
DevPartner Studio Professional Edition
DevPartner for Visual C++ BoundsChecker Suite

Release 8.1

 

Understanding
®DevPartner



Technical support is available from our Technical Support Hotline or via 
our FrontLine Support Web site.

Technical Support Hotline:
1-800-468-6342

FrontLine Support Web Site:
 http://frontline.compuware.com

This document and the product referenced in it are subject to the following 
legends:

Access is limited to authorized users. Use of this product is subject to the 
terms and conditions of the user’s License Agreement with Compuware 
Corporation.

© 2006 Compuware Corporation. All rights reserved. Unpublished - rights 
reserved under the Copyright Laws of the United States. 

U.S. GOVERNMENT RIGHTS
Use, duplication, or disclosure by the U.S. Government is subject to 
restrictions as set forth in Compuware Corporation license agreement and 
as provided in DFARS 227.7202-1(a) and 227.7202-3(a) (1995), DFARS 
252.227-7013(c)(1)(ii)(OCT 1988), FAR 12.212(a) (1995), FAR 52.227-19, 
or FAR 52.227-14 (ALT III), as applicable. Compuware Corporation.

This product contains confidential information and trade secrets of Com-
puware Corporation. Use, disclosure, or reproduction is prohibited with-
out the prior express written permission of Compuware Corporation.

DevPartner® and BoundsChecker are trademarks or registered trademarks 
of Compuware Corporation.

Acrobat® Reader copyright © 1987-2002 Adobe Systems Incorporated. All 
rights reserved. Adobe, Acrobat, and Acrobat Reader are trademarks of 
Adobe Systems Incorporated.

All other company or product names are trademarks of their respective 
owners.

US Patent Nos.: 5,987,249, 6,332,213, 6,186,677, 6,314,558, 6,760,903 
B1,and 6,016,466

April 24, 2006

 

http://frontline.compuware.com


 iii

 

Table of Contents

Preface
Who Should Read This Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ix

What This Manual Covers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  x

Conventions Used In This Manual  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  x

For More Information  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xi

Chapter  1
Introducing DevPartner
Introducing DevPartner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1

What Is DevPartner?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2

DevPartner Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2
Error Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2
Static Code Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4
Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4
In-Depth Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4
Coverage Analysis  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5
Memory Analysis  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5
System Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6
Interoperability  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6
Distributed Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6

DevPartner Support for Visual Studio  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7
Web Services Analysis  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7
Language/Technology Support  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7
Managed vs. Unmanaged Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8
Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8
Instrumentation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8
Visual Studio Team System Support  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8

DevPartner and Visual Studio  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9



 

iv     Understanding DevPartner

IDE Integration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9
Menus and Toolbars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9
Using DevPartner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9
General User Interface Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10

DevPartner Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11
Software Development Life Cycle Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11
Definition and Planning  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11
Developing the Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12
Testing the Application Internally and Externally  . . . . . . . . . . . . . . . . . . . . . .  13
Deploying the Application to End Users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13

DevPartner Integration into the Enterprise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14

Chapter  2
Error Detection
Check Early, Check Often—The Best Error Detection Philosophy  . . . . . . . . . . . . .  15

The Benefits of Using DevPartner Error Detection  . . . . . . . . . . . . . . . . . . . . . . . . .  16
Comprehensive Error Detection  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16
Flexible Debugging Environment  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19
Integration with the Visual Studio Debugger  . . . . . . . . . . . . . . . . . . . . . . . . . .  19
Advanced Error Analysis and Event Logging . . . . . . . . . . . . . . . . . . . . . . . . . . .  19
Open Error Detection Architecture  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20

DevPartner Error Detection Main Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20
Results Pane  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20
Details Pane  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22
Source Pane  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22

Settings Dialog Box  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22
An Example: Call Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23
Using Other Settings Categories  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24

Program Error Detected Dialog Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25
Buttons on the Program Error Detected Dialog Box . . . . . . . . . . . . . . . . . . . . .  25

Memory and Resource Viewer Dialog Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27
The Memory and Resource Viewer User Interface . . . . . . . . . . . . . . . . . . . . . . .  28

Suppression and Filtering Dialog Boxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29
Suppressing Errors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29
Filtering Errors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29
Suppression and Filtering User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30
Creating and Saving Suppression and Filter Files  . . . . . . . . . . . . . . . . . . . . . . .  31

DevPartner Error Detection Integration with Visual Studio  . . . . . . . . . . . . . . . . . .  31
Using DevPartner Error Detection with Visual Studio 2003/2005  . . . . . . . . . .  33
Integration with Visual Studio 6  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34

Running DevPartner Error Detection from the Command Line . . . . . . . . . . . . . . .  35
Running FinalCheck from the Command Line  . . . . . . . . . . . . . . . . . . . . . . . .  36



� Table of Contents      v

 

Chapter  3
Static Code Analysis
DevPartner Code Review  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  37

DevPartner Code Review User Interface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  38
Code Review Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  53
DevPartner Code Review Toolbar Components  . . . . . . . . . . . . . . . . . . . . . . . .  55

Naming Analysis Functionality  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  58
Naming Guidelines Naming Analyzer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  58
Hungarian Naming Analyzer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  61

Call Graph Analysis Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  62

DevPartner Code Review Rule Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  67

Creating New Rules Using Regular Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . .  68
Matching Lines Exceeding 90 Characters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  69
Matching Tabs Used Instead Of Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  70
Matching Instances Where Code Catches System.Exception . . . . . . . . . . . . . .  71
Matching Methods Having More Than One Return Point . . . . . . . . . . . . . . . .  72
Enforcing Initialization Of Variables When They Are Defined . . . . . . . . . . . . .  72
Matching Instances Of More Than One Statement Per Line  . . . . . . . . . . . . . .  74
Ensuring Open Braces Are Placed On A Separate Line  . . . . . . . . . . . . . . . . . . .  74
Ensuring Loop Counters Are Not Modified Inside the Loop Bodies . . . . . . . . .  75

Chapter  4
Automatic Code Coverage Analysis
Introducing DevPartner Coverage Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  77

What is DevPartner Coverage Analysis  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  78
How DevPartner Coverage Analysis Fits in Your Development Cycle  . . . . . . .  80

DevPartner Support for Visual Studio  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  81
DevPartner IDE Integration in Visual Studio  . . . . . . . . . . . . . . . . . . . . . . . . . .  81
DevPartner Toolbar and Menu Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . .  81

Collecting Coverage Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  83
Running Your Program under DevPartner Coverage Analysis  . . . . . . . . . . . . .  83
Collecting Server-side Coverage Data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  85
Collecting Coverage Data from Remote Systems  . . . . . . . . . . . . . . . . . . . . . . .  86

Controlling Data Collection  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  87

Viewing Your Results  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  87
Session Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  87

Merging Session Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  89
Reviewing Merge Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  89
Merge Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  91
Merge Settings  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  91



 

vi     Understanding DevPartner

Results of Merging  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  91

Viewing Data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  93
Controlling the Display of Data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  93
Filtering Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  93
Sorting the Filter Pane  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  95
Creating a New Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  95
Sorting Data in the Method List  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  95
Changing the Precision  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  96

Coverage Analysis for Real World Application Development . . . . . . . . . . . . . . . . .  96
Code Coverage in the Development Life-Cycle  . . . . . . . . . . . . . . . . . . . . . . . .  96

Running a Program from the Command Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  98

Analyzing Coverage in Visual C++ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  98

Analyzing Coverage in Visual Basic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  99

Chapter  5
Finding Memory Problems
Introducing DevPartner Memory Analysis  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  101

Memory Problems in Managed Visual Studio Applications  . . . . . . . . . . . . . . . . .  102
How Memory Analysis Helps You . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  103

DevPartner Support for Visual Studio  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  103
DevPartner IDE Integration in Visual Studio  . . . . . . . . . . . . . . . . . . . . . . . . .  103

Identifying Memory Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  105
Collecting Server-side Memory Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  107
Running a Memory Analysis Session . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  107

Locating Memory Leaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  108
Running a Memory Leak Analysis Session  . . . . . . . . . . . . . . . . . . . . . . . . . . .  109
Understanding Memory Leak Analysis Results  . . . . . . . . . . . . . . . . . . . . . . . .  110
Alternate Methods of Solving the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . .  114

Solving Scalability Problems  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  116
Examples of Scalability Problems  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  116
A Possible Cause: Temporary Objects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  116
Running a Temporary Objects Analysis Session  . . . . . . . . . . . . . . . . . . . . . . .  117
Identifying Scalability Problems  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  118
Analyzing Temporary Object Data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  120
Interpreting Results to Fix Scalability Problems  . . . . . . . . . . . . . . . . . . . . . . .  121

Managing Memory for Better Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  122
Measuring RAM Footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  123
Understanding Footprint Data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  124
Optimizing Memory Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  129

How Memory Analysis Fits in Your Development Cycle . . . . . . . . . . . . . . . . . . . .  130

Running a Program from the Command Line . . . . . . . . . . . . . . . . . . . . . . . . . . . .  130



� Table of Contents      vii

 

Chapter  6
Automatic Performance Analysis
Introducing DevPartner Performance Analysis  . . . . . . . . . . . . . . . . . . . . . . . . . . .  131

How DevPartner Performance Analysis Helps You . . . . . . . . . . . . . . . . . . . . .  132
What is DevPartner Performance Analysis?  . . . . . . . . . . . . . . . . . . . . . . . . . .  132
How DevPartner Performance Analysis Fits in Your Development Cycle  . . .  134

DevPartner Support for Visual Studio  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  134
DevPartner IDE Integration in Visual Studio  . . . . . . . . . . . . . . . . . . . . . . . . .  134

Collecting Performance Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  137
.Running Your Program under DevPartner Performance Analysis . . . . . . . . .  137
Collecting Server-side Performance Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  139
Collecting Performance Data from Remote Systems . . . . . . . . . . . . . . . . . . . .  140

Controlling Data Collection  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  141

Viewing Your Results  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  141
Session Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  142
Comparing Sessions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  143
The Call Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  145
Viewing Source Code for a File or Method  . . . . . . . . . . . . . . . . . . . . . . . . . . .  148

Performance Analysis for Real World Application Development  . . . . . . . . . . . . .  148
Finding Bottlenecks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  148
Effective Performance Analysis for .NET Applications  . . . . . . . . . . . . . . . . . .  149

Running a Program from the Command Line . . . . . . . . . . . . . . . . . . . . . . . . . . . .  151

Analyzing Performance in Visual C++ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  151

Analyzing Performance in Visual Basic  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  152

Chapter  7
In-Depth Performance Analysis
What is Performance Expert? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  153

Performance Expert and Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . .  154

What Can I Do with Performance Expert?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  154

Who Should Use Performance Expert?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  155
Software Designer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  155
Software Developer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  155
Quality Assurance  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  156

Finding Application Problems with Performance Expert  . . . . . . . . . . . . . . . . . . .  156
Basics: Running a Performance Expert Session . . . . . . . . . . . . . . . . . . . . . . . .  156

Usage Scenarios  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  159
Identifiable Performance Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  160
Scaling Problem in an Application  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  162
Performance Slow but No Specific Issue  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  165



 

viii     Understanding DevPartner

Automating Data Collection  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  165

Collecting Data from Distributed Applications . . . . . . . . . . . . . . . . . . . . . . . . . . .  167

Performance Expert in the Development Cycle  . . . . . . . . . . . . . . . . . . . . . . . . . .  168

Chapter  8
System Comparison
What is the System Comparison Utility? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  171

Scenarios for Use  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  172

Categories Compared . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  173

Comparing Snapshots  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  175

The System Comparison Service  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  176

Running the Comparison Utility from the Command Line . . . . . . . . . . . . . . . . .  177

Software Development Kit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  177

Appendix  A
About DevPartner Studio Enterprise Edition and TrackRecord
What Is DevPartner Studio Enterprise Edition? . . . . . . . . . . . . . . . . . . . . . . . . . . .  179

The Development Process  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  180

The DevPartner Studio EE Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  181
Improved Project Control  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  181
Higher Software Quality  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  181
Improved Productivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  182

Feature Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  183
Requirements Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  183
Merging Coverage Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  183
Project Activity Tracking  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  184
Automatic Notification of Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  184
Customizable Workflow  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  184
Remote Access via the Web . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  185
Central Store of Shared Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  185

About TrackRecord and DevPartner Studio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  185

DevPartner Studio Interaction with TrackRecord  . . . . . . . . . . . . . . . . . . . . . . . . .  186
Defect Submissions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  186

TrackRecord and DevPartner Studio Coverage Analysis  . . . . . . . . . . . . . . . . . . . .  186

Index



 ix

 

Preface

� Who Should Read This Manual

� What This Manual Covers

� Conventions Used In This Manual 

� For More Information

This manual describes how to get started using your Compuware® 
DevPartner® Studio software.

Who Should Read This Manual
This manual is intended for new DevPartner users, and for users of previ-
ous versions of DevPartner who want an overview of new functions and 
interface changes.

This manual contains information relevant to all DevPartner products, 
including the Professional and Enterprise Editions, and the Visual C++ 
BoundsChecker Suite. 

Note: The DevPartner memory analysis, static code analysis, and Perfor-
mance Expert features analyze managed code only, and are therefore 
not supported in the DevPartner for Visual C++ BoundsChecker Suite.

New users should read Chapter 1 to get an overview of DevPartner Studio 
concepts and subsequent chapters to learn how to deploy individual 
suite components during a software development cycle.

Users of previous versions of DevPartner should read the Preface to the 
Installing DevPartner manual to see how this version of DevPartner differs 
from previous versions.

This manual assumes that you are familiar with the Windows interface 
and with software development concepts.



 

x     Understanding DevPartner

What This Manual Covers
This manual contains the following chapters and appendixes:

� Chapter 1, Introducing DevPartner describes the concepts and com-
ponents of DevPartner, discusses how DevPartner fits into the soft-
ware development cycle.

� Chapter 2, Error Detection, explains how to use DevPartner to 
uncover errors in your managed and unmanged C++ code.

� Chapter 3, Static Code Analysis, explains how DevPartner helps you 
locate a variety of errors in Visual Basic code.

� Chapter 4, Automatic Code Coverage Analysis, describes how you 
can use DevPartner to track how much code exericising an applica-
tion undergoes.

� Chapter 5, Finding Memory Problems, describes how to use DevPart-
ner to diagnose application anomalies that can be caused by misuse 
of memory and objects.

� Chapter 6, Automatic Performance Analysis, explains how DevPart-
ner helps you locate bottlenecks, and code in need of optimization.

� Chapter 7, In-Depth Performance Analysis, explains how DevPart-
ner helps you analyze a variety of full system performance issues.

� Chapter 8, System Comparison, describes how you can identify dif-
ferences between computer systems to assist with troubleshooting 
application development problems.

� Appendix A, About DevPartner Studio Enterprise Edition and 
TrackRecord, explains how to use DevPartner Studio with Compu-
ware enterprise tools.

Conventions Used In This Manual
This book uses the following conventions to present information.

� Screen commands and menu names appear in bold typeface. For 
example:

Choose Item Browser from the Tools menu.

� Computer commands and file names appear in monospace typeface. 
For example: 

The Understanding DevPartner manual (Understanding DevPartner 
.pdf) describes...



� Preface     xi

 

� Variables within computer commands and file names (for which you 
must supply values appropriate for your installation) appear in 
italic monospace type. For example:

Enter http://servername/cgi-win/itemview.dll in the Destina-
tion field...

For More Information
You can use the feature-level online help to learn more about the 
DevPartner Studio software’s functions and procedures.

View the DevPartner InfoCenter page from the Start>DevPartner meun  
to learn more about DevPartner Studio components. Manuals in Adobe 
Acrobat (.pdf) format are included.

� The Installing DevPartner manual provides What’s New information, a 
detailed list of system requirements, and installation instructions.

� The DevPartner Studio Quick Reference provides an at-a-glance sum-
mary of DevPartner features accompanied by quick-start advice.



 

xii     Understanding DevPartner



 1

Chapter 1

Introducing DevPartner

�  Introducing DevPartner

�  DevPartner Features

�  DevPartner Support for Visual Studio

�  DevPartner and Visual Studio

�  DevPartner Methodology

�  DevPartner Integration into the Enterprise

This chapter provides an introduction to version 8.1 of the DevPartner 
Studio Professional Edition, and DevPartner for Visual C++ Bounds-
Checker Suite. It describes what you can use the DevPartner software to 
accomplish, and it explains what advantages such use provides.

Use this manual to understand the concepts underlying both the 
DevPartner products. 

Introducing DevPartner
Programmers who want to take advantage of Internet connectivity 
without regard for hardware and device dependencies look to the 
Microsoft .NET Framework for a structure on which to build new applica-
tions and components. While this framework supplies these new struc-
tures, the problems of code migration, integration errors, coding errors, 
run-time performance bottlenecks and insufficient test coverage 
continue to plague software developers. DevPartner is designed to help 
not only with .NET migration, but with legacy integration, location of 
errors in application code, the tuning of run-time performance, and with 
more thorough test coverage.



2     Understanding DevPartner

What Is DevPartner?

DevPartner provides a variety of programmer productivity features, such 
as source code analysis, automated error detection, performance profil-
ing, memory analysis, system performance analysis, and coverage analy-
sis. These features let you analyze:

� Program logic problems
� Structured exception handling
� COM use count
� Non-standard coding practices
� Variable naming inconsistencies
� Code bottlenecks and inadequately tested code

Supports Multiple Version of Visual Studio

The DevPartner Studio software simultaneously supports application 
development within the Visual Studio 2003 and 2005 environments, and 
supports VC++ development in Visual Studio 6.0. This support assists 
developers as they migrate code from the older Microsoft environments 
to the latest .NET Frameworks.

DevPartner Features
This section summarizes the features of the DevPartner software. More 
detailed information about each feature can be found in subsequent 
chapters.

Error Detection

The DevPartner software provides automated error detection for 
managed and unmanaged C++ programs. DevPartner error detection is 
built on BoundsCheckerTM technology, and is designed to locate the 
following hard-to-find errors in your Windows-based applications:

� Memory, resource, and COM interface leaks
� Invalid use of Windows API calls
� Invalid use of memory or pointers
� Memory overrun errors
� Un-initialized memory usage
� Use of dangling pointers
� Errors in .NET Finalizers



Chapter 1� Introducing DevPartner      3

To give you a better understanding of the software you are developing, 
DevPartner error detection provides these additional types of application 
monitoring:

� Windows API Call/Return logging
� Graphical analysis of COM use counts
� Analysis of calls made from managed to native code

You can use DevPartner error detection on a wide variety of applications, 
including, but not restricted to the following:

� Traditional Windows applications
� In- and out-of-process COM servers
� ActiveX objects
� Windows services
� ISAPI filters

DevPartner has the following error detection features:

� Support for Visual Studio 2003 and 2005
� Visual Studio IDE integration
� FinalCheck support for Visual C++ 
� Support for native and managed executables
� .NET performance monitoring
� .NET unmanaged exception monitoring
� Finalizer analysis

� Cradle to grave monitoring of your application
� DevPartner error detection monitors your application from the 

moment of creation until the final moments before the process is 
unloaded from memory

� DevPartner error detection monitors all DLL loads and unloads, 
static constructors and destructors as well as the normal flow of 
your application

� Cradle to grave monitoring provides complete visibility into your 
application

� COM use count graphical analysis
� Suppression and filtering system
� Modules and Files support to include or exclude portions of your 

application from analysis
� Settings enable you to:

� Tune DevPartner error detection to collect only the information 
necessary to solve a particular problem

� Make space vs. time trade-offs
� Make performance vs. data collection trade offs
� Reduce unwanted noise errors



4     Understanding DevPartner

See “Error Detection” on page 15 for more information about DevPartner 
error detection.

Static Code Analysis

The DevPartner software analyzes ASP.NET, Visual Basic .NET and Visual 
C# .NET source code to detect a variety of coding errors:

� Variable naming inconsistencies
� Violations of coding covenants
� Win32 API validation
� Common logic errors
� .NET portability issues
� Structured exception handling

Using an extensive and extensible rule set, DevPartner also can assist the 
porting of legacy Visual Basic code by identifying constructs that will not 
work in the .NET environment.

See “Static Code Analysis” on page 37 for more information about 
DevPartner static code reviews.

Performance Analysis

The DevPartner software can analyze your managed code applications, 
native C++ applications, ADO.NET components, or ASP.NET or Web 
applications for performance bottlenecks (see “Language/Technology 
Support” on page 7 for a complete list of supported technologies). It can 
pinpoint these bottlenecks to individual lines of source code, and 
provide method-level insight into the way your application uses third-
party components, the operating system, and, most importantly, the 
.NET Framework.

DevPartner also supports performance profiling of legacy Visual Studio 
6.0 components used by your .NET application. See “Automatic 
Performance Analysis” on page 131 for more information about 
analyzing an application’s performance.

In-Depth Performance Analysis

DevPartner Studio contains many features designed to assist application 
development, including a performance analyzer that helps you locate 
bottlenecks in your code. Performance Expert takes performance profil-
ing a step further for managed code Visual Studio applications by provid-
ing deeper analysis of the following hard-to-solve problems:

� CPU/thread usage



Chapter 1� Introducing DevPartner      5

� File/disk I/O

� Network I/O

� Synchronization wait time

Performance Expert analyzes your application at run-time and locates the 
problem methods in your code. It then allows you to view details about 
individual lines in the method, or to examine parent-child calling 
relationships to help you determine the best way to fix the problem. 
When you have decided on an approach, Performance Expert enables 
you to jump directly to the problem lines in your source code, so you can 
quickly fix problems. See “In-Depth Performance Analysis” on page 153 
for more information.

Coverage Analysis

DevPartner provides coverage analysis to assist developers and test 
engineers, ensuring that they are testing all of an application’s code. 
DevPartner can collect coverage data for managed code applications, 
including Web and ASP.NET applications, as well as unmanaged (native) 
Visual C++ applications.

DevPartner Coverage Analysis gathers coverage data for applications, 
components, images, methods, functions, modules, and individual lines 
of code. 

See “Automatic Code Coverage Analysis” on page 77 for more informa-
tion about code coverage analysis.

Memory Analysis

DevPartner analyzes how memory is allocated by your managed Visual 
Studio application. When you run your application under memory 
analysis, DevPartner can show you the amount of memory consumed by 
an object or class, track the references that are holding an object in 
memory, and identify the lines of source code within a method 
responsible for allocating the memory. 

More importantly, DevPartner presents memory data in context, 
enabling you to navigate chains of object references and calling 
sequences of the methods in your code, thereby providing both an in-
depth understanding of how your program uses memory and the critical 
information you need to optimize memory use. 

See “Finding Memory Problems” on page 101 for more information 
about memory analysis.



6     Understanding DevPartner

System Comparison

The DevPartner software includes a system comparison utility which 
runs outside of Visual Studio with a standalone user interface. The 
Compuware DevPartner System Comparison utility compares two 
computer systems, or compares the current state of your computer with a 
previous state, allowing you to determine why your application: 

� Works on one computer but not on another
� Works differently on different computers
� No longer works on a computer on which it previously worked

The System Comparison utility takes snapshots of machine configura-
tions, registry settings, system services, drivers, installed products, and so 
on, compares them, and reports the differences between snapshots.

The System Comparison utility includes a Software Development Kit 
(SDK) that allows software developers to gather additional information 
for comparison and to embed snapshot functionality in deployed appli-
cations.

See “System Comparison” on page 171 for more information about the 
System Comparison utility.

Interoperability

DevPartner provides interoperability between error detection and cover-
age analysis. You can gather information about errors and coverage at the 
same time. Performance analysis will always be done in a separate opera-
tion so as not to taint the performance data DevPartner collects.

Distributed Data Collection

DevPartner provides the facilities to collect memory, performance, 
system performance, and coverage data from machines remote to the 
user/console machine. This feature can be enabled for each remote/host 
machine that you would like to gather remote data from by:

� Installing your DevPartner software on the remote/host machine

� Obtaining and installing the optional DevPartner Server license, one 
license for each remote machine

Use these facilities if you have placed components of your distributed 
application on one or more remote/host machines and you would like to 
carry out memory, performance, system performance, or coverage analy-
sis on the remote components. The data collected can be saved to a 
session file and its content analyzed on a DevPartner user/console 



Chapter 1� Introducing DevPartner      7

machine. DevPartner can even correlate data obtained from your user/
console and remote/host machines into a single sessions view. 

See “Collecting Server-side Coverage Data” on page 85, “Collecting 
Coverage Data from Remote Systems” on page 86, “Collecting Server-side 
Performance Data” on page 139, and “Collecting Performance Data from 
Remote Systems” on page 140 for more information about remote data 
collection.

DevPartner Support for Visual Studio 
This section describes the support DevPartner 8.1 provides for Visual 
Studio and the .NET Framework.

Web Services Analysis

DevPartner can perform runtime memory, performance, and coverage 
analysis on Web services. When Web services are present, DevPartner 
displays a Web Methods icon in the filter pane. 

Language/Technology Support

DevPartner provides feature support for a variety of languages and 
technologies in various combinations, including:

� Visual Basic .NET
� ASP.NET
� Visual C# .NET
� Visual C++ .NET
� JScript .NET
� ADO.NET
� Web Forms
� Windows Forms
� XML Web services
� .NET Object Remoting
� Unmanaged C/C++ (Visual C/C++ 6)
� Native COM objects
� Win32 API calls
� ActiveX
� Mobile SDK
� ATL server
� COM callable wrappers
� NT services
� Out of Process COM servers



8     Understanding DevPartner

Managed vs. Unmanaged Code

DevPartner can analyze and profile both managed and unmanaged 
(native) C/C++ code, including mixed mode applications. For example, 
the DevPartner software’s error detection, performance analysis, and 
coverage analysis capability allows the collection of data for a managed 
code application that includes native C/C++ code, provided the native 
code is in a separate file.

Configuration

DevPartner provides configuration options in Visual Studio. These 
options include control of suppressions and exclusions, lists of modules 
and files to target for analysis, and many other options.

Instrumentation Model

DevPartner inserts hooks into the code you write to trap and report on 
error conditions and to compute performance metrics and coverage 
statistics. The instrumentation of unmanaged code is identical to that of 
earlier versions of DevPartner. 

The common language runtime in Visual Studio requires a slightly differ-
ent instrumentation model. Here, DevPartner inserts hooks into the 
intermediate byte code stream.

DevPartner provides an Instrumentation Manager to specify the type of 
instrumentation DevPartner uses when you rebuild a native (unman-
aged) Visual C/C++ project for data collection.

Visual Studio Team System Support

Visual Studio 2005 Team System is Microsoft's version control, defect 
tracking, and process management software for Visual Studio 2005 
software development projects. DevPartner Studio supports Microsoft 
Visual Studio Team System if the Team System client software is installed 
and a Team Foundation Server connection is available. 

DevPartner Studio supports submission of a Work Item of the type Bug 
to Visual Studio Team System. When you submit a Bug, DevPartner 
automatically populates the Work Item form with selected session data. 
In order to submit a Bug from DevPartner Studio, the active Team System 
project must support a Work Item of the type Bug. DevPartner Studio 
automatically adds data only to this type of Work Item.

You can submit a Work Item that includes DevPartner data from any of 
the following views in a DevPartner session file. 



Chapter 1� Introducing DevPartner      9

� A method list or method table in a Coverage, Memory, or Perfor-
mance Analysis session file, or in a Performance Expert session file

� The code review Problems or Naming tabs

� A list of errors or leaks in any Error Detection tab, or list of instances 
in the Error Detection Modules or .NET Performance tabs

For more information about submitting data from DevPartner Studio to 
Team System, see the Visual Studio Team System topics in the DevPartner 
Studio online help. Consult the Microsoft Visual Studio 2005 Team 
System documentation for complete information on how to use Team 
System to support your development and project management activities.

DevPartner and Visual Studio 
This section describes the DevPartner software’s integration into Visual 
Studio, and explains its basic usage model.

IDE Integration

DevPartner integrates seamlessly into the Visual Studio environment. 
This integration makes it easy for you to use the capabilities of the 
product as you write and debug your .NET applications. You can perform 
these code analyses frequently as you develop an application without 
leaving the development environment.

Menus and Toolbars

DevPartner adds a menu and several toolbars to Visual Studio, and it adds 
menu commands to several Visual Studio menus, including context 
(right-click) menus. Menu commands and toolbars provide access to 
session controls, the rules for static code reviews, options dialogs, and 
instrumentation controls.

Using DevPartner

The general work flow for using DevPartner within Visual Studio consists 
of one or more of these general-purpose tasks:

� Open or create a Solution in Visual Studio 
� Set Options for code analysis operations
� Enable the analysis you want to perform from the DevPartner menu 

or toolbar
� Run your application
� View the session results returned by DevPartner



10     Understanding DevPartner

DevPartner gives you wide flexibility in choosing what parts of your 
application to monitor, selecting what data to view, and creating filters to 
eliminate unwanted information.

DevPartner also gives you the option to perform many functions from 
the command line. This capability provides a way to use DevPartner 
functionality in automated batch processing operations, such as nightly-
build smoke tests.

General User Interface Concepts

In addition to the menu and toolbar add-ins described earlier, DevPartner 
uses the Visual Studio dockable windows and panes to display the results 
of analysis sessions. It also uses the Solution Explorer to display informa-
tion about .NET projects, such as the names of session files. DevPartner 
also adds pages to Visual Studio Options for configuring DevPartner code 
analysis operations.

Figure 1-1. Solution Explorer with DevPartner Nodes



Chapter 1� Introducing DevPartner      11

Integrated Online Help

DevPartner provides extensive online help about each of its code analysis 
features. This help should be the first place you turn for how-to and refer-
ence information.

Provided in the same format as the rest of Visual Studio help, the 
DevPartner online help appears in the Visual Studio help collection as a 
separate book that in turn contains several volumes, including books for 
error detection, performance analysis, coverage analysis, memory analy-
sis, system performance analysis and static code analysis.

DevPartner Methodology
This section describes when to use the DevPartner software, and provides 
some typical usage scenarios.

While software development life cycles may differ somewhat among 
development organizations, the life cycle described in this section 
portrays one way that DevPartner can be used over the course of a 
project. DevPartner adapts to virtually any development life cycle model, 
whether a company uses a rolling releases life cycle model, or a classic 
waterfall model.

Software Development Life Cycle Model

Software development projects consist of several phases. Sometimes 
phases are discrete, while others may overlap, such as when the product 
wish-list for an application revision accumulates while the initial product 
finishes its external test cycle. In any given organization, the number of 
life cycle phases may vary.

The following figure depicts a project that breaks down into five 
development life cycle phases: Define, Plan, Develop, Test, and Deploy. 

Tip: Organizations may 
define the actions 
between phases as project 
milestones.

 

Definition and Planning

Within each phase, teams perform a variety of tasks and often repeat 
tasks to refine the desired end result. For example, in the first two phases, 
Define and Plan, teams may use a variety of tools from word processing, 
spreadsheet, and project management tools to more sophisticated 



12     Understanding DevPartner

requirements planning tools. DevPartner Enterprise Edition offers 
additional, project-tracking capabilities that provide solutions for the 
first two phases of the development life cycle. Develop, Test, and Deploy, 
which are often the more time-consuming and precarious phases, can 
also benefit from the DevPartner project management capabilities.

Developing the Application

The Develop phase is where the construction of the software application 
begins and progresses. Some activities might parallel others during this 
phase, such as:

� Systems analysts set up workspaces and programming tool 
environments.

� Software developers construct code.
� Quality assurance engineers develop test and automation scripts.
� Release engineers initiate and manage daily builds.
� Technical communicators write user manuals and online help.
� Usability specialists verify the ease-of use of the user interface.
� Project management supervises the overall development.

Figure 1-2. Iterative Tasks of Development

DevPartner is an integral part of the Develop phase. It helps developers 
find and resolve software defects, as well as fine-tune and test the 
application under development. Information generated by DevPartner 
features can be shared among development team members to foster 
communication. DevPartner provides unique benefits for each functional 
group within the development organization whose needs may differ 
significantly throughout the software implementation process.



Chapter 1� Introducing DevPartner      13

Testing the Application Internally and Externally

All development organizations use internal load testing and scenario-
based testing to verify the operation of features in an application under 
development, and this internal testing continues until the end of the 
development life cycle. DevPartner provides many advantages during 
this phase of the development cycle. 

Figure 1-3. Test Phase

Using an active analysis technology, DevPartner error detection and 
performance analysis features can align with Compuware QACenter test 
tools, such as QARun and QALoad, to provide supplemental advantages 
to streamline the application testing process.

In addition, field tests outside the immediate development organization 
are crucial to the success of software projects. They permit testing under 
conditions that are not typical within the development group. External 
tests expose your application to platforms, network setups, and other 
conditions that would be impossible to anticipate and duplicate in-
house. For example, the DevPartner software’s code coverage analysis 
feature helps guarantee adequate testing coverage.

Deploying the Application to End Users

Using DevPartner, a development team can successfully build and release 
its application with a high degree of confidence in the final product 
release. Inevitably, however, internal or external customers may find 
problems that even the most sophisticated technologies fail to uncover. 
Since such problems can adversely affect the end-user experience, your 
development team needs to address them when they arise. DevPartner 
Enterprise Edition helps you manage this process with its full repertoire 
of defect detection, verification, and resolution capabilities.



14     Understanding DevPartner

As a team grows in size or an application grows in complexity, the 
additional defect tracking and integration technologies of the DevPartner 
Enterprise Edition can further enhance an organization’s productivity 
during and after deployment.

Figure 1-4. Deployment Phase

DevPartner Integration into the Enterprise
The DevPartner Enterprise Edition, which includes the TrackRecord and 
Reconcile applications, provides integration between DevPartner and 
Compuware TrackRecord. This integration is provided through 
ActiveLink technology. See “About DevPartner Studio Enterprise Edition 
and TrackRecord” on page 179 for more information about using 
DevPartner in an enterprise environment.



 15

Chapter 2

Error Detection

� Check Early, Check Often—The Best Error Detection 
Philosophy

� The Benefits of Using DevPartner Error Detection

� DevPartner Error Detection Main Window

� Settings Dialog Box

� Program Error Detected Dialog Box

� Memory and Resource Viewer Dialog Box

� Suppression and Filtering Dialog Boxes

This chapter describes the basic features of DevPartner Error Detection. 
DevPartner Error Detection automates the crucial process of error-
detection and analysis, identifies elusive bugs that are beyond the reach 
of traditional debugging and testing techniques, and adds little or no 
time to the development process.

For information that goes beyond the basics, refer to Advanced Error 
Detection Techniques, provided as a PDF with the DevPartner software 
installation.

Check Early, Check Often—The Best Error Detection Philosophy
To increase software quality, developers must thoroughly test their code 
early in the development process. Bugs must be caught and resolved as 
they are introduced to avoid surprises during integration, quality 
assurance, beta testing, and production. Briefly stated, “check early, 
check often.”



16     Understanding DevPartner

The Benefits of Using DevPartner Error Detection
DevPartner Error Detection is the most comprehensive, automated 
debugging solution available for C and C++ development. If you develop 
Windows applications, you will benefit from these DevPartner Error 
Detection features:

� Comprehensive error detection
� Flexible debugging environment
� Integration with Microsoft Visual C++ 6.0 and Visual Studio
� Advanced error analysis
� Open error-detection architecture

Comprehensive Error Detection

DevPartner Error Detection can analyze Windows applications with both 
ActiveCheck™ and FinalCheck™ technologies.

ActiveCheck

DevPartner Error Detection uses ActiveCheck technology in all error 
detection sessions. ActiveCheck detects errors in your program without 
requiring you to recompile or relink. 

ActiveCheck can do the following:

� Report API validation errors at run-time
� Report memory and resource leaks when your program terminates
� Isolate errors to the line where the memory or resource was allocated 

or the error was generated
� Identify potential deadlocks

Note: DevPartner Error Detection always enables ActiveCheck technology 
even when FinalCheck is also selected.

When you run your program under DevPartner Error Detection, it 
automatically analyzes your program as it runs. DevPartner Error 
Detection monitors your program’s API calls, memory allocations and 
deallocations, windows messages, and other significant events, then uses 
this data to detect errors and to provide a complete trace of your 
program’s execution. You can even check programs that do not have 
source code available. 

Because ActiveCheck requires no compilation or relinking overhead, you 
can use it daily. Use ActiveCheck throughout the software development 
cycle to find API validation errors, deadlocks, resource leaks, and COM 
interface leaks. 



Chapter 2� Error Detection     17

Table 2-1 and Table 2-2 list errors detected by ActiveCheck.

FinalCheck

FinalCheck is a patented technology that DevPartner Error Detection can 
use to instrument Visual C or Visual C++ applications. FinalCheck inserts 
diagnostic logic into your code when you compile it. With FinalCheck, 
DevPartner Error Detection can pinpoint errors to the exact statement 
where they occurred. 

Table 2-1. API and COM and Memory errors detected by ActiveCheck

API and COM Errors Memory Errors

• COM interface method failure

• Invalid argument

• Invalid COM interface method 
argument

• Parameter range error

• Questionable use of thread

• Windows function failed

• Windows function not implemented

• Dynamic memory overrun

• Freed handle is already unlocked

• Handle is already unlocked

• Memory allocation conflict

• Pointer references unlocked memory 
block

• Stack memory overrun

• Static memory overrun

Table 2-2. Deadlock-related, .NET, and Pointer and Leak errors detected by 
ActiveCheck

Deadlock-related 
Errors .NET Errors Pointer and Leak 

Errors

• Deadlock

• Potential deadlock

• Thread deadlocked

• Critical section errors

• Semaphore errors

• Mutex errors

• Event errors

• Handle errors

• Resource usage and 
naming errors

• Suspicious or 
questionable resource 
usage

• Windows event errors

• Finalizer errors

• GC.Suppress finalize 
not called

• Dispose attributes 
errors

• Unhandled native 
exception passed to 
managed code

• Interface leak

• Memory leak

• Resource leak



18     Understanding DevPartner

Use FinalCheck for key project milestones and for detecting errors that 
are difficult to find.

FinalCheck is a superset of ActiveCheck that finds all the errors 
ActiveCheck finds, plus those listed in Table 2-3. 

An Example Comparing ActiveCheck and FinalCheck

If you allocate a block of memory using new or malloc and store the 
pointer in a local variable, DevPartner Error Detection will record that 
information. If you later re-assign another value into the local variable 
without first either deallocating the memory block or assigning the 
pointer to another variable, you have just created a leak in your 
application. 

� Using ActiveCheck: DevPartner Error Detection reports that the 
block allocated by malloc or new was leaked and points to the line 
where the memory was allocated. The error is reported when your 
application exits.

� Using FinalCheck: DevPartner Error Detection reports the location 
where the block was allocated and highlights the line where you 
assigned the new value into the last remaining variable referencing 
the block. The error is reported when it occurs.

Table 2-3. Additional Errors Detected by FinalCheck

Memory Errors Pointer and Leak Errors

• Reading overflows buffer

• Reading uninitialized memory

• Writing overflows buffer

• Array index out of range

• Assigning pointer out of range

• Expression uses dangling pointer

• Expression uses unrelated pointers

• Function pointer is not a function

• Memory leaked due to free
• Leak due to leak

• Memory leaked due to reassignment

• Memory leaked leaving scope

• Returning pointer to local variable

• Leak due to unwind

• Leak due to module unload

• Leak due to thread ending



Chapter 2� Error Detection     19

Flexible Debugging Environment

DevPartner Error Detection provides a flexible debugging environment 
which can be run:

� As an integrated part of Microsoft Visual Studio
� As an independent application
� From a DOS command line

When you use DevPartner Error Detection as part of the Visual Studio 
environment, all of its features can be accessed from within the IDE. You 
can configure DevPartner Error Detection settings, check your program, 
and review detected errors.

When you use DevPartner Error Detection as an independent 
application, it runs completely outside of the Microsoft IDE.

When you use DevPartner Error Detection from a DOS command line, 
you can set up automated testing scripts. See “Running DevPartner Error 
Detection from the Command Line” on page 35 for more information.

Integration with the Visual Studio Debugger 

DevPartner Error Detection automatically integrates with the Visual 
Studio debugger. 

The Program Error Detected dialog box includes a Debug button. When 
you click Debug, DevPartner Error Detection drops into the IDE 
debugger, at the line of code that generated the error.

To review logged errors in the Details pane of the DevPartner Error 
Detection window, right-click on an event and select Edit Source. This 
opens the source file at the line of code that generated the error.

Advanced Error Analysis and Event Logging

Windows is an event-driven environment in which much of your 
program is executed in response to Windows messages and other events. 
DevPartner Error Detection intercepts control when events occur and 
logs them. You can use these logs to see a complete history of events that 
led to a problem.



20     Understanding DevPartner

DevPartner Error Detection logs the following events:

� Windows messages and hooks.
These events show how your program reacted to Windows messages.

� API calls and API returns along with argument information.
These events define the order in which procedures are executed in 
your program.

� Output debug string messages from the program you are checking.
� Error messages, including all information DevPartner Error Detection 

recorded in the event log.

Open Error Detection Architecture

You can extend DevPartner Error Detection in two ways: 

� By describing your user-written allocators to the memory tracking 
system by adding lines to UserAllocators.dat. Refer to Working with 
User-Written Allocators in Advanced Error Detection Techniques.

� By selecting Generate NLB files dynamically, DevPartner Error 
Detection will automatically learn about:

� COM interfaces that are defined in modules which contain type 
library information

� .NET classes in modules that contain metadata information

Once added, you can log COM and .NET method calls and returns. 
You can also obtain detailed information about COM interface leaks.

DevPartner Error Detection Main Window
The DevPartner Error Detection main window is divided into three 
sections, called panes:

� Results pane
� Details pane
� Source pane

See Figure 2-1 on page 21.

Results Pane

The upper left section of the window is the Results pane. The Results 
pane uses a series of tabs for navigating through the various types of 
information.



Chapter 2� Error Detection     21

The Summary tab (first tab on the left of the Results pane) provides an 
overview of all errors and events detected in your session. Double-click 
on a specific event to navigate to its corresponding entry in the Memory 
Leaks, Other Leaks, or Errors tab.

Figure 2-1. The DevPartner Error Detection Main Window

The rollup tabs include Memory Leaks, Other Leaks, Errors, .NET 
Performance, Modules, and Transcript. 

� To sort the data on these tabs, click a column header (such as Type, 
Quantity, or Deallocator in the Other Leaks tab).

� For additional information about an event on a tab, right-click the 
event and choose Explain.

� To see an event in the context of other events in your application, 
right-click the event and choose Locate in Transcript from the 
shortcut menu. The Transcript tab provides a chronological list of all 
events that occurred within your application.

Source pane

Results pane Details pane



22     Understanding DevPartner

Details Pane

The upper right section of the window is the Details pane. The Details 
pane consists of one or more sections, depending on the currently 
selected event. The top section describes the error or event in detail. The 
lower section(s) can display call stacks, P/Invoke use-count graphs, COM 
use-counts, and so on.

When you select an event, the Details pane displays the current call 
stack. If more than one call stack is accessible, the Details pane provides 
a drop-down list; use it to select a different call stack to view.

Source Pane

The bottom section of the window is called the Source pane. It displays 
the source file associated with the currently selected call stack frame 
displayed in the Details pane. The source code changes when you select a 
different call stack in the Details pane.

Settings Dialog Box
The DevPartner Error Detection settings enable you to:

� Select only the types of data collection needed for a particular 
problem

� Enable or disable portions of each major type of data collection

� Control what portions of your program are analyzed

� Use the default DevPartner Error Detection settings to find the most 
common errors with the minimum impact on performance

The Settings dialog box has a tree control that shows the major settings 
categories. When you select a category, the dialog box displays the 
detailed settings for the category. 

Note: In Visual Studio, the term Options is used instead of Settings.

The same tree control and settings dialog boxes are used in the 
DevPartner Error Detection standalone application and in the Visual 
Studio IDE.

All groups of settings follow the same basic structure. You can enable or 
disable major types of data collection by selecting the top-level check-
box in the dialog box. 



Chapter 2� Error Detection     23

There are other settings under each top-level check box that further 
define how DevPartner Error Detection will analyze your application. 
Change the settings to customize your error detection process. 

For example, you can make trade-offs between detecting a broad or 
narrow range of errors:

� Broad range — Many data types, many related settings selected
� Detects more errors 
� Has potential for more false positives
� Reduces performance (due to larger number of errors detected)
� Creates larger log files

� Limited range — Few data types, few related settings selected
� Provides a narrow focus on a particular function
� Detects fewer errors
� Can miss relevant errors
� Has a greater chance of seeing only those errors pertaining to the 

problem at hand
� Provides faster performance
� Creates smaller log files

An Example: Call Validation

To activate Call Validation, select Enable call validation. This makes all 
the Call Validation controls active. (By default, Call Validation is 
turned off.)

Figure 2-2. The Settings or Options Dialog Box Showing the Controls Under Call 
Validation.



24     Understanding DevPartner

When you enable Call Validation, DevPartner Error Detection validates 
over 5,000 Windows API calls. DevPartner Error Detection will check for 
a large number of events, including (but not limited to) the following:

� Handle and pointer errors
� Flags
� Range checks
� API and method failures
� Invalid structure sizes
� Memory access failures

If you find flag checking or range checking generates unwanted errors 
that do not apply to the problem you are solving, clear the Flag, range 
and enumeration arguments check-box. Call Validation will continue 
checking return values and, more importantly, handles and pointers 
passed to or from Windows calls. 

Enable Memory Block Checking

By selecting Enable memory block checking, Call Validation will 
perform a more detailed analysis of all calls to the C run-time library and 
a number of other calls. By default, this setting is inactive. Selecting 
Enable memory block checking will decrease overall performance but 
may prove useful when diagnosing hard-to-find errors.

Using Other Settings Categories

The online help provides detailed information about each settings 
category and also describes some of the trade-offs associated with specific 
tools within a category.



Chapter 2� Error Detection     25

Program Error Detected Dialog Box
DevPartner Error Detection displays the Program Error Detected dialog 
box (see Figure 2-3 on page 25) when it detects an error in your 
application.

The top of the Program Error Detected dialog box describes the error 
detected. Below this will be one or more tabs. Each tab is associated with 
a call stack corresponding to a location within your application. Review 
the reported error and the source information to help you locate the 
source of the problem and correct it. 

Figure 2-3. The Program Error Detected Dialog Box

Buttons on the Program Error Detected Dialog Box

Explain, Memory and Resource Viewer, Debug, Copy and Suppress 
buttons appear on the Program Error Detected dialog box. If you have 
installed DevPartner Studio Enterprise Edition with TrackRecord 
integration, you also have a Submit button available.

Explain

Click Explain to obtain detailed explanations of each error along with 
sample code and a list of solutions to correct the problem.



26     Understanding DevPartner

Memory and Resource Viewer

Click Memory and Resource Viewer to view a detailed accounting of 
memory and resources that have not been freed. For more information, 
see “Memory and Resource Viewer Dialog Box” on page 27.

Submit

Submit is only available if TrackRecord is part of your DevPartner 
installation. Click Submit to open TrackRecord to either a new defect or 
new task page.

Copy

Click Copy to transfer the contents of all windows and tabs (except the 
Source pane) to the clipboard. You can then paste this information into 
other applications.

Suppress

Click Suppress to open a dialog box that enables you to suppress the 
current error. For more specific instructions, click Help in the 
suppression dialog box.

Debug

Debug appears at the bottom of the dialog box when you are working 
from within Visual Studio or Visual C++.

Click Debug to drop into the Visual Studio debugger. You can then 
examine variables or modify the source.

Halt

Click Halt to stop the application.

Continue

Click Continue to close the dialog box and continue executing the 
application.



Chapter 2� Error Detection     27

Memory and Resource Viewer Dialog Box
The Memory and Resource Viewer dialog box allows you to analyze 
memory and resource allocations that have not been freed.

For example, most analysis tools can determine that memory or resources 
have been leaked only at the end of an application. This information tells 
you little about usage during the middle of a program’s execution. The 
DevPartner Error Detection Memory and Resource Viewer can provide a 
snapshot taken at any point in a program’s execution. You can also 
“mark” the currently allocated memory blocks or resources, limiting the 
view of blocks allocated after a program’s initialization or over the course 
of a transaction.

These capabilities can be especially useful in situations like these:

� 24/7 server applications may never end during regular use
� An application may hang from resource exhaustion
� An application may consume large amounts of memory that is 

automatically cleaned up at program termination

Figure 2-4. The Memory and Resource Viewer Dialog Box.

Details Source Memory contents Stack



28     Understanding DevPartner

The Memory and Resource Viewer User Interface

To access the Memory and Resource Viewer dialog box, click Memory/
Resource Viewer in the Program Error Detected dialog box.

The Memory and Resource Viewer dialog box is made up of four panes:

� Memory contents pane
Displays the content of memory blocks in a variety of formats. Not 
available for resources.

� Details pane
Includes separate Memory, Resources, and Summary tabs. Displays 
details about each memory and resource allocation.

� Stack pane
Displays a memory dump and callstack information for entries in the 
Memory tab; displays a description and callstack information for 
entries in the Resources tab.

� Source pane
Displays the source code corresponding to a callstack entry (when it 
is available).

Saving Memory and Resource Viewer Contents

Click Save to record the current contents of the Memory and Resource 
Viewer dialog box as a text file that you can review later. 

Mark and Close

Click Mark and Close to set a reference point for recording memory and 
resource data. This enables you to compare memory and resource 
allocations before and after the event where you marked the reference 
point.



Chapter 2� Error Detection     29

Suppression and Filtering Dialog Boxes
Suppression and filtering allow you to reduce the data collected or 
displayed. The intent of either method is to limit the data to a 
manageable subset for analysis.

Suppressing Errors

By suppressing errors, you instruct DevPartner Error Detection to skip 
over any future occurrences of those errors. Suppressed errors are not 
recorded in the log and they are not displayed in the Program Error 
Detected dialog box. Use one of the following actions to suppress an 
error:

� Right-click on an error in one of the panes and select Suppress
� Select an error and click the Suppress button on the toolbar

Filtering Errors

Filtering hides events already recorded in a .DPBCL log file. DevPartner 
Error Detection finds these errors but either hides them from view in the 
Results pane or displays them with the appearance you specified under 
Fonts and Colors. Use one of the following actions to select errors that 
you want to filter:

� Right-click on an error in one of the panes and select Filter
� Select an error and click the Filter button on the toolbar

If you cancel a filtering instruction, the filtered errors appear in the 
Results pane.



30     Understanding DevPartner

Figure 2-5. The Suppression Dialog Box (The Filtering Dialog Box Uses the Same 
Design).

Suppression and Filtering User Interface

Toggle filtering and suppression on and off using the toolbar icons.

The DevPartner Error Detection Suppression and Filter dialog boxes 
provide numerous controls over the suppression and filtering processes. 

For example, you can suppress call validation errors from FindResourceA 
in Kernel32 or for all calls in Kernel32. After you make this selection, you 
can apply it to a variety of different selection criteria within your 
application. DevPartner Error Detection defaults to the least restrictive 
option (see Figure 2-5).

You can make the following additional choices for suppressions and 
filters:

� Enter a comment to describe why a given suppression or filter was 
created.

� Choose to apply the suppression or filter to the current run or future 
runs.

� Create suppression or filter files to store the suppression or filter 
instructions. 



Chapter 2� Error Detection     31

Creating and Saving Suppression and Filter Files

You can create multiple suppression files, and in doing so create 
additional suppression libraries for the various DLLs that make up a large 
application. You can easily reuse or share suppressions among members 
of a development team.

See the online documentation for detailed information on each field in 
the Suppression and Filter dialog boxes.

DevPartner Error Detection Integration with Visual Studio
DevPartner Error Detection is tightly integrated into Visual Studio 
menus, toolbars, the Solution Explorer, the debugger and the build 
system. 

� Choose DevPartner -> Options to open the Options dialog box, 
then select Error Detection under DevPartner in the tree view to see 
the DevPartner Error Detection options (see Figure 2-6).

Figure 2-6. The Options Dialog Box.



32     Understanding DevPartner

� Choose DevPartner -> Start with Error Detection to start debugging 
your project with Error Detection. Commands on this menu control 
FinalCheck instrumentation and other DevPartner functions (see 
Figure 2-7). 

Figure 2-7. The DevPartner Menu in Visual Studio.

� You can use the error detection toolbar (see Figure 2-8) to select the 
instrumentation desired, change any settings, and start running with 
Error Detection.

Figure 2-8. The DevPartner Toolbar.

� DevPartner Error Detection will automatically register its sessions 
with the Solution Explorer (see Figure 2-9).

Figure 2-9. DevPartner Error Detection Sessions are Automatically Registered with 
the Solution Explorer.



Chapter 2� Error Detection     33

Using DevPartner Error Detection with Visual Studio 2003/2005

Follow these steps to use DevPartner Error Detection with Visual Studio 
2003/2005:

1 Create or open an existing solution.

2 Build your application.

To analyze your program with ActiveCheck, create an executable 
with these attributes:

� A Debug build, preferably with optimizations disabled

� With debug symbols

� With Visual C++ basic run-time checking disabled, do one of the 
following:
� Remove /RTC from the CL command line

� Set Basic runtime checks in the C/C++ Code Generation 
settings to Default

To analyze your native C/C++ program with FinalCheck, re-compile 
your application. You can instrument your program by doing one of 
the following:

� Enable FinalCheck instrumentation using one of the following 
procedures:
� Click the instrumentation button on the DevPartner toolbar

� Choose DevPartner -> Native C/C++ Instrumentation

� Build your application with Visual Studio

If you have solutions with multiple projects, you may want to use the 
DevPartner Error Detection Instrumentation Manager to select 
which projects should be instrumented. In this case, choose 
DevPartner -> Native C/C++ Instrumentation Manager.

3 Choose the DevPartner Error Detection options you want to use.

� Choose DevPartner -> Options to access the Options dialog box, 
then select Error Detection under DevPartner in the tree view. 
Review the DevPartner Error Detection options. 

For example, to validate Windows API calls made by your 
application, select Call Validation. Under Call Validation, select 
Enable call validation. For most applications, the default 
settings should produce acceptable results.

4 Select DevPartner -> Start with Error Detection to start debugging.
As your program executes, DevPartner Error Detection will display 
any errors encountered.



34     Understanding DevPartner

5 Review the reported errors, then click either Debug or Continue.

6 Review errors in the Results pane of the DevPartner Error Detection 
window after your program terminates. To correct an error, right-click 
an event and choose Edit Source.

7 Correct your errors, recompile your application, and continue 
testing.

Integration with Visual Studio 6

DevPartner Error Detection also integrates into the Visual Studio 6 
menus, toolbars, debugger, and build system. See Figure 2-10.

Figure 2-10. The DevPartner Error Detection menu in Visual Studio 6.

Follow these steps to run DevPartner Error Detection while debugging 
your application with Visual Studio:

1 Create or open an existing project.

2 Build your application.

To analyze your program with ActiveCheck, create an executable 
with debug symbols and, preferably, with optimizations disabled.

To analyze your program with FinalCheck, instrument your program:

� Select the debug configuration

� Select either DevPartner -> Build -> Error Detection or 
DevPartner -> Rebuild -> Error Detection

This action will re-compile your application. The Build tab of the 
Output window will display messages stating that DevPartner 
Error Detection is instrumenting your application.



Chapter 2� Error Detection     35

3 Choose the DevPartner Error Detection settings to use for the 
analysis:

� Select DevPartner -> Error Detection Settings, then make 
selections in the Settings dialog box

Example: To validate Windows API calls made by your 
application:

� Select Call Validation from the tree view in the settings 
dialog box

� Select Enable call validation

For most applications, the default settings produce acceptable 
results.

4 Press F5 to start debugging.
As your program executes, DevPartner Error Detection will display 
errors in the Program Error Detected dialog box.

5 Review the reported errors, then click Debug or Continue.

6 Review errors in the Results pane of the DevPartner Error Detection 
window after your program terminates. To correct an error, right-click 
the event in the Details pane and choose Edit Source.

7 Correct your errors, recompile your application, and continue 
testing.

Running DevPartner Error Detection from the Command Line
You can run DevPartner Error Detection from a DOS command line, 
using bc.exe or bc.com.

Note: For legacy support of the 7.x versions, DevPartner Error Detection 
allows you to continue using bc7.com in your script files.

� bc.exe starts the UI for DevPartner Error Detection standalone.

� bc.com is a small console program that spawns bc.exe and waits for 
it to complete.

The difference between bc.exe and bc.com is important for batch scripts. 
Invoking bc.exe directly will start DevPartner Error Detection and 
continue on to the next command without waiting for bc.exe to 
complete. If the next step in the script is to check for a result, it won't be 
available.

Note: If you type only bc, the OS will choose bc.com instead of bc.exe.

For more information, refer to  Using Error Detection from the 
Command Line in DevPartner Advanced Error Detection Techniques.



36     Understanding DevPartner

Running FinalCheck from the Command Line

You can also run FinalCheck from the command line. For more 
information, refer to the following topics in the Checking a Program with 
FinalCheck section of the online help.

� Running FinalCheck from the Command Line
� NMCL Options
� NMLINK Options



 37

Chapter 3

Static Code Analysis

� DevPartner Code Review

� DevPartner Code Review User Interface

� Naming Analysis Functionality

� Call Graph Analysis Functionality

� DevPartner Code Review Rule Manager

� Creating New Rules Using Regular Expressions

This chapter describes the DevPartner code review feature. DevPartner 
helps developers write compliant Visual Basic .NET and Visual C# code 
within the Visual Studio Integrated Development Environment (IDE). 
DevPartner identifies programming and naming violations in the .NET 
Framework, analyzes method call structures, and tracks overall code 
complexity.

Note: The DevPartner code review feature analyzes managed code only, 
and is therefore not supported in the DevPartner for Visual C++ 
BoundsChecker Suite.

DevPartner Code Review
The DevPartner code review feature delivers the following functionality:

� Static code analysis and review

DevPartner performs a comprehensive static code analysis of your 
source code and displays results in the DevPartner Code Review 
window that is integrated in the IDE. 

� Automated command-line batch processing



38     Understanding DevPartner Studio

DevPartner lets you execute a command line batch review of your 
solution in conjunction with a nightly build or as an alternative to 
reviewing large applications. 

� Rules management and customization

The Rule Manager lets you configure rules, triggers, rule sets, and 
name sets used by the Hungarian naming analyzer. 

DevPartner Code Review User Interface
The DevPartner code review feature integrates in the Visual Studio IDE. 
The DevPartner Code Review window is the main user interface 
component (Figure 3-1 on page 39) and is comprised of these tabbed 
results panes:

Table 3-1. DevPartner Code Review Window — Results Tabs

Tab Displays

Summary Results and count summaries (see “Summary Pane” on page 39)

Problems Programming problems and additional information (see 
“Problems Pane” on page 46)

Naming Naming violations (see “Naming Pane” on page 47)

(Optionally includes Naming Details pane for the Naming 
Guidelines naming analyzer only (see “Naming Details Pane” on 
page 50)

Metrics Evidence of code complexity (see “Metrics Pane” on page 51)

Call Graph Graphical method or property call structures in current solution 
(see “Call Graph Pane” on page 53)



Chapter 3� Static Code Analysis      39

Figure 3-1. DevPartner Code Review Window

Summary Pane

The Summary pane consolidates summarized results data in a single 
location. The Summary pane is divided into the following tables:

� Summary of Problems (Figure 3-2 on page 40)
� Summary of Naming Guidelines (Figure 3-3 on page 41)
� Summary of Call Graph Data (Figure 3-4 on page 42)
� Summary of Counts (Figure 3-5 on page 42)
� Review Settings (Figure 3-6 on page 43)
� Project List (Figure 3-7 on page 45)

Some contents on the Summary pane are dynamic. As items on the 
Problems or Naming results panes are marked as Fixed, the 
corresponding sections on the Summary pane will dynamically reflect 
the update. If the review was performed with some exceptions, such as 
bypassing compile errors or a build requirement, the Summary pane will 
reflect that message in the header section. 

Note: Consult the DevPartner Code Review online help for information on 
how compile errors and build requirements affect a code review.

Tabs for results panesCode review 
toolbar

View by list
(shown grayed out)

Solution Tree



40     Understanding DevPartner Studio

Summary of Problems Summary of Problems lists the rule-based categories that were covered 
in the review. 

Figure 3-2. Summary of Problems Table on Summary Pane

Summary of Problems provides the following information: 

Note: Details about problems uncovered during a code review are provided 
on the Problems pane (Figure 3-8 on page 46).

Table 3-2. Contents of Summary of Problems

Categories Description

Types List of reviewed rule-based categories

Total problems Count of problems found 

Total fixed problems Total number of problems fixed on the Problems pane; 
dynamic update

 Severity Total number of problems categorized by severity: 

• High, Medium, Low set by priority

• Warning used to call attention to a unique 
development issue



Chapter 3� Static Code Analysis      41

Summary of Naming
Guidelines

Summary of Naming Guidelines lists the categories that you originally 
selected on the Naming Guidelines property page (Figure 3-15 on page 
55) to be included in the review. 

Note: This table is only displayed on the Summary pane if the Naming 
Guidelines naming analysis selection on the General Options 
property page (Figure 3-14 on page 54) was chosen prior to the 
review. It gives a summary of the naming identifiers selected on the 
Naming Guidelines property page. This table is not available for the 
Hungarian naming analyzer. 

Figure 3-3. Summary of Naming Guidelines Table on Summary Pane

Summary of Naming Guidelines provides the following information: 

Note: More information about naming guidelines-related violations 
appears on the Naming Details pane just below the Naming pane 
(Figure 3-10 on page 49). The Naming Details pane is not available 
for the Hungarian naming analyzer.

Table 3-3. Contents of Summary of Naming Guidelines

Category Description

Naming Identifiers Lists the naming identifiers previously selected from the 
Include naming analysis for list on the Naming 
Guidelines property page (Figure 3-15 on page 55)

Total Reviewed Gives a count of the items that were reviewed, based on 
each naming identifier category 

Total Violations Subtotals the violations that were found, based on each 
naming identifier category



42     Understanding DevPartner Studio

Summary of Call
Graph Data

Summary of Call Graph Data lists summarized information about call 
graph analysis that was captured during the review. 

Note: This table is only displayed on the Summary pane if the Collect Call 
Graph Data selection on the General Options property page (Figure 
3-14 on page 54) was selected prior to the review.

Figure 3-4. Summary of Call Graph Data Table on Summary Pane

Summary of Call Graph Data provides the following information: 

Note: Call graph data is graphically displayed on the Call Graph pane 
following a review (see “Call Graph Analysis Functionality” on page 
62) .

Summary of Counts Summary of Counts includes individual statistics and counts.

Figure 3-5. Summary of Counts Table on Summary Pane

Table 3-4. Contents of Summary of Call Graph Data

Categories Description

Total methods graphed Count of total methods/properties analyzed during 
the code review

Total methods uncalled Count of uncalled methods/properties (see “Call 
Graph References” on page 63)



Chapter 3� Static Code Analysis      43

The following table lists the statistics under Summary of Counts: 

Review Settings Review Settings lists configuration and review-related data. This 
information is useful for record keeping and troubleshooting. 

Figure 3-6. Review Settings Table on Summary Pane

Table 3-5. Contents of Summary of Counts

Categories Description

Review Time Total review time in minutes

Total Lines Total number of all lines in the solution including 
code, comment, and blank lines (comment lines are 
counted in methods only)

Code Only Lines Total number of code lines only without trailing 
comments

Comment Only Lines Total number of comment lines only without any 
code

Code with Comments Total number of comment lines with code

Rule Comparisons Made Total number of rule comparisons processed during 
the review that pertain to the current rule set

Total Lines Checked Total number of lines that were reviewed, including 
code lines with trailing comments and blank lines



44     Understanding DevPartner Studio

The Review Settings table includes the following information: 

Table 3-6. Contents of Review Settings

Review Categories Description

Solution File name of solution that was reviewed

Solution Path Path location of the solution that was reviewed

Session File File name of session created following code 
review; either default name (solution-
name.dpmdb) or renamed by user

Batch Command Execution 
File

Name of batch file created with code review

Reviewer Name of user who initiated code review

Review Date Date and time stamp of the review

DevPartner Code Review 
Version

Current version of DevPartner code review 
feature

Rules DSN Rules database file name 

Preferences DSN Preferences database file name

Rule Set Used Rule set applied to review

Count of Rules in Rule Set Number of rules affecting review

Metrics Analysis True if option was selected on the General 
Options property page (Figure 3-14 on page 54)

False if not

Naming Analysis Indicates what was selected at Naming analysis 
to use on the General Options property page 
(Naming Guidelines, Hungarian, or none)

Dictionary Name1 Indicates the dictionary used in the review

Identifiers Examined1 Indicates the .NET Framework identifiers that will 
be included in the review

Local Variables Examined1 True if local variables were examined

False if not

Case used for locals1 User selection (Pascal or Camel case)

Company Name1 User entry

1. Applies to the Naming Guidelines naming analyzer only and selections 
previously made on the General Options and Naming Guidelines property pages



Chapter 3� Static Code Analysis      45

Project List Project List provides information for each project in the solution.

Figure 3-7. Project List Table on Summary Pane

The following table lists information under Project List: 

Technology Name1 User entry

Call Graph Analysis True if Collect call graph data option was selected 
on the General Options property page

False if not

Ignore compile errors True if option was selected on the General 
Options property page

False if not

Exclude rules that require a 
build

True if option was selected on the General 
Options property page

False if not

Always generate a batch file True if option was selected on the General 
Options property page 

False if not

Table 3-6. Contents of Review Settings (Continued)

Review Categories Description

1. Applies to the Naming Guidelines naming analyzer only and selections 
previously made on the General Options and Naming Guidelines property pages

Table 3-7. Contents of Project List

Category What it covers

Project Name Name of each project in the solution that was reviewed

Compile Errors True if compile errors were detected in that project which 
could prevent the review from proceeding; false, if not

Reviewed True if the review was executed on that project
False if not

Project Path Path location of that project



46     Understanding DevPartner Studio

Problems Pane

By default, the Problems pane appears first in the DevPartner Code 
Review window following a code review. The Problems pane displays 
programming violations found in the current solution. This results view 
is divided into two adjoining sections — Problems pane (upper panel) 
and Description pane (lower panel).

Figure 3-8. Problems Pane Including Problems Pane and Description Pane

Problems Pane
(Upper Panel)

The Problems pane shows the rule violations that were detected. It 
appears in the upper panel. 

Tip: Entries made in 
the Rule Manager 
appear in the Problems 
list following a 
DevPartner code 
review. 

The following table contains the information provided on the Problems 
pane: 

Description 
pane

Problems 
pane

Table 3-8. Contents of Problems pane 

Column Description

Fixed Status of the rule violation

 Checked for fixed, unchecked for not fixed

Suppressed Status of the rule suppression
Suppressed, or blank for not suppressed

Rule Number assigned to that rule violation

Title Title of the rule

Severity Severity level (High, Medium, Low, Warning) 



Chapter 3� Static Code Analysis      47

Description Pane
(Lower Panel)

You select a rule violation on the Problems pane (upper panel) and its 
details appear on the Description pane (lower panel). The contents 
originate from rules stored in the DevPartner rules database (system-
supplied and user-configured).

Tip: Each rule 
violation can include 
additional hyperlinks 
for Trigger, Original 
Source Line, and 
Location.

The following table lists the details provided on the Description pane: 

Naming Pane

The Naming pane lists naming violations that DevPartner finds during a 
code review. Its appearance varies depending on which type of naming 
analysis you selected on the General Options property page (Figure 3-14 
on page 54) prior to the review. Regardless of the naming analysis picked, 
the upper panel of the Naming pane always lists the results. 

Note: The Naming pane will display results from one or the other, but not 
from both naming analyzers. If None was selected, the Naming 
pane will be empty following a code review.

Project Project where the violation exists

File File where the violation exists

Method Method where the violation exists

Class Class of the rule that was fired

Type Rule type

Table 3-8. Contents of Problems pane  (Continued)

Column Description

Table 3-9. Contents of Description Pane 

Heading Description

Rule title (shown in red) Title of the rule

Trigger Name of the trigger; appears as a hyperlink that lets 
you go to the original source line

Original Source Line Line of code that caused the rule to fire

Location Identifies the origin of the rule violation

Explanation Describes the rule violation

Repair Recommends a remedy for the problem

Notes Additional comments; optionally includes external 
links to Microsoft MSDN knowledge base articles



48     Understanding DevPartner Studio

Hungarian Results The next illustration shows how the Naming pane appears when the 
Hungarian naming analyzer was previously selected on the General 
Options property page (Figure 3-14 on page 54). 

Figure 3-9. Naming Pane for Hungarian Naming Analysis

Naming Guidelines
Results

The next illustration shows a two-panel representation of the naming 
results when the Naming Guidelines naming analyzer was previously 
selected for the review. Notice the Naming pane in the upper panel and 
the Naming Details pane (Figure 3-11 on page 50) in the lower panel. 
Notice, also, the additional View by list (Figure 3-20 on page 58), located 
to the right of the toolbar.



Chapter 3� Static Code Analysis      49

Figure 3-10. Two-Panel Naming Pane for Naming Guidelines Naming Analysis

The following table lists the information provided on the Naming pane 
(upper panel), regardless of which naming analyzer was selected: 

Naming 
Details 
pane

Naming 
pane

Table 3-10. Contents of Naming Pane 

Column Description

Fixed Status of the naming violation

 Checked for fixed, unchecked for not fixed

Name User-defined name for the data type

Suggested Suggested name 

Suggested names vary, depending on which naming analyzer 
was selected (see “Naming Analysis Functionality” on page 58)

• If DevPartner cannot suggest a name based on Hungarian, 
Unknown will appear in this column. 

• If DevPartner cannot suggest a name based on Naming 
Guidelines, a series of asterisks will appear in this column. An 
explanation will also appear on the Naming Details pane 
(Figure 3-11 on page 50).

Access Category of access within the current solution 



50     Understanding DevPartner Studio

Naming Details Pane If you selected Naming Guidelines, plus made additional choices on the 
Naming Guidelines property page (Figure 3-15 on page 55), a Naming 
Details pane will also appear in the lower panel of the Naming pane. 

Note: The Naming Details pane is only available for the Naming Guidelines 
naming analyzer, not Hungarian. See “Naming Analysis 
Functionality” on page 58 for more information about each naming 
analyzer.

Figure 3-11. Naming Details Pane (for Naming Guidelines Naming Analysis Only)

Similar to the Problems Description pane (Figure 3-8 on page 46), the 
Naming Details pane provides additional details about the naming 
violation selected in the upper panel of the Naming pane.

Type Type of identifier

Method Method where the data type is declared

Class Class where the data type is declared

Namespace Namespace where the data type is declared

File File where the data type is declared

Project Project where the data type is declared

Table 3-10. Contents of Naming Pane  (Continued)

Column Description



Chapter 3� Static Code Analysis      51

When you click one of the .NET Framework naming violations listed on 
the Naming pane, the following information will appear on the Naming 
Details pane: 

Metrics Pane

The Metrics pane (Figure 3-12 on page 52) displays code complexity 
results (Complexity, Bad Fix Probability, and Understanding Level), based 
on McCabe Metrics. Consult the DevPartner Code Review online help for 
more information about these metrics. 

Table 3-11. Contents of Naming Details Pane

Item Description

Current name Corresponds to the item selected in the 
upper panel

Scope Indicates the scope of the identifier

Original Source Line Displays the source line that pertains to the 
selected naming violation in the upper panel

Recommendations Suggests one or more suitable names, based 
on the Naming Guidelines naming analyzer 
(see “Naming Guidelines Naming Analyzer” 
on page 58)

Explanation Provides an explanation for why this violation 
was flagged as a problem 

Note: If DevPartner cannot suggest a better 
name, an explanation will appear in this 
pane. DevPartner will also show a series of 
asterisks in the Suggested column of the 
upper panel of the Naming pane.

Notes Optionally includes a hyperlink to the 
Naming Guidelines knowledge base in the 
.NET Framework General Reference



52     Understanding DevPartner Studio

Figure 3-12. Metrics Pane

The Metrics pane only displays data if the Collect metrics check box on 
the General Options property page (Figure 3-14 on page 54) was selected 
prior to the review. 

The following table lists the information provided on the Metrics pane: 

Table 3-12. Contents of Metrics Pane 

Heading Description

Method Method name where the code complexity issue originated

File File name where the issue originated

Project Project where the issue originated

Complexity Indicates the degree of complexity regarding a particular 
component; this metric is related to McCabe Cyclomatic 
Complexity

Bad Fix % Indicates the likelihood that a new bug will occur in the 
code when trying to fix a known bug

Understanding Indicates how straightforward the code logic is to decipher 
and maintain

Lines of Code Total lines of code within the selected component; 
breakdown of individual line counts appear on the 
Summary pane (see “Summary of Counts” on page 42)



Chapter 3� Static Code Analysis      53

Call Graph Pane

DevPartner integrates a Call Graph pane in the multi-tabbed 
DevPartner Code Review window.

Figure 3-13. Call Graph Pane Showing Example of Call Graph Representation

Note: See “Call Graph Analysis Functionality” on page 62 for more 
information on this functionality. Consult the DevPartner Code 
Review online help to use this feature.

Code Review Options

DevPartner provides two property pages to modify code review options:

� General
� Naming Guidelines Options

Note: Consult the DevPartner Code Review online help for instructions on 
how to use these property pages.

General Options

The General Options property page contains code review settings that 
you can modify prior to your next code review. You can access this 
property page by selecting: 

DevPartner > Options > Code Review 



54     Understanding DevPartner Studio

Figure 3-14. General Options Property Page for DevPartner Code Review

Naming Guidelines Options

The Naming Guidelines property page includes choices that ensure a 
more precise review. You can access this property page by selecting: 

DevPartner > Options > Code Review

Note: Selections on this page are only available if you previously picked the 
Naming Guidelines naming analyzer from the Naming analysis to 
use list on the General Options property page (Figure 3-14 on page 
54). Consult the DevPartner Code Review online help to use this 
property page.



Chapter 3� Static Code Analysis      55

Figure 3-15. Naming Guidelines Property Page

DevPartner Code Review Toolbar Components

DevPartner provides three toolbars:

� Code review toolbar
� IDE toolbar 
� Call graph toolbar

Code Review Toolbar

The DevPartner Code Review window includes a code review toolbar.

Figure 3-16. DevPartner Code Review Toolbar

Filter Current View
Suppress Rule

Print <current results>

Hide/Show Solution Tree
Hide/Show Description Mark Item Fixed

Submit 
TrackRecord 
Defect



56     Understanding DevPartner Studio

IDE Toolbar

Optional toolbar buttons related to the DevPartner code review feature 
are available in the Visual Studio IDE. To access, right-click in the upper-
right corner of the IDE and choose DevPartner.

Figure 3-17. Additional Toolbar Buttons for Code Review

Call Graph Toolbar

A dedicated call graph toolbar is available when the Call Graph pane has 
focus. It is located just below the caption bar. 

Figure 3-18. Call Graph Toolbar (Only Available with Call Graph Pane)

The toolbar provides the following configuration options: 

Table 3-13. Call Graph Configuration Options

Button Tooltip Description

Number of levels Configures how many node levels will be displayed 

Node style Configures the style of each node in the display 
area

Create and modify rules used during code reviews

Perform a review of the solution code

Layout

Scaling

Node style

Number of levels



Chapter 3� Static Code Analysis      57

Note: A context menu also provides the same configuration options. To 
access, click on the background area of the call graph (not on a 
node). See “Call Graph Configuration Options” on page 65 for a 
description of the configuration options. Consult the DevPartner 
Code Review online help for additional information.

View By Lists

A View by list appears to the right of the standard code review toolbar. 
The contents and functionality of this list will vary depending on 
whether the Naming or Call Graph pane has focus.

Filtered View for
Naming Guidelines

If the Naming pane has focus, the View by list will only be visible if you 
previously selected the Naming Guidelines naming analyzer from the 
General Options property page (Figure 3-14 on page 54). You can filter 
the viewing results by choosing one of the .NET Framework naming 
identifiers from the View by list. 

Note: Consult the DevPartner Code Review online help on how to make 
selections from the Include naming analysis for list on the Naming 
Guidelines property page (Figure 3-15 on page 55).

Figure 3-19. View by List for Naming Pane (for Naming Guidelines Only)

Scaling Configures how the entire call graph will fit in the 
display area

Layout Configures whether the layout of the call graph 
will be shown horizontally or vertically

Table 3-13. Call Graph Configuration Options

Button Tooltip Description



58     Understanding DevPartner Studio

Filtered View for Call
Graph

If the Call Graph pane has focus, the View by list will be visible. This list 
lets you filter which methods/properties are listed on the Solution Tree. 
You can choose from the following:

� All: To list all methods or properties in the current solution

� Active: To list only the active (live) methods or properties in the 
treeview

� Uncalled: To list only the uncalled methods or properties in the 
treeview

Note: See “Call Graph References” on page 63 for information about active 
and uncalled references. Consult the DevPartner Code Review online 
help on how to use the View by list for the Call Graph pane.

Figure 3-20. View by List for Call Graph Pane

Naming Analysis Functionality
The DevPartner code review feature incorporates two kinds of naming 
analysis capabilities:

� Naming Guidelines

The naming analyzer targets support for the .NET Framework. See 
“Naming Guidelines Naming Analyzer” on page 58.

� Hungarian

The Hungarian naming analyzer remains a legacy naming analyzer in 
the DevPartner code review feature. See “Hungarian Naming 
Analyzer” on page 61.

Note: You can also choose None from the Naming analysis to use list on 
the General Options property page (Figure 3-14 on page 54). 
However, doing so tells DevPartner to bypass naming analysis 
altogether. The Naming pane will be empty following the review.

Naming Guidelines Naming Analyzer

The Naming Guidelines naming analyzer is patterned after the Visual 
Studio .NET Framework naming guidelines. Microsoft adopted the Visual 
Studio naming guidelines to support the .NET Framework. These naming 



Chapter 3� Static Code Analysis      59

guidelines ensure that consistent, predictable, and manageable naming 
practices are applied to .NET Framework types in a managed class library. 

Note: To perform this type of naming analysis, choose Naming Guidelines 
from the Naming analysis to use list on the General Options 
property page (Figure 3-14 on page 54), plus make additional 
selections on the Naming Guidelines property page (Figure 3-15 on 
page 55) to ensure a more precise review. Consult the DevPartner 
Code Review online help on how to make selections.

The Naming Guidelines naming analyzer examines parameters, classes, 
namespaces, methods, delegates, enums, structs, interfaces, and 
variables. It looks for naming violations in the source code related to 
capitalization, case sensitivity, abbreviations and acronyms, and syntax 
for namespaces and other .NET Framework identifiers. The following 
sections describe some guidelines with which the Naming Guidelines 
naming analyzer complies. 

Note: Consult the DevPartner Code Review online help for additional 
information regarding these guidelines.

Capitalization

When it finds a naming violation, DevPartner attempts to suggest a more 
appropriate name on the Naming pane using the capitalization style that 
you selected on the Naming Guidelines property page — Camel or Pascal. 

Case Sensitivity

DevPartner discourages using case sensitivity to differentiate identifiers 
in the source code. Case insensitivity is strongly encouraged because it 
supports interoperation between case-sensitive and case-insensitive 
programming languages and also reduces confusion between two 
similarly-named identifiers. Developers should avoid names that vary 
only by case. Rather, they should use names that are functional in either 
case-sensitive or case-insensitive programming languages.

Table 3-14. Capitalization Styles Used in Naming Guidelines Naming Analyzer

Capitalization style First concatenated word Subsequent 
concatenated words

Examples of 
Suggested Names

Camel case Not initial-capped Initial-capped redColor

Pascal case Initial-capped Initial-capped RedColor



60     Understanding DevPartner Studio

Abbreviations and Acronyms

DevPartner supports the use of generally accepted abbreviations and 
acronyms. DevPartner determines proper naming based on the number 
of letters for the abbreviation or acronym and where it is situated in the 
identifier name.

Namespace Syntax

DevPartner supports the .NET Framework naming convention for 
namespaces. That is, that the namespace name starts with the company 
name, followed by the technology name, and optionally ending with the 
feature and/or design name. Here is an example of the established 
syntax:

CompanyName.TechnologyName[.Feature][.Design]

By default, DevPartner recommends Pascal case for namespaces. The 
period character (.) separates each logical concatenated word. You enter 
the namespace information in the Namespace options field on the 
Naming Guidelines property page (Figure 3-15 on page 55) prior to the 
review. 

Syntax for Other .NET Framework Identifiers

DevPartner checks that .NET Framework identifiers are properly named 
in the source code. Here are some examples of what DevPartner looks for:

� Numeric characters

DevPartner checks whether numbers are part of the identifier name. 
While DevPartner will not remove the numeric characters, it will flag 
the name as a violation. 

� Underscore characters

DevPartner looks for instances of the underscore character (_) in the 
identifier name. The underscore character is discouraged in the 
Naming Guidelines naming analyzer. DevPartner will remove the 
underscore character except in the following cases: 

� If the underscore is a leading character (i.e., _redColor) 
� If it is used in a method name
� If its removal will introduce another naming violation 

� Casing for constants

DevPartner follows Pascal or Camel casing for constants (depending 
on the case selection you made on the Naming Guidelines property 



Chapter 3� Static Code Analysis      61

page), rather than all uppercase. For example, DevPartner would 
change the constant HTTP_PORT in:

private const int HTTP_PORT = 80 

� To HttpPort based on Pascal 
� To httpPort based on Camel 

� Delegate

If a delegate identifier name includes the word delegate (regardless of 
case) along with one or more identifiable words, DevPartner will 
remove the word delegate as long as it does not introduce another 
violation. For example, the name, MyDelegateWord, would be 
renamed as MyWord. 

Hungarian Naming Analyzer

DevPartner continues to include the Hungarian naming analyzer, 
patterned after the Hungarian Notation naming convention.

Note: The Hungarian naming analyzer has always been part of the 
DevPartner code review feature. In this release, however, it has been 
named Hungarian to differentiate it from the naming analyzer, 
Naming Guidelines. To perform this type of naming analysis, choose 
Hungarian from the Naming analysis to use list on the General 
Options property page (Figure 3-14 on page 54). 

Based on the Hungarian naming convention, variable names include 
specific character(s) that identify a particular scope-level or data-type 
prefix for the variable in question. For example, the data-type prefix int 
signifies an integer, such as integer variable Port; and the scope-level 
prefix g_ signifies global, as in g_intPort. 

DevPartner uses the Hungarian naming analyzer in a code review when 
the Hungarian option is selected from the Naming analysis to use list 
on the General Options property page (Figure 3-14 on page 54). 
DevPartner also uses the currently selected name set. When a code review 
is started, the naming analyzer evaluates scope-level prefixes and data-
type prefixes for every variable in the code. If applicable, it makes 
recommendations consistent with the name set (Default preferred) and 
displays the naming results on the Naming pane (Figure 3-9 on page 48) 
following the code review.

Note: The Hungarian naming analyzer does not evaluate parameter names.



62     Understanding DevPartner Studio

The following tables list examples of scope-level and data-type prefix 
combinations that are evaluated in the Hungarian naming analyzer, as 
specified in the current name set:   

The qualifiers on a variable declaration determine the scope, such as the 
boundaries where the variable exists. For example, DevPartner considers 
a variable with public status as having a global scope because it is 
accessible outside the class.

The default name set contains scope prefixes that can be edited using the 
Rule Manager. You can also customize variable and object names, based 
on Hungarian Notation, using the Rule Manager. 

Note: Consult the DevPartner Code Review online help for more 
information on the Hungarian naming analyzer and how DevPartner 
constructs more suitable naming recommendations. Consult the 
DevPartner Code Review Rule Manager for more information on 
managing name sets.

Call Graph Analysis Functionality
The Call Graph pane (Figure 3-13 on page 53) shows a graphical 
representation of the call graph data collected from the review. It displays 
a static view of the inbound and outbound call path corresponding to 
the method or property selected from the Solution Tree.

Table 3-15. Scope Prefix

Scope Prefix

Global g_

Member m_

Local ““

Table 3-16. Data Type Prefix

Data type Prefix

string str

int int

int i

boolean bool

bool bln



Chapter 3� Static Code Analysis      63

Note: Call paths are statically generated, not dynamically. This means that 
the graph shows the potential method calls in the call path, rather 
than the actual calls made during a program’s execution.

Why the Call Graph Pane Is Initially Empty

The Call Graph pane will be empty if:

� The Collect call graph data check box on the General Options 
property page (Figure 3-14 on page 54) was not selected prior to the 
code review. 

Call graph data was not collected during the review. To ensure call 
graph analysis is performed, select this option and then perform 
another code review. 

� You did select the check box, but you did not click a method or 
property on the Solution Tree. 

Data was collected but no call graph appears by default. To view a call 
graph in the display area, click a method or property node on the 
Solution Tree.

Call Graph References

The Call Graph pane depicts the potential inbound/outbound call 
references in a call path. It traces the call hierarchy for the selected 
method or property. The contents of the display area show the potential 
entry and exit points for each method or property. The call references 
start at the root node with all calls performed in reference to it until 
control is returned to the root node or completed from the root node. 
The following types of call references appear in the display area:

Root Node The root node refers to the method or property selected to be the starting 
point of the call graph. All other nodes either call into the root node or 
are called by it. The root node (Figure 3-21) appears as a light yellow 
rectangle with a wide blue border, to distinguish it from all other nodes 
in the display area. 

Figure 3-21. Example of Root Node

Inbound Calls Inbound refers to methods or properties that directly or indirectly call 
into the root node. The inbound calls (Figure 3-22) are shown as light 
blue rectangular nodes, to differentiate them from the root node. 



64     Understanding DevPartner Studio

Outbound Calls Outbound refers to methods or properties that are directly or indirectly 
called by the root node. As with the inbound calls, the outbound calls 
(Figure 3-22) appear as light blue rectangular nodes. They are connected 
by a series of arrows, pointing away from the root, to show the potential 
direction of the call path. 

Figure 3-22. Example of Inbound or Outbound Call Node

Uncalled References Uncalled refers to a method or property that is defined in the code but 
never referenced within the files that form an application component. 
Uncalled methods are identified on a node on the Call Graph pane, 
either by the label Uncalled or the symbol (!). 

Figure 3-23. Two Examples of Uncalled Identification

Recursive and Circular
Call References

The Call Graph pane can graphically show instances of recursive or 
circular call references that exist in the selected path of execution.

� Recursive: Method or property that calls itself in the path of 
execution 

A calls B;
B calls B 

Figure 3-24. Example of Recursive Call Graph

� Circular: Method or property that indirectly calls back into a 
previously called method or property in the path of execution 

A calls B;
B calls C;
C calls back to A 

with label

with icon



Chapter 3� Static Code Analysis      65

Figure 3-25. Example of Circular Call Graph

Call Graph Configuration Options

DevPartner provides four ways to configure how a call graph appears on 
the Call Graph pane. You can access these options either from the Call 
Graph toolbar (Figure 3-18 on page 56) or by right-clicking on the 
background area of the Call Graph pane.

Number of Levels You can choose the number of levels to be displayed on the Call Graph 
pane. The call graph shows a specified number of levels of methods or 
properties that call into (inbound) and are called from (outbound) the 
root node. You can choose between one and six levels (six, default). The 
following example shows two levels selected. The plus signs (+) on the 
nodes to the right of the call graph indicate that more levels of call 
references are available for viewing.

Figure 3-26. Shows Two-level Configuration

Node Style You can choose the node style that will be applied to the Call Graph 
pane. All call graph node styles show the class name, as well as the 
method or property name. Some node styles also include icons indicating 
the access type of the class, method, or property: public, private, internal, 
or protected. These are standard Solution Tree icons. Other icons, 
representing uncalled methods and properties, only appear in the call 
graph. 



66     Understanding DevPartner Studio

The following table shows examples of the various node styles. 

Note: Some examples show root node and others, standard (inbound or 
outbound). See “Call Graph References” on page 63 for more 
information on how nodes are differentiated. 

Scaling You can choose the relative size of the call graph on the Call Graph 
pane. Two scaling options are available:

� To fit in available space (default)

This selection lets you scale the call graph so that all the nodes fit 
within the display area. By default, scroll bars are not available with 
this choice. If you reconfigure the call graph using the other options, 
the contents will be resized, without the inclusion of scroll bars. 

� By percent of full size

This selection lets you enlarge or shrink the contents in the display 
area by one of these fixed percentage values: 100%, 80%, 75%, 66%, 

Table 3-17. Node Styles

Node Style Description Uncalled 
Representation Examples 

Single label Shows the class name, then a 
period, followed by the 
method or property name, 
but without icons

The string, - Uncalled, 
will append the method 
or property name.

Inbound/outbound

Top and bottom labels Shows the class name 
appearing on the first line and 
the method or property name 
appearing on the next, but 
without icons

The string, - Uncalled, 
will append the method 
or property name on the 
second line.

 

Inbound/outbound

One image and label Shows a standard method or 
property icon, plus the class 
name, then a period, followed 
by the method or property 
name, all on the same line

The corresponding icon 
will include an 
exclamation point icon 
(!). Root

One image and two labels Shows an icon for the method 
or property, along with the 
class name on the first line and 
the method or property name 
on the second line 

The corresponding icon 
will include an 
exclamation point icon 
(!). 

Root

Two images and two labels Shows an upper-level icon for 
the class followed by the class 
name, and a lower-level icon 
for the method or class, 
followed by its name

The explanation point 
icon (!) icon will appear 
between the data type 
icon and the name.

Root



Chapter 3� Static Code Analysis      67

or 50%. This choice allows you to zoom into sections of a large or 
complicated call sequence. Moreover, when the contents are 
redrawn, the selected method or property (root node) is clearly 
visible in the display area. Scroll bars are also available. 

Layout You can choose how the call graph nodes will be laid out on the Call 
Graph pane. Your choices include:

� Horizontal 

The nodes will appear in a left-to-right orientation in the display 
area. The methods or properties calling into the selected node (also 
called the root node) will be located to its left. The methods or 
properties that the selected node calls into will branch to the right. 

� Vertical 

The nodes will appear in a top-to-bottom orientation in the display 
area. The methods or properties calling into the selected root node 
will be located above the root node. The methods or properties that 
the selected node calls into will be located below it.

DevPartner Code Review Rule Manager
DevPartner contains an extensible rules database that is based on the 
Microsoft Visual Studio programming standards. The rules database is 
maintained and stored in the Rule Manager. The Rule Manager is a 
standalone application that accompanies the DevPartner code review 
feature. You can access it from Compuware DevPartner Studio > 
Utilities from the Start menu. When selected, its user interface opens in 
a separate window. 



68     Understanding DevPartner Studio

Figure 3-27. DevPartner Code Review Rule Manager Window

Note: Consult the DevPartner Code Review Rule Manager online help for 
information on Rule Manager functionality.

Creating New Rules Using Regular Expressions
Developers can create their own powerful rules in DevPartner Code 
Review, and use them to identify many suspect coding practices. Code 
Review rules make extensive use of regular expressions, which provide a 
robust and versatile method for searching text. Regular expressions are 
widely used, well-documented, and can be written to match patterns in 
HTML, VB.NET, and C# syntax. DevPartner Code Review uses the same 
regular expression engine as Microsoft Visual Studio, and supports the 
same syntax.

Code Review makes it easier to use regular expressions in its rules by 
limiting the scope of any given rule to certain parts of the code. For 
example, a rule can apply to the entire file, just methods, or only While 
blocks. Since rules can specify a scope, the regular expressions can focus 
on a targeted part of the code.

Rule List 
pane

Rule Detail 
pane

Toolbar

Access to 
Filter and 
Find 
panes



Chapter 3� Static Code Analysis      69

Code Review also assists the regular expression search by removing 
comments from a code block before executing the review, reducing false 
positives.

The following sections provide examples of actual Code Review rules and 
explain the regular expressions that drive them.

Note: To learn more about how to write regular expressions for your Code 
Review rules, read the following books, or visit the following Web 
sites:

� Forta, Ben. Teach Yourself Regular Expressions in 10 Minutes. 
Indiana: Sams Publishing, 2004.

� Friedl, Jeffrey E.F. Mastering Regular Expressions. 2nd ed. 
California: O'Reilly, 2002.

� Goyvaerts, Jan. Regex Tutorial, Examples and Reference. 
1 Feb. 2006 <http://www.regular-expressions.info>.

� Microsoft Corporation. .NET Framework Regular Expressions. 2006. 
<http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/cpguide/html/cpconcomregularexpressions.asp>

Matching Lines Exceeding 90 Characters

Best practice coding standards recommend that a line of code should not 
exceed 90 characters. A Code Review rule enforces this standard by 
searching for lines that exceed 90 characters. The following regular 
expression ensures lines do not exceed 90 characters in length:

(?-s).{91,}

This regular expression first sets the Single Line option to False, causing 
the expression to evaluate all characters up to, but not including, the 
newline character (\n) as a single line. This evaluation treats each line of 
code, from its beginning to the newline (\n) character, as a distinct and 
different line.

Next, the rule incorporates the most elementary aspect of regular 
expressions — matching single characters. This rule uses the period (.) 
metacharacter to match any single character on the line.

The rule follows the period (.) with a repeating match metacharacter 
{91,}. Repeating match metacharacters specify that a match must repeat 
a certain number of times, or within a certain range of instances. In this 
rule, it specifies the expression is true only if any single character is 
matched 91 or more times; the second value in the range is left empty, 
because the rule only cares if the number of matches exceeds 90 
characters. Table 3-18 describes the basic repeating match 
metacharacters.



70     Understanding DevPartner Studio

Matching Tabs Used Instead Of Spaces

Best practice coding standards recommend that spaces be used instead of 
tabs. The number of spaces represented by a tab can differ between 
editors, and this difference can cause the source code to have a different 
appearance in each editor. To enforce a consistent appearance of the 
source, spaces should be used. The following regular expression is used in 
a Code Review rule that searches for the use of tabs inside of methods:

(?s)\t.*

This regular expression sets the Single Line option to True, causing the 
expression to evaluate every character on every line, up to and including 
newline characters (\n), as part of a single line.

Next, the rule specifies a match against the tab character by using a 
metacharacter (\t). Without further change, the regular expression 
would find every occurence of a tab character in the method. Instances 
where multiple tabs are used in a method, such as for indenting lines, 
would fire the rule for each tab in that method. That is not the intended 
behavior of the rule.

This rule should evaluate to true if at least one tab is used in the method, 
but not every time it encounters a tab in the method. To accomplish this 
result, the rule needs the period (.) metacharacter followed by a 
repeating match metacharacter specifying zero or more instances. Table 
3-18 shows the repeating match metacharacter to use is the asterisk (*). 
Adding these last two metacharacters specifies that the rule will evaluate 
to true the first time it encounters a tab character, and then capture every 
following character in the method.

Table 3-18. Repeating Match Metacharacters

Character Meaning

+ Matches one or more instances of the preceding character

* Matches zero or more instances of the preceding character

? Matches zero or one instance of the preceding character

{n}

{2,6}

{n,}

Matches an exact number of instances of the preceding character, 
where n represents the number of required repetitions

These braces are also used to designate a range of repetition, such 
as from two to six times, by including the upper and lower limit 
separated by a comma. Omitting the upper limit matches against 
a minimum number of instances, without an upper bound.



Chapter 3� Static Code Analysis      71

Matching Instances Where Code Catches System.Exception

Avoid catching System.Exception to handle your errors, as it does not 
catch errors at a fine enough level of detail to allow for the proper 
differentiation of error types. Error handling code blocks should intercept 
and handle errors at as fine a granularity as possible, since doing so can 
make a program more robust and less likely to crash. The following 
regular expression is used in a Code Review rule designed to find 
instances in the code where Visual Basic .NET syntax is used to catch 
System.Exception:

Catch\s\w+\sAs\s(System\.)?Exception

The first part of this expression locates any instance of the literal word 
Catch in the code. Since the rule should not match instances where 
Catch is the first part of a longer word, the literal text is followed by the 
metacharacter for whitespace (\s).

Visual Basic .NET syntax uses the word Catch followed by a variable name 
(used to hold the exception object). The variable is followed by more 
whitespace, and the literal word As.

The rule needs regular expression functionality to locate a legal variable 
name, followed by more whitespace, and the word As. The metacharacter 
\w, paired with the repeating match metacharacter +, will locate one or 
more instance of any alphanumeric character (upper or lower case) or the 
underscore character. Adding \sAs\s finishes the search for a legal 
variable name followed by whitespace and the word As.

So far, the regular expression will locate the following code:

Catch MyExceptionObject As

This regular expression would do a great job of locating all code that is 
catching exceptions. However, the rule should only match against code 
that catches System.Exception. It requires further refinement.

To ensure that it only matches instances where the code catches 
System.Exception, the regular expression searches for the literal words 
System and Exception separated by a period. Since the period is a 
metacharacter, the rule needs to specify a match on a literal period by 
preceding it with the backslash, removing its special character status.

If the rule now has System\.Exception as part of the regular expression, 
there is still a problem. It is perfectly acceptable syntax for the catch of 
System.Exception to leave off the System. and only use the term 
Exception. One last modification to the regular expression makes the 
matching of System. optional. Wrapping System\. in parenthesis makes 
it a subexpression, which can be followed by the ? metacharacter to 
specify zero or one match.



72     Understanding DevPartner Studio

Matching Methods Having More Than One Return Point

Best practice coding standards recommend that methods have only one 
return point. Having more then one return point could cause code to be 
hard to understand. The following regular expression is used in a Code 
Review rule that locates instances where a method has more than one 
return point. Most of the pieces making up this expression have been 
used in previous rules, but there are a couple of new things to examine.

(?s)(\breturn\b.*){2,}

First the rule sets the Single Line option to True, using (?s), to focus on 
the entire method. To consider the method as a whole, the rule needs to 
evaluate every character on every line, up to and including newline 
characters (\n), as part of a single line.

Another part of the expression used in earlier rules is the repeating match 
metacharacter at the end. This expression uses {2,} to modify the 
preceding subexpression (contained in parenthesis), requiring that there 
must be two or more matches within the method.

The subexpression, (\breturn\b.*), is the part of the regular expression 
doing most of the work. It is written as a subexpression to allow the 
whole block to be modified by the repeating match metacharacter. The 
metacharacter \b is a word boundary. By surrounding the literal text 
return with the word boundary metacharacters, the regular expression 
will look for instances of the word standing alone, not as part of a larger 
word.

Note: The last rule followed the literal text Catch by the whitespace 
metacharacter \s to ensure it would only find instances where Catch 
was a whole word. This is a good example of how flexible regular 
expressions are. That rule could have used the word boundary 
metacharacter \b, but did not.

The final .* within the subexpression searches for a match of zero or 
more instances of any character. The rule is now complete, and will 
search entire methods for two or more instances of the word return, 
followed by zero or more characters.

Enforcing Initialization Of Variables When They Are Defined

As a best practice, to keep code concise and easy to understand, variables 
should always be initialized when they are defined. The following regular 
expression is from a Code Review rule that locates instances where a 
variable is defined, but not initialized:

(?-s)\bDim\b(?!.*=)(?!.*\bnew\b)



Chapter 3� Static Code Analysis      73

Since the rule needs to evaluate each line of code by itself, the first thing 
it does is set the Single Line option to False.

Next, the regular expression is going to look for the word Dim. It wraps 
the literal text Dim with word boundary metacharacters \b to ensure it is 
only considering whole words.

The subexpression implements the concept of looking ahead or behind. 
The ability for regular expressions to look ahead or behind gives them 
additional flexibility.

Looking ahead or behind means that the regular expression is searching 
for a match in the text, but instead of matching that text itself, it allows 
the rest of the regular expression to succeed if the subexpression 
succeeds. This kind of looking ahead and behind is referred to as a 
positive look ahead or positive look behind, because the expression is 
searching for text that will match.

The syntax for the positive look ahead and positive look behind is:

� Positive look ahead (?=subexpression)
� Positive look behind (?<=subexpression)

Similarly, negative look ahead and negative look behind work by searching 
for text that does not match the subexpression specified in the statement.

The syntax for the negative look ahead and negative look behind is:

� Negative look ahead (?!subexpression)
� Negative look behind (?<!subexpression)

The regular expression for this rule needs to use the negative look ahead 
construct to detect when there is not an equal sign (=) to the right of the 
Dim keyword, with or without a space preceding it. The subexpression 
(?!.*=) handles that negative look ahead.

The last part of the expression, (?!.*\bnew\b), uses another negative 
look ahead to evaluate to true if the word new does not exist to the right 
of the Dim keyword, with or without a preceding space.

The complete rule now has a regular expression that will evaluate to true 
any time it encounters a line of code where the word Dim is not followed 
by an equal sign (=) or the word new.



74     Understanding DevPartner Studio

Matching Instances Of More Than One Statement Per Line

In order to increase readability and maintainability of code, more than 
one statement should never be placed on a single line (with the 
exception of loop syntax). The following regular expression is from a 
Code Review rule that locates instances where a line contains more than 
one statement:

(?<!for.*);.*;

It might appear that the easiest way to detect more than one statement 
on a given line would be to determine if any line contains more than one 
semicolon (;). In fact, this search is the essence of the regular expression 
in this rule, but it needs to also take into account the possibility of a 
semicolon being associated with the for keyword.

To exclude any instances where the keyword for is associated with a 
semicolon, the rule uses the negative look behind construct (?<!for.*) 
to look back on any line where it encounters a semicolon, making sure 
the word for is not there. The remaining part of this regular expression 
(;.*;) will search for a semicolon followed by any number of other 
characters, and then another semicolon.

Ensuring Open Braces Are Placed On A Separate Line

Best practice coding standards recommend that open braces should be 
placed at the beginning of their own separate line following the 
statement that begins the block. The following regular expression is from 
a Code Review rule that locates instances where open braces are not 
placed on their own separate line:

(?m)^\s*\w+(?=.*?\{).*?$

There are several new concepts at work in this expression. The rule first 
sets the Multi Line option to True with (?m). This setting changes the 
behavior of two other metacharacters — Line Beginning (^) and Line 
End ($). By enabling the multi line option, ^ and $ capture the beginning 
and end of each line rather than the entire string being searched.

Once multi line mode is enabled, the regular expression searches for the 
beginning of the line (^), followed by one or more whitespace characters 
(\s*), and one or more word characters (\w+). This sets up the basis the 
regular expression will use, because if it finds one or more word 
characters there should be no open braces on the line.



Chapter 3� Static Code Analysis      75

The positive look ahead subexpression (?=.*?\{) searches through each 
line looking for any character followed by an open brace. The backslash 
before the open brace removes its metacharacter status. Once the rule 
determines that a line contains a character followed by an open brace, 
and the open brace is not on a line by itself, .*? at the end of the regular 
expression allows it to capture the remaining text right to the end of the 
line (matched by the $ metacharacter).

Ensuring Loop Counters Are Not Modified Inside the Loop Bodies

Changing the loop counter inside the body of the loop could cause 
unpredictable results, and always makes code harder to understand. The 
following regular expression is from a Code Review rule that locates any 
instance where a loop counter is modified inside of the loop body:

(?s)\bfor\b\s*\(\s*\w+\s+(?<VARNAME>\w+).*\).*\b\k<VARNAME>\b\s*=

This regular expression is extremely long because it has to do a lot of 
work to enforce the rule. To identify and store the loop counter variable 
name, the regular expression must first capture the for keyword, left 
parenthesis, and loop counter type.

The first half of the regular expression is gathering required information: 
it locates a line with the for keyword, followed by any number of 
whitespace characters, a left parenthesis, more whitespace characters, 
one or more word characters, more whitespace, and finally uses a 
subexpression to capture the variable name.

The subexpression (?<VARNAME>\w+) will capture the name of the loop 
counter and store it in the variable, VARNAME.

Note: This construct can use any variable name, as long as the name does 
not contain any punctuation and does not begin with a number.

Once it has captured the name of the loop counter, the last part of the 
regular expression captures any remaining characters and the right 
parenthesis. It then begins searching through the loop body for an 
instance of the loop counter, followed by an equal sign, using the 
following construct:

.*\b\k<VARNAME>\b\s*=

This part of the expression is the essence of the rule. Prior to reaching 
this point, the regular expression has determined the name of the loop 
counter and has placed the scope of its search within the loop body. This 
final part of the expression now matches all characters up to the value of 
VARNAME (the loop counter), and then looks for an equal sign (=) following 
the counter.



76     Understanding DevPartner Studio

The fact that the loop counter is followed by an equal sign indicates it is 
being set to some value, or modified. Since the counter should never be 
modified inside of the loop body, the rule has found a violation.



 77

Chapter 4

Automatic Code Coverage 
Analysis

� Introducing DevPartner Coverage Analysis 

� DevPartner Support for Visual Studio 

� Collecting Coverage Data 

� Viewing Your Results 

� Merging Session Data

� Viewing Data 

� Coverage Analysis for Real World Application Development 

� Running a Program from the Command Line 

� Analyzing Coverage in Visual C++ 

� Analyzing Coverage in Visual Basic 

Introducing DevPartner Coverage Analysis
DevPartner includes a code coverage analysis feature that lets 
developers and testers automatically locate untested code in software 
applications and components developed in Visual Studio. DevPartner 
can collect coverage data for managed code applications, including 
Web and ASP.NET applications, as well as unmanaged (native) Visual 
C++ and Visual Basic applications.

DevPartner can also collect coverage data for Visual C++ and Visual 
Basic 6 applications or components. See “Coverage Analysis for Visual 
Basic and Visual C++” on page 80. 

DevPartner coverage analysis helps development teams save testing 
time and improve code reliability by measuring and tracking code 
execution and code base stability during development. 



78     Understanding DevPartner

DevPartner allows you to gather coverage data without leaving Visual 
Studio. You can collect coverage data for a managed or unmanaged 
application any time you run the application from the DevPartner menu 
in Visual Studio. DevPartner also lets you analyze your applications and 
components as they are really used — as native applications, ADO.NET 
components, or ASP.NET or Web applications. DevPartner can even 
collect data for managed code applications started outside of Visual 
Studio. 

What is DevPartner Coverage Analysis

DevPartner coverage analysis provides these essential coverage analysis 
features:

� Data collecting and reporting
� Focused data collection
� Data correlation for distributed applications
� Data merging for single-process applications
� Multi-language code coverage analysis
� Integration with DevPartner Error Detection
� Export DevPartner Data

Data Collecting and Reporting

DevPartner coverage analysis gathers coverage data for applications, 
components, images, methods, functions, modules, and individual lines 
of code. 

DevPartner gathers coverage data for executable images, executable 
server extension code (such as an ISAPI DLL), and scripts contained in 
HTML files and written in the scripting languages supported by Internet 
Explorer and Microsoft’s Internet Information Server (IIS). The scripting 
languages can also invoke COM objects that can be in-process or out-of-
process.

Focused Data Collection

DevPartner session controls let you focus your coverage analysis on any 
phase of your application. You can use the session controls to stop data 
collection, clear data collected to that point, or take a snapshot of the 
data currently collected and then continue recording.

Data Correlation for Distributed Applications

DevPartner coverage analysis can collect session data for multiple 
processes participating in a single run of a multi-tier application. To 



Chapter 4� Automatic Code Coverage Analysis      79

collect coverage data on applications that include both client and server 
components, you use DevPartner in Visual Studio. If the server 
component runs on a remote system, you install and configure 
DevPartner on the remote system as well. 

For example, you can install DevPartner on the server to collect data for 
IIS, and use coverage analysis in Visual Studio to collect data on your 
client-side application. As you use your application and access 
components on the server, DevPartner collects coverage information on 
both the server and the client. 

To collect data simultaneously from both machines, install DevPartner 
on the client and DevPartner and the optional DevPartner Server license 
on the remote machine. See Installing DevPartner (DPS Install.pdf) and the 
Distributed Licensing Management License Installation Guide (LicInst4.pdf) 
for more information.

When you take a data snapshot on the client, or exit from your 
application, DevPartner automatically creates a session data file that 
contains correlated coverage data for both the client and the server 
portions of your application. When you view the data, you see an 
integrated view of the coverage of your entire application.

Data Merging for Single Process Applications

You can accumulate data by running the single-process application or 
component more than once and collecting the data into multiple session 
files, which you can then merge. Merging combines the coverage data 
from multiple session files into a single file. Accumulating data lets you 
track changes in your code so that you can gauge the stability of your 
code base. If several members of your development team use DevPartner, 
you can merge the files generated by all the team members to determine 
project-wide coverage statistics.

Note: You cannot merge correlated session files or Web script session files 
produced from running Internet Explorer. You can merge server-side 
session files from Internet Information Server. 

Multi-Language Code Coverage Analysis

DevPartner supports all Visual Studio managed code languages, as well as 
native C/C++. DevPartner can also collect coverage data for Visual Basic 
and Visual C++ 6.0 applications, as well as JScript and VBScript Web 
applications when using Internet Explorer or IIS.



80     Understanding DevPartner

Coverage Analysis for Visual Basic and Visual C++

DevPartner 8.1 provides limited integration for Visual Basic 6.0 and 
Visual C++ 6.0. You can build your Visual Basic and Visual C++ 
applications with coverage instrumentation in the Visual Studio 6.0 
environment. 

The sections “Analyzing Coverage in Visual C++” on page 98 and 
“Analyzing Coverage in Visual Basic” on page 99 provide an overview of 
the procedure and direct you to other sources of information. 

Integration with DevPartner Error Detection

You can use DevPartner error detection with coverage analysis to collect 
coverage data and check for errors during the same session when you run 
your managed code application or native C/C++ application in the 
debugger. You must instrument native C/C++ applications for Error 
Detection and Coverage with the Native C/C++ Instrumentation 
Manager before collecting data. 

Export DevPartner Data

The Export DevPartner Data feature enables you to export DevPartner 
coverage session files (with the .dpcov extension) and merged coverage 
files (with the .dpmrg extension) to XML. When this feature is active, the 
Export DevPartner Data command is available on the File menu. 

You can analyze the data in the exported XML file using your own or 
third-party software. For example:

� Use Export DevPartner Data on a development build server or QA 
server where unit tests, functional tests, or regression tests are staged. 
Analyze the exported XML data to monitor daily progress.

� Use Export DevPartner Data to collect data for longer-term analysis. 
You can accumulate the XML data in a database or data warehouse in 
order to:
� Integrate the data with development and QA methodologies, 

tools and infrastructure
� Run custom analytics on the data
� Archive the data for historical or auditing purposes

How DevPartner Coverage Analysis Fits in Your Development Cycle

You can run DevPartner coverage analysis sessions during the 
development and testing phases of the software development cycle. 
Developers use DevPartner prior to significant milestones (code check-in, 



Chapter 4� Automatic Code Coverage Analysis      81

unit testing, integration, internal release) and when the code base for an 
application or component becomes relatively stable to ensure that the 
desired level of testing or execution has been reached. 

Software testers can also use DevPartner during routine regression testing 
and reliability testing to ensure that applications and components have 
been thoroughly exercised under test conditions prior to release or 
deployment. 

DevPartner Support for Visual Studio
This section provides you with information on how the DevPartner 
coverage analysis feature integrates into Visual Studio. 

DevPartner IDE Integration in Visual Studio

DevPartner is fully integrated into Visual Studio. This makes it easy to 
collect code coverage data for an application regularly, as you develop it, 
without leaving the development environment. Once DevPartner is 
enabled, you collect coverage data by running your application as you 
run any application you are developing, by starting it from the 
DevPartner menu. 

When the analysis session completes, DevPartner displays the coverage 
data in the IDE. DevPartner saves the coverage data in a coverage analysis 
report file, with a .dpcov extension. Coverage files are automatically 
added to the DevPartner Studio folder in the active solution. To review 
an existing coverage analysis file, double-click the file in Solution 
Explorer. 

DevPartner Toolbar and Menu Integration

DevPartner adds commands related to coverage analysis to several Visual 
Studio menus. In addition, DevPartner provides toolbars that include 
shortcuts to basic coverage analysis functions. 

Figure 4-1. The DevPartner toolbar

� DevPartner toolbar 

�  Starts coverage data collection. Menu equivalent: Start with 
Coverage Analysis on the DevPartner menu. 



82     Understanding DevPartner

�  Starts coverage data collection for an error detection session. 
Available for unmanaged (native) C/C++ applications. Menu 
equivalent: Start with Error Detection and Coverage Analysis 
on the DevPartner menu.

�  Enables native C/C++ data collection when you rebuild the 
solution or project. Menu equivalent: Native C/C++ Instrumen-
tation on the DevPartner menu.

�  Opens the DevPartner options pages. Menu equivalent: 
Options on the DevPartner menu.

Figure 4-2. The DevPartner Session Controls toolbar

� DevPartner Session Controls toolbar 

�  Stops data collection and takes a final data snapshot

�  Takes a data Snapshot

�  Clears data collected to the point at which the Clear action 
executes

� Process list focuses data collection on a single process for applica-
tions that run in multiple processes. 

� DevPartner Menu

� Start with Coverage Analysis Enables coverage data collection

� Start with Error Detection and Coverage Analysis Enables 
simultaneous error detection and coverage data collection

� Native C/C++ Instrumentation Activates DevPartner 
instrumentation.

� Native C/C++ Instrumentation Manager Opens the DevPartner 
Native C/C++ dialog box which enables you to set DevPartner 
instrumentation options for unmanaged (native) C/C++ projects 
before rebuilding. 

� Correlate > Coverage Files... Combines client and server-side 
session files into a single correlated file.

� Merge Coverage Files... Merges individual session files into a 
merge file. 

� Options Accesses the Analysis options pages to configure cover-
age data collection.



Chapter 4� Automatic Code Coverage Analysis      83

See the Coverage Analysis section in the DevPartner online help in the 
Visual Studio .NET Combined Collection for information about other 
commands DevPartner adds to the Visual Studio menus and context 
menus, and how existing Visual Studio menu commands relate to the 
DevPartner coverage analysis feature. 

Solution Explorer Integration

When you run a coverage analysis session from Visual Studio, DevPartner 
adds the resulting session file or files to the DevPartner Studio folder in 
Solution Explorer. 

From Solution Explorer you can open a session file by double-clicking, or 
use the file or folder context menu options to add or remove files from 
the solution, view properties, and cut or copy the file specification to the 
clipboard. 

Collecting Coverage Data
This section provides information about using DevPartner coverage 
analysis to collect data from different types of applications.

Running Your Program under DevPartner Coverage Analysis

This section describes how to instrument and run your application with 
DevPartner to collect coverage analysis data.

For Managed Code Applications

Many applications you will develop in Visual Studio will be managed 
code applications. C#, Visual Basic .NET, and managed Visual C++ 
applications are examples of managed code applications. In order to 
analyze an application as it runs, DevPartner instruments the application 
code for the specified type of data collection, in this instance, coverage 
data. In the case of managed code applications, DevPartner instruments 
for data collection at runtime, as the application code is compiled for 
execution by the common language runtime. 

As a result, it is easy to collect data for managed code applications. 

1 In the Visual Studio Properties window, review the DevPartner 
Coverage, Memory and Performance Analysis properties for the 
solution and change as needed.

� To display the Properties window, select View, then choose 
Properties Window.



84     Understanding DevPartner

2 Click Start with Coverage Analysis on the DevPartner toolbar.

Tip: With DevPartner, 
you can create a session 
control file, which stores a 
custom set of session 
control actions that are 
invoked when you run an 
analysis session. 
DevPartner also provides 
a session control API, 
which lets you insert 
session control calls at 
specific points in your 
application code. For 
information, see the 
DevPartner Coverage 
Analysis online help in the 
Visual Studio Combined 
Collection. 

3 Exercise the application. You can use the session controls, described 
on page 82, to focus data collection. 

4 Exit the application. 

DevPartner collects coverage data as the application runs, and displays 
the data in the main window in Visual Studio when the analysis session 
ends. The session data file (.dpcov) appears in the DevPartner Studio 
folder in Solution Explorer. If you used the Snapshot session control, 
DevPartner creates a session file for each snapshot. 

For Unmanaged (Native) Visual C++ Applications

Unlike managed code, which DevPartner instruments at runtime, you 
must instrument unmanaged (native) C/C++ code when you compile it. 
DevPartner makes this as easy as rebuilding your solution or project. 

Choose Native C/C++ Instrumentation Manager... on the DevPartner 
menu. In the Instrumentation Manager, choose the type of 
instrumentation and select the native C/C++ projects you want 
DevPartner to instrument. Then, rebuild the solution, or rebuild the 
specific projects. 

Once your unmanaged C++ application or project is instrumented, run 
the application as described above. 

If your Visual Studio application includes managed and unmanaged 
portions, DevPartner collects data for both, provided the managed and 
unmanaged portions are in separate files. 

For Web Applications

If you develop Web Forms, XML Web Services, or ASP.NET applications, 
you can use DevPartner to collect coverage data for both client and server 
portions of your application. If you start your application from Visual 
Studio, you enable coverage analysis and run the application. DevPartner 
collects the coverage data as it would for any other managed code 
application. 

However, there are several things you need to be aware of when 
analyzing Web applications. 

Note: If IIS runs on the local machine, set the following options on the 
system. If IIS runs on a remote server, you must install DevPartner 
(and a Server license) on that system and configure it for data 
collection. 

Before you begin collecting data for analysis: 



Chapter 4� Automatic Code Coverage Analysis      85

� Warm up the application by exercising it for several minutes. Be 
sure to include the parts of the application in which you are 
interested. 

� Execute the Clear session control action to discard data collected 
to that point. 

� Collect data.

In this way, you can eliminate data collection for the many one-time 
initializations that take place when you launch the application. 

Collecting Data from Multiple Processes 

Web applications may run more than one process. For example, when 
you profile an ASP.NET application you may see the browser process 
(iexplore), the IIS process (inetinfo), and the ASP worker (aspnet_wp or 
w3wp) processes. 

When you run such an application under coverage analysis, the 
DevPartner Session Control toolbar displays the active processes in the 
process selection list. Use the process list to focus data collection. When 
you execute a Snapshot session control action, DevPartner creates a 
snapshot session file with data for the process selected in the process list. 

Note: The process list in the DevPartner Session Control toolbar includes all 
active processes in the analysis session. However, if all processes run 
on the local machine, DevPartner launches a separate version of the 
Session Control toolbar for each process. These instances of the 
toolbar reflect only a single process. You can use the separate toolbar 
to execute session control actions for that process, or use the primary 
Session Control toolbar in Visual Studio to select any active process 
and execute session control actions. 

Collecting Server-side Coverage Data

You may want to collect coverage data for both client and server portions 
of a client/server application. With DevPartner, you can collect coverage 
data for client and server processes as you run the client application. 

To collect data simultaneously from a client computer and a remote 
computer, install DevPartner on the client and DevPartner and the 
optional DevPartner Server license on the remote machine. See Installing 
DevPartner (DPS Install.pdf) and the Distributed Licensing Management 
License Installation Guide (LicInst4.pdf) for more information.

In this way, you can collect data for a distributed application as it is 
actually deployed. 



86     Understanding DevPartner

You can view session files that are created by DevPartner on the same 
system as your installation of DevPartner, by simply opening them in 
DevPartner. 

If you are running the server-side program from a client application 
running under DevPartner, and there are:

� DCOM-based calls between methods in different processes, or

� HTTP requests between Internet Explorer as the client and IIS as 
the server

DevPartner automatically creates a correlated session file on the client 
machine. The correlated session file contains the coverage data for both 
the client and server portions of your application. The correlated session 
file appears in Visual Studio, just as any other session file does. 

Collecting Coverage Data from Remote Systems

You can use DevPartner to enable automatic coverage data collection for 
any of your application components running on a remote system. For 
example, you can enable DevPartner to monitor the portion of your 
application running on a server system.

To enable data collection on remote systems

1 Start Visual Studio on the remote system. 

2 Make sure that the data collection properties are appropriate for your 
application. In the Visual Studio Solution Explorer, select the relevant 
projects and review the DevPartner properties. 

3 DevPartner restarts server processes, such as IIS, after you change 
options. This is necessary for changes to take effect. 

4 Specify instrumentation if you are analyzing an unmanaged (native 
code) C++ application, or a managed code application that calls 
native C++ components. 

� Select DevPartner > Native C/C++ Instrumentation to instru-
ment your unmanaged code. 

� Select DevPartner > Native C/C++ Instrumentation Manager to 
open the Instrumentation Manager dialog box to make addi-
tional adjustments to instrumentation of your unmanaged code. 

5 Choose DevPartner > Start with Coverage Analysis, or click the 
Start with Coverage Analysis button on the DevPartner toolbar to 
begin your analysis session. 



Chapter 4� Automatic Code Coverage Analysis      87

� DevPartner cleans and rebuilds your unmanaged code with 
instrumentation, then starts your application. 

� DevPartner instruments managed code applications as they exe-
cute. 

6 When you are finished collecting data, quit your application. 

Controlling Data Collection
DevPartner gives you three ways to control when coverage data is 
collected during the use of your application:

� You can use session control icons on the DevPartner Session 
Controls toolbar to interactively control data collection as your 
program runs.

� You can use the session control API to control data collection in your 
program.

� You can use the session control file to assign session control actions 
to specific methods in your application modules. 

For information on using session controls, see the Coverage Analysis 
section of the DevPartner Studio online help in the Visual Studio .NET 
Combined Collection. 

Viewing Your Results
This section provides a brief description of the DevPartner coverage 
analysis windows that you can use to work with session data. See the 
Coverage Analysis section of the DevPartner Studio online help for 
detailed descriptions of how to control the presentation of data in the 
windows. 

Session Window

When you choose to view a session, DevPartner displays the Session 
window in Visual Studio. The Session window contains the Filter pane 
and the Session Data pane.

The Filter pane lists the instrumented images and source files used 
during the session. The data that appears in parentheses to the right of 
each name identifies the percent of lines covered and the total number of 
lines for each file. The Filter pane also contains filters that define logical 



88     Understanding DevPartner

subsets of coverage data. You can click items in the Filter pane to select 
the subset of session data you want to view in the Method List.

The Session Data pane contains the Method List, Source, and Session 
Summary tabs. 

Tip: When working in the 
Method List and Source 
tabs, right-click on the 
column header to show or 
hide data columns.

Session Data Pane

Session Data pane displays three tabs, described below, when you view 
data from a coverage analysis session.

� The Method List tab shows coverage data for the file, or group of 
files, that you select in the Filter pane. By default, the Method List tab 
displays all source methods.

� The Source tab displays the contents of the currently selected source 
file. Data columns to the left of the code provide line-by-line 
coverage data. For example, the Count column indicates how many 
times each line was executed during the session. Lines of source code 
are colored to indicate lines executed, lines not executed, and non-
executable lines. To change the line colors:
a Select DevPartner > Options. 

b Open the Environment > Fonts and Colors options page.

Filter Pane
Filter Method List data

Session Data Pane
Review data

Figure 4-3. DevPartner coverage analysis Session Window



Chapter 4� Automatic Code Coverage Analysis      89

c Select DevPartner Analysis from the Show settings for list. 

d Change the display values as necessary.

You can double-click any source file in the Filter pane to display the 
contents of the file in the Source tab.

� The Session Summary tab displays summary information about the 
session, as well as a description of the system and operating 
environment in which the session occurred.

Note: Method refers to the methods, functions, and procedures used by 
your application.

Merging Session Data
When you are testing your application using DevPartner, it is unlikely 
that you will execute all of your code in one session. It is important to be 
able to gather coverage data collected in several sessions and analyze 
your total coverage statistics. To accomplish this, you can merge the 
session files. Merging is the process of accumulating data from multiple 
sessions into a single file.

For example, you execute 35% of the methods in your application in 
Session1. If you run another session that uses some of the untested 
features in your application and you reach 40% coverage in Session2, you 
can merge those sessions to accumulate the coverage data. However, the 
accumulated coverage will probably not be 75% since some parts of your 
code were executed in both sessions. DevPartner accounts for this 
overlap and uses the union set of the data. 

If you change your code, DevPartner tracks those changes and adjusts the 
coverage data accordingly. It uses merge states to distinguish between 
Changed, New, and Removed methods. For more information about the 
merge states, see the Coverage Analysis online help.

Files that contain merged session data are called merge files (.dpmrg). 
DevPartner can associate many merge files with a single project. They are 
displayed in the DevPartner Studio folder in Solution Explorer. 

Note: You cannot merge correlated session files or Web Script session files 
produced from running Internet Explorer. You can merge server-side 
session files from Internet Information Server.

Reviewing Merge Data

DevPartner displays merge data in the Merge Data window which closely 
resembles the Session Data window. The Merge Data window contains 
the Filter and Merge Data panes. The Merge Data pane contains the 



90     Understanding DevPartner

Method List, Source, Merge History, and Merge Summary tabs. The Filter 
pane and Source tab contain the same information they contain in 
Session windows. 

Figure 4-4. Merge Data pane

� The Method List tab uses the State column, which is not used in 
session files, in merge files. DevPartner uses the State column to 
distinguish methods that are new, changed, or removed between 
sessions. Refer to the Coverage Analysis online help for more 
information about method states.

� The Merge History tab displays a graphical representation of the 
progression of the % Lines Covered, % Methods Covered, and 
% Volatility values for the current merge file.

� % Lines Covered is the percentage of lines in your source code 
that were executed. 

� % Methods Covered is the percentage of methods in your source 
code that were called. 

� % Volatility is the percentage of methods whose source code has 
changed since the last merge.

� The Merge Summary tab displays summary information about the 
sessions and merge files that were merged into the file. It also 

Filter Pane Coverage meters

Method List tab
Source tab
Merge History tab
Merge Summary tab



Chapter 4� Automatic Code Coverage Analysis      91

contains information about each of the instrumented images used 
during the sessions, including the % Volatility for each image.

Merge Files

You can merge session data by creating or adding data to a merge file. On 
the DevPartner menu, select Merge Coverage Files to create a new 
merge file or add data to an existing merge file. You can merge two or 
more session and merge files.

Merge files are useful for accumulating a subset of coverage data. You can 
save and merge a small set of session files to find out how much of your 
code was covered in a specific group of sessions. You can also save 
sessions, share them among team members, and accumulate the coverage 
data collected by everyone in a single merge file. 

By default, when you close a new session that you did not merge into a 
merge file, DevPartner prompts you to ask if you want to merge. You can 
configure DevPartner not to prompt you about un-merged sessions, or to 
merge the coverage data automatically without prompting.

Merge Settings

When you choose a property for merging into the merge file, think about 
the fundamental way you want to use the merge file. To access these 
properties, first select the top-level solution in the Visual Studio Solution 
Explorer. Then, in the Visual Studio Properties window, choose a 
property under Automatically Merge Session Files in the DevPartner 
Coverage, Memory and Performance Analysis window.

� If you want to selectively accumulate coverage data in the project 
merge file and be asked about sessions you did not merge, use the 
Ask me if I would like to merge it setting.

� If you want to selectively accumulate coverage data in the project 
merge file and not be asked about sessions you did not merge, use 
Close without prompting.

� If you want to accumulate coverage data in the merge file 
automatically for every session, use Merge it automatically.

Results of Merging

When you merge session data, DevPartner:

� Compares percent covered values and returns the superset of the 
data. The percentages are not just added together, they are 
accumulated. For example, if you merge a session with 30% methods 



92     Understanding DevPartner

covered and a session with 20% methods covered, you probably have 
not reached 50% coverage. There are likely parts of the code that 
were executed in both sessions.

� Calculates percent volatility values for each source and image. 
Percent volatility represents the % of methods that changed in your 
code between sessions. It demonstrates the stability of your code.

� Uses data from the session or merge file that ran the newest image to 
determine the states of your methods and images. DevPartner uses 
the timestamps of the images to determine which image is newest.

� Creates the Merge History tab and the Merge Summary tab. The 
Merge History tab provides a graphical representation of the 
progression of the % Lines Covered, % Methods Covered, and % 
Volatility values for the current merge file. Merge Summary tab 
provides the statistical data about the session.

� Maintains a record of all the images and methods that were loaded in 
any of the contributing session or merge files

� Maintains information about the files involved in the merge, when 
the merge occurred, and who performed the merge.

DevPartner treats merge data for managed code applications and 
unmanaged (native) C/C++ applications differently. For managed code 
applications, DevPartner sequentially accumulates data for code in new 
assemblies accessed in coverage sessions. 

DevPartner collects coverage data for .NET assemblies that are loaded at 
execution time and for referenced assemblies whether loaded or not. 
When you merge coverage analysis session data collected from running a 
managed code application, DevPartner creates a merge file with the 
following characteristics: 

� If all merged session files contain data for the same set of assemblies, 
DevPartner creates a merge file as described above. 

� If you merge a session file that contains data for the same set of 
assemblies that exist in the merge file, plus data for additional 
assemblies, DevPartner adds the data for the new assemblies to the 
merge file. 

� If you merge a session file that does not include data for all 
assemblies in the merge file, DevPartner adds data for any new 
assemblies, but does not alter data for existing assemblies in the 
merge file. 

If you have removed an assembly (and its references) from the 
application, DevPartner places the assembly in the Inactive Source 



Chapter 4� Automatic Code Coverage Analysis      93

filter in the Filter pane. DevPartner does not use inactive source in 
computing coverage statistics. 
For unmanaged C/C++ projects, DevPartner treats code in files previously 
accessed, but not accessed in subsequent sessions, as inactive source and 
adjusts the coverage statistics accordingly. 

You can create as many merge files as you wish. They are displayed in the 
DevPartner Studio folder in Solution Explorer.

Viewing Data

Controlling the Display of Data

You can control your view of coverage data by:

� Filtering data to show information for only the selected source files 
or images

� Sorting the source files in the Filter pane

� Sorting data using any of the data columns in the Method List tab

Filtering Data

The Filter pane lists the source files and images that your application 
used during the session and specially defined filters. You can use the 
Filter pane to filter data in the Method List tab and to navigate among 
source files and images.

Viewing Method Data

In the Filter pane, select:

� All to display data for all active images and source files.

� Source to display data for all active source methods. Double-click 
Source to display a tree view of the images used in your application.

� An application image (.EXE, .DLL, or assembly) to display data for all 
source methods in that image. Double-click an image to display a tree 
view of the source files used in that image.

� A source file to display data for all methods in that file. Double-click a 
source file to display its code in the Source tab.

� Inactive Source in a merge file to display data for all methods in 
images that your application loaded in earlier sessions, but did not 



94     Understanding DevPartner

load during the last session. DevPartner displays the Inactive Source 
node only if your application did not load a previously loaded image. 
In managed Visual Studio applications, DevPartner places an 
assembly in the Inactive Source filter if you have removed the 
assembly (and its references) from the application.

� A filter to display data for a selected group of methods. For example, 
Methods Not Covered displays data for all the methods that you 
have not tested, no matter which source file or image contains them.

Viewing Source Code

Double-click any source file in the Filter pane to view its contents in the 
Source tab.

Displaying Source Code for a Selected Method

Complete the following steps to display the source code for a method in 
the Method List.

1 Click the Method List tab to make it active.

2 Select a method name.

3 Right-click, and on the context menu, select Go to Method Source.

Complete the following steps to display a specific method on the Source 
tab.

1 Click the Source tab to make it active.

2 Select the name of the 
method you want to 
view on the Coverage 
Session toolbar.

Showing and Hiding Data Columns

Complete the following steps to show or hide data columns on the 
Source or Method List tab.

1 Click the Method List or Source tab to make it active.

2 Right-click in a column header. 

3 Choose the check boxes next to the names of the columns you want 
to show. Clear the check boxes next to the names of the columns you 
want to hide.

4 Click OK at the bottom of the list to update the current tab.

Select Source Method



Chapter 4� Automatic Code Coverage Analysis      95

Sorting the Filter Pane

You can sort the source file nodes in the Filter pane by percent lines 
covered or name. Complete the following steps to change the sorting in 
the Filter pane.

1 Right-click on the Filter pane.

2 In the context menu, choose one of the following sort methods:

� Sort by % Lines Covered to sort by the percent of lines executed 
in the source file 

� Sort by Name to sort alphabetically by the name of the source 
file 

� Sort by Unexecuted Lines to sort by the number of lines not 
covered in the source file 

3 After you choose a sort method, the nodes in the Filter pane collapse. 
When you expand them again, the source file nodes are sorted by the 
sort method you selected.

Creating a New Filter

Filters display a set of methods that match a specified set of criteria. After 
you create a filter, you can change the filter criteria using Modify Filter.

Complete the following steps to create a new filter.

1 Right-click in the Filter pane and choose Create Filter. 

2 Choose the type of filter. You can filter by % Covered, total number 
of lines, or a combination of both.

If you choose % Covered, specify Minimum and Maximum values.

If you choose total number of lines, click Between, Less than, or 
Greater than, and specify the appropriate values.

3 Click OK to close Create Filter and update the Filter pane.

To modify or delete a user-defined filter, choose the corresponding 
option from the right-click menu in the Filter pane. 

Sorting Data in the Method List

In the Method List tab, you can click a column header to sort the data by 
that column. Click the column header again to reverse the sort order.



96     Understanding DevPartner

Changing the Precision

All DevPartner data columns can be displayed with one to four digits to 
the right of the decimal point. Complete the following steps to change 
the decimal precision.

1 Choose DevPartner > Options.

2 Under the Analysis sub-folder, choose Display. 

3 Use the Precision list to select the number of digits you want to the 
right of the decimal point.

Coverage Analysis for Real World Application Development
The most obvious use for code coverage analysis is in quality assurance 
testing. Software testers need to ensure that they have tested all parts of 
an application before release. Similarly, developers can use coverage 
analysis to ensure they have verified code integrity before significant 
milestones. 

Merging is a powerful feature for gauging code coverage. DevPartner lets 
you create as many merge files as you need. For example, if your 
development team performs regular unit testing as application 
components are coded, you can merge coverage session files for each 
component to determine the completeness of testing before significant 
development milestones. Quality assurance teams can use merged 
coverage data to analyze the breadth of software test suites. Later they 
can create merge files to accumulate coverage data for scheduled quality 
assurance testing cycles for beta and release candidates. 

Tip: To quickly determine 
the last session file you 
merged, examine the 
Merge History on the 
merge file Merge 
Summary tab. 

If your Visual Studio application consists entirely of managed code, a 
merge file includes session data from all files or assemblies, including 
unused but referenced assemblies, that were accessed in any of the 
merged coverage session files. However, if your application includes 
native (unmanaged) C/C++ files as well, the merge file shows the native 
code files as Inactive Source if the native parts of the application were 
not accessed in the last session file that was added to the merge file. 
Thus, in order to obtain a complete coverage picture for an application 
that includes both native and managed code projects, make sure you run 
the native code portions of the application in the final coverage session 
you add to the merge file. 

Code Coverage in the Development Life-Cycle

� Unit testing 



Chapter 4� Automatic Code Coverage Analysis      97

As developers complete initial coding of application components, 
run unit tests under coverage analysis to insure the components 
function according to specification. Merge the results for a picture of 
application-wide unit testing. 

If you use the DevPartner Error Detection feature as part of the 
development or testing process, you can accumulate coverage data at 
the same time you check for errors. DevPartner indicates which 
merged sessions were run with error detection in the Merge History 
section of the Merge Summary tab. 

You cannot run performance analysis and coverage analysis 
simultaneously. However, when you fix a performance problem, you 
always verify the improvement by rerunning the test. It is a simple 
matter to run the test again to determine how much of your 
application you have tested for performance issues. 

� Test suite development

Quality assurance teams often develop suites of tests, both manual 
and automated, to guarantee application functionality. Use coverage 
analysis to ensure that the test suites cover all significant aspects of 
the application. As test suites grow, you are not likely to run them all 
in a single session. Merge session data for tests or test suites to 
confirm the breadth of test coverage. You can also integrate coverage 
analysis into your automated regression tests. 

If you make coverage analysis a regular part of your testing effort, you 
can set coverage percentage goals for various stages of the quality 
assurance process. Remember, the more code you test before you 
ship, the less likely you are to ship defective software. 

� Milestone testing

Quality assurance teams typically run batteries of tests on the 
application before any significant milestone, such as code 
completion, internal or external releases. Merge the results of test 
sessions to ensure complete testing of the application before any 
release. 

� Automated testing

You can use DevPartner to collect coverage analysis data 
automatically. You can also integrate unattended data collection into 
an automated build process using a batch file. You can do this for 
unmanaged Visual Basic or Visual C++ applications and for managed 
Visual Studio applications. Search for “automated data collection” in 
the Visual Studio .NET Combined Collection online help. 



98     Understanding DevPartner

Running a Program from the Command Line
In addition to running your program within Visual Studio, you can use 
command line executables to collect coverage profiling information 
without launching Visual Studio. 

For Visual C++ and Visual Basic applications, running your program from 
the command line is the only way to collect coverage data.

The following resources provide details about running your program 
from the command line:

� Refer to the DevPartner Coverage Analysis online help in Visual C++ 
6.0 and Visual Basic 6.0.

� Refer to the section Command Line and Configuration File Usage in the 
DevPartner Studio online help within the Visual Studio combined 
help collection in Visual Studio 2003 or Visual Studio 2005.

Analyzing Coverage in Visual C++
You can use DevPartner to instrument your Visual C++ applications. 
Follow this workflow to analyze them: 

� From the DevPartner menu in Visual C++, select one of the 
following commands to instrument your application:

� Build > Coverage to instrument only the new or changed parts 
of the active project.

� Rebuild All > Coverage to re-instrument the entire project.

� Batch Build > Coverage... to instrument or re-instrument 
selected files and their dependencies.

� Use DPAnalysis.exe to run your application. You can either:
� Use DPAnalysis.exe to run your application directly from the 

command line.
� Use DPAnalysis.exe to execute an XML configuration file to run 

your application.

� To analyze your results, use Visual Studio 2003 or Visual Studio 2005 
to open the session file.

For more information, refer to the DevPartner Coverage Analysis online 
help in Visual C++ 6.0 and the section Command Line and Configuration 
File Usage in the DevPartner Studio online help within the Visual Studio 
combined help collection in Visual Studio 2003 or Visual Studio 2005.



Chapter 4� Automatic Code Coverage Analysis      99

Analyzing Coverage in Visual Basic
You can use DevPartner to instrument your Visual Basic applications. 
Follow this workflow to analyze them: 

� On the Visual Basic DevPartner menu, select Make with Coverage 
Analysis to instrument the active project without running it 

� Use DPAnalysis.exe to run your application. You can either:
� Use DPAnalysis.exe to run your application directly from the 

command line.
� Use DPAnalysis.exe to execute an XML configuration file to run 

your application.

� To analyze your results, use Visual Studio 2003 or Visual Studio 2005 
to open the session file.

For more information, refer to the DevPartner Coverage Analysis online 
help in Visual Basic 6.0 and the section Command Line and Configuration 
File Usage in the DevPartner Studio online help within the Visual Studio 
combined help collection in Visual Studio 2003 or Visual Studio 2005.



100     Understanding DevPartner



 101

Chapter 5

Finding Memory Problems

� Introducing DevPartner Memory Analysis

� Memory Problems in Managed Visual Studio Applications

� DevPartner Support for Visual Studio

� Identifying Memory Problems

� Locating Memory Leaks

� Solving Scalability Problems

� Managing Memory for Better Performance

� How Memory Analysis Fits in Your Development Cycle

� Running a Program from the Command Line

Introducing DevPartner Memory Analysis
The DevPartner memory analysis feature enables you to analyze memory 
allocation in your managed Visual Studio application. 

DevPartner memory analysis presents memory data in context, enabling 
you to navigate chains of object references and calling sequences of the 
methods in your code. This provides an in-depth view of how your 
program uses memory and the critical information you need to optimize 
memory use. 

Note: DevPartner Memory Analysis analyzes managed code only, and is 
therefore not supported in the DevPartner for Visual C++ Bounds-
Checker Suite.

When you run your application under memory analysis, DevPartner can 
show you the amount of memory consumed by an object or class, track 
the references that are holding an object in memory, and identify the 



102     Understanding DevPartner

lines of source code within a method responsible for allocating the 
memory. 

This chapter describes potential memory issues in managed Visual Studio 
programs and shows you how to use DevPartner memory analysis to 
improve the performance of your applications. 

Memory Problems in Managed Visual Studio Applications
Managed Visual Studio applications benefit from a sophisticated memory 
management environment with garbage collection. Unlike unmanaged 
(native) C++, in which you must explicitly free the memory you allocate, 
the garbage collector frees memory once the object for which it was 
allocated is no longer in use, or more accurately, no longer “reachable” 
by the application. Largely because of this feature, many developers 
assume that managed languages relieve them of the headaches 
traditionally associated with memory management. However, memory 
allocation and use in managed Visual Studio programs can still be a cause 
of performance bottlenecks and resource depletion. 

Does your application exhibit any of these symptoms? 

� Slows down over time

� Runs slowly, or slows down noticeably when you perform certain 
operations 

� Performs poorly under load conditions

� Performs poorly when other applications are running

Any of these symptoms may cause you to suspect that your application 
has a performance problem. But how do you know if the problem is 
memory-related? A given number of an application’s classes must be 
loaded before the program can execute a particular function. Is your 
program tying up memory resources by immediately loading classes that 
will not be needed unless a particular task is performed? How many 
instances of a particular class does your application create? How many do 
you really need? Similarly, every program must create and allocate 
objects in order to do anything useful. Object allocation always incurs 
memory costs. How do you know if your program is allocating too many 
objects, or allocating them efficiently? Are the objects your program 
allocates being cleared by the garbage collector? Are they being collected 
when you expect them to, or are they remaining in memory long after 
their usefulness has passed? 



Chapter 5� Finding Memory Problems     103

How Memory Analysis Helps You

The DevPartner memory analysis feature provides a comprehensive view 
of the way your managed application uses memory. DevPartner provides 
three different types of memory analysis, designed to help you isolate 
different kinds of memory-related problems. Regardless of which type of 
analysis you use, all include the following features:

� Real-time graph — DevPartner presents a live view of your 
application’s memory use as it runs. This appears in the Session 
Control Window. You can see how much memory is being used by 
your application code (profiled code), system and other application 
code (excluded code), and how memory consumption compares to 
the memory reserved for the managed heap. 

� Dynamic list of classes — DevPartner updates the list of profiled 
classes in real time, showing you the number of objects allocated and 
number of bytes used by each class, as your application runs. 

� Detailed heap views — You can capture a detailed view of the 
managed heap at any time during program execution. DevPartner 
saves this data in a session file that you can then use to analyze 
memory problems in depth. DevPartner provides multiple ways to 
drill down into the session data, so you can see how your application 
uses memory and ultimately identify the methods or lines of code 
responsible for the most memory use. 

DevPartner Support for Visual Studio
This section describes how the DevPartner memory analysis features 
integrate into Visual Studio. 

DevPartner IDE Integration in Visual Studio

DevPartner is fully integrated into Visual Studio. Full integration enables 
you analyze the way your application uses memory on a regular basis, as 
you develop it, without leaving the development environment. To *-
collect memory data, click Start Without Debugging with Memory 
Analysis on the DevPartner toolbar.

When the analysis session completes, DevPartner displays the data in the 
IDE. DevPartner saves the performance data in a memory analysis session 
file, with a .dpmem extension. Session files are automatically added to the 
DevPartner Studio folder that you can view in the Solution Explorer for 
the active solution. To review an existing memory analysis session file, 
double-click the file in Solution Explorer. 



104     Understanding DevPartner

DevPartner Toolbar and Menu Integration

DevPartner adds commands related to memory analysis to several Visual 
Studio menus. In addition, DevPartner provides toolbars that include 
shortcuts to basic analysis functions. 

� DevPartner toolbar 

�  Starts memory analysis data collection. Menu equivalent: 
Start Without Debugging with Memory Analysis on the 
DevPartner menu. 

� Memory Analysis Session Controls 

The session controls for memory analysis are located in the Session 
Control Window. The Session Control Window appears when you start 
your application under memory analysis. Use the Session Control 
Window to interactively control the memory analysis session. When you 
notice something interesting in the real-time graph, or in the dynamic 
list of classes, you can manipulate data collection or take an immediate 
snapshot of the managed heap. 

�  Starts and stops tracking object allocations (Leak analysis 
only) 

�  Forces a garbage collection

�  Clears data collected to the point at which the Clear action 
executes (Temporary objects analysis only)

�  Pauses and restarts the real-time graph display

� Process list indicates the process for which DevPartner is 
collecting data 

� View... buttons take a snapshot of the managed heap. 

� DevPartner > Options 

� The DevPartner > Analysis folder in the Options dialog box 
accesses the Analysis options pages to configure memory 
analysis data collection.

See the Memory Analysis section of the DevPartner online help in the 
Visual Studio Combined Collection for more information. The online 
help provides details about memory analysis commands that DevPartner 
adds to the Visual Studio menus and context menus, and how existing 
Visual Studio menu commands relate to DevPartner memory analysis. 



Chapter 5� Finding Memory Problems     105

Solution Explorer Integration

When you run a memory analysis session 
from Visual Studio, DevPartner adds the 
resulting session file or files to the DevPartner 
Studio folder in Solution Explorer. You can 
save or discard session files when you close the 
solution, or set file management options in 
DevPartner or Visual Studio.

From Solution Explorer you can open a session 
file by double-clicking, use the file or folder 
context menu options to add or remove files 
from the solution, view properties, and cut or 
copy the file specification to the clipboard. 

Session File Integration

When your application stops, DevPartner displays the results of the 
memory analysis sessions in a Session window in Visual Studio. From the 
Session window, you can analyze results within the development 
environment. You can drill down into the data to examine object 
references or to examine the call relationships of the methods that 
allocated the objects, jump to the source code for a particular method, 
and open the source code for any method for editing in Visual Studio. 

Identifying Memory Problems
Consider this scenario:

When your Quality Assurance team reports the first test results for your new 
managed application, you were pleased to learn that it did what it was 
supposed to do. But in later tests, QA ran longer test cycles and reported that 
the longer the application ran, performance began to slow. 

That is not what you wanted to hear. How do you know what part of your 
application to examine first? When you find the problem, how do you correct 
it?

To find problems in your application, run it under DevPartner. You do 
not have to wait until you suspect a memory problem to use DevPartner. 
Make testing your application’s memory use with DevPartner a routine 
part of the development process. 

DevPartner can help you quickly determine the way your application 
uses memory resources, revealing current or potential problem areas. 



106     Understanding DevPartner

To run an application under DevPartner memory analysis:

1 Open the solution for the application in Visual Studio. 

2 Review the DevPartner Coverage, Memory and Performance 
Analysis properties in the Visual Studio properties window. 

3 Click Start Without Debugging with Memory Analysis on the 
DevPartner toolbar. 

4 Use the Session Control Window, which appears after you start your 
application, to observe the way your program is using memory. 

� The real-time graph presents a visual representation of memory 
use.

� The class list updates dynamically to show the classes that use the 
most memory as your program runs.

� Right-click the class list to switch between Show Top 20 Classes 
and Show Top 20 Classes with Source.

5 Use the Session Control buttons on the Session Control Window to 
control data collection and take snapshots of the managed heap for 
detailed analysis.

When you run a memory analysis session, you can choose to examine 
one of three important potential problem areas:

� Memory leaks
� Temporary object creation
� Overall RAM footprint

The symptom your application exhibits should guide your choice of the 
type of analysis to run first. Of course, you will eventually want to run 
your application under all three types of memory analysis. Even if you do 
not find a problem, it will enhance your understanding of how your 
program is using memory resources. 

Table 5-1. Symptoms and Analysis Tools

Symptom Analysis Tool

Performance degrades over time; recovers on 
restart. Performance improves after restarting the 
application, but degrades again. 

Memory Leaks

Scalability problems; temporary performance 
degradation.

Temporary Objects

Memory Leaks

Sluggish performance, does not improve after 
restarting the application.

RAM Footprint

Temporary Objects



Chapter 5� Finding Memory Problems     107

Collecting Server-side Memory Data

You may want to collect memory analysis data for parts of a Web or 
client/server application. With DevPartner, you can collect memory data 
for managed code in any process as you run the client application. 

To collect remote process data, install DevPartner on the client and 
DevPartner and the optional DevPartner Server license on the remote 
machine. In this way, you can collect data for a distributed application as 
it is actually deployed. See Installing DevPartner (DPS Install.pdf) and the 
Distributed Licensing Management License Installation Guide (LicInst4.pdf) 
for more information.

Collecting Data from Multiple Processes

Web or client/server applications may run more than one process. 
DevPartner collects memory analysis data for managed code 
applications. For example, when you profile an ASP.NET application you 
will not collect data for the browser process (iexplore). However, you 
will collect data for managed code that runs in the aspnet_wp or w3wp 
processes. 

When you run such an application under memory analysis, the Memory 
Analysis Session Control window in Visual Studio displays the server and 
surrogate processes in the process selection list. Use the process list to 
focus data collection. 

Running a Memory Analysis Session

The first thing you will notice when running any memory analysis 
session is the real-time graph on the Session Control Window. The real-
time graph provides a visual representation of how your application is 
using memory resources. Observe the pattern the graph takes as you 
exercise your application. Different memory problems create 
characteristic patterns, so the real-time graph provides the first clue to 
the existence and nature of a memory problem.

Tip: Pay careful attention 
to the shape of the real-
time graph as you run 
your application. You can 
often diagnose a memory 
problem immediately by 
observing the pattern of 
the graph. 

Figure 5-1. Memory Analysis Session Control Window Real-time Graph.



108     Understanding DevPartner

For example, if the graph shows a rising pattern that never returns to 
baseline, as in Figure 5-1, your application is probably leaking memory. 
You may suspect that the progressive slowdown of your application 
noticed by your QA team is consistent with a memory leak, but the real-
time graph will confirm that diagnosis. 

If the graph does return to baseline, but is characterized by periodic 
spikes in memory use, your application is creating large numbers of 
objects as it runs. Granted, the memory allocated is being freed, but such 
an application may not scale well under load. 

If your application slowdown occurs in response to an increase in users 
or inputs, it could indicate a scalability issue. Again, the real-time graph 
will indicate the nature of the problem, enabling you to immediately 
point your diagnostic efforts in the right direction. 

Even in the absence of a suggestive pattern, the real-time graph can 
provide important information. For example, if your application 
consistently consumes nearly all the memory allocated for the managed 
heap, and that amount is large relative to the anticipated resources of 
your target users’ systems, you may want to reduce the overall memory 
footprint of your application. This chapter provides detailed information 
about such cases and their implications for application performance. 

Locating Memory Leaks
The amount of memory consumed by your application can have a major 
impact on how well the application performs. The larger the amount of 
memory consumed (RAM footprint), the more likely it is that the 
application will run slowly and scale poorly. Leaked memory—the 
allocation of memory that is not reclaimed—can bloat your application’s 
RAM footprint. But memory leaks do not occur in the garbage-collected 
managed .NET environment, do they? Granted, automatic garbage 
collection relieves you of the C++ programmer’s responsibility to 
explicitly free the objects you create, so memory is not “leaked” in the 
classic C++ sense. But it is still possible to retain references to objects that 
the program does not need, and in some cases, will never use again. As 
long as a reference to an object exists, the referenced object is considered 
to be a live object by the garbage collector; a live object cannot be 
collected. This condition, like leaked memory in C++, is undesirable. 
Such references can be difficult to track down. That is where memory 
analysis helps you.

To begin, consider memory leak analysis. 



Chapter 5� Finding Memory Problems     109

Running a Memory Leak Analysis Session

To run your application under memory analysis and analyze for leaks: 

1 Open the solution for your application in Visual Studio.

2 Review the DevPartner Coverage, Memory and Performance 
Analysis properties in the Visual Studio properties window. 

3 Click Start Without Debugging with Memory Analysis to start your 
application. When the Session Control Window appears, select the 
Memory Leaks tab. 

Tip: You can also start 
your application with 
debugging. Click the 
arrow to the right of the 
memory analysis button 
and select Start with 
Memory Analysis.

4 Exercise the program to allow any one-time initializations to 
complete.

5 To begin tracking memory allocations, click Start Tracking ( ) in 
the Memory Leaks tab of the Session Control Window.

6 Exercise the program features you want to test.

You will see a spike in the real time graph, and the most memory-
intensive classes will appear in the list of profiled classes. The number 
of tracked objects for each class appears in the Tracked instance 
count column.

Figure 5-2. Session Control Window Data Display



110     Understanding DevPartner

7 You can click View Memory Leaks to take a snapshot of the 
managed heap immediately, or exercise the same section of your 
application again, which you would expect to clear the previously 
allocated objects.

8 Notice the Tracked instance count column in the list of profiled 
classes. Did the count of tracked objects decrease as you expected? Do 
tracked classes that you expected to be collected still appear? If you 
see anything suspicious, click View Memory Leaks. 

If all the allocated objects were not freed, you should also notice that 
the memory display in the real-time graph did not return to the pre-
exercise level. 

Figure 5-3. Results Summary appears when you click View Memory Leaks.

When you click View Memory Leaks, DevPartner forces a garbage 
collection and creates a session file that you will use to locate the source 
of the leaks. DevPartner presents the initial view of the session data in 
the Memory leak analysis page.

Understanding Memory Leak Analysis Results

DevPartner memory leak analysis defines a memory leak as any object 
that is allocated on the managed heap during a specified period of time, 
and has not been freed when you collect memory data. Memory leak 
analysis helps to reveal where your application holds memory that 



Chapter 5� Finding Memory Problems     111

should be freed. You can use this information to determine how to 
change your code so this memory will be freed.

To uncover memory leaks, run your application under the DevPartner 
memory leak analysis feature and exercise it in a way that should free 
previously allocated objects. 

If memory use consistently rises and does not decrease (or does not 
decrease as you would expect it to) in response to garbage collection, 
your application is probably leaking memory. 

For an example, see Figure 5-2 on page 109. The real-time graph in this 
figure shows a rise in memory use that did not return to baseline after 
garbage collection. If you look at the Tracked instance count for the 
classes that belong to your application, you will notice that some tracked 
objects are not being collected by garbage collection. The number of 
uncollected instances can be seen in the Tracked instance count 
column in the Session Control window.

Once alerted to a possible leak, use the Memory Leaks Results Summary 
(session file) that DevPartner creates to locate the source of the leak so 
you can fix it. The memory leak analysis results summary gives you the 
following ways to drill down into your data:

� Objects that Refer to the Most Leaked Memory
� Methods with the Most Leaked Memory

Each chart shows the top five objects or methods that are associated with 
leaked memory. To see more information about the top five objects or 
methods, click Show Complete Details for that chart.

The starting point you choose will depend on the problem you want to 
solve and your preferred approach to the problem. For example:

� If you notice that a limited set of specific objects are being leaked, 
you can use the Objects that refer to the most leaked memory 
graph to quickly see which objects hold references to the leaked 
objects. 

� If you are familiar with the source code for the allocating method and 
can tell by examining the source code whether the leaked object 
should have been cleared, you may want to start with the Methods 
that allocate the most leaked memory chart.

From both the objects and methods charts, you can quickly switch to a 
view that shows another aspect of your data. 

When viewing complete details for Objects that refer to the most 
leaked memory, you can select these views:

� Object Reference Graph



112     Understanding DevPartner

� Allocation Trace Graph
� Source

When viewing complete details for Methods that allocate to the most 
leaked memory, you can select these views:

� Call Graph
� Source

The following example uses Objects that refer to the most leaked 
memory as a starting point.

Objects that Refer to the Most Leaked Memory

This example shows a case where leaked memory is caused by a limited 
set of objects. Other possible approaches are also presented. 

The garbage collector cannot clear an object as long as there is at least 
one existing reference to that object. When your application runs, it 
creates objects. Some objects are needed for as long as the program runs. 
These are permanent, or long-lived objects. However, most objects 
should become eligible for garbage collection once they are no longer 
referenced by another object. 

Figure 5-4. Objects that Refer to the Most Leaked Memory. 

The chart in Figure 5-4 shows the top five objects that hold references to 
the most leaked memory. These objects prevent the leaked objects from 
being freed. Referring objects that account for the biggest memory hit 
appear at the top of the chart. The data indicates a particular set of 
objects is responsible for the leaked memory. Use this chart as the 
starting point to drill into session data and locate the source of the leaks. 

Clicking Show Complete Details (below the bar graph; see Figure 5-4) 
opens a detailed display for objects that refer to leaked memory.

The top panel of this display lists all of the objects that refer to leaked 
memory, as displayed in the chart in Figure 5-5. This list includes the top 



Chapter 5� Finding Memory Problems     113

five objects displayed in the original bar graph and other objects that 
refer to smaller amounts of leaked memory.

Figure 5-5. List of objects that refer to the most leaked memory.

The default is to sort the objects by the Leaked size (total size of the 
leaked objects referred to by the selected object) column. You can also 
sort the list by any of the other columns, to help you see patterns in the 
data. If you right-click an item in the list and choose View leaked 
objects referenced by this object, you will see the objects that were 
actually leaked. 

Figure 5-6. The Object Reference Graph shows why an object is still in memory.

Select a referring object that you want to examine. It is important to be 
able to quickly understand the sequence of references that keep these 
objects in memory. Click the Object Reference Graph tab to view the 
reference graph. The Object Reference Graph shows why the selected 
object has not been cleared by garbage collection. It shows the chain of 
objects between the selected object and the garbage collection root(s) 
that are keeping it alive. 



114     Understanding DevPartner

Scroll down the list of objects to evaluate the other objects. Some object 
reference graphs will be quite simple, while others may be quite complex. 
You may find evidence that indicates conditions such as many references 
to small objects or a few references to large objects. The goal is to use this 
graph to determine the point in the chain of referring objects where it is 
most efficient to eliminate the leak. 

The chain of referring objects shown in the Object Reference Graph can 
range greatly in complexity. In many cases, there are multiple referrers 
and the graph can become very complex. Drag the rectangle or click on a 
node in the overview pane to change the nodes displayed in the detail 
pane. If you are presented with a complex graph, you can simplify the 
view by right-clicking a node and selecting Show Fewer Referrers. You 
can also drag nodes within the graph for easier viewing.

The labels such as elements on the connecting arrows represent the 
referring data member in the next class in the graph. Bracketed numbers 
identify arrays. If you know your code very well, these can speed the 
process of zeroing in on potential problem areas. 

You can also right-click a node and select Edit Source to open the related 
source code within the IDE. You can also view the related source code by 
selecting the Source tab. DevPartner highlights the line in the method 
that allocated the object in the graph. 

To increase program understanding, you can view the source for each 
node in the graph sequentially and see the events that led to the 
allocation of the memory that leaked. DevPartner offers alternate ways to 
view these program events. For example, the Allocation Trace Graph 
shows who called each method that allocated the selected object. 

You can go directly from the object in the list to the source code. In real-
world problem solving, you should drill down using whatever method 
suits the problem you are trying to solve or corresponds to the way you 
think about your code. 

Alternate Methods of Solving the Problem

The preceding example focused on use of the object reference path to 
locate the source of a leak. There are other ways to approach this 
problem. For example:

� Look at the Allocation Trace Graph to determine who called the 
method that allocated the object. From there go to the source code.

� Go directly to the source code from the list of objects. 

Recall too that DevPartner presents different views of your data on the 
Memory leak analysis page. The first example used Objects with the 



Chapter 5� Finding Memory Problems     115

Most Leaked Memory. However, depending on the complexity of the 
data, or on your own preferences, you could examine a problem from 
any of the following graphs on the Memory leak analysis page.

Methods that Allocate the Most Leaked Memory

This graph, which appears in the lower half of the Memory leak analysis 
page, shows the top five methods that allocated objects that were leaked. 
When you click Show Complete Details, DevPartner provides a list of all 
methods that leaked objects, with access to a Call Graph view and to the 
source code for the method, if available.

Figure 5-7. Methods that Allocate the Most Leaked Memory 

Select a a method in the Method List to see the objects allocated from 
the method that were leaked, or to view the source code for the method, 
showing the lines that allocated the leaked objects, with statistics about 
the number and size of objects leaked on the line. 

Figure 5-8. Details for Methods that allocate the most leaked memory.



116     Understanding DevPartner

For example, to drill into to the data:

� Right-click a method in the Method List.

� From the selected method, go to a list of the objects allocated by the 
method or to a Call Graph for the method.

� From an object in the Object List, view a list of referenced objects, an 
Object Reference Graph, or an Allocation Trace Graph.

� From a method, or a node in a Call or Allocation Trace Graph, view 
source code with object allocation data for individual lines.

� From a method or object in a list, or a node in a Call, Object 
Reference, or Allocation Trace Graph, or a line of source code, 
choose Edit Source to open the source to the appropriate line for 
editing.

Solving Scalability Problems
When performing memory analysis with DevPartner, you can use 
Temporary Objects analysis to diagnose and correct scalability problems.

Examples of Scalability Problems

Scalability problems surface when an application runs well until users 
begin to work with it more intensively. For a client-server application, 
this might happen when the number of users increases. For a standalone 
application, this might happen after numerous text manipulations or 
mathematical computations. These can be labeled as scalability problems. 
As the scale of the work done by the application increases, performance 
degrades.

A Possible Cause: Temporary Objects

One possible cause of scalability problems is the creation of too many 
temporary objects. In this case, object creation can become a 
performance bottleneck—a problem that requires correction.

The creation and use of objects is important within managed Visual 
Studio programs. Unfortunately, some coding techniques have the side-
effect of creating many objects. 

Part of the problem is the creation of objects such as those created with 
the String class. It takes processing cycles to create objects and later 
destroy these objects. If you can reduce the number of objects created, 
you can generally expect better performance.



Chapter 5� Finding Memory Problems     117

Object Life Span

DevPartner tracks the objects allocated by your code and categorizes 
them based on how long it takes for them to be collected. There are three 
categories: 

� Short-lived — collected at the first garbage collection after the object 
was allocated (generation 0)

� Medium-lived — collected at the second garbage collection after 
allocation (generation 1)

� Long-lived — survives across many (or all) garbage collections during 
the run of the program

Note: The Microsoft .NET garbage collector supports three generations, 
designated 0, 1, and 2. Objects allocated since the last run of the 
garbage collector are in generation 0. Objects that survive one 
garbage collection after allocation become generation 1 objects. 
Generation 1 objects that survive one or more additional garbage 
collections become generation 2 objects. 

DevPartner combines short-lived and medium-lived object allocations in 
a temporary category. In other words, temporary objects are the short-
lived objects and medium-lived objects that your application creates, 
considered as a single group. 

Medium-lived objects have the greatest impact on performance, and 
cause the garbage collector to work harder than necessary. Individual 
short-lived objects have less impact on garbage collection, although there 
is still a performance penalty for calling the object's constructor. 
However, creating large numbers of short-lived objects may cause 
bottlenecks and memory shortages. 

If you believe that your code has scalability issues, use DevPartner to 
monitor memory used by your code as it executes. If the real-time graph 
in the Session Control Window shows an up-and-down, wavelike 
pattern—which suggests that your application is creating many 
temporary objects—you can use DevPartner to analyze the application 
for temporary object creation. DevPartner categorizes the results of 
temporary object analysis by entry points and by methods. Regardless of 
which you use to drill into the data, DevPartner helps you see how much 
memory the temporary objects consume and identify the specific lines of 
code that allocate the temporary objects. 

Running a Temporary Objects Analysis Session 

To run your application under memory analysis and analyze for 
temporary objects: 



118     Understanding DevPartner

1 Open the solution for your application in Visual Studio.

2 Review the DevPartner Coverage, Memory and Performance 
Analysis properties in the Visual Studio properties window. 

3 Click Start Without Debugging with Memory Analysis to start your 
application. When the Session Control Window appears, select the 
Temporary Objects tab.

Tip: You can also start 
your application with 
debugging. Click the 
arrow to the right of the 
memory analysis button 
and select Start with 
Memory Analysis.

4 Exercise the program to allow any one-time initializations to 
complete. Exercise the features you want to test.

5 There are two ways to capture temporary object data. 

� For an overall view of the way your application allocates 
temporary objects, click View Temporary Objects in the Session 
Control Window to capture a snapshot of temporary object 
allocations. 

� To focus the analysis on a specific part of your application, click 
 to clear the temporary object data collected as you warmed 

up the application. Exercise the feature of interest, then click 
View Temporary Objects.

6 When you finish data gathering, exit the application. DevPartner 
creates a final temporary objects snapshot. 

Identifying Scalability Problems

DevPartner enables you to locate potential trouble spots and then drill 
down into your application’s use of temporary objects to identify 
problems and improve the overall quality of your code.

Real-time Graph

The real-time graph provides a high level view that enables you to 
identify areas that may be causing problems. 

If your application is creating large numbers of short and medium lived 
objects, you will see a peak in profiled memory in the real time graph 
which diminishes when the garbage collector runs. If you exercise the 



Chapter 5� Finding Memory Problems     119

feature again after garbage collection, you will see another peak, caused 
by creating a new group of temporary objects. 

Figure 5-9. Real-time graph showing a pattern that suggests excessive temporary 
object creation

The classes responsible for the most objects appear in the list of profiled 
classes, sorted by the Size column. This highlights the classes whose 
objects consume the most temporary memory. Notice the Instance 
Count as well, which shows how many object instances were created for 
each class. 

Figure 5-9 shows a real-time graph that suggests excessive temporary 
object creation. Spikes in the graph show where your application is 
creating lots of objects. Excessive object creation can create major 
performance or scalability issues in a managed code application, 
especially in server applications. Even if scalability is not an issue, 
methods that allocate many short-lived objects often indicate easy-to-fix 
performance problems.

Viewing Temporary Objects

Click View Temporary Objects to collect data at a specific point in your 
application. DevPartner displays a Temporary object analysis page that 
categorizes the data by entry points and by methods that create the most 
temporary objects. 

An entry point is a profiled method that is called by excluded (that is, 
system or third-party) code. When your application runs, monitoring 
begins with the first call to a profiled, or user-code, method. (User-code 
methods are methods in your application source code.) This is called an 
entry point. All calls made to other user-code methods from that point 
are considered to be part of the entry point. 

Methods that are called only by other user-code methods are not entry 
points. However, such methods could be responsible for large amounts of 
temporary memory use. The second chart on the Results Summary 
highlights methods that allocate lots of temporary memory, but are not 
necessarily entry point methods. Thus, if a child method called by an 



120     Understanding DevPartner

entry point is the major memory allocator in your application, you can 
locate that method in Methods that use the most memory without 
having to follow the Call Graph for the entry point method that called 
it. 

From the Results Summary view you can drill into the data in order to 
understand how much memory the objects allocated by these methods 
are consuming, and to identify the lines of code that are creating the 
short- and medium-lived objects.

Analyzing Temporary Object Data

Clicking Show Complete Details below either chart opens a detailed 
view of all the entry points, or all the methods in your application that 
allocated temporary memory. In addition to the complete list of 
methods, the view includes a Call Graph and a Source tab. 

The available data columns in the Method List provide more extensive 
data about your application’s methods than those in the list of profiled 
classes on the Session Control Window. See the online help for 
complete details. 

Call Graph

Click on an entry point in the entry points list or a method in the 
method list to view a Call Graph for the method. The Call Graph shows 
the selected method and its child methods, and highlights the critical 
path. The critical path is the sequence of child method calls that resulted 
in the largest cumulative memory allocation for the selected method. 

Methods appear as nodes in the Call Graph. Each node can display data 
about memory allocated by the method. In addition, the links between 
nodes can display data about memory allocated by that branch of the 
graph. The data is expressed as percentages of memory allocated. 

� Nodes - The percentage of memory allocated by the method that is 
attributable to the body of the method itself. 

� Links - The percentage of memory allocated by the method that is 
attributable to child methods executed in that branch.

In this way DevPartner shows you not only which methods are 
responsible for the temporary objects your application creates, but 
exactly where in the paths of execution the allocations occur. 



Chapter 5� Finding Memory Problems     121

Figure 5-10. A Call graph for an entry point method shows the critical path. 

Right-click on any node in the Call Graph to: 

� Redraw the Call graph for the selected node
� View source code for the selected node
� Edit source code for the selected node

Source View

When you view the source code for an entry point or method in the 
Entry points that allocate the most memory or the Methods that use 
the most memory method lists, DevPartner opens the Source tab view to 
the selected method. In addition to the source code, DevPartner provides 
detailed information about the memory allocated by individual lines in 
your application code, including how often the line executed, the 
number of short-, medium-, and long-lived objects, including or 
excluding child objects, allocated on the line, and the accumulated sizes 
(memory load) of these objects. See the online help for a complete list. 

Interpreting Results to Fix Scalability Problems

The following suggest some of the possible ways to interpret memory 
analysis results to fix memory-related scalability problems.

� Look at the Temporary Objects analysis page to determine if an 
entry point or non-entry point method consumes the most 
temporary memory. 

Move frame in overview pane 
to navigate a large Call Graph

Click to expand or collapse 
parent/child branches

Critical path 
highlighted 

Hover mouse to view additional data 
for a method node or a link value 

Use the context menu to redraw 
graph with a new base node 



122     Understanding DevPartner

� If the largest consumer is an entry point, drill down using the Entry 
points that allocate the most memory view to determine which 
methods in the entry point’s execution path require the most 
temporary space and should be modified or called less often. 

� If the largest consumer is an non-entry point method, drill down 
using the Methods that use the most memory view to determine 
which parts of your code to modify. 

� Compare the number of short- and medium-lived objects, as well as 
the amount of temporary space they consume. Use this information 
to determine which parts of your code to modify.

� If both short-lived and medium-lived objects consume similar 
amounts of temporary space, you can run a performance analysis to 
find out how much time the constructor uses to create the temporary 
object. 

� Use the Call Graph to understand the relations between methods 
that allocate temporary memory. Examine characteristics of different 
methods: percentages of memory consumed; actual bytes used; 
numbers of temporary objects created. Use this information to 
identify which method to modify.

� Use the Source tab to identify specific lines in your code that allocate 
temporary objects. Examine the kind and sizes of objects created, and 
how often the line is executed. Use this information to identify more 
efficient ways to use objects. 

Managing Memory for Better Performance
Some managed code applications can consume hundreds of megabytes of 
RAM while they are running. We have examined some specific memory 
problems in this chapter: memory leaks, which can cause your 
application to consume more and more memory as it runs until it 
eventually exhausts the heap; and periodic spikes in memory use caused 
by excessive temporary object creation, which can lead to scalability 
issues. These problems impact your application’s memory use in negative 
ways. These problems also contribute to your application’s memory 
footprint. Your application may be well-behaved with respect to these 
errors—but it may still feel slow, especially when run on the kinds of 
hardware and in the kinds of software environments that your target 
users are likely to have. 

One probable cause of sluggish performance is that your application may 
be using excessive amounts of memory as it runs. What is excessive? That 



Chapter 5� Finding Memory Problems     123

depends on the environment—hardware and software—in which your 
application is used. You may have a pretty good idea of what that 
environment is, but you cannot know for certain that your target users 
will not try to run several other applications at the same time as they run 
yours. Nor can you force hardware upgrades on your users every time you 
release a new version of your application. All of this makes a strong 
argument for keeping your application’s memory footprint small. 

Let’s be more specific: We are talking about RAM footprint, not just 
overall memory use. The worst thing you can do to ruin application 
performance—and your end-users’ perception of your application—is to 
force it to rely on the operating system’s virtual memory system. Paging 
managed objects into virtual memory is a sure way to ruin application 
performance. 

Tip: Test frequently 
during development to 
make sure your 
application continues to 
exhibit an acceptable 
footprint.

What can you do to optimize your application’s use of RAM resources? 
DevPartner provides RAM Footprint analysis as part of its memory 
analysis capability. Run RAM Footprint analysis regularly as you develop 
your application. The way your application uses RAM resources is most 
likely a result of application design and architecture. It is much easier to 
re-design a feature early in the development process than to wait until 
the application is ready for beta release. 

Measuring RAM Footprint

DevPartner helps you focus your tuning efforts on the areas that will 
have the greatest impact on RAM consumption.When you run your 
application under RAM Footprint analysis, DevPartner enables you to:

� View the real-time graph of your application’s RAM consumption, 
and view the real-time list of profiled classes associated with the most 
bytes of memory.

� Take snapshots of the managed heap, which you use to examine the 
objects responsible for the most memory use. 

To run your application under RAM Footprint analysis:

1 Start your application under a DevPartner memory analysis session. 

When the Session Control Window appears, click the RAM 
Footprint tab. 

2 Exercise the application to allow classes to load and one-time 
initializations to run. 

As you run the application, observe the real-time graph. Be alert for 
patterns that may indicate a specific problem, such as a leak or 
excessive spiking due to temporary object creation.



124     Understanding DevPartner

Notice the amount of RAM consumed. The y-axis of the real-time 
graph indicates the amount of heap memory used by your 
application (Profiled Memory). Notice also the amount of RAM being 
used in relation to the memory allocated for the managed heap 
(System Memory). 

3 Warm up the application and get it into a steady state. (The 
application is probably idle at this point.) 

4 Force a garbage collection.

5 Click View RAM Footprint to generate a RAM Footprint Results 
Summary (session file) reflecting the current state of the managed 
heap. 

Understanding Footprint Data

Use the RAM Footprint analysis page to gain an in-depth understanding 
of how your application is using memory. The RAM Footprint Results 
Summary gives you the following ways to examine and drill down into 
your data: 

� Object Distribution 
� Objects that refer to the most allocated memory
� Methods that allocate the most memory

Which you use first will depend on the data presented, and to some 
extent, on the way you tend to think about your application. 

Object Distribution

DevPartner presents the distribution of objects in memory as a pie chart 
so you can immediately see the proportion of memory used by your 
application (Profiled objects) relative to that used by system code (System 
objects).

Interpreting the Object Distribution chart:



Chapter 5� Finding Memory Problems     125

�If your application (profiled 
code) is the largest wedge in the 
pie, and memory use is moderate 
to high relative to expected 
resources in the target deployment 
environment, you should 
determine which parts of your 
application allocate the most 
memory. To do this, use the 
Objects that refer to the most 
allocated memory or the 
Methods that allocate the most 
memory chart to drill down into 
the data. Ultimately, you want to 

locate in source code those parts of the application that you can 
change or restructure to use less memory. 

� If the Profiled Objects part of the pie chart is small, your application 
is not the main allocator of memory. This is a good thing. But if the 
application still seems sluggish or if overall memory use is high, you 
may want to investigate how your application is using unmanaged 
code or system resources. Unmanaged code can pin objects in 
memory. Visual Studio applications often spend a great deal of time 
in the .NET Framework; you may find that you can call Framework 
methods more efficiently, or less often. 

You can drill into the RAM footprint data by using either of two analysis 
paths. 

� Objects that refer to the most allocated memory 

� Methods that allocate the most memory 

Objects that refer to the most allocated memory 

Objects that refer to the most allocated memory shows the objects that 
held references to live objects at the time the session file was generated. 
The size displayed is the total of all objects referenced from this instance.

� Click Show Complete Details to drill into the data for these objects.

Objects that refer to the most allocated memory enables you to focus 
on instances of objects responsible for the largest amounts of memory. 
Organizing the data by instances of objects that hold references to 
allocated memory highlights large objects, that is, the objects for which 

Figure 5-11. Object Distribution Chart



126     Understanding DevPartner

a maximum amount of memory would be reclaimed if the object could 
be garbage collected. 

While an individual object might be small, it becomes much larger, i.e., a 
large object, when you include the memory consumed by the objects to 
which it refers. When the garbage collector runs, it cannot collect objects 
that are referenced by other objects. Thus an object that refers to many 
other objects may account for a considerable amount of memory. If you 
can collect such an object, you can also collect any other objects to 
which it holds a unique reference. Such large objects are obvious targets 
when you are trying to reduce an application’s RAM footprint. 

The Objects that refer to the most allocated memory view includes a 
table of live object instances with data about each object’s impact on 
memory at the time the session file was created. It also includes a tabbed 
window in which you can view an Object Reference Graph, Allocation 
Trace Graph, and Source. 

This view helps you identify the largest objects in memory. Referenced 
Size data includes memory attributable to all child objects for which the 
object is the only parent. Considered singly, objects tend to be small. 
However, an object with several child objects, each of which may also 
have child objects, plus per-object overhead for parent and child objects, 
is actually consuming a large amount of memory. In essence, DevPartner 
utilizes the Object Reference path to roll up the bytes associated with 
child objects and attributes them to the parent object. The advantage of 
this view is that it lets you focus on those objects that will provide the 
biggest benefit if you can change the way they are allocated. 

Once you zero in on the objects that consumed the largest amount of 
memory, you may immediately see changes you could make to reduce 
memory consumption. However, you may want to investigate further to 
understand the implications of freeing or changing the way the 
application uses a particular object. 

� Double-click the selected object in the instance list, or use the 
context menu to view the live objects referenced by the selected 
object. 

Live Objects Referenced by object

The Live objects referenced by object view shows you all of the live 
objects, that is, objects still in memory, that are referenced by the 
selected parent object. Put another way, these are the child objects that 
could also be collected if the parent object could be collected. 



Chapter 5� Finding Memory Problems     127

All Objects Referenced by object 

The All objects referenced by object view displays an instance list of the 
all of the objects referenced by an object selected in the Live Objects 
Referenced by object window. 

Like its parent windows, the data presented in All Objects Referenced by 
object is organized by instances of objects that hold references to 
allocated memory. This view enables you to further examine the chain of 
references keeping objects in memory. In the All Objects Referenced by 
object window, you can examine the entire chain of objects referenced 
by any of the child objects in Live Objects Referenced by object. 

You can continue to drill down from any object and view all the objects 
to which it holds a reference through the entire sequence of object 
references. 

The Object Reference and Allocation Trace Graphs

All of the Object views discussed above include an Object Reference 
Graph and an Allocation Trace Graph. 

The Object Reference Graph shows live objects in memory at the time 
the session file was created. A live object is an object on which methods 
can be invoked. When the garbage collector runs, it identifies the objects 
that have valid references. A valid reference means that an object is 
reachable from the application's garbage collection roots. Reachable 
objects are marked as live objects and cannot be collected. The Object 
Reference Graph shows these object references. The graph answers the 
question: Why is this object still in memory?

Figure 5-12. The Object Reference Graph

Objects and the memory they consume are allocated by your 
application’s methods. It is useful to know the sequence of method calls 



128     Understanding DevPartner

that allocated memory. The Allocation Trace Graph shows the method 
calls that allocated an object. 

Figure 5-13. The Allocation Trace Graph

Methods that Allocate the Most Memory 

The Methods that allocate the most memory view displays a Method 
List showing the source methods that allocated the most live memory for 
the application. This view focuses on the methods that are responsible 
for the greatest percentage of the total memory in the managed heap that 
cannot be freed by garbage collection while the application is in its 
current state.

A glance at the Live size including children (%) column indicates the 
percentage of memory used by the method (and its child methods) 
relative to total allocated memory in the managed heap at the time the 
session file was created. This focuses your attention on the most memory 
intensive methods. 

In addition to a view of the source code, this view also includes a Call 
Graph, which shows the execution path responsible for the memory 
allocation. For information on using the Call Graph, See “Call Graph” on 
page 120.

Live Objects Allocated by This method

The Live objects allocated by this method view displays a list of the live 
object instances allocated by the method you selected in the Methods 
that allocate the most memory view. In this case the view is limited to 
live objects allocated by the method selected in the previous window. 
This enables you to drill down from those methods in your application 
that were the largest allocators of live memory to examine the objects 



Chapter 5� Finding Memory Problems     129

that were still alive, that is, objects that were not available for garbage 
collection, when the RAM footprint snapshot was taken. 

Note: The list of allocated objects includes objects created by non-profiled 
(system) methods called by the user-code method selected in the 
Methods That Allocate the Most Memory view. For example, if your 
method uses methods in the WinForms library, objects allocated by 
those methods will appear in the list of allocated objects. 

In order to understand how your application allocates objects, you can 
drill down to examine all the objects referenced by any live object 
allocated by the method under study. The All objects referenced from 
this instance view is identical to the view described under “All Objects 
Referenced by object” on page 127.

You can continue to drill down from any object and view all the objects 
to which it holds a reference through the entire sequence of object 
references. 

Optimizing Memory Use

Once you understand how your application is using memory, you can 
begin to optimize memory use. Objects are typically the largest memory 
consumers, so we will take them as starting points. 

Your program probably creates lots of objects as it runs. Do you simply 
try to reduce the number objects created? How do you know where to 
focus your tuning efforts? 

Fortunately, DevPartner does much of the cost/benefit calculating for 
you. Remember that individual objects may be small, but when you 
consider objects with their children, some objects are much larger than 
others. DevPartner uses the concept of large object to alert you to those 
objects which, with their child objects, are large consumers of memory. 
Focusing your tuning efforts on these object allocations promises the 
most rapid route to a reduced footprint. 

Be aware of medium-lived objects. These are objects allocated since a 
transaction started that survive to generation 1; they are collected during 
the second garbage collection after the transaction completes. This is the 
new amount of memory your transaction requires. If you could reduce 
the number of objects allocated, you could probably improve 
performance.

Look at live objects at several points as your application executes. Have 
you allocated objects that will not be needed for the remainder of the 
transaction? Are there live objects that could be shared between multiple 
transactions? Have you allocated any objects that the application will not 
need until a later time? If the answer is yes and you can change the way 



130     Understanding DevPartner

your application allocates objects, you can probably reduce footprint and 
improve performance.

How Memory Analysis Fits in Your Development Cycle
It is not necessary to wait until you suspect that you have problem to 
begin testing. If you run memory analysis early and often, and know 
what to look for when you analyze your application, you can correct 
problems early, when they are both easier to track down and entail less 
risk to fix. 

Memory problems in managed applications are often the result of larger 
design and architecture decisions, rather than simple coding errors. For 
example, one source of memory loss is an object that is not collected 
because of an out-dated reference to it that is not freed. This can be the 
result of revisions made in another part of the code. The later these 
problems are identified in the development cycle, the more difficult and 
expensive they will be to fix.

As a result, it is valuable to use memory analysis as part of a continuous 
testing program throughout the development cycle. You will want to use 
memory analysis during unit testing to get an understanding of how the 
individual modules handle memory. Once you identify and fix areas that 
need improvement, retest to verify the fix. Then, as you integrate the 
modules into your application, repeat your memory testing again to 
assure that new memory problems do not appear.

Running a Program from the Command Line
In addition to running your program within Visual Studio, you can use 
command-line executables to collect memory analysis information 
without launching Visual Studio. 

Refer to the section Command Line and Configuration File Usage in the 
DevPartner Studio online help within the Visual Studio combined help 
collection in Visual Studio 2003 or Visual Studio 2005.



 131

Chapter 6

Automatic Performance 
Analysis

� Introducing DevPartner Performance Analysis 

� DevPartner Support for Visual Studio 

� Collecting Performance Data 

� Controlling Data Collection 

� Viewing Your Results 

� Performance Analysis for Real World Application 
Development 

� Running a Program from the Command Line 

� Analyzing Performance in Visual C++ 

� Analyzing Performance in Visual Basic 

Introducing DevPartner Performance Analysis
The DevPartner performance analysis feature makes it easy to pinpoint 
performance bottlenecks anywhere in your code, third party 
components, or operating system, even when source code is not 
available.

DevPartner allows you to gather performance details without leaving 
Visual Studio. You can collect performance data for a managed code 
application or native C/C++ application any time you run the 
application from the DevPartner menu in Visual Studio. DevPartner 
also lets you analyze your applications and components as they are 
really used — as native applications, ADO.NET components, or 
ASP.NET or Web applications. DevPartner can even collect data for 
managed code applications started outside Visual Studio. 



132     Understanding DevPartner

DevPartner also supports performance profiling of legacy Visual Studio 
6.0 components used by your application. See “Performance Analysis for 
Visual Basic and Visual C++” on page 133.

DevPartner can show detailed performance information for lines of 
source code (when available), methods, functions, assemblies, and 
executables. 

How DevPartner Performance Analysis Helps You

When you run a performance analysis session, DevPartner collects 
performance data for images, source files, assemblies, methods, 
functions, and individual lines of code. DevPartner also provides end-to-
endperformance profiling for distributed, component-based applications. 
DevPartner collects performance data for each process, including remote 
server session dataand COM method calls across processes and systems. 
The server data is transmitted back to the client and is automatically 
correlated with the client data into a single session file. 

DevPartner gathers performance data for executable images, executable 
server extension code (such as an ISAPI DLL), and scripts contained in 
HTML files written in the scripting languages supported by Internet 
Explorer and Microsoft Internet Information Server (IIS). DevPartner can 
also profile in-process or out-of-process COM objects invoked by the 
scripts.

What is DevPartner Performance Analysis?

DevPartner provides essential performance analysis features for .NET 
applications:

� Ease of use
� Complete performance analysis
� Multi-language performance analysis
� Focused data collection
� Accurate, reproducible timing results
� Third-party component monitoring
� Export DevPartner Data

Ease of Use

DevPartner is fully integrated into Visual Studio. You can collect 
performance data without leaving the IDE. Finally, DevPartner presents 
the performance data in an easy-to-navigate window in Visual Studio. 
You can use these flexible features to pinpoint slow code and 
performance bottlenecks anywhere in your application, without leaving 
the development environment.



Chapter 6� Automatic Performance Analysis      133

Complete Performance Analysis

DevPartner collects performance data for images, source files, methods, 
functions, and individual lines of code. DevPartner supports performance 
data collection for both managed code applications and native code C/
C++ applications. You can view and sort the data in different ways to 
focus your analysis.

Multi-language Performance Analysis

DevPartner supports all .NET managed code languages, as well as native 
C/C++. DevPartner can also collect performance data for Visual Basic and 
Visual C++ 6.0 applications, as well as JScript and VBScript Web 
applications when using Internet Explorer or IIS.

Performance Analysis for Visual Basic and Visual C++

DevPartner 8.1 provides limited integration for Visual Basic 6.0 and 
Visual C++ 6.0. You can build your Visual Basic and Visual C++ 
applications with performance instrumentation in the Visual Studio 6.0 
environment. 

The sections “Analyzing Performance in Visual C++” on page 151 and 
“Analyzing Performance in Visual Basic” on page 152 provide an 
overview of the procedure and direct you to other sources of 
information. 

Focused Data Collection

DevPartner Session Controls let you focus collection of performance data 
on any phase of your application. You can use the session controls to 
stop data collection, clear data collected to that point, or take a snapshot 
of the data currently collected and then continue collecting data.

Accurate, Reproducible Timing Results

DevPartner can distinguish between time spent in threads of your 
application and time spent in threads of other running applications. This 
enables DevPartner to generate accurate, reproducible results that are 
independent of outside influences. 

Third-party Component Monitoring

DevPartner checks the performance of third-party controls, with or 
without source code. It collects data for all the ADO methods, properties, 
and exported functions used by your application. 



134     Understanding DevPartner

Export DevPartner Data 

The Export DevPartner Data feature enables you to export DevPartner 
performance session data files (with the .dpprf extension) to XML. The 
Export DevPartner Data command is available on the File menu. 

You can analyze the data in the exported XML file using your own or 
third-party software. For example:

� Use Export DevPartner Data on a development build server or QA 
server where unit tests, functional tests, or regression tests are staged. 
Analyze the exported XML data to monitor daily progress.

� Use Export DevPartner Data to collect data for longer-term analysis. 
You can accumulate the XML data in a database or data warehouse in 
order to:
� Integrate the data with development and QA methodologies, 

tools and infrastructure
� Run custom analytics on the data
� Archive the data for historical or auditing purposes

How DevPartner Performance Analysis Fits in Your Development Cycle

In order to understand the performance characteristics of your 
application, you will want to use DevPartner performance analysis 
throughout the coding and testing phases of your development cycle. As 
you develop the individual components, use DevPartner to identify 
performance problems in the separate components. As you integrate 
components, test with DevPartner performance analysis again to reveal 
performance problems in the interactions between the components. 
Finally, use DevPartner performance analysis to test the entire 
application in different configurations and with different user scenarios 
to be sure that performance bottlenecks do not develop in these different 
situations.

DevPartner Support for Visual Studio
This section describes how the DevPartner performance analysis features 
integrate into Visual Studio. 

DevPartner IDE Integration in Visual Studio

DevPartner is fully integrated into Visual Studio. This makes it easy to 
analyze the performance of an application on a regular basis, as you 
develop it, without leaving the development environment. 



Chapter 6� Automatic Performance Analysis      135

When the analysis session completes, DevPartner displays the 
performance data in the IDE. DevPartner saves the performance data in a 
performance analysis session file, with a .dpprf extension. Session files 
are automatically added to the DevPartner Studio folder in the active 
solution. To review an existing performance analysis session file, double-
click the file in Solution Explorer. 

DevPartner Toolbar and Menu Integration

DevPartner adds commands related to performance analysis to several 
Visual Studio menus. In addition, DevPartner provides toolbars that 
include shortcuts to basic performance analysis functions. 

� DevPartner toolbar 

�  Starts performance data collection. Menu equivalent: Start 
Without Debugging with Performance Analysis on the 
DevPartner menu. 

�  Enables Native C/C++ data collection when you rebuild the 
solution or project. Menu equivalent: Native C/C++ 
Instrumentation Manager on the DevPartner menu.

�  Opens the DevPartner options pages. Menu equivalent: 
Options on the DevPartner menu.

� DevPartner Session Controls toolbar 

�  Stops data collection and takes a final data snapshot

�  Takes a data Snapshot

�  Clears data collected to the point at which the Clear action 
executes

� Process list focuses data collection on a single process for 
applications that run in multiple processes. 

� DevPartner Performance Session toolbar 

�  Opens the Choose a Basis Session for Comparison dialog 
to configure a comparison of two performance sessions. Context 
menu equivalent: Compare. 

�  Opens the Call Graph for the selected method. Context 
menu equivalent: Go to Call Graph. 

� Source method selection list locates the selected method on the 
Source tab. 

� DevPartner Menu



136     Understanding DevPartner

� Start Without Debugging with Performance Analysis starts 
performance data collection.

� Native C/C++ Instrumentation Activates DevPartner 
instrumentation.

� Native C/C++ Instrumentation Manager Opens the DevPartner 
Native C/C++ dialog box which enables you to set DevPartner 
instrumentation options for unmanaged (native) C/C++ projects 
before rebuilding. 

� Correlate > Performance Files Combines client and server-side 
session files into a single correlated file.

� Options Accesses the Analysis options pages to configure 
performance data collection.

See the Performance Analysis online help in the Visual Studio Combined 
Collection for information about other commands DevPartner adds to 
the Visual Studio menus and context menus, and how existing Visual 
Studio menu commands relate to the DevPartner performance analysis 
feature. 

Solution Explorer Integration

When you run a performance analysis 
session from Visual Studio, DevPartner 
adds the resulting session file or files to 
the DevPartner Studio sub-folder of the 
DevPartner Sessions folder in Solution 
Explorer. 

From Solution Explorer you can open a 
session file by double-clicking, or use the 
file or folder context menu options to 
add or remove files from the solution, 
view properties, and cut or copy the file 
specification to the clipboard. 

Session File Integration

DevPartner displays the results of the 
performance analysis sessions in a 
Session Data pane in Visual Studio, so you can analyze results within the 
development environment. From the Session Data pane you can filter 
the view of the data, sort the data by various criteria, jump to the source 
code for a particular method, and access a Call Graph for any method to 
examine relationships of parent and child methods. You can also 



Chapter 6� Automatic Performance Analysis      137

compare sessions to examine the effect of your code changes on 
performance. See “Viewing Your Results” on page 141 for more 
information.

Collecting Performance Data
This section describes how to:

� Collect performance analysis data.
� Collect performance data for both client and server portions of a cli-

ent/server application.
� Collect performance data for any of your application components 

running on a remote system.

.Running Your Program under DevPartner Performance Analysis

This section describes how to run your application with DevPartner to 
collect performance analysis data.

For Managed Code Applications

Many applications you will develop in Visual Studio will be managed 
code applications. C#, Visual Basic .NET, and managed Visual C++ 
applications are examples of managed code applications. In order to 
analyze an application as it runs, DevPartner instruments the application 
code for the specified type of data collection, in this instance, 
performance data. In the case of managed code applications, DevPartner 
instruments for data collection at runtime, as the application code is 
compiled for execution by the common language runtime. 

As a result, it is easy to collect data for managed code applications. 

1 Review the DevPartner Coverage, Memory and Performance 
Analysis settings in the properties window. Make sure the properties 
are appropriate for your application.

Tip: You can also start 
your application with 
debugging. Click the 
arrow to the right of the 
performance analysis 
button and select Start 
with Performance 
Analysis.

� To display the Properties window, select View, then choose 
Properties Window.

2 Click Start Without Debugging with Performance Analysis on the 
DevPartner toolbar.

3 Exercise the application. Use the session controls to focus data 
collection, if you wish. 

4 Exit the application. 



138     Understanding DevPartner

Tip: With DevPartner, 
you can create a session 
control file, which stores a 
custom set of session 
control actions that are 
invoked when you run an 
analysis session. 
DevPartner also provides 
a session control API, 
which lets you insert 
session control calls at 
specific points in your 
application code. For 
information, see the 
DevPartner Performance 
Analysis online help in the 
Visual Studio Combined 
Collection. 

DevPartner collects performance data as the application runs, and 
displays the data in the main window in Visual Studio when the analysis 
session ends. The session data file (.dpprf) appears in the performance 
analysis sessions virtual folder in Solution Explorer. If you used the 
Snapshot session control, DevPartner displays (and saves) a session file 
for each snapshot. 

For Unmanaged (Native) Visual C++ Applications

Unlike managed code, which DevPartner instruments at runtime, you 
must instrument unmanaged (native) C/C++ code when you compile it. 
DevPartner makes this as easy as rebuilding your solution or project. 

Choose Native C/C++ Instrumentation Manager on the DevPartner 
menu. In the Instrumentation Manager, choose the type of 
instrumentation, in this case, performance analysis, and select the native 
C/C++ projects you want DevPartner to instrument. Then, rebuild the 
solution, or rebuild the specific projects. 

Once your unmanaged C++ application or project is instrumented, click 
Start with Performance Analysis on the DevPartner toolbar. 

If your Visual Studio application includes managed and unmanaged 
portions, DevPartner collects data for both, provided the managed and 
unmanaged portions are in separate files. 

For Web Applications

If you develop Web Forms, XML Web services, or ASP.NET applications, 
you can use DevPartner to analyze application performance. If you can 
start your application from Visual Studio, you enable performance 
analysis and run the application. DevPartner collects the performance 
data as it would for any other managed code application. 

However, there are several things you need to be aware of when 
analyzing Web applications. 

Before you begin collecting data for analysis: 

� Warm up the application by exercising it for several minutes. Be 
sure to include the parts of the application in which you are 
interested. 

� Execute the Clear session control action to discard data collected 
to that point. 

� Collect data.

In this way, you can eliminate data collection for the many one-time 
initializations that take place when you launch the application. 



Chapter 6� Automatic Performance Analysis      139

Collecting Server-side Performance Data

You may want to collect performance data for both client and server 
portions of a client/server application. With DevPartner, you can collect 
performance data for client and server processes as you run the client 
application. 

To collect client-server data, install DevPartner on the client and 
DevPartner and the optional DevPartner Server license on the remote 
machine. In this way, you can collect data for a distributed application as 
it is actually deployed. See Installing DevPartner (DPS Install.pdf) and the 
Distributed License Management License Installation Guide (LicInst4.pdf) for 
more information. 

Collecting Data from Multiple Processes

Client/server applications may run more than one process. For example, 
when you profile an ASP.NET application you might see the browser 
process (iexplore), the IIS process (inetinfo), and the ASP worker 
(aspnet_wp or w3wp) processes. 

When you run such an application under performance analysis, the 
DevPartner Session Controls toolbar in Visual Studio displays the active 
processes in the process selection list. Use the process list to focus data 
collection. When you execute a Snapshot session control action, 
DevPartner creates a snapshot session file with data for the process 
selected in the process list. 

Note: The process list in the DevPartner Session Control toolbar includes all 
active processes in the analysis session. However, if all processes run 
on the local machine, DevPartner launches a separate version of the 
Session Control toolbar for each process. These instances of the 
toolbar reflect only a single process. You can use the separate toolbar 
to execute session control actions for that process, or use the primary 
Session Control toolbar in Visual Studio to select any active process 
and execute session control actions. 

Data Correlation

DevPartner not only collects data for applications that run in multiple 
processes, but it can automatically correlate the client and server data in 
a single session file. If you are running the server-side program from a 
client application running under DevPartner performance analysis, and 
there are:

� DCOM-based calls between methods in different processes, or



140     Understanding DevPartner

� HTTP requests between Internet Explorer as client and IIS as 
server

DevPartner automatically creates a correlated session file on the client 
machine that contains the performance data for both the client and 
server portions of your application. The correlated session file appears in 
Visual Studio, just as any other session file does. 

When you view the correlated session data in the Call Graph window, 
you can navigate between called and calling methods and see the 
performance data associated with the call. 

Collecting Performance Data from Remote Systems

You can use DevPartner to enable automatic performance profiling for 
any of your application components running on a remote system. For 
example, you can enable DevPartner to monitor the portion of your 
application running on a server system.

To collect data simultaneously from a client computer and a remote 
computer, install DevPartner on the client and DevPartner and the 
optional DevPartner Server license on the remote machine. See Installing 
DevPartner (DPS Install.pdf) and the Distributed License Management 
License Installation Guide (LicInst4.pdf) for more information. 

To enable data collection on remote systems

1 Start Visual Studio on the remote system. 

2 In the Visual Studio Solution Explorer, select the relevant projects 
and review the DevPartner Coverage, Memory and Performance 
Analysis properties. 

� To display the Properties window, select View, then choose 
Properties Window.

3 DevPartner restarts server processes, such as IIS, after you change 
properties. This is necessary for changes to take effect. 

4 Specify instrumentation if you are analyzing an unmanaged (native 
code) C++ application, or a managed code application that calls 
native C++ components. 

� Select DevPartner > Native C/C++ Instrumentation to instru-
ment your unmanaged code. 

� Select DevPartner > Native C/C++ Instrumentation Manager to 
open the Instrumentation Manager dialog box to make addi-
tional adjustments to instrumentation of your unmanaged code. 



Chapter 6� Automatic Performance Analysis      141

Tip: You can also start 
your application with 
debugging. Click the 
arrow to the right of the 
performance analysis 
button and select Start 
with Performance 
Analysis.

5 Choose DevPartner > Start Without Debugging with Performance 
Analysis, or click Start Without Debugging with Performance 
Analysis on the DevPartner toolbar to begin your analysis session. 

� DevPartner cleans and rebuilds your unmanaged code with 
instrumentation, then starts your application. 

� DevPartner instruments managed code applications as they exe-
cute. 

6 When you are finished collecting data, quit your application. 

Controlling Data Collection 
DevPartner gives you three ways to control when performance data is 
collected during the use of your application:

� You can use Session Control icons on the DevPartner Session 
Controls toolbar to interactively control data collection as your 
program runs.

� You can use the Session Control API to control data collection in your 
program.

� You can use the Session Control file to assign Session Control actions 
to specific methods in your application modules. 

For information on using Session Controls, see the Performance Analysis 
online help in the Visual Studio Combined Collection. 

Viewing Your Results
This section provides a brief description of the DevPartner windows and 
dialogs that you can use to work with performance analysis session data. 
See the DevPartner Performance Analysis online help in the Visual 
Studio. NET Combined Collection for more information. 



142     Understanding DevPartner

Session Window

When you quit your application, DevPartner displays the performance 
data in a Session window in Visual Studio. The Session window contains 
the Filter pane and the Session Data pane.

Figure 6-1. The DevPartner Session window displays performance analysis data

The Filter Pane

The Filter pane lists the source files and system images used during the 
session. The percentage that appears to the right of each name identifies 
the time spent in that file as a percentage of the total session time. Click 
items in the Filter pane to select the subset of session data you want to 
view in the Method List. For example, selecting a source file in the Filter 
pane displays the methods in that file on the Method List tab.

Note: Method refers to the methods, functions, and procedures used by 
your application. System refers to any non-instrumented module 
used by the application.

The Session Data Pane

The Session Data pane contains the Method List, Source, and Session 
Summary tabs. 

Filter Pane
Filter Method List 
data

Session Data Pane
Review data



Chapter 6� Automatic Performance Analysis      143

Tip: When working in the 
Method List and Source 
tabs, right-click in the 
column header to show or 
hide data columns.

� The Method List tab shows performance data for the file, or group of 
files, that you select in the Filter pane. By default, the application 
executable is selected, and the Method List tab displays all 
application methods that were used during the session.

You can click a column header to sort the data by that column. Click 
the column header again to reverse the sort order.

� The Source tab displays the contents of the currently selected source 
file. Data columns to the left of the code provide line-by-line 
performance data. For example, the Count column indicates how 
many times each line was executed during the session. DevPartner 
also highlights the slowest line in each method with the system-
highlight color.

Double-click any source file in the Filter pane to switch to the Source 
tab and display the contents of the file. 

� The Session Summary tab displays summary information about the 
session, as well as a description of the system and operating 
environment in which the session occurred.

Comparing Sessions

DevPartner gives you the ability to compare performance sessions. When 
you compare sessions you can see at a glance the impact of optimizations 
you make on individual methods and on application performance as a 
whole. 

Naturally, comparisons are most useful when you compare session files 
created by exercising the application identically. For example, do not 
compare sessions run without debugging to sessions run in the debugger. 
You can compare sessions if you have captured two or more session files. 

Run your application under performance analysis to create a session file. 

Note the most expensive methods and optimize one of the expensive 
methods.

Tip: Consider using a 
Session Control file or the 
Session Control API to 
ensure the capture of 
similar session data.

Run a second, identical, test of your application under performance 
analysis. 

In the second or current session window, right-click and select Compare 
from the context menu. Choose the first session you ran as the basis 
session. 



144     Understanding DevPartner

Compare the session data for the methods you optimized and other 
methods whose performance values changed between sessions. 

Figure 6-2. Comparing Performance Sessions

When you finish comparing, press Esc, or click the Compare icon on the 
DevPartner Performance Session toolbar. 

Interpreting Session Comparison Results

A session comparison shows the current value, basis value, difference, 
and % difference between a method in the current session and the same 
method in the basis session. DevPartner uses color to help you see at a 
glance whether the value in the current session is larger or smaller than 
that in the basis session. When the values for difference and % difference 
are dark blue, the values for the current session were better (faster) than 
those of the basis session. Light blue means that the performance values 
were slower in the current session. 

Once you have determined what results your code changes accomplished 
between sessions for any given method, search other methods in the 
session to uncover any side effects of your initial code changes. Even 
though an individual method's performance improved, the larger 

Before and after graphs 
for key Method List 
columns

Browse to 
select a new 
basis session

Total clock time 
difference between 
sessions

Place cursor over a method in the 
Method List to view performance 
comparison details

Place cursor over column in the 
“before and after” graphs to view 
details for methods in a ToolTip 



Chapter 6� Automatic Performance Analysis      145

program's performance may have degraded. In performance tuning, no 
tool can substitute for thorough knowledge of the structure of your code.

When examining session comparison results, be aware of the following:

� A percentage is a ratio of two numbers. Percentages are additive only 
when computed relative to the same total value.

� If one percentage value decreases, all other percentage values must 
increase. In a complex program this may be difficult to notice, since 
the percentage increase must be averaged across all the other 
methods in the program. 

� To interpret a subprogram’s timing, you must understand that 
subprogram’s role in the enclosing program.

� Performance measurements have no meaning outside the context of 
the program that produced them. It is not possible to generalize 
about the effects of program changes without understanding the 
program’s operation. 

Once you are satisfied with the changes to the costliest method in your 
program, you can turn your attention to other expensive methods. 

The Call Graph

Use the Call Graph to analyze method performance in depth. You can 
access the Call Graph from the Method List tab or the Source tab.

� On the Method List tab, right-click a method name and select Go to 
Call Graph on the context menu to display the Call Graph for the 
selected method.

� On the Source tab, right-click any line of code that executed during 
the current session. On the context menu, select Go to Call Graph to 
display the Call Graph for the method that contains the selected line.

The Call Graph shows the selected method and the methods with which 
it has a call relationship. The selected method appears as the base node in 



146     Understanding DevPartner

the graph. Parent methods (nodes) appear to the left of the base node, 
and child methods appear to the right.  

Figure 6-3. Using the Call Graph

In the Call Graph:

� Click the plus/minus icons at the edges of any node to expand or 
collapse the view of parent (left) or child (right) nodes.

� Right-click any node and choose Go to Method Source to view 
source code for the method. 

� Hover the mouse-pointer over a node or over the percentage value on 
a link between method nodes to view a more detailed description.

� To view a Call Graph with a different base node, close the Call Graph 
window and right-click a different method in the Method List. 

Using the Call Graph

When you run a performance analysis session, scan the Method List for 
methods with high values in the % in Method and % with Children 
columns. Display the Call Graph using that method as the base node.

Move frame in 
overview pane to 
navigate a large 
Call Graph

Click to expand or 
collapse parent/
child branches

Base node 
highlighted and 
outlined

Critical path 
node(s) 
highlighted 

Critical path 
highlighted for parent 
methods

Hover mouse to 
view additional data 
for a method node 
or a link value 

Critical path 
highlighted for child 
methods



Chapter 6� Automatic Performance Analysis      147

Child-side Analysis Analyze the child (right) side of the Call Graph to understand what to 
optimize. 

Expand the child nodes to analyze whether the base method or a child 
method is responsible for the most time. 

� If the base node has several parallel branches, look for branches that 
have the largest values on the link to the first child method. 
Optimizing branches with higher values is likely to provide more 
benefit in terms of performance. 

� If the base method itself shows a high value, consider optimizing the 
base method. 

� If a child branch is a large contributor to the time spent by the base 
method, look for child nodes with high percentage values. 

Parent-side Analysis Analyze the parent (left) side of the Call Graph to determine if the base 
node branch is worth optimizing, or if it is feasible to eliminate or reduce 
the number of times the base node is called.

Expand the parent nodes to the left of the base node. In particular, 
examine the base node’s contribution to the time spent in its parent 
branches. This will help you determine if optimizing the base node or its 
child methods is worthwhile. If the base method is a large contributor to 
several parents, or to an important parent in terms of overall program 
execution, it is probably worth considering as a target for optimization. 

Note: Values on the links between the base node and its parents are 
independent, not additive. Each percentage value represents the 
base node’s contribution to the time spent by that parent.

� If the base node has several parents, and one or more values on the 
links to the base node is high, the base node may be a candidate for 
optimization.

� If the values on the links to the parents are very small, optimizing the 
base node branch will probably have little impact on parent method 
performance.

� To determine if the base node is the best choice to optimize, view a 
new call graph with the parent selected as the base node. This will 
show the importance of the original base node to the parent node’s 
performance, relative to other children of that parent method. 

When analyzing either the parent or child side of the Call Graph, you 
can right-click a node at any time and use the context menu to view the 
source code for the method to see if you can determine why it is using so 
much time. 



148     Understanding DevPartner

Viewing Source Code for a File or Method 

To Display a Selected Source File

In the Filter pane, double-click the source file. 

To Display Source Code for a Selected Method

1 Select a method name.

2 Right-click, and on the context menu, select Go to Method Source 
or Go to Child Source.

Complete the following steps to display a specific method on the Source 
tab.

1 Click the Source tab.

2 Click the Select Source Method list on the Performance Session 
toolbar.

3 Select the name of the method you want to view.

Figure 6-4. Performance Session toolbar 

Performance Analysis for Real World Application Development
Application performance depends on several factors, some external, such 
as CPU speed, others internal, such as the algorithms and logic used in 
coding the application. Despite constantly escalating hardware 
capabilities, developers cannot escape the need to improve the 
performance of their code if they want to produce competitive 
applications. 

Finding Bottlenecks

The key concepts for effective performance analysis can be summed up 
simply:

� Measure performance to identify bottlenecks
� Modify code
� Measure again to verify impact

View Call Graph

Compare Sessions Select Source Method



Chapter 6� Automatic Performance Analysis      149

In many applications, a relatively small portion of the code is responsible 
for much of the application’s performance. In order to improve 
performance of critical parts of the code, use DevPartner performance 
analysis to locate performance bottlenecks, and subsequently, to verify 
that the improvements you make really do impact performance. 

If you are dealing only with code you wrote, locating and fixing a 
performance problem is relatively straightforward: Change the 
application logic or use a different algorithm. However, in modern 
software development, only a fraction of the code that runs when your 
application executes is likely to be your own. This is especially critical to 
remember when analyzing .NET applications. 

Effective Performance Analysis for .NET Applications

The .NET Framework is particularly rich and complex. You can 
accomplish a lot with a few lines of code. This offers great opportunities 
to developers, but can make it difficult to tune application performance. 
For example, you may discover that 95% of your application’s execution 
time is spent in the Framework. How do you improve performance in 
that case? 

Here are some basics to make the performance analysis process more 
productive. 

� Analyze source code

Use the Top 20 Source Methods filter to isolate application hotspots. 

Tip: To avoid collecting 
data for all system (non-
source) files, check 
Exclude system images 
on the DevPartner 
Exclusions - Performance 
options page. Once you 
optimize your source 
code, turn off this option 
so you can examine how 
your application uses 
system code, especially 
the .NET Framework. 

Use the Call Graph to examine the most expensive methods to 
understand the costs associated with child methods called. 

Compare the effect of different algorithms or logic changes by 
running multiple performance sessions.

� Understand Framework costs

Use % with Children on the Method List or Source tab to see how 
much time you are spending in the Framework. 

Drill into the Framework by examining child methods in the Call 
Graph to understand which calls are expensive and why.

Rework the application to do less work or to call the Framework less 
often. 

� Understand start-up costs

Use the Clear Session Control before collecting performance data. 
The .NET Framework performs many one-time initializations. To 
prevent these from skewing performance results, warm up the 
application by exercising all the features you want to profile, then 



150     Understanding DevPartner

Clear the data. Next, run a test that exercises the same features to get 
a more accurate performance picture.

� Understand what you want to measure

Consider how your application behaves before you begin collecting 
performance data. For example, if you are profiling a Web services or 
ASP.NET application, think about how Web caching will affect your 
results. If your test run inputs the same data repeatedly, your 
application will fetch pages from the cache, skewing the performance 
data. In such a case, you could take pains to insure variable input 
data, or simpler, edit the machine.config file to turn off caching 
while you test. Comment out the line that reads:

<add name="OutputCache" 
type="System.Web.Caching.OutputCacheModule"/>

� Measure performance of mixed-mode applications

You may choose to write parts of a .NET application in native 
(unmanaged) C/C++. DevPartner allows you to collect performance 
data for both managed and native portions of an application in a 
single run, provided the native code is in a separate file and you 
instrument the code before collecting data. Thus, you can compare 
the effectiveness of native and managed code in the context of the 
total application by comparing performance sessions. 

� Collect complete data for distributed applications

Tip: Use the process list 
on the Session Control 
toolbar to take 
performance snapshots of 
each process in a 
distributed multi-process 
application.

When you analyze performance for a Web application, a multi-tier 
client/server application, or an application that uses Web services, 
include all remote application components in the analysis. Use a 
DevPartner installation to configure performance data collection on 
remote systems. If your application uses native C/C++ components, 
instrument the components for performance analysis before 
collecting data. Of course, the recommendations regarding start-up 
costs, Framework costs, and awareness of application behavior apply 
equally to collecting data for server-side components. 

� Understand the limitations of micro-profiling

Once you identify a bottleneck in your application, you may find it 
convenient to create a smaller sample of code that duplicates the 
problem area in the main application. You improve performance in 
that sample by iterative performance comparisons and then move 
the code back in to the main application. Is your application going to 
be faster? Maybe. But you cannot know until you rerun your original 
performance tests. 

Extend this idea. Modern software development is a team enterprise. 
You regularly analyze the performance of your part of the application 



Chapter 6� Automatic Performance Analysis      151

and make performance improvements. Your colleagues do the same 
for the components on which they work. When you put the pieces 
together, you are going to have the fastest application on the planet. 
Application memory footprint, multi-threading, thread priorities, 
process security, network latency, server load, and other 
contingencies can affect the way your code runs in ways you may not 
foresee, and more important, in ways that performance testing of a 
single component may not reveal. You have not measured 
application performance until you have simulated as closely as 
possible the conditions under which your application is going to be 
used.

Running a Program from the Command Line
In addition to running your program within Visual Studio, you can use 
command line executables to collect performance profiling information 
without launching Visual Studio. 

For Visual C++ and Visual Basic applications, running your program from 
the command line is the only way to collect performance data.

The following resources provide details about running your program 
from the command line:

� Refer to the DevPartner Performance Analysis online help in Visual 
C++ 6.0 and Visual Basic 6.0.

� Refer to the section Command Line and Configuration File Usage in the 
DevPartner Studio online help within the Visual Studio combined 
help collection in Visual Studio 2003 or Visual Studio 2005.

Analyzing Performance in Visual C++
You can use DevPartner to instrument your Visual C++ applications. 
Follow this workflow to analyze them: 

� From the DevPartner menu in Visual C++, select one of the 
following commands to instrument your application:

� Build > Performance to instrument only the new or changed 
parts of the active project.

� Rebuild All > Performance to re-instrument the entire project.

� Batch Build > Performance to instrument or re-instrument 
selected files and their dependencies.



152     Understanding DevPartner

� Use DPAnalysis.exe to run your application and generate a session 
file. You can either:
� Use DPAnalysis.exe to run your application directly from the 

command line.
� Use DPAnalysis.exe to execute an XML configuration file to run 

your application.

� To analyze your results, use Visual Studio 2003 or Visual Studio 2005 
to open the session file.

For more information, refer to the DevPartner performance analysis 
online help in Visual C++ 6.0 and the section Command Line and 
Configuration File Usage in the DevPartner Studio online help within the 
Visual Studio combined help collection in Visual Studio 2003 or Visual 
Studio 2005.

Analyzing Performance in Visual Basic
You can use DevPartner to instrument your Visual Basic applications. 
Follow this workflow to analyze them: 

� On the Visual Basic DevPartner menu, select Make with 
Performance Analysis to instrument the active project without 
running it 

� Use DPAnalysis.exe to run your application and generate a session 
file. You can either:
� Use DPAnalysis.exe to run your application directly from the 

command line.
� Use DPAnalysis.exe to execute an XML configuration file to run 

your application.

� To analyze your results, use Visual Studio 2003 or Visual Studio 2005 
to open the session file.



 153

Chapter 7

In-Depth Performance Analysis

� What is Performance Expert?

� What Can I Do with Performance Expert?

� Who Should Use Performance Expert?

� Finding Application Problems with Performance Expert

� Usage Scenarios

� Automating Data Collection

� Collecting Data from Distributed Applications

� Performance Expert in the Development Cycle

What is Performance Expert?
DevPartner Studio contains many features designed to assist application 
development, including a performance analyzer that helps you locate 
bottlenecks in your code. Performance Expert takes performance profil-
ing a step further for managed code Visual Studio applications by provid-
ing deeper analysis of the following hard-to-solve problems:

� CPU/thread usage

� File/disk I/O

� Network I/O

� Synchronization wait time

Note: Performance Expert analyzes managed code only, and is therefore 
not supported in the DevPartner for Visual C++ BoundsChecker Suite.

Performance Expert analyzes your application at run-time and locates the 
problem methods in your code. It then allows you to view details about 
individual lines in the method, or to examine parent-child calling 



154     Understanding DevPartner

relationships to help you determine the best way to fix the problem. 
When you have decided on an approach, Performance Expert enables 
you to jump directly to the problem lines in your source code, so you can 
quickly fix problems.

DevPartner Performance Expert is designed for use by software designers, 
software developers, and quality assurance (QA) engineers. It can also be 
used by development management staff to identify problems in an 
ongoing project. 

Performance Expert and Performance Analysis

Think of Performance Expert as a complement to traditional perfor-
mance profiling. Use it in conjunction with DevPartner’s performance 
analysis feature. Run performance analysis to get a baseline view of appli-
cation performance. Use Performance Expert to better understand the 
nature of difficult problems, especially problems that involve disk or 
network I/O, or synchronization issues. When you have fixed the 
problem, run the application in a performance analysis session and use 
the performance analysis Session Comparison feature to verify the 
improvement. 

What Can I Do with Performance Expert?
You can use Performance Expert to improve performance of any 
managed code Visual Studio application, including:

� ASP.NET Web applications

� ASP.NET Web services applications

� .NET Remoting server applications

� Windows Forms client applications

� Serviced components, e.g. COM+

Typical target applications include WinForms client applications and 
ASP.NET or other Web applications, but you can analyze any managed 
code application, as the following examples illustrate.

WinForms Client Application

Presentation layer, business logic, and analysis functions execute in a 
single process on a WinForms client. The client accesses data via a tradi-
tional database call using OLEDB or ADO.NET, or via a SOAP call to a 



Chapter 7� In-Depth Performance Analysis      155

Web service that executes the database call and possibly performs other 
actions.

Distributed Web Application

In a distributed Web application that uses ASP.NET technology, the 
presentation layer is dynamically generated on the Internet Information 
Services (IIS) server for rendering in the browser (Internet Explorer) 
client. The business logic uses SOAP or .NET remoting to access a Web 
service and various managed components. The Web service or a managed 
component handles calls to the database.

Who Should Use Performance Expert?
DevPartner Performance Expert will be most useful to software develop-
ers and designers, but many members of the engineering team can use 
the feature at several points in the software project life cycle. 

Software Designer

Software designers must often develop prototypes that meet specific 
requirements, for example, in response time or scalability. Before produc-
ing the final design, the designer must identify the operations and, if 
possible, the methods, that are preventing the prototype from meeting 
the performance requirements. Ideally, the designer would like to be able 
to identify a few methods that, if fixed, would give a dramatic perfor-
mance boost.

Software Developer

The software development team builds the application based on the 
designer’s prototype and specification. As soon as the application (or 
application components) can be tested and run, developers can integrate 
Performance Expert into their automated testing routines in order to 
identify potential CPU usage, file I/O, or network I/O issues as they are 
coding and debugging. Developers can review the Performance Expert 
session log each morning to see if the previous day’s coding has intro-
duced any new performance issues and address issues immediately. 
When coding is complete, the development team submits the final 
Performance Expert session log to document that performance goals have 
been met.



156     Understanding DevPartner

Quality Assurance

Quality Assurance teams can use Performance Expert to continuously 
monitor application performance. QA can easily integrate Performance 
Expert into automated test suites to obtain a daily reading of application 
performance in critical areas. When problems appear, QA teams can send 
the session log to the development team or attach the log to a bug report 
in a defect tracking system such as Compuware TrackRecord.

Finding Application Problems with Performance Expert
DevPartner Performance Expert helps you identify problems in the 
following critical areas:

� CPU/thread use (including wait and synchronization issues)

� File and disk I/O

� Network I/O

� Synchronization wait time

When run from Visual Studio, Performance Expert analyzes a single 
process at a time. It reports data for any threads executing in the selected 
process. To analyze an additional process, select the second process and 
rerun Performance Expert. Performance Expert can also analyze a distrib-
uted application that spans multiple machines. For information about 
remote data collection, see “Collecting Data from Distributed Applica-
tions” on page 167. 

Basics: Running a Performance Expert Session

To locate problems in your application:

1 Open the solution that contains your application in Visual Studio.

2 Turn on Performance Expert data collection by choosing Start With-
out Debugging with Performance Expert on the DevPartner menu, 
or by clicking the Performance Expert icon on the DevPartner tool 
bar. 

3 Start your application and exercise the slow portion.

4 Watch the Performance Expert window to monitor your applica-
tion. A spike in the CPU, disk, or network activity indicates a poten-
tial trouble spot.



Chapter 7� In-Depth Performance Analysis      157

Figure 7-1. Control Data Collection with the Performance Expert Window

5 When you have finished collecting data, stop your application. Dev-
Partner generates a Performance Expert session file.

6 As an alternative, you can use the Snapshot and Clear session con-
trols at the upper left of the Performance Expert window to manage 
data collection as your application runs.

Note: Generally, run Performance Expert sessions without debugging. 
Although DevPartner collects accurate performance data with or 
without debugging, results from non-debug sessions are easier to 
interpret and do not include the processing overhead caused by the 
debugger. In non-debug sessions, you get the results faster and they 
are not skewed by differences in debugger overhead for different 
types of code. For example, exception handling code takes longer 
relative to other parts of the application in the debugger than it does 
without debugging. If you run your application in the debugger, 
some timing values might be larger than expected, especially if 
breakpoints were hit during the session. Expect tracing and other 
debug-only functionality to figure highly in such session files. 

The Session File 
Tip: An entry point 
method is a source code 
method that was not 
called by another source 
code method, i.e., an 
entry point into source 
code execution. 

In the session file results summary, examine the two bar graphs. The 
Paths that used the most CPU graph shows the entry point methods for 
the most expensive calling paths that Performance Expert measured as 
you ran your application. The Individual methods that use the most 
CPU graph focuses attention on methods that are expensive in 
themselves, exclusive of source code child methods they call. 



158     Understanding DevPartner

Figure 7-2. The Performance Expert Session File Shows the Paths and Methods that 
Consumed the Most CPU

Click a method in either graph to view details for the method. If you drill 
down from the Paths that used the most CPU graph, you can view Call 
Graph and Call Tree presentations of the session data. The Call Graph 
shows the child methods called by the entry point method, with the 
relative contributions to the time spent in the path. The Call Tree 
presents a tree view of the same data and enables you to view additional 
data about each method. If you choose to examine a method in the 
Individual methods that use the most CPU graph, DevPartner presents 
a Methods table of your application’s methods with additional data to 
assist your troubleshooting. To switch between the Paths and Individual 
methods views, click Back to Summary in any details view. 

Accounting for Child
Methods

The calculation of the Performance Expert session data differs between 
the Paths and the Individual methods views. DevPartner excludes 
measurements for source code child methods in computing data for CPU 
time, disk or network I/O, and synchronization lock wait time in the 
Individual method analysis views. In contrast, DevPartner includes the 
impact of source code child methods to their parent methods in the Path 
analysis views.

All computations in both views include time or throughput attributable 
to system or .NET Framework methods called by your source code 



Chapter 7� In-Depth Performance Analysis      159

methods. Managed applications typically spend a lot of time executing 
Framework code. Performance Expert charges the system data to the lines 
in your source code that made the calls in order to focus attention on 
how your code interacts with the Framework, that is, on the parts of the 
application that you can modify. 

For detailed information on additional features you can use to control 
data collection, and tips on analyzing the session data, see the Perfor-
mance Expert online help. 

Usage Scenarios
The typical methodology for resolving performance issues consists of the 
following steps.

1 Locate the slowest line in a problem method and optimize it.

2 If you cannot optimize the line, remove it or execute it less often.

In the simplest cases, you may be able to locate the slowest line in a 
method (e.g., by using the DevPartner Performance Analysis feature) and 
either optimize it or call it less often. However, in real world application 
development, many problems have more complex causes. You may be 
able to identify the slowest method, only to find that a combination of 
lines within the method is slowing execution. In such a case, additional 
targeted data can help you analyze the problem quickly. 

For example, if the slowest part of your application does a lot of network 
I/O, the following metrics would likely help you understand the nature 
of the problem: 

� Total number of network reads and writes

� Number of bytes read or written

� Number of read or write errors

� Elapsed time for read or write operations

If your application did a lot of disk I/O, you would want to see metrics 
that reflected read/write volume and the efficiency of those operations. 
DevPartner Performance Expert reports exactly this kind of data. 

You can use DevPartner Performance Expert to analyze application 
performance in the areas of CPU and thread performance, disk I/O, 
network I/O, and synchronization wait time. The following examples 
will illustrate ways in which you can use Performance Expert to improve 
application performance. 



160     Understanding DevPartner

Identifiable Performance Problem

Usability testers have reported that specific operations in your applica-
tion are too slow. As a developer, you want to locate the parts of your 
source code that are responsible for the slow operations taking so long to 
complete and fix them. 

Let’s assume that you have run the slowest part of your application under 
Performance Expert as described in “Basics: Running a Performance 
Expert Session” on page 156. When you examine the session file, you 
immediately see the method that took the longest time to execute at the 
top of the Individual methods that use the most CPU graph. However, 
in a complex application, a single slow method may affect performance 
less than a sequence of moderately slow methods. The slowest calling 
sequences appear in the Paths that use the most CPU graph. Do some 
methods appear in both graphs? If so, these methods definitely deserve 
scrutiny.

You also notice that some of the methods in the graphs are marked with 
icons that indicate disk I/O or network I/O activity in the method. These 
indicators tell you something about the kind of processing done by these 
methods. 

Disk activity

Network activity

At the bottom of the summary view, Performance Expert displays the 
Total elapsed time and Total execution time. If the execution time is 
very small relative to elapsed time, and you have exercised the applica-
tion in such a way that you are reasonably sure the difference is not 
simply due to waiting on user input, check to see if some methods in 
your application are spending more time waiting for locks than they 
should.

Let’s say you first decide to examine the top method in the Individual 
methods that use the most CPU graph. You understand that many 
factors can affect CPU utilization: processor-intensive computations, disk 
I/O, network I/O, or inefficiently used synchronization objects. Similarly, 
you know that wait time can have multiple causes: the resource your 
method is waiting for could be shared within the same process, or with 
an external process. But how do you quickly determine what is going on 
in your application?

Click the top method in the Individual methods that use the most 
CPU graph to open the Methods detail view for the method. Notice the 
data in the columns in the Methods table. This information should help 
you determine what the method is doing. If the method was marked 
with the disk activity icon in the graph, right-click in the table and use 



Chapter 7� In-Depth Performance Analysis      161

the Choose Columns... dialog to add all of the disk-related columns to 
the table. You might find that the method is producing read or write 
errors, or is using a large amount of time to write small amounts of data, 
and is being executed many times. 

The Source tab in the lower half of the Methods window shows you the 
source code for any method you select in the table. When you click on a 
method in the table, the source automatically scrolls to the line that 
consumed the most CPU time and indicates the time attributable to that 
line. The view also indicates graphically other lines that used CPU time. 

If the method performed disk or network I/O, or had wait time, expand-
ing the list at the upper left shows those selections, so you can immedi-
ately locate the most significant line in the method for that metric. For 
example, Choose Disk activity from the drop-down list to immediately 
go to the line that transferred the most bytes, and to see relative disk 
activity for other lines in the method. If the method involves Wait time, 
check that view too. Notice which lines are associated with long wait 
times. In each view, DevPartner selects the most expensive line by 
default. Comparing these views of the lines in the method shows you 
where to focus your efforts much more quickly than traditional debug-
ging techniques.

Figure 7-3. The Source Tab Helps Locate Problem Lines in a Method

When you have located an appropriate line to fix, double-click on it to 
jump to that line in your source code in Visual Studio.

If a way to fix the problem is not obvious, click the Call Stacks tab to see 
all the ways the method was used as your application executed. Is the 
problem method called by more than one path? If so, examine the call 
stacks that are responsible for the most time in the method. 



162     Understanding DevPartner

Tip: Performance Expert 
records a unique parent 
branch if any method (or 
calling line in the same 
method) in the call stack 
is different.

Obviously, you want to look first at the parent path responsible for the 
highest percentage of calls. Try to modify your code to eliminate the 
calls, or call less frequently. The Call Stacks tab includes a view of your 
source code. When you select a method in the stack, the source automat-
ically scrolls to the line where the call to the next method in the stack 
was made. A double-click opens the line in Visual Studio, so you can 
quickly modify the calling sequence if necessary. Once you have made 
the changes to your code, run the application again with Performance 
Expert to verify the improvement.

Scaling Problem in an Application

Your new Web application runs fine when you test it on your machine. 
But when you allow additional users to access the application, it is too 
slow. You have a looming deadline. How do you quickly determine what 
is wrong?

You can collect Performance Expert data while stressing your application 
with a load-testing tool. To do so, you will probably want to start and 
stop your application with a command line tool or script. DevPartner 
provides a command line utility called DPAnalysis.exe for this purpose. 
For information on running a Performance Expert session from a 
command line, see “Automating Data Collection” on page 165. For 
example, you could do something like the following:

1 Start the application under Performance Expert with DPAnaly-
sis.exe.

2 Run the load-testing application.

3 Stop the application.

4 Examine the Performance Expert session data.

Let’s assume that when you look at the session file, no single method in 
the Individual methods that use the most CPU graph stands out as the 
likely culprit. It is a complex application, and it is probable that several 
methods contribute to the sluggish performance. Start your analysis with 
the Paths that use the most CPU graph in the summary view. This graph 
shows a list of methods, but in this case each method represents an entry 
point. An entry point method is a method that was not called by another 
source code method, that is, an entry into code that you wrote, and more 
importantly, that you can change. The entry point method that corre-
sponds to the most expensive path of execution in your application 
appears at the top of the graph. Click on the bar to open the Path analy-
sis view.



Chapter 7� In-Depth Performance Analysis      163

The Call Graph

The Path analysis view consists of a Call Graph that shows the child 
methods called from the selected entry point method, and a Call Tree 
view that presents the data in tree form in a table with columns of data 
for each method in the application. When you open the Call Graph 
from the results summary, notice that DevPartner places the most expen-
sive paths at the top of the Call Graph, and highlights the most expen-
sive child path whenever a path branches. As you examine the data, 
investigate the most expensive child paths first. To investigate a path, 
expand the nodes to the right. 

Tip: The percentages on 
lines connecting a method 
to the child methods it 
called are additive; those 
on lines connecting the 
chain of methods in a 
single path are not.

To determine the relative contributions of different paths spawned by the 
same method, compare the percentage values on the lines that connect 
the selected method to each of its child paths. The value on each link 
represents the percent of time in the parent method attributable to child 
methods called in that path. Thus, in Figure 7-4, the method Form.Main 
called Form.CtoF, Form.ParseOption, and Form.FtoC. The value on the 
line that links Form.Main to Form.CtoF is 98.1%, while the remaining 
1.9% is spread among the other called paths. This means that the path 
Form.Main calls Form.CtoF accounted for 98.1% of the CPU time spent in 
Form.Main that was attributable to the execution of child methods. Start 
your troubleshooting with this path. 

Figure 7-4. The Call Graph Shows the Impact of Child Methods

As you investigate the called path, notice the horizontal bar at the 
bottom of each node. The bar shows the relative percentages of time in 
the method due to the method body compared to the child methods it 



164     Understanding DevPartner

called. Hover over the bar with the mouse to see the actual percentages. 
Use this bar to guide your tuning efforts. For example, if 4% of time is 
spent in the method body, and 96% of time is attributable to child 
methods, continue to investigate the most expensive called paths to 
locate the child methods that are affecting performance. Fix those 
methods or change your code so they can be called less often. If, on the 
other hand, 96% of the time was spent in the method body, focus your 
efforts there. 

Also notice whether an expensive node contains the disk activity, 
network activity, or wait time icons. Hover over the icon with the mouse 
to view the magnitude of the activity. If a node contains one or more of 
these icons, consider switching to the Call Tree view and adding the 
appropriate data columns for more help in diagnosing the problem. 

The Call Tree

The default sort of the Call Tree table is by CPU time including user 
children. To gain an idea of where the bulk of the time is being spent, 
scan the values in the other columns. Doing so will tell you whether wait 
time, disk or network I/O, or CPU-intensive processing is the major 
factor. If you need more detail, you can add additional columns, such as 
disk or network reads, writes, and errors, to the display. 

Figure 7-5. The Call Tree Displays Additional Data for the Selected Method

For example, if an expensive method in the Call Graph showed network 
I/0, select it, switch to the Call Tree, and add all of the network-related 



Chapter 7� In-Depth Performance Analysis      165

data columns to the table. To add columns, right-click in the Call Tree 
table and select Choose columns... from the context menu. For a full 
explanation of the data reported in each column, see the Performance 
Expert online help.

Tip: The term “user” in 
“user children” or “user 
methods” refers to your 
source code methods.

Whether you are using the Call Graph or Call Tree, the session file 
window includes the Source and Call Stacks tabs. These tabs function as 
they do in the Methods view, except that the data is calculated to include 
data attributable to user, or source code, child methods. Use the Source 
tab to immediately locate the most expensive line in any method you 
select in the Call Graph or Call Tree. Use the Call Stacks tab to see the 
relative impact of other paths that called the method and to locate the 
line that called the selected method in the stack. Double-click a line of 
code in either the Source or Call Stacks tab to jump to that line in Visual 
Studio for editing.

Performance Slow but No Specific Issue

Suppose your application is generally sluggish, but you cannot identify a 
specific issue. Performance tuning is an iterative process. You can still use 
the techniques described above to try to improve performance. 

� Run the application under Performance Expert. 

� Go through the Paths that use the most CPU and try to optimize 
the most expensive branches for each critical path. 

� Go down the list of Individual methods that use the most CPU in 
the same way and try to optimize the top methods in the list. 

� Retest to verify improvement. 

Automating Data Collection
DevPartner Performance Expert supports command line execution 
through an executable called DPAnalysis.exe. This file is located in your 
\Program Files\Compuware\DevPartner Studio\Analysis\ directory. 
You can run an application under Performance Expert from a command 
prompt, or create batch files to automate data collection. You can launch 
the Performance Expert session in two ways:

� Specify the target and arguments in standard MS-DOS command line 
syntax

� Specify an XML configuration file that contains the targets and argu-
ments for the session



166     Understanding DevPartner

Consider the example we discussed in the section “Scaling Problem in an 
Application” on page 162. Quality Assurance engineers can monitor 
scalability (or any other aspects of the application) on a daily basis by 
setting up an automated test (or suite of tests) to be run on the applica-
tion every night. To automate the tests, set up a batch file to 

1 Start the application under Performance Expert 

2 Start the load-testing application and any other tests you want to run 

3 Stop the application when the tests are complete 

DevPartner automatically generates the session log file when the applica-
tion exits. 

The command line syntax to launch the session is:

dpanalysis /Exp /E /O /W /H [/P or /S] target {target 
arguments}

/Exp Sets analysis type to DevPartner Performance Expert

/E Enables data collection for the specified process/service

/O Specifies the session file output directory and/or name

/W Specifies the working directory for the process

/H Specifies the host machine on which the target runs

/P or /S specifies that the target is a process or a service; use only one

There is one restriction on the order in which the switches must appear: 
The /P or /S switch must occur last. Everything that follows either switch 
is interpreted as an argument to the process or service. 

To use an XML configuration file, the command line is even simpler: 
dpanalyis /C [path]configuration_file.xml. 

The configuration file contains the necessary parameters for any type of 
DevPartner analysis, including some options that are not available using 
command line switches. For example, if you want to exclude application 
components from a Performance Expert session, you must use the 
ExcludeImages element in the configuration file.

To collect data for a process that runs on a remote machine, you must 
specify a directory and file name. Use the SESSION_FILENAME and 
SESSION_DIR elements in the Analysis options in the configuration file. 



Chapter 7� In-Depth Performance Analysis      167

Figure 7-6. The XML Configuration File Specifies the Session Details.

For detailed information about using the configuration file to manage 
data collection, see the online help.

QA engineers scan the session log file the following morning. If perfor-
mance numbers have deteriorated, QA sends the session log to the appro-
priate developers. In this way, QA tracks the health of the application 
throughout the development cycle. If a problem appears, the develop-
ment team has the session log file to use in quickly determining the 
nature of the problem. In addition, the development team knows that 
the problem was caused by a code change from the previous day, greatly 
reducing the amount of code it has to review to fix the problem. 

Collecting Data from Distributed Applications
DevPartner can collect Performance Expert data from distributed applica-
tion components that run on remote systems, provided the remote 
systems are properly licensed for remote data collection. Before you 
launch a remote session, be aware that a Performance Expert session 



168     Understanding DevPartner

monitors a single process per run when run from Visual Studio or with 
DPAnalysis.exe from the command line using traditional command line 
syntax. The XML configuration file allows you to target more than one 
process or service in a single run of the application; however, it is usually 
best to target a single process in a Performance Expert session. If your 
application runs in multiple processes, simply rerun the application 
targeting the second process. Driving the application with a script or 
batch file ensures that you exercise the application identically in both 
sessions. For an overview, see “Automating Data Collection” on page 
165. For detailed information, see the Performance Expert online help.

If necessary, you can collect the data (in a separate session file) for the 
second process or service in a single run of the application if you use 
DPAnalysis.exe with the XML configuration file option. Although you 
can collect data from two or more processes or services simultaneously, 
be aware that data collection overhead for multiple processes can affect 
interaction of the processes, as well as slowing the applications and 
inflating elapsed time values. If you collect Performance Expert data for 
multiple processes simultaneously, large timing values for disk I/O, 
network I/O, or synchronization wait time may reflect inflation by profil-
ing overhead. Rerun the session targeting a single process to confirm that 
the timing values are large enough to merit investigation.

Performance Expert in the Development Cycle
Use DevPartner Performance Expert throughout the software develop-
ment cycle. Software designers can use Performance Expert during the 
design and prototype phase to improve the speed and efficiency of their 
code. As the design progresses, regular testing helps to ensure that the 
prototype code meets minimal performance requirements. When the 
prototype is handed off to the development team, developers can feel 
comfortable reusing sections of the prototype, knowing that it has been 
tested for several critical performance issues. 

Software developers should use Performance Expert frequently during 
development. Consider running Performance Expert in addition to unit 
tests prior to code check-ins. Just as the unit tests ensure that the compo-
nent does what it is supposed to do without breaking other components, 
Performance Expert provides early warning of potential performance 
issues before the component is fully integrated into the application and 
therefore more difficult to fix. 

Quality Assurance engineers can use Performance Expert as part of an 
automated test suite. Then designated engineers can review critical 
metrics in the session log files on a daily basis. If the session log suggests 



Chapter 7� In-Depth Performance Analysis      169

a problem, the QA engineer can send the log file to the responsible devel-
oper so the problem can be addressed immediately. 

Thus, all members of the software development team can benefit from 
running Performance Expert, from the design phase to final quality 
assurance testing. There is even a benefit for product management. At 
each critical milestone, Performance Expert session logs, coupled with 
before-and-after performance analysis session files, can be used to 
document that the product meets performance expectations. 



170     Understanding DevPartner



 171

Chapter 8

System Comparison

�  What is the System Comparison Utility?

�  Scenarios for Use

�  Categories Compared

�  Comparing Snapshots

�  The System Comparison Service

�  Running the Comparison Utility from the Command Line

�  Software Development Kit

What is the System Comparison Utility?
The DevPartner System Comparison utility compares two computer 
systems, or compares two states of the same computer system, to 
identify differences. For example, if a service is running on one system, 
but stopped on another, System Comparison identifies that difference. 
System Comparison identifies differences in system files, installed 
products, drivers, and many other system characteristics.

The utility consists of a service, which takes nightly snapshots of a 
system, and the user interface, which enables you to compare 
snapshots to find differences. The utility also includes a command line 
interface and a software development kit.

Figure 8-1 illustrates the System Comparison user interface.



172     Understanding DevPartner

Figure 8-1. System Comparison User Interface

Scenarios for Use
The following are some general scenarios in which the System 
Comparison utility is used.

� To check how installation or removal of a product impacts computer 
services or settings 

� To determine if system changes may have caused a product to stop 
working on a system on which it previously worked

� To determine why a product does not work, or works differently, on a 
certain system

� To determine the extent of the impact that changes to a product will 
make (for example, any impact on automated tests)

� To troubleshoot a product after it has been deployed to an end-user 
site 



Chapter 8� System Comparison     173

� Tp check that a new development system has all of the tools that 
were available on a previous development system 

Categories Compared
When taking a snapshot, the System Comparison utility records the 
existence, version, and status of the items listed in the following table.

You can add additional categories to customize data acquisition by 
writing a System Comparison Plug-in, as described in “Software 
Development Kit” on page 177.

Table 8-1. Categories of Differences

Category Differences Detected

System Info Operating system

.NET Framework

Global Assembly Cache

The Java Runtime

System Environment variables

System Files Operating system files in Windows\System32

Windows File Protection Cache in 
Windows\System32\dllcache - This folder contains operating 
system files that are used to maintain Windows if an operating 
system file is damaged. If a file is damaged or missing, it is 
automatically replaced from this folder without any 
intervention.

Side-by-side assemblies in Windows\WinSxS

Installed 
Products

The products installed on the two systems. If the version 
number is detected, it is shown. 

The information is read from the Add/Remove Programs 
section of the registry.

Services Differences in the installed services: 

• Service status (Running, Stopped, etc.) 

• Account used by the service 

• Service type 

• Services depended on 



174     Understanding DevPartner

Startup Items Startup differences. This information is read from the following: 

• The Win.ini file found in the Windows directory.

• The following registry key:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Win-
dows\CurrentVersion\Run 

• If possible, version information is included from the program 
file.

IE/Outlook 
Components

Internet Explorer and Outlook differences:

Active Setup shows updated or missing Outlook / Internet 
Explorer components extracted from the registry key 
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Active 
Setup\Installed Components 

Browser Helper objects extracted from the registry key 
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\Cur
rentVersion\Explorer\Browser Helper Objects 

MIME mappings (mapping between MIME type and which 
application handles the MIME) extracted from the registry key: 
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Active 
Setup\MimeFeature objects. 

Internet Explorer extensions extracted from the registry key 
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Internet 
Explorer\Extensions

IIS Differences in your Microsoft IIS installation. Differences in all 
installed Web applications and their settings, including: 

• Web server differences 

• SMTP server differences 

• FTP server differences 

SQL Server Differences in your Microsoft SQL installation: 

• Microsoft SQL settings from the registry. 

• Data about Microsoft SQL services and related services.

• Settings in the syscurconfigs and sysconfigures 
tables in the master database for all installed instances. The 
System Comparison utility attempts to connect to SQL 
Server using integrated security. If SQL Server is not running, 
differences in the master database will not be collected.

Note: For master database differences to be collected, the 
account under which you are running must have sufficient 
privilege to access these two tables. 

Table 8-1. Categories of Differences

Category Differences Detected



Chapter 8� System Comparison     175

Comparing Snapshots
When System Comparison compares two snapshots, it displays the 
differences between them as shown in Figure 8-2.

The comparison lists differences only; it does not list items that are the 
same in both snapshots. It reports components with different version 
numbers as different components.

Drivers Differences of all Drivers found:

• Installed drivers 

• Status of drivers

Registry Differences in specific sections of the registry. By default, no 
registry sections are collected, but differences in the following 
registry sections can be collected:

HKEY_CLASSES_ROOT

HKEY_LOCAL_MACHINE

You can customize the sections of the registry to collect by editing the 
RegistrySections.xml file, found in the Program 
Files\Compuware\DevPartner 
Studio\Comparison Tool\data directory.
You must have sufficient privilege to collect registry key data.

Files Differences in the contents of directories and file properties from 
specific paths. By default, no files are included in the collection. You 
can customize the paths to collect by editing the 
FileSections.xml file, found in the Program 
Files\Compuware\DevPartner 
Studio\Comparison Tool\data directory.

Table 8-1. Categories of Differences

Category Differences Detected



176     Understanding DevPartner

Figure 8-2. Comparing Snapshots

The Category pane on the left lists the categories of differences, with the 
number of differences for each category displayed in parentheses. 
Clicking on a category displays that category’s differences in the 
Difference Details pane.

Near the bottom of the screen is a link to the internet. Clicking the link 
launches an internet search for items releated to the currently selected 
difference.

The System Comparison Service
The System Comparison service automatically takes a snapshot of the 
state of your machine at 2:10 a.m. daily if the machine is running. If the 
machine is powered off, it takes the snapshot five minutes after the next 
start-up.

The nightly snapshot service collects 21 snapshots, then begins deleting 
the oldest ones. You can change the number of kept snapshots by 
modifying the value in the System Comparison utility’s settings file 
(Compuware.Diff.Settings.xml, located in the Program 
Files\Compuware\DevPartner Studio\Comparison Tool\bin 



Chapter 8� System Comparison     177

directory). The size of snapshot files varies depending on the amount of 
data collected. A typical file size is less than one megabyte.

The System Comparison service runs at minimum priority, but it does 
consume some system resources for several minutes while it runs. If you 
prefer, you can use the Control Panel/Administrative Tools/
Services screen to set the startup type to manual for the DevPartner 
System Comparison service, but you will lose the functionality of having 
snapshots created automatically. 

Running the Comparison Utility from the Command Line
You can automate data collection and comparison using the two 
command line interfaces, CommandLine.exe and 
CommandLineDiff.exe.

� CommandLine.exe takes a snapshot of the current condition of your 
computer system. By default, it stores the snapshot in the last 
directory used to store snapshots, but you can specify an alternate 
directory as a parameter to the command line.

� CommandLineDiff.exe compares the values in two existing 
snapshot files and writes the resulting differences to an output file. 
Required parameters are 'computers' (it is a placeholder) and the 
names of the files to be compared. Optionally, you can specify the 
directory in which the output file will be written.

The output file is an XML file that can be read programmatically to check 
the results of the comparison. You cannot open this output file with the 
System Comparison utility's user interface.

The command line programs are located in the System Comparison 
utility's \bin directory (\Program Files\Compuware\DevPartner 
Studio\Comparison Tool\bin by default). 

Software Development Kit
The System Comparison utility includes a Software Development Kit 
(SDK) that provides functionality for software developers, including:

� The ability to write a System Comparison Plug-in to specify 
additional information to be gathered during a snapshot. 

The eleven categories of information gathered by the System 
Comparison utility (system information, system files, installed 



178     Understanding DevPartner

products, and so on) are sufficient for most comparisons. If you 
require additional information to adequately compare systems, you 
can customize the System Comparison utility by writing a data 
acquisition plug-in.

For information about creating and testing plug-ins, refer to the file 
WritingPlugin.html in the \sdk\Plugin sub-directory in the 
System Comparison installation directory.

� The ability to use the Snapshot Application Program Interface (API) 
to embed function calls in an application to trigger a snapshot after 
the application is deployed.

The Snapshot API enables an application developer to control 
snapshot capability from within a deployed application. Should 
problems occur after the application is deployed, embedded API calls 
can trigger a snapshot that can assist with diagnosing the problem.

For information about the Snapshot API, refer to the file 
SnapshotAPI.html in the \sdk\Snapshot sub-directory in the 
System Comparison installation directory, and to the sample 
application SampleSnapshotAPI.cs in the \sdk\Snapshot API 
sub-directory in the System Comparison installation directory.



 179

Appendix A

About DevPartner Studio 
Enterprise Edition and 
TrackRecord

� What Is DevPartner Studio Enterprise Edition?

� The DevPartner Studio EE Solution

� Feature Overview

� About TrackRecord and DevPartner Studio

� DevPartner Studio Interaction with TrackRecord

� TrackRecord and DevPartner Studio Coverage Analysis

What Is DevPartner Studio Enterprise Edition?
DevPartner Studio Enterprise Edition (EE) can increase a manager’s ability 
to predict when projects will reach a goal, such as a specified quality level 
or a deployment status. It gives project managers the concrete project 
details they need to keep software projects on schedule, and 
development team members the tools they need to accomplish their 
goals. 

DevPartner Studio EE combines the features of several existing software 
solutions, and integrates them to provide a new class of functionality. In 
addition to the DevPartner features described in this manual, the 
Enterprise Edition also includes the following components:

DevPartner Studio EE provides multiple ways to capture, manipulate, 
view, and track project data, including:

TrackRecord Advanced change request management, task management, and 
workflow support for development teams

Reconcile Practical requirements management for software development 
teams



180     Understanding DevPartner

� Milestone-related summaries that provide a way to interpret and 
understand critical-path project data

� Customizable work flow for tracking data in a way that fits a com-
pany’s development process

� Remote access to project information via a World Wide Web interface
� E-mail notification of changes to crucial project information

The Development Process

Each software development group establishes its own process, which is 
the set of steps that the group uses to get from the idea and design stage 
of a project to the implementation and delivery stage. DevPartner Studio 
EE fits in with a team’s current process, and provides features to assist the 
fine-tuning of internal development procedures.

Examples of process include:

� Written requirements
� Systematic change control
� Technical reviews
� Quality assurance planning
� Implementation planning
� Automated source code control
� Estimation updates at major milestones

Projects that use no process often suffer from:

� Application redesigns and rewrites during testing
� Integration problems
� Defect corrections late in the development life cycle at great cost
� Expansion of requirements—a malady often called “thrashing” 

Projects that use a well-managed process display a high degree of 
certainty about the status of the project in relation to its plan. Process 
also improves development team morale. In one 50-company survey, 
60% of developers who rated morale as good or excellent worked for 
firms that emphasized process, as compared to 20% whose firms were the 
least process oriented.

DevPartner Studio EE adapts to a company’s existing software 
development process, and provides tools to help teams enhance that 
process if they so choose. It provides a way to formalize a team’s work 
flow, to make people answerable to that work flow, and to audit the 
entire process. Combining customizable work flow with automatic error 
detection improves software quality and streamlines the development 
process.



Appendix A� About DevPartner Studio Enterprise Edition and TrackRecord     181

The DevPartner Studio EE Solution
DevPartner Studio EE provides solutions to problems commonly facing 
software development teams:

� Improved project control
� Higher software quality through enhanced code reliability
� Improved productivity

Improved Project Control

Keeping projects under control involves the ability to determine easily:

� What tasks has the team completed?
� What tasks remain uncompleted?
� How volatile is the application’s code?
� How thoroughly tested is the application?
� How reliable is the application?

Dynamic Tracking of Project Information

DevPartner Studio EE excels at tracking dynamic project information 
using TrackRecord. 

Numerous tools exist to plan software projects. These tools help 
determine resource allocation, schedules, critical-path tasks, and other 
vital information. Before DevPartner Studio EE, approved project plans 
became static data points. During real projects, schedules slip, 
programmers get pulled off projects to deal with escalated problems in 
other projects, and delivery conditions change. Project planning tools 
alone cannot easily help to deal with changing conditions, but the 
DevPartner Studio EE connection between Microsoft Project and 
TrackRecord allows dynamic recalculation of schedules.

Higher Software Quality

Developers and testing engineers will use DevPartner throughout the 
software development cycle.

Finding Problems Before Your Users Do

DevPartner Studio EE differs from other software project enhancement 
tools by encouraging a proactive and systematic approach to finding and 
fixing program anomalies, from outright bugs to code bottlenecks. The 
early location of a program’s problems contributes to high quality in the 
final product. DevPartner Studio EE’s debugging features assist 
developers, individually and collectively, throughout the development 



182     Understanding DevPartner

cycle. DevPartner saves time for programmers by making errors easier to 
find and repair, and easy report creation increases the likelihood that 
developers will enter defect and feature reports.

Finding errors is just the start of a process. Errors need to be discovered, 
recorded, reproduced, and assigned a priority for repair. TrackRecord 
streamlines much of this process, which frees developers to be more 
productive while guaranteeing that problems do not get lost or forgotten 
in a hectic schedule.

Improved Productivity

As project milestones—crucial dates such as code freeze and deployment 
dates—approach, dynamic displays of project data, such as number of 
defects outstanding, code volatility, and team-wide code coverage 
statistics, help everyone on the team assess their progress toward goals.

Every DevPartner Studio EE user can create a unique view of the 
information in a project database.

� Managers can get a big-picture view of a project, can track whether 
crucial tests are being run, and can control quality more tightly

� Developers can create lists of tasks needing immediate attention, 
rank tasks according to priority, perform error checks and perfor-
mance tests on their code, and focus their daily activities

� Testers can track bugs and the status of known problems, merge data 
generated by coverage runs, execute test plans, and organize daily 
activity

� Writers can track when specifications get published, when features 
get implemented, and when user interface changes get made

� Support coordinators can quickly locate information, such as known 
defects and configurations tested, to help customers resolve problems

In this way, individual users will be more productive by quickly 
retrieving just the information they need. Views such as the Milestone 
Summary provide a context for the display of this information.

Every software development project is different, and every company has 
different needs. Different parts of a single company need different 
information about ongoing projects. DevPartner Studio EE satisfies these 
requirements by offering flexibility in the design of projects, particularly 
in the types of information that get tracked.

Although DevPartner Studio EE provides numerous pre-built views of 
database information, every DevPartner Studio EE user will have unique 
requirements for the storage and display of project information. 
DevPartner Studio EE provides the flexibility to allow companies to 



Appendix A� About DevPartner Studio Enterprise Edition and TrackRecord     183

customize reports, forms, workflow, projects, and information types to fit 
their needs.

Feature Overview
DevPartner Studio EE provides the tools for accumulating and sharing 
software development project information. DevPartner Studio EE 
provides a rich set of features to facilitate the process of keeping track of a 
project under development.

Requirements Management

The crucial first step in any application development project is capturing 
the right set of end-user requirements. Next, those requirements must be 
effectively communicated to the development and testing teams. 
Reconcile provides a way to capture, organize, and distribute project 
requirements.

Using the familiar Microsoft Word as its editor, Reconcile provides a way 
to gather and refine requirements. Then, development teams can use the 
Reconcile Project Explorer to navigate requirement relationships. 
Reconcile requirements can be synchronized with QADirector to 
automatically create test procedures, and to correlate test results with test 
plans.

Reconcile integration with TrackRecord makes possible the association of 
defects and issues with project requirements. In this way, Reconcile and 
TrackRecord allow every development team member to stay up-to-date 
on project objectives.

Merging Coverage Data

The DevPartner Studio EE coverage feature generates information about 
the amount of a component’s code that has been exercised or tested. 
Since different developers will likely work on different components, this 
individual coverage data will not tell a complete story about an 
application project. Each developer’s local coverage report may need to 
be merged with other coverage results to obtain a complete picture of 
how much of the total project’s code has been exercised.

DevPartner Studio EE allows the merging of sets of coverage data based 
on builds, configurations, users, or other criteria.



184     Understanding DevPartner

Project Activity Tracking

Tracking the various tasks and components of a software project helps to 
deal with the problem of complexity. As team members work on a 
specific task, new tasks needing attention at a future date often emerge. 
DevPartner Studio EE provides a way to record and track those tasks so 
that they will not get lost. Combining the work of individual developers 
requires attention to detail, coordination, and accurate recording of 
problems that will require consideration at a later date.

Tracking the level of testing being done, the number of faults being 
discovered, and the amount of coverage activity taking place can help a 
project manager anticipate and avoid problems. Two-way 
communication between DevPartner Studio EE and Microsoft Project can 
even automate schedule changes.

Automatic Notification of Changes

Timeliness promotes productivity. For example, prompt notification of:

� Newly-found high priority bugs helps managers reallocate resources 
to deal with shifting task priorities 

� Newly-assigned tasks helps developers schedule their time more effi-
ciently 

While dynamic Outline reports provide the primary method for 
notifying users about changes to project data, the DevPartner Studio EE 
AutoAlert feature provides another way to notify one or more individuals 
when a tracked event occurs. AutoAlert lets you define flexible criteria for 
notifying remote or infrequent users of changes that might be of interest 
to them. 

Each user who receives automatic mail notification sets up the 
notification criteria by creating special DevPartner Studio EE mail 
queries. AutoAlert monitors the DevPartner Studio EE database, 
periodically checking to see if any new items match the mail queries.

Whenever an item is entered or changed so that it matches one of the 
mail queries, DevPartner Studio EE automatically sends an e-mail 
message to the owner of the e-mail query. By using the TrackRecord 
software’s flexible query engine, AutoAlert makes it possible for you to 
receive mail notification based on almost any criteria.

Customizable Workflow

Every software development team needs a way to make sure that certain 
tasks get completed, often in a specific order. Quality Assurance cannot 
test a repaired defect, for example, until the fix gets logged as integrated 



Appendix A� About DevPartner Studio Enterprise Edition and TrackRecord     185

with the rest of the application under development. DevPartner Studio 
EE allows, but does not require, setting up a workflow that works in this 
manner.

DevPartner Studio EE provides a mechanism to implement an ordered 
workflow. Teams can design this workflow to restrict who can move an 
item of project data from one stage in the workflow life cycle to another. 
The workflow and its enforcement policies can require certain 
information under specified conditions. These policies provide a way to 
make team members accountable to the process the project uses.

Remote Access via the Web

When members of a development team work at remote locations, they 
can still have access to project data. The DevPartner Studio EE WebServer 
provides remote access via standard Web connections to allow users to 
view, enter, and change crucial project data. 

Central Store of Shared Information

DevPartner Studio EE provides a robust client-server-based repository for 
sharing information. This repository uses an object-oriented database 
that is programmatically accessible through ActiveX (formerly OLE 
automation) interfaces. The repository provides the underlying 
infrastructure to enable groups to work together while each member 
works separately.

An extensible and flexible database structure, based on information 
types, forms the core of DevPartner Studio EE’s repository, and provides 
its power. 

About TrackRecord and DevPartner Studio
TrackRecord is part of the DevPartner Studio Enterprise Edition suite of 
software development tools. These applications automatically generate 
and store information about the detection, diagnosis, and resolution of 
software problems. 

Developers can use TrackRecord to capture this information, along with 
other project information, such as milestone dates, to help resolve 
problems quickly and consistently.

Note: Integration of TrackRecord and DevPartner Studio is version depen-
dent. You might need to upgrade your DevPartner Studio or Track-
Record software if you purchased the tools at separate times.



186     Understanding DevPartner

DevPartner Studio Interaction with TrackRecord
DevPartner Studio provides toolbar buttons and menu selections that 
allow the submission of defects to TrackRecord databases.

DevPartner Toolbar Buttons

The DevPartner toolbar buttons let you enter DevPartner Defects. 
Clicking these buttons opens a defect form, allowing you to key 
information into the DevPartner Studio database.

Defect Submissions

Submitting a DevPartner Studio Defect starts with highlighting an item 
from a DevPartner Studio debug display. 

Entering a Defect from DevPartner

Complete the following steps to enter a defect from DevPartner:

1 Choose Submit Defect from a DevPartner menu or toolbar.

Alternatively, choose a Submit Defect button from a DevPartner feature 
toolbar.

TrackRecord opens either a blank Defect form, or a form with some 
fileds prefilled with relevant data.

2 Enter other needed information into the defect report.

3 Click Save and Close.

TrackRecord and DevPartner Studio Coverage Analysis
DevPartner coverage users can merge session files that accumulate within 
their private work space. These merged sessions indicate how much 
testing that developer’s code has received over time.

With DevPartner Studio and TrackRecord, coverage sessions can be 
merged and filtered across users and environments. Merging coverage 
sessions from all the developers working on an application lets a manager 
or test coordinator determine how much of an application’s total code 
base has been exercised by test programs. 

Refer to the coverage documentation and online help for information 
about how to use DevPartner coverage.



Appendix A� About DevPartner Studio Enterprise Edition and TrackRecord     187

Merging coverage sessions entails two steps: creating a coverage merge 
set, and merging the sessions. A developer typically chooses what 
coverage sessions should be merged and what sessions should be 
excluded. Criteria for identifying sessions to merge can include the 
following.

� Application component
� Date
� Memory
� Milestone
� Operating System
� Person
� Project

You can match one of these selections to a specific value, to any value, or 
to any value except one you specify.

Creating Criteria for Merge Coverage Operation

To create criteria for a merge coverage operation, complete the following 
steps:

1 In TrackRecord, select Merge Coverage Sessions from the Tools menu.

2 Select a target from the left-most list box.

3 Select a match criteria from the right-most list box.

4 If you selected “is equal to” in Step 2, select a value from the bottom 
list box.

For example, if you selected “Operating System is equal to” in the 
two top lists, you would select a value, such as “Windows 98,” from 
the lower list.

5 Click Add.

6 Click Next to view the sessions that met your criteria.

Merging Coverage Sessions

To merge coverage sessions, complete the following procedure:

1 Click the check box next to a session to toggle it on or off.

When checked, that session will be merged with the other files 
selected. If unchecked, that session will not be merged with the other 
selected files. 

2 Click Merge.



188     Understanding DevPartner

The DevPartner coverage main dialog box opens and displays a bar 
graph and statistics about the amount of lines and functions 
exercised by your unit tests.



 189

 

Index

Symbols
% Changed 90
% Lines Covered 90
% Methods Covered 90
% Volatility 90
.dpmem (file extension) 103
.NET applications, managed code 137
.NET Framework 125, 158

A
Allocation Trace graph 114
API, System Comparison utility 178
Application design 155
Application implementation 12
Arrays in Object Reference graph 114
ASP.NET 107, 139
AutoAlert 184
Automating data collection 165

B
Bad fix probability 52
Batch file 38, 45

and Performance Expert 166
bc.com 35
bc.exe 35
Bottlenecks, performance 148
BoundsChecker

benefits 16
options 22
settings 22

Bug, Visual Studio Team System Work Item 8

C
Calculation, Performance Expert data 158
Call graph 120, 122

Performance Expert 158, 163
Call graph pane 53

call references 63
circular 64
configuration options 65
inbound call 63
layout 57, 67
node style 56, 65, 66
number of levels 56, 65
outbound call 64
recursive 64
root node 63
scaling 57, 66
toolbar 56
uncalled 58, 64
view by 58

Call graph references 63
Call Stacks, Performance Expert 161, 165
Call tree 158, 164
Child methods, in Performance Expert 158
Choose Columns dialog 161
Circular 64
Class list 103
Classes, profiled 103
Code stability 90
Collect call graph data 63
Collect metrics 52
Collect Performance Expert data 157
Columns, sorting 95
Command line execution

Performance Expert 162, 165
Comparing sessions 143
Comparing systems 171
Complexity 52
Count column 88
CPU usage 155
CPU/thread use 156



 

190     Understanding DevPartner

Create Filter 95
Creating a filter 95
Critical path 120

D
Data

adding to Performance Expert views 161
collecting Performance Expert 156, 157
filtering 93
sorting, in Method List 95

Data export 80, 134
Debugger, and Performance Expert 157
Debugging environment 19
Description pane 46, 47
Development cycle

Memory Analysis 130
Performance Expert 168

DevPartner
features 2
integration in Visual Studio 9, 81, 103, 134

DevPartner code review
user interface 39
window 38

DevPartner Data Export 80, 134
DevPartner Enterprise Edition 179

features 183
DevPartner menu

Visual Basic 99, 152
Differences, comparing systems 171
Disk I/O 156
Distributed applications 150, 167
DPAnalysis.exe

and code coverage in C++ 98
and code coverage in VB 99
and performance analysis in C++ 152
and performance analysis in VB 152
and Performance Expert 162, 165, 168

.dpmrg (merge) files 89

E
E-mail notification 184
Entry point 157
Errors

leak 18
memory 18
pointer 18

Excluding other application threads 133
Export DevPartner data 80, 134

F
File I/O 155, 156
Filter 29
Filter pane 87, 93, 142

All 93
Inactive Source 93
sorting 95
Source 93

Filtering data 93
FinalCheck 17
Framework, .NET 125

G
Garbage collection 108, 111, 112
General options 53
Go to Child Details 145
Go to Source 94, 148

H
Hungarian 58, 61

data-type prefixes 62
name set 61
scope-level 62

I
Inactive Source 96
Inbound call 63
Individual methods that use the most CPU (graph)
157
Instrumenting 83

L
Layout 57, 67
Leak errors 18
Life cycle, phases 11
Line counts 43

metrics 52
Live object 108
Live view 103, 104
Locate in Transcript 21
Long-lived objects 117

M
Main window 20
Main window, coverage 87
Managed code applications 137
Managed heap 103
Medium-lived objects 117
Memory analysis 101



� Index     191

 

development cycle 130
leaks 106
RAM footprint 106
real-time graph 107
session 109
temporary objects 106
tools 106

Memory and Resource Viewer 27
Memory errors 18
Memory footprint 122
Memory leak analysis 110
Memory Leak Results Summary 114, 115
Memory leaks 27, 108

and RAM footprint 122
defined 110
locating 108

Memory problems 102
identifying 105
symptoms 102, 106

Memory Use, optimizing 129
Merge files 89, 91
Merge History tab 90
Merge settings 91
Merge Summary tab 90
Merge window 89
Merging 89

managed code 96
Method Details

defined 145
navigating 146

Method List tab 88, 143
merge files 90

Method, defined 89, 142
Methods that allocate the most leaked memory
(chart) 111
Methods that allocate the most leaked memory
(graph) 115
Methods, .NET Framework 158
Metrics analysis 52

review settings 44
Metrics pane 51
Milestone testing 97
Mixed-mode applications 150
MSDN help links 47
Multiple processes 107, 139

N
Name set, Hungarian 61
Naming analysis

Hungarian 49, 58, 61
naming guidelines 49, 58
review settings 44

suggested name 49
Naming analysis to use 54, 61
Naming details

links to .NET Framework General Reference 51
pane 51

Naming guidelines 58
.NET identifiers 60
abbreviations 60
acronyms 60
capitalization 59
case sensitivity 59
links to .NET Framework General Reference 51
namespace 60
review settings 44
summary 41

Naming pane 47
Hungarian 48, 61
naming details 49
naming details pane 49
naming guidelines 48
no naming analysis chosen (none) 58
view by 57
violations 47, 49

Native C++ 150
Network I/O 155, 156, 159
Node style 56, 65, 66
Number of levels 56, 65

O
Object Distribution, in RAM footprint 124
Object life span 117
Object references 108, 112
Objects

long-lived 117
medium-lived 117
short-lived 117

Objects that Refer to the Most Leaked Bytes (graph)
112
Objects that refer to the most leaked memory (chart)
111, 112
Objects, profiled 125
Options dialog box 22
Options, code review 53
Outbound call 64

P
Parent methods, in Performance Expert 158
Paths that used the most CPU (graph) 157
Performance analysis

comparing sessions 143
running your program 98, 99, 151, 152



 

192     Understanding DevPartner

Performance Expert
automating data collection 165
Call graph 158, 163
Call Stacks 165
Call tree 158, 164
command line execution 162, 165
debugger 157
distributed applications 167
in the development cycle 168
running from batch file 166
running your program 156
session controls 157
session file 157
Source tab 161

Performance Expert window 156
Phases 11

deploy 13
develop 12
test 13

Pointers, errors 18
Precision 96
Problems pane 46
Profiled classes 103
Profiled objects 125
Profiling

performance 98, 99, 151, 152
Project list 45
Prototype, application design 155

R
RAM footprint 108, 122, 123

analysis 123
analysis page 124
measuring 123

Real-time graph 103, 118
interpreting 107, 111, 119, 123
memory analysis 107
Performance Expert 156

Reconcile 183
Recursive 64
reference (to an object) 108
Referring objects 114
Resource leaks 27
Results Summary

memory leak 110
Performance Expert 157

Review settings 43
Root node 63
Rule Manager 38, 67
Rule Manager user interface 67
Rules 40

database 44, 47, 67

MSDN help links 47
review settings 44
sets 44
summary 40, 43
suppression 46
triggers 47
violations 46, 47

S
Scalability problems 116, 162
Scaling 57, 66
SDK, System Comparison utility 177
Session Control 104, 133, 135
Session Control API 84, 138
Session Control file 84, 138
Session Controls 78, 141

Performance Expert 157
Session Controls toolbar 82, 85, 104, 107, 135,
139
Session Data pane 88, 142
Session file 110

memory analysis 103
Performance Expert 157

Session Summary tab 89, 143
Session window 142
Session window, coverage 87
Session, memory analysis 109
Sessions, comparing 143
Settings

configuration 22
merge 91

Settings dialog box 22
Severity 40, 46
Short-lived objects 117
Slow code, locating 148
Smart debugging 19
Snapshot API, System Comparison utility 178
Snapshots, System Comparison 175
Software development model 11
Sorting data 95
Sorting the Filter pane 95
Source code 114, 115

displaying 94
navigating 148

Source tab 88, 143, 161
Start-up costs in .NET applications 149
Summary

counts 42
review settings 43

Summary of call graph data 42
Summary of counts 42
Summary of naming guidelines 41



� Index     193

 

Summary of problems 40
Summary pane 39

call graph 42
naming guidelines 41
problems 40
projects 45

Summary tab 21
Suppression, libraries 31
Synchronization wait time 156
System calls 158
System Comparison utility 171

API 178
Command line 177
Comparison service 176
SDK 177
Snapshots 175

System module, defined 142

T
Team System, Visual Studio 8
Temporary object analysis 117
Temporary objects

and RAM footprint 122
and scalability 116
and scalability problems 116

Temporary Objects Results Summary 121
Test phase 13
Test suite development 97
Threads, excluding other application 133
Toolbar

call graph 56
code review 55
configuration options 56
optional for code review 56

Top 20 Source Methods 149
TrackRecord

integration with DevPartner 185, 186
merging coverage sessions 186
submitting sessions 186
toolbar buttons 186

Trouble-shooting methodology 159

U
Uncalled 58, 64
Understanding level 52
Unit testing 96
Unmanaged C++ 150
User-defined filters 95

V
View by

call graph 58
naming guidelines 57

Virtual memory 123
Visual Basic

DevPartner menu 99, 152
Visual Studio Team System 8

W
Web caching 150
WinForms client 154
Work Item, Visual Studio Team System 8

X
XML configuration file

and code coverage in C++ 98
and code coverage in VB 99
and performance analysis in C++ 152
and performance analysis in VB 152
and Performance Expert 165, 166


	Table of Contents
	Preface
	Who Should Read This Manual
	What This Manual Covers
	Conventions Used In This Manual
	For More Information

	Introducing DevPartner
	Introducing DevPartner
	What Is DevPartner?

	DevPartner Features
	Error Detection
	Static Code Analysis
	Performance Analysis
	In-Depth Performance Analysis
	Coverage Analysis
	Memory Analysis
	System Comparison
	Interoperability
	Distributed Data Collection

	DevPartner Support for Visual Studio
	Web Services Analysis
	Language/Technology Support
	Managed vs. Unmanaged Code
	Configuration
	Instrumentation Model
	Visual Studio Team System Support

	DevPartner and Visual Studio
	IDE Integration
	Menus and Toolbars
	Using DevPartner
	General User Interface Concepts

	DevPartner Methodology
	Software Development Life Cycle Model
	Definition and Planning
	Developing the Application
	Testing the Application Internally and Externally
	Deploying the Application to End Users

	DevPartner Integration into the Enterprise

	Error Detection
	Check Early, Check Often-The Best Error Detection Philosophy
	The Benefits of Using DevPartner Error Detection
	Comprehensive Error Detection
	Flexible Debugging Environment
	Integration with the Visual Studio Debugger
	Advanced Error Analysis and Event Logging
	Open Error Detection Architecture

	DevPartner Error Detection Main Window
	Results Pane
	Details Pane
	Source Pane

	Settings Dialog Box
	An Example: Call Validation
	Using Other Settings Categories

	Program Error Detected Dialog Box
	Buttons on the Program Error Detected Dialog Box

	Memory and Resource Viewer Dialog Box
	The Memory and Resource Viewer User Interface

	Suppression and Filtering Dialog Boxes
	Suppressing Errors
	Filtering Errors
	Suppression and Filtering User Interface
	Creating and Saving Suppression and Filter Files

	DevPartner Error Detection Integration with Visual Studio
	Using DevPartner Error Detection with Visual Studio 2003/2005
	Integration with Visual Studio 6

	Running DevPartner Error Detection from the Command Line
	Running FinalCheck from the Command Line


	Static Code Analysis
	DevPartner Code Review
	DevPartner Code Review User Interface
	Code Review Options
	DevPartner Code Review Toolbar Components

	Naming Analysis Functionality
	Naming Guidelines Naming Analyzer
	Hungarian Naming Analyzer

	Call Graph Analysis Functionality
	DevPartner Code Review Rule Manager
	Creating New Rules Using Regular Expressions
	Matching Lines Exceeding 90 Characters
	Matching Tabs Used Instead Of Spaces
	Matching Instances Where Code Catches System.Exception
	Matching Methods Having More Than One Return Point
	Enforcing Initialization Of Variables When They Are Defined
	Matching Instances Of More Than One Statement Per Line
	Ensuring Open Braces Are Placed On A Separate Line
	Ensuring Loop Counters Are Not Modified Inside the Loop Bodies


	Automatic Code Coverage Analysis
	Introducing DevPartner Coverage Analysis
	What is DevPartner Coverage Analysis
	How DevPartner Coverage Analysis Fits in Your Development Cycle

	DevPartner Support for Visual Studio
	DevPartner IDE Integration in Visual Studio
	DevPartner Toolbar and Menu Integration

	Collecting Coverage Data
	Running Your Program under DevPartner Coverage Analysis
	Collecting Server-side Coverage Data
	Collecting Coverage Data from Remote Systems

	Controlling Data Collection
	Viewing Your Results
	Session Window

	Merging Session Data
	Reviewing Merge Data
	Merge Files
	Merge Settings
	Results of Merging

	Viewing Data
	Controlling the Display of Data
	Filtering Data
	Sorting the Filter Pane
	Creating a New Filter
	Sorting Data in the Method List
	Changing the Precision

	Coverage Analysis for Real World Application Development
	Code Coverage in the Development Life-Cycle

	Running a Program from the Command Line
	Analyzing Coverage in Visual C++
	Analyzing Coverage in Visual Basic

	Finding Memory Problems
	Introducing DevPartner Memory Analysis
	Memory Problems in Managed Visual Studio Applications
	How Memory Analysis Helps You

	DevPartner Support for Visual Studio
	DevPartner IDE Integration in Visual Studio

	Identifying Memory Problems
	Collecting Server-side Memory Data
	Running a Memory Analysis Session

	Locating Memory Leaks
	Running a Memory Leak Analysis Session
	Understanding Memory Leak Analysis Results
	Alternate Methods of Solving the Problem

	Solving Scalability Problems
	Examples of Scalability Problems
	A Possible Cause: Temporary Objects
	Running a Temporary Objects Analysis Session
	Identifying Scalability Problems
	Analyzing Temporary Object Data
	Interpreting Results to Fix Scalability Problems

	Managing Memory for Better Performance
	Measuring RAM Footprint
	Understanding Footprint Data
	Optimizing Memory Use

	How Memory Analysis Fits in Your Development Cycle
	Running a Program from the Command Line

	Automatic Performance Analysis
	Introducing DevPartner Performance Analysis
	How DevPartner Performance Analysis Helps You
	What is DevPartner Performance Analysis?
	How DevPartner Performance Analysis Fits in Your Development Cycle

	DevPartner Support for Visual Studio
	DevPartner IDE Integration in Visual Studio

	Collecting Performance Data
	.Running Your Program under DevPartner Performance Analysis
	Collecting Server-side Performance Data
	Collecting Performance Data from Remote Systems

	Controlling Data Collection
	Viewing Your Results
	Session Window
	Comparing Sessions
	The Call Graph
	Viewing Source Code for a File or Method

	Performance Analysis for Real World Application Development
	Finding Bottlenecks
	Effective Performance Analysis for .NET Applications

	Running a Program from the Command Line
	Analyzing Performance in Visual C++
	Analyzing Performance in Visual Basic

	In-Depth Performance Analysis
	What is Performance Expert?
	Performance Expert and Performance Analysis

	What Can I Do with Performance Expert?
	Who Should Use Performance Expert?
	Software Designer
	Software Developer
	Quality Assurance

	Finding Application Problems with Performance Expert
	Basics: Running a Performance Expert Session

	Usage Scenarios
	Identifiable Performance Problem
	Scaling Problem in an Application
	Performance Slow but No Specific Issue

	Automating Data Collection
	Collecting Data from Distributed Applications
	Performance Expert in the Development Cycle

	System Comparison
	What is the System Comparison Utility?
	Scenarios for Use
	Categories Compared
	Comparing Snapshots
	The System Comparison Service
	Running the Comparison Utility from the Command Line
	Software Development Kit

	About DevPartner Studio Enterprise Edition and TrackRecord
	What Is DevPartner Studio Enterprise Edition?
	The Development Process

	The DevPartner Studio EE Solution
	Improved Project Control
	Higher Software Quality
	Improved Productivity

	Feature Overview
	Requirements Management
	Merging Coverage Data
	Project Activity Tracking
	Automatic Notification of Changes
	Customizable Workflow
	Remote Access via the Web
	Central Store of Shared Information

	About TrackRecord and DevPartner Studio
	DevPartner Studio Interaction with TrackRecord
	Defect Submissions

	TrackRecord and DevPartner Studio Coverage Analysis

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X


