in a project. The project and the objects to be included must have
been verified. Use this script to include in a project:

• All referenced objects.
• All referencing objects.
• Directly referencing objects only. If program A calls program B, and program B calls program C, A is

said to directly reference B and indirectly reference C.

Syntax

IncludeReferences Workspace Cond Scope Project [Detailed]

Required Parameters Description

Workspace Workspace file (.rwp).

Cond Type of object to include:

• Referenced, to include referenced objects.
• Referencing, to include referencing objects.

Scope Scope of references to include:

• All, to include all referenced or referencing objects.
• Direct, to include directly referencing objects only.

Note: Do not omit this parameter when including
referenced objects (when Cond=Referenced).
Specify All.

Project Project. Default is the default project.

Optional Parameters Description

Detailed Log file.

Invalidate.bj

Action

Invalidate source files. Invalidating some or all of the source files in a workspace before reverifying can
save time when you reverify very large workspaces.

Syntax

Invalidate Workspace [Entity] [Cond] [ObjList] [Detailed] [Drop]

Using the Batch Refresh Process | 271

Required Parameters Description

Workspace Workspace file (.rwp).

Optional Parameters Description

Entity * or entity type of source files. Default is *.

Cond Source files to invalidate. Use the Repository Exchange
Protocol (RXP) to code the condition. For more
information, see Analyzing Projects in the product
documentation set.

ObjList When Cond is not set, a control file with a list of source
files to invalidate. Each line of the control file contains the
following information:

"EntityType" "EntityName"

where:

• EntityType is the entity type of the source file to
invalidate, COBOL, for example.

• EntityName is the name of the source file to
invalidate, DayOfWeek.cbl, for example.

Detailed Log file.

Oracle Only Parameters Description

Drop Whether to drop repository indexes. Specify:

• Auto, to let the script determine whether to drop
repository indexes based on the number of files to be
processed.

• Yes, to drop repository indexes.
• No, to not drop repository indexes.

Dropping repository indexes generally improves
performance when a large number of files need to be
processed. Dropped indexes are restored when
processing is complete. Default is No.

InventoryReport.bj

Action

Generate an Inventory Report. The report shows high-level statistics for source file types in the current
workspace: number of files of each type, whether verified, number of lines of code (verified files only), and
the like.

Syntax

InventoryReport Workspace File [Project] [Detailed]

Required Parameters Description

Workspace Workspace file (.rwp).

272 | Using the Batch Refresh Process

Required Parameters Description

File Output file. The format of the report depends on the
extension. Supported extensions
are .html, .htm, .xls, .rtf, .doc, .txt, and .csv.

Optional Parameters Description

Detailed Log file.

MFCobolCLink.bj

Action

Following a verification of the source files, run MFCobolCLink.bj to create relationships between COBOL
programs and C programs, as well as between C programs and JCL programs.

Before the script is run, calls from COBOL to C functions appear as calls to unresolved program entry
points. The calls from C functions to COBOL programs appear as calls to unresolved functions. The batch
process scans the repository for these relationships and when it locates an appropriate match, it replaces
the existing relationships with new ones that link the COBOL and C entities. For calls from COBOL to C
there is a "Calls Program Entry Decision" relationship from the calling program to a new decision entity and
the decision entity has a "Resolves to Function" relationship to the C function called from the COBOL
program. For calls from C to COBOL there is a "Calls Decision" relationship from the calling C function to a
new decision entity and a "Resolves to Program Entry Point" from the decision to the COBOL program
called from the C function.

MFCobolCLink.bj generates relationships between C and JCL programs in a similar way.

There are to options under Options > Workspace Options > Verification > Settings > C File that are
related to this process.

The first option is called Generate program entry points for main functions. When checked, any C
function with the name "main" will now generate an associated program entry point object whose name is
the last component of the file name.

The second option is Generate program entry points for filename functions, which works in a similar
way and is for C modules that do not have a main function.

Note: MFCobolCLink.bj needs to be re-run if any of the C, COBOL or JCL source files are
modified and require verification.

Syntax

MFCobolCLink Workspace

Required Parameters Description

Workspace Workspace file (.rwp).

Populate.bj

Action

Populate a workspace from an ERD file.

Using the Batch Refresh Process | 273

Syntax

Populate Workspace ERD [Detailed]

Required Parameters Description

Workspace Workspace file (.rwp).

ERD ERD file, or a file that contains a list of ERD files. If the
latter, the list file name must be preceded by an @
symbol, for example, @ERDs.txt. Each line of the list file
specifies the full path name of an ERD file.

Optional Parameters Description

Detailed Log file.

ProcessChangeUnit.bj

Action

Set a change date for complexity metrics other than the date source files are verified, and/or delete source
files from the workspace. Specify the date and the files to be deleted in a change unit description file.

Note: Execute this script before registering the source files.

Use SetChangeDate.bj to clear the change date from the system. Use ChangeTraffic.bj to generate change
traffic metrics.

Syntax

ProcessChangeUnit Workspace File [Detailed]

Required Parameters Description

Workspace Workspace file (.rwp).

File Change unit description file. A flat file containing the
change date, in the form DATE: YYYY-MM-DD
HH24:MI:SS, and the files to be deleted, in the form
DELETED:filename. For example:

DATE: 2010-03-15 17:12:13
DELETED:MYPROG.CBL
DELETED:MYPROG.CPY

Optional Parameters Description

Detailed Log file.

ReferenceReport.bj

Action

Generate Reference Reports. The reports identify missing or unneeded files or objects in the workspace:

• An Unresolved Report identifies missing application elements.

274 | Using the Batch Refresh Process

• An Unreferred Report identifies unreferenced application elements.
• A Cross-reference Report identifies all application references.
• An External Reference Report identifies references in object-oriented applications to external files that

are not registered in the workspace, such as .java, Java Archive (JAR), or C++ include files (assuming
you have identified the locations of these files in the Workspace Verification options window for the
source files). These references are not reported as unresolved in the Unresolved Report.

Syntax

ReferenceReport Workspace Type File [Entities] [Restrict] [Project] [Detailed]

Required Parameters Description

Workspace Workspace file (.rwp).

Type The type of report, Unresolved, Unreferred, CrossRef, or
ExternalRef.

File Output file. The format of the report depends on the
extension. Supported extensions
are .html, .htm, .xls, .rtf, .doc, .txt, and .csv.

Optional Parameters Description

Entities * or a comma-separated list of entity types to report on.
Default is *.

Restrict Whether to restrict references to the specified project,
Yes or No. Default is Yes.

Project Project. Default is the default project.

Detailed Log file.

Refresh.bj

Action

Register and verify new source files, refresh and verify updated source files.

Note: The Refresh2.bj variant also autoresolves decisions.

Syntax

Refresh Workspace StageDir [Project] [Notify] [Detailed] [Drop] [LaunchHHC]
[ExtraHHC] [StopHHC] [Wait]

Required Parameters Description

Workspace Workspace file (.rwp).

StageDir Staging directory for incoming source files.

Optional Parameters Description

Project Project. Default is the default project.

Using the Batch Refresh Process | 275

Optional Parameters Description

Notify Notification file.

Detailed Log file.

Oracle Only Parameters Description

Drop Whether to drop repository indexes. Specify:

• Auto, to let the script determine whether to drop
repository indexes based on the number of files to be
processed.

• Yes, to drop repository indexes.
• No, to not drop repository indexes.

Dropping repository indexes generally improves
performance when a large number of files need to be
processed. Dropped indexes are restored when
processing is complete. Default is No.

LaunchHHC Whether to launch the Queue Processor, Yes or No.
Launching the Queue Processor generally improves
performance. Default is No.

ExtraHHC If LaunchHHC is specified, the number of additional
Queue Processors to launch.

StopHHC Whether to stop the Queue Processor(s) when
processing is complete, Yes or No.

Wait Whether to wait until the Queue Processor(s) queue is
empty. Specify:

• Yes, to wait indefinitely.
• No, to not wait.
• The number of seconds to wait for the count on the

queue to change. If the count does not change within
the specified time, BRP resumes. Sixty minutes is
recommended. 0 means no timeout.

Register.bj

Action

Register new source files, refresh updated source files. Use:

• AddNew.bj to register new source files only.
• UpdateOnly.bj to refresh updated source files only.
• Refresh.bj to register and verify new and updated source files.
• Verify.bj to verify registered source files.

Syntax

Register Workspace StageDir [Project] [Entity] [Detailed] [Drop]

Required Parameters Description

Workspace Workspace file (.rwp).

276 | Using the Batch Refresh Process

Required Parameters Description

StageDir Staging directory for incoming source files.

Optional Parameters Description

Entity * or entity type of source files. Default is *.

Project Project. Default is the default project.

Detailed Log file.

Oracle Only Parameters Description

Drop Whether to drop repository indexes. Specify:

• Auto, to let the script determine whether to drop
repository indexes based on the number of files to be
processed.

• Yes, to drop repository indexes.
• No, to not drop repository indexes.

Dropping repository indexes generally improves
performance when a large number of files need to be
processed. Dropped indexes are restored when
processing is complete. Default is No.

Related.bj

Action

Create a project control file (PCF) based on the relationships between source files. The source file on the
left side of the relationship is called the startup object. The source file on the right side of the relationship is
called the target object.

A project control file identifies the projects to which source files belong. Use ApplyPCF.bj or SetProject .bjto
assign source files to projects based on a project control file.

Syntax

Related Workspace Out [List] [Project] [Startup] [Target] [Include] [Detailed]

Required Parameters Description

Workspace Workspace file (.rwp).

Out Project control file (.pcf).

Optional Parameters Description

List A control file with a list of startup objects. Each line of the
control file contains the following information:

"EntityType" "EntityName"

where:

• EntityType is the entity type of the startup object,
COBOL, for example.

Using the Batch Refresh Process | 277

Optional Parameters Description

• EntityName is the name of the startup object,
DayOfWeek.cbl, for example.

Project When List is not specified, the project containing the
startup objects.

Startup When List is not specified, the entity type of the startup
objects. Enclose multiple entity types in parentheses in a
vertical-line-separated list, for example:

(COBOL|COPYBOOK|BMS)

Use the flag attribute of an entity type to specify all entity
types with that flag, for example:

*LEGACY

which specifies all entity types with the LEGACY flag, the
default. For more on entity flags, see Software
Development Toolkit, available from support services.

Note: Additional operators are available for
special needs. Contact support services for
details.

Target The entity type of the target objects. The notation is as for
Startup. Default is (BMS|PSB|DBD|CSD).

Include Whether to include source files related to other source
files in relationships flagged R_USE, such as Cobol
Includes Copybook File. Default is Yes. Specify NONE for
No.

Restrict the result to source files of given types by
specifying the types, for example:

Include=(COBOL|JCL)

The notation is as for Startup. For more on
relationship flags, see Software Development Toolkit,
available from support services.

Detailed Log file.

ResolveDecisions.bj

Action

Resolve decisions automatically.

Syntax

ResolveDecisions Workspace [Project] [Notify] [Detailed] [Drop] [LaunchHHC]
[ExtraHHC] [StopHHC] [Wait]

Required Parameters Description

Workspace Workspace file (.rwp).

278 | Using the Batch Refresh Process

Optional Parameters Description

Project Project. Default is the default project.

Notify Notification file.

Detailed Log file.

Oracle Only Parameters Description

Drop Whether to drop repository indexes. Specify:

• Auto, to let the script determine whether to drop
repository indexes based on the number of files to be
processed.

• Yes, to drop repository indexes.
• No, to not drop repository indexes.

Dropping repository indexes generally improves
performance when a large number of files need to be
processed. Dropped indexes are restored when
processing is complete. Default is No.

LaunchHHC Whether to launch the Queue Processor, Yes or No.
Launching the Queue Processor generally improves
performance. Default is No.

ExtraHHC If LaunchHHC is specified, the number of additional
Queue Processors to launch.

StopHHC Whether to stop the Queue Processor(s) when
processing is complete, Yes or No.

Wait Whether to wait until the Queue Processor(s) queue is
empty. Specify:

• Yes, to wait indefinitely.
• No, to not wait.
• The number of seconds to wait for the count on the

queue to change. If the count does not change within
the specified time, BRP resumes. Sixty minutes is
recommended. 0 means no timeout.

RestoreDecisions.bj

Action

Restore resolved decisions. Reverifying a file invalidates resolved decisions. Use RestoreDecisions.bj with
a decisions control file (DCF) to restore resolved decisions. Use SaveDecisions.bj to create a decisions
control file before reverifying.

Syntax

RestoreDecisions Workspace DecisionsCF [Detailed]

Required Parameters Description

Workspace Workspace file (.rwp).

Using the Batch Refresh Process | 279

Required Parameters Description

DecisionsCF Decisions control file (DCF).

Optional Parameters Description

Detailed Log file.

RXP.bj

Action

Execute a Repository Exchange Protocol (RXP) query. RXP is an XML-based API that you can use to
interact with application-level information in the workspace repository. For more information, see Analyzing
Projects in the product documentation set.

Syntax

RXP Workspace RXP [Query] [Output] [Project] [Detailed]

Required Parameters Description

Workspace Workspace file (.rwp).

RXP File that contains RXP queries.

Optional Parameters Description

Query * or name of query to execute. Default is *.

Output Output file. The format of the file depends on the
extension. Supported extensions
are .html, .htm, .xml, .xls, .rtf, .doc, .txt, and .csv.

Project Project. Default is the default project.

Detailed Log file.

SaveDecisions.bj

Action

Create a decisions control file (DCF) for a workspace. A decisions control file identifies the decisions in the
workspace and the objects they have been resolved to. After reverification (which invalidates decisions),
use RestoreDecisions.bj to restore the resolved decisions to the workspace.

Syntax

SaveDecisions Workspace DecisionsCF [Decisions] [Rels] [Detailed]

Required Parameters Description

Workspace Workspace file (.rwp).

DecisionsCF Output file (.txt).

280 | Using the Batch Refresh Process

Optional Parameters Description

Decisions Type of decisions to include. Specify:

• All, to include all decision types.
• Uncompleted, to include uncompleted decisions.
• Unresolved, to include unresolved decisions.

Default is Unresolved.

Rels Whether to include relationships in the DCF, Yes or No.
Default is No.

Detailed Log file.

SetChangeDate.bj
Action

Set a change date for complexity metrics other than the date source files are verified. Specify the date in
the date parameter or in a change unit description file. Run the script without the date or file parameters to
clear the change date from the system.

Note: Execute this script before registering the source files.

Use ProcessChangeUnit.bj to set a change date and delete source files from the workspace. Use
ChangeTraffic.bj to generate change traffic metrics.

Syntax

SetChangeDate Workspace [Date] [File] [Detailed]

Required Parameters Description

Workspace Workspace file (.rwp).

Optional Parameters Description

Date Change date in the form YYYY-MM-DD HH24:MI:SS. For
example, 2010-03-15 17:12:13.

File Change unit description file. A flat file containing the
change date, in the form DATE: YYYY-MM-DD
HH24:MI:SS. For example:

DATE: 2010-03-15 17:12:13

Detailed Log file.

SetProject.bj
Action

Assign source files to projects based on a project control file (PCF). A project control file identifies the
projects to which source files belong. It specifies the path to the source files rather than just their names so
as to avoid issues resulting from having files with homonymous names.

SetProject.bj differs from ApplyPCF.bj in that it allows you to assign source files to projects additively,
without deleting their links to existing projects. Use CreatePCF.bj or Related.bj to create a project control
file.

Using the Batch Refresh Process | 281

Syntax

SetProject Workspace ProjectCF [Incremental] [Detailed]

Required Parameters Description

Workspace Workspace file (.rwp).

ProjectCF Project control file (.pcf).

Optional Parameters Description

Incremental Assign source files to projects additively, without deleting
their links to existing projects. Use the argument with no
value to specify additive assignment. Omit the argument
to specify overwrite assignment.

Detailed Log file.

TagCmd.bj

Action

Create, delete, and rename tags. Create and delete references between tags.

Syntax

TagCmd Workspace Operation Tags

Required Parameters Description

Workspace Workspace file (.rwp).

Operation Operation. Specify:

• create, to create tags.
• delete, to delete tags.
• rename, to rename tags.
• link, to create references between tags.
• unlink, to delete references between tags.

Tags Names of tags. For the create and delete operations, use
a comma (,) to separate multiple tags. For the rename,
link, and unlink operations, use a vertical bar (|) to
separate paired tags, and a comma to separate multiple
pairs.

Note: Tag names are case-sensitive. Names
containing commas or vertical bars may produce
unexpected behavior.

Unregister.bj

Action

Unregister source files.

282 | Using the Batch Refresh Process

Syntax

Unregister Workspace [Entity] [Cond] [ObjList] [Detailed] [Drop]

Required Parameters Description

Workspace Workspace file (.rwp).

Optional Parameters Description

Entity * or entity type of source files. Default is *.

Cond Source files to unregister. Use the Repository Exchange
Protocol (RXP) to code the condition. For more
information, see Analyzing Projects in the product
documentation set.

ObjList When Cond is not set, a control file with a list of source
files to unregister. Each line of the control file contains the
following information:

EntityType EntityName

where:

• EntityType is the entity type of the source file to
unregister, COBOL, for example.

• EntityName is the name of the source file to
unregister, DayOfWeek.cbl, for example.

Detailed Log file.

Oracle Only Parameters Description

Drop Whether to drop repository indexes. Specify:

• Auto, to let the script determine whether to drop
repository indexes based on the number of files to be
processed.

• Yes, to drop repository indexes.
• No, to not drop repository indexes.

Dropping repository indexes generally improves
performance when a large number of files need to be
processed. Dropped indexes are restored when
processing is complete. Default is No.

UpdateOnly.bj

Action

Refresh updated source files only, optionally based on a project control file (PCF). A project control file
identifies the projects to which source files belong. Use:

• CreatePCF.bj or Related.bj to create a project control file.
• Register.bjto register new source files and refresh updated source files.
• Refresh.bj to register and verify new and updated source files.
• Verify.bj to verify registered source files.

Using the Batch Refresh Process | 283

Syntax

UpdateOnly Workspace StageDir [ProjectCF] [Notify] [Detailed] [Drop]

Required Parameters Description

Workspace Workspace file (.rwp).

StageDir Staging directory for incoming source files.

Optional Parameters Description

ProjectCF Project control file (.pcf).

Notify Notification file.

Detailed Log file.

Oracle Only Parameters Description

Drop Whether to drop repository indexes. Specify:

• Auto, to let the script determine whether to drop
repository indexes based on the number of files to be
processed.

• Yes, to drop repository indexes.
• No, to not drop repository indexes.

Dropping repository indexes generally improves
performance when a large number of files need to be
processed. Dropped indexes are restored when
processing is complete. Default is No.

UpdateTrendingSnapshot.bj

Action

Update data for Enterprise View trending charts. EV trending charts display complexity metrics data for
workspace objects per monthly period. To update the database table for trending data, run
UpdateTrendingSnapshot.bj:

• After verifying a workspace for the first time.
• After reverifying updated objects in a workspace.

Syntax

UpdateTrendingSnapshot Workspace

Required Parameters Description

Workspace Workspace file (.rwp).

Upgrade.bj

Action

Upgrade a workspace. Upgrading a workspace synchronizes the workspace with a new CA configuration.

284 | Using the Batch Refresh Process

Syntax

Upgrade Workspace [Detailed]

Required Parameters Description

Workspace Workspace file (.rwp).

Optional Parameters Description

Detailed Log file.

Verify.bj

Action

Verify registered source files. Use Refresh to register and verify new and updated source files.

Syntax

Verify Workspace [Entity] [Status] [Cond] [Project] [Notify] [Detailed]
[Drop] [LaunchHHC] [ExtraHHC] [StopHHC] [Wait]

Required Parameters Description

Workspace Workspace file (.rwp).

Optional Parameters Description

Entity * or entity type of source files. Default is *.

Status Verification status of source files to verify. Specify:

• *, to verify all source files.
• !, to verify unverified source files.
• R, to verify source files verified under the relaxed

parsing option.
• E, to verify source files that verified with an error.
• S, to verify source files that verified successfully.

Cond Source files to verify. Use the Repository Exchange
Protocol (RXP) to code the condition. For more
information, see Analyzing Projects in the product
documentation set.

Project Project. Default is the default project.

Notify Notification file.

Detailed Log file.

Oracle Only Parameters Description

Drop Whether to drop repository indexes. Specify:

• Auto, to let the script determine whether to drop
repository indexes based on the number of files to be
processed.

Using the Batch Refresh Process | 285

Oracle Only Parameters Description

• Yes, to drop repository indexes.
• No, to not drop repository indexes.

Dropping repository indexes generally improves
performance when a large number of files need to be
processed. Dropped indexes are restored when
processing is complete. Default is No.

LaunchHHC Whether to launch the Queue Processor, Yes or No.
Launching the Queue Processor generally improves
performance. Default is No.

ExtraHHC If LaunchHHC is specified, the number of additional
Queue Processors to launch.

StopHHC Whether to stop the Queue Processor(s) when
processing is complete, Yes or No.

Wait Whether to wait until the Queue Processor(s) queue is
empty. Specify:

• Yes, to wait indefinitely.
• No, to not wait.
• The number of seconds to wait for the count on the

queue to change. If the count does not change within
the specified time, BRP resumes. Sixty minutes is
recommended. 0 means no timeout.

Executing Batch Scripts
Use the Batch Refresh and Verification (Brave) utility to execute batch scripts. Brave.exe is located in
[COBOL Analyzer_Installation_Directory]\Bin.

The batch scripts usually have at least three base parameters. They have to be in this order:

<batch script> <log file> <workspace>

where batch script is the name of the script to run (.bj file), log file is the path to the main BRP log file and
workspace is the name of the workspace.

The examples in this section illustrate how to run the scripts with Brave.exe. The examples can be
adapted for use programmatically or in a batch file.

Example: Generating Reports
Follow the steps below to generate an Unresolved Report in Excel format. Refer to ReferenceReport.bj for
argument details.

1. From a command prompt, enter the following command, substituting file names and paths as
appropriate:

[COBOL Analyzer_Installation_Directory]\Bin>Brave.exe "[COBOL
Analyzer_Installation_Directory]\Scripts\BRP\ReferenceReport.bj" "C:
\UnresolvedLog.txt" "Workspa
ce=C:\Workspaces\sdkworkspace.rwp" "Type=Unresolved" "File=C:\Workspaces
\sdkworkspace\Output\UnresolvedReport.xls"

The command consists of:

286 | Using the Batch Refresh Process

• The path to Brave.exe.
• The path to the ReferenceReport.bj file.
• The path to the output log file generated on execution of the command.
• The path to the workspace.
• The type of reference report to generate.
• The path to the output report. The format of the report depends on the extension.

2. Check the output log file for errors or warnings. Here is the log file for the command:

Batch Registration and Verification. Version 2.1.02.2860 (build
2.1.02.2860)

Date: 8/8/2008 Computer: D620-JEREMYW
Cmd: "[COBOL Analyzer_Installation_Directory]\Scripts\BRP
\ReferenceReport.bj" "C:\UnresolvedLog.txt" "Workspace=C:\Workspaces
\sdkworkspace.rwp" "Type=Unresolved" "File=C:\Workspaces\sdkworkspace\Output
\UnresolvedReport.xls"
Job: [COBOL Analyzer_Installation_Directory]\Scripts\BRP\ReferenceReport.bj

13:43:13 >Open C:\Workspaces\sdkworkspace.rwp
13:43:15 >Report Unresolved C:\Workspaces\sdkworkspace\Output
\UnresolvedReport.xls
13:43:23 C:\Workspaces\sdkworkspace\Output\UnresolvedReport.xls has been
prepared
13:43:23 >Close
13:43:24 ---Finished—

Example: Executing Repository Queries
Follow the steps below to execute a Repository Exchange Protocol (RXP) query. RXP is an XML-based
API that you can use to interact with application-level information in the workspace repository. Refer to
RXP.bj for argument details.

1. From a command prompt, enter the following command, substituting file names and paths as
appropriate:

C:\Program Files\COBOL Analyzer\Bin>Brave.exe "C:\Program Files\COBOL
Analyzer\Scripts\BRP\RXP.bj" "C:\QueryLog.txt" "Workspace=C:\Workspaces\
sdkworkspace.rwp" "RXP=C:\Program Files\COBOL Analyzer\Scripts\BRP\RXP\
Repository.rxp" "Query=Used Sources" "Output=C:\Workspaces\sdkworkspace
\Output\U
sedSources.xml"

The command consists of:

• The path to Brave.exe.
• The path to the RXP.bj file.
• The path to the output log file generated on execution of the command.
• The path to the workspace.
• The path to the .rxp file containing RXP queries.
• The query to execute in the .rxp file, "Used Sources".
• The path to the output file. The format of the file depends on the extension.

2. Check the output log file for errors or warnings. Here is the log file for the command:

Batch Registration and Verification. Version 2.1.02.2860 (build
2.1.02.2860)

Date: 8/8/2008 Computer: D620-JEREMYW
Cmd: "C:\Program Files\COBOL Analyzer\Scripts\BRP\RXP.bj" "C:
\QueryLog.txt" "Workspace=C:\Workspaces\sdkworkspace.rwp" "RXP=C:\Program
Files\COBOL Analyzer\Scripts\BRP\RXP\Repository.rxp" "Query=Used Sources"
"Output=C:\Workspaces\sdkworkspace\Output\UsedSources.xml"
Job: C:\Program Files\COBOL Analyzer\Scripts\BRP\RXP.bj

Using the Batch Refresh Process | 287

14:03:32 >Open C:\Workspaces\sdkworkspace.rwp
14:03:33 Cuter .ExecuteRXP (Prm.RXP, Prm.Query, Prm.Output, Prm.Project)
14:03:34 File C:\Workspaces\sdkworkspace\Output\UsedSources.xml has been
prepared
14:03:34 >Close
14:03:34 ---Finished—

Example: Creating Diagrams
Follow the steps below to generate Call Map diagrams in EMF format for every program in a workspace.
Refer to DiagramTS.bj for argument details.

1. From a command prompt, enter the following command, substituting file names and paths as
appropriate:

C:\Program Files\COBOL Analyzer\Bin>Brave.exe "C:\Program Files\COBOL
Analyzer\Scripts\BRP\DiagramTS.bj" "C:\DiagramLog.txt" "Workspace=C:\
Workspaces\sdkworkspace.rwp" "Scope=Call Map" "Pattern=C:\Workspaces
\sdkworkspac
e\Output*.emf"

The command consists of:

• The path to Brave.exe.
• The path to the DiagramTS.bj file.
• The path to the output log file generated on execution of the command.
• The path to the workspace.
• The diagram scope, "Call Map".
• The pattern for naming the generated diagrams, consisting of the output folder, file name pattern,

and extension. The format of the diagrams depends on the extension.
2. Check the output log file for errors or warnings. Here is the log file for the command:

Batch Registration and Verification. Version 2.1.02.2860 (build
2.1.02.2860)

Date: 8/8/2008 Computer: D620-JEREMYW
Cmd: "C:\Program Files\COBOL Analyzer\Scripts\BRP\DiagramTS.bj" "C:
\DiagramLog.txt" "Workspace=C:\Workspaces\sdkworkspace.rwp" "Scope=Call
Map" "Pattern=C:\Workspaces\sdkworkspace\Output*.emf"
Job: C:\Program Files\COBOL Analyzer\Scripts\BRP\DiagramTS.bj

13:22:41 >Open C:\Workspaces\sdkworkspace.rwp
13:22:41 >Diagram Quick * "Call Map" "C:\Workspaces\sdkworkspace\Output
*.emf"
 Destination directory is C:\Workspaces\sdkworkspace\Output
 Diagrams have been generated successfully
13:23:06 >Close
13:23:06 ---Finished—

Example: Performing an Advanced Search
Follow the steps below to search for all declarations of computational data items in a workspace. Refer to
ClipperSearch.bj for argument details.

1. From a command prompt, enter the following command, substituting file names and paths as
appropriate:

COBOL Analyzer_Installation_Directory\Bin>Brave.exe "[COBOL
Analyzer_Installation_Directory]\Scripts\BRP\ClipperSearch.bj" "C:
\ClipperSearchLog.txt" "Worksp
ace=C:\Workspaces\sdkworkspace.rwp" "Criteria=General:Data Queries

288 | Using the Batch Refresh Process

\Computational
 Data" "Model=COBOL" "ListName=Miscellaneous" "Category=General"

The command consists of:

• The path to Brave.exe.
• The path to the ClipperSearch.bj file.
• The path to the output log file generated on execution of the command.
• The path to the workspace.
• The path to the search criterion in the Interactive Analysis Advanced Search tool, including the tab

name and folder names.
• The Interactive Analysis model for the source files to be searched, "COBOL".
• The Code Search list where the search results will be displayed.
• The Code Search category that contains the list.

2. Check the output log file for errors or warnings. Here is the log file for the command:

Batch Registration and Verification. Version 2.1.02.2860 (build
2.1.02.2860)

Date: 8/8/2008 Computer: D620-JEREMYW
Cmd: "COBOL Analyzer_Installation_Directory\Scripts\BRP\ClipperSearch.bj"
"C:\ClipperSearchLog.txt" "Workspace=C:\Workspaces\sdkworkspace.rwp"
"Criteria=General:Data Queries\Computational Data" "Model=COBOL"
"ListName=Miscellaneous" "Category=General"
Job: C:\Program Files\COBOL Analyzer\Scripts\BRP\ClipperSearch.bj

10:33:25 >Open C:\Workspaces\sdkworkspace.rwp
10:33:26 Cuter .ClipperSearch (Prm.Criterion, Prm.Model, Prm.ListName,
Prm.Category, Prm.Accumulate)
10:33:27 (success) 236 construct(s) found.
10:33:27 >Close
10:33:27 ---Finished—

Using the Batch Refresh Process | 289

Using Architecture Modeler

Introducing Architecture Modeler
Use Architecture Modeler to add support for unsupported languages and frameworks to COBOL Analyzer
(CA). You can also use it to extend support for already supported languages and frameworks. Architecture
Modeler's:

• Graphical user interface, with error checking and metamodel lookup, makes it easy to define new entity
and relationship types in CA.

• Regular expression generator simplifies the task of specifying the search patterns the CA parser uses
to extract entities and relationships from source code.

Based on your input,Architecture Modeler creates a plug-in that defines an extension, or add-on, to the CA
metamodel. The add-on specifies the entity and relationship types of interest in the newly supported
source files.

The plug-in also references a universal parser configuration file that defines the search patterns CA uses to
extract entities and relationships from newly supported files. For text files, search patterns are mapped
from regular expressions. For XML files, search patterns are mapped from XPath queries.

Here in schematic form are the tasks you perform in Architecture Modeler:

1. Load an existing metamodel.
2. Save the metamodel with the name of your extension.
3. Add a sample source file of the type you want to support in CA.
4. Define the entity types for the add-on.
5. Define the relationship types for the add-on.
6. Map search patterns for the entity and relationship instances you want the parser to extract.
7. Export the model to CA.
8. Reconfigure CA.

Before turning to these tasks, users who are new to CA may want to familiarize themselves with the
concepts underlying the CA metamodel. Experienced users can skip straight to the tasks.

Note: Architecture Modeler currently supports the level-1, or application-level, metamodel only.
Support for the level-2, or object-level, metamodel (Interactive Analysis) will be available in a future
release.

Entity extension mode is currently not available for the following entities: EZT, CA7, JSP, JSX,
NetronSPC, NetronSpec, TLD, TS, and WebConfig.

Important: If you are using Windows 7 or Windows 8, make sure you are running the Architecture
Modeler with administrator rights. Otherwise some operations might fail.

Opening Architecture Modeler
1. Open the COBOL Analyzer installation directory

2. Double-click \bin\Architecture Modeler.exe. The Architecture Modeler window opens.

Note:

290 | Using Architecture Modeler

• Choose Tools > Confirmations to specify whether you want to be prompted to confirm deletion of
attributes, entities, relationships, or source files.

• Choose Tools > Samples view font to specify the font in which source file samples are displayed.

Important: If you are using Windows 7 or Windows 8, make sure you are running the Architecture
Modeler with administrator rights. Otherwise some operations might fail.

Understanding the Application-Level Metamodel
The object model for an application defines the relationships between the objects that comprise the
application. These can be physical objects, like program source files or JCLs, or logical objects that identify
abstract program elements: entry points, data stores, screens, jobs, and so forth.

The relationships between objects describe the ways in which they interact. In the figure below, the source
file GSS.CBL defines the GSS program. The program, in turn, reads the data file GSS.FCSTSEC.

Relationships are conceived as having a left and right end. In the relationship CobolDefinesMap, for
example, the left relationship end is DefinesMap, while the right relationship end is IsDefinedInCobol.

Each object or relationship the parser generates is modeled as an entity or relationship in an Entity
Relationship Diagram (ERD). Each entity or relationship is an instance of an entity or relationship type. The
application-level metamodel defines these types.

Entity Type Properties
The properties of an entity type define its characteristics: its internal and external names, icon in COBOL
Analyzer, flags, and so on. The table below shows the properties of an entity type.

Note: Only properties editable in Architecture Modeler are shown in the table.

Property Description

Name The internal name of the entity type: COBOL, for example.

Description The display name of the entity type: Cobol File, for example.

Source Name The name of the entity attribute that holds “reference-resolving”
information for an entity: Source, for example. See the subtopics below
for more information.

Display Name The name of the entity attribute that holds the display name for the entity.
A Java File's display name derives from the value of its ClassName
attribute, for example.

Flags Flags that define the nature of the entity type: LEGACY, for example. See
the subtopics below for more information.

Registration The name of the class used to perform registration, unregistration, and
invalidation tasks. Specify Default, unless the entity type should not have
a folder in the project, in which case, specify NoRegistration.

Source Type The type of “reference-resolving” information for the entity: File, for
example. See the subtopics below for more information.

Using Architecture Modeler | 291

Property Description

Icon The name of the file that contains the entity type’s icon for display:
COBOL.gif, for example.

Source Name Property
The Source Name property of an entity type defines the name of the entity attribute that holds “reference-
resolving” information for an entity. This attribute name is not the same for all entity types.

Consider a copybook. If a Cobol source file references a copybook, the parser creates a copybook object
with the name referenced in the source file. And it does so whether or not the copybook actually exists in
the CA workspace.

Later, when the system resolves references to the copybook, it looks in the Source attribute of the
copybook for its location in the workspace file system. If the attribute is empty, the system flags the
copybook as missing. The system knows it should look in the Source attribute because the Source Name
property of the copybook entity type is set to “Source.”

For a program entry point, by contrast, the sourcename property is set to “HCID,” meaning that the system
looks in the HCID (HyperCode ID) attribute when it attempts to resolve a CALL statement that references
the entry point. An empty HCID attribute indicates that the called program does not exist in the workspace
or has not been parsed.

Source Type Property
The Source Type property of an entity type defines the type of reference-resolving information for the
entity: a file name in the case of a copybook, for example, a record in a table in the case of an entry point.
The Source Type also determines whether CA deletes the reference-resolving item when the
corresponding object is deleted from the workspace. The table below shows the types.

Type Description

File A source file: a copybook, for example. If the object is deleted, the source
file is deleted.

Container A file containing a list of source files: a TARGETMODEL, for example. If
the object is deleted, the list file is deleted.

Folder The folder for the Folder entity, which identifies an CA project. If the
project is deleted, the folder is deleted.

Global An item in a global file: a record in a table, for example. If the object is
deleted, the item is not deleted.

Entity Flags
The Flags property of an entity type defines the nature of the entity: whether it is a physical source object
or a logical object extracted from a source object, whether it defines a program, and so forth. An entity type
can have multiple flags. A Cobol source file, for example, has LEGACY, PROGRAMCODE, and SEED
flags. The table below shows the flags for an entity type.

Note: Only flags selectable in Architecture Modeler are shown in the table.

Flag Description

COMPOSITE n/a

EXTRACT An entity extracted from a seed entity. A program, for example, is
extracted from a Cobol file. An extract entity must be unique in the
repository.

292 | Using Architecture Modeler

Flag Description

GENERATED An entity generated in the transformation process, a TargetXML file, for
example.

LEGACY A source file that can be loaded in the repository, a Cobol file, for
example.

KNOWLEDGE A business function or logical component.

PROGRAMCODE An entity that defines a program, a Cobol file, for example.

SEED An entity from which another entity can be extracted. A Cobol file is the
seed for a program, for example.

SYSTEM An entity referenced in the application but not loaded in the repository, a
data store, for example.

Entity Type Attributes
The attributes of an entity type define the characteristics of the entity instance: its name, the name of the
source file from which it derives, its complexity metrics, and so forth. The default attributes and attribute
values supplied by Architecture Modeler are sufficient for most entity types. You can add or delete
attributes and edit their values as necessary.

Note: You can specify additional default attributes in the file \bin\ArchitectureModeler.exe.config.

The properties of an attribute define its characteristics: its name, data type, whether the attribute value
persists after invalidation, and so on. The table below shows the properties of an attribute.

Property Description

Name The internal name of the attribute: Name, for example.

Description The display name of the attribute: Name, for example.

Type For attributes other than Name, the data type of the attribute: CHAR, for
example.

Size For CHAR type attributes, the length of the attribute.

DefaultValue Whether the attribute should be displayed with a value of "N/A" until it
receives a value at verification: 0 for true, -1 for false.

Persistent For an attribute of a LEGACY object, whether its value persists after the
object is invalidated.

Relationship Type Properties
The properties of a relationship type define its characteristics: its name, flags, cardinalities, and so on. The
table below shows the properties of a relationship type.

Property Description

Name The full relationship name: CobolDefinesMap, for example.

Flags Flags that define the nature of the relationship type: PRODUCE, for
example. See the subtopics below for more information.

Left Entity The internal name of the entity on the left relationship end, COBOL, for
example.

Left End Name The internal name of the left relationship end: DefinesMap, for example.

Using Architecture Modeler | 293

Property Description

Left End Description The display name of the left relationship end: Defines Screen, for
example.

Left End Cardinality The cardinality of the left relationship, 1 or M. 1 means that the left entity
can have one such relationship; M means that the left entity can have
multiple such relationships. A Cobol file can define only one map, for
example.

Right Entity The internal name of the entity on the right relationship end, MAP, for
example.

Right End Name The internal name of the right relationship end: IsDefinedInCobol, for
example.

Right End Description The display name of the right relationship end: Is Defined In Cobol File,
for example.

Right End Cardinality The cardinality of the right relationship, 1 or M. 1 means that the right
entity can have one such relationship; M means that the right entity can
have multiple such relationships. A map can be defined in multiple Cobol
files, for example.

Relationship Flags
The Flags property of a relationship type defines the nature of the relationship: whether the relationship is
one between a seed and an extract entity, for example, or between extract entities or legacy entities. A
relationship can have multiple flags. The FolderIncludesDbSchema relationship, for example, has the flags
GROUPING and PRODUCES.

The relationship flag also determines how the product behaves when one of the entities in the relationship
is invalidated, modified, or deleted. In a relationship between a seed and an extract entity, for example,
deleting the seed requires deleting the extract. The table below shows the flags for a relationship type.

Flag Description

GROUPING A relationship between a folder entity, which identifies an CA project, and
a legacy entity, FolderIncludesCobol, for example.

GENERATES A relationship between a legacy entity and a generated entity,
CopybookGeneratesTargetXml, for example. If the legacy entity is
modified or deleted, the generated entity is deleted.

LINKS Future use.

PRODUCES A relationship between a seed and an extract entity,
CobolDefinesProgram, for example. If the seed entity is modified or
deleted, the extract entity is deleted.

REFERS A relationship between extract entities, ProgramCallsProgramEntry, for
example. If the left entity is invalidated or deleted, the right entity is
deleted.

USES A relationship between legacy entities, CobolIncludesCopybook, for
example. If the right entity is modified or deleted, the left entity is
invalidated, and every entity with a relationship of type PRODUCES with
the left entity is deleted.

Defining an Extension with Architecture Modeler
Perform the following tasks to define a metamodel extension with Architecture Modeler:

294 | Using Architecture Modeler

1. Load an existing metamodel.
2. Save the metamodel with the name of your extension.
3. Add a sample source file of the type you want to support in CA.
4. Define the entity types for the add-on.
5. Define the relationship types for the add-on.
6. Map search patterns for the entity and relationship instances you want the parser to extract.
7. Export the model to CA.
8. Reconfigure CA.

Before turning to these tasks, users who are new to CA may want to familiarize themselves with the
concepts underlying the CA metamodel. Experienced users can skip straight to the tasks.

Loading a Metamodel
You can load an existing metamodel to use as a shell for your extension, or create a new metamodel.
Loading an existing metamodel is probably a better choice, because it ensures against duplicating existing
entity and relationship names.

• To load an existing metamodel, choose Model > Open. An Open dialog is displayed, where you can
browse for \Model\Repository\Common.Repstry.xml in the COBOL Analyzer installation
directory. Click Open to load the metamodel.

• To create a new metamodel, choose Model > New > Model. Nothing is displayed in the Architecture
Modeler window until you add files, entities, or relationships.

Saving the Extended Metamodel
Whether you load an existing metamodel or create a new one, you must save the extended metamodel to
preserve your changes. To save an extended metamodel, choose Model > Save. A Save As dialog opens,
where you can save the extension with a new or an existing file name. Click Save to return to the
Architecture Modeler window.

Adding a Sample Source File
When you add a sample source file to Architecture Modeler, you define the entity type for the source file in
the extended metamodel, and make available the code you will use to generate regular expressions. To
add support for Objective C, for example, you would define an entity type that represents an Objective C
source file, then add one or more Objective C source files to Architecture Modeler.

Choose a sample that contains the kinds of entities and relationships you want the parser to extract. If you
want the parser to model calls to Objective C functions, make sure your sample contains a function call!

Note: Architecture Modeler supplies default values for the properties and attributes of the source file
type you are adding. Except for the value of the Description property, which holds the entity type
name displayed to the end user, the default values usually are sufficient. You can change the
Description (and any other property or attribute values) when you edit the source file type.

1. Click the Files button in Architecture Modeler and choose Add New in the drop-down menu. The Add
New File window opens.

2. In the Name field, enter the name of the entity type for the source file. For an Objective C source file,
you might choose the name "OBJC" for the entity type.

Note: If you are extending support for an already supported source file, the name you specify
cannot be the same as the name of the already supported source file. No entity type is created for
the specified name. The extension is simply a mechanism for naming the universal parser
configuration file that contains the search patterns with which you are extending support.

3. In the Type drop-down, select the type of the source file you are adding, XML or Text. If you select Text,
click the Format button to view formatting options.

Using Architecture Modeler | 295

Note: Think of Text as any kind of file other than XML.

4. Select as an extension to if you are extending support for an already supported source file, then
choose the source file type in the adjacent combo box.

Note: The Metrics and Name Pattern areas are disabled in entity extension mode.

5. In the Metrics group box, select each metric you want CA to calculate for the source file.

6. In the Source samples group box, click Add new. An Open dialog is displayed, where you can browse
for the sample source file. Click Open to add the file. Repeat this procedure for each sample you want
to add. To delete a file, select it and click Delete.

7. In the Name Patterns group box, click Add new. An editable text field is displayed. Click inside the field
and enter the extension, including the dot (.), for the source file type. You can use wildcard patterns
allowed in LIKE statements by Visual Basic for Applications (VBA). Click outside the field to add the
extension. Repeat this procedure for each extension you want to add. To delete an extension, select it
and click Delete.

8. When you are satisfied with your choices, click OK.

Architecture Modeler displays the new source file type in the Name area in the central pane of the window,
and the text of the sample source file in the righthand pane. If more than one source file type is listed, click
the name of the type to display the corresponding sample.

Note: Select a source file type and click Files > Edit to modify its file characteristics. Select a source
file type and click Files > Delete to delete the type.

Specifying Formatting Options for Text Files
Comments, strings, and fixed formats may create "noise" in parser extractions. The more specific you are
in defining how you want the parser to handle these and similar text file characteristics, the cleaner your
results will be.

1. To specify formatting options for a text file, click the Format button in the Add New File or Edit File
window. The Input Source Format window opens.

2.
In the Input Source Format window, click the button to sort the list by category, click the button
to sort the list alphabetically.

3. Edit the formatting options as necessary:

• For Boolean values, choose from the drop-down list inside the value field.
• For string values, enter the text of the string in the value field.
• For the StringLiteralSymbol option, click the browse button in the value field. The Char Collection

Editor window opens. Click the Add button to add a symbol for the start of a string literal.
Architecture Modeler displays the new collection member in the lefthand pane. Select the member,
then enter its value in the righthand pane. Repeat this procedure for each symbol you want to define.

To delete a collection member, select it and click Remove. Click the button to sort the list by

category, click the button to sort the list alphabetically. Click OK to confirm your changes.

The table below shows the formatting options in alphabetical order. Option values are modified
automatically depending on your choices in other fields.

Option Description

EndingColumn The last valid column of the source.

HasEndingColumn Whether the source has an ending column.

HasLiteralContinuationSymbol Whether the source has a literal continuation symbol.

296 | Using Architecture Modeler

Option Description

HasMultiLineComment Whether the source has multiline comments.

HasSingleLineComment Whether the source has single line comments.

HasSingleLineCommentContinuation Whether the source has single line comment continuations.

HasStartingColumn Whether the source has a starting column.

HasStringLiteralSymbol Whether the source has symbols used to start string literals.

IgnoreColumns Whether to ignore column information before the starting column and
after the ending column.

IgnoreComments Whether to ignore comments.

IgnoreStringLiterals Whether to ignore string literals.

MultiLineCommentEnd Symbol for the end of a multiline comment.

MultiLineCommentStart Symbol for the start of a multiline comment.

SingleLineCommentContinuationSymbol Symbol for the continuation of a single line comment.

SingleLineCommentStart Symbol for the start of a single line comment.

StartingColumn The first valid column of the source.

StringLiteralContinuationSymbol Symbol for the continuation of a string literal.

StringLiteralSymbol Symbols for the start of string literals.

4. When you are satisfied with your choices in the Input Source Format window, click OK.

Defining Entity Types
Each object the parser generates is an instance of an entity type. You need to define these types in the
extended metamodel. If you are adding support for Objective C, for example, you would define an entity
type that represents an Objective C function.

For each entity type, you specify two kinds of information:

• The properties of the entity type define its characteristics: its internal and external names, icon in
COBOL Analyzer, flags, and so on.

• The attributes of the entity type define the characteristics of the entity instance: its name, the name of
the source file from which it derives, its complexity metrics, and so forth. The default attributes and
attribute values supplied by Architecture Modeler are sufficient for most entity types. You can add or
delete attributes and edit their values as necessary.

1. Click the Entities button in Architecture Modeler and choose Add New in the drop-down menu. The
properties definition page of the Add New Entity window opens.

2. On the properties definition page, fill in the properties of the entity type. Architecture Modeler flags any
errors with a symbol.

Note: Do not enter spaces in the Name property.

3.
When you are satisfied with your entries on the properties definition page, click the button. The
attributes definition page opens.

4. On the attributes definition page, add, edit, or delete attributes as necessary:

• To add an attribute, click the Add New button. The Add New Attribute dialog opens, where you can
specify the values for each property of the attribute. Architecture Modeler flags any errors with a
symbol. When you are satisfied with your entries, click OK.

Using Architecture Modeler | 297

• To edit an attribute, click the Edit button. The Edit Attribute dialog opens, where you can specify the
values for each property of the attribute. Architecture Modeler flags any errors with a symbol.
When you are satisfied with your entries, click OK.

• To delete an attribute, click the Delete button.

5.

When you are satisfied with your entries on the attributes definition page, click the button.
Architecture Modeler flags any errors with a symbol.

Note: The errors may not be immediately visible. If you are on the attributes definition page, errors
may be flagged on the properties definition page, and vice versa.

Assuming there are no errors in your entries, Architecture Modeler saves the entity type definition, and
displays the entity type in the list of entity types in the righthand pane of the window.

Note: Select an entity type and click Entities > Edit to modify its definition. Select an entity type and
click Entities > Delete to delete the definition.

Defining Relationship Types
Each relationship the parser generates is an instance of a relationship type. You need to define these types
in the extended metamodel. If you are adding support for Objective C, for example, you would define a
relationship type that represents the relationship between an Objective C source file and an Objective C
function.

1. Click the Relations button in Architecture Modeler and choose Add New in the drop-down menu. The
Add New Relation window opens.

2. In the Add New Relation window, fill in the properties of the relationship type. Architecture Modeler flags
any errors with a symbol.

Note: Do not enter spaces in the Name property.

3. When you are satisfied with your entries, click OK.

Assuming there are no errors in your entries, Architecture Modeler saves the relationship type definition,
and displays the relationship type in the list of relationship types in the righthand pane of the window.

Note: Select a relationship type and click Relations > Edit to modify its definition. Select a
relationship type and click Relations > Delete to delete the definition.

Architecture Modeler Internal Language Functions
Description

string.substr(pos1,pos2)

string.substr(pos1,pos2) – returns a substring, derived from pos1 to pos2 of string.

Examples:

expressionid.0.substr (5, 4)
expressionid.0.substr(expressionid.0.length() - 5, 4)
expressionid.0.substr(4 , expressionid.0.length() - 5)
expressionid.0.substr(expressionid.0.length() - 9 , expressionid.0.length() -
5)
expressionid.sourcefilename.substr(1,5)
expressionid.sourcefilename.substr(expressionid.0.sourcefilename.length() -
11 , 3)
expressionid.sourcefilename.substr(0, expressionid.0.sourcefilename.length()
- 4)

298 | Using Architecture Modeler

expressionid.sourcefilename.substr(expressionid.0.sourcefilename.length() –
15)

string1.append(string2)

string1.append(string2) - appends string2 to string1.

Examples:

expressionid.0.append(\"._abcd_\")
expressionid.0.append(expressionid.0)
expressionid.0.append(expressionid.0.sourcefilename)
expressionid.sourcefilename.append(\"_001\")
expressionid.sourcefilename.append(expressionid.0)

string.length()

string.length() - returns the length of the string.

Examples:

expressionid.sourcefilename.length()
expressionid.sourcefilename.length()-3
expressionid.sourcefilename.length()+13
expressionid.sourcefilename.length()

concat(string1, string2)

concat(string1, string2) – returns concatenation of string1 and string2

Examples:

concat(\"ab_\", \"cd__\")
concat(expressionid.0,expressionid.0)
concat(expressionid.0, \"_test_\")
concat(\"_test_\" , expressionid.0)
concat(expressionid.sourcefilename , expressionid.0)
concat(expressionid.0, expressionid.sourcefilename)
concat(expressionid.sourcefilename.substr(0,
expressionid.sourcefilename.length()-3), expressionid.0)
concat(expressionid.sourcefilename.append(\"...\"), expressionid.0)
concat(expressionid.sourcefilename, \"_abc_\")
concat(\"_abc_\" , expressionid.sourcefilename)
concat(\"_abc_\" , concat(\"_efg_\" , \"_xy_z_\"))
concat(concat(\"_efg_\" , \"_xy_z_\"), \"_abc_\")
concat(concat(\"_efg_\" , concat(\"_val1_\", \"_val2_\")) , \"_abc_\")
concat(concat(expressionid.sourcefilename.append(\"...\") , \"_val_\") ,
expressionid.0)

replace(string1,string2,string3)

replace(string1,string2,string3) – replaces all occurrences of string2 in string1 with
string3.

Examples:

replace(\"ab_\", \"_\", \"__\") // equals “ab__”
replace(\"ab_\", \"ab\", \"cd\") // equals “cd_”
replace(expressionid.sourcefilename.substr(1,5), \"a\", \"b\")
// replaces ‘a’ with ‘b’ in the first 5 letters of expressionid.sourcefilename
replace(expressionid.sourcefilename, '/' . '\') // converts backslashes to
slashes

Using Architecture Modeler | 299

getpath(string)

getpath(string) – returns a string, trimmed starting from the last occurrence of ‘\’ or ‘/’ . Returns
the absolute path as string before the last occurrence of \ or /.

Examples:

getpath(“c:\path1\path2\filename.ext”) // returns c:\path1\path2\
getpath(“..\path1\path2\filename.ext”) // returns ..\path1\path2\
getpath(expressionid.sourcefilename) // returns the path of the sourcefilename

getfilename(string)

getfilename(string) – .returns the filenames in paths as a string after the last occurrence of the \ or /?

Examples:

getfilename (“c:\path1\path2\filename.ext”) // returns filename.ext
getfilename (“..\path1\path2\filename.ext”) // returns filename.ext
getfilename (expressionid.sourcefilename) // returns filename of the
sourcefilename

unifypath(string)

unifypath(string) – returns transformed string by the following rules:

• Converting all backslashes to slashes.

Example:

/path1/path2 is transformed into \path1\path2
• Removing duplicate slashes.

Example:

//path1/\path2 is transformed into \path1\path2
• Removing references to current directory

Example:

\.\path1/.\path2 is transformed into \path1\path2
• Removing references to parent directory (if not in the beginning) examples

Examples:

\path1\..\path2 is transformed into \path2

..\path1\..\path2\path3 is transformed into ..\path2\path3

Mapping Regular Expressions to Text File Searches
The COBOL Analyzer parser extracts entity and relationship instances from text files using search patterns
you define in Architecture Modeler. In schematic form, the parser uses these patterns to:

• Match relationship instances in the code.
• Form the names of entity instances.
• Form the names of relationship instances.

Architecture Modeler's regular expression generator simplifies the task of defining these patterns. Follow
the steps below to map regular expressions to text file searches.

1. Click Files in Architecture Modeler. Architecture Modeler displays the defined source file types in the
Name area in the central pane of the window, and the text of the corresponding sample in the right-hand
pane. If more than one source file type is listed, click the name of the type to display the sample.

300 | Using Architecture Modeler

2. Generate the pattern the parser uses to match relationship instances:

a) Select the code of interest in the sample source file.
b) Choose Pick in the right-click menu.

The Add Expression window opens.

3. Add an expression ID, e.g. "function" for the selected function call. All expression IDs appear in the
middle-bottom left-hand side of the screen in a tree form.

4. Select the expression ID and choose Edit in the right-click menu. The Edit Regular Expression Mapping
window opens. Expressions are represented in a hierarchical manner. Each expression contains its
regular expression pattern and all direct children expressions.

5. Select the expression pattern and choose Edit in the right-click menu. The Edit Regular Expression
window opens. The generated regular expression is displayed in the upper part of the left-hand pane in
tree form. The expression does not require further editing.

Note: Do not manually edit the generated regular expression unless you have modified it
inadvertently.

6. In the left-hand pane of the Edit Regular Expression window, define the regular expression the parser
uses to form the names of entity instances:

a) Expand the tree for the generated regular expression.
b) Use a subexpression of the generated regular expression to match the names of entity instances.

Follow the instructions in Editing Subexpressions to edit the subexpression.
c) Click Apply Changes after each modification.

7. In the right-hand pane of the Edit Regular Expression Mapping window, map the regular expression for
the names of entity instances. You do not need to map a regular expression for the source file name:

a) In the Entity group box, select the entity type you want to match in the Type drop-down.
b) Drag-and-drop the subexpression for the names of entity instances from the expression tree to the

cell beside the Name attribute. The subexpression is mapped to a variable with a name reflecting the
order of grouped expressions in the expression tree, counting from the regular expression for the
matched relationship. For example if (\w+) is the only other grouped expression besides the
expression for the matched relationship, the mapped variable is named %[ExpressionID].2%.

c) Assuming you are defining a relationship between a source file and an extracted object, enter the
system variable %[ExpressionID].sourcefilename in the cell beside the Source attribute. If
you are defining another type of relationship, reference-resolving information may be contained in a
different attribute.

d) You can use functions to help you resolve entities' relationship ends. These functions are:substr,
append, length, concat, replace, getpath, getfilename, unifypath. For more details on
the usage of these functions, read Application Modeler Internal Language Functions Description.

8. Click Save in the Entity group box. The entity mapping is added to the list of mappings in the Mapping
List group box. Repeat this procedure for each entity mapping you want to define.

9. In the right-hand pane of the Edit Regular Expression Mapping window, map the regular expression for
the names of relationship instances:

a) In the Relation group box, select the relationship type you want to map in the Type drop-down.
b) Drag-and-drop the subexpression for the left entity name from the expression tree to the cell beside

the Left Entity Name attribute. If you are defining a relationship between a source file and an
extracted object, enter the system variable %[expressionid].sourcefilename% in the cell
beside the Left Entity Name attribute.

c) Drag-and-drop the subexpression for the right entity name from the expression tree to the cell beside
the Right Entity Name attribute.

10.Click Save in the Relation group box. The relationship mapping is added to the list of mappings in the
Mapping List group box.

Using Architecture Modeler | 301

Note: To edit a mapping definition, select it in the Mapping List group box and click Edit. Follow
the procedure you used to define the mapping. To delete a mapping definition, select it in the
Mapping List group box and click Remove.

11.When you finish editing your entries in the Edit Regular Expression Mapping window, click Save.
Architecture Modeler displays the edited expression ID in the central pane of the window.

Note:

• Select the expression ID and choose Edit in the right-click menu to modify the pattern.
• Select it and choose Delete in the right-click menu to delete the pattern.

Editing Subexpressions
Editing subexpressions consists of two tasks:

• Grouping and quantifying subexpressions.
• Providing Scope for recursive regular expressions.

The subexpression for the entity you want to match must either be grouped or an exact match. Any other
input is not accepted.

1. In the Edit Regular Expression dialog, edit the expression manually, or use the buttons to modify te
expression.
a) Click Convert to Exact match to match the Item Value to the Matched Value sample only.
b) Click Convert to Group if you want to group the expression.
c) Click Revert Changes if you want to cancel any last changes or Apply Changes to save them.

Note: The subexpression for the entity you want to match must either be grouped or an exact
match. Any other input is not accepted.

2. If you need to qualify the expression further, edit the regular expression in the Item Value field
considering the following:

• Plus equates to the quantifier +, which denotes one or more occurrence.
• Star equates to the quantifier *, which denotes 0 or more occurrences.
• Optional equates to the quantifier ?, which denotes 0 or 1 occurrence.

3. Click Apply Changes after each modification.

4. Click OK when you are done editing your entries in Edit Regular Expression dialog.

Architecture Modeler displays the edited subexpression in the expression tree.

Mapping XPath Queries to XML File Searches
The CA parser extracts entity and relationship instances from XML using search patterns you define in
Architecture Modeler. In schematic form, the parser uses these patterns to:

• Match relationship instances in the code.
• Form the names of entity instances:

• Form the names of relationship instances:

302 | Using Architecture Modeler

Architecture Modeler's XPath query generator simplifies the task of defining these patterns. Follow the
steps below to map XPath queries to XML file searches.

1. Click the Files button in Architecture Modeler. Architecture Modeler displays the defined source file
types in the Name area in the central pane of the window, and the text of the corresponding sample in
the right-hand pane. If more than one source file type is listed, click the name of the type to display the
sample.

2. Define the XPath query the parser uses to match relationship instances:

• Select the node of interest in the sample, then use the right-click menu to form the XPath query. To
match the relationship OrgChartDefinesOrgChartEmployee in the XML code shown below, the
XPath query would be:

/def:OrgChart/def:Employees/child::def:Employee

To form the query, select the <Employees> node and choose Select All <Employees> children
elements > /child::def:Employee from the right-click menu.

• The XPath query is displayed in the XPath Query field. When you are satisfied with the query, click
Pick.

Using Architecture Modeler | 303

The Add Expression window opens.

3. Enter an expression ID, e.g. "employee" for the selected Employees xml element. All expression IDs are
displayed in a tree on the middle-bottom left-hand side of the screen in.

4. Select the expression ID and choose Edit from the right-click menu. The Edit XPath Mapping window
opens. The XPath Query for the matched relationship is displayed in the XPath Main Query field.

5. In the right-hand pane of the Edit XPath Mapping window, define the XPath query the parser uses to
form the names of entity instances. You do not need to define a query for the source file name:

• In the Entity group box, select the entity type you want to match in the Type drop-down,
ORGCHARTEMPLOYEE in our example.

• Use a subexpression of the XPath query you created in step 2 to match an attribute of the node. If
you want to form the entity name from the Name attribute, enter %./@name% in the cell beside the
Name attribute. That subexpression matches the employees "John Doe," "Ivan Ivanov," and "John

304 | Using Architecture Modeler

Smith" in our example. If you are matching a different attribute, title, for example, enter %./
@title% in the cell next to the Name attribute.

• Assuming you are defining a relationship between a source file and an extracted object, enter the
system variable %[ExpressionID].sourcefilename% in the cell beside the Source attribute. If
you are defining another type of relationship, reference-resolving information may be contained in a
different attribute.

6. Click Save in the Entity group box. The entity mapping is added to the list of mappings in the Mapping
List group box. Repeat this procedure for each entity mapping you want to define. The figure below
shows the entity mapping for our example.

7. In the right-hand pane of the Edit XPath Mapping window, define the XPath query the parser uses to
form the names of relationship instances:

• From the Type drop-down in the Relation group box, select the relationship type you want to map,
OrgChartDefinesOrgChartEmployee in our example.

• Map the subexpression for the left entity name. If you formed the entity name from the name attribute
of the node, enter %./@name% in the cell next to the Left Entity Name attribute. If you are defining a
relationship between a source file and an extracted object, enter the system variable %
[ExpressionID].sourcefilename% in the cell next to the Left Entity Name attribute.

• Map the subexpression for the right entity name. If you formed the entity name from the name
attribute of the node, enter %./@name% in the cell beside the Right Entity Name attribute.

8. Click Save in the Relation group box. The relationship mapping is added to the list of mappings in the
Mapping List group box. The figure below shows the relationship mapping for our example.

Using Architecture Modeler | 305

Note: To edit a mapping definition, select it in the Mapping List group box and click Edit. Follow
the procedure you used to define the mapping. To delete a mapping definition, select it in the
Mapping List group box and click Remove.

306 | Using Architecture Modeler

Using Architecture Modeler | 307

9. When you are satisfied with your entries in the Edit XPath Mapping window, click Save.

Architecture Modeler displays the search pattern for the matched relationship in the Match pattern area in
the central pane of the window.

Note: Select the search pattern for the matched relationship and choose Edit in the right-click menu
to modify the pattern. Select it and choose Delete from the right-click menu to delete the pattern.

Exporting the Extended Metamodel
Based on your input, Architecture Modeler creates a plug-in that defines an extension, or add-on, to the CA
metamodel. The add-on specifies the entity and relationship types of interest in the newly supported
source files.

To export the plug-in to CA:

1. Select the source file type for the extension in the Name area in the central pane of the Architecture
Modeler window.

2. Choose Export to CA in the right-click menu.

A Browse dialog opens.
3. Browse for the Plugins folder in the COBOL Analyzer installation directory.
4. Click OK to export the extended metamodel. The plug-in has a name of the form

<SourceFileType>Plugin.xml.

Important: If you are using Windows 7 or Windows 8, make sure you are running the Architecture
Modeler with administrator rights. Otherwise some operations might fail.

Reconfiguring COBOL Analyzer
CA After exporting an extended metamodel to COBOL Analyzer, you need to reconfigure CA for the new
source file type. To reconfigure CA after plug-in export,

1. Double-click \bin\rescan.exe in the COBOL Analyzer installation directory.

The Configuration Manager window opens, with a check box in the Programming Languages folder for
the new extension.

2. Select the check box and click OK.

Make sure to upgrade the configuration of any workspaces you want to use the new extension in.

Troubleshooting the Extended Metamodel
The plug-in for an extended metamodel references a universal parser configuration file that defines the
search patterns CA uses to extract entities and relationships from newly supported files. CA issues the
following errors for problems it encounters processing the universal parser configuration file at verification:

• Error - 404 3 Error while processing XML file '%1' . Logged when the Universal Parser configuration file
is corrupt or missing.

• Error - 407 3 Error while processing regular expression '%1'. Logged when a regular expression defined
in the Universal Parser configuration file is invalid.

• Error - 409 3 Input source file '%1' not found. Logged when the file to be parsed is not found.
• Error - 411 3 Error creating expression with Id '%1'. Logged when an expression with a given Id failed to

be created.
• Error - 412 3 Expression Id '%1' already exists. Logged when an expression Id is not unique.
• Error - 413 3 Error in attribute value '%1': Unexisting expression Id. Logged when a non existing

expression Id is found in an attribute value.
• Error - 414 3 Error in attribute value '%1': Match not found. Logged when a not existing match index is

found in an attribute value.

308 | Using Architecture Modeler

• Error - 415 3 Error in attribute value '%1': Match group not found. Logged when a not existing match
group was detected in an attribute value.

• Error - 416 3 Error in attribute value '%1': Syntax error. Logged when an attribute value is not
syntactically correct.

• Error - 417 3 Error in attribute value '%1': Type mismatch. Logged when an attribute value contains type
mismatching.

Using Galleries
In Architecture Modeller you can export or import model extensions to a common location known as
Gallery.

1. To export to Gallery:

a) Select the extension you want to export and click Gallery>Export. The Export to Gallery window
opens.

b) Write a short description for the Gallery item and click OK. The Select gallery for export window
opens.

c) Browse to the current Gallery file location and click OK .

The selected model extension has been successfully exported to the selected gallery.

2. To Import from Gallery:

a) Click on Gallery > Import menu item. The Import from Gallery window appears.
b) Select the short description for the model extension you want to import from the gallery and click

OK.

Using Architecture Modeler | 309

Support Notes

Supported Languages
The table below outlines the support Enterprise Analyzer provides for different languages based on
platform. The level of support is as follows:

• Basic: System level objects, dependencies and metrics only
• Intermediate: Syntactical analysis within source objects
• Advanced: Support for field level data dependencies

Environment Language Level of Support

Advanced Intermediate Basic

IBM Mainframe Language

Enterprise COBOL for
z/OS

Enterprise COBOL for
z/OS

VS COBOL II

OS/390® COBOL

Natural®

Enterprise PL/I for
z/OS

Assembler

EasyTrieve

Control Language

JCL OS/390

TP / User Interface

CICS® BMS OS/390

IMS TMICS® BMS
OS/390

Data Store / DML

Program data
definitions

VSAM and flat file
definitions

IMS DB (DML - EXEC
DLI/DLI, DBD, PSB)

Natural Adabas

310 | Support Notes

Environment Language Level of Support

Advanced Intermediate Basic

DB2 or z/OS

CA-IDMS (DML and
DB Definition)

Application
Frameworks

Hogan Framework

Schedules

CA-7

TWS (OPC)

Generic XML
Schedule Load

Distributed
Environment

Language

Micro Focus COBOL

ACU COBOL

Java SE (1.3-1.7)

Visual Basic 6.0

Microsoft C, GNU C,
Unisys

Microsoft Visual C++
6

JSP (2.2)

.NET Framework

C#

Visual Basic .NET

Oracle PL/SQL for
Oracle Database

Application
Frameworks

Spring Framework -
Dependency Injection
Support

JEE - EJBs

Unisys Mainframe Language

Unisys® 2200 UCS
COBOL

Unisys® 2200 ASCII
COBOL

Unisys® MCP
COBOL 74/85

Support Notes | 311

Environment Language Level of Support

Advanced Intermediate Basic

UTS 4000 COBOL

Control Language

ECL, ClearPath IX

Unisys® WFL,
ClearPath MCP

TP / User Interface

Unisys DPS 2200

COMS, ClearPath
MCP

Screen Design
Facility (SDF)

Transaction
Processing
Environment (TIP)

Data Store / DML

Unisys DMS 2200
(CDML, DDL)

Enterprise DB Server
for ClearPath MCP,
DMSII (DASDL, DML)

Unisys RDMS 2200
(DDL, DML)

iSeries (AS400) Language

RPG IV ILE

AS/400 COBOL

Control Language

ECL, ClearPath IX

TP / User Interface

AS/400 Screen

Other Mainframe Language

Siemens COBOL

ICL COBOL

HP COBOL (II/XL)

Fujitsu COBOL (OS
IV MSP & OS IV XSP
systems)

Tandem Screen
COBOL

312 | Support Notes

Supported Features by Language
The table below shows COBOL Analyzer feature support by language. The remainder of the section
provides usage notes and caveats for the major supported languages and related platforms. Make sure to
check the Release Notes on the installation CD for late-breaking support information.

Note: In the table Y* means that HyperCode is available on a line-by-line basis only. Y** means that
impact analysis context-sensitivity is available on an intraprogram basis only.

Functio
nal
Area/
Feature

COBOL PL/I Natural RPG Java JSP C/C++ .NET VB PL/SQL ASM

Invento
ry
Manag
ement

Registr
ation

Y Y Y Y Y Y Y Y Y Y Y

Source
Editor

Y Y Y Y Y Y Y Y Y Y Y

-Syntax
Highligh
ting

Y Y Y Y Y Y Y Y Y Y N

Verificat
ion

Y Y Y Y Y Y Y Y Y Y Y

-
Relaxed
Parsing

Y Y Y N N N N N N N N

-
Verificat
ion of
DBCS

Y Y N Y N N N N N N N

Inventor
y
Report

Y Y Y Y Y Y Y Y Y Y Y

Verificat
ion
Report

Y Y Y Y Y Y Y Y Y Y Y

Orphan
Analysi
s

Y Y Y Y Y Y Y Y Y Y Y

Batch
Refresh
Process

Y Y Y Y Y Y Y Y Y Y Y

Archite
cture
Modelli
ng

Decisio
n

Y Y Y Y Y N Y Y Y Y Y

Support Notes | 313

Functio
nal
Area/
Feature

COBOL PL/I Natural RPG Java JSP C/C++ .NET VB PL/SQL ASM

Resoluti
on

-
Decisio
n
Autores
olution

Y Y N Y N N N N N N N

Generic
API
Analysi
s

Y Y N N N N N N N N Y

Bounda
ry
Decisio
n
Analysi
s

N N N N Y N Y Y Y N N

System
-Level
Analysi
s

Diagra
mmer

Y Y Y Y Y Y Y Y Y Y Y

Comple
xity
Metrics

Y Y Y Y Y Y Y Y Y Y Y

Effort
Estimati
on

Y Y Y Y Y Y Y Y Y Y Y

Batch
Applicat
ion
Viewer

Y Y Y Y N N N N N N N

CRUD
Report

Y Y Y Y N N N N N N Y

Query
Reposit
ory

Y Y Y Y Y Y Y Y Y Y Y

System
-Level
Reporti
ng

Executi
ve
Report

Y Y Y Y Y Y Y Y Y Y Y

-
Possibl
e Code
Anomali
es

Y Y Y Y Y N Y N Y Y N

314 | Support Notes

Functio
nal
Area/
Feature

COBOL PL/I Natural RPG Java JSP C/C++ .NET VB PL/SQL ASM

-
Prepack
aged
Code
Anomali
es

Y N N N N N N N N N N

-
Custom
with
Code
Search
Queries

Y Y Y Y Y Y Y N Y Y N

Referen
ce
Reports

Y Y Y Y Y Y Y Y Y Y Y

-Source
Depend
encies

Y Y Y Y Y Y Y Y Y Y Y

-Calls Y Y Y Y Y Y Y Y Y Y Y

-Data
Access

Y Y Y Y N N N N N Y N

-Screen
Access

Y Y Y Y N N N N N N Y

Busine
ss
Control

Tag
Manage
r

Y Y Y Y Y Y Y Y Y Y Y

Glossar
y

Y Y Y Y Y N Y Y Y Y Y

-
Busines
s Name
Synchr
onizatio
n

Y Y Y Y N N N N N N N

-
Propag
ate
from
Screen
Fields

BMS N N N N N N N N N N

Source
-Level
Analysi
s

Interacti
ve

Y Y Y Y Y N Y Y* Y N Y*

Support Notes | 315

Functio
nal
Area/
Feature

COBOL PL/I Natural RPG Java JSP C/C++ .NET VB PL/SQL ASM

Analysi
s

-Source
Pane

Y Y Y Y Y N Y Y Y N Y

-
Context
Pane

Y Y Y Y Y N Y Y Y N Y

-Code
Search
Pane

Y Y Y Y Y N Y Y Y N Y

-Model
Pane

Y Y Y Y Y N Y Y Y N Y

-
Progra
m
Control
Flow
Pane
(Call
Diagra
m)

Y Y Y Y N N N N N N N

-
Flowch
art
Pane

Y Y N N N N N N N N N

-
Executi
on Path
Pane

Y N N N N N N N N N N

-
Animat
or Pane

Y N N N N N N N N N N

-Bird's
Eye
Pane

Y Y Y Y Y N Y Y Y N Y

-Watch
Pane

Y Y Y Y Y N Y Y Y N Y

-Screen
Pane

Y Y Y Y N N N N N N N

Data
Field
Analysi
s

Global
Data
Elemen
t Flow

Y Y Y Y N N N N N N N

316 | Support Notes

Functio
nal
Area/
Feature

COBOL PL/I Natural RPG Java JSP C/C++ .NET VB PL/SQL ASM

-Data
View
Pane

Y Y Y Y N N N N N N N

-Data
Flow
Pane

Y Y Y Y N N N N N N N

Impact
Analysi
s

Y Y Y Y N N N N N N N

-
Intrapro
gram

Y Y Y Y N N N N N N N

-
Interpro
gram

Y Y Y Y N N N N N N N

-Thru
Externa
l Data

IMS,
SQL

IMS,
SQL

IMS,
SQL

IMS,
SQL

N N N N N N N

-
Context
Sensitiv
ity

Y N Y** N N N N N N N N

Change
Analyze
r

Y Y Y Y N N N N N N N

Slicing
Analysi
s

Logic
Analyze
r

Y Y Y Y N N N N N N N

-Dead
Code
and
Data
Analysi
s

Y Y Y Y N N N N N N N

-
Structur
e-
Based
Analysi
s

Y Y N Y N N N N N N N

-
Comput
ation-
Based
Analysi
s

Y N Y N N N N N N N N

Support Notes | 317

Functio
nal
Area/
Feature

COBOL PL/I Natural RPG Java JSP C/C++ .NET VB PL/SQL ASM

-
Domain
-Based
Analysi
s

Y Y N N N N N N N N N

Busine
ss
Rules

Busines
s Rule
Manage
r

Y Y Y Y Y N Y Y Y N Y

-Create
Rules

Y Y Y Y Y Y Y Y Y N Y

-Create
Code
Search
Rules

Y Y Y Y Y Y Y Y Y N Y

C/C++ Support
COBOL Analyzer supports Microsoft C 6.0 and Microsoft Visual C++ 6.0. Follow the instructions in this
section to register and verify C and C++ source files.

Registering C/C++ Files
Before registering C/C++ files, set:

• Preserve Folder Structure on the Registration > Extensions tab of the Workspace Options. The folder
structure for the application is preserved in the display names of registered files. You must select this
option if your application uses the same program in multiple folders.

• Expand tabulation symbols on the Registration > Source Files tab of the Workspace Options.
Tabulation symbols are replaced with a corresponding number of spaces when you register the files.
You must select this option if you want to view Interactive Analysis information for C or C++ programs.

Verifying C/C++ Files
Before verifying C/C++ files:

• On the Verification > Settings tab of the Workspace Options, list the folders for include files used by
the application (either original folders or folders in CA, if the include files were registered).

Tip: You can also specify these folders in the verification options for a project, in which case CA
looks only at the folders for the project.

• On the Verification > Settings tab of the Workspace Options, enter the parameters used to compile the
application in the C/C++ Parser Parameters field. For example, the parameters would be -D_DEBUG -
D_UNICODE -D_WINDLL -D_DLL for an MFC application.

Tip: You can also specify these parameters in the verification options for a project, in which case
only the project parameters are used for verification.

318 | Support Notes

• On the Verification tab of the Project Options, select Use Precompiled Header File if you want the
parser to use a precompiled header file when it verifies the project. In the adjacent field, enter the full
path of the header file. Do not specify the file extension. Using a precompiled header file may improve
verification performance significantly.

Note: The content of the header file must appear in both a .c or .cpp file and a .h file. The
precompiled header file need not have been used to compile the application.

• On the Boundary Decisions tab of the Workspace Options, specify the resource types for method calls
your application uses to interface with databases, message queues, or other resources.

COBOL Support
COBOL Analyzer supports the following COBOL versions:

• COBOL for OS/390, Version 2, Release 2.
• Enterprise COBOL for z/OS, Version 4.2.
• VS COBOL II, Release 4.
• Micro Focus COBOL, V3.2 (level 10).
• ACUCOBOL-GT®, Version 6.1.
• ILE COBOL for AS/400, Version 4, Release 4.
• HP3000, HP COBOL II/XL.
• Unisys COBOL

• UCOB – Unisys 2200 UCS COBOL.
• ACOB – Unisys 2200 ASCII COBOL.
• UTS – UTS 4000 COBOL.

• Unisys MCP COBOL

• Cobol-74.
• Cobol-85.

• Fujitsu COBOL (for OS IV MSP and OS IV XSP systems).
• Siemens COBOL, Version 2.3 (BS2000/OSD).
• ICL C2 COBOL for OpenVME, Version 3.
• Tandem Screen COBOL, Pathway/TS D42+ (alpha offering).

Note: Tandem Server COBOL is not supported.

Object-Oriented Statements
Object-oriented COBOL statements are not supported.

Separators Must Be Followed by Blanks
The Cobol parser assumes that every separator must be followed by a blank. If you index a variable with a
separator that is not followed by a blank, MY-VARIABLE(1,1), the parser may treat (1,1) as a numeric
literal, especially when the program was compiled with the DECIMAL POINT IS COMMA option. To index a
variable, use the format MY-VARIABLE(1, 1)or MY-VARIABLE(1 1).

Copybooks in Different Partitioned Datasets
Before registering copybooks in different Partitioned Data Sets (PDS) on the mainframe, you must select
the option Preserve Folder Structure on the Registration > Extensions tab of the Workspace Options.

Support Notes | 319

Copybooks in a Library
If the copybooks used in a Cobol program are in a library, and the library is referenced in a COPY
statement with the format COPY text-name IN library-name or COPY text-name OF library-
name, the parser looks first for a copybook named library-name.text-name, and if it does not exist, for a
copybook named text-name. If text-name does not exist, the parser reports library-name.text-name as an
unresolved reference.

It is your responsibility to prefix library member names with library names or filepaths and dot (.)
separators: dir1.dir2.member.cpy represents the copybook dir1/dir2/member, for example. When the parser
encounters a reference to a member, it first searches for the longest possible name, dir1.dir2.member.cpy,
and if not found, then the shorter versions, dir2.member.cpy and member.cpy.

Note: Unresolved references to library members are always reported with the longest name. This
means that if you subsequently register a missing copybook with a short name, the referencing
source file will not be invalidated. It’s up to you to remember that the referencing source needs to be
reverified.

How COBOL Analyzer Calculates COBOL Dead Code
Statistics
This section provides details on how CA calculates COBOL dead code statistics.

Dead Statements
A dead statement is a statement that can never be reached during program execution. Only control flow
analysis techniques (static analysis) are used for the detection of dead statements. Domain-based analysis
is not performed.

Statements directly connected with dead statements are also considered to be dead. For instance, EXEC
CICS HANDLE statements are dead when all EXEC CICS statements are dead or there are no EXEC
CICS statements at all.

Dead Data Elements
Dead data elements are unused structures at any data level, all of whose parents and children are unused.
Condition names (88-level items) are dead if unused.

Only user-defined data elements can be counted as dead. Data elements from system copybooks are
never counted as dead.

Dead Constructs
A paragraph consisting solely of dead statements is a dead paragraph. A section consisting solely of dead
paragraphs or that is empty is a dead section. The exception to this is the Configuration Section. Because
there are no candidate dead constructs (statements or data elements) in the Configuration Section, this
section is not processed and does not contribute to dead code metrics. A division is never considered
dead.

A file description entry (FD) containing only dead data elements and not used in any file operation is a
dead file description. A file section containing only dead file descriptions is a dead section. A SELECT
statement referring to a dead file description is a dead construct.

A file-control paragraph consisting solely of dead SELECT statements is a dead paragraph. An input-output
section consisting solely of dead file-control paragraphs is a dead section.

320 | Support Notes

Dead Statements, Dead Data Elements, and Dead Lines from
Copybooks
Dead statements and dead data elements from copybooks (that either start or end in a copybook) are
counted in the Dead Statements, Dead Data Elements, and Dead Lines metrics. They are also counted
separately in the Dead Statements from Includes, Dead Data Elements from Includes, and Dead Lines
from Includes metrics.

If a copybook is included multiple times, then each instance of the copybook is considered to be an
independent source file, and all dead constructs and dead lines from the copybook are counted as many
times as they are identified as dead. For instance, if a copybook is included twice and both inclusions result
in a dead data element, the result is Dead Data Elements from Includes=2 and Dead Lines from
Includes=2 (assuming each dead data element occupies only one line of the included copybook). If the
same copybook is included twice but only one instance results in a dead data element, then Dead Data
Elements from Includes=1 and Dead Lines from Includes=1.

All “Dead from Includes” metrics are for the specified program only. These metrics do not include an
analysis of the same copybook over the entire application.

Interactive Analysis Usage
In Interactive Analysis, all dead statements, dead paragraphs, dead sections, dead data declarations, dead
files, and instances of dead files in statements will have the attribute Dead set to True.

Note: Not all language syntax phrases are represented in the Interactive Analysis model, so not all
dead constructs contributing to dead lines can be identified using Code Search. In other words, Code
Search can identify all dead data elements and all dead statements, but not necessarily all dead lines.

Special Handling of Cobol Program Complexity Metrics
• Abbreviated conditions are expanded before calculations.
• DECLARATIVEs content and other exception-handling statements are counted once, as ordinary

statements.
• Handling of EVALUATE formats:

EVALUATE … [ALSO …] Conditional Statement
WHEN … [ALSO …] Binary Decision, Conditional Statement
WHEN OTHER Conditional Statement
END-EVALUATE

• Handling of SEARCH formats:

SEARCH … AT END … Binary Decision
WHEN … Binary Decision, Conditional Statement
WHEN …AND… Binary Decision, Conditional Statement
END-SEARCH

Possible Padding in MOVE Statements
The Advanced Search criterion for Possible Data Padding defects in MOVE statements (in which the
internal representation of the source variable in the assignment is shorter than the internal representation
of the destination variable) finds only MOVE statements involving at least one group data item. It does not
find MOVE statements involving assignments of elementary data items.

Hogan Framework Support

Support Notes | 321

Overview
Hogan COBOL applications use calls to Process Environment Manager (PEM) to identify program
operations, or activities, mapped in Hogan Framework configuration files. These activities include LINK
(invoke programs), SDB (read files), HDB (read hierarchical data segments), and DC (read screens). Other
activities include WORK, DUMP, EXCEP, END, ABEND, CHECK, and special user-defined operations.

Each activity the program performs is identified in a variable moved to the program's Transaction-Control-
Block (TCB). On finding a call to PEM:

CALL 'PEM' USING TRANSACTION-CONTROL-BLOCK.

COBOL Analyzer matches the activity IDs in the TCB with the corresponding operations in Hogan
Framework configuration files. CA then uses the configuration file information to create repository
relationships between programs, activity IDs, and related application artifacts.

Inputs: Hogan Configuration File Preparation
In order to successfully analyze Hogan calls, you need to supply information about the Hogan configuration
extracted from the Hogan system. This is done using external configuration files. The following table
describes the necessary files:

Table 1: Layouts for Hogan configuration files

HOGAN CDMF EXTRACT
FILE

Artifact Type Data Record Contents Name

BNS.CIS.ACTS Activities Activity type (e.g. LINK)

Program definition ID

CDMFACTS

BNS.CIS.PGMS Program Definitions Program source name

Program load name

Data Groups Used

Activities Authorized

CDMFPGMS

BNS.CIS.DGS Data groups Copybook name CDMFDGS

BNS.CIS.MAPS Maps Map name

IMS tran code

CDMFMAPS

BNS.CIS.TXNS Transaction definitions Transaction code

PSB name

Activities executed

CDMFTXNS

BNS.CIS.HDBS Hierarchical DB definitions Database name

Segment names

Segment data group IDs

CDMFHDBS

BNS.CIS.SDBS Sequential file definitions File ID

File description

File type (I/O)

DD name

CDMFSDBS

BNS.CIS.X200 Non-Hogan PGM interface
definitions

Non-Hogan program

LINK activity ID

CDMFX200

322 | Support Notes

HOGAN CDMF EXTRACT
FILE

Artifact Type Data Record Contents Name

Non-Hogan PGM load
name

The configuration filename required by COBOL Analyzer is of the form BNS.CIS.XXXX =>
CDMFXXXX.hogan. For example, BNS.CIS.PGMS must be named CDMFPGMS.hogan for it to be
processed by the CA utility.

Specify the location of the configuration files in Options > Workspace Options > Verification > Legacy
Dialects > COBOL File > Hogan Files Location. An example location is: C:\samplecode
\hoganconfig.

The expected format of the Hogan configuration files is described in the next topics.

CDMFACTS.hogan
Field Name Format HoganFileConvert

or Class
Start Column Size Repeats __

times
Values

EffectiveDate CYYMMDD (C
= 1 =>2000, C
= 0 =>1900)

12 7

Id numeric ActivityDef 78 6

ActivityType LINK, DC,
HDB, SDB,
WORK, DUMP,
EXCEP, END,
ABEND,
CHECK

94 5 LINK, DC,
HDB, SDB,
WORK, DUMP,
EXCEP, END,
ABEND,
CHECK

Description 99 20

DispDump 139 4

SdbId / HdbId*
(HDB)

147 8

MapName*
(DC)

163 7

LinkProgId 170 6

EXITIndicator 176 1

DCType 177 1

ENDType 180 1

DBRollBack 181 1

EXCEPCondC
ode

182 4

tableDgCount 342 2

ActDgTableEntry 346 9 tableDgCount

DgId 1 6

Disposition 8 1

Support Notes | 323

CDMFPGMS.hogan
Field Name HoganFileConvert

or Class
Start Column Size Repeats __

times
Matches
ActivityType

ActivityDef
Match

EffectiveDate 12 7

Id ProgramDef 78 6 Link LinkProgId

LinkName* 84 8

SourceName 92 8

Description 100 40

dgCount 146 4

actCount 150 4

ProgDefDgTableEnt
ry

178 14 dgCount

Id 1 6

CopybookNam
e

8 8

ProgDefActTableEn
try

1578 6

Id 1 6 actCount

CDMFHDBS.hogan
Field Name HoganFileConvertor

Class
Start Column Size Matches

ActivityType
ActivityDef Match

EffectiveDate 12 7

Id HDBDef 78 8 HDB HdbId

Description 102 50

DBDName 421 8

SegmentName 596 8

CDMFSDBS.hogan
Field Name HoganFileConvertor

Class
Start
Column

Size Matches
ActivityType

ActivityDef Match

EffectiveDate 12 7

Id SequentialDef 78 8 SDB Sdbld

DDName* 156 8

Description 86 50

CDMFMAPS.hogan
Field Name HoganFileConver

tor Class
Start Column Size Matches

ActivityType
ActivityDef Match

EffectiveDate 12 7

Id MapDef 78 7 DC MapName

MapTitle 95 40

324 | Support Notes

Field Name HoganFileConver
tor Class

Start Column Size Matches
ActivityType

ActivityDef Match

ImsTransCode 144 end

CDMFX200.hogan
Field Name HoganFileConvertor

Class
Start
Column

Size Matches
ActivityType

ActivityDef Match

EffectiveDate 12 7 LinkProgId has 50200

Id NonHoganProgramD
e

78 6 LINK and ActivityDef.Id

LinkName* 84 end

CDMFTXNS.hogan
Field Name HoganFileConvertor

Class
Start Column Size Repeats __

times
Values

EffectiveDate 12 7

Id 78 4 ApplicationID 80-81,
FunctionID 82-89 , the
BatchID is part of function
id and is 86-89, 0003 =
online, 0004 = batch

FunctionId 82 5

BatchId 87 4

tableDgCount 577 2

FunctionTableEntry 579 6 tableDgCount

1 6

HoganCgf.flt - Output Format
Field Name Start Size

Sid 0 4

Sid (text) 4 9

ActivityType 13 8

ObjectType 21 8

Name* 29 10

ActivityType 39 8

Description 47 22

DispDump 69 4

DBRollBack 73 1

EXCEPCondCode 74 5

ENDType 79 1

EXITIndicator 80 1

DCType 81 1

Support Notes | 325

Validating CA Format Using HoganFileConvertor
The HoganFileConvertor is supplied with the CA installation and is located in the bin folder. In general,
you don't need to execute the HoganFileConvertor manually as the tool will automatically generate the
conversion for you on the first run or whenever the files are changed. However, while preparing the
environment, it may be useful to execute it in order to validate your input file against the expected format.
Input parameters have two possible formats:

• The folder containing all configuration files followed by an output name
• The filenames listed one by one followed by an output name.

The utility creates an .flt file which is a flattened CA expected format containing all necessary
information to analyze Hogan calls. It also creates a detailed log specifying any errors or warnings and
giving details for executing the utility. It is good practice to check the execution log after performing the
conversion. Some of the messages can be ignored; for example, if you don't have transaction definitions
you may get the following error: "[ERROR] C:\hogan\HoganExample\hoganConfig\CDMFTXNS.hogan
does not exist." but the program will continue and generate the output. As long as you don't need
transaction definitions, you can proceed with the analysis. Here is an example command for using the
HoganFileConvertor from a command prompt:

C:\Program Files (x86)\Micro Focus\COBOL Analyzer\Bin
\HoganFileConvertor.exe ”C:\samplecode\hoganconfig”, ”C:\samplecode
\hoganconfig\HoganCfg.flt”

Turning on Hogan Support
To turn on Hogan support, check Support Hogan Framework under Options > Workspace Options >
Verification > Legacy Dialects > COBOL File. The location of the Hogan configuration files is specified in
the Hogan Files Location field under the Support Hogan Framework checkbox.

Set the Hogan Framework support options before verifying the COBOL files in the COBOL Analyzer
workspace. The verification process generates the HoganCfg.flt file in the Hogan Files Location option
directory. This file includes all the information collected from the extracted Hogan configuration files and will
be recreated whenever a file in the specified subdirectory is modified.

Preparing for Analysis
By default, CA analyzes variable values up to 1000 bytes in size. As this is not enough for Hogan support,
you need to change the project options. Go to Options > Project Options > Verification, select COBOL
File and click Advanced.... Then, in the Advanced Program Analysis window, change the value in the
Maximum Size of Variable to be Calculated option from 1000 to 5000 as shown in the following
screenshot:

326 | Support Notes

Using Examples to Check the Configuration
You can use HoganExample.zip supplied in the Docs folder of your COBOL Analyzer installation
directory to validate that your project is set up for supporting Hogan correctly. You need to extract the files,
point to the Hogan configuration files location, change the variables value option to 5000 and execute the
analysis. After the verification you should be able to see something similar to the screenshot below:

Support Notes | 327

Outputs/Relationships Created during Hogan Framework Support
Analysis
After performing Hogan Framework support analysis, the COBOL programs making PEM calls will be
populated with relationships and only existing relationship types will be used. Variable analysis will
determine the data values of the activity IDs for the PEM calls.

• In this screenshot you see the Uses Hogan Activity ID relationships for the program. All found activity
IDs have a number, type and name. If the activity ID is not found in CISACTS.hogan, like 36041 in the
screenshot below, only the number will be used.

CISACTS.hogan

• A description is associated with each activity ID. It is available in the properties window.

• The Relationships tab of the activity ID properties window will show which programs use that activity ID.

328 | Support Notes

• The Cross Reference report shows Programs and Hogan activity IDs.

Resolved Relations
The flattened configuration information translates the activity IDs to programs, files, maps, and database
relations.

Hogan relation CA relation CA type Name represents

Link Calls Program entry point PROGRAMENTRY program

X50200 Calls Program entry point PROGRAMENTRY program

SDB Reads File DATAPORT Data name

HDB Reads Hierarchical
Database Segment

HISEGMENT Hierarchical segment

DC Receives Screen MAP Map

ACTIVITYID Uses Hogan activity ID ACTIVITYID Hogan activity ID

WORK, DUMP, EXCEP,
END, ABEND, CHECK

Uses Hogan activity ID HOGAN ITEM Hogan activity ID

Validating Results after Analysis
For any activity being used by the program (calls to PEM), the analysis will generate a corresponding
activity ID. If the activity ID is found in the .flt file, it will be prefixed by a sequential number and an
activity name. For example, if you have an activity with ID: 0000001, then the resulting activity will be
1_END000001_END and this is an activity found inside the configuration files. If the tool cannot find an
activity ID in the configuration files, it will still be reported but without a prefix. For example, if your program
is using an activity with ID: 321456 and it is not described in the configuration files, the program will
generate an activity with ID: 321456. Usually, this means that the activity doesn't need to be linked to
anything and that having information that it is used is enough. These activity IDs can be used to confirm
that all information was exported from Hogan.

Troubleshooting Hogan Framework Support
If you receive the message "Number of paths exceeded the processing limit of nn," set the processing limit
to a higher value in the Maximum Number of Variable's Values field in Project Options > Verification >
Advanced for the Cobol File type.

Java Support
COBOL Analyzer supports Java SE 1.3-1.6.

Follow the steps below to analyze Java applications in COBOL Analyzer:

Support Notes | 329

1. The Java SE Runtime Environment (JRE) needs to be installed on your machine. The current version of
the JRE specified in the Windows registry will be used.

Note: For the required JRE version, see the Hardware and Software Requirements section in the
Installation Guide.

Note: If your application was compiled with a previous version of the JRE, specify the path of the
Java SE runtime library (rt.jar) used to compile the application in the Enter classpath to JAR
Files and/or path to external Java file root directories field in Workspace Options > Verification
> Settings.

2. Register Java sources (.java) in COBOL Analyzer.
3. Go to Options > Workspace Options > Verification > Settings, right-click in the Enter classpath to

JAR Files and/or path to external Java file root directories field and choose Add from the context
menu to specify JAR or Zip files containing class libraries referenced in the application. Alternatively,
choose Add Folder from the context menu to specify the path of the folder containing the JAR or Zip
files, then select Include Jar/Zip Files From Directories.

Note: This option is also available in Project Options > Verification > Settings. The project
option is checked before the workspace option, so setting it for the project effectively overrides the
setting for the workspace.

4. If your application uses constructs that are incompatible with the latest Java version, specify the Java
version it uses in the Java Source Level field in Project Options > Verification. You would set this
option to 1.4, for example, if your application used "enum" as an identifier, since "enum" is a reserved
word in Java 5.

Note: This option affects only the syntax accepted by the parser. It does not change the version of
the Java SE runtime library (rt.jar) used to parse Java files.

5. Specify the resource types for method calls your application uses to interface with databases, message
queues, or other resources in Workspace Options > Boundary Decisions.

6. Verify the application source files.

Note: COBOL Analyzer does not support WSDL files.

JSP Support
COBOL Analyzer provides application-level support for JSP 2.2. You must install the Java add-on to enable
JSP support. For installation instructions, see the installation manual for your product.

Follow the steps below to analyze JSP applications in COBOL Analyzer:

1. Register JSP (.jsp), Tag Library Descriptor (.tld), and Web Config (web.xml) files in COBOL
Analyzer.

2. If your JSP files reference Java types or packages defined in JAR files, external Java files, or Java files
registered with the Preserve Folder Structure option, specify a list of patterns used to resolve the
location of the files in Project Options > Verification > Settings for the JSP file type.

3. Verify JSP and Tag Library Descriptor files. Web Config files (web.xml) do not need to be verified.

Resolving the Location of Java Types and Packages
Referenced in JSP Files
Resolving the location of Java types and packages referenced in JSP files is needed when Java files are
registered using the Preserve Folder Structure setting.

By default Java files are registered in a workspace with names based on their package declaration. For
example, com\company\id.java. When files with the same name and package declaration are used in
different applications, the files must be registered with names derived from their locations in the folder

330 | Support Notes

structure, under the Preserve Folder Structure setting for the Java file type in Workspace Options >
Registration > Extensions.

For example, Id.java in the app1 folder is registered as app1\com\company\Id.java and Id.java
in the app2 folder is registered as app2\com\company\Id.java.

JSP cannot find the classes because there are now two possible definitions of the class com.company.Id
in the workspace. If your JSP files reference this class, you need to specify which Java file defines the
class in the Java Classpath field for the JSP file type in Project Options > Verification > Settings.
Otherwise, the relationship between JSP and the class is marked as unresolved in the workspace.

Java Classpath contains a list of patterns used to resolve the location of Java types and packages
referenced in JSP files. Each pattern describes the path to a Java file that defines the referenced type or
package. In our case, the pattern might be app1*, which matches any Java source file registered in the
workspace from the app1 folder.

You can also match JAR files or external files referenced in Java applications but not registered in the
workspace, as specified in the Enter classpath to JAR Files and/or path to external Java file root
directories field for the Java file type in Workspace Options > Verification > Settings. The pattern *
\jre6\lib\rt.jar would find the Java 6 run-time library, for example.

Right-click in the Java Classpath field and choose Add in the pop-up menu to enter a pattern. You can
use asterisk symbol to match any sequence of characters.

Relationships that cannot be resolved by any of the specified patterns are marked as unresolved in the
workspace. Once the classes are resolved, only the base name of the referenced class or package
appears in the relationship (in the Repository Browser). Use the Unresolved Report in the Reference
Reports window to see what is still unresolved and determine the patterns you need to add.

.NET Support
COBOL Analyzer supports Microsoft .NET Framework 3.5, Visual C# 3.0, and Visual Basic .NET 9.0. The
table below shows the supported file types and their entity types in the repository. Register the entire folder
for the project to avoid problems with duplicate file names.

File Type Entity Type

.csproj, .vbproj .Net Project

.cs, .vb .Net File

PL/SQL Support
COBOL Analyzer supports Oracle PL/SQL for Oracle Database 11g, Release 1.

SQL Support
COBOL Analyzer supports DB2 UDB for z/OS, Version 8 (DCLGENs, SQL, DDL).

Renaming DCLGEN Include Files
In previous releases, DCLGEN include files with the same names as ordinary include files had to be
renamed with a DCLGEN prefix and dot (.) separator so that both types of file could be registered:
ATTR.<valid extension>, for example, and DCLGEN.ATTR.<valid extension>.

Support Notes | 331

You don't have to rename these files anymore. If fact, if you have the files renamed already, you should now
rename them back to not have the DCLGEN. prefix.

Note: Unresolved references to library members are always reported with the short name. This
means that if you subsequently register a missing include file with a long name, the referencing
source file will not be invalidated. It's up to you to remember that the referencing source needs to be
reverified.

Prefixes for SQL Names
To maintain uniqueness of ERD entity names, CA specifies SQL names with an SQLID prefix, defined by a
corresponding SET CURRENT SQLID statement. Names of Table objects are prefixed with CURRENT
SQLID when it is set by a preceding SET CURRENT SQLID statement.

VB Support
COBOL Analyzer supports Microsoft Visual Basic 6.0. Follow the steps below to analyze VB applications in
COBOL Analyzer.

1. Use the XDL.exe utility shipped with CA to generate Library Description files for ActiveX components
referenced in VB Project files but not contained in the projects themselves. For more information, see
"Generating Library Description Files."

Note: COBOL Analyzer provides Library Description files for ActiveX system libraries in the CA
\Templates\VB directory.

2. Register the VB application in COBOL Analyzer. The following objects must be registered:

• VB project files (.vbp)
• System Library Description files (.xdl) in the CA \Templates\VB directory
• Generated Library Description files (.xdl)
• Source files (.bas, .cls, .ctl, .frm)

3. Specify the resource types for method calls your application uses to interface with databases, message
queues, or other resources on the Workspace Options > Boundary Decisions tab.

4. Verify Library Description files and VB project files.

Note: Library Description files must be verified before VB project files. As long as you verify the
entire project for your Visual Basic application, CA parses the source files in appropriate order,
taking account of the dependencies between file types.

Bear in mind that dependencies between CA projects are not taken into account. If VB Project1
references VB Project2, VB Project2 must be verified first. To check for dependency-related
verification errors, run verification iteratively, verifying only those files in each project that have not
been verified successfully. If the number of unsuccessfully verified files does not decrease after a
run, the remaining issues are not dependency-related.

Important: Before registering VB sources, see "Restrictions on Visual Basic Support" for limitations in
COBOL Analyzer support that may affect your project.

Generating Library Description Files
ActiveX components referenced in VB Project files but not contained in the projects themselves must be
registered in an CA project as Library Description files (.xdl). The following ActiveX component types may
be referenced:

• DLLs (.dll)
• OCX controls (.ocx)
• TLBs (type libraries, .tlb)

332 | Support Notes

• OLBs (object libraries, .olb)

COBOL Analyzer provides Library Description files for ActiveX system libraries in the CA \Templates\VB
folder. Use the XDL.exe utility shipped with CA to generate Library Description files for the remaining
ActiveX components.

1. Open a VB Project file and locate the first referenced ActiveX component. Referencing statements use
a Reference= or Object= format:

Reference=*\G{6B263850-900B-11D0-9484-00A0C91110ED}#1.0#0#D:\WINNT
\System32\msstdfmt.dll#Microsoft
 Data Formatting Object Library
Object={5E9E78A0-531B-11CF-91F6-C2863C385E30}#1.0#0; MSFLXGRD.OCX

2. Run the XDL.exe utility. You can use a command prompt window or the graphical user interface
provided with the utility:

• In a command prompt window, enter \<CA Home>\Bin\XDL.exe
component_name.file_extension "C:\XDLS\component_name.XDL"

• In the CA \bin directory. double-click XDL.exe. The XDL Report window opens. Choose File > Open,
then browse to the location of the referenced file (.dll, .ocx, .tlb, or .olb) and click Open. In the XDL
Report window, choose File > Save As and save the XDL file to a location outside the workspace.

3. Repeat these steps for each referenced Active X component and each VB Project file.

Restrictions on Visual Basic Support
The following constructs are not supported and are marked with the "Item was ignored by parser" message
during verification:

AppActivate
ChDir
ChDrive
Close
Deftype
DeleteSetting
Erase
Error
Event
Get
GoSub...Return
GoTo
Implements
Input #
Kill
Line Input #
Lock
Lset
MkDir
Name
Open
Option Base
Option Compare
Option Private
Put
RaiseEvent

Support Notes | 333

Randomize
Resume
RmDir
Rset
SaveSetting
Seek
Stop
Time
Exit
Width #

334 | Support Notes

	Contents
	Installation Guide
	Overview
	Installation Tasks
	Deployment
	Mainframe and Network Server
	Repository Server
	CA Server
	CA Client
	Single User Installation

	Database Setup
	SQL Server Database Setup

	Hardware and Software Requirements
	Repository Server Hardware Requirements
	Repository Server Software Requirements
	CA Server Hardware Requirements
	CA Server Software Requirements
	CA Client Hardware Requirements
	CA Client Software Requirements

	CA Performance Optimization Guidelines
	Choosing Hardware Configuration
	Single User (One Machine)
	Enterprise Installation (Multiple Users Using Separate Database Server)
	Database Server
	CA and Workspace Server
	Processing Node/Nodes

	Software Configuration
	Verification Information
	Parallel Verification
	Choosing the Optimal Number of Queue Processors
	Using More Computers

	Installing and Uninstalling COBOL Analyzer
	Installing CA on the Server or Client
	Uninstalling COBOL Analyzer

	Post-Installation Administrative Tasks
	Configuring COBOL Analyzer
	Licensing
	Upgrading Customers
	Concurrent Use
	COBOL Analyzer Licensing
	Business Rule Manager Licensing

	Configuring an ODBC Data Source Name
	Configuring an Oracle ODBC Data Source Name
	Configuring a DB2 ODBC Data Source Name

	Creating a Shared Folder for Workspaces
	Upgrading Workspaces

	Troubleshooting the Installation
	Troubleshooting Workspace Access

	Getting Started
	Introducing COBOL Analyzer
	COBOL Analyzer Products
	COBOL Analyzer
	Enterprise View
	Business Rule Manager

	How COBOL Analyzer Models Applications
	Understanding Application-Level Information
	Understanding Object-Level Information

	Workspaces and Projects
	Single-User versus Multiuser Environments
	Multiuser Environment Basics
	Deployment Scenario
	Mainframe and Network Server
	COBOL Analyzer Server
	Database Server
	COBOL Analyzer Client
	Enterprise View Web Server
	Enterprise View Web Client

	CA Privileges
	Understanding Master Users
	Understanding Workspace Security Policies
	Using the Optional File Server
	Public and Private Visibility
	Protecting Projects

	Dropping Indexes
	Computing Statistics

	COBOL Analyzer Basics
	Creating a Workspace in Oracle or DB2
	Creating a Workspace in SQL Server
	Creating a Workspace Using the Workspace Build Wizard
	Designating Users for Security Policies
	Designating Users in a Simple Security Policy
	Designating Users in a Three-Group Security Policy

	Refreshing the Workspace Path
	Connecting to a Workspace in Oracle or DB/2
	Connecting to a Workspace in SQL Server
	Opening a Workspace
	Registering Source Files
	Host Environment Source Compatibility
	Resolving Include Files
	Resolving Program-to-Program Calls
	Resolving Control Cards
	Resolving JCL Procedures

	Queue Processor
	Check Workspace Queue
	Manage Queue
	Verifying Source Files
	How Verification Results Are Indicated

	Quick Inventory
	Using the COBOL Analyzer Main Window
	Menus
	Toolbars
	Project Filtering
	Using the Repository Browser Pane
	Using the Search Assistant
	Using the Browser
	Selecting Objects
	Selecting All
	Selecting Multiple
	Using the Type-Ahead Select Functions

	Expanding Subtrees
	Filtering Subtrees
	Refreshing the Browser
	Viewing the Entire Workspace

	Using the Legacy Search Tab
	Creating a Search Filter
	Specifying a Search Criterion
	Using Wildcard Patterns in Searches

	Finding and Replacing Text in Source Files

	Using the Editor and Viewer
	Editing Source
	Finding and Replacing Source in a Selection
	Viewing a List of Errors
	Extracting and Expanding Copybooks (Cobol, MFS Only)
	Commenting Out Source
	Printing Source
	Setting Editor User Preferences
	Specifying the Color of Items

	Using the Chart Viewer
	Interactive Chart View
	Report Chart View

	Using the Object Information Pane
	Viewing Object Properties
	Viewing Inventory Reports
	Viewing Key Object Relationships with Query Repository
	Using the Activity Log
	Viewing Errors
	Viewing History
	Copying Records
	Generating Reports
	Clearing the Log
	Hiding a Column

	Creating a To Do List
	Viewing a To Do List

	Using Tool Windows
	Resizing Panes
	Moving Panes

	Setting Options
	Managing Option Sets
	Understanding the Options Manager Window
	Creating an Option Set
	Renaming an Option Set
	Editing an Option Set
	Copying an Option Set
	Deleting an Option Set
	Sharing an Option Set
	Making an Option Set the Default
	Assigning an Option Set
	Importing and Exporting Option Sets

	Setting General Options
	Setting Environment User Preferences
	Setting Archivers User Preferences
	Setting Export Options
	Adding a Selectable Item

	Working with Reports and Diagrams
	Using the Guide for a Tool
	Purge Activity Log

	Preparing Projects
	Registering Source Files
	Host Environment Source Compatibility
	Resolving Include Files
	Resolving Program-to-Program Calls
	Resolving Control Cards
	Resolving JCL Procedures

	Setting Registration Options: Extensions Tab
	Setting Registration Options: Source Files Tab
	Creating New Source Files
	Refreshing Source Files
	Using Source Synchronization
	Source Synchronization Settings
	Source Synchronization and Impact Analysis

	Exporting Source Files from a Workspace
	Deleting Objects from a Workspace
	Deleting a Workspace
	Japanese Language Support

	Setting Up Projects
	Creating Projects
	Sharing Projects
	Protecting Projects
	Moving or Copying Files into Projects
	Including Referenced and Referencing Objects in a Project
	Removing Unused Support Objects from a Project
	Emptying a Project
	Deleting a Project

	Verifying Source Files
	Enabling Parallel Verification
	Invalidating Files Before Reverification
	Setting Workspace Verification Options: Legacy Dialects Tab
	Setting Workspace Verification Options: Settings Tab
	Enabling Staged Parsing
	Basic Repository Information
	Full Logical Objects Information
	Interactive Analysis Information
	Dead Code Statistics

	Enabling Relaxed Parsing
	Truncating Names of Absolute Elements

	Setting Workspace Verification Options: Parallel Verification Tab
	Setting Project Verification Options
	Specifying the Processing Environment
	Specifying Conditional Compiler Constants
	Optimizing Verification for Advanced Program Analysis

	Identifying System Programs
	Specifying Boundary Decisions
	Performing Post-Verification Program Analysis
	Restrictions on Cobol Post-Verification Program Analysis
	Restrictions on PL/I Post-Verification Program Analysis

	Using Post-Verification Reports
	Viewing Verification Reports
	Errors Pane
	Files Affected Pane
	Source Pane
	Marking Items
	Including Files into Projects
	Generating HTML Reports

	Viewing CRUD Reports
	Setting CRUD Report Options

	Inventorying Applications
	Using Reference Reports
	Understanding the Reference Reports Window
	Main Pane
	Preview Pane

	Setting Reference Reports Options

	Using Orphan Analysis Reports
	Understanding the Orphan Analysis Window
	Found Objects Pane
	Orphan Source Pane

	Setting Orphan Analysis Options
	Deleting Orphans from a Project
	Deleting Orphans from a Workspace

	Resolving Decisions
	Understanding Decisions
	Understanding the Decision Resolution Tool Window
	Decision List Pane
	Available Targets Pane
	Source Pane

	Resolving Decisions Manually
	Restoring Manually Resolved Decisions
	Resolving Decisions Automatically
	Setting Decision Resolution Tool User Preferences

	Identifying Interfaces for Generic API Analysis
	Identifying Unsupported API Calls to the Parser
	Using the API Entry Tag
	Using the match Tag
	Using the flow Tag
	Using the vars Tag
	COBOL-Specific Usage
	PL/I-Specific Usage
	Natural-Specific Usage

	Using the rep and hc Tags
	Using Predefined Patterns
	Using Custom Patterns
	Using the entity Subtag
	Using the rel Subtag

	Using Expressions
	Basic Usage
	Simple Notation
	Switch Usage
	Fallback Chain Usage
	Fallback Semantics for Attributes

	Using a Function Call
	Understanding Enumeration Order

	Understanding Decisions
	Understanding Conditions
	Usage Example

	Analyzing Projects
	Managing Tags
	Understanding the Tag Manager Window
	Object List Pane
	Category Pane
	Projects Pane
	Object Types Pane
	Search Pane
	Query Pane
	Tags Pane

	Creating Tags
	Specifying Access to Tags
	Assigning Tags
	Removing Tags
	Creating Relationships Between Tags
	Deleting Tags
	Creating Tag Queries
	Deleting Tag Queries
	Refreshing the Tag Manager Window
	Cleaning Up the Tag Manager Window
	Generating Reports

	Analyzing Relationship Flows
	Understanding Relationship Flow Diagrams
	Understanding Diagram Scopes
	Understanding Diagram Layouts
	Generating a Diagram for the Selected Project
	Generating a Diagram for Objects Copied and Pasted onto the Canvas
	Understanding the Diagrammer Window
	Diagram Pane
	Selecting an Object or Relationship
	Searching for an Object
	Navigating to an Object from a Relationship
	Expanding and Collapsing Relationships
	Moving an Object or Relationship
	Resizing an Object
	Hiding an Object
	Deleting an Object or Relationship
	Assigning Tags
	Assigning Business Names
	Displaying Labels for Multiple Relationships
	Hiding Relationship Labels
	Displaying the Legend for a Diagram
	Zooming
	Moving a Diagram
	Clearing a Diagram
	Saving a Diagram
	Printing a Diagram
	Generating Diagram Reports

	Browser Pane
	Relationships Pane
	Quick View Pane
	Overview Pane

	Excluding Objects Outside the Project
	Showing Incomplete Composite Relationships
	Colorizing Project Boundaries
	Showing and Hiding Object Labels
	Working with Groups
	Grouping and Ungrouping Objects
	Expanding and Collapsing Groups
	Moving Objects Between Groups
	Naming Groups
	Deleting Groups

	Black-Boxing Tagged Objects
	Filtering Objects
	Setting Filter Overrides

	Clustering Objects
	Creating Clusters Manually
	Generating Tags from Clusters
	Setting Clustering Factors

	Setting Diagrams User Preferences
	Using the Scope Editor
	Understanding the Lefthand Pane of the Scope Editor
	Understanding the Righthand Pane of the Scope Editor
	Managing Scopes
	Hiding a Scope in the Scope Drop-down
	Displaying Only the Relationships Used in a Scope
	Hiding Empty Relationships
	Viewing a Diagram of a Scope
	Viewing a Diagram of a Composite Relationship
	Creating a Scope
	Specifying the Relationships in a Scope
	Editing Scope Details
	Copying a Scope
	Deleting a Scope
	Deleting a Composite Relationship
	Importing and Exporting Scopes
	Hiding Columns in the Scope Editor

	Creating Custom Composite Relationships
	Defining a Relationship Filter

	Pruning a Scope
	Mirroring a Scope

	Analyzing Global Data Flow
	Understanding the Global Data Flow Panes
	Data View Pane
	Data Flow Pane
	Origin Pane

	Data Flow Relationships
	Assigning Business Names Manually
	Setting Global Data Flow User Preferences
	Setting Global Data Flow Project Options

	Estimating Complexity and Effort
	Viewing Complexity Metrics
	Setting Complexity Metrics User Preferences
	Estimating Effort
	Setting Effort Estimation Options
	Specifying the Change Magnitude for a Source File

	Identifying Classes of Data Items with Change Analyzer
	Understanding Data Item Classification
	Getting Started in Change Analyzer
	Sample Usage of Change Analyzer
	Understanding the Change Analyzer Window
	Programs Pane
	Lists Pane
	Creating Lists
	Deleting Lists
	Selecting Fields
	Editing the Comment for a Field
	Moving or Copying Fields between Lists
	Performing Set Operations with Lists
	Deleting Fields

	Impact Tracing Pane
	Source Pane

	Searching for Seed Fields in Change Analyzer
	Creating Projects in Change Analyzer
	Setting Change Analyzer Options
	Generating Change Analyzer Reports

	Repository Exchange Protocol Syntax
	Query Syntax
	Example 1
	Example 2

	Portability Assessment
	Quality Assessment

	Analyzing Programs
	Introducing Interactive Analysis
	Understanding Interactive Analysis Models
	Using the Interactive Analysis Main Window
	Using Basic Navigation Controls
	Using the Properties Window
	Opening the Properties Window
	Viewing and Navigating to Related Constructs
	Opening a Properties Window for a Related Construct

	Assigning Business Names Manually

	Understanding Program Context
	Using the Source Pane
	Navigating and Searching for Source
	Using the Simple Search Facility
	Navigating to Related Constructs
	Navigating to Multiple Occurrences of an Included Construct

	Selecting and Copying Code
	Selecting and Copying Constructs
	Selecting and Copying Text

	Setting Source Pane User Preferences
	Collapsing and Expanding Paragraphs or Subprograms
	Showing Source Code Boundaries

	Using the Context Pane
	Using the Objects Pane
	Using the Watch Pane
	Using the Screen Pane
	Manually Extracting Business Names for Program Variables

	Using the Bird's Eye Pane
	Using the Model Reference Pane

	Performing Advanced Searches
	Defining a Search Filter
	Executing Advanced Searches
	Advanced String Attribute Operations
	Working with Advanced Search Criteria
	Creating a Search Criterion
	Editing a Search Criterion
	Copying a Search Criterion
	Saving a Search Criterion
	Deleting a Search Criterion
	Creating a Folder for Search Criteria
	Saving a Search Criterion as HTML
	Exporting and Importing a Search Criterion

	Staging Program Analysis with Code Search
	Getting Started in Code Search
	Understanding the Code Search Pane
	Working with Categories
	Working with Lists
	Creating a List
	Deleting a List
	Copying a List
	Sharing a List
	Adding a Construct to a List Manually
	Deleting a Construct from a List

	Executing Code Search Searches
	Using Construct Lists to Narrow a Code Search
	Searching for Similar Constructs in Code Search
	Extracting Business Rules in Code Search
	Generating Business Rules in a Specified Rule Set

	Generating an Impact Subtree Report in Code Search
	Marking and Colorizing Constructs in Code Search
	Creating Projects in Code Search
	Generating Metrics and Detailed Reports
	Running Code Search Reports in the Main Window
	Creating a Code Search Report
	Working with Saved Reports
	Code Search Report Results
	Storing Code Search Reports

	Running Code Search Reports in Interactive Analysis

	Analyzing Impact Traces
	Generating an Impact Trace
	Understanding the Hierarchical View
	Understanding the Diagram View
	Data Flow Relationships
	Setting Impact Pane User Preferences
	Setting Impact Pane Project Options: Processing Tab
	Setting Impact Pane Project Options: Relationships Tab
	Setting Impact Pane Project Options: Impact Reports Tab
	Exporting and Importing an Impact Trace
	Generating a Subtree Report
	Generating a Pane Report
	Generating an Affected Code Report (COBOL Only)

	Analyzing Program Control Flows
	Using the Program Control Flow Pane
	Drawing the Diagram
	Choosing the Diagram View
	Selecting Items
	Setting Program Control Flow User Preferences
	Setting Program Control Flow Project Options

	Using the Execution Path Pane
	Using the Flowchart Pane
	Drawing the Diagram
	Setting Flowchart User Preferences

	Using the Animator

	Setting Up a Glossary
	Understanding the Glossary Pane
	Searching for Terms
	Using the Simple Search Facility
	Using the Advanced Search Facility
	Creating a List of Search Results

	Assigning Business Attributes
	Assigning Business Names Manually
	Assigning Business Names in Batch Mode

	Extracting Business Names from Screens
	Importing and Exporting Business Attributes
	Propagating Business Names
	Deleting Business Attributes
	Setting Glossary Workspace Options
	Refreshing a Glossary
	Generating Glossary Reports

	Extracting Business Rules
	Understanding Business Rules
	How Business Rules Are Organized
	How to Assign Segments to Business Rules
	Understanding Business Rule Attributes
	Understanding Triggers, I/O Data Elements, and Control Conditions
	Understanding the Rules Pane Display

	Extracting Business Rules Manually
	Performing Basic Tasks in the Rules Pane
	Creating Business Functions
	Creating Rule Sets
	Selecting Rules for Batch Processing
	Moving or Copying Rules or Rule Sets
	Copying a Rule or Rule Set with a Different Name
	Deleting Rules, Rules Sets, and Business Functions
	Changing the Order of Rules and Rule Sets
	Exporting Rules, Rule Sets, and Business Functions
	Importing Rules, Rule Sets, and Business Functions
	Assigning Segments to Existing Rules
	Deleting a Segment from a Rule
	Flagging Segments in Source
	Viewing the Activity Log

	Editing Rule Attributes
	Editing System Attributes
	Editing the Name Attribute
	Editing the Business Area Attribute
	Editing the Technical Description Attribute
	Editing the Business Description Attribute
	Editing the To Be Reviewed By Attribute
	Editing the Program Attribute
	Editing the Segment Validity Attribute
	Editing the Last Validation Time Attribute

	Editing User-Defined Attributes
	Editing the Audit Attribute
	Editing the Classification Attribute
	Editing the Status Attribute
	Editing the Transition Attribute

	Propagating Rule Attributes
	Identifying Triggered Rule Sets
	Identifying I/O Data Elements
	Identifying I/O Data Elements Manually
	Autodetecting I/O Data Elements
	Retrieving Business Names for I/O Data Elements

	Identifying Control Conditions
	Specifying Control Conditions
	Autoreplacing Variable Names in Control Conditions with Business Names

	Searching for Rules
	Batch Processing Rule Attributes
	Usage Example
	Substituting a Business Name for an I/O Element in an Attribute Value

	Synchronizing Sources
	Validating Rule Segments after Refreshing or Editing Code
	Limitations on Automatic Rule Validation

	Setting Business Rule Manager Project Options
	Setting Options on the Rule Defaults Tab
	Defining Rule Name Templates

	Setting Options on the Automatic Rule Validation Tab
	Setting Options on the Rule Export Tab

	Customizing Rule Attributes
	Generating Reports
	Generating Business Rule Reports
	Generating Process Outline Reports
	Generating Coverage Reports

	Using the Batch Duplicate Finder
	Finding Duplicates
	Marking Items for Comparison
	Marking Items Manually
	Marking Items in Batch Mode

	Setting BDF Search Options
	Understanding Paragraph or Program Analysis
	Understanding Common Part Analysis
	Understanding Data Flow Analysis

	Creating Components
	Introducing Component Maker
	Componentization Methods
	Dead Code Elimination (DCE)
	Language Support

	Componentization Outputs
	Component Maker Basics
	Getting Started in the Components Pane
	Creating Components
	Extracting Components
	Converting Components
	Deleting Components
	Viewing the Text for Generated Files
	Restricting the Display to Program-Related Components
	Working with Interactive Analysis Lists
	Viewing Audit Reports
	Generating Coverage Reports

	Setting Component Maker Options
	Setting General Options
	Setting Interface Options
	Setting Optimize Options
	Setting Document Options
	Setting Component Type-Specific Options
	Setting Component Conversion Options

	Eliminating Dead Code
	Generating Dead Code Statistics
	Understanding Dead Code Elimination
	Extracting Optimized Components

	Technical Details
	Verification Options
	Use Special IMS Calling Conventions
	Override CICS Program Terminations
	Support CICS HANDLE Statements
	Perform Unisys TIP and DPS Calls Analysis
	Perform Unisys Common-Storage Analysis
	Relaxed Parsing
	PERFORM Behavior for Micro Focus Cobol

	Keep Legacy Copybooks Extraction Option
	How Parameterized Slices Are Generated for Cobol Programs
	Setting a Specialization Variable to Multiple Values
	Arithmetic Exception Handling

	Using the Batch Refresh Process
	Using the Batch Refresh Process
	Understanding the Batch Refresh Process
	Configuring the Batch Refresh Process
	Configuring General Settings
	Configuring User Exits
	Understanding Exits
	Configuring Exits

	Configuring Advanced Settings
	BRP Logging

	Preparing Files for Batch Refresh Processing
	Enabling Parallel Verification
	Executing the Batch Refresh Process
	Adding Source File Extensions
	BRP Logging

	Producing Utilities for BRP
	Versioning
	Logging
	Source, Executable, and CFG Files

	Guidelines for BRP Utilities
	BRP and Non-BRP Modes
	Using User Exits
	Parameter Data
	Logging
	Input/Output
	Returning Values
	BRP Environment Parameters
	Testing

	Using Batch Scripts
	AddNew.bj
	AffectedCodeReport.bj
	AnalyzeProgram.bj
	ApplyPCF.bj
	BusinessRulesReport.bj
	BusinessRulesValidation.bj
	ChangeTraffic.bj
	CheckQueue.bj
	ClipperDetails.bj
	ClipperMetrics.bj
	ClipperMultiSearch.bj
	ClipperSearch.bj
	tpc_CodeSearchReport.bj
	ComplexityReport.bj
	CreatePCF.bj
	CreateWS.bj
	CRUDReport.bj
	DBA.Cobol.bj
	DCE.bj
	DiagramCallie.bj
	DiagramFlowchart.bj
	DiagramProject.bj
	DiagramTS.bj
	EffortReport.bj
	ExecutiveReport.bj
	ExportDescriptions.bj
	ExportRules.bj
	ExportScreens.bj
	GenScreens.bj
	ImpactReport.bj
	ImpactReportFromList.bj
	ImportRules.bj
	IncludeReferences.bj
	Invalidate.bj
	InventoryReport.bj
	MFCobolCLink.bj
	Populate.bj
	ProcessChangeUnit.bj
	ReferenceReport.bj
	Refresh.bj
	Register.bj
	Related.bj
	ResolveDecisions.bj
	RestoreDecisions.bj
	RXP.bj
	SaveDecisions.bj
	SetChangeDate.bj
	SetProject.bj
	TagCmd.bj
	Unregister.bj
	UpdateOnly.bj
	UpdateTrendingSnapshot.bj
	Upgrade.bj
	Verify.bj

	Executing Batch Scripts
	Example: Generating Reports
	Example: Executing Repository Queries
	Example: Creating Diagrams
	Example: Performing an Advanced Search

	Using Architecture Modeler
	Introducing Architecture Modeler
	Opening Architecture Modeler
	Understanding the Application-Level Metamodel
	Entity Type Properties
	Source Name Property
	Source Type Property
	Entity Flags

	Entity Type Attributes
	Relationship Type Properties
	Relationship Flags

	Defining an Extension with Architecture Modeler
	Loading a Metamodel
	Saving the Extended Metamodel
	Adding a Sample Source File
	Specifying Formatting Options for Text Files

	Defining Entity Types
	Defining Relationship Types
	Architecture Modeler Internal Language Functions Description
	Mapping Regular Expressions to Text File Searches
	Editing Subexpressions

	Mapping XPath Queries to XML File Searches
	Exporting the Extended Metamodel
	Reconfiguring COBOL Analyzer
	Troubleshooting the Extended Metamodel

	Using Galleries

	Support Notes
	Supported Languages
	Supported Features by Language
	C/C++ Support
	Registering C/C++ Files
	Verifying C/C++ Files

	COBOL Support
	Object-Oriented Statements
	Separators Must Be Followed by Blanks
	Copybooks in Different Partitioned Datasets
	Copybooks in a Library
	How COBOL Analyzer Calculates COBOL Dead Code Statistics
	Dead Statements
	Dead Data Elements
	Dead Constructs
	Dead Statements, Dead Data Elements, and Dead Lines from Copybooks
	Interactive Analysis Usage

	Special Handling of Cobol Program Complexity Metrics
	Possible Padding in MOVE Statements

	Hogan Framework Support
	Overview
	Inputs: Hogan Configuration File Preparation
	CDMFACTS.hogan
	CDMFPGMS.hogan
	CDMFHDBS.hogan
	CDMFSDBS.hogan
	CDMFMAPS.hogan
	CDMFX200.hogan
	CDMFTXNS.hogan
	HoganCgf.flt - Output Format

	Validating CA Format Using HoganFileConvertor
	Turning on Hogan Support
	Preparing for Analysis
	Using Examples to Check the Configuration
	Outputs/Relationships Created during Hogan Framework Support Analysis
	Resolved Relations
	Validating Results after Analysis

	Troubleshooting Hogan Framework Support

	Java Support
	JSP Support
	Resolving the Location of Java Types and Packages Referenced in JSP Files

	.NET Support
	PL/SQL Support
	SQL Support
	Renaming DCLGEN Include Files
	Prefixes for SQL Names

	VB Support
	Generating Library Description Files
	Restrictions on Visual Basic Support

