

 - 1 -

Cut Unit Test Costs with Compuware DevPartner and Typemock
Isolator
DevPartner Studio Professional Edition is an award-winning suite of software development and testing
tools that enable Windows application development teams to build reliable, high-performance
applications, components and web services for Microsoft .NET and native Windows platforms.
DevPartner Studio automatically detects and diagnoses software errors and performance problems early
in the development process as cost-effectively as possible, providing built-in expert coding advice, coding
standards and best practices to improve development skills and ensure software reliability and
performance. DevPartner Studio enhances Microsoft Visual Studio and Visual Studio Team System with
advanced capabilities that allow development organizations to improve software quality, adopt coding
standards and best practices, and maximize developer productivity.

Typemock Isolator (www.typemock.com) is a .NET unit testing tool which enables developers to write
simpler and more maintainable unit tests. Isolator provides capabilities for creating fake objects and
testing against them, instead of testing against external code. This helps the test author to eliminate
dependencies, test their code in isolation and achieve better test readability and code coverage.

Using DevPartner Studio (release 9.01 or later) with Typemock Isolator (release 5.2 or later) can
significantly reduce the cost of any continuous unit testing effort. Typemock lets .NET developers easily
adopt .NET unit testing practices without difficult and time consuming code refactoring. Any .NET
developer can start unit testing code immediately, with minimal learning curve and with an increase in test
coverage. The profiling power of DevPartner Studio provides detailed coverage, performance and
memory usage data during Isolator test runs. When unit testing with DevPartner Studio and Typemock's
tools, you find bugs earlier, dramatically reducing defects discovered in the QA cycle. This makes your
integration and system testing, and the final QA test cycle faster and more predictable.

Product Installation

Refer to each product's web site for more information on specific product installation.

Note: Typemock Isolator requires .NET framework version 2.0 or later.

Setting up a Test Project
Using unit tests written with Typemock Isolator requires referencing Typemock API assemblies in your
test project. For C# projects add references to Typemock.dll and Typemock.ArrangeActAssert.dll. For
VB.NET projects add references to Typemock.dll and Typemock.Isolator.VisualBasic.dll.

To add the references to Visual Studio:

1. Select the test project in the Solution view.

2. Right-click and select Add Reference.

3. Select the .NET tab.

4. Select the Typemock Isolator assemblies in the .NET tab and click OK.

5. Add a Typemock directive to your test file code. In the Solution View, right-click on the applicable
C# or VB.NET test file and select View Code.

http://www.compuware.com/products/devpartner/1454_ENG_HTML.htm
http://www.typemock.com

 - 2 -

6. Add the appropriate Typemock directive to the code.

 For C#:

using TypeMock.ArrangeActAssert;

 For VB.NET

Imports Typemock.Isolator.VisualBasic

Writing Unit Tests with Typemock Isolator
When writing a unit test with Typemock Isolator, developers should eliminate external code dependencies
and test the unit in isolation. When discovering external code dependencies, use the Isolator API to
create a fake object instead of the object depended on by the code. See the section “Writing a Unit Test
with Typemock Isolator” for a complete example on writing a unit test with Typemock Isolator.

Linking Typemock Isolator 5.2 with Compuware DevPartner 9.0.1
Typemock Isolator acts as a profiler that intercepts calls to fake objects and methods within DevPartner
Studio, whose set of performance, coverage, and memory analysis features also acts as a profiler. The
profilers must be linked to run Typemock Isolator enabled unit tests through DevPartner. Use the
Typemock Isolator configuration utility or the command line runner to link the profilers.

Linking Using the Typemock Isolator Configuration Dialog Box
1. In Windows, click Start > All Programs > Typemock > Isolator > Typemock Isolator

Configuration to open the Typemock Isolator Configuration dialog box.

2. Select the Profilers/Code Coverage tab.

3. Select the profiler you want to link to. Available DevPartner profilers are DevPartner.Coverage,
DevPartner.Profiler (for performance profiling) and DevPartner.Memory.

4. Click Link with Typemock Isolator to link.

 - 3 -

You can now run Isolator-enabled unit tests using DevPartner.

To unlink a selected profiler/code coverage tool:

1. In the Typemock Isolator Configuration dialog box, select the Profilers/Code Coverage tab.

2. Press UnLink with Typemock Isolator to unlink.

Linking and Starting Tests from the Command Line
TMockRunner.exe is a command line utility provided with the Typemock Isolator installation. To link and
run tests with DevPartner use TMockRunner as follows:

TMockRunner.exe –link <Profiler Name> -first <DevPartner Command> <Test
Runner> <Test Assembly>

The following table lists the TMockRunner.exe command parameters and a description of each.

Parameter Description

Profiler Name For DevPartner integration this can be:
- DevPartner.Coverage
- DevPartner.Profiler
- DevPartner.Memory

DevPartner
Command

The path to DPAnalysis.exe and command line parameters to configure its run

Test Runner The console command to run the test runner, i.e. mstest.exe*, nunit-console.exe, etc.

Test Assembly The assembly containing the tests

* Currently mstest.exe is not supported by Typemock Isolator

 - 4 -

The following shows an example of how to run DevPartner Coverage with Typemock Isolator from the
command line.

TMockRunner.exe -first -link DevPartner.Coverage DPAnalysis.exe /COV /P
nunit-console.exe

The named test assembly executes its test scripts against the test application. The tests execute against
the fake objects set up in the test using the Typemock Isolator API. Test execution collects data as
defined by the profiler type specified in the command line.

Multiple test sessions can be executed against the test application. When testing completes, you can:

 View and analyze test data using DevPartner Studio in the Visual Studio IDE

 Combine data collected from multiple sessions into one session file

 Identify performance issues

 Use coverage results to increase code coverage of test suites

Refer to the Understanding DevPartner Guide for more information.

Chapter 4: Automatic Code Coverage Analysis instructs how to use the Coverage Analysis viewer,
merge coverage session data, and view source code to identify application functionality that requires
more coverage.

Chapter 6: Automatic Performance Analysis instructs how to use the Performance Analysis Viewer,
merge performance data from multiple sessions, and identify performance issues by analyzing call graph
and other performance data.

Chapter 7: In-Depth Performance Analysis gives a more detailed approach to performance issue
resolution and includes usage scenarios that provide a practical methodology for resolving complex
performance issues.

 - 5 -

Writing a Unit Test with Typemock Isolator

In this example, an Authentication class internally calls various providers: a data access layer, a
cryptography class and a logger:

With Typemock Isolator, eliminate external dependencies and test only the IsAuthenticated code. To do
this, use the Isolator API to fake method calls on DataAccess, CryptoClass and Logger:

public bool IsAuthenticated(string name, string password)
{
 Logger.Log(Logger.NORMAL, "Entering Authentication");
 try
 {
 string storedHash = DataAccess.GetUserPasswordHash(name);
 string providedHash = CryptoClass.DoHash(password);
 bool isOk = storedHash == providedHash;
 if (isOk)
 {
 Logger.Log(Logger.NORMAL, "User Authenticated " + name);
 }
 else
 {
 Logger.Log(Logger.SECURITY, "User login failed " + name);
 }

 return isOk;
 }
 catch (Exception ex)
 {
 Logger.Log(Logger.FAILED, "Login system failure", ex);
 throw;
 }
}

 - 6 -

Writing the same test with Typemock Isolator’s VB.NET friendly API:

[Test]
public void TestAuthenticationSuccess_CorrectMessageLogged()
{
 // ignore any calls to the logger regardless of parameters
 Isolate.WhenCalled(() => Logger.Log(Logger.Any, "")).IgnoreCall();
 // set the data access and crypto provider to return the same hashes
 Isolate.WhenCalled(() => DataAccess.GetUserPasswordHash("name")).
 WillReturn("ABC");
 Isolate.WhenCalled(() => CryptoClass.DoHash("password")).
 WillReturn("ABC");

 // call the code under test
 Authentication target = new Authentication();
 bool result = target.IsAuthenticated("TestUser", "password");

 // authentication should pass
 Assert.IsTrue(result);
 // verify the correct log entry has been written
 Isolate.Verify.WasCalledWithExactArguments(() =>
 Logger.Log(Logger.NORMAL, "User Authenticated TestUser"));
}

<Test()> _
Public Sub TestAuthenticationSuccess_CorrectMessageLogged()
 ’ ignore any calls to the logger regardless of parameters
 Using TheseCalls.WillBeIgnored()
 Logger.Log(Logger.Any, “”)
 End Using

 ’ set the data access and crypto provider to return the same hashes
 Using TheseCalls.WillReturn("ABC")
 DataAccess.GetUserPasswordHash("name")
 CryptoClass.DoHash("password")
 End Using

 ’ call the code under test
 Dim target As New Authentication
 Dim result As Boolean = target.IsAuthenticated("TestUser", "password")

 ’ authentication should pass
 Assert.IsTrue(result)

 ’ verify the correct log entry has been written
 Using AssertCalls.HappenedWithExactArguments()
 Logger.Log(Logger.NORMAL, "User Authenticated TestUser"))
 End Using
End Sub

	Cut Unit Test Costs with Compuware DevPartner and Typemock Isolator
	Product Installation
	
	Writing Unit Tests with Typemock Isolator
	Linking Typemock Isolator 5.2 with Compuware DevPartner 9.0.1

