
M

Using
Visual SoftICE

Release 1.3.0

Windows NT®

Windows® 2000
Windows® XP

T

Technical support is available from our Technical Support Hotline or via
our FrontLine Support Web site.

Technical Support Hotline:
1-800-538-7822

FrontLine Support Web Site:
 http://frontline.compuware.com

This document and the product referenced in it are subject to the following
legends:

Access is limited to authorized users. Use of this product is subject to the
terms and conditions of the user’s License Agreement with Compuware
Corporation.

© 2003 Compuware Corporation. All rights reserved. Unpublished - rights
reserved under the Copyright Laws of the United States.

U.S. GOVERNMENT RIGHTS
Use, duplication, or disclosure by the U.S. Government is subject to
restrictions as set forth in Compuware Corporation license agreement and
as provided in DFARS 227.7202-1(a) and 227.7202-3(a) (1995), DFARS
252.227-7013(c)(1)(ii)(OCT 1988), FAR 12.212(a) (1995), FAR 52.227-19,
or FAR 52.227-14 (ALT III), as applicable. Compuware Corporation.

This product contains confidential information and trade secrets of
Compuware Corporation. Use, disclosure, or reproduction is prohibited
without the prior express written permission of Compuware Corporation.

DriverStudio, DriverWorkbench, and SoftICE are trademarks or registered
trademarks of Compuware Corporation.

Acrobat® Reader copyright © 1987-2002 Adobe Systems Incorporated. All
rights reserved. Adobe, Acrobat, and Acrobat Reader are trademarks of
Adobe Systems Incorporated.

All other company or product names are trademarks of their respective
owners.

US Patent Nos.: Not Applicable.

Doc. 11581
May 19, 2003

http://frontline.compuware.com

Table of Contents
Preface
Purpose of This Manual . ix

Audience . ix

Organization of This Manual . x

Typographical Conventions . xi

How to Use This Manual . xi

Other Useful Documentation . xii

Customer Assistance . xii
For Non-Technical Issues . xii
For Technical Issues . xiii

Chapter 1
Choosing Your SoftICE Version
SoftICE or Visual SoftICE? . 1

Single Machine Debugging: SoftICE . 2

Dual Machine Debugging: Visual SoftICE . 3

Which One Should I Use? . 4

Visual SoftICE Overview . 5
About Visual SoftICE . 6

Chapter 2
Visual SoftICE Target Transport Configuration
Visual SoftICE Target Transport Overview . 7

Serial Target Transport . 8
Requirements and Characteristics . 9

Dedicated PCI Ethernet Network Interface Card (NIC) . 9
Requirements and Characteristics . 10
 iii

Universal PCI Ethernet NIC . 10
Requirements and Characteristics . 11

OHCI/UHCI USB Host Controller and USB NIC . 11
Requirements and Characteristics . 12

Virtual NIC Driver (optional) . 12
Requirements and Characteristics . 12

1394 (Firewire) . 12
Requirements and Characteristics . 13

Chapter 3
Overview of the Visual SoftICE User Interface
The Visual SoftICE User Interface Overview . 15

Visual SoftICE Icons . 16
About the Status Bar . 21
About the Context Bar . 22
Page Modes . 23

User Interface Preferences . 25
Global Settings . 25
Per-Workspace Settings . 27
Keyboard Settings . 30
Toolbars & Status Bar Settings . 32
Fonts & Colors Settings . 34

Other User Interface Attributes and Features . 35
Workspace Save and Load . 36
Special Command Page Features . 37
Cut, Copy, and Paste . 40
Drag and Drop . 40
Saving Contents to a File . 41
Print and Print Preview . 42
Script Execution . 43

Chapter 4
The Visual SoftICE User Interface Pages
The Command Page . 45

Concepts and Associated Commands . 46
Page Features . 48

The Stack Page . 50
Concepts and Associated Commands . 51
Page Features . 52

The Registers Page . 55
Concepts and Associated Commands . 56
iv Using Visual SoftICE

Page Features . 58

The Process List Page . 61
Concepts and Associated Commands . 61
Page Features . 63

The Memory Page . 65
Concepts and Associated Commands . 66
Page Features . 67

The Locals Page . 72
Concepts and Associated Commands . 73
Page Features . 73

The Watch Page . 75
Concepts and Associated Commands . 76
Page Features . 76

The Breakpoint Page . 78
Concepts and Associated Commands . 78
Page Features . 79

The Debug Message Page . 82
Concepts and Associated Commands . 82
Page Features . 83

The Event Page . 84
Page Features . 85

The Text Scratch Page . 87
Concepts and Associated Commands . 88
Page Features . 88

The Disassembly Page . 91
Associated Commands . 92
Page Features . 93

The Source Page . 98
Associated Commands . 99
Page Features . 100

Chapter 5
Visual SoftICE Symbol Management
Visual SoftICE Symbol Management . 107

Where to Put the Symbols . 107
What Symbols are Supported . 108

Images — Why you need access to them . 108
Local Copies of Images . 108
Tables – Active Table, Loading, and Unloading Commands 109
Automatic, On-Demand Loading and Unloading . 111
Pre-Loading/Persistent Loading . 112
Table of Contents v

Integrated MS Symbol Server Access . 112
Using Exports . 113

Symbols — Getting Setup in Visual SoftICE . 113
Setting Up General Paths . 114
Setting Up Visual SoftICE Paths . 114
Settings Notes . 114
Per-Workspace Settings Notes . 115
Toolbars & Status Bar Settings Notes . 115

Chapter 6
Using Breakpoints
Introduction . 117

Types of Breakpoints Supported by Visual SoftICE . 118
Breakpoint Options . 119
Execution Breakpoints . 119
Memory Breakpoints . 120
Interrupt Breakpoints . 121
I/O Breakpoints . 121
Image Load Breakpoints . 122
Window Message Breakpoints . 123

Understanding Breakpoint Contexts . 124
Image-Relative Breakpoints . 124
Fixed Address Breakpoints . 124

Virtual Breakpoints . 124

Setting a Breakpoint Action . 125

Conditional Breakpoints . 125
Conditional Breakpoint Count Functions . 126
Using Local Variables in Conditional Expressions . 129
Referencing the Stack in Conditional Breakpoints . 130
Performance . 132
Duplicate Breakpoints . 132

Elapsed Time . 132

Breakpoint Statistics . 133

Referring to Breakpoints in Expressions . 133

Manipulating Breakpoints . 133

Using Embedded Breakpoints . 134
vi Using Visual SoftICE

Chapter 7
Using Expressions
Expression Values . 135

Supported Operators . 136
Operator Precedence . 137

Forming Expressions . 137
Numbers . 138
Registers . 138
Symbols . 138
Built-in Casts and Functions . 139

Expression Evaluator Type System . 142
Symbol Type . 142
Address Type . 143
Evaluating Symbols . 143
Pointer Arithmetic with Symbols . 144
Array Symbols In Expressions . 144

Chapter 8
Exploring Windows NT
Overview . 145

Resources for Advanced Debugging . 145

Inside the Windows Kernel . 149
Managing the Intel x86 Architecture . 150
Windows NT System Memory Map . 154

Win32 Subsystem . 161
Inside CSRSS . 161
USER and GDI Objects . 164
Process Address Space . 169
Heap API . 170

Appendix A
Troubleshooting Visual SoftICE
Troubleshooting . 183
Table of Contents vii

Appendix B
Kernel Debugger Extensions
Debugger Extension Overview and VSI Support . 187

Controlling Debugger Extension DLLs . 187

Using Debugger Extension Commands . 188

Glossary . 191

Index . 193
viii Using Visual SoftICE

Preface
� Purpose of This Manual

� Audience

� Organization of This Manual

� Typographical Conventions

� How to Use This Manual

� Other Useful Documentation

� Customer Assistance

Purpose of This Manual
Note: Unless stated otherwise, this document will use “Windows NT/2000/

XP” to refer to the Windows NT, Windows 2000, and Windows XP
operating systems, and characteristics of Windows NT described in
this manual also apply to all supported operating systems.

Visual SoftICE is an advanced, all-purpose debugger that can debug
virtually any type of code including applications, device drivers, EXEs,
DLLs, and OCXs.

Audience
This manual is intended for programmers who want to use Visual SoftICE
to debug code for Windows NT/2000/XP platforms running on either 32-
or 64-bit processors.
 ix

Organization of This Manual
The Using Visual SoftICE manual is organized as follows:

� Chapter 1, “Choosing Your Visual SoftICE Version”
Helps you decide which version of Visual SoftICE, Visual SoftICE or
Classic Visual SoftICE, is best suited for a given debugging scenerio. It
also gives an overview of the Visual SoftICE product, and highlights
the many new and useful features.

� Chapter 2, “Visual SoftICE Target Transport Configuration”
Provides an overview of the many available transports, and compares
the benefits of each.

� Chapter 3, “Overview of the Visual SoftICE User Interface”
Explains the GUI for Visual SoftICE, including the meaning of
various icons and available menu options. This chapter also discusses
how to use the Visual SoftICE configuration settings to customize
your environment, pre-load symbols and exports, connect to a target,
modify keyboard mappings, create macro-definitions, and set
troubleshooting options.

� Chapter 4, “The Visual SoftICE User Interface Pages”
Explains the GUI pages available for Visual SoftICE, including the
functionality and related commands for each.

� Chapter 5, “Visual SoftICE Symbol Management”
Explains how to manage symbols in Visual SoftICE, including
dynamically and persistently loaded symbols, MS Symbol Server
setup, and path configuration.

� Chapter 6, “Using Breakpoints”
Explains how to set breakpoints on program execution, on memory
location reads and writes, on interrupts, and on reads and writes to
the I/O ports.

� Chapter 7, “Using Expressions”
Explains how to form expressions to evaluate breakpoints. This
concept differs between Visual SoftICE versions, so pay particular
attention to this chapter if you are not familiar with Visual SoftICE.

� Chapter 8, “Exploring Windows NT and XP”
Provides a quick overview of the Windows NT/2000/XP operating
systems.

� Appendix A, “Troubleshooting Visual SoftICE”
Explains how to solve typical problems you might encounter.
x Using Visual SoftICE

� Appendix B, “Kernel Debugger Extensions”
Explains the available Kernel Debugger Extensions for use with Visual
SoftICE, and how to work with them in the Visual SoftICE
environment.

� Glossary

� Index

Typographical Conventions
The following conventions are used consistently throughout this manual
to identify certain types of information:

How to Use This Manual
The following table suggests the best starting point for using this manual
based on your level of experience debugging applications.

Convention Description

Enter Indicates that you should type text, then press RETURN or
click OK.

italics Indicates variable information. For example: library-name.

monospaced text Used within instructions and code examples to indicate char-
acters you type on your keyboard. Also indicates directory
names, and file names.

small caps Indicates a user-interface element, such as a button or menu.

UPPERCASE Indicates key words and acronyms.

Experience Suggested Starting Point

No experience using debuggers. Read Chapter 1, Chapter 8, and then Chapters 2
through 7.

Experience with other debuggers
or another release of SoftICE.

Read Chapter 1 through Chapter 5.
Preface xi

Other Useful Documentation
In addition to this manual, Compuware provides the following
documentation for Visual SoftICE:

� Visual SoftICE Command Reference
Describes all the Visual SoftICE commands in alphabetical order.
Each description provides the appropriate syntax and output for the
command as well as examples that highlight how to use it.

� Visual SoftICE on-line Help
Visual SoftICE provides context-sensitive and topic-oriented HTML
help as well as command line help for Visual SoftICE commands in
the Command page.

� On-line documentation
Both the Using Visual SoftICE manual and the Visual SoftICE
Command Reference are available as PDF. To access the PDF version of
these books, start Acrobat Reader and open the Using Visual SoftICE or
the Visual SoftICE Command Reference PDF files.

Customer Assistance

For Non-Technical Issues

Customer Service is available to answer any questions you might have
regarding upgrades, serial numbers, and other order fulfillment needs.
Customer Service is available from 8:30am to 5:30pm EST, Monday
through Friday.

Call:

� In the U.S. and Canada: 1-888-283-9896

� International: +1-603-578-8103
xii Using Visual SoftICE

For Technical Issues

Technical Support can assist you with all your technical problems, from
installation to troubleshooting. Before contacting Technical Support,
please read the relevant sections of the product documentation and the
release notes.

You can contact Technical Support by:

� E-Mail: Include your serial number and send as many details as
possible to:
mailto:nashua.support@compuware.com

� World Wide Web: Submit issues and access additional support
services at:
http://frontline.compuware.com/nashua/

� Fax: Include your serial number and send as many details as possible
to:
1-603-578-8401

� Telephone: Telephone support is available as a paid Priority Support
Service from 8:30am to 5:30pm EST, Monday through Friday. Have
product version and serial number ready.

� In the U.S. and Canada, call: 1-888-686-3427

� International customers, call: +1-603-578-8100

Note: Technical Support handles installation and setup issues free of
charge.

When contacting Technical Support, please have the following
information available:

� Product/service pack name and version.

� Product serial number.

� Your system configuration: operating system, network configuration,
amount of RAM, environment variables, and paths.

� The details of the problem: settings, error messages, stack dumps, and
the contents of any diagnostic windows.

� The details of how to reproduce the problem (if the problem is
repeatable).

� The name and version of your compiler and linker and the options
you used in compiling and linking.
Preface xiii

xiv Using Visual SoftICE

Chapter 1

Choosing Your SoftICE Version
� SoftICE or Visual SoftICE?

� Single Machine Debugging: SoftICE

� Dual Machine Debugging: Visual SoftICE

� Which One Should I Use?

� Visual SoftICE Overview

SoftICE or Visual SoftICE?
DriverStudio 3.0 and SoftICE Driver Suite 3.0 include two unique
debuggers: SoftICE, the single-machine debugger, and Visual SoftICE, a
new GUI-based dual-machine debugger. Depending on the debugging
task you are facing, it may or may not be obvious which debugger you
should use. This section will help you decide which tool best fits your
needs.

In some situations, your choice will be simple: some processor
architectures and operating systems are only supported by one of the two
debuggers. Table 1-1 shows the platforms supported by SoftICE and
Visual SoftICE.

Table 1-1. Supported Platforms

Processor Operating System SoftICE Visual SoftICE

Intel x86 and
compatibles

MS-DOS, Windows 3.0/
3.1/3.11, Windows 9x

Yes No

Intel x86 and
compatibles

Windows NT 3.x,
Windows NT 4.0

Yes No
 1

If you are debugging on DOS or the Windows 9x family, SoftICE is your
only choice. If you are working on a 64-bit architecture, only Visual
SoftICE will do. If your target is Windows NT/2K/XP and the x86 or
compatible architecture, either debugger will work. In that case, read on
for an overview of the differences between these two tools.

Single Machine Debugging: SoftICE
SoftICE is a single-machine debugger, meaning simply that all of its code
runs on the same machine as the code being debugged. When running,
SoftICE has two basic states: popped up, where the SoftICE window is
displayed, and popped down, where SoftICE is invisible and the machine
runs as normal. When SoftICE is popped up, all processes on the
machine are stopped, the operating system does not run, and SoftICE
commands are available to the user. SoftICE can pop up in response to
user input (the CTRL-D hotkey), breakpoints, exceptions, or system
crashes. SoftICE is popped down by issuing one of the go or exit
commands, at which point the SoftICE screen is erased and all processes
in the system resume operation.

The fact that SoftICE halts the operating system when it is popped up
means that it must operate without making use of any of the OS services.
This has a number of consequences. For one, the SoftICE user interface
does not resemble that of a normal Windows application. Although
SoftICE supports keyboard and mouse input, it does not use Windows
fonts, nor does its interface contain the enhancements common to
Windows applications. In addition, SoftICE cannot assume that it is safe
to perform disk access whenever it is popped up, so loading or saving
symbol information and SoftICE data is done through companion
applications, such as Symbol Loader (Loader32.exe).

Intel x86 and
compatibles

Windows 2000,
Windows XP, Advanced
Server, .Net Server

Yes Yes

Intel Itanium1
and Itanium2
(IA64)

Windows XP 64bit Ed.,
.Net Server 64bit Ed.

No Yes

AMD Opteron,
Hammer
(x86-64 / K8)

Windows XP 64bit Ed.,
.Net Server 64bit Ed.

No Yes

Table 1-1. Supported Platforms (Continued)

Processor Operating System SoftICE Visual SoftICE
2 Using Visual SoftICE

Another consequence of the SoftICE single machine architecture is that
the interface is extremely fast. All the data in the machine is directly
accessible to the debugger, so even tasks involving large amounts of
memory access are completed with no noticeable delay.

Because symbols and source code must be loaded ahead of time, SoftICE
uses a packaged format for symbols called NMS files. Symbols, translated
from the DBG or PDB files output by the linker, can be combined with all
or some of the source files used to build the module, and loaded into
SoftICE all at once using Symbol Loader or its command-line equivalent,
NMSYM. In addition, the new Microsoft Symbol Servers can be accessed
using Symbol Retriever utility, which is also capable of translating
symbols into NMS files and loading them into SoftICE. These tools make
the necessary management of symbols for SoftICE as simple as possible.

SoftICE supports a subset of the available KD Extensions defined by
Microsoft. Because the operating system is stopped when the debugger is
popped up, SoftICE does not support all the available KD Extensions,
since it is not able to make system calls.

There are certain situations where debugging on a single machine is
impractical. For instance, if your project is a display driver that is not yet
working properly, SoftICE may not be able to display its output. SoftICE
does include support for remote debugging, which can be used in many
of these situations to redirect the SoftICE input and output over a serial
or IP networking link. The remote application in this case is SIRemote,
which simply acts as a dumb terminal for SoftICE. The operation of the
debugger is not otherwise changed by running remotely.

Dual Machine Debugging: Visual SoftICE
Visual SoftICE, on the other hand, is a dual-machine debugger. The user
interface and nearly all of the interpretive code runs on the “master”
machine; the code to be debugged runs alongside a small core of
debugging functions on the “target” machine. Master and target
machines are connected via a transport, which can be a serial cable, IP
network interface device, or IEEE 1394 connection.

Because the master machine is never stopped by the debugger, the Visual
SoftICE user interface is free to take advantage of all of the usual
Windows UI devices. The Visual SoftICE user interface will be instantly
familiar to anyone who has used sophisticated Windows programs
before; in addition, the command set has been duplicated (with a few
exceptions) from the original SoftICE, so Visual SoftICE users should find
much that is familiar about Visual SoftICE as well.
Chapter 1�Choosing Your SoftICE Version 3

Visual SoftICE is also able to load symbol information on-the-fly at any
time – including retrieving symbols from a Symbol Server site – so this
task is generally handled automatically by the debugger. This frees the
user from the necessity of manually specifying symbol files to be loaded
by the debugger, although that option is still available in Visual SoftICE.

Visual SoftICE supports loading and examining crashdump and
minidump files directly, a feature not found in SoftICE (the DriverStudio
DriverWorkbench Application also supports this).

Visual SoftICE also provides complete support for the Microsoft KD
Extensions, including those that will not run on SoftICE for architectural
reasons.

Which One Should I Use?
If your project falls into the wide overlap between SoftICE and Visual
SoftICE, and you have never used SoftICE before, you are probably still
wondering which debugger is best for you. Obviously, there is not always
a single right answer to this question, but in the remainder of this section
we will try to cover some of the scenarios where one debugger might be
favored over the other. We are down to guidelines here, though; devotees
of either debugger will be quick to point out that their favorite still has
advantages, even in cases where the other might appear to be the better
choice. We encourage you to try them both, and consider them two
similar but distinct tools in your debugging toolbox.

� If you prefer a full-featured Windows GUI, you will probably want to
use Visual SoftICE. The SoftICE interface is fast and powerful, but it
has no GUI, and it takes some getting used to.

� If you are debugging a crashdump file, try Visual SoftICE. You will be
able to use many of the debugging commands you are already
familiar with, and Visual SoftICE can reveal more information than
the crashdump functionality within DriverWorkbench.

� If you need complete KD Extensions support, use Visual SoftICE.
SoftICE provides a limited subset of KD Extensions, but not the
whole set.

� If you are debugging a network driver, and you are concerned that
the Visual SoftICE IP transport layer might affect the results, use
SoftICE. Conversely, if you are debugging a video driver’s mode
initialization, or a Direct3D or streaming app or driver, try Visual
SoftICE or run SoftICE remotely.
4 Using Visual SoftICE

� If you want direct access to BoundsChecker events from within the
debugger, use SoftICE. SoftICE can stop the machine when an event
occurs and allow you to diagnose problems as they occur, even after a
system crash.

� If you do not have access to a second machine, or you are traveling
and debugging code on a laptop, use SoftICE.

� If you need the ability to package source code together with symbolic
debugging information in NMS files, use SoftICE. Both debuggers are
capable of loading source code separately from symbol files, of
course.

And if you are still confused about which debugger to use, skim through
the documentation for both of them. Chances are that something you
see there will point you in the right direction.

Visual SoftICE Overview
Visual SoftICE is an advanced, all-purpose debugger that can debug
virtually any type of code. This includes, but is not limited to, interrupt
routines, processor level changes, and I/O drivers. Visual SoftICE
combines the power of a hardware debugger with the simplicity of a
symbolic debugger. It provides hardware-like breakpoints and sticky
breakpoints that follow the memory as the operating system discards,
reloads, and swaps pages.

Visual SoftICE displays your source code as you debug, and lets you
access your local and global data through symbolic names. Unlike
conventional debuggers, which are restricted to application space, Visual
SoftICE has complete system access and can trace difficult problems
between the system and application layers.

Visual SoftICE has a 32-bit Master that connects to either 32-bit or 64-bit
targets over a variety of available transports.
Chapter 1�Choosing Your SoftICE Version 5

About Visual SoftICE

Some of the major benefits Visual SoftICE provides include the following:

� Source level debugging of 32-bit (Win32) and 64-bit applications, and
Windows NT/2000/XP device drivers (both kernel and user mode).

� Support for x86 Itanium and x86-64 (AMD) platforms.

� Debugging virtually any code, including interrupt routines and the
Windows NT/2000/XP kernels.

� Setting real-time breakpoints on memory reads/writes, port reads/
writes, and interrupts.

� Setting breakpoints on Windows messages.

� Setting conditional breakpoints and breakpoint actions.

� Displaying elapsed time to the breakpoint trigger using the processor
clock counters.

� Displaying internal Windows NT/2000/XP information, such as:
� Complete thread and process information
� Virtual memory map of a process
� Kernel-mode entry points
� Windows NT object directory
� Complete driver object and device object information
� Win32 heaps
� Structured Exception Handling (SEH) frames
� DLL exports

� Using the WHAT command to identify a name or an expression, if it
evaluates to a known type.

� Supporting the MMX, SSE, SSE2, x86 instruction set extensions, plus
other data decoding such as 3DNow

� Creating user-defined macros.

� On-demand symbol handling.

� Full KD extension support.

� Visual SoftICE provides a robust and customizeable GUI with
dockable pages for debugging applications across all platforms. The
Visual SoftICE user interface is designed to be functional and flexible.
6 Using Visual SoftICE

Chapter 2

Visual SoftICE Target Transport
Configuration
� Visual SoftICE Target Transport Overview

� Serial Target Transport

� Dedicated PCI Ethernet Network Interface Card (NIC)

� Universal PCI Ethernet NIC

� OHCI/UHCI USB Host Controller and USB NIC

� Virtual NIC Driver (optional)

� 1394 (Firewire)

Visual SoftICE Target Transport Overview
Visual SoftICE offers several debug transport choices, all of which have
their own advantages and disadvantages. Some transports might not be
available to you depending on your hardware configuration, or a
particular problem you are trying to debug. The only time the master
does not use a distinct transport is when it opens a crash dump file.

Visual SoftICE supports the following transport connections between the
master and a live target:

� Serial
� Dedicated PCI Ethernet Network Interface Card (NIC)
� Universal PCI Ethernet NIC
� OHCI/UHCI USB Host Controller and USB NIC
� Virtual NIC Driver (optional)
� 1394 (Firewire)
 7

Figure 2-1. Transport Overview

For more information and tips on configuring your transports, refer to
the Transport Configuration help.

Serial Target Transport
Standard serial cable into dedicated PCI card serial port. Debugging using
the serial interface is quite slow, but probably the easiest to install and
configure. Legacy free PC’s, however, may not have serial hardware and
may require a different transport or an add-in PCI card. If serial is your
required transport and you do not have serial hardware built in, you can
install the SIIG CyberSerial PCI card.

Figure 2-2. Serial Transport
8 Using Visual SoftICE

Requirements and Characteristics

Target: UART 8250/16450/16550 or SIIG CyberSerial PCI card

Master: Any serial adapter

Connection Cable: Null modem cable

Speed: ~ 10 KB/sec

Driver: SISERIAL.SYS

Dedicated PCI Ethernet Network Interface Card (NIC)
This transport is probably the most flexible choice you have. You can
connect the target NIC into your LAN and have access to your machine
from anywhere on your network. In addition, you can use a crossover
cable to connect the master and target NICs together, thus completely
restricting access your target machine. The primary drawback of this
debug transport affects you only under the circumstances where you
have only one NIC installed in your target machine. After installing our
driver for the single NIC, you will not be able to use it for normal
windows networking.

Figure 2-3. Dedicated PCI Ethernet NIC
Chapter 2�Visual SoftICE Target Transport Configuration 9

Requirements and Characteristics

Target: One of the following supported PCI NIC cards:

� Based on RTL8029 chip
� Based on RTL8139 chip
� Intel EtherExpress E100
� 3Com 3C90X series
� Based on AMD PCNET chip
� Based on Lite-On chip

Master: Any Ethernet NIC

Connection Cable: Standard Ethernet cable or Crossover Ethernet cable

Speed: ~ 1-2 MB/sec

Driver: One of the following supported drivers:

� SI8029.SYS
� SI8139.SYS
� SIE100.SYS
� SI3C90X.SYS
� SIPCNET.SYS
� SILITE.SYS

Universal PCI Ethernet NIC
This transport may be right for you if you have a PCI NIC that is not
directly supported by our dedicated drivers (refer to the “Dedicated PCI
Ethernet Network Interface Card (NIC)” on page 9). The major
disadvantage to using this transport configuration is a larger memory
footprint on the target than you get with the dedicated NIC drivers.

Figure 2-4. Universal PCI Ethernet NIC and Optional Virtual NIC
10 Using Visual SoftICE

Requirements and Characteristics

Target: Any PCI Ethernet NIC

Master: Any Ethernet NIC

Connection Cable: Standard Ethernet cable or Crossover Ethernet cable

Speed: ~ 1-2 MB/sec

Drivers: One of the following supported drivers:

� SIDN.SYS
� SINIC.SYS
� SIVNIC.SYS (optional)

OHCI/UHCI USB Host Controller and USB NIC
This transport may be the only one available to you in some situations;
for example, if your target is a legacy free laptop. In this case you do not
have a serial port or any PCI NICs, thus using an external USB NIC is
your only option. The disadvantage of this debug transport solution is
that we need to install our own driver, not only for the USB NIC, but also
for the USB controller. This means that you cannot plug in any other USB
devices under this host controller, even if it has more than one port. A
solution to this limitation would be to install an additional USB host
controller, for devices like a USB keyboard or mouse, if needed.

Figure 2-5. OHCI/UHCI USB Host Controller and USB NIC
Chapter 2�Visual SoftICE Target Transport Configuration 11

Requirements and Characteristics

Target: USB 1.1 OHCI\UHCI host controller and Admtek based USB
Ethernet NIC

Master: Any Ethernet NIC

Connection Cable: Standard Ethernet cable or Crossover Ethernet cable

Speed: ~ 100-200 KB/sec

Drivers: SIUSB.SYS

Virtual NIC Driver (optional)
With the optional Virtual NIC driver, we provide a way to share the
target NIC between Visual SoftICE and normal windows networking.

Requirements and Characteristics

Target: Any Supported USB or Universal/Dedicated PCI NIC

Master: Any Ethernet NIC

Connection Cable: See target NIC specifications

Speed: See target NIC specifications

Drivers: SIVNIC.SYS

1394 (Firewire)
We use IP over 1394 as a protocol between the master and a target, thus
the target machine appears to be on the IP network. This debug transport
solution is not shared, and once you install our driver for the 1394 host
controller you cannot use it for additional 1394 devices.
12 Using Visual SoftICE

Figure 2-6. 1394 (Firewire)

Requirements and Characteristics

Target: OHCI 1394 host controller

Master: Any 1394 host controller and Windows XP or later for OS.

Connection Cable: standard 1394 cable

Speed: ~ 2 MB/sec

Driver: SI1394.SYS
Chapter 2�Visual SoftICE Target Transport Configuration 13

14 Using Visual SoftICE

Chapter 3

Overview of the Visual SoftICE
User Interface
� The Visual SoftICE User Interface Overview

� User Interface Preferences

� Other User Interface Attributes and Features

The Visual SoftICE User Interface Overview
Various user interface pages support a number of ease of use features,
including:

� The ability to set and follow a main context for all pages, and
overriding page-specific contexts for Locals and Stack pages

� The support of standard Cut, Copy and Paste using the clipboard
� The ability to Drag and Drop pages and items (Single element, and

element collections between pages)
� The ability to save the contents of the page to a file
� The ability to Print and Print Preview the contents of the page
� The ability to change page modes (snapshot, live, and manual)
� Special Command page features, such as:

� The ability to use the C++ line comment symbol to append
comment text to input (or provide comment lines in scripts)

� The ability to redirect command output to other pages for display
handling (including creation of new pages, on demand)

� The automatic redirection of appropriate commands from the
command page to other existing pages

� The ability to create custom keyboard definitions
� The ability to load a custom workspace
� The ability to create and save a custom workspace
� The ability to create and save script file paths
� Special icons indicate such things as Target State and Breakpoint

Types
 15

Visual SoftICE Icons

Visual SoftICE makes use of many different icons within the GUI to
identify such things as breakpoints (type and state), target state, and
current context (target IP and UI context). The following sections will
help you identify the various icons and their meanings.

Breakpoints

The following icons are used within various pages to indicate the
different breakpoint types and states.

Table 3-1. Breakpoint Icons

Icon Description

This icon represents a Fixed Address breakpoint that has been hit.

This icon represents a Fixed Address breakpoint that has not been hit.

This icon represents an Image Relative breakpoint that has been hit.

This icon represents an Image Relative breakpoint that has not been
hit.

This icon represents an I/O breakpoint that has been hit.

This icon represents an I/O breakpoint that has not been hit.

This icon represents a disabled breakpoint.
16 Using Visual SoftICE

Target State

The following icons are used to indicate the state of the target.

Table 3-2. Target State Icons

Icon Description

This icon indicates the target is in a sleep (power management)
mode.

This icon indicates the target is running.

This icon indicates the target is stopped.

This icon indicates the target is stopped due to hitting a breakpoint.

This icon indicates the target is stopped due to a fault.

This icon indicates the target is instruction or source stepping.

This icon indicates the target is stopped due to a BugCheck.

This icon indicates the target is in an unknown state.
Chapter 3�Overview of the Visual SoftICE User Interface 17

Current Context

The following icons are used within various pages to identify such things
as the target IP and UI context.

Table 3-3. Current Context Icons

Icon Description

This icon indicates the line you are on when you do a Goto in the
Source or Disassembly page.

This icon indicates the Current UI Context (Process, Thread, or Stack
Frame depending on the display it appears in).

This icon indicates the Current UI Context when a Snapshot of the
information was taken.

This icon indicates the Current Target Instruction Pointer (IP).

This icon indicates the Current Target IP when a Snapshot of the
information was taken.

This icon indicates the Current Target IP location, and that the next
step will move it downward (forward or increasing) into memory.

This icon indicates the Current Target IP location, and that the next
step will move it downward into memory, at the time when a
Snapshot of the information was taken.

This icon indicates the Current Target IP location, and that the next
step will move it upward (backward or decreasing) into memory.

This icon indicates the Current Target IP location, and that the next
step will move it upward into memory, at the time when a Snapshot
of the information was taken.

This icon indicates the line where the Current IP will be upon
executing the next instruction. Displayed when the Current IP and
the next IP locations are available in the same screen (Source or
Disassembly pages).
18 Using Visual SoftICE

Symbol Table State

The following icons are used to indicate the state of the symbol table.

Table 3-4. Symbol State Icons

Icon Description

This icon indicates that on-demand symbol loading is enabled (See
SET SYMTABLEAUTOLOAD in the Visual SoftICE Command
Reference).

This icon indicates that on-demand symbol loading is disabled (See
SET SYMTABLEAUTOLOAD in the Visual SoftICE Command
Reference).

This icon indicates that searching for symbols via symbol servers is
enabled (See SET SYMSRVSEARCH in the Visual SoftICE Command
Reference).

This icon indicates that searching for symbols via symbol servers is
disabled (See SET SYMSRVSEARCH in the Visual SoftICE Command
Reference).

This icon indicates that all tables loaded without warnings (See
TABLE in the Visual SoftICE Command Reference).

This icon indicates that at least one table loaded with a warning
condition (See TABLE in the Visual SoftICE Command Reference).

This icon indicates that at least one table was not loaded (See TABLE
in the Visual SoftICE Command Reference).
Chapter 3�Overview of the Visual SoftICE User Interface 19

Source Page Symbol State Icons

The following icons are used to indicate the state of the symbols for a
source file loaded into a source page. They only have the following
meanings when in the status bar of a source page.

Cursor Types

The following icons are used to indicate various states of the cursor.

Table 3-5. Source Page Symbol State Icons

Icon Description

This icon indicates that symbols are loaded for the indicated image,
and that the source file is part of that image and has line information
available.

This icon indicates that symbols are loaded for the indicated image,
and that the source file is part of that image, but there is no line
information available.

This icon indicates that the source file is not part of any image in the
current/active process.

Table 3-6. Cursor Icons

Icon Description

This icon indicates you have selected a single item and are dragging
it from a page.

This icon indicates you have selected multiple items and are
dragging them from a page.

This icon indicates the cursor is over a window that does not allow
dropping of the data you are dragging.

This icon indicates the cursor is over a window that allows dropping
the single item being dragged into it.

This icon indicates the cursor is over a window that allows dropping
the multiple items being dragged into it.
20 Using Visual SoftICE

About the Status Bar

Visual SoftICE provides main status bar fields, an optional one of which
displays the status of the symbol engine. The status bar provides the
following information:

� Whether on-demand loading of symbols is enabled or disabled.
� Whether using the symbol server is enabled or disabled.
� Whether any symbol table failed to load, or loaded with a warning,

or all symbol tables loaded successfully.
� The name of the current default symbol table

The Source page also has a page-specific symbol status bar.

Status Bar Examples

The following examples show various states of the symbol engine, as
indicated by the status bar:

This icon indicates the cursor is over the breakpoint column, on the
Source or Disassembly page.

This icon indicates the cursor is over the bookmark column.

Table 3-6. Cursor Icons (Continued)

Icon Description

Table 3-7. Visual SoftICE Status Bar Examples

Status Bar Meaning

Auto-load is enabled, the symbol server is
enabled, and all tables loaded successfully.

Auto-load is disabled, the symbol server is
enabled, and all tables loaded successfully.

Auto-load is enabled, the symbol server is
disabled, and all tables loaded successfully.

Auto-load is disabled, the symbol server is
disabled, and all tables loaded successfully.

Auto-load is enabled, the symbol server is
enabled, and at least one table failed to load.
Chapter 3�Overview of the Visual SoftICE User Interface 21

Source Page Status Bar

The source page has its own status bar that uses icons to display the state
of symbols for the source file loaded into that page. Icons indicating
successful loading of symbols are followed by the image name.

About the Context Bar

Visual SoftICE provides a main context bar which displays the current
context the debugger is following, and allows you to change the current
context using its drop-down list. The Locals page and Stack page also
each have page-specific context bars available. The page-specific context
overrides the main context. If you activate a page-specific context bar,
you change the context that page is following. Both the main context bar
and any page-specific context bars are comprised of three controls and a
button.

Figure 3-1. Visual SoftICE Context Bar

Auto-load is enabled, the symbol server is
enabled, and at least one table loaded with a
condition.

Table 3-7. Visual SoftICE Status Bar Examples (Continued)

Status Bar Meaning
22 Using Visual SoftICE

Context Bar Controls

The main context bar is comprised of controls allowing you to track the
current context right down to the stack frame level. The page-specific
context bars are comprised of a sub-set of two of the controls, depending
on which page the context bar belongs to. The controls and their
functions are as follows:

Page Modes

Figure 3-2. Page Mode Icons

Table 3-8. Context Bar Controls

Control Description

Process Displays the Process ID and Name. You can use this control to select a new process from
the drop-down list of available processes. This is equivalent to changing the current
process from the Process List page or via the ADDR command.

Thread Displays the Thread ID. You can use this control to select a new thread from the drop-
down list of available threads, if the current process is multi-threaded. This control is the
most convenient way to change threads within a multi-threaded process.

Context Displays the current Stack Frame, including any symbolic representation of the frame
instruction pointer. You can use this control to select a new stack frame from the drop-
down list of available stack frames. This control is the most convenient way to change the
current stack frame.

Reset to Stopped
Context Button

Switches you back to the context that was current when you stopped the target. This
button is located on the main context bar, and becomes active when you stop the target,
and switch contexts. Clicking the button does not restart the target.
Chapter 3�Overview of the Visual SoftICE User Interface 23

Each page of the user interface may support one or more of the following
3 modes:

Some pages do not support all the modes, as is appropriate for their
function, (for example the Command Page only supports Live mode).

Automatic Changes in Mode State

Each page that supports SnapShot mode will automatically switch to this
mode when a target disconnection is detected. This is done to indicate
that the connection to a target is gone, and that changes to the data
contained in a page are no longer valid, or supported.

Live Mode On Connection

Many pages provide a feature called “Live Mode On Connection” (in the
preferences > settings dialog). This feature controls how a pre-existing
page behaves when a connection to a target is established. If this feature
is active, the page will switch to Live Mode when the connection is
detected, and any contents it previously held will be abandoned.This
feature is on by default, for pages that support it.

Note: If you wish the interface to always preserve the contents of a page,
turn this feature off. Doing so will ensure that when the page
changes mode to SnapShot, no automatic event will cause that data
to be lost. You can always manually change the state back to Manual
or Live, and you will get a confirmation dialog box about
abandoning the page’s data, if it has any.

Table 3-9. Page Mode Descriptions

Mode Description

Live Events from the target cause the page to refresh automatically.

Manual You decide when the page should be refreshed (menu(s) > Refresh).

SnapShot The page is protecting its current contents from over-write. You must
elect to destroy the data. Changes to the data, and actions against the
target, are not allowed in this mode.
24 Using Visual SoftICE

User Interface Preferences
You can set global, per-workspace, toolbar, status bar, font, color, and
keyboard preferences using the Preferences dialog. Preferences are set on
a global basis for all of DriverStudio and its components, as well as on a
per-workspace basis for specific components. This dialog provides the
following groups of preferences you can set.

� Global Settings
� Per-Workspace Settings
� Keyboard
� Toolbars & Status Bar
� Fonts & Colors

The Per-Workspace settings are provided for users who wish to use
different workspaces for different debugging conditions, targets, or target
types. Available per-workspace settings fall into two categories: Paths and
Scripts. The Per-Workspace paths values prepend or replace the global
path values of the same name.

Global Settings

Global Settings are global to the executable, and do not change with
different workspaces.

General Global Settings

When you select an element, the settings for that element are listed
along with any value they may currently have. If you click on a setting, a
description of that setting, any ranges (if applicable), and other rules on
data entry (if applicable), are displayed in the Setting Explanation
window below the list. The types of behavior controlled by these settings
ranges from path definitions, global page properties for specific pages,
and workspace saving and loading behavior.
Chapter 3�Overview of the Visual SoftICE User Interface 25

Figure 3-3. General Global Settings

Visual SoftICE Global Settings

Visual SoftICE global settings act on the Visual SoftICE component alone,
and do not change with different workspaces. When you select an
element, the settings for that element are listed along with any value
they may currently have. If you click on a setting, a description of that
setting, any ranges (if applicable), and other rules on data entry (if
applicable) are displayed in the Setting Explanation window below the
list.

Most of the settings deal with page properties, with the exception of
Event Handling and Scripts.
26 Using Visual SoftICE

Figure 3-4. Visual SoftICE Global Settings

Per-Workspace Settings

Per-Workspace settings are provided for users who wish to use different
workspaces for different debugging conditions, targets, or target types.
The properties you set here are specific to the current workspace.
Available per-workspace settings fall into two categories: Paths and
Scripts.

Paths

The Paths element in the Per-Workspace Settings tab allows you to define
specific paths to prepend or override the global path settings. These
paths, along with the global settings they prepend or replace, define the
Visual SoftICE configuration. The current configuration can be seen by
issuing the SET commmand.
Chapter 3�Overview of the Visual SoftICE User Interface 27

If you click on a path type, a description of that path, any ranges (if
applicable), and other rules on data entry (if applicable), are displayed in
the Setting Explanation window below the list.

Figure 3-5. General Per-Workspace Path Preferences

To edit the value of a path, click on its Value field. Visual SoftICE opens
the Path List Edit utility.
28 Using Visual SoftICE

Figure 3-6. Path List Edit Utility

Using the Path List Edit utility, you can add new path definitions, delete
obsolete path definitions, and move list items up and down to change
the order in which they are searched.

Scripts

The Scripts element in the Per-Workspace Settings tab allows you to
associate scripts with certain events in Visual SoftICE. If you click on a
script type, a description of that event association and any other rules on
data entry (if applicable) are displayed in the Setting Explanation
window below the list.

New Entry
Button

Delete Entry
Button

Move Entry
Up Button

Move Entry
Down Button

Path Type

Path List
Chapter 3�Overview of the Visual SoftICE User Interface 29

Figure 3-7. Visual SoftICE Per-Workspace Script Preferences

To edit the value of a path, click on its Value field. Visual SoftICE opens
the value field for editing, allowing you to enter the script file location
and name. It also provides a browse button in the right margin, which
you can use to browse your file system and select the script file. For more
information on Script File Execution, refer to “Script Execution” on
page 43.

Keyboard Settings

DriverStudio allows you to create custom keyboard definitions, or edit
existing keyboard definitions, and save them in your workspace file.
DriverStudio components that work within the DriverWorkbench
environment provide default keyboard definitions on a workspace level
and sometimes on a page component level. You cannot edit default
definitions; however, you can override them by adding your own custom
keyboard definitions for the same keystroke. Table 3-10 on page 31
provides the definitions that are global to the DriverWorkbench
environment, which you cannot override.
30 Using Visual SoftICE

Figure 3-8. Keyboard Preferences Tab

Keyboard definitions are global, and will function regardless of what
page or control has focus.

Table 3-10. Global Keyboard Definitions

Keystroke Description

CTRL-TAB Next page on a pad.

SHIFT-CTRL-TAB Previous page on a pad.

CTRL-F4 Close the current pad.
Chapter 3�Overview of the Visual SoftICE User Interface 31

Toolbars & Status Bar Settings

DriverStudio has specific toolbars and page-access icons that appear in
the master toolbar, and a Status Bar that is displayed in the master frame.
You can customize the toolbars and the status bar using this tab.

Figure 3-9. Toolbars & Status Bar Preferences Tab

Customizing Toolbars

You can configure which of the toolbars or page-access icons you want to
display, and you can add further options to the user-defined area of the
Pages toolbar. The Toolbars & Status Bar tab is composed of a left-side
Toolbars Shown column displaying a list of available toolbar types, a
central Pages Toolbar column displaying a list of available page icons,
and a right-side column for customizing the status bar. At the bottom of
the central column is a User Defined Buttons button that opens the
Customize Page Plugin Toolbar utility.
32 Using Visual SoftICE

Figure 3-10. Customize Page Plugin Toolbar Utility

Customizing the Status Bar

DriverStudio allows you to customize the information displayed on the
status bar. To access the Customize Status Bar utility, click the Customize
button in the right-hand Status Bar area. To customize the information
displayed by the status bar, select or deselect field types by moving them
into the appropriate column. You can arrange the fields in the order you
would like them to appear in the status bar by using the Up and Down
buttons for the Current Field Shown column.
Chapter 3�Overview of the Visual SoftICE User Interface 33

Figure 3-11. Customize Status Bar utility

Fonts & Colors Settings

Many pages allows you to configure the properties of text that appears in
them. DriverStudio provides a Fonts & Colors tab in the Preferences
dialog where you can configure various aspects of different pages. The
Fonts & Colors tab is composed of a left-side Element column displaying
a list of available pages and their settings, and a series of controls (font,
size, color, and emphasis). Each page determines the settings available for
it, and governs what you can do with each setting.
34 Using Visual SoftICE

Figure 3-12. Fonts & Colors Preferences Tab

Other User Interface Attributes and Features
The following sections describe other attributes and features of the Visual
SoftICE user interface, and how to use them to customize your
workspace.
Chapter 3�Overview of the Visual SoftICE User Interface 35

Workspace Save and Load

In addition to loading and saving custom workspaces manually, you can
configure several automatic workspace loading and saving behaviors in
DriverStudio. To configure workspace behavior, access the Workspace
Save/Load element on the Global Settings tab of the Preferences dialog.

Figure 3-13. Workspace Save/Load Preferences
36 Using Visual SoftICE

You can configure the following workspace properties:

To change a True or False value for a workspace property, click in the
Value field to toggle it. To specify a workspace for the Startup: Load this
workspace property, click in the Value field to open it for edit, and enter
the workspace path and name.

You can also use the browse button to browse your file system and select
a saved workspace. If you click on a setting, a description of that setting,
any ranges (if applicable), and other rules on data entry (if applicable) are
displayed in the Setting Explanation window below the list.

Special Command Page Features

Command Comments

The input dialects support a line comment style (as opposed to block
style comments). Each dialect can have its own syntax; but, to date, all
supported command dialects use the C++ form:

// This entire line is a comment – useful in scripts

proc // Command displays all currently running processes

Command Syntax Output Redirection

You can redirect the output of a given command to another page by
using the dialect’s redirection syntax. To date, all the supported
command dialects use the following form:

Cmd-text /> page-type

Table 3-11. Workspace Save/Load Properties

Setting Description

Query to save workspace changes? This option causes DriverStudio to ask you if
you want to save the workspace, as a
reminder, if you have made changes.

Save workspace on close This option automatically saves the
workspace when you close it, or when you
exit DriverStudio.

Startup: Load this workspace This option allows you to designate a
workspace to automatically load on startup.

Startup: Reload last workspace This option allows you to configure
DriverStudio to automatically load the last
workspace you had open on startup.
Chapter 3�Overview of the Visual SoftICE User Interface 37

� The Cmd-text is any normal command that is recognized in the
command dialect (e.g. “proc”).

� The redirection syntax “/>” indicates that the remainder of the input
stream is a target page type. This form has been chosen so as not to
conflict with operands that expression evaluator acts on.

� The page-type can be either of the following:

� The name of an existing page. If the page does not exist, the
redirection will fail. If the page exists, it is passed the output for
display within its domain. If it cannot handle the data, that page
will ignore it, and nothing is displayed.

� The “type name” of a known page plugin. This is a short
mnemonic of the page type, such as CMD for the command
page, or DBG for the debug output page, (refer to Table 3-12). In
this case, a page of “type-name” will be created, and the output of
the command passed to it. This page will be created in the
current PAD, and will get the text of the command in the Cmd-
text as its title.

Table 3-12. Page Plugin Type Names

Page Name

Command Page CMD

Debug Message Page DBG

Event Page EVT

Text Scratch Page TXT

Locals Page LOC

Memory (Data) Page MEM

Process List Page PROC

Register Page REG

Disassembly Page DISASM

Source Page SRC

Stack Page STK

Watch Page WAT
38 Using Visual SoftICE

Examples The following example sends the output of the proc command to a text
page named text1:

SI>proc /> text1

The following example sends the output of the proc command to a new
text page:

SI>proc /> TXT

Automatic Output Redirection

The command page supports a mode whereby commands can have
output results automatically handled by an appropriate page other than
the command page itself. Toggling the “Auto Command Redirection”
button on the command page itself enables this.

Figure 3-14. Auto Command Redirection Button

When active, after a command is successfully processed, the system looks
for registered page handlers for the command. If found, the command
output is automatically passed to the first instance of a page found that
handles the command.

For example, if your workspace contains a command page and a registers
page, you have auto command redirection enabled, and you type the
following:

r general

The register page will change to reflect the current contents of the
general register group. If the auto command redirection switch had not
Chapter 3�Overview of the Visual SoftICE User Interface 39

been enabled, the output of the command would have appeared within
the command page.

Cut, Copy, and Paste

All the controls in all the pages that allow highlight selection support the
standard copy operation.

Many input controls that support highlight selection support the
standard cut operation.

Most, if not all, input controls that take text support the standard paste
operation.

All the user interface controls use the operating systems clipboard buffer.

Drag and Drop

There are 2 types of drag and drop supported in the user interface:

� Pages between and within pads
� Data items from one page to another

Pad Level Page Drag and Drop

All Pads allow any number of pages to be placed within them.

You may rearrange the order of the pages within a pad, by simply
dragging and dropping the page to a new place in the horizontal order.
You may also drag a page out of one pad and into another pad.

If you press the Esc key while dragging a page, the action is cancelled
immediately. If you press and hold the Ctrl key while dragging a page,
the action is temporarily cancelled: Releasing the mouse button cancels
the drag and drop, whereas releasing the Ctrl key continues the drag and
drop.
40 Using Visual SoftICE

Data Item Drag and Drop

Many pages of the user interface support dragging a selection from that
page to another page’s input area. There are 2 different cases: dragging a
single element from one page to another, and dragging multiple
elements (a collection) between pages. For a table that correlates the
graphical representation of each cursor type with an explanation of its
meaning, refer to “Visual SoftICE Icons” on page 16.

Saving Contents to a File

Many pages of the user interface support saving their contents to file.
Saving is normally available via right-clicking on a page and selecting
Save Output To File from the pop-up menu, or by clicking a button
within the page itself (as shown below):

Figure 3-15. Saving Output Via the Pop-up Menu
Chapter 3�Overview of the Visual SoftICE User Interface 41

Figure 3-16. Saving Output Via the Save Button

Print and Print Preview

Most of the pages of the user interface support printing their contents.
This is normally available from the main File menu.

Figure 3-17. Printing from the File Menu
42 Using Visual SoftICE

Printing may also be available via right-clicking on a page and selecting
Print from the pop-up menu.

Figure 3-18. Printing from the Pop-up Menu

Script Execution

You can configure Visual SoftICE to use scripts you have written upon
the triggering of certain events, such as opening a workspace or
connecting to a target. You configure scripts via the Scripts item in the
Per-Workspace Settings tab under Preferences.

To configure Visual SoftICE to use a script, you need to define the path
and script file name in the field corresponding to the trigger event for the
script, and activate the event by checking its check-box. You can define
scripts for the trigger events listed in Table 3-13.

Table 3-13. Script Trigger Events

Script Trigger Event

Auto Copy Script Execute a script when the target boots and requests file
updates.

BugCheck Script Execute a script upon encountering a BugCheck event
(blue screen).

Connect Script Execute a script upon connecting to a target.

Disconnect Script Execute a script upon disconnecting from a target.

Fault Script Execute a script upon encountering a Fault.

Workspace Open Script Execute a script upon opening a workspace.
Chapter 3�Overview of the Visual SoftICE User Interface 43

Note: Visual SoftICE does not save actual scripts, but saves the paths to the
scripts, so you must make sure the scripts exist in the defined
location for them to succeed. If you move your workspace to another
machine, be certain you also move the script files referenced by the
workspace.
44 Using Visual SoftICE

Chapter 4

The Visual SoftICE User
Interface Pages
� The Command Page

� The Stack Page

� The Registers Page

� The Process List Page

� The Memory Page

� The Locals Page

� The Watch Page

� The Breakpoint Page

� The Debug Message Page

� The Event Page

� The Text Scratch Page

� The Disassembly Page

� The Source Page

The Command Page
The Command page is used to execute Visual SoftICE and KD
commands. It is composed of an input command line, an output
window, and several control buttons. There is no limit to the number of
lines that can be retained in the output pane; the color attributes of all
lines, even those no longer visible on screen, are preserved. The
Command page also retains its own copy of the status bar when
undocked.
 45

Figure 4-1. Visual SoftICE Command Page

Concepts and Associated Commands

Redirecting Output

The command page supports command redirection of its output either
automatically or explicitly to a particular page.

� Automatic Redirection - allows you to toggle the automatic
redirection of the command output to other pages, whether they are
Command pages or other page types.

� Explicit Redirection - allows you to redirect the output of a
particular command to the specified page or page type.

Message Output

The Command page supports displaying event messages from the target.
If the Message Level setting is set to on or verbose, then messages from
the target will be displayed in the output window. For more information
on controlling the display of messages in Visual SoftICE, refer to the SET
MSGLEVEL command.
46 Using Visual SoftICE

Logging

The Command page supports the echoing of the input and/or output of
the page to a file. The output window of the page where you execute the
command will echo to the specified file in the manner you specify. For
more information on controlling the logging of the input and/or output
of a Command page, refer to the LOG command.

Scripts and Macros

The Command page supports execution of scripts, and macro definition,
execution, and deletion.

� You can echo script commands to the current console by using the
SET SCRIPTECHO command. You can set this command on a per-
page basis.

� You can set file system search path for scripts by using the SET
SCRIPTPATH command. You can set this command on a per-
workspace basis.

� You can control whether scripts automatically stop execution when
an error occurs by using the SET SCRIPTSTOPONERROR command.
You can set this command on a per-page basis.

Refer to the MACRO command in the Visual SoftICE Command
Reference for more details.

Output Formatting

You can configure the Command page output format by modifying the
following attributes:

� Modify the radix of data for input and output by using the SET
RADIX command.

� Modify the uppercase hex disassembly output by using the SET
UPPERCASE command.

� Modify the way Visual SoftICE displays 64-bit addresses by using the
SET ADDRESSFORMAT command.

� Modify the mnemonics used for register names by using the SET
REGNAME command.

� Enable or disable the formatting of FP registers by using the SET
FLOATREGFORMAT command.

� Modify the format of the PACKET command by using the SET
PACKETFORMAT command.
Chapter 4�The Visual SoftICE User Interface Pages 47

Customization Settings

You can use the Command page to configure global system settings. To
view the current settings use the SET command without any parameters.
You can configure the following global system settings:

� Automatically stop the target when a command is issued by using the
SET STOPONCMD command.

� Configure the target to stop on embedded INT 1 instructions by
using the I1HERE command.

� Configure the target to stop on embedded INT 3 instructions by
using the I3HERE command.

� Configure the cache size by using the SET CACHE command.

� Configure the input command dialect by using the SET DIALECT
command.

� Configure all fault trapping by using the FAULTS command.

� Configure the way the symbol engine and target attempt to match
symbolic data by using the SET IMAGEMATCH command.

� Control thread-specific stepping by using the SET THREADP
command.

� Configure the warning and confirmation level by using the SET
WARNLEVEL command.

� Configure paths used by Visual SoftICE by using the SET EXEPATH,
SET EXPORTPATH, SET KDEXTPATH, SET SYMPATH, SET SRCPATH
commands.

Page Features

Open Any Number of Command Pages

There are no restrictions on the number of command pages that you can
open; however, Visual SoftICE executes commands from all the pages in
serial fashion. For more information on Visual SoftICE commands, refer
to the Visual SoftICE Command Reference.
48 Using Visual SoftICE

Command Interruption

The command page supports interruption of commands that have been
entered on the command line. Some Visual SoftICE commands may take
a long time to execute, and are designed to be interruptible. Not all
commands support interruption. If execution can be interrupted, then
the Command Interrupt button becomes active. Complete one of the
following procedures to interrupt execution of a command.

� Click the Command Interrupt button

� Press <Ctrl> <Break>

Event Disassembly Output

The Command page supports automatic output of disassembly when
certain events are received from the target. The Target Event Disassembly
button toggles this disassembly off and on. If you enable target event
disassembly, then events on the target that should show disassembly will
display it in the output window. If you disable target event disassembly,
then no disassembly will appear in the Command page.

Saving and Clearing Output

You can save all of the output on the Command page to a specific text
file by clicking on the Save Output button, or right-clicking on the page
and selecting Save Output To File from the pop-up menu.

Since Visual SoftICE saves the entire contents of the Output window, you
may wish to clear the Output window before executing the command
whose results you wish to save. You can clear all of the output on this
page by issuing the CLS command, or right-clicking on the page and
selecting Clear All from the pop-up menu.

Note: If you select an existing file, Visual SoftICE replaces the contents of
the file with contents of the Output window. It does not append to
the selected file.

Finding Text

The Command page provides a way for you to search for a text string
value within the page.

� You can search by trying to match the whole word only, or by finding
the best match for a partial string.

� You can search by trying to match the case of the specified search
string.
Chapter 4�The Visual SoftICE User Interface Pages 49

Cut, Copy, Paste, Drag, and Drop

The output window only supports Copy to retrieve its data. The input
field supports Cut, Copy, Paste, Drag, and Drop.

� You can select any text within the output window and copy it to the
clipboard.

� You can drag a selection from the output window and drop it on the
input field. This is useful when entering values for commands on the
input field.

� You can use Select All from the pop-up menu to highlight all the
lines on the output window before copying them to the clipboard.

Customize the User Interface

There are multiple attributes of the page that you can customize. They
are divided into two categories: per-page and application wide settings.
Per-page attributes are always remembered by the workspace when you
save it.

Per-Page Settings � You can set the state of automatic command redirection.

� You can set event disassembly options.

Application Wide
Settings

� You can select the font used for text, as well as the background and
foreground colors, for the following items: Normal text, Highlighted
text, Title text, Dim text, Target Notifications, and Internal
Notifications.

Print

The page supports printing, and print-previewing of its contents.

The Stack Page
The Stack page is a read-only page that displays the data on the stack for
a selected process and thread context. The Stack page also has a page-
specific context bar, allowing you to change the process or thread, which
overrides the main context bar.
50 Using Visual SoftICE

Figure 4-2. Visual SoftICE Stack Page

Concepts and Associated Commands

Displaying Stack Information

There are several commands that can display stack information.

� You can display the stack information from the command line by
issuing the STACK command.

� You can display the stack information for a particular thread from the
command line by issuing the STACK command with thread-id.

� You can display the stack information for a fiber from the command
line by issuing the FIBER command with –s switch.

� You can display the stack page from the command line by issuing the
WS command.

Process ThreadMode Indicator

Context
Bar

Current IP

Breakpoint
Chapter 4�The Visual SoftICE User Interface Pages 51

Changing Current Context

The stack page displays information based upon the context (thread-id)
that is set by either the main context bar, or the page-specific context bar.
There are several ways to change the process and context that the Stack
page is following.

Frames

The stack page displays a list of items called frames. The frames are listed
from the current frame to starting frame of the thread when data is
available. The stack page will display the following information for each
frame: frame number, current context, instruction address, stack address,
and frame address.

� Frame numbers are listed from the current frame to top-most frame
of the thread. Each time a new function is called, Visual SoftICE
renumbers the frame accordingly.

� Current context displays the function name plus the byte offset from
the start of the function of to the instruction address for that frame.
If no symbols are available for the frame’s function address, then the
field will be blank. Refer to the SET SYMPATH command for more
information on finding symbols.

Page Features

Context Bar

The Stack page has a page-specific context bar allowing you to select the
context (process and thread) for which the Stack page displays stack
frames. This page-specific context bar overrides the main context bar and
allows the Stack page to track an independent context.

You can switch to a different context to display its stack frames. Use the
Process drop-down list to select the process, and the Thread drop-down
list to select a specific thread for that process (if the process is multi-
threaded).
52 Using Visual SoftICE

Source / Disassemble At

The stack page supports displaying a Source or Disassembly page at the
instruction address for the selected stack frame. To open either a Source
or Disassembly page, right-click on a stack frame and select Source /
Disassemble At. Visual SoftICE displays a Source page if the symbols and
source files can be located for the instruction address. Otherwise, Visual
SoftICE displays a Disassembly page starting at the instruction pointer.

� You can change the path that Visual SoftICE uses to search for
symbols by issuing the SET SYMPATH command at the command
line.

� You can change the path that Visual SoftICE uses to search for source
files by issuing the SET SRCPATH command at the command line.

View Memory At

The stack page supports displaying a Memory page for a selected
instruction, stack, or frame address. To display a Memory page, right-
click on an address and select View Memory At.

Breakpoints

The stack page supports the setting, enabling, disabling, or clearing of
breakpoints at the instruction address for the selected stack frame. To
complete any of these breakpoint operations from the Stack page, right-
click on a frame, select Breakpoint and then the desired operation (Set,
Enable, Disable, or Clear).

� You can set a breakpoint for an instruction address of a frame by
issuing the BPX command and the address at the command line.

� You can enable, disable, or clear a breakpoint for an instruction
address of a frame from the command line by issuing a BL command
to get the breakpoint index, and using the BE, BD, or BC command
along with that index.
Chapter 4�The Visual SoftICE User Interface Pages 53

View Locals and Registers for a Frame

The stack page supports displaying either a Register or a Locals page for
the selected stack frame. To display one of these pages, right-click on a
frame and select Frame and then the desired page type (Registers or
Locals).

� You can display the registers for individual frames of a thread from
the command line by issuing the THREAD -r [-f frame] TID
command.

� You can display the locals for the current stack frame from the
command line by issuing the LOCALS command.

Stack Status Column

The stack status column provides extra information about the stack
walking process. It notifies you about potential problems Visual SoftICE
encountered while walking the stack. If Visual SoftICE encountered no
problems, and the stack was walked fully, no status messages are
displayed. If the stack walk terminates prematurely there will be a status
message describing the terminating condition. The most important
message is the "Unwind info unavailable" message on IA64.

"Unwind info unavailable" usually means that Visual SoftICE could not
read the unwind information from the target. This occurs because the
part of the image on the target containing the unwind info is paged out
and Visual SoftICE could not access it. A solution for this problem is to
have a local copy of all executables (including files in the system32
directory). Add these directories to the exepath so the local copies can be
found instead of having to be retrieved from the target.

Open Only One Stack Page

You can only have one Stack page open.

Copy

The page only supports the Copy function to retrieve its data. You can
select any cell (intersection of a row and column) and copy its text to the
clipboard.

Note: Select a cell by by placing the mouse cursor on the cell and then
right-clicking on the element you wish to copy.
54 Using Visual SoftICE

Customize the User Interface

There are multiple attributes of the page that you can customize. They
are divided into two categories: per-page and application wide settings.
Per-page attributes are always remembered by the workspace when you
save it.

Per-Page Settings � You can hide or display the page-specific context bar.

� You can sort the stack frames by any of the displayed columns.

� You can reorganize and resize the columns.

Application Wide
Settings

� You can control whether or not the page switches automatically to
Live mode when a connection to a new target is established.

Print

The page supports printing, and print-previewing of its contents.

The Registers Page
The Registers page is a container for displaying and editing the names,
fields, contents, descriptions, and symbols of the target processor
registers.
Chapter 4�The Visual SoftICE User Interface Pages 55

Figure 4-3. Visual SoftICE Registers Page

Concepts and Associated Commands

Types

Different processors contain different registers and register types.
Registers are always bit containers, but can be interpreted as bytes,
integers, a collection of flags, or floating point values meeting various
standard representations and precisions.

Mode Indicator CPU Indicator Register Name Drop-Down Register List

Register Name

Register List

Details Status Bar
56 Using Visual SoftICE

Fields

Registers of a given size (for example 32bits wide) very often contain a
mixture of information using various subsets of their bits, called fields.

� You can display fields for any register (or group of registers) in the
page by clicking the Fields button on the upper right hand corner.

� You can display register fields from the command line by issuing the
R command with the -f switch.

Descriptions

Registers all have additional description information, primarily drawn
from details provided by the processor manufacturer, and in some cases
as commonly used by operating systems.

� You can view descriptions for any register in the details status bar at
the bottom of the page (if the register does not currently map to a
symbol).

� You can display register descriptions from the command line by
issuing the R command with the -d switch.

Symbols

Registers can contain data that currently maps to a known symbol in the
current context.

� If a symbol is available for the current register contents, the symbol is
displayed in the details status bar at the bottom of the page.

� You can display symbols for registers from the command line by
issuing the R command with the -s switch.

Allowed Operations

Some registers are read-only, except by the processor itself. Some registers
are not available, based on the state of the processor. Modifying some
registers can be a dangerous action. As a level of protection, registers are
marked in Visual SoftICE as being read-write, or read-only, and can have
associated warnings on write operations.

For more information on controlling the display of warnings in Visual
SoftICE, refer to the SET WARNLEVEL command.
Chapter 4�The Visual SoftICE User Interface Pages 57

Groups

Registers that are associated with one another, or are commonly useful to
see together, have been gathered into collections called Register Groups.

� All processors support the GENERAL and ALL groups.

� You can display a pop-up menu listing the available register groups
by right-clicking on the page (when connected to a stopped target)
and selecting Groups.

� You can display register groups from the command line by issuing
the RG command.

� You can read from groups, or write to groups. However, if any
member is read-only, or has warnings associated with it, the write
will fail for any read-only registers, and warnings will be displayed for
any warning-associated registers.

� You can read from, or write to, groups from the command line by
issuing the R command.

Page Features

View the Registers You Want

The page supports a title area, which tells you the group, register, or set of
registers being displayed within it.

� The group, register, or set of registers you have in any page is
remembered on a per-page basis in the workspace when you save it.

� You can click on this area to type in a register name, register group
name, or list of registers (space delineated) you want displayed.

� You can right-click on this area to select from the available register
groups.

� You can set the displayed registers from the command line by issuing
the R command and redirecting its output:

R eip, esp, eflags />reg

� You can set the displayed registers from the command line
automatically when you issue the R command if you have enabled
auto-command redirection.
58 Using Visual SoftICE

Open Any Number of Register Pages

There are no restrictions on the number of Register pages, so you can
build a workspace with multiple views containing just the registers you
are interested in, displayed the way you want, where you want.

View the Registers from a Specific Processor

The page supports a CPU display and selector field. On multi-processor
machines you can select the specific processor for which you want to
display the registers. Depending on the state of the target, some
processors on a multi-processor machine may be inaccessible.

� You can select the CPU via the CPU indicator on the Registers page.

� You can view the registers for a specific processor from the command
line by issuing the R command with the -c switch.

� You can control whether the page automatically switches to the
stopped CPU on a multi-processor target from the preferences utility.

View Register Data in the Format You Want

Register data can be interpreted for display in a number of ways. The
default for display in the page is as integer information in the datalength
appropriate for the length of the register itself (or length of the field
when displaying fields).

� All formatting preferences are remembered on a per-page basis in the
workspace when you save it.

� You can force the display of data to always be BYTE, WORD,
DWORD, or QWORD using the pop-up menu.

� You can enable registers that contain floating point data to display
that data in a floating point representation using the pop-up menu.

� You can select which floating point representation Visual SoftICE
applies to floating point data from the following representations:
Double (64bit real), IEEE 80bit, 82bit, and AMD 3DNow.
Chapter 4�The Visual SoftICE User Interface Pages 59

Edit a Register or Set of Registers

This page provides several ways of editing register values, both for
individual registers and groups of registers.

� You can double-click on a single register to open the Modify Register
utility.

� You can right-click on a selected register, or group of registers, and
select Modify from the pop-up menu.

� You can select the Zero option from pop-up menu to set the selected
register, or group of registers, to zero.

� You can write to registers, register groups, and sets of registers from
the command line by issuing the R command.

Copy, Paste, Drag, and Drop

The page supports many ways of retrieving its data.

� You can copy register names and values to the clipboard for single
and multiple registers.

� You can drag a single register, in which case just the value of the
register is placed in the clipboard.

� You can drag multiple registers, in which case the names and values
of all the registers are collected in the clipboard, and can then be
used by other pages in raw or formatted form. For example, the Text
Scratch page prints the collection of names and values in table form.

Customize the User Interface

There are multiple attributes of the page that you can customize. They
are divided into two categories: per-page and application wide settings.
Per-page attributes are always remembered by the workspace when you
save it.

Per-Page Settings � You can hide or display the details status bar.

� You can display the registers and their values in a vertical list only
(default) or in a wrapping horizontal collection.

Application Wide
Settings

� You can select the font used, background and foreground color, and
the color used to indicate a change in the value of a register between
updates of the page.

� You can control whether or not the page switches automatically to
Live mode when a connection to a new target is established.
60 Using Visual SoftICE

Print

The page supports printing, and print-previewing of its contents.

The Process List Page
The Process List page displays a list of the processes running on the target
machine. It also uses a triple green arrow to indicate which process is the
current process context, and a yellow arrow to indicate the process
containing the current IP.

Figure 4-4. Visual SoftICE Process List Page

Concepts and Associated Commands

Current Context

You can use the Process List page to make a process the “current” one.
You can ALWAYS make a process current, and that becomes the current
context for Visual SoftICE. Refer to “About the Context Bar” on page 22
for more information on the main context bar, and page-specific
contexts.

Stopped vs. Running State

The page supports displaying only two levels of information for a
process: basic and extended. The levels are tied to the target state. When

Columns with Process DetailsMode Indicator

Process
Names

Active
Process

Current IP
Chapter 4�The Visual SoftICE User Interface Pages 61

the target is running, Visual SoftICE displays only the basic information
for the processes. When the target is stopped, Visual SoftICE displays the
extended information for each process.

The following basic information is displayed: Name, KPEB address, and
PID.

The following extended information is displayed: Name, KPEB address,
PID, Thread Count, Priority Level, User Mode Time, Kernel Mode
Time, and Process State.

Images

You can use the Process List page to view the images for a selected
process. This works the same as the IMAGE command. To view the
images for a process, right-click on the process, and select Images from
the pop-up menu.

Figure 4-5. Image List
62 Using Visual SoftICE

Threads

You can use the Process List page to view the threads for a selected
process. This works the same as the THREAD command. To view the
threads for a process, right-click on the process and select Threads from
the pop-up menu.

Note: The target must be stopped to view threads for a process.

Figure 4-6. Thread List

Page Features

Open Only One Process List Page

You can only have one Process List page open.

View Detailed Process Information

You can use the Process List page to view the known details of a process.
The Details view for a given process lists all the known information about
that process. You can sort the list of details by Item or by Value by
clicking on the appropriate column heading.
Chapter 4�The Visual SoftICE User Interface Pages 63

Figure 4-7. Detailed Process Information
64 Using Visual SoftICE

Kill a Process

This page provides a way of terminating a process. You can only kill a
process if the processor is running. The killing of a process may fail if the
OS refuses to kill the selected process; however, Visual SoftICE does not
limit what processes you can attempt to kill.

Copy and Drag

The page supports copying and dragging to retrieve its data.

� You can copy data from any column to the clipboard.

� You can drag data from any column to another page.

Print

The page supports printing, and print-previewing of its contents.

The Memory Page
The memory page is a container for displaying and editing blocks of
memory on a target machine, or from file sources. This is a shared
resource for many DriverStudio components, including BoundsChecker
for Drivers, and Visual SoftICE. Memory loaded into this page can be
viewed in scalar modes (BYTE, WORD, DWORD…), string, and as
structures and classes. Access to physical and virtual memory, display of
symbols, formatting to non-scalar types, editing, and data drag and drop
to other pages is all driven by the source of the memory loaded into the
page (for example, BoundsChecker for Drivers does not support
formatting memory into types known to the symbol engine, while Visual
SoftICE does). You can retrieve memory by physical or virtual address.
Chapter 4�The Visual SoftICE User Interface Pages 65

Figure 4-8. Visual SoftICE Memory Page

Concepts and Associated Commands

Address Types

You can access memory on the target machine via its physical location
(the location on the memory bus where the memory unit of interest is
located), or via virtual address per process (as implemented by the OS).
Access to memory on the target can fail if one of the following situations
is true:

� The virtual address requested is paged out
� The virtual address is unmapped (invalid) in the current process
� The memory is inaccessible based on processor state

Virtual memory access is the most common form of memory access, and
is connected with static and dynamic allocations for a given process or
the kernel itself.

Physical memory access is useful for looking at I/O registers, video
memory, or other regions physically mapped (memory mapped) by the
processor. This means the memory of these devices appears to be part of
the standard address space of the processor.
66 Using Visual SoftICE

You cannot access unmapped memory on the target, or memory held by
a specific device on some other bus, in the same manner. Refer to the PCI
command for exploring device-managed resources off that bus.

Visual SoftICE can read memory while the target is running or stopped.
Reading memory while the target is running retrieves a snapshot, and is
not guaranteed to be accurate to current values.

Virtual Memory You can display virtual memory by:

� Selecting the virtual address type (V) button and then entering an
address in the Address field and pressing Enter.

� Issuing the D command in Visual SoftICE.

Physical Memory You can display physical memory by:

� Selecting the physical address type (P) button and then entering an
address in the Address field and pressing Enter.

� Issuing the PHYS command in Visual SoftICE (to display the virtual
memory addresses that map to a physical address).

� Issuing the D command with the -p switch in Visual SoftICE.

� Issuing the PEEK command in Visual SoftICE.

Symbols

All addresses may have a symbolic representation. Visual SoftICE
automatically updates and displays the symbolic representation on the
current address title bar as you move the caret through various memory
locations. You can disable symbolic lookup (for performance
improvements) for all memory pages via the global setting (Symbolic
Address Lookup) under the Memory page preferences
(File > Preferences > Global Settings > Memory Page).

Page Features

Open Any Number of Memory Pages

There are no restrictions on the number of Memory pages you can open.
You can build a workspace with multiple views containing just the
memory blocks you are interested in, displayed the way you want, where
you want.
Chapter 4�The Visual SoftICE User Interface Pages 67

View Memory in the Format You Want

Memory can be interpreted for display in a number of ways, including
built-in scalar formats (BYTE, WORD, DWORD, QWORD, ASCII, and
UNICODE), and custom types known by the symbol engine (type,
structure, or class).

The default view of memory is 2 panes, BYTE view on the left with
addresses, ASCII view on the right with no addresses. The Memory page
remembers all scalar formatting preferences, the last custom format
name you selected (per pane), and last address viewed (on a per-page
basis) in the workspace when you save it. The last custom format name
and the last address viewed are displayed in the pane pop-menu and
address combo box respectively at the time DriverStudio loads the
workspace.

You can customize the page to display memory in 2 separate panes or just
one via the pop-up menu. If you display memory in 2 panes, the Memory
page remembers the splitter location (on a per-page basis) in the
workspace when you save it.

You can select a custom format off the pop-up menu, per pane. You
should consider this formatting a cast operation on the block of memory.
The format must be a known type in the symbol engine (only available
in Visual SoftICE).

The selection dialog allows you to search using wildcards, and/or limit
the types displayed based on your preferences. Additionally, if you know
the format name, you can enter it directly and press Enter. If it is a
known type in the symbol engine, Visual SoftICE will immediately apply
it.
68 Using Visual SoftICE

Figure 4-9. Custom Formatting Dialog

When a custom format is shown, the name of the format, size of the
format, and two additional buttons (PageUp, PageDn) are displayed to
walk through memory.

Figure 4-10. Custom Memory Formatting
Chapter 4�The Visual SoftICE User Interface Pages 69

Please note this is a cast operation on existing memory. Therefore these
buttons may be useful for walking through simple arrays of fixed size
types, structures,or classes, but do not walk lists (linked lists, pointers, or
other collection mechanisms).

If you save the workspace with a pane displaying a custom format (type,
structure, or class), Visual SoftICE remembers the format name, but does
not apply it at the time it loads the workspace. This is because the format
may be unknown in the current context (not in the loaded or active
symbol tables). Once the workspace is loaded, you may reassign the
formatting directly via the pop-up menu.

Search Page Contents

This page provides a utility to conduct byte pattern searching. The Search
utility for the Memory page allows you to search the page's contents
forward and backward, but restricts the searching to a 32-byte pattern
length.

This utility behaves like the S command in Visual SoftICE, however it is
restricted to the contents of the memory page, and can search forwards
or backwards.

Figure 4-11. Memory Page Search Dialog

Edit Memory

This page provides several ways of editing memory data, both in scalar
and custom formatting.

� In scalar modes, you can double-click or select a unit of memory and
press Enter, or the Backspace key, to get an in-place edit control. You
can cancel editing by pressing the Esc key, or you can apply any
changes by pressing Enter. If your edit fails to be accepted, the
Memory page displays an error message. If accepted, the Memory
page updates all panes displaying that memory location, using the
modified color to highlight the change.
70 Using Visual SoftICE

� In non-string formats, this edit control will be constrained to the
unit of memory (BYTE, WORD, DWORD, QWORD), and allows
hexadecimal input only.

� In string formats (ASCII, UNICODE), the edit control will be
constrained to a full line of memory (as displayed) and allows
string input. The current character at the start of editing will be
highlighted within the line. On acceptance of your input, the
string will be converted to an appropriate byte stream (ASCII or
UNICODE) before being sent to the target.

� In custom format mode, you can directly edit the members of the
type, structure, or class by clicking on the member value cell. The
Memory page opens an in-place edit control. You can cancel editing
by pressing the <Esc> key, or you can apply any changes by pressing
<Enter>.

� You can edit virtual memory from the command line in Visual
SoftICE by issuing the E command.

� You can edit physical memory from the command line in Visual
SoftICE by issuing the POKE command.

Copy, Paste, Drag, and Drop

The page supports many ways of retrieving its data.

� You can a copy a single scalar unit, or range of lines, by highlighting
them and then selecting Copy from the pop-up menu.

� You can drag a single scalar data value out of the memory page and
drop it on any other page that accepts data this way.

� You can drop a single data value from any other page on the memory
page. Visual SoftICE interprets the data value as an address, and
places it in the address field (along with keyboard focus). While focus
is in the Address field, you can edit the address, or append to it before
pressing <Enter> to accept and display that address.
Chapter 4�The Visual SoftICE User Interface Pages 71

Customize the User Interface

There are multiple attributes of the page that you can customize. They
are divided into two categories: per-page and application wide settings.
Per-page attributes are always remembered by the workspace when you
save it.

Per-Page Settings � You can customize the page to display 1 or 2 views of memory
(panes).

� You can customize the page to display addresses in each pane.

� You can customize the page to display a range of scalar or custom
formats per pane.

Application Wide
Settings

� You can select the font used, as well as the background and
foreground color, for each pane.

� You can select the color used to indicate a change in the value of
memory between updates of the page.

� You can enable or disable symbolic lookup of every address location
displayed in the page, as you move the caret through memory.

� You can set the number of bytes per line the Memory page displays in
each pane (the valid range is 16 to 128 bytes, and must be evenly
divisible by 2).

� You can control the size of memory blocks the page requests from the
target when you display memory. Larger memory blocks provide
better performance, while smaller memory blocks reduce the chances
of hitting paged out conditions (the valid size range is 128 to 8192
bytes).

� You can control whether or not the page switches automatically to
Live mode when a connection to a new target is established.

The Locals Page
The Local page is a read-write container for displaying and editing the
variables local to current instruction pointer. The Local page can display
the variable name, type and value. The local page also has a page-specific
context bar, allowing you to change threads or stack frames, which
overrides the main context bar.
72 Using Visual SoftICE

Figure 4-12. Visual SoftICE Locals Page

Concepts and Associated Commands

WL

The WL command opens the Locals page. If a Locals page is already
open, WL activates that page.

Page Features

Live Mode Variable Tracking

When the Locals page is in live mode, Visual SoftICE displays the variable
values in red when they change. You can expand the variable if it
contains child-level components.
Chapter 4�The Visual SoftICE User Interface Pages 73

Open Only One Locals Page

You can only have one Locals page open.

Toggle Values Displayed Between Decimal and Hexadecimal

You can toggle displaying values in hexadecimal or decimal. To toggle
display format for the values, right-click on the Value column and select
Hexadecimal from the pop-up menu. When it is checked, Visual SoftICE
displays values in hexadecimal. When it is unchecked, Visual SoftICE
displays values in decimal.

Edit Variable Values

Visual SoftICE allows you to edit the value of a variable displayed in this
page. To modify the value of a variable, double-click the value column of
the variable to highlight the value, and enter the new value in the field.
Press Enter or click any place in the Local page to save the value.

Select a Context

Visual SoftICE allows you to select a different stack frame, or context,
whose variables you wish to display. To switch contexts for the current
thread, click the Context combo-box to access the drop-down list of
available stack frames for the current thread, and select the stack frame
you want to change to. Visual SoftICE displays the variables for the
selected context.

Select a Thread

Visual SoftICE allows you to select a different thread whose variables you
wish to display. To select a different thread, click the Thread combo-box
to access the drop-down list of available threads for the current process,
and select the thread you want to change to. Visual SoftICE
automatically updates the stack frames for the selected thread, and
displays the latest variables for the first stack frame.

Copy and Drag

The page supports copying and dragging of variable names to other
Visual SoftICE pages. How Visual SoftICE handles the variables once you
drop them depends on the page you drop them into.
74 Using Visual SoftICE

Customize the User Interface

There are multiple attributes of the page that you can customize. They
are divided into two categories: per-page and application wide settings.
Per-page attributes are always remembered by the workspace when you
save it.

Per-Page Settings There are no per-page settings available for the Locals page.

Application Wide
Settings

� You can toggle the display format for variable values between
decimal and hexadecimal.

� You can hide or display the page-specific context bar. To toggle
display of the context bar on or off, right-click on the page and select
View Context Bar from the pop-up menu.

Print

The page supports printing, and print-previewing of its contents.

The Watch Page
The Watch page is a read-write container for displaying and editing any
expression. You can enter any expression into this page and Visual
SoftICE returns the resulting value. The Watch page displays the
expression, result type, and value.

When the you switch the context in the Locals page, the Watch page also
switches expression result types or values, remaining synchronized with
the Locals page. When this happens, some expressions may not have a
value at the current context even though they displayed a value
previously.

Figure 4-13. Visual SoftICE Watch Page

Mode Indicator Watch List
Chapter 4�The Visual SoftICE User Interface Pages 75

Concepts and Associated Commands

WATCH

Use the WATCH command to display the results of expressions.

Page Features

Live Mode Variable Tracking

When the Watch page is in live mode, Visual SoftICE displays the
variable values in red when they change. You can expand the variable if
it contains child-level components.

Open Only One Watch Page

You can only have one Watch page open.

Toggle Values Displayed Between Decimal and Hexadecimal

You can toggle displaying values in hexadecimal or decimal. To toggle
display format for the values, right-click on the Value column and select
Hexadecimal from the pop-up menu. When it is checked, Visual SoftICE
displays values in hexadecimal. When it is unchecked, Visual SoftICE
displays values in decimal.

Edit Expression Values

Visual SoftICE allows you to edit the value of expressions displayed in
this page. To modify the value of an expression, double-click the Value
column of the expression to highlight the value, and enter the new value
in the Edit field. Press <Enter> or click anyplace on the Watch page to
save the new value.

Save Expressions

When you have a workspace file opened, Visual SoftICE will store all the
expressions on the Watch page in your workspace file, when saved.
76 Using Visual SoftICE

Add Expressions

Visual SoftICE allows you to add expressions directly into the Watch
page, or by using the WATCH command from the Command page. To
add a new expression directly into the Watch page, double-click on an
empty row to make the Name field editable, and enter your new
expression name into the field. Press <Enter> or click anyplace on the
Watch page to save the new expression.

Modify Expressions

Visual SoftICE allows you to modify expressions directly on the Watch
page. Visual SoftICE re-evaluates the expressions and displays the new
result types and values in each column. To modify an expression, double-
click the Name column of the expression you want to modify, and enter
the new expression name in the Name field. Press <Enter> or click
anyplace on the Watch page to save the value.

Delete or Clear Expressions

Visual SoftICE allows you to delete or clear expressions using the Watch
page. To delete an expression, select the expression and press <Delete>,
or right-click on the expression and select Delete from the pop-up menu.

Copy, Paste, Drag, and Drop

The Watch supports Copy, Paste, Drag, and Drop operations.

Customize the User Interface

There are multiple attributes of the page that you can customize. They
are divided into two categories: per-page and application wide settings.
Per-page attributes are always remembered by the workspace when you
save it.

Per-Page Settings There are no per-page settings available for the Watch page.

Application Wide
Settings

� You can toggle the display format for variable values between
decimal and hexadecimal.

Print

The page supports printing, and print-previewing of its contents.
Chapter 4�The Visual SoftICE User Interface Pages 77

The Breakpoint Page
The Breakpoint page is used to maintain breakpoints. It displays statistics
on the breakpoints, breakpoint history, and indicates if any of the
breakpoints are currently active.

Figure 4-14. Visual SoftICE Breakpoint Page

Concepts and Associated Commands

Breakpoint Types

Visual SoftICE supports the following types of breakpoints:

� Code Execution
� Interrupt
� Memory Location Access
� I/O
� Memory Range Access
� Image Load
� HWND and OS Application Message
� Deferred or Virtual

Use the New Breakpoint utility to set any of the breakpoints.

Display Breakpoint Information

There are two commands you can issue at the command line to display
breakpoint information.

� You can display Breakpoint information by issuing the BL command.

� You can display the Breakpoint page by issuing the WB command.
78 Using Visual SoftICE

Conditions

All breakpoint types, except the Image Load type, support an optional
conditional IF statement as an additional trigger. If the condition
evaluates to true when the breakpoint is encountered, it triggers the
breakpoint (in the manner you specified) by stopping, logging the
breakpoint without stopping, or executing a triggered command list.

Triggered Command Lists

All breakpoints support execution of an optional list of commands when
the breakpoint is triggered. You can enter a single command, or list of
commands, that Visual SoftICE will trigger upon hitting a successful
breakpoint.

Global Break

You can configure Visual SoftICE to break upon loading image files by
using the SET GLOBALBREAK command.

Page Features

Breakpoint Event History

The Breakpoint page allows you to display breakpoint related event
messages as they are generated on the target. The breakpoint history
window also supports the following functionality:

� You can save all of the current breakpoint history to a specified text
file by right-clicking on the window and selecting Save Output To
File from the pop-up menu.

� You can clear the breakpoint history by right-clicking on the window
and selecting Clear All from the pop-up menu.

New / Edit Breakpoint

The Breakpoint page allows you to create a new breakpoint by right-
clicking on the breakpoint list and selecting New Breakpoint from the
pop-up menu. Visual SoftICE opens the New Breakpoint utility, which
provides an easy interface to create breakpoints.

You can also edit an existing breakpoint with the New Breakpoint utility
by double-clicking on a breakpoint in the breakpoint list.
Chapter 4�The Visual SoftICE User Interface Pages 79

Enable, Disable, Delete Breakpoint

The Breakpoint page allows you to enable, disable, or delete a breakpoint
by right-clicking on that breakpoint and selecting the desired operation
(Enable, Disable, or Delete) from the pop-up menu. You can also enable,
disable, or delete a breakpoint by issuing the following commands at the
command line:

� You can enable a breakpoint by issuing the BE command with the
appropriate breakpoint index.

� You can disable a breakpoint by issuing the BD command with the
appropriate breakpoint index.

� You can delete a breakpoint by issuing the BC command with the
appropriate breakpoint index.

Note: To get the appropriate breakpoint index, issue the BL command.

Display Breakpoint Statistics

The Breakpoint page allows you to display the statistics for a breakpoint
by right-clicking on the address and selecting Display Statistics. The
Breakpoint Statistics dialog displays the following information:

Figure 4-15. Breakpoint Statistics Dialog

� You can reset the breakpoint log count by clicking Reset.

� You can view breakpoint statistics from the command line by issuing
the BSTAT command with the appropriate breakpoint index.

Note: To get the appropriate breakpoint index, issue the BL command.
80 Using Visual SoftICE

Toggle Breakpoint Logging

The Breakpoint page allows you to toggle whether Visual SoftICE is only
logging a breakpoint, or if it will stop the target. To toggle logging, right-
click on a breakpoint and select Toggle Logging from the pop-up menu.

Open Only One Breakpoint Page

You can only have one Breakpoint page open.

Copy and Drag

The page only supports the Copy and Drag functions to retrieve its data.

� You can select any text in the breakpoint history window and copy it
to the clipboard.

� You can drag any text from the breakpoint history window to any
page that accepts dropped items.

� You can select any cell and copy its text to the clipboard.

� You can drag any cell to any page that accepts dropped items.

Note: Select a cell by placing the mouse cursor on the cell and then right-
clicking on the element you wish to copy.

Customize the User Interface

There are multiple attributes of the page that you can customize. They
are divided into two categories: per-page and application wide settings.
Per-page attributes are always remembered by the workspace when you
save it.

Per-Page Settings � You can sort the Breakpoint list by any of the displayed columns by
clicking on the column heading.

� You can reorganize and resize the individual columns displayed.

Application Wide
Settings

� You can control whether or not the page switches automatically to
Live mode when a connection to a new target is established.

Print

The page supports printing, and print-previewing of its contents.
Chapter 4�The Visual SoftICE User Interface Pages 81

The Debug Message Page
The Debug Message page is a read-only receiver of information from the
target and from other sources. The page is composed of a single window,
which receives and displays text messages, and a pop-up utility
controlling the filtering of the messages that are displayed in the
window. There is no limit to the number of lines that can be retained by
the page, and the color attributes of all lines, even those no longer visible
on screen, are preserved.

Figure 4-16. Visual SoftICE Debug Message Page

Concepts and Associated Commands

Setting Message Level

The Debug Message page can also display event messages from the target
if you have set the Message Level to On or Verbose. For more
information on controlling the display of messages in Visual SoftICE,
refer to the SET MSGLEVEL command.
82 Using Visual SoftICE

Page Features

Filtering Messages

The Debug Message page supports the filtering of messages output to the
page. Message filtering is controlled by the Debug Message Filter utility,
which is available by right clicking on the page and selecting Configure
Filtering from the pop-up menu.

Figure 4-17. Debug Message Filter Utility

You can filter messages based upon a regular expression match of the
message content. The regular expression filtering is limited to file system
level matching criteria. That is, the ‘?’ and ‘*’ operators are the only
supported matching wildcards. For example, to display the debug
messages that your driver sends, prefix your DBGPRINT statements with
a tag like MYDRIVER:, then set the regular expression message matching
to MYDRIVER:*.

Open Any Number of Debug Message Pages

There are no restrictions on the number of Debug Message pages you can
have open, so you can build a workspace with multiple views containing
just the debug messages you are interested in, where you want them
displayed. You may find this useful when debugging problems with a
process on the target, as it allows non-intrusive observation of the
behavior of the process.

Copy

The page only supports copy command to retrieve its data.

� You can select any text within the page and copy it to the clipboard.

� You can use Select All from the pop-up menu to highlight all the
lines on the page before copying them to the clipboard.
Chapter 4�The Visual SoftICE User Interface Pages 83

Customize the User Interface

There are multiple attributes of the page that you can customize. They
are divided into two categories: per-page and application wide settings.
Per-page attributes are always remembered in the workspace when you
save it.

Per-Page Settings � You can filter the messages that are output to a particular page. For
more information, refer to “Filtering Messages” on page 83.

Application Wide
Settings

� You can select the font used for all the text, as well as the background
and foreground color, for the following items: Normal text,
Highlighted text, Title text, Dim text, Target Notifications, and
Internal Notifications.

Print

The page supports printing, and print-previewing of its contents.

The Event Page
The Event page is a read-only receiver of information from the target and
from other sources. The page is composed of a single window, which
receives and displays events, and a pop-up utility controlling the filtering
of the events that are displayed in the window. There is no limit to the
number of lines that can be retained by the page, and the color attributes
of all lines, even those no longervisible on screen, are preserved.

You may only have one Event page per target. If the connection to the
target is lost, the collection of events is cleared from the page.
84 Using Visual SoftICE

Figure 4-18. Visual SoftICE Event Page

Page Features

Configuring Filtering

The Event page supports the filtering of events output to the page. Event
filtering is controlled by the Target Event Display Filter utility, which is
available by right clicking on the page and selecting Configure Filtering
from the pop-up menu.
Chapter 4�The Visual SoftICE User Interface Pages 85

Figure 4-19. Target Event Display Filter Utility

� You can enable or disable specific Target Notification events, such as
Driver Load, Driver Unload, or Debug messages.

� You can filter events based upon a regular expression match of the
event content. The regular expression filtering is limited to file
system level matching criteria. That is, the ‘?’ and ‘*’ operators are the
only supported matching wildcards. For example, to display the
debug messages that your driver sends, prefix your DBGPRINT
statements with a tag like MYDRIVER:, then set the regular expression
event matching to MYDRIVER:*.

Note: The Event page will always attempt to apply any filtering you imple-
ment to the entire event collection. With extremely large event
collections this process can take some time, so if the collection is very
large and the target is running, the Event page will halt the target
while it synchronizes the event collection.

Open Only One Event Page

You can only have one Event page open.
86 Using Visual SoftICE

Copy

The page only supports copy command to retrieve its data.

� You can select any text within the page and copy it to the clipboard.

� You can use Select All from the pop-up menu to highlight all the
lines on the page before copying them to the clipboard.

Customize the User Interface

There are multiple attributes of the page that you can customize. They
are divided into two categories: per-page and application wide settings.
Per-page attributes are always remembered in the workspace when you
save it.

Per-Page Settings � You can filter the events that are output to the page. For more
information, refer to “Configuring Filtering” on page 85.

� You can display or hide the event counter at the top of the Event
page by right-clicking on the page and selecting View Counter to
toggle it.

Application Wide
Settings

� You can select the background and foreground color for event text
and all other columns.

� You can configure an Auto Save Log Filename from the Global
settings tab by right-clicking on the page and selecting Page
Preferences from the pop-up menu.

� You can configure the page to Auto Save Log on Disconnect from
the Global settings tab by right-clicking on the page and selecting
Page Preferences from the pop-up menu.

� You can configure the page to Warn on Disconnect Data Loss from
the Global settings tab by right-clicking on the page and selecting
Page Preferences from the pop-up menu.

Print

The page supports printing, and print-previewing of its contents.

The Text Scratch Page
The Text Scratch page is used to capture redirected output from various
commands that can be executed in the Command page. The Text Scratch
page is also a convenient place to type, cut, and paste output to.
Chapter 4�The Visual SoftICE User Interface Pages 87

Figure 4-20. Visual SoftICE Text Scratch Page

Concepts and Associated Commands

Command Redirection

The page supports command redirection from a command page. This
allows output (such as from a kd extension, or a script file) to be captured
and saved. Refer to Command Redirection in the main help file for more
information.

Page Features

Save and Clear Output

You can save all of the output on this page to a specified text file by right-
clicking on the page and selecting Save Output To File from the pop-up
menu. You can clear all of the output on this page by right-clicking on
the page and selecting Clear All from the pop-up menu.
88 Using Visual SoftICE

Open Any Number of Text Scratch Pages

There are no restrictions on the number of Text Scratch pages you can
open. You may find this useful when capturing the output from a specific
command. Simply specify /> TXT as the page to redirect the output to. If
there is no existing Text Scratch page with that name, a new page is
created with the command as its name.

Find Text

The Text Scratch page provides a utility for finding a text string value
within the page.

� You can search by attempting to match the whole word, only or
partial string.

� You can further narrow a search by attempting to match the case of
the specified search string.

Go To a Specific Line

You can right-click on the Text Scratch page and select Go To Line from
the pop-up menu to advance the cursor to any line of text currently
contained in the Text Scratch page.

Copy, Paste, Drag, and Drop

The page supports many ways of retrieving its data.

� You can select any text within the page and copy it to the clipboard.

� You can choose Select All to select all the lines on the page and copy
them to the clipboard.

� You can paste any text from the clipboard into the page.

� You can drag items from other pages and drop them onto the page.
For example, you can drag multiple registers from a register page, and
Visual SoftICE inserts a table of names and values into the page.

Append a File

You can right-click on the Text Scratch page and select File Append from
the pop-up menu to append the contents of any text file to the Text
Scratch page contents.
Chapter 4�The Visual SoftICE User Interface Pages 89

View Line Numbers

You can right-click on the Text Scratch page and select View Line
Numbers from the pop-up menu to display line numbers for every line
of text currently contained in the Text Scratch page.

View Bookmarks

You can right-click on the Text Scratch page and select View Bookmarks
from the pop-up menu to display the bookmarks that may be set for the
lines of text currently contained in the Text Scratch page.

Customize the User Interface

There are multiple attributes of the page that you can customize. They
are divided into two categories: per-page and application wide settings.
Per-page attributes are always remembered by the workspace when you
save it.

Per-Page Settings There are no per-page settings for this page.

Application Wide
Settings

� You can use the Save/Restore Contents in Workspace settings to
configure Visual SoftICE to automatically save any text contained in
the Text Scratch pages when you save your workspace. Each Text
Scratch page saves and restores its own content.

� You can select the font, foreground color, and background color used
for the text on the page.

Print

The page supports printing, and print-previewing of its contents.
90 Using Visual SoftICE

The Disassembly Page
The Disassembly page is a read-only container to disassemble target
memory. By selecting different modes, the page can be used as a live
display, for viewing disassembly code on a specified target memory
address, or for capturing a snapshot of a chunk of disassembled lines. Use
the Disassembly page to:

� Display a chunk of disassembled lines, including current Instruction
Pointer (IP), or at a specific target address.

� Set, remove, enable, and disable breakpoints on target addresses.

� Set and remove bookmarks on target addresses.

� Step through instructions.

� Perform Go To and Run To by target address or function name,
current IP, and bookmarks.

� Search for strings inside the current view.

� Print out the page.

You can open a disassembly page by clicking the Disassembly page icon
on the toolbar. Visual SoftICE can also automatically open a disassembly
page while stepping or receiving WC or T commands if it cannot find a
matching source file for the current IP. The automatic behavior of this
page is controlled by AutoFocusOpen setting under Source/Disasm
Page on the Global Settings tab of the Preferences dialog.
Chapter 4�The Visual SoftICE User Interface Pages 91

Figure 4-21. Visual SoftICE Disassembly Page

Associated Commands

T

The T command steps one instruction when the target is stopped. Visual
SoftICE searches through the symbols to locate a file containing the
current instruction pointer (IP). If it finds the file, and a source page for
that file is already available, Visual SoftICE updates the existing source
page. If it finds the file and no source page for that file is open, Visual
SoftICE creates a new source page.

If Visual SoftICE does not find a source file containing the current IP, and
a live disassembly page for the current IP is available, it updates that
page. If no live disassembly page is available, Visual SoftICE opens a new
disassembly page.
92 Using Visual SoftICE

WC

When you type WC [address], Visual SoftICE searches through the
symbols to locate the source file containing the specified address. If
Visual SoftICE finds the source file, and a source page for the file is
already open, it brings the opened page forward. If the source file is not
already open, Visual SoftICE creates a new source page for the file and
brings it forward.

If the address is not contained in any source file, Visual SoftICE creates a
disassembly page and brings it forward.

Page Features

Open Any Number of Disassembly Pages

There are no restrictions on the number of Disassembly pages you can
open.

Mode Selection

Page modes have some specific affects to the Disassembly page:

� Live Mode - If the target is connected and stopped, it automatically
updates the display to include the disassembly line for current IP
upon target events. Instruction stepping can be performed.

� Manual Mode - The display is not updated upon target events. You
can choose to display a chunk of disassembly lines for a specific
target address. Instruction stepping is not allowed.

� Snapshot Mode - The page is only used to view the current chunk of
disassembly lines. It will not update the contents upon target events.
Instruction stepping is not allowed.

For more detailed information on Page Modes and how they work in
Visual SoftICE, refer to “Page Modes” on page 23.
Chapter 4�The Visual SoftICE User Interface Pages 93

Breakpoints

When the master is connected to a target, you can set breakpoints on the
disassembly page at any viewable target address. You can set breakpoints
by locating the cursor on the line and using one of the following
methods:

� Selecting Set Breakpoint under the Breakpoint group on the pop-up
menu for the page

� Pressing the F9 function key

� Clicking the Breakpoint button on the main toolbar

� Right-clicking in the second column to the left of the code to access
the Breakpoint pop-up menu.

Once you set a breakpoint, you can disable or remove it via one of the
following methods:

� Selecting the applicable options from the breakpoint pop-up menu

� Using the function keys

� Using the buttons on the main toolbar

Any breakpoint changes made elsewhere in the system are
synchronously updated on the disassembly page.

Instruction Stepping

When the master is connected to a target that is stopped at an address,
the disassembly line of the current IP is highlighted. You can choose to
step-over, step-into, or step-out of the current instruction. Use the
options under the Debug group of the pop-up menu for the page, the
function keys as defined in the Preference settings, or the stepping
buttons on the main toolbar, to perform your stepping functions.

If the current instruction has a jump-to address to branch to, the yellow
arrow on the left of the highlighted line changes its direction to up or
down, depending on the branch address location, indicating that the
next instruction will be at a specific address. To view the jump-to line,
you can click the arrow, press <Ctrl><J>, or select Go To Jump from the
pop-up menu for the page. Visual SoftICE highlights the jump-to line
when it displays it.

You can always view the current IP line by pressing <Ctrl><I>, or by
selecting Go To Current IP from the pop-up menu for the page.
94 Using Visual SoftICE

To run-to and stop at a specified line, you can set the cursor to the line
where you want to stop and press <Ctrl><R>, or select Run To Here from
the pop-up menu for the page.

Bookmarks

You can set bookmarks at any viewable disassembly line, but only if the
target is connected. Bookmarks in the disassembly page are represented
by a target address. To set a bookmark:

� Right-click on the line and select Set Bookmark from the pop-up
menu for the page

� Right-click in first column to the left of the code and select Set
Bookmark from the pop-up menu

To remove bookmarks:

� You must have focus on a line with a bookmark on it. You can then
remove the bookmark for the line, or all bookmarks in the file, by
right-clicking and selecting the applicable option from the page's
pop-up menu.

� You can locate the cursor in the first column to the left of the code
and right-click to access the Bookmark pop-up menu.

You can view the bookmark list in the Go To dialog. From that dialog you
can view or run-to the specified bookmark via the Go To and Run To
buttons.

Visual SoftICE automatically removes all bookmarks when the target is
disconnected.

Go To

You can use the Go To dialog to:

� View or run-to a disassembly line using its target address or function
name

� View a line containing the current IP

� View or run-to a selected bookmarked line

Go To Current IP

You can right-click on the page and select Go To Current IP from the
pop-up menu to view the line containing the current IP.
Chapter 4�The Visual SoftICE User Interface Pages 95

Go To Jump

When you are on a jump statement, you can right-click on the page and
select Go To Jump from the pop-up menu to move to the line where the
jump will go.

Run To Here

You can right-click on the page and select Run To Here from the pop-up
menu, and Visual SoftICE will run from the current IP to the line that
currently contains the cursor.

Set Next Statement

The Set Next Statement command moves the IP to the next statement.
You can execute the Set Next Statement command via one of the
following methods:

� Right-clicking to access the pop-up menu for the page

� Pressing <Ctrl><Shift><F10>

� Selecting the command from the Source Page drop-down menu

� Clicking the Set Next Statement toolbar button

If you attempt to execute the Set Next Statement command on a
specified line with an address outside of the function scope of the current
IP, and the warning level is not set to off, then Visual SoftICE displays a
warning message asking you to confirm that you want to set the IP to the
new address.

Find

You can use the Find dialog to search for a string in the current
disassembly page.

Copy

The page only supports copy command to retrieve its data.

� You can select any text within the page and copy it to the clipboard.

� You can use Select All from the pop-up menu to highlight all the
lines on the page before copying them to the clipboard.
96 Using Visual SoftICE

AutoFocus

You can use the AutoFocusOpen setting to customize the behavior of the
disassembly page when a target event occurs. If you select Source or
Disassembly or Source or Disassembly – No Focus, then when Visual
SoftICE can locate a source file for the symbols, it creates a source page. If
Visual SoftICE cannot locate a source file, it creates a disassembly page.

For more information on available settings and how they behave, refer to
AutoFocusOpen Settings in the on-line help.

Customize the User Interface

There are multiple attributes of the page that you can customize. They
are divided into two categories: per-page and application wide settings.
Per-page attributes are always remembered in the workspace when you
save it.

Per-Page Settings � There are no per-page settings for the Disassembly page.

Application Wide
Settings

� You can use the AutoFocusOpen settings to control whether Visual
SoftICE opens a new page when none exists (or brings an existing
page to the top of the pad it's on), and places input focus on that
page.

� You can configure Visual SoftICE to place new Disassembly pages on
the largest pad with the New Src/Disasm Pages to Largest Pad
setting.

� You can configure Visual SoftICE to place new Disassembly pages on
a named pad with the New Src/Disasm Pages to NAMED Pad
setting.

� You can configure Visual SoftICE to put Disassembly pages into live
mode upon connection to a live target with the Live Mode on
Connection setting.

� You can configure Visual SoftICE to restrict the minimum column
width on the Disassembly page to the actual field length using the
Minimum Column Widths setting.

� You can configure Visual SoftICE to display or hide the machine
language (op-code) bytes column by right clicking on the
Disassembly page, selecting Disassembly, and toggling Show Op-
Code Bytes in the sub-menu. You can also toggle this setting under
the Disassembly element in the Global Settings tab of the
Preferences dialog.
Chapter 4�The Visual SoftICE User Interface Pages 97

� You can configure Visual SoftICE to display or hide the address
column by right clicking on the Disassembly page, selecting
Disassembly, and toggling Show Addresses in the sub-menu. You
can also toggle this setting under the Disassembly element in the
Global Settings tab of the Preferences dialog.

� You can configure Visual SoftICE to display or hide the instruction
template field (on IA-64 only) by right clicking on the Disassembly
page, selecting Disassembly, and toggling Show Instruction
Template in the sub-menu. You can also toggle this setting under the
Disassembly element in the Global Settings tab of the Preferences
dialog.

Print

The page supports printing, and print-previewing of its contents.

The Source Page
The Source page is a read-only container for displaying source code files.
This page tracks the current context on the target, and whether its source
file is associated with an image of the current process when symbol
information is available. Once the symbol information for the source file
is available, this page can be used to do the following:

� Disassemble the entire source file, or individual source lines that have
associated disassembly code

� Set, remove, enable, and disable breakpoints

� Set and remove bookmarks

� Step through source code or associated disassembly

� Perform Go To and Run To by line number, target address, function
name, current Instruction Pointer (IP), and bookmarks

� View or hide line numbers

� Perform string searches

� Print out the page

You can open a source file by using the FILE command in the command
page, or by clicking the Source page icon in the toolbar. You can have any
number of source pages open at any given time. The automatic behavior
of this page is controlled by AutoFocusOpen setting under Source/
Disasm Page on the Global Settings tab of the Preferences dialog.
98 Using Visual SoftICE

Figure 4-22. Visual SoftICE Source Page

Associated Commands

FILE

The FILE command is often useful when setting a breakpoint on a line
that has no associated symbol. For information on using FILE to set a
breakpoint refer to the Command Reference.

� If you specify a file name, that file becomes the current file and
Visual SoftICE creates a new source page for it.

� If you do not specify a file name, Visual SoftICE opens a source page
for the file that contains current IP. If no source file for the current IP
is available, Visual SoftICE displays a message stating that no file can
be opened for the current IP.

� If you specify the * (asterisk), Visual SoftICE displays all the files in
the current symbol table.

LOAD

The LOAD command loads symbols for a specified image-name. If you
specify the * wildcard in place of image-name, Visual SoftICE opens the
Symbol Files utility.
Chapter 4�The Visual SoftICE User Interface Pages 99

SS

The SS command searches all the opened source pages for a specified
string, starting from an optional line number. If Visual SoftICE finds the
string in a source page, it highlights the first matching string together
with the line it's on. The string may be found in multiple open source
pages.

T

The T command steps one instruction when the target is stopped. Visual
SoftICE searches through the symbols to locate a file containing the
current instruction pointer (IP). If it finds the file, and a source page for
that file is already available, Visual SoftICE updates the existing source
page. If it finds the file and no source page for that file is open, Visual
SoftICE creates a new source page.

If Visual SoftICE does not find a source file containing the current IP, and
a live disassembly page for the current IP is available, it updates that
page. If no live disassembly page is available, Visual SoftICE opens a new
disassembly page.

WC

When you type WC [address], Visual SoftICE searches through the
symbols to locate the source file containing the specified address. If
Visual SoftICE finds the source file, and a source page for the file is
already open, it brings the opened page forward. If the source file is not
already open, Visual SoftICE creates a new source page for the file and
brings it forward.

If the address is not contained in any source file, Visual SoftICE creates a
disassembly page and brings it forward.

Page Features

Open Only One Source Page Per File

You can only open one Source page per file.
100 Using Visual SoftICE

File or Line Disassembly

When symbol information is available, Visual SoftICE displays the
process ID and image name on the status bar at the bottom right of the
page. When this is the case, the Disassemble File and Disassemble Line
options become enabled under the Disassembly group of the pop-up
menu for the page.

� You can view or hide the disassembly code for the entire source file
by toggling the Disassemble File option on or off.

� You can view or hide a single source line by toggling the Disassemble
Line option on or off.

When disassembly code is visible in the source page, the header bar
appears at the top of the page. You can choose to view or hide the
Address and Op-code fields of the disassembly lines by toggling the Show
Address and Show Opcode Bytes options under the Disassembly group
of the pop-up menu for the page. You can also use the Page Preference
option to set the default mode for header display.

If the target is an IA64 CPU, Visual SoftICE displays the Predicate/Prefix
field on the disassembly header in addition to the other fields.

Source and Instruction Stepping

When the master is connected to a target that is stopped at the address
contained in the source page, Visual SoftICE highlights the line of the
current instruction pointer (IP). You can choose to step-over, step-into, or
step-out of the current source line.

If the page is in the mixed mode in which disassembly lines are available,
you can elect to do source stepping or instruction stepping. Use the
options under the Debug group of the pop-up menu for the page, the
function keys as defined in the Preference Settings, or the stepping
buttons on the main toolbar, to perform your stepping functions.

If you are source stepping and attempt a step-into when the related
source or .asm file is available, Visual SoftICE opens the file and
automatically highlights the line containing current IP. If no source file is
available, the step-into action behaves the same as step-over.
Chapter 4�The Visual SoftICE User Interface Pages 101

If you are instruction stepping in the mixed mode, Visual SoftICE
highlights the disassembly line for the current IP. If the current
instruction has a jump-to address to branch to, the yellow arrow on the
left of the highlighted line changes its direction to up or down,
depending on the branch address location, indicating that the next
instruction will be at a specific address. To view the jump-to line, you can
click the arrow, press <Ctrl><J>, or select Go To Jump from the pop-up
menu for the page. Visual SoftICE highlights the jump-to line when it
displays it.

You can always view the current IP line by pressing <Ctrl><I>, or by
selecting Go To Current IP from the pop-up menu for the page.

To run-to and stop at a specified source or disassembly line, you can set
the cursor to the line where you want to stop and press <Ctrl><R>, or
select Run To Here from the pop-up menu for the page.

Breakpoints

With symbol information available, you can set breakpoints at a source
line containing actual code via one of the following methods:

� Selecting Set Breakpoint under the Breakpoint group on the pop-up
menu for the page

� Pressing the F9 function key

� Clicking the Breakpoint button on the main toolbar

� Locating the cursor in the second column to the left of the code, and
right-clicking to access the Breakpoint pop-up menu.

If you attempt to set a breakpoint on a line that does not contain actual
code, Visual SoftICE sets the breakpoint at the next line containing code.
If a line is in the source/disassembly mixed mode, you can set the
breakpoint at any of the visible disassembly lines.

Once you set a breakpoint, you can disable or remove it via one of the
following methods:

� Selecting the applicable options from the breakpoint pop-up menu

� Using the function keys

� Using the buttons on the main toolbar

Any breakpoint changes made elsewhere in the system are
synchronously updated on the source page.
102 Using Visual SoftICE

View Line Numbers

You can right-click on the Source page and select View Line Numbers
from the pop-up menu to display line numbers for every line currently
contained in the Source page.

Bookmarks

In the source page, you can set a bookmark at any line in the source file,
but you cannot set bookmarks at the disassembly lines in mixed mode.
Bookmarks in the source page are represented by line numbers. You can
view or hide line numbers by toggling the Show Line Numbers option
on and off from the pop-up menu for the page, or by using <Ctrl><L> to
toggle the selection.

To remove bookmarks:

� You must have focus on a line with a bookmark on it. You can then
remove the bookmark for the line, or all bookmarks in the file, by
right-clicking and selecting the applicable option from the page's
pop-up menu.

� You can locate the cursor in the first column to the left of the code
and right-click to access the Bookmark pop-up menu.

You can view the bookmark list in the Go To dialog. From that dialog you
can view or run-to the specified bookmark via the Go To and Run To
buttons.

Go To

You can use the Go To dialog to:

� View or run-to a source line using its target address or function name

� View or run-to a line using its line number

� View a line containing the current IP

� View or run-to a selected bookmarked line

Go To Current IP

You can right-click on the page and select Go To Current IP from the
pop-up menu to view the line containing the current IP.
Chapter 4�The Visual SoftICE User Interface Pages 103

Go To Jump

When you are on a jump statement, you can right-click on the page and
select Go To Jump from the pop-up menu to move to the line where the
jump will go.

Run To Here

You can right-click on the page and select Run To Here from the pop-up
menu, and Visual SoftICE will run from the current IP to the line that
currently contains the cursor.

Set Next Statement

The Set Next Statement command moves the IP to the next statement.
You can execute the Set Next Statement command via one of the
following methods:

� Right-clicking to access the pop-up menu for the page

� Pressing <Ctrl><Shift><F10>

� Selecting the command from the Source Page drop-down menu

� Clicking the Set Next Statement toolbar button

If you attempt to execute the Set Next Statement command on a
specified line with an address outside of the function scope of the current
IP, and the warning level is not set to off, then Visual SoftICE displays a
warning message asking you to confirm that you want to set the IP to the
new address.

Find

You can use the Find dialog to search for a string in the current source
page.

Copy

The page only supports copy command to retrieve its data.

� You can select any text within the page and copy it to the clipboard.

� You can use Select All from the pop-up menu to highlight all the
lines on the page before copying them to the clipboard.
104 Using Visual SoftICE

AutoFocus

You can use the AutoFocusOpen setting to customize the behavior of the
source page when a target event occurs. If you select Source or
Disassembly or Source or Disassembly – No Focus, then when Visual
SoftICE can locate a source file for the current IP, it creates a source page.
If Visual SoftICE cannot locate a source file, it creates a disassembly page.

For more information on available settings and how they behave, refer to
AutoFocusOpen Settings in the on-line help.

Customize the User Interface

There are multiple attributes of the page that you can customize. They
are divided into two categories: per-page and application wide settings.
Per-page attributes are always remembered in the workspace when you
save it.

Per-Page Settings � There are no per-page settings for the Source page.

Application Wide
Settings

� You can use the AutoFocusOpen settings to control whether Visual
SoftICE opens a new page when none exists (or brings an existing
page to the top of the pad it's on), and places input focus on that
page.

� You can configure Visual SoftICE to place new Source pages on the
largest pad with the New Src/Disasm Pages to Largest Pad setting.

� You can configure Visual SoftICE to place new Source pages on a
named pad with the New Src/Disasm Pages to NAMED Pad setting.

Print

The page supports printing, and print-previewing of its contents.
Chapter 4�The Visual SoftICE User Interface Pages 105

106 Using Visual SoftICE

Chapter 5

Visual SoftICE Symbol
Management
� Visual SoftICE Symbol Management

� Images — Why you need access to them

� Symbols — Getting Setup in Visual SoftICE

Visual SoftICE Symbol Management
Due to the Visual SoftICE dual machine nature, symbol management is
very different from SoftICE, the single machine system debugger. In some
ways, symbol management is simplified, allowing dynamic table loading
and unloading, as well as automatic symbol retrieval. In other ways (for
those familiar with SoftICE) some preparation is required, in that the
system must be prepared properly to provide access to data that is
normally packaged up in the SoftICE NMS file creation process.

Where to Put the Symbols

With Visual SoftICE, the master loads and manages all symbols, exports,
and image data (PE headers, etc…) locally. This can be on a network
drive, or via a company MS Symbol Server, but the clear distinction to
understand is that symbols are used on the master side, not on the target.

Note: The one exception to this general rule is providing data to the target
core debugger about OS structures and locations for boot mode
operation. This is handled via a dedicated target side driver for the
target platform.
 107

What Symbols are Supported

Visual SoftICE supports PDB files (version 5 or later), and DBG files, for
each target platform and OS it supports. This includes support and
identification of images that have been optimized (usually kernel
components), support for DDK compiler/linker generated symbols, and
application generated symbols. Modern compilers and linkers support
features like incremental compilation, incremental linking, and “edit and
continue”. These useful rapid application development enhancements
complicate symbol file information, and sometimes can generate files
with missing data, or data that is out of date.

Visual SoftICE also supports user-defined symbols, of address or value
type. These are considered global in nature, are always accessible, and
always loaded. To learn more about user-defined symbols, refer to the
NAME command in the Visual SoftICE Command Reference.

Images — Why you need access to them
Symbols are only half the story, and can be considered meta-data about
the image that will be loaded into memory by the operating system. The
image itself contains information about the type and location of accurate
symbol files generated for it, section layout (memory partitioning within
the image), and export data (what publicly visible functions there are,
and their locations). Depending on the target architecture, and the type
of image, this file may also contain UNWIND data (useful stack-walking
information on IA64 and x86-64 platforms) and other useful
information.

Local Copies of Images

Keeping local copies of images you are debugging on the target is highly
recommended. This allows the master to look things up locally, instead
of attempting to retrieve data from the target over a transport. Also, keep
in mind that any image or parts of its memory may be paged out on the
target. This generally happens just when you need to access the paged
out data on a stopped machine.

Additionally, when preloading symbols to set breakpoints in drivers or
applications that have not yet been loaded into memory, the section
table of the image is required to fix up image relative addresses (especially
with symbols that contain OMAP data on x86 platforms).

Keeping a local copy accessible on the master allows access to the
necessary data, regardless of the targets current state.
108 Using Visual SoftICE

Note: Refer to the FGET command in the Visual SoftICE Command
Reference for retrieving files from the target to the master.

Tables – Active Table, Loading, and Unloading Commands

Visual SoftICE, like SoftICE, uses the metaphor of a table to manage
symbols to images. The TABLE command, without parameters, will
display the currently loaded symbol tables, and highlight the current or
active table. Entering the TABLE command with the verbose switch (-v)
shows that there is a table entry for every image in the active/current
process on the target.

Active Table

Many symbol commands will restrict their search to the active table for
performance reasons, unless user input specifically references another
table, or indicates a request to search all known tables (refer to the
following commands in the Visual SoftICE Command Reference: FILE,
SYM, TYPES).

The active or current table will automatically change as the user changes
the current UI context, either through the context bar, or the ADDR
command.

The active table can be directly changed by entering the TABLE
command with the name of one of the loaded tables.

Loading and Unloading

The following commands and actions apply to dynamic tables (those
symbol resources that are needed on demand, and that the system can
unload if not necessary).

� You can load a table for any in-memory image by use of the LOAD
command. You can optionally specify the exact path to the file
(otherwise the MS Symbol Server and/or search paths are used). The
file will only be loaded for images that exist, and for which a table
has not yet been loaded.

� You can force a RELOAD of a table (equivalent to an UNLOAD
followed by a LOAD command) for any image that currently exists.

� You can force a table to be unloaded by issuing the UNLOAD
command.
Chapter 5�Visual SoftICE Symbol Management 109

The following commands and actions apply to persistent tables (those
symbol resources that you have hand loaded, and stay loaded until you
unload them by hand).

� You can persistently load a table by use of the ADDSYM command.

� You can remove a persistent table by use of the DELSYM command.

Matching

Tables that are loaded (dynamically, or persistently) have matching
criteria to images in the operating system. The match between a given
symbol file and an image is achieved differently depending on the image,
the type of symbol file loaded, and by user image match settings.

Images have a name, extension, target architecture type (64,32,16bit),
signature type (PDB6, PDB7, etc…), timestamp, and in some cases, age
and/or GUID data for reference to symbol files. The image data will be
retrieved and compared to the symbol file to be loaded, using the
IMAGEMATCH setting, to conclude if the symbol file meets the
minimum criteria of a match.

Differences in target architecture are not allowed:

� 32bit symbols that match a 64bit image of the same name will not be
loaded.

� Symbols for a 64bit Itanium of the same name of that for a 64bit x86-
64 platform will not be loaded.

The IMAGEMATCH setting (refer to SET IMAGEMATCH in the Visual
SoftICE Command Reference) can be BEST (default), or EXACT.

� When this setting is BEST, symbols that are out of date, mismatched
on timestamp, GUID, signature, or only partially match the image
name and extension, are still allowed. This supports having symbols
that are “close” but not exact, which is sometimes good enough for
debugging.

� When BEST is not good enough, (or confusing), EXACT mode is
available, which means that image name, extension, signature, and
version (age, GUID, timestamp) must match exactly, or the table will
not load. This is useful to ensure you absolutely have the right
symbols for a given situation.
110 Using Visual SoftICE

Additionally, the TABLE command will display other pertinent
information that is discovered about loaded tables for an image; for
example, showing the “(PERF)” indicator in the status field, which
informs you that the image has been performance optimized since the
symbol file was generated, and some lookups may not match exactly
(refer to the TABLE command in the Visual SoftICE Command Reference
for more details).

Automatic, On-Demand Loading and Unloading

Automatic Loading

Visual SoftICE loads only the tables on-demand that are necessary.

� Tables are loaded for “current” images (images referenced in the
current process, and/or referenced in the current stack). As the OS
loads images, and those images are part of the current context, the
Symbol Engine will automatically load them.

� As debugger commands are issued that reference other tables, these
are loaded on-demand as well.

� All known images are tracked, and those not currently loaded yet are
considered in a “Deferred” state. Once loaded, the table remains
loaded until the image itself unloads, or the user forces it to unload
(refer to the UNLOAD command in the Visual SoftICE Command
Reference).

� Automatic, dynamic loading presumes that the path information has
been setup so it can retrieve symbols in local (or accessible)
directories, or from any configured MS Symbol Server, and that it
may find local exports and images as well.

Automatic Unloading

When the OS unloads an image, if the Symbol Engine has a matching
table, that table is dynamically unloaded as well.

Controls

To disable or enable automatic symbol table loading, use the SET
SYMTABLEAUTOLOAD on/off command. Automatic loading is enabled
by default.
Chapter 5�Visual SoftICE Symbol Management 111

Pre-Loading/Persistent Loading

It is often desirable to set breakpoints in images that have not yet been
loaded by the operating system. You can accomplish this in Visual
SoftICE by preloading symbols. These symbols are considered persistent.
Their match state is updated whenever image collections change, but
these tables are loaded into the symbol engine, even if there is no match.
Persistent symbols do not participate in automatic load or unload
behavior.

Commands
� To load persistent symbols, use the ADDSYM command.
� To unload persistent symbols, use the DELSYM command.

Integrated MS Symbol Server Access

Retrieval of operating system symbols using the Microsoft Symbol Server
technology is a great boon to productivity when working with a
heterogeneous set of target hardware and OS versions. This same
technology is reusable by end users to provide their own symbol files
(and file types) in private servers.

Visual SoftICE has directly integrated MS SymbolServer access into its
automatic, on-demand loading logic. If so configured, when Visual
SoftICE does not find the file it is looking for in the local search
directories, it will attempt to retrieve the file from a symbol server. The
paths to use, symbol server to attempt a connection to, and whether this
behavior is enabled or not, is fully configurable.

GUI Configuration

You can configure the MS Symbol Server Access and the server and local
directory information from the Paths element under Global Settings in
the Preferences dialog.

� To set the server and local directory Visual SoftICE will bring files
into, configure the MS Symbol Server Paths element.

� To enable symbol server retrieval (disabled by default), configure the
MS Symbol Server(s) Enabled element.
112 Using Visual SoftICE

Equivalent Commands

You can configure the MS Symbol Server Access and the server and local
directory information by issuing some Visual SoftICE commands at the
command line in the Command page.

� To modify or add a symbol server, use the SET SYMPATH command.

� To enable symbol server retrieval (disabled by default), use the SET
SYMSRVSEARCH on/off command.

Using Exports

It is often useful to have exports in the absence of, or in addition to, full
or partial symbolic data for images. Visual SoftICE supports a means to
use exports, when available, in addition to any symbol files.

� A path to the top of an exports tree is specified (refer to the SET
EXPORTPATH command in the Visual SoftICE Command Reference),
and exports can then be extracted on demand from the connected
target (refer to the GETEXP command in the Visual SoftICE
Command Reference).

� Exports are stored with as much matching information as is available
in the image on the target, in a local directory structure similar to the
storage mechanism MS Symbol Servers uses for symbols

� You can specify a wildcard “*” in the GETEXP command, getting
exports for everything in the specified directory. You can also specify
the flag (-s) to walk subdirectories in the retrieval. Please note that
retrieving exports for every image file on a target can be a very
lengthy process (but is possible).

Symbols — Getting Setup in Visual SoftICE
This section provides a couple steps to get you up and running quickly
with symbols and Visual SoftICE.

Once these are complete, you should be able to easily manage the tables
loaded into Visual SoftICE via the TABLE, ADDSYM, DELSYM, LOAD,
UNLOAD, and RELOAD commands.

Once proper symbols are loaded, you should be able to explore available
data via the EXP, FILE, LOCALS, SYM and TYPES commands.
Chapter 5�Visual SoftICE Symbol Management 113

Setting Up General Paths

Configure the following Global General Path Settings:

� Image Search — Where you will put copies of the executables you
will debug on the target.

� Source Search — Where your source code lives.
� User Symbol Search Path — Where your symbols live.
� MS Symbol Server Paths — Where the MS Symbol Server should be

found, and where it should store things its retrieves.
� KD Extension Paths (optional) — Where to find KD extensions

when no absolute path is specified.

Setting Up Visual SoftICE Paths

Configure the following Global Visual SoftICE Path Settings:

� Export — Where you want the top of the retrieved export directory
structure to grow.

� Script Search Path (optional) — Where to find scripts when no
absolute path is specified.

Settings Notes

Path Settings

Path settings come in two types, a path list (which is an ordered list of
paths to search, each one semicolon separated) and a single path entry.
All path types for Visual SoftICE accept the ellipses (…) syntax at the end
of a directory name to indicate Visual SoftICE should search all
directories below the one specified.

Thus to get the source search path to include all your projects and source
code, the following example might be useful:

SET SRCPATH c:\development\driver_projects\…

In this case, Visual SoftICE searches all the files in
c:\development\driver_projects, and any subdirectories underneath
that directory, for a matching source file.
114 Using Visual SoftICE

Per-Workspace Settings Notes

Workspaces are intended to be containers not only of GUI layout, but
also of user preferences. These might be used for particular targets, or
types of targets (one for x86, one for IA64, etc…), or even one workspace
for debugging, and one for development.

Whatever way they are used, the per-workspace settings provide a means
to augment or override global (application wide) settings. The case of
interest here is for Path Settings, specifically Per-Workspace General
Path settings.

Under this section of preferences, the Image, Script, Source, and User
Symbol paths are repeated. These entries are provided so that you may
prepend additional search paths to the global search paths already
specified under Global General Path Settings. Optionally (and on a per-
path basis), you can replace the global settings of the same name. Visual
SoftICE provides a checkbox allowing you to choose whether the path
you specify here will prepend or replace the Global General Path setting.

To evaluate the effect these settings have, after modifying them, issue the
SET SYMPATH command. The output will allow you to see how Visual
SoftICE is using your configuration.

Toolbars & Status Bar Settings Notes

Visual SoftICE provides two optional status bar fields to give you quick
updates of the Symbol Engine’s current status and actions.

VSI System Activity Messages

This field will be updated when the Symbol Engine takes an action to
retrieve, load, or make a given table active. This status bar field is shown
in the default workspaces provided with the product.
Chapter 5�Visual SoftICE Symbol Management 115

VSI Symbol Table Status

This field shows:

� The current table name, within the set of loaded tables

� The status of all active tables for the current context

� A green icon indicates all tables for the current context are loaded
and matched.

� A yellow warning icon indicates that some of the tables for the
current context may have mismatch or other pertinent warning
information.

� A red error icon indicates some tables for the current context are
missing.

� The status of automatic table loading

� A folder and magnifying glass icon is displayed when enabled,
the same icon with a red circle and line over it indicates it is
disabled.

� The status of symbol server retrieval (enabled or disabled)

� A server icon is displayed when enabled, the same icon with a red
circle and line over it indicates it is disabled

To display these fields on your status bar, click the Customize button
under the Status Bar section of the Toolbars & Status Bar tab in the
Preferences dialog.

Visual SoftICE will save your status bar configuration in the active
workspace, and restore it any time you open that workspace.
116 Using Visual SoftICE

Chapter 6

Using Breakpoints
� Introduction

� Types of Breakpoints Supported by Visual SoftICE

� Understanding Breakpoint Contexts

� Virtual Breakpoints

� Setting a Breakpoint Action

� Conditional Breakpoints

� Elapsed Time

� Breakpoint Statistics

� Referring to Breakpoints in Expressions

� Manipulating Breakpoints

� Using Embedded Breakpoints

Introduction
You can use Visual SoftICE to set breakpoints on program execution,
memory location reads and writes, interrupts, and reads and writes to I/O
ports. Visual SoftICE assigns a breakpoint index to each breakpoint. You
can use this breakpoint index to identify breakpoints when you delete,
disable, enable, or reference them.

All Visual SoftICE breakpoints are sticky, which means that Visual
SoftICE tracks and maintains a breakpoint until you intentionally clear
or disable it using the BC or the BD command. Breakpoints on a target
machine are removed when you disconnect, or the connection times out.
 117

The number of breakpoints you can set on memory location (BPMs) and
I/O ports (BPIOs) is limited by the number of debug registers the target
processor supports (e.g. x86 supports 4).

Where symbol information is available, you can set breakpoints using
function names. When in a disassembly, source, or stack page, you can
set breakpoints via popup context menus, or at anytime from the
breakpoint page, or the debug main menu. A valuable feature is that you
can set breakpoints in an image before it is loaded.

Types of Breakpoints Supported by Visual SoftICE
Visual SoftICE provides a powerful array of breakpoint capabilities that
take full advantage of the target architecture, as follows:

� Execution Breakpoints: Visual SoftICE replaces existing instructions
with architecture appropriate breaks. You use the BPX command to
set execution breakpoints.

� Memory Breakpoints: Visual SoftICE uses the target processor debug
registers to break when a certain byte/word/dword/qword of memory
is read, written, or executed. You use the BPM command to set
memory breakpoints on scalar data types. You use the BPR command
(where supported) to set memory breakpoints on a larger range of
memory.

� Interrupt Breakpoints: Visual SoftICE allows setting breakpoints on
OS fault handlers or driver provided interrupt service routines (see
INTOBJ command). You use the BPINT command to set interrupt
breakpoints.

� I/O Breakpoints: Visual SoftICE uses target processor debug registers
to watch for an IN or OUT instruction going to a particular port
address. You use the BPIO command to set I/O breakpoints.

� Image Load Breakpoints: Visual SoftICE supports two mechanisms
to stop on an image load – either when an image matching a name is
loaded (using the BPLOAD command), or when any image in the
system loads (using the SET GLOBALBREAK command).

� Window Message Breakpoints: Visual SoftICE triggers these
breakpoints when a particular message or range of messages arrives at
a window. This is not a fundamental breakpoint type; it is just a
convenient feature built on top of the other breakpoint primitives.
You use the BMSG command to set window message breakpoints.
118 Using Visual SoftICE

Breakpoint Options

Visual SoftICE supports logging, conditions and actions (triggered) on
most breakpoint types.

You can qualify each type of breakpoint with the following options:

� An optional logged flag can be specified [-l] which indicates that
statistics should be updated, but execution continued when the
breakpoint is encountered.

� A conditional expression [IF expression]: The expression must
evaluate to non-zero (TRUE) for the breakpoint to trigger. Refer to
“Conditional Breakpoints” on page 125.

� A breakpoint action [DO “command1;command2;…”]: A series of
Visual SoftICE commands can automatically execute when the
breakpoint triggers. You can use this feature in concert with user-
defined macros to automate tasks that would otherwise be tedious.
Refer to “Setting a Breakpoint Action” on page 125.

Note: For complete information on each breakpoint command, refer to the
Visual SoftICE Command Reference.

Execution Breakpoints

An execution breakpoint traps executing code such as a function call or
language statement. This is the most frequently used type of breakpoint.
By replacing an existing instruction with an architecture appropriate
break instruction, Visual SoftICE takes control when execution reaches
the breakpoint.

Visual SoftICE provides many ways for setting execution breakpoints:
using the BPX command, the breakpoint page, the main debug menu,
and off numerous context menus on other pages. The following section
describes how to use the commands for setting breakpoints.

Using the BPX Command to Set Breakpoints

Use the BPX command with any of the following parameters to set an
execution breakpoint:

BPX [-l] address [IF conditional-expression] [DO
“command1;command2;…”]

IF expression Refer to “Conditional Breakpoints” on page 125.

DO “command1;command2;…” Refer to “Setting a Breakpoint Action” on
page 125.
Chapter 6�Using Breakpoints 119

To set a breakpoint on your application’s WinMain function, use this
command:

BPX WinMain

Memory Breakpoints

A memory breakpoint uses the debug registers found on the target
processor to monitor access to a certain memory location. This type of
breakpoint is extremely useful for finding out when and where a program
variable is modified, and for setting an execution breakpoint in read-only
memory. You are limited by the number of processor debug registers to
how many breakpoints may be set at one time.

Use the BPM command to set memory breakpoints on scalar data type
sized memory blocks:

BPM[size] [-l] address [R | W | RW | X] [IF conditional-
expression][DO “command1;command2;…”]

The following example sets a memory breakpoint to trigger when a value
of 5 is written to the Dword (4-byte) variable MyGlobalVariable.

BPMD MyGlobalVariable W IF MyGlobalVariable==5

If the target location of a BPM breakpoint is frequently accessed,
performance can be degraded regardless of whether the conditional
expression evaluates to FALSE.

Use the BPR command to set a memory breakpoint on a larger range of
memory.

Note: The BPR command is currently available only on the IA64 processor.
BPR [-l] start-address end-address [R|W|RW|X] [IF conditional-
expression] [DO “command1;command2;…”]

BPR [-l] start-address L length [R|W|RW|X] [IF conditional-
expression] [DO “command1;command2;…”]

size B (byte) W (word) D (dword) Q (qword).
BPM and BPMB Set a byte-size breakpoint.
R, W, and RW Break on reads, writes, or both.

X Breaks on execution; this is more powerful than a
BPX-style breakpoint because memory does not
need to be modified, enabling such options as
setting breakpoints in ROM or setting breakpoints
on addresses that are not present.

IF expression Refer to “Conditional Breakpoints” on page 125.

DO “command1;command2;…” Refer to “Setting a Breakpoint Action” on
page 125.
120 Using Visual SoftICE

The following example sets a memory breakpoint to trigger when a value
of 5 is written to the Dword (4-byte) variable MyGlobalVariable.

BPMD MyGlobalVariable W IF MyGlobalVariable==5

If the target location of a BPM breakpoint is frequently accessed,
performance can be degraded regardless of whether the conditional
expression evaluates to FALSE.

Interrupt Breakpoints

Sets an execution breakpoint on an interrupt handler, proivided by either
the OS or Driver.

Use the BPINT command to set interrupt breakpoints:

BPINT [-l] interrupt-number [service-address] [IF conditional-
expression] [DO “command1;command2;…”]

Visual SoftICE will stop either on the OS fault handler, or the entry point
to the driver provided Interrupt Service Routine. You can list all
interrupts and their handlers by using the IT/IDT command.

I/O Breakpoints

An I/O breakpoint monitors reads and writes to a port address. The
breakpoint traps when an IN or OUT instruction accesses the port.

Use the BPIO command to set I/O breakpoints:

BPIO [-l] port [R|W|RW] [IF conditional-expression] [IF
expression] [DO “command1;command2;…”]

interrupt-number Architecture supported number.

service-address Often an interrupt is shared between different
handler services. This optional parameter allows
for setting the breakpoint on the exact service. If
excluded, the breakpoint will be set on all
service handlers associated with the interrupt.

IF expression Refer to “Conditional Breakpoints” on page 125.

DO “command1;command2;…” Refer to “Setting a Breakpoint Action” on
page 125.

R, W, and RW Break on reads (IN instructions), writes (OUT
instructions), or both, respectively.

IF expression Refer to “Conditional Breakpoints” on page 125.

DO “command1;command2;…” Refer to “Setting a Breakpoint Action” on
page 125.
Chapter 6�Using Breakpoints 121

When an I/O breakpoint triggers and Visual SoftICE stops, the current
instruction is the instruction following the IN or OUT that caused the
breakpoint to trigger. Unlike BPM breakpoints, there is no size
specification; any access to the port-number, whether byte, word, dword,
or larger triggers the breakpoint. Any I/O that spans the I/O breakpoint
will also trigger the breakpoint. For example, if you set an I/O breakpoint
on port 2FF, a word I/O to port 2FE would trigger the breakpoint.

Use the following command to set a breakpoint to trigger when a value is
read from port 3FEH with the upper 2 bits set:

BPIO 3FE R IF (AL & C0)== C0

The condition is evaluated after the instruction completes. The value will
be in AL, AX, or EAX because all port I/O, except for the string I/O
instructions (which are rarely used), use the EAX register.

I/O breakpoints appear as blue throughout the GUI.

Image Load Breakpoints

An image load breakpoint is a stop request when a given image loads in
the operation system and the module or dll contains an entry point that
gets executed. This can be filtered to when a named image is loaded, or
when ANY image loads, with the following commands:

BPLOAD [-once] image-name [DO “command1;command2;…”]

SET GLOBALBREAK [off/load]

This is a general setting for the debugger, and if set to LOAD, the target
will stop on every image loaded into the system.

-once One-shot breakpoint. Once this breakpoint is hit,
it is automatically deleted.

image-name Name to match for the image or module. This can
be a partial match, but does not support
wildcards.

DO “command1;command2;…” Refer to “Setting a Breakpoint Action” on
page 125.
122 Using Visual SoftICE

Window Message Breakpoints

Use a window message breakpoint to trap a certain message or range of
messages delivered to a window procedure. Although you could
implement an equivalent breakpoint yourself using BPX with a
conditional expression, the following BMSG command is easier to use:

BMSG [-l] window-handle [begin-msg [end-msg]] [IF conditional-
expression] [DO “command1;command2;…”]

When specifying a message or a message range, you can use the symbolic
name, for example, WM_NCPAINT. Use the WMSG command to get a list
of the window messages that Visual SoftICE understands. If no message
or message range is specified, any message will trigger the breakpoint.

To set a window message breakpoint for the window handle 1001E, use
the following command:

BMSG 1001E WM_NCPAINT

Visual SoftICE is smart enough to take into account the address context
of the process that owns the window, so it does not matter what address
context you are in when you use BMSG.

window-handle Value returned when the window was created;
you can use the HWND command to get a list of
windows with their handles.

begin-message Single Windows message or the lower message
number in a range of Windows messages. If you
do not specify a range with an end-message, then
only the begin-message will cause a break.

For both begin-message and end-message, the
message numbers can be specified either in
hexadecimal or by using the actual ASCII names
of the messages, for example, WM_QUIT.

end-message Higher message number in a range of Windows
messages.

IF expression Refer to “Conditional Breakpoints” on page 125.

DO “command1;command2;…” Refer to “Setting a Breakpoint Action” on
page 125.
Chapter 6�Using Breakpoints 123

Understanding Breakpoint Contexts
A breakpoint context consists of the address context in which the
breakpoint was set, and in what image the breakpoint is in, if any. The
concept of breakpoint context applies to all breakpoints, and there are
two fundamental types of breakpoints supported by Visual SoftICE, Fixed
Address, and Image-Relative.

Image-Relative Breakpoints

Image-Relative breakpoints are the most common, and most useful type
— where the address is understood to be in the context of a given image
(even if that image has not loaded, or the its memory been paged in).
Any image-relative breakpoint will trigger in any instance of the image
that loads, regardless of its address or process (e.g. a breakpoint set in an
OS image like KERNEL32.DLL breaks in every process context that has the
image loaded, regardless of what context the breakpoint was initially set
in). Image relative breakpoints require accurate symbols to be available in
order to set them. These types of breakpoints appear as green throughout
the GUI.

Fixed Address Breakpoints

Fixed Address breakpoints are uncommon, and not as useful. They are set
at an address in a particular process context. They stay at that address,
and are not shared unless their placement accidentally coincides with
another OS mapping. Fixed addresses are not recommended, as they can
be system fatal if used incorrectly. These types of breakpoints appear as
yellow or brown throughout the GUI. Their appearance generally means
missing or mismatched symbols are in use.

Virtual Breakpoints
In Visual SoftICE, you can set breakpoints in images before they load,
and it is not necessary for a page to be present in physical memory for a
breakpoint to be set. In such cases, the breakpoint is virtual; it will be
automatically planted when the image loads or the page becomes
present. Virtual breakpoints can only be set when symbols are available.
124 Using Visual SoftICE

Setting a Breakpoint Action
You can set a breakpoint to execute a series of Visual SoftICE commands,
including user-defined macros, after the breakpoint is triggered. You
define these breakpoint actions with the DO option, which is available
with every breakpoint type:

DO “command1;command2;…”

The body of a breakpoint action definition is a sequence of Visual SoftICE
commands, or other macros, separated by semicolons. You need not
terminate the final command with a semicolon.

Breakpoint actions are closely related to macros. Breakpoint actions are
essentially unnamed macros that do not accept command-line
arguments. Breakpoint actions, like macros, can call upon macros. In
fact, a prime use of macros is to simplify the creation of complex
breakpoint actions.

If a breakpoint is marked as log-only, the action will not be executed.

The following examples illustrate the basic use of breakpoint actions:

BPX EIP DO “dd eax”

BPX EIP DO “data 1;dd eax”

BPMB dataaddr if (byte(*dataaddr)==1) do “? IRQL”

Conditional Breakpoints
Conditional breakpoints provide a fast and easy way to isolate a specific
condition or state within the system (or application) you are debugging.
By setting a breakpoint on an instruction or memory address and
supplying a conditional expression, Visual SoftICE will only trigger if the
breakpoint evaluates to non-zero (TRUE). Because the Visual SoftICE
expression evaluator handles complex expressions easily, conditional
expressions take you right to the problem or situation you want to debug
with ease.

Most Visual SoftICE breakpoint commands accept conditional
expressions using the following syntax:

breakpoint-command [breakpoint options] [IF conditional
expression][DO “commands”]
Chapter 6�Using Breakpoints 125

The IF keyword, when present, is followed by any expression that you
want to be evaluated when the breakpoint is triggered. The breakpoint
will be ignored if the conditional expression is FALSE (zero). When the
conditional expression is TRUE (non-zero), Visual SoftICE stops and
displays the reason for the break, which includes the conditional
expression.

Most of the following x86 examples contain system-specific values that
vary depending on the exact version of Windows NT/2000/XP you are
running.

� Watch CSRSS HWND objects (type 1) being created:

bpx winsrv!HMAllocObject IF (esp+c == 1)

� Watch CSRSS thread info objects (type 6) being destroyed:

bpx winsrv!HMFreeObject+0x25 IF (byte(esi+8) == 6)

� Watch process object-handle-tables being created:

bpx ntoskrnl!ExAllocatePoolWithTag IF (esp+c == ‘Obtb’)

� Watch a heap block (230CD8) get freed:

bpx ntddl!RtlFreeHeap IF (esp+c == 230CD8)

Conditional Breakpoint Count Functions

Visual SoftICE supports the ability to monitor and control breakpoints
based on the number of times a particular breakpoint has or has not been
triggered. You can use the following count functions in conditional
expressions:

� BPCOUNT
� BPMISS
� BPTOTAL
� BPINDEX

BPCOUNT

The value for the BPCOUNT function is the current number of times that
the breakpoint has been evaluated as TRUE.

Use this function to control the point at which a triggered breakpoint
causes a popup to occur. Each time the breakpoint is triggered, the
conditional expression associated with the breakpoint is evaluated. If the
condition evaluates to TRUE, the breakpoint instance count (BPCOUNT)
increments by one. If the conditional evaluates to FALSE, the breakpoint
miss instance count (BPMISS) increments by one.
126 Using Visual SoftICE

The fifth time the breakpoint triggers, the BPCOUNT equals five, so the
conditional expression evaluates to TRUE and Visual SoftICE stops.

BPX myaddr IF (bpcount==5)

Use BPCOUNT only on the righthand side of compound conditional
expressions for BPCOUNT to increment correctly:

BPX myaddr if (eax==1) && (bpcount==5)

Due to the early-out algorithm employed by the expression evaluator, the
BPCOUNT==5 expression will not be evaluated unless EAX==1 (The C
language works the same way). Therefore, by the time BPCOUNT==5 gets
evaluated, the expression is TRUE. BPCOUNT will be incremented and if
it equals five, the full expression evaluates to TRUE and Visual SoftICE
stops. If BPCOUNT != 5, the expression fails, BPMISS is incremented and
Visual SoftICE will not stop (although BPCOUNT is now 1 greater).

Once the full expression returns TRUE, Visual SoftICE stops, and all
instance counts (BPCOUNT and BPMISS) are reset to 0.

Note: Do NOT use BPCOUNT before the conditional expression, otherwise
BPCOUNT will not increment correctly:
BPX myaddr if (bpcount==5) && (eax==1)

BPMISS

The value for the BPMISS expression function is the current number of
times that the breakpoint was evaluated as FALSE.

The expression function is similar to the BPCOUNT function. Use it to
specify that Visual SoftICE stop in situations where the breakpoint is
continually evaluating to FALSE. The value of BPMISS will always be one
less than you expect, because it is not updated until the conditional
expression is evaluated. You can use the (>=) operator to correct this
delayed update condition.

BPX myaddr if (eax==43) || (bpmiss>=5)

Due to the early-out algorithm employed by the expression evaluator, if
the expression eax==43 is ever TRUE, the conditional evaluates to TRUE
and Visual SoftICE stops. Otherwise, BPMISS is updated each time the
conditional evaluates to FALSE. After five consecutive failures, the
expression evaluates to TRUE and Visual SoftICE stops.
Chapter 6�Using Breakpoints 127

BPTOTAL

The value for the BPTOTAL expression function is the total number of
times that the breakpoint was triggered.

Use this expression function to control the point at which a triggered
breakpoint causes a stop to occur. The value of this expression is the total
number of times the breakpoint was triggered (refer to the Hits field in
the output of the BSTAT command) over its lifetime. This value is never
cleared.

The first 50 times this breakpoint is triggered, the condition evaluates to
FALSE and Visual SoftICE will not pop up. Every time after 50, the
condition evaluates to TRUE, and Visual SoftICE stops on this and every
subsequent trap.

BPX myaddr if (bptotal > 50)

You can use BPTOTAL to implement functionality identical to that of
BPCOUNT. Use the modulo “%” operator as follows:

if (!(bptotal%COUNT))

The COUNT is the frequency with which you want the breakpoint to
trigger. If COUNT is four, Visual SoftICE stops every fourth time the
breakpoint triggers.

BPINDEX

Use the BPINDEX expression function to obtain the breakpoint index to
use with breakpoint actions.

This expression function returns the index of the breakpoint that caused
Visual SoftICE to stop. This index is the same index used by the BL, BC,
BD, BE, BPE, BPT, and BSTAT commands. You can use this value as a
parameter to any command that is being executed as an action.

The following example of a breakpoint action causes the BSTAT
command to be executed with the breakpoint that caused the action to
be executed as its parameter:

BPX myaddr do “bstat bpindex”

This example shows a breakpoint that uses an action to create another
breakpoint:

BPX myaddr do “t;bpx @esp if(tid==_tid) do \“bc bpindex\”;g”

BPINDEX is intended to be used with breakpoint actions, and causes an
error if it is used within a conditional expression. Its use outside of
actions is allowed, but the result is unspecified and you should not rely
on it.
128 Using Visual SoftICE

Using Local Variables in Conditional Expressions

Visual SoftICE lets you use local variable names in conditional
expressions as long as the type of breakpoint is an execution breakpoint
(BPX or BPM X). Visual SoftICE does not recognize local symbols in
conditional expressions for other breakpoint types, such as BPIO or
BPMD RW, because they require an execution scope. This type of
breakpoint is not tied to a specific section of executing code, so local
variables have no meaning.

When using local variables in conditional expressions, functions
typically have a prologue where local variables are created and an
epilogue where they are destroyed. You can access local variables after the
prologue code completes execution and before the epilogue code begins
execution. Function parameters are also temporarily inaccessible using
symbol names during prologue and epilogue execution, because of
adjustments to the stack frame.

To avoid these restrictions, set a breakpoint on either the first or last
source code line within the function body. We will use the following
“foobar function” to explain this concept.

Foobar Function
1:DWORD foobar (DWORD foo)
2:{
3:DWORDfooTmp=0;
4:
5:if(foo)
6:{
7:fooTmp=foo*2;
8:}else{
9:fooTmp=1;
10:}
11:
12:return fooTmp;
13:}

Source code lines 1 and 2 are outside the function body. These lines
execute the prologue code. If you use a local variable at this point, you
receive the following symbol error:

>BPX foobar if(foo==1)
error: Undefined Symbol (foo)

Set the conditional on the source code line 3, where the local variable
fooTmp is declared.
Chapter 6�Using Breakpoints 129

Source code line 13 marks the end of the function body. It also begins
epilogue code execution; thus, local variables and parameters are out of
scope.

Although it is possible to use local variables as the input to a breakpoint
command, such as BPMD RW, you should avoid doing this. Local
variables are relative to the stack, so their absolute address changes each
time the function scope where the variable is declared executes. When
the original function scope exits, the address tied to the breakpoint no
longer refers to the value of the local variable.

Referencing the Stack in Conditional Breakpoints

If you create your symbol file with full symbol information, you can
access function parameters and local variables through their symbolic
names, as described in “Using Local Variables in Conditional
Expressions” on page 129. If, however, you are debugging without full
symbol information, you need to reference function parameters and local
variables on the stack.

Note: The following section is specific to x86 32-bit flat application or
system code.

Function parameters are passed on the stack, so you need to de-reference
these parameters through the ESP or EBP registers. Which one you use
depends on the function’s prologue and where you set the actual
breakpoint in relation to that prologue.

Most 32-bit functions have a prologue of the following form:

PUSH EBP

MOV EBP,ESP

SUB ESP,size (locals)

Which sets up a stack frame as follows:

� Use either the ESP or EBP register to address parameters. Using the
EBP register is not valid until the PUSH EBP and MOV EBP, ESP
instructions are executed. Also note that once space for local
variables is created (SUB ESP, size) the position of the parameters
relative to ESP needs to be adjusted by the size of the local variables
and any saved registers.

� Typically you set a breakpoint on the function address, for example:

BPX IsWindow
130 Using Visual SoftICE

When this breakpoint is triggered, the prologue has not been
executed, and parameters can easily be accessed through the ESP
register. At this point, use of EBP is not valid.

Note: This assumes a stack-based calling convention with arguments
pushed right-to-left.

To be sure that de-referencing the stack in a conditional expression
operates as you would expect, use the following guidelines.

� If you set a breakpoint at the exact function address, for example,
BPX IsWindow, use ESP+(param# * 4) to address parameters, where
param# is 1…n.

� If you set a breakpoint inside a function body (after the full prologue
has been executed), use EBP+(param# * 4)+4 to address parameters,
where param# is 1…n. Be sure that the routine does not use the EBP
register for a purpose other than a stack-frame.

� Functions that are assembly-language based or are optimized for
frame-pointer omission may require that you use the ESP register,
because EBP may not be set up correctly.

Note: For x86, once the space for local variables is allocated on the stack,
the local variables can be addressed using a negative offset from EBP.
The first local variable is at EBP-4. Simple data types are typically
Dword sized, so their offset can be calculated in a manner similar to
function parameters. For example, with two pointer local variables,
one will be at EBP-4 and the other will be at EBP-8.

Current EBP →

Current ESP →

PARAM n ESP+(n*4), or EBP+(n*4)+4
Pushed by
caller

PARAM #2 ESP+8, or EBP+C

PARAM #1 ESP+4, or EBP+8

RET EIP ⇐ Stack pointer on entry

Call prologue

SAVE EBP ⇐ Base pointer (PUSH EBP,
MOV EBP,ESP)

LOCALS+size-1

LOCALS+0
⇐ Stack pointer after prologue

(SUB ESP, size (locals))

SAVE EBX optional save of ‘C’ registers
Registers
saved by
compiler

SAVE ESI

SAVE EDI ⇐ Stack pointer after registers
are saved

Stack Top

Stack Bottom
Chapter 6�Using Breakpoints 131

Performance

Conditional breakpoints have some overhead associated with run-time
evaluation. Under most circumstances you see little or no effect on
performance when using conditional expressions. In situations where
you set a conditional breakpoint on a highly accessed data variable or
code sequence, you may notice slower system performance. This is due to
the fact that every time the breakpoint is triggered, the conditional
expression is evaluated. If a routine is executed hundreds of times per
second (such as ExAllocatePool), the fact that any type of breakpoint
with or without a conditional is trapped and evaluated with this
frequency results in some performance degradation.

Duplicate Breakpoints

Once a breakpoint is set on an address, you cannot set another
breakpoint on the same address. With conditional expressions, however,
you can create a compound expression using the logical operators (&&)
or (||) to test more than one condition at the same address.

Elapsed Time
Visual SoftICE supports using the target processor time stamp counter.
Every time Visual SoftICE stops due to a breakpoint, the elapsed time
displays since the last time Visual SoftICE stopped. The time displays
after the break reason in seconds, milliseconds, or microseconds, and this
can be seen in the command page, or breakpoint page history log.

Most processor time stamp counters are highly accurate, but you must
keep the following issues in mind:

� There is overhead involved in stopping Visual SoftICE, which may
impact the results very slightly.

� If a hardware interrupt occurs before the breakpoint goes off, all the
interrupt processing time is included.

� Certain processors will vary the clock rate dynamically, for power
management reasons.
132 Using Visual SoftICE

Breakpoint Statistics
Visual SoftICE collects statistical information about each breakpoint,
including the following:

� Total number of hits, breaks, misses, and errors
� Current hits and misses

Use the BSTAT command to display this information. Refer to the Visual
SoftICE Command Reference for more information on the BSTAT command.

Referring to Breakpoints in Expressions
You can combine the prefix “BP” with the breakpoint index to use as a
symbol in an expression. This works for all BPX and BPM breakpoints.
Visual SoftICE uses the actual address of the breakpoint.

To disassemble code at the address of the breakpoint with index 0, use
the command:

U BP0

Manipulating Breakpoints
Visual SoftICE provides a variety of commands for manipulating
breakpoints such as listing, modifying, deleting, enabling, and disabling
breakpoints. Breakpoints are identified by breakpoint index numbers,
which are uniquely assigned. Table describes the breakpoint
manipulation commands.

Note: Refer to the Visual SoftICE Command Reference for more information
on each of these commands.

Table 6-1. Visual SoftICE Breakpoint Manipulation Commands

Command Description

BD Disable a breakpoint.

BE Enable a breakpoint.

BL List current breakpoints.

BC Clear (remove) a breakpoint.
Chapter 6�Using Breakpoints 133

Using Embedded Breakpoints
It may be helpful for you to embed a breakpoint in your program source
rather than setting a breakpoint with Visual SoftICE. To embed a
breakpoint in your program, do the following:

� Place an INT 1 or INT 3 instruction at the desired point in the
program source.

� To enable Visual SoftICE to pop up on such embedded breakpoints,
use one of the following commands:

� I1HERE ON for INT 1 breakpoints

� I3HERE ON for INT 3 breakpoints
134 Using Visual SoftICE

Chapter 7

Using Expressions
� Expression Values

� Supported Operators

� Forming Expressions

� Expression Evaluator Type System

Expression Values
The Visual SoftICE expression evaluator determines the values of
expressions used with Visual SoftICE commands and conditional
breakpoints. It provides full operator precedence; support for standard C
language arithmetic, bit-wise, and logical operators; predefined macros,
functions, and casts for data type conversion; and access to common
Visual SoftICE and operating system values.

The Visual SoftICE expression evaluator parses and evaluates expressions
similarly to the way a C or C++ language compiler translates expressions.
If you are comfortable with either language, you are already familiar with
the grammar and syntax of Visual SoftICE expressions.

There are no limitations on the complexity of an expression. You can
combine multiple operators, operands, and expressions to create
compound expressions for conditional breakpoints or expression
evaluation.

This example uses a compound expression to trigger a breakpoint if the
first parameter (ESP+4) passed to the IsWindow() API function is an
HWND with the value of 0x10022 or 0x1001E. If either of the two
expressions is TRUE, the conditional expression is TRUE, and the
breakpoint triggers:

BPX IsWindow if (esp+4 == 10022) || (esp+4 == 1001E)
 135

Supported Operators
The Visual SoftICE expression evaluator supports the following operators
sorted by type:

Note: Use the SET EE_IMPL_DEREF command to control the expression
evaluator's behavior regarding dereferencing. If you have set
EE_IMPL_DEREF to on, and the expression evaluator encounters an
expression containing a symbol that is a pointer, it will use the value
it points to for evaluation. If you have set EE_IMPL_DEREF to off, and
the expression evaluator encounters an expression containing a
symbol that is a pointer, it will use the address of the pointer for
evaluation.

Table 7-1. Visual SoftICE Indirection Operators

Indirection Operators Example

* *eax (gets the Dword value pointed
to by eax)

&symbol-name &Foo (gets the address of the sym-
bol Foo)

[] (array subscript) Foo[2] (gets the second element of
the array Foo)

Table 7-2. Visual SoftICE Math Operators

Math Operators Example

+ eax + 1

- ebp - 4

* ebx * 4

/ Symbol / 2

% (modulo) eax % 3

<< (logical shift left) bl << 1 (result is bl shifted left
by 1)

>> (logical shift right) eax >> 2 (result is eax shifted
right by 2)
136 Using Visual SoftICE

Operator Precedence

Operator precedence within the Visual SoftICE expression evaluator is
equivalent to the C language operator precedence. Operator precedence
plays a crucial part in evaluating expressions, so the order in which you
input expression operators can have a dramatic result on the final result
of the expression. To override the default operator precedence to produce
a desired result, use parentheses to force the order of evaluation.

Forming Expressions
Tip: Use the ? or EVAL
(evaluate expression)
command to display the
result of any expression.

The Visual SoftICE expression evaluator accepts a variety of operands,
such as symbols, register names, user-defined symbols, and numbers,
that you can combine with any Visual SoftICE operator. Visual SoftICE
places an emphasis on providing flexibility of expression, so input is as
natural as possible.

Table 7-3. Visual SoftICE Bitwise Operators

Bitwise Operators Example

& (bitwise AND) eax & F7

| (bitwise OR) Symbol | 4

^ (bitwise XOR) ebx ^ 0xFF

Table 7-4. Visual SoftICE Logical Operators

Logical Operators Example

! (logical NOT) !eax

&& (logical AND) eax && ebx

|| (logical OR) eax || ebx

== (compare equality) Symbol == 4

!= (compare inequality) Symbol != al

< eax < 7

> bx > cx

<= ebx <= Symbol

>= Symbol >= Symbol
Chapter 7�Using Expressions 137

Numbers

The Visual SoftICE expression evaluator accepts the following numeric
inputs.

Registers

Visual SoftICE supports multiple names for the target register sets. You
control the target register set name using the SET REGNAME command.

A register name or alias might conflict with a symbol. To force input to be
evaluated as a register name, use the REG(n) function.

Symbols

Symbol names are the symbolic representation of an address or value.
They are defined in symbol tables, export tables, or via Visual SoftICE's
NAME command, during debugging.

Symbol names in Visual SoftICE differ from symbols defined in C or C++
programs. All compilers add some form of decoration to the names
defined in a program, and this decoration often includes characters
which are not valid in C/C++ symbol names. Visual SoftICE therefore
accepts a wider range of characters in symbol names than a compiler.
Table 7-6 shows the characters which may be found in a legal symbol
name. Symbols must begin with one of the characters marked valid as
first symbol characters in the table.

Table 7-5. Visual SoftICE Expression Inputs

Input Description

Hexadecimal The default radix for input and output is controlled by the SET
RADIX command. The valid character set for hexadecimal num-
bers is [0-9, A-F]. Hexadecimal input can be optionally preceded
by the standard C language radix identifier: 0x. Examples of valid
hexadecimal numbers include:

FF, ABC, 0x123, 0xFFFF0000

The symbolic form of a valid hexadecimal number could conflict
with a symbol name. For example, ABC. Use the 0x form to ensure
that the number is not misinterpreted as a symbol name.

Prefixing 0x to input forces it to be evaluated as hexadecimal
input regardless of the default radix.

You can also use the HEX(n) and DEC(n) functions to force inter-
pretation to a given radix.
138 Using Visual SoftICE

The scope operator (::) is allowed in symbols. However, note that the
"operator" is in this context simply part of the symbol name, and is not
functioning as a true operator. Any number of scope operators are
allowed in a symbol name, so namespaces and nested classes will
function properly.

Each symbol file loaded into Visual SoftICE is placed in a separate table,
and only one symbol table can be "active" at a time. (Refer to the TABLE
command in the Visual SoftICE Command Reference for more
information on changing the active table.)

To specify a symbol from an inactive symbol table in an expression, you
may precede the symbol with the table name, followed by an
exclamation point, followed by the symbol name. For example:

table-name!symbol-name

Symbols that are defined by the NAME command are always active,
because Visual SoftICE treats these symbol sources as global.

Built-in Casts and Functions

Visual SoftICE predefines a number of casts and functions for use in
expressions. They can be used within expressions to modify values or
translate data types.

Use casts (or functions that do not take arguments) just like symbols
from a symbol table. Functions that accept arguments operate on user-
specified values, looking and behaving like C language functions and
have the following form:

FUNC (arg-list)

Table 7-6. “Legal” Symbol Characters

Characters Valid as First Symbol Character

A..Z and a..z Yes

0..9 No

dollar sign ($) Yes

underscore (_) Yes

exclamination point (!) No

scope operator (::) Yes
Chapter 7�Using Expressions 139

The following casts are supported by Visual SoftICE:

Table 7-7. Visual SoftICE Casts

 Name Description Example

Byte Get low-order byte ? (Byte) 0x1234 = 0x34

UChar Convert to unsigned Char ? (UChar) 0x12345678 =
0x78

Bool Get 1 bit value ? (Bool) 0x1234 = 0x1

Word Get low-order word ? (Word) 0x12345678 =
0x5678

Dword Get low-order dword ? (Dword) 0xFF
=0x000000FF

Qword Convert to quad word ? (Qword) 0x12345678 =
0x12345678

UlongLong Convert to unsigned dou-
ble long

? (UlongLong)
0x12345678 = 0x12345678

Short Convert to short (INT16) ? (Short) 0x12345678 =
0x5678

UShort Convert to unsigned short ? (UShort) 0x12345678 =
0x5678

Long Convert byte or word to
signed long

? (Long) 0xFF =
0x00000000000000FF

? (Long) 0xFFFF =
0x000000000000FFFF

ULong Convert to unsigned long ? (ULong) 0xFF =
0x00000000000000FF
140 Using Visual SoftICE

Visual SoftICE also has a few useful variables:

Visual SoftICE also has a few predefined macro-like functions:

Table 7-8. Visual SoftICE Predefined Values

 Name Description Example

IRQL Windows NT/2000/XP OS IRQ
Level

? IRQL = unsigned-char

Process KPEB (Kernel Process Environ-
ment Block) of the Active OS
process

? process

Thread KTEB (Kernel Thread Environ-
ment Block) of the Active OS
thread

? thread

PID Active process Id ? pid == Test32Pid

TID Active thread Id ? tid == Test32MainTid

BPCount Breakpoint instance count. For
these BP functions, refer to
“Conditional Breakpoint
Count Functions” on
page 114

bp <bp params> IF
bpcount==0x10

BPTotal Breakpoint total count bp <bp params> IF
bptotal>0x10

BPMiss Breakpoint instance miss
count

bp <bp params> IF
bpmiss==0x20

BPIndex Current Breakpoint Index # bp <bp params> DO “bd
bpindex”

Table 7-9. Visual SoftICE Predefined Macro-like Functions

 Name Description Example

HiByte Get high-order byte ? HiByte(0x1234) =
0x12

HiWord Get high-order word ? HiWord(0x12345678) =
0x1234
Chapter 7�Using Expressions 141

Expression Evaluator Type System
The Visual SoftICE expression evaluator uses a very basic type system
that categorizes all expression values into one of the following types:

In most cases, you can ignore the distinction between types as it is only
important to Visual SoftICE. In the cases of symbol-type and address-
type, however, there are important semantics or restrictions.

Symbol Type

The symbol-type is used for symbol names that are in export or symbol
tables. In general, the type represents the linear address of a symbol
within a code or data segment. The symbol type also represents the
contents of memory at that linear address. This is similar to the use of a
variable in a C program, but because Visual SoftICE is a debugger and not
a compiler, there are a few semantic differences. Visual SoftICE
determines whether you mean contents-ofor address-of based on the
context of how you use the symbol/variable in an expression. In general,
the way Visual SoftICE treats a symbol seems completely natural, not
unlike that of the C compiler; but, in cases where you are not sure how
Visual SoftICE interprets the symbol, you can explicitly state:

address-of (&Symbol) or contents-of (*Symbol)

Note: Refer also to the SET EE_IMPL_DEREF command.

When symbol-types are used in expressions, Visual SoftICE will, in most
cases, present the result of the expression in the correct type. For
example, given an array of integers declared like this:

int TinyArray[] = { 1, 2, 3, 4 };

Table 7-10. Visual SoftICE Expression Types

Type Example

Literal 1, 0x80000000, ‘ABCD’

Register EAX, DS, ESP

Symbol-type PoolHitTag, IsWindow

Address-type FS:18, &Symbol,
WIN32k!CreateCompatiblePublicDC
142 Using Visual SoftICE

The expression:

?TinyArray[1]

will cause Visual SoftICE to display the second element of the array,
which will be of type int.

Alternately, if you have a pointer-to-char expression declared like this:

char *str = "Twas Brillig"

the expression

*str

will result in the following display:

<char> = 0x54, 'T', 84

Address Type

Visual SoftICE treats a symbol as an address-type if you use it in an
expression where an address-type is legal and it makes sense to use an
address. Otherwise, Visual SoftICE automatically indirects the symbol,
taking the contents of the memory the symbol represents. You can also
control this behavior with the SET EE_IMPL_DEREF command.

There are many operations that are illegal or do not make sense for
address-types such as multiplication and division, so a majority of the
operators used with the symbol-type act like a C compiler and
automatically take the contents-of at the address for the symbol.

Evaluating Symbols

When data type information is available, using the ? (evaluate
expression) command with a symbol yields the contents of the symbol
rather than the address of the symbol. For example, MyVariable is an
integer variable containing the value 5, so you get the following:

? MyVariable
int=0x5,"\0\0\0\x05"

To get the address of MyVariable, use the following:

? &MyVariable

If you use a symbol in conjunction with a command other than ‘?,’ be
sure to add the address of the ‘&’ operator where needed. For example,
the data display command (D) takes an address as a parameter, so to
display the contents of a symbol, you should add the ‘&’ operator:

dd &MyVariable
Chapter 7�Using Expressions 143

Pointer Arithmetic with Symbols

When Visual SoftICE performs arithmetic on a symbol whose type is an
address, it will perform C-style pointer arithmetic by scaling the second
operand by the size of the first. So, given this declaration:

long Numbers[] = { 1, 2, 3, 4 };
long *ptr = Numbers;

The Visual SoftICE command

? ptr + 1

will be equivalent to the same expression in C. Thus, the offset (1) will be
scaled by the size of the type pointed to by ptr; in this case, 4 bytes. This
causes Visual SoftICE to display the second element of the Numbers
array.

Array Symbols In Expressions

Visual SoftICE's array operator allows you to evaluate and display
individual members of arrays. It has a couple of limitations, however.
First of all, Visual SoftICE does not allow multi-dimensional array
expressions. Entering ? mychars[1][1], for example, will produce an
error.

Secondly, unlike C and C++, Visual SoftICE does not treat pointers and
arrays as equivalent. Using an array operator on a pointer type will
therefore produce unpredictable results.
144 Using Visual SoftICE

Chapter 8

Exploring Windows NT
� Overview

� Inside the Windows Kernel

� Win32 Subsystem

Overview
If you are going to write Windows NT family applications, you should
explore what lies beneath your application code: the operating system.
The knowledge you gain from the time you invest to go beneath your
application and into the depths of the system will benefit both you and
the application or driver that you are creating.

This chapter provides a quick overview of the more pertinent and
interesting aspects of the basic Windows NT Operating System. By
combining this information with available reference material and a little
practical application using Visual SoftICE, you should be able to gain a
basic understanding of how the components of Windows NT fit together.

Resources for Advanced Debugging

Microsoft provides several resources for advanced Windows NT
debugging including: the Windows NT DDK, .DBG files, and Kernel
Debugger Extensions.
 145

Windows DDK

The Windows DDK contains header files, sample code, on-line help, and
special tools that let you query various kernel components. The most
obvious and useful resource is NTDDK.H. Although there is quite a bit of
information missing from this header file, enough pertinent information
is available to make it worth studying. Besides the basic data structures
needed for device driver development, system data structures are
described (some completely, others briefly, many not at all). There are
many API prototypes and type enumerations that are useful for both
exploration and development. There are also useful comments about the
system design, as well as restrictions and limitations. Most of the other
header files in the DDK are specific to the more esoteric aspects of the
system, but NTDEF.H, BUGCODES.H, and NTSTATUS.H are generally
useful.

The Windows DDK includes a few utilities that are of general interest. For
example, POOLMON.EXE allows you to monitor system pool usage, and
OBJDIR.EXE provides information on the Object Manager hierarchy and
information about a specific object within the hierarchy. Visual SoftICE
provides similar functionality with the OBJDIR, DEVICE, and DRIVER
commands. The utility DRIVERS.EXE, like the Visual SoftICE DRIVER
command, lists all drivers within the system, including basic information
about the driver. Some versions of the Windows DDK include a
significantly more powerful version of the standard PSTAT.EXE utility.
PSTAT is a Win32 console application that provides summary
information on processes and threads. Included with the Win32 SDK and
the Visual C++ compiler, are two utilities worth noting: PVIEW and
SPY++. Both provide information on processes and threads, and SPY++
provides HWND and CLASS information.

The Windows DDK also includes help files and reference manuals for
device driver development, as well as sample code. The sample code is
most useful, because it provides you with the information necessary for
creating actual Windows device drivers. Simply find something in your
area of interest, build that sample, and step through it with Visual
SoftICE.
146 Using Visual SoftICE

.DBG/.PDB Files
Tip: Using symbol files is
probably the most
important aspect of
setting up your
development and
debugging environment.

Microsoft provides a separate symbol (.PDB/.DBG) file for every
distributed executable file with both the checked and free builds of the
Windows operating system. This includes the systems components that
make up the kernel executive, device drivers, Win32 system DLLs, sub-
system processes, control panel applets, and even accessories and games.
The symbol files contain basic debug information similar to the PUBLIC
definitions of a .MAP file. Every API and global variable, exported or
otherwise, has a basic definition (for example, name, section and offset).
Advanced type information such as structures and locals may be
provided, but having access to a public definition for each API makes
debugging through system calls a lot easier.

Regardless of your specific area of interest, obtain symbols for the
following key system components. The most important components are
listed in bold typeface.

Table 8-1. Key System Component Symbols

Component Description

NTOSKRNL.EXE The Windows NT Kernel. (Most of the
operating system resides here.)

HAL.DLL The Hardware Abstraction Layer. Important
primitives for NTOSKRNL.

NTDLL.DLL Basic implementation of the Win32 API, and
functionality traditionally attributed to
KERNEL. Also the interface between USER and
SYSTEM mode. Essentially replaces
KERNEL32.DLL.

CSRSS.EXE The Win32 subsystem server process. Most
subsystem calls are routed through this
process.

WINSRV.DLL Under Windows NT 3.51, the core
implementation of USER and GDI
functionality. Only loaded in the context of
CSRSS.

WIN32K.SYS A system device driver that replaces
WINSRV.DLL and minimizes inter-process
communication between applications and
CSRSS. May not be available for all versions of
the OS.
Chapter 8�Exploring Windows NT 147

Resources

The following resources provide extensive information for developing
drivers and applications for Windows NT:

� Microsoft Developers Network (MSDN)
MSDN is published quarterly, on CD-ROM, and it contains a wealth
of information and articles on all aspects of programming Microsoft
operating systems. This is one of the only places where you can find
practical information on writing Windows NT device drivers.

� Inside Windows NT - Helen Custer, Microsoft Press
Inside Windows NT provides a high-level view of the design for the
Windows NT operating system. Each of the major sub-systems is
thoroughly discussed, and many block diagrams illuminate internal
data structures, policies, and algorithms. Although the contents of
this book may seem highly abstracted from the actual operating
system implementation, once you step into OS code with Visual
SoftICE, many of the higher level relationships become clear.
Currently, this is the most valuable set of information on Windows
NT operating system internals. You will gain the most benefit from
the information in this book if you use Visual SoftICE to explore the
actual implementation of the system design.

� Advanced Windows - Jeffery Richter, Microsoft Press
Advanced Windows is an excellent resource for the systems programmer
developing Win32 applications and system code. Richter presents
extensive discussions of processes, threads, memory management,
and synchronization objects. Relevant sample code and utilities are
also provided.

USER32.DLL Basic implementation of USER functionality.
Mostly stubs to WINSRV.DLL (via LPC to
CSRSS). More recent versions contain more
implementation to minimize context switches.

KERNEL32.DLL. Some basic implementation of traditional
KERNEL functionality, but mostly stubs to
NTDLL.DLL.

Table 8-1. Key System Component Symbols (Continued)

Component Description
148 Using Visual SoftICE

Inside the Windows Kernel
To gain a basic understanding of Windows, look at the platform from
many different perspectives. A general knowledge of how Windows
works at different levels enables you to understand the constraints and
assumptions involved in designing other aspects of the operating system.

This section explains the most critical component of the operating
system, the Windows Kernel. It describes how Windows configures the
core operating system data structures, such as the IDT and TSS, and how
to use corresponding Visual SoftICE commands to illustrate the Windows
configuration of the CPU. It also examines a general map of the
Windows system memory area on x86, describing important system data
structures and examining the critical role they play within the operating
system.

A majority of the information in this section is based on the
implementation details of the following two modules:

� Hardware Abstraction Layer (HAL.DLL)
HAL is the Windows hardware abstraction layer. Its purpose is to
isolate as many hardware platform dependencies as possible into one
module. This makes the Windows kernel code highly portable.
Various parts of the kernel use platform dependent code, but only for
performance considerations.

The primary responsibility of the HAL is to deal with very low-level
hardware control such as Interrupt controller programming,
hardware I/O, and multiprocessor inter-communication. Many of the
HAL routines are dedicated to dealing with specific bus types (PCI,
EISA, ISA) and bus adapter cards. HAL also controls basic fault
handling and interrupt dispatch.
Chapter 8�Exploring Windows NT 149

� The Kernel (NTOSKRNL.EXE)
The vast majority of the Windows operating system resides in the
Windows Kernel, or Kernel Executive. This is the kernel-level
functionality that all other system components, such as the Win32
subsystem, are built upon. The Kernel Executive Services cover a
broad range of functionality, including:
� Memory Management
� Object Manager
� Process and Thread creation and manipulation
� Process and Thread scheduling
� Local Procedure Call (LPC) facilities
� Security Management
� Exception handling
� VDM hardware emulation
� Synchronization primitives, such as Semaphores and Mutants
� Run Time Library
� File System

� I/O subsystems

Managing the Intel x86 Architecture

One of the fundamental requirements of starting a protected-mode
operating system is the setup of CPU architecture, policies, and address
space that the operating system will use. System initialization is
coordinated between NTLDR, NTDETECT, NTOSKRNL, and HAL. Use the
following Visual SoftICE commands to obtain a general idea of how
Windows uses the Intel x86 architecture to provide a secure and robust
environment.

Note: The Visual SoftICE Command Reference provides detailed information
about using each command.

Table 8-2. Visual SoftICE Architecture Commands

Command Description

IT/IDT Display information on the Interrupt Descriptor Table

GDT Display information on the Global Descriptor Table
150 Using Visual SoftICE

IT/IDT (Interrupt Descriptor Table)

Windows creates an IDT for 255 interrupt vectors and maps it into the
system linear address space. The first 48 interrupt vectors are generally
used by the kernel to trap exceptions, but certain vectors provide
operating system services or other special features. Use the Visual SoftICE
IDT command to view the Windows Interrupt Descriptor Table.

Non-APIC only: Interrupt vectors 0x30 - 0x3F are mapped by the primary
and secondary interrupt controllers, so hardware interrupts for IRQ0
through IRQ15 are vectored through these IDT entries. In many cases,
these hardware interrupt vectors are not hooked, so the system assigns
default stub routines for each one. As devices require the use of these
hardware interrupts, the device driver requests to be connected. When
the interrupt is no longer needed, the device driver requests to be
disconnected.

Table 8-3. Interrupt Descriptor Table

Interrupt # Purpose

2 NMI. A Task gate is installed here so the OS has a clean set of
registers, page-tables, and level 0 stack. This enables the operating
system to continue processing long enough to throw a Blue Screen.

8 Double Fault. A Task gate is installed here so the OS has a clean set
of registers, page-tables, and level 0 stack. This enables the
operating system to continue processing long enough to throw a
Blue Screen.

2A Service to get the current tick count.

2B,2C Direct thread switch services.

2D Debug service.

2E Execute System Service. Windows NT transitions from user mode
to system mode using INT 2E. For more information, refer to the
NTCALL command in the Visual SoftICE Command Reference.

The following are Non-APIC only

30-37 Primary Interrupt Controller (IRQ0-IRQ7).

30 - HAL clock interrupt (IRQ0).

38-3F Secondary Interrupt Controller (IRQ8-IRQ15).
Chapter 8�Exploring Windows NT 151

The default stubs are named KiUnexpectedInterrupt#, where # represents
the unexpected interrupt. To determine which interrupt vector is
assigned to a particular stub, add 0x30 to the UnexpectedInterrupt#. For
example, KiUnexpectedInterrupt2 is actually vectored through IDT
vector 32 (0x30 + 2).

Drivers may install and uninstall interrupt handlers as necessary, using
IoConnectInterrrupt and IoDisconnectInterrupt. These routines create
special thunk objects, allocated from the Non-Pageable Pool, which
contain data and code to manage simultaneous use of the same interrupt
handler by one or more drivers.

TSS (Task State Segment)

The purpose of the TSS is to save the state of the processor during task or
context switches. For performance reasons, Windows does not use this
architectural feature and maintains one base TSS that all processes share.
As noted in the previous section on the Windows IDT, other TSS data
types exist, but are only used during exceptional conditions to ensure
that the system will not spontaneously reboot before Windows can
properly crash itself.

GDT (Global Descriptor Table)

Windows on x86 is a flat, 32-bit architecture. Thus while it still needs to
use selectors, it uses them minimally. Most Win32 applications and
drivers are completely unaware that selectors even exist. The following is
abbreviated output from the Visual SoftICE GDT command that shows
the selectors in the Global Descriptor Table.
152 Using Visual SoftICE

Note that the first four selectors address the entire 4GB linear address
range. These are flat selectors that Win32 applications and drivers use.
The first two selectors have a DPL of zero and are used by device drivers
and system components to map system code, data, and stacks. The
selectors 1B and 23 are for Win32 applications and map user level code,
data, and stacks. These selectors are constant values and the Windows NT
system code makes frequent references to them using their literal values.

The selector value 30h addresses the Kernel Processor Control Region and
is always mapped at a base address of 0xFFDFF000. When executing
system code, this selector is stored in the FS segment register. Among its
many other purposes, the Processor Control Region maintains the
current kernel mode exception frame at offset 0.

Global Descriptor Table - Base Address: 8003f000, Limit: 3ff
Count: 24

Selector Type Address Limit DPL Granularity Present

8 Code: Execute/Readable (accessed) 0 ffffffff 0 Page P

10 Data: Read-Write (accessed) 0 ffffffff 0 Page P

1B Code: Execute/Readable (accessed) 0 ffffffff 3 Page P

23 Data: Read-Write (accessed) 0 ffffffff 3 Page P

28 32bit TSS (busy) 80042000 20ab 0 Byte P

30 Data: Read-Write (accessed) ffdff000 1fff 0 Page P

3B Data: Read-Write (accessed) 0 fff 3 Byte P

43 Data: Read-Write 400 ffff 3 Byte P

50 32bit TSS (available) 8053c180 68 0 Byte P

58 32bit TSS (available) 8053c1e8 68 0 Byte P

60 Data: Read-Write (accessed) 22f20 ffff 0 Byte P

68 Data: Read-Write b8000 3fff 0 Byte P

70 Data: Read-Write ffff7000 3ff 0 Byte P

78 Code: Execute/Readable 80400000 ffff 0 Byte P

80 Data: Read-Write 80400000 ffff 0 Byte P

88 Data: Read-Write 0 0 0 Byte P

a0 32bit TSS (available) 80f728a8 68 0 Byte P

e0 Code: Conform,Exec/Rdble (accessed) f92c1000 ffff 0 Byte P

e8 Data: Read-Write 0 ffff 0 Byte P

f0 Code: Execute-Only 804fc26c f0baa 0 Byte P

f8 Data: Read-Write 0 ffff 0 Byte P

100 Data: Read-Write (accessed) f8ff7040 ffff 0 Byte P

108 Data: Read-Write (accessed) f8ff7040 ffff 0 Byte P

110 Data: Read-Write (accessed) f8ff7040 ffff 0 Byte P
Chapter 8�Exploring Windows NT 153

Similarly, the selector value 3Bh is a user-mode selector that maps the
current user thread environment block (UTEB). This selector value is
stored in the FS segment register when executing user level code and has
the current user-mode exception frame at offset 0. The base address of
this selector varies depending on which user-mode thread is running.
When a thread switch occurs, the base address of this GDT selector entry
is updated to reflect the current UTEB.

Windows NT System Memory Map

Windows reserves the upper 2GB of the linear address space for system
use. The address range 0x80000000 - 0xFFFFFFFF maps system
components such as device drivers, system tables, system memory pools,
and system data structures such as threads and processes. While you
cannot create an exact map of the Windows system memory space, you
can categorize areas that are set aside for specific usage. The following
System Memory Map diagram gives you a rough idea of where operating
system information is located. Remember that a majority of these system
areas could be mapped anywhere within the system address space, but
are generally in the address ranges shown.

� System Code area
Boot drivers and the NTOSKRNL and HAL components are loaded in
the System Code address space. Non-boot drivers are loaded in the
NonPaged system address space near the top of the linear address
space. You can use the Visual SoftICE IMAGE/MOD and IMAGEMAP/
MAP32 commands to examine the base address and extents of boot
drivers loaded in this memory area. This is also where the TSS, IDT,
and GDT system data structures are mapped.

� System View area
The System View address space is symbolically referenced, but does
not ever seem to be mapped under Windows NT 3.51. Under newer
versions of Windows , the System View address space maps the global
tables for GDI and USER objects. You can use the Visual SoftICE
OBJTAB command to view information about the USER object table.
154 Using Visual SoftICE

� System Tables Area
This region of linear memory maps process page tables and related
data structures. This is one of the few areas of system memory that is
not truly global, in that each process has unique page tables. When
Windows executes a process context switch, the physical address of
the process Page Directory is extracted from the kernel process
environment block (KPEB) and loaded into the CR3 register. This
causes the process page tables to be mapped in this memory area.
Although the linear addresses remain the same, the physical memory
used to back this area contains process-specific values. When you use
the Visual SoftICE ADDR command to change to a specific process
context, you are referencing the Page Directory information for this
process.

To manage the mapping of linear memory to physical memory,
Windows reserves a 4MB region of the system linear address space for
Page Tables. This region represents the entire range of memory
necessary to fully define a Page Directory and complete set of page
tables. The need for a 4MB region can be calculated given that there
is one Page Directory structure which contains entries for 1024 Page
Tables. To map a 4GB linear address space, each Page Table must map
a 4MB region of linear address space (4GB /1024). Each Page Table is a
multiple of the CPU page size (4KB under Windows on x86), so
multiplying 1024 by 4096 (the page size) yields the expected 4MB
value. An operating system using paging and a 4KB page size requires
4MB of memory to map the entire address space. The following
diagram shows the system memory map for Windows on x86.

In this design, the Page Directory is actually performing two
functions. In addition to being the Page Directory, representing 4GB,
it also serves as a page table, representing 4MB in the address range
0xC0000000 - 0xC03FFFFF. The Page Directory maps the 4MB
region where the process page tables are mapped (0xC0000000-
0xC03FFFFF), so the Page Directory entry that maps this area must
point to itself. If you use the Visual SoftICE PAGE command, the
physical address of the Page Directory displayed at the top of the
command output matches the physical address for the entry that
maps the 0xC0000000 - 0xC03FFFFF memory range. If you use the
Visual SoftICE ADDR command to obtain the CR3 (the CR3 register
contains the physical address of the Page Directory) value for the
current process and supply this value as input to the Visual SoftICE
PHYS command, all the linear addresses that are mapped to the
physical address of the Page Directory are displayed. One of the
addresses is 0xC0300000.
Chapter 8�Exploring Windows NT 155

Figure 8-1. Windows NT System Memory Map

The following example illustrates how all these values interrelate.
Important values are show in bold typeface.
156 Using Visual SoftICE

1 Use the ADDR command to obtain the physical address of the Page
Directory (Page Dir).

2 Use the physical address as input to the PHYS command to obtain all
linear addresses that map to that physical page. (One physical page
may be mapped to more than one linear address, and one linear
address may be mapped to more than one page.)

:phys 1F6E000
C0300000

3 Use the linear address (C0300000) and run it through the PAGE
command to verify the physical page for that linear address.

:page C0300000
Linear Physical Attributes
C0300000 01F6E000 P D A S RW

:addr

Page Dir KPEB Addr PID Name

00030000 FF116020 0002 System

0115A000 FF0AAA80 0051 RpcSs

0073B000 FF083020 004E nddeagnt

00653000 FF080020 0061 ntvdm

00AEE000 FF07A600 0069 Explorer

01084000 FF06ECA0 0077 FINDFAST

010E9000 FF06CDE0 007B MSOFFICE

*01F6E000 FF088C60 006A WINWORD

01E0A000 FF09CCA0 008B 4NT

017D3000 FF09C560 006D ntvdm

00030000 80140BA0 0000 Idle
Chapter 8�Exploring Windows NT 157

System Page Table Entries and ProtoPTEs

The acronym, PTE, which appears in various places on the system map,
stands for Page Table Entry. A Page Table Entry is one of the 1024 entries
that is contained in a Page Table. Each PTE describes one page of
memory, including its physical address and attributes. Because Windows
also runs on non-Intel platforms, and because the operating system may
need to extend the types of page-level protection beyond what any
particular CPU may provide, Windows virtualizes the CPU PTE with what
is referred to as a ProtoPTE. The ProtoPTE is similar to the Intel
Architecture PTE, but includes attributes that are not provided by the
Intel PTE. By overloading the meaning of an attribute bit within an Intel
PTE, the operating system can gain control on a page fault, and examine
the extended attributes of the corresponding ProtoPTE to determine why
the operating system requested that the fault occur. Throughout
NTOSKRNL, manipulations are performed on the ProtoPTE abstraction,
and translated to the actual CPU PTE type. Note that the operating
system also compares the ProtoPTE to its corresponding CPU PTE to
ensure their consistency. This effectively prevents an application or
device driver from directly manipulating the page table entries.

� Paged Pool Area: The Paged Pool system memory area is where
ntoskrnl!ExAllocatePool and its related functions allocate
memory that can be paged to disk. This is in direct contrast to the
Non-Paged pool area. Non-Paged pool allocations are never paged to
disk and are designed for routines such as Interrupt Handlers that
need high performance or need a guarantee that a piece of
information is always available for use.

Windows makes extensive use of the Paged pools, as this is where
most operating system objects are created. Note that the starting
address and the size and number of paged pools is determined
dynamically during system initialization. Only use the addresses
presented here as a guideline. For the actual addresses, load the
symbols for NTOSKRNL and examine the appropriate variables that
describe the paged pool configuration. (To see several of them, use
the Visual SoftICE SYM command with the Parameter “MmPaged*”.)
158 Using Visual SoftICE

Although there is one Paged Pool area, there are multiple paged
pools. The number is determined during system initialization. Paged
pool allocations occur with relatively high frequency and those
accesses must be thread safe, so having one data structure which
must be owned exclusively by one thread during memory allocation
or deallocation creates a bottleneck. To avoid potential traffic jams
and reduced system performance, multiple pool descriptors are
created, each with its own private data structures, including an
executive spinlock for thread synchronization. Thus, the more paged
pools created, the more threads that can perform paged pool
allocations simultaneously, increasing the throughput of the system.
In case you plan on using similar techniques in your driver or
application, an important design note to remember is that the
overhead for a Paged Pool (or Non-Paged Pool) descriptor is very
minimal. Thus it is practical for four or five of them to exist.
However, determine that an actual bottleneck exists before creating
elaborate schemes to solve a non-existent problem.

� Non-Paged System Area: This linear region is intended for system
components and data structures that need to be present in memory
at all times. This includes non-boot drivers, kernel mode thread
stacks, two Non-Paged memory pools, and the Page Frame Database.
Although it is contradictory to say that items in the Non-Paged
System area can become “not present”, the truth is that they can be.
Specifically, kernel thread stacks and process address spaces can be
made not present, and often are.

The Non-Paged pool is similar to the Paged Pool with the exception
that objects created in the Non-Paged pool are not discarded from
memory for any reason. The Non-Paged pool is used to allocate key
system data structures such as kernel process and thread
environment blocks. There is a second Non-Paged pool used for
memory allocations that must succeed. At system initialization,
NTOSKRNL reserves a small amount of physical memory for critical
allocations, and saves this memory for use by the must succeed pool.
The size of an allocation from the must succeed pool must be less
than one page (4KB). If the must succeed allocation cannot be
satisfied, or the requested allocation size is larger than 4KB, the
system throws a Blue Screen.
Chapter 8�Exploring Windows NT 159

� Processor Control Region: At the high end of the system memory
area is the Processor Control Region. Here, Windows maintains
Processor Control Block (PCRB) data structures for each processor
within the system and a global data structure, the Processor Control
Region that reflects the current state of the system. The Processor
Control Region (PCR) contains key pieces of information about the
current state of the system, such as the currently running kernel
thread; the current interrupt request level (IRQL); the current
exception frame; base addresses of the IDT, TSS, and GDT; and kernel
thread stack pointers. Small portions of the PCR and PCRB data
structures are documented in NTDDK.H.

In many cases, device driver writers need to know the current IRQL at
which they are executing. Although you could look inside the PCR
data structure at offset 0x24, it is simpler to look at the status bar or
use the Visual SoftICE intrinsic function, IRQL, as follows:

? IRQL
00000002h

The most common piece of data accessed from the PCRB is the
current kernel thread pointer. This is at offset 4 within the PCRB, but
is generally referenced through the PCR at offset 0x124. This works
because the PCRB is nested within the PCR at offset 0x120. Code that
accesses the current thread is usually of the form:

mov reg, FS:[124].

Remember that while executing in system mode, the FS register is set
to a GDT selector whose base address points to the beginning of the
PCR. Visual SoftICE makes it much easier to get the current thread
pointer or thread id by viewing the context bar, or using the intrinsic
functions thread or tid:

? thread
FF088E90h

? tid
71h
160 Using Visual SoftICE

For more extensive information on the current thread use the
following commands:

The current process is not stored as part of the PCR or PCRB.
Windows references the current process through the current thread.
Code such as the following obtains the current process pointer:

Note: All this information is available in the Visual SoftICE context bar.

Win32 Subsystem

Inside CSRSS

The Win32 subsystem server process CSRSS implements the Win32 API.
The Win32 API provides many different types of service, including
functionality traditionally attributed to the original Windows
components KERNEL, USER, and GDI. Although these standard modules
exist in the form of 32-bit DLLs under Windows NT 3.51, and to a lesser
degree under new versions of the operating system, most of the core
functionality is actually implemented in WINSRV.DLL within the CSRSS
process. Calls that are traditionally associated with one of the standard
Windows components are typically implemented as stubs that call other
modules, for example, NTDLL.DLL, or use inter-process communication
to CSRSS for servicing.

:thread tid

TID Krnl TEB StackBtm StkTop StackPtr User TEB Process(Id)

0071 FF0889E0 FC42A000 FC430000 FC42FE5C 7FFDE000 WINWORD(6A)

:thread thread

TID Krnl TEB StackBtm StkTop StackPtr User TEB Process(Id)

0071 FF0889E0 FC42A000 FC430000 FC42FE5C 7FFDE000 WINWORD(6A)

mov eax, FS:[124] ; get the current thread (KTEB)

mov esi, [eax+40h] ; get the threads process pointer (KPEB)
Chapter 8�Exploring Windows NT 161

Most USER and GDI API calls are routed through the appropriate 32-bit
module in the process address space. There, they are packaged as Local
Procedure Call (LPC) messages and routed to CSRSS for processing. As
you might imagine, this LPC mechanism, although much more
optimized than a true Remote Procedure Call (RPC), has much more
overhead than a simple function call. It is surprising to think that every
time your application calls the IsWindow function in USER32.DLL, it
must be packaged for LPC and sent as a subsystem message to CSRSS. For
CSRSS to be able to process this message, a process switch must occur and
a worker thread must be awoken and dispatched. The specific service
must be determined, parameters must be validated, and finally, the
service must be executed. When everything is complete on the CSRSS
side, a LPC reply must be made to the client (your application), which
involves another process switch and unpackaging of the LPC reply. All
that just to determine if a handle represents a valid window.

In their design of a forthcoming version of Windows NT, Microsoft is
working to remove as much of this overhead as possible. First, they are
moving much of the functionality of WINSRV.DLL into the actual
USER32 and GDI32 modules that are loaded into your application’s
address space. This allows the most common services to execute as simple
function calls; no LPC is necessary. Second, rather than making a context
switch into CSRSS to access functionality in WINSRV.DLL, a new system
driver, WIN32K.SYS allows USER and GDI services to execute more
efficiently through a simple transition from user to system mode. Having
WIN32K.SYS as a device driver that provides application services allows
Windows NT to maintain a high level of encapsulation and robustness,
while providing a much more efficient pseudo client-server service
architecture.
162 Using Visual SoftICE

Although CSRSS executes as a separate process, it still has a big impact on
the address space of every Win32 application. If you use the Visual
SoftICE HEAP command on your process, you will notice at least two
heaps that your application did not specifically create, but were created
on its behalf. The first is the default process heap that was created during
process initialization. The second is a heap specifically created by CSRSS.
There may be other heaps in your application address space that were not
created by your process. These heaps are generally located very high in
the user-mode address space and appear if you use the Visual SoftICE
QUERY command, but do not appear in the output of the HEAP
command. The reason for this is quite simple: for each user-mode
process, a list of process heaps is maintained and the Visual SoftICE HEAP
command uses this list to enumerate the heaps for a process. If the heap
was not created by or on behalf of your application, it does not appear in
the process heap list. The Visual SoftICE QUERY command traverses the
user-mode address space for your application.

Heaps that exist in the process address space, but that are not
enumerated in the process heap list, were mapped into the process
address space by another process. In most cases, this mapping is done by
CSRSS. During subsystem initialization, CSRSS creates a heap at a well-
known base address. When new processes are created, this heap is
mapped into their address spaces at the same well-known base address.
Theoretically, mapping the heap of one process at the same base address
of another process allows both processes to use that heap. In practice,
there are issues that might prevent this from working under all
circumstances — synchronization being one such issue. Note that under
newer versions of Windows , more than one heap may be mapped into
the process address space, and those heaps may be mapped at different
base addresses in different processes. The Visual SoftICE QUERY
command notes this condition in its output. Also, new versions of the
operating system use heaps that are created in the system address space,
and these heaps are sometimes mapped into the user address space.
Windows allows the creation of heaps within the system address space
using APIs exported from NTOSKRNL. These APIs are similar to the same
APIs exported from the user-mode module, NTDLL.DLL.
Chapter 8�Exploring Windows NT 163

USER and GDI Objects

Under Windows NT 3.51, the protected Win32 subsystem process, CSRSS,
provides a majority of the traditional USER functionality. APIs and data
structures provided by the WINSRV.DLL module manage window classes,
and window data structures, as well as many other USER data types.

Under Windows NT 3.51, the following USER object types exist.

FREE Free handle

HWND Window handle

HMENU Menu handle

HCURSOR Cursor handle

HDWP Deferred window position handle

HHOOK Window hook callback handle

CLIPDATA Clipboard data handle

QUEUE Call procedure handle

HACCEL Accelerator table handle

DDEACCESS DDE access handle

HCONV DDE conversion handle

HDDEDATA DDE data handle

HMONITOR Display monitor handle

HKL Keyboard layout handle

HKF Keyboard layout file handle

HWINEVENTHOOK Window event hook callback handle

HWINSTA Window station handle

HIMC Input context handle

HHID Human interface device data handle

HDEVINFO Device information set handle

DESKTOP Window handle that is a Desktop type window
164 Using Visual SoftICE

Rather than maintaining per-process data structures for USER and GDI
object types, CSRSS maintains a master handle table for all processes. The
USER and GDI objects are segregated into two different tables that have
the same basic structure and semantics. WINSRV provides distinct
Handle Manager APIs for managing the two different tables. You can
identify the handle manager API names by the HM prefix in front of the
API name, and the GDI specific routines by the “g” appended to this
prefix. The routine HMAllocObject creates USER object types, while
HmgAlloc is a GDI object type API that creates GDI object types.

The management of USER and GDI handles is relatively straightforward,
and its design is a good example of how to implement basic management
of abstract object types. Specifically, this API uses a simple, but robust,
technique for creating unique handles and managing reference counts.
The design also provides for handle opaqueness which prevents
applications, including USER32 and CSRSS, from directly manipulating
the objects outside the handle manager. Preventing clients, including
itself, from directly manipulating the object data allows the handle
manager to ensure that reference counts and synchronization issues are
managed correctly.

The master object tables maintained by the Handle Manager are
growable arrays of fixed size entries. The following table lists the fields for
an object table. Only columns with bold field headers are part of the
entry. The columns with italicized headers are for illustration only.

The Object Pointer field points to the actual object data. This pointer is
generally from one of the CSRSS heaps or the Paged Pool. The type field
is the enumeration for the object type. The Instance Count field creates
unique handles. The Flags field is used by the Handle Manager to note
special conditions, such as when a thread locks an object for exclusive
use.

Entry
Object Pointer
(DWORD)

Owner
(DWORD)

Type
(BYTE)

Flags
(BYTE)

Instance
Count
(WORD)

Handle Value

0 NULL NULL FREE (0) 00 0001 00010000

1 HEAP * HEAP * DESKTOP (0C) 00 0001 00010001

2 HEAP * HEAP * HWND (04) 01 0003 00030002
Chapter 8�Exploring Windows NT 165

How Handle Values Are Created

Initially, all object table Instance counts are set to one. When a new
Object Entry is allocated, the Instance Count is combined with the table
index to create a unique handle value. When references are made to an
object, the table entry portion of the handle is extracted and used to
index into the table. As part of the handle validation, the instance count
is extracted from the table entry and compared to the handle being
validated. If the instance count does not match the table entry instance
count, the handle is bogus. The following example illustrates these
concepts:

To create an object handle from an object table entry:

Object Handle = Table Entry Index + (InstanceCount << 16);

To validate an object handle:
ObjectTable [LOWORD(handle)]. InstanceCount == HIWORD(handle);

When an object is destroyed, all fields are reinitialized to zero and the
current Instance Count for that entry is incremented by one. Thus, when
the object table entry is reused, it generates a different handle value for
the new object.

Note: The actual object type is not part of the object handle value. This
means that given an object handle, an application cannot directly
determine its type. It is necessary to dereference the object table
entry to obtain the object type.

This technique for creating unique handle values is simple and efficient,
and makes validation trivial. Imagine the case where a process creates a
window and obtains a handle to that window. During subsequent
program execution, the process destroys the window but retains the
handle value. If the process uses the handle after the window is
destroyed, the handle value is invalid and the type it points to has an
object type of FREE. This condition is caught, and the program is not be
able to use the handle successfully. In the meantime, if another process
creates a new object, it is likely that the entry originally for the now
destroyed window will be reused. If the original program uses the invalid
window handle, the handle instance counts no longer match, and the
validation fails.

Object tables are not process specific, so USER and GDI object handles
values are not unique to a specific process. HWND handles are unique
across the entire Win32 subsystem. One process never has an HWND
handle value that is duplicated in any other process.
166 Using Visual SoftICE

USER Object Table

Use the Visual SoftICE OBJTAB command to display all the object entries
within the USER object table. The OBJTAB command is relatively flexible,
allowing a handle or table entry index to be specified. It also supports the
display of objects by type using abbreviations for the object type names.
To see a list of object type names that the OBJTAB command can use,
specify the -H option on the OBJTAB command line.

The Object Pointer field can reference the object specific data for an
object table entry. All objects have a generic header that is maintained by
the object manager, which includes the object handle value and a thread
reference count. Most object types also contain a pointer to a desktop
object and/or a pointer to its owner.

The following example shows an object table entry for a window handle
and a data dump of the object header maintained by the handle
manager. Key information from the command output is listed in bold.

1 Use the Visual SoftICE OBJTAB command to find an arbitrary
window handle and obtain the object pointer. In this example, the
handle value is 0x1000C and the owner field is 0xE12E7008:

2 Dumping 0x20 bytes of the object data reveals the following:

The value 0x1001C, at offset 0, is the object handle value. The field at
offset 4, which contains the value six (6), is the object reference
count. The value at offset 0x0C, of 0xFF0E45D8, is a pointer to the
window’s desktop object.

:objtab hwnd

Object Type Id Handle Owner Flags

E12E9EA8 Hwnd 01 0001001C E12E7008 00

:dd e12e9ea8 l 20

0010:E12E9EA8 0001001C 00000006 00000000 FF0E45D8

0010:E12E9EB8 00000000 E12E7008 00000000 00000000
Chapter 8�Exploring Windows NT 167

3 Verify this using the Visual SoftICE HWND command as follows:
:hwnd 0001001c

Handle : 1001c

CLASS : System : Desktop

Module : 3b7de6b41a690482; win32k.sys

WindowProc : bf8624b8 (win32k!_Section.text+62138)

Title :

Parent : 00000000

Next : 00000000

1st Child : bcab06e8

Style : 96000000;
WS_POPUP,WS_VISIBLE,WS_CLIPSIBLINGS,WS_CLIPCHILDREN

ExStyle : 0;

Window Area : -16384, -16384, 16383, 16383 (32767 x 32767)

Client Area : -16384, -16384, 16383, 16383 (32767 x 32767)

4 Dumping 0x20 bytes at the address of the owner data reveals the
following:

5 The value (0x1001B) at offset 0 of the owner data looks like an object
handle, but it is a thread information object. The following example
uses the OBJTAB command with 0x1001B as the parameter to show
the type for the owner data.

Monitoring USER Object Creation

If you do a considerable amount of Win32 application development, the
HMAllocObject API is a convenient place to monitor creation of object
types such as windows. Use the Visual SoftICE MACRO command to
create a breakpoint template that can trap creation of specific object
types as follows:

:MACRO obx = “bpx winsrv!HMAllocObject if (esp+c == %1)”

:dd e12e7008 l 20

0010:E12E7008 0001001B 00000000 00000000 E12E9C34

0010:E12E7018 E17DB714 00000000 00000000 00000000

:objtab 1001b

Object Type Id Handle Owner Flags

E12E7008 Thread Info 06 0001001B 00000000 00
168 Using Visual SoftICE

The HMAllocObject API is implemented in WINSRV.DLL and the object
type being created is the third parameter, which translates to Dword ptr
esp [0Ch]. The “%1” portion of the conditional expression is a place
holder for argument replacement. When you execute the OBX macro,
the argument provided is inserted into the macro stream at the “%1”:

:OBX 1 -> bpx winsrv!HMAllocObject if (esp+c == 1)

When this breakpoint is instantiated, it traps all calls to HMAllocObject
that creates window object types.

Process Address Space

The address space for a user-mode process is mapped into the lower 2GB
of linear memory at addresses 0x00000000 - 0x7FFFFFFF. The upper
2GB of linear memory is reserved for the operating system kernel and
device drivers.

In general, each Win32 application’s process address space has the
following regions of linear memory mapped for the corresponding
purpose.

Under Windows, the lowest and highest 64KB regions in the user-mode
address space are reserved and are never mapped to physical memory.
The 64KB at the bottom of the linear address space is designed to help
catch writes through NULL pointers.

Table 8-4. Process Address Space

Linear Address Range Purpose

0x00000000 - 0x0000FFFF Protected region. Useful for detecting
NULL pointer writes.

0x00010000 Default load address for Win32 processes.

0x70000000 - 0x78000000 Typical range for Win32 subsystem DLLs to
be loaded.

0x7FFB0000 - 0x7FFD3FFF ANSI and OEM code pages. Unicode
translation table(s).

0x7FFDE000 - 0x7FFDEFFF Primary user-mode thread environment
block.

0x7FFDF000 - 0x7FFDFFFF User-mode process environment block
(UPEB).

0x7FFE0000 - 0x7FFE0FFF Message queue region.

0x7FFFF000 - 0x7FFFFFFF Protected region.
Chapter 8�Exploring Windows NT 169

The default load address for processes under Windows is 0x10000.
Processes often change their load address to a different base address.

The linear range at 0x70000000 is an approximation of the area where
Win32 subsystem modules load. Use the Visual SoftICE IMAGE/MOD,
IMAGEMAP/MAP32, or QUERY/ADDRESSMAP commands to obtain
information on modules loaded in this range.

The user process environment block is always mapped at 0x7FFDF000,
while the process’s primary user-mode thread environment block is one
page below that at 0x7FFDE000. As a process creates other worker
threads, they are mapped on page boundaries at the current, highest
unused linear address.

The following use of the Visual SoftICE THREAD command shows how
each subsequent thread is placed one page below the previous thread:

To find out more about the user-mode address space of a process, use the
Visual SoftICE QUERY command. The QUERY command provides a high-
level view of the linear regions that were reserved and/or committed. It
uses the Visual SoftICE WHAT engine to identify the contents of a linear
range. From its output you see the process heaps, modules, and memory-
mapped files, as well as the thread stacks and thread environment blocks.

Heap API

Heap Architecture

Every user-mode application directly or indirectly uses the Heap API
routines, which are exported from KERNEL32 and NTDLL. Heaps are
designed to manage large areas of linear memory and sub-allocate
smaller memory blocks from within this region. The core
implementation of the Heap API routine is contained within NTDLL, but
some of the application interfaces such as HeapCreate and HeapValidate
are exported from KERNEL32. For some API routines, such as HeapFree,
there is no code implementation within KERNEL32, so they are fixed by
the loader to point at the actual implementation within NTDLL.

Note: The technique of fixing an export in one module to the export of
another module is called ‘Snapping’.

:thread winword

TID Krnl TEB StackBtm StkTop StackPtr User TEB Process(Id)

006B FFA7FDA0 FEAD7000 FEADB000 FEADAE64 7FFDE000 WINWORD(83)

007C FF0A0AE0 FEC2A000 FEC2D000 FEC2CE18 7FFDD000 WINWORD(83)

009C FF04E4E0 FC8F9000 FC8FC000 FC8FBE18 7FFDC000 WINWORD(83)
170 Using Visual SoftICE

Although the Heap API routines used by applications are relatively
straightforward and designed for ease of use, the implementation and
data structures underneath are quite sophisticated. The management of
heap memory has come quite a long way from the standard C run-time
library routines malloc() and free(). Specifically, the Heap API
handles allocations of large, non-contiguous regions of linear memory,
which are used for sub-allocation and to optimize coalescing of adjacent
blocks of free memory. The Heap API also performs fast look-ups of best-
fit block sizes to satisfy allocation requests, provides thread-safe
synchronization, and supplies extensive heap information and
debugging support.

The primary heap data structure is large, at approximately 1400 bytes, for
a free build and twice that for a checked build. This does not include the
size of other data structures that help manage linear address regions. A
vast majority of this overhead is attributed to 128 doubly-linked list
nodes that manage free block chains. Small blocks, less than 1KB in size,
are stored with other blocks of the same size in doubly linked lists. This
makes finding a best-fit block very fast. Blocks larger than 1KB are stored
in one sorted, doubly-linked list. This is an obvious example of a time
versus space trade-off, which could be important to the performance of
your application.

To understand the design and implementation of the Heap API, it is
important to realize that a Win32 heap is not necessarily composed of
one section of contiguous linear memory. For growable heaps, it might
be necessary to allocate many linear regions, using VirtualAlloc, which
will generally be non-contiguous. Special data structures track all the
linear address regions that comprise the heap. These data structures are
call Heap Segments. Another important aspect of the Heap API design is
the use of the two-stage process of reserving and committing virtual
memory that is provided by the VirtualAlloc and related APIs. Managing
which memory is reserved and which memory is committed requires
special data structures known as Uncommitted Range Tables, or UCRs for
short.
Chapter 8�Exploring Windows NT 171

The Ntdll!RtlCreateHeap() API implements heap creation and
initialization. This routine allocates the initial virtual region where the
heap resides and builds the appropriate data structures within the heap.
The heap data structure and Heap Segment #1 reside within the initial
4KB (one page) of the virtual memory that is initially allocated for the
heap. Heap Segment #1 resides just beyond the heap header. Heap
Segment #1 is initialized to manage the initial virtual memory allocated
for the heap. Any committed memory beyond Heap Segment #1 is
immediately available for allocation through HeapAlloc(). If any memory
within Heap Segment #1is reserved, a UCR table entry is used to track the
uncommitted range.

Note: Kernel32!HeapAlloc() is ‘Snapped’ to Ntdll!RtlAllocateHeap.

Besides the 128 free lists mentioned above, the heap header data
structure contains eight UCR table entries, which should be sufficient for
small heaps, although as many UCRs as are necessary can be created. It
also contains a table for sixteen (16) Heap Segment pointers. A heap can
never have more than sixteen segments, as no provision is made for
allocating extra segments entries. If the heap requires thread
synchronization, the heap header appends a critical section data
structure to the end of the fixed size portion of the heap header
preceding Heap Segment #1.

The diagram on the next page is a high-level illustration of how a typical
heap is constructed, and how the most important pieces relate to each
other.

The left side of the diagram represents a region of virtual memory that is
allocated for the heap. The heap header appears at the beginning of the
allocated memory and is followed by Heap Segment #1. The first entry
within the heap’s segment table points to this data structure. Committed
memory immediately follows Heap Segment #1. This memory is initially
marked as a free block. When an allocation request is made, assuming
this block of memory is large enough, a portion is used to satisfy the
allocation and the remainder continues to be marked as a free block.
Beyond the committed region is an area of memory that is reserved for
future use. When an allocation request requires more memory than is
currently committed, a portion of this area is committed to satisfy the
request.
172 Using Visual SoftICE

Figure 8-2. Typical Heap Construction

Heap Segment #1 tracks the virtual memory region initially allocated for
the heap. The starting address for the heap segment equals to the base
address of the heap and the end range points to the end of the allocated
memory. A portion of the heap in the diagram is in a reserved state, that
is, it has not been committed, so the heap segment uses an available UCR
entry to track the area. When memory must be committed to satisfy an
allocation request, all UCR entries maintained by a particular segment
are examined to determine if the size of the uncommitted range is large
enough to satisfy the allocation. To increase performance, the heap
segment tracks the largest available UCR range and the total number of
uncommitted pages within the virtual memory region of the heap
segment.
Chapter 8�Exploring Windows NT 173

On the right side of the diagram, a second area of virtual memory was
allocated and is managed by Heap Segment #2. Additional heap segments
are created when an allocation request exceeds the size of the largest
uncommitted range within the existing segment. This is only true if the
size of the requested allocation is less than the heap’s VMthreshold.
When the requested allocation size exceeds the VMThreshold, the heap
block is directly allocated through VirtualAlloc and a new heap segment
is not created.

As mentioned previously, a small number of UCR entries are provided
within the heap header. For illustration purposes, this diagram shows a
UCR TABLE entry that was allocated specifically to increase the number
of UCR entries that are available. The need to create an extra UCR table is
generally rare, and is usually a sign that a large number of segments were
created or that the heap segments are fragmented.

Fragmentation of virtual memory can occur when the Heap API begins
decommitting memory during the coalescing of free blocks.
Decommitting memory is the term used to describe reverting memory
from a committed state to a reserved or uncommitted state. When a free
block spans more than one physical page (4k), that page becomes a
candidate for being decommitted. If certain decommit threshold values
are satisfied, the Heap manager begins decommitting free pages. When
those pages are not contiguous with an existing uncommitted range, a
new UCR entry must be used to track the range.

The following examples use the Visual SoftICE HEAP command to
examine the default heap for the Explorer process.

1 Use the -S option of the HEAP command to display segment
information for the default heap:

:heap -s 140000

Base Id Cmmt/Psnt/Rsvd Segments Flags Process

00140000 01 001C/0018/00E4 1 00000002 Explorer

01 00140000-00240000 001C/0018/00E4 E4000

Heap segment memory range
Largest UCR

Heap segment count
174 Using Visual SoftICE

2 Use the -X option of the HEAP command to display extended
information about the default heap:

3 Use the -B option of the HEAP command to display the base
addresses of heap blocks within the default heap:

In the above output, you can see how the heap header is followed by
Heap Segment #1 and that the first allocated block is just beyond the
Heap Segment data structure.

Managing Heap Blocks

As discussed in the preceding section, the Heap API uses the Win32
Virtual Memory API routines to allocate large regions of the linear
address space and uses heap segments to manage committed and
uncommitted ranges. The actual sub-allocation engine that manages the
allocation and deallocation of the memory blocks used by your
application is built on top of this functionality. To track allocated and
free blocks, the Heap API creates a header for each block.

:heap -x 140000

Extended Heap Summary for heap 00140000 in Explorer

Heap Base: 140000 Heap Id: 1 Process: Explorer

Total Free: 6238 Alignment: 8 Log Mask: 10000

Seg Reserve: 100000 Seg Commit: 2000

Committed: 112k Present: 96k Reserved: 912k

Flags: GROWABLE

DeCommit: 1000 Total DeC: 10000 VM Alloc: 7F000

Default size for
commits

VM thresholdDefault size of a
heap segment

:heap -b 140000

Base Type Size Seg# Flags

00140000 HEAP 580 01

00140580 SEGMENT 38 01

001405B8 ALLOC 30 01
Chapter 8�Exploring Windows NT 175

The diagram on the next page illustrates how the heap manager tracks
blocks of contiguous memory. The heap manager also tracks non-
contiguous free blocks in doubly-linked lists, but the node pointers for
the next and previous links are not stored in the block header. Instead,
the heap manager uses the first two Dwords within the heap block
memory area.

As shown in the diagram, each block stores its unit size as well as the unit
size of the previous block. The unit size represents the number of heap
units occupied by the heap block. The previous unit size is the number of
heap units occupied by the previous heap block. Using these two values,
the heap manager is able to walk contiguous heap blocks.

Heap units represent the base granularity of allocations made from a
heap. The size of an allocation request is rounded upwards as necessary,
so that it is an even multiple of this granularity. Rather than using a
granularity of 1 byte, the heap manager uses a granularity of 8 bytes. This
means that all allocations are an even multiple of 8 bytes, and that
allocation sizes can be converted to units by round up and dividing by 8.

Figure 8-3. Contiguous Memory Tracking
176 Using Visual SoftICE

For example, if a process requests an allocation of 32 bytes, the number
of units is 32 / 8 = 4. If the allocation request was 34 bytes, the allocation
size is rounded upward to an even multiple of 8. In this example, the 34
bytes requested would be rounded to an allocation of 40 bytes, or 5 units.
The process requesting the allocation is unaware of any rounding to
satisfy unit granularity and proceeds as if the allocation request of 34
bytes was actually 34 bytes.

By using a unit size of 8, the types of allocation made by most
applications can be recorded using one word value with the restriction
that the maximum size of a heap block, in units, is the largest unsigned
short or 0xFFFF. This makes the theoretical maximum size of a heap
block in bytes, 0xFFFF * 8, or 524,280 bytes. (This limitation is
documented in the Win32 HeapAlloc API documentation.) Does that
mean that a program cannot allocate a heap block greater than 512k?
Well, yes and no. A heap block larger than 512k cannot be allocated, but
there is nothing to prevent the Heap API from using VirtualAlloc to
allocate a region of linear memory to satisfy the request. This is exactly
what the heap manager does if the size of the requested allocation
exceeds the heaps VMThreshold. The value of VMThreshold is stored in
the heap header and by default is 520,192 bytes (or 0xFE000 units).
When the heap manager allocates a large heap block using VirtualAlloc,
the resulting structure is referred to as a Virtually Allocated Block (VAB).

The heap manager walks contiguous heap blocks by converting the
current heap block’s unit size into bytes and adding that to the heap
block’s base address. The address of the previous heap block is calculated
in a similar manner, converting the unit size of the previous block to
bytes and subtracting it from the heap block’s base address. The heap
manager walks contiguous heap blocks during coalescing free blocks,
sub-allocating a smaller block from a larger free block, and when
validating a heap or heap entry.

Unit sizes are important for free block list management as the array of
128 doubly-linked lists inside the heap header track free blocks by unit
size. Free blocks that have a unit size in the range from 1 to 127 are
stored in the free list at the corresponding array index. Thus, all free
blocks of unit size 32 are stored in Heap->FreeLists[32]. Because it is not
possible to have a heap block that is 0 units, the free list at array index
zero stores all heap blocks that are larger than 127 units; these entries are
sorted by size in ascending order. Because a majority of allocations made
by a process are less than 128 units (1024 bytes or 1K), this is a fast way
to find an exact or best fit block to satisfy an allocation. Blocks of 128
units or greater are allocated much less frequently, so the overhead of
doing a linear search of one free list does not have a large impact on the
overall performance of most applications.
Chapter 8�Exploring Windows NT 177

The flags field within the heap block header denotes special attributes of
the block. One bit is used to mark a block as allocated versus free.
Another is used if it is a VAB. Another is used to mark the last block
within a committed region. The last block within a committed region is
referred to as a sentinel block, and indicates that no more contiguous
blocks follow. Using this flag is much faster than determining if a heap
block address is valid by walking the heap segment’s UCR chain. Another
flag is used to mark a block for free or busy-tail checking. When a process
is debugged, the heap manager marks the block in certain ways. Thus,
when an allocated block is released or a free block is reallocated, the heap
manager can determine if the heap block was overwritten in any way.

The extra info fields of the heap block header have different usage
depending on whether the block is allocated or free. In an allocated
block, the first field records the number of extra bytes that were allocated
to satisfy granularity or alignment requirements. The second field is a
pseudo-tag. Heap tags and pseudo tags are beyond the scope of this
discussion.

For a free block, the extra info fields hold byte and bit-mask values that
access a free-list-in-use bit-field maintained within the heap header. This
bit-field provides quicker lookups when a small block needs to be
allocated. Each bit within the bit-field represents one of the 127 small
block free lists, and if the corresponding bit is set, that free list contains
one or more free entries. A zero bit means that a free entry of that size is
not available and a larger block will need to be sub-allocated from. The
first extra info field holds the byte index into the bit-field array. The
second extra info field holds the inverted mask of the bit position within
the bit-field. Note that this applies to Windows NT 3.51 only. Newer
versions of Windows NT still use the free list bit-field, but do not store
the byte index or bit-mask values. The heap block memory array is also
different depending on the allocated state of the free block. For allocated
blocks, this is the actual memory used by your application. For free
blocks, the first two Dwords (1 unit) are used as next and previous
pointers that link free blocks together in a doubly-linked list. If the
process that allocated the heap block is being debugged, an allocated
heap block also contains a busy-tail signature at the end of the block.
Free blocks are marked with a special tag that can detect if a stray pointer
writes into the heap memory area, or the process continues to use the
block after it was deallocated.
178 Using Visual SoftICE

The following diagram shows the basic architecture of an allocated heap
block.

Figure 8-4. Basic Architecture of an Allocated Heap Block

The portion labeled Extra Bytes is memory that was needed to satisfy the
heap unit size or heap alignment requirements. This memory area should
not be used by the allocating process, but the heap manager does not
directly protect this area from being overwritten. The busy-tail signature
appears just beyond the end of the memory allocated for use by the
process. If an application writes beyond the size of the area requested,
this signature is destroyed and the heap manager signals the debugger
with a debug message and an INT 3. It is possible for a process to write
into the extra bytes area without disturbing the busy-tail signature. In
this case, the overwrite is not caught. The Heap API provides an option
for initializing heap memory to zero upon allocation. If this option is not
specified when debugging, the heap manager fills the allocated memory
block with a special signature. You can use this signature to determine if
the memory block was properly initialized in your code.

The following diagram shows the basic architecture of a free heap block.

Figure 8-5. Basic Architecture of a Free Heap Block

When a block is deallocated and the process is being debugged, the heap
manager writes a special signature into the heap memory area. When the
block is allocated at some point in the future, the heap manager checks
that the tag bytes are intact. If any of the bytes was changed, the heap
manger outputs a debug message and executes an INT 3 instruction. This
is a good thing if the debugger you are using traps INT 3, but most
debuggers ignore this debug-break because it was not set by the debugger.
As an aside, having the Free List Node pointers at the beginning of the
memory block is somewhat flawed, because a program that continues to
use a free block is more likely to overwrite data at the beginning of the
block than data at the end. Because these pointers are crucial to
navigating the heap, an invalid pointer eventually causes an exception.
When this exception occurs, it can be quite difficult to track this
overwrite back to the original free block.
Chapter 8�Exploring Windows NT 179

The following two examples show how to use the Visual SoftICE HEAP
command to aid in monitoring and debugging Win32 heap issues.

The first example uses the HEAP command to walk all the entries for the
heap based at 0x140000. The -B option of the HEAP command causes
the base address and size information to display as the heap manager
would view the information. Without the -B option, the HEAP command
shows base addresses and sizes as viewed by the application that
allocated the memory. The output is abbreviated for clarity and the two
heap blocks that appear in bold type are used to examine the heap block
header in the second example.

To examine the contents of an allocated heap block and a free block, the
second example dumps memory at the base address of the heap block at
0x143FE0. Enough memory is dumped to show the subsequent block,
which is a free block at address 0x144008.

The heap block header fields from the memory dump at address
0x143FE0 are identified with call-outs. This heap block is five units in
size (40 bytes) and 0x1C bytes of that size is overhead for the heap block
header (1 unit), busy-tail (1 unit), unit alignment (1 Dword), and an extra
unit left over from a previous allocation.

:HEAP -b explorer.exe
Count:11

Base Heap Base Id Committed Present Reserved SegmentCount Flags Mapped

--

explorer.exe 00080000 1 9b 85 100 1 00000002 no

explorer.exe 00180000 2 6 4 10 1 00001002 no

explorer.exe 00190000 3 1 0 10 1 00008000 no

explorer.exe 00260000 4 d b 10 1 00001002 no

explorer.exe 00460000 5 10 c 10 1 00001002 no

explorer.exe 01240000 6 3 1 10 1 00001002 no

explorer.exe 01250000 7 3 1 40 1 00001002 no

explorer.exe 012a0000 8 4 3 10 1 00001002 no

explorer.exe 00a10000 9 3 1 100 1 00000002 no

explorer.exe 00b10000 a c 8 10 1 00001002 no

explorer.exe 00b60000 b 3 2 10 1 00001002 no
180 Using Visual SoftICE

The heap block immediately following this is a free block that begins at
address 0x144008. This block is 0x1FF units and the size of the previous
block is five units. For free blocks 1KB or larger (80+ units), the Free List
byte position and bit-mask values are not used and are zero. The flag for
this heap block indicates that it is a sentinel (bit 4, or 0x10). Immediately
following the heap header is the location where the heap manager has
placed a doubly-linked list node for tracking free blocks. The pointer
values for the next and previous fields of the node are both 0x1400B8.
After the free list node, the heap manager tagged all the blocks memory
with a special signature that is validated the next time the block is
allocated, coalesced with another block, or a heap validation is
performed.

0010:00143FE0 0005 0006 00 07 1C 00

0010:00143FE8 00000000 00000000 60A25F52

0010:00143FF4 ABABABAB ABABABAB

0010:00143FFC FEEEFEEE 00000000 00000000

Unit size

Previous

Unused bytes Busy tail

Heap memory

Segment Flags Extra bytes

Tag

0010:00144008 01FF 0005 00 14 00 00

0010:00144010 001400B8 001400B8

0010:00144018 FEEEFEEE FEEEFEEE FEEEFEEE FEEEFEEE

0010:00144028 FEEEFEEE FEEEFEEE FEEEFEEE FEEEFEEE

0010:00144038 FEEEFEEE FEEEFEEE FEEEFEEE FEEEFEEE

0010:00144048 FEEEFEEE FEEEFEEE FEEEFEEE FEEEFEEE

Unit size

Previous unit Doubly linked free list
node

Free check

Segment

Flags

Free list byte

Free list bit
Chapter 8�Exploring Windows NT 181

182 Using Visual SoftICE

Appendix A

Troubleshooting Visual SoftICE
Troubleshooting
If you encounter the following problems, try the corresponding
solutions. If you encounter further difficulties, contact the Technical
Support Center.
 183

Problem Solution

In Visual SoftICE, I want to connect to the
target machine but I do not see it in the list of
network target machines.

There may be several reasons for this. First, you may
not have installed the target portion of Visual SoftICE
on that target machine.

If you are confident that you have properly installed
the Visual SoftICE target components on the target
machine, then go to the configuration tool and make
certain that you have properly configured a
connection.

If you have a properly configured connection on that
target machine, and it is active, then you will need to
do more extensive troubleshooting. Contact the
Technical Support Center with all applicable details.

I want to set a break point on something in my
source, but when I open the source code and
attempt to set the break point, it fails to set.

This is because the source is not mapped where
Visual SoftICE can determine the location of the
image file to break on.

To fix this, you can either pre-load symbols into Visual
SoftICE using the ADDSYM command, or you can set
the breakpoint on the loading of that module (using
the BPLOAD command) and have them found
automatically. Once the module is in memory, you
can set breakpoints on other locations.

I am noticing that the values in the Command
page do not appear to be correct. For
example, I entered the CPU command and
Visual SoftICE returned the value for my
processor speed as 585.

Most values returned in the Command page are
displayed in hexadecimal format by default. Try
converting the value you receive to decimal, and
reinterpret the results. The 585 processor speed in
your example would actually be 1400 decimal.

Use the SET RADIX command to configure the
displayed and input radix to whatever format you are
expecting to see.

After installing Visual SoftICE on my target
machine, it will no longer boot. It reaches a
specific part of the boot sequence and then
goes no further.

Try connecting with the master and check the status
of the target to see if it has reached a breakpoint. A
major cause of this behavior is the “stop on boot”
setting. Once the target is up and running, use
DSConfig to check the “stop on boot” setting for the
target.
184 Using Visual SoftICE

I want to connect to the target machine, but
do not want to wait for it to finish booting.
How do I accomplish this?

Use the WCONNECT command.

In the Command page, I receive far too much
information regarding the steps and other
trivialities I do not care about. How do I stop
or decrease these messages?

Use the SET command by itself to review your
settings. You probably have a more detailed message
level reporting configured. Use the SET MSGLEVEL
command to decrease or turn off message reporting
in the Command page.

I'm trying to stack-walk on an IA64/AMD64
machine, and I keep getting a message that
Unwind Information is Unavailable.

This is a very common issue when trying to stack-
walk on an IA64/AMD64 machine. This results from
one of three problems: Either no pdb file is loaded for
the specific image, the unwind data section of the
image is paged out, or you set your EXEPATH and
need to reload the table.

First, make certain that the correct pdb file is loaded
for the image. If the error persists, try copying the
image file into a folder, and then set your executable
path (EXEPATH) to include that folder. If you set your
EXEPATH and still cannot get unwind information,
reload the table.

After installing the Visual SoftICE network
debugging, I lost my Ethernet connection.

This may not be a problem. It may be just a
misunderstanding of the Visual SoftICE network
debugging. Visual SoftICE uses a dedicated network
that becomes the connection for debugging only. So
if your connection to the debugger is working, but
connection to the internet is not, then this is normal.

We suggest that the target machine have two
network cards: one PCI network card for normal
network operation, and another PCI network card for
the Visual SoftICE debugger. The only other
alternative is to use the VNIC driver in addition to the
installed connection.

Problem Solution
Appendix A�Troubleshooting Visual SoftICE 185

186 Using Visual SoftICE

Appendix B

Kernel Debugger Extensions
� Debugger Extension Overview and VSI Support

� Controlling Debugger Extension DLLs

� Using Debugger Extension Commands

Debugger Extension Overview and VSI Support
There are two different types of KD extension DLLs:

� “Old style” WinDbg Extensions: Extensions that call routines in
wdbgexts.h

� “New style” DbgEng extensions: Extensions that call routines in
dbgeng.h and wdbgexts.h

Visual SoftICE supports both KD extension DLLS.

Controlling Debugger Extension DLLs
There are several commands for controlling the debugger extension
DLLs:

� !Module.load (Load Extension DLL) loads a new DLL.
� !Module.unload (Unload Extension DLL) unloads a DLL.
� kdlist (List Debugger Extensions) displays all loaded debugger

extension modules in their default search order.

You can also load an extension DLL by using the full !module.extension
syntax the first time you issue a command from that module, but you
have to manually unload a KD extension DLL that has been loaded. Even
disconnecting from a target will not unload KD extension DLLs
automatically. Refer to the “Using Debugger Extension Commands”
section later in this appendix for details.
 187

The extension DLLs that you are using must match the operating system
of the target computer. The extension DLLs that ship with WinDbg are
each placed in a different subdirectory of the installation directory
according to the OS version and target mode (Release version or Debug
version). For example, nt4fre, w2kchk, and winxp. You must make sure
you use the right version, and you must set the right KD extension search
path (using either the path definitions in the Settings dialog, or via the
SET KDEXTPATH command at the command line).

You should be as specific as possible when setting the KD extension
search path, such as using C:\Program Files\Debugging Tools for
Windows\winxp instead of C:\Program Files\Debugging Tools for
Windows, otherwise Visual SoftICE will look for the first name-matched
KD Extension DLL and load it.

Note: If you write your own debugger extensions, you should place them
in a new directory and add that directory to the debugger extension
path.

Using Debugger Extension Commands
The use of debugger extension commands is very similar to the use of
other commands. A debugger extension command is an entry point in a
KD Extensions DLL called by the debugger.

You invoke debugger extensions via the following syntax:

![module.]extension [arguments]

Required: The module name should not be followed with the .dll file name
extension.

If the module has not already been loaded, it will be loaded into the
debugger using a call to LoadLibrary(module). After the debugger has
loaded the extension library, it calls the GetProcAddress function to
locate the extension name in the extension module. The extension name
is case-sensitive and must be entered exactly as it appears in the
extension module's .def file. If the extension address is found, the
extension is called.

If the module name is not specified, the debugger will search the loaded
extension modules for this export. The latest loaded DLL is searched first.

When an extension module is unloaded, it is removed from the search
order. When an extension module is loaded, it is added to the beginning
of the search order.
188 Using Visual SoftICE

You can use the kdlist (List Debugger Extensions) command to display a
list of all loaded extension modules in their current search order.

If you attempt to execute an extension command that is not in any of
the loaded extension modules, you will get an SI_E_NAME_NOT_FOUND
error message.
Appendix B�Kernel Debugger Extensions 189

190 Using Visual SoftICE

Glossary
Datum Artificial data elements contrived to make the user’s life easier. For
example, BPID, and _TID (current thread ID). Datums are time and target
context sensitive.

Interrupt Descriptor
Table (IDT)

Table pointed to by the IDTR register, which defines the interrupt/
exception handlers. Use the IDT command to display the table.

MAP file Human-readable file containing debug data, including global symbols
and usually line number information.

MMX Multimedia extensions to the Intel Pentium and Pentium-Pro processors.

Object Represents any hardware or software resource that needs to be shared as
an object. Also, the term section is sometimes called an object. Refer to
Section.

One-Shot Breakpoint Breakpoint that only goes off once. It is cleared after the first time it goes
off or the next time Visual SoftICE pops up for any reason.

Ordinal Form When a symbol table is not relocated, it is said to be in its ordinal form;
in this state, the selectors are section numbers or segment numbers (for
16 bit).

Relocate Adjust program addresses to account for the program’s actual load
address.

Section In the PE file format, a chunk of code or data sharing various attributes.
Each section has a name and an ordinal number.

Sticky Breakpoint Breakpoint that remains until you remove it. It remains even through
unloading and reloading of your program.

SYM File File containing debug data, including global symbols and usually line
number information. The SYM file is usually derived from a MAP file.

Symbol Table Visual SoftICE-internal representation of the debugging information, for
example, symbols and line numbers associated with a specific module.
 191

Virtual Breakpoint Breakpoint that can be set on a symbol or a source line that is not yet
loaded in memory.
192 Using Visual SoftICE

Index
Symbols
.PDB Files 147

Numerics
1394 7, 12

A
About

the context bar 22
the status bar 21

Accessing Images 108
Active Table 109
ADDR command 155, 157
Address

space 169
type 142

Audience ix
Automatic

changes in mode state 24
loading 111
output redirection 39
unloading 111

B
BC command 133
BD command 133
BE command 133
Bitwise operators 137
BL command 133
Breakpoint

action, setting 125
options 119
page 78
statistics 133

Breakpoints 16
duplicate 132
embedded 134
expressions 133
INT 1 and INT 3 134
manipulating 133
statistics 133
types 118
using 117
virtual 124

BSTAT command 133
Built-in functions 139

C
Character constants 138
Choosing Your Version 1
Command

comments 37
syntax output redirection 37

Command Page 45
features 37

Commands
BC 133
BD 133
BE 133
BL 133
BSTAT 133

Conditional Breakpoints 125
referencing the stack 130

Conditional breakpoints
count functions 126

Context Bar Controls 23
Copy 40
CSRSS 161
Current Context 18
Cursor Types 20
Customer Assistance xii
 193

Customizing
the status bar 33
toolbars 32

Cut 40

D
Data Item Drag and Drop 41
DBG files 147
Debug Message Page 82
Debugging

features 6
resources 145

Dedicated PCI Ethernet 7, 9
NIC 9

DEVICE command 146
Disassembly Page 91
Drag and Drop 40
DRIVER command 146
Dual Machine Debugging 3
Duplicate Breakpoints 132

E
Eaddr function 142
EBP register 130
Elapsed Time 132
Embedded breakpoints 134
ESP register 130
Event Page 84
Execution Breakpoints 119
Export 114
Expression

evaluator 135
built-in functions 139
expression values 142
forming expressions 137
numbers 138
operators 136
registers 138
symbols 138

types 142
values 135

address-type 142
literal-type 142
register-type 142
symbol-type 142

Expressions
breakpoints 133
forming 137

F
Filtering Messages 83
Firewire 7, 12
Fixed Address Breakpoints 124
Fonts & Colors Settings 34
Forming expressions 137
Functions

built-in 139
expression evaluator 141

G
GDI objects 164
GDT command 152
General Global Settings 25
Global

descriptor table 150, 152
settings 25

H
Handle values 166
Heap

API 170
architecture 170
blocks 175

HEAP command 163, 174

I
I/O Breakpoints 121
IDT command 151
Image Search 114
Image-Relative Breakpoints 124
Indirection operators 136
INT 1 instruction breakpoints 134
INT 3 instruction breakpoints 134
Integrated MS Symbol Server Access 112
Intel architecture 150
Interrupt

breakpoints 121
Descriptor Table 150, 151

K
KD Extension

DLLs 187
Overview 187

KD Extension Paths 114
KD Extensions 187
Kernel Debugger Extensions 187
Keyboard Settings 30
194 Using Visual SoftICE

L
Live Mode On Connection 24
Loading Tables 109
Local

copies of images 108
variables in conditional expressions 129

Locals Page 72
Logical operators 137

M
MACRO command 168
Manipulating breakpoints 133
MAP32 command 154, 170
Matching Tables and Images 110
Math operators 136
Memory

breakpoints 120
map of system memory 154
Page 65

MOD command 170
MS Symbol Server

access 112
paths 114

N
NonPaged System area 159
NTCALL command 151
NTOSKRNL.EXE 150

O
OBJDIR command 146
OBJTAB command 154, 167
OHCI 7, 11
On Demand Symbol Handling 6
Operators

bitwise 137
expression evaluator 136
indirection 136
logical 137
math 136
precedence 137

Organization x
Output Redirection 37, 39

P
Pad Level Page Drag and Drop 40
Page

modes 23
table entry 158

PAGE command 155

Paged Pool System area 158
Paste 40
Path Settings 114
Paths 27
Persistent Loading Tables 112
Per-Workspace Settings 27

notes 115
PHYS command 155
Precedence operators 137
Preface ix
Preferences 25
Pre-Loading Tables 112
Print 42

preview 42
Process address space 169
Process List Page 61
Processor Control Region 160
ProtoPTEs 158
PTE 158

Q
QUERY command 163, 170

R
Referencing the Stack 130
Registers Page 55

S
Saving Contents 41
Script

execution 43
search path 114

Scripts 29
Serial 7
Setting

breakpoint actions 125
general paths 114
Visual SoftICE paths 114

Single Machine Debugging 2
SoftICE 1, 2
Source

Page 98
status bar 22
symbol state icons 20

search 114
Stack

frame 130
Page 50
referencing in conditional breakpoints 130
Index 195

Status Bar
examples 21
settings 32

notes 115
Supported Symbols 108
SYM command 158
Symbol

location 107
management 107
table state 19

Symbol Handling, On Demand 6
Symbol Management 107
Symbols 138

in Visual SoftICE 113
type 142

System
Code area 154
memory map 154
page table entries 158
Tables System area 155
View System area 154

T
Table Loading Controls 111
Target

state 17
transport overview 7

Task State Segment 152
Text Scratch Page 87
THREAD command 170
Toolbar

settings 32
notes 115

Troubleshooting 183
Visual SoftICE 183

Typographical Conventions xi

U
UHCI 7, 11
Understanding Breakpoint Contexts 124
Universal PCI Ethernet 7, 10
Unloading Tables 109
USB

host controller 7, 11
NIC 7, 11

Useful Documentation xii
USER

object
creation 168
table 167

objects 164

User
interface overview 15
symbol search path 114

Using Exports 113

V
Virtual breakpoints 124
Virtual NIC Driver 7, 12
Visual SoftICE 1, 3

features 6
global settings 26
icons 16
overview 5
symbol table status 116
UI overview 15
user interface 45

overview 15
Visual SoftICE User Interface

Overview 15
VSI

symbol table status 116
system activity messages 115

W
Watch Page 75
Win32 subsystem 161
Window Message Breakpoints 123
Windows Components 161
Windows NT

DDK 146
exploring 145
kernel 149
references 148
system memory map 154

Workspace Save and Load 36
196 Using Visual SoftICE

	Preface
	Purpose of This Manual
	Audience
	Organization of This Manual
	Typographical Conventions
	How to Use This Manual
	Other Useful Documentation
	Customer Assistance
	For Non-Technical Issues
	For Technical Issues

	Choosing Your SoftICE Version
	SoftICE or Visual SoftICE?
	Single Machine Debugging: SoftICE
	Dual Machine Debugging: Visual SoftICE
	Which One Should I Use?
	Visual SoftICE Overview
	About Visual SoftICE

	Visual SoftICE Target Transport Configuration
	Visual SoftICE Target Transport Overview
	Serial Target Transport
	Requirements and Characteristics

	Dedicated PCI Ethernet Network Interface Card (NIC)
	Requirements and Characteristics

	Universal PCI Ethernet NIC
	Requirements and Characteristics

	OHCI/UHCI USB Host Controller and USB NIC
	Requirements and Characteristics

	Virtual NIC Driver (optional)
	Requirements and Characteristics

	1394 (Firewire)
	Requirements and Characteristics

	Overview of the Visual SoftICE User Interface
	The Visual SoftICE User Interface Overview
	Visual SoftICE Icons
	About the Status Bar
	About the Context Bar
	Page Modes

	User Interface Preferences
	Global Settings
	Per-Workspace Settings
	Keyboard Settings
	Toolbars & Status Bar Settings
	Fonts & Colors Settings

	Other User Interface Attributes and Features
	Workspace Save and Load
	Special Command Page Features
	Cut, Copy, and Paste
	Drag and Drop
	Saving Contents to a File
	Print and Print Preview
	Script Execution

	The Visual SoftICE User Interface Pages
	The Command Page
	Concepts and Associated Commands
	Page Features

	The Stack Page
	Concepts and Associated Commands
	Page Features

	The Registers Page
	Concepts and Associated Commands
	Page Features

	The Process List Page
	Concepts and Associated Commands
	Page Features

	The Memory Page
	Concepts and Associated Commands
	Page Features

	The Locals Page
	Concepts and Associated Commands
	Page Features

	The Watch Page
	Concepts and Associated Commands
	Page Features

	The Breakpoint Page
	Concepts and Associated Commands
	Page Features

	The Debug Message Page
	Concepts and Associated Commands
	Page Features

	The Event Page
	Page Features

	The Text Scratch Page
	Concepts and Associated Commands
	Page Features

	The Disassembly Page
	Associated Commands
	Page Features

	The Source Page
	Associated Commands
	Page Features

	Visual SoftICE Symbol Management
	Visual SoftICE Symbol Management
	Where to Put the Symbols
	What Symbols are Supported

	Images — Why you need access to them
	Local Copies of Images
	Tables – Active Table, Loading, and Unloading Commands
	Automatic, On-Demand Loading and Unloading
	Pre-Loading/Persistent Loading
	Integrated MS Symbol Server Access
	Using Exports

	Symbols — Getting Setup in Visual SoftICE
	Setting Up General Paths
	Setting Up Visual SoftICE Paths
	Settings Notes
	Per-Workspace Settings Notes
	Toolbars & Status Bar Settings Notes

	Using Breakpoints
	Introduction
	Types of Breakpoints Supported by Visual SoftICE
	Breakpoint Options
	Execution Breakpoints
	Memory Breakpoints
	Interrupt Breakpoints
	I/O Breakpoints
	Image Load Breakpoints
	Window Message Breakpoints

	Understanding Breakpoint Contexts
	Image-Relative Breakpoints
	Fixed Address Breakpoints

	Virtual Breakpoints
	Setting a Breakpoint Action
	Conditional Breakpoints
	Conditional Breakpoint Count Functions
	Using Local Variables in Conditional Expressions
	Referencing the Stack in Conditional Breakpoints
	Performance
	Duplicate Breakpoints

	Elapsed Time
	Breakpoint Statistics
	Referring to Breakpoints in Expressions
	Manipulating Breakpoints
	Using Embedded Breakpoints

	Using Expressions
	Expression Values
	Supported Operators
	Operator Precedence

	Forming Expressions
	Numbers
	Registers
	Symbols
	Built-in Casts and Functions

	Expression Evaluator Type System
	Symbol Type
	Address Type
	Evaluating Symbols
	Pointer Arithmetic with Symbols
	Array Symbols In Expressions

	Exploring Windows NT
	Overview
	Resources for Advanced Debugging

	Inside the Windows Kernel
	Managing the Intel x86 Architecture
	Windows NT System Memory Map

	Win32 Subsystem
	Inside CSRSS
	USER and GDI Objects
	Process Address Space
	Heap API

	Troubleshooting Visual SoftICE
	Troubleshooting

	Kernel Debugger Extensions
	Debugger Extension Overview and VSI Support
	Controlling Debugger Extension DLLs
	Using Debugger Extension Commands

	Glossary
	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

