
Advanced
Error Detection

Techniques
Release 8.1

DevPartner®

Technical support is available from our Technical Support Hotline or via
our FrontLine Support Web site.

Technical Support Hotline:
1-800-538-7822

FrontLine Support Web Site:
 http://frontline.compuware.com

This document and the product referenced in it are subject to the following
legends:

Access is limited to authorized users. Use of this product is subject to the
terms and conditions of the user’s License Agreement with Compuware
Corporation.

© 2006 Compuware Corporation. All rights reserved. Unpublished - rights
reserved under the Copyright Laws of the United States.

U.S. GOVERNMENT RIGHTS
Use, duplication, or disclosure by the U.S. Government is subject to
restrictions as set forth in Compuware Corporation license agreement and
as provided in DFARS 227.7202-1(a) and 227.7202-3(a) (1995), DFARS
252.227-7013(c)(1)(ii)(OCT 1988), FAR 12.212(a) (1995), FAR 52.227-19,
or FAR 52.227-14 (ALT III), as applicable. Compuware Corporation.

This product contains confidential information and trade secrets of Com-
puware Corporation. Use, disclosure, or reproduction is prohibited with-
out the prior express written permission of Compuware Corporation.

DevPartner® Studio, BoundsChecker, FinalCheck and ActiveCheck are
trademarks or registered trademarks of Compuware Corporation.

Acrobat® Reader copyright © 1987-2003 Adobe Systems Incorporated. All
rights reserved. Adobe, Acrobat, and Acrobat Reader are trademarks of
Adobe Systems Incorporated.

All other company or product names are trademarks of their respective
owners.

US Patent Nos.: 5,987,249, 6,332,213, 6,186,677, 6,314,558, and 6,016,466

April 14, 2006

http://frontline.compuware.com

Table of Contents
Preface
Who Should Read This Manual . vii

What This Manual Covers . viii

Conventions Used In This Manual . ix

Customer Assistance . ix
For Non-technical Issues . ix
For Technical Issues . x

Chapter 1
Workflow and Configuration Settings
DevPartner Error Detection Workflow . 1

Benefits of the DevPartner Error Detection Workflow . 2
Saving Error Detection Configurations . 2
Using Error Detection from the Command Line . 3

Customizing the DevPartner Error Detection Settings . 4
General . 5
Data Collection . 5
API Call Reporting . 5
Call Validation . 6
COM Call Reporting . 6
COM Object Tracking . 7
Deadlock Analysis . 7
Memory Tracking . 7
.NET Call Reporting . 8
.NET Analysis . 9
Resource Tracking . 9
Modules and Files . 10
Fonts and Colors . 10
Configuration File Management . 10
 iii

Chapter 2
Checking and Analyzing Programs
Error Detection Tasks . 13

Finding Leaks . 13
Finding Pointer and Memory Errors . 14
Finding Memory Corruption . 14
Analyzing Transitions to Legacy Code in .NET Applications 15
Validating Win32 API Calls . 16
Searching for Application Deadlocks . 16

Expanded Uses for DevPartner Error Detection . 17
Understanding Complex Applications . 17
Reverse Engineering . 20
Stress Testing . 22

Chapter 3
Analyzing Complex Applications
About Complex Applications . 25

Wait for Process . 27

Analyzing Limited Parts of Your Program . 28
Using Modules and Files Settings . 30

Deciding What to Monitor . 32
How Does an Application Start Up? . 33

Analyzing Services . 33
Requirements and Guidelines . 34
Analyzing a Service . 34
Timing Problems and dwWait . 34
Alternate Method: Separating Control Logic from the Worker Thread 34
Custom Code to Turn the DevPartner Error Detection Log On and Off 35
Common Service-related Issues . 35

Analyzing ActiveX Controls Using the Test Container . 36
Common Test Container Issues . 37

Analyzing Applications That Use COM . 38
Common COM Issues . 39

Analyzing ISAPI Filters Under IIS 5.0 . 41
Common ISAPI Filter Issues . 42

Analyzing ISAPI Filters under IIS 6.0 . 43
IIS 5.0 Isolation Mode . 43
IIS 6.0 Default Configuration . 44
Common IIS 6.0 ISAPI Filter Issues . 45

Frequently Asked Questions . 46
iv Advanced Error Detection Techniques

Chapter 4
Working with User-Written Allocators
Introduction . 49

Gathering Necessary Information . 50
Finding the Names of User-Written Allocators . 50
Examining Parameters of User-Written Allocator Functions 52
Special Assumptions Made By User-Written Allocators about Memory 52

Creating Entries in UserAllocators.dat . 53
Modules . 54
Allocator Records . 55
Deallocator Records . 58
QuerySize Records . 61
Reallocator Records . 63
Ignore Records . 67

How to Diagnose Errors in UserAllocators.dat . 68
Token Parsing Errors . 69
Semantic Errors . 69
If Your Application becomes Unstable after Changing UserAllocators.dat . . . 69

Chapter 5
Deadlock Analysis
Background: Single and Multi-threaded Applications . 71

Threads . 72
Critical Sections . 72

Deadlock - A Basic Definition . 73

Techniques for Avoiding Deadlocks . 74

Potential Deadlocks . 75
The Dining Philosophers . 75
Monitoring Synchronization Objects . 76

Other Synchronization Objects . 77

Additional Information . 79
MSDN References . 79
Other References . 79

Appendix A
Troubleshooting Error Detection
Troubleshooting . 81
 v

Appendix B
Important Error Detection Files
Files and Their Purpose . 89

Index
vi Advanced Error Detection Techniques

Preface
� Who Should Read This Manual

� What This Manual Covers

� Conventions Used In This Manual

� Customer Assistance

This manual describes concepts and procedures to help you understand
the use of your Compuware® DevPartner Error Detection software.

Who Should Read This Manual
This manual is intended for new DevPartner Error Detection users and
for users of previous versions of DevPartner Error Detection who want an
overview of new functions and interface changes.

New users should read the error detection chapter in Understanding
DevPartner Studio to get an overview of DevPartner Error Detection
concepts and then use this document to learn how to use DevPartner
Error Detection most effectively.

Users of previous versions of DevPartner studio should read the Release
Notes to see how DevPartner Error Detection differs from
BoundsChecker, the error detection tool included with previous versions.

This manual assumes that you are familiar with the Windows interface
and with software development concepts.
 vii

What This Manual Covers
This manual contains the following chapters and appendixes:

� Chapter 1, Workflow and Configuration Settings, explains how to
configure DevPartner Error Detection to solve various problems,
ranging from simple API call validation to problems encountered in
complex COM applications.

� Chapter 2, Checking and Analyzing Programs, describes error
detection tasks you can perform with DevPartner Error Detection and
other tasks, beyond error detection.

� Chapter 3, Analyzing Complex Applications, provides information
to help you use DevPartner Error Detection more effectively when
checking complex applications.

� Chapter 4, Working with User-Written Allocators, explains how to
customize the UserAllocators.dat file so you can analyze your own
memory allocators.

� Chapter 5, Deadlock Analysis, explains deadlocks, potential dead-
locks, and synchronization objects. It also lists Web addresses and
books that provide more information on these topics.

� Appendix A, Troubleshooting Error Detection, provides answers to
some of the most common issues in a problem/solution format.

� Appendix B, Important Error Detection Files, provides a list of the
important files associated with DevPartner Error Detection, and
describes each file’s purpose.

You will also find an index at the back of this manual.

Note: This manual contains information for all of the Visual Studio versions
of DevPartner Studio. Notes throughout the text identify features
that are available only for a specific version of Visual Studio.
viii Advanced Error Detection Techniques

Conventions Used In This Manual
This book uses the following conventions to present information.

� Screen commands and menu names appear in bold typeface. For
example:

Choose Item Browser from the Tools menu.

� Computer commands and file names appear in monospace typeface.
For example:

The Understanding DevPartner Error Detection manual (bc_vc.pdf)
describes...

� Variables within computer commands and file names (for which you
must supply values appropriate for your installation) appear in
italic monospace type. For example:

Enter http://servername/cgi-win/itemview.dll in the Destina-
tion field...

Customer Assistance
The following provides information on how to access customer
assistance for non-technical, as well as technical issues.

For Non-technical Issues

Customer Service is available to answer any questions you might have
regarding upgrades and other order fulfillment needs. Customer Service
is available from 8:30 am to 5:30 pm EST, Monday through Friday.

North America
� 603 578 8400
� Toll free : 800 468 6342

International
� Europe: 00 800 6863 4248
� Finland: 990 800 6863 4248
� Israel: 014 800 6863 4248

All other international customers, check Compuware Worldwide Offices
for the local phone number.
 Preface ix

For Technical Issues

Technical Support can assist you with all your technical problems, from
installation to troubleshooting.

Before contacting technical support please read the relevant sections of
the product documentation and the ReadMe files.

You can contact Technical Support by:

Before contacting Technical Support, please obtain and record the
following information:

� Product name (or edition), version, or service pack
� Product license information
� System configuration: operating system, network configuration,

amount of RAM, environment variables, and paths
� Name and version of your compiler and linker and the options you

used in compiling and linking
� Problem details: settings, error messages, stack dumps, and the

contents of any diagnostic windows
� If the problem is repeatable, the details of how to create the problem

E-Mail Include your as many details as possible. Send all information to
nashua.support@compuware.com

World Wide Web Submit issues and access our support knowledge base at
http://frontline.compuware.com/nashua/

Telephone Telephone support is available as a paid* Priority Support Service
from 8:30 am to 5:30 pm EST, Monday through Friday. Have
product version and license information ready.
In the U.S. and Canada, call: 888 686 3427
International customers, call: +1 603 578 8100

* Technical Support handles installation and setup issues free of
charge.

Fax Include your as many details as possible. Send all information to
to 603 578 8401.
x Advanced Error Detection Techniques

Chapter 1

Workflow and Configuration
Settings
� DevPartner Error Detection Workflow

� Customizing the DevPartner Error Detection Settings

DevPartner Error Detection can identify many different types of
problems. The default DevPartner Error Detection settings have been
chosen to find the most common errors with the minimum impact on
performance.

By changing the settings, you can fine-tune DevPartner Error Detection
to search for specific types of problems. Understanding the error
detection settings will enable you to use DevPartner Error Detection to its
fullest.

This chapter describes how to configure DevPartner Error Detection to
solve various problems, ranging from simple API call validation to
problems encountered in complex COM applications.

DevPartner Error Detection Workflow
DevPartner Error Detection follows a program workflow that is more
extensive than the workflow of earlier DevPartner Error Detection
versions. This mechanism enables you to control the amount of data
collected and reported.

Here are the four steps of the DevPartner Error Detection workflow:

1 Configure DevPartner Error Detection to collect the desired data

a Select the types of data you want to collect

b Define the portions of your application to be monitored

c Select the Suppressions and Filters you want to apply
 1

2 Run your application

a As the program runs, review errors presented in the Program
Error Detected dialog box

b Suppress errors that are not valid

c View the log and create filters if necessary

d Review memory and resource usage

3 View the data (after program termination)

a Filter out events you do not want to see in the log

b Create new suppressions to be applied to future runs of your
application

4 If desired, save your settings, suppressions, and filters for future use

Benefits of the DevPartner Error Detection Workflow

The DevPartner Error Detection workflow enables you to:

� Select the type and amount of data to be collected

� Select the portions of the application to be monitored

� Suppress errors that report known issues, are handled by conditional
code, or have been generated in third-party code

� Create filters to hide extraneous information in the log

� Save different configurations so that settings, suppressions and filters
can be reused

DevPartner Error Detection provides defaults for each step in the
workflow process. This means you can use DevPartner Error Detection
with default settings, or you can change the settings to customize the
way that DevPartner Error Detection analyzes your application.

Saving Error Detection Configurations

You can save an error detection configuration - a specific combination of
settings (Visual C++ and standalone versions) or options (Visual Studio) -
to use again.

For example, you might create a configuration for memory and resource
leaks, another for COM leaks and a third to do detailed lint type
analysis. You can further refine settings and define configurations that
look only at particular sections of a large application.
2 Advanced Error Detection Techniques

Using Error Detection from the Command Line

Use the following command syntax to check a program with BC.exe (the
executable) from the command prompt. Brackets [] indicate that a
command is optional.

BC [/?]

BC sessionlog.DPbcl

BC [/B sessionlog.DPbcl] [/C configfule.DPbcc] [/M] [/NOLOGO]
[/OUT errorfile.txt] [/S] [/W workingdir] targetexe [target args]

Note: You must specify the full directory path to your program executable
if it is not located on the current path (the environment variable
listing the directories that the system searches in order to find an
executable).

You can specify multiple command options for one program. For
example:

BC /B test.dpbcl /S /M c:\testdir\test.exe

Table 1-1. Command Line Options

Option Description

/? Display usage information

sessionlog.DPbcl Open an existing session log

/B sessionlog.DPbcl Run in batch mode and save the session
log to a log file sessionlog.DPbcl

/C configfile.DPbcc Use the configfile.DPbcc options

/M Start BC.exe and minimize when running

/NOLOGO Do not show the splash screen when
loading BC.exe

/OUT errorfile.txt Output any error messages to a text file
named errorfile.txt

/S Run in silent mode — do not open the Program
Error Detected dialog box on errors

/W workingdirectory Set the target's working directory

targetexe [target args] The executable to launch and its arguments
Chapter 1� Workflow and Configuration Settings 3

Customizing the DevPartner Error Detection Settings
The DevPartner Error Detection settings provide the following types of
customization:

� Restrict the types of information collected (e.g. memory and resource
leaks)

� Further refine the types of information collected in each major
category of analysis (for example, look only for resource leaks
generated by graphics calls)

� Determine how much additional information such as call stacks,
parameter data, return values, etc. is recorded along with the event or
error

� Control the look and feel of the DevPartner Error Detection user
interface. This includes changing fonts, colors, highlighting, or
whether the Program Error Detected dialog box is displayed

� Save and restore DevPartner Error Detection settings created
previously

By customizing the DevPartner Error Detection settings, you control how
much data is collected and which portions of the application are
monitored.

The DevPartner Error Detection settings are divided into these groups:

� General
� Data Collection
� API Call Reporting
� Call Validation
� COM Call Reporting
� COM Object Tracking
� Deadlock Analysis
� Memory Tracking
� .NET Analysis
� .NET Call Reporting
� Resource Tracking
� Modules and Files
� Fonts and Colors
� Configuration File Management
4 Advanced Error Detection Techniques

General

Use the checkboxes under General settings to control following:

� Event logging

Note: Turning off event logging “silences” Error Detection. Error Detection
will not report anything until event logging is turned on again.

� The Program Error Detected dialog box - to display on each error or
not

� Whether or not to display a prompt to save program results when
closing Error Detection or starting another session

� Whether or not to display the Memory Resource Viewer dialog box
when the target application exits or not

� The directories to search for source and symbol files

� The working directory (available only when you use DevPartner Error
Detection in standalone mode)

� Specify command line arguments (available only when you use
DevPartner Error Detection in standalone mode)

Data Collection

Use the Data Collection settings to control the following features.

� The depth of various call stacks

� The amount of data to be stored for non-scalar parameters (for
example, structures, classes, and pointers) and return values

� Whether DevPartner Error Detection should automatically learn
about new COM and .NET objects (dynamic NLB generation)

If you are working with computers that have limited memory, or if you
are analyzing large complex applications, you may want to restrict the
size of the Maximum call stack depth on allocation to reduce memory
requirements.

API Call Reporting

Use API Call Reporting settings to control the type of Windows API calls
to be logged if Enable API call reporting has been selected. You can also
control the logging of Windows messages.

To reduce log file sizes, selectively enable API calls for particular Windows
module (for example, select GDI32 to log graphics calls).
Chapter 1� Workflow and Configuration Settings 5

Call Validation

Use Call Validation settings to control whether DevPartner Error
Detection validates Windows API parameter and return values. By
default, DevPartner Error Detection does not validate parameters.

If you are also tracking memory usage, you can select Enable memory
block checking. When you select this option, DevPartner Error
Detection performs more detailed parameter analysis using the
knowledge gathered from the memory tracking system. Enabling this
feature will detect more errors but will affect performance.

DevPartner Error Detection includes settings that enable you to restrict
the types of validations performed on the Windows APIs. These settings
enable you to de-select categories of errors that can generate spurious
errors. Examples include flag checks, range checks, and enumeration
checks. Explore these options if you want the detailed analysis of handles
and pointers but are not interested in other types of validation.

DevPartner Error Detection enables you to select which Windows APIs to
check. The default is to check all Windows APIs. If you are interested in a
limited set of API calls, select only those modules. This can reduce the
number of errors detected and improve performance.

COM Call Reporting

Use COM Call Reporting settings to control the COM interfaces that
should be logged if Enable COM method call reporting on objects that
are implemented in the selected modules has been selected.

By default, if Enable COM method call reporting on objects that are
implemented in the selected modules is selected, DevPartner Error
Detection will report on all known COM interfaces. For improved
performance, select only the COM interfaces you need to check. Use the
tree view that appears under COM Call Reporting. Decreasing the
number of COM interfaces checked decreases the size of the log file and
improves performance.

You can also select Report COM method calls on objects implemented
outside of the listed modules.

To monitor your own COM classes, enable Generate NLB files
dynamically in the Data Collection settings so that DevPartner Error
Detection can automatically learn each of the methods associated with
your COM object.
6 Advanced Error Detection Techniques

COM Object Tracking

DevPartner Error Detection can monitor COM usage within an
application and will report on any code that is leaking interfaces. If an
interface leak is detected, DevPartner Error Detection will provide a COM
use-count graph showing every AddRef and Release within the
application. The graphs can be used to quickly spot missing AddRef or
Release calls based on your knowledge of the application.

By default, DevPartner Error Detection does not enable COM object
tracking. Select Enable COM object tracking to activate this feature.
When COM object tracking is active, you can select All COM classes or
you can select individual classes from the list provided.

Deadlock Analysis

Use Deadlock Analysis to monitor multi-threaded applications for
deadlocks. This includes the following types of analysis:

� Monitoring and reporting of deadlocks as they occur in the
application

� Monitoring the usage patterns of the synchronization objects within
your application for potential deadlocks

� Monitor your application for synchronization object errors

Memory Tracking

Use Memory Tracking settings to control the type of memory leak
detection performed on the application. Memory Tracking is enabled by
default. If you do not want to perform memory leak detection, clear
Enable memory tracking.

The Memory Tracking settings have been preset to generate acceptable
results for most applications. The Enable FinalCheck, Guard bytes, Fill
on allocation and Poison on free settings are of special note.

Enable FinalCheck

Selecting Enable FinalCheck has no effect unless your application is
instrumented with FinalCheck.

The recommended usage is to leave Enable FinalCheck selected and to
clear it only when you want to perform a less-detailed ActiveCheck
analysis on an application that is already instrumented.
Chapter 1� Workflow and Configuration Settings 7

Guard Bytes

Guard bytes are used to detect memory overruns in ActiveCheck analysis.
If you encounter heap corruption and DevPartner Error Detection does
not detect the problem, consider increasing the Count setting to a larger
value. Refer to the online documentation for tips on using these settings
to track down heap errors that are hard to find.

Fill on allocation and Poison on free

Fill on allocation sets memory to a known state when it is allocated.
Poison on free sets memory to a known state when it is deallocated.

The byte patterns used have been carefully selected to cause an
application to generate errors if these byte patterns are accidentally used
during program execution. Refer to the online documentation for
additional information on these settings.

UserAllocators.dat

If you write your own memory allocation logic or override global
operator new, see Chapter 4, “Working with User-Written Allocators”
and review the documentation (in the form of comments) in the
following file:

C:\Program Files\Compuware\DevPartner Studio\BoundsChecker
\Data\UserAllocators.dat

.NET Call Reporting

Use .NET Call Reporting settings to control the .NET assemblies that
should be logged if Enable .NET method call reporting has been
selected.

By combining .NET and COM call reporting, you can see both sides of
COM Interop.

The .NET User Assemblies and .NET System Assemblies are displayed on
separate branches of a tree view control.
8 Advanced Error Detection Techniques

.NET Analysis

DevPartner Error Detection supports mixed native and managed
applications. If you are working in mixed environments, you can select
Enable .NET runtime analysis. DevPartner Error Detection supports the
following types of .NET analysis:

� Monitoring of unhandled exceptions being passed from native to
managed code

� Analysis of .NET Finalizers

� Managed to native code interoperability

� Monitoring of garbage collection events

.NET Interoperability

The DevPartner Error Detection .NET Interoperability feature monitors
the number of times an application transitions from managed to native
code. Use this information to analyze usage patterns and target native
code that could benefit from being rewritten in managed code. For best
results, use this feature with the Interop reporting threshold parameter
to specify your own lower limit for acceptable usage.

Resource Tracking

Use Resource Tracking settings to control the type of resource leak
detection performed on the application. Resource Tracking is selected
by default. If you do not want to perform resource leak detection, clear
the Enable resource tracking check-box.

When resource tracking is selected, you can search for all resource leaks
or limit the search to particular resources associated with specific libraries
in the Windows API.

The resources have been grouped by library and within each library by
the API call used to deallocate the resource. For example, if you have
recently written a lot of code to manipulate the registry, you might want
to de-select all libraries except ADVAPI32, then select only RegCloseKey.
Chapter 1� Workflow and Configuration Settings 9

Modules and Files

Use the Modules and Files settings to:

� Identify executables and libraries within your application that should
be monitored or ignored

� Refine the list of executables and libraries to be monitored or ignored
down to the source file level if symbols are available

� Identify a list of System directories that should be ignored by the
DevPartner Error Detection analyzers

Use the Modules and Files settings to control the portions of your
application that are monitored by DevPartner Error Detection. For
example, you might consider using Modules and Files settings when
writing large applications or applications such as ISAPI filters.

For more information, see “Using Modules and Files Settings” on page
30.

Fonts and Colors

Use the Fonts and Colors settings to change the font, color and
emphasis of each item in the DevPartner Error Detection user interface.

Configuration File Management

Use Configuration File Management to create multiple settings files for
each project. Figure 1-1 on page 11 shows the Configuration File
Management options available. You can then use these settings files
throughout the software development cycle to perform various types of
analysis. Consider these examples of settings files you might create:

� Use Call Validation and Modules and Files to select only your
components; use these settings daily as you add new code to your
application

� Use settings under Memory Tracking and Resource Tracking as you
complete new components, or make non-trivial changes to existing
components
10 Advanced Error Detection Techniques

� Create a settings file to be used in batch mode over the weekend to
analyze the results of major milestones. You might also want to
instrument the build with FinalCheck to obtain the most detailed
information when you analyze the reports.

� Create a settings file with various sets of modules selected but all
analysis features disabled. You can then load this settings file and
select the options you want during an interactive session. This may
be especially useful when you need to manage complex modules and
files settings.

Figure 1-1. Configuration File Management Settings

Configuration File Functions

The Configuration File Management page has the following functions
available:

� Configuration file name: The full path and name of the
configuration file.
Chapter 1� Workflow and Configuration Settings 11

� Reload: Loads the current configuration file again, discarding any
changes. This returns you to the last saved version of the current
configuration file.

� Load: Opens the Load From dialog box. Select Internal User
Defaults to load your user default settings. If you select
Configuration File, the Load Configuration File dialog opens. Use
this to select a different configuration file to load.

� Save: Saves all active changes in the currently loaded configuration
file.

� Save As: Opens the Save Configuration File dialog box. Use this to
save the current configuration settings under a different file name.

� Reset: Resets all the program property settings to the default factory
settings.

� Save Defaults: Save the current settings as your user defaults. All new
projects will use these settings.

� Delete Defaults: Delete the user default configuration settings and
revert to factory settings. All new projects will use the factory
settings.
12 Advanced Error Detection Techniques

Chapter 2

Checking and Analyzing
Programs
� Error Detection Tasks

� Expanded Uses for DevPartner Error Detection

This chapter describes some of the error detection tasks you can perform
with DevPartner Error Detection. It also describes other tasks that you
can perform with DevPartner Error Detection.

Error Detection Tasks
DevPartner Error Detection typically includes tasks such as:

� Finding memory, resource and interface leaks

� Looking for pointer and memory errors

� Searching for memory corruption

� Analyzing the use of legacy code in .NET applications

� Validating Win32 API calls

� Searching for application deadlocks

Finding Leaks

DevPartner Error Detection excels at finding memory, resource and
interface leaks. By default, DevPartner Error Detection searches for
memory and resource leaks but not interface leaks. To search for interface
leaks, select Enable COM object tracking in the COM Object Tracking
settings.
 13

DevPartner Error Detection provides two methods of detecting memory
leaks, ActiveCheck and FinalCheck. ActiveCheck will search for memory
leaks in any Windows application. Leaks will be reported when your
application shuts down. FinalCheck will comprehensively report
memory leaks at run-time as they occur in your application. Examples
include when a local variable goes out of scope or when the last pointer
to a block of memory is re-assigned, as well as dangling pointer useage
and other hard to find errors.

Finding Pointer and Memory Errors

DevPartner Error Detection can search for pointer and memory errors
using both ActiveCheck and FinalCheck technology. In ActiveCheck
mode, DevPartner Error Detection will monitor pointers passed to
Windows calls for errors. Alter the settings for Call Validation and
Memory Tracking to configure the amount of checking done by
DevPartner Error Detection.

If you re-compile your program using FinalCheck, DevPartner Error
Detection will check every pointer reference in your program for correct
usage. FinalCheck provides very detailed analysis of your program and
will locate hard-to-find problems such as uninitialized variables,
dangling pointers, unrelated pointer comparisons, array index errors, and
so on.

Finding Memory Corruption

DevPartner Error Detection helps you find memory corruption problems
caused by the following types of problems:

� Overrun allocated buffers

� Continued access to memory after it has been deallocated

� Deallocating a resource multiple times (e.g. double delete)

DevPartner Error Detection can detect many of these errors in
ActiveCheck mode but provides the most detailed analysis with
FinalCheck.

If you encounter memory overrun errors and you are restricted to using
only ActiveCheck, see the online documentation which contains more
information about Check heap blocks at runtime in the Memory
Tracking settings.
14 Advanced Error Detection Techniques

Analyzing Transitions to Legacy Code in .NET Applications

DevPartner Error Detection provides the following types of analysis that
can help you make the transition from native application to managed
application programming:

� Complete analysis of the native portions of Windows applications

� Analysis of the transition layer between native and managed sections
of applications that use mixed code

� Analysis of finalizers in managed applications

These types of analysis enable you to monitor:

� Unhandled exceptions being thrown from native applications and
passed to managed code

� Garbage collector activity that might cause performance problems

� COM interoperability between managed and native code

� P/Invoke calls being made from managed code to native windows
libraries

� The frequency of calls across the managed to native boundary

You can use this information to plan and monitor the process of
migrating an application.

Migrating from Native to Mixed or Managed Code

The migration process involves the following steps:

1 Analyze COM usage for your native application to determine which
objects are being used.

2 Rewrite a section of the application in managed code using P/Invoke
and COM to call native portions of the application.

3 Under .NET Analysis, select Enable .NET analysis and PInvoke
interop monitoring to analyze the transitions between the newly
written code and the existing native code.

4 Make any necessary changes.
Chapter 2� Checking and Analyzing Programs 15

5 Under .NET Analysis, select COM Interop monitoring and PInvoke
interop monitoring to monitor the number of calls made between
managed and native code. Use the performance data to help make
decisions on these additional changes:

a Determine which additional COM objects should be ported to
managed code

b Determine if new methods should be added to reduce the
number of calls between managed and native code. For example,
you might add a method to request data records 10-20 items at a
time instead of one at a time.

c Determine if calls to native APIs (such as the Windows API) are
being made efficiently.

You can also check for unhandled exceptions being thrown across the
native-to-managed boundary. To do this, select Exception monitoring
under .NET Analysis. Applications written in native code use exceptions
to notify a caller that a call or method failed. As sections of your
application are re-written in managed code, monitor the use of
exceptions to catch exceptions before transitioning to managed code.

Validating Win32 API Calls

DevPartner Error Detection recognizes thousands of Windows calls. This
capability allows DevPartner Error Detection to validate pointers, flags,
enumerations, handles, and return codes. Select Enable call validation
to confirm that your applications are using Windows calls properly.

You can configure the following Call Validation features:

� Choose what types of Windows calls to monitor

� Selectively disable various types of validation such as flag, range, and
enumeration checking

With these features, you can configure DevPartner Error Detection to
validate important parameters such as handles and pointers and to report
fewer errors that do not pertain to the task at hand.

Searching for Application Deadlocks

DevPartner Error Detection can identify code that will cause deadlocks in
your application. Select Enable deadlock analysis to locate deadlocks.
Additional controls enable you to fine-tune deadlock analysis.
16 Advanced Error Detection Techniques

Expanded Uses for DevPartner Error Detection
Beyond error detection tasks, DevPartner Error Detection can be used as:

� An aid to understand complex applications

� A reverse engineering tool

� A tool for stress testing an application

Understanding Complex Applications

DevPartner Error Detection contains several tools that help you better
understand large, complex programs. Consider these three scenarios:

� A new developer joins an existing team and needs to understand how
the various DLLs interact.

� A consultant has been brought onto a project to solve a problem
(such as crashes, memory leaks, and so on) and needs to understand
where to concentrate the most resources given a tight engineering
schedule.

� A developer starts using a third-party library and wants to understand
why the library is leaking Windows resources. In many cases, the
problem is not with the library but in the way that the library is
being used.

The following DevPartner Error Detection features can be used to address
these scenarios.

COM Object Tracking

Many applications use COM objects that were provided by in-house
developers, third-party vendors, or Microsoft. If these COM objects are
not used correctly, interface leaks will occur. Interface leaks result in
memory and resource leaks — objects allocated from the heap are not
released properly, and in turn any memory allocated by those objects is
not released properly.

The COM Object Tracking enables you to view leaked COM objects. This
information can help you determine where the missing Release call
should be made corresponding to an AddRef in your application.
Chapter 2� Checking and Analyzing Programs 17

Deadlock Analyzer

Many legacy applications, written before the common use of dual
processors, may behave unpredictably when run on more current high-
performance computer systems. For example, applications can become
deadlocked when they use synchronization objects improperly.

Deadlock analysis under DevPartner Error Detection can identify code
that may lead to deadlocks. Note that this analysis can also identify
potential deadlocks. A potential deadlock is a deadlock waiting to happen
when an undesirable set of conditions develop as an application runs.
With DevPartner Error Detection, you can identify these potential
deadlocks before they occur in a production environment.

Modules and Files

Complex applications are often developed across multiple organizations
and include libraries purchased from outside vendors. By default,
DevPartner Error Detection will report errors in any non-system DLL. Use
the Modules and Files settings to restrict DevPartner Error Detection
error reporting and call reporting to specific sections of your application.
The result is a more meaningful error report that can be used to solve
complex problems.

The Modules Tab

The DevPartner Error Detection Modules tab (see Figure 2-1 on page 19)
and associated details pane provide a view into your program. This view
shows what DLLs are being loaded as the program runs. By carefully
reviewing this report, you can answer the following questions and make
better-informed decisions when you have to make trade-offs:

� Is this module instrumented, and how?

� Is a particular DLL really needed?

� Is it worth calling only one method in a DLL to incur the cost of n
additional DLLs being loaded into the process?

� Why is my DLL being loaded at the non-preferred load address?

� Why are multiple versions of the same DLL being loaded into
memory?
18 Advanced Error Detection Techniques

Figure 2-1. Modules Tab and Details Pane

Viewing and Sorting in the Results Pane

DevPartner Error Detection provides a wide variety of ways to view the
data collected on your application. Initially, DevPartner Error Detection
shows the Summary tab, a high-level report, in the Results pane. You
can review the Summary tab and then double-click an entry to view
more information.

This capability to navigate through multiple layers of information
provides many different views of the data. For example:

� A technical lead might review the data looking for trends such as
more or fewer memory leaks over time

� A developer might be interested in correcting memory overrun
errors, dangling pointers, and so on.

This multi-level view enables you to identify the most relevant data and
access a more detailed view in one of the tabs (Memory Leaks, Other
Leaks, Errors, .NET Performance, or Modules) in the Results pane.
When viewing data in one of the tabs, you can click column headers to
further sort data by size, number of occurrences, location, and so on.
Chapter 2� Checking and Analyzing Programs 19

Reverse Engineering

DevPartner Error Detection can be used to analyze Windows
applications. By creating a configuration with settings like those
described in this section, you can use DevPartner Error Detection to
monitor and report on the operations being performed by a Windows
application.

Data Collection

Select Generate NLB files dynamically so that DevPartner Error
Detection automatically learns about new COM interfaces and methods
by extracting data from type libraries associated with COM components
and metadata from managed components. DevPartner Error Detection
uses NLB files to provide information about your application.

Increase the Call parameter encoding depth parameter to generate
more detailed API parameter information. Increasing the encoding depth
will slow processing and increase the size of the log file.

API Call Reporting

Select Enable API call reporting to log API call and return values. The
amount of detail DevPartner Error Detection gathers on parameters and
classes passed as parameters is determined by the Call parameter
encoding depth value under the Data Collection settings.

Select Collect window messages to record all window messages sent to
the application. Selecting this option provides a view of how the
application responds to various window events such as mouse clicks,
repaint events, etc.

Note: Selecting either of these options will increase the size of the log file
and will slow DevPartner Error Detection performance.

To minimize the overhead of API call reporting, select only system DLLs
most relevant to the current task.

COM Call Reporting

Select Enable COM method call reporting on objects that are
implemented in the selected modules to enable collection of COM
method calls.

To keep the COM Call Reporting information manageable, select only
the most relevant interfaces and clear the All components checkbox.
20 Advanced Error Detection Techniques

.NET Call Reporting

Select Enable .NET Method Call Reporting to enable collection of .NET
method calls. To keep .NET call reporting manageable, select only .NET
user assemblies (default setting).

.NET Analysis

When writing mixed native and managed code applications, use the
.NET Analysis features to:

� Monitor unhandled exceptions being thrown from native code into
managed code

� Monitor calls (P/Invoke or COM method calls) being made from
managed code to native code

� Select Exception monitoring to monitor exceptions.

To monitor calls from managed code to native code, select either COM
Interop monitoring or PInvoke monitoring, then select an appropriate
Interop reporting threshold value. When monitoring calls from
managed to native code, select a sufficiently high reporting threshold
value and use the Modules and Files settings to reduce unwanted
information.

Function Groups to Turn Off for Reverse Engineering
Tip: Remember to select
these features after you
have finished your reverse
engineering session.

DevPartner Error Detection provides tools to monitor many types of
leaks and errors in Windows applications. However, during reverse
engineering sessions it may be desirable to turn off the DevPartner Error
Detection error and leak detection logic. Follow these steps to disable
these features in the Program Settings dialog box (in DevPartner Error
Detection standalone and in the Visual C++ 6 IDE) or the Options dialog
box (in the Visual Studio IDE):

1 Under Call Validation, clear Enable call validation.

2 Under COM Object Tracking, clear Enable COM object tracking.

3 Under Memory Tracking, clear Enable memory tracking.

4 Under Resource Tracking, clear Enable resource tracking.

5 Under Deadlock Analysis, clear Enable deadlock analysis.

These features are intended to identify bugs in the code you are
examining. By turning off these features, you can concentrate on
information that may help you understand how the code in a
component or API works.
Chapter 2� Checking and Analyzing Programs 21

Modules and Files

By default, DevPartner Error Detection will report on all portions of your
application except those parts listed in the System Directories exclusion
list.

When doing reverse engineering, you may want to monitor a few DLLs
that would normally be excluded. By monitoring a DLL, you can trace
into that DLL to see how it operates.

For example, to understand how a particular common control uses
WIN32 API calls, you might explicitly include COMCTL32.DLL then enable
API Call Reporting.

To monitor system DLLs explicitly, click Add module and add the
desired DLLs.

Configuration File Management

You can use Configuration File Management to create and save settings
designed for special tasks in your development cycle.

For example:

� Memory, Resource and COM leak detection

� Memory and Validation only

� Reverse engineering

� Any of the above, but with restricted sets of DLLs using custom
Modules and Files settings.

To prevent DevPartner Error Detection from monitoring business-critical
portions of your application (such as password checking), you can
selectively disable DevPartner Error Detection logging by making calls to
the DevPartner Error Detection callable interface at runtime. Please refer
to the comments on event reporting in the following file for details:

C:\Program Files\Compuware\DevPartner Studio\BoundsChecker
\ErptApi\NmApiLib.h

Stress Testing

A side effect of running DevPartner Error Detection is that it forces an
application to deal with many unexpected situations that might only
occur under heavy load situations.
22 Advanced Error Detection Techniques

Handling Non-zero Uninitialized Data

Many applications are written with the incorrect assumption that local
variables and memory returned from dynamic memory allocation
routines is initialized to some value. DevPartner Error Detection writes a
known fill pattern over various types of memory when it is allocated to
search for uninitialized data access. Examples include local variables, and
memory allocated by new, malloc, HeapAlloc or LocalAlloc.

If your application has been written assuming that uninitialized memory
will be zero, your program may crash or behave unpredictably when run
under DevPartner Error Detection. If this occurs, instrument your
application with FinalCheck and check it again with DevPartner Error
Detection to locate the errors.

Note: If you have written your own memory allocation routine that does
not follow these rules, add an entry for your routine in the
UserAllocators.dat file. See Chapter 4, “Working with User-Written
Allocators” for more information.

Pool Poisoning on Free

DevPartner Error Detection writes a known pattern on dynamically
allocated memory after it has been deallocated. By doing so, applications
that attempt to reference deallocated structures will generate errors. In
many cases, dangling pointer errors can be very difficult to diagnose and
repair. Instrument your application with FinalCheck and check it again
with DevPartner Error Detection to locate the errors.

Note: If you have written your own memory allocation routine that does
not follow these rules, add an entry for your routine in the
UserAllocators.dat file. See Chapter 4, “Working with User-Written
Allocators” for more information.

Working in a Heavy CPU-Bound Environment

Many developers write applications on extremely fast and lightly-loaded
systems. When the application is moved to a production environment,
the program fails randomly. Tracking down timing and performance-
related issues can be difficult and time-consuming.

DevPartner Error Detection monitors all aspects of program flow and
places your application under a heavy CPU and memory workload. At
the same time, DevPartner Error Detection can monitor calls to Windows
functions for signs of failure; errors are reported in the Program Error
Detected dialog box.
Chapter 2� Checking and Analyzing Programs 23

Detecting Problems with Multi-threaded Code

Many applications are written to make use of multiprocessor application
servers. Unless a multi-threaded application is carefully designed,
deadlock and resource deprivation issues can occur when the program is
put under stressful conditions.

Running a multi-threaded application under DevPartner Error Detection
will cause the performance of various threads to deteriorate and may
cause the program to display timing-related problems. Many such
problems would normally occur in production situations when the
program is under stress. By using DevPartner Error Detection, you may be
able to find problems in the development process and correct them
before going into production.

Run your application under DevPartner Error Detection with Deadlock
Analysis enabled to check for deadlock, potential deadlock, and other
synchronization bugs.

Detecting Memory and Pointer Reuse Errors

As applications have become more complex, the amount of memory and
the number of pointers used in applications has increased dramatically.
To deal with this problem, software developers use tools such as
DevPartner Error Detection to search for memory and resource leaks.
However, finding and plugging leaks is only one part of the task. Once
memory has been deallocated, all outstanding pointers to the block
should be declared as “dangling.” Attempts to reference dangling
pointers should generate an error. The FinalCheck feature in DevPartner
Error Detection has been designed to find and report on dangling
pointers.

Undetected dangling pointers cause programs to reference blocks that
have been deallocated or deallocated and reused by some other part of
the system. A program run in a simple debugging environment may not
show signs of failure. However, this same program could randomly crash,
corrupt data or produce unexpected results when moved into a
production environment.
24 Advanced Error Detection Techniques

Chapter 3

Analyzing Complex
Applications
� About Complex Applications

� Wait for Process

� Analyzing Limited Parts of Your Program

� Deciding What to Monitor

� Analyzing Services

� Analyzing ActiveX Controls Using the Test Container

� Analyzing Applications That Use COM

� Analyzing ISAPI Filters Under IIS 5.0

� Analyzing ISAPI Filters under IIS 6.0

� Frequently Asked Questions

This chapter provides information to help you use DevPartner Error
Detection more effectively when checking complex applications.

About Complex Applications
When you debug typical Windows applications, the default DevPartner
Error Detection settings gather enough data to help you solve most
common programming problems.

When you debug a complex application, you can benefit by customizing
the Error Detection settings.
 25

Complex applications can be divided into two groups:

� Large applications that contain many complex components
� Non-traditional applications such as Windows NT services, ActiveX

components, MTS or COM components, ISAPI filters, and so on

Large Applications

Large Windows application are exceptional only because their size makes
them difficult to monitor. Using DevPartner Error Detection, you can
analyze a large application in logical, manageable sections, rather than
trying to analyze the entire application at once. For example, if you are
writing one DLL for a large application, you might:

� Exclude sections of the application from analysis
� Monitor only specific sections of the application
� Monitor only specific transactions within the application

Non-traditional Applications

Non-traditional applications may require different error detection
strategies because of complex startup or configuration issues. You can
configure DevPartner Error Detection to perform the special debugging
or analysis operations required to monitor these types of applications.

DevPartner Error Detection Capabilities and Complex
Applications

These Error Detection capabilities can help you analyze complex
applications:

� Ability to Wait for Process

� Ability to restrict the modules and files monitored by your
application

� Ability to enable or disable the Error Detection log at run-time
26 Advanced Error Detection Techniques

Wait for Process
Instead of running your program under Error Detection, you can have
Error Detection initialize itself for your application and wait for it to
start. You can then start your application manually, or using another
means (such as the Service Control Manager). You can use this option to
debug services such as IIS.

Note: This option replaces the use of Image File Execution Options in
previous releases of BoundsChecker and DevPartner Error Detection.

This option is only available when you are using the DevPartner
Error Detection application (BC.EXE), and is not available when
using Error Detection integrated into Visual Studio.

To debug an application or service using Error Detection in an “Initialize
and Wait” manner:

1 Open the image you want to test inside the Error Detection
application (BC.EXE).

2 Configure Error Detection to watch for the errors that interest you.

3 Select Wait for Process from the Program menu.
Error Detection initializes itself and displays a dialog box allowing
you to cancel the session if desired.

Figure 3-1. Wait for Process Dialog Box

4 Start your application as you normally would.
If you normally start your application via the Service Control
Manager, then start it that way. Error Detection closes the dialog
when your application starts.

5 Exercise your application, and then cause it to exit.
Chapter 3� Analyzing Complex Applications 27

Analyzing Limited Parts of Your Program
You can point DevPartner Error Detection at a limited problem area
within a large or complex application and ignore the rest of the
application. DevPartner Error Detection provides four mechanisms to
help you analyze limited parts of your program:

� Use Modules and Files to exclude sections of your program from
analysis.

� Use Suppressions and Filters to prevent undesirable information
from either being logged or displayed.

� Use the Program > Log Events menu item or the Log Events toolbar
button to toggle Error Detection logging.

� Add conditional code into your application to call
StartEvtReporting and StopEvtReporting.

Note: StartEvtReporting and StopEvtReporting are DevPartner Error
Detection functions that you can call from inside your application to
control the writing of data into the DevPartner Error Detection log. If
DevPartner Error Detection is not active, these calls return
immediately.

Modules and Files

If you are working with large applications, you can use the Modules and
Files settings to prevent sections of the application from being analyzed.
This can reduce analysis time and decrease the number of unwanted
error messages. These are some of the sections you can exclude:

� Unwanted DLLs, including third-party DLLs

� Individual source files from a DLL or EXE

� Entire DLL directory trees

� Exclude errors if source code is unavailable

See “Using Modules and Files Settings” on page 30.
28 Advanced Error Detection Techniques

Suppression and Filtering

There are two ways to hide the errors and events that DevPartner Error
Detection reports.

� Suppression prevents a specified type of error or event from being
entered into the Error Detection log. To show a suppressed error, you
need to remove the suppression instruction and re-run your
application under DevPartner Error Detection.

� Filtering hides an error or event that has already been entered into
the log. You can hide or display filtered errors.

Selective Event Logging

To monitor a small section of a large application, use the Log Events
menu or tool bar button to turn the Error Detection log on and off. This
technique can be especially useful when you select the following settings:

� API or COM call logging

� Call validation.

If you use selective event logging with any of the leak detection features
(for example, memory tracking, resource tracking or COM interface
tracking) be aware that many leaks are only detected at the end of the
program. If logging is off when your program terminates, many of the
leaks you are trying to find will not be reported.

When trying to detect leaks, use Modules and Files or Suppression to
exclude unwanted information.

Conditional Code

You can modify your program to make calls into the DevPartner Error
Detection data collection engine to enable or disable Error Detection
logging. The following sample code shows how to disable Error Detection
logging around unwanted areas:

// Requires library [installation directory]
\ERptApi\NMApiLib.lib

// Include file is located in [installation directory]\ErptApi

#include "nmapilib.h"

… [Code that can be monitored]

StopEvtReporting()

… [Code that should not be monitored]

StartEvtReporting()

… [Code that can be monitored]
Chapter 3� Analyzing Complex Applications 29

You can also use the StartEvtReporting or StopEvtReporting API calls
to prevent DevPartner Error Detection from logging business-critical
sections of an application. Examples might include password validation
or encryption routines. If DevPartner Error Detection is not active, the
API calls return immediately.

Using Modules and Files Settings

To determine what to exclude from your application, follow these steps:

1 Open your executable in DevPartner Error Detection.

2 Disable all data collection.

� In Visual C++ 6.0:

Select DevPartner > Error Detection Settings

� In DevPartner Error Detection standalone:

Select Program > Settings > Error Detection

� In Visual Studio:

Select DevPartner > Options

In the Options or Settings dialog box, clear the settings for API Call
Reporting, Call Validation, COM Call Reporting, COM Object
Tracking, Deadlock Analysis, Memory Tracking and Resource
Tracking.

3 Run your program in DevPartner Error Detection.

Error detection records all DLLs used by your application. Exercise
the program in a way that causes all its DLLs to be loaded, then exit
your application.

4 Open the DevPartner Error Detection Settings or Options dialog box
and select data collection settings.

5 Select Modules and Files in the Settings or Options dialog box.
DevPartner Error Detection automatically lists all executables and
DLLs used by your application except for files located in the system
directories.

6 Review the list of modules and files. Clear any listed DLLs that do not
pertain to the task at hand. From this reduced list of DLLs, expand
each DLL and select the source files to monitor.
30 Advanced Error Detection Techniques

7 To exclude all DLLs in a specific directory, click System directories
and add the directory to the list of excluded directories. If there is a
particular file you want to include from a system directory, click Add
module to add it to the list of monitored DLLs. Clicking on the
folder icon will toggle it from a single folder to multiple folders. Table
3-1 explains the icon meanings.

8 To exclude leaks and errors in portions of your program without
source code, select Show leaks and errors only if source code is
available.

Tip: If you plan to create
multiple settings files you
can name one of the
settings files Base
Configuration. You can
then use the Base
Configuration settings as
a starting point to create
other settings files.

9 After you create a logical subset of your application, use
Configuration File Management to save your settings.

Table 3-2 provides a list of ways to use the Modules and Files: settings.

Note: If you exclude everything but your code, you might not see memory
or resource leaks that are indirectly caused by your section of the
application.

Table 3-1. Meaning of Folder Icons in this Dialog

Icon Description

The selected directory is excluded from testing (unless the specific dll is
also listed in the Modules dialog).

The selected directory and all sub-directories are excluded from testing.

Table 3-2. Using the Modules and Files Settings

When debugging... Configure Error Detection to exclude...

An ActiveX control All modules other than the DLL containing your ActiveX
control including the ActiveX test container executable

A Windows NT service Any modules that are not directly associated with the
section of the service you are debugging

An ISAPI filter All executables and DLLs in IIS or W3WP except your
ISAPI filter

A complex application The sections of the application that do not apply to the
problem you are trying to solve

An out of process COM
object

Any modules that are not directly associated with your
DLL, such as DLLHOST.exe or MTX.exe
Chapter 3� Analyzing Complex Applications 31

Deciding What to Monitor
When dealing with a complex application it is important to know which
sections of an application to monitor. Deciding what to monitor and
what to ignore will affect your success when tracking down leaks and
errors.

To decide what to monitor, consider these questions about your
application:

� How does your application start up?
� Do you start it directly?
� Do you start it by running another program?
� Do you launch it from the control panel?
� Is your application launched indirectly?

� How many modules and files are in your application?
� Do you own all the modules in your application (other than

system modules)?
� Do you have source for all of your modules?

� Are you interested in the entire application or only a part?
� Do you care about errors in modules you don't control?
� Is your application transactional? If so, do you want to watch the

entire application or just a few transactions?
� Does your application make use of resources passed to it from

code you do not control?

Once you have answered these questions you can configure DevPartner
Error Detection to monitor your application.

As you decide what to monitor, remember that other parts of the
program may provide resources to your application. Be aware that if you
narrow the focus too much, you may miss resources being passed
between your selected analysis subset and the rest of your application.

For example, if you are writing an ActiveX control and running it under
the test container, you want to know what happens in your DLL.
However, if you call your object incorrectly, resource and interface leaks
may occur. If you monitor only your control, you will find your errors
but you will not find errors caused by incorrect usage of your control.
32 Advanced Error Detection Techniques

How Does an Application Start Up?

If you are working with a console or Windows application, you can
configure Error Detection to monitor your application by selecting
File > Open. DevPartner Error Detection will open your application and
analyze any DLLs that are directly linked to it.

If you are working with a non-traditional application, it falls into one of
two categories:

� It is started directly through a control program

� It is started indirectly based on a system action

The first type of application includes ActiveX controls or DLLs that are
invoked by some test application. For example, if you have written an
ActiveX control, you can analyze it using the Test Container application
(TSTCON32.EXE) provided with Visual Studio.

If your application is invoked indirectly by a system action, you can use
the Error Detection Wait for Process option to wait for the application to
start (see “Wait for Process” on page 27). Examples of this include:

� Windows NT services

� Out-of-process COM servers

Many specialized applications, such as services and COM servers, are
time critical. If your application is time critical, disable the time out logic
when using DevPartner Error Detection for best results.

Analyzing Services
DevPartner Error Detection can monitor Windows NT services. When
monitoring services consider the following:

� Is your service started at boot time or on demand?

� Does your service require a particular security context?

� Can your service be run interactively?

� Can you run your service without being a service?

� Does your service have timing issues?

DevPartner Error Detection can analyze services that can be started after
the system is up and running. For best results, you should be able to
manually start or stop your service throughout the debugging process.
Chapter 3� Analyzing Complex Applications 33

Requirements and Guidelines

In order to monitor a service, DevPartner Error Detection requires that
the account being used to run it have Administrative privileges. You
might have additional problems if your application has tight timing
requirements.

Analyzing a Service

Follow these steps to analyze your service with DevPartner Error
Detection:

1 Stop your service.

2 Build the Debug configuration of your service with symbols and no
optimization (optionally with FinalCheck).

3 Open your service’s image with Error Detection and update the
settings appropriately for this session.

4 Select Wait for Process from the Program menu.
Error Detection initializes itself and displays a dialog box allowing
you to cancel the session if desired.

5 Start your service as you normally would.
If you normally start your service via the Service Control Manager,
then start it that way. Error Detection closes the dialog when your
application starts.

Timing Problems and dwWait

If your service fails to start up, or starts up and almost immediately
terminates, you may need to alter the dwWait parameter in the
ServiceStatus block passed to SetServiceStatus. If the value specified
in your service is too small, the Windows NT Service Control Manager
will terminate your service. When using DevPartner Error Detection, set
dwWait to a large value such as 4 million.

Note: After you finish using DevPartner Error Detection, restore the normal
value for dwWait.

Alternate Method: Separating Control Logic from the Worker Thread

If you have written your service in a modular way, you may be able to
separate the service control logic from the worker thread. One technique
is to wrap a simple console application around the worker thread logic.
This way, you can use DevPartner Error Detection to check your service
worker thread as if it were a Windows console program.
34 Advanced Error Detection Techniques

Custom Code to Turn the DevPartner Error Detection Log On and Off

When dealing with a service that is not interactive, you can write custom
code to turn DevPartner Error Detection logging on and off while the
service is running. Write custom code to respond to control codes you
pass from the dwControl parameter to ControlService.

You can make calls to the start and stop event reporting APIs in your
service control logic. See “Conditional Code” on page 29.

Common Service-related Issues

My service starts and immediately hangs.

Make sure you are running your service with Administrative privileges. If
you cannot get Administrative privileges, try the alternate method
discussed above.

My service starts and almost immediately terminates.

The most likely cause is that the Windows NT Service Control Manager
terminated your service. Increase the value of dwWait in your service’s
initialization logic and re-run your service.

Also, you should verify that DevPartner Error Detection has a valid
working directory. Specify the working directory via the General settings,
under Settings in the Program menu.

If the problem persists, consider modifying your service using the
alternate method discussed above.

My service runs for a while then terminates unexpectedly.

Your service may be responding too slowly to a control message
requesting your service state. Increase the time out value in dwWait when
responding to service state requests.

Also, DevPartner Error Detection may have poisoned memory in your
application, causing the crash. Disable the Memory Tracking feature in
the Error Detection settings. If this eliminates the crash, instrument your
service with FinalCheck, then re-run your application looking for
uninitialized memory references, buffer overruns, and dangling pointers.

If the problem persists, consider modifying your service using the
alternate method discussed above.
Chapter 3� Analyzing Complex Applications 35

My service runs correctly, but terminates unexpectedly when it shuts down.

Your service is given a limited time to respond when it receives a shut
down request from the Service Control Manager. When an application
shuts down, DevPartner Error Detection performs many checks, looking
for memory, resource and interface leaks, and re-checking allocated
memory blocks for memory overruns. If the dwWait value specified for
acknowledging the shut down request is too small, the Service Control
Manager will terminate the service. In this case, increase the dwWait
value.

If the problem persists, consider modifying your service using the
alternate method discussed above.

Analyzing ActiveX Controls Using the Test Container
You can use DevPartner Error Detection with the Test Container utility
provided with Visual Studio to monitor ActiveX controls and any other
COM object that can be used with the Test Container.

Follow these steps to use DevPartner Error Detection with the Test
Container:

1 Run DevPartner Error Detection.

2 Select File > Open and choose the Test Container.

If you installed Visual Studio in the standard directory you will find
the test container in one of the following locations:

C:\Program Files\Microsoft Visual Studio\Common\Toolsl\
TestCon32.exe

C:\Program Files\Microsoft Visual Studio .NET\Common7\
Tools\TestCon32.exe

C:\Program Files\Microsoft Visual Studio .NET 2003\Common7\
Tools\TestCon32.exe

C:\Program Files\Microsoft Visual Studio 8\Common7\Tools\
TestCon32.exe

3 Bring up the Modules and Files settings.

4 De-select TestCon32.exe.

5 Click Add Module.

6 Add the DLL that contains your ActiveX or COM control into the list
of modules and files.

7 Add any additional DLLs required for your control.

8 Run your application.
36 Advanced Error Detection Techniques

When the Test Container application starts, follow these steps:

1 Click New Control on the toolbar.

2 Add your control from the list provided (for example, Calendar
Control 8.0).

3 Use the Invoke Methods and Properties toolbar buttons to
manipulate your control.

4 When you have finished exercising your control, exit from the Test
Container.

During the run, DevPartner Error Detection reports errors as they are
detected. When you exit Test Container, DevPartner Error Detection
reports memory, resource and interface leaks that were not reported
during the run.

Common Test Container Issues

Why is DevPartner Error Detection reporting errors in TestCon32.exe?

By default, DevPartner Error Detection reports errors in the executable
and all DLLs associated with a process unless the DLLs and EXEs were
explicitly excluded using either Modules and Files or System
directories. To prevent DevPartner Error Detection from reporting errors
on TestCon32.exe, exclude this executable from the list of modules to
check.

DevPartner Error Detection COM Call Reporting is not logging calls to my
object.

DevPartner Error Detection logs methods only for COM interfaces that it
has been instructed to recognize. Follow these steps to tell DevPartner
Error Detection about your ActiveX control:

a Select Enable COM method call reporting on objects that are
implemented in the selected modules in the COM Call
Reporting settings to activate method logging.

b Select Generate NLB files dynamically in the Data Collection
settings to create new symbolic information for your COM
object.
Chapter 3� Analyzing Complex Applications 37

DevPartner Error Detection is not reporting COM interface leaks in my
object.

To collect COM interface leak information, select Enable COM object
tracking in the COM Object Tracking settings, then select the COM
classes to monitor.

To track your own objects, review the list of COM classes in the COM
Object Tracking settings and select only your classes. If you are unsure
which classes to select, select All COM classes.

Analyzing Applications That Use COM
DevPartner Error Detection can analyze COM components. For
DevPartner Error Detection to analyze COM components, you need to
edit the COM Component Services settings to establish DevPartner
Error Detection as the debugger for the COM component.

Follow these steps to set up DevPartner Error Detection as the debugger
for your COM component.

1 Choose Start > Settings > Control Panel > Administrative Tools
-> Component Services.

2 Use the tree control in the Component Services window to open
COM Applications.

3 Select your component from the tree control.

4 Right-click your component and choose Properties.

5 In the property sheet for your component, click the Advanced tab.

6 In the Advanced tab, select Launch in debugger.

Tip: To avoid deleting
dllhost.exe, cut and
paste or type the path
instead of clicking
Browse.

7 Change the Debugger path to point to bc.exe. Provide the full path.
If you chose the default path when you installed DevPartner Error
Detection, this path would be:

C:\Program Files\Compuware\DevPartner Studio
\BoundsChecker\bc.exe

Caution: Do not delete dllhost.exe /ProcessID:{…} from the end of
the debugger path.

8 Click OK to save the changes.
38 Advanced Error Detection Techniques

After you establish DevPartner Error Detection as the debugger for your
component, follow these steps:

1 Start your component using one of the following methods:

� Run an application that uses the component.

� Start your application using Component Services.
� Select your component from the tree control.

� Right-click on the component and choose Start.

2 When DevPartner Error Detection starts up, select the settings you
would like to use, then begin an error detection run.

Note: To see errors and events in your COM component only, remove
dllhost.exe and any other DLLs from the list of modules in the
DevPartner Error Detection Modules and Files settings.

3 After you finish exercising your component, shut down your
component. Follow these steps:

a In the Component Services window, select your component
from the tree control.

b Right-click the component and choose Shut down.

4 DevPartner Error Detection will then perform the normal end-of-
process error and leak detection.

5 After you finish debugging, clear the Launch in debugger check box:

a Select the component in the tree view of the Component
Services window.

b Right-click the component and choose Properties.

c Click the Advanced tab in the property sheet and clear Launch
in debugger.

d Click OK.

Common COM Issues

Why is DevPartner Error Detection reporting errors in dllhost.exe?

By default, DevPartner Error Detection reports errors in the executable
and all DLLs associated with a process unless the DLLs and EXEs were
explicitly excluded using either Modules and Files or System
directories. To prevent DevPartner Error Detection from reporting errors
on dllhost.exe, exclude this executable from the list of modules to
check.
Chapter 3� Analyzing Complex Applications 39

Why isn't DevPartner Error Detection COM Call Reporting logging calls to my
component?

DevPartner Error Detection will log COM method calls only for interfaces
that it can recognize. Perform these two tasks to generate an NLB file that
describes the methods in your COM component:

� Select Enable COM method call reporting (on objects that are
implemented in the selected modules) in the COM Call Reporting
settings to activate method logging.

� Select Generate NLB files dynamically in the Data Collection
settings to create new symbolic information for your COM object.

Why isn't DevPartner Error Detection reporting COM interface leaks in my
component?

DevPartner Error Detection will report COM interface leak information
only if you select Enable COM object tracking in the COM Object
Tracking settings. You must also indicate which COM classes should be
monitored.

To track only your interfaces, review the list of COM classes in the COM
Object Tracking settings, select your classes and clear all others. If you
are unsure what classes should be selected, select All COM classes.

DevPartner Error Detection appears to hang and not respond for a long time
after I stop exercising my component.

DevPartner Error Detection is waiting for dllhost.exe to time out and
terminate the process. When dllhost.exe terminates, DevPartner Error
Detection will perform the final memory, resource and interface leak
detection.

To terminate dllhost.exe before it times out, locate your component in
the Component Services window, then right-click your component and
choose Shut down.

Is there a way to debug dllhost.exe using Wait for Process?

Debugging dllhost.exe using Wait for Process is strongly discouraged.
Given the number of components being created on Windows 2000 and
Windows XP systems, it is safer to use the supported mechanisms
provided by COM using the component services debugging options.

Failure to use the supported debugging mechanisms could cause strange
system failures when other COM components are requested. The
components may not start up properly because you have associated all
instances of dllhost.exe with DevPartner Error Detection.
40 Advanced Error Detection Techniques

Analyzing ISAPI Filters Under IIS 5.0
You can use DevPartner Error Detection to analyze ISAPI filters within an
IIS process. Follow these steps to analyze your ISAPI filter with
DevPartner Error Detection:

1 Build your ISAPI filter with the Debug configuration with symbols
and no optimization (optionally with FinalCheck).

2 Stop the Internet Information Server (IIS) Service .

3 Configure Error Detection for inetinfo.exe:

a Open inetinfo.exe in the Error Detection application (BC.EXE).
You can find inetinfo.exe in:

%WINDIR%System32\Inetsrv\inetinfo.exe

b Open Modules and Files under Options/Settings and uncheck
all EXEs and DLLs.

c Click Add Module to add your ISAPI filter to the list of modules.

d Update the remaining settings appropriately for your ISAPI filter.

4 Configure the virtual directory that contains the ISAPI extension you
want to test to use the High (Isolated) Application Protection mode.

a Open the Internet Information Services Manager.

b Browse to the virtual directory.

c Right-click and choose Properties.

d Configure Application Protection on the Virtual Directory tab
of this dialog box to be Hight (Isolated) Application Protection
Mode.

5 Select Wait for Process from the Program menu.
Error Detection initializes itself for IIS and waits for it to start.

6 Start the IIS Admin service from the Services control panel.

7 Generate a series of HTTP requests to the IIS server to exercise your
ISAPI filter.

8 After you finish exercising your ISAPI filter, use the Service Control
Panel to stop the IIS Service.

9 Error Detection then performs end-of-process error and leak
detection.
Chapter 3� Analyzing Complex Applications 41

Common ISAPI Filter Issues

Many of the common problems associated with debugging ISAPI filters
have already been discussed in the Common issues for Services.

The following issues are specific to IIS and ISAPI filter debugging.

Why does IIS startup and then hang?

DevPartner Error Detection requires Administrative privileges to debug a
service. If the account used does not have Administrator privileges, IIS
will either hang or terminate almost immediately with an error.

Why does the DevPartner Error Detection log contain so much unwanted
information?

Use the Modules and files settings to exclude inetinfo.exe and all DLLs
except your ISAPI filter.

When you run inetinfo.exe the first time, DevPartner Error Detection
automatically adds any DLLs that were dynamically loaded into the
process to the list of modules and files. Use the Modules and Files
settings dialog to uncheck any unwanted DLLs. Do not remove them
from the list or they will simply be added back to the list and turned on
during the next run.

Are there other sources of information about debugging services and ISAPI
filters?

� There are a number of excellent articles available on MSDN
discussing debugging techniques for IIS and ISAPI filters.

� There are a number of knowledge base articles available on our web
site.

Are there tips for debugging IIS interactively with DevPartner Error
Detection?

� You must be logged into an account with Administrative rights.

� If these suggestions do not solve the your problem, review Microsoft
Technical Note 63: Debugging an ISAPI Application:
http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/vsdebug/html/vxoriDebuggingISAPIApplication.asp
42 Advanced Error Detection Techniques

Analyzing ISAPI Filters under IIS 6.0
You can use DevPartner Error Detection to analyze ISAPI filters if you
have configured IIS 6.0 in one of the following ways:

� IIS 5.0 Isolation Mode

� IIS 6.0 default configuration

To analyze your ISAPI filter with DevPartner Error Detection, first build
your ISAPI filter with Debug and no optimization (optionally with
FinalCheck). Then, follow the instructions for the IIS configuration you
are using.

IIS 5.0 Isolation Mode

When running IIS 6.0 in the IIS 5.0 Isolation Mode configuration, you
will run DevPartner Error Detection against the inetinfo.exe
executable.

Follow these steps to analyze your ISAPI filter:

1 Configure Error Detection for inetinfo.exe:

a Open inetinfo.exe in the Error Detection application (BC.EXE).
You can find inetinfo.exe in:

%WINDIR%System32\Inetsrv\inetinfo.exe

b Open Modules and Files under Options/Settings and uncheck
all EXEs and DLLs.

c Click Add Module to add your ISAPI filter to the list of modules.

d Update the remaining settings appropriately for your ISAPI filter.

2 Configure the virtual directory that contains the ISAPI extension you
want to test to use the High (Isolated) Application Protection mode.

a Open the IIS Admin utility.

b Browse to the virtual directory.

c Right-click and choose Properties.

d Configure Application Protection on the Virtual Directory tab
of this dialog box to be Hight (Isolated) Application Protection
Mode.

3 Open the Services dialog box in the Control Panel.

4 Select Wait for Process from the Program menu.
Error Detection initializes itself for IIS and waits for it to start.
Chapter 3� Analyzing Complex Applications 43

5 Start the IIS Admin and World Wide Web Publishing services.

DevPartner Error Detection will automatically start up and monitor
the inetinfo.exe process and your ISAPI filter.

6 Generate a series of HTTP requests to the web server to exercise your
ISAPI filter.

7 After you finish exercising your ISAPI filter, use the IIS Manager to
stop IIS.

When the Shutting Down dialog box appears, click End Now. This
stops the inetinfo.exe process.

Note: If you click the Stop button in DevPartner Error Detection, both
DevPartner Error Detection and the inetinfo.exe process will be
terminated, and you will lose the data you have collected.

8 Error Detection will perform end-of-process error and leak detection.

IIS 6.0 Default Configuration

When running IIS 6.0 in the default configuration mode you will run
DevPartner Error Detection against the W3WP.exe executable.

Follow these steps to analyze your ISAPI filter:

1 Configure Error Detection for W3WP.exe:

a Open W3WP.exe in the Error Detection application (BC.EXE).
You can find W3WP.exe in:

%WINDIR%System32\Inetsrv\W3WP.exe

b Open Modules and Files under Options/Settings and uncheck
all EXEs and DLLs.

c Click Add Module to add your ISAPI filter to the list of modules.

d Update the remaining settings appropriately for your ISAPI filter.

2 Configure the virtual directory that contains the ISAPI extension you
want to test to use the MSSharePointAppPool.

a Open the Internet Information Server (IIS) Manager.

b Browse to the virtual directory.

c Right-click and choose Properties.

d Configure Application Pool in the Virtual Directory tab to
MSSharePointAppPool.

3 Select Wait for Process from the Program menu.
Error Detection initializes itself for IIS and waits for it to start.
44 Advanced Error Detection Techniques

4 Start the IIS Admin and World Wide Web Publishing services.

Error Detection will automatically start up and monitor the W3WP.exe
process and your ISAPI filter.

5 Generate a series of HTTP requests to the web server to exercise your
ISAPI filter.

6 After you finish exercising your ISAPI filter, use the IIS Manager to
stop IIS.

When the Shutting Down dialog box appears, click End Now. This
stops the W3WP.exe process.

Note: If you click the Stop button in DevPartner Error Detection, both Error
Detection and the W3WP.exe process will be terminated, and you will
lose the data you have collected.

7 Error Detection will perform end-of-process error and leak detection.

Common IIS 6.0 ISAPI Filter Issues

All of the items in the IIS 5.0 Common ISAPI Filter issues section apply.
In a few cases you may need to substitute W3WP.exe for inetinfo.exe.

See “Common ISAPI Filter Issues” on page 42.

The following new issues apply to IIS 6.0:

� Microsoft has re-designed the IIS 6.0 default configuration to be more
secure. One of these changes disables ISAPI Extensions by default. To
debug an ISAPI extension, go to the Web Services Extensions tab in
the IIS Admin tool and modify IIS to allow Unknown ISAPI
extensions.

� Use the IIS Manager tool to Start, Stop or Restart IIS. To perform these
operations, right-click the <MachineName> node in the tree and
select All Tasks->Restart IIS. This opens a dialog box with controls
that enable you to start and stop IIS.

� For best results, turn off logging functions, such as API Call Logging,
before you monitor IIS. With logging functions on, DevPartner Error
Detection creates extremely large log (.DPBcl) files and will impact
the performance of the IIS server.

Note: Do not turn off Log events on the general dialog. Error Detection
will not report anything as long as Log events is disabled. Use this
feature only when you want to supress all reporting until you
specifically enable event logging via the menu bar button.
Chapter 3� Analyzing Complex Applications 45

Frequently Asked Questions
What is the difference between DevPartner Error Detection ActiveCheck and
FinalCheck or technologies?

DevPartner Error Detection has two modes of operation:

� ActiveCheck - In this mode DevPartner Error Detection will operate
on any 32-bit Windows program and will intercept all calls to the
operating system and C run-time library looking for memory leaks,
resource leaks, and usage of pointers that are passed to functions that
aren't valid (or have been de-allocated).

� FinalCheck - In this mode you must re-compile your C or C++
program using DevPartner Error Detection FinalCheck
instrumentation logic. To build using FinalCheck:

� For Visual C++ 6.0 select DevPartner | <build preference> | Error
Detection

Note: Build preference refers to the available options to Build,
Rebuild All, or Batch Build.

� For Visual Studio 2003/2005 select DevPartner | Native C/C++
Instrumentation Manager

With FinalCheck instrumentation, DevPartner Error Detection can
watch every pointer fetch, store, or indirect occuring within the
modules you instrument. DevPartner Error Detection can also watch
variables go in and out of scope.

Note that when you run in FinalCheck mode, all ActiveCheck analysis is
still performed along with the extended FinalCheck analysis.

FinalCheck specializes in finding dangling pointers, double
deallocations, pointer overruns, uninitialized memory errors, read / write
to unallocated memory.

When should I enable Call Validation?

Enabling Call Validation will cause DevPartner Error Detection to find
many more memory and pointer errors in your program. This feature is
off by default because the volume of detected events can be large.

What is DevPartner Error Detection doing when I select the Enable memory
block checking feature under Call Validation?

When you select Enable memory block checking, (which is turned off
by default), DevPartner Error Detection performs a more detailed
ActiveCheck analysis. Note that this feature can cause DevPartner Error
Detection to run as much as 20% slower.
46 Advanced Error Detection Techniques

How do I use the DevPartner Error Detection Guard byte settings under
Memory Tracking?

To alter the Guard bytes settings in the Memory Tracking configuration,
first make sure that Enable guard bytes is checked.

Increase Count from 4 to a larger value of 8 or 16.

Increasing the number of guard bytes will increase the spacing between
heap blocks and will provide an area between your blocks for DevPartner
Error Detection to monitor for overruns.

Change the settings of Check heap blocks at runtime to either Use
adaptive analysis or On all memory API calls.

This option tells DevPartner Error Detection to validate each heap block
whenever you make a call into a memory function. This will make your
program run much slower but will isolate heap corruption to a localized
area of your program, making it easier to track down.
Chapter 3� Analyzing Complex Applications 47

48 Advanced Error Detection Techniques

Chapter 4

Working with User-Written
Allocators
� Introduction

� Gathering Necessary Information

� Creating Entries in UserAllocators.dat

� How to Diagnose Errors in UserAllocators.dat

This chapter provides information to help you implement user-written
memory allocators.

Introduction
DevPartner Error Detection can perform memory analysis on user-written
memory allocators. To do this, add descriptions of your memory
allocators to a text file called UserAllocators.dat, which is installed in
the data sub-directory of the DevPartner Error Detection installation.
After you add user-written allocators to this file, DevPartner Error
Detection treats them like memory allocation routines provided with the
operating system. If DevPartner Error Detection detects a leak caused by a
user-written allocator described in UserAllocators.dat, the user-written
allocator will be shown in the Program Error Detected dialog box instead
of the lower-level allocator within the user-written allocator.
 49

Gathering Necessary Information
Before adding a user-written allocator to UserAllocators.dat, you need
to gather the following information:

1 The exact names of the allocation, deallocation, reallocation and size
functions of your user-written allocator.

2 Examine the parameters to your routines to determine how the size
of the block and pointer associated with the memory block is either
passed or returned to the caller.

3 Find out if your user-written memory allocator is statically linked to
the application or is provided in a separate module (DLL).

4 The name of the module (DLL) that contains your user-written
allocator.

5 Any special assumptions made in your allocator such as zeroing
memory on allocation or a user-written allocator that stores data in
deallocated blocks.

Finding the Names of User-Written Allocators

To add records to UserAllocators.dat you need to provide the exact
name of your allocate, deallocate, reallocate and size functions.

Follow these steps to locate the name of the routine:

1 Determine the name of the following functions:

� Allocation function (such as malloc, calloc, or new)
� Deallocation function (such as free or delete)
� Reallocation function (such as realloc or recalloc)
� Memory block size function (such as _msize)

2 Determine what the mangled version of the function name is by
using either DUMPBIN /EXPORTS or by looking up the names in a
linker map.
50 Advanced Error Detection Techniques

The name of your allocation functions may be either unmangled or
mangled depending on the calling convention used and your choice of
languages. If you are using C++, names will usually be mangled. Consider
the following small C++ program:

#include <malloc.h>
#include <memory.h>

class SampleClass
{
public:

SampleClass(){}
void *operator new(size_t stAllocateBlock);
void operator delete(void * pBlock);

};
void *SampleClass::operator new(size_t stAllocateBlock)
{

void *pvTemp = malloc(stAllocateBlock);
if(pvTemp != 0)

memset(pvTemp, 0, stAllocateBlock);
return pvTemp;

}
void SampleClass::operator delete(void * pBlock)
{

free(pBlock);
return;

}
int main(int argc, char * argv[])
{

SampleClass *pClass = new SampleClass;
return 0;

}

Before building the application, select Generate mapfile under the Visual
Studio Project settings. After you build your application, open the map
file and search for the operator new and operator delete methods. They
will look something like this:

global operator new: ??2SampleClass@@SAPAXI@Z

global operator delete: ??3SampleClass@@SAXPAX@Z

If you are using the Microsoft Visual C++ compiler, you will get
??2@YAPAXI@Z for global operator new and ??3@YAXPAX@Z for global
operator delete.

If you are writing your own malloc / free replacement, search the map
file for the mangled name of your routines and note the names.
Chapter 4� Working with User-Written Allocators 51

If your user-written allocator can be called from a DLL, you can extract
the same information from the DLL by using the DUMPBIN utility
provided with the Platform SDK or Visual Studio. To extract the
information, run the following command:

DUMPBIN /EXPORTS yourlibrary.dll > file.txt

Search file.txt for your user-written allocator, as described above.

Examining Parameters of User-Written Allocator Functions

To describe a user-written allocator to DevPartner Error Detection, you
need to provide the following information about the function:

� Which allocation function parameter contains the number of bytes
to be allocated?

� If your memory allocation function is a calloc-like function, which
parameter contains the number of elements to be created?

� How does your allocation function return the newly allocated block?

� How do you pass a pointer to the block to the msize, reallocation and
deallocation routines?

Special Assumptions Made By User-Written Allocators about Memory

Normally, DevPartner Error Detection will fill allocated memory with a
fill pattern before returning the pointer to the user program and will
“poison” the block of memory after it has been deallocated.

If your memory allocator initializes the block with special data, make
note of this fact.

If your memory allocator assumes that it can read from the block after it
has been deallocated, you must tell DevPartner Error Detection not to
“poison” the block after it has been deallocated. There are various
reasons why you might not want “poisoning” to occur:

� Your memory allocator stores data in the deallocated block to track
the allocation status, link it to other deallocated blocks, etc.

� You application assumes that deallocated blocks can continue to be
referenced until the block has been reallocated. Continuing to
reference deallocated blocks is a dangerous practice, but many
applications that do this are still in use.
52 Advanced Error Detection Techniques

Creating Entries in UserAllocators.dat
After you collect the information described in “Gathering Necessary
Information” on page 50, you can describe your allocator in
UserAllocators.dat.

To describe a function, create one record in the file per function. Each
record follows this form:

Record_Type Parameter_1 Parameter_2 Etc...

Record_Type describes the type of function you are creating. The
parameters that follow provide additional information about your
allocator function.

When you create a record, separate each field with one or more space or
tab characters. Records may span multiple lines.

Table 4-1 shows the Record Types that are currently defined.

Table 4-1. Record Types

Record Type Description

Allocator Functions that allocate memory.

Deallocator Functions that deallocate memory.

QuerySize Functions that can query the size of a given memory
block that was previously allocated by the Allocator
function.

Reallocator Functions that can adjust the size of a memory block
that was previously allocated using the Allocator
function.

Note that the Reallocator function may or may not
return the same block of memory.

Ignore Allocator or deallocator functions that you want
DevPartner Error Detection to ignore (not track
memory).
Chapter 4� Working with User-Written Allocators 53

Modules

Each of the UserAllocator record types requires you to specify the module
that contains the function being described. There are three different
types of modules that can be described.

Table 4-2. Module types

Module Type Description

Named module An explicitly named module (DLL) that contains the
user allocation function or method (for example,
foo.dll).

Statically linked user
allocator

An explicitly named module (DLL or executable) that
contains the user allocation function or method.
However, in this case, the function or method was
originally part of a library (.lib file). Once linked into the
module, the customer code can reference the functions
or methods but they are not externally visible. You must
provide debug symbols for the module and use the
optional STATIC keyword to alert DevPartner Error
Detection to look for the function or method in the
debug symbols.

Note: Failure to include the STATIC keyword in the
optional parameters for the record will prevent
DevPartner Error Detection from properly monitoring
the user-written allocation function or method.

*CRT This is a special case that enables you to reference a
function, wherever it appears in your application. This
case is used primarily to identify C or C++ runtime
library functions.

*CRT is not a macro; it covers the following 3 cases:

1. The Microsoft C Runtime Library

2. The statically linked C runtime library

3. Any user function that has the same mangled name
as anything that you are patching (for example,
global operator new.)
54 Advanced Error Detection Techniques

Allocator Records

Create an allocator record to describe a function that allocates memory.
Follow this format:

Allocator Module=module_name Function=func_name
MemoryType=mem_type NumParams=param_num Size=size_value
[Count=count_num] [Optional Parameters]

Table 4-3. Allocator Record Parameters

Parameter Description

Allocator The first parameter in the record must be the word
Allocator to indicate that you are describing an
allocation routine.

module_name The name of the module (DLL) that contains the user-
written allocator.

func_name The mangled name of the function that allocates blocks
of memory in your user-written allocator.

This parameter is case-sensitive.

mem_type Use this parameter to describe what type of memory is
being allocated. DevPartner Error Detection currently
defines the following memory types:

• MEM_MALLOC
Blocks of memory returned from routines such as
malloc, calloc, strdup, and so on. Memory of this
type is freed using a routine similar to the C runtime
library free routine.

• MEM_NEW
Blocks of memory that are returned from operator
new and are freed by operator delete.

• MEM_CUSTOM1 through MEM_CUSTOM9
Blocks of memory that must be paired with a
particular deallocator. These types allow developers
to declare their own custom memory allocators that
do not interact with the standard memory allocators
described above.

DevPartner Error Detection will verify that a block of
memory allocated with a given memory type is freed by
a function of the same type. If the type doesn't match,
DevPartner Error Detection will display a memory
conflict error at runtime.
Chapter 4� Working with User-Written Allocators 55

param_num The number of parameters passed to your function. This
value must be between 1 and 32.

Provide the proper number of parameters when
describing a user-written allocator function. Failure to
provide the correct value can cause unpredictable
results.

size_value The parameter number that contains the size of the
block to be allocated.

count_num This optional parameter describes calloc-like functions
that accept size and count parameters. If specified, the
count indicates how many blocks of the specified size
should be allocated. If you omit this parameter,
DevPartner Error Detection assumes that there is no
count parameter.

For more information on the use of this parameter,
review the MSDN documentation for calloc.

Note: If you specify a count parameter, you must also
specify NOFILL if you are describing calloc-like
functions.

[Optional Parameters] You can include the following optional parameters at
the end of the record:

• FILL
If this parameter is specified, DevPartner Error
Detection will fill the buffer returned with the
DevPartner Error Detection 'fill' character.

Note: If you do not specify FILL or NOFILL, the
default is FILL.

• NOFILL
If this parameter is specified, DevPartner Error
Detection will not fill the buffer returned with the
DevPartner Error Detection 'fill' character.

If your user-written allocator initializes the block with
data, specify NOFILL to avoid corrupting your data.

• NOGUARD
If this parameter is specified, DevPartner Error
Detection will not add any guard bytes at the end of
the blocks created by this allocation function.

• STATIC
DevPartner Error Detection will statically patch the
user-written allocator. Specify the static option if your
user-written allocator is linked into your application
and is not provided in a separate DLL with an
exported interface.

Table 4-3. Allocator Record Parameters (Continued)

Parameter Description
56 Advanced Error Detection Techniques

DevPartner Error Detection assumes that the return value from your
allocator function will be the address of the block of memory. If your
function returns a value of NULL (0), DevPartner Error Detection assumes
that the allocation failed.

Sample Allocator Records

The following examples show hypothetical allocator record functions.

Example 1 In this example, the function mallocXX is located in a library called
MyAlloc.dll. The function is assumed to be a malloc-type operator with
one parameter with the size being passed in the first parameter.
DevPartner Error Detection should not fill the memory block before
returning it to the application program. Any MEM_MALLOC type function
can free blocks allocated by this function.

Allocator Module=MyAlloc.dll Funtion=mallocXX
MemoryType=MEM_MALLOC NumParams=1 Size=1 NOFILL

Example 2 This example comes from the file used to track a custom global operator
new in the Microsoft iostream code. Note that this function is located in
the C runtime library. The record specifies *CRT as the module name so
DevPartner Error Detection assumes that the function is located in one of
the Microsoft C or C++ runtime libraries.

This function takes four parameters with the size being stored in the first
parameter. DevPartner Error Detection is allowed to fill the block before
returning to the program requesting the memory.

Allocator Module=*CRT Function=??2@YAPAXIHPBDH@Z
MemoryType=MEM_NEW NumParams=4 Size=1

Example 3 This example describes a function called CustomAllocXX that takes one
parameter with the size being passed in the first parameter.

DevPartner Error Detection should not fill the buffer before returning it
to the application program. Note that this record specifies MEM_CUSTOM1 as
the MemoryType. DevPartner Error Detection verifies that the memory
allocated with this function is deallocated by a routine that is also of type
MEM_CUSTOM1. Using other deallocation routines will generate an
allocation conflict message after freeing the memory.

Allocator Module=foo.dll Function=CustomAllocXX
MemoryType=MEM_CUSTOM1 NumParams=1 Size=1 NOFILL
Chapter 4� Working with User-Written Allocators 57

Example 4 In this example, a function called MyAlloc has been built as a .LIB file
and is statically linked to a data collection component called
DataStore.dll. MyAlloc accepts four parameters. The first is the size of the
data record; the second is the number of records to be allocated in a
single block. The third and fourth parameters are internal to the
application. The memory retrieved from the application has been pre-
initialized so DevPartner Error Detection should not fill the block.

Allocator Module=DataStore.dll Function=MyAlloc
MemoryType=MEM_MALLOC NumParams=4 Size=1 Count=2

NOFILL STATIC

Note: The STATIC keyword must be specified if the funtion name is not
exported from the DLL.

Deallocator Records

Create a Deallocator record to describe a function that deallocates
memory. Follow this format:

Deallocator Module=module_name Function=func_name
MemoryType=mem_type NumParams=param_num
Address=address_value [Optional Parameters]

Table 4-4. Deallocator Record Parameters

Parameter Description

Deallocator The first parameter in the record must be the word
Deallocator to indicate that you are describing a
deallocation routine.

module_name The name of the module (DLL) that contains the user-
written allocator.

func_name The mangled name of the function that deallocates
blocks of memory in your user-written allocator.

This parameter is case-sensitive.
58 Advanced Error Detection Techniques

mem_type This parameter provides a mechanism to describe what
type of memory is being deallocated. DevPartner Error
Detection currently defines the following memory
types:

• MEM_MALLOC
Describes blocks of memory returned from routines
such as malloc, calloc, strdup, and so on. Memory of
this type is freed using a routine similar to the C
runtime library free routine.

• MEM_NEW
Describes blocks of memory that are returns from
operator new and are freed by operator delete.

• MEM_CUSTOM1 through MEM_CUSTOM9
Describes blocks of memory that must be paired with
a particular deallocator. These types allow developers
to declare their own custom memory allocators that
do not interact with the standard memory allocators
described above.

DevPartner Error Detection will verify that a block of
memory allocated with a given memory type is freed by
a function of the same type. If the type doesn't match,
DevPartner Error Detection will display a memory
conflict error at runtime.

param_num The number of parameters passed to your function. This
value must be between 1 and 32.

Provide the proper number of parameters when
describing a user-written allocator function. Failure to
provide the correct value can cause unpredictable
results.

address_value The parameter number that contains the pointer to the
block being deallocated.

Table 4-4. Deallocator Record Parameters (Continued)

Parameter Description
Chapter 4� Working with User-Written Allocators 59

DevPartner Error Detection does not check the return value from a
deallocation function.

Sample Deallocator Records

The following examples show hypothetical deallocator records.

Example 1 In this example, a function called freeXX is located in a library called
MyAlloc.dll. The function takes one parameter with the pointer to the
block to be deallocated being passed in the first parameter. DevPartner
Error Detection should not poison the memory before returning to the
application program.

Deallocator Module=MyAlloc.dll Function=freeXX
MemoryType=MEM_MALLOC NumParams=1 Address=1 NOPOISON

[Optional Parameters] The following optional parameters may be included at
the end of the record:

• POISON
When a block of memory is deallocated, DevPartner
Error Detection will overwrite the block with the
poison pattern. This is the default.

• NOPOSION
When you specify NOPOISON, DevPartner Error
Detection will not 'poison' the block of memory after
it has been deallocated.

If your user-written allocator stores data in the block
after it has been deallocated or your application
continues to use data in the block after it has been
deallocated, specify NOPOSION to avoid corrupting
your data.

• STATIC
DevPartner Error Detection will statically patch the
user-written allocator. Specify the static option if your
user-written allocator is linked into your application
and is not provided in a separate DLL with an
exported interface.

Table 4-4. Deallocator Record Parameters (Continued)

Parameter Description
60 Advanced Error Detection Techniques

Example 2 This example describes a function called MyFree in foo.dll. The function
takes one parameter with the pointer to the block to be deallocated being
passed in the first parameter. DevPartner Error Detection should poison
the memory before returning to the application program. When the
block is deallocated, DevPartner Error Detection verifies that the block
was allocated by an allocator of type MEM_CUSTOM1. If the block was not
from this group, an error would be generated.

Deallocator Module=foo.dll Funtion=MyFree
MemoryType=MEM_CUSTOM1 NumParams=1 Address=1

Example 3 In this example, a function called MyFree has been built as a .LIB file and
is statically linked to a data collection component called DataStore.dll.
MyFree accepts three parameters. The first and last parameters are of no
interest to DevPartner Error Detection. The second parameter contains
the address to be deallocated. Also, the private deallocation routine
maintains private information in the deallocated block after the block
has been freed.

Deallocator Module=DataStore.dll Function=MyFree
MemoryType=MEM_MALLOC NumParams=3 Address=2 NOPOISON

STATIC

Note: Specify STATIC if the function name is not exported from the DLL.

QuerySize Records

Create a QuerySize record to describe a function that returns the size of
an allocated block of memory. Follow this format:

QuerySize Module=module_name Function=func_name
MemoryType=mem_type NumParams=param_num
Address=address_value [Optional Parameters]

Note: if you omit a QuerySize record for a user-defined allocator,
DevPartner Error Detection will return an incorrect block size for that
function.

Table 4-5. QuerySize Records

Parameter Description

QuerySize The first parameter in the record must be the word
QuerySize to indicate that you are describing a size
routine.

module_name The name of the module (DLL) that contains the user-
written allocator.
Chapter 4� Working with User-Written Allocators 61

func_name The mangled name of the function that returns the size
of allocated blocks of memory in your user-written
allocator.

This parameter is case-sensitive.

mem_type This parameter provides a mechanism to describe what
type of memory is being queried. DevPartner Error
Detection currently defines the following memory
types:

• MEM_MALLOC
Describes blocks of memory returned from routines
such as malloc, calloc, strdup, and so on. Memory of
this type is freed using a routine similar to the C
runtime library free routine.

• MEM_NEW
Describes blocks of memory that are returns from
operator new and are freed by operator delete.

• MEM_CUSTOM1 through MEM_CUSTOM9
Describes blocks of memory that must be paired with
a particular deallocator. These types allow developers
to declare their own custom memory allocators that
do not interact with the standard memory allocators
described above.

DevPartner Error Detection will verify that a block of
memory allocated with a given memory type is freed by
a function of the same type. If the type doesn't match,
DevPartner Error Detection will display a memory
conflict error at runtime.

param_num The number of parameters passed to your function. This
value must be between 1 and 32.

Provide the proper number of parameters when
describing a user-written allocator function. Failure to
provide the correct value can cause unpredictable
results.

address_value The parameter number that contains the pointer to the
block being queried.

[Optional Parameters] The following optional parameter may be included at
the end of the record:

• STATIC
DevPartner Error Detection will statically patch the
user-written allocator. Specify the static option if your
user-written allocator is linked into your application
and is not provided in a separate DLL with an
exported interface.

Table 4-5. QuerySize Records (Continued)

Parameter Description
62 Advanced Error Detection Techniques

The return value from this function is assumed to be a size_t that
provides the size of the block.

Sample QuerySize Records

The following examples show hypothetical QuerySize records.

Example 1 In this example, a function called MySize is located in a library called
foo.dll. The function takes one parameter with the pointer to the block
being queried in the first parameter

QuerySize Module=foo.dll Function=MySize
MemoryType=Mem_Custom1 NumParams=1

Address=1

Example 2 In this example, a function MySize has been statically linked into a data
collection component called DataStore.dll. The MySize function accepts
two parameters and the address being queried is passed in the first
parameter.

QuerySize Module=DataStore.dll Function=MySize
MemoryType=MEM_NEW NumParams=2

Address=1 STATIC

Note: Specify STATIC if the function name is not exported from the DLL.

Reallocator Records

Create a Reallocator record to describe a function that reallocates
memory. Follow this format:

Reallocator Module=module_name Function=func_name
MemoryType=mem_type NumParams=param_num
Address=address_value Size=size_value
[Count=count_num] [Optional Parameters]

Table 4-6. Reallocator record parameters

Parameter Description

Reallocator The first parameter in the record must be the word
Reallocator to indicate that you are describing a
Reallocation routine.

module_name The name of the module (DLL) that contains the user-
written allocator.

func_name The mangled name of the function that reallocates
blocks of memory in your user-written allocator.

This parameter is case-sensitive.
Chapter 4� Working with User-Written Allocators 63

mem_type This parameter provides a mechanism to describe what
type of memory is being reallocated. DevPartner Error
Detection currently defines the following memory
types:

• MEM_MALLOC
Describes blocks of memory returned from routines
such as malloc, calloc, strdup, and so on. Memory of
this type is freed using a routine similar to the C
runtime library free routine.

• MEM_NEW
Describes blocks of memory that are returns from
operator new and are freed by operator delete.

• MEM_CUSTOM1 through MEM_CUSTOM9
Describes blocks of memory that must be paired with
a particular deallocator. These types allow developers
to declare their own custom memory allocators that
do not interact with the standard memory allocators
described above.

DevPartner Error Detection will verify that a block of
memory allocated with a given memory type is freed by
a function of the same type. If the type doesn't match,
DevPartner Error Detection will display a memory
conflict error at runtime.

param_num The number of parameters passed to your function. This
value must be between 1 and 32.

Provide the proper number of parameters when
describing a user-written allocator function. Failure to
provide the correct value can cause unpredictable
results.

address_value The parameter number that contains the pointer to the
block being reallocated.

size_value The parameter number that contains the size of the
reallocated block of memory.

Table 4-6. Reallocator record parameters (Continued)

Parameter Description
64 Advanced Error Detection Techniques

DevPartner Error Detection checks the return value from the reallocation
function and assumes that a NULL value indicates error. Non-NULL
addresses are assumed to be the address of the newly allocated block of
memory.

count_num This optional parameter describes recalloc-like
functions that accept size and count parameters. If
specified, the count indicates how many blocks of the
specified size should be reallocated. If you omit this
parameter, DevPartner Error Detection assumes that
there is no count parameter.

For more information on the use of this parameter,
review the MSDN documentation for recalloc.

Note: If you specify a count parameter, you must also
specify NOFILL if you are describing recalloc-like
functions.

[Optional Parameters] The following optional parameters may be included at
the end of the record:

• FILL
If this parameter is specified, DevPartner Error
Detection will fill the buffer returned with the
DevPartner Error Detection 'fill' character.

Note: If you do not specify FILL or NOFILL, the
default is FILL.

• NOFILL
If this parameter is specified DevPartner Error
Detection will not fill any additional bytes added to
the end of the previous allocation with the
DevPartner Error Detection 'fill' character.

If your user-written allocator initializes the block with
data, specify NOFILL to avoid corrupting your data.

• NOGUARD
If this parameter is specified, DevPartner Error
Detection will not add any guard bytes at the end of
the blocks created by this allocation function.

• STATIC
DevPartner Error Detection will statically patch the
user-written allocator. Specify the static option if your
user-written allocator is linked into your application
and is not provided in a separate DLL with an
exported interface.

Table 4-6. Reallocator record parameters (Continued)

Parameter Description
Chapter 4� Working with User-Written Allocators 65

Sample Reallocator Records

The following examples show hypothetical Reallocator records:

Example 1 A function called reallocXX that is declared in a module called foo.dll.
This function accepts two parameters. The first parameter is the address
of the existing memory block and the second parameter is the size of the
requested block. Since no optional parameters were specified, DevPartner
Error Detection will fill any new memory (assuming the block is larger)
with the fill pattern before returning control to the application program.

Reallocator Module=foo.dll Function=reallocXX
MemoryType=MEM_MALLOC NumParams=2 Address=1 Size=2

Example 2 A function called reallocClear is declared in a module called foo.dll.
This function accepts three parameters. The first parameter is the address
of the existing memory block and the third parameter is the size of the
requested block. This reallocation routine performs its own fill operation
on any additional memory allocated in the new block so DevPartner
Error Detection should not fill additional memory in new blocks.

Note: DevPartner Error Detection will ignore the contents of parameter 2
since it is not of interest.

Reallocator Module=foo.dll Function=reallocClear
MemoryType=MEM_MALLOC NumParams=3 Address=1 Size=3

NOFILL

Example 3 A function called MyRealloc has been built in a .LIB file and is statically
linked into a data collection component called DataStore.dll. MyRealloc
accepts four parameters. The first and fourth parameters are of no interest
to DevPartner Error Detection. The second parameter contains the
address of the existing block and the third parameter contains the new
size of the block. The data collection routine pre-loads new data into the
block on reallocation.

Reallocator Module=DataStore.dll Function=MyRealloc
MemoryType=MEM_ALLOC NumParams=4 Address=2 Size=3

NOFILL STATIC

Note: Specify STATIC if the function name is not exported from the DLL.
66 Advanced Error Detection Techniques

Ignore Records

Create an Ignore record to describe a function that should be ignored by
the DevPartner Error Detection memory tracking system. Follow this
format:

Ignore Module=module_name Function=func_name [Optional Parameters]

Use Ignore records to instruct DevPartner Error Detection to either ignore
a user-written allocator or ignore a lower-level access routine used by a
user-written allocator. Ignore records tell the DevPartner Error Detection
memory tracking system not to track APIs that would normally be
monitored.

Caution: If you create Ignore records, the DevPartner Error Detection
memory tracking system will no longer monitor memory allocated or
freed from those APIs. As a result, DevPartner Error Detection will no
longer be aware of this memory. This may cause the Call Validation and
FinalCheck analysis modules to generate incorrect or incomplete error
messages. If you have any questions about the use of this feature please
contact technical support for assistance.

Table 4-7. Ignore record parameters

Parameter Description

Ignore The first parameter in the record must be the word
Ignore to indicate that you are describing an API to be
ignored.

module_name The name of the module (DLL) that contains the
function to be ignored.

func_name The mangled name of the function to be ignored by the
memory tracking system.

This parameter is case-sensitive.

[Optional Parameters] • STATIC
DevPartner Error Detection will statically patch the
user-written allocator. Specify the static option if your
user-written allocator is linked into your application
and is not provided in a separate DLL with an
exported interface.
Chapter 4� Working with User-Written Allocators 67

Sample Ignore Records

The following examples show hypothetical ignore records.

Example 1 This example creates an ignore record that will cause DevPartner Error
Detection to monitor memory allocated by GlobalAlloc but will not see
any requests to free the memory returned to the operating system using
GlobalFree.

Note: This will cause DevPartner Error Detection to report a large number
of false memory leaks.

Ignore Module=Kernel32.dll Function=GlobalFree

Example 2 This example tells DevPartner Error Detection to ignore memory
manipulated by the GlobalAlloc family of calls.

Note: This will cause DevPartner Error Detection to report a large number
of false Call Validation and FinalCheck errors.

Ignore Module=Kernel32.dll Function=GlobalAlloc

Ignore Module=Kernel32.dll Function=GlobalReAlloc

Ignore Module=Kernel32.dll Function=GlobalFree

Note: Adding these three lines to UserAllocators.dat is not
recommended.

Example 3 This example tells DevPartner Error Detection to ignore memory
manipulated by a statically linked function within a specified module.
You might need to add lines like these if you write your own replacement
memory allocation library and use the same names as the standard C
runtime library and don’t want DevPartner Error Detection to monitor
your library usage.

Ignore Module=MyDLL.dll Function=Malloc STATIC

Ignore Module=MyDLL.dll Function=free STATIC

Ignore Module=MyDLL.dll Function=realloc STATIC

Note: Before adding lines like this to your UserAllocators.dat file, you
should contact technical support for assistance.

How to Diagnose Errors in UserAllocators.dat
If you add records to UserAllocators.dat you may receive one or more
of the following types of errors:

� File access errors

UserAllocators.dat is a text file stored in the Data sub-directory of
the DevPartner Error Detection installation directory. If the file is
deleted or made non-readable, DevPartner Error Detection will report
an error.
68 Advanced Error Detection Techniques

� Parsing errors

If DevPartner Error Detection encounters errors while parsing the
UserAllocators.dat file, DevPartner Error Detection will log the
errors in the Errors tab. If Memory Tracking or Resource Tracking are
enabled when these UserAllocators.dat errors are encountered,
these features will be disabled.

Token Parsing Errors

DevPartner Error Detection will parse the file one line at a time using the
following rules:

� Blank lines and lines that start with semi-colons will be ignored.

� Each UserAllocator definition that is added must begin with a valid
record type.

� All parameters for each definition must be separated by one or more
spaces or tabs, and must follow the rules for each record type.

Semantic Errors

Each record type will be parsed according to the rules for each parameter.
Parameters may be case-sensitive and in some cases must fall inside a
valid range (for example, the maximum number of parameters supported
on a function is 32).

Duplicate entries in the same file may also generate errors if the records
conflict with one another. UserAllocators.dat is assumed to be an
advanced feature, so extensive cross checking is not performed.

If Your Application becomes Unstable after Changing UserAllocators.dat

When you add records to UserAllocators.dat, you are telling DevPartner
Error Detection to monitor calls to and from your user-written allocator.
If you did not properly describe the APIs to DevPartner Error Detection,
your application may crash or function unpredictably. Specifying the
incorrect number of parameters for your functions is one of the most
common causes of such problems.

You may also encounter problems if you depend on the contents of
memory remaining constant and you did not add the NOFILL or
NOPOSION options to your description.
Chapter 4� Working with User-Written Allocators 69

If you encounter an error and are unsure how to proceed please contact
technical support for assistance. When you contact technical support,
please provide the following information:

1 The version of DevPartner you are running

2 A copy of your UserAllocators.dat file

3 A description of the problem you are encountering

In some cases, you may be asked to provide a copy of the DLL containing
your user allocator functions and a map file used to link the DLL.

If possible, avoid using Ignore records. Ignore records can cause
DevPartner Error Detection to respond unpredictably when you analyze
an application.
70 Advanced Error Detection Techniques

Chapter 5

Deadlock Analysis
� Background: Single and Multi-threaded Applications

� Deadlock - A Basic Definition

� Techniques for Avoiding Deadlocks

� Potential Deadlocks

� Other Synchronization Objects

� Additional Information

Deadlock Analysis provides an automated method to search for
deadlocks, potential deadlocks and other synchronization errors in your
customer applications.

This chapter provides:

� An overview of the terms used in deadlock analysis

� Examples of deadlocks and potential deadlocks

� Sources of additional information on synchronization topics.

Background: Single and Multi-threaded Applications
Old style C/C++ programs had a simple main routine that called a
number of functions, performed various operations, and then exited.
These programs used a single thread of execution. In other words, the
program executed one instruction at a time. If you were to step through
the program using a debugger, you could watch every operation pass by
like the frames in a movie.
 71

Threads
Newer applications can be multi-threaded. A thread is a flow of control. A
multi-threaded application has two or more flows of control. You can
create additional threads by calling the Windows CreateThread function.
CreateThread accepts a number of parameters including the address of a
function that should be run on the newly created thread. If the
CreateThread function is successful, the application will have an
additional thread of execution.

There are many ways to implicitly create a thread. A few examples
include calling _beginthread, using third-party libraries, using COM or
DCOM, or by using the Common Language Runtime.

If you have more than one thread executing in your program, it is
possible for the two threads to try to access the same resources at the
same time. This might include variables, files, handles, Windows
resources, and so on. If multiple threads try to access the same resource at
the same time, synchronization problems can occur. For example, if two
threads, called T1 and T2, both attempt to print out the numbers from 1
to 100, the output from each thread might look like:

1 2 3 4 5 6 7 8 9 10 11 12 … 95 96 97 98 99 100

When both threads run at the same time, the output will be jumbled, as
in the example below. The output from thread T1 is in plain type; the
output from thread T2 is in bold italic type.

1 2 3 4 1 2 5 6 3 4 5 6 7 8 7 … 95 96 97 94 95 96 97 98 99 98 99 100 100

Critical Sections
To prevent such problems, you need to coordinate the interactions
between threads. Most modern operating systems provide a series of
synchronization functions that can be called to coordinate access to
shared resources. The easiest to use and most common synchronization
object is called a critical section. A critical section is a simple function that
allows only one thread to have access to a resource at a time.

Consider the example of threads T1 and T2, each written to print the
numbers from 1 to 100, as described above. Defining a critical section C1
will prevent jumbled output when both threads are running. This critical
section controls access to the output stream. The functions executed by
threads T1 and T2 would need to be modified as follows:

1 One of the threads would create the critical section C1.
72 Advanced Error Detection Techniques

2 Each thread would then perform the following steps:

a Request critical section C1

b Print out the list of numbers from 1 to 100

c Release critical section C1

3 The threads would then go off and do whatever additional processing
was required that didn't interact with the other thread.

Step 2- a translates into an EnterCriticalSection call asking the
operating system to grant the thread exclusive access to critical section
C1. If the critical section is not available, the operating system will pause
the thread and wait until C1 becomes available.

Once a thread has access to the critical section, any other thread
following the critical section rules for C1 will not attempt to print its
output. After the thread prints the numbers from 1 to 100, step 2- c tells
the operating system to LeaveCriticalSection. This releases the critical
section for some other thread.

There is no rule that states that every thread in your program must use
the critical section to print its output to the terminal. However, if you
follow this rule, your output will always appear correctly.

This same rule can be applied to accessing variables, structures, files, or
any other shared resource.

Note: In most cases you don't need to wrap console output in critical
sections unless you are writing code that causes the two output
streams to collide with each other.

Deadlock - A Basic Definition
Based on the preceding example, a critical section seems to be a very
simple mechanism to grant access to a shared resource. However, it can
cause problems.

Consider a program that creates multiple critical sections named C1, C2
and C3. Each of these critical sections is used to guard access to a separate
resource shared between the threads.

If a thread is granted access to one critical section (for example, C1) and
then attempts to gain access to another critical section (for example, C2),
it is possible that C2 has already been allocated by another thread. If the
other thread quickly releases C2, there is no problem. The first thread
will wait until C2 becomes available and will then be granted access to
C2 so that the operation can continue.
Chapter 5� Deadlock Analysis 73

On the other hand, if the thread that holds C2 needs to wait for some
other synchronization object to become available (such as C1), both
threads will stall waiting to gain access to the necessary resources. When
two or more threads stall while waiting for resources that never become
available, the result is called a deadlock.

Techniques for Avoiding Deadlocks
Deadlocks occur when multiple threads attempt to use shared resources
but are unable to gain access to those resources. There are a number of
methods to avoid deadlocks.

� Request access to synchronization objects only when you need them.
Once you gain access to the objects, use them as quickly as possible
and release the objects so other threads can use them.

� If you need to gain access to multiple synchronization objects at once
to perform a given operation, request the first object and then try to
gain access to the second object. If the second object is not available,
release both objects and wait a short random interval. After the wait
completes, attempt to gain access to the resources again. It is very
important to release ownership of a resource if your thread will
become blocked waiting for another resource. Failure to release the
object might cause a “deadly embrace” and will only make the
deadlock situation worse.

� Always ask for resources in the same order. For example, if you are
required to gain access to C1, C2 and C3 to perform an operation,
always access them in the same order (C1, C2, and C3) and release
them in the opposite order (C3, C2, C1).

� Once you have acquired all the synchronization objects you need to
perform an operation, do not perform an operation that might block
waiting for another resource.

There are many more techniques for dealing with synchronization
objects. “Additional Information” on page 79 lists MSDN resources and
books that discuss synchronization objects.
74 Advanced Error Detection Techniques

Potential Deadlocks
DevPartner Error Detection will report a potential deadlock when it detects
that you are not accessing resources in a safe manner. An example would
be an application with three threads T1, T2, and T3, all of which make
use of a series of resources controlled by critical sections C1, C2, and C3.

Table 5-1 illustrates the critical sections each thread requires to perform a
given operation:

Each thread can run independently and acquire the necessary critical
sections to perform their designated tasks. However, a problem can occur
when all three threads try to perform these operations at the same time.

The Dining Philosophers

The Dining Philosophers is a classic example often used to illustrate
potential deadlocks in computer science classes. The DevPartner Error
Detection software contains sample code for a version of the Dining
Philosophers. You can find it under:

...\DevPartner Studio\Examples\DeadlockPhilosophers

The Dining Philosophers problem is based on a group of philosophers
sitting at a round table with a large plate of food in the middle. Between
each philosopher is a single chopstick.

The philosophers seated around the table can do three different things:

1 Rest: Resting philosophers sit and do nothing. They rest for a random
period of time.

2 Talk: Talking philosophers speak to anyone else at the table
interested in listening. They talk for a random period of time.

Table 5-1. Potential deadlock example: Threads and their required critical sections.

Thread Critical Section

T1 C1, C2

T2 C2, C3

T3 C3, C1
Chapter 5� Deadlock Analysis 75

3 Eat: A hungry philosopher will attempt to eat. To do this, they try to
pick up a chopstick. In the simplest case, the philosopher always tries
to pick up the left chopstick first, and, if successful, will then try to
pick up the right chopstick. A philosopher with both left and right
chopsticks will eat for a random amount of time, and then put down
the chopsticks and either rest or start talking.

A philosopher who can't pick up the first chopstick will wait a few
seconds and try again. A philosopher who succeeds will then attempt
to pick up the right chopstick. If the right chopstick isn't available,
the philosopher will wait a few seconds and then try again.

The problem occurs when all philosophers pick up the left chopstick at
once. If this occurs, none of them will ever put down the left chopstick
so they will all starve to death (deadlock).

Depending on how you configure the Dining Philosopher algorithm, it
might deadlock immediately or might run for several minutes before
deadlocking. If you add philosophers and chopsticks to the table, the
number of actual deadlocks tends to decrease. However, the potential for
all philosophers to get hungry at once still exists. This is called a potential
deadlock.

Potential deadlocks are often the hardest deadlocks to track down
because they tend to occur on heavily loaded production systems.
Attempts to duplicate these problems on development systems are
usually time consuming and often don't find the real root of the
problem.

DevPartner Error Detection will notify you if a potential deadlock is
detected long before the actual deadlock occurs. DevPartner Error
Detection will also provide detailed information describing how the
actual deadlock will occur. This can make it easier to modify your code to
prevent the problem from occurring.

Monitoring Synchronization Objects

Deadlock analysis also monitors all the synchronization objects in your
application for errors and questionable usage such as:

� Waits over a user specified duration

� Threads that re-enter an already owned critical section

� A wait on a mutex that is already owned by the thread

� Exiting a thread without releasing a synchronization object
76 Advanced Error Detection Techniques

In addition, you can configure DevPartner Error Detection to verify that
synchronization objects that can be named follow your naming rules. For
example, you might decide that your synchronization objects should be
unnamed so that they cannot be accessed from outside the process. Any
named synchronization objects will be flagged as potential errors. You
can then use this list to verify that the named synchronization objects
contain the necessary security descriptors to prevent unwanted access by
other processes on the system.

A complete list of synchronization errors appears in the online help,
under Deadlock Errors in the Descriptions of Detected Errors section.

Other Synchronization Objects
The Windows operating system provides many different types of
synchronization objects beyond the critical sections described on page
72. Below is a list of synchronization objects and excerpts of their
definitions from MSDN. Excerpted text is printed in italics. With each
term, the URL for the complete definition and a URL for a related code
example are provided.

Critical Section

Critical section objects provide synchronization similar to that provided by
mutex objects, except that critical section objects can be used only by the
threads of a single process.

Complete definition:

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dllproc/base/Critical_Section_Objects.asp

Code example:

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dllproc/base/using_critical_section_objects.asp
Chapter 5� Deadlock Analysis 77

Event

An event object is a synchronization object whose state can be explicitly set to
be signaled by use of the SetEvent function. The event object is useful in
sending a signal to a thread indicating that a particular event has occurred.

Complete definition:

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dllproc/base/event_objects.asp

Code example:

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dllproc/base/using_event_objects.asp

Mutex

A mutex object is a synchronization object whose state is set to signaled when it
is not owned by any thread, and nonsignaled when it is owned. Only one thread
at a time can own a mutex object.

Mutex objects are considerably slower than critical sections.

Complete definition:

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dllproc/base/mutex_objects.asp

The following URL shows an example of using Mutex objects:

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dllproc/base/using_mutex_objects.asp

Semaphore

A semaphore object is a synchronization object that maintains a count between
zero and a specified maximum value. The count is decremented each time a
thread completes a wait for the semaphore object and incremented each time a
thread releases the semaphore.

Complete definition:

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dllproc/base/semaphore_objects.asp

Code example:

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dllproc/base/using_semaphore_objects.asp
78 Advanced Error Detection Techniques

Additional Information

MSDN References

For more information on synchronization objects please refer to the
following links on MSDN:

Synchronization
Overview:

http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/dllproc/base/about_synchronization.asp

Synchronization
Objects:

http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/dllproc/base/synchronization_objects.asp

Wait Functions: http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/dllproc/base/wait_functions.asp

Using Synchronization
Objects:

http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/dllproc/base/using_synchronization.asp

Synchronization
Reference:

http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/dllproc/base/synchronization_reference.asp

Other References

The following books contain more information on synchronization
objects:

Win32 Multithreaded Programming, by Aaron Cohen and Mike Woodring

Debugging Applications for Microsoft .NET and Microsoft Windows, by John
Robbins

Debugging Windows Applications, 1st Edition, by John Robbins

Operating Systems, 4th Edition, by William Stallings

Foundations of Multithread, Parallel and Distributed Programming, by
Gregory R. Andrews.
Chapter 5� Deadlock Analysis 79

80 Advanced Error Detection Techniques

Appendix A

Troubleshooting Error
Detection
Troubleshooting
If you encounter the following problems, try the corresponding
solutions. If you encounter further difficulties, contact the Technical
Support Center.

Problem Solution

Error Detection is stepping on my memory. • Disable Poison on Free under Memory Tracking in the Options/
Settings dialog.

• Disable Enable Fill on Allocation under Memory Tracking in the
Options/Settings dialog.

Error Detection fails to stop in the debugger
when the Program Error Detected dialog
box is dismissed with the Debug button.

• When you dismiss the Program Error Detected dialog box with
the Debug button, Error Detection puts a temporary breakpoint
in your application at the start of the first line after the error. The
breakpoint is automatically removed when the application stops
in the debugger. If your application has an exception handler that
catches the breakpoint exception and continues execution, the
debugger will not get a chance to catch the breakpoint and stop
the application for you.

I am getting a Memory Allocation Conflict:
Function Mismatch error, and Error Detection
is reporting that the block was deallocated
by Free.

• If you are using new and delete, and Error Detection is
complaining that the block was deallocated by free, then you
may be using a release version of the C Run Time Library DLL
(/MD). To fix this, build against the debug version of the C Run
Time Library DLL (/MDd). This is controlled on the C++ Code
Generation properties page by the Runtime Library entry.
 81

I am getting an Invalid String error when I
run my application under Error Detection.

• When ASCII strings are cast to wide-char strings and used as API
parameters, we may report errors that do not appear to be related
to the actual problem. A cast means ‘trust me, I know what type
of data this is’, and a cast is not detectable by Error Detection. For
example:

BSTR m_DSNName;
m_DSNName=SysAllocString(BSTR(""));

Is interpreted by the compiler as:

m_DSNName=SysAllocString((wchar_t *)"");

We report:

Invalid String: In call to SysAllocString, address
0x0FE2751F is not null terminated in block
0x0FDF0000 (290816).

The SysAllocString statement casts an empty ASCII string to a
wide-char string to use as the input parameter to
SysAllocString. SysAllocString looks for the first double-
byte null to find the end of the wchar_t string. It uses the length
determined by the location of this double-byte null to determine
the size of the new BSTR. SysAllocString validly creates a new
BSTR for m_DSNName that holds a copy of all of the junk that exists
between the beginning of the single-byte ASCII string & the first
double-byte null that happened to occur later in memory.

In the example above, Error Detection examines the input
wchar_t string (which is actually a 1-byte empty ASCII string)
and reports an invalid string (not null terminated). In the test code
used for this case, we knew about a valid block of memory that
physically existed between the beginning of the single-byte ASCII
string and the accidental double-byte null. We scan the input
string only as far as we ‘know’ that the memory is not allocated
for anything else. So in this case we are scanning only a few bytes,
then reporting that we did not find a double-byte null in that area
of memory. To avoid this problem, change the code to use a wide-
char string as input.

Problem Solution
82 Advanced Error Detection Techniques

Error Detection is not reporting any errors. • Enable Log Events under General in the Options/Settings
dialog.

• There are two situations in which DCOM or COM-based
applications or components try to run under the restrictions of the
aspnet account. By default, when a DCOM or COM application
or component is launched from within an ASP.NET enabled web
page, it will run in the context of the aspnet account. For
security reasons, the aspnet account is a restricted account (it is a
member of the Users group and has equivalent privileges). In this
situation your COM component will not have the security
privileges required for Error Detection to function properly. To
work around this issue, you must configure your DCOM or COM
application or component to execute within the context of the
interactive user (via dcomcnfg.exe). To configure your DCOM or
COM application or component to run under the context of the
interactive user:

1 Open a command prompt and run dcomcnfg.exe.

2 Expand Component Services -> Computers -> My Computer
-> DCom Config.

3 Right-click on your COM component, and select Properties.

4 Select the Identity tab.

5 Ensure that you have selected The interactive user.

6 Click OK.

Error Detection is running exceedingly slow. • Verify that you have not turned on all of the Error Detection
options. Some options are very expensive when it comes to
processor and memory usage, and you should only use those you
really need.

• Limit your maximum call stack depth on allocation (via Data
Collection in the Options/Settings dialog). Deep allocation call
stacks consume large amounts of memory.

• Limit your analysis by excluding modules and files (via Modules
and Files in the Options/Settings dialog).

• Only use FinalCheck at major development milestones.

The log is far too large. • Disable Log Events under General in the Options/Settings
dialog.

• Limit the Parameter Encoding depth (via Data Collection in the
Options/Settings dialog).

• Limit your analysis by excluding modules and files (via Modules
and Files in the Options/Settings dialog).

• Use Filters and Suppressions to limit the scope of what is reported.

Problem Solution
Appendix A�Troubleshooting Error Detection 83

I get an error stating that Error Detection
failed to create the UserAllocators.log
file.

• If you attempt to run an application with Error Detection in a
directory to which you do not have write access, you may receive
an error similar to the following:

UserAllocatorsError: An error was discovered when
processing the UserAllocators.dat file. Failed to
create UserAllocators.log file Error:0x00000005

You can control the directory that the UserAllocators file is
written to by setting the NLB File Directory on the Data
Collection settings page and checking the Generate NLB files
dynamically check-box.

Error Detection has incomplete or erroneous
call stacks.

• Error Detection cannot locate the symbols, or the symbols are out
of date. Enable Microsoft Symbol Server to retrieve symbols that
match your current files, then rerun your application.

• The application under test uses a mixture of managed and
unmanaged code. Transitions between the two kinds of modules
can throw off the call stack.

Symbol Server is taking far too long. • Error Detection is trying to retrieve symbols from Microsoft
Symbol Server every time you run. Disable Microsoft Symbol
Server once you have retrieved the symbols that match your
current files, and run your application using local symbols.

• Download and permanently install a symbol server package for
you specific operating system. See Microsoft's symbol download
page: http://www.microsoft.com/whdc/devtools/debugging/
symbolpkg.mspx

COM Object Tracking (or COM Call
Reporting) does not appear to be working
correctly.

• Check your Modules and Files settings in the Options/Settings
dialog to verify that you have not disabled reporting of events for
certain modules.

• Check your Suppression and Filter settings in the Options/
Settings dialog to verify that you have not previously set a filter or
suppression for certain COM Tracking event(s).

• Allow Error Detection to monitor more COM interfaces via the All
Interfaces check-box under COM Call Reporting in the Options/
Settings dialog.

Error Detection complains about an
allocation conflict between operator new
and free.

• Make sure that you have added all user written allocators to
userallocators.dat. See the comments in the
...\Data\UserAllocators.dat file.

Problem Solution
84 Advanced Error Detection Techniques

My application does not start, or it starts
and immediately crashes.

• Uncheck the Enable Poison On Free check-box under Memory
Tracking in the Options/Settings dialog — your application may
be referencing deallocated memory.

• Uncheck the Fill Output Arguments Before Call check-box
under Call Validation in the Options/Settings dialog.

• Investigate your user written allocators if you have any (see the
...\Data\UserAllocators.dat file).

• Does your system have OS symbols present? If so, you could have
a bad symbol file.

• Is the crash timing related? If so, disable some of the Error
Detection features and try running your application again.

My service starts and immediately hangs. • Make sure you are running your service with Administrative
privileges.

My service starts and almost immediately
terminates.

• The most likely cause is that the Windows NT Service Control
Manager terminated your service. Increase the value of dwWait in
your service’s initialization logic and re-run your service.

• Verify that Error Detection has a valid working directory. Specify
the working directory via the General settings, under Settings in
the Program menu.

My service runs for a while then terminates
unexpectedly.

• Your service may be responding too slowly to a control message
requesting your service state. Increase the time out value in
dwWait when responding to service state requests.

• Error Detection may have poisoned memory in your application,
causing the crash. Disable the Memory Tracking feature under
Options/Settings. If this eliminates the crash, instrument your
service with FinalCheck, then re-run your application looking for
uninitialized memory references, buffer overruns, and dangling
pointers.

My service runs correctly, but terminates
unexpectedly when it shuts down.

• Your service is given a limited time to respond when it receives a
shut down request from the Service Control Manager. When an
application shuts down, Error Detection performs many checks,
looking for memory, resource and interface leaks, and re-checking
allocated memory blocks for memory overruns. If the dwWait
value specified for acknowledging the shut down request is too
small, the Service Control Manager will terminate the service. In
this case, increase the dwWait value.

Problem Solution
Appendix A�Troubleshooting Error Detection 85

Error Detection fails to analyze my service. • Error Detection may fail to analyze a service. A common cause is
that one (or more) of the directories used to monitor the process
is not writable to the process being created. The following
directories must be writable:

• The TMP and TEMP environment variables must reference a
directory that is writable to the process. If you have configured
your service to run the LOCAL_SYSTEM context, you will need
to assign these environment variables system wide.

• The service must have write access to the NLB File directory.

• The service may require write access to the working directory.

Visual Studio crashes when I try to run an
application with Error Detection.

Narrow down the cause of the crash by using at least one of the
following methods.

• Set breakpoints at various locations in the application test code.

• Reconfigure the Error Detection settings by disabling various sub-
systems or modules. See "changing program settings" in the help
for more details.

I see memory growth in Task Manager, but
Error Detection is not reporting any leaks.
Why not?

• Make sure that you have fully instrumented your application with
FinalCheck.

• Make sure Log Events is enabled under General in the Options/
Settings dialog.

• Make sure your application test modules are enabled via Modules
and Files in the Options/Settings dialog.

When running Error Detection on a
managed C++ application, I am not seeing
as many leaks and errors reported as I was
expecting.

• This is a known limitation of Error Detection. You must be using
the native debugger (or both the managed and native debugger)
for Error Detection to see the memory allocations and report them
properly. When using just the managed debugger, memory and
resource allocations will appear to be coming from
mscorewks.dll instead of the application, and will be ignored.

ActiveCheck does not find a memory leak,
but FinalCheck does. Why?

• Instrumentation with FinalCheck allows for more robust memory
tracking. FinalCheck is scope-aware, and allows Error Detection to
track every pointer as well as all memory usage. For more
information, refer to ActiveCheck and FinalCheck in the Error
Detection section in the Quick Reference.

Problem Solution
86 Advanced Error Detection Techniques

My application fails when run under Error
Detection (usually with Memory Track
enabled).

• Uncheck the Enable Poison On Free check-box under Memory
Tracking in the Options/Settings dialog.

• Try using alternate fill patterns for the Enable Guard Bytes and
Enable Fill On Allocation settings under Memory Tracking in the
Options/Settings dialog.

• You may have bad PDBs. Create an ASCII text file named
NMSYMDATA.DAT in the NMShared\4.5 directory. This file should
contain the names of the modules associated with bad PDB files
followed by “,0x0”. For example: ADVAPI32.DLL,0x0

• If you are debugging an application generated using the Visual
Studio MFC application wizard, and have enabled the Memory
Track subsystem’s memory filling features, Error Detection may
cause the application to crash. MFC sets an obscure pragma that
causes the compiler to generate “minimal debugging
information”. If the OS structures you are using have had
additional fields added to them, Error Detection may get the
wrong structure size from the debugging information when it
attempts to determine how big the structure is, causing it to fill
memory it should not be touching. Add _AFX_FULLTYPEINFO to
the Preprocessor Definitions on the C++ Preprocessor settings
page for your project, and then rebuild your solution.

• If creating the NMSYMDATA.DAT file does not solve the problem,
you may have to exclude the entire module. To exclude an
application module, create an ASCII text file named
EXCLUDEDMODULES.DAT in the Data directory where Error
Detection is installed on your system. For example:

<InstallationRoot>\Data\EXCLUDEDMODULES.DAT

Add the names of each module you want to exclude on a separate
line of the file. For example: MYCUSTOMDRIVER.DLL

I cannot debug my Web application using
Error Detection integrated in Visual Studio.

• To debug applications and services such as Web applications, use
the Wait for Process option (see “Analyzing Services” on page
33) available from the Error Detection application (BC.EXE). This
option is not available when running Error Detection integrated in
Visual Studio.

I have a module located in the System files
directory that I want to debug. The System
files are restricted, and I cannot debug my
module. What can I do?

• Enable your modules via Modules and Files in the Options/
Settings dialog, and you can debug it for the current project.

• To make the module valid for all projects and solutions, edit the
file named Unrestricted_modules.txt in the Data directory
where Error Detection is installed on your system. For example:

<InstallationRoot>\Data\Unrestricted_modules.dat

Add the names of each module you want to include on a separate
line of the file. For example: MYCUSTOMDRIVER.DLL

Problem Solution
Appendix A�Troubleshooting Error Detection 87

Error Detection is reporting errors in
dllhost.exe or TestCon32.exe.

• To prevent Error Detection from reporting errors on
dllhost.exe or TestCon32.exe, exclude the executable from
the list of modules to check.

COM Call Reporting is not logging calls to
my object or component.

• Error Detection logs methods only for COM interfaces that it has
been instructed to recognize. To tell Error Detection about your
ActiveX control, select Enable COM method call reporting on
objects that are implemented in the selected modules under COM
Call Reporting in the Options/Settings dialog box.

You must also select Generate NLB files dynamically under Data
Collection in the Options/Settings dialog box to create new
symbolic information for your COM object.

Error Detection is not reporting COM
interface leaks in my object or component.

• To collect COM interface leak information, select Enable COM
object tracking under COM Object Tracking in the Options/
Settings dialog box, then select the COM classes to monitor.

• To track your own objects, review the list of COM classes in the
COM Object Tracking settings and select only your classes. If you
are unsure which classes to select, select All COM classes.

Error Detection appears to hang and not
respond for a long time after I stop
exercising my component.

• Error Detection is waiting for dllhost.exe to time out and
terminate the process. When dllhost.exe terminates, Error
Detection will perform the final memory, resource and interface
leak detection.

Why does IIS startup and then hang? • Error Detection requires Administrative privileges to debug a
service. If the account used does not have Administrator
privileges, IIS will either hang or terminate almost immediately
with an error.

Problem Solution
88 Advanced Error Detection Techniques

Appendix B

Important Error Detection Files
Files and Their Purpose
The following table lists the files Error Detection uses to control and
define behavior during a session. Included are the file location, name,
purpose, and whether the file is user-modifiable.

Filename and Path Purpose

<Program Root>\Data\CTISafe.dat Specifies functions known to accept pointers without
storing the pointer values. MemTrack and FinalCheck use
this file to keep track of safe functions. This information
prevents an error from being triggered when a pointer
visits an unknown function. When a function is listed in
this file, MemTrack and FinalCheck assume that the
function has not saved a copy of the pointer.

Functions may be added when necessary. Consult with
Compuware Technical Support before removing any
default functions from this list.

<Program Root>\Data\BCDefault.DPRul Lists the default set of suppression and filter files that
Error Detection will load.

Add to this list using the suppression and filter editing
dialogs within Error Detection; the information you add
is valid for the current project directory only. To make
information valid system-wide, edit the file manually and
include the full path name to the suppression/filter file
being added.

<Program Root>\Data*.DPFlt
<Program Root>\Data*.DPSup

Defines the filters and suppressions Error Detection
should use. Each one of these .DPFlt and .DPSup files
contains specific filters and suppressions for system
modules.

Add, modify, or delete suppressions and filters via the
Error Detection suppression and filter editing dialogs. Do
not edit these files manually.
 89

<Program Root>\Data\Unrestricted_modules.txt Specifies modules that should be unrestricted DLLs
despite being found in system directories. A module
existing in a system directory needs to be marked as
unrestricted to be examined for errors. By default,
Unrestricted_modules.txt lists the various versions
of MFC modules.

Edit this file manually to add the names of specific
modules existing in system directories so Error Detection
will examine them for errors.

<Program Root>\Data\UserAllocators.dat Specifies custom allocators. For more information on this
file and how it is used by Error Detection, refer to "User
Written Allocators" in the DevPartner Advanced Error
Detection Techniques guide.

<Program Root>\ERptApi\NMApiLib.* Provides access to the Error Detection user-callable
interface. NMApiLib.h defines and documents the user-
callable interface to Error Detection, which is
implemented by linking NMApiLib.lib into your
project. For more information on the user-callable
interface, refer to "Analyzing Complex Applications" in
the DevPartner Advanced Error Detection Techniques guide.

<Program Root>\Data\ExcludedModules.dat (User-created File) Contains a list of excluded modules.
Each module is listed on a separate line of the file. For
example: MYCUSTOMDRIVER.DLL

<NMShared Root>\NMSymData.dat (User-created File) Contains the names of any modules
associated with bad PDB files, followed by “,0x0”. For
example: ADVAPI32.DLL,0x0

Key

<Program Root> = C:\Program Files\Compuware\DevPartner Studio\BoundsChecker

<NMShared Root> = C:\Program Files\Common Files\Compuware\NMShared\4.5

Filename and Path Purpose
90 Advanced Error Detection Techniques

Index
Symbols
.DPSup 89

A
ActiveCheck 46
ActiveX 33

components 26
debugging controls 31

Administrative privileges 35
Administrative rights 42, 88

B
BCDefault.DPRul 89

C
Call parameter encoding depth 20
Call Validation 14, 16
CLR analysis 16
COM servers 33
COM usage 7
COM+ components 26
Command Line 3
Complex applications 26

analyzing 17
debugging 31

Conditional code 28
Configuration File Management 10
Critical section 72
CTISafe.dat 89
Customer Service ix

D
Dangling pointers 24
Deadlock 74

potential 75
Default settings 13
dllhost.exe 38
dwWait 34

E
ExcludedModules.dat 90

F
Filters 28
FinalCheck 46

G
Guard bytes 8

I
IIS 27

process 41
Interface

command line 3
leaks 17

ISAPI filters 10, 26, 31, 41

L
Log file 20
 91

M
Managed code 9, 15, 16
Memory

leaks 17
overrun 14
poisoning 8
Tracker 10

Modules and Files 10, 28, 30
and complex applications 18
and reverse engineering 22

Modules Tab 18
Multiprocessor application servers 24
Multi-threaded 72
Multi-threaded applications 24

N
Native code 9, 15, 16
NMApiLib 90
NMSymData.dat 90

P
P/Invoke 15, 21

interop monitoring 15
Pointers, dangling 24
Poisoning memory 8, 23
Potential deadlock 75

R
Resource leaks 9, 17
Resource Tracker 10

S
Service control logic 34
Services, debugging 27
Settings 10, 11

default 2
refining 2

Single thread 71
StartEvtReporting 30
StopEvtReporting 30
Suppression 28

T
Technical Support x
Test container 32
Third-party software 2, 17, 28
Thread 72
Transactional applications 32
Troubleshooting 81

Visual SoftICE 81

U
Unrestricted_modules.txt 90
UserAllocators.dat 90

W
Windows NT

Service Control Manager 35, 85
services 26, 33
services, debugging 31

Worker thread 34
92 Advanced Error Detection Techniques

	Preface
	Who Should Read This Manual
	What This Manual Covers
	Conventions Used In This Manual
	Customer Assistance
	For Non-technical Issues
	For Technical Issues

	Workflow and Configuration Settings
	DevPartner Error Detection Workflow
	Benefits of the DevPartner Error Detection Workflow
	Saving Error Detection Configurations
	Using Error Detection from the Command Line

	Customizing the DevPartner Error Detection Settings
	General
	Data Collection
	API Call Reporting
	Call Validation
	COM Call Reporting
	COM Object Tracking
	Deadlock Analysis
	Memory Tracking
	.NET Call Reporting
	.NET Analysis
	Resource Tracking
	Modules and Files
	Fonts and Colors
	Configuration File Management

	Checking and Analyzing Programs
	Error Detection Tasks
	Finding Leaks
	Finding Pointer and Memory Errors
	Finding Memory Corruption
	Analyzing Transitions to Legacy Code in .NET Applications
	Validating Win32 API Calls
	Searching for Application Deadlocks

	Expanded Uses for DevPartner Error Detection
	Understanding Complex Applications
	Reverse Engineering
	Stress Testing

	Analyzing Complex Applications
	About Complex Applications
	Wait for Process
	Analyzing Limited Parts of Your Program
	Using Modules and Files Settings

	Deciding What to Monitor
	How Does an Application Start Up?

	Analyzing Services
	Requirements and Guidelines
	Analyzing a Service
	Timing Problems and dwWait
	Alternate Method: Separating Control Logic from the Worker Thread
	Custom Code to Turn the DevPartner Error Detection Log On and Off
	Common Service-related Issues

	Analyzing ActiveX Controls Using the Test Container
	Common Test Container Issues

	Analyzing Applications That Use COM
	Common COM Issues

	Analyzing ISAPI Filters Under IIS 5.0
	Common ISAPI Filter Issues

	Analyzing ISAPI Filters under IIS 6.0
	IIS 5.0 Isolation Mode
	IIS 6.0 Default Configuration
	Common IIS 6.0 ISAPI Filter Issues

	Frequently Asked Questions

	Working with User-Written Allocators
	Introduction
	Gathering Necessary Information
	Finding the Names of User-Written Allocators
	Examining Parameters of User-Written Allocator Functions
	Special Assumptions Made By User-Written Allocators about Memory

	Creating Entries in UserAllocators.dat
	Modules
	Allocator Records
	Deallocator Records
	QuerySize Records
	Reallocator Records
	Ignore Records

	How to Diagnose Errors in UserAllocators.dat
	Token Parsing Errors
	Semantic Errors
	If Your Application becomes Unstable after Changing UserAllocators.dat

	Deadlock Analysis
	Background: Single and Multi-threaded Applications
	Threads
	Critical Sections

	Deadlock - A Basic Definition
	Techniques for Avoiding Deadlocks
	Potential Deadlocks
	The Dining Philosophers
	Monitoring Synchronization Objects

	Other Synchronization Objects
	Additional Information
	MSDN References
	Other References

	Troubleshooting Error Detection
	Troubleshooting

	Important Error Detection Files
	Files and Their Purpose

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

