
Getting Started with
DevPartner Fault

SimulatorTM

Release 1.5

Technical support is available from our Technical Support Hotline or via
our FrontLine Support Web site.

Technical Support Hotline:
1-800-538-7822

FrontLine Support Web Site:
 http://frontline.compuware.com

(FrontLine Support login required)

This document and the product referenced in it are subject to the following
legends:

Access is limited to authorized users. Use of this product is subject to the
terms and conditions of the user’s License Agreement with Compuware
Corporation.

© 2005 Compuware Corporation. All rights reserved. Unpublished - rights
reserved under the Copyright Laws of the United States.

U.S. GOVERNMENT RIGHTS
Use, duplication, or disclosure by the U.S. Government is subject to
restrictions as set forth in Compuware Corporation license agreement and
as provided in DFARS 227.7202-1(a) and 227.7202-3(a) (1995), DFARS
252.227-7013(c)(1)(ii)(OCT 1988), FAR 12.212(a) (1995), FAR 52.227-19,
or FAR 52.227-14 (ALT III), as applicable. Compuware Corporation.

This product contains confidential information and trade secrets of Com-
puware Corporation. Use, disclosure, or reproduction is prohibited with-
out the prior express written permission of Compuware Corporation.

TrackRecord and DevPartner Fault Simulator are trademarks or registered
trademarks of Compuware Corporation.

Acrobat
®

 Reader copyright © 1987-2005 Adobe Systems Incorporated. All
rights reserved. Adobe, Acrobat, and Acrobat Reader are trademarks of
Adobe Systems Incorporated.

All other company or product names are trademarks of their respective
owners.

US Patent Nos.: 5,987,249 and 6,332,213

October 14, 2005

http://frontline.compuware.com

Table of Contents
Preface
Who Should Read This Manual . vii

Conventions Used In This Manual . vii

Accessibility . viii

For More Information . viii

Chapter 1
Installing DevPartner Fault Simulator
Minimum System Requirements . 1

Coexistence with Other Compuware Products . 2

Installing DevPartner Fault Simulator . 3
Performing the Installation . 3
New License Server Required for Concurrent Licenses . 3

Installing DevPartner Fault Simulator SE . 4
Performing the Installation . 4
Upgrading to the Full Version . 4

Chapter 2
Introducing DevPartner Fault Simulator
What Is Fault Simulation . 5

Fault Simulation Enhances Software Testing . 6

DevPartner Fault Simulator . 7
Three Ways to Use Fault Simulator . 7
Fault Descriptors . 10
Fault Sets . 11
Fault Simulation with Coverage Analysis . 12

Using Fault Simulator in Visual Studio . 14
Quick Start . 14
 iii

A Fault Simulator Walk-Through . 15

Using the Fault Simulator Standalone Application . 19
Quick Start . 19
A Fault Simulator Walk-Through . 20

DevPartner Fault Simulator SE . 22

Chapter 3
Improving Software Quality Through Fault Simulation
Software Development Objectives . 25

Challenges to Software Quality . 26
Product Instability . 27
Explosion of New Technologies . 27
Complexities of the Inner Workings of APIs and System Services 27

Software Vulnerabilities . 28
Layers of Application Vulnerability . 29

Alternatives to Achieve Software Quality . 30
Conventional Testing . 30
Non-Traditional Testing . 30
Approaches for Testing Environmental Conditions . 31

Three-Part Solution to Achieve Software Quality Using Fault Simulator 32
White Box Testing Using Fault Simulator in Visual Studio 33
Black Box Testing Using the Fault Simulator Standalone 38
Automated Testing Using Fault Simulator from the Command Line 43

Fault Simulator — Improving Software Quality . 44

Chapter 4
Using Fault Simulator to Evaluate Error Handlers
Well-Constructed Error Handlers Promote Product Reliability 45

Error Handling for Function Calls . 46
C++ Exception Handling . 46
Structured Exception Handling . 47

Configuring Fault Simulator to Capture Error Handler Data 49
Configuring a .NET Framework Fault in Managed Code 49
Configuring an Environmental Fault . 51
Fault Simulation Results Views . 52

Evaluating Error Handling Results . 55
Determining the Path The Code Took to Unwind from an Exception 55
Identifying if Any Error Handlers Got Invoked . 56
Viewing the Source Statement That Handled the Fault 57
Determining the Path The Code Took When a Function Failed 57
Assessing Whether the Intended Fault Was Handled . 58
iv Getting Started with DevPartner Fault Simulator

Confirming Where the Fault Was Handled . 59

Fault Simulator Integral to Best Practices . 60

Glossary . 61

Index . 63
 v

vi Getting Started with DevPartner Fault Simulator

Preface
� Who Should Read This Manual

� Conventions Used In This Manual

� Accessibility

� For More Information

Who Should Read This Manual
This manual assists software developers and quality assurance
professionals who will install and use Compuware DevPartner Fault
SimulatorTM. This manual presents the concepts and procedures
fundamental to using DevPartner Fault Simulator.

This manual assumes your familiarity with the Microsoft Windows and
Visual Studio technologies.

Conventions Used In This Manual
This manual uses the following conventions to present information.

� Screen commands and menu names appear in bold typeface. For
example:

Choose Add Environmental Fault from the Fault Simulator menu.

� Computer commands and file names appear in monospace typeface.
For example: DPFS Getting Started.pdf
 vii

� Variables within computer commands and file names (for which you
must supply values appropriate for your installation) appear in
italic monospace type. For example:

Enter dpfs /help:option at the command line prompt.

Accessibility
Prompted by federal legislation introduced in 1998 and Section 508 of
the U.S. Rehabilitation Act enacted in 2001, Compuware launched an
accessibility initiative to make its products accessible to all users,
including people with disabilities. This initiative addresses the special
needs of users with sight, hearing, cognitive, or mobility impairments.

Section 508 requires that all electronic and information technology
developed, procured, maintained, or used by the U.S. Federal
government be accessible to individuals with disabilities. To that end, the
World Wide Web Consortium (W3C) Web Accessibility Initiative (WAI)
has created a workable standard for online content.

Compuware supports this initiative by committing to make its
applications and online help documentation comply with these
standards. For more information, refer to:

� W3C Web Accessibility Initiative (WAI) at www.W3.org/WAI
� Section 508 Standards at www.section508.gov
� Microsoft Accessibility Technology for Everyone at

www.microsoft.com/enable/

For More Information
You can access the following DevPartner Fault Simulator documentation
for more assistance:

� Fault Simulator in Visual Studio — Online help integrates with
Fault Simulator in Visual Studio.

� Fault Simulator standalone application — HTML-based online help
accompanies Fault Simulator standalone.

� Command line

� Console help available using Fault Simulator from the command
line

� HTML-based online help available from InfoCenter
From the Start menu, choose All Programs > Compuware Dev-
Partner Fault Simulator > InfoCenter.
viii Getting Started with DevPartner Fault Simulator

� Getting Started with DevPartner Fault Simulator TM — Manual
resides on your DevPartner Fault Simulator CD in Adobe Acrobat
(.pdf) format.

Use these other resources for additional assistance:

� The HTML-based Release Notes provide late-breaking information
and any known anomalies in this release.

� The manual, Distributed License Management License Installation Guide
(LicInst4.PDF), provides specific details on licensing Compuware
products.

We recommend the following books related to fault simulation:

� Applied Microsoft .NET Framework Programming, by Jeffrey Richter.
Web link: http://www.microsoft.com/mspress/books/5353.asp

� Software Fault Injection: Inoculating Programs Against Errors, by Jeffrey
M. Voas and Gary McGraw. Web link: http://www.cigital.com/books/sfi
Preface ix

http://www.microsoft.com/mspress/books/5353.asp
http://www.cigital.com/books/sfi

x Getting Started with DevPartner Fault Simulator

Chapter 1

Installing DevPartner Fault
Simulator
� Minimum System Requirements

� Installing DevPartner Fault Simulator

� Installing DevPartner Fault Simulator SE

This chapter describes the supported platforms, and operating
development environments. It explains how to install the software.

Minimum System Requirements
The following table enumerates the system requirements and supported
operating and development environments for Fault Simulator.

Table 1-1. Minimum System Requirements, Supported Operating Systems and Environments

Processor Memory Disk Space Video Other

Pentium III 733 MHz

(1 GHz or faster
recommended)

512 MB 500 MB 1024 X 768,
16-bit color

CD or DVD
drive

Operating System Service Pack Edition Browser Internet
Information
Server (IIS)

Windows 2000 4 Professional,
Server,
Advanced Server

Internet Explorer
5.5

IIS 5.0

Windows XP
(32 bit)

2 Professional1 Internet Explorer
5.5

IIS 5.1

Windows Server 2003
(32 bit)

1 Standard,
Enterprise, Web

Internet Explorer
6.0

IIS 6.0
 1

1Home and Media Center Editions are not supported.

2If no IDE is present, Fault Simulator will install the application without the IDE
interface. If the .NET Framework is not installed, Fault Simulator will install .NET
Framework 1.1 SP1.

Note: Fault Simulator does not support Windows 9.x, Windows ME or
Windows NT operating systems, Windows 2000 Server Data Center,
and Windows XP hardware-specific editions. In addition, Fault
Simulator does not support Java, JavaScript or Visual J# in ASP.NET
applications.

Coexistence with Other Compuware Products

Fault Simulator integrates with Compuware TrackRecord 6.2 and coexists
with other Compuware DevPartner products, such as:

� DevPartner Studio 8.0 or later
� DevPartner SecurityChecker 1.0.1 or later
� Compuware TestPartner 5.3.0

Integrated
Development
Environment (IDE)2

Edition .NET
Framework
Version

IDE Service
Pack

Languages

Visual Studio .NET 2003 Architect
Professional

.NET Framework
1.1

Service Pack 1
(Compact
Framework
not supported)

None Visual Basic
.NET, Visual
C#, ASP.NET
technologies,
and native C++
(for
environmental
faults only)

Visual Studio 2005 Team Suite

Professional

Team Edition for
Software
Architects

Team Edition for
Software
Developers

Team Edition for
Software Testers

.NET Framework
2.0

None Visual Basic
.NET, Visual
C#, ASP.NET
technologies,
and native C++
(for
environmental
faults only)

Table 1-1. Minimum System Requirements, Supported Operating Systems and Environments (Continued)
2 Getting Started with DevPartner Fault Simulator

Installing DevPartner Fault Simulator
DevPartner Fault Simulator detects your system configuration and
installs the applicable software setup. If your system configuration does
not meet the minimum system requirements, the pre-installer will alert
you to the problem and exit from the installation.

Performing the Installation

To install DevPartner Fault Simulator:

1 Insert the product CD into your CD-ROM drive.
If you have autorun enabled, the setup runs automatically. If not,
open the Add or Remove Programs control panel, click Add New
Programs, and then click CD or Floppy.

Note: If you receive a message from the virus protection software installed
on your system, disable that software until Fault Simulator completes
installation.

2 Click Install DevPartner Fault Simulator.

3 Follow the on-screen instructions to perform the remainder of the
installation.

4 If necessary, click Configure a License to enter your license file
information.
See “New License Server Required for Concurrent Licenses” below for
more information.

Note: You can skip this step and use the 14-day evaluation instead.

5 Click Register Your Product to complete the online product
registration.

New License Server Required for Concurrent Licenses

DevPartner Fault Simulator 1.5 uses a new version of Compuware
Distributed License Management (DLM 4.0). To obtain concurrent
licensing, you must use the DLM 4.0 license server. For more information
on license installation, refer to the Distributed License Management License
Installation Guide (LicInst4.PDF) on the product CD.

Note: DevPartner Fault Simulator SE uses the same license as DevPartner
Studio 8.0.

To proceed, follow the instructions provided in your product packaging.
You can also submit your request for a license file by visiting:

www.compuware.com/license
Chapter 1�Installing DevPartner Fault Simulator 3

If you do not have a license file at the time of installation, you can install
DevPartner Fault Simulator as a 14-day evaluation.

Installing DevPartner Fault Simulator SE
DevPartner Fault Simulator SE contains a subset of DevPartner Fault
Simulator features. See “DevPartner Fault Simulator SE” on page 22 for
more information.

Performing the Installation

To install DevPartner Fault Simulator SE:

1 Insert the DevPartner Studio CD into your CD-ROM drive.

You will find the installation setup for DevPartner Fault Simulator SE
on the DevPartner Studio Professional Edition 8.0 CD. If you do not
have autorun enabled, use the Add or Remove Programs control
panel to install.

2 Follow the on-screen instructions to perform the remainder of the
installation.

3 Click Register Your Product to complete the online product
registration.

Upgrading to the Full Version

At any time, you can upgrade to the full DevPartner Fault Simulator 1.5
product. However, in order to install DevPartner Fault Simulator, you
must first completely uninstall DevPartner Fault Simulator SE. For details
on upgrading, choose All Programs > Compuware DevPartner Fault
Simulator SE > How to Upgrade to Fault Simulator. from the Start
menu.
4 Getting Started with DevPartner Fault Simulator

Chapter 2

Introducing DevPartner Fault
Simulator
� What Is Fault Simulation

� DevPartner Fault Simulator

� Using Fault Simulator in Visual Studio

� Using the Fault Simulator Standalone Application

� DevPartner Fault Simulator SE

This chapter will discuss how fault simulation enhances software testing.
It will introduce you to DevPartner Fault Simulator and its three
interfaces. The chapter will also contrast the full version with DevPartner
Fault Simulator SE, available in limited form in DevPartner Studio 8.0.

What Is Fault Simulation
Fault simulation provides a safe and reliable mechanism to simulate a
wide range of failures in a running application (i.e., programming errors,
network crashes, corrupt registry values, and improperly or unhandled
exceptions). It helps developers evaluate potential anomalies. Fault
simulation highlights possible weaknesses that can arise under diverse
circumstances. It focuses on what happens in the application after a
simulated fault occurs and how the application handles the fault
condition.

Fault simulation serves as a safe, non-intrusive alternative to typical
software testing:

� Helps to validate the robustness of a running application
� Tests the error handling capabilities in the code
� Assists quality assurance in regression testing to check the reliability

of the running program in various operating environments
 5

� Provides a better understanding of how software will behave under
adverse circumstances, without jeopardizing the software under test

� Helps to anticipate future application anomalies missed during tradi-
tional testing cycles, that could surface after deployment

Consider this example. Say that you want to evaluate how your
application withstands a network failure. You might physically
disconnect a cable from the network or you might manually force
excessive network traffic. These actions, while appropriate, could
introduce other unintended and catastrophic problems.

However, using fault simulation, you can artificially cause these failures
and then observe how your application handles the failed calls. This
approach achieves the same objectives without disrupting the
application under test or the operating environment.

Fault Simulation Enhances Software Testing

Undetected software bugs account for a substantial portion of software
development costs. Traditional testing methods attempt to catch as
many abnormalities in the code as possible. However, they inevitably
overlook hidden bugs that could undermine application performance.

Tip: See “Conventional
Testing” on page 30.

Traditional software testing can be inexact, unreliable, and costly to the
entire development process, with little return on investment. Developers
find it difficult to anticipate where bugs might occur, and when. They
shy away from manually causing faults that disrupt the application and
corrupt the debugging environment. Developers and testers alike are
reluctant to manually trace bugs from their origin to their ultimate error
handling.

Approximately one third of application code is dedicated to error
handling. However, only a small portion of that code is actually tested
prior to deployment. As a result, error handling code accounts for most
of the undetected defects in application code.

Software development teams have dedicated quality assurance resources
to testing and debugging code. Despite satisfactory success in catching
real-world problems in the code, they have been less effective in testing
error-handling code. Quality assurance technicians lack an easy,
repeatable, and safe method to generate faults within the testing and
debugging environment to uncover and fix defects.

Fault simulation provides an easy, repeatable, and safe alternative to
artificially generating failures in the operating environment. Fault
simulation helps you analyze, test, and debug error-handling code, by
safely simulating faults into the code and checking for the desired result.
6 Getting Started with DevPartner Fault Simulator

Using fault simulation, simulated faults help verify whether the program
handles the error as expected.

DevPartner Fault Simulator
DevPartner Fault Simulator uses fault simulation to mimic real-world
application errors. Fault Simulator helps developers and quality
assurance professionals simulate faults in a running program. They can
test an application's reaction to errors in a predictable and repeatable
environment. Using actual simulation results, they can verify the
application's ability to tolerate a variety of failure conditions prior to
deployment, avoiding costly production errors afterwards.

Fault Simulator helps developers and quality assurance professionals by:

Tip: See “Fault
Descriptors” on page 10
to learn about the two
types of fault descriptors.

� Simulating faults:

� You choose a fault descriptor on the DevPartner Fault Simulator
window.

� You can configure a .NET Framework fault, either on a source
statement or independent of location in the solution.

� You can configure an environmental fault to mimic real-world
failures.

Tip: See “Configuring
Fault Simulator to
Capture Error Handler
Data” on page 49 for
examples of fault
simulation results.

� Generating results:

� Fault Simulator displays ongoing activity as the faults are simu-
lated and handled.

� Fault Simulator provides details results on simulated faults fol-
lowing the session.

� Providing troubleshooting tips:

� Fault Simulator traces calls back to the point where a fault
occurred and the error was handled.

� Fault Simulator records program functions, stack tracing, and
other fault details to aid troubleshooting.

Three Ways to Use Fault Simulator

You can test the error handling in your code in three interfaces.

Fault Simulator in Visual Studio

You can use Fault Simulator in Visual Studio to test and debug error
handlers in managed code. Supporting hundreds of .NET Framework
Class Library methods, Fault Simulator can simulate a wide range of
Chapter 2�Introducing DevPartner Fault Simulator 7

exceptions defined for those methods. Fault Simulator can also simulate
environmental faults in running applications. Fault Simulator simulates
faults without disrupting the debugger, operating system, or the IDE.

Fault Simulator Standalone Application

You can use Fault Simulator as a standalone by accessing it from the Start
menu. With Fault Simulator, you can create and configure new
environmental faults or modify existing .NET Framework faults
(originally created in the IDE) to simulate error conditions in a running
program.

Using the standalone application, quality assurance professionals can
validate applications under development. Quality assurance can use fault
sets configured in development for regression testing of the running
program. They, in turn, can redirect simulation results back to
development for error handling modifications.

Fault Simulator Command Line Interface

You can use Fault Simulator to automate fault simulations on projects
that do not require user intervention. From the command line, you can
execute scripts to automate regression testing. The command line
supports any fault sets previously configured in Fault Simulator. Results
generated from the command line are available for viewing in the Fault
Simulator user interface.

From the command line, use the dpfs.exe command with one or more
of the following command line options. Note that /faultset is required
along with a choice of /application, /COM+, or /url.

>dpfs /faultset:<filespec>

/application:<exepath> | /COM+:<component> | /url:<vroot>
[/results:<filespec>
[/launch | /launch:<exepath>] [/arguments:<"args args">]
[/startin:<folderpath>] [/coverage]
[/help | /help:<keyword> | /? | /?:<keyword>]

Note: See Figure 3-14 on page 43 for guidance on automating Fault
Simulator from the command line.

Refer to the DevPartner Fault Simulator Command Line online help for
complete information about these command line options.
8 Getting Started with DevPartner Fault Simulator

Supported Features in Each Interface

Features vary depending on how you use Fault Simulator. The following
table summarizes these supported features:

Fault Simulator simulates faults without disrupting the debugger,
operating system, or the IDE. Fault Simulator records all program
activities pertaining to how faults were handled in the source code. Fault
Simulator displays the information as the simulation proceeds, with the
final results available in a results file. You can view the results file
immediately, or save to a user-defined file for later review. Fault Simulator

Table 2-1. Supported Features in DevPartner Fault Simulator

Feature In Visual
Studio

From the
Standalone

From the
Command
Line

Simulate faults in application code Yes Yes Yes

Simulate faults in Visual Studio Yes No No

Monitor the designated startup
project

Yes No No

Add a .NET Framework fault to a
source statement

Yes No No

Add a .NET Framework fault indepen-
dent of location

Yes No No

Configure settings for a new .NET
Framework fault

Yes No No

Modify an existing .NET Framework
fault

Yes Yes No

Add an environmental fault Yes Yes No

Modify an existing environmental
fault

Yes Yes No

Review collected call stack and error
handler simulation details

Yes Yes No

View source code associated with a
fault instance configured at a specific
source statement

Yes No No

Execute scripts to automate fault sim-
ulations from the command line

No No Yes

Use fault sets in command line batch
processing

No No Yes
Chapter 2�Introducing DevPartner Fault Simulator 9

also lets you navigate to the original source statement, if available,
helping you to troubleshoot error handling anomalies.

Fault Descriptors

Fault Simulator uses the concept of fault descriptors to define fault types it
can simulate. Fault Simulator supports the following fault descriptors:

� NET Framework Faults
� Environmental Faults

Fault Simulator evaluates properties to determine whether to simulate a
fault. A fault descriptor includes one or more properties.

Note: See Table 4-1 on page 54 for more information on properties.

NET Framework Faults

.NET Framework fault represents a specific exception that a method call
of a .NET Framework Class Library class can throw. You configure .NET
Framework faults to test the exception handling in your application
code.

Fault Simulator supports two types of .NET Framework faults. You can
add a .NET Framework fault:

� To a source statement that contains a .NET Framework Class Library
method call with an exception that can be simulated during a fault
simulation.

� That is simulated independent of location.

Fault Simulator supports .NET Framework faults based on the following
.NET Framework Class Library namespaces:

� System
� System.Collections
� System.Collections.Specialized
� System.Data
� System.Data.Common
� System.Data.SqlClient
� System.IO
� System.Net
� System.Net.Sockets
� System.Runtime.Remoting
� System.Runtime.Remoting.Channels
� System.Runtime.Remoting.Messaging
� System.Runtime.Remoting.Proxies
� System.Runtime.Remoting.Services
� System.Text
10 Getting Started with DevPartner Fault Simulator

Note: Refer to the DevPartner Fault Simulator online help in Visual Studio
for more information on .NET Framework faults.

Environmental Faults

Environmental faults let you validate the robustness of your monitored
program by simulating external dependencies that your application
requires. For example, you might configure a network offline fault to
affect network-based method calls, such as connecting to a remote server,
without affecting other applications running on the system.

The following table describes the environmental fault categories
provided in Fault Simulator.

Note: Refer to the DevPartner Fault Simulator online help for more
information on environmental faults.

Fault Sets

Fault Simulator lets you create and use fault sets, collections of saved fault
descriptors used in fault simulation. Fault Simulator displays the current
fault set contents in the DevPartner Fault Simulator window.

You can:

� Load a previously configured fault set file
� Save faults to a new file (.dpfsfault)
� Pass uniquely named fault set files back and forth between

development and quality assurance groups

You can use a fault set, created in Visual Studio, in the Fault Simulator
standalone application or vice versa. You can also execute a script and
reference a fault set file from the command line.

Table 2-2. Environmental Fault Categories

Fault Category Fault Description

COM Generated as a result of calls to the COM function call

Disk I/O Related to file and directory access

Memory Associated with memory management failures

Network Associated with network failures

Registry Related to any methods or functions that use Registry services
Chapter 2�Introducing DevPartner Fault Simulator 11

Fault Simulation with Coverage Analysis

You can use Fault Simulator with DevPartner coverage analysis to collect
coverage and fault simulation data during the same session.

Required: DevPartner Studio must reside on the same system as Fault
Simulator to perform coverage analysis with fault simulation.

Tip: Refer to the
Coverage Analysis online
help in DevPartner Studio
for more information.

DevPartner Studio provides coverage analysis to help developers and test
engineers thoroughly test an application’s code. DevPartner Studio can
collect coverage data for managed code applications, including Web and
ASP.NET applications. The coverage analysis feature gathers coverage data
for applications, components, images, methods, functions, modules, and
individual lines of code. The coverage session file uses the .dpcov file
extension.

Coverage analysis is available in Fault Simulator if the following
conditions are met:

� You have DevPartner Studio 8.0 or later installed on the same system.
� You have configured at least one fault descriptor.
� Another fault simulation is not already in progress.
� You have loaded a solution.1

� At least one supported startup project meets the project require-
ments. 1

1 These items apply to Fault Simulator in Visual Studio only. Consult the DevPartner
Fault Simulator online help in Visual Studio for more information.

The following example shows how Fault Simulator combines a fault
simulation session with coverage analysis.
12 Getting Started with DevPartner Fault Simulator

Figure 2-1. Example of Coverage Analysis with a Fault Simulation in Visual Studio

In this example, the developer used the Disk I/O insufficient write-file
privileges environmental fault descriptor to cause the File.Create() API
to fail.

Tip: Consult
Understanding
DevPartner for more
information on code
coverage analysis.

Upon the completion of the fault simulation, Fault Simulator displays a
results window (shown to the left in the previous illustration) with call
stack and error handler data shown. Concurrently, the coverage results
reveal whether applications and components have been thoroughly
exercised under test conditions.
Chapter 2�Introducing DevPartner Fault Simulator 13

Using Fault Simulator in Visual Studio
The first section gets you started using Fault Simulator in Visual Studio.
The second section presents a user scenario.

Quick Start

This quick start guides you on using DevPartner Fault Simulator in Visual
Studio. For more information, consult the DevPartner Fault Simulator
online help in Visual Studio.

Tip: See “Minimum
System Requirements” on
page 1 in Chapter 1,
“Installing DevPartner
Fault Simulator”.

1 From Visual Studio, follow standard procedures to open a solution.

If the DevPartner Fault Simulator window is not already open, click
the DevPartner Fault Simulator tab (left margin) to display.

Figure 2-2. Example of DevPartner Fault Simulator Window in Visual Studio

Tip: Consult the
DevPartner Fault
Simulator online help in
Visual Studio for more
information.

2 Ensure that you have designated a valid startup project in your
solution.

a Check that this project is a supported project type.

b Check that it meets the requirements for fault simulation.

c Check that you have properly configured the solution properties
for monitoring.

3 Review the current fault list.
14 Getting Started with DevPartner Fault Simulator

4 Select the check box of any fault descriptors you want activated
during the next fault simulation.

5 Optionally add and configure a new fault.

6 Click the Start with Fault Simulator button.

This button is enabled as long as you have selected and properly
configured at least one fault descriptor and also met the requirements
listed in step 2.

This action also launches the startup project targeted for fault simula-
tion.

Note: If you designated more than one startup project in your solution, the
Choose Project to Simulate dialog box will prompt you to pick a project,
a requirement to start the fault simulation.

7 View current fault simulation details as they appear on the
DevPartner Fault Simulator window.

8 Click End Simulation to stop the current fault simulation.

Final results will immediately appear in a separate window.

Required: This action does not automatically stop the target program. You
must terminate the process separately. The fault simulation will
automatically stop if the targeted program terminates.

9 View the details in the results window.

Tip: Refer to Chapter 4,
“Using Fault Simulator to
Evaluate Error Handlers”
for more details about
results.

You can view simulated faults, specified faults, or system informa-
tion, as depicted in the next example. When you select a fault on the
Simulated Faults pane, you can access its Error Handlers, Call
Stack, or Properties views.

A Fault Simulator Walk-Through

As software development lead, you want to verify the exception handling
for the .NET Framework method DefineDynamicAssembly. You decide to
simulate the exception System.ArgumentNullException when a specific
source statement executes and proceed with these steps:

From Visual Studio and with the desired solution open, you set properties
for the startup project. You right-click on the source statement in the
startup project that calls the DefineDynamicAssembly method.

To help you find the correct source line, Fault Simulator highlights any
source statements with at least one supported method, such as in the
following example.
Chapter 2�Introducing DevPartner Fault Simulator 15

Figure 2-3. Example Showing Source Highlighting

Tip: Consult the
DevPartner Fault
Simulator online help in
Visual Studio for details
on configuring a new
.NET Framework fault.

From the context menu on the source window, you select Add .NET
Framework Fault. The Add .NET Framework Fault dialog box (Figure 2-
4 on page 17) displays the specific information related to that fault
descriptor.

You then select other configuration settings for the fault descriptor.

To track DefineDynamicAssembly elsewhere in the solution, you create a
location-independent fault descriptor to be simulated any time your
source code calls that method.

You click the , toolbar button on the DevPartner Fault Simulator
window to display Add .NET Framework Fault dialog box.

Hover over the desired
source line for the fault
simulation tooltip.

Fault Simulator highlights source that
contains a supported method.
16 Getting Started with DevPartner Fault Simulator

Figure 2-4. Example of Add .NET Framework Fault Dialog Box

You proceed to configure the new fault descriptor. You decide not to
specify an optional condition (delay time or skip count) or a description
for this fault descriptor.

You verify the remaining settings on the DevPartner Fault Simulator
window.

Configuration settings
(Argument, condition, and description are
Configuration settings
(Argument, condition, and description are optional.)
Chapter 2�Introducing DevPartner Fault Simulator 17

Figure 2-5. Example Shows List of Fault Descriptors

Once satisfied, you click the Start with Fault Simulator button. This
action automatically launches the target program.

You view the ongoing fault simulation details appearing in the
DevPartner Fault Simulator window. You observe that Fault Simulator
simulates the exception at the specified source location.

Satisfied with the current outcome, you click End simulation. The
Results window automatically displays a summary of the final simulation
details.

You stop the target program. You use the information in the results
window to troubleshoot problems with your error handling code.
18 Getting Started with DevPartner Fault Simulator

Using the Fault Simulator Standalone Application
The first section provides steps gets you started using the Fault Simulator
standalone application. The next section provides an example of a user
scenario.

Quick Start

This section shows you how to start using the Fault Simulator standalone
application.

1 Start Fault Simulator from the Start menu by choosing Programs >
Compuware DevPartner Fault Simulator > Fault Simulator.

The DevPartner Fault Simulator window automatically appears.

Figure 2-6. DevPartner Fault Simulator Window in Fault Simulator Standalone

1 Select the simulation target by browsing for an executable, COM+
component, or Web application.

Tip: For more information
on configuring the fault
simulation and adding,
modifying, enabling, or
disabling faults, consult
the DevPartner Fault
Simulator online help.

2 Determine the fault descriptors you want to use during the next
simulation.

Note: You can create and configure a new environmental, but you can only
modify an existing .NET Framework fault.
Chapter 2�Introducing DevPartner Fault Simulator 19

3 When ready, click the Start Simulation button.

This button is disabled if you have not properly configured at least
one fault descriptor.

4 Start the target program.

The DevPartner Fault Simulator window reminds you if you forget.

5 View current activity during monitoring.

The DevPartner Fault Simulator window displays current fault
simulation details.

6 Click the End Simulation button.

Note: Fault Simulator automatically stops monitoring if the targeted program
terminates.

7 View the details in the results window.

You can view simulated faults, specified faults, or system informa-
tion, as shown next. When you select a fault on the Simulated Faults
pane, you can access its Error Handlers, Call Stack, or Properties
views.

A Fault Simulator Walk-Through

As quality assurance lead, you need to test the error handling of the
application under development, and report deficiencies back to
development. The software development team wants you to test possible
registry anomalies in the executable.

You launch the Fault Simulator standalone application from the Start
menu on the desktop.

From the DevPartner Fault Simulator window, you click Add to create a
new environmental fault.
20 Getting Started with DevPartner Fault Simulator

Figure 2-7. Example of Add Environmental Fault Dialog Box

Note: This dialog box is the same as the one that appears when using Fault
Simulator in Visual Studio.

You proceed to configure the new fault descriptor. You decide not to
specify an optional condition (delay time or skip count) or a description
for this fault descriptor. Once satisfied, you click the Start Simulation
button. The DevPartner Fault Simulator window begins the simulation
and prompts you to start the target application.

You start the target executable. Fault Simulator simulates the registry
fault occurrence in the DevPartner Fault Simulator window. You click
the End Simulation button and also stop the executable. Fault Simulator
automatically displays the result window.

Configuration settings
(Condition and description are optional.)
Chapter 2�Introducing DevPartner Fault Simulator 21

Figure 2-8. Example of Results Window Showing Call Stack Data Pertaining to Fault

You view the details in the results window. Fault Simulator displays
results on simulated faults, specified faults, and system information. In
this example, Fault Simulator provides call stack and properties views for
the registry fault in question.

DevPartner Fault Simulator SE
DevPartner Fault Simulator SE contains a subset of DevPartner Fault
Simulator features. The following table differentiates functionality in the
full version versus SE:

Table 2-3. Fault Simulator Full Versus SE

Functionality Full
Version

SE
Version

Availability of Fault Simulator standalone application
and command line interface

Yes No

Ability to add or modify source-based .NET Framework
faults

Yes Yes
22 Getting Started with DevPartner Fault Simulator

Tip: See Table 2-1,
Supported Features in
DevPartner Fault
Simulator, on page 9 for
information about the full
functionality.

DevPartner Fault Simulator SE must accompany DevPartner Studio 8.0 on
the same system to perform coverage analysis with fault simulation. See
“Fault Simulation with Coverage Analysis” on page 12 for more
information.

Ability to add or modify environmental faults Yes No

Saving of fault settings associated with .NET Framework
or environmental faults created in a solution

Yes No

Use of arguments, conditions, and/or parameters Yes No

Ability to save faults Yes No

Ability to load faults Yes No

Table 2-3. Fault Simulator Full Versus SE (Continued)

Functionality Full
Version

SE
Version
Chapter 2�Introducing DevPartner Fault Simulator 23

24 Getting Started with DevPartner Fault Simulator

Chapter 3

Improving Software Quality
Through Fault Simulation
� Software Development Objectives

� Challenges to Software Quality

� Software Vulnerabilities

� Alternatives to Achieve Software Quality

� Three-Part Solution to Achieve Software Quality Using Fault
Simulator

� Fault Simulator — Improving Software Quality

This chapter will contrast goals that software development teams share
with the challenges they face. It will explore software vulnerabilities that
affect application stability, along with alternatives that promote software
quality. Finally, the chapter will present a three-part approach to improve
software quality using the fault simulation capabilities in DevPartner
Fault Simulator.

Software Development Objectives
Software development teams pursue similar objectives. For example, they
strive to:

� Analyze and eliminate all software vulnerabilities
� Adapt to changing internal and external conditions
� Address interoperability, compatibility, and portability constraints
� Keep pace with changing technologies
� Identify and fix all possible software bugs prior to release to market

Today’s applications should run reliably in different operating
environments. However, in reality, conflicts could occur if applications
are not tested thoroughly prior to deployment.
 25

Internal and external factors help applications perform as expected.
Some of these factors include:

� Data integrity
� Application integrity
� Data recovery

With data integrity, the application can gracefully handle unexpected
incidences of invalid data. Data integrity protects against:

� Errors that result from bad data entered by a user
� Errors generated when bad data passes between computers or

networks
� Errors caused by external forces, such as viruses or spyware
� Hardware failures, such as disk crashes

Application integrity means that an application will not stop running for
unknown reasons, such as from changing conditions in the operating
system. Application integrity ensures that the deployed application can
successfully complete its tasks and return to its normal state. For
example, if an application transaction only partially completes, this
malfunction could place the application in a compromised state.

Data recovery incorporates mechanisms that salvage invalidated or lost
data, such as those caused by disk crashes or virus attacks. Special
utilities, either external or internally built into the application, can help
restore the affected data.

Software developers can achieve these objectives using various testing
methodologies, such as those highlighted in “Conventional Testing” on
page 30. However, they can also address impediments to software quality
directly using alternate approaches, such as those discussed in “Non-
Traditional Testing” on page 30 and “Approaches for Testing
Environmental Conditions” on page 31.

Challenges to Software Quality
Software development confronts many challenges to software quality,
including:

� Product instability
� Explosion of New Technologies
� Complexities of the inner workings of APIs and system services
26 Getting Started with DevPartner Fault Simulator

Product Instability

Product instability can create bottlenecks to future product development
in several ways. For example, unstable products:

� Disrupt application performance, affecting customer perception
� Place additional, unintended burdens on the software development

and quality assurance (QA) organizations
� Force software developers to fix unanticipated software bugs and

quality assurance to retest them
� Prevent developers from researching and developing new

technologies

Application defects become more costly to debug and repair after a
product is released. Meticulous quality assurance testing conducted
throughout the production phase, can help minimize the risk of out-of-
bounds costs resulting from defects revealed after market release. The
Gartner Group recently reported that “the average cost of unplanned
downtime for a mission-critical application is $100,000 per hour.”1
1Gartner Application Development Summit Presentation: “Software Quality in a
Global Environment: Delivering Business Value.” by Theresa Lanowitz. September
2004.

Explosion of New Technologies

With the rapid advancement of the Web, new knowledge has proliferated
at breakneck speed. These quantum leaps in technology demand never-
ending mastery of new techniques. In addition, software development
teams might not have ready access to the necessary subject matter
consultants on the more subtle complexities of the applicable
technology. Teams might also unwittingly underestimate the full extent
of design requirements.

Complexities of the Inner Workings of APIs and System Services

Managing the complexities of the inner workings of APIs and system
services poses another challenge for software development. For example,
code calling into an API that checks for network connectivity might lack
sufficient error handlers. If code is not built with proper error handling,
an application might generate an unresponsive user interface or worse,
an abrupt shutdown, placing that application and the operating
environment at risk. A sufficient working knowledge about
implementing effective error-handling code goes a long way to ensuring
software reliability.
Chapter 3�Improving Software Quality Through Fault Simulation 27

Software Vulnerabilities
Software problems can wreak havoc on today’s applications and
compromise stability. What developer does not dread the following
symptoms?

� Blue screen crash
� System hang or freeze
� Lost data
� Failure of a critical process
� Network down

What software vulnerabilities might cause such symptoms to occur?
These weaknesses stand out:

� Logic errors

Logic errors can generate invalid or unpredictable results, perhaps
stemming from a misinterpretation of the intended workflow. While
not fatal, logic errors can cause erratic behavior.

� Uninitialized data

Uninitialized data can cause intermittent problems in the applica-
tion. If the program stores data in a location that was not properly
initialized, the subsequent data can become corrupted. Such dirty
data can lead to instability in the form of sporadically invalid results
or erratic behavior.

� Invalid data

The underlying source code might not be able to process invalid
external inputs (i.e., from a user or the operating environment).
Failure to include provisions in the code to validate data can destabi-
lize the program.
28 Getting Started with DevPartner Fault Simulator

Layers of Application Vulnerability

The following illustration depicts three layers of application
vulnerability:

Figure 3-1. Layers of Application Vulnerability

Each layer (client, application logic, and database server) has the
potential of impacting another. For example:

� Data passing from the client to the server might become corrupted,
or the data might pass in a format or a size that the server cannot
process properly.

� Client-side data might be susceptible to external security attack or
unwanted manipulation.

� A network offline condition could prevent the client from integrating
properly with the application logic.

� An application might fail to retrieve data from a missing directory on
the database server.

� A missing or corrupted registry key might prevent the application
from accessing a software program or the Windows operating
environment.

Client

Business Logic
Middle Tier

Database
Server

Network

Web services

Application code

COM+ components
Chapter 3�Improving Software Quality Through Fault Simulation 29

Alternatives to Achieve Software Quality
Engineering teams (software developers and quality assurance alike) can
work together to achieve software quality using various methodologies.

Conventional Testing

In conventional testing, engineering performs a variety of tests on
predictable areas in the application to ensure expected outcomes. The
following table summarizes common forms of testing:

Testing results help reviewers assess the risk and determine the bugs to
fix, given that not all bugs can realistically be fixed. Engineering should
consider fixing bugs that could negatively affect customer perception or
hinder software reliability, even if rare. Engineering might elect to delay
fixes for bugs that are bothersome, but not damaging to the application
or customer perception.

Non-Traditional Testing

Non-traditional testing approaches include (but are not limited to):

� Stress testing
� Load testing

Stress Testing

Stress testing involves running an application and then monitoring
program behavior under adverse, atypical conditions. To ensure that an
application can reliably handle adverse scenarios, quality assurance
should test the application under adverse conditions. Stress testing

Table 3-1. Common Forms of Testing

Type of
Testing Tester(s) Description

Unit Software developer Isolates testing to specific code sections in
the application

Integration Software developer

Quality assurance
engineer

Verifies that different areas of the applica-
tion work properly together

Functional Quality assurance
engineer

Executes certain user functions in the appli-
cation and checks for the expected result

Regression Quality assurance
engineer

Runs tests to ensure that the latest fixes in
the software safely correct the problem
30 Getting Started with DevPartner Fault Simulator

executes the application under more demanding conditions, and in some
cases under conditions that the application might never encounter. Stress
testing evaluates how an application behaves as conditions become more
acute. Stress testing tries to force the application to fail in order to
observe how (or if) the application can recover.

Load Testing

Load testing assesses an application’s tolerance to increased load (i.e.,
data input, transaction processing). Load testing analyzes the scalability
and load balancing capabilities of an application. It attempts to cause
failures that help an application’s ability to perform reliably.

Contrasting Load and
Stress Testing

Load testing and stress testing are not synonymous. Stress testing
deliberately stresses an application, subjecting it to unreasonable
conditions at extreme levels. Load testing measures software reliability by
subjecting an application to a clearly defined, statistical load, such as to
the maximum level that the application is specified to handle. Unlike
stress testing, load testing does not push the application to its extreme
levels.

Approaches for Testing Environmental Conditions

How do you safely force an API to fail in order to evaluate the
application’s response? Can you harmlessly alter the operating
environment without destabilizing the application or the environment?
Let’s consider manual testing versus virtual testing, and see how they
relate to robust error handling.

Manual Testing

Manual testing can be impractical and most likely harmful. For example,
physically unplugging a network cable to test a network offline condition
will disrupt the application and the operating environment. In this
scenario, you will not be able to control the test variables. Also, if you
wanted to repeat the testing, you probably will not be able to replicate
the test exactly. On the other hand, if you left the API untested, you
would have no way of knowing if it would fail in the released product.

Virtual Testing
Tip: See “What Is Fault
Simulation” on page 5.

With virtual testing, you subject the application to artificial errors
without causing harm to the application or to the operating
environment. Unlike manual testing, you do not physically change
environmental parameters. However, you can virtually test how an
application performs under various environmental conditions via fault
Chapter 3�Improving Software Quality Through Fault Simulation 31

simulation. With fault simulation, you run routines that artificially
generate error conditions so that you can observe exactly how the
application responds while it executes.

Incorporation of Robust Error Handling
Tip: See “Well-
Constructed Error
Handlers Promote Product
Reliability” on page 45.

Software developers should incorporate robust error-handling code into
the application code in order to ensure software quality. Error handlers
allow the application to function responsibly by:

� Recovering gracefully from an unexpected condition
� Terminating without losing essential data
� Providing useful feedback to the user

Error handlers monitor and respond appropriately to external factors,
such as interaction with system services, third-party applications, the
operating system, and the installed environment. Proper error handling
means managing adverse, unforeseen conditions gracefully without
disrupting the application or the operating environment. Developers
should build error handlers into the source code to ensure that the
application can respond appropriately to a catastrophic event. Writing
robust error handling code, followed by effective testing of the error
handling, should become an early and integral part of the software
development process, not an afterthought.

Three-Part Solution to Achieve Software Quality Using Fault
Simulator

This section presents a three-part approach that illustrates how to
improve software quality using the fault simulation capabilities with
Fault Simulator. This approach incorporates white box, black box, and
automated testing.

Figure 3-2. Three-Part Solution to Software Quality

White Box Testing Software developers perform white box testing. In white box testing, the
developer tests the source code throughout the development cycle.

testing

Automated testing

Software
quality

White box
testing

Black boxWhite box
testingtesting

Software

testing

Automated testing

Software
quality

White box
testing

Black boxWhite box
testingtesting

Software
32 Getting Started with DevPartner Fault Simulator

White box testing focuses on the inner workings of the source code. It
verifies program logic from the inside out. It checks how the application
handles invalid or non-existent data and bad pointers. You can
complement your white box testing using Fault Simulator in Visual
Studio.

Note: See “White Box Testing Using Fault Simulator in Visual Studio” on
page 33.

Black Box Testing Quality assistance organizations perform black box testing. Black box
testing seeks out bugs, such as user interface anomalies or problems with
data handling (i.e., input or output, database problems). It also helps QA
verify customer requirements outlined in the company’s engineering
technical specification.

In black box testing, quality assurance engineers run tests that focus on
specific environmental conditions to ensure application stability. Black
box testing can be a prerequisite for final acceptance testing. You can
complement your black box testing using the Fault Simulator standalone
application.

Note: See “Black Box Testing Using the Fault Simulator Standalone” on
page 38.

Automated Testing In automated testing, QA engineers and software developers create scripts
that test how the application handles environmental fault conditions.
QA and development can run tests geared to address their unique
concerns. You can perform automated testing using Fault Simulator from
the command line.

Note: See “Automated Testing Using Fault Simulator from the Command
Line” on page 43.

The sample code snippets appearing in the following sections, although
simple, will demonstrate the concepts presented.

White Box Testing Using Fault Simulator in Visual Studio
Tip: See “Structured
Exception Handling” on
page 47.

As a developer, you have written an application that uses the .NET
Framework. You have incorporated .NET Framework Structured
Exception Handling methodology into your application code. You have
also written additional error-handling code to catch and handle error
conditions that might be generated within the application itself or the
surrounding environment.

After you conduct unit testing on different areas in your code to get
immediate feedback that your application code integrates properly, you
perform fault simulation testing. The following procedure outlines the
tasks you perform using Fault Simulator:
Chapter 3�Improving Software Quality Through Fault Simulation 33

Tip: See “Using Fault
Simulator in Visual
Studio” on page 14 for a
quick start.

1 You want to uncover any exception handling problems that might
exist in your application code. From Visual Studio, you open the
applicable solution.

2 In the source window, Fault Simulator identifies a try-catch code
block that includes a supported .NET Framework Class Library
method.

Figure 3-3. Highlighted Source Containing Supported Method with Tooltip

3 You add a new .NET Framework fault to test the exception handling
at that location.
34 Getting Started with DevPartner Fault Simulator

Figure 3-4. Context Menu to Add New .NET Framework Fault

4 From the Add .NET Framework Fault dialog box, you choose to
throw System.IO.IOException and then start the simulation.

Figure 3-5. Selecting Exception for Supported .NET FCL Method
Chapter 3�Improving Software Quality Through Fault Simulation 35

5 During the session, Fault Simulator throws the designated exception,
automatically ending the session and stopping the executable.

6 You review the results. You see that two catch blocks in your code did
not handle the exception.

Figure 3-6. Error Handler View Shows Exception Was Not Properly Handled

7 You look at the Call Stack pane in the results window that shows the
entire stack where the exception was or was not thrown. You trace up
the method calls to troubleshoot the code.

Figure 3-7. Call Stack View Lets You Trace Called Methods

8 You double-click on one of the unsuccessful catches in your code
(shown in Figure 3-6 on page 36) to view the specific source. You
conclude that you need to add a catch to handle the exception in
that code block.
36 Getting Started with DevPartner Fault Simulator

Figure 3-8. Changes to Code Deduced from Fault Simulation Results

9 You run another fault simulation with the same configuration. You
want to verify that you corrected the problem revealed during the
first session.

10 This time, following the session, you see that your code change
worked. You noted the location in your source code where the
exception has caught.

Figure 3-9. Fault Simulation Results Shows Location of Handled Exception

11 You save the original fault set and the subsequent, successful results
to disk.

Shows location
of handled
exception
Chapter 3�Improving Software Quality Through Fault Simulation 37

12 You conduct similar tests on other areas in your code where you
suspect similar exception handling vulnerabilities. You use Fault
Simulator to pinpoint exactly where in the code you have
insufficient or non-existent error handling code.

Black Box Testing Using the Fault Simulator Standalone

As a QA engineer, you want to test that the developed application
functions reliably under a variety of negative conditions. You know that
physically causing environmental faults (such as unplugging a network
connection or altering a registry key) could detrimentally disrupt the
application under test. Moreover, you do not want such physically-
imposed environmental fault conditions to adversely disturb other
applications that might need to run on the same system.

Therefore, after you complete your standard QA test procedures, you test
the application’s tolerance to simulated fault conditions. The following
procedure outlines the tasks you perform using the Fault Simulator
standalone application:

Testing for Unintended Regression
Tip: See “Using the Fault
Simulator Standalone
Application” on page 19
for a quick start.

1 From the Fault Simulator standalone application, you load the .NET-
based fault set supplied by software development and start a fault
simulation on the application.

2 Following the session, you look at the results and compare them to
the results that the developer provided to you from his tests in Visual
Studio. You confirm that regression has not occurred since the
developer originally tested that aspect of the application code.
38 Getting Started with DevPartner Fault Simulator

Figure 3-10. Results in Standalone Confirm No Regression Occurred

Testing Various Environmental Conditions

1 You test how the application handles a missing file condition.
Because you hesitate to physically delete the target file, you create
and configure a Disk I/O environmental fault descriptor, Missing file,
and then run the simulation.

Results from Visual Studio

Matching results
from standalone
Chapter 3�Improving Software Quality Through Fault Simulation 39

Figure 3-11. Configuring Missing File Environmental Fault

2 Following the conclusion of the session, you see that Fault Simulator
simulated the designated fault condition. The Properties view
confirms your original fault settings, while the Call Stack view gives
method call stack details. You also conclude that the artificially
missing file did not upset the application’s normal operation.
40 Getting Started with DevPartner Fault Simulator

Figure 3-12. Missing File Properties and Call Stack Details
Chapter 3�Improving Software Quality Through Fault Simulation 41

3 Next, you test how the application handles a missing registry value.
Again, because you do not want to physically change settings in the
Registry Editor, you create and configure a Registry environmental
fault descriptor, Missing value. You run the fault simulation.

4 Following the session, you observe that the application did not crash
or behave unfavorably when it encountered the missing registry
value fault condition.

5 You look closely at the Call Stack view in the results window. Fault
Simulator identifies where in the underlying code the application
handles the registry condition.

Figure 3-13. Example Showing Missing Registry Value Results

6 You save the fault set and results files and direct them back to the
software developer so that he can run the test from the inside out to
view the actual source referenced in those results.

7 You conduct additional tests on other environmental conditions that
might also impact the application’s performance, such as:

a You run a fault simulation on a Network offline fault condition
to test how the application reacts without physically disconnect-
ing the network cable.

b You run a fault simulation on a Virtual memory allocation limit
fault condition to test if the application can sustain itself when it
consumes the allocated virtual memory.
42 Getting Started with DevPartner Fault Simulator

Automated Testing Using Fault Simulator from the Command Line

You plan to run automated testing on applications under development.
To that end, you construct a script (using the following template as a
model).

Note: Fault Simulator can execute fault simulations on Windows, console,
and Web applications, as well as COM+ components. Fault Simulator
also allows the testing of several instances of the same application, as
long as each instance is unique.

Figure 3-14. Template to Automate Fault Simulator From Command Line

The next day, you launch the Fault Simulator standalone application and
open results generated from the command line.

You repeat the nightly fault simulation tests to check for any regression
with each round of changes from software development.

<job id="DevPartnerFaultSimulatorAutomation">

<script language="JScript">

wsh = new ActiveXObject("WScript.Shell");

wsh.Run("Dpfs /f:<path>FaultSet.dpfsfault /a:<path>ConsoleApplication.exe
/r:<path>ResultFileName.dpfs

/l:<path>ConsoleApplication.exe", 1);

//After test is complete, exit target application so DPFS.exe can exit and generate results

WScript.Sleep("Appropriate Duration");

wsh.Run("Dpfs /f:<path>FaultSet.dpfsfault /a:<path>WindowsApplication.exe
/r:<path>Results.dpfs

/l:<path>WindowsApplication.exe", 1);

//After test is complete, exit target application so that DPFS.exe can exit and generate
results

WScript.Sleep("Appropriate Duration");

//Stop target COM+ server

wsh.Run("Dpfs /f:FaultSet.dpfsfault /com+:COM+Component /r:<path>Results.dpfs

/l:<path>COM+ClientApplication.exe", 1);

//Restart target COM+ server. After test is complete, stop target COM+ server so DPFS.exe can
exit and generate results

WScript.Sleep("Appropriate Duration");

wsh.Run("Dpfs /f:<path>FaultSet.dpfsfault /u:http://localhost/WebSite1/Default.aspx

/r:<path>Results.dpfs /l:http://localhost/WebSite1/Default.aspx", 1);

//After test is complete, run IISReset so DPFS.exe can exit and generate results

WScript.Quit()

</script>

</job>
Chapter 3�Improving Software Quality Through Fault Simulation 43

Fault Simulator — Improving Software Quality
Software developers strive to build and deploy applications that function
reliably regardless of changing conditions. Software will never be perfect.
However, software developers and quality assurance alike must make
every effort to uncover and eliminate all possible software vulnerabilities.

Fault Simulator provides that solution. Throughout the development life
cycle, Fault Simulator helps developers and quality assurance engineers
ensure that critical applications can handle all sorts of adverse, atypical
environmental conditions. Fault Simulator helps developers build
applications that respond to unexpected internal or external failures
without causing catastrophic outcomes. Where software vulnerabilities
exist, Fault Simulator offers the tools to zero in on the problem areas and
the means to correct them.
44 Getting Started with DevPartner Fault Simulator

Chapter 4

Using Fault Simulator to
Evaluate Error Handlers
� Well-Constructed Error Handlers Promote Product Reliability

� Configuring Fault Simulator to Capture Error Handler Data

� Evaluating Error Handling Results

� Fault Simulator Integral to Best Practices

This chapter will review different error handler approaches, including a
detailed overview of Structured Exception Handling. The chapter will
then show how Fault Simulator helps you evaluate the robustness of the
error handlers in your code.

Well-Constructed Error Handlers Promote Product Reliability
Errors take time to detect and fix, but if left undetected, can disrupt the
application and the operating environment. Errors fall into these broad
categories:

� Logic — Problems with the program logic, causing unintended results
� Syntactic — Errors that the compiler uncovers in the code syntax
� Runtime — Bugs occurring in a running program

Well-constructed error handlers can deal with a multitude of error
conditions, promoting a more reliable product. Error handlers are
“sections of program code specifically provided to take remedial action in
the event that other sections of code detect or cause error conditions in a
running program.”

Error handlers can be grouped as follows:

� Error handling for function calls
� Returns a success or failure status value
� Checks for a successful status value
� Makes provisions for a failed return
 45

� C++ Exception Handling
� Uses try-throw-catch statements
� Throws C++ exceptions
� Implemented by the Microsoft C++ compiler

� Structured Exception Handling
� Uses try-catch-finally procedures
� Throws structured exceptions

Error Handling for Function Calls

Historically, software development incorporated basic error handlers to
manage Visual Studio 6 Win32 and COM APIs. These error handlers
included error codes and generic FALSE returns from functions that
encountered errors. For example, GetLastError might be used to
troubleshoot the root cause. If the code was built to handle the error, the
Win32 function still had to hunt for and handle any problems it
encountered inline at every statement or method call that could fail.

C++ Exception Handling

Based on the ANSI C++ standard, the C++ exception handling model was
the precursor to the Structured Exception Handling methodology. C++
exception handling applies the concept of throwing an exception and
subsequently designating an exception handler to catch the thrown
exception using try, throw, and catch statements.

What is an Exception

An exception is an unanticipated event occurring while a program is
running that interrupts the normal operation of that program. When an
error happens within the scope of a method, the affected method creates
an exception object and then passes it to the runtime environment. The
exception object consists of relevant data, such as the:

� Type of error
� Program state at the time the error occurred

After the method throws an exception, the runtime environment
examines the call stack where the method resides to find a code block
that can properly handle the exception. To qualify, the code block must
be constructed to specifically handle the exception object. If the search is
successful, the appropriate code block catches the exception. If the search
is unsuccessful, the runtime environment terminates.
46 Getting Started with DevPartner Fault Simulator

Structured Exception Handling

Following the release of the .NET Framework, Microsoft endorsed
Structured Exception Handling as a necessary component of any well-
written program. In this methodology, the exception handling code is
organized into structured blocks using try-catch-finally procedures. Each
procedure contains code that catches the types of exceptions that a
procedure might generate. If a procedure cannot handle a particular
exception, the procedure will pass the exception up the call stack to the
calling method.

Best Practices for Structured Exception Handling

This section highlights key points of the Structured Exception Handling
methodology, as advocated in the book Applied Microsoft .NET Framework
Programming1.
1Richter, Jeffrey. Applied Microsoft .NET Framework Programming. Buffalo: Microsoft
Press, 2002.

The techniques outlined in Richter’s book represent best practices. Four
fundamental guidelines for writing exception handlers emerge:

� Register for the
AppDomain.CurrentDomain.UnhandledException and the
System.Windows.Forms.Application type’s static
ThreadException events so that your managed
System.Windows.Forms application will trap all unhandled
exceptions.

� Whenever possible, avoid having your application catch
System.Exception. However, if unavoidable, log information
about the local variables that might assist in debugging and throw
the exception to the calling method again.

� Only catch the exceptions where you can recover.

� Use at least one finally block to clean up resources.

Using Try-Catch-Finally Blocks

Try-catch-finally code construction forms the basis for the Structured
Exception Handling best practices. You match a try block with one or
more catch blocks, and at least one finally block, to handle the exception
thrown by a method.

Try Block The try block represents entry into the exception handling code. In the
try block, you locate code to attempt a graceful recovery from an
exception or else prepare for cleanup in the finally block. The try block
Chapter 4�Using Fault Simulator to Evaluate Error Handlers 47

throws its own exception, that then causes each catch block to be
evaluated. If the code in the try block does not throw an exception, the
catch blocks are not evaluated, and the finally block executes.

Catch Block The catch block contains code that handles a specific exception or group
of exceptions. The more catch blocks you include in your exception
handling code, the more precisely the code can respond when exceptions
are thrown. The code only evaluates the catch blocks if the try block
associated with them throws an exception.

Each catch block consists of the catch keyword, followed by:

� A parenthetical exception filter
� Code intended to handle or recover from the exception
� Code to throw the exception again

The exception filter lets you customize your error handling responses
based on the specific exception thrown. For example, you might filter
one catch block to handle:

System.ArgumentNullException

and the next to handle:

System.ArgumentException

Finally Block The finally block completes cleanup operations in the exception
handling code. The finally block will execute at the final stage of the try-
catch-finally block regardless if the catch block actually handled the
exception.

Try-Catch-Finally
Execution

Executing a try-catch-finally mechanism follows this progression:

� The code evaluates the try block and throws an exception.
� The catch blocks are evaluated top to bottom.
� The finally block executes.
� The code executes if a catch block handled the exception.

Once all the code in the handling catch block executes, the code might
take one of the following directions:

� Throw the same exception again to notify functions and methods
higher up the call stack of the error condition

� Throw a different exception to provide more detail about the error
condition to functions and methods higher up the call stack

� Stop throwing any more exceptions, letting the thread fall through
the catch block once it has been handled

This option will not notify functions and methods higher up the call
stack of an error condition.

You should integrate the try-catch-finally methodology at every stage of
development to avoid unintended problems in the software product. You
48 Getting Started with DevPartner Fault Simulator

should handle the error condition as close as possible to where the
exception will be thrown. If an exception handler does not catch an error
close to its source, the exception will fall out of the method. Should the
calling function or method not have the proper exception handlers in
place, the exception could repeatedly fall out unhandled until a generic
exception handler catches the exception or the application terminates.
This approach will degrade the application and lead to program
instability.

Configuring Fault Simulator to Capture Error Handler Data
Fault Simulator helps you uncover weaknesses in your source code by
letting you configure and execute an assortment of artificially generated
error conditions. Fault Simulator directs you to specific problem areas in
your code by simulating faults designed to test that code. Fault Simulator
helps you identify the exceptions that your managed code should be
catching. It also helps you prevent unhandled exceptions from falling
through methods.

Configuring a .NET Framework Fault in Managed Code

You can configure settings on the Add .NET Framework Fault dialog
box (shown next) to artificially throw an exception associated with a
.NET Framework Class Library method in your managed code. Here, you
can designate the exception to throw, plus other pertinent method
signature properties.
Chapter 4�Using Fault Simulator to Evaluate Error Handlers 49

Figure 4-1. Add .NET Framework Fault Dialog Box

Note: See “A Fault Simulator Walk-Through” on page 15 for more
information on using the Add .NET Framework Fault dialog box.

Fault Simulator also provides visible clues in the source view (shown
next) where you can add and configure a .NET Framework fault for an
upcoming fault simulation session.
50 Getting Started with DevPartner Fault Simulator

Figure 4-2. Source Location Where You Can Add Source-Based .NET Framework Fault

Configuring an Environmental Fault

You can configure settings on the Add Environmental Fault dialog box
to simulate an error condition in the running program. Here, you can
designate the type of environmental fault to simulate, plus other
pertinent environmental properties.
Chapter 4�Using Fault Simulator to Evaluate Error Handlers 51

Figure 4-3. Add Environmental Fault Dialog Box

Note: See “A Fault Simulator Walk-Through” on page 20 for more
information on using the Add Environmental Fault dialog box.

Fault Simulation Results Views

During an active fault simulation session, Fault Simulator displays
current simulation activity. Following the completion of a fault
simulation, Fault Simulator generates results summarizing the captured
data.

Specified Faults Pane

The Specified Faults provides a summary of fault count information
including:

� Count of every fault instance that occurred during the simulation
� Number of times the fault was evaluated (reflecting every attempt)
52 Getting Started with DevPartner Fault Simulator

Figure 4-4. Specified Faults Pane

Fault Simulator shows additional details that you originally configured
for that fault, such as:

� Argument(s) configured for .NET Framework faults
� Parameter(s) configured for environmental faults
� Category and fault name, for environmental faults only
� Optional conditions or description configured for each fault

descriptor

Simulated Faults Pane

The Simulated Faults pane contains three views in the lower portion of
the window:

� Error Handlers
� Call Stack
� Properties

Figure 4-5. Simulated Faults Pane

Detail in lower
portion of
Simulated
Faults pane
Chapter 4�Using Fault Simulator to Evaluate Error Handlers 53

Error Handlers View Use the Error Handlers view to:

� Review evaluated and executed catch blocks
� Determine if the intended catch block, or a generic catch block,

ultimately handled the fault
� Analyze the execution path that the error handling code took to see:

� How your target application responded to the fault
� How the fault was caught or fell through your catch blocks
� How the error handling was resolved in the routine

Note: The Error Handlers view shows results on .NET Framework faults
simulated in managed code only.

Call Stack View Use the Call Stack view to:

� Analyze where in your code the exception was thrown or the
function failed

� Trace the steps through your code that led to the exception being
thrown or not

Properties View Use the Properties view for a summary of the original fault
configuration. The configuration varies depending on the type of fault
displayed. The following table summarizes how the properties apply to
the .NET Framework fault or the environmental fault:

Table 4-1. Fault Properties

Property .NET Framework
Fault

Environmental
Fault

.NET Framework Class Library method Yes No

Argument Yes No

Parameter No Yes

Condition Yes (optional) Yes (optional)
54 Getting Started with DevPartner Fault Simulator

Evaluating Error Handling Results
The following sections present examples that instruct you how to use
fault simulation results to improve your code:

� Determining the Path The Code Took to Unwind from an Exception
� Identifying if Any Error Handlers Got Invoked
� Viewing the Source Statement That Handled the Fault
� Determining the Path The Code Took When a Function Failed
� Assessing Whether the Intended Fault Was Handled
� Confirming Where the Fault Was Handled

Determining the Path The Code Took to Unwind from an Exception

Fault Simulator details call stack information showing where each
exception was thrown and where each fault occurred. The call stack also
tells you:

� The steps through your code that led up to each exception being
thrown

� Each fault causing a function to fail

For managed code, the Error Handlers view provides error handler
information detailing how your code handled, or failed to handle, the
designated .NET Framework fault.

You can follow the logic to see where the code properly handled the fault
with a catch block, or where it fell through because of an incorrect or
misplaced catch block. The next example shows evidence of an
unhandled exception.

Figure 4-6. Error Handlers View — Shows an Unhandled Exception
Chapter 4�Using Fault Simulator to Evaluate Error Handlers 55

Identifying if Any Error Handlers Got Invoked

The Error Handlers view shows the catch and finally blocks that were
evaluated and executed as each fault was simulated.

Figure 4-7. Error Handlers View

In the previous example, Fault Simulator reveals that your code did not
handle the error as close as possible to where it was thrown, nor did it
have the proper catch blocks in the correct places. It shows that six catch
blocks were tried inside the lowest level method before the error
handling fell out. Catch blocks were tried in three different methods
before the error was handled in a fourth method’s catch block as follows:

� Method CopyThree tried six catch blocks before executing the finally
block and falling out of that method.

� Method CopyTwo tried one catch block, the finally block, and then fell
out of the method.

� Method CopyOne also tried one catch block, executed the finally
block, and then fell out into the main method StartCopying.

� StartCopying then handled the error with its generic catch block.

The next example shows how Fault Simulator depicts the catch blocks in
your program that caught the exception in the Call Stack view.

1st
method

2nd

method
3rd

method

Error
handled
56 Getting Started with DevPartner Fault Simulator

Figure 4-8. Call Stack View — Location of Thrown Exception

Viewing the Source Statement That Handled the Fault

When available, Fault Simulator can take you back to the source location
where the error handling was evaluated. Right-click on a line item in the
lower portion of the Error Handlers view (Figure 4-6 on page 55) and
choose View Source to go to the specific code, as depicted in the next
example. From the original source location, you can troubleshoot
whether the exception was properly handled, and if not, why not.

Figure 4-9. Viewing Applicable Source Location

Fault Simulator will inform you if it cannot find the specified code block
due to a change in the original source.

Determining the Path The Code Took When a Function Failed

Fault Simulator can simulate environmental failures caused by one or
more Win32 APIs. Unlike managed code, where best practices advocate
the use of the Structured Exception Handling methodology, native code
typically relies on error handlers that use return code values and inline
error handling to detect errors.

Use the Call Stack view to trace the path your native code took when a
function failed, as shown next.

You can view source pertaining
to an item listed in the Error
Handlers view.
Chapter 4�Using Fault Simulator to Evaluate Error Handlers 57

Figure 4-10. Call Stack View — Function Failure Location

The top-most entry in the Call Stack view will always show the location
where Fault Simulator caused the function to fail.

Assessing Whether the Intended Fault Was Handled

You can compare the faults that you initially configured (on the
Specified Faults pane) with the faults that were actually simulated (on
the Simulated Faults pane).

Note: See “Specified Faults Pane” on page 52 and “Simulated Faults Pane”
on page 53 for a description and example of each view.

Determine if you specified any faults that were never simulated and why
those faults were not simulated. The following table provides some tips
to consider:

Evidence of failed function

Table 4-2. Comparing Specified Faults Versus Simulated Faults Results

Considerations Possible Conclusions or Actions

Consider whether the code executed at
the expected location where you
expected it to occur.

If the code associated with the fault
never executed, the fault would not
occur.

Consider whether the managed code
made a call to the relevant method.

If you simulated a fault on a .NET
Framework Class Library method, you
could:

• Set a breakpoint on the targeted
method call.

• Run in the Visual Studio debug
mode.

• Check if the line of code executes.

If the statement was executed but Fault
Simulator did not generate the fault,
examine the arguments specified in the
.NET Framework fault descriptor to see
if those values evaluated true when the
method was executed.
58 Getting Started with DevPartner Fault Simulator

For each simulated fault, examine the Error Handlers view (Figure 4-7
on page 56) and observe the catch and finally blocks that were evaluated
and invoked. For example, you can:

� Check whether the catch blocks were properly specified to efficiently
handle the fault.

� Check whether the fault fell through all the specific catch blocks but
ended up being handled by a generic catch block within the routine
where it was thrown.

� Check whether the fault fell through a series of routines before
eventually being caught.

� Check whether the fault got handled outside the code (i.e., by catch
blocks in some other external routine).

Confirming Where the Fault Was Handled

Did the catch blocks handle the intended exception? Or did it fall
through routines, only to be caught by a generic catch elsewhere? If you
find that the faults are being handled generically, you need to evaluate
how you initially set up your catch blocks to handle exception.

The next example shows that an exception was not handled by the
method where it occurred. Rather, it fell through all the catch blocks in
the CopyThree method to be handled by a catch in the calling method,
CopyTwo.

Consider whether the native code made
a call to the relevant method.

If you simulated an environmental
fault, ensure that the application
exercised the code appropriately to
cause the type of call associated with
the fault. If Fault Simulator did not
simulate the fault, check that the
parameter(s) evaluated true when the
call was executed.

Consider whether the code made a call
to the correct overloaded method.

Verify that the signature (the number
and type of arguments on the call)
specified in the fault descriptor
matches the actual method call in your
code. If the signature does not, Fault
Simulator would not simulate the fault.

Table 4-2. Comparing Specified Faults Versus Simulated Faults Results (Continued)

Considerations Possible Conclusions or Actions
Chapter 4�Using Fault Simulator to Evaluate Error Handlers 59

Figure 4-11. Fault Handled in Second Method

Looking at the results, you can assess whether the evidence showing that
the exception was handled represents how you initially intended to
handle the exception.

Fault Simulator Integral to Best Practices
This chapter showed you how you can verify the robustness of the error
handling in your source code. Making Fault Simulator an integral part of
product development ensures that your code will conform to best
practices. Properly testing your code prior to deployment will help secure
a more robust and stable product.

Indication that fault was handled
60 Getting Started with DevPartner Fault Simulator

Glossary
.NET Framework fault

Represents a specific exception that a method call of a .NET Framework Class Library
class can throw; can be configured at a specific source location or independent of
location; see “NET Framework Faults” on page 10

Catch block

Contains code that handles a specific exception or group of exceptions; see “Catch
Block” on page 48

Command line

Allows you to use scripts and batch files to automate the testing of applications with
specific fault sets; requires the creation of a fault set before Fault Simulator is invoked
on the command line; results are written to the results file for analysis; see “Fault
Simulator Command Line Interface” on page 8

Environmental fault

Represents the emulation of failure conditions applied to several classes of methods
that deal with runtime environments; not specific to source location for managed or
native code; see “Environmental Faults” on page 11

Error handlers (Win32)

Log of unwind events or a log of return values applicable to the selected fault instance;
see “Error Handling for Function Calls” on page 46

Exception

Unanticipated event that happens while a program is running that interrupts the
normal operation of that program; see “What is an Exception” on page 46
 61

Fault descriptor

Any combination of a specified fault, method, and/or properties (arguments,
parameters, or conditions) used to trigger a fault instance during a fault simulation; see
“Fault Descriptors” on page 10

Fault set

Collection of one or more fault descriptors; uniquely named file (stored as an XML
document) that contains fault descriptors and configuration settings used in fault
simulation; see “Fault Sets” on page 11

Fault simulation

Alternative to traditional testing methodology; validates the robustness of the software
application code; functional basis for DevPartner Fault Simulator; see “Fault
Simulation Enhances Software Testing” on page 6

Finally block

Completes cleanup operations in the exception handling code; see “Finally Block” on
page 48

Load testing

Assesses an application’s tolerance to increased load; see “Load Testing” on page 31

Standalone

Separate application and accompanying user interface available in DevPartner Fault
Simulator; helps quality assurance professionals validate applications under
development; see “Fault Simulator Standalone Application” on page 8

Stress testing

Involves running an application and then monitoring program behavior under
adverse, atypical conditions; see “Stress Testing” on page 30

Structured Exception Handling

Necessary component of any well-written program where developers organize the
exception handling code in structured blocks using try-catch-finally procedures; see
“Structured Exception Handling” on page 47

Try block

Represents entry into exception handling code; see “Try Block” on page 47
62 Getting Started with DevPartner Fault Simulator

Index
Symbols
.NET Framework

fault 8, 10
namespace 10

A
accessibility viii
adding .NET Framework fault 16
adding environmental fault 21
analyzing error-handling code 6
application integrity 26
application logic 29
application vulnerability layers 29
automated testing 33
automating fault simulations 8

B
black box testing

QA-centric 33
user scenario 38

block
catch 48, 54, 55, 56, 59
finally 56
try 47

C
call stack data 22, 55
call stack view 54, 56, 57, 58
catch block 47, 48, 59
client 29
COM 11
COM APIs 46
command line 8
costs from defects 27

D
data integrity 26
data recovery 26
database server 29
debugging error-handling code 6
development environments 1
DevPartner Fault Simulator

command line 8
SE 22
standalone application 8, 19, 20

quick start 19
supported features 9
user interfaces 7
using in Visual Studio 15, 34

quick start 14
with coverage analysis 12

DevPartner Fault Simulator window
in Visual Studio 14
standalone application 19

disk I/O 11
missing file 39, 42

E
ending the simulation 18
environmental faults 8, 11
error handlers view 54, 56

catch block considerations 59
managed code 55

error handling
error handlers 45
incorporation into application code 32

evaluation (14-day) 4
exception 46

F
failed calls 6
 63

fault descriptors 10, 18
fault sets 11, 38
fault settings 16
fault simulation

alternatives 5
end 18
start 18, 21
using DevPartner Fault Simulator 7
with coverage analysis 12

fault types 10
finally block 47
functional testing 30

H
handling the correct faults 58
highlighted source 16, 50

I
installing Fault Simulator

full product 3
license configuration 3
SE 4

integration testing 30
interpreting results 52
invalid data 28

L
layers of application vulnerability 29
logic errors 28, 45

M
managed code

error handlers view 55
source highlighting 51

manual testing 31
memory 11

N
namespaces 10, 47
native code

example 57
network 11

excessive traffic 6
failure 6

non-traditional testing 30

O
operating systems 1

P
properties view 54

Q
quick start

Fault Simulator in Visual Studio 14
Fault Simulator standalone application 19

R
registry 11
regression testing 30
results file 9
results window 18, 22
runtime errors 45

S
SE (DevPartner Fault Simulator) 22
simulated faults pane 53
software development goals 25
source highlighting 16, 50
source statement 10, 15
standalone application 8
starting the fault simulation 18, 21
startup project 15
stress testing 30
structured exception handling 47
supported platforms 1
syntax errors 45
system requirements 1

T
testing

automated 33
black box 33
white box 32

testing error-handling code 6
traditional testing 6
try block 47

U
undetected software bugs 6, 45
uninitialized data 28
unit testing 30, 33
user scenario

standalone application 20, 38
using Fault Simulator in Visual Studio 15, 33

V
virtual testing 31
64 Getting Started with DevPartner Fault Simulator

W
white box testing

code scrutiny 33
developer-centric 32
user scenario 33
using Fault Simulator in Visual Studio 33

Win32 APIs 46
 65

	Preface
	Who Should Read This Manual
	Conventions Used In This Manual
	Accessibility
	For More Information

	Installing DevPartner Fault Simulator
	Minimum System Requirements
	Coexistence with Other Compuware Products

	Installing DevPartner Fault Simulator
	Performing the Installation
	New License Server Required for Concurrent Licenses

	Installing DevPartner Fault Simulator SE
	Performing the Installation
	Upgrading to the Full Version

	Introducing DevPartner Fault Simulator
	What Is Fault Simulation
	Fault Simulation Enhances Software Testing

	DevPartner Fault Simulator
	Three Ways to Use Fault Simulator
	Fault Descriptors
	Fault Sets
	Fault Simulation with Coverage Analysis

	Using Fault Simulator in Visual Studio
	Quick Start
	A Fault Simulator Walk-Through

	Using the Fault Simulator Standalone Application
	Quick Start
	A Fault Simulator Walk-Through

	DevPartner Fault Simulator SE

	Improving Software Quality Through Fault Simulation
	Software Development Objectives
	Challenges to Software Quality
	Product Instability
	Explosion of New Technologies
	Complexities of the Inner Workings of APIs and System Services

	Software Vulnerabilities
	Layers of Application Vulnerability

	Alternatives to Achieve Software Quality
	Conventional Testing
	Non-Traditional Testing
	Approaches for Testing Environmental Conditions

	Three-Part Solution to Achieve Software Quality Using Fault Simulator
	White Box Testing Using Fault Simulator in Visual Studio
	Black Box Testing Using the Fault Simulator Standalone
	Automated Testing Using Fault Simulator from the Command Line

	Fault Simulator - Improving Software Quality

	Using Fault Simulator to Evaluate Error Handlers
	Well-Constructed Error Handlers Promote Product Reliability
	Error Handling for Function Calls
	C++ Exception Handling
	Structured Exception Handling

	Configuring Fault Simulator to Capture Error Handler Data
	Configuring a .NET Framework Fault in Managed Code
	Configuring an Environmental Fault
	Fault Simulation Results Views

	Evaluating Error Handling Results
	Determining the Path The Code Took to Unwind from an Exception
	Identifying if Any Error Handlers Got Invoked
	Viewing the Source Statement That Handled the Fault
	Determining the Path The Code Took When a Function Failed
	Assessing Whether the Intended Fault Was Handled
	Confirming Where the Fault Was Handled

	Fault Simulator Integral to Best Practices

	Glossary
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /KOR <FEFFace0d488c9c8c7580020d504b9acd504b808c2a40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e0020c7740020c124c815c7440020c801c6a9d558b824ba740020ae00af340020d3ecd5680020ae30b2a5c7440020c0acc6a9d574c57c0020d569b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

