
Understanding
DevPartner Fault

Simulator
Release 2.0

®

Technical support is available from our Technical Support Hotline or via
our FrontLine Support Web site.

Technical Support Hotline:
1-800-538-7822

FrontLine Support Web Site:
 http://frontline.compuware.com

This document and the product referenced in it are subject to the following
legends:

Access is limited to authorized users. Use of this product is subject to the
terms and conditions of the user’s License Agreement with Compuware
Corporation.

© 2006 Compuware Corporation. All rights reserved. Unpublished - rights
reserved under the Copyright Laws of the United States.

U.S. GOVERNMENT RIGHTS
Use, duplication, or disclosure by the U.S. Government is subject to
restrictions as set forth in Compuware Corporation license agreement and
as provided in DFARS 227.7202-1(a) and 227.7202-3(a) (1995), DFARS
252.227-7013(c)(1)(ii)(OCT 1988), FAR 12.212(a) (1995), FAR 52.227-19,
or FAR 52.227-14 (ALT III), as applicable. Compuware Corporation.

This product contains confidential information and trade secrets of
Compuware Corporation. Use, disclosure, or reproduction is prohibited
without the prior express written permission of Compuware Corporation.

Compuware TrackRecord, TestPartner, and DevPartner Fault Simulator are
trademarks or registered trademarks of Compuware Corporation.

Acrobat
®

 Reader copyright © 1987-2006 Adobe Systems Incorporated. All
rights reserved. Adobe, Acrobat, and Acrobat Reader are trademarks of
Adobe Systems Incorporated.

All other company or product names are trademarks of their respective
owners.

August 25, 2006

http://frontline.compuware.com

Table of Contents
Preface
Who Should Read This Manual . ix

What This Manual Covers . ix

What’s New in This Release . xi

Conventions Used In This Manual . xii

Accessibility . xiii

For More Information . xiii

Chapter 1
Installing DevPartner Fault Simulator
System Requirements . 1

Supported Environments and Product Dependencies . 2

Licensing . 3

DevPartner Fault Simulator Installation . 3
Previous Versions of DevPartner Fault Simulator . 3
Visual Studio 2005 Team Foundation Server Integration Requirements 4
Installing DevPartner Fault Simulator . 4
Installing the DevPartner Fault Simulator QA Edition . 5
Installing DevPartner Fault Simulator SE . 5

Accessing DevPartner Fault Simulator . 6

Coexistence with Other Compuware Products . 6

Chapter 2
Introducing DevPartner Fault Simulator
Introducing DevPartner Fault Simulator . 7

DevPartner Fault Simulator Supported Functionality . 8
Available as a Standalone Application . 10
Integrated in Visual Studio . 10
 iii

Available from the Command Line . 11

DevPartner Fault Simulator QA Edition . 11

DevPartner Fault Simulator SE . 12

Chapter 3
Understanding Fault Simulator Fundamentals
How Does Fault Simulation Help Ensure Application Stability? 13

How Do I Use Fault Descriptors to Simulate Fault Conditions? 14
Using Environmental Faults to Simulate Application Failures 14
Using .NET Faults to Simulate Thrown Managed Exceptions 19
What Does a Fault Instance Represent? . 20

Why Would I Suspend a Fault Simulation Session? . 20

Why Might I Reorganize the Display of Fault Information? 21

Why Would I Have Fault Simulator Create Environmental Faults for Me? 22

How Do I Edit Environmental Faults Created for Me? . 22

Can I Reuse Fault Sets? . 22

Can I Collect Coverage Analysis During a Fault Simulation? 23
Combining Coverage Analysis from the Command Line 24

How Do I Submit Defects Generated from Fault Simulator? 24
Submitting a Work Item to Visual Studio Team System 24
Submitting a Defect to Compuware TrackRecord . 25

Chapter 4
Performing Quality Assurance Tasks
DevPartner Fault Simulator Supports Quality Assurance . 27

Functionality that Supports Quality Assurance . 28

Automatically Generating Environmental Faults . 29
Watching Your Target Application for Potential Environmental Weaknesses . 29
Walk Through to Generate Environmental Faults . 30

Manually Configuring a Fault Simulation . 35
Configuring Fault Settings to Manage Your Environmental Testing 35
Walk Through to Set Up a Fault Simulation . 35

Automatically Generating a Batch Script . 41
Walk Through to Create a Batch Script . 41

Chapter 5
Enhancing Quality Assurance Testing
Traditional Software Testing Methodologies . 45

When Traditional Software Testing Is Not Enough . 46
iv Understanding DevPartner Fault Simulator

Fault Simulator Enhances Software Quality Through Fault Simulation 47

User Scenario — Testing Software Quality with Fault Simulator 47
Scoping Out Areas to Test . 48
Having Fault Simulator Watch Your Target and Record Program Activities . . 49
Evaluating the Collection of Environmental Faults . 49
Simulating Disk I/O Environmental Faults . 52
Simulating COM, Registry, and Network-Related Environmental Faults 56
Performing Repeatable Testing . 57

Chapter 6
Setting Up Exception Handler Tests in Visual Studio
Testing Exception Handlers in Fault Simulator . 59

Using Fault Simulator in Visual Studio . 60

Walk Through Focusing on Exception Handlers in Your Code 63
Showing Fault and Exception Handler Indicators in the Source Window 63
Inserting Appropriate Exception Code . 64
Adding XML Documentation <Exception> Tags to a Source Statement 66
Adding a .NET Fault to a Source Location . 68
Performing a Fault Simulation to Test Exception Handlers 70

Chapter 7
Evaluating Error Handlers
Well-Constructed Error Handlers Promote Product Reliability 73

Incorporation of Robust Error Handling . 74
Error Handling for Function Calls . 74
C++ Exception Handling . 75
Structured Exception Handling . 75

Using Fault Simulator to Achieve Best Practices . 78
Configuring a .NET Fault in Managed Code . 78
Configuring an Environmental Fault . 80
Reviewing Fault Simulation Results Views . 81

Evaluating Error Handler Results . 84
Determining the Path The Code Took to Unwind from an Exception 84
Identifying if Any Error Handlers Got Invoked . 85
Viewing the Source Statement That Handled the Fault 87
Determining the Path The Code Took When a Function Failed 87
Assessing Whether the Intended Fault Was Handled . 89
Confirming Where the Fault Was Handled . 90
 � Table of Contents v

Chapter 8
Improving Software Quality
Objectives Software Developers Share . 93

Data Integrity . 94
Application Integrity . 94
Data Recovery . 94

Obstacles to Software Quality . 94
Product Instability . 95
Explosion of New Technologies . 95
Complexities of the Inner Workings of APIs and System Services 95

Software Vulnerabilities . 96
Layers of Application Vulnerability . 97

Testing for Predictable Outcomes . 98

Using Fault Simulator to Ensure Software Quality . 98

Three-Part Solution Using Fault Simulator . 99
White Box Testing Using Fault Simulator in Visual Studio 99
Black Box Testing Using the Fault Simulator Standalone 102
Automated Testing Using Fault Simulator from the Command Line 105

Appendix A
Troubleshooting
Analyzing Environmental Issues . 107

Having Fault Simulator Automatically Generate Environmental Faults 107
Switching from Watch My Target to Configuring Faults Myself 107
Simulating A Single Environmental Fault Multiple Times 108
Testing a File That Resides on a Network Path . 108
Seeing Multiple Instances of Simulated Registry Faults 108
Simulating Heap Memory Allocation Faults . 109
Simulating a Fault on a Missing Image File in a Web Application 109
Encountering Zero-Length Files Created After a Disk Full Fault Is Simulated 110

Resolving Issues While Testing in Visual Studio . 110
Simulating Faults in a Visual C++ Project . 110
Adding a .NET Fault to a Source Statement . 111
Missing Show Fault and Handler Exception Indicators 111
Locating a Previously Added Source-Based .NET Fault 111
Determining Why a .NET Fault Fails to Fire as Expected 112
Simulating Faults in a Project Dependent on Others in the Solution 112
Seeing an Unexpected Exception Thrown . 113
Simulating Source-Based Faults on Virtual Methods . 113
Using Signal Modules for Processes That Host Multiple Applications 114
Simulating Against a Web Application in a Debug Session 115
vi Understanding DevPartner Fault Simulator

Encountering General Issues . 115
Seeing No Simulation Activity Occurring on a Web Application 115
Submitting a TrackRecord Defect . 115
Inability to Submit a Work Item to Team System . 115
Attempting to Run Another DevPartner Process on the Same Target 115
Determining if Fault Simulator Encountered an Internal Error 116

Appendix B
Command Line Quick Reference
Introducing the Command Line Interface . 117

Fault Simulator Commands . 118

Command Line Return Codes . 119

Glossary . 121

Index . 127
 � Table of Contents vii

viii Understanding DevPartner Fault Simulator

Preface
� Who Should Read This Manual

� What This Manual Covers

� What’s New in This Release

� Conventions Used In This Manual

� Accessibility

� For More Information

The Preface introduces you to the Understanding DevPartner Fault Simulator
manual and outlines what is contained in this book. The Preface
summarizes the many new features in this release.

Who Should Read This Manual
This manual assists software developers and quality assurance engineers
who will install and use Compuware DevPartner Fault Simulator. This
manual presents the concepts and procedures fundamental to using
DevPartner Fault Simulator. This manual assumes familiarity with
Microsoft Windows and Visual Studio.

What This Manual Covers
This manual contains the following chapters and appendixes:

Chapter 1, “Installing DevPartner Fault Simulator” outlines system
requirements, supported environments, product dependencies. It also
provides installation instructions for each of the product editions of
DevPartner Fault Simulator.
 ix

Chapter 2, “Introducing DevPartner Fault Simulator” acquaints you with
DevPartner Fault Simulator, and describes the supported functionality. It
also highlights the new features in this release, including an introduction
to the QA Edition.

Chapter 3, “Understanding Fault Simulator Fundamentals” explains
common concepts, terminology, and functionality in Fault Simulator.

Chapter 4, “Performing Quality Assurance Tasks” summarizes the
features geared to quality assurance engineers and also explains how to
perform fundamental tasks in Fault Simulator.

Chapter 5, “Enhancing Quality Assurance Testing” considers various
testing methodologies used by quality assurance engineers and explores
the challenges of effective testing. It then presents a user scenario that
shows how Fault Simulator enhances quality assurance testing objectives
using fault simulation.

Chapter 6, “Setting Up Exception Handler Tests in Visual Studio”
acquaints you with Fault Simulator in Visual Studio. This chapter also
introduces you to new functionality that helps improve your exception
handling code.

Chapter 7, “Evaluating Error Handlers” reviews different exception
handling approaches, with an emphasis on structured exception
handling. The chapter then helps you understand fault simulation results
so that you can evaluate the robustness of the error handlers in your
code.

Chapter 8, “Improving Software Quality” helps software developers
enhance software quality by providing advice to improve your exception
handling code.

Appendix A, “Troubleshooting” provides assistance to resolve issues you
might encounter using Fault Simulator either in Visual Studio or the
standalone application, along with other general issues.

Appendix B, “Command Line Quick Reference” introduces the Fault
Simulator command line interface. It also includes a quick reference of
the Fault Simulator commands, as well as the return codes that the
command line interface might generate.
x Understanding DevPartner Fault Simulator

What’s New in This Release
DevPartner Fault Simulator 2.0 introduces several new features geared to
assist software developers and quality assurance engineers. These features
vary depending on where they are available in the product.

� Fault Simulator in Visual Studio and in the Standalone

� Improved Display and Order of Fault Information

Fault Simulator organizes fault information in predefined groups
and sorting order. You can optionally customize how faults are
organized based on criteria such as fault descriptor name, fault
type, checked status, etc., to help you better understand the
contents being displayed. See “Why Might I Reorganize the
Display of Fault Information?” on page 21.

� Integration into Visual Studio Team System

If you are already using Visual Studio Team System, you can
submit a work item from Fault Simulator. Submitted data reflects
error handler and call stack results collected from a fault
simulation session. See “Visual Studio 2005 Team Foundation
Server Integration Requirements” on page 4. See also “How Do I
Submit Defects Generated from Fault Simulator?” on page 24.

� Ability to Suspend an Active Simulation

You can suspend an active fault simulation session. Suspending a
session after the simulation has started disables all fault
descriptors set to activate in the target application. You can
resume the session when appropriate to your testing
requirements. See “Why Would I Suspend a Fault Simulation
Session?” on page 20.

� Fault Simulator in Visual Studio only

� Advice to Improve Your Exception Handling Code

Fault Simulator analyzes your managed code and identifies areas
where you can improve your exception handling code. Fault
Simulator then suggests how you can correct code constructs
within the current method scope, such as inserting try/catch
blocks and/or adding XML appropriate XML <exception> tags
where needed. See “Walk Through Focusing on Exception
Handlers in Your Code” on page 63.

� Enhanced .NET Support

You can simulate .NET faults associated with the .NET Framework
1.1 and 2.0 using Fault Simulator in Visual Studio. You can also
simulate .NET faults on methods in third-party software and e-
 � Preface xi

commerce managed applications, as well as methods created in
user-written managed code. Refer to the DevPartner Fault
Simulator online help for more information on .NET support.

The standalone application also supports e-commerce
applications, as well as limited .NET support. Refer to the online
help that accompanies the standalone application for more
information.

� Fault Simulator Standalone Application only

� Automatic Creation of a Batch Script

You can use the Fault Simulator standalone application to
generate a batch file that represents your fault preferences. This
feature takes the guesswork out of building a working batch
script. See “Automatically Generating a Batch Script” on page 41.

� Automatic Generation of Environmental Faults

The Fault Simulator standalone application can watch your target
application for program activities and resources used by your
application as you use it normally. From that data, Fault
Simulator can generate a collection of environmental faults that
you can use in a subsequent fault simulation. See “Automatically
Generating Environmental Faults” on page 29.

� Fault Simulator Command Line Interface

Fault Simulator has added new commands to facilitate multiple
executions of the same fault set. See Appendix B, “Command Line
Quick Reference” for an overview.

Conventions Used In This Manual
This manual uses the following conventions to present information.

� Screen commands and menu names appear in bold typeface. For
example:

Choose Add Environmental Fault from the Fault Simulator menu.

� Computer commands and file names appear in monospace typeface.

For example: file.txt

� Variables within computer commands and file names (for which you
must supply values appropriate for your installation) appear in
italic monospace type. For example:

Enter dpfs /?:option at the command line prompt.
xii Understanding DevPartner Fault Simulator

Accessibility
Prompted by federal legislation introduced in 1998 and Section 508 of
the U.S. Rehabilitation Act enacted in 2001, Compuware launched an
accessibility initiative to make its products accessible to all users,
including people with disabilities. This initiative addresses the special
needs of users with sight, hearing, cognitive, or mobility impairments.

Section 508 requires that all electronic and information technology
developed, procured, maintained, or used by the U.S. Federal
government be accessible to individuals with disabilities. To that end, the
World Wide Web Consortium (W3C) Web Accessibility Initiative (WAI)
has created a workable standard for online content.

Compuware supports this initiative by committing to make its
applications and online help documentation comply with these
standards. For more information, refer to:

� W3C Web Accessibility Initiative (WAI) at www.W3.org/WAI
� Section 508 Standards at www.section508.gov
� Microsoft Accessibility Technology for Everyone at

www.microsoft.com/enable/

For More Information
You can access the following DevPartner Fault Simulator documentation
for more assistance:

� The Fault Simulator in Visual Studio online help is integrated with
Fault Simulator in Visual Studio.

� The Fault Simulator standalone application online help
accompanies the Fault Simulator standalone application.

� The Command line help is available in the following formats:

� As console help from the command line
� As online help from InfoCenter

� The Understanding DevPartner Fault Simulator manual resides on
your DevPartner Fault Simulator CD in Adobe Acrobat (.pdf) format.

Use these other resources for additional assistance:

� The Release Notes provide current information. It also links directly
to a late-breaking known issues file on the Web.

� The Distributed License Management License Installation Guide
manual provides specific details on licensing Compuware products.
 � Preface xiii

http://www.section508.gov
http://www.W3.org/WAI
www.microsoft.com/enable/
www.microsoft.com/enable/

We recommend the following books related to fault simulation:

� Applied Microsoft .NET Framework Programming, by Jeffrey Richter.
Web link: http://www.microsoft.com/mspress/books/5353.asp

� Software Fault Injection: Inoculating Programs Against Errors, by Jeffrey
M. Voas and Gary McGraw. Web link: http://www.cigital.com/books/
sfi
xiv Understanding DevPartner Fault Simulator

http://www.microsoft.com/mspress/books/5353.asp
http://www.cigital.com/books/sfi

Chapter 1

Installing DevPartner Fault
Simulator
� System Requirements

� Supported Environments and Product Dependencies

� Licensing

� DevPartner Fault Simulator Installation

� Accessing DevPartner Fault Simulator

� Coexistence with Other Compuware Products

This chapter outlines the system requirements, supported operating
systems, and development environments, along with installation
instructions.

System Requirements
Table 1-1 lists the minimum hardware requirements.

Table 1-1. Minimum Hardware Requirements

Item Specification

Processor Pentium III, 733 MHz

Memory 128 MB above the memory
requirements for the system and
Visual Studio

Disk space 600 MB

Video 1024x768, 16-bit color

Other CD drive
 1

Table 1-2 lists the supported operating systems.

Supported Environments and Product Dependencies
Table 1-3 lists details about the Visual Studio integration.

1Fault Simulator does not support Java, JavaScript, or Visual J# in ASP.NET applications.
2Fault Simulator supports unmanaged projects for environmental faults only.
3Compact Framework is not supported.

Table 1-2. Operating Systems

Operating System Editions Internet Explorer Browser and
Internet Information Server

Windows Vista (Beta 2)

(32-bit only)

Business

Enterprise

Ultimate

IE 7.0

IIS 7.0

Windows XP (SP2)
(32 bit only)

Professional1

Tablet PC

IE 5.5

IIS 5.1

Windows Server 2003
(SP1)
(32 bit only)

Standard

Enterprise

Web

IE 6.0

IIS 6.0

Table 1-3. Visual Studio Integration

Development
Environments1 Editions .NET

Framework Languages

Visual Studio 2005 Professional Edition

Team Edition for
Software Architects

Team Edition for
Software Developers

Team Edition for
Software Testers

Team Suite

(64-bit development
not supported)

2.0 Visual C#

Visual Basic .NET

ASP.NET technologies1

Unmanaged languages2

(primarily C++)

Visual Studio .NET 2003 Developer

Professional

Enterprise Architect

1.13 Visual C#

Visual Basic .NET

ASP.NET technologies

Unmanaged languages

(primarily C++)
2 Understanding DevPartner Fault Simulator

Table 1-4 identifies other products that integrate into Fault Simulator.

Licensing
Complete information on installing and managing licenses can be found
in Distributed License Management License Installation Guide on the product
CD. For additional information, visit the Compuware Web site at
http://frontline.compuware.com/sw/license_default.asp

or call Worldwide License Management at 1-800-538-7822.

Note: DevPartner Fault Simulator SE uses the DevPartner Studio license. See
“Installing DevPartner Fault Simulator SE” on page 5 for more
information.

DevPartner Fault Simulator Installation
DevPartner Fault Simulator detects your system configuration and will
install the applicable software setup. If your system configuration does
not meet the minimum system requirements, the software installation
will not proceed. Prior to the installation, review the following
installation considerations:

Previous Versions of DevPartner Fault Simulator

If a previous version of DevPartner Fault Simulator resides on your
system, you must uninstall that version (via Add or Remove Programs)
and then restart your machine.

Table 1-4. Other Product Dependencies

Product Version Details

Compuware TrackRecord 6.2 Required for defect submission only

Visual Studio Team Foundation Server 8.0.50727.147 Required for Work Item submission only

Team Explorer must be installed. The Work Item
template must include Bug type. See “Visual
Studio 2005 Team Foundation Server Integration
Requirements” on page 4
Chapter 1� Installing DevPartner Fault Simulator 3

http://frontline.compuware.com/sw/license_default.asp

Visual Studio 2005 Team Foundation Server Integration Requirements

To submit a work item into Visual Studio Team System, ensure that:

� The Team Explorer client is installed.

� You are connected to a Team Foundation Server.

DevPartner Fault Simulator supports the version of Team System
installed at your site, and that a compatible version of Team Explorer
is installed on your client system.

� Your Visual Studio Team System project supports the Work Item of
the Type Bug.

Visual Studio 2005 Team System includes two default project
templates, Microsoft Solutions Framework (MSF) for Agile Software
Development and MSF for CMMI Process Improvement. Both
templates support Bug as a Work Item type and are compatible with
Fault Simulator.

� If the default Work Item Type definition in the project schema has
changed or a custom project without this Work Item Type exists,
you will not be able to submit a work item to Visual Studio Team
System.

� A project must be selected.

Consult the Microsoft Visual Studio 2005 Team System documentation
for more information.

Note: Fault Simulator does not support Visual Studio Team System in Visual
Studio .NET 2003.

Installing DevPartner Fault Simulator

To install DevPartner Fault Simulator:

1 Insert the product CD into your CD-ROM drive.

If you have autorun enabled, the setup proceeds automatically. If not,
open Add or Remove Programs, click Add New Programs, and then
click CD or Floppy.

2 To install DevPartner Fault Simulator, click Install DevPartner Fault
Simulator.

This action will install:

� Fault Simulator in Visual Studio
� Fault Simulator standalone application
� Command line interface

3 Follow the on-screen instructions to complete the installation.
4 Understanding DevPartner Fault Simulator

Installing the DevPartner Fault Simulator QA Edition

To install the QA Edition:

1 Insert the product CD into your CD-ROM drive.

If you have autorun enabled, the setup proceeds automatically. If not,
open Add or Remove Programs, click Add New Programs, and then
click CD or Floppy.

2 To install the DevPartner Fault Simulator QA Edition, click Install
DevPartner Fault Simulator QA Edition.

This action will install:

� Fault Simulator standalone application
� Command line interface

3 Follow the on-screen instructions to complete the installation.

Note: You cannot use the QA Edition in Visual Studio.

Installing DevPartner Fault Simulator SE

To install DevPartner Fault Simulator SE:

1 Insert the DevPartner Studio Professional Edition CD into your CD-
ROM drive.

If you have autorun enabled, the setup proceeds automatically. If not,
open Add or Remove Programs, click Add New Programs, and then
click CD or Floppy.

2 Follow the on-screen instructions to complete the installation.

Upgrading from Fault Simulator SE to the DevPartner Fault
Simulator

At any time, you can upgrade to the full product. To do so, first uninstall
DevPartner Fault Simulator SE. For more information, choose Programs
> Compuware DevPartner Fault Simulator SE > How to Upgrade to
Fault Simulator from the Start menu.

Note: See “DevPartner Fault Simulator SE” on page 12 for more
information.
Chapter 1� Installing DevPartner Fault Simulator 5

Accessing DevPartner Fault Simulator
Following a successful installation, you can access DevPartner Fault
Simulator as indicated in Table 1-5.

Coexistence with Other Compuware Products
Fault Simulator integrates with Compuware TrackRecord 6.2 .1 and 6.2.2
and coexists with other Compuware DevPartner products, such as:

� DevPartner Studio 8.1 or later
� DevPartner SecurityChecker 1.0.1 or later
� Compuware TestPartner 5.4 or later

Table 1-5. Accessing DevPartner Fault Simulator

Edition How to Access

DevPartner Fault Simulator as a standalone
application

Programs > Compuware
DevPartner Fault Simulator >
Fault Simulator

DevPartner Fault Simulator in Visual Studio Open Visual Studio

DevPartner Fault Simulator QA Edition as a
standalone application

Programs > Compuware
DevPartner Fault Simulator
QA Edition > Fault Simulator

DevPartner Fault Simulator command line
interface

From the command line

DevPartner Fault Simulator SE in Visual Studio Open Visual Studio

(Requires DevPartner Studio)
6 Understanding DevPartner Fault Simulator

Chapter 2

Introducing DevPartner Fault
Simulator
� Introducing DevPartner Fault Simulator

� DevPartner Fault Simulator Supported Functionality

� DevPartner Fault Simulator QA Edition

� DevPartner Fault Simulator SE

This chapter introduces you to DevPartner Fault Simulator. It highlights
how Fault Simulator uses fault simulation to assist software developers
and quality assurance engineers. This chapter differentiates the
supported functionality depending on where functionality is available.

Introducing DevPartner Fault Simulator
Application code is often written to address error handling, but little if
any is properly scrutinized or tested prior to deployment. DevPartner
Fault Simulator provides a workable solution to this long-standing
problem.

DevPartner Fault Simulator is a software development and quality
assurance tool that uses fault simulation to mimic real-world application
failures. Fault Simulator helps developers and quality assurance engineers
simulate faults in a running program. Software developers can debug the
exception handling code, without risking the application under test or
disrupting the operating or debugging environment. Quality assurance
engineers can test an application's reaction to errors in a predictable and
repeatable environment. Using actual simulation results, they both can
verify the application's ability to tolerate a variety of failure conditions
prior to deployment, avoiding costly production errors afterward.
 7

Fault Simulator helps ensure that your application is thoroughly tested.

� You can simulate real-world fault conditions without affecting the
operating environment or the application being tested:

� You can configure an environmental fault to test how your
application will respond to unexpected environmental failures.

� You can configure a .NET fault to test the exception handling
code directly in your source.

� Fault Simulator generates results on these simulated faults. Results
reveal the success or failure of error handlers in your code, helping
you troubleshoot problems in your application code.

� Fault Simulator shows evaluated and executed catch blocks,
letting you analyze the execution path that the exception
handling code took.

� Fault Simulator traces the steps through your code that led to the
exception being thrown or not.

DevPartner Fault Simulator Supported Functionality
You can use Fault Simulator in Visual Studio, as a standalone application
(outside Visual Studio), and from the command line.

Table 2-1 summarizes where Fault Simulator functionality is supported.

Table 2-1. Supported Functionality in DevPartner Fault Simulator

Feature
Available
in Visual
Studio

Available in
the
Standalone

Available
from the
Command
Line

Where to Learn More

Simulate faults in application code
outside Visual Studio

Yes Yes Yes “Available as a Standalone
Application” on page 10

Simulate faults in Visual Studio Yes No No “Integrated in Visual
Studio” on page 10

Add a .NET fault Yes No No “Configuring a .NET Fault
in Managed Code” on
page 78

Add an environmental fault Yes Yes No “Configuring an
Environmental Fault” on
page 80
8 Understanding DevPartner Fault Simulator

Modify an existing fault (.NET or
environmental)

Yes Yes No “How Do I Use Fault
Descriptors to Simulate
Fault Conditions?” on
page 14

Incorporate code coverage in a fault
simulation session

Yes Yes Yes “Can I Collect Coverage
Analysis During a Fault
Simulation?” on page 23

Reorganize the display of fault
information

Yes Yes No “Why Might I Reorganize
the Display of Fault
Information?” on page 21

Get advice on improving your
exception handling code

Yes No No “Walk Through Focusing
on Exception Handlers in
Your Code” on page 63

Suspend a fault simulation session in
progress

Yes Yes No “Why Would I Suspend a
Fault Simulation Session?”
on page 20

Review collected call stack and error
handler simulation details

Yes Yes No “Evaluating Error Handler
Results” on page 84

Integrate fault simulation session
results into Visual Studio Team
System or Compuware TrackRecord

Yes Yes No “How Do I Submit
Defects Generated from
Fault Simulator?” on page
24

View source code associated with a
fault instance

Yes No No “Viewing the Source
Statement That Handled
the Fault” on page 87

Execute scripts to automate fault
simulations from the command line

No No Yes “Fault Simulator
Commands” on page 118

Have Fault Simulator watch your
target application and generate
environmental faults

No Yes No “Automatically
Generating
Environmental Faults” on
page 29

Have Fault Simulator generate a
script that you can run from the
command line

No Yes No “Automatically
Generating a Batch
Script” on page 41

Table 2-1. Supported Functionality in DevPartner Fault Simulator (Continued)

Feature
Available
in Visual
Studio

Available in
the
Standalone

Available
from the
Command
Line

Where to Learn More
Chapter 2� Introducing DevPartner Fault Simulator 9

Available as a Standalone Application

Using the Fault Simulator standalone application helps quality assurance
validate the stability of applications under development outside Visual
Studio. The standalone application complements your ongoing
functional and regression testing with functionality geared to
supplement your quality assurance objectives. See Table 4-1, Supported
Functionality in the Standalone Application, on page 28 for a list of
features.

You can safely mimic real-world environmental failure conditions and
see how the application might respond. You can create and configure
new environmental faults (see “Using Environmental Faults to Simulate
Application Failures” on page 14) to validate applications under
development.

You can share your testing results with development, along with the
original fault set that you used to generate these results, to help software
development conduct code modifications more quickly and efficiently.
You can also reuse fault sets configured in development for subsequent
regression testing.

Note: The standalone application is available in DevPartner Fault Simulator,
as well as in the QA Edition. See “Accessing DevPartner Fault
Simulator” on page 6.

Integrated in Visual Studio

Using Fault Simulator in Visual Studio helps you track and troubleshoot
the exception handlers in your managed source code. Fault Simulator
simulates faults without disrupting the operating or debugging
environments.

You can create .NET faults to test exception handling either at a specific
source location or independent of location. This means that you can
artificially throw exceptions in your source and see how the executable
reacts to the simulated exception. See “Using .NET Faults to Simulate
Thrown Managed Exceptions” on page 19.

You can also configure environmental faults that simulate failure
conditions, such as registry, COM, network, disk I/O, or memory
anomalies.

You can reuse the fault set files you create for each fault simulation test,
and also share these files with quality assurance for subsequent test
verification.
10 Understanding DevPartner Fault Simulator

Available from the Command Line

Fault Simulator extends its fault simulation capabilities to the command
line. From the command line, you can automate fault simulations on
projects that do not require user intervention. You can use this
functionality to enhance the unit testing, functional testing, and
regression testing you perform on applications under development. For
example, from the command line, you can run scripts repeatedly to
augment regression testing. The command line uses fault sets previously
configured in Fault Simulator. Results generated from the command line
are available for viewing in the Fault Simulator user interface.

Note: See Appendix B, “Command Line Quick Reference” for an overview
of the command line interface.

DevPartner Fault Simulator QA Edition
DevPartner Fault Simulator 2.0 has introduced the DevPartner Fault
Simulator QA Edition, a new product edition in this release. The focus of
the QA Edition is to enhance your quality assurance testing. The QA
Edition helps you uncover environmental vulnerabilities in your target
application. Used outside Visual Studio, the QA Edition includes the
following components:

� Standalone application (see “Available as a Standalone Application”
on page 10)

� Command line interface (see “Introducing the Command Line
Interface” on page 117)

The DevPartner Fault Simulator QA Edition lets you:

� Use Fault Simulator as a standalone application outside Visual Studio
� Add, modify, and simulate environmental faults in application code
� Modify existing .NET faults
� Reorganize the display of fault information
� Collect coverage information during a fault simulation session
� Submit a work item to Visual Studio Team System
� Submit a defect to Compuware TrackRecord
� Suspend a fault simulation session in progress
� Review fault simulation details
� Have Fault Simulator watch your target application and generate

environmental faults
� Have Fault Simulator generate a working batch script and then run it

from the command line
Chapter 2� Introducing DevPartner Fault Simulator 11

DevPartner Fault Simulator SE
Tip: See “DevPartner
Fault Simulator Supported
Functionality” on page 8
for more information.

DevPartner Fault Simulator SE contains a limited feature set. It gives you
an opportunity to sample some of the features in the full product.
DevPartner Fault Simulator SE lets you:

� Add or modify a source-based .NET faults (in the .NET Framework 1.1
and 2.0)

� Reorganize the display of fault information
� Collect coverage information during a fault simulation session
� Submit a work item to Visual Studio Team System
� Submit a defect to Compuware TrackRecord

DevPartner Fault Simulator SE is available in Visual Studio when
DevPartner Studio is also installed. DevPartner Fault Simulator and
DevPartner Fault Simulator SE cannot be installed on the same machine.
To upgrade to the full product, see “Installing DevPartner Fault Simulator
SE” on page 5.
12 Understanding DevPartner Fault Simulator

Chapter 3

Understanding Fault Simulator
Fundamentals
� How Does Fault Simulation Help Ensure Application Stability?

� How Do I Use Fault Descriptors to Simulate Fault Conditions?

� Why Would I Suspend a Fault Simulation Session?

� Why Might I Reorganize the Display of Fault Information?

� Why Would I Have Fault Simulator Create Environmental
Faults for Me?

� How Do I Edit Environmental Faults Created for Me?

� Can I Reuse Fault Sets?

� Can I Collect Coverage Analysis During a Fault Simulation?

� How Do I Submit Defects Generated from Fault Simulator?

This chapter explains concepts and terminology used in Fault Simulator.

How Does Fault Simulation Help Ensure Application Stability?
To consider the significance of fault simulation, it helps to first look at
fault and simulation individually.

A fault is an abnormal, possibly unstable condition or defect that could
lead to a failure. In technology, a fault refers to an event that occurs
during the execution of an application that could cause an unexpected
behavior. The behavior could be manageable such as a temporarily
missing menu option or a brief Please Wait message, or more extreme,
such as data corruption, a frozen user interface, or a sudden crash.

A simulation imitates a real-world event. In technology, a simulation
demonstrates the possible effects of certain conditions in order to gain
 13

insight into the test item’s functionality, stability, and subsequent
reaction to the original event.

Software developers build applications to perform a specific function and
handle subsequent failure conditions. Quality assurance engineers
conduct testing to verify that the application can withstand
environmental abnormalities. However, software developers and quality
assurance engineers might not know for certain whether the software
will work satisfactorily once it is deployed.

Fault Simulator provides a workable solution, using the concept of fault
simulation to test for failures in an application. Fault Simulator can
simulate a variety of fault conditions in a running program. Fault
simulation testing can artificially uncover whether an application can
appropriately recover from a failure. It can cause a line of code to
artificially fail in order to test the program’s ability to recover from
whatever adverse conditions might ensue. Fault Simulator simulates
faults without changing the operating environment or the debugging
session.

How Do I Use Fault Descriptors to Simulate Fault Conditions?
Fault Simulator uses the concept of fault descriptors to designate the
ability to define fault preferences that you want Fault Simulator to use
when simulating a particular fault condition. You can set criteria, such as
specifying the managed method for a .NET fault that you want artificially
called, the exception you want thrown against that method, or the
argument or parameter that you want to trigger an instance of that
particular fault.

Fault Simulator supports two kinds of fault descriptors:

� Environmental faults
� .NET faults

Using Environmental Faults to Simulate Application Failures

Unintended failure conditions, such as a corrupt file, a full disk, an
unreadable registry value, or an unavailable server, can sabotage an
application's performance. Fault Simulator lets you create and configure
environmental faults to uncover these scenarios.

An environmental fault is an error condition that results from the
environment where the target program is executing. You set an
environmental fault to validate the robustness of a program under test by
simulating faults that couple with external dependencies that the
14 Understanding DevPartner Fault Simulator

program requires. For example, you might configure a network-related
fault to affect network-based method calls, such as remote server crash or
connection timeout, without affecting the operating environment of the
application being tested or other applications running on the system.
Fault Simulator supports five categories of environmental faults, as
described next:

� Disk I/O
� Network
� COM
� Registry
� Memory

Disk I/O Environmental Faults

Failures related to data loss, disk I/O operations, or read-write privileges
can have a significant impact on an application's functionality. The
possible downtime resulting from a file-related failure condition (such as
a corrupted or missing file, disk full, or missing directory), can have a
detrimental effect, especially if a failure incapacitates the application.

An application relies heavily on file-related tasks that either the user
performs or the application performs internally. While commonplace, an
inability to perform file-related tasks could detrimentally affect the
application's performance. The user interface might become
unresponsive, data might get lost, or worse, the application could crash.

Disk I/O faults simulate common, real-world problems related to disk I/O
operations and privileges. Disk I/O faults affect file and directory access
that prevent the application from executing, but do not physically alter
existing files or directories.

Table 3-1 summarizes the disk I/O faults.

Table 3-1. Disk I/O Faults

Disk I/O Fault Simulates

Corrupt file An inability to access a file whose contents became
corrupted

Disk full An inability to allocate more disk space on a specified
drive

DLL or assembly not
found

An inability to load a pre-existing module into
memory

File locked A failure condition where another application locks the
designated file, preventing the target application from
accessing it
Chapter 3� Understanding Fault Simulator Fundamentals 15

Network Environmental Faults

Loss of network connectivity is a common but serious problem in a
network-aware environment. Network-related vulnerabilities result from
problems with network access or resources. However, to test these failure
conditions by physically altering the environment (such as, removing a
network interface card, unplugging a network cable, or disconnecting a
network server) could put the application, and any other applications or
machines that also depend on that network, at greater risk.

Table 3-2 summarizes the network faults.

Insufficient read-
directory privileges

An inability to gain read access to a pre-existing
directory

Insufficient read-file
privileges

An inability to gain read access to a pre-existing file

Insufficient write-
directory privileges

An inability to gain write access to a pre-existing
directory

Insufficient write-file
privileges

An inability to gain write access to a pre-existing file

Missing directory An inability to locate a pre-existing directory

Missing file An inability to locate a pre-existing file

Table 3-2. Network Faults

Network Faults Simulates

Connection timed out A disruption to network operation and performance

Network offline A variety of network failures

Remote server crashed A failed connection between the monitored program
and the associated network

Server not available A failure to connect to the network

Table 3-1. Disk I/O Faults (Continued)

Disk I/O Fault Simulates
16 Understanding DevPartner Fault Simulator

COM Environmental Faults

The Microsoft Component Object Model (COM) technology has
revolutionized how software components link with external applications
and interact with Windows services. However, COM might introduce
another set of unanticipated environmental issues. Applications can
succumb to COM-related anomalies arising from installing or
uninstalling software, the presence of third-party components that share
a COM object, or changes to existing COM components.

Table 3-3 summarizes the COM faults.

Registry Environmental Faults

The Registry controls many executable and internal structures for an
application and the Windows environment. An application and the
underlying operating environment rely on configuration settings in the
Registry. Registry data that an application accesses could inadvertently
get altered during the course of normal program activity. Registry failures
could occur when the application is started, when internal drivers are
loaded, or when a user logs into the system that accesses the application.
An altered or corrupted Registry setting could impact the application's
ability to function. However, testing for Registry-related environmental
failures by manually changing Registry settings could place the
application at greater risk.

Table 3-3. COM Faults

COM Faults Simulates

CLSID not found A failed COM function call attempt to query the
registry for the CLSID

DLL not found A failure with class instantiation that prevents a DLL
from loading

Interface not registered A failure where the entry for a pre-existing interface is
missing

ProgID not found An inability for COM to query a registry key value
Chapter 3� Understanding Fault Simulator Fundamentals 17

Table 3-4 summarizes the registry faults.

Memory Environmental Faults

Memory is not limitless. However, applications are often written as if
memory will never run out. Given that memory issues have the capacity
to incapacitate an application, can you risk releasing the application
without sufficient and confident testing? How will your application
respond to memory failures that arise from:

� Targeting memory-management facilities in Windows XP or later
� Limited available virtual memory that the program can allocate
� Preventing the program from allocating (or re-allocating) memory

from its default heap regardless of the actual memory previously
allocated

Table 3-4. Registry Faults

Registry Faults Simulates

Corrupt registry value The pre-existence of a corrupt value
or a legitimate value with the wrong
data type

Insufficient read privileges The monitored program's failure to
gain read access to the pre-existing
registry key

Insufficient write privileges The monitored program's failure to
gain write access to the pre-existing
registry key

Missing key An inability to open a pre-existing
registry key

Missing value An inability to access a pre-existing
registry key value or one of the key's
subkeys
18 Understanding DevPartner Fault Simulator

Table 3-5 summarizes the memory faults.

Using .NET Faults to Simulate Thrown Managed Exceptions

Software developers attempt to incorporate sufficient exception handling
into the applications they build. However, testing the validity of the
exception handling code can be difficult. Fault Simulator facilitates the
testing of exception handling via .NET faults.

A .NET fault is a managed exception that is artificially thrown after a
supported method has been called, either at a source statement or
independent of a source location. You can configure a .NET fault to target
a specific method call in your managed code. For example, you might set
a .NET fault on String.Format() to simulate ArgumentNullException
even if none of the runtime parameters would normally cause that
exception.

Fault Simulator supports two types of .NET faults:

� .NET fault that you can add to a source statement that includes a
supported method (see “Adding a .NET Fault to a Source Location”
on page 68 for more information)

� .NET fault that can be simulated independent of location in the
source code

Table 3-5. Memory Faults

Memory Faults Simulates

Heap allocation limits A condition that prevents the
monitored program from allocating
(or re-allocating) memory from its
default heap regardless of the actual
memory previously allocated

Low memory notification A low-memory condition that targets
memory-management facilities in
Windows XP or later

Virtual memory allocation limit A limitation of available virtual
memory that the monitored program
can allocate
Chapter 3� Understanding Fault Simulator Fundamentals 19

What Does a Fault Instance Represent?

A fault instance represents a fault descriptor that was simulated during a
fault simulation session.

� For a .NET fault, a fault instance represents a thrown managed
exception that occurs during program execution.

� For an environmental fault, a fault instance represents the simulation
of an environmental failure in the target application.

You can review results of fault instances that Fault Simulator simulated to
evaluate how the application handled the failure condition during
execution. See Chapter 7, “Evaluating Error Handlers” for examples of
various results.

Why Would I Suspend a Fault Simulation Session?
Suspending a session gives you the flexibility to have greater control over
the fault simulation. There are several reasons why this feature can
enhance your testing efforts. You can suspend fault simulation activity to
perform other tasks in the target application while the session is
suspended. You can suspend a session in order to focus your testing on
specific areas of the application during program execution. You can
suspend the start of a simulation if you want to test newly added code
but you want to bypass existing code that you have already tested. You
can also suspend data collection while the Fault Simulator standalone
application watches the target application and identifies potential
environmental failures that you can incorporate into your testing (see
“Automatically Generating Environmental Faults” on page 29).

Another benefit is when simulating the Heap allocation limits memory
environmental fault. You can use the suspend simulation feature to
bypass program initialization errors and prevent unrelated faults from
firing prematurely. Pausing a fault simulation gives the target application
an opportunity to execute to a point where you would actually want to
start simulating faults (such as, giving it time to load system DLLs first).
Once the target application has reached an acceptable point of
execution, you can resume the fault simulation activity.

Pausing a session does not terminate the session. However, all active fault
descriptors are temporarily halted. While in this suspended state, no fault
instances will occur even if all other properties (arguments, parameters,
and/or conditions) of the fault descriptor have been met. Resuming the
session allows the simulation to proceed normally. Suspending or
20 Understanding DevPartner Fault Simulator

resuming does not affect fault descriptors that were in a disabled state
when the session started.

When you start a fault simulation session, the simulation automatically
starts in a non-suspended state. You can, however, suspend simulation
before you start the session, in effect starting a simulation in a suspended
state. You can suspend or resume a simulation up until the time that the
simulation stops (either when you explicitly stop the simulation or the
monitored program exits).

If you suspend a session, Fault Simulator will maintain that suspended
state while Fault Simulator remains open. In the case of Visual Studio,
Fault Simulator also maintains that state until you close the current
solution.

Note: Suspending a fault simulation has no effect on the collection of
coverage information. See “Can I Collect Coverage Analysis During a
Fault Simulation?” on page 23.

Why Might I Reorganize the Display of Fault Information?
Fault Simulator organizes fault information in predefined groups and
sorting order. You can optionally customize how faults are organized
based on different fault criteria by clicking Arranged by (when available)
for a list of sorting options (such as, fault category, fault descriptor name,
targeted method for .NET faults, and enabled/disabled state).

You might sort fault descriptors as you set up a fault simulation for
several reasons. You can rearrange the fault list to create a more logical
order to help you prioritize which faults you want to include in your
testing. You can reorganize the list of environmental faults (such as by
category) that the Fault Simulator standalone application created for you
to determine which faults you want to use in your next fault simulation
(see “Automatically Generating Environmental Faults” on page 29).

You can also sort the data following a fault simulation session to simplify
analysis of the fault simulation results. For example, you might arrange
fault instances on the Specified Faults pane based on the number of
times each fault instance successfully fired, the number of times each one
was attempted, or by fault descriptor type, fault descriptor name, or
checked status.
Chapter 3� Understanding Fault Simulator Fundamentals 21

Why Would I Have Fault Simulator Create Environmental Faults
for Me?

The capability of Fault Simulator to simulate environmental failures in
real-world situations is invaluable, but it can be difficult for you to create
and configure just the right environmental fault descriptors to fortify
your testing matrix.

The Fault Simulator standalone application can watch your target
application during program execution and record program activities and
resource strings it encounters. From that data, Fault Simulator will
generate environmental faults you can use in a subsequent fault
simulation. See “Automatically Generating Environmental Faults” on
page 29 for more information on using this feature.

How Do I Edit Environmental Faults Created for Me?
If you prefer to create new fault descriptors or modify existing fault
properties yourself, rather than simply using those that the Fault
Simulator standalone application created for you, you can easily transfer
generated faults to a fault editor window. Choosing Switch to Fault
Editor from the Edit menu, you can make the desired changes in the
DevPartner Fault Simulator window.

In addition, choosing this menu selection enables you to have Fault
Simulator automatically generate a batch script file, based on your
preferences, for subsequent automated testing. See “Automatically
Generating a Batch Script” on page 41.

Can I Reuse Fault Sets?
You can save and reuse fault sets. Fault sets include fault data that you
configured for a fault simulation session. Fault sets can be used
interchangeably between Visual Studio and the standalone application.

You can also execute a script and reference a fault set file from the
command line. See Appendix B, “Command Line Quick Reference” for
an overview of the command line interface. Refer to the DevPartner Fault
Simulator Command Line online help from the InfoCenter for detailed
usage information.
22 Understanding DevPartner Fault Simulator

Can I Collect Coverage Analysis During a Fault Simulation?
You can use Fault Simulator with DevPartner coverage analysis to collect
coverage and fault simulation data during the same session. This feature
is available in Visual Studio and in the standalone application when
DevPartner Studio is also installed.

Tip: Refer to the
DevPartner coverage
analysis online help for
more conceptual
information about the
DevPartner Studio
coverage analysis feature.

DevPartner Studio provides coverage analysis to help developers and
quality assurance engineers thoroughly test an application’s code.
DevPartner Studio can collect coverage data for managed code
applications, including Web and ASP.NET applications. The coverage
analysis feature gathers coverage data for applications, components,
images, methods, functions, modules, and individual lines of code. The
coverage session file uses the .dpcov file extension.

Figure 3-1 illustrates how Fault Simulator combines a fault simulation
session with coverage analysis.

Figure 3-1. Example of Coverage Analysis with a Fault Simulation in Visual Studio

In this example, the developer used the Disk I/O insufficient write-file
privileges environmental fault descriptor to cause the File.Create() API
to fail. Following the simulation, Fault Simulator displays results (shown
to the left in Figure 3-1) with call stack and error handler data.

Indicates number
of times each code
line was executed
when the program
ran, as determined
by DevPartner
coverage analysis
Chapter 3� Understanding Fault Simulator Fundamentals 23

Concurrently, the coverage results reveal whether applications and
components have been thoroughly exercised under test conditions.
Notice the numbers in the left margin. They indicate the number of
times each code line was executed while the program ran. Consult the
Understanding DevPartner manual that accompanies DevPartner Studio for
comprehensive information on code coverage analysis.

Combining Coverage Analysis from the Command Line

You can also combine coverage analysis with a fault simulation from the
command line. See Appendix B, “Command Line Quick Reference” for
an overview of the command line interface using the /v switch. Refer to
“Fault Simulator Commands” on page 118 for a quick overview of this
and other commands. Refer to the DevPartner Fault Simulator Command
Line online help from the InfoCenter for more information.

How Do I Submit Defects Generated from Fault Simulator?
You can submit defects in two ways using Visual Studio Team System or
Compuware TrackRecord.

Submitting a Work Item to Visual Studio Team System

Fault Simulator integrates into Visual Studio Team System, the Microsoft
software development version control, defect tracking, and process
management software. In order to submit a Work Item of the type Bug
from DevPartner Fault Simulator:

� The Team Explorer client must be installed
� An active connection to the Team Foundation Server must exist
� A project must be selected

Note: See “Visual Studio 2005 Team Foundation Server Integration
Requirements” on page 4 for more details.

Fault Simulator automatically adds error handler and call stack results
collected during a fault simulation.

Consult the Microsoft Visual Studio 2005 Team System documentation
for more information.

Note: Fault Simulator does not support Visual Studio Team System in Visual
Studio .NET 2003.
24 Understanding DevPartner Fault Simulator

Submitting a Defect to Compuware TrackRecord

You can submit a defect from Fault Simulator, as long as Compuware
TrackRecord, a software defect management tool from Compuware
Corporation, is on the same system as Fault Simulator. Fault Simulator
automatically adds error handler and call stack results collected during a
fault simulation. Refer to TrackRecord on the Compuware Web site for
more information about this product. Consult the TrackRecord online
and hard-copy documentation for comprehensive information.
Chapter 3� Understanding Fault Simulator Fundamentals 25

26 Understanding DevPartner Fault Simulator

Chapter 4

Performing Quality Assurance
Tasks
� DevPartner Fault Simulator Supports Quality Assurance

� Automatically Generating Environmental Faults

� Manually Configuring a Fault Simulation

� Automatically Generating a Batch Script

This chapter summarizes the features geared to quality assurance
engineers and also explains how to perform fundamental tasks in Fault
Simulator.

DevPartner Fault Simulator Supports Quality Assurance
Used outside Visual Studio, the DevPartner Fault Simulator standalone
application helps quality assurance engineers improve application
quality by ensuring the robustness of applications prior to deployment.
Fault Simulator can safely mimic various environmental failure
conditions to show how the application responds. Fault Simulator
complements functional and regression testing, helping you uncover
areas in the application code where the error handling is either flawed or
non-existent. With Fault Simulator, you can test more of your
application code, ensuring higher-quality applications, lowering project
risk, and maximizing productivity.
 27

Functionality that Supports Quality Assurance

Table 4-1 lists the supported functionality in the standalone application
that is geared to support quality assurance testing efforts.

Note: The standalone application provides limited .NET support. You can
modify a .NET fault that was originally created using the Fault
Simulator in Visual Studio. However, you cannot create a .NET fault
in the standalone application. Refer to the DevPartner Fault Simulator
online help for more information.

Table 4-1. Supported Functionality in the Standalone Application

Functionality Where to Learn More About
this Feature

Use of the Fault Simulator application
(outside Visual Studio)

“Available as a Standalone
Application” on page 10

Creation and configuration of
environmental faults

“Configuring an Environmental
Fault” on page 80

Modification of existing .NET faults,
(originally created using Fault Simulator in
Visual Studio)

“Using .NET Faults to Simulate
Thrown Managed Exceptions” on
page 19

See Note.

Saving, loading, and reuse of fault sets in
subsequent fault simulations

“Can I Reuse Fault Sets?” on page 22

Incorporation of code coverage in a fault
simulation session

“Can I Collect Coverage Analysis
During a Fault Simulation?” on page
23

Automatic generation of environmental
faults derived from observation of
program activities

“Automatically Generating
Environmental Faults” on page 29

Suspension of an ongoing fault simulation
session

“Why Would I Suspend a Fault
Simulation Session?” on page 20

Execution of fault simulation scripts from
the command line

“Fault Simulator Commands” on
page 118

Automatic creation of a batch script that
you can subsequently use from the
command line

“Automatically Generating a Batch
Script” on page 41

Submission of a work item to Team
System

“Submitting a Work Item to Visual
Studio Team System” on page 24

Submission of a defect to Compuware
TrackRecord

“Submitting a Defect to Compuware
TrackRecord” on page 25
28 Understanding DevPartner Fault Simulator

Automatically Generating Environmental Faults
Fault Simulator can mimic environmental failures to show how an
application might react in a real-world situation. While this data is
invaluable, it can be difficult to identify all possible environmental
failure conditions that you should include in your application’s testing
matrix. Moreover, you might not be able to identify the precise resources
to target, such as the Program ID associated with the invalid COM object,
the corrupt registry string, or the missing file name. As an alternative,
you can let Fault Simulator handle this task for you. You simply use the
application normally as Fault Simulator does the rest.

Watching Your Target Application for Potential Environmental Weaknesses

The Fault Simulator standalone application watches your target
application during program execution and records program activities and
resource strings it encounters. Program activities might include those you
initiate, such as opening a file or accessing a directory, as well as those
executed by the program itself, such as the program accessing the
Registry or creating a COM object. Resource strings identify the objects
that are affected, such as file name, registry value, COM object, etc.

Fault Simulator can learn and report where your application might
exhibit potential environmental weaknesses. After the application exits
or if you end the observation phase, Fault Simulator will list activities
related to registry, Disk I/O, COM, and network access that it watched.
Each activity is associated with an environmental fault. For example,
opening a file could fail as:

� Insufficient read-file privileges
� Insufficient read-directory privileges
� Missing file
� Missing directory
� File locked
� Corrupt file

Even though Fault Simulator will assign one environmental fault to each
activity, additional environmental faults might also apply. For example,
Fault Simulator will assign the Insufficient write-directory privileges fault to
the opening a file activity. You can optionally choose a different
environmental fault from the list of environmental faults for each
activity. You can include or exclude environmental faults to be applied to
the simulation and then start a fault simulation session. The next section
walks you through the steps to use this feature.
Chapter 4� Performing Quality Assurance Tasks 29

Walk Through to Generate Environmental Faults

Read on to learn how to have Fault Simulator watch your target and
generate environmental faults, and then perform the fault simulation
session using the recorded data.

Watching Your Target

1 From the DevPartner Fault Simulator window in the standalone
application, click Browse and select the target application to watch.

Figure 4-1. Watch Your Target

2 Click Watch My Target to begin the session.

The window displays the current status of the session and prompts
you to launch the program.
30 Understanding DevPartner Fault Simulator

3 Launch your target application and use it normally.

You can click Suspend to pause the recording of program activity. For
example, you might suspend some portion of the session if you
wanted Fault Simulator to observe a specific execution point in the
application but bypass other parts of the application.

4 Stop the session either by exiting the application or clicking End
Observation.

Note: If Fault Simulator is watching a Web application, closing the Web
browser alone does not stop the observation. You must end the
session in order to completely stop the process.

5 Click a category name (such as Disk I/O), to expand its list of
activities, and then review how each activity relates to registry, Disk
I/O, COM, and network fault categories.

Each activity will be associated with an environmental fault, and will
be grouped under a category name.

Tip: Notice that activities
with multiple faults will be
hyperlinked.

6 Click on an item (to the right) to choose the fault to simulate.

There could be one or more faults in the list, as shown in Figure 4-2
on page 32. For example, the activity, Deleting file3.txt, can be
simulated to fail as follows:

� Insufficient write-directory privileges
� Missing file
� Missing directory
� File locked
Chapter 4� Performing Quality Assurance Tasks 31

Figure 4-2. Choosing a Fault to Simulate for the Activity — Deleting file3.txt

7 Repeat step 5 through step 6 as often as necessary.

8 Optionally save the faults that Fault Simulator generated for you in a
uniquely named fault set file (.dpfsfault).

This action allows you to load these faults and reuse and/or
reconfigure them in a subsequent fault simulation. See “Can I Reuse
Fault Sets?” on page 22.
32 Understanding DevPartner Fault Simulator

Performing a Fault Simulation with the Collected Data

1 Click Start Simulation to start a fault simulation on the subset of
environmental faults that you selected.

2 Launch the target application.

The fault simulation proceeds until you either stop the session or exit
the monitored program. For Web applications, you must explicitly
stop the simulation, rather than just close the browser.

3 When appropriate, stop the session, either by exiting the application
or stopping the simulation.

4 Review the results of the fault simulation.

In the example below, the Specified Faults pane shows that various
file-related fault conditions were simulated during monitoring.

Figure 4-3. Results on the Specified Faults Pane

In Figure 4-4 on page 34, the Simulated Faults pane traced the path
your unmanaged code took when a function failed. The top-most
entry in the Call Stack view will always show the location where
Fault Simulator caused the function to fail.
Chapter 4� Performing Quality Assurance Tasks 33

Figure 4-4. Call Stack Results on the Simulated Faults Pane

Optional Actions

1 Save the results to a uniquely named results file (.dpfs).

This action lets you review the results at a later time or share the
results with others.

2 Choose Switch to Fault Editor from the Edit menu (optional).

This option allows you to make changes to some or all of the
environmental faults collected in the previous fault set as well as to
add new fault descriptors. It also allows you to use the current fault
set in a batch script that Fault Simulator can automatically generate
for subsequent automated testing.

Notice that Fault Simulator automatically selects an environmental fault
for each activity (some in an unselected state) which is then preserved in
the current fault set. However, you can enable other faults in this fault set
to another fault simulation. Read on to learn how to configure fault
settings yourself that you can use in a subsequent fault simulation.
34 Understanding DevPartner Fault Simulator

Manually Configuring a Fault Simulation
Previously, you saw how the Fault Simulator standalone application
watched your target application as you used it normally and generated
environmental faults that you could use in a subsequent fault
simulation. You can also configure a fault simulation yourself, either
from scratch or by loading and modifying a previously saved fault set.

Configuring Fault Settings to Manage Your Environmental Testing

Using Fault Simulator, you can create and configure environmental faults
yourself that focus on particular failure conditions in a running
application, without changing the operating environment or disrupting
the application. Fault Simulator guides you as you create fault descriptors
to test specific areas in the program execution. See “How Do I Use Fault
Descriptors to Simulate Fault Conditions?” on page 14.

The following section walks you through the steps to configure fault
settings yourself.

Walk Through to Set Up a Fault Simulation

The first section gets you started to create new fault descriptors and/or to
modify existing fault properties. The following section guides you to
perform the fault simulation session using the fault descriptors you either
created or modified.

Note: See “How Do I Use Fault Descriptors to Simulate Fault Conditions?”
on page 14 for more information.
Chapter 4� Performing Quality Assurance Tasks 35

Creating and Modifying Fault Descriptors

1 From the Fault Simulator standalone application, choose Switch to
Fault Editor from the Edit menu.

Figure 4-5. DevPartner Fault Simulator Window in the Fault Editor View

2 Choose Load faults from the File menu to load the contents of a
previously saved fault set.

This step populates the DevPartner Fault Simulator window with a
pre-existing collection of fault descriptors that you can use, as is, or
modify.

3 Choose the next action:

a To use the faults in the previous step, as is, skip to step 1 on
page 39.

b To make changes or additions to the currently loaded fault set,
proceed to the next step.
36 Understanding DevPartner Fault Simulator

4 Browse for the target application (executable, COM+ component, or
Web application) where you want to conduct the simulation.

5 Check any faults in the expanded list that you want included in the
fault simulation.

To rearrange the checked items to the top of the list, select Arranged
by along the column header and then choose Checked from the list.

6 Double-click a fault descriptor in the list to modify its fault
properties. In this example:

a We changed the designated file parameter to:
C:\Temp\file1.txt.

b We added an optional fault description: Testing temp file 1.

Figure 4-6. Modifying Fault Properties
Chapter 4� Performing Quality Assurance Tasks 37

7 Create a new environmental fault — such as, a memory-related fault,
shown in Figure 4-7.

Figure 4-7. Adding and Configuring a Memory Environmental Fault

8 Review the remainder of the fault descriptors and decide if you want
to include any of them in the next fault simulation.

9 Optionally click Arranged by to customize the fault display.

For example, as shown in Figure 4-8 on page 39, you might choose
Checked and Checked on top to only see selected faults.
38 Understanding DevPartner Fault Simulator

Figure 4-8. Selecting Fault Descriptors for a Fault Simulation

10 Optionally save the fault set to a uniquely named fault set file to
retain this configuration (similar to step 8 on page 32).

Performing a Fault Simulation
Tip: You must have
configured at least one
fault descriptor to
proceed.

1 Click Start Simulation.

2 Launch the target application.

3 Stop the session, when desired, either by exiting the application or
stopping the simulation.
Chapter 4� Performing Quality Assurance Tasks 39

4 Review the simulation results.

In Figure 4-9, notice that Fault Simulator simulated the following
fault conditions:

� The designated COM object could not be found.
� C:\Temp\file1.txt was corrupted.
� The C: drive was full.
� A registry key value was missing.

Figure 4-9. Results in the Simulated Faults Pane

You can review the results generated during this session and also save the
results to a uniquely named results file (.dpfs) for future reference. See
“Evaluating Error Handler Results” on page 84 for an explanation of fault
simulation results.
40 Understanding DevPartner Fault Simulator

Automatically Generating a Batch Script
DevPartner Fault Simulator extends its fault simulation capabilities to the
command line, allowing you to automate fault simulations.

Tip: See Appendix B,
“Command Line Quick
Reference”on page 117
for an overview of the
Fault Simulator
commands.

You might find it difficult to build a batch script that incorporates the
right command line switches in Fault Simulator. The Fault Simulator
standalone application eliminates the guesswork and the potential
mistakes by generating the script for you. Mirroring your preferences, it
will create a script file that you can use as part of your automated tests.
The following section walks you through the steps to generate a batch
script.

Walk Through to Create a Batch Script

This section guides you to make a few required choices, and the
following section explains optional settings you can also make.

Configuring Simulation Target Information
Tip: In order to use this
feature, the standalone
application must be in the
Fault Editor view and a
fault set must be loaded.

1 Choose Switch to Fault Editor from the Edit menu.

Ensure that you also have loaded a fault set. See “Can I Reuse Fault
Sets?” on page 22.

2 Choose Generate Batch Script from the File menu in the standalone
application.

The Simulation Target Information pane includes settings in the
current fault set and your target application. If you want to make
changes to the default entries, follow the remaining steps. If not, skip
to step 4 on page 43.

3 Specify the application, component, or Web application or service to
be monitored (if different from the default preference).

4 Specify the location of the fault set file (.dpfsfault).

5 Choose whether to save the session results (.dpfs), and if so, specify
where to save it.

6 Specify where to save the generated batch script file (.bat).

7 Review the settings you have made so far in this window.

8 If finished, skip to step 4 on page 43.

If not, click Additional Options.
Chapter 4� Performing Quality Assurance Tasks 41

Setting Additional Options

1 Choose whether to launch a separate executable.

If so, you can specify these optional selections:

a Browse for the executable file (/l).

b Specify a valid working directory for the process pertaining to the
previous entry (/s).

c Identify any command line arguments for the launched process
(/g).

2 Choose whether to include coverage analysis in the automation (/v).

Tip: See “Fault Simulator
Commands” on page 118
for an overview of
command line options.

3 Decide how to simulate faults. Choose one of the following options:

� Simulate all the faults in the designated fault set file (default)
� Perform an individual simulation of each fault, in the order in

which they are positioned in the file (/e)
� Simulate one specific fault (/n:x)

You will be prompted to choose a fault from the list.

Notice in Figure 4-10 on page 43 that the script designated the
switch,
/n:23, to correspond with your selection of the 23rd fault, Network:
Connection timed out.

Note: Fault Simulator previews the batch script for you as it is generated.
Although you cannot alter it, you can copy its contents to the
clipboard.
42 Understanding DevPartner Fault Simulator

Figure 4-10. Simulation Target Information Pane

4 When finished, click Generate Batch Script and Files to instruct
Fault Simulator to build the script.

You can run the batch script from the command line.

5 To view results generated from this script file, launch the standalone
application and open the results file you designated in step 5 on
page 41.

Designates
23rd fault in
the fault set
Chapter 4� Performing Quality Assurance Tasks 43

44 Understanding DevPartner Fault Simulator

Chapter 5

Enhancing Quality Assurance
Testing
� Traditional Software Testing Methodologies

� When Traditional Software Testing Is Not Enough

� Fault Simulator Enhances Software Quality Through Fault
Simulation

� User Scenario — Testing Software Quality with Fault
Simulator

This chapter considers various testing methodologies used by quality
assurance engineers and explores the challenges of effective testing. It
then presents a user scenario that shows how Fault Simulator enhances
quality assurance testing objectives using fault simulation.

Traditional Software Testing Methodologies
As a quality assurance engineer, you perform various types of software
testing, as summarized in Table 5-1.

You also perform stress testing and load testing. Stress testing involves
running an application and then monitoring program behavior under

Table 5-1. Common Software Testing

Testing Purpose

Integration Verifies that different areas of the application work properly together

Functional Executes certain user functions in the application and checks for the
expected result

Regression Selectively retests areas in the software to ensure that fixes made to
the application code have not negatively altered previously working
functionality
 45

adverse, atypical conditions. Stress testing executes the application under
more demanding conditions, and in some cases under conditions that
the application might never encounter. Stress testing evaluates how an
application behaves as conditions become more acute. Stress testing tries
to force the application to fail in order to observe how (or if) the
application can recover.

Load testing assesses an application’s tolerance to increased load (such as,
data input and transaction processing). Load testing analyzes the
scalability and load balancing capabilities of an application. It attempts
to cause failures that help an application’s ability to perform reliably.

Load testing and stress testing are not synonymous. Stress testing
deliberately subjects the application to unreasonable conditions at
extreme levels. Load testing measures software reliability by subjecting
an application to a clearly defined, statistical load, such as to the
maximum level that the application is specified to handle. Unlike stress
testing, load testing does not push the application to its extreme levels.

When Traditional Software Testing Is Not Enough
Despite painstaking efforts to validate software, the product can still be
deployed with untested code. Several permutations of operating systems,
service packs, system configurations, network layouts, user privilege
configurations, and third-party components can wreak havoc on an
application's stability. While a user might overlook the occasional
disabled menu option or incorrectly displayed dialog box, the Web-based
transaction that hangs or the application that crashes could undermine
the user's overall impression of the software.

Your quality assurance team might be overextended in its attempts to test
for every conceivable failure. It could be impractical to assume that you
can test an application’s reaction to all system or environmental failure
conditions using traditional testing methodologies. Moreover, you could
be flooded with a stream of bug reports about software instability or poor
performance from the field. Consequently, software developers might
resist being pulled away from their development activities to switch back
to resolving defects after deployment.
46 Understanding DevPartner Fault Simulator

Fault Simulator Enhances Software Quality Through Fault
Simulation

Enhancing quality assurance testing with Fault Simulator provides a
benchmark for ensuring that your application can reliably handle
unanticipated environmental anomalies. With Fault Simulator, you can
better assess whether your application is truly ready for deployment.

DevPartner Fault Simulator offers a meaningful solution to age-old
testing challenges. Fault Simulator can simulate environmental failures
in Windows-based applications, without actually interfering with
physical settings or altering file structures or source code. Fault Simulator
safely allows the application to demonstrate its response to real-world,
and possibly catastrophic environmental conditions. You can either set
up the environmental fault criteria yourself, or let the Fault Simulator
standalone application watch the program execution, collect data as it is
running, and then generate possible environmental failure scenarios that
you can subsequently test.

Fault Simulator supports your quality assurance objectives with virtually
little or no learning curve. All that is required is that you understand and
can use the application you are testing. The following section presents a
user scenario showing how to test software with Fault Simulator.

User Scenario — Testing Software Quality with Fault Simulator
You have been assigned to test your company’s Window-based task
tracking application1, currently under development but close to
deployment. The application tracks hours spent working on different
projects. It allows you to clock in and out during the workday, and
optionally add comments to work time. The application has a reporting
capability that totals on a weekly or monthly basis, or by task. You can
also view, print, save the reporting details.

You have conducted various standard tests on the application, as
summarized in Table 5-1 on page 45. You must test your application’s
ability to withstand unanticipated environmental failures, but you are
unsure how to proceed. Consequently, you use the Fault Simulator
standalone application to generate a collection of environmental fault
conditions that you can use in a fault simulation to test for application
weaknesses prior to product release.

1. Source: Chris Oldwood's Home Page; URL:
http://www.cix.co.uk/~gort/default.htm
Chapter 5� Enhancing Quality Assurance Testing 47

http://www.cix.co.uk/~gort/default.htm

Scoping Out Areas to Test

You scope out areas where you want to focus your testing. You consider
four key environmental categories: Disk I/O, registry, COM, and network.

Disk I/O

The application depends on file-related tasks that either your end user
will perform or that the application performs internally. An inability to
perform even simple file-related tasks could frustrate the user experience
at minimum or cripple the application at worst. You want to test your
application’s ability to withstand these kinds of file-related problems:

� How will the application react to a file that becomes corrupt?
� Will the application assume that the end user has write privileges to a

file?
� How will the application react if the local disk is full?
� Will the application display any kind of message to the user if it has

any of these issues with a file?

Note: See “Disk I/O Environmental Faults” on page 15 for more
information.

Registry

The application uses settings in the Windows registry. These registry
settings could get altered during normal operation, such as at program
launch, when internal drivers are loaded, or system login. Problems with
registry settings could result in application crashes or other
environmental failure conditions. You want to be able to test for registry
issues without physically changing registry settings, so as not to
destabilize the application.

Note: See “Registry Environmental Faults” on page 17 for more
information.

COM

This Windows-based application uses the Microsoft COM technology.
You admit that your application could succumb to COM-related
problems, resulting from the absence of third-party components or
changes to existing COM components. You want to test COM issues, but
you need assistance from Fault Simulator to pinpoint the actual COM
objects to target.

Note: See “COM Environmental Faults” on page 17 for more information.
48 Understanding DevPartner Fault Simulator

Network

Network-related vulnerabilities, resulting from problems with network
access or resources, pose a serious problem you want to understand better
before releasing the product. However, to test for network failures, in the
past you would have removed a network interface card, unplugged a
network cable, or disconnected a network server, putting the application,
as well as any other applications or machines that use the same network,
at greater risk. You hope to safely test for these scenarios:

� Can your application access the network?
� Does your application communicate anything to the end user if it

cannot access the remote server?

Note: See “Network Environmental Faults” on page 16 for more
information.

Having Fault Simulator Watch Your Target and Record Program Activities

You run your application, letting Fault Simulator watch the target and
create environmental faults based on its analysis of normal program
activities.

Note: Learn more about this functionality at “Automatically Generating
Environmental Faults” on page 29.

You launch the standalone application and browse to the location of the
target application. You then instruct Fault Simulator to watch your target
application. After you launch the target application, you perform these
normal program activities:

� Adding new tasks to the current session
� Editing or deleting existing task items
� Importing or exporting data files (.csv)
� Performing reporting functions, including viewing and saving to disk
� Accessing a URL from the program

Evaluating the Collection of Environmental Faults

After you exit from the program, Fault Simulator generates a set of
environmental faults. You save the complete fault set to a uniquely
named file (TT0.dpfsfault) that you can use later. You decide to first
focus on disk I/O-related fault conditions. Therefore, you uncheck all
other environmental faults in the COM, registry, and network categories,
and only select the disk I/O faults, as shown in Figure 5-1 on page 50.
Chapter 5� Enhancing Quality Assurance Testing 49

Figure 5-1. Enabling Disk I/O Faults

You review the list that Fault Simulator generated. To the left, you see
program activities that either you performed or that the application
performed internally. To the right, you see how Fault Simulator converts
the program activity to an environmental fault. For example, attempting
to write to the results file, Results.txt, could cause a Disk full condition.

You notice that some program activities include a hyperlinked
environmental fault. In these instances, Fault Simulator has determined
that more than one environmental fault can occur as a result of a
particular activity. You can click on the hyperlink to either keep the
selection that Fault Simulator made (checked) or to choose another fault
from the list. You can only assign one fault per program activity.
50 Understanding DevPartner Fault Simulator

Figure 5-2. Evaluating the List of Environmental Faults

You notice also that for each activity, Fault Simulator includes a resource
string (if applicable), such as a file name associated with the activity
(such as, test.csv, or TaskTrak.dat, shown in Figure 5-2).

After you make other selections on this window, you save this fault set
configuration to another uniquely named file, TT1.dpfsfault. You are
now ready to start a fault simulation, in order to see how the application
reacts to simulated fault conditions.
Chapter 5� Enhancing Quality Assurance Testing 51

Simulating Disk I/O Environmental Faults

You start the fault simulation and again launch your application, when
prompted to do so. You repeat the same tasks you performed earlier (in
“Having Fault Simulator Watch Your Target and Record Program
Activities” on page 49). You infer that Fault Simulator is preventing you
from completing these tasks. You also notice that as you do try to
proceed, Fault Simulator records the faults that it is simulating in parallel
with your actions. You observe that the application subsequently
terminates and displays a generic Windows message. At this point, Fault
Simulator displays the results it collected thus far. You first look at the
Specified Faults pane.

Figure 5-3. Reviewing How Many Times a Fault Was Simulated on Specified Faults

Fault Simulator confirms that it attempted and successfully simulated the
Missing directory fault seven times. However, you also notice that Fault
Simulator did not simulate the other faults in the fault set before the
application terminated.

Next, you look at the results on the Simulated Faults pane, as shown in
Figure 5-4 on page 53.
52 Understanding DevPartner Fault Simulator

Figure 5-4. Call Stack Results on the Simulated Faults Pane

Fault Simulator presents information related to faults it simulated during
program execution. For example, in the previous example, Fault
Simulator traced the method and DLL invocations in the call stack
pertaining to a specific fault, in this case the Missing directory fault
condition. You save the results (TT1.results) to allow software
development to also review the results and understand exactly what
might have caused the application to terminate abruptly (for example, if
it was caused by the operating environment and not by the application
itself).

You configure another variation of the disk I/O-related fault set. This
time, you uncheck the Missing directory fault so that you can simulate
other faults in the collection (such as, Corrupt file, Disk full, Insufficient
read-file privileges, Insufficient write-directory privileges, and Missing
file). You save that fault configuration to another fault set file named
TT1a.dpfsfault (see the configuration in Figure 5-5 on page 54).
Chapter 5� Enhancing Quality Assurance Testing 53

Figure 5-5. Excluding the Missing Directory Faults from the Next Fault Simulation

You run another simulation and perform similar user tasks in the
program once again. You quickly discover that you are prevented from
completing each task. You also notice that the application conveys
immediate feedback upon each attempt. When done, you end the
simulation and review the results.

The Specified Faults pane confirms successful attempts at simulating
several disk I/O faults that parallels the messages you encountered when
you interactively used the program. Recall that as you tried to perform
file-related tasks, the application dutifully displayed clear messages to
inform you that you could not complete each task. Fault Simulator
confirms these attempts in its results.
54 Understanding DevPartner Fault Simulator

Figure 5-6. Specified Faults Pane Showing a Successful Simulation of Disk I/O Faults

You might question why Fault Simulator simulated a fault multiple
times. This might have occurred because the API was called several times
which then triggered that fault each time it was encountered. In
addition, Fault Simulator simulated the fault each time it encountered a
particular parameter, such as a specified file name, that you originally
configured. As a quality assurance engineer, you wonder why the
application has responded in this way, as evidenced by the results Fault
Simulator captured. You save the results (TT1a.dpfs) and direct them
along with the original fault set file to the responsible software developer
to verify the original intent of the application code.
Chapter 5� Enhancing Quality Assurance Testing 55

Simulating COM, Registry, and Network-Related Environmental Faults

Next, you enable environmental faults under the other categories of
COM, Registry, and Network. You concede that these types of
environmental fault conditions are more difficult and far riskier to set up
manually because doing so requires that you must physically alter critical
settings in order to generate the fault. Thus, you clearly see the benefit of
simulating these faults, as shown in Figure 5-7.

Figure 5-7. Setting Up a Fault Simulation with COM, Network and Registry Faults

You run a fault simulation and use the application normally once again.
Following this session, you look at the results, starting with the Specified
Faults pane, as shown in Figure 5-8 on page 57.
56 Understanding DevPartner Fault Simulator

Figure 5-8. Simulated Registry, Network, and COM Environment Faults

The results show that twice Fault Simulator could successfully simulate a
missing registry key value that the application uses. It also simulated a
condition where a specific COM object could not be found, and that a
specific server IP address was unavailable. You think back during the
actual session when you were using the application, and you do not
recall getting any alerts related to those environmental events. While you
are not certain that this is problematic, you save these results as well to a
file named TT1b.dpfs, so that you can forward it, along with the original
fault set file, to the software development team for further scrutiny.

Performing Repeatable Testing

You can reuse each fault set file you created in the standalone
application. You can also share these fault sets and the corresponding
results files with software development to give them direct feedback on
improving their underlying code. Similarly you can execute fault
simulations from the command line.

Note: See Appendix B, “Command Line Quick Reference” for an overview
of the command line interface. Refer to the DevPartner Fault
Simulator Command Line online help from the InfoCenter for
detailed usage information.

Moreover, if you find it difficult to construct a valid script from scratch,
you can instead use the standalone application to build the script file for
you. Learn more about this capability in “Automatically Generating a
Batch Script” on page 41.
Chapter 5� Enhancing Quality Assurance Testing 57

58 Understanding DevPartner Fault Simulator

Chapter 6

Setting Up Exception Handler
Tests in Visual Studio
� Testing Exception Handlers in Fault Simulator

� Using Fault Simulator in Visual Studio

� Walk Through Focusing on Exception Handlers in Your Code

This chapter acquaints you with Fault Simulator in Visual Studio. This
chapter also introduces you to new functionality that helps you to
improve your exception handling code.

Testing Exception Handlers in Fault Simulator
You can use Fault Simulator in Visual Studio to test and debug exception
handlers in managed code. Fault Simulator simulates faults without
disrupting the debugger, operating system, or Visual Studio. Fault
Simulator analyzes how faults were handled in the source code. Fault
Simulator displays the information as the simulation proceeds, with the
final results available in a results file. You can view the results file
immediately, or save to a user-defined file for later review. Fault Simulator
also lets you navigate to the original source statement, if available,
helping you to troubleshoot exception handling anomalies.

Fault Simulator can also simulate environmental faults in unmanaged
applications. Fault Simulator helps you to test how the application reacts
to a variety of environmental failure conditions.
 59

Using Fault Simulator in Visual Studio
This quick start shows you how to use Fault Simulator in Visual Studio.

1 From Visual Studio, follow standard procedures to open a solution.

If the DevPartner Fault Simulator window is not already open, click
the DevPartner Fault Simulator tab (left margin) to display.

Figure 6-1. DevPartner Fault Simulator Window in Visual Studio

2 Ensure that you have designated a valid startup project in your
solution.

Check that this project is a supported project type and that it meets
the requirements for fault simulation. Refer to the DevPartner Fault
Simulator online help in Visual Studio for more information on
project requirements and supported project types.

3 Review the current fault descriptor list, and select the check box of
any fault descriptors you want activated during the next fault
simulation.
60 Understanding DevPartner Fault Simulator

Note: If this is your first time configuring a fault simulation, the window will
be empty (as pictured in Figure 6-1 on page 60) and you will need to
add and configure at least one fault descriptor.

4 Add and configure a .NET fault on the Add .NET Fault dialog box, as
shown in Figure 6-2.

Figure 6-2. Add .NET Fault Dialog Box

5 Configure as follows:

a Choose the namespace and method from each list provided.

b If prompted, specify argument(s) for those selections.

c Choose the exception to be artificially thrown.

d Optionally designate skip count or delay time.

e Optionally enter a fault description.
Chapter 6� Setting Up Exception Handler Tests in Visual Studio 61

6 Add and configure an environmental fault on the Add
Environmental Fault dialog box.

Figure 6-3. Add Environmental Fault Dialog Box

7 Configure as follows:

a Choose the environmental fault category.

Choices include: COM, Disk I/O, Network, Registry, and Memory.

b Choose an environmental fault to simulate.

c If prompted, specify parameter(s) for the previous selection.

d Optionally designate skip count or delay time.

e Optionally enter a fault description.

8 Repeat step 3 on page 60 through step 7 as needed.

9 Click Start with Fault Simulator on the DevPartner Fault
Simulator window.

This button is enabled as long as you have selected and properly
configured at least one fault descriptor and also met the requirements
listed in step 2 on page 60.

This action also launches the startup project targeted for fault
simulation.
62 Understanding DevPartner Fault Simulator

10 View current fault simulation details as they appear on the
DevPartner Fault Simulator window.

11 Click End Simulation to stop the current fault simulation.

Final results will immediately appear in a separate window.

12 View the details in the results window.

Refer to Chapter 7, “Evaluating Error Handlers” for various examples
of fault simulation results.

Walk Through Focusing on Exception Handlers in Your Code
Fault Simulator can analyze your managed code and identify areas where
you can improve your exception handling code. It then suggests actions
you can take to make improvements within the current method scope —
such as where you can add missing try/catch blocks or add XML
<exception> tags to your managed code. The following sections explain
this functionality.

Showing Fault and Exception Handler Indicators in the Source Window

Following a clean build (and with Show Fault and Exception Handler
Indicators selected), Fault Simulator can analyze your managed code and
identify areas where you can improve your exception handling code. It
then suggests actions you can take to make improvements within the
current method scope.

Fault Simulator enhances Visual Studio analysis capabilities by scanning
your code constructs for exception code or XML <exception> tags. To use
this functionality, save any changes to the source code, and, if necessary,
rebuild the solution before proceeding.

Note: The target executable must have a clean build for source lines to be
properly identified. Icons will only appear in build configurations that
generate debug information.

Fault Simulator identifies eligible statements. An icon () will appear in
the source window where actions can be performed. See Figure 6-4 on
page 64.
Chapter 6� Setting Up Exception Handler Tests in Visual Studio 63

Figure 6-4. Shows Fault and Exception Handler Indicators in the Source Window

Click on one of the icons for a list of further actions you can take at that
location, including:

� Inserting appropriate exception code
� Adding XML <exception> tags
� Adding a .NET fault to test the exception handling at that location

Inserting Appropriate Exception Code

Fault Simulator analyzes your managed code in Visual Studio and
identifies where you can improve the exception handling code within
the current method scope. Fault Simulator enhances Visual Studio
analysis capabilities by focusing on your exception handling code
constructs and spotting unhandled exceptions within the current
method scope. Fault Simulator identifies exceptions that could propagate
from a try block, from a catch block that results from the exception
handling code, as well as from a finally block. Similarly, Fault Simulator
examines code statements containing supported methods and will
identify exceptions that could propagate from that method.
64 Understanding DevPartner Fault Simulator

When Fault Simulator detects exceptions that can propagate from a code
statement and the statement is contained within a try block that has one
or more associated catch blocks, Fault Simulator will insert a stub catch
block to that try block. If the statement is nested within multiple try
blocks, Fault Simulator will insert the stub catch block to the innermost
try block that contains one or more catch blocks. Otherwise, Fault
Simulator will insert a try block around the entire method source body
with the stub catch blocks.

To understand the scope of advice that Fault Simulator will provide,
consider the difference between using a try/finally or a try/catch. A try/
finally construct is used to ensure that one or more statements are
executed after the code in the try block is executed (usually to dispose of
objects). Conversely, a try/catch construct is used to catch exceptions
that might escape from the try block. Fault Simulator might advise you to
add a new try/catch around a try/finally to preserve the original intent of
the code.

Figure 6-5 shows your selection to add a surrounding try/catch block to a
specific source location.

Figure 6-5. Advice to Add a Try/Catch Block

Fault Simulator inserts a try block and stub catch blocks into the source
code, as shown in Figure 6-6.

Figure 6-6. Shows Where to Insert the Appropriate Try/Catch Code
Chapter 6� Setting Up Exception Handler Tests in Visual Studio 65

Note: By default, the stub catch block will throw the exception that is
caught.

You might replace that code block as shown in Figure 6-7:

Figure 6-7. Revised Code Block

Note: If you have one or more assemblies that define the exception type
being caught by the new catch block(s) that are not referenced in
the current project, Fault Simulator will add a code comment within
the catch block. The comment would read:

TODO: Add a reference to the <assembly name> assembly to
the current project.

If Fault Simulator cannot identify the assembly that defines the
exception type, the comment would read:

TODO: Add a reference to an assembly that defines the
<exception type> type.

Refer to the DevPartner Fault Simulator online help in Visual Studio for
additional information about this feature.

Adding XML Documentation <Exception> Tags to a Source Statement

Fault Simulator analyzes your source code for missing XML <exception>
tags in Visual Studio projects where XML documentation is supported.

Note: Ensure that the current project, containing the method where you
want to simulate a .NET fault, has been enabled to support XML
documentation.

Fault Simulator uses XML documentation to determine the exception
types that can be simulated. This is especially useful in third-party and
user-written managed code.

If Fault Simulator detects escaping exceptions that are not caught within
the current method, Fault Simulator will advise you to add <exception>

private void Foo()
{

try
{

Console.WriteLine(“Method Foo”);
}
catch (System.IO.IOException) EX)
{

Console.WriteLine(EX.TOString());
}

}

66 Understanding DevPartner Fault Simulator

markup in a stubbed-out form to the method declaration. Fault Simulator
will detect exceptions that can escape from a method. When exceptions
are detected, you can add XML documentation comments to the
applicable method.

Notice in Figure 6-8 that Fault Simulator lists every source line in the
code block where it determines that XML could be added.

Figure 6-8. Shows Where to Add an XML Documentation Comment

When you click on a hyperlink, Fault Simulator adds <exception>
markup in a stubbed-out form to the method declaration, as shown in
Figure 6-9, prompting you to insert the appropriate comments.

Figure 6-9. Insertion of <exception> Tags

/// <exception cref="ArgumentNullException"></exception>
/// <exception cref="FormatException"></exception>
/// <exception cref="IOException"></exception>
void Foo()
{
[snip]
}

Chapter 6� Setting Up Exception Handler Tests in Visual Studio 67

Adding a .NET Fault to a Source Location

Fault Simulator will also tell you where to add a .NET fault at a source
statement to test the exception handling at that location. Click to
add a .NET fault to that source location, and then click on the Add a
.NET fault to this statement hyperlink, as shown in Figure 6-10.

Figure 6-10. Shows Where to Add a .NET Fault to a Source Statement

This action opens the Add .NET Fault dialog box, which reflects the
method/exception criteria at that source location.

Figure 6-11. Settings Reflect Criteria at a Source Location
68 Understanding DevPartner Fault Simulator

After you click OK, the new .NET fault automatically will appear in the
DevPartner Fault Simulator window, as shown in Figure 6-12.

Figure 6-12. DevPartner Fault Simulator Window Shows a New .NET Fault

Click other indicators in the source window and repeat the previous
steps if you want to add and configure more .NET faults for a subsequent
fault simulation.
Chapter 6� Setting Up Exception Handler Tests in Visual Studio 69

Performing a Fault Simulation to Test Exception Handlers

Start a simulation on the .NET fault(s) you previously added in “Adding a
.NET Fault to a Source Location” on page 68, and then review the results.

Note: During a fault simulation, Fault Simulator will simulate a thrown
exception as soon as the associated method is called. This means that
no code from the target method will be executed. Therefore, if you
add another .NET fault and then you run the program, the first
exception that is encountered will be thrown immediately following
the method call. However, any activity after the first method call will
not occur.

Figure 6-13 shows that one of the four .NET faults was actually attempted
and successfully simulated on the Specified Faults pane.

Figure 6-13. Shows that the SystemIO.IOException Was Successfully Simulated
70 Understanding DevPartner Fault Simulator

Go to the Simulated Faults pane, and click on Error Handlers.

Figure 6-14. Error Handlers View Shows a Handled Exceptions

This view records the exact source location where the exception was
handled along with other pertinent information. You can double-click
on a line item to view the source associated with that occurrence.

Error Handlers
shows exact
location where
the exception
was handled.
Chapter 6� Setting Up Exception Handler Tests in Visual Studio 71

Next, view the Call Stack view, as shown in Figure 6-15.

Figure 6-15. Call Stack View Traces Method Calls For a Thrown Exception

The Call Stack view analyzes where the exception was thrown in your
code, and traces the steps through your code that led to the thrown
exception. If the DLL or method is within the scope of your code, Fault
Simulator will provide applicable source information, such as line
number, source file, and called method.
72 Understanding DevPartner Fault Simulator

Chapter 7

Evaluating Error Handlers
� Well-Constructed Error Handlers Promote Product Reliability

� Using Fault Simulator to Achieve Best Practices

� Evaluating Error Handler Results

This chapter reviews different approaches to evaluate error handlers,
including an overview of structured exception handling. The chapter
then shows how Fault Simulator helps you evaluate the robustness of the
error handlers in your code.

Well-Constructed Error Handlers Promote Product Reliability
Errors take time to detect and fix, but if left undetected, can disrupt the
application and the operating environment. Errors fall into these broad
categories:

� Logic — Problems with the program logic, causing unintended results
� Syntactic — Errors that the compiler uncovers in the code syntax
� Runtime — Bugs occurring in a running program

Well-constructed error handlers can deal with a multitude of error
conditions, promoting a more reliable product. As defined in Toward a
Framework for Testing Error Handlers1, error handlers are “sections of
program code specifically provided to take remedial action in the event
that other sections of code detect or cause error conditions in a running
program.”

1.Source: Eliza LeCours and Robert Meagher, Toward a Framework for Testing
Error Handlers, URL: <http://www.compuware.com/products/devpartner/
1426_ENG_HTML.htm#NET>, Compuware Corporation, 2005
 73

http://www.compuware.com/products/devpartner/1426_ENG_HTML.htm#NET

Error handlers can be grouped as follows:

� Error handling for function calls
� Returns a success or failure status value
� Checks for a successful status value
� Makes provisions for a failed return

� C++ exception handling
� Uses try-throw-catch statements
� Throws C++ exceptions
� Implemented by the Microsoft C++ compiler

� Structured exception handling
� Uses try/catch/finally procedures
� Throws structured exceptions

Incorporation of Robust Error Handling

Software developers should incorporate robust error handling code into
the application code to ensure software quality. Error handlers allow the
application to function responsibly by:

� Recovering gracefully from an unexpected condition
� Terminating without losing essential data
� Providing useful feedback to the user

Error handlers monitor and respond appropriately to external factors,
such as interaction with system services, third-party applications, the
operating system, and the installed environment. Proper error handling
means managing adverse, unforeseen conditions gracefully without
disrupting the application or the operating environment. Developers
should build error handlers into the source code to ensure that the
application can respond appropriately to a catastrophic event. Writing
effective exception handling code, followed by effective testing of the
error handling, should become an early and integral part of the software
development process, not an afterthought.

Error Handling for Function Calls

Historically, software developers incorporated basic error handlers to
manage Visual Studio 6 Win32 and COM APIs. These error handlers
included error codes and generic FALSE returns from functions that
encountered errors. For example, GetLastError might be used to
troubleshoot the root cause. If the code was built to handle the error, the
Win32 function still had to hunt for and handle any problems it
encountered inline at every statement or method call that could fail.
74 Understanding DevPartner Fault Simulator

C++ Exception Handling

Based on the ANSI C++ standard, the C++ exception handling model was
the precursor to the structured exception handling methodology. C++
exception handling applies the concept of throwing an exception and
subsequently designating an exception handler to catch the thrown
exception using try, throw, and catch statements.

What is an Exception

An exception is an unanticipated event occurring while a program is
running that interrupts the normal operation of that program. When an
error happens within the scope of a method, the affected method creates
an exception object and then passes it to the runtime environment. The
exception object consists of relevant data, such as the:

� Type of error
� Program state at the time the error occurred

After the method throws an exception, the runtime environment
examines the call stack where the method resides to find a code block
that can properly handle the exception. To qualify, the code block must
be constructed to specifically handle the exception object. If the search is
successful, the appropriate code block catches the exception. If the search
is unsuccessful, the runtime environment terminates.

Structured Exception Handling

Following the release of the .NET Framework, Microsoft endorsed
structured exception handling as a necessary component of any well-
written program. In this methodology, the exception handling code is
organized into structured blocks using try/catch/finally procedures. Each
procedure contains code that catches the types of exceptions that a
procedure might generate. If a procedure cannot handle a particular
exception, the procedure will pass the exception up the call stack to the
calling method.

Best Practices for Structured Exception Handling

This section highlights key points of the structured exception handling
methodology, as advocated in the book Applied Microsoft .NET Framework
Programming1.

1.Source: Richter, Jeffrey. Applied Microsoft .NET Framework Programming.
Buffalo: Microsoft Press, 2002.
Chapter 7� Evaluating Error Handlers 75

The techniques outlined in Richter’s book represent best practices. Four
fundamental guidelines for writing exception handlers emerge:

� Register for the
AppDomain.CurrentDomain.UnhandledException and the
System.Windows.Forms.Application type’s static
ThreadException events so that your managed
System.Windows.Forms application will trap all unhandled
exceptions.

� Whenever possible, avoid having your application catch
System.Exception. However, if unavoidable, log information
about the local variables that might assist in debugging and throw
the exception to the calling method again.

� Only catch the exceptions where you can recover.

� Use at least one finally block to clean up resources.

Using Try/Catch/Finally Blocks

Try/catch/finally code construction forms the basis for the structured
exception handling best practices. You match a try block with one or
more catch blocks, and at least one finally block, to handle the exception
thrown by a method.

Try Block The try block contains your executing code and represents entry into the
exception handling code. In the try block, you locate code to attempt a
graceful recovery from an exception or else prepare for cleanup in the
finally block. The try block throws its own exception, that then causes
each catch block to be evaluated. If the code in the try block does not
throw an exception, the catch blocks are not evaluated, and the finally
block executes.

Catch Block The catch block contains your exception handling code and only gets
executed when code in your try block throws an exception. The more
catch blocks you include in your exception handling code, the more
precisely the code can respond when exceptions are thrown. The code
only evaluates the catch blocks if the try block associated with them
throws an exception.

Each catch block consists of the catch keyword, followed by:

� A parenthetical exception filter
� Code intended to handle or recover from the exception
� Code to throw the exception again
76 Understanding DevPartner Fault Simulator

The exception filter lets you customize your exception handling
responses based on the specific exception thrown. For example, you
might filter one catch block to handle:

System.ArgumentNullException

and the next to handle:

System.ArgumentException

Finally Block The finally block completes cleanup operations in the exception
handling code. The finally block will execute at the final stage of the try/
catch/finally code block regardless whether the catch block actually
handled the exception.

Try/Catch/Finally
Execution

The try/catch/finally code follows this progression when an exception is
successfully thrown:

� The code evaluates the try block and throws an exception.
� The catch blocks are evaluated top to bottom.
� The code in the catch block that evaluated the exception executes if a

catch block handled the exception.
� The finally block executes.

Once all the code in the handling catch block executes, the code might
take one of the following directions:

� Throw the same exception again to notify functions and methods
higher up the call stack of the error condition

� Throw a different exception to provide more detail about the error
condition to functions and methods higher up the call stack

� Stop throwing any more exceptions, letting the thread fall through
the catch block once it has been handled

This option will not notify functions and methods higher up the call
stack of an error condition.

You should integrate the try/catch/finally methodology at every stage of
development to avoid unintended problems in the software product. You
should handle the error condition as close as possible to where the
exception will be thrown. If an exception handler does not catch an error
close to its source, the exception will fall out of the method. Should the
calling function or method not have the proper exception handlers in
place, the exception could repeatedly fall out unhandled until a generic
exception handler catches the exception or the application terminates.
This approach will degrade the application and lead to program
instability.
Chapter 7� Evaluating Error Handlers 77

Using Fault Simulator to Achieve Best Practices
You can use Fault Simulator in Visual Studio as an integral part of
product development to ensure that your code conforms to best
practices. With Fault Simulator, you can verify the robustness and
accuracy of the exception handling code. Fault Simulator helps you
uncover weaknesses in your source code by letting you configure and
execute artificially generated error conditions. Fault Simulator directs you
to specific problem areas in your code by simulating faults designed to
test that code. Fault Simulator helps you identify the exceptions that
your managed code should be catching. It also helps you prevent
unhandled exceptions from falling through methods.

Configuring a .NET Fault in Managed Code

You can configure settings on the Add .NET Fault dialog box (example
shown in Figure 7-1) to artificially throw an exception associated with a
supported method in your managed code. Here, you can designate the
exception to throw, plus other pertinent method signature properties.

Figure 7-1. Example Adding a Source-Based .NET Fault

Note: See step 5 on page 61 to configure a .NET fault in Visual Studio.
78 Understanding DevPartner Fault Simulator

Fault Simulator provides hints in the source window where you can add a
.NET Fault directly to a source location. You can:

� Right-click on a source window and choosing Add .NET fault from
the context menu (see Figure 7-2).

� Use visual indicators via the Show Fault and Exception Handler
Indicators option on the Fault Simulator menu in Visual Studio (see
Figure 7-3).

Figure 7-2. Shows the Context Menu to Add a .NET Fault to a Source Statement

Figure 7-3. Shows the Show Fault and Exception Handler Indicators Option

Note: Learn more about using this feature in the IDE in “Walk Through
Focusing on Exception Handlers in Your Code” on page 63.
Chapter 7� Evaluating Error Handlers 79

Configuring an Environmental Fault

You can configure settings on the Add Environmental Fault dialog box
to simulate an error condition in the running program. Here, you can
designate the type of environmental fault to simulate, plus other
pertinent environmental properties (as shown in Figure 7-4).

Figure 7-4. Example Adding an Environmental Fault

Note: See step 7 on page 38 to add and configure an environmental fault.
80 Understanding DevPartner Fault Simulator

Reviewing Fault Simulation Results Views

Fault Simulator displays current simulation activity during a fault
simulation session. Following its completion, Fault Simulator generates
results summarizing the captured data.

Specified Faults Pane

The Specified Faults pane provides a summary of fault count
information including:

� Count of every fault instance that occurred during the simulation
� Number of times the fault was evaluated (reflecting every attempt)

Table 7-1 summarizes how Disk I/O: Disk full 1/1 is represented.

Figure 7-5 on page 82 shows an example of the Specified Faults pane:

Table 7-1. How Faults Are Defined on Specified Faults Pane

Example of Text Represents

Disk I/O Environmental fault category

Disk full Environmental fault name

1/1 Count of fired fault instances

1/1 Count of all attempts
Chapter 7� Evaluating Error Handlers 81

Figure 7-5. Specified Faults Pane

Fault Simulator shows additional details that you originally configured
for that fault, such as:

� Argument(s) configured for .NET faults (if any)
� Parameter(s) configured for environmental faults (if any)
� Category and fault name (for environmental faults only)
� Optional conditions or description configured for each fault

descriptor

Simulated Faults Pane

The Simulated Faults pane, as shown in Figure 7-6 on page 83, lets you
view three result tabs in the lower panel:

� Error Handlers
� Call Stack
� Properties
82 Understanding DevPartner Fault Simulator

Figure 7-6. Simulated Faults Pane

Error Handlers View Use the Error Handlers view to:

� Review evaluated and executed catch blocks
� Determine if the intended catch block, or a generic catch block,

ultimately handled the fault
� Analyze the execution path that the managed code took to see:

� How your target application responded to the fault
� How the fault was caught or fell through your catch blocks
� How the exception handling was resolved in the routine

Note: The Error Handlers view shows results on .NET faults simulated in
managed code only.

Call Stack View Use the Call Stack view to:

� Analyze where in your code the exception was thrown or the
function failed

� Trace the steps through your code that led to the exception being
thrown or not

Details in
lower panel
in Error
Handlers view

Faults listed in
upper panel
of Simulated
Faults
Chapter 7� Evaluating Error Handlers 83

Properties View Use the Properties view for a summary of the original fault
configuration. The configuration varies depending on the type of fault
displayed. Table 7-2 summarizes how the properties apply to the .NET
fault or the environmental fault.

Evaluating Error Handler Results
The following sections explain different examples of fault simulation
results:

Determining the Path The Code Took to Unwind from an Exception

Fault Simulator details call stack information showing where each
exception was thrown and where each fault occurred. The call stack also
identifies:

� The steps through your code that led up to each exception being
thrown

� Each fault that caused a function to fail

For managed code, the Error Handlers view details how your try/catch
code handled, or failed to handle, the designated .NET fault.

You can follow the logic to see where the code handled the fault with a
catch block, or where it fell through because of an incorrect or misplaced
catch block. Figure 7-7 on page 85 shows that the designated .NET fault
was not handled at the intended locations.

Table 7-2. Fault Properties

Property .NET Fault Environmental
Fault

.NET Framework Class Library method Yes No

Argument Yes No

Parameter No Yes

Condition Yes (optional) Yes (optional)
84 Understanding DevPartner Fault Simulator

Figure 7-7. Error Handlers View — Shows Exception Handling Analysis

Identifying if Any Error Handlers Got Invoked

The Error Handlers view shows the catch and finally blocks that were
evaluated and executed for each simulated fault.

Figure 7-8. Error Handlers View Showing Catch and Finally Blocks Evaluated

Indicates that the
specific .NET fault
was not handled
at these locations

Error
handled

3rd

method

2nd

method

1st
method
Chapter 7� Evaluating Error Handlers 85

In the previous example, Fault Simulator reveals that your code did not
handle the error as close as possible to where it was thrown, nor did it
have the proper catch blocks in the correct places. It shows that six catch
blocks were tried inside the lowest level method before the error
handling fell out. Catch blocks were tried in three different methods
before the error was handled in a fourth method’s catch block as follows:

� Method CopyThree tried six catch blocks before executing the finally
block and falling out of that method.

� Method CopyTwo tried one catch block, the finally block, and then fell
out of the method.

� Method CopyOne also tried one catch block, executed the finally
block, and then fell out into the main method StartCopying.

� StartCopying then handled the error with its generic catch block.

Figure 7-9 shows the catch blocks in your program that caught the
exception in the Call Stack view.

Figure 7-9. Call Stack View — Location of a Thrown Exception

Thrown Exception
86 Understanding DevPartner Fault Simulator

Viewing the Source Statement That Handled the Fault

When available, Fault Simulator can take you back to the source where
the exception handling was evaluated. Right-click on a line item in the
lower portion of the Error Handlers view and choose View Source to go
to the original code, as shown in Figure 7-10. From the original source
location, you can troubleshoot whether the exception was properly
handled, and if not, why not.

Figure 7-10. Viewing a Source Location Associated with a Fault Instance

Fault Simulator will also inform you if it cannot find the specified code
block due to a change in the original source.

Determining the Path The Code Took When a Function Failed

Fault Simulator can simulate environmental failures caused by one or
more Win32 APIs. Unlike managed code, where best practices advocate
the use of the structured exception handling methodology, unmanaged
code typically relies on error handlers that use return code values and
inline error handling to detect errors. Refer to “Error Handling for
Function Calls” on page 74.

Use the Call Stack view to trace the path your unmanaged code took
when a function failed, as shown in Figure 7-11 on page 88.

You can view
source pertaining
to an item listed in
the Error
Handlers view.
Chapter 7� Evaluating Error Handlers 87

Figure 7-11. Call Stack View — Top-Most Item Designates Where a Function Failed

Failed
function
88 Understanding DevPartner Fault Simulator

In the previous example, the Call Stack view shows the progression of
API and DLL invocations that Fault Simulator monitored. Notice that the
top-most entry in the Call Stack view will always show the location
where Fault Simulator caused the function to fail.

Assessing Whether the Intended Fault Was Handled

You can compare the faults that you initially configured (on the
Specified Faults pane) with the faults that were actually simulated (on
the Simulated Faults pane).

Note: See “Specified Faults Pane” on page 81 and “Simulated Faults Pane”
on page 82 for a description and example of each view.

Determine if you specified any faults that were never simulated and why
those faults were not simulated. Table 7-3 provides some tips to consider.

Table 7-3. Comparing Specified Faults Versus Simulated Faults Results

Considerations Possible Conclusions or Actions

Did the code execute at the location
where you expected it to occur?

If the code associated with the fault
never executed, the fault would not
occur.

Did the managed code make a call to
the relevant method?

If you simulated a fault on a supported
method, you could:

• Set a breakpoint on the targeted
method call

• Run in the Visual Studio debug
mode

• Check if the line of code executes

If the statement was executed but Fault
Simulator did not generate the fault,
examine the arguments specified in the
.NET fault descriptor to see if those
values evaluated true when the method
was executed.

Did the unmanaged code make a call to
the relevant method?

If you simulated an environmental
fault, ensure that the application
exercised the code appropriately to
cause the type of call associated with
the fault. If Fault Simulator did not
simulate the fault, check that the
parameter(s) evaluated true when the
call was executed.
Chapter 7� Evaluating Error Handlers 89

For each simulated fault, examine the Error Handlers view (Figure 7-8
on page 85) and observe the catch and finally blocks that were evaluated
and invoked. For example, you can:

� Check whether the catch blocks were properly specified to efficiently
handle the fault.

� Check whether the fault fell through all the specific catch blocks but
ended up being handled by a generic catch block within the routine
where it was thrown.

� Check whether the fault fell through a series of routines before
eventually being caught.

� Check whether the fault got handled outside the code (such as, by
catch blocks in some other external routine).

Confirming Where the Fault Was Handled

Did the catch blocks handle the intended exception? Or did it fall
through routines, only to be caught by a generic catch elsewhere? If you
find that the faults are being handled generically, you need to evaluate
how you initially set up your catch blocks to handle exception.

Figure 7-12 on page 91 shows that an exception was not handled by the
method where it occurred. Rather, it fell through all the catch blocks in
the CopyThree method to be handled by a catch in the calling method,
CopyTwo.

Did the code make a call to the correct
overloaded method?

Verify that the signature (the number
and type of arguments on the call)
specified in the fault descriptor
matches the actual method call in your
code. If the signature does not, Fault
Simulator would not simulate the fault.

Table 7-3. Comparing Specified Faults Versus Simulated Faults Results (Continued)

Considerations Possible Conclusions or Actions
90 Understanding DevPartner Fault Simulator

Figure 7-12. Fault Handled in the Second Method on the Error Handlers View

Looking at the results, you can assess whether the evidence showing that
the exception was handled represents how you initially intended to
handle the exception.

Indication that fault was handled
Chapter 7� Evaluating Error Handlers 91

92 Understanding DevPartner Fault Simulator

Chapter 8

Improving Software Quality
� Objectives Software Developers Share

� Obstacles to Software Quality

� Software Vulnerabilities

� Testing for Predictable Outcomes

� Using Fault Simulator to Ensure Software Quality

� Three-Part Solution Using Fault Simulator

This chapter demonstrates how Fault Simulator optimizes your software
development goals. It contrasts these goals with the challenges you also
face. It then explores software vulnerabilities that affect application
stability, along with alternatives that promote software quality. Finally,
this chapter presents a three-part approach to improving software quality
using Fault Simulator.

Objectives Software Developers Share
You share common objectives with other software developers, such as:

� Analyzing and eliminating all software vulnerabilities
� Adapting to changing internal and external conditions
� Addressing interoperability, compatibility, and portability constraints
� Keeping pace with changing technologies
� Identifying and fixing all possible software bugs prior to release to

market

Today’s applications should run reliably in different operating
environments. However, in reality, conflicts could occur if applications
are not tested thoroughly prior to deployment.
 93

Internal and external factors help applications perform as expected.
Some of these factors include:

� Data integrity
� Application integrity
� Data recovery

Data Integrity

With data integrity, the application can gracefully handle unexpected
incidences of invalid data. Data integrity protects against:

� Errors that result from bad data entered by a user
� Errors generated when bad data passes between computers or

networks
� Errors caused by external forces, such as viruses or spyware
� Hardware failures, such as disk crashes

Application Integrity

With application integrity, an application will continue to run, regardless
of unknown or changing conditions in the operating system. Application
integrity ensures that the deployed application can successfully complete
its tasks and return to its normal state. For example, if an application
transaction only partially completes, this malfunction could place the
application in a compromised state.

Data Recovery

Data recovery incorporates mechanisms that salvage invalidated or lost
data, such as those caused by disk crashes or virus attacks. Special
utilities, either external or internally built into the application, can help
restore the affected data.

Obstacles to Software Quality
Several obstacles can jeopardize software quality, including:

� Product instability
� Explosion of new technologies
� Complexities of the inner workings of APIs and system services
94 Understanding DevPartner Fault Simulator

Product Instability

Product instability creates bottlenecks to future product development in
several ways. Unstable products:

� Disrupt application performance, affecting customer perception
� Place additional, unintended burdens on software development
� Force you to backtrack and fix unanticipated software bugs from the

field
� Prevent you from performing your forward-thinking research of new

technologies

Application defects become significantly more costly to debug and
correct after a product is released. The Gartner Group recently reported1
that “the average cost of unplanned downtime for a mission-critical
application is $100,000 per hour.”

Explosion of New Technologies

With the rapid advancement of the Web, new knowledge has proliferated
at breakneck speed. These quantum leaps in technology demand never-
ending mastery of new techniques. You might not have ready access to
the necessary subject matter consultants on the more subtle complexities
of the applicable technology. You might also unwittingly underestimate
the full extent of design requirements.

Complexities of the Inner Workings of APIs and System Services

You face another challenge, that of managing the complex inner
workings of APIs and system services. For example, you might not have
included sufficient error handlers inside a code block that calls into an
API that checks for network connectivity. If that code is in fact
insufficient, an unresponsive user interface might result, or worse — an
abrupt shutdown that places the application and the operating
environment at risk. Possessing the knowledge and the means to
implement and test effective error-handling code goes a long way to
ensuring software reliability.

1. Source: Theresa Lanowitz, Gartner Application Development Summit Pre-
sentation: Software Quality in a Global Environment: Delivering Business
Value, URL: https://www.gartner.com/2_events/conferences/
ad6_agenda.jsp?day=2, Gartner, Inc., September 2004.
Chapter 8� Improving Software Quality 95

https://www.gartner.com/2_events/conferences/ad6_agenda.jsp?day=2
https://www.gartner.com/2_events/conferences/ad6_agenda.jsp?day=2

Software Vulnerabilities
Software problems can wreak havoc on today’s applications and
compromise stability. What developer does not dread the following
symptoms?

� Blue screen crash
� System hang or freeze
� Lost data
� Failure of a critical process
� Network down

These symptoms might result from the following software vulnerabilities:

� Logic errors

Logic errors generate invalid or unpredictable results, perhaps
stemming from a misinterpretation of the intended workflow. While
not fatal, logic errors can lead to erratic behavior.

� Uninitialized data

Uninitialized data can cause intermittent problems in the
application. If the program stores data in a location that was not
properly initialized, the subsequent data can become corrupted. Such
dirty data can lead to instability in the form of sporadically invalid
results or erratic behavior.

� Invalid data

The underlying source code might not be able to process invalid
external inputs (such as, from a user or the operating environment).
Failure to include provisions in the code to validate data can
destabilize the program.
96 Understanding DevPartner Fault Simulator

Layers of Application Vulnerability

Figure 8-1 depicts three layers of application vulnerability:

Figure 8-1. Layers of Application Vulnerability

Each layer has the potential of impacting the another. For example:

� Data passing from the client to the server might become corrupted,
or the data might pass in a format or a size that the server cannot
process properly.

� Client-side data might be susceptible to an external security attack or
an unwanted manipulation.

� A network offline condition could prevent the client from integrating
properly with the business logic.

� An application might fail to retrieve data from a missing directory on
the database server.

� A missing or corrupted registry key might prevent the application
from accessing a software program or the Windows operating
environment.

Client

Business Logic
Middle Tier

Database
Server

Network

Web services

Application code

COM+ components
Chapter 8� Improving Software Quality 97

Testing for Predictable Outcomes
You perform tests on predictable areas in the application to ensure
expected outcomes, including:

� Unit testing

Isolates testing to specific code sections in the application

� Integration testing

Verifies that different areas of the application work properly together

Testing results help you assess the risk and determine the bugs to fix,
given that in reality not all bugs can realistically be fixed. You attempt to
fix bugs that could negatively affect customer perception or hinder
software reliability, even if rare. On the other hand, you might elect to
delay fixes for bugs that are bothersome, but not damaging to the
application or customer perception.

Using Fault Simulator to Ensure Software Quality
Building and deploying reliable applications but not sufficiently testing
for all potential weaknesses in the product can challenge software
development and quality assurance. Using Fault Simulator throughout
the entire development life cycle ensures that critical applications can
handle a multitude of adverse, atypical conditions. Fault Simulator lets
you artificially expose application components to real-world failure
conditions without causing actual harm to the application or the
operating environment. You do not physically change environmental
parameters. Rather, you let Fault Simulator mimic conditions, allowing
you to examine how the application responds to unanticipated failures.

The next section illustrates how you can use Fault Simulator to ensure
software quality using a three-part solution.
98 Understanding DevPartner Fault Simulator

Three-Part Solution Using Fault Simulator
This section shows how you can use the fault simulation capabilities in
Fault Simulator to improve software quality. This three-part approach
incorporates white box, black box, and automated testing.

Figure 8-2. Three-Part Solution to Software Quality

Note: The code snippets in the following sections are intentionally simple
but serve to demonstrate fault simulation concepts and capabilities.

White Box Testing Using Fault Simulator in Visual Studio

In white box testing, you test the source code during the development
cycle, verifying program logic from the inside out. You focus on the inner
workings of the source code.

Consider the scenario where you are building an application in Visual
Studio. You hope to include sufficient exception handling. You need
guidance on where you should insert try/catch blocks and add missing
XML <exception> tags. Visual Studio provides a broad list of exceptions,
but not necessarily choices that are context-specific.

You use Fault Simulator to indicate areas in your managed code where
you can make direct improvements. After a clean build and with the
Show Fault and Exception Handler Indicators feature selected (enabled
by default). Fault Simulator displays icons () wherever it determines
one or more actions can be taken.

Note: Learn more about this functionality at “Walk Through Focusing on
Exception Handlers in Your Code” on page 63.

Fault Simulator advises you of several areas in your managed code where
you can pursue further actions. For example, you click on one of the
icons to see where Fault Simulator detects that XML <exception> tags
can be added, as shown in Figure 8-3 on page 100.

testing

Automated testing

Software
quality

White box
testing

Black boxWhite box
testingtesting

Software

testing

Automated testing

Software
quality

White box
testing

Black boxWhite box
testingtesting

Software
Chapter 8� Improving Software Quality 99

Figure 8-3. Detection of Missing XML Documentation

You then click on a hyperlink for one of the exception types to navigate
to that source line. Fault Simulator inserts XML markup in a stubbed-out
form. You insert the appropriate comments. You can repeat this step for
the rest of the items on the list.

You click on another icon in the source window. Fault Simulator
indicates where you can insert a catch block.

Figure 8-4. Detection of Catch Blocks That Should Be Inserted In the Source Code

You click on a hyperlinked item in the list. Fault Simulator takes you to
the source line and inserts a stub catch block, as shown in Figure 8-5 on
page 101.
100 Understanding DevPartner Fault Simulator

Figure 8-5. Insertion of a Catch Block in Stubbed-Out Form

You insert the appropriate exception handling code, and then repeat this
step for the rest of the items in the list.

You click on another icon in the source window where you can add a
.NET fault to test the exception handling at a source line that includes
the method File.Open (see “Adding a .NET Fault to a Source Location”
on page 68).

Figure 8-6. Indication to Test an Error Handler at a Specific Source Location

After you make that selection, the Add .NET Fault dialog box (see
example at Figure 6-11 on page 68) confirms the string and other
method/exception details. Fault Simulator lists the exceptions that can
be simulated at that location.

After you ensure that the target executable is current with the source
(and if necessary — rebuild), you start a fault simulation on the
executable.
Chapter 8� Improving Software Quality 101

During the session, Fault Simulator throws that exception and terminates
the executable, thus ending the session.

You review the results to determine the execution path. Fault Simulator
captures and displays the call stack data as it unwound during the
session, along with other error handler details. The results confirm
whether the call successfully threw the exception. If so, it shows what
catch block handled it. You trace up the method calls. You also double-
click on an unsuccessful catch in the results view to go to the original
source to troubleshoot the code. You conclude that you need to add a
catch to handle the exception in that code block. You save the fault
configuration data to a fault set file (.dpfsfault). You also save the
results (.dpfs).

Note: Refer to Chapter 7, “Evaluating Error Handlers” for an explanation of
error handler and call stack results.

You run another fault simulation with the same configuration. You want
to verify that you corrected the problem revealed during the first session.
You also save the subsequent fault set and results to disk.

You conduct similar tests on other areas in your code where you can
improve your exception handling.

Black Box Testing Using the Fault Simulator Standalone

In black box testing, you test your software for bugs, such as
environmental failures resulting from data handling, network access, or
registry access. You run tests to ensure application stability and as a
precursor for functional, regression, and final acceptance testing.

You intend to test that your application functions reliably under a variety
of negative conditions. You know that physically causing environmental
faults (such as reaching to the back of your box to unplug the network
connection) could cause unintended consequences to the application or
other applications also using the same network.

You decide to test the application’s tolerance to simulated fault
conditions. You start with disk I/O faults and choose to test a missing file
condition using the Fault Simulator standalone application (see
“Available from the Command Line” on page 11).

Because you hesitate to physically delete the target file, you create and
configure a Disk I/O environmental fault descriptor, Missing file.
102 Understanding DevPartner Fault Simulator

Figure 8-7. Configuring a Missing File Environmental Fault

You start the fault simulation and then launch the executable. Following
the session, you see that Fault Simulator simulated the designated fault.
The Properties view confirms your original fault settings, while the Call
Stack view gives method call stack details. You also conclude that the
artificially missing file did not disrupt the application’s normal
operation.
Chapter 8� Improving Software Quality 103

Figure 8-8. Properties for the Missing File Fault along with the Call Stack Details
104 Understanding DevPartner Fault Simulator

You conduct additional tests on other environmental failure conditions.
For example, you might run a fault simulation on a Network offline
fault condition to test how the application reacts without physically
disconnecting the network cable. You might run a fault simulation on a
Virtual memory allocation limit fault condition to test if the
application can sustain itself when it consumes the allocated virtual
memory. You save the fault data for each of these tests to individual fault
set files for future reference.

Note: Refer to Chapter 7, “Evaluating Error Handlers” for an explanation of
error handler and call stack results.

Automated Testing Using Fault Simulator from the Command Line

In automated testing, you create scripts that test how the application
handles a variety environmental fault conditions. You can run tests that
concentrate on weaknesses in the application code.

You plan to run automated testing on applications that you are currently
developing. To that end, you have two options, as described next.
Chapter 8� Improving Software Quality 105

Option 1 You can create a script using the following template as a model.

Figure 8-9. Template to Automate Fault Simulator From the Command Line

Note: See Appendix B, “Command Line Quick Reference” for an overview
of the command line interface. Refer to the DevPartner Fault
Simulator Command Line online help from the InfoCenter for
detailed usage information.

Option 2 You can use the Fault Simulator standalone application to create a batch
script for you based on your preferences.

Note: See “Automatically Generating a Batch Script” on page 41 for more
information.

Using either option, you can run nightly fault simulation tests on your
application to check for any regression.

<job id="DevPartnerFaultSimulatorAutomation">

<script language="JScript">

wsh = new ActiveXObject("WScript.Shell");

wsh.Run("Dpfs /f:<path>FaultSet.dpfsfault /
a:<path>ConsoleApplication.exe
/r:<path>ResultFileName.dpfs

/l:<path>ConsoleApplication.exe", 1);

//After test is complete, exit target application so DPFS.exe can exit
and generate results

WScript.Sleep("Appropriate Duration");

wsh.Run("Dpfs /f:<path>FaultSet.dpfsfault /
a:<path>WindowsApplication.exe
/r:<path>Results.dpfs

/l:<path>WindowsApplication.exe", 1);

//After test is complete, exit target application so that DPFS.exe can
exit and generate results

WScript.Sleep("Appropriate Duration");

//Stop target COM+ server

wsh.Run("Dpfs /f:FaultSet.dpfsfault /com+:COM+Component /
r:<path>Results.dpfs

/l:<path>COM+ClientApplication.exe", 1);

//Restart target COM+ server. After test is complete, stop target COM+
server so DPFS.exe can exit and generate results

WScript.Sleep("Appropriate Duration");

wsh.Run("Dpfs /f:<path>FaultSet.dpfsfault /u:http://localhost/
WebSite1/Default.aspx

/r:<path>Results.dpfs /l:http://localhost/WebSite1/Default.aspx", 1);

//After test is complete, run IISReset so DPFS.exe can exit and
generate results

WScript.Quit()

</script>

</job>
106 Understanding DevPartner Fault Simulator

Appendix A

Troubleshooting
� Analyzing Environmental Issues

� Resolving Issues While Testing in Visual Studio

� Encountering General Issues

This chapter provides assistance resolving issues you might encounter
using Fault Simulator either in Visual Studio or the standalone
application, along with other general issues.

Analyzing Environmental Issues
This section helps you analyze environmental problems as you test your
application.

Having Fault Simulator Automatically Generate Environmental Faults

Fault Simulator provides relevant advice to quality assurance
professionals. The Fault Simulator standalone application can watch your
target application as you use it normally and then generate
environmental faults from the program activities it observed. Program
activities might include those you initiate as well as those executed by
the program itself. You can apply one or more environmental faults to a
subsequent fault simulation. See “Walk Through to Generate
Environmental Faults” on page 30.

Switching from Watch My Target to Configuring Faults Myself

Choose Switch to Fault Editor on the Edit menu in the standalone
application to display the window where you can configure
environmental faults and start a fault simulation. To see the original
Watch My Target window, exit and restart the standalone application.
 107

Simulating A Single Environmental Fault Multiple Times

As a monitored program executes, it invokes calls multiple times. As a
result, Fault Simulator might simulate a single environmental fault more
than once during monitoring. For example, using Notepad, you
configure the Disk I/O Insufficient read-file privileges fault to occur based on
the file designation you set for the parameter. Notepad will generate two
instances of the fault even though you only expect a single attempt to
access the defined file. Other applications might exhibit similar behavior.

Testing a File That Resides on a Network Path

Fault Simulator can simulate network failures associated with the
Microsoft Winsock implementation. However, Fault Simulator does not
directly support the universal naming convention (UNC) file and registry
resources as network problems.

To target a file-related fault on a network path, choose a disk I/O fault.
However, if you want to target a registry key failure on a network path,
choose a registry fault. In either case, you should specify the fully
qualified file designation.

Seeing Multiple Instances of Simulated Registry Faults

It is possible that when you simulate a registry fault you might see
multiple fault instances, rather than a single fault instance following a
fault simulation. This scenario could result from calls to a single .NET
method that result in multiple queries to access information about a
particular registry key or value.

For example, if you configure the registry fault, Missing value, you would
provide the key name and value name parameters for the registry value
you want to target. During monitoring, the .NET Framework potentially
makes several calls:

� Requesting the value
� Checking the size of the value

Fault Simulator records these calls during monitoring, and displays final
results following the completion of the fault simulation.
108 Understanding DevPartner Fault Simulator

Simulating Heap Memory Allocation Faults

The Heap allocation limits fault can have serious consequences for the
monitored program if the program does not have enough time to
initialize. Heap allocation is fundamental to most programs. Failed
allocation errors often occur outside the user code (such as, program
initialization). As a result, programs that fail heap-allocation requests
might behave erratically.

To bypass program initialization errors and prevent unrelated faults from
firing prematurely, you can use the suspend simulation feature in Fault
Simulator (see “Why Would I Suspend a Fault Simulation Session?” on
page 20). Pausing a fault simulation gives the target application an
opportunity to execute to a point where you would actually want to start
simulating faults (such as, giving it time to load system DLLs first). Once
the target application has reached an acceptable point of execution, you
can resume the fault simulation activity.

Simulating a Fault on a Missing Image File in a Web Application

How you configure an environmental fault will determine if Fault
Simulator can successfully simulate it during monitoring. Consider how
the steps you take to configure the simulation might affect the outcome.

1 You created a Web application that generates a Web page with the
following image tag in it:

<img id=Image1 src=file:///
c:\Inetpub\wwwroot\MyTestApp\imagemapare>

2 You configured a new environment fault, choosing the disk I/O fault,
Missing File.

3 You designated the missing file parameter as:

c:\Inetpub\wwwroot\MyTestApp\imagemaparea.gif

4 You start a simulation on your Web application at:

http://localhost/MyTestApp

5 You see that Fault Simulator does not report the image file as missing.

When you simulate faults in a Web application, Fault Simulator will
watch every instance of aspnet_wp.exe and inetinfo.exe. Since you
specified the ASP.NET application, MyTestApp, Fault Simulator watches
for the ASP.NET worker process (aspnet_wp) to load this Web application.
This instance of ASP.NET becomes the active process. However, the
aspnet_wp process will not access your configured parameter of:

c:\Inetpub\wwwroot\MyTestApp\imagemaparea.gif

As a result, no simulations will occur.
Appendix A� Troubleshooting 109

Because Internet Explorer (IE) treats the uniform resource identifier (URI)
as a file moniker, IE will attempt to access the file directly. Since Fault
Simulator is not monitoring IE, the image file, configured for the
environmental fault, is successfully detected and retrieved. Even if this
URI made a request through the Web server by employing an http
scheme, the file would still be detected and retrieved because Fault
Simulator is not monitoring the Inetinfo process or any resources
associated with it.

As a workaround, ensure that the process is the same one that uses the
file specification you configured for that environmental fault. You should
configure the environmental fault with the file specification from within
the IE process, rather than MyTestApp, as in this example. Fault Simulator
then will successfully simulate the missing file fault condition.

Encountering Zero-Length Files Created After a Disk Full Fault Is Simulated

During the simulation of a Disk full environmental fault, the target
application will attempt to create a new file, and Fault Simulator will
then simulate this fault. However, in this scenario, the operating system
creates a zero-length file before Fault Simulator takes control. You should
clean up any zero-length files that remain from the disk full simulations.

Resolving Issues While Testing in Visual Studio
This section deals with possible situations you might encounter while
testing error handlers in Visual Studio.

Simulating Faults in a Visual C++ Project

Fault Simulator supports managed or unmanaged C++ projects for
environmental faults only, but not for .NET faults. However, you can
simulate .NET faults in Visual C# and Visual Basic .NET source files.
110 Understanding DevPartner Fault Simulator

Adding a .NET Fault to a Source Statement

You want to add a .NET fault to a source line but you do not see any icons
in the source window (see “Adding a .NET Fault to a Source Location” on
page 68). Several reasons could apply:

� Ensure that you are only adding a .NET fault to a Visual C# or Visual
Basic .NET source file.

� Verify the project type is supported in Fault Simulator and that all
project requirements have been met. Refer to the DevPartner Fault
Simulator online help in Visual Studio for more information.

� Ensure that the target executable is current with the source. If not,
perform a clean build.

� Check that the source statement contains at least one supported
method. Refer to the DevPartner Fault Simulator online help in
Visual Studio for a list of supported namespaces.

Missing Show Fault and Handler Exception Indicators

If you do not see the icon in the source window to advise you where
to improve your exception code, ensure that:

� Show Fault and Exception Handler Indicators is selected from the
Fault Simulator menu (enabled by default).

� The modified date for a source file is current with the assembly file.
Otherwise, the icons will not appear for that source file. As a
workaround, modify the source file, save, and rebuild the project.

� Ensure that all other project requirements are met, and especially
those specific to using this feature (see the DevPartner Fault
Simulator online help in Visual Studio for more information).

Note: See “Walk Through Focusing on Exception Handlers in Your Code”
on page 63 for more information on using this feature.

Locating a Previously Added Source-Based .NET Fault

If you originally added a .NET fault to a source location but Fault
Simulator detected a code change, Fault Simulator will remove the
original .NET fault configured there. Other reasons for removal include:

� Changes to the contents in the project file
� Removal or renaming of the project, source file, or specific source

statement in question

You should add a new .NET fault to the source location again. To assist
you, Fault Simulator identifies an eligible source statement that contains
at least one supported method.
Appendix A� Troubleshooting 111

Determining Why a .NET Fault Fails to Fire as Expected

If you add a source-based .NET fault where the code construction
includes compound or nested source statements on a single line, Fault
Simulator might not be able to properly evaluate the designated method
call. As a result, Fault Simulator might not fire the corresponding fault as
expected during the fault simulation.

As a workaround, break out the source statement into multiple lines of
code. Consider the following examples:

Example 1:

Change from this construction:

DateTime[] dates = new DateTime[]{

new DateTime(2000, 1, 1),
new DateTime(2001, 1, 1, 0, 0, 0)};

To this construction:

DateTime dt1 = new DateTime(2000, 1, 1);
DateTime dt2 = new DateTime(2001, 1, 1, 0, 0, 0);
DateTime[] dates = new DateTime[]{dt1, dt2);

Example 2:

Change from this construction:

Label1.Text = Environment.GetEnvironmentVariable(“TEMP”);

To this construction:

String text = Environment.GetEnvironmentVariable(“TEMP”);
Label2.Text = text;

Simulating Faults in a Project Dependent on Others in the Solution

The projects and the target executable in a given solution should be
current and synchronized with each other. Otherwise, Fault Simulator
might not simulate a source-based fault. Consider the next example:

You have a solution with several projects. Projects A and B produce
assembly DLLs, while project C produces an executable that references
classes and methods in A and B. Because you must build the assemblies
in projects A and B before you build the executable in project C, you set
the dependencies in the project properties to specify that build sequence.

You intend to use Fault Simulator to add a .NET fault to a source
statement in project C. If you have not saved changes since the last
solution build, Fault Simulator will fail in its attempt to build project C.
112 Understanding DevPartner Fault Simulator

In addition, Fault Simulator will not simulate the source-level fault in
question. Fault Simulator will display this status in the output window.

As a workaround, ensure that the target executable is current with the
source, or at minimum — all the projects that project C depends on.
Rebuild if necessary. Ensure that the assemblies for these projects are
present in their appropriate locations according to the project properties.

Seeing an Unexpected Exception Thrown

Sometimes when Fault Simulator simulates an exception, it appears that
Fault Simulator throws a different exception. This could occur because
the operating system intercepts the original exception being simulated
and then throws another exception in its place. This scenario is normal
behavior for the operating system.

Simulating Source-Based Faults on Virtual Methods

Fault Simulator can simulate faults on a wide range of managed classes
and methods. Many of these classes have virtual methods that can easily
be overridden in user code. When a supported class has one or more of its
virtual methods overridden in derived classes (user code), Fault Simulator
cannot simulate faults on overridden methods of .NET methods.

The following example clarifies the scenario:

1: class MyArray : ArrayList
2: {
3: public override int Add(object value)
4: {
5: return base.Add(value);
6: }
7: }
8:
9: class Program
10: {
11: private MyArray m_array1 = new MyArray();
12: private ArrayList m_array2 = new ArrayList();
13:
14: static Main(string[] args)
15: {
16: m_array1.Add(new object());
17: m_array2.Add(new object());
18: }
19: }

The MyArray class overrides the Add virtual method on line #3. The
Program::Main method adds a new object to both of its internal arrays
on line 16 and 17. In this case, Fault Simulator visibly identifies the
source code (with icons) where it can simulate a source-based fault on
Appendix A� Troubleshooting 113

both lines 16 and 17. However, since line 16 is really calling the
MyArray::Add() method instead of the ArrayList::Add() method, a
fault will not be simulated there. Line 17 will be able to simulate a fault
since that is a call directly to ArrayList::Add() method.

Using Signal Modules for Processes That Host Multiple Applications

Fault Simulator supports the use of signal modules for processes that host
multiple applications, such as asp_net.exe and w3wp.exe. Once you start
the fault simulation, Fault Simulator will watch for the target application
(such as, the signal module). The fault simulation will not actually
commence until it detects the signal module. Once it does and then
begins the session, the specified fault set becomes active for the entire
process including all hosted applications. If the fault set contains
environmental faults, they will affect all hosted applications within the
process instance.

For example, assume you have two Web applications called
WebApplication1 and WebApplication2. (Application names do not
matter, and can even be the same, as uniqueness is based on the fully-
qualified path.):

1 You configure a fault on
System.IO.DirectoryInfo.GetDirectories() for WebApplication1,
and start the fault simulation.

2 You launch Internet Explorer, and start up WebApplication2 (which
also utilizes System.IO.DirectoryInfo.GetDirectories().

Fault Simulator will not begin simulation because WebApplication1
has not signaled.

3 You then start up WebApplication1, and it loads into the same
asp_net.net worker process as WebApplication2.

Fault Simulator detects the signaled application and begins simula-
tion on the hosting ASP.NET process.

4 You use WebApplication2 again. Fault Simulator will simulate a fault
on System.IO.DirectoryInfo.GetDirectories() now, because the
signaled application has activated the fault set for the entire hosting
process.

Note: Fault Simulator does not support application scoping inside a single
process. It does support application signaling as described above.
Once a host process detects the signaled application's presence, the
fault set applies to the entire process and not just the signaled
application. As a remedy, use scoped source-based .NET faults.
114 Understanding DevPartner Fault Simulator

Simulating Against a Web Application in a Debug Session

If you choose Fault Simulator > Start with Fault Simulator without
Debugging but did not debug a Web application, and then you
subsequently choose Debug > Start Debugging without ending the fault
simulation you just started, the debugger will attach to the currently
running Web server. This might result in faults being simulated in your
debug session even though you did not choose Fault Simulator > Start
with Debugging.

Encountering General Issues
This section explains general issues you might encounter.

Seeing No Simulation Activity Occurring on a Web Application

If you start the Web application before you start monitoring, Fault
Simulator does not know about that instance. When monitoring a Web
service or application, Fault Simulator looks for the next instance.

Submitting a TrackRecord Defect

Fault Simulator is compatible with Compuware TrackRecord 6.2 or later.
If you have an earlier version of TrackRecord on your system, you must
uninstall it and reinstall the correct version.

Inability to Submit a Work Item to Team System

Several reasons might explain why you cannot submit a bug to Visual
Studio Team System. See “Visual Studio 2005 Team Foundation Server
Integration Requirements” on page 4.

Attempting to Run Another DevPartner Process on the Same Target

Only one DevPartner Studio feature (such as, DevPartner performance
analysis or memory analysis) or DevPartner product (such as, DevPartner
SecurityChecker or Fault Simulator) can monitor a single program at any
given time on the same machine. For example, if the DevPartner error
detection feature is monitoring the same executable file, Fault Simulator
will indicate that it must wait until the other operation concludes.

Note: The exception is DevPartner coverage analysis. You can start a session
with Fault Simulator and coverage analysis, as long as DevPartner
Studio is also present. See “Can I Collect Coverage Analysis During a
Fault Simulation?” on page 23 for more information.
Appendix A� Troubleshooting 115

Determining if Fault Simulator Encountered an Internal Error

Fault Simulator writes to the operating system’s event viewer if it
encounters an internal error. For more information, go to
Administrative Tools > Event Viewer > Application from the Control
Panel. You can use the data in this log to troubleshoot unexpected errors
with Compuware Technical Support.

Note: If your user account does not have permission to write to the log and
Fault Simulator encounters an internal error, a user-visible error
might occur.
116 Understanding DevPartner Fault Simulator

Appendix B

Command Line Quick Reference
� Introducing the Command Line Interface

� Fault Simulator Commands

� Command Line Return Codes

This appendix introduces the Fault Simulator command line interface. It
also includes a quick reference of the Fault Simulator commands, as well
as the return codes that the command line interface might generate.

Introducing the Command Line Interface
Fault Simulator extends its fault simulation capabilities to the command
line. With Fault Simulator, you can automate fault simulations on
projects that do not require user intervention. You can use this
functionality to enhance the unit testing, functional testing, and
regression testing you perform on applications under development. For
example, you can write scripts that you can run repeatedly from the
command line to augment regression testing.

The command line uses fault sets previously configured in Fault
Simulator. Results generated from the command line are available for
viewing in the Fault Simulator user interface.

The remaining sections provide an overview of the command line
interface. For more in-depth usage information, refer to the DevPartner
Fault Simulator Command Line online help from the InfoCenter.
 117

Fault Simulator Commands
Table B-1 provides a brief summary of the Fault Simulator commands. For
more information, consult the online help.

Table B-1. Fault Simulator Commands

Command Required Function Syntax

/? Accesses the command line console help;
can be used independently or with another
option for additional assistance

/?

/?:keyword

/a yes
(see Note on page 119)

Specifies the path and file name of the
application

/a:<executable path>

/c yes
(see Note on page 119)

Specifies a COM+ component program
name (not the DLL name)

/c:<component>

/d If present, outputs the faults in a fault set
(as specified by /f) to the console window

/d

/e Performs individual simulations, enabling
one fault at a time; cannot be used in
conjunction with /n:x

/e

/f yes Specifies the path and file name of the
designated fault set; if missing, Fault
Simulator will return an error code

/f:<file path>

/g Specifies the command line arguments for
the launched process

/g:"arg arg"

/g:argument

/l Specifies an application to launch (only
required when /g is used)

/l:<executable path>

/n:x Simulates a fault depending on its numeric
position (represented by x) in the fault set
file; cannot be used in conjunction with /e

/n:x

/p If present, pipes the return code of the
launched application (as specified by /l) to
the console, rather than using an error code
returned by Fault Simulator

/p

/r Specifies the results file path and file name /r:<file path>

/s Specified the working directory for the
process defined by /l

/s:<folder path>

/u yes
(see Note on page 119)

Specifies the vroot of the local URL to watch
Fault Simulator for in a Web application

/u:<vroot>

/v Enables the collection of managed code
coverage information

/v
118 Understanding DevPartner Fault Simulator

Note: The /a, /c, and /u command line options are mutually exclusive.
Consequently, only one of these switches can appear on the
command line. If all of these commands are missing, Fault Simulator
will return an error code and will also display the help output to the
console.

If all of the required arguments are missing with no help option
specified but you included other optional arguments, Fault Simulator
will return an error code

Command Line Return Codes
When an error condition occurs from the command line, Fault Simulator
will echo the error text back to the console output and exit with the
applicable return code. You must check any return code (other than 0 for
success) and determine the proper course of action.

Note: Fault Simulator will generate the return code piped from the
launched process when the optional /p switch is specified.

Table B-2 lists the return codes that Fault Simulator generates.

Table B-2. Fault Simulator Return Codes

Return Code Description

0 Indicates success

1 The fault set file you specified could not be found. Please verify that the fault set file exists,
and fully specify it on the command line.

2 The application executable could not be found. Please verify that the executable exists, and
fully specify it on the command line.

3 The results file could not be created. Please verify that there is sufficient disk space and that
you have permission to write to the specified folder.

4 Only one type of application may be specified for a test run. Please specify either
/a, /c, or /u and then restart.

5 An unrecognized option was found on the command line. Please review the list of options in
the console help, correct the unrecognized option, and restart.

6 One of the options was used more than once on a single command line. Review the
command line, remove the duplicate option, and then restart.

7 A valid DevPartner Fault Simulator license could not be obtained.

8 An error was encountered. Open the System Event Log by running the Control Panel >
Administrative Tools > Event Viewer for a full explanation of the error. Errors will be logged
under the category DevPartnerFaultSimulator.
Appendix B� Command Line Quick Reference 119

9 The results file specified is currently in use by another process. Please choose a different results
file name and restart.

10 The required /f option was not specified. Please specify a fault set and then restart.

11 The required target application was not specified. Please specify either /a:<exepath>,
/c:<component>, or /u:<URL> and then restart.

12 None of the required arguments were specified. Please specify a fault set file,
/f:<filespec> and either an application /a:<exepath>, a COM+ component name,
/c:<component>, or a URL /u:<URL> and then restart.

13 /l requires the use of the /a switch or a launch executable.

14 DevPartner Studio was not detected. The /v option cannot be used.

15 The process could not be launched (with reason indicated).

16 The COM+ application specified for /c is invalid.

17 The fault set file specified for /f is invalid.

18 The /e and /n options are mutually exclusive and cannot be used on the same command
line.

Table B-2. Fault Simulator Return Codes (Continued)

Return Code Description
120 Understanding DevPartner Fault Simulator

Glossary
activity

Program function that Fault Simulator observes as it watches your
target application; subsequently associated with environmental fault
that you can use in your next fault simulation (only available in the
standalone application); see watch my target; see also
“Automatically Generating Environmental Faults” on page 29

argument

Input that is passed to a function; optionally used when configuring
a .NET fault

call stack

Path the code took to the point where a function failed; view in Fault
Simulator that represents this path; code logic that analyzes where
the exception was thrown in the code, and traces the steps through
that code leading to the thrown exception

CLSID

Parameter pertaining to COM environmental faults that designates
the Class ID for a COM method call; see parameter

COM

Category of environmental faults based on the Component Object
Model; see “Using Environmental Faults to Simulate Application
Failures” on page 14

command line interface

Allows you to use scripts to automate the testing of applications;
requires the creation of a fault set before Fault Simulator is invoked
on the command line; results are written to the results file for
analysis; see Appendix B, “Command Line Quick Reference”
 121

coverage analysis

Analysis feature in DevPartner Studio that lets developers and quality
assurance engineers automatically locate untested code in managed
applications and components; the command line and user interfaces
allow you to integrate fault simulation with coverage analysis
(integrated feature only applicable to managed code); see “Can I
Collect Coverage Analysis During a Fault Simulation?” on page 23

delay time

Optional condition you set when configuring a fault descriptor;
refers to the time interval (in seconds) Fault Simulator waits before
simulating the associated fault

environmental fault

Represents the emulation of failure conditions applied to several
classes of methods that deal with runtime environments; cannot be
tied to a source location in managed code; see “Using Environmental
Faults to Simulate Application Failures” on page 14

error handler

Log of unwind events or a log of Win32 return values applicable to
the selected fault instance; see “Error Handling for Function Calls”
on page 74

exception handler

Code construct that handles the occurrence of a fault condition that
alters normal program execution; term used interchangeably with
error handler; see “What is an Exception” on page 75

failure count

Integer value representing how many times a failure should occur
before the fault is simulated (ideally after a delay time has been met);
see parameter

fault

Represents a condition that occurs in an application that can have
unforeseen consequences; results from a failure of some method
called by an application
122 Understanding DevPartner Fault Simulator

fault descriptor

Any combination of a specified fault, method, and/or properties
(arguments, parameters, or conditions) used to trigger a fault instance
during a fault simulation; see “How Do I Use Fault Descriptors to
Simulate Fault Conditions?” on page 14

fault instance

Simulated fault that occurred during the execution of the target
application; appears in the DevPartner Fault Simulator window
during monitoring and following the completion of the fault
simulation; see “What Does a Fault Instance Represent?” on page 20

fault set

Collection of one or more fault descriptors; uniquely named file
(stored as an XML document) that contains fault descriptors and
configuration settings used in fault simulation; see “Can I Reuse Fault
Sets?” on page 22

fault simulation

Alternative to traditional testing methodology; validates the
robustness of the software application code; functional basis for
DevPartner Fault Simulator

InfoCenter

Repository for DevPartner Fault Simulator online and PDF
documentation; available from the Start menu on the Windows
desktop; choose Programs > Compuware DevPartner Fault
Simulator > InfoCenter (if you have the QA Edition, choose
InfoCenter from Compuware DevPartner Fault Simulator QA
Edition; also available from the Help menu in the standalone
application)

IID

Parameter pertaining to COM environmental faults that designates
the interface for a COM interface; see parameter

.NET fault

Represents a specific exception that a method call of a .NET
Framework Class Library class can throw; can be configured at a
specific source location or independent of location; see “Using .NET
Faults to Simulate Thrown Managed Exceptions” on page 19
� Glossary 123

parameter

Variable you define that determines whether an environmental fault
will be simulated during a session

ProgID

Parameter pertaining to COM environmental faults that designates
the programmatic identifier for a COM method call; see parameter

QA Edition

New product edition available in DevPartner Fault Simulator;
includes the standalone application and the command line interface;
see “DevPartner Fault Simulator QA Edition” on page 11

resource

String that is associated with an observed activity; correlates to an
environmental fault that can be used in a subsequent fault
simulation (such as, C:temp.txt designates a file name resource); see
activity, target application, and watch my target

skip count

Optional condition you set when configuring a fault descriptor;
refers to the number of instances Fault Simulator will wait before it
will simulate the associated fault

standalone application

Separate application and accompanying user interface available in
DevPartner Fault Simulator; targeted to quality assurance engineers
to help them validate applications under development; see “Available
as a Standalone Application” on page 10

structured exception handling

Necessary component of any well-written program where developers
organize the exception handling code in structured blocks using try/
catch/finally procedures; see “Structured Exception Handling” on
page 75

target application

Represents the application selected for fault simulation; could also
represent the application that Fault Simulator watches in order to
generate environmental faults; see “Automatically Generating
Environmental Faults” on page 29
124 Understanding DevPartner Fault Simulator

TestPartner

Compuware product that can be used in conjunction with Fault
Simulator to automate the testing of user interface-based
applications; go to the TestPartner Web site for more information

vroot

Used to identify the IIS virtual root part of the URL for a Web
application or service

watch my target

Represents a new feature in the standalone application where Fault
Simulator can watch your target application and record program
activities that it observes as you use the program normally; from that
data Fault Simulator will generate environmental faults that you can
use in a subsequent fault simulation; see “Automatically Generating
Environmental Faults” on page 29
� Glossary 125

http://www.compuware.com/products/qacenter/375_ENG_HTML.htm

126 Understanding DevPartner Fault Simulator

Index
Symbols
.NET ix

A
accessibility xiii
accessing DevPartner Fault Simulator 6
activity 22, 29, 49, 50, 51, 121

resource 51
add .NET fault 61, 68, 78

advice 68, 101
context menu 79
project 111
source location 68, 111, 112
troubleshooting 111

add environmental fault 62, 80, 103
additional options 41
advice

add .NET fault 68, 101
add try/catch blocks 65, 66
add XML exception tags 66, 67, 100

application vulnerability layers 97
argument 121
arranged by 21, 37, 38
automated testing 105
automatically generate

batch script 22, 34, 41
environmental faults 49

B
.bat 41
batch script 121

automatically generate 22, 41, 106
manually create 106

C
call stack 33, 34, 72, 83, 121

catch block 86
failed function 87, 88
traced calls 89

catch block 8, 76, 83, 84, 90
add 66
analysis 86
considerations 90
error handlers 85

CLSID 121
COM 17, 121, 123
COM APIs 74
command line interface 6, 11, 22, 117, 121

fault sets 22
Compuware TrackRecord 3, 24, 115
condition 122
configure fault simulation 35
coverage analysis 23, 115, 122

batch script 42
effects of suspend 21

D
delay time 122
development environments 1, 2
DevPartner Fault Simulator

accessing 6
command line interface 6, 11
coverage analysis 23
QA Edition 6
SE 5, 6
use in Visual Studio 6

DevPartner Fault Simulator SE 12
DevPartner Fault Simulator window

in Visual Studio 60
standalone application 36
 127

DevPartner Studio
compatibility with DevPartner products 115
coverage analysis 23, 122
previous version 3
SE 12

disk I/O 15, 102
.dpfs 34, 40, 41, 102, 106
.dpfsfault 32, 41, 102, 106

E
environmental faults 10, 14, 110, 122

add 62
COM 17, 48
disk I/O 15, 48
memory 18
multiple fault instances 55
network 49
properties 84
registry 17, 48
resource 51
troubleshooting 108

error handlers 71, 73, 74, 83, 122
catch block considerations 90
catch block evaluated 85
handled fault 91
troubleshooting 110
view 71, 83, 84, 85, 87, 90, 91

error handling
function calls 74
incorporation into application code 74

exception 75
call stack 86
thrown 86
troubleshooting 113

exception handling 75

F
fault 13, 122
fault descriptors 14, 123
fault editor 34, 36
fault instance 20, 123
fault sets 22, 32, 34, 41, 49, 51

fault descriptors 123
load 36
repeatable testing 57
reuse 22

fault simulation 13, 123
automating 11
command line interface 117
configure 35
end 63

start 33, 39, 62, 70
suspend 20
testing 47
with coverage analysis 23

Fault Simulator
accessing 6
command line interface 6
QA Edition 6
SE 6
use in Visual Studio 6

Fault Simulator SE 5, 12
finally block 76, 77
functional testing 45

G
generate batch script 41, 43

I
identifying areas for improvement in source code 64
IID 123
InfoCenter 22, 123

QA Edition 123
installing Fault Simulator

full product 4
QA Edition 5
SE 5

integration testing 45
interpreting results 81
invalid data 96

L
layers of application vulnerability 97
licensing 3
load faults 36
load testing 46
logic errors 73, 96

M
memory 18

N
namespaces 76
.NET faults 19, 123

add 61
properties 84
128 Understanding DevPartner Fault Simulator

O
operating systems 1

P
parameter 124
product instability 95
ProgID 124
program activities 22, 29, 49, 50, 51, 121

resource 51
project 60, 112

C++ 110
changes 111
reference 66
startup 60
troubleshooting 111, 112
Visual Studio Team System 4

properties 84

Q
QA Edition 5, 6, 11, 124

access from Start menu 6
InfoCenter 123

R
registry 17
regression testing 45

command line interface 117
resource 51
results file 59
resume fault simulation 20
runtime errors 73

S
SE 5, 6, 12
show fault and exception handler indicators 79, 99
simulated faults 34, 40, 53, 82

compared with specified faults 89
handled faults 89

simulation 13
simulation target information (batch) 41
skip count 124
source statement 19, 59, 87, 111, 112
specified faults 21, 33, 52, 55, 70, 89

compared with simulated faults 89
summary 81

standalone application 10, 27, 124
automatically generate batch script 41

stress testing 45
structured exception handling 74, 75, 124

best practices 76

submit defects 24
supported features

Fault Simulator 8
standalone application 28

supported platforms 1
suspend

fault simulation 20
effect on coverage analysis 21

watch your target 31
switch to fault editor 22, 34, 36
syntax errors 73
system requirements 1

T
target to watch 30
Team Explorer 3, 4

client 4, 24
Team Foundation Server 3, 4, 24
Team System 4, 24
testing 27

automated 105
black box 102
load 46
regression 45
stress 45
white box 99
with fault simulation 47

TestPartner 125
TrackRecord 3, 24, 115
troubleshooting

add .NET fault 111
environmental 108
error handlers 110
Web simulations 109, 115

try block 76
try/catch block 66, 76

advice 66

U
uninitialized data 96
unmanaged languages 2

V
view source 87
Visual Studio 2, 3, 4, 24

DevPartner Fault Simulator window 60
using Fault Simulator 6, 59
� Index 129

W
watch target 30, 49
Win32 APIs 74, 87
Windows Server 2003 2
Windows XP 2
work item 3, 4, 24

X
XML exception tags 66, 67, 100
130 Understanding DevPartner Fault Simulator

	Table of Contents
	Preface
	Who Should Read This Manual
	What This Manual Covers
	What’s New in This Release
	Conventions Used In This Manual
	Accessibility
	For More Information

	Installing DevPartner Fault Simulator
	System Requirements
	Supported Environments and Product Dependencies
	Licensing
	DevPartner Fault Simulator Installation
	Previous Versions of DevPartner Fault Simulator
	Visual Studio 2005 Team Foundation Server Integration Requirements
	Installing DevPartner Fault Simulator
	Installing the DevPartner Fault Simulator QA Edition
	Installing DevPartner Fault Simulator SE

	Accessing DevPartner Fault Simulator
	Coexistence with Other Compuware Products

	Introducing DevPartner Fault Simulator
	Introducing DevPartner Fault Simulator
	DevPartner Fault Simulator Supported Functionality
	Available as a Standalone Application
	Integrated in Visual Studio
	Available from the Command Line

	DevPartner Fault Simulator QA Edition
	DevPartner Fault Simulator SE

	Understanding Fault Simulator Fundamentals
	How Does Fault Simulation Help Ensure Application Stability?
	How Do I Use Fault Descriptors to Simulate Fault Conditions?
	Using Environmental Faults to Simulate Application Failures
	Using .NET Faults to Simulate Thrown Managed Exceptions
	What Does a Fault Instance Represent?

	Why Would I Suspend a Fault Simulation Session?
	Why Might I Reorganize the Display of Fault Information?
	Why Would I Have Fault Simulator Create Environmental Faults for Me?
	How Do I Edit Environmental Faults Created for Me?
	Can I Reuse Fault Sets?
	Can I Collect Coverage Analysis During a Fault Simulation?
	Combining Coverage Analysis from the Command Line

	How Do I Submit Defects Generated from Fault Simulator?
	Submitting a Work Item to Visual Studio Team System
	Submitting a Defect to Compuware TrackRecord

	Performing Quality Assurance Tasks
	DevPartner Fault Simulator Supports Quality Assurance
	Functionality that Supports Quality Assurance

	Automatically Generating Environmental Faults
	Watching Your Target Application for Potential Environmental Weaknesses
	Walk Through to Generate Environmental Faults

	Manually Configuring a Fault Simulation
	Configuring Fault Settings to Manage Your Environmental Testing
	Walk Through to Set Up a Fault Simulation

	Automatically Generating a Batch Script
	Walk Through to Create a Batch Script

	Enhancing Quality Assurance Testing
	Traditional Software Testing Methodologies
	When Traditional Software Testing Is Not Enough
	Fault Simulator Enhances Software Quality Through Fault Simulation
	User Scenario - Testing Software Quality with Fault Simulator
	Scoping Out Areas to Test
	Having Fault Simulator Watch Your Target and Record Program Activities
	Evaluating the Collection of Environmental Faults
	Simulating Disk I/O Environmental Faults
	Simulating COM, Registry, and Network-Related Environmental Faults
	Performing Repeatable Testing

	Setting Up Exception Handler Tests in Visual Studio
	Testing Exception Handlers in Fault Simulator
	Using Fault Simulator in Visual Studio
	Walk Through Focusing on Exception Handlers in Your Code
	Showing Fault and Exception Handler Indicators in the Source Window
	Inserting Appropriate Exception Code
	Adding XML Documentation <Exception> Tags to a Source Statement
	Adding a .NET Fault to a Source Location
	Performing a Fault Simulation to Test Exception Handlers

	Evaluating Error Handlers
	Well-Constructed Error Handlers Promote Product Reliability
	Incorporation of Robust Error Handling
	Error Handling for Function Calls
	C++ Exception Handling
	Structured Exception Handling

	Using Fault Simulator to Achieve Best Practices
	Configuring a .NET Fault in Managed Code
	Configuring an Environmental Fault
	Reviewing Fault Simulation Results Views

	Evaluating Error Handler Results
	Determining the Path The Code Took to Unwind from an Exception
	Identifying if Any Error Handlers Got Invoked
	Viewing the Source Statement That Handled the Fault
	Determining the Path The Code Took When a Function Failed
	Assessing Whether the Intended Fault Was Handled
	Confirming Where the Fault Was Handled

	Improving Software Quality
	Objectives Software Developers Share
	Data Integrity
	Application Integrity
	Data Recovery

	Obstacles to Software Quality
	Product Instability
	Explosion of New Technologies
	Complexities of the Inner Workings of APIs and System Services

	Software Vulnerabilities
	Layers of Application Vulnerability

	Testing for Predictable Outcomes
	Using Fault Simulator to Ensure Software Quality
	Three-Part Solution Using Fault Simulator
	White Box Testing Using Fault Simulator in Visual Studio
	Black Box Testing Using the Fault Simulator Standalone
	Automated Testing Using Fault Simulator from the Command Line

	Troubleshooting
	Analyzing Environmental Issues
	Having Fault Simulator Automatically Generate Environmental Faults
	Switching from Watch My Target to Configuring Faults Myself
	Simulating A Single Environmental Fault Multiple Times
	Testing a File That Resides on a Network Path
	Seeing Multiple Instances of Simulated Registry Faults
	Simulating Heap Memory Allocation Faults
	Simulating a Fault on a Missing Image File in a Web Application
	Encountering Zero-Length Files Created After a Disk Full Fault Is Simulated

	Resolving Issues While Testing in Visual Studio
	Simulating Faults in a Visual C++ Project
	Adding a .NET Fault to a Source Statement
	Missing Show Fault and Handler Exception Indicators
	Locating a Previously Added Source-Based .NET Fault
	Determining Why a .NET Fault Fails to Fire as Expected
	Simulating Faults in a Project Dependent on Others in the Solution
	Seeing an Unexpected Exception Thrown
	Simulating Source-Based Faults on Virtual Methods
	Using Signal Modules for Processes That Host Multiple Applications
	Simulating Against a Web Application in a Debug Session

	Encountering General Issues
	Seeing No Simulation Activity Occurring on a Web Application
	Submitting a TrackRecord Defect
	Inability to Submit a Work Item to Team System
	Attempting to Run Another DevPartner Process on the Same Target
	Determining if Fault Simulator Encountered an Internal Error

	Command Line Quick Reference
	Introducing the Command Line Interface
	Fault Simulator Commands
	Command Line Return Codes

	Glossary
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /KOR <FEFFace0d488c9c8c7580020d504b9acd504b808c2a40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e0020c7740020c124c815c7440020c801c6a9d558b824ba740020ae00af340020d3ecd5680020ae30b2a5c7440020c0acc6a9d574c57c0020d569b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

