Visual SoftICE
Command Reference

Release 1.3.0

ﬁ%g
COMPUWARE.f
el

Technical support is available from our Technical Support Hotline or via
our FrontLine Support Web site.

Technical Support Hotline:
1-800-538-7822

FrontLine Support Web Site:
http://frontline.compuware.com

This document and the product referenced in it are subject to the following
legends:

Access is limited to authorized users. Use of this product is subject to the
terms and conditions of the user’s License Agreement with Compuware
Corporation.

© 2003 Compuware Corporation. All rights reserved. Unpublished - rights
reserved under the Copyright Laws of the United States.

U.S. GOVERNMENT RIGHTS

Use, duplication, or disclosure by the U.S. Government is subject to
restrictions as set forth in Compuware Corporation license agreement and
as provided in DFARS 227.7202-1(a) and 227.7202-3(a) (1995), DFARS
252.227-7013(c)(1)(ii)(OCT 1988), FAR 12.212(a) (1995), FAR 52.227-19,
or FAR 52.227-14 (ALT I11), as applicable. Compuware Corporation.

This product contains confidential information and trade secrets of Com-
puware Corporation. Use, disclosure, or reproduction is prohibited with-
out the prior express written permission of Compuware Corporation.

DriverStudio, SoftICE Driver Suite, DriverNetworks, DriverWorks,
TrueCoverage, and DriverWorkbench are trademarks of Compuware
Corporation. BoundsChecker, TrueTime, and SoftICE are registered
trademarks of Compuware Corporation.

Acrobat® Reader copyright © 1987-2002 Adobe Systems Incorporated. All
rights reserved. Adobe, Acrobat, and Acrobat Reader are trademarks of
Adobe Systems Incorporated.

All other company or product names are trademarks of their respective
owners.

US Patent Nos.: Not Applicable.

Doc. 11582
May 19, 2003

http://frontline.compuware.com

Table of Contents

Preface C . 37
Register Names CLASS 38 GO ..oviii 84
and Groups \Y; CLOSE 40 HBOOT 85
Wildcards vii CLS 41 HEAP 86
Vci:sua| Soft(!lCE CONNECT 42 HELP 90
b omman s _______ o, CPU.............. 44 HWND 91
IO 3 D a7 o
S 4 DELSYM 49 SHERE 99
.................... 5 DEVICE.............50 IMAGE(II\/I.(.)I.D.)””””100
D g DEVNODE........... 03
@ oo 7 DISCONNECT........ o5 IMAGEMAP (MAP32) . 102
oee 56 INTOBJovv .. 104
ADDR.......covvvnne. 8 RP ... 106
QUERY DRIVERo\.. .. 57
(ADDRESSMAP) 10 E oo o TUDD............ 108
ADDSYM 12 ERESOURCE 61 KDLIST ... 110
APC ... 13 EVAL oo e2 KEVENT 111
ARBITER 14 EXEC .o vooee . 63 KILL e 112
ASSEMBLE 16 EXIT oo 64 KMUTEX........... 113
BC .\t 17 EXP oo 65 KOBJECT 114
BD oo 18 Foo 67 KSEM 115
BE .\ 19 FAULTS ...\ 68 LOAD 116
BL. oo 20 FGEToovovnii.... 70 LOCALS 117
BMSG .. ovooeee 21 FIBER ... oo 71 LOG ... 118
BPINT ..o, 23 FILE .o 74 Moo 120
BPIO .\, 25 FMUTEX ..o\t 75 MACRO............ 121
BPLOAD 27 FOBJ ... 76 MAP3Z2(IMAGEMAP) . 125
BPM oot 29 FPUT ©oooeeo 77 MSR.......ooeeee 127
BPR .o, 32 FS...i, 78 NAME 129
BPX oo 34 GDT......oovooni... 79 NETFIND 131
BSTAT oo, 35 GETEXP............. 82 NTCALL 132

Visual SoftICE Command Reference iii

Table of Contents

PAGE

QUERY
(ADDRESSMAP)

QUIT ..o,

SET
ADDRESSFORMAT

SET
AUTOCOPYSCRIPT .

SET CACHE

SET DBGMSG-
DEBOUNCETIME ..

SET DIALECT
SET EE_EVAL_ORDER
SET EE_IMPL_DEREF .
SET EXEPATH

175

177
179

SET EXPORTPATH

SET FLOATREG-
FORMAT

SET GLOBALBREAK
SET IMAGEMATCH . ..
SET KDEXTPATH
SET MSGLEVEL
SET PACKETFORMAT .
SETRADIX
SET REGNAME
SET SCRIPTECHO ...
SET SCRIPTPATH

SET SCRIPTSTOP-
ONERROR

SET SRCPATH
SET STEPMODE
SET STICKYCONTEXT

SET STOPONCMD
SET SYMPATH
SET SYMSRVSEARCH

SET SYMTABLE-
AUTOLOAD

SET THREADP
SET UIQ_THRESHOLD
SET UPPERCASE
SET WARNLEVEL

STOP

iv Visual SoftICE Command Reference

187

189

. 190

191
192
194
195
196
197

. 198

199

201
202
203
205
206
207

. 209

T o 229
TABLE 230
TCONFIG 232
TCONFIG

KEEPALIVE 233
TCONFIG

STOPONBOOT 234
TCONFIG

TRANSPORT 235
THREAD 236
TIMER 239
TYPES 240
UNASSEMBLE 242
UNLOAD 244
VERSION 245
WATCH 246
WB 247
WC 248
WCONNECT 249
WD 251
WE 252
WF 253
WG ... 254
WHAT 255
WI oo 257
WINERROR 258
WL 259
WMSG 260
WP ... 261
WR 262
WS ... 263
WT . 264
WX oo 265
XFRAME 266
ZAP ... 269

Preface

This reference manual explains the functionality of all Visual SoftICE
commands. Commands described in this reference operate on 1A-32 or
IA-64 targets with the following supported operating systems:

¢ Windows® 2000
¢ Windows® XP

For each command, this reference provides information on the proper
syntax, available options, expected output, examples, and related
commandes, as applicable.

Register Names and Groups

In order to simplify the presentation of the large number of registers
available, Visual SoftICE uses the concept of Register Groups. Registers
are grouped by type and function, allowing you to work with them in
smaller, more logical pieces.

To view detailed information on any register group and the
corresponding fields, you can use the R command with the field, symbol,
and descriptive flags, or the Registers page and the Details status bar.

Visual SoftICE organizes the available registers into the following groups

for 1A-64:

State Registers

A collection of the Processor State (PSR), Instruction
Pointer (IP), Current Frame Marker (CFM), and Slot
registers.

General Registers

General purpose 64-bit registers are GRO - GR127. IA-
32 integer and segment registers are contained in GR8
- GR31 when executing IA-32 applications.

Local Registers

A collection of registers representing the current locals
(variable length).

Predicate Registers

Single-bits used in IA-64 predication and branching are
PRO - PR63.

x86 Registers

A view of registers as seen by a 32-bit process
executing on the 64-bit platform.

Floating-point Registers

Floating-point registers are FRO - FR127. IA-32 floating-
point and multi-media registers are contained in FR8 -
FR31 when executing IA-32 instructions.

Floatstack Registers

Rotating floating-point registers are FO - F127.

System Registers

A collection of critical system registers, including Task
Priority, Interrupt, and Control registers.

Branch Registers

Registers used in I1A-64 branching are BRO - BR7.

Application Registers

A collection of special-purpose I1A-64 and IA-32
application registers.

Perfdata Registers

Data registers for performance monitor hardware are
PMDO - PMD?7.

CPUID Registers

Registers that describe processor implementation-
dependent features.

Breakpoint Registers

Instruction and Data Breakpoint registers are IBRO -
IBR7 and DBRO - DBR7.

Region Registers

Region registers are RRO - RR7.

Protection Registers

Protection key registers are PKO - PK15.

Translation Registers

Instruction and Data Translation registers are ITRO -
ITR7 and DTRO - DTR7.

vi Visual SoftICE Command Reference

Wildcards

Example

Visual SoftICE organizes the available registers into the following groups

for 1A-32:
General Registers General purpose 32-bit registers.
Segment Registers Segment registers.
Float Registers Floating-point registers.
MMX Registers Multi-media extension registers.
XMM Registers SSE multi-media extension registers.
Debug Registers Debug registers.
Control Registers Control registers.

Visual SoftICE has the following rules regarding use of wildcard
characters:

L 4

L 4

Wildcard characters are not supported in numeric input.

Except where noted, all commands that take “names” can also take
the single character wildcard (?) and the multiple character wildcard
(™). This is true for all symbols (locals, globals, function names,
exports, etc.), register names and aliases, objects in commands (like
DRIVER, DEVICE, etc.), and user-defined names (addresses and
literals).

Wildcard characters are not supported in macro names. You must
enter a full macro name exactly as it was defined. Visual SoftiICE
already does partial matches against macros as though they were
valid commands in the command language, so wildcard characters
are meaningless in this context.

kb*fil*isr* matches KbFi | t er | srHook because the first * matches
zero characters, the second matches a few characters, and the last
matches any number of characters (including zero) at the end. If this had
been entered as kb?fi | *i sr* it would not have matched because the ?
wildcard must match exactly one character and not zero characters.

Preface vii

viii Visual SoftICE Command Reference

Visual SoftICE Commands

2 Visual SoftICE Command Reference

Execute Kernel Debugger extension.

Syntax
! kdext . conmand
kdext Name of the Kernel Debugger extension.
command The command inside the Kernel Debugger extension to execute.
Use
Use the ! command to execute a Kernel Debugger (KD) extension
command.
Example

The following example executes the pcitree command inside the kdexts
KD extension:

S| >! kdexts. pcitree

Bus 0x0 (FDO Ext e000000086db6dd0)
0800 123d8086 (d=0, f=0) devext e000000086f 75690 Base System Device/lnterrupt Controller
0700 2000131f (d=1, f=1) devext e000000086f 75350 Sinple Serial Comunications Controller/Serial Port
0604 00241011 (d=2, f=2) devext e000000086f75010 Bridge/PCl to PCl

Total PCl Root busses processed = 4

Visual SoftlICE Commands 3

Syntax

Use

Example

See Also

Pass a program name and command line arguments to the master side
operating system to execute.

$ program nanme [cnd-1ine]

pr ogr am nane Name of the program to execute.

cmd-1ine Command line arguments for the specified program.

Use the $ command to have the master side operating system execute a
specified program, including any command line arguments you want to
pass to the program at execution.

The following example executes Windows Notepad and has it open
myfile.txt:

SI>$ notepad c:\myfile.txt

EXEC

4 Visual SoftICE Command Reference

Disassemble at the current instruction entered alone in a Command
(CMD) page, or interpreted as an address in any other syntax.

Syntax

Use
When in the CMD page, the . (Dot) command disassembles at the
current Instruction Pointer (IP). When in any other page, the . (Dot)
command is interpreted as an address and used as applicable for that
page.

Example
The following example shows disassembly of code using the . (Dot)
command with symbols loaded:

Sl >

* 0xe000000083076390. sO
0xe000000083076390. s1
0xe0000000830763a0. sO
0xe0000000830763a0. s1
0xe0000000830763a0. s2
0xe0000000830763b0. sO
0xe0000000830763b0. s1
0xe0000000830763b0. s2

---------- ntoskrnl!. Kel nsert QueueDpc+10- -+« -+ v v v
adds r43 = 0x0, gp

movl r40 = 0xe0000000ffff0Obls8 ;

addl r44 = Oxf, r0

adds r35 = 0x2, r32

adds r45 = 0x10, sp ;

1d8.nta r3 = [sp]

nop. f 0x0

br.call.sptk.many rp = $+0x1df0 // (ntoskrnl!.KeRaiselrqgl) ;;

Visual SoftlICE Commands

5

Syntax

Use

Example

See Also

Evaluate an expression.

? expression

expression The expression to eval uate.

To evaluate an expression, enter the ? command followed by the
expression to evaluate. Visual SoftICE displays the result in decimal
(signed decimal only if the value is less than 0), hexadecimal, ASCII, and
binary.

You can explicitly evaluate the decimal or hexadecimal values regardless
of the current radix setting by using dec() or hex() with the number in
the parenthesis. The Expression Evaluator returns the corresponding
value.

The following command displays the hexadecimal, decimal, ASCII, and
binary representations of the value of the expression 10h* 4h+3h:

Sl >? 10*4+3
0000000000000043 (67) "C' 0100 0011

The following command explicitly evaluates three different expressions
using dec() and hex():

SI >? dec(111)

0000006f (111)

SI >? hex(111)

00000111 (273)

SI >? dec(111) + hex(111)
00000180 (384)

EVAL, SET EE_EVAL_ORDER, SET EE_IMPL_DEREF, SET RADIX

6 Visual SoftICE Command Reference

Syntax

Use

Example

See Also

Load and execute a script file on the target.

@[file-nane]

file-name The file name of the script to load and execute.

Use the @ command to load and execute a script file on the target. Script
files are any ASCII text files containing at least one Visual SoftICE
command per line, or separated by semi-colons on the same line.

The following example loads and executes MyScri pt . t xt on the target:

SI>@ MyScri pt. txt

SAVE, SCRIPT, SET LOG, SET SCRIPTECHO, SET SCRIPTPATH, SET

SCRIPTSTOPONERROR, SLEEP

Visual SoftlICE Commands

7

ADDR

Display or switch to an address context.

Syntax
ADDR [process-nanme | process-id | KPEB]
process-name Name of any currently loaded process.
process-id Process ID. Each process has a unique ID.
KPEB Linear address of a Kernel Process Environment Block.
Use
Use the ADDR command to both display and change address contexts
within Visual SoftICE to view process-specific data and code. Using
ADDR with no parameters displays a list of all address contexts.
If you specify a parameter, Visual SoftICE switches to the address context
belonging to the process with that name, identifier, or process control
block address. Switching the context causes on-demand symbol loading
to occur.
When displaying information about all contexts, one line is highlighted,
indicating the current context within Visual SoftICE. When displaying
data or disassembling code, the highlighted context is the one displayed.
Example
The following example displays a list of all address contexts:
SI >ADDR
PageDi r KPEB Pi d Narme
00000000035d6461 e000000081a6fa40 O Idle
00000000149e0461 e0000000865a7c10 188 fib64_2. exe
000000000f be4461 e00000008660ba90 1fc svchost . exe
The following example switches address contexts to fi b64_2. exe using
its PID from the list:
SI >ADDR 188

8 Visual SoftICE Command Reference

The following example shows how the symbol tables are affected by

switching address contexts. The initial address context is the idle process.

Notice how the new image for the new context is automatically loaded:

S| >TABLE
Nane Version Type Gl Exp Status
__USERNAMES__* 00000001 User Y N
*nt oskrnl . exe 3b7de38f Synbol Y N Matching PDB file C:\Synbol s\ exe\ntoskrnl.pdb.
SI CORE. SYS 3ce0df 22 Synbol Y N Can't find PDB synbol file.
S| >ADDR wi nl ogon. exe
SI >TABLE
Narme Version Type Gbl Exp Status
__USERNAMES__* 00000001 User Y N K
*nt oskrnl . exe 3b7de38f Synbol Y N Mtching PDB file C:\Synbol s\ exe\ nt oskrnl . pdb.
SI CORE. SYS 3ce0df 22 Synbol Y N Can't find PDB synbol file.
wi nl ogon. exe 3b7d8cc8 Synbol N N Mtching PDB file C:\Synbol s\ exe\wi nl ogon. pdb.
SI >ADDR expl or er. exe
SI >TABLE
Nare Version Type Gbl Exp Status
__USERNAMES__* 00000001 User Y N
Expl or er . EXE 3b7de06e Synbol N N Mtching PDB file C:\Synbol s\ exe\ Expl orer. pdb.
*nt oskrnl . exe 3b7de38f Synbol Y N Matching PDB file D:\Synbol s\ exe\ nt oskrnl . pdb.
S| CORE. SYS 3ce0df 22 Synbol Y N Can't find PDB synbol file.
See Also

IMAGE, PROCESS, TABLE

Visual SoftlICE Commands

9

QUERY (ADDRESSMAP)

Display the virtual address map of a process.

Syntax
QUERY [[-a] address] | [process-type]
-a Shows the mapping for a specific linear address within every
context where it is valid.
address Linear address to query.
process-type Expression that can be interpreted as a process.
Use
The QUERY command displays a map of the virtual address space for a
single process, or the mapping for a specific linear address. If no
parameter is specified, QUERY displays the map of the current process. If
a process parameter is specified, QUERY displays information about each
address range in the process.
Output

The QUERY command displays the following information:

Context Address context.

Address Range Start and end address of the linear range.

Flags Flags from the node structure.

MMCI Pointer to the memory management structure.

PTE Structure that contains the ProtoPTEs for the address range.

Name Additional information about the range. This includes the
following:

 Memory mapped files will show the name of the mapped file.

* Executable modules will show the file name of the DLL or
EXE.

= Stacks will be displayed as (thread ID).

« Thread information blocks will be displayed as TIB (thread
ID).

* Any address that the WHAT command can identify might also
appear.

10 Visual SoftICE Command Reference

Example

The following example uses the QUERY command to map a specific
linear address for Windows NT.

SI >QUERY -a 77f50000

Count: 14
Cont ext

Addr ess Range

System

SNBS. exe
CSrss. exe

wi nl ogon. exe
Servi ces. exe
| sass. exe
svchost . exe
svchost . exe
svchost . exe
svchost . exe
spool sv. exe
expl orer. exe
si servi ce. exe
| ogon. scr

77f 50000- 77f f 8000
77f 50000- 77f f 8000
77f 50000- 77f f 8000
77f 50000- 77f f 8000
77f 50000- 77f f 8000
77f 50000- 77f f 8000
77f 50000- 77f f 8000
77f 50000- 77f f 8000
77f 50000- 77f f 8000
77f 50000- 77f f 8000
77f 50000- 77f f 8000
77f 50000- 77f f 8000
77f 50000- 77f f 8000
77f 50000- 77f f 8000

07100005
07100005
07100005
07100005
07100005
07100005
07100005
07100005
07100005
07100005
07100005
07100005
07100005
07100005

80ad8008
80ad8008
80ad8008
80ad8008
80ad8008
80ad8008
80ad8008
80ad8008
80ad8008
80ad8008
80ad8008
80ad8008
80ad8008
80ad8008

e13585e0 ntdll.dll
€13585e0 ntdll.dll
e€13585e0 ntdll.dll
el13585e0 ntdll.dl
el13585e0 ntdll.dl
el13585e0 ntdll.dl
€13585e0 ntdll.dll
e13585e0 ntdll.dll
€13585e0 ntdll.dll
el3585e0 ntdll.dl
el13585e0 ntdll.dl
el13585e0 ntdll.dl
e13585e0 ntdll.dll
€13585e0 ntdll.dll

The following example uses the QUERY command to list the address map
of the expl orer process for Windows NT.

SI >QUERY expl orer
Addr ess Range

00010000- 00010000
00020000- 00020000
00030000- 0006f 000
00070000- 00070000
00080000- 0017f 000

7f f dc000- 7f f dc000
7f f de000- 7f f de000O
7f f df 000- 7f f df 000

c4000001
c4000001
8400000f
01400000
840000b1

€c6400001
€6400001
c6400001

809e5540 e10e5150

Process Heap

Ti b: 338
Ti b: 13c
UPEB (20c)

Visual SoftlICE Commands

11

ADDSYM

Syntax

Use

Example

See Also

Add persistent symbols from an image or . pdb file.

ADDSYM [-v] file-nane

-v Verbose mode.

file-name The name of the image or . pdb file.

Use the ADDSYM command to add persistent symbols from an image or
. pdb file. Using ADDSYM with the -v option will generate verbose
information about the symbol engine's search for the image or symbol
file specified.

Symbols are normally loaded on-demand, however ADDSYM can be used
to pre-load or maintain symbols as needed according to your debugging
preferences. These symbols stay loaded until you specifically remove
them, or Visual SoftICE exits.

On-demand symbol loading differs from the previous versions of SoftICE,
which required you to always pre-load symbols into memory. Setting
deferred (virtual) breakpoints is not possible with Visual SoftICE loading
symbols on-demand. Deferred breakpoints are set before the image of
interest has been loaded by the operating system, and in order to set
them, you must have symbols or exports available on the master within
your search path(s).

Use the ADDSYM command to set deferred breakpoints by informing the
symbol engine of data you want to persistently load before you issue any
Set Breakpoint commands.

The following example adds symbols from a . pdb file in verbose mode:

SI >ADDSYM -v nypdb. pdb

DELSYM, FILE, GETEXP, LOAD, RELOAD, SET SYMPATH, SET
SYMSRVSEARCH, SET SYMTABLEAUTOLOAD, TABLE, UNLOAD

12 Visual SoftICE Command Reference

APC

Display Asynchronous Procedure Calls.

Syntax
APC [address | TID | PID]
address Location of an asynchronous procedure call.
TID Thread ID of thread you want to search for asynchronous procedure
calls.
PID Process ID of process you want to search for asynchronous procedure
calls.
Use
The APC command displays information about asynchronous procedure
calls that are current in the system. If you enter APC with no parameters,
Visual SoftICE lists all asynchronous procedure calls queued for delivery
in the currently running thread. Or you can instruct Visual SoftICE to
walk through a specified thread or process.
Example
The following command displays information about an asynchronous
procedure call:
S| >APC 1c8
Addr ess 81b107f 8
Thr ead 81d0d8h8
Ker nel Rout i ne nt oskrnl ! | opConpl et eRequest (804e90e4)
RundownRout i ne nt oskrnl ! | opAbort Request (80557946)
Nor mal Rout i ne 00000000
Nor mal Cont ext : 00000000
SystemArgunent1l : 81d00748
SystemArgunent 2 ;. 00000000
ApcSt at el ndex 0
ApcMde 0
I nserted yes
See Also
DPC

Visual SoftlICE Commands

13

ARBITER

Display a list of arbiters for different types of resources.

Syntax
ARBITER [-p | -i | -m| -b | -d]
-p Display all port arbiters.
-i Display all interrupt arbiters.
-m Display all memory arbiters.
-b Display all bus arbiters.
-d Display all DMA arbiters.
Use

The ARBITER command displays a list of arbiters for different types of
resources. If you use the ARBITER command without any flags set, it
dumps a list of all arbiters. Use the flags to select a sub-set of arbiters to
display.

14 Visual SoftICE Command Reference

Example

The following example shows the ARBITER command displaying a list of
all interrupt arbiters.

S| >ARBI TER - i
ARBI TER
Addr ess 80543960 (ntoskrnl!lopRootlrgArbiter)
Type 2; Interrupt
Narme Root | RQ
Event 80f 723a0
Devi cehj ect 00000000
Ref Count 0
RANGE
Starting Address Ending Address Attributes Flags Onner Onner
0 0 1 0; 80f 71a48 PnpManager
1 1 1 0; 80f 71a48 PnpManager
2 2 1 0; 80f 71a48 PnpManager
3 3 1 0; 80f 71a48 PnpManager
2f 2f 1 0; 80f 71a48 PnpManager
32 32 1 0; 80f 71a48 PnpManager
39 39 0 1, SHARED 80f 6dba0 ACPI
ARBI TER
Addr ess f91b4a00 (ACPI! Acpi Arbiter)
Type 2; Interrupt
Nane ACPI _I RQ
Event 80el162c8
Devi ce(hj ect 80f 6b420
Ref Count 0
RANGE
Starting Address Ending Address Attributes Flags Onner Onner
0 0 1 0; 80f 54ab8 ACPI
1 1 0 0; 80f 54888 i 8042prt
3 3 1 0; 80f 71a48 PnpManager
4 4 0 0; 80f 54658 SI SERI AL
d d 1 0; 80f 54f 18 ACPI
e e 0 0; 80e11728 at api
f f 0 0; 80f 52bf 0 at api
See Also

DEVICE, DEVNODE, DRIVER

Visual SoftlICE Commands

15

ASSEMBLE

Syntax

Use

Example

Assemble instructions.

ASSEMBLE [addr ess]
A [address]

address Address at which you want to assemble instructions.

The ASSEMBLE command assembles source code at the specified address.

If you do not specify the address, the ASSEMBLE command assembles the
source code at the current Instruction Pointer (IP).

The ASSEMBLE command switches the command prompt to assembly
mode, where only assembly instructions and some specific commands
like HELP are valid. To exit assembly mode, you must enter a <RETURN>
on an empty line.

The following example assembles instructions beginning at the address
offset my_functi on+120:

SI >ASSEMBLE ny_functi on+120

The following command assembles instructions at the current IP:

S| >ASSEMBLE

16 Visual SoftICE Command Reference

BC

Syntax

Example

See Also

Clear one or more breakpoints.

BC list | *

list Series of breakpoint indexes separated by commas or spaces.

* Clears all breakpoints.

To clear all breakpoints, use the command:

SI >BC *

To clear breakpoints 1 and 5, use the following command:

SI>BC 1 5

BD, BE, BL, BMSG, BPINT, BPIO, BPLOAD, BPM, BPR, BPX, BSTAT, SET

GLOBALBREAK

Visual SoftlICE Commands

17

BD

Syntax

Use

Example

See Also

Disable one or more breakpoints.

BD list | *
list Series of breakpoint indexes separated by commas or spaces.
* Disables all breakpoints.

Use the BD command to temporarily deactivate breakpoints. Reactivate
the breakpoints with the BE command (enable breakpoints).

To tell which of the breakpoints are disabled, list the breakpoints with
the BL command. A breakpoint that is disabled has an * (asterisk) after
the breakpoint index.

To disable breakpoints 1 and 3, use the following command.

SI>BD 1 3

BC, BE, BL, BMSG, BPINT, BP1O, BPLOAD, BPM, BPR, BPX, BSTAT, SET
GLOBALBREAK

18 Visual SoftICE Command Reference

BE

Syntax

Use

Example

See Also

Enable one or more breakpoints.

BE list | *
list Series of breakpoint indexes separated by commas or spaces.
* Enables all breakpoints.

Use the BE command to reactivate breakpoints that you deactivated with
the BD command (disable breakpoints).

To enable breakpoint 3, use the following command:

S| >BE 3

BC, BD, BL, BMSG, BPINT, BPIO, BPLOAD, BPM, BPR, BPX, BPSTAT, SET
GLOBALBREAK

Visual SoftlICE Commands 19

BL

List all breakpoints.

Syntax
BL
Use
The BL command displays all breakpoints that are currently created on
the target. For each breakpoint, BL lists the breakpoint index, type, state,
address, and any conditionals or breakpoint actions.
The state of a breakpoint is either enabled or disabled. If you disable the
breakpoint, an * (asterisk) appears after its breakpoint index. If Visual
SoftICE is activated due to a breakpoint, that breakpoint is highlighted.
The BL command has no parameters.
Example
To display all the breakpoints that have been defined, use the following
command.
S| >BL
2 breakpoints
(0) BPX (EXECUTE- I NSTR) (0000000000403440.s0) testexe!nain
(1) BPX (EXECUTE-| NSTR) (e0000000830451c0.s0) ntoskrnl!.|of CallDriver
See Also

BC, BD, BE, BMSG, BPINT, BPIO, BPLOAD, BPM, BPR, BPX, BSTAT, SET
GLOBALBREAK

20 Visual SoftICE Command Reference

BMSG

Syntax

Use

Set a breakpoint on one or more Windows messages.

BVMSG [-1] wi ndow handl e [begi n-nsg [end-nsg]] [|IF expression
[DO "conmandl; comrand2;..."]]

-l Enable logging for this breakpoint.

window-handle HWND value returned from CreateWindow or
CreateWindowEX.

begin-msg Single Windows message or lower message number in a range
of Windows messages. If you do not specify a range with an
end-msg, only the begin-msg will cause a break.

Note: For both begin-msg and end-msg, the message humbers can be

specified either in hexadecimal or by using the actual ASCIl nhames of

the messages, for example, WM_QUIT.

end-msg Higher message number in a range of Windows messages.

IF expression Conditional expression: the expression must evaluate to TRUE
(non-zero) for the breakpoint to trigger.

DO command Breakpoint action: A series of Visual SoftICE commands to be
executed when the breakpoint triggers.

Note: You can combine breakpoint count functions (BPCOUNT, BPMISS,
BPTOTAL, and BPINDEX) with conditional expressions to monitor
and control breakpoints based on the number of times a particular
breakpoint has or has not triggered.

The BMSG command is used to set breakpoints on a window message
handler that will trigger when it receives messages that either match a
specified message type, or fall within an indicated range of message

types.

If you do not specify a message range, the breakpoint applies to all
Windows messages.

Visual SoftlICE Commands

21

Example

See Also

When Visual SoftICE does stop on a BMSG breakpoint, the instruction
pointer is set to the first instruction of the message handling procedure.
Each time Visual SoftICE breaks, the current message displays in the
following format:

hWid=xxxx wPar aneExxxx | Par amexxxXXXxX MBg=XXXX NEessage- name

Note: These are the parameters that are passed to the message procedure.
All numbers are hexadecimal. The message-name is the Windows
defined name for the message.

To display valid Windows messages, enter the WMSG command with no
parameters. To obtain valid window handles, use the HWND command.

You can set multiple BMSG breakpoints on one window-handle, but the
message ranges for the breakpoints might not overlap.

This command sets a breakpoint on the message handler for the Window
that has the handle 9BC. The breakpoint triggers and Visual SoftICE stops
when the message handler receives messages with a type within the
range WM_MOUSEFIRST to WM_MOUSELAST, inclusive. This range
includes all of the Windows mouse messages.

SI >BMSG 9BC wm nousefirst wm nousel ast

The next command places a breakpoint on the message handler for the
Window with the handle FAC. The message range on which the
breakpoint triggers includes any message with a type value less than or
equal to WM_CREATE.

SI >BMSG f4c 0 wm create

BC, BD, BE, BL, BPINT, BPIO, BPLOAD, BPM, BPR, BPX, BSTAT, SET
GLOBALBREAK

22 Visual SoftICE Command Reference

BPINT

Syntax

Use

Set a breakpoint on an interrupt.

BPINT [-1] int-nunber [service-address] [IF expression] [DO
"comrandl; command2; ... "]

-l Enable logging for this breakpoint.
int-number Interrupt number from O to FFh.

service-address Specific address to differentiate between OS intobj service
routines.

IF expression Conditional expression: the expression must evaluate to TRUE
(non-zero) for the breakpoint to trigger.

DO command Breakpoint action: A series of Visual SoftICE commands that
execute when the breakpoint triggers.

Note: You can combine breakpoint count functions (BPCOUNT, BPMISS,
BPTOTAL, and BPINDEX) with conditional expressions to monitor
and control breakpoints based on the number of times a particular
breakpoint has or has not triggered.

For x86 processors, use the BPINT command to stop Visual SoftICE
whenever a specified processor exception, hardware interrupt, or
software interrupt occurs. For 1A-64 processors, use the BPINT command
to stop Visual SoftICE whenever a specified hardware interrupt occurs.
You can use the IF option to specify a conditional expression that limits
the interrupts that trigger the breakpoint. You can use the DO option to
specify Visual SoftICE commands that execute any time the interrupt
breakpoint triggers.

For breakpoints that trigger for hardware interrupts or processor
exceptions, the instruction pointer at the time Visual SoftICE stops
points to the first instruction of the interrupt or exception handler
routine.

The optional service-address parameter allows you to set a breakpoint on a
shared interrupt. By passing a specific address to BPINT, it will
differentiate between OS intobj service routines. If you do not specifiy a
service-address, BPINT sets a breakpoint on each routine it finds that
matches the vector.

Visual SoftlICE Commands 23

BPINT only works for interrupts that are handled through the IDT or
IUA.

Example

The following example results in a Windows NT system call breakpoint
(software interrupt 2Eh) being triggered if the thread making the call has
athread ID (TID) equal to the current thread at the time the command is
entered (_TID). Each time the breakpoint hits, the contents of the address
82345829h are dumped as a result of the DO option.

SI>BPINT 2e if tid==_tid do "dd 82345829"

See Also

BC, BD, BE, BL, BMSG, BPIO, BPLOAD, BPM, BPR, BPX, BSTAT, SET
GLOBALBREAK

24 Visual SoftICE Command Reference

BPIO

Set a breakpoint on an 1/0O port access.

Syntax
BPIO [-I] port [verb] [IF expression] [DO
"comrandl; command2; ... "]
-l Enable logging for this breakpoint.
port Byte or word value.
verb Value Description
R Reads (IN)
w Writes (OUT)
RW Reads and Writes
IF expression Conditional expression: the expression must evaluate to TRUE
(non-zero) for the breakpoint to trigger.
DO command Breakpoint action: A series of Visual SoftICE commands to be
executed when the breakpoint triggers.
Note: You can combine breakpoint count functions (BPCOUNT, BPMISS,
BPTOTAL, and BPINDEX) with conditional expressions to monitor
and control breakpoints based on the number of times a particular
breakpoint has or has not triggered.
Use

Use the BPIO instruction to have Visual SoftICE stop whenever a
specified 1/0 port is accessed in the indicated manner. On x86 systems,
when a BPIO breakpoint triggers, the instruction pointer points to the
instruction following the IN or OUT instruction that caused the
breakpoint. On 1A-64 systems, when a BP1O breakpoint triggers, the
instruction pointer points to the actual IN or OUT instruction that
caused the breakpoint.

If you do not specify a verb, RW is the default.

The BPIO command uses the debug register support provided on the
Pentium and 1A64 class machines, therefore, 1/0 breakpoints are limited
to the number of available debug registers on that hardware.

Visual SoftiICE Commands 25

Example

See Also

When using debug registers for 1/0 breakpoints, all physical 1/0
instructions (non-emulated) are trapped no matter what privilege level
they are executed from. A drawback of the debug register method for
trapping port 1/0 is that it does not trap emulated 1/O such as 1/0
performed from a DOS machine.

The following commands define conditional breakpoints for accesses to
port 21h (interrupt control 1's mask register). The breakpoints only
trigger if the access is a write access, and the value being written is not
FFh.

SI>BPIO 21 wif (al!=0xFF)

Note: You should be careful about intrinsic assumptions being made about
the size of the 1/O operations being trapped. The port I/O to be
trapped is OUTB. An OUTW with AL==FFh also triggers the
breakpoint, even though in that case the value in AL ends up being
written to port 22h.

The following example defines a conditional byte breakpoint on reads of
port 3FEh. The breakpoint occurs the first time that 1/0 port 3FEh is read
with a value that has the two high-order bits set to 1. The other bits can
be of any value.

SI>BPIO 3fe r if ((al & OxCO)==0xC0)

BC, BD, BE, BL, BMSG, BPINT, BPLOAD, BPM, BPR, BPX, BSTAT, SET
GLOBALBREAK

26 Visual SoftICE Command Reference

BPLOAD

Syntax

Use

Example

Set a breakpoint on an image load.

BPLOAD [-once] inmage-nane [DO "conmandl; conmand2;..."]

-once Execute the breakpoint only once.
image-name Name of the image file on which to set the breakpoint.

DO command Breakpoint action: A series of Visual SoftiICE commands that
execute when the breakpoint triggers.

Use the BPLOAD command to stop Visual SoftICE whenever a specified
image file loads. You can use the DO option to specify Visual SoftICE
commands that execute any time the breakpoint triggers. You do not
specify a path with the image name. BPLOAD cannot accept wildcards of
any kind, however if you do not specify an extension the breakpoint
stops on the next executable image loaded that matches the filename,
regardless of the extension type (i.e., COM DLL, EXE, or SYS).

Visual SoftICE supports a single break-on-load breakpoint for early
stopping when the operating system loads a named image. This can be
very useful for capturing what is going on in the load cycle of an
executable. Once stopped in the image of interest, the symbols for that
image should be automatically loaded, if they can be found through the
search hierarchy.

BPLOAD breakpoints on an operating system driver will stop at the very
beginning of DriverEntry.
Note: BPLOAD breakpoints cannot be disabled. If you want to emulate the

behavior of disabling BPLOAD breakpoints, remove them and
reapply them later.

The following example sets a breakpoint that will stop the next time the
UXTHEME. DLL image is loaded.

S| >BPLOAD UXTHEME. DLL

Visual SoftiICE Commands 27

See Also

BC, BD, BE, BL, BMSG, BPINT, BPIO, BPM, BPR, BPX, BSTAT, SET
GLOBALBREAK

28 Visual SoftICE Command Reference

BPM

Set a breakpoint on memory access or execution.

Syntax

BPM size] [-1] address [verb] [IF expression] [DO
"comrandl; command2; ... "]

size Size specifies the range covered by this breakpoint. For example, if you
use double word, and the third byte of the DWORD is modified, a
breakpoint occurs. The size is also important if you specify the optional

qualifier.

Value Description
B Byte (default)
w Word

D Double Word
Q Quad Word

-l Enable logging for this breakpoint.

address Address on which the breakpoint is to be set.

verb Value Description
R Read
w Write
RW Read and Write (default)
XorkE Execute
IF expression Conditional expression: the expression must evaluate to

TRUE (non-zero) for the breakpoint to trigger.

DO command Breakpoint action: A series of Visual SoftICE commands that
execute when the breakpoint triggers.

Note: You can combine breakpoint count functions (BPCOUNT, BPMISS,
BPTOTAL, and BPINDEX) with conditional expressions to monitor
and control breakpoints based on the number of times a particular
breakpoint has or has not triggered.

Visual SoftlICE Commands 29

Use

Example

Use BPM breakpoints to have Visual SoftICE stop whenever certain types
of accesses are made to memory locations. You can use the size and verb
parameters to filter the accesses according to their type, and you can use
the DO parameter to specify arbitrary Visual SoftiICE commands that
execute each time the breakpoint is hit. If you use BPM without
specifying a size, Visual SoftICE assumes a byte size and executes BPMB.

Note: On IA-64 platforms, BPM execution class breakpoints are only
allowed on a per-bundle basis. You may have no more than one BPM
execution breakpoint per bundle. Visual SoftICE always sets the
breakpoint on slot 0.

Visual SoftICE uses the first available debug register on the target, starting
with the last sequential debug register number and working backwards.
For example, if you have 4 debug registers, Visual SoftICE starts with
debug register 3 and works backward to debug register 0 until it finds an
available one, and it uses that register.

If you do not specify a verb, RW is the default.

For all the verb types except X and E, Visual SoftICE stops after the
instruction that causes the breakpoint to trigger has executed, and the
Instruction Pointer points to the instruction in the code stream following
the trapped instruction. For the X and E verbs, Visual SoftICE stops
before the instruction causing the breakpoint to trigger has executed, and
the Instruction Pointer points to the instruction where the breakpoint
was set.

If you specify the R verb, breakpoints occur on read accesses and on write
operations that do not change the value of the memory location.

If you specify a verb of R, W or RW, executing an instruction at the
specified address does not cause the breakpoint to occur.

If you specify a size of W (BPMW), it is a word-sized memory breakpoint,
and you must specify an address that starts on a word boundary. If you
specify a size of D (BPMD), the memory breakpoint is DWORD sized, and
you must specify an address that starts on a double-word boundary.

The following example defines a breakpoint on memory word access to
the address pointed at by es: di +i f. The first time that 10 hex is written
to that location, the breakpoint triggers.

S| >BPMV es: di +1f w if (*(es:di+1f)==0x10)
Breakpoint [O] set.

30 Visual SoftICE Command Reference

The following example sets a breakpoint on a memory write. The
breakpoint triggers the first time that the byte at location ds: 80150000
has a value written to it that is greater than 5.

SI >BPMB ds: 80150000 w i f (byte(*ds: 80150000) >5)
Breakpoint [O] set.

See Also

BC, BD, BE, BL, BMSG, BPINT, BPIO, BPLOAD, BPR, BPX, BSTAT, SET
GLOBALBREAK

Visual SoftlICE Commands 31

BPR

Syntax

Use

Set a breakpoint on a memory range.
Note: Only available on 1A64.

BPR [-1] start-address end-address [verb] [IF expression] [DO
"commandl; command2; ... "]

BPR [-1] start-address L length [verb] [IF expression] [DO
"commandl; command2; ... "]

-l Enable logging for this breakpoint.

start-address Beginning of memory range.
end-address Ending of memory range.
L length Length in bytes.
verb Value Description
R Read
w Write
RW Read and Write
XorkE Execute
IF expression Conditional expression: the expression must evaluate to

TRUE (non-zero) for the breakpoint to trigger.

DO command Breakpoint action: A series of Visual SoftICE commands that
can execute when the breakpoint triggers.

Note: You can combine breakpoint count functions (BPCOUNT, BPMISS,
BPTOTAL, and BPINDEX) with conditional expressions to monitor
and control breakpoints based on the number of times a particular
breakpoint has or has not triggered.

Use the BPR command to set breakpoints that trigger whenever certain
types of accesses are made to an entire address range.

If you do not specify a verb, RW is the default.

32 Visual SoftICE Command Reference

Example

See Also

The range breakpoint degrades system performance in certain
circumstances. Any read or write within the range that contains a
breakpoint is analyzed by Visual SoftICE to determine if it satisfies the
breakpoint condition. This performance degradation is usually not
noticeable, however, degradation could be extreme in cases where there
are frequent accesses to the range.

The range between the start address and end address is limited to the
image address space where you set the breakpoint. If you set the
breakpoint range to exceed the scope of the image address space, Visual
SoftICE truncates the range to the end of the image address space.

When a range breakpoint is triggered, Visual SoftICE stops the target and
the current Instruction Pointer (IP) points to the instruction that caused
the breakpoint.

If the memory that covers the range breakpoint is swapped or moved, the
range breakpoint follows it.

The following example defines a breakpoint on a memory range. The
breakpoint occurs if there are any writes to the memory between
addresses 0x402000 and 0x412500.

S| >BPR 0x402000 0x412500 w

BC, BD, BE, BL, BMSG, BPINT, BPI1O, BPLOAD, BPM, BPX, BSTAT, SET
GLOBALBREAK

Visual SoftlICE Commands 33

BPX

Syntax

Use

Example

See Also

Set a breakpoint on execution.

BPX [-1] [address] [IF expression] [DO "conmmandl; command2;..."]

-l Enable logging for this breakpoint.
address Linear address to set execution breakpoint.

IF expression Conditional expression: the expression must evaluate to TRUE
(non-zero) for the breakpoint to trigger.

DO command Breakpoint action: A series of Visual SoftiICE commands that
execute when the breakpoint triggers.

Note: You can combine breakpoint count functions (BPCOUNT, BPMISS,
BPTOTAL, and BPINDEX) with conditional expressions to monitor
and control breakpoints based on the number of times a particular
breakpoint has or has not triggered.

Use the BPX command to define breakpoints that trigger whenever the
instruction at the specified address is executed.

You must set the address parameter to point to the first byte of the
instruction opcode of the instruction on which you want to set the
breakpoint.

The BPX command accepts any valid symbol as an address parameter.

The following example sets a breakpoint on a symbol:

SI >BPX fib64_2!fib_func

The following example sets a breakpoint on an address:

S| >BPX 434860

BC, BD, BE, BL, BMSG, BPINT, BPI1O, BPLOAD, BPM, BPR, BSTAT, SET
GLOBALBREAK

34 Visual SoftICE Command Reference

BSTAT

Syntax

Use

Output

Display statistics for one or all breakpoints.

BSTAT [n]

n Breakpoint index number.

Use BSTAT to display statistics on breakpoint hits, misses, and whether
breakpoints stopped Visual SoftICE or were logged.

Using BSTAT without any arguments returns statistics on all current
breakpoints.

Because conditional expressions are evaluated when the breakpoint is
triggered, it is possible to have evaluation run-time errors. For example, a
virtual symbol may be referenced when that symbol has not been loaded,
or a reference to a symbol may not be resolved because the memory is
not present. In such cases, an error will be generated and reported in the
Error column of the BSTAT output.

Note: BSTAT does not report statistics for BPLOAD breakpoints.

For each breakpoint, Visual SoftICE displays the following information.

ID Breakpoint index, and if the breakpoint is disabled, an * (asterisk).

Totals Category:

Triggered Total number of times Visual SoftICE has evaluated the breakpoint.
Total Hits Total number of times the breakpoint has evaluated TRUE.
Total Miss Total number of times the breakpoint evaluated to FALSE, and no

breakpoint action was taken.

Errors Total number of times that the evaluation of a breakpoint resulted
in an error.

Visual SoftiICE Commands 35

Current Category:

Hits Current number of times the breakpoint has evaluated TRUE, but did
not stop because the count had not expired. (Refer to expression macro
BPCOUNT.)

Miss Current number of times the breakpoint has evaluated FALSE or the

breakpoint count has not expired.

Example
The following is an example using the BSTAT command for breakpoint
#1.
SI >BSTAT 1
Id Triggered Total Hits Total Mss Errors Hts M ss
1 3 3 0 0 3 0
See Also

BC, BD, BE, BL, BMSG, BPINT, BPIO, BPLOAD, BPM, BPR, BPX, SET
GLOBALBREAK

36 Visual SoftICE Command Reference

Compare two data blocks.

Syntax

C start-address L length start-address-2

start-address Start of first memory range.
L length Length in bytes.

start-address-2 Start of second memory range.

Use

Use the C command to compare two memory blocks. The memory block
specified by start-address and length is compared to the memory block
specified by start-address-2.

When a byte from the first data block does not match a byte from the
second data block, Visual SoftICE displays both bytes and their addresses.

Example

The following example compares two data blocks at the addresses
provided.

SI >C e0000165e57576a0.s0 L 8 e0000165e57576al
Oc bO
b0 00
00 @
@00

Visual SoftlICE Commands 37

CLASS

Display information on Windows classes.

Syntax
CLASS [-x] [process-type | thread-type | nodul e-type | class-
name]
-X Display complete Windows NT internal CLASS data structure,
expanding appropriate fields into more meaningful forms.
process-type Process name, process ID, or process handle.
thread-type Thread ID or thread address (KTEB).
module-type Module name or module handle.
class-name Name of a registered class window.
Use

The architecture of class information under Windows NT/XP is similar to
that of Windows 9x in that class information is process specific and the
operating system creates different lists for global and private classes.
Beyond this, the two operating systems have significant differences in
how super-classing a registered window class is implemented.

Under Windows NT, registered window classes are considered templates
that describe the base characteristics and functionality of a window
(similar to the C++ notion of an abstract class). When a window is
created, its class template is copied (its structure). This information is
considered instance data (an instance of the class), and is stored with the
other windows instance data. Any changes to the instanced class do not
affect the original template. This concept is further extended when
various members of the windows instanced class structure are modified.
When this occurs, the parent class is referenced again, and the new
instance points to the original instance. Registered classes act as
templates from which copies of a particular class can be created; in effect
this is a form of object inheritance. This inheritance continues as
changes are made to the base functionality of the class.

38 Visual SoftICE Command Reference

If you do not specify the type parameter, the current context is assumed
because the class information is process specific. A process-name always
overrides an image of the same name. To search by image when there is a
name conflict, use the image handle (base address or image database
selector). Also, image names are always context-sensitive. If the image is
not loaded in the current context (or the CSRSS context), the CLASS
command interprets the image name as a class name instead.

Output
For each class, the following information is shown:
Address Offset of a data structure within USER. Refers to windows of this
class.
Class Name Name that was passed when the class was registered. If no
name was passed, the atom displays.
Module Name Image that has registered this window class.
WindowProc Address of the window procedure for this window class.
Styles Bitmask of flags specified when the class was registered.
Example

The following example uses the CLASS command to display all the
classes registered by the expl or er process.

S| >ADDR expl orer

SI >CLASS

Count: 93

Addr ess Cl ass Nane Modul e Nane W ndowPr oc

bc6432c0 PrintTray_Notify WhdC ass Explorer. EXE bf86248a

bc6431e0 PrintU _QueueCreate printui.dll 74b8170e
bc643140 PrintU _PrinterQeue printui.dll 74ba008d

bc6411e8 Connections Tray NETSHELL.dlI I 75cf 1680

Note: If asymbol is not available for the window procedure, a hexadecimal
address displays.

See Also
ADDR

Visual SoftlICE Commands 39

CLOSE

Syntax

Use

Example

See Also

Close the connection to the target machine.

Use the CLOSE command to close the connection to the target machine.

The following example closes the connection to the target machine:

S| >CLCSE

CONNECT, DISCONNECT, NETFIND, OPEN, WCONNECT

40 Visual SoftICE Command Reference

CLS

Clear the Command window.

Syntax

CLS
Use

The CLS command clears the Command window.
Example

The following example clears the Command window:

SI >CLS

Visual SoftlICE Commands 41

CONNECT

Syntax

Use

Connect to a target machine.

CONNECT con# [-baud #] [-rt #] [-r #]
CONNECT nnn. nnn. nnn. nnn [password] [-rt #] [-r #]

CONNECT host name [password] [-rt #] [-r #]

com# Specifies the COM port for serial connections. COM1 through
COM4 are valid. When connecting through a serial connection you
can also specify the baud rate, retry timeout, and retry count.

P The IP address of the target (nnn. nnn. nnn. nnn). When
connecting through an IP address you can also specify a password,
retry timeout, and retry count.

hostname The host name of the target. DNS matches the host name to its IP
address and connects through the IP address. You can specify a
partial host name and Visual SoftICE will match it to the complete
host name if it can. You can also specify a password, retry timeout,
and retry count.

-baud # Specifies the baud rate for serial connections. Default is 115200.

password Specifies a password to connect via IP address if the target is
password protected.

-rt # Specifies the retry timeout value. Default is 20ms.

-r# Specifies the retry count value. Default is 5.

Note: Numeric values (baud, retry timeout, retries are entered in decimal).

Use the CONNECT command to connect to the target machine. You can
connect to the target machine either by serial connection or by IP
address. When connecting by IP address, you can supply either the IP
address, or enough of a recognized host name for Visual SoftICE to
complete a DNS lookup.

42 Visual SoftICE Command Reference

Example
The following example opens a serial connection to the target:

SI >CONNECT con? -rt50 -r10
Connect ed to:

Narme . SPI LLANE
Processor : 1 A32(x86)-Pentium i1l
St eppi ng 0

Processor Count: 1
Operating Sys. : Wndows NT/XP Ver. 5.1 Build 2600

Tar get Agent : Connected (Active)

The following example opens a connection to the target using its IP
address:

SI >CONNECT 255. 255. 255. 0
Connect ed to:

Name : nmytarget-1 A64
Processor . 1 A64-1tani um
St eppi ng 0

Processor Count: 2
Qperating Sys. : Wndows XP-64 Ver. 5.1 Build 2600

Tar get Agent : Connected (Active)

The following example opens a connection to the target using its
hostname:

SI >CONNECT nyt ar get - | A64
Connect ed to:

Nanme . nytarget-1 A64
Pr ocessor 1 A64-1tani um
St eppi ng 0

Processor Count: 2
Operating Sys. : Wndows XP-64 Ver. 5.1 Build 2600

Tar get Agent : Connected (Active)

See Also
CLOSE, DISCONNECT, NETFIND, OPEN, WCONNECT

Visual SoftlICE Commands

CPU

Display the processor details.

Syntax
CPU [-i] [processor-nunber]
-i Display the 1/0 Advanced Program Interrupt Controller
(APIC).
processor-number Designate the CPU number.
Use

The CPU command shows the processor information for the target.

If the target contains a multi-processor motherboard that uses an 1/0
APIC as an interrupt controller, the CPU command displays the CPU data
and the 1/0 APIC information.

44 Visual SoftICE Command Reference

Examples

The following example lists the sample output from the CPU command
under Windows XP on an |A64 target:

Vendor Stri ng

d ass | A64

Model Itani um

St eppi ng 0

FeatureBits 0;

MHZ 2dd

| p Address 0000000000403440. s0O
Current Thr ead e000000086ba0040
DpcTi e e

InterruptTime 493

Kernl Ti ne 43el6

User Ti ne 408

I nt errupt Count 52502

LOCAL APIC

Local ID 0
Task Priority : 10000
Pendi ngl nt er rupt sO 0
Pendi ngl nterruptsl 0
Pendi ngl nt errupt s2 0]
Pendi ngl nterrupts3 .0

I nt erval Ti ner Vect or : do
Per f or manceMbni t or Vect or . fO

CGenui nel nt el

Corr ect edMachi neCheckVector : 30

Local Redi recti on0
Local Redirectionl

10000
10000

Visual SoftlICE Commands

45

The following example lists the sample output from the CPU command
under Windows NT on an 1A32 system that uses an I/O APIC:

S| >CPU

CPU

Vendor Stri ng : Genui nel ntel

C ass . 1 A32(x86)

Model : Pentiuml|

St eppi ng . 0

FeatureBits O Afff;

FPU| VME| DE| PSE| TSC| MSR| PAE| MCE| CX8| API C] SEP| MTRR
MHZ : 1l4c

| p Address : 01003134
Current Thread : 80947560

DpcTi ne .e
InterruptTime : 76

Ker nl Ti me : 2df 10

User Ti me : 1le7

I nterrupt Count : 606a6

LOCAL APIC

Local ID 0

Ver si on : 40011
Task Priority o ff
Arbitration Priority : ff
Processor Priority o ff

Logi cal Destination : 1000000
Spuri ous Vector o 1a1f

I nterrupt Conmand : 4003d
LVT (Tiner) : 300fd
LVT (Lint0) : 1001f
LVT (Lintl) ;. B4ff
LVT (Error) :e3
Initial Tinmer Count : 3f66780
Current Timer Count : 1d82710
Timer Divide Register : b

See Also

46 Visual SoftICE Command Reference

Display memory.

Syntax
Disize] [-p] [-€e] [[address] L [count]]

size Value Description
B Byte
w Word
D Double Word

Short Real

—r wm

Long Real
10-Byte Real

Q Quad Word

-p Indicates Physical memory address. The default is a virtual memory
address.

-e Indicates count parameter is not in bytes, but in element size (byte,
word, DWORD, etc.)

address Starting address of the memory to display.

L count Displays count number of bytes, or elements, in the Command
window.

Use
The D command displays the values stored at the specified address.

Visual SoftICE displays the memory contents in the format you specify in
the size parameter. If you do not specify a size, Visual SoftICE uses the last
size specified. For all formats, the ASCII representation is displayed.

If you do not specify an address, the command displays memory at the
next sequential address after the last byte displayed in the current
window.

For floating point values, numbers display in the following format:
[l eading sign] decinal-digits . decinal-digits E sign exponent

Visual SoftiICE Commands 47

The following ASCII strings can also be displayed for real formats:

String Exponent Mantissa Sign
Not A Number all 1’s NOT 0 +/-
Denormal all 0’s NOT 0 +/-
Infinity all 1’s 0 +/-
Invalid 10 byte only with mantissa=0

Example
The following example displays FFh bytes of memory at address
80d9c5b0.
S| >DB 80d9c5b0 L ff
80d9c5b0: 3f 01 00 00 09 00 00 00 58 24 4e el 00 00 00 00 2 X$N.
80d9c680: 70 c6 d9 80 00 00 01 00 00 OO0 OO0 00 00 00 00 0O o

80d9c690: 00 c6 d9 80 00 00 00 00 00 00 00 00 00 OO0 00 OOo,
80d9c6a0: 00 00 00 00 00 00 00 00 00 c6 d9 80 00 00 OO

48 Visual SoftICE Command Reference

DELSYM

Syntax

Use

Example

See Also

Delete a persistent reference to symbols from a previous ADDSYM.

DELSYM i nage- nane

image-name The name of the image or . pdb file from which to delete the
persistent reference to symbols.

Use the DELSYM command to delete a persistent reference to symbols
from a previous ADDSYM.

The following example deletes the persistent reference to symbols from
an image file:

SI >DELSYM nyfil e. exe

The following example deletes the persistent reference to symbols from a
. pdb file:

SI >DELSYM nypdb. pdb

ADDSYM, FILE, GETEXP, LOAD, RELOAD, SET SYMSRVSEARCH,
UNLOAD

Visual SoftiICE Commands 49

DEVICE

Display information on Windows NT/XP devices.

Syntax
DEVI CE [-s] [device-nane | pdevice-object]
-S Dump the device stack containing the device.
device-name Object directory name of the device.
pdevice-object Object address of the device.
Use

The DEVICE command displays information on Windows NT/XP device
objects. If the DEVICE command is entered without parameters,
summary information displays for all device objects found in the
operating system Device Object Collection directory. However, if a
specific device object is indicated, either by its object directory name
(device-name) or object address (pdevice-object), more detailed information
displays.

If a directory is not specified with a device-name, the DEVICE command
attempts to locate the named device object in the entire object tree.
When displaying information about a specified device, the DEVICE
command displays fields of the DEVICE_OBJECT data structure as
defined in NTDDK. H.

If you use the -s flag, Visual SoftICE dumps the device stack containing
the device.

50 Visual SoftICE Command Reference

Output

The following fields are shown as summary information:

RefCount Device object’s reference count.

Address Address of a DEVICE_OBIECT structure.

DrvObj Pointer to the driver object that owns the device object.

NextDev Pointer to the next device object on the linked list of device objects

that were created by the same driver.

AttachDev Pointer to a device object that has been attached to the displayed
object via an loAttachDeviceObiject call. Attached device objects
are essentially IRP filters for the devices to which they are attached.

AttachedTo Address of the device to which this device is attached.

DevExt Pointer to device driver-defined device object extension data
structure.
DevName Name of the device, if it has one.

The following are some fields shown when detailed information is

printed:

DevFlags Definition of the device object’s attributes such as whether 1/0
performed on the device is buffered or not.

Currentlrp Address of an IRP currently active in a device queue.

DevChar Set when a driver calls loCreateDevice with one of the following
values: FILE_REMOVEABLE_MEDIA, FILE_READ_ONLY_DEVICE,
FILE_FLOPPY_DISKETTE, FILE_WRITE_ONCE_MEDIA,
FILE_DEVICE_SECURE_OPEN.

VPB Pointer to the device’s associated volume parameter block.

DevType Set when a driver calls loCreateDevice as appropriate for the
type of underlying device. A driver writer can define a new
FILE_DEVICE_XXXXX, where XXXXX is a value in the customer
range of 32768 to 65535, if none of the system-defined values
describes the type of the new device.

DevStkSize Specifies the minimum number of stack locations in IRPs to be
sent to this driver.

DevQueue Device queue object for system-managed IRP queueing.

DevDpc Embedded DPC for use with lolnitializeDpcRequest and

loRequestDpc.

Visual SoftiICE Commands 51

Example

ActiveThreads Exclusively used by the file system to keep track of the number
of FSP threads currently using the device.

SecDesc Data structure used to hold per-object security information.
DevLock Synchronization-type event object allocated by the I/0
Manager.

The following example uses the DEVICE command with the UDP device
object’s name.

S| >DEVI CE UDP
Addr ess

Ref Count

DevFl ags

Dr vObj

DevNane

€000000086bf abcO

9

50; DO DI RECT | O DO DEVI CE_HAS NANE
€000000086c05€70

Udp

The following example uses the DEVICE command with the - s flag for
the cdr ont device.

SI >DEVI CE -s cdronil

DEVI CE STACK
Ref Count Address

Dr vbj Next Dev AttachDev AttachedTo DevExt DevNane

0 80d0f 020 80d21a40 80d109f8 00000000 80d0e3f 8 80d0f 0d8

0 80d0e3f8 80d117f8 80d10030 80dOf 020 80d0e8c8 80d0e4b0 CdRoml

0 80d0e8c8 80d217a8 00000000 80d0e3f8 80e3dc48 80d0e980

0 80e3dc48 80e3f 750 80e5eab8 80d0e8c8 00000000 80e3dd00 | deDevi ceP1T1LO-17
See Also

ARBITER, DEVNODE, DRIVER

52 Visual SoftICE Command Reference

DEVNODE

Display information about device nodes.

Syntax
DEVNCDE [-c | -rr | -rt | -x | -a | -p] address | service-nane
-C Dump the list of children for a device node at a specific address.
-rr Dump the raw resource list for a device node at a specific
address.
-rt Dump the translated resource list for a device node at a specific
address.
-X Dump extended information for a device node at a specific
address.
-a Dump the list of arbiters for a device node at a specific address.
-p Dump the parent tree for the device node.
address Dump information for a device node at a specific address.
service-name Dump information for all device nodes with a specific service
name.
Use

The DEVNODE command displays information about device nodes (PnP
manager structure). If you use DEVNODE without any parameters, Visual
SoftICE dumps the root device node. If you specify an address, Visual
SoftICE dumps information about the device node at that address. If you
specify a service name, or a partial name, Visual SoftICE dumps
information about all device nodes whose service names match the
service name or partial name entered. Using the various flags also allows
you to control the dumping of child lists, arbiters, resource lists, and
extended information.

Visual SoftlICE Commands 53

Examples

The following example shows the DEVNODE command dumping the
child list for a device node at a specific address.

S| >DEVNCDE - ¢ e000000086f 956f 0

DEVI CE_NCDE

Addr ess Child Last Chi |l d I nst ancePat h Ser vi ceName
€000000086dc2010 0000000000000000 0000000000000000 Root\ MEDI A\ M5_MWI D audst ub
€000000086dc2560 0000000000000000 0000000000000000 Root\ MS_PSCHEDMP\ 0002 PSched
e000000086f 94b30 0000000000000000 0000000000000000 Root\ dmi o\ 0000 dm o

e000000086f 950c0 e000000086f 8e740 e000000086f 8e740 Root\ ACPI _HAL\ 0000

The following example shows the DEVNODE command dumping a list of
arbiters for a device node at a specific address.

S| >DEVNCDE -a e000000086f 956f 0
ARBI TER
Type Nane Event Devi ceObj ect Ref Count

2; Interrupt RootlRQ e000000086dc87a0 0000000000000000 O

RANGE
Starting Address Ending Address Attributes Flags Onner Onner
2b1 2b1l 0 1, SHARED e000000086f8e350 ACPI

The following example shows the DEVNODE command dumping the
parent tree for a device node at a specific address.

SI >DEVNCDE - p 80e3d9e0
PARENT TREE
Addr ess Child Last Child InstancePath
Ser vi ceNane

80e7a4c8 80eb3ee8 80e764c8 HTREE\ ROOT\ 0
80eb3ee8 80eafc00 80eafc00 Root \ ACPI _HAL\ 0000

80e3d9e0 00000000 00000000 | DE\ CdRonPHI LI PS_CDD4801_CD- R/
RW C2 1 \33373837303648344c57414556432020_0_0_0 0 cdrom

See Also
ARBITER, DEVICE, DRIVER

54 Visual SoftICE Command Reference

DISCONNECT

Syntax

Use

Example

See Also

Disconnect from the target machine.

DI SCONNECT

Use the DISCONNECT command to disconnect from the target machine.

The following example disconnects from the target machine:

S| >DI SCONNECT

CLOSE, CONNECT, NETFIND, OPEN, WCONNECT

Visual SoftlICE Commands

55

DPC

Display delayed procedure calls.

Syntax
DPC [addr ess]
address Location of a delayed procedure call.
Use
The DPC command displays information about delayed procedure calls
that are current in the system. If you enter DPC without parameters,
Visual SoftICE lists all delayed procedure calls that are queued for
delivery in the system.
If you provide the address of a specific delayed procedure call, Visual
SoftICE displays detailed information for that delayed procedure call.
Example
The following command displays a listing of all DPCs currently in the
system:
S| >DPC
Addr ess Nunmber | nportance DeferredRoutine Def er r edCont ext Lock
e00000008321¢c160 0 1 €0000000830073e0 0000000000000000 e000000081a498a8
e000000086¢0c8c8 0 1 €0000165e453ae30 e000000086c0c800 e000000081a498a8

The following command displays detailed information on the DPC at the
address e00000008321¢160:

S| >DPC e00000008321¢160

Addr ess . ntoskrnl ! Ki Ti mer Expi reDpc (e00000008321c160)
Nunber 0

Syst emArgunent2 : 0000000000000000
Lock . e000000081a498a8

See Also
APC

56 Visual SoftICE Command Reference

DRIVER

Display information on Windows NT/XP drivers.

Syntax

DRI VER [-d] [driver-nane | pdriver-object]

-d Dump list of device objects created by the driver.
driver-name Object directory name of the driver.

pdriver-object Object address of the driver.

Use

The DRIVER command displays information on Windows NT/XP drivers.
If the DRIVER command is entered without parameters, summary
information is shown for all drivers found in the operating system Driver
Object Collection directory. However, if a specific driver is indicated,
either by its object directory name (driver-name), or by its object address
(pdriver-object), more detailed information is displayed.

If a directory is not specified with driver-name, the DRIVER command
attempts to locate the named driver in the entire object tree. When
displaying detailed information about a specified driver, the DRIVER
command displays the fields of the DRIVER_OBJECT data structure as
defined in NTDDK. H.

If you use the -d flag, Visual SoftICE dumps a list of the device objects
created by the driver.

Output

The following fields are shown as detailed information:

DrvName Name of the driver.

Address Address of the driver object.
FirstDev Address of the first device.
DrvFlags Bit-mask of the driver flags.
DrvLoad Base address of the driver image.
Size Size of the driver image.
DrvEntry Address of the DriverEntry.

Visual SoftlICE Commands 57

Startlo
AddDev
DrvCreate
DrvClose
DrvRead
DrvWrite
DrvDevCntrl

DrvintDevCntrl

DrvQuerylnfo
DrvSetinfo
DrvQueryEa
DrvSetEa
DrvUnid
DrvPower
DrvSysCntrl

DrvPnp

Address of the driver's Startlo routine.

Address of the driver's AddDevice routine.

Address of the IRP_MJ_CREATE handler.

Address of the IRP_MJ_CLOSE handler.

Address of the IRP_MJ_READ handler.

Address of the IRP_MJ_WRITE handler.

Address of the IRP_MJ_DEVICE_CONTROL handler.

Address of the IRP_MJ_INTERNAL_DEVICE_CONTROL
handler.

Address of the IRP_MJ_QUERY_INFORMATION handler.
Address of the IRP_MJ_SET_INFORMATION handler.
Address of the IRP_MJ_QUERY_EA handler.

Address of the IRP_MJ_SET_EA handler.

Address of the driver's unload routine.

Address of the IRP_MJ_POWER handler.

Address of the IRP_MJ_SYSTEM_CONTROL handler.

Address of the IRP_MJ_PNP handler.

The following fields are shown only when the -d flag is invoked, and the
list of device objects created by the driver is dumped:

RefCount
Address
DrvObj

NextDev

AttachDev

AttachedTo

DevExt

DevName

58 Visual SoftICE Command Reference

Device object’s reference count.
Address of a DEVICE_OBIJECT structure.
Pointer to the driver object that owns the device object.

Pointer to the next device object on the linked list of device objects
that were created by the same driver.

Pointer to a device object that has been attached to the displayed
object via an loAttachDeviceObiject call. Attached device objects
are essentially IRP filters for the devices to which they are attached.

Address of the device to which this device is attached.

Pointer to device driver-defined device object extension data
structure.

Name of the device, if it has one.

Example

The following example shows the output of the DRIVER command with
no parameters. This results in printing summary information on all the
drivers in the \ Dri ver object directory.

SI >DRI VER

Addr ess AddDev Startlo DrvFl ags DrvLoad Si ze Dr vNane
€00000008618b910 0000000000000000 0000000000000000 12 €0000165e5e3c000 22500 NDPr oxy
€0000000868e2f 70 0000000000000000 0000000000000000 52 €0000165e63ea000 10780 VgaSave
e0000000868e4940 0000000000000000 0000000000000000 12 e0000165e679c000 7080 Ndi sTapi

The following is an example of the DRIVER command with the NDIS
driver object’s name as a parameter. From the listing it can be seen that
the driver’s first device object is at e000000086b1d060.

S| >DRI VER ndi s

Dr vNane : NDI'S

Addr ess : e000000086b1d060

DrvSysCntrl : NDI S!'. ndi sDi spat chRequest (e0000165e554b320)
Dr vPnp : NDI S!'. ndi sDi spat chRequest (e0000165e554b320)

The following example shows the output of the DRIVER command with
the - d flag invoked. This results in dumping a list of the device objects
created by the driver.

SI >DRI VER -d 80d117f8
DRI VER DEVI CE OBJECTS

Ref Count Address Dr vQbj Next Dev AttachDev AttachedTo DevExt DevNane

0 80d0e3f8 80d117f8 80d10030 80dOf020 80d0e8c8 80d0e4b0 CdRonl

0 80d10030 80d117f8 00000000 80d109f8 80e5eab8 80d100e8 CdRonD
See Also

ARBITER, DEVICE, DEVNODE

Visual SoftiICE Commands 59

Edit memory.

Syntax
E[size] [address [data-list]]
size Value Description
B Byte
w Word
D Double Word
Q Quad Word
S Short Real
L Long Real
T 10-Byte Real
address The address of memory to edit.
data-list List of data objects of the specified size (bytes, words, double words,
short reals, long reals, or 10-byte reals) or quoted strings separated by
commas or spaces. The quoted string can be enclosed with single
quotes or double quotes.
Use
If you do not specify a size, the last size used is assumed.
Enter valid floating point numbers in the following format:
[l eading sign] decimal-digits . decinmal-digits E sign exponent
A valid floating point number is -1.123456 E-19
Example

The following example moves the null terminated ASCII string "Test
String" into memory at location DS: 1000h on an 1A32 target:

SI >EB ds: 1000 ' Test String' ,0

60 Visual SoftICE Command Reference

ERESOURCE

Syntax

Use

Example

See Also

Display information about the synchronization resources contained in
ExpSystemResourceList.

ERESOURCE [-a | -c | -w | address]

-a Display resources that are actively held by any thread.

-C Display resources that are or have been under contention (where the
contention count is greater than 0).

-w Display resources that have threads currently waiting on them.

address Address of an ERESOURCE structure.

This command displays the ERESOURCE structure, a list of the threads
that currently own the ERESOURCE, and a list of the threads that are
waiting on the ERESOURCE.

When you do not specify an address, Visual SoftICE displays summary
information about every ERESOURCE structure in
ExpSystemResourceList.

You can enter the following command to get extended information

about a specific ERESOURCE structure, including thread contentions and

threads waiting on the ERESOURCE.

S| >ERESOURCE addr ess

You can use the information you get from the commands above in
combination with the following command to help find deadlocks.

S| >ERESOURCE -w

KEVENT, KSEM, THREAD

Visual SoftlICE Commands

61

EVAL

Syntax

Use

Example

See Also

Evaluate an expression.

EVAL expression

expression The expression to evaluate.

To evaluate an expression, enter the EVAL command followed by the
expression to evaluate. Visual SoftICE displays the result in decimal,
hexadecimal, ASCII, and binary.

You can explicitly evaluate the decimal or hexadecimal values regardless
of the current radix setting by using dec() or hex() with the number in
the parenthesis. The Expression Evaluator returns the corresponding
value.

The following example displays the hexadecimal, decimal, ASCII, and
binary representations of the value of the expression 10*4+3:

SI >EVAL 10*4+3
0000000000000043 (67) "C' 0100 0011

The following command explicitly evaluates three different expressions
using dec() and hex():

SI >? dec(111)
0000006f (111)
SI >? hex(111)
00000111 (273)
SI >? dec(111) + hex(111)
00000180 (384)

?, SET EE_EVAL_ORDER, SET EE_IMPL_DEREF, SET RADIX

62 Visual SoftICE Command Reference

EXEC

Syntax

Use

Example

See Also

Start a process on the target.
Note: The target must be running for this command to succeed.

EXEC [pr ogr am nane]

program-name Path and filename of the process to start on the target.

Use the EXEC command to start a process on the target machine so you
can debug it.

The following example starts the process MyPr ocess. exe on the target:

SI >EXEC MyProcess. exe

$, KILL, SET GLOBALBREAK, SVCSTART, SVCSTOP

Visual SoftiICE Commands 63

EXIT

Syntax

Use

Example

See Also

Close the current command page or force an exit of the Visual SoftICE
master application.

EXIT [*]

The EXIT command exits the current CMD page in the GUI, or the entire
master application if the Asterisk (*) parameter is passed.

The following command causes the current CMD page to close:

SISEXIT

The following command causes the Visual SoftICE master application to
exit:

SISEXIT *

QUIT

64 Visual SoftICE Command Reference

EXP

Syntax

Use

Example

Display export symbols from DLLs.

EXP [inage!] export-name | [!]

image! Optional image name to specify the symbol table to display
exports from.

export-name A valid export-name. Wildcard characters are fully supported.

! Display list of modules for which Visual SoftICE has exports loaded.

Use the EXP command to show exports from DLLs, and drivers, for
which Visual SoftICE has exports loaded.

The image and name parameters can be used to selectively display
exports only from the specified image, and/or exports that match the
characters and wildcards in the export-name parameter. If you use the
EXP command with the ! option, Visual SoftICE displays all tables for
which exports are loaded. If you use EXP with only the asterisk (*)
wildcard, Visual SoftICE displays all exports in the current table. When
exports are displayed, the image name is printed first on a line by itself,
and the export names and their addresses are printed below it.

This command is valid for both 32 and 64-bit DLLs with 32-bit exports
being listed first.

The following example displays all tables for which exports are loaded.

Sl >EXP !
nt oskrnl . exe

Visual SoftiICE Commands 65

The following example displays all exports in the current table
(nt oskrnl . exe).

S| >EXP *

8050f 718 Export Rt | MoveMenory

8050f a89 Export Rt | Pref et chMenor yNonTenpor al
8050f a9a Export Rt | Ushort Byt eSwap

8050f aaa Export Rt | U ongByt eSwap

8050f aba Export Rt | U ongl ongByt eSwap

The following example displays all exports for the table nt oskrnl . exe.

SI >EXP ntoskrnl . exe!*

8050f 718 Export Rt | MoveMenory

8050f a89 Export Rt | Pref et chMenor yNonTenpor al
8050f a9a Export Rt | Ushor t Byt eSwap

8050f aaa Export Rt | U ongByt eSwap

8050f aba Export Rt | U ongl ongByt eSwap

The following example displays all exports for the table nt oskrnl . exe
that begin with Kel nsert .

SI >EXP nt oskrnl . exe!l Kel nsert*

804d140c Export Kel nsert HeadQueue
804e9e7b Export Kel nsert QueueDpc
804eac80 Export Kel nsert Queue

804eba72 Export Kel nsert Devi ceQueue
804ec505 Export Kel nsert ByKeyDevi ceQueue
804ecf 6e Export Kel nsert QueueApc

See Also

GETEXP, SET EXPORTPATH, SYM, TABLE

66 Visual SoftICE Command Reference

Fill memory with data.

Syntax

F [-p] address L length data-Iist

-p Physical address (default is Virtual).
address Starting address at which to begin filling memory.
L length Length in bytes.

data-list List of bytes or quoted strings separated by commas or spaces. A
quoted string can be enclosed with single quotes or double quotes.

Use

Memory is filled with the series of bytes (or characters) specified in the
data list. Memory is filled starting at the specified address and continues
for the length specified by the L parameter. If the data list length is less
than the specified length, the data list is repeated as many times as
necessary to fill the length.

Example

The following example fills memory starting at location DS: 8000h on an
IA-32 target for a length of 100h bytes with the 'test’ string. The string
'test’ is repeated until the fill length is exhausted.

Sl >F DS: 8000 | 100 'test’

Visual SoftlICE Commands 67

FAULTS

Syntax

Use

Control fault trapping.

FAULTS [all | none | fault nane]

all Enable fault trapping for all supported faults.
none Disable all fault trapping.
fault name Name of specific supported fault.

on Enable fault trapping. Only valid when fault name is specified (not
with all or none).

off Disable fault trapping. Only valid when fault name is specified (not
with all or none).

Use the FAULTS command to control fault trapping. You can select
specific supported faults, or select ALL to enable fault trapping for all
faults, or NONE to disable fault trapping for all faults. If you select ALL or
NONE the on/off switch is ignored. FAULTS only accepts one specific
fault to be set at each command. Entering FAULTS without any
parameters displays a list of the faults and their states when there is a
target connection. The following faults are supported:

ACCESS_VIOLATION
BREAKPOINT
CONTROL_BREAK
CONTROL C
CPP_EH_EXCEPTION
DATATYPE_MISALIGNMENT
ILLEGAL_INSTRUCTION
IN_PAGE_IO_ERROR
INTEGER_DIVIDE_BY_ZERO
INTEGER_OVERFLOW

INVALID_HANDLE

68 Visual SoftICE Command Reference

INVALID_LOCK_SEQUENCE
INVALID_SYSTEM_SERVICE
PORT_DISCONNECTED
SINGLE_STEP
STACK_OVERFLOW
USER_BREAKPOINT
WAKE_SYSTEM_DEBUGGER
WX86_BREAKPOINT
WX86_SINGLE_STEP

Example

The following example enables fault trapping for user breakpoint faults:

SI >FAULTS user _breakpoi nt on

The following example enables fault trapping for all faults:

SI >FAULTS al |

Visual SoftlICE Commands 69

FGET

Syntax

Use

Example

See Also

Get a file from a target.
Note: The target must be running for this command to succeed.

FGET renptefile localfile

remotefile Source path and name of the file on the target.

localfile Destination path and name to save the file as (on the master).

Use the FGET command to get a remote file from the target and save it to
the master.

The following example gets the file MyFi | e. exe on the target and saves
it as MyTar get Fi | e. exe:

SI >FGET MyFil e. exe MyTargetFil e. exe

FPUT

70 Visual SoftICE Command Reference

FIBER

Dump a fiber data structure.

Use the FIBER command to dump a fiber data structure as returned by
the operating system call Cr eat eFi ber () . Use the -r flag to dump the

-s] [address]

Dump fiber registers.

Dump fiber stack.

The address of the fiber data structure.

fiber registers. Use the -s flag to dump the fiber stack. If you do not
specify an address, FIBER dumps the fiber data associated with the
current thread. Visual SoftICE provides a stack trace after the dump.

Syntax
FIBER [-1 |
-r
-S
address
Use
Example

The following example dumps the x86 fiber data associated with the

current thread.

S| >FI BER

Addr ess
User Data
SEH Poi nt er
St ackTop

St ackBt m
Stack Limt

0014b6d0
001430d0
fEFFFFfff
00630000
0062f 000
00530000

Visual SoftlICE Commands

71

The following example dumps the x86 fiber data associated with the

registers.
S| >FI BER -r
Addr ess : 0014b6d0
User Data : 001430d0
SEH Pointer : ffffffff
St ackTop : 00630000
St ackBt m : 0062f 000
Stack Limt : 00530000
Count: 4

Nane Val ue

eip 77e997c8

esp 62fffc
ip 97c8
sp fffc

The following example dumps the 1A-64 fiber data associated with the
current thread.

S| >FI BER

Addr ess : 000006f bf f 69d360
User Data : 000006f bf f 694838
SEH Pointer : ffffffffffffffff
St ackTop : 000006f bf f 260000
St ackBt m : 000006f bf f 25c000
Stack Limt : 000006f bf ee60000

72 Visual SoftICE Command Reference

The following example dumps the 1A-64 fiber data associated with the
registers.

S| >FI BER -r

Addr ess : 000006f bf f 69d360
User Data : 000006f bf f 694838
SEH Pointer : ffffffffffffffff
St ackTop : 000006f bf f 260000
St ackBt m : 000006f bf f 25c000
Stack Limt : 000006f bf ee60000
Count: 17

Nane Val ue

ip 77cbf ce0

ap 9804c0270033f

r5 77ca2020

x86. ebp ff25fff0

x86. csd 3000

Visual SoftlICE Commands 73

FILE

Syntax

Use

Example

See Also

Change or display the current source file.

FILE [[*] file-nange]

* Wildcard character.

file-name Source file name.

The FILE command is often useful when setting a breakpoint on a line
that has no associated symbol. Use FILE to bring the desired file into an
SRC page, use the SS command to locate the specific line, move the
cursor to the specific line, then enter BPX or press F9 to set the
breakpoint.

¢ If you specify file-name, that file becomes the current file and the start
of the file displays in the SRC page.

¢ If you do not specify file-name, the name of the current source file, if
any, displays.

¢ If you specify the * (asterisk), all files in the current symbol table
display.

When you specify a file name in the FILE command, Visual SoftICE
switches address contexts if the current symbol table has an associated
address context.

The following command displays the file in the SRC page starting with
line 1.

SI >FI LE main.c

ADDSYM, BPX, DELSYM, FS, GETEXP, LOAD, RELOAD, SS, UNLOAD

74 Visual SoftICE Command Reference

FMUTEX

Syntax

Use

Example

See Also

Display information about a FASTMUTEX kernel object.

FMUTEX expr essi on

expression Any expression that resolves to a valid address is acceptable.

The FMUTEX command displays information about the FASTMUTEX
kernel object identified by the expression you specify.

You must enter an expression to get data, since this is not itself a
Windows NT/XP object. The expression parameter is something that
would not generally be considered a name. That is, it is a number, a
complex expression (an expression that contains operators, such as
expl orer + 0), or a register name.

The following example displays information about the address contained
in register 32:

S| >FMJUTEX r 32

Addr ess . ntoskrnl!PspJobLi st Lock (e0000000831f b480)
Count 0

Onner : e0000165e61b3f c0O

Contention : O

Event : ntoskrnl!PspJobLi st Lock+18 (e0000000831f b498)
Adlrql . 0

KMUTEX, Using a Fast Mutex in the on-line help

Visual SoftlICE Commands 75

FOBJ

Syntax

Use

Example

Display information about a file object.

FOBJ fobj - address

fobj-address Address of the start of the file object structure to be displayed.

The FOBJ command displays the contents of kernel file objects. The
command checks for the validity of the specified file object by ensuring
that the device object referenced by it is a valid device object.

The fields shown by Visual SoftICE are not documented in their entirety
here, as adequate information about them can be found in NTDDK. Hin
the Windows NT DDK. A few fields deserve special mention, however,
because device driver writers find them particularly useful:

DeviceObject This field is a pointer to the device object associated with the file
object.

Vpb This is a pointer to the volume parameter block associated with
the file object (if any).

FSContext1 These are file system driver (FSD) private fields that can serve as
and keys to aid the driver in determining what internal FSD data is
FSContext2 associated with the object.

Other fields of interest, whose purpose should be fairly obvious, include
the access protection booleans, the Flags, the FileName and the
CurrentByteOffset.

The following example shows output from the FOBJ command:

SI >FOBJ e000000086690200

Addr ess . e000000086690200
Devi ce(hj ect : e000000086d949e0
Event : e000000086690298

Conpl eti onContext : 0000000000000000

76 Visual SoftICE Command Reference

FPUT

Put a file onto a target.
Note: The target must be running for this command to succeed.

Syntax
FPUT localfile renmotefile
localfile Source path and file name of the file on the master.
remotefile Destination path and file name to save the file as on the target.
Use
Use the FPUT command to put a local file from the master onto the
target.
Note: The FPUT command has special behavior when used in an
AUTOCORPY script. During the AUTOCOPY phase, the copy is being
done by a driver doing kernel mode APIs, and not a Ring 3 user
application. The format for hard drive locations during the
AUTOCOPY phase is:
\??\ Drive-Letter:\Path\Fil enane. ext
Where the \??\ is not optional. Without the \??\ the FPUT
command will fail.
Example

The following example puts the file r eadn®e. t xt on the target as part of
an AUTOCOPY script:

FPUT c:\tenp\readne. exe "\??\c:\program fil es\ nmysoftware\readne.txt"

Note: The quotes are used around the destination path because of white
space in the "program files" name, not due to the \??\ characters.

The following example copies a driver from the master to the target as
part of an AUTOCOPY script:

FPUT "e:\fs\ext2f s\ obj chk_wxp_x86\i 386\ ext 2f s. sys" \??\d:\wi ndows\ syst enB2\ dri ver s\ ext 2f s. sys

See Also
FGET, SET AUTOCOPYSCRIPT

Visual SoftlICE Commands 77

FS

Syntax

Use

Example

See Also

Search a directory path, and its subdirectories, for a specific file.
Note: The target must be running for this command to succeed.

FS [-s] Drive:\DirectoryPath\Fil enanme

-S Search all subdirectories of the path also.

Drive The letter designating the drive containing the directory path.

DirectoryPath The path to the directory where you want to search for the
specified file.

Filename The name of the file for which you are searching. The wildcards *,

+, and ? are allowed.

Use the FS command to search a directory for a specified file. Using FS
without the -s parameter searches only within the directory named, and
excludes its subdirectories. Using the -s parameter searches in all the
subdirectories of the designated directory path as well.

The following example searches for nyfil e. t xt on drive D in the
nmyst uf f directory only:

SI>FS D:\nystuff\nyfile.txt

The following example searches for nyfil e. t xt on drive D in the
nyst uf f directory and all subdirectories:

SI>FS -s Di\nystuff\nyfile.txt

The following example searches for all files of type . exe on drive D in the
nmyst uf f directory and all subdirectories:

SI>FS -s D:\nmystuff*. exe

FILE, SS

78 Visual SoftICE Command Reference

GDT

Syntax

Use

Output

Display the Global Descriptor Table.

GDT [-nr] [-all] [selector]

-nr Removes RPL from the selector number display.
-all Displays all table entries, including illegal or reserved entries.
selector GDT selector to display.

The GDT command displays the contents of the Global Descriptor Table.
If you specify an optional selector, only information on that selector is
listed.

If you use GDT with the -all option, Visual SoftICE displays all table
entries it knows of, including illegal and reserved entries.

Visual SoftlICE normally includes the Requestor Privilege-Level (RPL) in
its calculation of the selector number. If you wish to remove RPL from
the selector number calculation, use the -nr option, and Visual SoftICE
displays the selector number without the RPL.

On AMDG64 and x86 platforms Visual SoftICE displays the table based on
the stopped CPU. The target must be stopped before executing the GDT
command. On AMD64 platforms there are additional 64-bit descriptor
types that Visual SoftICE decodes.

Note: For 1A64, Visual SoftICE bases the GDT on a specific 32-bit process.
The GDT command will fail unless the current context is on a 32-bit
process. Use the ADDR command to switch processes before
executing GDT if the current context is not 32-bit.

The base linear address, limit, and count of the GDT are shown at the top
of the output. Each subsequent line of the output contains the following
information:

Selector The selector number.
Type The fully-decoded selector type.
Address The linear base address of the selector.

Visual SoftlICE Commands 79

Limit The selector's segment size (Granularity indicates scale).

DPL The selector's descriptor privilege level (DPL), which is either 0, 1, 2,
or 3.

Granularity The scaling of the segment limit information (Byte or Page).

Present The selector's present bit, P or NP, indicating whether the selector is
present or not present.

Example

The following example illustrates the use of the GDT command on an
x86 platform.

SI >GDT

G obal Descriptor Table - Base Address: 8003f000, Limt: 3ff

Count: 24

Sel ector Type Addr ess Limt DPL Ganularity Present

8 Code: Execut e/ Readabl e (accessed) 0 ffffffff O Page P

10 Data: Read-Wite (accessed) 0 ffffffff O Page P

1b Code: Execut e/ Readabl e (accessed) 0 ffffffff 3 Page P

23 Data: Read-Wite (accessed) 0 ffffffff 3 Page P

28 32bit TSS (busy) 80042000 20ab 0 Byte P

100 Dat a: Read-Wite (accessed) f908a040 ffff 0 Byte P

108 Data: Read-Wite (accessed) f908a040 ffff 0 Byte P

110 Data: Read-Wite (accessed) f908a040 ffff 0 Byte P
The following example illustrates the use of the GDT command with the
-all option on an x86 platform.

SI >GDT -al |

G obal Descriptor Table - Base Address: 8003f000, Limt: 3ff

Count: 127

Sel ector Type Addr ess Limt DPL Ganularity Present

0 reserved (I11egal) 0 0 0 Byte NP

8 Code: Execut e/ Readabl e (accessed) 0 ffffffff O Page P

10 Data: Read-Wite (accessed) 0 ffffffff O Page P

1b Code: Execut e/ Readabl e (accessed) 0 ffffffff 3 Page P

23 Data: Read-Wite (accessed) 0 ffffffff 3 Page P

28 32bit TSS (busy) 80042000 20ab 0 Byte P

3e0 reserved (Illegal) 0 0 0 Byte NP

3e8 reserved (I11egal) 0 0 0 Byt e NP

3f0 reserved (I11egal) 0 0 0 Byte NP

80 Visual SoftICE Command Reference

The following example illustrates the use of the GDT command on an

AMDG64 platform.

SI >GDT
G obal Descriptor Table - Base Address: fffff80000343000, Limt: 5f
Count: 7

Granul arity Present

Byt e
Page
Page
NA
NA

Sel ector Type Addr ess Limt

10 Code: Execute/ Readabl e (accessed) 0 0

18 Data: Read-Wite (accessed) 0 0

23 Code: Execut e/ Readabl e 0 fREffffef
2b Data: Read-Wite (accessed) 0 fRFFFFqf
33 Code: Execute/ Readabl e (accessed) 0 0

40 64bit TSS (busy) fffff80000344060 68

53 Data: Read-Wite (accessed) fffb0000 fff

WO WWwWoo

TWTUVTUUTUTTUTDO

Byt e

The following example illustrates the use of the GDT command with the

-all option on an AMDG64 platform.

SI >GDT -al |
G obal Descriptor Table - Base Address: fffff80000343000, Limt: 5f
Count: 10

WOOWWWOOOOo

Granul arity Present

Sel ector Type Addr ess Limt

0 reserved (I11egal) 0 0

8 reserved (I11egal) 0 0

10 Code: Execute/ Readabl e (accessed) 0 0

18 Data: Read-Wite (accessed) 0 0

23 Code: Execut e/ Readabl e 0 fEFFffff
2b Data: Read-Wite (accessed) 0 fEfffff
33 Code: Execute/ Readabl e (accessed) 0 0

38 reserved (I11egal) 40600068 0

40 64bit TSS (busy) fffff80000344060 68

53 Data: Read-Wite (accessed) f f f bOOOO fff

Visual SoftlICE Commands

81

GETEXP

Syntax

Use

Get exports from the target machine and add them to the local export
cache.

GETEXP [-s] inmage-nane

-S Search subdirectories.

image-name The name of the image file.

Use GETEXP to add exports to the local export cache. The root of the
local export cache is specified by the EXPORTPATH variable. Visual
SoftICE automatically loads exports from the local export cache when a
symbol table is loaded. These exports stay loaded until you specifically
remove them, or Visual SoftICE exits.

Use the GETEXP command in conjunction with the SET EXPORTPATH
command, which sets a destination directory on the master for a local
cache of export information extracted from the target. After setting the
export path, issue the GETEXP command to retrieve exports from the
target and place them in the local export cache. Once exports are stored
in the local export cache, Visual SoftICE will automatically load them
anytime symbols are not found.

If no path is specified, the system directory (. exe) or system drivers
directory (. sys) is used to find the file on the target. You can retrieve and
cache exports for every executable in the system directory of a target by
using the -s flag with the asterisk (*) wildcard.

Note: Retrieving all exports for a system may take several minutes to
complete and cannot be interrupted.

82 Visual SoftICE Command Reference

Example

The following example adds exports from an image file to the local
export cache:

SI >GETEXP nyfil e. exe
Retri evi ng exports...
Retri eved exports:

| mage: ntoskrnl.exe TineStanp: 3B7DE38F (45456 byt es)
Cached in local symbol store under 'c:\kayak\exports'.

See Also

ADDSYM, DELSYM, FILE, LOAD, RELOAD, SET EXPORTPATH, UNLOAD

Visual SoftlICE Commands 83

GO

Go to an address.

Syntax

QGO [start-address] [break-address]

start-address Any expression that resolves to a valid address is acceptable.

break-address Any expression that resolves to a valid address is acceptable.

Use

If you specify break-address, a single one-time execution breakpoint is set
on that address. In addition, all sticky breakpoints are enabled.

Execution begins at the current Instruction Pointer (IP) unless you supply
the start-address parameter. If you supply the start-address parameter,
execution begins at that start-address. If you attempt to set a start-address
that is outside the current function scope and the warning level is not set
to off, then Visual SoftICE generates a warning message asking you to
confirm the new start-address.

Execution continues until the break-address is encountered, or a sticky
breakpoint is triggered. When the target stops, for any reason, the one-
time execution breakpoint is cleared.

The break-address must be the first byte of an instruction opcode.

Example

The following command sets a one-time breakpoint at address
CS: 80123456h on an IA-32 target:

SI >G0 80123456

84 Visual SoftICE Command Reference

HBOOT

Syntax

Use

Example

See Also

Do a hard system boot (total reset).

HBOOT

The HBOOT command performs a hard reset of the system. It is the same
as pressing the Reset button on the computer. It does not shutdown the
operating system gracefully.

HBOOT is sufficient unless an adapter card requires a power-on reset. In
those rare cases, the machine power must be cycled.

The following command forces the system to reboot.

SI >HBOOT

REBOOT, SHUTDOWN, STOP

Visual SoftlICE Commands 85

HEAP

Display the Windows heap.

Syntax
HEAP [[-w -X -s -b] [heap | heap-entry | process-type]]
-w Walk the heap, showing information about each heap entry.
-X Show an extended summary of a heap.
-S Provide a segment summary for a heap.
-b Show base address and sizes of heap entry headers.
heap Heap handle.
heap-entry Heap allocated block returned by HeapAlloc or HeapRealloc.
process-type Process name, process-ID, or process handle (KPEB).
Use

All HEAP options and parameters are optional. If you do not specify
options or parameters, a basic heap summary displays for every heap in
every process. If a parameter is specified without options, a summary will
be performed for the heap-entry, heap, or in the case of a process-type, a
summary for each heap within the process.

The Walk Option

The walk option (-w) walks a heap, showing the state of each heap-entry
on a heap. Walk is the default option if you specify a heap handle
without other options.

The Extended Option

The extended option (-x) displays a detailed description of all useful
information about a heap, including a segment summary and a list of
any Virtually Allocated Blocks (VABs) or extra UnCommitted Range
(UCR) tables that may have been created for the heap.

86 Visual SoftICE Command Reference

Output

The Segment Option

The segment option (-s) displays a simple summary for the heap and for
each of its heap-segments. Segments are created to map the linear address
space for a region of a heap. A heap can be composed of up to sixteen
segments.

The Base Option

Use the base option (-b) to change the mode in which addresses and heap
entry sizes display. Under normal operation, all output shows the address
of the heap-entry data, and the size of the user data for that block. When
you specify the base option, all output shows the address of the heap-
entry header, which precedes each heap-entry, and the size of the full
heap-entry. The size of the full heap-entry includes the heap-entry
header, and any extra data allocated for guard-bytes or to satisfy
alignment requirements. Under most circumstances you only specify
base addressing when you need to walk a heap or its entries manually.

When you use the base option, the base address for each heap-entry is 8
bytes less than when base is not specified, because the heap-entry header
precedes the actual heap-entry by 8 bytes. Secondly, the size for the
allocated blocks is larger because it includes an additional 8 bytes for the
heap-entry header, guard-bytes, and any extra bytes needed for proper
alignment. The output from the base option is useful for manually
navigating between adjacent heap entries, and for checking for memory
overruns between the end of the heap-entry data and any unused space
prior to the guard-bytes. The guard-bytes are always allocated as the last
two DWORDs of the heap entry.

Note: The base option has no effect on input parameters. Heap-entry
addresses are always assumed to be the address of the heap-entry

data.
Process Process that owns the heap.
Heap Base Base address of the heap, that is, the heap handle.
Id Heap ID.
Committed Amount of committed memory used for heap entries.
Present Amount of present memory used for heap entries.
Reserved Amount of reserved memory used for heap entries.

Visual SoftlICE Commands 87

88

SegmentCount Number of heap segments within the heap.
Flags Heap flags, for example, HEAP_GROWABLE (0x02).

Mapped Indicates whether or not the heap is mapped into the process.

If you specify the -w switch, the following information displays:

Base This is the address of the heap entry.

Type Type of the heap entry.

Heap Entry Description
HEAP Represents the heap header.
SEGMENT Represents a heap segment.
ALLOC Active heap entry
FREE Inactive heap entry
VABLOCK Virtually allocated block (VAB)
Size Size of the heap-entry. Typically, this is the number of bytes available to

the application for data storage.
Seg# Heap segment in which the heap-entry is allocated.

Flags Heap entry flags.

If you specify the -s switch, the following additional information
displays:

Segment# Segment number of the heap segment.

Address Range Linear address range that this segment maps to.

Committed Amount of committed memory for this heap segment.

Present Amount of present memory for this heap segment.

Reserved Amount of reserved memory for this heap segment.

Max UCR Maximum uncommitted range of linear memory. This value
specifies the largest block that can be created within this heap
segment.

Visual SoftICE Command Reference

Example

The following example displays a basic heap summary for every heap in
every process.

S| >HEAP

Count: 130

Process Heap Base |d
SNBS. exe 00160000 1
SNEBS. exe 00260000 2
CSrss. exe 00160000 1
CSrss. exe 00260000 2

Committed Present Reserved Segnent Count Fl ags

6 5 100 1 00000002 no
6 2 10 1 00001002 no
2b 24 100 1 00000002 no
6 2 10 1 00001002 no

The following example displays base address and segment information
on a specific heap address.

S| >HEAP -b -s 00080000
Process Heap Base Id

expl orer.exe 00080000 1

Heap SegnentsTable Sunmary :

Segnent# Address Range

0 00080000- 00180000

Committed Present Reserved Segnent Count Fl ags Mapped
e s 00 o 00000002 no
00080640
Committed Present Reserved Max UCR
. s 100 62000

Visual SoftlICE Commands 89

HELP

Syntax

Use

Example

Display help information.

HELP [command]

H [command]

command Visual SoftICE command name.

The HELP command displays help on Visual SoftiICE commands. (Refer
to the ? command for information about evaluating expressions.) To
display a list of the available Visual SoftICE commands, enter the HELP
command with no parameters. To see detailed information about a
specific command, use the HELP command followed by the name of the
command on which you want help. Help displays a description of the
command, and the command syntax.

The following example displays information about the BC command:

SI >HELP BC

Clear a list of, or all breakpoints.
Usage: BC[n | nl n2 n3 | *]

90 Visual SoftICE Command Reference

HWND

Syntax

Use

Display information on Window handles.

HWD [-X] [-c] [hwnd-type | process-type | thread-type |
nodul e-type | cl ass-nane]
-X Display extended information about each window handle.

-C Force the display of the window hierarchy (children) when
searching by window handle.

hwnd-type Window handle or pointer to a window structure.
process-type, A value that Visual SoftICE can interpret as being of a specific
thread-type, type such as process hame, thread ID, or image base.

or module-type

class-name Name of a registered window class.

The HWND command enumerates and displays information about
window handles.

The HWND command allows you to isolate windows that are owned by a
particular process, thread or module, when you specify a parameter of
the appropriate type.

The extended option (-x) shows extended information about each
window.

When you specify the extended option, or an owner-type (process-type,
thread-type, or module-type) as a parameter, the HWND command will not
automatically enumerate child windows. Specifying the children option
(-c) forces all child windows to be enumerated regardless of whether they
meet any specified search criteria.

Visual SoftlICE Commands 91

Output
For each HWND that is enumerated, the following information is

displayed:

Handle HWND handle (refer to OBJTAB for more information). Each window
handle is indented to show its child and sibling relationships to other
windows.

Class Registered class name for the window, if available (refer to CLASS for
more information).

WinProc Address of the message callback procedure. This value is displayed as

an address.
TID Owning thread ID.
Image Owning image name (if available). If the image name is unknown, the

image handle will be displayed as an address.

Example

The following example uses the HWND command without parameters or
options. It will enumerate all the windows in the system, for all desktops.

Sl >HWND

Count: 97

Handl e Cl ass Nane W ndowProc Tid Modul e Name

10002 #32769 bf 8624b8 20c wi n32k. sys

10014 #32769 bf 8624b8 20c Wi n32k. sys

1009a Ci cer oUl WhdFr anme 5f c2e238 788 MSUTB. dI |

1009e Ci cer oUl WhdFr ane 5f c2e238 788 MSUTB. dI |

200d6 LOGON 010013fc 1dc

300be W ndows Scr eenSaver Cl ass 01001a3b 1ldc | ogon. scr

10084 BaseBar 7758cd4b 718 SHELL32. dI |

10086 MenuSi te 7758cd4b 718 SHELL32. dI |

10088 SysPager 7195db22 718 SHELL32. dI |

1008a Tool bar W ndow32 7196bc2d 718 SHELL32. dI |

1001c #32769 bf 8624b8 23c wi n32k. sys

10050 #32769 bf 8624b8 23c wi n32k. sys

10052 Message bf 86248a 23c Wi n32k. sys

10054 #32768 bf 833266 23c wi n32k. sys

Note: The output from this example enumerates two desktop windows
(handles 10002 and 1001c), each with its own separate window
hierarchy. This is because the system can create more than one
object of type Desktop, and each Desktop object has its own Desktop
Window, which defines the window hierarchy.

92 Visual SoftICE Command Reference

Because the system can create more than one object of type
Desktop, the HWND command accepts a Desktop-type handle as a
parameter. This allows the window hierarchy for a specific Desktop to
be enumerated. You can use the OBJTAB DESKTOP command to
enumerate all existing desktops in the system.

The following is an example of using the HWND command with a
specific window handle and the -c option.

SI >HWAD -c¢ 1001c

Count: 16

Handl e C ass Nane W ndowProc Tid Modul e Nane

1001c #32769 bf 8624b8 23c wi n32k. sys

10050 #32769 bf 8624b8 23c wi n32k. sys

10052 Message bf 86248a 23c wi n32k. sys

10054 #32768 bf 833a66 23c wi n32k. sys

10036 #32769 bf 8624b8 23c wi n32k. sys

100b8 SSDP Server W ndow 74cl24ac 7cc

10038 Message bf 86248a 23c wi n32k. sys
The following is an example of enumerating only those windows owned
by thread 718.

SI >HWND 718

Count: 26

Handl e Cl ass Nane W ndowProc Tid Modul e Nane

10084 BaseBar 7758cd4b 718 SHELL32. dI |

10086 MenuSite 7758cd4b 718 SHELL32. dI |

10088 SysPager 7195db22 718 SHELL32. dI |

1008a Tool bar W ndow32 7196bc2d 718 SHELL32. dl |

10078 tool ti ps_cl ass32 719chaa8 718 conctl 32.dl1

40034 A eMai nThreadWwhdC ass 771c9755 718 ol e32.dl |

Visual SoftlICE Commands 93

The following is an example of enumerating those windows owned by
the expl orer process.

SI >HWAD expl or er

Count: 48

Handl e Cl ass Nane W ndowProc Tid Modul e Name
10084 BaseBar 7758cd4b 718 SHELL32. dI |
10086 MenuSite 7758cd4b 718 SHELL32. dl |
10088 SysPager 7195db22 718 SHELL32. dI |
1008a Tool bar W ndow32 7196bc2d 718 SHELL32. dl |
10080 tool ti ps_cl ass32 719cbhaa8 6d4 conttl 32.dl |
10078 tool ti ps_cl ass32 719cbhaa8 718 conttl 32.dl I
100b4 A eMai nThreadWwhdC ass 771c9755 7b8 ol e32.dl |

The following is an example of enumerating those windows owned by
the Desktop (#32769) class.

SI >HWND #32769

Count: 9

Handl e Cl ass Nane WndowProc Tid Modul e Nane
10002 #32769 bf 8624b8 20c wi n32k. sys
10014 #32769 bf 8624b8 20c wi n32k. sys
10004 #32769 bf 8624b8 20c wi n32k. sys
1000c #32769 bf 8624b8 20c wi n32k. sys
1001c #32769 bf 8624b8 23c wi n32k. sys
10050 #32769 bf 8624b8 23c wi n32k. sys
10036 #32769 bf 8624b8 23c wi n32k. sys
1002e #32769 bf 8624b8 23c wi n32k. sys
1001e #32769 bf 8624b8 23c wi n32k. sys

Note: A process-name always overrides an image of the same name. To
search by image, when there is a name conflict, use the image
handle (base address or image-database selector) instead. Also, image
names are always context-sensitive. If the image is not loaded in the
current context (or the CSRSS context), the HWND command
interprets the image name as a class name instead.

94 Visual SoftICE Command Reference

The following example shows the output when a window handle is
specified.

SI >HWAD 1007a

Modul e

W ndowPr oc
Title

Par ent

Next

1st Child
Style
ExStyl e

W ndow Area :
Client Area :

1007a

Application Private : Prognman

3b7df e8elf 000adb; SHELL32. dI

SHELL32! CDeskt opBr owser : : Deskt opWhdProc (7741501b)
Pr ogr am Manager

bc6306e8

00000000

bc63ae28

96000000; W5_POPUP, W5_VI S| BLE, W5_CLI PSI BLI NGS, W5_CLI PCHI LDREN
c0000880; W5_EX_TOOLW NDOW

0, 0, 1024, 768 (1024 x 768)

0, 0, 1024, 768 (1024 x 768)

Note: If the extended (-x) option is specified with a window handle, the
same output is generated.

Visual SoftlICE Commands

95

The following example enumerates the windows owned by thread 718

when the extended option (-x) is used.

SI >HWAD -x 718

Count: 26
Handl e 10084
CLASS Application Private : BaseBar
Modul e 3b7df e8elf 000adb; SHELL32. dl |
W ndowPr oc SHELL32! Direct U :: Verti cal Fl owLayout : : Bui | dCachel nf 0+14387c
(7758cd4b)
Title
Par ent bc6306e8
Next bc63af el
1st Child bc63b338
Style 86400000; W5_POPUP, W5_CLI PSI BLI NGS, W5_CLI PCHI LDREN, W5_CAPTI ON
ExStyl e : 188; WS_EX_TOPMOST, Ws_EX_TOOLW NDOW W&_EX_W NDOWNEDGE
W ndow Area : 0, 0, 100, 100 (100 x 100)
Client Area : 0, 0, 100, 100 (100 x 100)
Handl e 10086
CLASS Application Private : MenuSite
Modul e 3b7df e8elf 000adb; SHELL32.dl |
W ndowPr oc SHELL32! Direct U :: Verti cal Fl owLayout : : Bui | dCachel nf 0+14387c
(7758cd4b)
Title
Par ent bc63ble8
Next 00000000
1st Child bc63b448
Style 50000000; W5 _CHI LD, W5_VI SI BLE
ExStyl e :?
Wndow Area : 3, 3, 3, 3 (0 x 0)
Client Area: 3, 3, 3, 3 (0 x 0)
See Also
OBJTAB

96 Visual SoftICE Command Reference

Syntax

Use

Example

Input a value from an 1/0 port.

| [size] port

size Value Description
B Byte
w Word
D DWORD
Q QWORD
port Port address.

You use the | command to read and display a value from a specified
hardware port. Input can be done in byte, word, DWORD, or QWORD
lengths. If you do not specify size, the default is byte.

Except for the interrupt mask registers, the | command does an actual 1/0
instruction, so it displays the actual state of the hardware port. However,
in the case of virtualized ports, the actual data returned by the |
command might not be the same as the virtualized data that an
application would see.

The only ports that Visual SoftICE does not do I/0 on are the interrupt
mask registers (Port 21 and Al). For those ports, Visual SoftICE shows the
value that existed when Visual SoftICE stopped.

The following example performs an input from port 21, which is the
mask register for interrupt controller one.

SI> 21

Visual SoftlICE Commands 97

I1HERE

Syntax

Use

Example

See Also

Stop on embedded INT 1 instructions.

| 1HERE [on | of f]

Use the IIHERE command to specify that any embedded interrupt 1
instruction stops the target. This feature is useful for stopping your
program in a specific location. When 11HERE is on, Visual SoftICE checks
to see whether an interrupt is really an INT 1 in the code before stopping.
If it is not an INT 1, Visual SoftICE will not stop.

To use this feature, place an INT 1 into the code immediately before the
location where you want to stop. When the INT 1 occurs, it stops the
target. At this point, the current IP is the instruction after the INT 1
instruction.

If you do not specify a parameter, the current state of ILHERE displays.
The default is I1HERE off.

This command is useful when you are using an application debugging
tool such as BoundsChecker. Because these tools rely on INT 3
instructions for breakpoint notifications, I1HERE allows you to use INT 1
instructions as hardwired interrupts in your code without triggering the
application debugger.

The following example enables ITHERE mode. Any INT 1 instructions
generated after this point stop Visual SoftICE.

S| >I 1HERE on

IBHERE, SET

98 Visual SoftICE Command Reference

ISHERE

Syntax

Use

Example

See Also

Stop on INT 3 instructions.

| 3HERE [on | off | DRV]

DRV Enabl e I NT 3 handling above 2GB only. This supports
trapping of a driver’'s call to DebugBreak().

Use the ISBHERE command to specify that any INT 3 instruction stops
Visual SoftICE. This feature is useful for stopping your program in a
specific location.

To use this feature, set IBHERE on, and place an INT 3 instruction into
your code immediately before the location where you want to stop.
When the INT 3 instruction occurs, it stops the target. At this point, the
current IP is the instruction after the INT 3 instruction.

If you are developing a Windows program, the DebugBr eak()
Windows API routine performs an INT 3 instruction.

If you do not specify a parameter, the current state of I3HERE displays.

Note: If you are using an application debugging tool such as the Visual C
debugger or BoundsChecker, you should place INT 1 instructions in
your code instead of INT 3 instructions. Refer to I1HERE.

The following example turns on I3HERE mode. Any INT 3 instructions
generated after this point cause the target to stop.

S| >I 3HERE on

When the command I3HERE is set to ON, and you are using a Ring 3
debugger, such as BoundsChecker, Visual SoftICE traps on any INT 3
breakpoints installed by the Ring 3 debugger.

I1THERE, SET

Visual SoftiICE Commands 99

IMAGE (MOD)

Syntax

Use

Output

Display the operating system image list. The MOD command remains
aliased to the IMAGE command.

I MAGE [-I] [-u | -s] | [partial-nane]
MDD [-1] [-u | -s] | [partial-nane]
-l Displays the images in load-order.
-u Displays only images in user space.
-S Displays only images in system space.

partial-name Prefix of the image name. Accepts wildcards.

This command displays the operating system image list. If a partial name
is specified, only images that begin with the name will be displayed.
Visual SoftICE displays images in the following order:

32- and 64-bit driver images (Windows NT only)
32- and 64-bit application images

The IMAGE command is process-specific. All images will be displayed
that are visible within the current process. This includes all 32- and 64-
bit images and all driver images. This means if you want to see specific
images, you must switch to the appropriate address context before using
the IMAGE command.

For each loaded image the following information is displayed:

address Base linear address of the executable file.
size Hex value representing the size of the image file in bytes.
name Name specified in the .DEF file using the NAME or LIBRARY keyword.

fullname Full path and file name of the image's executable file.

100 Visual SoftICE Command Reference

Example

The following example shows how the IMAGE command displays

images:

Sl > MAGE
96 i nages
Address Size Nanme

20000001f f 000000 546b80 wi n32k
e0000165e6c2c000 1c80 RDPCDD
e0000165e6¢c76000 1100 dxgt hk

\ 2?2\ C: \ W NDOWB\ syst enB2\ wi n32k. sys

\ Syst enRoot \ Syst en82\ DRI VERS\ RDPCDD. sys
\ Syst enRoot \ Syst en82\ dri ver s\ dxgt hk. sys

The following example displays the output from the IMAGE command

using the -u parameter:

Ful | Nane

SI > MAGE -u
13 i nmges

Address Size Nanme
0000000000400000 20000 si service

Edi tion\siservice. exe
0000000060a20000 1f a000

0000000077e80000 17c000 ntdl |

DBGHELP

C:\ Program Fi | es\ NuMega\ Soft | CE Di stri but ed
C: \ W NDOWB\ syst en82\ DBGHELP. dI |

C.\ W NDOWB\ Syst enB2\ ntdl | . dl |

See Also

ADDR, PROCESS, THREAD

Visual SoftICE Commands

101

IMAGEMAP (MAP32)

Syntax

Use

Display a memory map of all modules currently loaded in memory. The
MAP32 command remains aliased to the IMAGEMAP command.

| MAGEMAP [i nmage-nane | address]

image-name Windows image-name.

address Any address that falls within an executable image.

Using IMAGEMAP with no parameters lists information about all images.

If you specify either an image-name as a parameter, only sections from the
specified image are shown. For each image, one line of data is printed for
every section belonging to the image.

Because the IMAGEMAP command takes any address that falls within an
executable image, an easy way to see the memory map of the image that
contains the current IP is to enter:

| MAGEMVAP .

IMAGEMAP lists kernel drivers as well as applications and DLLs that exist
in the current process. They can be distinguished in the map because
drivers always occupy addresses above 2GB, while applications and DLLs
are always below 2GB.

102 Visual SoftICE Command Reference

Output

Example

Each line in IMAGEMAP's output contains the following information:

Owner Image name.
Name Section name from the executable file.
Obj# Section number from the executable file.
Address Selector:offset address of the section.
Size Section’s size in bytes.
Type Type and attributes of the section, as follows:

Type Attributes

CODE Code

IDATA Initialized Data

UDATA Uninitialized Data

RO Read Only

RW Read/Write

SHARED Object is shared

The following example illustrates sample output for IMAGEMAP.

S| > MVAGEMAP

crrd .text 0001 000000004ad02000 0005fcd8 20
cmd . pdata 0002 000000004ad62000 0000126¢c 40
cmd . srdata 0003 000000004ad64000 000009e4 40

nt dl | .rsrc 0006 0000000077f ccO00 0002c0e8 40
ntdl | .rel oc 0007 0000000077ffa000 0000403a 40

Visual SoftICE Commands

103

INTOBJ

Display information on system interrupt objects.

Syntax
I NTOBJ [vector | interrupt-object-address]
vector The interrupt vector associating the hardware
interrupt and the object.
interrupt-object-address The address for a specific interrupt object.
Use

The INTOBJ command displays information about interrupt objects that
are current in the system. If you enter INTOBJ without parameters, Visual
SoftICE lists all interrupt objects with the following information:

® 6 &6 6 o o o

L 4

Object Address
Vector

Service Address
Service Context
IRQL

Mode

Affinity Mask
Symbol

If you issue the command with a vector or address, Visual SoftiCE
displays information about the specified interrupt object.

104 Visual SoftICE Command Reference

Example

The following example displays information about all the current
interrupt objects in the system:

SI > NTOBJ
Addr ess Vect or Irgl Synchlrgl Shared SrvRoutine | nt Mode
e0000000867a8f 40 51 5 b no e0000165e4d0ea20 1
e000000086d12ad0 61 6 6 yes €0000165e1dd5380
e000000086¢c21e80 a2 a a yes e0000165e1f c40e0
€0000000867a8db0 b2 b b no e0000165e4cfa9a0 1
The following example shows the information Visual SoftICE displays for
a particular interrupt object by vector:
SI > NTOBJ 61
Addr ess : e000000086d12ad0
| nt Mbde : 0; Level Sensitive

The following example shows the information Visual SoftICE displays for
a particular interrupt object by address:

S| >| NTOBJ e000000086f 269f 0

Addr ess : e000000086f 269f 0

I nt Mode : 1, Latched

Visual SoftlICE Commands 105

IRP

Display information about an 1/0 Request Packet (IRP).

Syntax
IRP -f | -n| -p| -a | irp-address
-f Display all IRP stack locations.
-n Display the next IRP stack location
-p Walk the previous IRP stack location
-a Iterates through all threads on a system and shows the IRP for each
thread
irp-address Address of the start of the IRP structure to be displayed
Use

The IRP command displays the contents of the I/0O Request Packet and
the contents of associated current 1/0O stack located at the specified
address. Note that the command does not check the validity of the IRP
structure at the specified address, so any address will be accepted by
Visual SoftICE as an IRP address. Be careful to pass the IRP command a

valid IRP address.

The IRP fields shown by Visual SoftICE are not documented in their
entirety here, as adequate information about them can be found in
NTDDK. Hin the Windows NT DDK. A few fields deserve special mention,
however, because device driver writers find them particularly useful:

Flags

StackCount

CurrentLocation

Tail.Overlay.CurrentStackLoc

106 Visual SoftICE Command Reference

Flags used to define IRP attributes.

The number of stack locations that have been
allocated for the IRP. A common device driver bug
is to access non-existent stack locations, so this
value can be useful in determining when this has
occurred.

This number indicates which stack location is the
current one for the IRP. Again, this value,
combined with the previous StackCount, can be
used to track down IRP stack-related bugs.

Address of current stack location. The contents of
this stack location are displayed after the IRP, as
illustrated in the example of the command given
below.

Cancel This boolean is set to TRUE if the IRP has been
cancelled as a result of an IRP cancellation call. An
IRP can be cancelled when the IRP’s result is no
longer needed so that the IRP will not complete.

These fields in the current stack location might be useful:

Major Function, These fields indicate what type of request the IRP is being

Minor Function used for. The major function is used in determining which
request handler will be called when an IRP is received by a
device driver. The minor function provides the specifics about
the request.

Device Object Pointer to the device object at which the IRP is currently
stationed. In other words, the IRP has been sent to, and is in
the process of being received by, the device driver owning
the device object.

File Object Pointer to the file object associated with the IRP. It can
contain additional information that serves as IRP parameters.
For example, file system drivers use the file object path name
field to determine the target file of a request.

Completion This field is set when a driver sets a completion routine for an

Routine IRP through the loSetCompletionRoutine call. Its value is the
address of the routine that will be called when a lower-level
driver (associated with a stack location one greater than the
current one) completes servicing of the IRP and signals that it
has done so with loCompleteRequest.

Example

The following example shows the output for the IRP command:

Sl > RP e000000086f 898f 0

Addr ess ;. e000000086f 898f0
Type 6

Si ze ;118

Tai | . Conpl eti onKey : 0000000000000000
Addr ess . e000000086f 899c0

Maj or Functi on e

Cont ext : 0000000000000000

Visual SoftlICE Commands 107

IT (IDT)

Display the Interrupt Table. The IDT command remains aliased to the IT

command.
Syntax
IT [-c cpu] [interrupt-numnber]
I DT [-c cpu] [interrupt-nunber]
-c cpu Specify the CPU.
interrupt-number The number of the interrupt to display details about.
Use
The command displays the interrupt table of the operating system, or
details about a given interrupt if you specify an interrupt-number. On
Xx86, the interrupt table is called the Interrupt Descriptor Table (IDT). On
I1A64, the interrupt table is called the Interrupt Vector Area (IVA).
Output

The following fields are shown as detailed information:

Vector Interrupt vector number.

SrvRoutine Address and/or symbolic name for the interrupt service routine.

The following are output only for x86 platforms:

Type Type of interrupt:

Task Gate

32-bit Trap Gate
16-bit Trap Gate
32-bit Interrupt Gate
16-bit Interrupt Gate
32-bit Call Gate
16-bit Call Gate

Present Indicates whether the entry is present or not.

DPL Interrupt descriptor privilege level (DPL), which is either O, 1, 2, or 3.

108 Visual SoftICE Command Reference

The following is output only for AMDG64:

IST Displays the value of the AMDG64 Interrupt Stack Table (IST).
Examples
In the following example, the IT command displays the interrupt
descriptor table for a specific vector on x86:
SI>IT 13
Interrupt Descriptor Table - CPU 0, Base Address: 8003f400, Limit: 7ff
Vect or : 13
Type . e; 32bit Interrupt Gate
Present yes
DPL 0

SrvRout i ne 0008: 804d80c8 (ntoskrnl!Ki Trapl3)

In the following example, the IT command displays the interrupt
descriptor table of the operating system on x86:

SI>IT

Interrupt Descriptor Table - CPU 0, Base Address: 8003f400, Limt: 7ff

Count: 256

Vect or Type Present DPL SrvRoutine

0 e; 32bit Interrupt Gate yes 0 0008: f 91d2dcc (BCHKD! _Sect i on_LDATA+204c)

1 e; 32bit Interrupt Gate yes 3 0008: 804d5b06 (ntoskrnl!Ki Trap01)

2 5; Task Gate yes 0 0058: 8053d306 (ntoskrnl!g_rgAttributeTags+f6)

3 e; 32bit Interrupt Gate yes 3 0008: 804d5e2e (ntoskrnl!Ki Trap03)

fd e; 32bit Interrupt Gate vyes 0 0008: 804d4c82 (ntoskrnl!Ki Unexpect edl nt er r upt 205)

fe e; 32bit Interrupt Gate yes 0 0008: 804d4c89 (ntoskrnl!Ki Unexpect edl nt errupt 206)

ff e; 32bit Interrupt Gate yes 0 0008: 804d4c90 (ntoskrnl!Ki Unexpect edl nterrupt207)
In the following example, the IT command displays the interrupt
descriptor table of the operating system on 1A-64:

SI>IT

Interrupt Descriptor Table - CPU 0, Base Address: e0000000831a0000

Count: 32

O f set Type SrvRouti ne

0 0; VHPT €0000000831a0000 (ntoskrnl!KilvtBasel Log)

400 0; Instruction TLB e0000000831a0400 (ntoskrnl!.Kilnst Tl bVectorl Log)

800 0; Data TLB €0000000831a0800 (ntoskrnl!. Ki Dat aTl bVect or| Log)

c00 0; Alternate Instruction TLB €0000000831a0c00 (ntoskrnl!.Ki Al'tlnstTI bVectorl Log)

1000 0; Alternate Data TLB e0000000831a1000 (ntoskrnl!.Ki Al t DataTl bVect or| Log)

Visual SoftICE Commands

109

KDLIST

List loaded kernel debugger extension DLLs in search-order.

Syntax
KDLI ST
Use
Use KDLIST to list the kernel debugger extension DLLs loaded on the
target. The list is presented in the order they are discovered while
searching.
Example
The following example shows the output from KDLIST:
SI >KDLI ST
Nane Ver si on Type Pat h CreateTi ne
kext 4.0.18.0 1.0.0 e:\programfiles\Debuggi ng Tools for Wndows\w next\kext.dlI Mon Dec 17

13:22: 57 2001
kdexts 5.1.3591.0 1.0.0 e:\programfiles\Debugging Tools for W ndows\w nxp\kdexts.dll Mn Dec 10
17:10: 02 2001

110 Visual SoftICE Command Reference

KEVENT

Display Kernel Events.

Syntax
KEVENT [ker nel - event]
kernel-event Kernel event address.
Use
The KEVENT command displays information about kernel events that are
current in the system. If you enter KEVENT without parameters, Visual
SoftICE walks through the \ BaseNanedCbj ect s directory, where the
Win32 subsystem typically stores named kernel objects, and displays the
Kernel Events in that list. If you specify a kernel event address, Visual
SoftICE displays information about the specified event.
Example
The following example shows how to use the KEVENT command to
display kernel events that are currently in the system:
SI >KEVENT
Addr ess Type Signal State Nanme
e;)OEJOEJOEJSGE%SchE)O_ _1 _____ ;) --------- StopUtilityManager Event
;36600000864ec630 1 0 W NMGMT_COREDLL_LOADED

The following example shows how to use the KEVENT command to
display information about a specific event:

SI >KEVENT e000010600689d18

Addr ess ;' e000010600689d18

Type : 0; Notification

Signal State : 0

Wi t Li stHead : 0012019f 00000000

Nane : RotHintTable
See Also

KMUTEX, KSEM

Visual SoftlICE Commands 111

KILL

Syntax

Use

Example

See Also

Terminate a process on the target.
Note: The target must be running for this command to succeed.

KILL [pid]

pid The process ID.

Use the KILL command to terminate a process on the target.

The following example terminates process 3¢8 on the target:

SI >KI LL 3c8

EXEC, SET GLOBALBREAK, SVCSTART, SVCSTOP

112 Visual SoftICE Command Reference

KMUTEX

Display information about kernel mutexes.

Syntax

KMUTEX [ker nel - mut ex]

kernel-mutex Kernel mutex address

Use

If you issue the KMUTEX command without any parameters, Visual
SoftICE walks through the \ BaseNamedbj ect s directory, where the
Win32 subsystem typically stores named kernel objects, and displays
information about all the Kernel mutexes in that list.

If you issue the KMUTEX command with an expression, Visual SoftICE
displays information about the kernel mutex at that address.

Example

The following example shows how the KMUTEX command is used to
display information about a specific object:

SI >KMUTEX e0000000864646¢c0

Addr ess ;. e0000000864646¢c0
Nanme . RasPbFile
See Also

FMUTEX, KEVENT, KSEM

Visual SoftlICE Commands 113

KOBJECT

Syntax

Use

Example

Display information about Kernel Objects a thread can wait on, or a list
of threads waiting on an object.

KOBJECT [-w] address

-w Display a list of threads waiting on the specified object.

address ~ The address of the object.

Use KOBJECT to display information about kernel objects a thread can
wait on. Use the -w flag to display a list of threads waiting on the
specified object.

The following example shows information about the kernel objects a
thread is waiting on:

S| >KOBJECT ffb76da8

Addr ess : ffb76da8
Type : 3; Process
Signal State : O

Vi tLi st Head : 80d48e18

The following example shows the list of threads waiting on the specified
object:

SI >KOBJECT -w ffb76da8
Addr ess Thr ead hj ect Type Wi t Key Wi t Type

80d48e18 80d48da8 ffb76da8 Process 0 1

114 Visual SoftICE Command Reference

KSEM

Syntax

Use

Example

Display information about kernel semaphores.

KSEM [senmaphor e- addr ess]

semaphore-address Address of a kernel semaphore object.

If you issue the KSEM command without any parameters, Visual SoftICE
walks through the \ BaseNanedbj ect s directory, where the Win32
subsystem typically stores named kernel objects, and displays
information about all the kernel semaphores in that list.

If you issue the KSEM command with an expression, Visual SoftiICE
displays information about the kernel semaphores at that address.

The following example shows how to use the KSEM command to display
information about a specific ssmaphore object:

Addr ess
Limt
Signal State

Name

€0000000864d86b0
ARREAARI

Wi t Li st Head :

S| >KSEM e0000000864d86b0

€0000000864d86b8
shel | . {090851A5- EB96- 11D2- 8BE4- 00C04FA31A66}

See Also

KEVENT, KMUTEX

Visual SoftlICE Commands 115

LOAD

Syntax

Use

Example

See Also

Load symbols.

LOAD [i nage- nane]

image-name Name of the image or symbol file (. exe or . pdb) for which you
want to load symbols (you can use the * wildcard).

Use the LOAD command to load symbols for an image file. If the symbols
do not apply to any current process image they will not be loaded,
because symbols are dynamic in Visual SoftICE. If you use the * wildcard
in place of an image-name, Visual SoftICE opens the Symbol Files utility.
Use the ADDSYM command for persistently loaded symbols.

The following example loads symbols for the nypr ogr am exe image file:

SI >LOAD nyprogram exe

ADDSYM, DELSYM, FILE, GETEXP, RELOAD, SET SYMSRVSEARCH, SET
SYMTABLEAUTOLOAD, UNLOAD

116 Visual SoftICE Command Reference

LOCALS

List local variables from the current stack frame.

Syntax
LOCALS

Use
Use the LOCALS command to list local variables from the current stack
frame to the Command window.

Output

The following information displays for each local symbol:

¢ Stack Offset

¢ Type definition

¢ Value, data, or structure symbol ({...})

The type of the local variable determines whether a value, data, or

structure symbol ({...}) is displayed. If the local is a pointer, the data it

points to is displayed. If it is a structure, the structure symbol is
displayed. If the local is neither a pointer nor a structure, its value is
displayed.

Note: You can expand structures, arrays, and character strings to display
their contents. Use the WL command to display the Locals window,
then double-click the item you want to expand. Note that
expandable items are delineated with a plus (+) sign.

Example
The following example displays the local variables for the current stack
frame.
SI >LOCALS
[EBP- 4] struct BOUNCEDATA * pdb=0x0000013F <{...}>
[EBP+8] void * hWwd=0x000006D8
See Also

TYPES, WL

Visual SoftlICE Commands 117

LOG

Echo the input, output, or both to a file.

Syntax

LOG of f | input | output | all [-0o] [fil enane]

off Disable logging to a file.

input Log input to Visual SoftICE to a file.
output Log output from Visual SoftICE to a file.
all Log both input and output to a file.

-0 Overwrite the specified file.

filename Specify the file to which Visual SoftICE will echo the log.

Use

Use the LOG command to echo the input and/or output of a console or
Command page to a file. The console where you execute the command
will echo to the specified file in the manner you specified. The first time
you use LOG you must specify a filename. When you use LOG with off to
turn off the logging, you do not specify the filename. Turning off logging
does not un-set the declared file for that console or Command page, so
when you turn on logging for that console or Command page again the
new log will be appended to the existing log file unless you declare a new
filename. Passing the -o switch instructs Visual SoftICE to overwrite the
contents of the specified filename with the output.

If you have multiple consoles or Command pages open you can echo
them all to different files, or to the same file. However, you cannot
control in what order the operating system will commit 1/0 to the file.

To view the current LOG setting, use the LOG command without any
parameters.

Example

The following example enables output logging for a specific console or
Command page and specifies the file as fi |l e. t xt, and also instructs

118 Visual SoftICE Command Reference

See Also

Visual SoftICE to overwrite the current contents of fi |l e. t xt with the
new output:

SI>LOG output -0 file.txt
Loggi ng Qutput (file.txt) [Overwite]

The following example disables logging for a specific console or
Command page, but leaves the output file declared:

S| >LOG of f
Loggi ng of f (file.txt)

The following example re-enables all logging for a specific console or
Command page when the output file was previously declared:

SI >LOG al |

Logging Al (file.txt) [Overwite]

@, SAVE, SCRIPT

Visual SoftICE Commands

119

Move data.
Syntax
M [-p] source-address L |ength dest-address
-p Specify physical memory address. The default is a virtual
memory address.
source-address Start of address range to move.
L length Length in bytes in hexadecimal.
dest-address Start of destination address range.
Use
The specified number of bytes are moved from the source address to the
destination address.
Example

The following command moves 8192 bytes (expressed in hexadecimal)
from memory location 80d9c5b0h to 80db2a28h on an IA32 target.

SI >M 80d9c5b0 | 2000 80db2a28

120 Visual SoftICE Command Reference

MACRO

Syntax

Use

Define a new command that is a collection of Visual SoftlICE commands.

MACRO [-d] [macro-nanme] | [*] | [= “macro-body”]
-d Delete the specified macro.
macro-name Case-insensitive name for the macro being defined, or the name

of an existing macro.

* Wildcard symbol to specify all defined macros when using -d to
delete.

= Define (or redefine) a macro.

macro-body Quoted string that contains a list of Visual SoftICE commands and
parameters separated by semi-colons (;).

The MACRO command is used to define new keywords that are
collections of existing Visual SoftICE commands. Defined macros can be
executed directly from the Visual SoftICE command line. The MACRO
command is also used to list or delete individual macros.

If no options are provided, a list of all defined macros will be displayed.

When defining or redefining a macro, the following form of the macro
command is used:

MACRO nacr o- nane = “macr o- body”

The macro-name parameter can contain any alphanumeric character. If
the macro-name parameter specifies an existing macro, the MACRO
command redefines the existing macro. The macro-name parameter
cannot be a duplicate of an existing "real" Visual SoftlICE command. The
macro-name parameter must be followed by an equal sign “=", which
must be followed by the quoted string that defines the macro-body
parameter.

Visual SoftlICE Commands 121

The macro-body parameter must be embedded between beginning and
ending quotation marks. The macro-body parameter is made up of a
collection of existing Visual SoftiICE commands, or defined macros,
separated by semi-colons. Each command may contain appropriate literal
parameters, or can use the form %<parameter#>, where parameter# must
be between 1 and 8. When the macro is executed from the command
line, any parameter references will expand into the macro-body parameter
from the parameters specified when the command was executed. If you
need to embed a literal quote character (”) or a percent sign (%) within
the macro-body parameter, precede the character with a backslash
character (\). Because the backslash character is used for escape
sequences, to specify a literal backslash character, use two consecutive
backslashes (\\). The final command within the macro-body parameter
does not need to be terminated by a semi-colon.

Note: A macro-body parameter cannot be empty. It must contain one or
more non-white space characters. A macro-body parameter can
execute other macros, or define another macro, or even a breakpoint
with a breakpoint action. A macro can even refer to itself, although
recursion of macros is limited to 32 iterations. Even with this
limitation, macro recursion can be useful for walking nested or linked
data structures. To get a recursive macro to execute as you expect,
you have to devise clever macro definitions.

Example
The following example uses the MACRO command without parameters
or options:
SI >MACRO
XWHAT =

"WHAT EAX; WHAT EBX; WHAT ECX; WHAT EDX; WHAT ESI; WHAT EDI "

OOPS =

"1 3HERE OFF; GENI NT 3"

1shot =

"bpx eip do \"bc bpindex \""

Note: The name of the macro is listed to the left, and the macro body
definition to the right of the equal sign.

122 Visual SoftICE Command Reference

The following examples show other basic uses for the MACRO command:

SI >MACRO -d * Delete all defined macros.
SI >MACRO -d oops Delete the macro named oops.
SI >MACRO Display all defined macros.

The following example is a simple macro definition:

SI >MACRO hel p = “h”

The next example uses a literal parameter within the macro-body. Its
usefulness is limited to specific situations or values.

SI >MACRO hel p = “h exp”

In the previous example, the Visual SoftlICE H command is executed with
the parameter EXP every time the macro executes. This causes the help
for the Visual SoftiICE EXP command to display.

This is a slightly more useful definition of the same macro:

SI >MACRO hel p= “hel p %"

In the revised example, an optional parameter was defined to pass to the
Visual SoftICE H command. If the command is executed with no
parameters, the argument to the H command is empty, and the macro
performs exactly as the first definition; help for all commands is
displayed. If the macro executes with 1 parameter, the parameter is
passed to the H command, and the help for the command specified by
parameter 1 is displayed. For execution of macros, all parameters are
considered optional, and any unused parameters are ignored.

The following are examples of valid macro definitions:

SI >MACRO qgexp = “addr explorer; query %"

SI >MACRO 1shot = “bpx % do \”bc bpindex\””

S| >MACRO ddt “dd t hread”

SI >MACRO ddp = “dd process”

Visual SoftlICE Commands 123

The following are examples of illegal macro definitions, with an
explanation and a corrected example.

lllegal
Definition

Corrected
Example

Explanation:

lllegal
Definition

Corrected
Example

Explanation:

lllegal
Definition

Corrected
Example

Explanation:

124 Visual SoftICE Command Reference

MACRO dd = “dd dat aaddr”

MACRO dda = “dd dat aaddr”

The macro name is a duplication of a Visual SoftiICE command
name. Visual SoftICE commands cannot be redefined.

? hibyte(hiword(*(%-8))) << 5

MACRO pbsz

MACRO pbsz = “? hibyte(hiword(*(%-8))) << 5"

The macro body must be surrounded by quote characters (*).

MACRO tag = “? *(9%R-4)”

MACRO tag = “? *(%-4)"

The macro body references parameter %2 without referencing
parameter %1. You cannot reference parameter %n+1 without
having referenced parameter %n.

MAP32 (IMAGEMAP)

Syntax

Use

Display a memory map of all modules currently loaded in memory. The
MAP32 command remains aliased to the IMAGEMAP command.

| MAGEMAP [i nmage-nane | address]

image-name Windows image-name.

address Any address that falls within an executable image.

Using IMAGEMAP with no parameters lists information about all images.

If you specify either an image-name as a parameter, only sections from the
specified image are shown. For each image, one line of data is printed for
every section belonging to the image.

Because the IMAGEMAP command takes any address that falls within an
executable image, an easy way to see the memory map of the image that
contains the current IP is to enter:

| MAGEMVAP .

IMAGEMAP lists kernel drivers as well as applications and DLLs that exist
in the current process. They can be distinguished in the map because
drivers always occupy addresses above 2GB, while applications and DLLs
are always below 2GB.

Visual SoftlICE Commands 125

Output

Each line in IMAGEMAP's output contains the following information:

Owner Image name.
Name Section name from the executable file.
Obj# Section number from the executable file.

Address Selector:offset address of the section.

Size Section’s size in bytes.
Type Type and attributes of the section, as follows:
Type Attributes
CODE Code
IDATA Initialized Data
UDATA Uninitialized Data
RO Read Only
RW Read/Write
SHARED Object is shared
Example
The following example illustrates sample output for MAP32.
S| >MAP32
crd .text 0001 000000004ad02000 0005fcd8 20

crd . pdata 0002 000000004ad62000 0000126¢c 40
cmd . srdata 0003 000000004ad64000 000009e4 40

ntdl | .rsrc 0006 0000000077fccO000 0002c0e8 40
ntdl | .rel oc 0007 0000000077ffa000 0000403a 40

126 Visual SoftICE Command Reference

MSR

Read, write, or enumerate model-specific registers.

Syntax
MBR i ndex [=val ue]
MSR nane [=val ue]
index Register index.
name Register name.
=value Value to write to the register.
Use
Use the MSR command to read, write, or enumerate model-specific
registers. Some processors do not support any MSRs. If you do not specify
a register name or index, Visual SoftICE enumerates known MSRs for the
target. If you supply only the register index or name, Visual SoftICE reads
the value currently in that MSR. If you specify an index or name along
with a value, Visual SoftICE writes the value to the register. The target
must be stopped when reading and writing MSRs.
Example
The following example enumerates the MSRs on a Pentium Il processor:
Sl > MBR
Count: 60
I ndex Nane Description Val ue
0 | A32_P5_MC_ADDR Machi neCheck Exception Address O
1 | A32_P5_MC TYPE Machi neCheck Exception Type 0
10 | A32_TI ME_STAMP_CTR Tine Stanp Counter 3cc350b803db
17 | A32_PLATFORM | D PlatformID 2042000000000000
40a | A32_MC2_ADDR MC2_ADDR 3446f f 003446f f
40c | A32_MC3_CTL MC3_CTL 1
40d | A32_MC3_STATUS MC3_STATUS 0

Note: The Value column is only displayed when the target is stopped.

Visual SoftlICE Commands 127

The following example reads from the Platform ID MSR on a Pentium I,
whose index is 17:

SI> MSR 17
(17) 1 A32_PLATFORM I D = 2042000000000000

The following example writes FFFF to DEBUGCTLMSR on a Pentium 11,
whose index is 1d9:

SI > MSR 1d9 = FFFF

See Also
R, RG

128 Visual SoftICE Command Reference

NAME

Syntax

Use

Example

Show, add, or delete user-defined variables (such as constants and
addresses).

NAME [-a | -d] [nane | *] [val ue]

-a Assign a user-defined address.

-d Delete the specified user-defined variable.

name The name of the variable, constant, or address.

* Wildcard used with -d to delete all user-defined variables.
value The value you are assighing to the name.

Use the NAME command to display, add, or delete user-defined variables
(constants and addresses). Using NAME without any parameters displays
a list of all the user defined variables. Using NAME with -a assigns a user-
defined address. Using NAME with -d allows you to delete a specific user-
defined variable, or all user-defined variables using the * wildcard.

The following example displays a list of the user-defined variables:

S| >NAVE
_ProcessLi stHead = address : e00000008321f 180 size: 8

_ldl eProcessBl ock = address : e000000081a6fa40 size: 8

The following example assigns a user-defined constant TEMP, and then
shows that it has had the correct value assigned to it:

SI >NAME TEMP 234
S| >nane
_ProcesslLi st Head = address : e00000008321f 180 size: 8

_ldl eProcessBl ock = address : e000000081a6fa40 size: 8
TEMP = val ue : 0000000000000234 (564)

Visual SoftICE Commands 129

The following example assigns a user-defined address to ADDR, and then
shows that it has had the correct value assigned to it:

SI >NAME ADDR 0x3c6
Sl >nane ADDR
ADDR = val ue : 00000000000003c6 (966)

The following example deletes the TEMP user-defined constant, and then
displays the list to show that it has been removed:

SI >NAME -d TEMP
S| >nane
_ProcesslLi st Head = address : e00000008321f 180 size: 8

ADDR = val ue : 00000000000003c6 (966)

The following example deletes all user-defined variables:

SI >NAME -d *

130 Visual SoftICE Command Reference

NETFIND

Display a list of accessible target machines.

Syntax
NETFI ND [- dns]
-dns Enable DNS lookup.
Use
Use the NETFIND command to display a list of accessible target
machines. You can then try to connect to the target you need using the
information displayed. The NETFIND command also returns the
operating system build number and operating system version string for
each target found.
Example
The following example displays a list of valid target machines on the
system with DNS lookup enabled:
SI >NETFI ND - dns
Agent Si core Current
| p Address Nare Active Cpu GCs Version Version State
255. 255.255. 0 JSPI LLANE yes 1 A32(x86)-2 Wndows NT/XP v5.1 Build:2600 1.0.470 (run)
Li stening. ...
255, 255. 254, 0 JASPI LLANE yes I A32(x86)-1 W ndows NT/XP v5.0 Build:2195 1.0.471 (run)
Li stening. ...
255. 255.253. 0 POWERBOX yes 1 A32(x86)-1 Wndows NT/XP v5.0 Build:2195 1.0.471 (run)
Li stening....
255. 255.252. 0 GANDALF yes | A64-? W ndows XP-64 v?.? Build:???? ?2.2.? (run)
Li stening. ...
255, 255. 251, 0 HOLLYWOCD yes | AB4- 1 W ndows XP-64 v5.1 Build:3604 1.0.459 (run)
Li stening. ...
See Also

CLOSE, CONNECT, DISCONNECT, OPEN, WCONNECT

Visual SoftlICE Commands 131

NTCALL

Display NTOSKRNL calls used by NTDLL.

The NTCALL command displays all NTOSKRNL calls that are used by

NTDLL. Many of the APIs in NTDLL are nothing more than a wrapper for
routines in NTOSKRNL, where the real work is done at level 0. If you use

Visual SoftICE to step through one of these calls, you will see that
Windows will perform a processor-specific instruction to transition
between a privilege level 3 APl and a privilege level 0 routine that

actually implements the call. The index number of the function is passed
in the EAX register on x86 platforms, and the R8 register is used on 1A64

If you want to see the symbol name of the routine, you must load

symbols for NTOSKRNL and make sure that it is the current symbol table.

Refer to the TABLE command.

Syntax

NTCALL
Use

platforms.
Output

The NTCALL command displays all the level 0 APIs available. For each

API, Visual SoftICE displays the following information:

Index

Hexadecimal index number of the function passed in EAX.

Address

Selector:offset address of the start of the function.

Parameters

Number of DWORD parameters passed to the function.

Symbol

Either the symbolic name of the function, or the offset within
NTOSKRNL if no symbols are loaded.

132 Visual SoftICE Command Reference

Example

The following example shows the output from NTCALL on an x86 target:

SI >NTCALL

Service tabl e address: 80544c00 Nunber of services: 276

I ndex Addr ess Parameters Nanme

0 8058391a 6 nt oskrnl ! Nt Accept Connect Port

1 8056b154 8 nt oskrnl ! Nt AccessCheck

2 80560664 b nt oskrnl ! Nt AccessCheckAndAudi t Al arm

119 8061cc87 4 nt oskrnl ! Nt Rel easeKeyedEvent

1lla 8061cfOe 4 nt oskrnl ! Nt WAi t For KeyedEvent

11b 80605e85 O nt oskrnl ! Nt Quer yPort | nformati onProcess
The following example shows the output from NTCALL on an |A-64
target:

SI >NTCALL

Servi ce tabl e address: e0000000831f 6c20 Nunber of services: 284

I ndex Addr ess Parameters Name

0 e000000083313e00 7?7?27 nt oskrnl ! . Nt Accept Connect Port

1 e0000000833f ea60 8 nt oskrnl !'. Nt AccessCheck

2 e000000083409ac0 b nt oskrnl ! . Nt AccessCheckAndAudi t Al arm

11b e0000000833966¢c0 ??? nt oskrnl !'. Nt QueryPort | nformationProcess

Note: The question marks (???) indicate that all the parameters are passed
via registers, and that Visual SoftICE was unable to determine the
number from the operating system data.

Visual SoftlICE Commands 133

NTSTATUS

Syntax

Use

Example

Display header-defined mnemonics for NTSTATUS error codes.

NTSTATUS code

code The NTSTATUS error code you want a mnemonic returned for.

The NTSTATUS command displays the header-defined mnemonic
associated with a specific NTSTATUS code. Many APIs in the operating
system (especially the DDK) return NTSTATUS standard error codes. This
command allows you to return the more intuitive mnemonic associated
with any NTSTATUS error code.

The following example shows the NTSTATUS command returning the
mnemonic for the error code 0x5e:

SI >NTSTATUS 0x5e
OBJECT_I NI TI ALI ZATI ON_FAI LED

134 Visual SoftICE Command Reference

Syntax

Use

Example

Output a value to an 1/O port.

d si ze] port val ue

size Value Description

B Byte

w Word

D DWORD
Q QWORD

port Port address.

value Byte, word, DWORD, or QWORD value as specified by the size parameter.

Output to PORT commands are used to write a value to a hardware port.
Output can be done in byte, word, DWORD, or QWORD lengths. If no
size is specified, the default is B.

All outputs are sent immediately to the hardware with the exception of
the interrupt mask registers (Ports 21h and Alh).

The following command performs an output to port 21, which unmasks
all interrupts for interrupt controller one.

SI>021 0

Visual SoftlICE Commands 135

OBJDIR

Display objects in a Windows NT Object Manager’s object directory.

Syntax
OBJDI R [obj ect-directory-nang]

object-directory-name Name of the object as it appears in the Object Manager’s
object directory.

Use

Use the OBJDIR command to display the named objects within the
Object Manager’s object directory. Using OBJDIR with no parameters
displays the named objects within the root object directory. To list the
objects in a subdirectory, enter the full object directory path.

Output
The following information will be displayed by the OBJDIR command:

Object Address of the object body.
ObjHdr Address of the object header.
Name Name of the object.

Type Windows NT-defined data type of the object.

136 Visual SoftICE Command Reference

Example

The following example shows how to use the OBJDIR command to

display objects in the root object directory:

SI >0BJDI R

Addr ess Header Nane Type
e000000086465590 e000000086465560 NLAPri vat ePort Wi t abl ePort
e000000086466c80 e000000086466¢c50 NLAPubl i cPort Wi t abl ePort
e000010600a46330 €000010600a46300 SnSsW nSt ati onApi Port Por t
e000010600a77860 e000010600a77830 Xact SrvLpcPort Por t

See Also
OBJTAB

Visual SoftICE Commands

137

OBJTAB

Display entries in the WIN32 user object-handle table.

Syntax

OBJTAB [-h]

-h

handle

object-type-name

138 Visual SoftICE Command Reference

[handl e |

obj ect -type- nane |

i ndex]

Display list of valid object-type-names.

Object handle.

FREE
HWND
HMENU
HCURSOR
HICON
HDWP
HHOOK
CLIPDATA
QUEUE
HACCEL
DDEACCESS
HCONV
HDDEDATA
HMONITOR
HKL

HKF
HWINEVENTHOOK
HWINSTA
HIMC
HHID
HDEVINFO

One of the object-type-names, predefined by Visual SoftICE:

Free handle

Window handle

Menu handle

Cursor handle

Icon handle

Deferred window position handle
Window hook callback handle
Clipboard data handle

Call procedure handle

Accelerator table handle

DDE access handle

DDE conversion handle

DDE data handle

Display monitor handle

Keyboard layout handle

Keyboard layout file handle
Window event hook callback handle
Window station handle

Input context handle

Human interface device data handle

Device information set handle

Use

Output

DESKTOP Window handle that is a Desktop type
window

index Index value for object-handle.

Use the OBJTAB command to display all entries in the master object-
handle table created and maintained by CSRSS, or to obtain information
about a specific object or objects of a certain type. The master object-
handle table contains information for translating user object-handles
such as an hWnd or hCursor into the actual data that represents the
object.

If you use OBJTAB without parameters, Visual SoftICE lists the full
contents of the master object-handle table. If an object handle is
specified, just that object is listed. If an object-type-name is entered, all
objects in the master object-handle table of that type are listed.

The following information is displayed by the OBJTAB command:

Object Pointer to the object’s data.
Type Type of the object.
Id Object’s type ID.

Handle Win32 handle value for the object.

Owner CSRSS specific instance data for the process or thread that owns the
object.
Flags Object’s flags.

Visual SoftlICE Commands 139

Examples

The following is an abbreviated example using the OBJTAB command
with the -h flag set.

SI >OBJTAB - h

Count: 21

Id Type Description

0 FREE Free handl e

1 HWND W ndow handl e

2 HVENU Menu handl e

12 HH D Hurman I nterface Device Data handl e
13 HDEVI NFO Device Information set handl e

The following is an abbreviated example using the OBJTAB command
with a specified type.

SI >OBJTAB hi con

Count: 51

hj ect Type Id Handle Onner Descri ption
e14b8498 HCURSOR 3 10003 ffb8f 020 Cursor handl e
e14b8518 HCURSOR 3 10005 ffb8f 020 Cursor handl e
el4bf 9b0 HCURSOR 3 10007 ffb8f 020 Cursor handl e

140 Visual SoftICE Command Reference

The following is an abbreviated example using the OBJTAB command
without any parameters.

SI >OBJTAB

Count: 341

hj ect Type Id Handle Onner Description

00000000 FREE 0 10000 00000000 Free handl e

bc5dlba8 HMONITOR ¢ 10001 00000000 Display nonitor handle

elc4c758 HWND 1 10002 ffba9020 W ndow handl e

e14b8498 HCURSOR 3 10003 ffb8f 020 Cursor handle
The following example uses OBJTAB to enumerate all existing desktops in
the system.

S| >OBJTAB deskt op

Count: 2

hj ect Type 1d Handle Onner Descri ption

elc4c758 HWD 1 10002 ffba9020 W ndow handl e

eld7f4a0 HWD 1 1001c ffbc8020 W ndow handl e

See Also

OBJDIR

Visual SoftICE Commands

141

OPEN

Syntax

Use

Example

See Also

Opens a user or kernel crash dump file.

OPEN fil enane

filename Path and name of the core-dump or crash file you want to
explore.

Use the OPEN command to explore a core-dump or crash file. Assuming
the file is reasonable and accurate, opening a connection to it treats it as
a target where you can perform any standard read actions. This allows
you to walk-through and explore the file. Depending on the type of crash
dump, you will have access to different data and commands. A full kernel
dump gives the most access while a mini user-dump gives the least.

The following example opens a core-dump file as a target:

SI >OPEN d: \ menory. dnp
Connect ed to:

Nane : d:\nenory. dnp
Processor 1 A64-1tani um
St eppi ng 0

Processor Count: 2
Operating Sys. : Wndows XP-64 Ver. 5.1 Build 2600
Tar get Agent : Not avail able.

CLOSE, CONNECT, DISCONNECT, NETFIND, WCONNECT

142 Visual SoftICE Command Reference

Syntax

Use

Execute one program step.

P [RET]

RET Return. Step until a return or return from interrupt instruction is found.

The P command executes a logical program step. In assembly mode, one
instruction at the current pointer is executed unless the instruction is a
call, interrupt, loop, or repeated string instruction. In those cases, the
entire routine or iteration is completed before control is returned to
Visual SoftICE.

If RET is specified, Visual SoftICE will step until it finds a return or return
from interrupt instruction.

If the Register page is visible when Visual SoftICE stops, all registers that
have been altered since the P command was issued are highlighted. For
call instructions, the highlighted registers show what registers a
subroutine has not preserved.

In an unusually long procedure, there can be a noticeable delay when
using the P RET command, because Visual SoftICE is single-stepping
every instruction.

The P command, by default, is thread-specific. If the current Instruction
Pointer (IP) is executing in thread X, Visual SoftICE will not break until
the program step occurs in thread X. This prevents the case of Windows
NT process switching or thread switching during the program step
causing execution to stop in a different thread or process than the one
you were debugging.

While stepping, you can abort the active step by issuing the STOP
command, pressing the Stop toolbar button, or pressing Ctrl-Break. If
the step was issued from the command page, then the red Abort
Command button will abort it as well.

Note: Whether or not the target responds to the stop that the master issues
is dependent upon the state of the target.

Visual SoftlICE Commands 143

Example

The following example executes one program step:

SI >P

See Also
STOP, T

144 Visual SoftICE Command Reference

PACKET

Syntax

Use

Output

Examples

Display the contents of a network packet.

PACKET [address] [Iength]

address Address of the network packet.

length Length of the network packet.

Use the PACKET command to display the contents of a network packet.
Note: Currently, only Ethernet packets are supported.

The output of the PACKET command varies depending on the options
selected. See the example below.

The following example shows the output of the PACKET command.

SI >PACKET r 33

ETHERNET

Dest Addr o ffffoff ff ff . ff

Sour ceAddr : 00:dO: b7:ab: fb:9c

Type : 0806; ARP request/reply
ARP

HwAddr Type 1

Pr ot ocol Addr Type : 800

HwAddr Si ze 6

Protocol AddrSize : 4

Qper ati on 1

Sender HwAddr : 00:dO0: b7:ab: fb: 9¢c

Sender | pAddr
Tar get HwAddr

Target |p Address :

172.23.101. 42
00: 00: 00: 00: 00: 00
172. 23.96. 3

Visual SoftICE Commands

145

The following example shows the output of the PACKET command after
using the SET PACKETFORMAT command to change the format to
STRUCTURE.

S| >SET PACKETFORMAT STRUCTURE
S| >PACKET r 33

NDI S_PACKET
Addr ess : e00000008689e540
Physi cal Count : 0
Tot al Lengt h . 0
Head . e000000086bf db30
Tai | : e000000086bf db30
Pool : 00000000706f 6f 4c
Count . 0
Ndi sFl ags D2
Val i dCount s © no
Fl ags . 0;
QobDat aCf f set : 80
Reser vedO : e0000000869d2370
Reservedl .0
Reserved2 .0
Reserved3 0
NDI S_BUFFER
Addr ess : e000000086bf db30
Next : 0000000000000000
Si ze . 38
Fl ags : c; MDL_SOURCE_I S_NONPAGED POCOL| MDL_ALLOCATED FI XED_SI ZE
Process : 0000000000000000
MappedSyst enVa : e00000008689e630
St art Addr ess . e00000008689e000
Count . 2a
O f set : 630

See Also

SET PACKETFORMAT

146 Visual SoftICE Command Reference

PAGE

Syntax

Use

Display page table information.

PACE [address [L num pages]]

address The virtual address about which you want to know page table
information.

L num_pages The number of pages to display.

You can use the PAGE command to display the top-level page directories
or explore the page translation mapping for a particular address. If you
use the PAGE command without any parameters, Visual SoftICE displays
all the top level page entries. On x86 and AMDG64 this is usually one
entry. On 1A64 this is usually three entries.

Use the PAGE command with a single address to show the entire page
translation hierarchy, from top-most table entry to bottom-most table
entry, including the physical mapping of the virtual address entered. This
is generally two levels deep on x86, and can be up to four levels deep on
64-bit platforms.

Use the PAGE command with an address and the L num-pages parameter
to display the lowest level page translation hierarchy for each page
requested, walking num_pages from the specified address. When you
specify a number of addresses for decoding, Visual SoftiICE adds an
additional column (address) for easier interpretation of the results.

About Page Tables

On the x86 platform, a page directory usually contains 1024 4-byte
entries, where an entry specifies the location and attributes of a page
table that is used to map a range of memory related to the entry’s
position in the directory. Each entry represents the location and
attributes of a specific page within the memory range mapped by the
page table. An x86 processor page is 4KB in size, so a page table maps
4MB of memory (4KB/ page * 1024 entries), and the page directory maps
up to 4GB of memory (4MB/page table * 1024 entries).

NT 4.0 and Windows 2000 can use the 4 MB page feature of the Pentium/
Pentium Pro processors. NTOSKRNL, HAL, and all boot drivers are
mapped into a 4 MB page starting at 2 GB (80000000h).

Visual SoftlICE Commands 147

Output

The PAGE command output contains the following information:

Entry Indicates what translation table (level) the entry is (PXE,
PDPE, PDE, PDE-LARGE, or PTE).

Physical Physical address mapped to the entered virtual address.
This is only valid on the lowest translation level entry.

Data Actual contents of the translation table entry.

Physical Page (PPN) Start of the translation table the entry is in (the system's
physical page number).
Attributes Attributes of the page entry:
P/NP — Present or Not Present
D — Dirty
A — Accessed
S/U — Supervisor/User
R — Read Only
RW — Read-Write
R-EXE — Read and Execute (IA64 only)
RW-EXE — Read-Write and Execute (IA64 only)
EXE-PROMOTE — Execute/Promote (Ring 3 IA64)
G — Global (x86 and AMD64 only)
ED — Exception Deferred (IA64 only)

CACHE-(???) — Cacheable Memory (Cache-type in
parenthesis)

WTC — Write-Through Cache

WBC — Write-Back Cache

WC — Write Coalescing Cache (IA64 only)
NaTPage — IA64 Only Caching Mode

Example

The following example shows the PAGE command on an x86 machine.

S| >PAGE
Page Size: 0x1000 bytes

Entry Address Type

PDE 39000 (Kernel)

148 Visual SoftICE Command Reference

The following example shows the PAGE command on an 1A64 machine.

S| >PAGE
Page Size: 0x2000 bytes
Count: 3

Entry Address Type

PXE 7002000 (User)
PXE 0 (Sessi on)
PXE 7000000 (Kernel)

The following example shows the PAGE command on an AMD64
machine.

SI >PACGE
Page Size: 0x1000 bytes

Entry Address Type

PXE 374000 (d obal)

The following example shows the PAGE command specifying an address
on an x86 machine.

Sl >PACGE f9b1d480

Entry Physical Data Physi cal Page(PPN) Attributes
PDE 0 1016963 1016000 (1016) P ARWS
- PTE 31c4480 31c4121 31c4000 (31c4) PARSG

The following example shows the PAGE command specifying an address
on an 1A64 machine.

S| >PAGE e0000165e3chb71c0

Entry Physi cal Data Physi cal Page(PPN) Attributes

PDPE 0 1000000700e661 700e000 (700e) P A D RWEXE S CACHE- (WBC) ED
- PDE 0 10000007f c8661 7fc8000 (7fc8) P ADRWEXE S ED

--PTE 392d1c0 1000000392c221 392c000 (392c) P A R EXE S ED

Visual SoftlICE Commands 149

The following example shows the PAGE command specifying an address
on an AMD64 machine.

SI >PAGE fffffadfflce9edO

Entry Physi cal Data Physi cal Page(PPN) Attributes
PXE 0 2c00063 2c00000 (2c00) PARWS
- PDPE 0 3a73063 3a73000 (3a73) P ARWS
- - PDE 0 3c02163 3c02000 (3c02) P ARWS
---PTE 60f eed0 61300000060f e121 60f e000 (60fe) PARSG

The following example shows the PAGE command specifying an address
and number of pages on an x86 machine.

SI >PAGE f9b1d480 L 10

Addr ess Entry Physical Data Physi cal Page(PPN) Attributes
f9b1d480 PTE 31c4480 31c4121 31c4000 (31c4) PARSG
f9b1e480 PTE 31c5480 31c5121 31c5000 (31cbh) PARSG
f9b1f 480 PTE 31c6480 31c6963 31c6000 (31c6) PADRWSG
f9b2a480 PTE 3191480 3191963 3191000 (3191) PADRWSG
f9b2b480 PTE 3192480 3192121 3192000 (3192) PARSG
f9b2c480 PTE 319a480 319a963 319a000 (319a) PADRWSG

The following example shows the PAGE command specifying an address

and number of pages on an 1A64 machine.

S| >PAGE e0000165e3ch71c0 L 10

Addr ess Entry Physical Data Physi cal Page(PPN) Attributes
e0000165e3cb71c0 PTE 392d1c0 1000000392c221 392¢000 (392c) P A REXE S ED
e0000165e3ch91c0 PTE 38af 1c0 100000038ae221 38ae000 (38ae) P A REXE S ED
e0000165e3cbblc0 PTE 39b11c0 100000039b0221 39b0000 (39b0) P A REXE S ED
e0000165e3cd11c0 PTE 39471c0 10000003946661 3946000 (3946) P A D RWEXE S ED
e0000165e3cd31c0 PTE 38c91c0 69300000038c8221 38c8000 (38c8) P A REXE S ED
e0000165e3cd51c0 PTE 38chlcO 3f 900000038ca221 38ca000 (38ca) P A REXE S ED

150 Visual SoftICE Comman

d Reference

The following example shows the PAGE command specifying an address
and number of pages on an AMD64 machine.

S| >PAGE fffffadfflce9ed0 L 10

Addr ess

fffffadfflce9ed0
fffffadfflceaedO
fffffadfflcebed0

fffffadfflcf6edO
fffffadfflcf7ed0
fffffadfflcf8ed0

PTE
PTE
PTE

Physi ca

60f eed0
60f f ed0
6280ed0

6174ed0
6175ed0
6176ed0

61300000060f e121
64500000060f f 121
6280063

6174121
6175121
6176121

Physi ca

60f e000
60f f 000
6280000

6174000
6175000
6176000

Page(PPN) Attributes

(60f e)
(60f f)
(6280)

(6174)
(6175)
(6176)

Visual SoftICE Commands

151

PCI

Dump/Read/Write the configuration registers for a PCI device in the
system.

Syntax

Enumerate PCI Devices
PCl

Dump Details on Specific Device

PCl bus. devi ce. function

bus Bus number
device Device number
function Function number

Read LENGTH Bytes of a Device Configuration Space at
OFFSET

PCl bus.device.function [-b | -w | -d] [offset[L |length]]

bus Bus number
device Device number
function Function number
-b Byte format

-w Word format

-d D-word format
offset Function offset

L length Length of dump

152 Visual SoftICE Command Reference

Edit/Write LENGTH Bytes to a Device Configuration Space at

OFFSET
PCl -e bus.device.function [-b | -w | -d] [offset] data
-e Edit PCI data
bus Bus number
device Device number
function Function number
-b Byte format
-w Word format
-d DWORD format
offset Function offset
data Data to write to PCI device

Use
The PCI command acts on the registers for the PCI devices on the system.
Using the PCI command you can list all PCI devices on a system, dump
the registers, read the registers, or edit the data by writing a value to the
registers. Do not use this command on non-PClI systems. Many of the
entries are self-explanatory, but some are not. Consult the PCI
specification for more information about this output.
Examples
The following example illustrates the use of the PCI command to display
a list of the PCI devices:
SI >PCl
Bus Devi ce Function VendorID DevicelD Name
0 0 0 8086 7124 Host/ PCl Bridge Device
0 1 0 8086 7125 VGA PC Conpatible Display Controller
.1. . c 0 10b7 9200 Et hernet Network Controller

Visual SoftlICE Commands 153

The following example illustrates the use of the PCI command to read
details about a specific PCI device:

SI>PCl 0.1e.0

Bus 0
Devi ce . le
Function .0
Vendor | D . 8086
Devi cel D . 2418
Bl ST 0

The following example illustrates the use of the PCI command to dump
6f bytes of PCI config space in raw byte format starting at the offset of f:

SI>PCl 0.1e.0 f L 6f -b
0000000f: 00 00 01 00 00 OO OO OO OO OO OO 00 00 01 01 40

0000006f: 00 00 OO 00 40 00 00 OO 00 00 00 00 4b 4b 4b @ KKK

The following example illustrates the use of the PCI command to write
the data 01010101 in word format to the PCI device, starting at the offset
f:

SI>PCl -e 0.1e.0 -w f 01010101

154 Visual SoftICE Command Reference

PEEK

Read from physical memory.

Syntax
PEEK] si ze] address
size Value Description
b Byte
w Word
o DWORD
s Short Real
| Long Real
t 10-Byte Real
q QWORD
Note: Size defaults to b.
address Physical memory address.
Use
PEEK displays the byte, word, or DWORD at a given physical memory
location. PEEK is useful for reading memory-mapped I/O registers.
Example
The following example displays the dword at physical address FFO00000:
SI >PEEKD FFO00000
See Also

PHYS, POKE

Visual SoftlICE Commands 155

PHYS

Syntax

Use

Example

Display all virtual addresses that correspond to a physical address.

PHYS address

address Memory address that the CPU generates after a virtual address has
been translated by its paging unit. It is the address that appears on the
computer's BUS, and is important when dealing with memory-mapped
hardware devices such as video memory.

Windows uses CPU virtual addressing support to define a relationship
between virtual addresses, used by all system and user code, and physical
addresses that are used by the underlying hardware. In many cases a
physical address range can appear in more than one page table entry, and
therefore more than one virtual address range.

The PHYS command is specific to the current address context. It searches
the Page Tables and Page Directory associated with the current Visual
SoftICE address context.

Physical address a0000h is the start of VGA video memory. Video
memory often shows up in multiple virtual addresses in Windows. The
following example shows three different virtual addresses that
correspond to physical a0000h.

S| >PHYS a0000

000A0000
004A0000
80CA0000

156 Visual SoftICE Command Reference

PING

Check the current connection to the target.

Syntax
PI NG

Use
Use the PING command to check the current connection to the target
machine.

Example

The following example uses the PING command to check the current
connection to the target:

S| >PI NG
Target connection ok.
Connected to:

Nare . KLCS-1 A64
Processor . 1 AB4-1tanium
St eppi ng 0]

Processor Count: 1
Qperating Sys. : Wndows NT (64bit) Ver. 5.1 Build 2505
Tar get Agent . Connected (Active)

Visual SoftlICE Commands 157

POKE

Write to physical memory.

Syntax
POKE[si ze] address val ue
size Value Description
b Byte
w Word
d DWORD
s Short Real
| Long Real
t 10-Byte Real
q QWORD
Note: Size defaults to b.
address Physical memory address.
value Value to write to memory.
Use
POKE writes a byte, word, DWORD, or QWORD value to a given physical
memory location. POKE is useful for writing to memory-mapped 1/0
registers.
Example
The following example writes the DWORD value 0x12345678 to physical
address FFO00000:
SI >POKED FFO00000 12345678
See Also

PEEK, PHYS

158 Visual SoftICE Command Reference

PROCESS

Syntax

Use

Display summary information about any or all processes in the system.

PROCESS [[-Xx] [-0] [-m process-type | thread-1D

-X Display extended information for each process.
-0 Display a list of objects in the processes handle table.
-m Display information about the memory usage of a process.

process-type Process handle, process ID, or process name.

thread-ID Thread ID.

If you use the PROCESS command without any options, summary
information is presented for the process you specify or, if none is
specified, for all processes in the system. The information the memory
option (-m) provides is also included when you specify the extended
option (-x) for Windows NT. The memory information is provided for
convenience, because the amount of extended information displayed is
quite large.

For all process and thread times, as well as process memory information,
Visual SoftICE uses raw values from within the operating system data
structures without performing calculations to convert them into
standardized units.

The object option (-0) displays the object pointer, the object handle, and
the object type for every object in the processes object handle table.
Because object information is allocated from the system’s pageable pool,
the object’s type name will not be available if the page is not present. In
this case, question marks (???) are displayed.

Visual SoftlICE Commands 159

Output

For each process the following summary information is provided:

Process Process name.

KPEB Address of the Kernel Process Environment Block.

PID Process ID.

Threads Number of threads owned by the process.

Priority Base priority of the process.

UserTime Relative amount of time the process spent executing code at the
user level.

KrnlTime Relative amount of time the process spent executing code at the
kernel level.

State Current status of the process:

« Running: The process is currently running.
< Ready: The process is in a ready to run state.
< Idle: The process is inactive.

< Swapped: The process is inactive, and its address space has been
deleted.

< Transition: The process is currently between states.
« Terminating: The process is terminating.

Example

The following example uses the extended option (-x) to display extended
information about a specific process, csrss:

SI >PRCCESS - x csrss

KPEB : e000000086712e60

Handl eCount ;. 10b

160 Visual SoftICE Command Reference

The following example uses the objects option (-0) to display objects for a

process, fi b64_2:

S| >PROCESS -0 fib64_2

Handl e I nheritable ObjHeader hj ect Type Nane

0 yes e000000086570990 e0000000865709c0 Event

4 yes e00000008666ddf 0 e00000008666de20 Event

20 yes e000000086d6ff 98 e000000086d6ffc8 Mutant Nl sCacheMut ant

24 no 0000000000000000 0000000000000030 None Empty sl ot
See Also

ADDR, IMAGE, THREAD

Visual SoftICE Commands

161

QUERY (ADDRESSMAP)

Display the virtual address map of a process.

Syntax
QUERY [[-a] address] | [process-type]
-a Shows the mapping for a specific linear address within every
context where it is valid.
address Linear address to query.
process-type Expression that can be interpreted as a process.
Use
The QUERY command displays a map of the virtual address space for a
single process, or the mapping for a specific linear address. If no
parameter is specified, QUERY displays the map of the current process. If
a process parameter is specified, QUERY displays information about each
address range in the process.
Output

The QUERY command displays the following information:

Context Address context.

Address Start and end address of the linear range.

Range

Flags Flags from the node structure.

MMCI Pointer to the memory management structure.

PTE Structure that contains the ProtoPTEs for the address range.

Name Additional information about the range. This includes the following:

 Memory mapped files will show the name of the mapped file.
= Executable modules will show the file name of the DLL or EXE.
« Stacks will be displayed as (thread ID).

« Thread information blocks will be displayed as TIB (thread ID).

< Any address that the WHAT command can identify might also
appear.

162 Visual SoftICE Command Reference

Example

The following example uses the QUERY command to map a specific

linear address for Windows NT.

SI >QUERY -a 77f50000

Count: 14
Cont ext

Addr ess Range

System

SNBS. exe
CSrss. exe

wi nl ogon. exe
Servi ces. exe
| sass. exe
svchost . exe
svchost . exe
svchost . exe
svchost . exe
spool sv. exe
expl orer. exe
si servi ce. exe
| ogon. scr

77f 50000- 77f f 8000
77f 50000- 77f f 8000
77f 50000- 77f f 8000
77f 50000- 77f f 8000
77f 50000- 77f f 8000
77f 50000- 77f f 8000
77f 50000- 77f f 8000
77f 50000- 77f f 8000
77f 50000- 77f f 8000
77f 50000- 77f f 8000
77f 50000- 77f f 8000
77f 50000- 77f f 8000
77f 50000- 77f f 8000
77f 50000- 77f f 8000

07100005
07100005
07100005
07100005
07100005
07100005
07100005
07100005
07100005
07100005
07100005
07100005
07100005
07100005

80ad8008
80ad8008
80ad8008
80ad8008
80ad8008
80ad8008
80ad8008
80ad8008
80ad8008
80ad8008
80ad8008
80ad8008
80ad8008
80ad8008

e13585e0 ntdll.dll
€13585e0 ntdll.dll
e€13585e0 ntdll.dll
el13585e0 ntdll.dl
el13585e0 ntdll.dl
el13585e0 ntdll.dl
€13585e0 ntdll.dll
e13585e0 ntdll.dll
€13585e0 ntdll.dll
el3585e0 ntdll.dl
el13585e0 ntdll.dl
el13585e0 ntdll.dl
e13585e0 ntdll.dll
€13585e0 ntdll.dll

The following example uses the QUERY command to list the address map
of the expl orer process for Windows NT.

SI >QUERY expl orer
Addr ess Range

00010000- 00010000
00020000- 00020000
00030000- 0006f 000
00070000- 00070000
00080000- 0017f 000

7f f dc000- 7f f dc000
7f f de000- 7f f de000O
7f f df 000- 7f f df 000

c4000001
c4000001
8400000f
01400000
840000b1

€c6400001
€6400001
c6400001

809e5540 e10e5150

Process Heap

Ti b: 338
Ti b: 13c
UPEB (20c)

Visual SoftICE Commands

163

QUIT

Syntax

Use

Example

See Also

Close the current command page or force an exit of the Visual SoftICE
master application.

QUIT [*]

The QUIT command closes the current command page, or forces an exit
of the Visual SoftICE master application.

The following command causes the current command page to close:

SI>QUIT

The following command causes the Visual SoftICE master application to
exit:

SISQUT *

EXIT

164 Visual SoftICE Command Reference

Display or change the register values.

Syntax
R [-c processor] [-f] [-s] [-d] [register-name [=value]] |
[register-group-nane] | [all]
-C processor Specify the CPU number.
-f Display the register fields.
-S Display symbol information for the value stored in the
register.
-d Display descriptive text about the register or register
field.
register-name Display the named register.
value Set the register to the value indicated.
register-group-name Display the registers for the specified register group.
all Display all the registers.
Use

If register-name is supplied without a value, Visual SoftICE displays the
register and its current value.

If both register-name and value are supplied, the specified register's
contents are set to the value indicated.

If the CPU number is specified using the -c parameter, the Visual SoftICE
displays the registers on that CPU.

If the -s parameter is used, Visual SoftICE displays symbol information
about the value stored in the register. For example, a register could
contain an address to jump to, and supplying -s would translate that
value into something like a function name or image!section+offset
location.

The -f parameter displays the register fields.

The -d parameter displays descriptive text about the register or register
fields. Since most people don't remember what all the fields of a given
register are, the -d parameter can be very useful. All register and field
values are displayed in hex.

Visual SoftlICE Commands 165

For more information on register names and groups, refer to
Understanding Register Names and Groups in the on-line help.

Example

The following example sets the r 14 register equal to 200h:

SI >R r 14=200
r 14 0000000000000200

The following example displays the registers in the appl i cati on register

group:
SI >R application
ar.kr0 (ar0) 00000ffffc000000 ar.krl (arl) 0000000000000000
ar.pfs (ar64) 0000000000000204 ar.lc (ar65) 0000000000000000

ar.ec (ar66) 0000000000000000

The following example displays the registers for CPU O:

SI>R -c0
i p e0000165dc60e850 slot O
cf m 8000000000000000 zero (r0) 0000000000000000

ar. bsp (arl17) e0000000819f 6288 ar.bspstore (ar18) e0000000819f 6230
ar.rsc (ar16) 0000000000580003 ar.rnat (ar19) e0000165e47e40aa

The following example displays the FPSR register fields:

SI>R -f cfm
cf m 0000000000000592 cfmsof 12 (18) cfmsol b (11)
cfmsor 0O cfmrrb.gr O cfmrrb.fp O
cfmrrb.pr 0
The following example displays the symbol information for the | P
register:
SI>R-s ip

i p 00000000004022ae fib32_2!fib_func

166 Visual SoftICE Command Reference

The following example displays descriptive text for the | P register:

SI>R-d ip
i p 00000000004022ae instruction pointer

See Also

MSR, RG, SET FLOATREGFORMAT, SET REGNAME, Understanding
Register Names and Groups in the on-line help

Visual SoftlICE Commands 167

REBOOT

Syntax

Use

Example

See Also

Reboot the target machine you are currently connected to.
Note: The target must be running for this command to succeed.

REBCOT

Use the REBOOT command to reboot the currently connected target
machine.

The following example reboots the target machine:

S| >REBCOT

HBOOT, SHUTDOWN, STOP

168 Visual SoftICE Command Reference

RELOAD

Syntax

Use

Example

See Also

Reload symbols for an image file.

RELOAD [i nage- nane]

image-name Name of the image for which you want to reload symbols.

Use the RELOAD command to reload symbols for an image.

The following example reloads symbols for the nypr ogr am exe image:

SI >RELOAD nypr ogr am exe

ADDSYM, DELSYM, FILE, GETEXP, LOAD, SET SYMSRVSEARCH, SET
SYMTABLEAUTOLOAD, UNLOAD

Visual SoftICE Commands

169

RG

Syntax

Use

Example

See Also

Display the register group names on the target.

Enter RG to list the register group names available on the target. For more
information on register names and groups, refer to Understanding
Register Names and Groups in the on-line help.

The following example shows how the RG command displays the register
group names on the target:

S| >RG
17 register groups

state
genera

| ocal

fl oat
rfloat
application
pred

rpred
branch
cpui d
perfdata
system

br eakpoi nt
perfconfig
regi on
protection
transl ation

MSR, R, SET REGNAME, Understanding Register Names and Groups in
the on-line help

170 Visual SoftICE Command Reference

Syntax

Use

Example

Search memory for data.

S [address L length data-list]

address Starting address for search.
L length Length in bytes.
data-list List of bytes or quoted strings separated by commas or spaces. A

quoted string can be enclosed with single or double quotes.

Memory is searched for a series of bytes or characters that matches the
data-list. The search begins at the specified address and continues for the
length specified. When a match is found, the memory at that address is
displayed.

To search for subsequent occurrences of the data-list, use the S command
with no parameters. The search will continue from the address where the
data-list was last found, until it finds another occurrence of data-list or
the length is exhausted.

The S command ignores pages that are marked not present. This makes it
possible to search large areas of address space using the flat data selector
(x86/Windows NT: 10h).

The following example searches for the string 'Hel | o' followed by the
bytes 12h and 34h starting at offset ES: DI +10 for a length of ECX bytes.

SI>S ES: D +10 L ECX 'Hell o', 12, 34

The following example searches the entire 4GB virtual address range for
'string'.

SI>S 30:0 L ffffffff 'string'

Visual SoftlICE Commands 171

SAVE

Syntax

Use

Example

See Also

Save names and macros.

SAVE [fil enane]

filename Name of the file to contain your saved names and macros.

Use the SAVE command to save your user-defined names and macros to a
file so you can load them during your next debug session. You can load
saved names and macros like any other script file.

The following example saves the user-defined names and macros to a file:

SI >SAVE nynanes. t xt

@, SCRIPT, SET LOG

172 Visual SoftICE Command Reference

SCRIPT

Syntax

Use

Example

See Also

Load and execute a script file on the target.

SCRI PT [fil e-nane]

file-name The file name of the script you want to load and execute.

Use the SCRIPT command to load and execute a script file on the target.

The following example loads and executes MyScri pt . t xt on the target:

SI >SCRI PT MyScri pt. t xt

@, SAVE, SET LOG, SET SCRIPTECHO, SET SCRIPTPATH, SET
SCRIPTSTOPONERROR, SLEEP

Visual SoftlICE Commands 173

SET

Display the state of all console and execution flags.

Syntax
SET
Use
Using SET without parameters displays a list of all the console and
execution flags and their current settings.
Example
The following example displays the current console and execution
settings:
SI >SET
Name St at us
ADDRESSFORNMVAT SHORT (trins enpty high 32bits of 64bit addr)
CODE of f
UPPERCASE of f
WARNL EVEL LOW
See Also

SET ADDRESSFORMAT, SET CACHE, SET DBGMSGDEBOUNCETIME, SET
DIALECT, SET EE_EVAL_ORDER, SET EXEPATH, SET EXPORTPATH, SET
FLOATREGFORMAT, SET GLOBALBREAK, SET IMAGEMATCH, SET
KDEXTPATH, SET LOG, SET MSGLEVEL, SET PACKETFORMAT, SET
RADIX, SET REGNAME, SET SCRIPTECHO, SET SCRIPTPATH, SET
SCRIPTSTOPONERROR, SET SRCPATH, SET STEPMODE, SET
STICKYCONTEXT, SET STOPONCMD, SET SYMPATH, SET
SYMSRVSEARCH, SET SYMTABLEAUTOLOAD, SET THREADP, SET
UPPERCASE, SET WARNLEVEL

174 Visual SoftICE Command Reference

SET ADDRESSFORMAT

Select the format with which to display addresses.

Syntax
SET ADDRESSFORMAT [long | short | backquote]

long Display all digits of an address (16 digits for a 64-bit address).
short Trim the empty high 32-bits of a 64-bit address when appropriate.

backquote Separate the high and low 32-bits of a 64-bit address with a back
quote character, as in KD or Windbg.

Note: None of these options affects the display for 32-bit addresses, they
are always 8 digits.

Use

Use the SET ADDRESSFORMAT command to configure the way Visual
SoftICE displays addresses.

To view the current ADDRESSFORMAT setting, use the SET
ADDRESSFORMAT command without any parameters.

Example

The following example selects the short address format:

S| >SET ADDRESSFORVMAT short
ADDRESSFORMAT = SHORT (trins enpty high 32bits of 64bit addr)

S| >| MAGE -u

Count: 15
Address Size Name Ful | Nare
01000000 2c000 not epad C. \ W NDOWB\ syst enB2\ not epad. exe
47350000 98000 UxThene C: \ W NDOWB\ syst enB2\ UxThene. dI |

77c80000 1e6000 kernel 32 C:\ W NDOAB\ syst enB2\ ker nel 32. dl |
77e70000 18a000 ntdll C.\ W NDOWA\ Syst enB2\ ntdl | . dl |

Visual SoftlICE Commands 175

The following example selects the long address format:

S| >SET ADDRESSFORMAT | ong
ADDRESSFORMAT = LONG (shows all digits of 64bit addr)

Sl > MAGE -u
Count: 15
Addr ess Si ze Nane Ful | Name
0000000001000000 2c000 not epad C: \ W NDONR\ syst enB82\ not epad. exe
0000000047350000 98000 UxThene C: \ W NDOWB\ syst enB2\ UxThene. dl |

0000000077c80000 1e6000 kernel 32 C:\ W NDOWB\ syst enB2\ ker nel 32. dl |
0000000077e70000 18a000 ntdl | C: \ W NDOWB\ Syst enB2\ ntdl | . dl |

The following example selects the back quote separated address format:

S| >SET ADDRESSFORMAT backquot e
ADDRESSFORMAT = BACKQUOTE (separates high/low 32bits of 64bit addr with)
SI > MAGE -u

Count: 15
Addr ess Si ze Narme Ful | Nane
00000000° 01000000 2c000 not epad C:\ W NDOWB\ syst emB2\ not epad. exe
00000000° 47350000 98000 UxThere C. \ W NDOWB\ syst enB2\ UxThene. dl |
00000000° 77¢80000 1e6000 kernel 32 C.\ W NDOWB\ syst enB2\ ker nel 32. dl |
00000000° 7770000 18a000 nt dl | C.\ W NDOWB\ Syst enB2\ ntdl | . dl |
See Also
SET

176 Visual SoftICE Command Reference

SET AUTOCOPYSCRIPT

Syntax

Use

Set the AUTOCORPY script to run when a target requests it at boot time.

SET AUTOCOPYSCRI PT [fi |l enane]

filename The name of the AUTOCOPY script file for the target to run.

Use the SET AUTOCOPYSCRIPT command to configure a script to run
when the target requests it at boot time. The script should have only
FPUT commands in it, and the target must be configured for AUTOCOPY
at boot time. To configure the target for AUTOCOPY at boot time, use the
DSConfig utility.

Note: The FPUT command has special behavior when used in an
AUTOCORPY script. During the AUTOCOPY phase, the copy is being
done by a driver doing kernel mode APIs, and not a Ring 3 user
application. The format for hard drive locations during the
AUTOCOPY phase is:

\??\Drive-Letter:\Path\Fil enane. ext

Where the \??\ is not optional. Without the \??\ the FPUT
command will fail.

You can specify a full path name as part of the script filename, or specify
only the filename if the script exists in the path defined by the SET
SCRIPTPATH command.

When a target configured for AUTOCOPY boots, it halts the loading of
drivers shortly after the filesystem is available and signals the master. The
master then runs the designated AUTOCOPY script and signals the target
to continue with a normal operating system boot.

This process is intended to allow you to put new files onto the target to
be used by the boot process that is underway, and it is done early enough
in the boot sequence to support such things as replacement video drivers.

To view the current AUTOCOPYSCRIPT setting, use the SET
AUTOCOPYSCRIPT command without any parameters.

Visual SoftlICE Commands 177

Example

The following example sets t ar get st art up. t xt as the Auto Copy
script. The file t ar get st art up. t xt exists in the defined script path.

SI >SET AUTOCOPYSCRI PT targetstartup.txt
AUTOCOPYSCRI PT = targetstartup. txt

The following example shows a typical AUTOCOPY script.

FPUT "e:\fs\ext2fs\obj chk_wxp_x86\i 386\ ext 2fs.sys" \??\d:\w ndows\ systenB2\dri ver s\ ext 2f s. sys

See Also
FPUT, SET, SET SCRIPTPATH

178 Visual SoftICE Command Reference

SET CACHE

Syntax

Use

Example

See Also

Set the size of the cache in KB.

SET CACHE [si ze]

size Cache size in KB.

Use the SET CACHE command to set the Visual SoftlCE buffer size to
cache the virtual memory read.

To view the current CACHE setting, use the SET CACHE command
without any parameters.

The following example sets the cache to 1000 KB:

SI >SET CACHE 1000
CACHE = 1000

SET

Visual SoftICE Commands

179

SET DBGMSGDEBOUNCETIME

Syntax

Use

Example

See Also

Control the responsiveness of the Ul to Debug Message notifications.

SET DBGVSGDEBOUNCETI ME val ue

value Number of milliseconds.

Use the SET DBGMSGDEBOUNCETIME command to control the Ul's
responsiveness by managing how long the Master will append multiple
debug messages received in a row (debouncing) prior to sending a single
notification to the Ul with all the appended messages. The default setting
is 50 milliseconds, which has been found to be optimal for most cases.
Assigning a value of 0 effectively disables this feature and every debug
message received will be immediately distributed to the UlI.

To view the current DBGMSGDEBOUNCETIME setting, use the SET
DBGMSGDEBOUNCETIME command without any parameters.

The following example sets the debounce time to 45 milliseconds:

S| >SET DBGVBGDEBOUNCETI ME 2d
DBGVSCDEBOUNCETI ME = 2d (45) msecs

SET

180 Visual SoftICE Command Reference

SET DIALECT

Set the input command dialect.

Syntax
SET DI ALECT [sic | kd]
sic Enable SoftICE Classic command dialect (default).
kd Enable KD command dialect.
Use
Use the SET DIALECT command to indicate whether you want SoftICE
Classic or KD input dialect. After executing the command, the display
prompt displays the appropriate text (SIC or KD) to indicate which
dialect you have configured.
To view the current DIALECT setting, use the SET DIALECT command
without any parameters.
Example
The following example enables SoftICE Classic dialect:
SI >SET DI ALECT sic
DI ALECT = sic
The following example enables KD dialect:
SI >SET DI ALECT kd
DI ALECT = kd
See Also
SET

Visual SoftlICE Commands 181

SET EE_EVAL_ORDER

Syntax

Use

Example

Select the order of tests performed by the expression evaluator during the
parse stage.

SET EE_EVAL_ORDER [S R D N|

S Symbols

R Registers

D Datums

N Numerics (radix rules still apply)

Use the SET EE_EVAL_ORDER command to set the order of tests
performed by the expression evaluator during the parse stage. This
command takes a four-letter character string comprised of the letters
SRDN as input, where you decide the order of evaluation tests by
changing the order of the four letters. The default order is SRDN.

To view the current EE_EVAL_ORDER setting, use the SET
EE_EVAL_ORDER command without any parameters.

The following example evaluates "a" with the default testing order of
SRDN:

Sl >? a

Visual SoftICE first searches the current symbol table for a symbol with
the name "a". If it is not found, it goes on to search the processor's
register set for a register, or register alias, named "a". If it is still not found,
it goes on to search system datums for a match. Finally, if it fails in the
first three tests, Visual SoftICE evaluates "a" as a number. If the radix is set
to hex, as is default, then the evaluation comes back as a number with
the decimal value of 10.

If the evaluation order is set to NSRD, Visual SoftICE first tries to evaluate

a" as a number. Again, if the radix is set to hex, then the evaluation
comes back as a number with the decimal value of 10.

182 Visual SoftICE Command Reference

See Also
2, EVAL, SET

Visual SoftlICE Commands 183

SET EE_IMPL_DEREF

Syntax

Use

Select the expression evaluator's behavior regarding evaluation of
expressions containing symbols that are pointers.

SET EE_I MPL_DEREF [on | off]

on Enable expression evaluator dereferencing.

off Disable expression evaluator dereferencing.

Use the SET EE_IMPL_DEREF command to control the expression
evaluator's behavior regarding dereferencing. If you have set
EE_IMPL_DEREF to on, and the expression evaluator encounters an
expression containing a symbol that is a pointer, it will use the value it
points to for evaluation. If you have set EE_IMPL_DEREF to off, and the
expression evaluator encounters an expression containing a symbol that
is a pointer, it will use the address of the pointer for evaluation.

To view the current EE_IMPL_DEREF setting, use the SET
EE_IMPL_DEREF command without any parameters.

184 Visual SoftICE Command Reference

Example

The following example enables expression evaluator dereferencing,
evaluates an expression containing a symbol that is a pointer, then
disables expression evaluator dereferencing, and re-evaluates the
expression:

SI >SET EE_| MPL_DEREF on

EE | MPL_DEREF = on

SI>? a

=>> 00000007 (7) "." 0000 0111

i nt

SI>? &a

=>> 0012f ed4 (1244884) "(p." 0000 0000 0001 0010 1111 1110 1101 0100
int*

S| >SET EE | MPL_DEREF of f

EE | MPL_DEREF = of f

SI>? a

=>> 0012fed4 (1244884) "Cp." 0000 0000 0001 0010 1111 1110 1101 0100
i nt

SI>? *a

=>> 00000007 (7) "." 0000 0111
i nt

See Also
2, EVAL, SET

Visual SoftlICE Commands 185

SET EXEPATH

Syntax

Use

Example

See Also

Set or add a search path for image files.

SET EXEPATH [-a] search-path

-a Append an image source search path to the current search path.

search-path The image source search path.

Use the SET EXEPATH command to set or add an image source search
path. Using the -a parameter appends a new image path to the existing
path. If you do not use the -a parameter, SET EXEPATH will override the
previous path. SET EXEPATH only accepts valid (existing) paths. Trying
to set EXEPATH to an invalid path value results in the attempt being
ignored, and the value of EXEPATH is reset to null, unless you used the -a
parameter to preserve the previous setting.

Using ellipses (...) in the path name indicates all subdirectories of the
specified directory path. For example, C:\ | MAGES\ . . . indicates all
subdirectories of C. \ | MAGES.

To view the paths that are currently set for the image source, use the SET
EXEPATH command without any parameters.

The following example sets c: \ nyi mages as the image source path:

SI >SET EXEPATH c:\ nyi mages

EXEPATH = c:\ nyi nages

The following example adds c: \ wi nnt to the image source path:

SI >SET EXEPATH -a c:\w nnt
EXEPATH = c:\ nyi mages; c: \ wi nnt

SET, SET EXPORTPATH, SET KDEXTPATH, SET SCRIPTPATH, SET
SRCPATH, SET SYMPATH

186 Visual SoftICE Command Reference

SET EXPORTPATH

Syntax

Use

Examples

Set or add a file search path to the location of exports.

SET EXPORTPATH sear ch-path

search-path The file system search path.

The SET EXPORTPATH command sets a file system search path for
exports. SET EXPORTPATH only accepts valid (existing) paths. Trying to
set EXPORTPATH to an invalid path value results in the attempt being
ignored, and the value of EXPORTPATH is reset to null.

Using ellipses (...) in the path name indicates all subdirectories of the
specified directory path. For example, C:\ EXPORTS\ . . . indicates all
subdirectories of C: \ EXPORTS. Any directory named by SET EXPORTPATH
must exist, or the command will fail.

Use SET EXPORTPATH in conjunction with the ADDEXP command to set
a destination directory on the master for a local cache of export
information extracted from the target. After setting the export path, issue
the ADDEXP command to retrieve exports from the target and place
them in the local cache. Once exports are stored in the local cache, Visual
SoftICE will automatically load them anytime symbols are not found.

To view the path that is currently set for exports, use the SET
EXPORTPATH command without any parameters.

The following example sets c: \ nyexport s as the file system search path
for exports:

SI >SET EXPORTPATH c: \ nyexports
EXPORTPATH = c:\ myexports

The following example sets c: \ nyexport s and all its subdirectories as the
file system search path for exports:

SI >SET EXPORTPATH c: \ nyexports\. ..
EXPORTPATH = c:\ myexports. ..

Visual SoftlICE Commands 187

See Also

GETEXP, SET, SET EXEPATH, SET KDEXTPATH, SET SCRIPTPATH, SET
SRCPATH, SET SYMPATH

188 Visual SoftICE Command Reference

SET FLOATREGFORMAT

Syntax

Use

Example

See Also

Enable or disable formatting floating-point registers.

SET FLOATREGFORMAT [on | off]

on Enable formatting FP registers.

off Disable formatting FP registers.

Use the SET FLOATREGFORMAT to enable or disable the formatting of FP
registers.

To view the current setting for the floating point register format, use the
SET FLOATREGFORMAT command without any parameters.

The following example enables formatting FP registers:

SI >SET FLOATREGFORVAT on
FLOATREGFORVAT = on

R, SET, SET REGNAME

Visual SoftlICE Commands 189

SET GLOBALBREAK

Syntax

Use

Example

See Also

Set the mode for image breakpoints.

SET GLOBALBREAK [l oad | off]

load Set the mode to break on loading an image file.

off Disable the option.

Use the SET GLOBALBREAK command to control if Visual SoftICE breaks
on loading of image files. Selecting off disables the option.

To view the current GLOBALBREAK setting, use the SET GLOBALBREAK
command without any parameters.

The following example configures Visual SoftICE to break when an image
loads:

S| >SET GLOBALBREAK | oad

GLOBALBREAK = Load

BC, BD, BE, BL, BMSG, BPINT, BPI1O, BPLOAD, BPM, BPR, BPX, BSTAT,
EXEC, KILL, SET, SVCSTART, SVCSTOP

190 Visual SoftICE Command Reference

SET IMAGEMATCH

Syntax

Use

Example

See Also

Configure the way the symbol engine and the target attempt to match
symbolic data to the actual running image (module) on the target.

SET | MAGEMATCH [exact | best]

exact Symbol data will only be used if it exactly matches the image in question.

best Symbol data will be used if it is a close match to the image in question.

Use the SET IMAGEMATCH command to configure the way the symbol
engine and the target attempt to match symbolic data (. dbg, . pdb, or
image header information) to the actual running image (module) on the
target. Selecting exact matching means that symbol data will only be used
if it exactly matches the image in question. Selecting best matching
allows for the symbol data to be used if it is a close match to the image in
question. Since there are times that useful symbols are available but
might differ from the target image by timestamp or version, the best
matching setting is the default setting.

To view the current IMAGEMATCH setting, use the SET IMAGEMATCH
command without any parameters.

The following example configures image matching for exact matches
only:

SI >SET | MAGEMATCH exact
| MAGEMATCH = Exact

The following example configures image matching for the best match:

SI >SET | MAGEMATCH best
| MAGEMATCH = Best

SET

Visual SoftlICE Commands 191

SET KDEXTPATH

Syntax

Use

Examples

Set or add a file search path to find KD extensions.

SET KDEXTPATH [-a] search-path

-a Append a search path to the current KD extension path.

search-path The file system search path.

Use the SET KDEXTPATH command to set a file system search path for
KD extensions. Using the -a parameter appends a new KD extension path
to the existing path. If you do not use the -a parameter, SET KDEXTPATH
will override the previous path. SET KDEXTPATH only accepts valid
(existing) paths. Trying to set KDEXTPATH to an invalid path value
results in the attempt being ignored, and the value of KDEXTPATH is
reset to null, unless you used the -a parameter to preserve the previous
setting.

Using ellipses (...) in the path name indicates all subdirectories of the
specified directory path. For example, C: \ KDEXT\ . . . indicates all
subdirectories of C: \ KDEXT.

To view the paths that are currently set for KD extensions, use the SET
KDEXTPATH command without any parameters.

The following example sets c: \ nykdext as the file system search path for
KD extensions:

S| >SET KDEXTPATH c: \ nykdext
KDEXTPATH = c: \ mykdext

192 Visual SoftICE Command Reference

The following example sets c: \ nykdext and all its subdirectories as the
file system search path for KD extensions:

SI >SET KDEXTPATH c: \ nykdext\. ..
KDEXTPATH = c: \ nykdext. ..

See Also

SET, SET EXEPATH, SET EXPORTPATH, SET SCRIPTPATH, SET SRCPATH,
SET SYMPATH

Visual SoftlICE Commands 193

SET MSGLEVEL

Syntax

Use

Example

See Also

Set the message filtering level to display the target and execution
messages.

SET MSGLEVEL [on | off | verbose]
on Show breakpoint, stepping, and critical event messages. This is the
default setting.
off Only show critical event messages.

verbose Show all events.

Use the SET MSGLEVEL command to control the target and execution
messages. Turning on the event messaging with either SET MSGLEVEL on
or SET MSGLEVEL ver bose displays event messages from the target in the
window where you executed the SET MSGLEVEL command.

A critical event is an event requiring your immediate attention, such as a
fault, bugcheck, or shutdown.

The default state for event messages is on.

To view the current MSGLEVEL setting, use the SET MSGLEVEL
command without any parameters.

The following example reports only critical event messages from the
target:

S| >SET MSGLEVEL of f
MSGLEVEL = of f

SET

194 Visual SoftICE Command Reference

SET PACKETFORMAT
Set the format of the PACKET command.

Syntax

SET PACKETFORMAT [RAW LI NE | RAW DETAIL | STANDARD LI NE |
STANDARD DETAIL | STRUCTURE]

RAW_LINE Displays one hexadecimal line per packet.

RAW_DETAIL Displays detailed hexadecimal packet information.
STANDARD_LINE Displays one formatted/interpreted line per packet.
STANDARD_DETAIL Displays detailed formatted/interpreted packet information.

STRUCTURE Produces a structured element dump.

Use

Use the SET PACKETFORMAT command to set the format of the PACKET
command. The default packet format is STANDARD_DETAIL.

To view the current PACKETFORMAT setting, use the SET
PACKETFORMAT command without any parameters.

Example

The following example shows the SET PACKETFORMAT command
setting the format to RAW_DETAIL.

S| >SET PACKETFORMAT RAW DETAI L
PACKETFORVAT = RAW DETAI L

See Also
PACKET, SET

Visual SoftlICE Commands 195

SET RADIX

Syntax

Use

Example

See Also

Set the radix of data for input and output.
Note: Only decimal and hexadecimal are currently supported.

SET RADI X [DEC | HEX]

DEC Enable decimal data.

HEX Enable hexadecimal data.

Use the SET RADIX command to control the input interpretation and
output formatting of anything other than addresses, which are always
hexadecimal.

To view the current RADIX setting, use the SET RADIX command
without any parameters.

The following example sets the radix of data to hexadecimal format:

SI >SET RADI X HEX
RADI X = HEX

SET

196 Visual SoftICE Command Reference

SET REGNAME

Syntax

Use

Example

See Also

Select a register name set.

SET REGNAME [asm | hw | o0s]

asm Common assembler/disassembler register names.
hw Hardware (defined by CPU manufacturer) register names.

0s Operating system register names.

Use the SET REGNAME to select a register name set to display. ASM is the
default setting.

To view the current REGNAME setting, use the SET REGNAME command
without any parameters.

The following example selects operating system register names:

SI >SET REGNAME o0s
REGNAME = OS (regi ster nanes as used by the 0S)

R, RG, SET, Understanding Register Names and Groups in the on-line
help

Visual SoftlICE Commands 197

SET SCRIPTECHO

Echo script commands to the current Command page.

Syntax

SET SCRI PTECHO [on | of f]

on Enable echoing script commands to the console (default).

off Disable echoing script commands to the console.

Use

Use the SET SCRIPTECHO command to configure the target to echo
script commands to the current console.

To view the current SCRIPTECHO setting, use the SET SCRIPTECHO
command without any parameters.

Example

The following example enables script echoing:

SI >SET SCRI PTECHO on
SCRI PTECHO = on

The following example disables script echoing:

S| >SET SCRI PTECHO of f
SCRI PTECHO = of f

See Also
SET

198 Visual SoftICE Command Reference

SET SCRIPTPATH

Syntax

Use

Examples

Set a file system search path for scripts.

SET SCRI PTPATH [-a] search-path

-a Append a search path to the current script path.

search-path The file system search path.

Use the SET SCRIPTPATH command to set a file system search path for
scripts. If you have set a scriptpath and enter a script filename that
cannot be found or has no path, Visual SoftICE will search in the path
designated by filespec for a file of the same name and attempt to execute
that script. SET SCRIPTPATH only accepts valid (existing) paths. Trying to
set SCRIPTPATH to an invalid path value results in the attempt being
ignored, and the value of SCRIPTPATH is reset to null, unless you used
the -a parameter to preserve the previous setting.

Using ellipses (...) in the path name indicates all subdirectories of the
specified directory path. For example, C:\ SCRI PTS\ . . . indicates all
subdirectories of C: \ SCRI PTS.

To view the paths that are currently set for scripts, use the SET
SCRIPTPATH command without any parameters.

The following example sets c: \ nt scri pt s as the file system search path
for scripts:

SI >SET SCRI PTPATH c:\ntscripts
SCRI PTPATH = c:\ntscripts

Visual SoftlICE Commands 199

The following example sets c: \ nyscri pt s and all its subdirectories as the
file system search path for scripts:

SI >SET SCRI PTPATH c: \ nyscripts\...
SCRI PTPATH = c:\nyscripts...

See Also

SET, SET EXEPATH, SET EXPORTPATH, SET KDEXTPATH, SET SRCPATH,
SET SYMPATH

200 Visual SoftICE Command Reference

SET SCRIPTSTOPONERROR

Syntax

Use

Example

See Also

Controls whether scripts automatically stop execution when an error
occurs.

SET SCRI PTSTOPONERROR [on | of f]

on Enables the option (default).

off Disables the option.

Use the SET SCRIPTSTOPONERROR command to control whether scripts
will automatically stop execution when an error occurs. The default for
this option is on.

To view the current SCRIPTSTOPONERROR setting, use the SET
SCRIPTSTOPONERROR command without any parameters.

The following example disables the option:

SI >SET SCRI PTSTOPONERROR of f
SCRI PTSTOPONERRCR = of f

SET

Visual SoftlICE Commands 201

SET SRCPATH

Syntax

Use

Examples

See Also

Set a search path for source files.

SET SRCPATH [-a] search-path

-a Append a search path to the current source file path.

search-path The source file search path.

Use the SET SRCPATH command to set a source file search path. SET
SRCPATH only accepts valid (existing) paths. Trying to set SRCPATH to
an invalid path value results in the attempt being ignored, and the value
of SRCPATH is reset to null, unless you passed the -a parameter to
preserve the previous setting.

Using ellipses (...) in the path name indicates all subdirectories of the
specified directory path. For example, C:\ SOURCE\ . . . indicates all
subdirectories of C: \ SOURCE.

To view the paths that are currently set for the source, use the SET
SRCPATH command without any parameters.

The following example sets c: \ nysour ce as the source file search path:

SI >SET SRCPATH c: \ nysource
SRCPATH = c:\ nysource

SET, SET EXEPATH, SET EXPORTPATH, SET KDEXTPATH, SET
SCRIPTPATH, SET SYMPATH

202 Visual SoftICE Command Reference

SET STEPMODE

Set the stepping mode for function keys.

Syntax
SET STEPMODE [src | instr | wnd]
src Sets Source stepping mode.
instr Sets Instruction stepping mode.
wnd Sets current Window stepping mode.
Use

Use the SET STEPMODE command to set the stepping mode for function
keys. The stepping mode controls what type of stepping the function
keys F10, F11, and Shift+F11 execute when pressed.

If the current mode is INSTRUCTION, then pressing F10 issues an
Instruction step command (P), regardless of which page has focus.
Pressing F11 or F8 causes an Instruction Step-Into command (T) to be
issued. Pressing Shift+F11 causes an Instruction Step-Out Of command
(P ret) to be issued.

If the current mode is SOURCE, then pressing F10 issues a Source step
command, regardless of which page has focus. Pressing F11 or F8 causes a
Source Step-Into command to be issued. Pressing Shift+F11 causes a
Source Step-Out Of command to be issued.

Note: There are no command line commands to specifically source step.

The WND mode issues a command to the current or last activated code
page (Source or Disassembly) to execute the requested step. If the current
page (the page that has focus) is not a code page, Visual SoftICE issues the
command to the last activated code page. If the last activated code page
is a disassembly view, it always issues instruction step commands as it
would in Instruction Stepping mode. If the last activated page is a source
view, Visual SoftICE take appropriate action based on the current
Instruction Pointer (IP).

To view the current STEPMODE setting, use the SET STEPMODE
command without any parameters.

Visual SoftlICE Commands 203

Example

The following example sets the stepping mode as src.

SI >SET STEPMODE src
STEPMODE = SRC - Source Stepping

See Also
SET

204 Visual SoftICE Command Reference

SET STICKYCONTEXT

Syntax

Use

Example

See Also

Control auto-process context selection.

SET STI CKYCONTEXT [on | of f]

on Enable maintaining the current process context.

off Allow auto-process context selection.

Use the SET STICKYCONTEXT command to indicate whether you want
the user interface to maintain the current process context, or allow Visual
SoftICE to automatically change process contexts.

When STICKYCONTEXT is turned on, issuing a stop command (STOP,
CTRL-D. or the toolbar button) will cause the Ul to auto-ADDR to the
context that was active when you enabled STICKYCONTEXT. If that
context no longer exists, the STICKYCONTEXT mode is reset to off. Any
other stop event, such as a breakpoint or fault, will not cause the Ul to
auto-ADDR.

To view the current STICKYCONTEXT setting, use the SET
STICKYCONTEXT command without any parameters.

The following example enables maintaining the current process context:

SI >SET STI CKYCONTEXT on
STI CKYCONTEXT = on

The following example disables auto-process context selection:

S| >SET STI CKYCONTEXT of f
STI CKYCONTEXT = of f

SET

Visual SoftlICE Commands 205

SET STOPONCMD

Syntax

Use

Example

See Also

Stop the target when you issue any console command.

SET STOPONCMD [on | of f]

on Enables the option.

off Disables the option.

Use the SET STOPONCMD command to stop the target whenever you
issue a command that would be sent to the target. The target stops before
it executes the command sent to it.

The target will not be restarted automatically. You must restart the target
directly by issuing the GO command.

To view the current STOPONCMD setting, use the SET STOPONCMD
command without any parameters.

The following example enables STOPONCMD:

SI >SET STOPONCMD on
STOPONCMD = on

GO, SET

206 Visual SoftICE Command Reference

SET SYMPATH

Syntax

Use

Examples

Set or add a search path for symbol files.

SET SYMPATH [-a] search-path

-a Append a search path to the current symbol search path.

search-path The symbol search path.

Use the SET SYMPATH command to set or add a symbol search path.
Using the -a parameter appends a new symbol search path to the existing
path. If you do not use the -a parameter, SET SYMPATH overrides the
existing path. SET SYMPATH only accepts valid (existing) paths. Trying to
set SYMPATH to an invalid path value results in the attempt being
ignored, and the value of SYMPATH is reset to null, unless you used the
-a parameter to preserve the previous setting.

Using ellipses (...) in the path name indicates all subdirectories of the
specified directory path. For example, C:\ SYMBOLS\ . . . indicates all
subdirectories of C. \ SYMBOLS.

Adding a Symbol Server to your symbol path allows Visual SoftIiCE to
retrieve symbols from that server if they cannot be found locally. To add
a symbol server to your path, the generic format of the command is as
follows:

SET SYMPATH -a "srv*Local Cache*\\ Server\ Share"

To specifically add the Microsoft Symbol Server to your path, execute the
following command:

SET SYMPATH -a "srv*c:\symserver*http://msdl.nicrosoft.com
downl oad/ synbol s"

To view the paths that are currently set for the symbol source, use the SET
SYMPATH command without any parameters.

The following example sets c: \ mysynbol s as the symbol search path:

SI >SET SYMPATH c: \ nmysynbol s
SYMPATH = c:\nysynbol s

Visual SoftlICE Commands 207

The following example adds c: \ wi nnt to the symbol search path:

SI >SET SYMPATH -a c:\wi nnt
SYMPATH = c:\ nysynbol s; c:\w nnt

See Also

ADDSYM, SET, SET EXEPATH, SET EXPORTPATH, SET KDEXTPATH, SET
SCRIPTPATH, SET SRCPATH, SET SYMSRVSEARCH, TABLE

208 Visual SoftICE Command Reference

SET SYMSRVSEARCH

Syntax

Use

Examples

See Also

Control symbol server searching behavior.

SET SYMSRVSEARCH on | off

on Enables searching any symbol server identified in the system symbol path
(default).

off Disables symbol server searching, even if you have servers identified in the
symbol search path.

Use the SET SYMSRVSEARCH command to control the searching for
symbols through symbol servers. The default value for SYMSRVSEARCH
is on, where any symbol server searches are enabled.

If you set the value of SYMSRVSEARCH to off, symbol servers will not be
searched, even if they are included in the symbol search path.

To view the current value of SYMSRVSEARCH, use the SET
SYMSRVSEARCH command without any parameters.

The following example disables symbol server searching:

S| >SET SYMSRVSEARCH of f
SYMSRVSEARCH = of f

The following example enables symbol server searching:

SI >SET SYMSRVSEARCH on
SYMSRVSEARCH = on

ADDSYM, DELSYM, LOAD, RELOAD, SET, SET SYMPATH, SYM, UNLOAD

Visual SoftlICE Commands 209

SET SYMTABLEAUTOLOAD

Syntax

Use

Examples

See Also

Control symbol auto-load behavior.

SET SYMTABLEAUTOLOAD [on | of f]

on Turn auto-loading of symbols on (default).

off Turn auto-loading of symbols off.

Use the SET SYMTABLEAUTOLOAD command to control the on-demand
automatic loading of symbols by the symbol engine. The default value
for SYMTABLEAUTOLOAD is on, where the symbol engine automatically
loads symbols on-demand. In this mode, if you specifically unload a
symbol table, that table is marked not to auto-load again.

If you set the value of SYMTABLEAUTOLOAD to off, automatic symbol
loading is disabled. If you unload a symbol table, it will not be marked,
and may auto-load again if auto-loading is re-enabled.

To view the current value of SYMTABLEAUTOLOAD, use the SET
SYMTABLEAUTOLOAD command without any parameters.

The following example disables automatic symbol loading:

S| >SET SYMIABLEAUTCLOAD of f
SYMIABLEAUTCLOAD = of f

The following example enables automatic symbol loading:

S| >SET SYMIABLEAUTOLQAD on
SYMIABLEAUTOLOAD = on

ADDSYM, LOAD, RELOAD, SET, TABLE, UNLOAD

210 Visual SoftICE Command Reference

SET THREADP

Syntax

Use

Example

See Also

Control thread-specific stepping.

SET THREADP [on | of f]

on Enable thread-specific stepping (default).

off Disable thread-specific stepping.

Use the SET THREADP command to configure stepping on the target.
When disabled, stepping is not constrained to the current thread.

Stepping in Visual SoftICE is thread-specific by default. If the current
instruction pointer is executing in thread X, Visual SoftICE will not break
until the program step occurs in thread X. This prevents the case of the
operating system process switching or thread switching during the
program step, causing execution to stop in a different thread or process
than the one you were debugging.

To view the current setting for target thread stepping, use the SET
THREADP command without any parameters.

The following example enables thread-specific stepping:

S| >SET THREADP on
THREADP = on

The following example disables thread-specific stepping:

S| >SET THREADP of f
THREADP = of f

SET

Visual SoftlICE Commands 211

SET UIQ_THRESHOLD

Syntax

Use

Example

See Also

Set the user interface's responsiveness by managing how many events
can queue up unprocessed from the target.

SET U Q THRESHOLD [n]

n The number of events, in hex, that the Ul allows to queue up unprocessed
from the target before it halts the target to catch up. The default setting is
0x00000019 (25 decimal).

Use the SET UIQ_THRESHOLD command to control the responsiveness
of the Ul in situations where a target is generating a large number of
events. The number you set (in hex) corresponds to the number of events
that the Ul will allow to queue up, before it halts the target and catches
up with the processing of the queued events. Assigning a value of
OxFFFFFFFF (-1 decimal) disables the feature.

To view the current UIQ_THRESHOLD setting, use the SET
UIQ_THRESHOLD command without any parameters.

The following example sets the threshold to f 0 (240 decimal):

SI >SET U Q THRESHOLD f0
U Q THRESHOLD = f0 (240)

SET

212 Visual SoftICE Command Reference

SET UPPERCASE

Syntax

Use

Example

See Also

Set uppercase hexadecimal disassembly output.

SET UPPERCASE [on | of f]

on Enable uppercase hex disassembly output.

off Disable uppercase hex disassembly output.

Use the SET UPPERCASE command to set uppercase hex disassembly
output, such that all hex values returned by the target will be displayed
in uppercase (for instance, Ox4af will always be displayed as 0x4AF).

To view the current UPPERCASE setting, use the SET UPPERCASE
command without any parameters.

The following example sets uppercase hex disassembly output:

SI >SET UPPERCASE on
UPPERCASE = on

SET

Visual SoftlICE Commands 213

SET WARNLEVEL

Set warning and confirmation level.

Syntax
SET WARNLEVEL [high | low | off]
high Warn of any action that could be harmful or fatal to the target.
low Warn only on severe actions that could be fatal to the target.
off Do not warn or confirm any actions.
Use
Use the SET WARNLEVEL to set the warning and confirmation level. Low
is the default setting.
To view the current WARNLEVEL setting, use the SET WARNLEVEL
command without any parameters.
Example
The following example sets the warning level to high:
SI >SET WARNLEVEL hi gh
WARNLEVEL = Hi gh
See Also

SET

214 Visual SoftICE Command Reference

SHUTDOWN

Syntax

Use

Example

See Also

Shut down the target machine you are currently connected to.

Note: The target must be running for this command to succeed.

SHUTDOWN

Use the SHUTDOWN command to shut down the currently connected

target machine.

The following example shuts down the target machine:

S| >SHUTDOAN

HBOOT, REBOOT, STOP

Visual SoftICE Commands

215

SLEEP

Syntax

Use

Example

See Also

Halt execution on the master for a specified number of milliseconds.

SLEEP nsecs (in decinal)

msecs Number of milliseconds (in decimal) to halt execution on the master.

SLEEP halts execution on the master for a specified number of
milliseconds. This command is used mainly in script execution.

The following example is a simple script that uses SLEEP:

con 172.23.100. 158
sleep 5

synmpath -a p:\pabl o\ fi b64\ debug_i a64
exepath -a p:\pabl o\fi b64\ debug_i a64
synpath -a p:\pabl o\fib64\fibl\debug i ab64
exepath -a p:\pablo\fib64\fibl\debug i a64

addr fib64_2
table fibl.dll
tabl e

/1 script c:\dev\source\gui\fib64.txt

@, SCRIPT

216 Visual SoftICE Command Reference

SS

Syntax

Use

Example

See Also

Search all open files for specified string.

SS [line-nunber] 'string'

line-number Starting line number for search.

string String to search for.

Use the SS command to search all the open files for a specified string. If
you specify a line number, Visual SoftICE starts the search at that line. If
you do not specify a line number, then the search will start at the current
top line.

The following example searches all the open files for FOOBAR starting at
line number 42.

SI >SS 42 ' FOOBAR

FILE, FS

Visual SoftlICE Commands 217

STACK

Display a call stack.

Syntax
STACK -r -d [-t trap_frane] [thread-1D]
-r Force a refresh of the call stack.
-d Display detailed information for the stack frame.
-t Start stack-walking from a trap-frame address.
trap_frame Address of a trap frame.
thread-ID The ID of the thread.
Use

Use the STACK command to display the call stack for a thread.

If you enter STACK with no parameters, the stack frames for the current
process are displayed. You can explicitly specify a different thread or
process via a thread identifier.

If you use the -t option and specify an address with the stack_frame
parameter, Visual SoftICE begins stack-walking from the specified trap
frame address within the current thread context.

In a situation where you have loaded new tables, for example using the
ADDSYM command, you may want to force a refresh of the call stack. To
force a refresh of the call stack, use the -r option.

To show detailed information for a stack frame, including the function
table (FPO or Unwind data) and parameters, use the -d option.

The STACK command walks the stack starting at the base by traversing
target stack frames. If an invalid stack frame or address that has been
paged out is encountered during the walk, the traversal will stop. Visual
SoftICE will continue walking the stack through ring transitions. Walking
the 1A64 target stack requires access to unwind descriptors located in the
image file. Normally these are read from memory at the target machine,
but if the required unwind descriptors are paged out, the stack walking
will stop. You can guarantee access to the unwind descriptors by making
a copy of the image available on the master in one of the directories
referenced by the image search path (refer to SET EXEPATH).

218 Visual SoftICE Command Reference

Note: If the current address context is not set to the context of the
specified TID, the command wiill fail with a "Specified Thread Not
Found" error.

The address of the call instruction at each frame is displayed along with
the name of the routine it is in, if the routine is found in any loaded
symbol table. If the routine is not in the symbol table, the export list and
module name list are searched for nearby symbols.

The STACK command output includes the stack pointer, the instruction
pointer, and the symbol information for each frame. For each frame in
the call stack, both the nearest symbol to the call instruction, and the
actual address, are displayed. If there is no symbol available, the module
name and object/section name are displayed instead.

The stack status column provides extra information about the stack
walking process. It notifies you about potential problems Visual SoftICE
encountered while walking the stack. If Visual SoftICE encountered no
problems, and the stack was walked fully, no status messages are
displayed. If the stack walk terminates prematurely there will be a status
message describing the terminating condition. The most important
message is the "Unwind info unavailable" message on 1A64.

"Unwind info unavailable" usually means that Visual SoftICE could not
read the unwind information from the target. This occurs because the
part of the image on the target containing the unwind information is
paged out and Visual SoftICE could not access it. A solution for this
problem is to have a local copy of all executables (including files in the
system32 directory). Add these directories to the exepath so the local
copies can be found instead of having to be retrieved from the target.

This situation can also occur in some circumstances after you have set
your EXEPATH. If this happens, reload the table. Refer to the
Troubleshooting section of the on-line help for more information on
getting unwind information when stack-walking IA64/AMD64 machines.

For 1A64 and AMDG64, unwind information is displayed in the Function
Table column using the format UNWIND (offset), where offset is the offset
from the image base address to the location of the unwind data.

For x86, the Function Table column displays FPO data. The FPO data
displayed is, in order: the Frame Type, Size of Parameters in DWORDs,
Number of Registers Saved, Number of Local Variables, and whether
the EBP Register has been Allocated.

The call stack support is not limited to applications; it will also work for
device drivers.

Visual SoftlICE Commands 219

Output
The detailed output for stack frames contains the following information:
Context
Instruction Pointer

Stack Pointer

L 4

L 4

L 4

¢ Frame Pointer
¢ Parameters

¢ Function Table
L 4

Status

Example

The following example uses the -t option with the address f 1d04d64 to
begin stack walking within the current thread context.

SI >STACK -t f1d04d64

Cont ext Instruction Ptr Stack Ptr Frane Ptr Status
nt oskrnl ! KeBugCheckEx+19 804f c1lbb f1d04d64 f1d04d64
SystentCal | Stub+4 (Ring 3/Ring0 Trans.) 7ffe0304 0012f b18 0012f b18
ntdl 1! Nt Devi cel oControl Fil e+c 77f 7e7df 0012f b20 0012f b7c
TEST32! _Secti on. t ext +46ed 004056ed 0012f b84 0012f c10
TEST32! _Secti on. t ext +40b0 004050b0 0012fc18 0012f dac
USER32! I nt er nal Cal | W nProc+1b 77d43a5f 0012f db4 0012f dd8
USER32! User Cal | W nPr ocCheckWow+b7 77d43b2e 0012f de0 0012f e40
USER32! Di spat chMessageWr ker +dc 77d43d6a 0012f e48 0012f eal
USER32! Di spat chMessageA+b 77d441fd 0012f ea8 0012f eac
TEST32! _Section.text+378a 0040478a 0012f eb4 0012ff 20
TEST32! _Secti on. t ext +4e83 00405e83 0012ff 28 0012ffcO
kernel 32! BaseProcessStart +23 77e7eb69 0012ffc8 0012fffO0

The following example passes a thread ID of 7bc and uses the -t option
with the address f 1c9cb98 to begin stack walking.

SI >STACK -t f1c9ch98 7bc

Cont ext Instruction Ptr Stack Ptr Frane Ptr Status
nt oskrnl ! KeBugCheckEx+19 804f c1lbb f1c9ch98 f1c9ch98
Testdrv! Testdrvloctl +8c f976d73c f 1c9ccOc f1lc9cc34
nt oskrnl ! | opf Cal | Dri ver +27 804ec04f f1c9cc3c f1c9cch8
TEST32! W nMai n+9a 0040478a 0012f eb4 0012ff 20
TEST32! W nMai nCRTSt ar t up+1b3 00405e83 0012ff 28 0012ffcO
ker nel 32! BaseProcessStart +23 77e7eb69 0012ffc8 0012fffO0

220 Visual SoftICE Command Reference

The following example uses the -d option on x86.

Note:

The actual output of the following example contains more

information than is displayed. The example has been edited and

truncated in order to better fit in the manual.

Sl >stack -d
Cont ext

nt oskr nl ! KeBugCheckEx+19

nt oskrnl ! Ki Syst enfat al Except i on+e
Testdrv! Testdrvloct| +a2

nt oskrnl !l opf Cal | Dri ver +27

nt oskrnl !l opSynchr onousSer vi ceTai | +58
nt oskrnl !'l opXxxContr ol Fi | e+29f

nt oskrnl ! Nt Devi cel oControl Fi | e+28

nt oskrnl ! Ki Syst enfSer vi ce+c4
SystentCal | Stub+4 (Ring 3/Ring0 Trans.)
ntdl ! Nt Devi cel oControl Fil etc

ker nel 32! Devi cel oCont r ol +286
TEST32! _Secti on. t ext +46ed
TEST32! _Secti on. t ext +40b0

USER32! I nt er nal Cal | W nProc+1b

USER32! User Cal | W nPr ocCheckWow+b7
USER32! Di spat chMessageWor ker +dc
USER32! Di spat chMessageA+b
TEST32! _Secti on. t ext +378a
TEST32! _Secti on. t ext +4e83

ker nel 32! BaseProcessStart +23

Instruction Ptr

804f c1bb
804d8362
9801752
804ec04f
80571cOa
80571f 1e
805863d5
804d4e91
7f f e0304
77f 7e7df
77e73fcb
004056ed
004050b0
77d43a5f
77d43b2e
77d43d6a
77d441fd
0040478a
00405e83
77e7eb69

Stack Ptr

f 1d04b64
f1d04b84
f1d04cOc
f 1d04c3c
f 1d04c4c
f1d04c60
f 1d04d08
f1d04d3c
0012f b18
0012f b20
0012f b24
0012f b84
0012fc18
0012f db4
0012f de0
0012f e48
0012f ea8
0012f eb4
0012ff 28
0012ffc8

f1d04b7c
f1d04b98
f1d04c34
f1d04c44
f1d04c58
f 1d04d00
f1d04d34
f1d04d64
0012f b18
0012f blc
0012f b7c
0012fc10
0012f dac
0012f dd8
0012f e40
0012f eal
0012f eac
0012ff 20
0012ffcO
0012fffO0

Par aneters

7f,d,0,0,0

ffa2a2a8
7bc, 0,0, 0,
7bc, 0,0, O,

7bc,0,0,0
7bc, 9¢416004,
c0150, 1f 5,
c0150, 111, 1f5
4010af, c0150
0, 4010af,
12ff04, 1,
121104,
400000, 0
44005c, 470042
405cdo,

See Also

SET EXEPATH, THREAD

Visual SoftICE Commands

221

STARTDEBUGGER

Start a Visual SoftICE debugger on the currently connected target.
Note: The target must be running for this command to succeed.

Syntax
STARTDEBUGGER

Use
Use the STARTDEBUGGER command to start a Visual SoftICE debugger
on the currently connected target machine.

Example

The following example starts a Visual SoftICE debugger on the target
machine:

S| >STARTDEBUGGER

222 Visual SoftICE Command Reference

STOP

Syntax

Use

Example

See Also

Stop the target you are currently connected to.

STOP

Use the STOP command to stop the currently connected target.

While stepping, you can abort the active step by issuing the STOP
command, clicking Stop on the toolbar, or pressing Ctrl-Break. If the
step was issued from the command page, then the red Abort Command
button will abort it as well.

Note: Whether or not the target responds to the stop that the master issues
depends on the state of the target.

The following example stops the target:

SI >STOP

HBOOT, REBOOT, SHUTDOWN

Visual SoftlICE Commands 223

SVCSTART

Start a service on the target machine you are currently connected to.
Note: The target must be running for this command to succeed.

Syntax
SVCSTART [servi ce-nane]
service-name Name of the service you want to start on the target.
Use
Use the SVCSTART command to start a service on the currently
connected target machine.
Example
The following example starts nyser vi ce on the target machine:
SI >SVCSTART nyservi ce
See Also

EXEC, KILL, SET GLOBALBREAK, SVCSTOP

224 Visual SoftICE Command Reference

SVCSTOP

Syntax

Use

Example

See Also

Stop a service on the target machine you are currently connected to.
Note: The target must be running for this command to succeed.

SVCSTOP [servi ce- nane]

service-name Name of the service you want to stop on the target.

Use the SVCSTOP command to stop a service on the currently connected
target machine.

The following example stops nyser vi ce on the target machine:

SI >SVCSTCOP nyservi ce

EXEC, KILL, SET GLOBALBREAK, SVCSTART

Visual SoftICE Commands 225

SYM

Syntax

Use

Display or set a symbol.

SYM -v [inmage!]synbol - nane

-V Verbose. Show the symbol with full type information instead of
just the name.

image! Optional image name to specify the symbol table to search.

symbol-name A valid symbol-name. Wildcard characters are fully supported.

Use the SYM command to display and set symbols with global addresses,
such as functions, global data, and exported public symbols. If you enter
SYM without parameters the default symbol-name is asterisk (*), and all
symbols in the current symbol table are displayed. Visual SoftiICE
displays the address and category of each symbol next to the symbol-
name.

If you specify a symbol-name without a value, the symbol-name and its
address are displayed. If the symbol-name is not found, nothing is
displayed.

If you use -v with the SYM command you specify verbose mode. Visual
SoftICE will display as much type information as is available. For
instance, a function symbol will be displayed with the return type and
parameter types.

The SYM command is often useful for finding a symbol when you can
only remember a portion of the name.

226 Visual SoftICE Command Reference

Output

These categories are only shown if | Function A fully-typed Function symbol.

debug information is available. - -
Thunk A small function generated by the compiler to call another

function external to the image.

Data A fully-typed Data symbol.
Public An exported symbol (Function or Data). Public symbols
have no type information.
These categories are un-typed Exports Exports are stored in the image file. These are the same as
names generated by Visual SoftICE Public symbols in the debug information. Items exported
from information available in the by ordinal numbers that have no names are shown with a
image. generated name of the form _Or di nal <n> where <n> is

the decimal ordinal number.

Section Section names show in the form _Sect i on<name> where
<name> is the section name. Many section names begin
with a period (.) so a typical section name is
_Section.text.

Image Miscellaneous image names. _Base is the base address of
the image. _Ent r yPoi nt is the image entry point (it may
be zero if there is no entry point). _Funct i onAt Rva<x>

where <x> is the relative virtual address of the function in

the image (IA64 only). The _Funct i onAt Rva<x> names
are generated from the function table in the IA64 . pdat a
section.

If you specify a value, the address of all symbols that match symbol-
name are set to the value.
Example

The following example displays all symbols in section fi b64_2 that
exactly match nmai n:

SI >SYM fi b64_2! nai n
fi b64_2!00020e20 Function nain
fib64_2!001a2fa8 Public mai n

Visual SoftlICE Commands 227

The following example displays all symbols in section fi b64_2 that
exactly match fi b_f unc, using the -v parameter to give verbose
information:

SI >SYM -v fib64_2!fib_func
0000000000424440 Function int fib_func(float*,float*,float*)
00000000005a32f 0 Public fib_func

See Also

The following example displays all symbols in section fi b64_2 that
match with some pattern of nai n, using the * wildcard:

SI >SYM fi b64_2! * mai n*
fi b64_2!00020e20 Function nain

fib64_2!000cc560 Public . mai NCRTSt art up

The following example displays all sections in image fi b64_2:

SI >SYM fi b64_2! Section*
0000000000402000 Section _Section.text

00000000005e0000 Section _Section.idata

The following example locates the first image that contains a symbol that
starts with fi b and shows all symbols that start with fi b in that image.
This form might take a long time because Visual SoftICE must load every
symbol table until an instance of the symbol is found.

SI >SYM *! fi b*
0000000000424440 Function fib_func

00000000005a3ch0 Public fibulation

Note: When no explicit image name is specified, the SYM command
searches the current symbol table first, and then searches all other
symbols tables that are already loaded.

EXP, GETEXP, SET SYMPATH, SET SYMSRVSEARCH, TABLE

228 Visual SoftICE Command Reference

Syntax

Use

Example

See Also

Trace one instruction.

T [=start-address] [count]

start-address Address at which to begin execution.
count Specify how many times Visual SoftICE should single-step before
stopping.

The T command uses the single-step flag to single-step one instruction.

Execution begins at the current Instruction Pointer (IP), unless you
specify the start-address parameter. If you specify this parameter, the
current IP is changed to the start-address prior to single-stepping. If you
attempt to set a start-address that is outside the current function scope
and the warning level is not set to off, then Visual SoftiICE generates a
warning message asking you to confirm the new start-address.

If you specify count, Visual SoftICE single-steps count times.

If a Register page is visible when the target stops, all registers that were
altered since the T command was issued are highlighted.

While stepping, you can abort the active step by issuing the STOP
command, clicking Stop on the toolbar, or pressing Ctrl-Break. If the
step was issued from the command page, then the red Abort Command
button will abort it as well.

Note: Whether or not the target responds to the stop that the master issues
depends on the state of the target.

The following example single-steps through three instructions starting at
the memory location equal to the current value of the system instruction
pointer plus 20 bytes on an 1A-64 target:

SI>T=ip+ 20 3

P, STOP

Visual SoftlICE Commands 229

TABLE

Change or display the current symbol table.

Syntax
TABLE [-v] [-u] [-s] [table-nane]
-V Verbose mode. Shows all table regardless of whether symbols are
currently loaded.
-u User mode. Shows user-mode (Ring 3) tables only.
-S System mode. Shows system (Ring 0) tables only.
table-name A valid table-name. Wildcard characters are fully supported.
Use

Use the TABLE command when you have multiple symbol tables loaded.
In addition to the basic symbol table information, Visual SoftICE also
displays whether exports are loaded for the table. Visual SoftICE supports
symbol tables for any operating system image.

Visual SoftICE changes the current table to the table of the address
context that the instruction pointer is in when the target stops. This is
referred to elsewhere as on-demand symbol loading. Refer to ADDR and
ADDSYM for more information about on-demand symbol loading.

Note: If you have set STICKYCONTEXT to true, then the automatic ADDR to
the current instruction pointer's context will not occur when the
master receives a stop event. To allow for automatic context
switching, set STICKYCONTEXT to false. For more information, refer
to the SET STICKYCONTEXT command.

If you do not specify any parameters, all the currently loaded symbol
tables are displayed with the current symbol table highlighted. If you
specify a table-name, that table becomes the current symbol table. If you
specify the -v option, Visual SoftICE displays all tables regardless of
whether symbols are currently loaded for them. If you specify the -u
option, Visual SoftICE displays only the user-mode (Ring 3) tables. If you
specify the -s option, Visual SoftICE displays only the system (Ring 0)
tables.

You cannot use the TABLE command to load a symbol table if the
matching image is not loaded on the target. In such an instance you
must use the ADDSYM command to load the symbol table first.

230 Visual SoftICE Command Reference

Example

In the following example, the TABLE command, used without
parameters, lists all loaded symbol tables. In the sample output,
fi b64_2. exe is highlighted because it is the current table.

S| >TABLE
Nare Version Type Gol Exp Status

__USERNAMES 00000001 User Y N K

fib64_2.exe 3B212A13 Synbol N N Matching PDB file
C:\user\fib64\ debug_i a64\fi b64_2. pdb

S| CORE. SYS 3B1D06C5 Synbol Y N Can't find PDB synbol file.

In the following example, a table that is already loaded is specified as a

parameter and Visual SoftiICE makes it the current table.

SI >TABLE SI CORE. SYS

In the following example, a table that is not yet loaded is specified as a
parameter. Visual SoftICE loads it, and then makes it the current table.

SI >TABLE WDMAUD. SYS

See Also

ADDSYM, EXP, GETEXP, SET STICKYCONTEXT, SET SYMPATH, SET

SYMTABLEAUTOLOAD, SYM

Visual SoftICE Commands

231

TCONFIG

TCONFIG used without any parameters displays all the information as
though you used all of the parameters together.

Note: The target must be running for this command to succeed.

Syntax
TCONFI G
Use
Use the TCONFIG command to display all the information provided by
all of the TCONFIG parameters as though you used them all at once.
Example
The following example displays all TCONFIG information:
SI >TCONFI G

Target Configurable Options:
Avai |l abl e Transports:
S| 3C90X
S| SERI AL
Current Transport: SI 3C90X
KeepAl i ve Timeout: 0060 secs. (Ranges: 0, 5 - 3600 Seconds)

St opOnBoot : of f

SI AGENT SETTI NGS

Allow to copy files froma target on
Al'l ow to read\change debugger settings renotely on
See Also

TCONFIG KEEPALIVE, TCONFIG STOPONBOOT, TCONFIG TRANSPORT

232 Visual SoftICE Command Reference

TCONFIG KEEPALIVE

Syntax

Use

Example

See Also

Sets or displays a KEEPALIVE parameter of a transport driver on a target.
Note: The target must be running for this command to succeed.

TCONFI G KEEPALI VE [val ue]

value Time in seconds. Range is 5 to 3600, and 0 disables the function.

Use the TCONFIG KEEPALIVE command to configure the KEEPALIVE
parameter of the transport driver on the target. You can disable
KEEPALIVE by setting it to 0, or you can set its value to anything within
the range of 5 to 3600 seconds. If you use TCONFIG KEEPALIVE without
any parameters, Visual SoftICE returns the current value set.

The following example disables KEEPALIVE for the transport driver on
the target:

S| >TCONFI G KEEPALI VE 0

The following example sets KEEPALIVE for the transport driver on the
target to 30 seconds:

SI >TCONFI G KEEPALI VE 30

TCONFIG, TCONFIG STOPONBOOT, TCONFIG TRANSPORT

Visual SoftlICE Commands 233

TCONFIG STOPONBOOT

Syntax

Use

Example

See Also

Sets or displays the STOPONBOOT parameter of the target debugger.
Note: The target must be running for this command to succeed.

TCONFI G STOPONBOOT [on | of f]

on Enable the parameter.

off Disable the parameter.

Use the TCONFIG STOPONBOOT command to enable or disable the
STOPONBOOT parameter of the target debugger. If you use TCONFIG
STOPONBOOT without any parameters, Visual SoftICE returns the
current value set.

The following example enables the STOPONBOOT parameter:

SI >TCONFI G STOPONBOOT on

The following example disables the STOPONBOOT parameter of the
transport driver on the target:

S| >TCONFI G STOPONBOOT of f

TCONFIG, TCONFIG KEEPALIVE, TCONFIG TRANSPORT

234 Visual SoftICE Command Reference

TCONFIG TRANSPORT

Syntax

Use

Example

See Also

Sets or displays a transport driver on a target.
Note: The target must be running for this command to succeed.

TCONFI G TRANSPORT [transport - nane]

transport-name The name of the transport driver you want to enable for the
target.

Use the TCONFIG TRANSPORT command to set or display the transport
driver on a target. Using TCONFIG TRANSPORT without any parameters
displays a list of available transport drivers on the target, and highlights
the active one. Using it with a transport-name parameter sets that
transport driver as the one used by the target.

The following example displays a list of available transport drivers on the
target:

SI >TCONFI G TRANSPORT

The following example sets Sl 8139 as the transport driver for the target:

S| >TCONFI G TRANSPORT SI 8139

TCONFIG, TCONFIG KEEPALIVE, TCONFIG STOPONBOOT

Visual SoftlICE Commands 235

THREAD

Displays information about a thread.
Syntax

Enumerate Process Threads
THREAD [PID | process-name | TID]

Enumerate All Threads
THREAD *

Display Thread Detail Data
THREAD -x [PID | process-nane | TID|

Display a List of Objects the Thread is Waiting on
THREAD -w TI D

Display a List of Threads with User-level Components
THREAD -u TID

Display Value of Thread's Registers

THREAD -r [-f frame] TID

-r Display value of the thread’s registers.

-f frame Used only with -r to specify the frame stack number. For
example -f 3.

-X Display extended information for each thread.

-w Display objects the thread is waiting on.

-u Display threads with user-level components.

PID Process-ID

TID Thread handle or thread ID.

process-name Process-handle or process-name.

* Wildcard: displays every thread in the system.

236 Visual SoftICE Command Reference

Use
Use the THREAD command to obtain information about a thread.

¢ If you do not specify any options or parameters, it displays the
summary information for all the threads in the active/current process
in the debugger.

¢ If you specify a process-type as a parameter, it displays the summary
information for all threads in that process.

¢ If you specify a thread-type, it displays detailed information for that
thread.

¢ If you specify THREAD *, it displays the summary information for
every thread in the system.

For the -r and -fn options, the registers shown are those that are saved on
the thread context switches. If you use the -r option, the top stack frame's
registers are displayed. The -fn option allows you to specify any other
stack frame.

Output

For each thread, the following summary information is displayed:

TID Thread ID.

Krnl TEB Kernel Thread Environment Block.

StackBtm Address of the bottom of the thread’s stack.
StackTop Address of the start of the thread’s stack.
Stackptr Thread's current stack pointer value.

User TEB User thread environment block.

Process(ld) Owner process-name and process-id.

When you specify extended output (-x), THREAD displays many fields of
information about thread environment blocks. Most of these fields are
self-explanatory, but the following are particularly useful and deserve to
be highlighted:

TID Thread ID.
KTEB Kernel Thread Environment Block.

Base Pri, Dyn. Pri Threads base priority and current priority.

Visual SoftlICE Commands 237

Mode Indicates whether the thread is executing in user or kernel

mode.

Switches Number of context switches made by the thread.

Affinity Processor affinity mask of the thread. Bit positions that are set
represent processors on which the thread is allowed to
execute.

IP Address Address at which the thread will start executing when it is

resumed or current IP if it is active.

The thread’s stack trace is displayed last.

Example
The following example displays extended information on the thread
with ID 8:
SI>THREAD -x 8
Tid 8
Name : System
Pi d 4
See Also
IMAGE, STACK

238 Visual SoftICE Command Reference

TIMER

Display information about timer objects.

Syntax
TI MER [ti ner-address]
timer-address Location of a timer object.
Use
Displays the system timer objects or the contents of a specific timer
object.
Example

The following example shows the output of TIMER when it is issued for a
specific timer object:

SI >TI MER e000000086771ef O

Addr ess ;. e000000086771ef O
Nane : AUTCENRL: Machi neEnr ol | nent Ti ner
See Also
APC, DPC

Visual SoftlICE Commands 239

TYPES

Syntax

Use

Example

Lists all types in the current context, or lists all type information for the
type-name parameter specified.

TYPES [-base] [-enunm] [-tdef] [-udt] [-f] [-v] [type-nane]

-base Include base types in the search.

-enum Include enumerations in the search.

-tdef Include typedefs in the search.

-udt Include user-defined types in the search.

-f Member function mode. Display any member functions that exist
for the type.

-V Verbose mode. Expand structures and classes to show members.

type-name List all type information for the type-name specified.

If you do not specify a type-name, TYPES lists all the types in the current
context. If you do specify a type-name, TYPES lists all the type
information for the type-name parameter you specified. If you use the -v
flag, TYPES expands the structures and classes to show members. You can
filter the data returned by using combinations of the -enum, -udt, -base,
and -tdef flags. Specifying none of the flags is equivalent to asking for all
data.

Members are listed by offset within a parent structure, and parents are
listed by name.

The following example displays all the types in the current context. The
example output is only a partial listing.

SI >TYPES

Si ze Type Name Typedef
0x0004 ABORTPROC int stdcall (*proc) (void)

0x0004 BSTR unsi gned short *

240 Visual SoftICE Command Reference

The following example displays all the types for the CTest Handl es class,
including its member functions.

SI >TYPES -v -f CTest Handl es
Si ze O fset Tag Narme Typedef

000001d0 00000000 Conposite CTestHandl es cl ass CTest Handl es
00000001 00000000 VTabl e (null) *
00000001 00000000 Function CTest Handl es CTest Handl es void (*)

00000004 0000000c Dat a m_hAccel struct HACCEL__*

00000004 00000044 Dat a m_hMai nMenu struct HVENU__*
00000004 00000048 Dat a m_hWhd struct HWND__*

Types query returned 92 matches.

The following example displays only the typedefs that begin with B in
the current table.

SI >TYPES -tdef B*

Si ze O fset Tag Narme Typedef

00000001 00000000 Typedef BCHAR BCHAR unsi gned char
00000004 00000000 Typedef Bl TVEC Bl TVEC unsi gned i nt
00000004 00000000 Typedef BOOL BOCL i nt

00000001 00000000 Typedef BOCLEAN BOOLEAN unsi gned char
00000001 00000000 Typedef BYTE BYTE unsi gned char
00000001 00000000 Typedef bool bool unsi gned char

Types query returned 6 matches.

See Also
LOCALS, WL

Visual SoftICE Commands 241

UNASSEMBLE

Unassemble instructions.

Syntax
UNASSEMBLE [+i] [-a] [-b] address [L |ength]
or
U[+i] [-a] [-b] address [L | ength]
+i Tell the disassembler to display instructions.
-a Tell the disassembler to hide addresses.
-b Tell the disassembler to display the output as bundles.
address Segment offset or selector offset.
Llength Number of instruction bytes (x86) or bundles (IA64).
Use

The UNASSEMBLE command displays unassembled code at the specified
address.

If you do not specify the address, the UNASSEMBLE command
unassembles the code starting at the address where you last unassembled
code. If you have never executed the UNASSEMBLE command, you must
specify an address.

If you specify a length, Visual SoftICE unassembles the specified number
of instructions bytes, rounding up to the next full instruction. Generally,
this works out to be one instruction line per instruction byte of length
specified. If you specify a length on 1A64, Visual SoftiICE unassembles the
specified number of instructions bundles, with one bundle containing a
minimum of two, and a maximum of three, instruction lines.

If the disassembly contains the current Instruction Pointer (IP), the
UNASSEMBLE command highlights it. If the current IP instruction
references a memory location, the UNASSEMBLE command displays the
contents of the memory location at the end of the code line.

If any of the referenced memory addresses in the disassembly have
symbolic names, the symbol displays instead of or in addition to the
hexadecimal address. If an instruction is located at a code symbol, the
symbol name displays.

242 Visual SoftICE Command Reference

Example

The following example unassembles instructions beginning at 10h bytes
before the current address:

SI >UNASSEMBLE . - 10

Visual SoftlICE Commands 243

UNLOAD

Syntax

Use

Example

See Also

Unload symbols for an image file.

UNLOAD [i nage- nane]

image-name Name of the image for which you want to unload symbols.

Use the UNLOAD command to unload symbols for an image.

The following example unloads symbols for the mypr ogr am exe image:

SI >UNLOAD nypr ogr am exe

ADDSYM, DELSYM, FILE, GETEXP, LOAD, RELOAD, SET
SYMSRVSEARCH, SET SYMTABLEAUTOLOAD

244 Visual SoftICE Command Reference

VERSION

Syntax

Use

Example

Display the Visual SoftICE version number for both the master and any

connected target machine.

VERSI ON [- x]

-X Display extended version information.

Use the VERSION command to display version information for the
Master and Target. Use the -x flag to display extended version
information for Visual SoftICE and the OS data files, allowing

Compuware Technical Support to better diagnose any problems you may

encounter.

The following example displays the Visual SoftICE extended version
information for the master and any connected target machine:

S| >VERSI ON - x

[Master]: SIDE.EXE (Visual SoftICE GUI) Ver. 1.0.0 (build 470)
[Target]: SICORE.SYS Ver. 1.0.455 (1A32(x86) W ndows NT/XP v5.1)
[Addi tional Information]:

OSl Information for (osinfo.dat)

osi . copyri ght nressage = Copyright 2002 - Nunmega Labs
osi .versionstr =1

0osi.revisionstr = Supported MS Cs
osi.date_built = 05/ 17/ 02

osi.time_built = 13:43: 24

osi . builtby = NuMega Labs

osi . description = Supported M5 OSs

osi . ul NunmOf St ruct sDefined = 398

osi . ul NumOf El ement sDef i ned = 5420

osi . ul NunOf Pat chesDefi ned = 101

OSl Information for (osinfob.dat)

0si . copyri ght nessage = Copyright 2002 - Nunega Labs
osi .versionstr =1

osi.revisionstr = M5 Beta Os

osi.date_built = 05/ 17/ 02

osi.time_built = 13:43: 27

osi . buil t by = NuMega Labs

osi . description = M5 Beta OSs

osi . ul NunOf Struct sDefined = 471

osi . ul NumOf El emrent sDef i ned = 7192

0si . ul NumOf Pat chesDefined = 22

Visual SoftICE Commands

245

WATCH

Syntax

Use

Example

Add a watch expression.

WATCH expr essi on

Use the WATCH command to display the results of expressions. Visual
SoftICE determines the size of the result based on the expression’s type
information. If Visual SoftICE cannot determine the size, DWORD is
assumed. Every time Visual SoftICE stops, the Watch window displays
the expression’s current values.

Each line in the Watch window contains the following information:

¢ Expression being evaluated.

¢ Expression type.

¢ Current value of the expression displayed in the appropriate format.

If the expression being watched goes out of scope, Visual SoftICE displays
the following message: “Error evaluating expression”.

There can only be one Watch page open.

The following example creates an entry in the Watch page for the
variable hl nst ance.

SI >WATCH hl nst ance

246 Visual SoftICE Command Reference

WB

Syntax

Use

Example

See Also

Open or switch to the Breakpoint page.

VB [nane]

name Specify a name to give the Breakpoint page.

WB opens a new Breakpoint page, or switches to the page if one is
already opened. If you specify a name, the created page will take that
name only if the name is unique. If another page already has that name,
Visual SoftICE appends a sequence number to the name.

The following command opens the Breakpoint page, if it is closed, and
names it BREAKPO NTS:

SI >VW\B BREAKPO NTS

WC, WD, WE, WF, WG, WI, WL, WP, WR, WS, WT, WX

Visual SoftlICE Commands 247

WC

Syntax

Use

Example

See Also

Open a Source or Disassembly page on a specified address.

WC [addr ess]

address Any address.

WC opens the source file containing the specified address in a Source
page. If the source file for the specified address does not exist, Visual
SoftICE opens a Disassembly page on the address.

If you specify an address parameter, such as EIP or some function name,
Visual SoftICE places focus at the address in the Source or Disassembly
page. WC first checks if any source files contain the address. If yes, Visual
SoftICE brings up that source file (if the file is not opened yet) and points
to the line of code that the address points to. If no source file can be
found, Visual SoftICE brings up the Disassembly page and points to the
address (regardless of the autofocus setting).

The following example opens a Source or Disassembly page at the address
location of the EI P:

SI>WC ElI P

WB, WD, WE, WF, WG, WI, WL, WP, WR, WS, WT, WX

248 Visual SoftICE Command Reference

WCONNECT

Syntax

Use

Wait for a connection to a target machine.

WCONNECT com¥# [-baud #] [-rt #] [-r #]
WCONNECT nnn. nnn. nnn. nnn [password] [-rt #] [-r #]

WCONNECT host nane [password] [-rt #] [-r #]

com# Specifies the COM port for serial connections. COM1 through
COMA4 are valid. When connecting through a serial connection, you
can also specify the baud rate, retry timeout, and retry count.

P The IP address of the target (nnn. nnn. nnn. nnn). When connecting
through an IP address, you can also specify a password, retry
timeout, and retry count.

hostname The host name of the target. DNS matches the host name to its IP
address and connects through the IP address. You can specify a
partial host name and Visual SoftICE will match it to the complete
host name if it can. You can also specify a password, retry timeout,
and retry count.

-baud # Specifies the baud rate for serial connections. Default is 115200.

password Specifies a password to use to connect via IP address or hostname if
the target is password-protected.

-rt # Specifies the retry timeout value. Default is 20ms.

-r# Specifies the retry count value. Default is 5.

Note: Numeric values (baud, retry timeout, retries) are entered in decimal.

Use the WCONNECT command to wait for a connection to the target
machine. You can connect to the target through serial connection or by
IP address. When connecting by IP address, you can supply either the IP
address, or enough of a recognized host name for Visual SoftICE to
complete a DNS lookup.

Visual SoftlICE Commands 249

Example

The following example waits for a connection to the target using its IP
address:

S| >WCONNECT 255. 255. 255. 0
Connect ed to:

Nane : nytarget-| A64
Processor . 1 AB4-1tanium
St eppi ng . 0

Processor Count: 2
Qperating Sys. : Wndows XP-64 Ver. 5.1 Build 2600
Tar get Agent : Connected (Active)

The following example waits for a connection to the target using its
hostname:

SI >WCONNECT t est xp
Connect ed to:

Nane . TESTXP
Processor : 1 A32(x86)-PentiumlII
St eppi ng 1

Processor Count: 1
Qperating Sys. : Wndows NT/XP Ver. 5.1 Build 2600
Target Service : Not avail abl e.

S| >r eboot

Target has entered sleep nmode (5) [Shutdown Reset]
Target shutting down. Disconnecting...

SI >WCONNECT t est xp
Attenpting to resolve the specified nane to an | P address...

Connect ed to:

Nane : TESTXP
Processor : 1 A32(x86)-PentiumlII
St eppi ng 1

Processor Count: 1
Qperating Sys. : Wndows NT/XP Ver. 5.1 Build 2600
Target Service : Not avail abl e.

DriverStudio Service has started on target.

See Also
CLOSE, CONNECT, DISCONNECT, NETFIND, OPEN

250 Visual SoftICE Command Reference

WD

Syntax

Use

Example

See Also

Open a Memory page.

WD [address] [nane]

address The start address for displaying memory.

name Specify a name to give the Memory page.

WD opens the Memory page. If a Memory page is already open, WD
opens another one. If you specify an address, Visual SoftICE opens the
Memory page and displays memory starting at that address. If you
specify a name, the created page will take that name only if the name is
unique. If another page already has that name, Visual SoftICE appends a
sequence number to the name.

The following example opens a Memory page and names it MEMORY:

SI >WD MEMORY

WB, WC, WE, WF, WG, WI, WL, WP, WR, WS, WT, WX

Visual SoftlICE Commands 251

WE

Syntax

Use

Example

See Also

Open an Event page.

VEE [nane]

name Specify a name to give the Event page.

WE opens a new Event page, or switches to the page if one is already
opened. If you specify a name, the created page will take that name only
if the name is unique. If another page already has that name, Visual
SoftICE appends a sequence number to the name.

The following command opens the Event page, if it is closed, and names
it EVENTS:

SI >WE EVENTS

WB, WC, WD, WF, WG, WI, WL, WP, WR, WS, WT, WX

252 Visual SoftICE Command Reference

WF

Syntax

Use

Example

See Also

Display the floating point registers in either floating point or MMX
format.

WEF opens the Floating Point Registers page.

The default display format is double-precision floating point
representation. To change the display format to any of the supported raw
and floating point options, right-click on the page and select Data
Format Preferences from the pop-up menu.

The following example shows the use of the WF command to open the
Floating Point Registers page:

S| >WF

WB, WC, WD, WE, WG, WI, WL, WP, WR, WS, WT, WX

Visual SoftlICE Commands 253

WG

Syntax

Use

Example

See Also

Open a Debug Message page.

WG [nane]

name Specify a name to give the Debug Message page.

WG opens a new Debug Message page. If you specify a name, the created
page will take that name only if it is unique. If another page already has
that name, Visual SoftICE appends a sequence number to the name.

The following command opens a Debug Message page and names it
DEBUG.

S| >WG DEBUG

WB, WC, WD, WE, WF, WI, WL, WP, WR, WS, WT, WX

254 Visual SoftICE Command Reference

WHAT

Syntax

Use

Determine what kind of object is at a memory address.

VWHAT [address]

address Any target address, hame, or expression.

The WHAT command analyzes the parameter specified and compares it
to known names/values, enumerating each possible match, until no
more matches can be found. It will search for a symbol, driver, device,
and all other possibilities, and display all the possible matches. Where
appropriate, type identification of a match is expanded to indicate
relevant information, such as a related process or thread.

When passing a name to the WHAT command, the name is typically a
collection of alphanumeric characters that represent the name of an
object. For example, "expl or er " would be interpreted as a name and
might be identified as either a module, a process, or both.

When passing an expression to the WHAT command, the expression is
typically something that cannot be considered a name. That is, it is a
number, a complex expression (an expression containing operators, such
as expl or er +0), or a register. Although a register looks like a name,
registers are special cases of expressions since this usage is much more
common. For example, Visual SoftICE interprets eax in WHAT eax as an
expression-type. Symbol names are treated as names, and are correctly
identified by the WHAT command as symbols.

Because the rules for determining name and expression types can be
ambiguous at times, you can force a parameter to be evaluated as a name
by placing it in quotes. To force Visual SoftICE to interpret a parameter
that may be viewed as a name as a symbol, use SYMBOL(XXX). To force
Visual SoftICE to interpret a parameter that may be viewed as a name as a
register name, use REG(XXX).

Visual SoftlICE Commands 255

Examples

The following is an example of using the WHAT command on the
expl or er . exe process, and the resulting output.

SI >WHAT expl orer. exe
Process: Expl orer(0x5D8), Base Address: 0x1000000, Path: C.\W NDOWB\ Expl orer. EXE
| mge: Expl orer. EXE, Base Address: 0x1000000, Process |d: 0x5D8

The following is an example of using the WHAT command on the
address e0000000869919c0.

SI >WHAT e0000000869919c0

E0000000869919C0 (-2305843006955513408) Found 1 Matches:

KEvent :

Addr ess: e0000000869919c0, Type: 0, Signal State: 1, WiitListHead: e0000000869919c8, Nane: Shel | ReadyEvent,

The following is an example of using the WHAT command on the
address e0000000831¢8820.

S| >WHAT e0000000831c8820

E0000000831C8820 (-2305843007014008800) Found 1 Matches:
Synbol :

e0000000831¢c8820 = ntoskrnl !l opRoot Devi ceNode (Publi c)

The following is an example of using the WHAT command on the
address e00000008306d7a0.

SI >WHAT e00000008306d7a0

E00000008306D7A0 (-2305843007015430240) Found 2 Matches:

Synbol :

€00000008306d7a0 = ntoskrnl!. Kel nsert QueueDpc (Public)

KEvent :

Addr ess: e00000008306d7a0, Type: O, Signal State: 80, WaitlListHead: 8cfc670180006200, Nane: ,

256 Visual SoftICE Command Reference

WI

Syntax

Use

Example

See Also

Open a Command (input) page.

W [nane]

name Specify a name to give the Command page.

W1 opens a new Command page. If you specify a name, the created page
will take that name only if it is unique. If another page already has that
name, Visual SoftICE appends a sequence number to the name.

The following command opens a Command page and names it CVD:

SI >W CNMD

WB, WC, WD, WE, WF, WG, WL, WP, WR, WS, WT, WX

Visual SoftlICE Commands 257

WINERROR

Syntax

Use

Example

Display header-defined mnemonics for Win32/64 error codes.

W NERROR code

code The Win32/64 error code you want a mnemonic returned for.

The WINERROR command displays the header-defined mnemonic
associated with a specific Win32/64 error code. This command allows
you to return the more intuitive mnemonic associated with any Win32/
64 error code.

The following example shows the WINERROR command returning the
mnemonic for the error code 0x103:

SI >W NERROR 0x103
ERROR_NO MORE_| TEMS

258 Visual SoftICE Command Reference

WL

Syntax

Use

Example

See Also

Open a Local Variables page.

WL [TID] [stack-frane]

TID Thread ID for the current process.

stack-frame Stack frame index for the current thread.

WL opens the Local Variables page. If a Local Variables page is already
open, WL activates that page. You can only have one Local Variables page
open.

Note: From within the Locals page, you can expand structures, arrays, and
character strings to display their contents. Simply double-click the
item you want to expand. Note that expandable items are indicated
with a plus sign (+).

The following example opens a Local Variables page with a TID for the
current process:

SI>W. 128

LOCALS, TYPES, WB, WC, WD, WE, WF, WG, WI, WP, WR, WS, WT, WX

Visual SoftlICE Commands 259

WMSG

Display the names and message numbers of Windows messages.

Syntax
WWVBG [partial -name | nsg- nunber]
partial-name Windows message name or the first few characters of a Windows
message name. If multiple Windows messages match the partial-
name, then all messages that start with the specified characters
display.
msg-number Hexadecimal message number of the message. Only the message
that matches the message number displays.
Use
WMSG displays the names and message numbers of Windows messages.
It is useful when logging or setting breakpoints on Windows messages
with the BMSG command.
Examples

The following example displays the names and message numbers of all
Windows messages that start with Wv_GET.

SI >WWBG wm _get *

000D WM GETTEXT

000E WM GETTEXTLENGTH
0024 WM _GETM NVAXI NFO
0031 WM GETFONT

0087 WM _GETDLGCODE

The following example displays the Windows message that has the
specified message number, 111.

SI >WVEG 111
0111 WM Conmand

260 Visual SoftICE Command Reference

WP

Syntax

Use

Example

See Also

Opens the Process List page.

WP [nane]

name Specify a name to give the Process List page.

You can use WP to open the Process List page. If the Process List page is
already open, then the WP command activates it. You can only have one
Process List page open.

The following command opens the Process List page and names it
PROCESSES:

S| >WP PROCESSES

WB, WC, WD, WE, WF, WG, WI, WL, WR, WS, WT, WX

Visual SoftlICE Commands 261

WR

Syntax

Use

Example

See Also

Open a Register page.

VR [nane]

name Specify a name to give the Register page.

WR opens the Register page. If a Register page is already open, WR opens
another one. If you specify a name, the created page will take that name
only if itis unique. If another page already has that name, Visual SoftICE
appends a sequence number to the name.

The Register window displays the register set and the processor flags.

The following command opens the Register page and names it REG STER:

SI >WR REG STER

WB, WC, WD, WE, WF, WG, WI, WL, WP, WS, WT, WX

262 Visual SoftICE Command Reference

WS

Syntax

Use

Example

See Also

Opens the Stack page.

WS [nane]

name Specify a name to give the Stack page.

WS opens the Stack page. If you specify a name, the created page will take
that name only if it is unique. If another page already has that name,
Visual SoftICE appends a sequence number to the name.

The following command opens the Stack page and names it STACK:

SI >WS STACK

WB, WC, WD, WE, WF, WG, WI, WL, WP, WR, WT, WX

Visual SoftlICE Commands 263

WT

Syntax

Use

Example

See Also

Open a Text scratch page.

WI' [nane]

name Specify a name to give the Text scratch page.

WT opens a new Text scratch page. If you specify a name, the created
page will take that name only if it is unique. If another page already has
that name, Visual SoftICE appends a sequence number to the name.

The following command opens a Text scratch page and names it SCRATCH:

SI >WI' SCRATCH

WB, WC, WD, WE, WF, WG, WI, WL, WP, WR, WS, WX

264 Visual SoftICE Command Reference

WX

Syntax

Use

Example

See Also

Open the XMM register page.

On supported platforms, you can use the WX command to open a page
containing the value of the XMM registers XMvD through Xmwr.

The following example displays the XMM register page:

S| >WK

WB, WC, WD, WE, WF, WG, WI, WL, WP, WR, WS, WT

Visual SoftICE Commands

265

XFRAME

Syntax

Use

Display exception handler frames that are currently installed.
Note: Available on x86 only.

XFRAME [t hread-type]

thread-type Value that Visual SoftICE recognizes as a thread.

Exception frames are created by Microsoft's Structured Exception
Handling API (SEH). Handlers are instantiated on the stack, so they are
context-specific.

When an exception handler is installed, information about it is recorded
in the current stack frame. This information is referred to as an
ExceptionRegistration. The XFRAME command understands this
information, and walks backwards through stack frames until it reaches
the top-most exception handler. From there it begins displaying each
registration record up to the currently active scope. From each
registration, it determines if the handler is active or inactive; its
associated "global exception handler;" and, if the handler is active, the
SEH type: try/except or try/finally. In the case of active exception
handlers, it also displays the exception filter or finally handler address.

Note: The global exception handler is actually an exception dispatcher that
uses information within an exception scope table to determine which
exception handler, if any, handles the exception. It also handles other
tasks such as global and local unwinds.

You can use the global exception handler, and try/except/finally
addresses to trap SEH exceptions by setting breakpoints on appropriate
handler addresses.

The XFRAME command is context-sensitive, so if you do not specify the
optional parameter, Visual SoftICE reverts to the last active context and
displays the exception frames for the current thread. When specifying an
exception frame pointer as an optional parameter, make sure you are in a
context in which the exception frame is valid. For thread-type
parameters, Visual SoftICE automatically switches to the correct context
for the thread.

266 Visual SoftICE Command Reference

Output

Below the information for the ExceptionRegistration record, XFRAME
lists each active handler for the exception frame. For each active handler,
XFRAME displays its type (try/except or try/finally), the address of its
exception filter (for try/except only), and the address of the exception
handler. Because exception handlers can be nested, more than one entry
may be listed for each ExceptionRegistration record.

The XFRAME command displays bare addresses in its output. You can use
either the STACK or WHAT commands to determine the API that
installed an exception handler.

Do not confuse the xScope value with the nesting level of exception
handlers. Although these values may appear to have some correlation,
the value of xScope is simply an index into a scope table (xTable). The
scope table entry contains a link to its parent scope (if any).

In the event that a stack frame is not paged in for the specified thread,
the XFRAME will not be able to complete the stack walk.

For each exception frame that is installed, XFRAME displays the
following information:

xFrame Address of the ExceptionRegistration. This value is stack-based.

xHandler Address of the global exception handler which dispatches the
exception to the appropriate try/ except/finally filter/handler.

XTable Address of the scope table used by the global exception handler to
dispatch exceptions.

xScope Index into the xTable for the currently active exception handler. If this
value is -1, the exception handler is installed, but is inactive and will
not trap an exception.

Visual SoftlICE Commands 267

Example

The following example illustrates the use of the XFRAME command to
display information about the exception handler frames for the currently
active thread.

S| >XFRAME

xFr ane ScopeTabl e Scope Type xHandl er Status
0012ffe0 77e95al8 0 M5 SEH 77e9bb86

Encl osi ng Level Type Filter Handl er

0 try/ except 77ea5168 77ea5179

xFr ane ScopeTabl e Scope Type xHandl er Status
0012ff b0 00425498 0 M5 SEH 00402238

Encl osi ng Level Type Filter Handl er

0 try/ except 004027a8 004027c3

xFr ane ScopeTabl e Scope Type xHandl er Status
0012fecc 0012ff80 2 C++ EH 00413d60

0012f e64 00425250 2 M5 SEH 00402238

Encl osi ng Level Type Filter Handl er

0 try/ except 0155c¢318 01560f 74

1 try/ except 5f 8ad3ec 00000000

2 try/finally 00000000 004016c5

268 Visual SoftICE Command Reference

ZAP

Replace an embedded interrupt 1 or 3 with a NOP.

Syntax
ZAP

Use
The ZAP command replaces an embedded interrupt 1 or 3 with the
appropriate number of NOP instructions. This is useful when the INT 1
or INT 3 is placed in code that is repeatedly executed, and you no longer
want Visual SoftICE to stop. This command works only if the INT 1 or
INT 3 instruction is the instruction before the current CS: El P

Example

The following example replaces the embedded interrupt 1 or interrupt 3
with a NOP instruction.

SI >ZAP

Visual SoftiICE Commands 269

270 Visual SoftICE Command Reference

Index

Symbols
13

$4

.5

26

@7

A

ADDR 8
ADDRESSFORMAT 175
ADDRESSMAP 10, 162
ADDSYM 12

APC 13

Application Registers vi
ARBITER 14
ASSEMBLE 16

At Sign 7
AUTOCOPYSCRIPT 177

B

Bang 3

BC 17

BD 18

BE 19

BL 20

BMSG 21

BPINT 23

BPIO 25

BPLOAD 27

BPM 29

BPR 32

BPX 34

Branch Registers vi
Breakpoint Registers vi
BSTAT 35

C

C 37

CACHE 179

CLASS 38

CLOSE 40

CLS 41

Command Categories 1
CONNECT 42
Control Registers vii
CPU 44

CPUID Registers vi

D

D 47
DBGMSGDEBOUNCETIME 180
Debug Registers vii
DELSYM 49
DEVICE 50
DEVNODE 53
DIALECT 181
DISCONNECT 55
Dot 5

DPC 56

DRIVER 57

E

E 60
EE_EVAL_ORDER 182
EE_IMPL_DEREF 184
ERESOURCE 61
EVAL 62

EXEC 63

EXEPATH 186

EXIT 64

EXP 65
EXPORTPATH 187

271

F
F 67

FAULTS 68

FGET 70

FIBER 71

FILE 74

Float Registers vii

Floating-point Registers Vi
FLOATREGFORMAT 189

Floatstack Registers vi
FMUTEX 75

FOBJ 76

FPUT 77

FS 78

G

GDT 79

General Registers vi, vii
GETEXP 82
GLOBALBREAK 190
GO 84

H

HBOOT 85
HEAP 86
HELP 90
HWND 91

I

197

I1THERE 98

IBHERE 99

IDT 108

IMAGE 100
IMAGEMAP 102, 125
IMAGEMATCH 191
INTOBJ 104

IRP 106

IT 108

K

KD Extensions 3
KDEXTPATH 192
KDLIST 110
KEEPALIVE 233

Kernel Debugger Extensions 3

KEVENT 111
KILL 112
KMUTEX 113
KOBJECT 114

272 Visual SoftICE Command Reference

KSEM 115

L

LOAD 116

Local Registers vi
LOCALS 117
LOG 118

M

M 120

MACRO 121
MAP32 102, 125
MMX Registers vii
MOD 100
MSGLEVEL 194
MSR 127

N

NAME 129
NETFIND 131
NTCALL 132
NTSTATUS 134

O

O 135
OBJDIR 136
OBJTAB 138
OPEN 142

P

P 143

PACKET 145
PACKETFORMAT 195
PAGE 147

PCI 152

PEEK 155

Perfdata Registers vi
Period 5

PHYS 156

PING 157

POKE 158

Predicate Registers vi
PROCESS 159
Protection Registers vi

Q
QUERY 10, 162
QUIT 164

R

R 165

RADIX 196

REBOOT 168

Region Registers vi

Register
Groups v
Names v

REGNAME 197

RELOAD 169

RG 170

S

S171

SAVE 172

SCRIPT 173

SCRIPTECHO 198

SCRIPTPATH 199

SCRIPTSTOPONERROR 201

Segment Registers vii

SET 174
ADDRESSFORMAT 175
AUTOCOPYSCRIPT 177
CACHE 179
DBGMSGDEBOUNCETIME 180
DIALECT 181
EE_EVAL ORDER 182
EE_IMPL_DEREF 184
EXEPATH 186
EXPORTPATH 187
FLOATREGFORMAT 189
GLOBALBREAK 190
IMAGEMATCH 191
KDEXTPATH 192
MSGLEVEL 194
PACKETFORMAT 195
RADIX 196
REGNAME 197
SCRIPTECHO 198
SCRIPTPATH 199
SCRIPTSTOPONERROR 201
SRCPATH 202
STEPMODE 203
STICKYCONTEXT 205
STOPONCMD 206
SYMPATH 207
SYMSRVSEARCH 209
SYMTABLEAUTOLOAD 210
THREADP 211

UIQ_THRESHOLD 212
UPPERCASE 213
WARNLEVEL 214
SHUTDOWN 215
SLEEP 216
SRCPATH 202
SS 217
STACK 218
STARTDEBUGGER 222
State Registers Vi
STEPMODE 203
STICKYCONTEXT 205
STOP 223
STOPONBOOT 234
STOPONCMD 206
SVCSTART 224
SVCSTOP 225
SYM 226
SYMPATH 207
SYMSRVSEARCH 209
SYMTABLEAUTOLOAD 210
System Registers vi

T

T 229

TABLE 230

TCONFIG 232
KEEPALIVE 233
STOPONBOOT 234
TRANSPORT 235

THREAD 236

THREADP 211

TIMER 239

Translation Registers vi

TRANSPORT 235

TYPES 240

U

UIQ_THRESHOLD 212
UNASSEMBLE 242
UNLOAD 244
UPPERCASE 213

Vv
VERSION 245

Index

273

w
WARNLEVEL 214
WATCH 246
WB 247

WC 248
WCONNECT 249
WD 251

WE 252

WEF 253

WG 254

WHAT 255

WI 257
Wildcards vii
WINERROR 258
WL 259

WMSG 260

WP 261

WR 262

WS 263

WT 264

WX 265

X

x86 Registers vi
XFRAME 266
XMM Registers vii

Z
ZAP 269

274 Visual SoftICE Command Reference

	Preface
	Register Names and Groups
	Wildcards
	Example

	Visual SoftICE Commands
	!
	Syntax
	Use
	Example

	$
	Syntax
	Use
	Example
	See Also

	.
	Syntax
	Use
	Example

	?
	Syntax
	Use
	Example
	See Also

	@
	Syntax
	Use
	Example
	See Also

	ADDR
	Syntax
	Use
	Example
	See Also

	QUERY (ADDRESSMAP)
	Syntax
	Use
	Output
	Example

	ADDSYM
	Syntax
	Use
	Example
	See Also

	APC
	Syntax
	Use
	Example
	See Also

	ARBITER
	Syntax
	Use
	Example
	See Also

	ASSEMBLE
	Syntax
	Use
	Example

	BC
	Syntax
	Example
	See Also

	BD
	Syntax
	Use
	Example
	See Also

	BE
	Syntax
	Use
	Example
	See Also

	BL
	Syntax
	Use
	Example
	See Also

	BMSG
	Syntax
	Use
	Example
	See Also

	BPINT
	Syntax
	Use
	Example
	See Also

	BPIO
	Syntax
	Use
	Example
	See Also

	BPLOAD
	Syntax
	Use
	Example
	See Also

	BPM
	Syntax
	Use
	Example
	See Also

	BPR
	Syntax
	Use
	Example
	See Also

	BPX
	Syntax
	Use
	Example
	See Also

	BSTAT
	Syntax
	Use
	Output
	Example
	See Also

	C
	Syntax
	Use
	Example

	CLASS
	Syntax
	Use
	Output
	Example
	See Also

	CLOSE
	Syntax
	Use
	Example
	See Also

	CLS
	Syntax
	Use
	Example

	CONNECT
	Syntax
	Use
	Example
	See Also

	CPU
	Syntax
	Use
	Examples
	See Also

	D
	Syntax
	Use
	Example

	DELSYM
	Syntax
	Use
	Example
	See Also

	DEVICE
	Syntax
	Use
	Output
	Example
	See Also

	DEVNODE
	Syntax
	Use
	Examples
	See Also

	DISCONNECT
	Syntax
	Use
	Example
	See Also

	DPC
	Syntax
	Use
	Example
	See Also

	DRIVER
	Syntax
	Use
	Output
	Example
	See Also

	E
	Syntax
	Use
	Example

	ERESOURCE
	Syntax
	Use
	Example
	See Also

	EVAL
	Syntax
	Use
	Example
	See Also

	EXEC
	Syntax
	Use
	Example
	See Also

	EXIT
	Syntax
	Use
	Example
	See Also

	EXP
	Syntax
	Use
	Example
	See Also

	F
	Syntax
	Use
	Example

	FAULTS
	Syntax
	Use
	Example

	FGET
	Syntax
	Use
	Example
	See Also

	FIBER
	Syntax
	Use
	Example

	FILE
	Syntax
	Use
	Example
	See Also

	FMUTEX
	Syntax
	Use
	Example
	See Also

	FOBJ
	Syntax
	Use
	Example

	FPUT
	Syntax
	Use
	Example
	See Also

	FS
	Syntax
	Use
	Example
	See Also

	GDT
	Syntax
	Use
	Output
	Example

	GETEXP
	Syntax
	Use
	Example
	See Also

	GO
	Syntax
	Use
	Example

	HBOOT
	Syntax
	Use
	Example
	See Also

	HEAP
	Syntax
	Use
	Output
	Example

	HELP
	Syntax
	Use
	Example

	HWND
	Syntax
	Use
	Output
	Example
	See Also

	I
	Syntax
	Use
	Example

	I1HERE
	Syntax
	Use
	Example
	See Also

	I3HERE
	Syntax
	Use
	Example
	See Also

	IMAGE (MOD)
	Syntax
	Use
	Output
	Example
	See Also

	IMAGEMAP (MAP32)
	Syntax
	Use
	Output
	Example

	INTOBJ
	Syntax
	Use
	Example

	IRP
	Syntax
	Use
	Example

	IT (IDT)
	Syntax
	Use
	Output
	Examples

	KDLIST
	Syntax
	Use
	Example

	KEVENT
	Syntax
	Use
	Example
	See Also

	KILL
	Syntax
	Use
	Example
	See Also

	KMUTEX
	Syntax
	Use
	Example
	See Also

	KOBJECT
	Syntax
	Use
	Example

	KSEM
	Syntax
	Use
	Example
	See Also

	LOAD
	Syntax
	Use
	Example
	See Also

	LOCALS
	Syntax
	Use
	Output
	Example
	See Also

	LOG
	Syntax
	Use
	Example
	See Also

	M
	Syntax
	Use
	Example

	MACRO
	Syntax
	Use
	Example

	MAP32 (IMAGEMAP)
	Syntax
	Use
	Output
	Example

	MSR
	Syntax
	Use
	Example
	See Also

	NAME
	Syntax
	Use
	Example

	NETFIND
	Syntax
	Use
	Example
	See Also

	NTCALL
	Syntax
	Use
	Output
	Example

	NTSTATUS
	Syntax
	Use
	Example

	O
	Syntax
	Use
	Example

	OBJDIR
	Syntax
	Use
	Output
	Example
	See Also

	OBJTAB
	Syntax
	Use
	Output
	Examples
	See Also

	OPEN
	Syntax
	Use
	Example
	See Also

	P
	Syntax
	Use
	Example
	See Also

	PACKET
	Syntax
	Use
	Output
	Examples
	See Also

	PAGE
	Syntax
	Use
	Output
	Example

	PCI
	Syntax
	Use
	Examples

	PEEK
	Syntax
	Use
	Example
	See Also

	PHYS
	Syntax
	Use
	Example

	PING
	Syntax
	Use
	Example

	POKE
	Syntax
	Use
	Example
	See Also

	PROCESS
	Syntax
	Use
	Output
	Example
	See Also

	QUERY (ADDRESSMAP)
	Syntax
	Use
	Output
	Example

	QUIT
	Syntax
	Use
	Example
	See Also

	R
	Syntax
	Use
	Example
	See Also

	REBOOT
	Syntax
	Use
	Example
	See Also

	RELOAD
	Syntax
	Use
	Example
	See Also

	RG
	Syntax
	Use
	Example
	See Also

	S
	Syntax
	Use
	Example

	SAVE
	Syntax
	Use
	Example
	See Also

	SCRIPT
	Syntax
	Use
	Example
	See Also

	SET
	Syntax
	Use
	Example
	See Also

	SET ADDRESSFORMAT
	Syntax
	Use
	Example
	See Also

	SET AUTOCOPYSCRIPT
	Syntax
	Use
	Example
	See Also

	SET CACHE
	Syntax
	Use
	Example
	See Also

	SET DBGMSGDEBOUNCETIME
	Syntax
	Use
	Example
	See Also

	SET DIALECT
	Syntax
	Use
	Example
	See Also

	SET EE_EVAL_ORDER
	Syntax
	Use
	Example
	See Also

	SET EE_IMPL_DEREF
	Syntax
	Use
	Example
	See Also

	SET EXEPATH
	Syntax
	Use
	Example
	See Also

	SET EXPORTPATH
	Syntax
	Use
	Examples
	See Also

	SET FLOATREGFORMAT
	Syntax
	Use
	Example
	See Also

	SET GLOBALBREAK
	Syntax
	Use
	Example
	See Also

	SET IMAGEMATCH
	Syntax
	Use
	Example
	See Also

	SET KDEXTPATH
	Syntax
	Use
	Examples
	See Also

	SET MSGLEVEL
	Syntax
	Use
	Example
	See Also

	SET PACKETFORMAT
	Syntax
	Use
	Example
	See Also

	SET RADIX
	Syntax
	Use
	Example
	See Also

	SET REGNAME
	Syntax
	Use
	Example
	See Also

	SET SCRIPTECHO
	Syntax
	Use
	Example
	See Also

	SET SCRIPTPATH
	Syntax
	Use
	Examples
	See Also

	SET SCRIPTSTOPONERROR
	Syntax
	Use
	Example
	See Also

	SET SRCPATH
	Syntax
	Use
	Examples
	See Also

	SET STEPMODE
	Syntax
	Use
	Example
	See Also

	SET STICKYCONTEXT
	Syntax
	Use
	Example
	See Also

	SET STOPONCMD
	Syntax
	Use
	Example
	See Also

	SET SYMPATH
	Syntax
	Use
	Examples
	See Also

	SET SYMSRVSEARCH
	Syntax
	Use
	Examples
	See Also

	SET SYMTABLEAUTOLOAD
	Syntax
	Use
	Examples
	See Also

	SET THREADP
	Syntax
	Use
	Example
	See Also

	SET UIQ_THRESHOLD
	Syntax
	Use
	Example
	See Also

	SET UPPERCASE
	Syntax
	Use
	Example
	See Also

	SET WARNLEVEL
	Syntax
	Use
	Example
	See Also

	SHUTDOWN
	Syntax
	Use
	Example
	See Also

	SLEEP
	Syntax
	Use
	Example
	See Also

	SS
	Syntax
	Use
	Example
	See Also

	STACK
	Syntax
	Use
	Output
	Example
	See Also

	STARTDEBUGGER
	Syntax
	Use
	Example

	STOP
	Syntax
	Use
	Example
	See Also

	SVCSTART
	Syntax
	Use
	Example
	See Also

	SVCSTOP
	Syntax
	Use
	Example
	See Also

	SYM
	Syntax
	Use
	Output
	Example
	See Also

	T
	Syntax
	Use
	Example
	See Also

	TABLE
	Syntax
	Use
	Example
	See Also

	TCONFIG
	Syntax
	Use
	Example
	See Also

	TCONFIG KEEPALIVE
	Syntax
	Use
	Example
	See Also

	TCONFIG STOPONBOOT
	Syntax
	Use
	Example
	See Also

	TCONFIG TRANSPORT
	Syntax
	Use
	Example
	See Also

	THREAD
	Syntax
	Use
	Output
	Example
	See Also

	TIMER
	Syntax
	Use
	Example
	See Also

	TYPES
	Syntax
	Use
	Example
	See Also

	UNASSEMBLE
	Syntax
	Use
	Example

	UNLOAD
	Syntax
	Use
	Example
	See Also

	VERSION
	Syntax
	Use
	Example

	WATCH
	Syntax
	Use
	Example

	WB
	Syntax
	Use
	Example
	See Also

	WC
	Syntax
	Use
	Example
	See Also

	WCONNECT
	Syntax
	Use
	Example
	See Also

	WD
	Syntax
	Use
	Example
	See Also

	WE
	Syntax
	Use
	Example
	See Also

	WF
	Syntax
	Use
	Example
	See Also

	WG
	Syntax
	Use
	Example
	See Also

	WHAT
	Syntax
	Use
	Examples

	WI
	Syntax
	Use
	Example
	See Also

	WINERROR
	Syntax
	Use
	Example

	WL
	Syntax
	Use
	Example
	See Also

	WMSG
	Syntax
	Use
	Examples

	WP
	Syntax
	Use
	Example
	See Also

	WR
	Syntax
	Use
	Example
	See Also

	WS
	Syntax
	Use
	Example
	See Also

	WT
	Syntax
	Use
	Example
	See Also

	WX
	Syntax
	Use
	Example
	See Also

	XFRAME
	Syntax
	Use
	Output
	Example

	ZAP
	Syntax
	Use
	Example

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

