
DevPartner
Advanced Error Detection Techniques

Release 9.1.0

Copyright © 2009 Micro Focus (IP) Ltd.
All rights reserved.

Micro Focus (IP) Ltd. has made every effort to ensure that this book is correct and accurate,
but reserves the right to make changes without notice at its sole discretion at any time. The
software described in this document is supplied under a license and may be used or copied
only in accordance with the terms of such license, and in particular any warranty of fitness of
Micro Focus software products for any particular purpose is expressly excluded and in no
event will Micro Focus be liable for any consequential loss.

Animator®, COBOLWorkbench®, EnterpriseLink®, Mainframe Express®, Micro Focus®,
Net Express®, REQL® and Revolve® are registered trademarks, and AAI™, Analyzer™,
Application Quality Workbench™, Application Server™,
Application to Application Interface™, AddPack™, AppTrack™, AssetMiner™,
BoundsChecker™, CARS™, CCI™, DataConnect™, DevPartner™, DevPartnerDB™,
DevPartner Fault Simulator™, DevPartner SecurityChecker™,Dialog System™,
Driver:Studio™, Enterprise Server™, Enterprise View™, EuroSmart™, FixPack™,
LEVEL II COBOL™, License Server™, Mainframe Access™, Mainframe Manager™,
Micro Focus COBOL™, Micro Focus Studio™, Micro Focus Server™, Object COBOL™,
OpenESQL™, OptimalAdvisor™, Optimal Trace™,Personal COBOL™,
Professional COBOL™, QACenter™, QADirector™, QALoad™, QARun™,
Quality Maturity Model™, Server Express™, SmartFind™, SmartFind Plus™, SmartFix™,
SoftICE™, SourceConnect™, SupportLine™, TestPartner™, Toolbox™, TrackRecord™,
WebCheck™, WebSync™, and Xilerator™ are trademarks of Micro Focus (IP) Ltd. All other
trademarks are the property of their respective owners.

No part of this publication, with the exception of the software product user documentation
contained on a CD-ROM, may be copied, photocopied, reproduced, transmitted, transcribed,
or reduced to any electronic medium or machine-readable form without prior written consent
of Micro Focus (IP) Ltd. Contact your Micro Focus representative if you require access to the
modified Apache Software Foundation source files.

Licensees may duplicate the software product user documentation contained on a
CD-ROM, but only to the extent necessary to support the users authorized access to the
software under the license agreement. Any reproduction of the documentation, regardless of
whether the documentation is reproduced in whole or in part, must be accompanied by this
copyright statement in its entirety, without modification.

U.S. GOVERNMENT RESTRICTED RIGHTS. It is acknowledged that the Software and the
Documentation were developed at private expense, that no part is in the public domain, and
that the Software and Documentation are Commercial Computer Software provided with
RESTRICTED RIGHTS under Federal Acquisition Regulations and agency supplements to
them. Use, duplication or disclosure by the U.S. Government is subject to restrictions as set
forth in subparagraph (c)(1)(ii) of The Rights in Technical Data and Computer Software clause
at DFAR 252.227-7013 et. seq. or subparagraphs (c) (1) and (2) of the Commercial Computer
Software Restricted Rights at FAR 52.227-19, as applicable. Contractor is Micro Focus (IP)
Ltd., 9420 Key West Avenue, Rockville, Maryland 20850. Rights are reserved under copyright
laws of the United States with respect to unpublished portions of the Software.

20090911150239

2 DevPartner Advanced Error Detection Techniques

Table of Contents

Preface . 7
Who Should Read This Manual . 7
What This Manual Covers . 7
Conventions Used In This Manual . 8
Getting Help . 8

Contact . 9

Chapter 1 · Workflow and Configuration Settings . 11
DevPartner Error Detection Workflow . 11

Benefits of the DevPartner Error Detection Workflow . 12
Saving Error Detection Configurations . 12
Using Error Detection from the Command Line . 12
Compiling, Instrumenting, and Building Unmanaged (Native) C++ Projects with NMDE-
VENV . 14
Instrumenting Native C/C++ Code with nmvcbuild . 14

Customizing the DevPartner Error Detection Settings . 15
General . 16
Data Collection . 16
API Call Reporting . 17
Call Validation . 17
COM Call Reporting . 17
COM Object Tracking . 17
Deadlock Analysis . 18
Memory Tracking . 18
.NET Call Reporting . 19
.NET Analysis . 19
Resource Tracking . 20
Modules and Files . 20
Fonts and Colors . 20
Configuration File Management . 20

Chapter 2 · Checking and Analyzing Programs . 23
Error Detection Tasks . 23

Finding Leaks . 23
Finding Pointer and Memory Errors . 23
Finding Memory Corruption . 24
Analyzing Transitions to Legacy Code in .NET Applications . 24
Validating Win32 API Calls . 25
Searching for Application Deadlocks . 26

Expanded Uses for DevPartner Error Detection . 26
Understanding Complex Applications . 26
 Understanding BoundsChecker 3

Reverse Engineering . 28
Stress Testing . 30

Chapter 3 · Analyzing Complex Applications . 33
About Complex Applications . 33
Wait for Process . 34
Analyzing Limited Parts of Your Program . 34

Using Modules and Files Settings . 36
Deciding What to Monitor . 38

How Does an Application Start Up? . 39
Analyzing Services . 39

Requirements and Guidelines . 39
Analyzing a Service . 40
Timing Problems and dwWait . 40
Alternate Method: Separating Control Logic from the Worker Thread 40
Custom Code to Turn the DevPartner Error Detection Log On and Off 40
Common Service-related Issues . 40

Analyzing ActiveX Controls Using the Test Container . 41
Common Test Container Issues . 42

Analyzing Applications That Use COM . 43
Common COM Issues . 44

Analyzing ISAPI Filters Under IIS 5.0 . 45
Common ISAPI Filter Issues . 46

Analyzing ISAPI Filters under IIS 6.0 . 46
IIS 5.0 Isolation Mode . 47
IIS 6.0 Default Configuration . 48
Common IIS 6.0 ISAPI Filter Issues . 48

Frequently Asked Questions . 49

Chapter 4 · Working with User-Written Allocators . 51
Introduction . 51
Gathering Necessary Information . 51

Finding the Names of User-Written Allocators . 51
Special Assumptions Made By User-Written Allocators about Memory 53

Creating Entries in UserAllocators.dat . 54
Modules . 54
Allocator Records . 55
Deallocator Records . 59
QuerySize Records . 61
Reallocator Records . 64
Ignore Records . 67

Coding UserAllocator Hook Requests . 69
Code Requirements for UserAllocators . 70

Allocator Function Hooks . 70
Deallocator Function Hooks . 71
Reallocator Function Hooks . 71

Debugging UserAllocator Hooks . 72
NoDisplay . 72
Debug . 72
4 Understanding BoundsChecker

How to Diagnose Errors in UserAllocators.dat . 73
Token Parsing Errors . 73
Semantic Errors . 73
If Your Application becomes Unstable after Changing UserAllocators.dat 73

Chapter 5 · Deadlock Analysis . 75
Background: Single and Multi-threaded Applications . 75

Threads . 75
Critical Sections . 76

Deadlock - A Basic Definition . 76
Techniques for Avoiding Deadlocks . 77
Potential Deadlocks . 77

The Dining Philosophers . 78
Monitoring Synchronization Objects . 79

Other Synchronization Objects . 79
Additional Information . 80

MSDN References . 80
Other References . 81

Appendix A · Troubleshooting Error Detection . 83
Troubleshooting . 83

Appendix B · Important Error Detection Files . 93
Files and Their Purpose . 93

Index . 95
 Understanding BoundsChecker 5

6 Understanding BoundsChecker

Preface
This manual describes concepts and procedures to help you understand in-depth use of Micro
Focus® DevPartner Error Detection.

Who Should Read This Manual

This manual is intended for new DevPartner Error Detection users and for users of previous
versions of DevPartner Error Detection who want an overview of new functions and interface
changes.

New users should read the error detection chapter in Understanding DevPartner Studio to get
an overview of DevPartner Error Detection concepts and then use this document to learn how
to use DevPartner Error Detection most effectively.

Users of previous versions of DevPartner studio should read the Release Notes to see how
DevPartner Error Detection differs from BoundsChecker, the error detection tool included
with previous versions.

This manual assumes that you are familiar with the Windows interface and with software
development concepts.

What This Manual Covers

This manual contains the following chapters and appendixes:

� Chapter 1, Workflow and Configuration Settings, explains how to configure DevPartner
Error Detection to solve various problems, ranging from simple API call validation to
problems encountered in complex COM applications.

� Chapter 2, Checking and Analyzing Programs, describes error detection tasks you can
perform with DevPartner Error Detection and other tasks, beyond error detection.

� Chapter 3, Analyzing Complex Applications, provides information to help you use Dev-
Partner Error Detection more effectively when checking complex applications.

� Chapter 4, Working with User-Written Allocators, explains how to customize the User-
Allocators.dat file so you can analyze your own memory allocators.

� Chapter 5, Deadlock Analysis, explains deadlocks, potential deadlocks, and synchroniza-
tion objects. It also lists Web addresses and books that provide more information on these
topics.

� Appendix A, Troubleshooting Error Detection, provides answers to some of the most
common issues in a problem/solution format.
 DevPartner Advanced Error Detection Techniques 7

Preface
� Appendix B, Important Error Detection Files, provides a list of the important files asso-
ciated with DevPartner Error Detection, and describes each file’s purpose.

You will also find an index at the back of this manual.

Note: This manual contains information for all of the Visual Studio versions of
DevPartner Studio. Notes throughout the text identify features that are avail-
able only for a specific release of Visual Studio.

Conventions Used In This Manual

This book uses the following conventions to present information.

� Screen commands and menu names appear in bold typeface. For example:

Choose Item Browser from the Tools menu.

� Computer commands and file names appear in monospace typeface. For example:

The Understanding DevPartner Error Detection manual (bc_vc.pdf) describes...

� Variables within computer commands and file names (for which you must supply values
appropriate for your installation) appear in italic monospace type. For example:

Enter http://servername/cgi-win/itemview.dll in the Destination field...

Getting Help

If ever you have any problems or you would like additional technical information or advice,
there are several sources. In some countries, product support from Micro Focus may be avail-
able only to customers who have maintenance agreements.

If you obtained this product directly from Micro Focus, contact us as described below. If you
obtained it from another source, such as an authorized distributor, contact them for help first.
If they are unable to help, contact us as described below.

However you contact us, please try to include the information below, if you have it. The more
information you can give, the better Product Support can help you. But if you don't know all
the answers, or you think some are irrelevant to your problem, please give whatever informa-
tion you have.

� The name, release (version), and build number of the product.

� Installation information, including installed options, whether the product uses local or net-
work databases, whether it is installed in the default folders, whether it is a standalone or
network installation, and whether it is a client or server installation.

� Environment information, such as the operating system and release on which the product
is installed, memory, hardware/network specifications, and the names and releases of other
applications that were running.

� The location of the problem in the product software, and the actions taken before the prob-
lem occurred.
8 DevPartner Advanced Error Detection Techniques

Preface
� The exact product error message, if any.

� The exact application, licensing, or operating system error messages, if any.

� Your Micro Focus client, office, or site number, if available.

Contact

Our Web site gives up-to-date details of contact numbers and addresses. The product support
pages contain considerable additional information, including the WebSync service, where you
can download fixes and documentation updates. To connect, enter www.microfocus.com in
your browser to go to the Micro Focus home page.

If you are a Micro Focus Product Support customer, please see your Product Support
Handbook for contact information. You can download it from our Web site or order it in
printed form from your sales representative. Support from Micro Focus may be available only
to customers who have maintenance agreements.
 DevPartner Advanced Error Detection Techniques 9

http://supportline.microfocus.com/

Preface
10 DevPartner Advanced Error Detection Techniques

Chapter 1

Workflow and Configuration Settings
DevPartner Error Detection can identify many different types of problems. The default
DevPartner Error Detection settings have been chosen to find the most common errors with
the minimum impact on performance.

By changing the settings, you can fine-tune DevPartner Error Detection to search for specific
types of problems. Understanding the error detection settings will enable you to use DevPart-
ner Error Detection to its fullest.

This chapter describes how to configure DevPartner Error Detection to solve various
problems, ranging from simple API call validation to problems encountered in complex COM
applications.

Note: Error Detection creates data files for each target application. You must ensure
that you have write access to the directory containing the target executable
before starting Error Detection.

DevPartner Error Detection Workflow

DevPartner Error Detection follows a program workflow that is more extensive than the
workflow of earlier DevPartner Error Detection versions. This mechanism enables you to
control the amount of data collected and reported.

Here are the four steps of the DevPartner Error Detection workflow:

1 Configure DevPartner Error Detection to collect the desired data

a Select the types of data you want to collect

b Define the portions of your application to be monitored

c Select the Suppressions and Filters you want to apply

2 Run your application

a As the program runs, review errors presented in the Program Error Detected dialog
box

b Suppress errors that are not valid

c View the log and create filters if necessary

d Review memory and resource usage

3 View the data (after program termination)
 DevPartner Advanced Error Detection Techniques 11

Chapter 1 · Workflow and Configuration Settings
a Filter out events you do not want to see in the log

b Create new suppressions to be applied to future runs of your application

4 If desired, save your settings, suppressions, and filters for future use

Benefits of the DevPartner Error Detection Workflow

The DevPartner Error Detection workflow enables you to:

� Select the type and amount of data to be collected

� Select the portions of the application to be monitored

� Suppress errors that report known issues, are handled by conditional code, or have been
generated in third-party code

� Create filters to hide extraneous information in the log

� Save different configurations so that settings, suppressions and filters can be reused

DevPartner Error Detection provides defaults for each step in the workflow process. This
means you can use DevPartner Error Detection with default settings, or you can change the
settings to customize the way that DevPartner Error Detection analyzes your application.

Saving Error Detection Configurations

You can save an error detection configuration - a specific combination of settings (standalone
versions) or options (Visual Studio) - to use again.

For example, you might create a configuration for memory and resource leaks, another for
COM leaks and a third to do detailed lint type analysis. You can further refine settings and
define configurations that look only at particular sections of a large application.

Using Error Detection from the Command Line

Use the following command syntax to check a program with BC.exe (the executable) from
the command prompt. Brackets [] indicate that a command is optional.

BC.exe [/?]

BC.exe sessionlog.DPbcl

BC.exe [/B sessionlog.DPbcl] [/C configfile.DPbcc] [/M] [/NOLOGO]
[/X[S|D] xmlfile.xml] [/OUT errorfile.txt] [/S] [/W workingdir]
target.exe [target args]

Table 1-1. Command Line options

Option Description

/? Display usage information

sessionlog.DPbcl Open an existing session log

/B sessionlog.DPbcl Run in batch mode and save the session
log to a log file sessionlog.DPbcl
12 DevPartner Advanced Error Detection Techniques

Chapter 1 · Workflow and Configuration Settings
Note: You must specify the full directory path to your program executable if it is not
located on the current path (the environment variable listing the directories
that the system searches in order to find an executable).

/C configfile.DPbcc Use the configfile.DPbcc options

/M Start BC.exe and minimize when running

/NOLOGO Do not show the splash screen when
loading BC.exe

/X xmlfile.xml Generate XML output and save to the
specified file.
• When you specify an executable, Error

Detection runs a session on the execut-
able and then generates XML output
from the results.

• When you specify a session log file only
(sessionlog.DPbcl), Error Detec-
tion converts the specified session log
to XML and saves the output.

Note: When you specify an executable,
you must still specify an corresponding
session log file using the /B switch.

/XS xmlfile.xml The /X flag used with the S modifier
instructs Error Detection to only save
Summary data to the xml file. Information
about the running of the Error Detection
session (Session data) is always
exported.

/XD xmlfile.xml The /X flag used with the D modifier
instructs Error Detection to only save
Details data to the xml file. Information
about the running of the Error Detection
session (Session data) is always
exported.

/OUT errorfile.txt Output any error messages to a text file
named errorfile.txt — this file will
only contain error messages generated
while trying to execute Error Detection,
not the list of error and leaks discovered
by Error Detection

/S Run in silent mode — do not open the
Program Error Detected dialog box on
errors

/W workingdirectory Set the target's working directory

target.exe [target args] The executable to launch and its argu-
ments

Table 1-1. Command Line options

Option Description
 DevPartner Advanced Error Detection Techniques 13

Chapter 1 · Workflow and Configuration Settings
You can specify multiple command options for one program. For example:

BC.exe /B test.dpbcl /S /M c:\testdir\test.exe

Compiling, Instrumenting, and Building Unmanaged (Native) C++ Projects with
NMDEVENV

If you plan to build your unmanaged C++ project from the command line, and want to instru-
ment it for performance or coverage analysis, you can use NMDEVENV from the command
line. NMDEVENV lets you compile, instrument unmanaged code in a project or solution, and
build the project or solution with a single command. It combines the code instrumentation and
compile capability of the DevPartner NMCL command with build capability of the Visual
Studio DEVENV command. NMDEVENV replaces the Visual Studio DEVENV command.

NMDEVENV uses Visual Studio instrumentation options set for the project or solution being
instrumented. The build process uses the DevPartner NMCL compiler driver instead of the
standard C++ compiler driver.

Use NMDEVENV with the NMCL option to enable instrumentation, and the DEVENV /Build
or /Rebuild switch. Specify the project or solution, and whether to build with debugging.
Note that if Debug is used and you have multiple debug configurations, Debug must be in
quotes and entered with a specific qualifier (for example "Debug|Win32". No DEVENV
IDE switches or other switches are needed.

Prerequisites

To run NMDEVENV you must have:

� DevPartner Studio 9.1.0 or later installed.

� A system environment set up to run the Visual Studio tools.

� NMCL.EXE and DEVENV.EXE in your path setting. By default NMCL.EXE is installed in
the following location: \program files\common files\compuware\nmshared

To build the debug configuration of a project with Error Detection instrumentation:

NMDEVENV /nmbcon sample.vcproj /build debug

Instrumenting Native C/C++ Code with nmvcbuild

If you plan to build your project from the command line, and want to instrument it for Error
Detection, you need to use nmvcbuild.exe instead of the Microsoft vcbuild.exe
compiler. The vcbuild compiler does not provide any way to replace the default compiler
and linker, so there is no way to perform DevPartner native C/C++ instrumentation.
nmvcbuild.exe is a command line utility, designed specifically for DevPartner, that allows
it to perform native C/C++ instrumentation for vcbuild. It functions as a wrapper for
vcbuild that watches for cl.exe and link.exe being started, and replaces them with
nmcl.exe and nmlink.exe.

The nmvcbuild utility accepts the same command line parameters as vcbuild and nmcl.
You can view the parameters for vcbuild and nmcl by entering vcbuild ? and nmcl ?
at the command line. You can also embed any required parameters in the environment variable
nmcl, and then you only need to pass the vcbuild parameters when you call nmvcbuild.
For example, the following entry would set nmcl parameters in the environmental variable:
14 DevPartner Advanced Error Detection Techniques

Chapter 1 · Workflow and Configuration Settings
set nmcl=/NMignore:StdAfx.cpp

For more information, refer to nmcl Options in the online help.

Prerequisites

To run nmvcbuild.exe you must have:

� DevPartner Studio installed on your system.

� A system environment set up to run the Visual Studio tools.

� vcbuild.exe and nmvcbuild.exe in your path setting. By default nmvcbuild.exe is
installed in the following location:

\program files\common files\compuware\nmshared

Note: For installs on 64-bit versions of Windows, the file is located at:

\Program Files (x86)\Common Files\Compuware\NMShared

Example

To build the debug configuration of the sample project with Error Detection instrumentation:

nmvcbuild /nmbcon sample.vcproj debug

Customizing the DevPartner Error Detection Settings

The DevPartner Error Detection settings provide the following types of customization:

� Restrict the types of information collected (e.g. memory and resource leaks)

� Further refine the types of information collected in each major category of analysis (for
example, look only for resource leaks generated by graphics calls)

� Determine how much additional information such as call stacks, parameter data, return
values, etc. is recorded along with the event or error

� Control the look and feel of the DevPartner Error Detection user interface. This includes
changing fonts, colors, highlighting, or whether the Program Error Detected dialog box is
displayed

� Save and restore DevPartner Error Detection settings created previously

By customizing the DevPartner Error Detection settings, you control how much data is
collected and which portions of the application are monitored.
 DevPartner Advanced Error Detection Techniques 15

Chapter 1 · Workflow and Configuration Settings
The DevPartner Error Detection settings are divided into these groups:

� General
� Data Collection
� API Call Reporting
� Call Validation
� COM Call Reporting
� COM Object Tracking
� Deadlock Analysis
� Memory Tracking
� .NET Analysis
� .NET Call Reporting
� Resource Tracking
� Modules and Files
� Fonts and Colors
� Configuration File Management

General

Use the check boxes under General settings to control following:

� Event logging

Note: Turning off event logging “silences” Error Detection. Error Detection will not
report anything until event logging is turned on again.

� The Program Error Detected dialog box - to display on each error or not.

� Whether or not to display a prompt to save program results when closing Error Detection
or starting another session.

� Whether or not to display the Memory Resource Viewer dialog box when the target appli-
cation exits or not

� The directories to search for source and symbol files

� The working directory (available only when you use DevPartner Error Detection in stan-
dalone mode)

� Specify command line arguments (available only when you use DevPartner Error Detec-
tion in standalone mode)

Data Collection

Use the Data Collection settings to control the following features.

� The depth of various call stacks

� The amount of data to be stored for non-scalar parameters (for example, structures,
classes, and pointers) and return values

If you are working with computers that have limited memory, or if you are analyzing large
complex applications, you may want to restrict the size of the Maximum call stack depth on
allocation to reduce memory requirements.
16 DevPartner Advanced Error Detection Techniques

Chapter 1 · Workflow and Configuration Settings
API Call Reporting

Use API Call Reporting settings to control the type of Windows API calls to be logged if
Enable API call reporting has been selected. You can also control the logging of Windows
messages.

To reduce log file sizes, selectively enable API calls for particular Windows module (for
example, select GDI32 to log graphics calls).

Call Validation

Use Call Validation settings to control whether DevPartner Error Detection validates Windows
API parameter and return values. By default, DevPartner Error Detection does not validate
parameters.

If you are also tracking memory usage, you can select Enable memory block checking.
When you select this option, DevPartner Error Detection performs more detailed parameter
analysis using the knowledge gathered from the memory tracking system. Enabling this
feature will detect more errors but will affect performance.

DevPartner Error Detection includes settings that enable you to restrict the types of validations
performed on the Windows APIs. These settings enable you to de-select categories of errors
that can generate spurious errors. Examples include flag checks, range checks, and enumera-
tion checks. Explore these options if you want the detailed analysis of handles and pointers but
are not interested in other types of validation.

DevPartner Error Detection enables you to select which Windows APIs to check. The default
is to check all Windows APIs. If you are interested in a limited set of API calls, select only
those modules. This can reduce the number of errors detected and improve performance.

COM Call Reporting

Use COM Call Reporting settings to control the COM interfaces that should be logged if
Enable COM method call reporting on objects that are implemented in the selected
modules has been selected.

By default, if Enable COM method call reporting on objects that are implemented in the
selected modules is selected, DevPartner Error Detection will report on all known COM inter-
faces. For improved performance, select only the COM interfaces you need to check. Use the
tree view that appears under COM Call Reporting. Decreasing the number of COM interfaces
checked decreases the size of the log file and improves performance.

You can also select Report COM method calls on objects implemented outside of the
listed modules.

COM Object Tracking

DevPartner Error Detection can monitor COM usage within an application and will report on
any code that is leaking interfaces. If an interface leak is detected, DevPartner Error Detection
will provide a COM use-count graph showing every AddRef and Release within the appli-
cation. The graphs can be used to quickly spot missing AddRef or Release calls based on
your knowledge of the application.
 DevPartner Advanced Error Detection Techniques 17

Chapter 1 · Workflow and Configuration Settings
By default, DevPartner Error Detection does not enable COM object tracking. Select Enable
COM object tracking to activate this feature. When COM object tracking is active, you can
select All COM classes or you can select individual classes from the list provided.

Deadlock Analysis

Use Deadlock Analysis to monitor multi-threaded applications for deadlocks. This includes
the following types of analysis:

� Monitoring and reporting of deadlocks as they occur in the application
� Monitoring the usage patterns of the synchronization objects within your application for

potential deadlocks
� Monitor your application for synchronization object errors

Memory Tracking

Use Memory Tracking settings to control the type of memory leak detection performed on the
application. Memory Tracking is enabled by default. If you do not want to perform memory
leak detection, clear Enable memory tracking.

The Memory Tracking settings have been preset to generate acceptable results for most appli-
cations. The Enable FinalCheck, Guard bytes, Fill on allocation and Poison on free
settings are of special note.

Enable FinalCheck

Selecting Enable FinalCheck has no effect unless your application is instrumented with
FinalCheck. FinalCheck is on by default when you select Instrumenting for Error Detec-
tion. To enable instrumentation without having FinalCheck run, you can disable FinalCheck in
the Memory Tracking pane of the Error Detection Settings.

The recommended usage is to leave Enable FinalCheck selected and to clear it only when
you want to perform a less-detailed ActiveCheck analysis on an application that is already
instrumented.

Guard Bytes

Guard bytes are used to detect memory overruns in ActiveCheck analysis. If you encounter
heap corruption and DevPartner Error Detection does not detect the problem, consider increas-
ing the Count setting to a larger value. Refer to the online documentation for tips on using
these settings to track down heap errors that are hard to find.

Fill on allocation and Poison on free

Fill on allocation sets memory to a known state when it is allocated. Poison on free sets
memory to a known state when it is deallocated.

The byte patterns used have been carefully selected to cause an application to generate errors
if these byte patterns are accidentally used during program execution. Refer to the online
documentation for additional information on these settings.
18 DevPartner Advanced Error Detection Techniques

Chapter 1 · Workflow and Configuration Settings
UserAllocators.dat

If you write your own memory allocation logic or override global operator new, see
Chapter 4, “Working with User-Written Allocators” and review the documentation (in the
form of comments) in the following file:

C:\Program Files\Micro Focus\DevPartner Studio\BoundsChecker
\Data\UserAllocators.dat

Note: For installs on 64-bit versions of Windows, the file is located at: \Program
Files (x86)\Micro Focus\DevPartner Studio\Bound-
sChecker\Data\UserAllocators.dat

.NET Call Reporting

Use .NET Call Reporting settings to control .NET assemblies that should be logged if Enable
.NET method call reporting has been selected.

By combining .NET and COM call reporting, you can see both sides of COM Interop.

The .NET User Assemblies and .NET System Assemblies are displayed on separate branches
of a tree view control.

Note: .NET Call Reporting can generate a large amount of data, and cause system
slowdowns. Enable .NET Call Reporting only when necessary to debug and
understand the framework, and even then select only the assemblies you
need to check. Limiting the number of assemblies selected in the All types
tree view decreases the size of the log file and improves performance.

.NET Analysis

DevPartner Error Detection supports mixed native and managed applications. If you are
working in mixed environments, you can select Enable .NET runtime analysis. DevPartner
Error Detection supports the following types of .NET analysis:

� Monitoring of unhandled exceptions being passed from native to managed code

� Analysis of .NET Finalizers

� Managed to native code interoperability

� Monitoring of garbage collection events

.NET Interoperability

The DevPartner Error Detection .NET Interoperability feature monitors the number of times
an application transitions from managed to native code. Use this information to analyze usage
patterns and target native code that could benefit from being rewritten in managed code. For
best results, use this feature with the Interop reporting threshold parameter to specify your
own lower limit for acceptable usage.
 DevPartner Advanced Error Detection Techniques 19

Chapter 1 · Workflow and Configuration Settings
Resource Tracking

Use Resource Tracking settings to control the type of resource leak detection performed on the
application. Resource Tracking is selected by default. If you do not want to perform resource
leak detection, clear the Enable resource tracking check-box.

When resource tracking is selected, you can search for all resource leaks or limit the search to
particular resources associated with specific libraries in the Windows API.

The resources have been grouped by library and within each library by the API call used to
deallocate the resource. For example, if you have recently written a lot of code to manipulate
the registry, you might want to de-select all libraries except ADVAPI32, then select only
RegCloseKey.

Modules and Files

Use the Modules and Files settings to:

� Identify executables and libraries within your application that should be monitored or
ignored

� Refine the list of executables and libraries to be monitored or ignored down to the source
file level if symbols are available

� Identify a list of System directories that should be ignored by the DevPartner Error
Detection analyzers

Use the Modules and Files settings to control the portions of your application that are
monitored by DevPartner Error Detection. For example, you might consider using Modules
and Files settings when writing large applications or applications such as ISAPI filters.

Note: Disabling all the modules in the Modules and Files settings will not prevent
reporting of some error types. Error Detection always reports memory
overruns within any module, and other types of events originating from the
MFCxxxx.dll libraries.

For more information, see “Using Modules and Files Settings” on page 36.

Fonts and Colors

Use the Fonts and Colors settings to change the font, color and emphasis of each item in the
DevPartner Error Detection user interface.

Configuration File Management

Use Configuration File Management to create multiple settings files for each project. Figure 1-
1 on page 21 shows the Configuration File Management options available. You can then use
these settings files throughout the software development cycle to perform various types of
analysis. Consider these examples of settings files you might create:

� Use Call Validation and Modules and Files to select only your components; use these set-
tings daily as you add new code to your application

� Use settings under Memory Tracking and Resource Tracking as you complete new com-
ponents, or make non-trivial changes to existing components
20 DevPartner Advanced Error Detection Techniques

Chapter 1 · Workflow and Configuration Settings
� Create a settings file to be used in batch mode over the weekend to analyze the results of
major milestones. You might also want to instrument the build with FinalCheck to obtain
the most detailed information when you analyze the reports.

� Create a settings file with various sets of modules selected but all analysis features dis-
abled. You can then load this settings file and select the options you want during an inter-
active session. This may be especially useful when you need to manage complex modules
and files settings.

Figure 1-1. Configuration File Management settings

Configuration File Functions

The Configuration File Management page has the following functions available:

� Configuration file name: The full path and name of the configuration file.

� Reload: Loads the current configuration file again, discarding any changes. This returns
you to the last saved version of the current configuration file.

� Load: Opens the Load From dialog box. Select Internal User Defaults to load your user
default settings. If you select Configuration File, the Load Configuration File dialog
opens. Use this to select a different configuration file to load.

� Save: Saves all active changes in the currently loaded configuration file.

� Save As: Opens the Save Configuration File dialog box. Use this to save the current con-
figuration settings under a different file name.

� Reset: Resets all the program property settings to the default factory settings.

� Save Defaults: Save the current settings as your user defaults. All new projects will use
these settings.

� Delete Defaults: Delete the user default configuration settings and revert to factory set-
tings. All new projects will use the factory settings.
 DevPartner Advanced Error Detection Techniques 21

Chapter 1 · Workflow and Configuration Settings
22 DevPartner Advanced Error Detection Techniques

Chapter 2

Checking and Analyzing Programs
This chapter describes some of the error detection tasks you can perform with DevPartner
Error Detection. It also describes other tasks that you can perform with DevPartner Error
Detection.

Error Detection Tasks

DevPartner Error Detection typically includes tasks such as:

� Finding memory, resource and interface leaks

� Looking for pointer and memory errors

� Searching for memory corruption

� Analyzing the use of legacy code in .NET applications

� Validating Win32 API calls

� Searching for application deadlocks

Finding Leaks

DevPartner Error Detection excels at finding memory, resource and interface leaks. By
default, DevPartner Error Detection searches for memory and resource leaks but not interface
leaks. To search for interface leaks, select Enable COM object tracking in the COM Object
Tracking settings.

DevPartner Error Detection provides two methods of detecting memory leaks, ActiveCheck
and FinalCheck. ActiveCheck will search for memory leaks in any Windows application.
Leaks will be reported when your application shuts down. FinalCheck will comprehensively
report memory leaks at run-time as they occur in your application. Examples include when a
local variable goes out of scope or when the last pointer to a block of memory is re-assigned,
as well as dangling pointer usage and other hard to find errors.

Finding Pointer and Memory Errors

DevPartner Error Detection can search for pointer and memory errors using both ActiveCheck
and FinalCheck technology. In ActiveCheck mode, DevPartner Error Detection will monitor
pointers passed to Windows calls for errors. Alter the settings for Call Validation and Memory
Tracking to configure the amount of checking done by DevPartner Error Detection.
 DevPartner Advanced Error Detection Techniques 23

Chapter 2 · Checking and Analyzing Programs
If you re-compile your program using FinalCheck, DevPartner Error Detection will check
every pointer reference in your program for correct usage. FinalCheck provides very detailed
analysis of your program and will locate hard-to-find problems such as uninitialized variables,
dangling pointers, unrelated pointer comparisons, array index errors, and so on.

Finding Memory Corruption

DevPartner Error Detection helps you find memory corruption problems caused by the follow-
ing types of problems:

� Overrun allocated buffers

� Continued access to memory after it has been deallocated

� Deallocating a resource multiple times (e.g. double delete)

DevPartner Error Detection can detect many of these errors in ActiveCheck mode but provides
the most detailed analysis with FinalCheck.

If you encounter memory overrun errors and you are restricted to using only ActiveCheck, see
the online documentation which contains more information about Check heap blocks at
runtime in the Memory Tracking settings.

Analyzing Transitions to Legacy Code in .NET Applications

DevPartner Error Detection provides the following types of analysis that can help you make
the transition from native application to managed application programming:

� Complete analysis of the native portions of Windows applications

� Analysis of the transition layer between native and managed sections of applications that
use mixed code

� Analysis of finalizers in managed applications

These types of analysis enable you to monitor:

� Unhandled exceptions being thrown from native applications and passed to managed code

� Garbage collector activity that might cause performance problems

� COM interoperability between managed and native code

� P/Invoke calls being made from managed code to native windows libraries

� The frequency of calls across the managed to native boundary

You can use this information to plan and monitor the process of migrating an application.
24 DevPartner Advanced Error Detection Techniques

Chapter 2 · Checking and Analyzing Programs
Migrating from Native to Mixed or Managed Code

The migration process involves the following steps:

1 Analyze COM usage for your native application to determine which objects are being
used.

2 Rewrite a section of the application in managed code using P/Invoke and COM to call
native portions of the application.

3 Under .NET Analysis, select Enable .NET analysis and PInvoke interop monitoring to
analyze the transitions between the newly written code and the existing native code.

4 Make any necessary changes.

5 Under .NET Analysis, select COM Interop monitoring and PInvoke interop monitor-
ing to monitor the number of calls made between managed and native code. Use the per-
formance data to help make decisions on these additional changes:

a Determine which additional COM objects should be ported to managed code.

b Determine if new methods should be added to reduce the number of calls between
managed and native code. For example, you might add a method to request data
records 10-20 items at a time instead of one at a time.

c Determine if calls to native APIs (such as the Windows API) are being made effi-
ciently.

You can also check for unhandled exceptions being thrown across the native-to-managed
boundary. To do this, select Exception monitoring under .NET Analysis. Applications
written in native code use exceptions to notify a caller that a call or method failed. As sections
of your application are re-written in managed code, monitor the use of exceptions to catch
exceptions before they transition to managed code.

Validating Win32 API Calls

DevPartner Error Detection recognizes thousands of Windows calls. This capability allows
DevPartner Error Detection to validate pointers, flags, enumerations, handles, and return
codes. Select Enable call validation to confirm that your applications are using Windows
calls properly.

You can configure the following Call Validation features:

� Choose what types of Windows calls to monitor

� Selectively disable various types of validation such as flag, range, and enumeration check-
ing

With these features, you can configure DevPartner Error Detection to validate important
parameters such as handles and pointers and to report fewer errors that do not pertain to the
task at hand.
 DevPartner Advanced Error Detection Techniques 25

Chapter 2 · Checking and Analyzing Programs
Searching for Application Deadlocks

DevPartner Error Detection can identify code that will cause deadlocks in your application.
Select Enable deadlock analysis to locate deadlocks. Additional controls enable you to fine-
tune deadlock analysis.

Expanded Uses for DevPartner Error Detection

Beyond error detection tasks, DevPartner Error Detection can be used as:

� An aid to understand complex applications

� A reverse engineering tool

� A tool for stress testing an application

Understanding Complex Applications

DevPartner Error Detection contains several tools that help you better understand large,
complex programs. Consider these three scenarios:

� A new developer joins an existing team and needs to understand how the various DLLs
interact.

� A consultant has been brought onto a project to solve a problem (such as crashes, memory
leaks, and so on) and needs to understand where to concentrate the most resources given a
tight engineering schedule.

� A developer starts using a third-party library and wants to understand why the library is
leaking Windows resources. In many cases, the problem is not with the library but in the
way that the library is being used.

The following DevPartner Error Detection features can be used to address these scenarios.

COM Object Tracking

Many applications use COM objects that were provided by in-house developers, third-party
vendors, or Microsoft. If these COM objects are not used correctly, interface leaks will occur.
Interface leaks result in memory and resource leaks — objects allocated from the heap are not
released properly, and in turn any memory allocated by those objects is not released properly.

The COM Object Tracking enables you to view leaked COM objects. This information can
help you determine where the missing Release call should be made corresponding to an
AddRef in your application.

Deadlock Analyzer

Many legacy applications, written before the common use of dual processors, may behave
unpredictably when run on more current high-performance computer systems. For example,
applications can become deadlocked when they use synchronization objects improperly.
26 DevPartner Advanced Error Detection Techniques

Chapter 2 · Checking and Analyzing Programs
Deadlock analysis under DevPartner Error Detection can identify code that may lead to
deadlocks. Note that this analysis can also identify potential deadlocks. A potential deadlock
is a deadlock waiting to happen when an undesirable set of conditions develop as an applica-
tion runs. With DevPartner Error Detection, you can identify these potential deadlocks before
they occur in a production environment.

Modules and Files

Complex applications are often developed across multiple organizations and include libraries
purchased from outside vendors. By default, DevPartner Error Detection will report errors in
any non-system DLL. Use the Modules and Files settings to restrict DevPartner Error Detec-
tion error reporting and call reporting to specific sections of your application. The result is a
more meaningful error report that can be used to solve complex problems.

Note: Disabling all the modules in the Modules and Files settings will not prevent
reporting of some error types. Error Detection always reports memory
overruns within any module, and other types of events originating from the
MFCxxxx.dll libraries.

The Modules Tab

The DevPartner Error Detection Modules tab (see Figure 2-1 on page 27) and associated
details pane provide a view into your program. This view shows what DLLs are being loaded
as the program runs. By carefully reviewing this report, you can answer the following
questions and make better-informed decisions when you have to make trade-offs:

� Is this module instrumented, and how?

� Is a particular DLL really needed?

� Is it worth calling only one method in a DLL to incur the cost of n additional DLLs being
loaded into the process?

� Why is my DLL being loaded at the non-preferred load address?

� Why are multiple versions of the same DLL being loaded into memory?

Figure 2-1. Modules tab and Details pane
 DevPartner Advanced Error Detection Techniques 27

Chapter 2 · Checking and Analyzing Programs
Viewing and Sorting in the Results Pane

DevPartner Error Detection provides a wide variety of ways to view the data collected on your
application. Initially, DevPartner Error Detection shows the Summary tab, a high-level report,
in the Results pane. You can review the Summary tab and then double-click an entry to view
more information.

This capability to navigate through multiple layers of information provides many different
views of the data. For example:

� A technical lead might review the data looking for trends such as more or fewer memory
leaks over time

� A developer might be interested in correcting memory overrun errors, dangling pointers,
and so on.

This multi-level view enables you to identify the most relevant data and access a more detailed
view in one of the tabs (Memory Leaks, Other Leaks, Errors, .NET Performance, or
Modules) in the Results pane. When viewing data in one of the tabs, you can click column
headers to further sort data by size, number of occurrences, location, and so on.

Reverse Engineering

DevPartner Error Detection can be used to analyze Windows applications. By creating a
configuration with settings like those described in this section, you can use DevPartner Error
Detection to monitor and report on the operations being performed by a Windows application.

Data Collection

Increase the Call parameter encoding depth parameter to generate more detailed API param-
eter information. Increasing the encoding depth will slow processing and increase the size of
the log file.

API Call Reporting

Select Enable API call reporting to log API call and return values. The amount of detail
DevPartner Error Detection gathers on parameters and classes passed as parameters is deter-
mined by the Call parameter encoding depth value under the Data Collection settings.

Select Collect window messages to record all window messages sent to the application.
Selecting this option provides a view of how the application responds to various window
events such as mouse clicks, repaint events, etc.

Note: Selecting either of these options will increase the size of the log file and will
slow DevPartner Error Detection performance.

To minimize the overhead of API call reporting, select only system DLLs most relevant to the
current task.

COM Call Reporting

Select Enable COM method call reporting on objects that are implemented in the
selected modules to enable collection of COM method calls.
28 DevPartner Advanced Error Detection Techniques

Chapter 2 · Checking and Analyzing Programs
To keep the COM Call Reporting information manageable, select only the most relevant inter-
faces and clear the All components check box.

.NET Call Reporting

Select Enable .NET Method Call Reporting to enable collection of .NET method calls. To
keep .NET call reporting manageable, select only .NET user assemblies (default setting).

.NET Analysis

When writing mixed native and managed code applications, use the .NET Analysis features
to:

� Monitor unhandled exceptions being thrown from native code into managed code

� Monitor calls (P/Invoke or COM method calls) being made from managed code to native
code

� Select Exception monitoring to monitor exceptions.

To monitor calls from managed code to native code, select either COM Interop monitoring
or PInvoke monitoring, then select an appropriate Interop reporting threshold value. When
monitoring calls from managed to native code, select a sufficiently high reporting threshold
value and use the Modules and Files settings to reduce unwanted information.

Function Groups to Turn Off for Reverse Engineering

Tip: Remember to select these features after you have finished your reverse
engineering session.

DevPartner Error Detection provides tools to monitor many types of leaks and errors in
Windows applications. However, during reverse engineering sessions it may be desirable to
turn off the DevPartner Error Detection error and leak detection logic. Follow these steps to
disable these features in the Program Settings dialog box (in DevPartner Error Detection
standalone) or the Options dialog box (in the Visual Studio IDE):

1 Under Call Validation, clear Enable call validation.

2 Under COM Object Tracking, clear Enable COM object tracking.

3 Under Memory Tracking, clear Enable memory tracking.

4 Under Resource Tracking, clear Enable resource tracking.

5 Under Deadlock Analysis, clear Enable deadlock analysis.

These features are intended to identify bugs in the code you are examining. By turning off
these features, you can concentrate on information that may help you understand how the code
in a component or API works.

Modules and Files

By default, DevPartner Error Detection will report on all portions of your application except
those parts listed in the System Directories exclusion list.
 DevPartner Advanced Error Detection Techniques 29

Chapter 2 · Checking and Analyzing Programs
When doing reverse engineering, you may want to monitor a few DLLs that would normally
be excluded. By monitoring a DLL, you can trace into that DLL to see how it operates.

For example, to understand how a particular common control uses WIN32 API calls, you
might explicitly include COMCTL32.DLL then enable API Call Reporting.

To monitor system DLLs explicitly, click Add module and add the desired DLLs.

Configuration File Management

You can use Configuration File Management to create and save settings designed for special
tasks in your development cycle.

For example:

� Memory, Resource and COM leak detection

� Memory and Validation only

� Reverse engineering

� Any of the above, but with restricted sets of DLLs using custom Modules and Files set-
tings.

To prevent DevPartner Error Detection from monitoring business-critical portions of your
application (such as password checking), you can selectively disable DevPartner Error Detec-
tion logging by making calls to the DevPartner Error Detection callable interface at runtime.
Please refer to the comments on event reporting in the following file for details:

C:\Program Files\Micro Focus\DevPartner Studio\BoundsChecker
\ErptApi\NmApiLib.h

Note: For installs on 64-bit versions of Windows, the file is located at:

\Program Files (x86)\Micro Focus\DevPartner Studio\
BoundsChecker\ErptApi\NmApiLib.h

Stress Testing

A side effect of running DevPartner Error Detection is that it forces an application to deal with
many unexpected situations that might only occur under heavy load situations.

Handling Non-zero Uninitialized Data

Many applications are written with the incorrect assumption that local variables and memory
returned from dynamic memory allocation routines is initialized to some value. DevPartner
Error Detection writes a known fill pattern over various types of memory when it is allocated
to search for uninitialized data access. Examples include local variables, and memory
allocated by new, malloc, HeapAlloc or LocalAlloc.

If your application has been written assuming that uninitialized memory will be zero, your
program may crash or behave unpredictably when run under DevPartner Error Detection. If
this occurs, instrument your application with FinalCheck and check it again with DevPartner
Error Detection to locate the errors.
30 DevPartner Advanced Error Detection Techniques

Chapter 2 · Checking and Analyzing Programs
Note: If you have written your own memory allocation routine that does not follow
these rules, add an entry for your routine in the UserAllocators.dat file. See
Chapter 4, “Working with User-Written Allocators” for more information.

Pool Poisoning on Free

DevPartner Error Detection writes a known pattern on dynamically allocated memory after it
has been deallocated. By doing so, applications that attempt to reference deallocated structures
will generate errors. In many cases, dangling pointer errors can be very difficult to diagnose
and repair. Instrument your application with FinalCheck and check it again with DevPartner
Error Detection to locate the errors.

Note: If you have written your own memory allocation routine that does not follow
these rules, add an entry for your routine in the UserAllocators.dat file. See
Chapter 4, “Working with User-Written Allocators” for more information.

Working in a Heavy CPU-Bound Environment

Many developers write applications on extremely fast and lightly-loaded systems. When the
application is moved to a production environment, the program fails randomly. Tracking down
timing and performance-related issues can be difficult and time-consuming.

DevPartner Error Detection monitors all aspects of program flow and places your application
under a heavy CPU and memory workload. At the same time, DevPartner Error Detection can
monitor calls to Windows functions for signs of failure; errors are reported in the Program
Error Detected dialog box.

Detecting Problems with Multi-threaded Code

Many applications are written to make use of multiprocessor application servers. Unless a
multi-threaded application is carefully designed, deadlock and resource deprivation issues can
occur when the program is put under stressful conditions.

Running a multi-threaded application under DevPartner Error Detection will cause the perfor-
mance of various threads to deteriorate and may cause the program to display timing-related
problems. Many such problems would normally occur in production situations when the
program is under stress. By using DevPartner Error Detection, you may be able to find
problems in the development process and correct them before going into production.

Run your application under DevPartner Error Detection with Deadlock Analysis enabled to
check for deadlock, potential deadlock, and other synchronization bugs.

Detecting Memory and Pointer Reuse Errors

As applications have become more complex, the amount of memory and the number of point-
ers used in applications has increased dramatically. To deal with this problem, software devel-
opers use tools such as DevPartner Error Detection to search for memory and resource leaks.
However, finding and plugging leaks is only one part of the task. Once memory has been
deallocated, all outstanding pointers to the block should be declared as “dangling.” Attempts
to reference dangling pointers should generate an error. The FinalCheck feature in DevPartner
Error Detection has been designed to find and report on dangling pointers.
 DevPartner Advanced Error Detection Techniques 31

Chapter 2 · Checking and Analyzing Programs
Undetected dangling pointers cause programs to reference blocks that have been deallocated
or deallocated and reused by some other part of the system. A program run in a simple debug-
ging environment may not show signs of failure. However, this same program could randomly
crash, corrupt data or produce unexpected results when moved into a production environment.
32 DevPartner Advanced Error Detection Techniques

Chapter 3

Analyzing Complex Applications
This chapter provides information to help you use DevPartner Error Detection more effec-
tively when checking complex applications.

About Complex Applications

When you debug typical Windows applications, the default DevPartner Error Detection
settings gather enough data to help you solve most common programming problems.

When you debug a complex application, you can benefit by customizing the Error Detection
settings.

Complex applications can be divided into two groups:

� Large applications that contain many complex components
� Non-traditional applications such as Windows services, ActiveX components, MTS or

COM components, ISAPI filters, and so on

Large Applications

Large Windows application are exceptional only because their size makes them difficult to
monitor. Using DevPartner Error Detection, you can analyze a large application in logical,
manageable sections, rather than trying to analyze the entire application at once. For example,
if you are writing one DLL for a large application, you might:

� Exclude sections of the application from analysis
� Monitor only specific sections of the application
� Monitor only specific transactions within the application

Non-traditional Applications

Non-traditional applications may require different error detection strategies because of
complex startup or configuration issues. You can configure DevPartner Error Detection to
perform the special debugging or analysis operations required to monitor these types of appli-
cations.

DevPartner Error Detection Capabilities and Complex Applications

These Error Detection capabilities can help you analyze complex applications:

� Ability to Wait for Process

� Ability to restrict the modules and files monitored by your application

� Ability to enable or disable the Error Detection log at run-time
 DevPartner Advanced Error Detection Techniques 33

Chapter 3 · Analyzing Complex Applications
Wait for Process

Instead of running your program under Error Detection, you can have Error Detection initial-
ize itself for your application and wait for it to start. You can then start your application
manually, or using another means (such as the Service Control Manager). You can use this
option to debug services such as IIS.

Note: When using Wait for Process, the full pathname of the application that starts
must exactly match the full pathname of the application that Error Detection is
looking for.

This option replaces the use of Image File Execution Options in previous
releases of BoundsChecker and DevPartner Error Detection.

This option is only available when you are using the DevPartner Error Detec-
tion standalone application (bc.exe), and is not available when using Error
Detection integrated into Visual Studio.

To debug an application or service using Error Detection in an “Initialize and Wait” manner:

1 Open the image you want to test inside the Error Detection application (bc.exe).

2 Configure Error Detection to watch for the errors that interest you.

3 Select Wait for Process from the Program menu.

Error Detection initializes itself and displays a dialog box allowing you to cancel the
session if desired.

4 Start your application as you normally would.

If you normally start your application via the Service Control Manager, then start it that
way. Error Detection closes the dialog when your application starts.

5 Exercise your application, and then cause it to exit.

Analyzing Limited Parts of Your Program

You can point DevPartner Error Detection at a limited problem area within a large or complex
application and ignore the rest of the application. DevPartner Error Detection provides four
mechanisms to help you analyze limited parts of your program:

� Use Modules and Files to exclude sections of your program from analysis.
34 DevPartner Advanced Error Detection Techniques

Chapter 3 · Analyzing Complex Applications
� Use Suppressions and Filters to prevent undesirable information from either being
logged or displayed.

� Use the Program > Log Events menu item or the Log Events toolbar button to toggle
Error Detection logging.

� Add conditional code into your application to call StartEvtReporting and StopE-
vtReporting.

Note: StartEvtReporting and StopEvtReporting are DevPartner Error
Detection functions that you can call from inside your application to control the
writing of data into the DevPartner Error Detection log. If DevPartner Error
Detection is not active, these calls return immediately.

Modules and Files

If you are working with large applications, you can use the Modules and Files settings to
prevent sections of the application from being analyzed. This can reduce analysis time and
decrease the number of unwanted error messages. These are some of the sections you can
exclude:

� Unwanted DLLs, including third-party DLLs

� Individual source files from a DLL or EXE

� Entire DLL trees

� Exclude errors if source code is unavailable

Note: Disabling all the modules in the Modules and Files settings does not prevent
reporting of some error types. Error Detection always reports memory
overruns within any module, and other types of events originating from the
MFCxxxx.dll libraries.

See “Using Modules and Files Settings” on page 36.

Suppression and Filtering

There are two ways to hide the errors and events that DevPartner Error Detection reports.

� Suppression prevents a specified type of error or event from being entered into the Error
Detection log. To show a suppressed error, you need to remove the suppression instruction
and re-run your application under DevPartner Error Detection.

� Filtering hides an error or event that has already been entered into the log. You can hide or
display filtered errors.

Selective Event Logging

To monitor a small section of a large application, use the Log Events menu or tool bar button
to turn the Error Detection log on and off. This technique can be especially useful when you
select the following settings:

� API or COM call logging

� Call validation.
 DevPartner Advanced Error Detection Techniques 35

Chapter 3 · Analyzing Complex Applications
If you use selective event logging with any of the leak detection features (for example,
memory tracking, resource tracking or COM interface tracking) be aware that many leaks are
only detected at the end of the program. If logging is off when your program terminates, many
of the leaks you are trying to find are reported.

When trying to detect leaks, use Modules and Files or Suppression to exclude unwanted
information.

Conditional Code

You can modify your program to make calls into the DevPartner Error Detection data collec-
tion engine to enable or disable Error Detection logging. The following sample code shows
how to disable Error Detection logging around unwanted areas:

// Requires library [installation folder]
\ERptApi\NMApiLib.lib

// Include file is located in [installation folder]\ErptApi

#include "nmapilib.h"

… [Code that can be monitored]

StopEvtReporting()

… [Code that should not be monitored]

StartEvtReporting()

… [Code that can be monitored]

You can also use the StartEvtReporting or StopEvtReporting API calls to prevent
DevPartner Error Detection from logging business-critical sections of an application.
Examples might include password validation or encryption routines. If DevPartner Error
Detection is not active, the API calls return immediately.

Using Modules and Files Settings

To determine what to exclude from your application, follow these steps:

1 Open your executable in DevPartner Error Detection.

2 Disable all data collection.

� In DevPartner Error Detection standalone:

Select Program > Settings > Error Detection.

� In Visual Studio:

Select DevPartner > Options.

In the Options or Settings dialog box, clear the settings for API Call Reporting, Call
Validation, COM Call Reporting, COM Object Tracking, Deadlock Analysis, Memory
Tracking and Resource Tracking.

3 Run your program in DevPartner Error Detection.
36 DevPartner Advanced Error Detection Techniques

Chapter 3 · Analyzing Complex Applications
Error detection records all DLLs used by your application. Exercise the program in a way
that causes all its DLLs to be loaded, then exit your application.

4 Open the DevPartner Error Detection Settings or Options dialog box and select data col-
lection settings.

5 Select Modules and Files in the Settings or Options dialog box. DevPartner Error Detec-
tion automatically lists all executables and DLLs used by your application except for files
located in the system folders.

6 Review the list of modules and files. Clear any listed DLLs that do not pertain to the task
at hand. From this reduced list of DLLs, expand each DLL and select the source files to
monitor.

7 To exclude all DLLs in a specific folder, click System directories and add the folder to
the list of excluded folders. If there is a particular file you want to include from a system
folder, click Add module to add it to the list of monitored DLLs. Clicking on the folder
icon toggles it from a single folder to multiple folders. Table 3-1 explains the icon mean-
ings.

Table 3-1. Meaning of folder icons in the Modules dialog box

Icon Description

The selected folder is excluded from testing (unless the specific
dll is also listed in the Modules dialog box).

The selected folder and all sub-folders are excluded from testing.

8 To exclude leaks and errors in portions of your program without source code, select Show
leaks and errors only if source code is available.

Tip: If you plan to create multiple settings files you can name one of the settings files
Base Configuration. You can then use the Base Configuration settings as a
starting point to create other settings files.

9 After you create a logical subset of your application, use Configuration File Manage-
ment to save your settings.

Table 3-2 provides a list of ways to use the Modules and Files: settings.

Table 3-2. Using the Modules and Files settings

When debugging... Configure Error Detection to exclude...

An ActiveX control All modules other than the DLL containing your
ActiveX control including the ActiveX test con-
tainer executable

A Windows service Any modules that are not directly associated with
the section of the service you are debugging

An ISAPI filter All executables and DLLs in IIS or W3WP except
your ISAPI filter
 DevPartner Advanced Error Detection Techniques 37

Chapter 3 · Analyzing Complex Applications
Note: If you exclude everything but your code, you might not see memory or
resource leaks that are indirectly caused by your section of the application.

Deciding What to Monitor

When dealing with a complex application it is important to know which sections of an applica-
tion to monitor. Deciding what to monitor and what to ignore affects your success when track-
ing down leaks and errors.

To decide what to monitor, consider these questions about your application:

� How does your application start up?

� Do you start it directly?
� Do you start it by running another program?
� Do you launch it from the control panel?
� Is your application launched indirectly?

� How many modules and files are in your application?

� Do you own all the modules in your application (other than system modules)?
� Do you have source for all of your modules?

� Are you interested in the entire application or only a part?

� Do you care about errors in modules you don't control?
� Is your application transactional? If so, do you want to watch the entire application or

just a few transactions?
� Does your application make use of resources passed to it from code you do not con-

trol?

Once you have answered these questions you can configure DevPartner Error Detection to
monitor your application.

As you decide what to monitor, remember that other parts of the program may provide
resources to your application. Be aware that if you narrow the focus too much, you may miss
resources being passed between your selected analysis subset and the rest of your application.

For example, if you are writing an ActiveX control and running it under the test container, you
want to know what happens in your DLL. However, if you call your object incorrectly,
resource and interface leaks may occur. If you monitor only your control, errors are found but
not errors caused by incorrect usage of your control.

A complex applica-
tion

The sections of the application that do not apply
to the problem you are trying to solve

An out of process
COM object

Any modules that are not directly associated with
your DLL, such as dllhost.exe or mtx.exe.

Table 3-2. Using the Modules and Files settings

When debugging... Configure Error Detection to exclude...
38 DevPartner Advanced Error Detection Techniques

Chapter 3 · Analyzing Complex Applications
How Does an Application Start Up?

If you are working with a console or Windows application, you can configure Error Detection
to monitor your application by selecting File > Open. DevPartner Error Detection starts the
application and analyzes any DLLs that are directly linked to it.

If you are working with a non-traditional application, it falls into one of two categories:

� It is started directly through a control program

� It is started indirectly based on a system action

The first type of application includes ActiveX controls or DLLs that are invoked by some test
application. For example, if you have written an ActiveX control, you can analyze it using the
Test Container application (tstcon32.exe) provided with Visual Studio.

If your application is invoked indirectly by a system action, you can use the Error Detection
Wait for Process option to wait for the application to start (see “Wait for Process” on page
34). Examples of this include:

� Windows services

� Out-of-process COM servers

Many specialized applications, such as services and COM servers, are time critical. If your
application is time critical, disable the time out logic when using DevPartner Error Detection
for best results.

Analyzing Services

DevPartner Error Detection can monitor Windows services. When monitoring services
consider the following:

� Is your service started at boot time or on demand?

� Does your service require a particular security context?

� Can your service be run interactively?

� Can you run your service without being a service?

� Does your service have timing issues?

DevPartner Error Detection can analyze services that can be started after the system is up and
running. For best results, you should be able to manually start or stop your service throughout
the debugging process.

Requirements and Guidelines

In order to monitor a service, DevPartner Error Detection requires that the account being used
to run it have Administrative privileges. You might have additional problems if your applica-
tion has tight timing requirements.
 DevPartner Advanced Error Detection Techniques 39

Chapter 3 · Analyzing Complex Applications
Analyzing a Service

Follow these steps to analyze your service with DevPartner Error Detection:

1 Stop your service.

2 Build the Debug configuration of your service with symbols and no optimization (option-
ally with FinalCheck).

3 Open your service’s image with Error Detection and update the settings appropriately for
this session.

4 Select Wait for Process from the Program menu.

Error Detection initializes itself and displays a dialog box allowing you to cancel the
session if desired.

5 Start your service as you normally would.

If you normally start your service via the Service Control Manager, then start it that way.
Error Detection closes the dialog when your application starts.

Timing Problems and dwWait

If your service fails to start up, or starts up and almost immediately terminates, you may need
to alter the dwWait parameter in the ServiceStatus block passed to SetServiceStatus.
If the value specified in your service is too small, the Windows Service Control Manager
terminates the service. When using DevPartner Error Detection, set dwWait to a large value
such as 4 million.

Note: After you finish using DevPartner Error Detection, restore the normal value for
dwWait.

Alternate Method: Separating Control Logic from the Worker Thread

If you have written your service in a modular way, you may be able to separate the service
control logic from the worker thread. One technique is to wrap a simple console application
around the worker thread logic. This way, you can use DevPartner Error Detection to check
your service worker thread as if it were a Windows console program.

Custom Code to Turn the DevPartner Error Detection Log On and Off

When dealing with a service that is not interactive, you can write custom code to turn DevPart-
ner Error Detection logging on and off while the service is running. Write custom code to
respond to control codes you pass from the dwControl parameter to ControlService.

You can make calls to the start and stop event reporting APIs in your service control logic. See
“Conditional Code” on page 36.

Common Service-related Issues

The service starts and immediately hangs.

Make sure you are running your service with Administrative privileges. If you cannot get
Administrative privileges, try the alternate method discussed above.
40 DevPartner Advanced Error Detection Techniques

Chapter 3 · Analyzing Complex Applications
The service starts and almost immediately terminates.

The most likely cause is that the Windows Service Control Manager terminated your service.
Increase the value of dwWait in your service’s initialization logic and re-run your service.

Also, you should verify that DevPartner Error Detection has a valid working folder. Specify
the working folder via the General settings, under Settings in the Program menu.

If the problem persists, consider modifying your service using the alternate method discussed
above.

The service runs for a while then terminates unexpectedly.

Your service may be responding too slowly to a control message requesting your service state.
Increase the time out value in dwWait when responding to service state requests.

Also, DevPartner Error Detection may have poisoned memory in your application, causing the
crash. Disable the Memory Tracking feature in the Error Detection settings. If this eliminates
the crash, instrument your service with FinalCheck, then re-run your application looking for
uninitialized memory references, buffer overruns, and dangling pointers.

If the problem persists, consider modifying your service using the alternate method discussed
above.

My service runs correctly, but terminates unexpectedly when it shuts down.

Your service is given a limited time to respond when it receives a shut down request from the
Service Control Manager. When an application shuts down, DevPartner Error Detection
performs many checks, looking for memory, resource and interface leaks, and re-checking
allocated memory blocks for memory overruns. If the dwWait value specified for acknowl-
edging the shut down request is too small, the Service Control Manager terminates the service.
In this case, increase the dwWait value.

If the problem persists, consider modifying your service using the alternate method discussed
above.

Analyzing ActiveX Controls Using the Test Container

You can use DevPartner Error Detection with the Test Container utility provided with Visual
Studio to monitor ActiveX controls and any other COM object that can be used with the Test
Container.

Follow these steps to use DevPartner Error Detection with the Test Container:

1 Run DevPartner Error Detection.

2 Select File > Open and choose the Test Container.

If you installed Visual Studio in the standard folder, test container is in one of the follow-
ing locations:

C:\Program Files\Microsoft Visual Studio 8\Common7\Tools\
TestCon32.exe
 DevPartner Advanced Error Detection Techniques 41

Chapter 3 · Analyzing Complex Applications
C:\Program Files\Microsoft Visual Studio 9\Common7\Tools\
TestCon32.exe

3 Select the Modules and Files settings.

4 Make sure TestCon32.exe is not selected.

5 Click Add Module.

6 Add the DLL that contains your ActiveX or COM control into the list of modules and
files.

7 Add any additional DLLs required for your control.

8 Run your application.

When the Test Container application starts, follow these steps:

1 Click New Control on the toolbar.

2 Add your control from the list provided (for example, Calendar Control 8.0).

3 Use the Invoke Methods and Properties toolbar buttons to manipulate your control.

4 When you have finished exercising your control, exit from the Test Container.

During the run, DevPartner Error Detection reports errors as they are detected. When you exit
Test Container, DevPartner Error Detection reports memory, resource and interface leaks that
are not reported during the run.

Common Test Container Issues

DevPartner Error Detection reports errors in TestCon32.exe

By default, DevPartner Error Detection reports errors in the executable and all DLLs associ-
ated with a process unless the DLLs and EXEs were explicitly excluded using either Modules
and Files or System folders. To prevent DevPartner Error Detection from reporting errors on
TestCon32.exe, exclude this executable from the list of modules to check.

DevPartner Error Detection COM Call Reporting not logging calls to an object.

DevPartner Error Detection logs methods only for COM interfaces that it has been instructed
to recognize. Tell DevPartner Error Detection about your ActiveX control by selecting Enable
COM method call reporting on objects that are implemented in the selected modules in
the COM Call Reporting settings to activate method logging.

DevPartner Error Detection not reporting COM interface leaks in an object.

To collect COM interface leak information, select Enable COM object tracking in the COM
Object Tracking settings, then select the COM classes to monitor.

To track your own objects, review the list of COM classes in the COM Object Tracking
settings and select only your classes. If you are unsure which classes to select, select All COM
classes.
42 DevPartner Advanced Error Detection Techniques

Chapter 3 · Analyzing Complex Applications
Analyzing Applications That Use COM

DevPartner Error Detection can analyze COM components. For DevPartner Error Detection to
analyze COM components, you need to edit the COM Component Services settings to estab-
lish DevPartner Error Detection as the debugger for the COM component.

Follow these steps to set up DevPartner Error Detection as the debugger for your COM
component.

1 Choose Start > Settings > Control Panel > Administrative Tools > Component Ser-
vices.

2 Use the tree control in the Component Services window to open COM Applications.

3 Select your component from the tree control.

4 Right-click your component and choose Properties.

5 In the property sheet for your component, click the Advanced tab.

6 In the Advanced tab, select Launch in debugger.

Tip: To avoid deleting dllhost.exe, cut and paste or type the path instead of clicking
Browse.

7 Change the Debugger path to point to bc.exe. Provide the full path. If you chose the
default path when you installed DevPartner Error Detection, this path would be:

C:\Program Files\Micro Focus\DevPartner Studio\Bound-
sChecker\bc.exe

For installs on 64-bit versions of Windows, DevPartner Error Detection is located at:
\Program Files (x86)\Micro Focus\DevPartner Studio\Bound-
sChecker\bc.exe.

Note: Do not delete dllhost.exe /ProcessID:{…} from the end of the debugger
path.

8 Click OK to save the changes.

After you establish DevPartner Error Detection as the debugger for your component, follow
these steps:

1 Start your component using one of the following methods:

� Run an application that uses the component.

� Start your application using Component Services.

� Select your component from the tree control.

� Right-click on the component and choose Start.

2 When DevPartner Error Detection starts up, select the settings you would like to use, then
begin an error detection run.
 DevPartner Advanced Error Detection Techniques 43

Chapter 3 · Analyzing Complex Applications
Note: To see errors and events in your COM component only, remove dllhost.exe
and any other DLLs from the list of modules in the DevPartner Error Detection
Modules and Files settings.

3 After you finish exercising your component, shut down your component. Follow these
steps:

a In the Component Services window, select your component from the tree control.

b Right-click the component and choose Shut down.

DevPartner Error Detection performs the normal end-of-process error and leak detection.

4 After you finish debugging, clear the Launch in debugger check box:

a Select the component in the tree view of the Component Services window.

b Right-click the component and choose Properties.

c Click the Advanced tab in the property sheet and clear Launch in debugger.

d Click OK.

Common COM Issues

DevPartner Error Detection reports errors in dllhost.exe?

By default, DevPartner Error Detection reports errors in the executable and all DLLs associ-
ated with a process unless the DLLs and EXEs were explicitly excluded using either Modules
and Files or System folders. To prevent DevPartner Error Detection from reporting errors on
dllhost.exe, exclude this executable from the list of modules to check.

DevPartner Error Detection COM Call Reporting not logging calls to a
component?

DevPartner Error Detection logs COM method calls only for interfaces that it can recognize.
Select Enable COM method call reporting (on objects that are implemented in the
selected modules) in the COM Call Reporting settings to activate method logging.

DevPartner Error Detection not reporting COM interface leaks in a
component?

DevPartner Error Detection reports COM interface leak information only if you select Enable
COM object tracking in the COM Object Tracking settings. You must also indicate which
COM classes should be monitored.

To track only your interfaces, review the list of COM classes in the COM Object Tracking
settings, select your classes and clear all others. If you are unsure what classes should be
selected, select All COM classes.

DevPartner Error Detection appears to not respond for a long time after
exercising a component.

DevPartner Error Detection is waiting for dllhost.exe to time out and terminate the
process. When dllhost.exe terminates, DevPartner Error Detection performs the final
memory, resource and interface leak detection.
44 DevPartner Advanced Error Detection Techniques

Chapter 3 · Analyzing Complex Applications
To terminate dllhost.exe before it times out, locate your component in the Component
Services window, then right-click your component and choose Shut down.

Debugging dllhost.exe using Wait for Process

Debugging dllhost.exe using Wait for Process is strongly discouraged. Given the number
of components being created on Windows operating systems supported by DevPartner Error
Detection, it is safer to use the supported mechanisms provided by COM using the component
services debugging options.

Failure to use the supported debugging mechanisms could cause strange system failures when
other COM components are requested. The components may not start up properly because you
have associated all instances of dllhost.exe with DevPartner Error Detection.

Analyzing ISAPI Filters Under IIS 5.0

You can use DevPartner Error Detection to analyze ISAPI filters within an IIS process. Follow
these steps to analyze your ISAPI filter with DevPartner Error Detection:

1 Build your ISAPI filter with the Debug configuration with symbols and no optimization
(optionally with FinalCheck).

2 Stop the Internet Information Server (IIS) Service.

3 Configure Error Detection for inetinfo.exe:

a Open inetinfo.exe in the Error Detection application (bc.exe).
You can find inetinfo.exe in:

%WINDIR%System32\Inetsrv\inetinfo.exe

b Open Modules and Files under Options/Settings and clear all EXEs and DLLs.

c Click Add Module to add your ISAPI filter to the list of modules.

d Update the remaining settings appropriately for your ISAPI filter.

4 Configure the virtual directory that contains the ISAPI extension you want to test to use
the High (Isolated) Application Protection mode.

a Open the Internet Information Services Manager.

b Browse to the virtual directory.

c Right-click and choose Properties.

d Configure Application Protection in the Virtual Directory tab to High (Isolated)
Application Protection Mode.

5 Select Wait for Process from the Program menu.

Error Detection initializes itself for IIS and waits for it to start.

6 Start the IIS Admin service from the Services control panel.

7 Generate a series of HTTP requests to the IIS server to exercise your ISAPI filter.
 DevPartner Advanced Error Detection Techniques 45

Chapter 3 · Analyzing Complex Applications
8 After you finish exercising your ISAPI filter, use the Service Control Panel to stop the IIS
Service.

9 Error Detection then performs end-of-process error and leak detection.

Common ISAPI Filter Issues

Many of the common problems associated with debugging ISAPI filters have already been
discussed in the Common issues for Services.

The following issues are specific to IIS and ISAPI filter debugging.

IIS start then stops responding

DevPartner Error Detection requires Administrative privileges to debug a service. If the
account used does not have Administrator privileges, IIS either stops responding or terminates
with an error.

DevPartner Error Detection log contains unneeded information

Use the Modules and files settings to exclude inetinfo.exe and all DLLs except your
ISAPI filter.

When you run inetinfo.exe the first time, DevPartner Error Detection automatically adds
any DLLs that were dynamically loaded into the process to the list of modules and files. Use
the Modules and Files settings dialog to clear any unwanted DLLs. Do not remove them from
the list as they are added back to the list and turned on during the next run.

Are there other sources of information about debugging services and ISAPI
filters

� There are a number of excellent articles available on MSDN discussing debugging tech-
niques for IIS and ISAPI filters.

� There are a number of knowledge base articles available on our web site.

Tips for debugging IIS interactively with DevPartner Error Detection

� You must be logged into an account with Administrative rights.

� If these suggestions do not solve the your problem, review Microsoft Technical Note 63:
Debugging an ISAPI Application:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
vsdebug/html/vxoriDebuggingISAPIApplication.asp

Analyzing ISAPI Filters under IIS 6.0

You can use DevPartner Error Detection to analyze ISAPI filters if you have configured IIS
6.0 in one of the following ways:

� IIS 5.0 Isolation Mode

� IIS 6.0 default configuration
46 DevPartner Advanced Error Detection Techniques

Chapter 3 · Analyzing Complex Applications
To analyze your ISAPI filter with DevPartner Error Detection, first build your ISAPI filter
with Debug and no optimization (optionally with FinalCheck). Then, follow the instructions
for the IIS configuration you are using.

IIS 5.0 Isolation Mode

When running IIS 6.0 in the IIS 5.0 Isolation Mode configuration, run DevPartner Error
Detection against the inetinfo.exe executable.

Follow these steps to analyze your ISAPI filter:

1 Configure Error Detection for inetinfo.exe:

a Open inetinfo.exe in the Error Detection application (bc.exe).
You can find inetinfo.exe in:

%WINDIR%System32\Inetsrv\inetinfo.exe

b Open Modules and Files under Options/Settings and clear all EXEs and DLLs.

c Click Add Module to add your ISAPI filter to the list of modules.

d Update the remaining settings appropriately for your ISAPI filter.

2 Configure the virtual directory that contains the ISAPI extension you want to test to use
the High (Isolated) Application Protection mode.

a Open the IIS Admin utility.

b Browse to the virtual directory.

c Right-click and choose Properties.

d Configure Application Protection on the Virtual Directory tab of this dialog box to
be High (Isolated) Application Protection Mode.

3 Open the Services dialog box in the Control Panel.

4 Select Wait for Process from the Program menu.
Error Detection initializes itself for IIS and waits for it to start.

5 Start the IIS Admin and World Wide Web Publishing services.

DevPartner Error Detection starts and monitor the inetinfo.exe process and your
ISAPI filter.

6 Generate a series of HTTP requests to the web server to exercise your ISAPI filter.

7 After you finish exercising your ISAPI filter, use the IIS Manager to stop IIS.

When the Shutting Down dialog box appears, click End Now. This stops the
inetinfo.exe process.

Note: If you click the Stop button in DevPartner Error Detection, both DevPartner
Error Detection and the inetinfo.exe process terminates, and you lose any
data you have collected.

Error Detection performs end-of-process error and leak detection.
 DevPartner Advanced Error Detection Techniques 47

Chapter 3 · Analyzing Complex Applications
IIS 6.0 Default Configuration

When running IIS 6.0 in the default configuration mode, start DevPartner Error Detection
against the W3WP.exe executable.

Follow these steps to analyze your ISAPI filter:

1 Configure Error Detection for W3WP.exe:

a Open W3WP.exe in the Error Detection application (bc.exe).
You can find W3WP.exe in:

%WINDIR%System32\Inetsrv\W3WP.exe

b Open Modules and Files under Options/Settings and clear all EXEs and DLLs.

c Click Add Module to add your ISAPI filter to the list of modules.

d Update the remaining settings appropriately for your ISAPI filter.

2 Configure the virtual directory that contains the ISAPI extension you want to test to use
the MSSharePointAppPool.

a Open the Internet Information Server (IIS) Manager.

b Browse to the virtual directory.

c Right-click and choose Properties.

d Configure Application Pool in the Virtual Directory tab to MSSharePointAppPool.

3 Select Wait for Process from the Program menu.

Error Detection initializes itself for IIS and waits for it to start.

4 Start the IIS Admin and World Wide Web Publishing services.

Error Detection starts and monitors the W3WP.exe process and your ISAPI filter.

5 Generate a series of HTTP requests to the web server to exercise your ISAPI filter.

6 After you finish exercising your ISAPI filter, use the IIS Manager to stop IIS.

When the Shutting Down dialog box appears, click End Now. This stops the W3WP.exe
process.

Note: If you click the Stop button in DevPartner Error Detection, both Error Detec-
tion and the W3WP.exe process terminates, and you lose any data collected.

Error Detection performs end-of-process error and leak detection.

Common IIS 6.0 ISAPI Filter Issues

All of the items in the IIS 5.0 Common ISAPI Filter issues section apply. In a few cases you
may need to substitute W3WP.exe for inetinfo.exe.

See “Common ISAPI Filter Issues” on page 46.

The following new issues apply to IIS 6.0:
48 DevPartner Advanced Error Detection Techniques

Chapter 3 · Analyzing Complex Applications
� Microsoft has re-designed the IIS 6.0 default configuration to be more secure. One of
these changes disables ISAPI Extensions by default. To debug an ISAPI extension, go to
the Web Services Extensions tab in the IIS Admin tool and modify IIS to allow Unknown
ISAPI extensions.

� Use the IIS Manager tool to Start, Stop or Restart IIS. To perform these operations, right-
click the <MachineName> node in the tree and select All Tasks->Restart IIS. This opens
a dialog box with controls that enable you to start and stop IIS.

� For best results, turn off logging functions, such as API Call Logging, before you monitor
IIS. With logging functions on, DevPartner Error Detection creates extremely large log
(.DPBcl) files and impacts the performance of the IIS server.

Note: Do not turn off Log events on the general dialog. Error Detection does not
report anything as long as Log events is disabled. Use this feature only when
you want to suppress all reporting until you specifically enable event logging
via the menu bar button.

Frequently Asked Questions
What is the difference between DevPartner Error Detection ActiveCheck and
FinalCheck or technologies?

DevPartner Error Detection has two modes of operation:

� ActiveCheck - In this mode DevPartner Error Detection operates on any 32-bit Windows
program and intercepts all calls to the operating system and C run-time library looking for
memory leaks, resource leaks, and usage of pointers that are passed to functions that aren't
valid (or have been de-allocated).

� FinalCheck - In this mode you must re-compile your C or C++ program using DevPartner
Error Detection FinalCheck instrumentation logic. To build using FinalCheck:, click Dev-
Partner > Native C/C++ Instrumentation Manager

With FinalCheck instrumentation, DevPartner Error Detection can watch every pointer
fetch, store, or indirect occurring within the modules you instrument. DevPartner Error
Detection can also watch variables go in and out of scope.

Note: Instrumenting code without a well defined order of evaluation can cause
unexpected results, including erroneous data, hangs, and even crashes.

"Basically, in C and C++, if you read a variable twice in an expression where
you also write it, the result is undefined." -Bjarne Stroustrup

The C/C++ standard explicitly does not define the order of evaluation when
there are "side effects", such as storing a value in an object. For example, the
following statement does not have a well defined order of evaluation: i = ++i
+ 2;

There are two points in this statement when values are stored in the variable i,
and the language does not define what order they occur in. Instrumenting
code like this may change the order of evaluation and change the result.
 DevPartner Advanced Error Detection Techniques 49

Chapter 3 · Analyzing Complex Applications
Note that when you run in FinalCheck mode, all ActiveCheck analysis is still performed along
with the extended FinalCheck analysis.

FinalCheck specializes in finding dangling pointers, double deallocations, pointer overruns,
uninitialized memory errors, read / write to unallocated memory.

When should I enable Call Validation?

Enabling Call Validation causes DevPartner Error Detection to find many more memory and
pointer errors in your program. This feature is off by default because the volume of detected
events can be large.

What is DevPartner Error Detection doing when I select the Enable memory
block checking feature under Call Validation?

When you select Enable memory block checking, (which is turned off by default), DevPart-
ner Error Detection performs a more detailed ActiveCheck analysis. Note that this feature can
cause DevPartner Error Detection to run as much as 20% slower.

How do I use the DevPartner Error Detection Guard byte settings under
Memory Tracking?

To alter the Guard bytes settings in the Memory Tracking configuration, first make sure that
Enable guard bytes is checked.

Increase Count from 4 to a larger value of 8 or 16.

Increasing the number of guard bytes increases the spacing between heap blocks and provides
an area between your blocks for DevPartner Error Detection to monitor for overruns.

Change the settings of Check heap blocks at runtime to either Use adaptive analysis or On
all memory API calls.

This option tells DevPartner Error Detection to validate each heap block whenever you make a
call into a memory function. This makes your program run slower but isolates heap corruption
to a localized area of your program, making it easier to track down.
50 DevPartner Advanced Error Detection Techniques

Chapter 4

Working with User-Written Allocators
This chapter provides information to help you implement user-written memory allocators.

Introduction

DevPartner Error Detection can perform memory analysis on user-written memory allocators.
To do this, add descriptions of your memory allocators to a text file called UserAlloca-
tors.dat, which is installed in the data folder of the DevPartner Error Detection installation
folder. After you add user-written allocators to this file, DevPartner Error Detection treats
them like memory allocation routines provided with the operating system. If DevPartner Error
Detection detects a leak caused by a user-written allocator described in UserAlloca-
tors.dat, the user-written allocator is shown in the Program Error Detected dialog box
instead of the lower-level allocator within the user-written allocator.

Gathering Necessary Information

Before adding a user-written allocator to UserAllocators.dat, you need to gather the
following information:

1 The exact names of the allocation, deallocation, reallocation and size functions of your
user-written allocator.

2 Find out if your user-written memory allocator is statically linked to the application or is
provided in a separate module (DLL).

3 The name of the module (DLL) that contains your user-written allocator.

4 Examine the parameters to your routines to determine how the size of the block and
pointer associated with the memory block is either passed or returned to the caller.

5 Any special assumptions made in your allocator such as zeroing memory on allocation or
a user-written allocator that stores data in deallocated blocks.

Finding the Names of User-Written Allocators

To add records to UserAllocators.dat you need to provide the exact name of your
allocate, deallocate, reallocate and size functions.

Follow these steps to locate the name of the routine:

1 Determine the name of the following functions:

� Allocation function (such as malloc, calloc, or new)
� Deallocation function (such as free or delete)
 DevPartner Advanced Error Detection Techniques 51

Chapter 4 · Working with User-Written Allocators
� Reallocation function (such as realloc or recalloc)
� Memory block size function (such as _msize)

2 There are two basic cases to consider:

� You have symbols (pdb files) for the module that contains the function that you are
defining.

If a pdb file is available, internal symbols can be used. To find the mangled or
expanded function name, use the linker/debugger options to create a map file when
compiling the module. Then look under the Publics by Value section of the map file
to determine the name of the function. This method always requires the Static
keyword in the userAllocator function definition.

� You do not have symbols, or the symbols are invalid.

If no pdb file is available, enter dumpbin /exports yourlibrary.dll at the
Visual Studio command prompt. Use the function names as they appear in the output.

The name of your allocation functions may be either unmangled or mangled depending on the
calling convention used and your choice of languages. If you are using C++, names are often
mangled. Consider the following small C++ program:

#include <malloc.h>
#include <memory.h>

class SampleClass
{
public:
SampleClass(){}
void *operator new(size_t stAllocateBlock);
void operator delete(void * pBlock);
};
void *SampleClass::operator new(size_t stAllocateBlock)
{
void *pvTemp = malloc(stAllocateBlock);
if(pvTemp != 0)
memset(pvTemp, 0, stAllocateBlock);
return pvTemp;
}
void SampleClass::operator delete(void * pBlock)
{
free(pBlock);
return;
}
int main(int argc, char * argv[])
{
SampleClass *pClass = new SampleClass;
return 0;
}

Before building the application, select Generate mapfile under the Visual Studio Project
settings. After you build your application, open the map file and search for the operator new
and operator delete methods. They look something like the following:

global operator new:??2SampleClass@@SAPAXI@Z
52 DevPartner Advanced Error Detection Techniques

Chapter 4 · Working with User-Written Allocators
global operator delete:??3SampleClass@@SAXPAX@Z

These operators could be described to UserAllocators.dat as follows:

Allocator

Module=myModule

Function=??2SampleClass@@SAPAXI@Z

MemoryType=MEM_CUSTOM1

NumParams=1

Size=1

NoFill Static Debug

Deallocator

Module=myModule

Function=??3SampleClass@@SAXPAX@Z

MemoryType=MEM_CUSTOM1

NumParams=1

Address=1

Static Debug

Special Assumptions Made By User-Written Allocators about Memory

Normally, DevPartner Error Detection fills allocated memory with a fill pattern before return-
ing the pointer to the user program and poisons the block of memory after it has been deallo-
cated.

If your memory allocator initializes the block with special data, use the NOFILL flag so you
do not overwrite the block and lose the data.

If your memory allocator assumes that it can read from the block after it has been deallocated,
use the NOPOISON flag. There are various reasons why you might not want “poisoning” to
occur:

� Your memory allocator stores data in the deallocated block to track the allocation status,
link it to other deallocated blocks, etc.

� You application assumes that deallocated blocks can continue to be referenced until the
block has been reallocated. Continuing to reference deallocated blocks is a dangerous
practice, but many applications that do this are still in use.
 DevPartner Advanced Error Detection Techniques 53

Chapter 4 · Working with User-Written Allocators
Creating Entries in UserAllocators.dat

After you collect the information described in “Gathering Necessary Information” on page 51,
you can describe your allocator in UserAllocators.dat.

To describe a function, create one record in the file per function. Each record follows this
form:

Record_Type Parameter_1 Parameter_2 Etc...

Record_Type describes the type of function you are creating. The parameters that follow
provide additional information about your allocator function.

When you create a record, separate each field with one or more space or tab characters.
Records may span multiple lines.

Table 4-1 shows the Record Types that are currently defined.

Table 4-1. Record types

Record Type Description

Allocator Functions that allocate memory.

Deallocator Functions that deallocate memory.

QuerySize Functions that can query the size of a given mem-
ory block that was previously allocated by the Allo-
cator function.

Reallocator Functions that can adjust the size of a memory
block that was previously allocated using the Allo-
cator function.
Note that the Reallocator function may or may not
return the same block of memory.

Ignore Allocator or deallocator functions that you want
DevPartner Error Detection to ignore (not track
memory).

Modules

Each of the UserAllocator record types requires you to specify the module that contains the
function being described. There are three different types of modules that can be described.

Table 4-2. Module types

Module Type Description

Named module An explicitly named module (DLL) that contains
the user allocation function or method (for exam-
ple, foo.dll).
Note: Module names do not support the use of
wildcards.
54 DevPartner Advanced Error Detection Techniques

Chapter 4 · Working with User-Written Allocators
Allocator Records

Create an allocator record to describe a function that allocates memory. Follow this format:

Allocator Module=module_name Function=func_name MemoryType=mem_type
NumParams=param_num Size=size_value [Count=count_num]
[BufferLoc=buffer_loc] [Optional Parameters]

Note: By default, the address of the allocated block is the returned value of the
specified function. Override this behavior by specifying the BufferLoc
parameter to indicate that the address of the allocated block is returned in a
parameter. (see MAPIAllocateBuffer in the UserAllocators.dat file).

DevPartner Error Detection assumes that the allocation failed if the location
where it expects to find the address of the allocated block is NULL after the call
(either the return value or the value in the parameter specified by BufferLoc).

Statically linked user
allocator

An explicitly named module (DLL or executable)
that contains the user allocation function or
method. However, in this case, the function or
method was originally part of a library (.lib file).
Once linked into the module, the customer code
can reference the functions or methods but they
are not externally visible. You must provide debug
symbols for the module and use the optional
STATIC keyword to alert DevPartner Error Detec-
tion to look for the function or method in the debug
symbols.
Note: Failure to include the STATIC keyword in
the optional parameters for the record prevents
DevPartner Error Detection from properly monitor-
ing the user-written allocation function or method.

*CRT This is a special case that enables you to refer-
ence a function wherever it appears in your appli-
cation.
Note: The * in *CRT is not a wildcard character.
*CRT covers the following 3 cases:
• The Microsoft C Runtime Library
• The statically linked C runtime library
• Any user function that has the same mangled

name as anything that you are patching (for
example, global operator new.)

Table 4-2. Module types (Continued)

Module Type Description
 DevPartner Advanced Error Detection Techniques 55

Chapter 4 · Working with User-Written Allocators
Table 4-3. Allocator record parameters

Parameter Description

Allocator The first parameter in the record must be the word
Allocator to indicate that you are describing an
allocation routine.

module_name The name of the module (Executable or DLL) that
contains the user-written allocator.
Note: Module names do not support the use of
wildcards.

func_name The name of the function that allocates blocks of
memory in your user-written allocator. If you are
using C++, this should be the 'mangled' name of
the function.
This parameter is case-sensitive.

mem_type Use this parameter to describe what type of mem-
ory is being allocated. DevPartner Error Detection
currently defines the following memory types:
• MEM_MALLOC

Blocks of memory returned from routines such
as malloc, calloc, strdup, and so on. Memory of
this type is freed using a routine similar to the C
runtime library free routine.

• MEM_NEW
Blocks of memory that are returned from opera-
tor new and are freed by operator delete.

• MEM_CUSTOM1 through MEM_CUSTOM9
Blocks of memory that must be paired with a
particular deallocator. These types allow devel-
opers to declare their own custom memory allo-
cators that do not interact with the standard
memory allocators described above.

DevPartner Error Detection verifies that a block of
memory allocated with a given memory type is
freed by a function of the same type. If the type
does not match, DevPartner Error Detection dis-
plays a memory conflict error at runtime.

param_num The number of parameters passed to your func-
tion. This value must be between 1 and 32.
Provide the proper number of parameters when
describing a user-written allocator function. Failure
to provide the correct value can cause unpredict-
able results.

size_value The number of the parameter that contains the
size of the block to be allocated. The number of
the first parameter is 1.
56 DevPartner Advanced Error Detection Techniques

Chapter 4 · Working with User-Written Allocators
Sample Allocator Records

The following examples show hypothetical allocator record functions.

count_num This optional parameter describes calloc-like func-
tions that accept size and count parameters. If
specified, the count indicates how many blocks of
the specified size should be allocated. If you omit
this parameter, DevPartner Error Detection
assumes that the count is always 1.

buffer_loc The number of the parameter containing the
address that hold the address of the allocated
block. The number of the first parameter is 1.

[Optional Parame-
ters]

You can include the following optional parameters
at the end of the record:
• DEBUG

If this parameter is specified, DevPartner Error
Detection displays additional information about
the hook. The output window (or dbgview) con-
tains information on any errors that occurred
when attempting to place the hook. The tran-
script pane displays statistics about each hook,
including whether the function was successfully
hooked and the number of times the hooked
function was called.

• NODISPLAY
If this parameter is specified, DevPartner Error
Detection stops displaying detailed information
on each hook requested at the top of the tran-
script pane.

• NOFILL
If this parameter is specified, DevPartner Error
Detection does not fill the buffer returned with
the DevPartner Error Detection 'fill' character.
Note: If your user-written allocator initializes the
block with data, like calloc does, specify NOFILL
to avoid corrupting your data.

• NOGUARD
If this parameter is specified, DevPartner Error
Detection does not add any guard bytes at the
end of the blocks created by this allocation func-
tion.

• STATIC
DevPartner Error Detection statically patches
the user-written allocator. Specify the static
option if your user-written allocator is linked into
your application and is not provided in a sepa-
rate DLL with an exported interface.

Table 4-3. Allocator record parameters

Parameter Description
 DevPartner Advanced Error Detection Techniques 57

Chapter 4 · Working with User-Written Allocators
Example 1

In this example, the function mallocXX is located in a library called MyAlloc.dll. The
function is assumed to be a malloc-type operator with one parameter with the size being
passed in the first parameter. DevPartner Error Detection should not fill the memory block
before returning it to the application program. Any MEM_MALLOC type function can free blocks
allocated by this function.

Allocator Module=MyAlloc.dll Funtion=mallocXX
MemoryType=MEM_MALLOC NumParams=1 Size=1 NOFILL

Example 2

This example comes from the file used to track a custom global operator new in the Microsoft
iostream code. Note that this function is located in the C runtime library. The record speci-
fies *CRT as the module name so DevPartner Error Detection assumes that the function is
located in one of the Microsoft C or C++ runtime libraries.

This function takes four parameters with the size being stored in the first parameter. DevPart-
ner Error Detection is allowed to fill the block before returning to the program requesting the
memory.

Allocator Module=*CRT Function=??2@YAPAXIHPBDH@Z
MemoryType=MEM_NEW NumParams=4 Size=1

Example 3

This example describes a function called CustomAllocXX that takes one parameter with the
size being passed in the first parameter.

DevPartner Error Detection should not fill the buffer before returning it to the application
program. Note that this record specifies MEM_CUSTOM1 as the MemoryType. DevPartner Error
Detection verifies that the memory allocated with this function is deallocated by a routine that
is also of type MEM_CUSTOM1. Using other deallocation routines generates an allocation
conflict message after freeing the memory.

Allocator Module=foo.dll Function=CustomAllocXX
MemoryType=MEM_CUSTOM1 NumParams=1 Size=1 NOFILL

Example 4

In this example, a function called MyAlloc has been built as a .LIB file and is statically
linked to a data collection component called DataStore.dll. MyAlloc accepts four param-
eters. The first is the size of the data record; the second is the number of records to be allocated
in a single block. The third parameter contains the address of the location holding the address
of the allocated block. The memory retrieved from the application has been pre-initialized so
DevPartner Error Detection should not fill the block.

Allocator Module=DataStore.dll Function=MyAlloc BufferLoc=3
MemoryType=MEM_MALLOC NumParams=4 Size=1 Count=2
NOFILL STATIC

Note: The STATIC keyword must be specified if the function name is not exported
from the DLL.
58 DevPartner Advanced Error Detection Techniques

Chapter 4 · Working with User-Written Allocators
Deallocator Records

Create a Deallocator record to describe a function that deallocates memory. Follow this
format:

Deallocator Module=module_name Function=func_name MemoryType=mem_type
NumParams=param_num Address=address_value [Optional Parameters]

Table 4-4. Deallocator record parameters

Parameter Description

Deallocator The first parameter in the record must be the word
Deallocator to indicate that you are describing a
deallocation routine.

module_name The name of the module (Executable or DLL) that
contains the user-written allocator.
Note: Module names do not support the use of
wildcards.

func_name The name of the function that deallocates blocks
of memory in your user-written allocator. If you are
using C++, this should be the 'mangled' name of
the function.
This parameter is case-sensitive.

mem_type This parameter provides a mechanism to describe
what type of memory is being deallocated. Dev-
Partner Error Detection currently defines the fol-
lowing memory types:
• MEM_MALLOC

Describes blocks of memory returned from rou-
tines such as malloc, calloc, strdup, and so on.
Memory of this type is freed using a routine sim-
ilar to the C runtime library free routine.

• MEM_NEW
Describes blocks of memory that are returns
from operator new and are freed by operator
delete.

• MEM_CUSTOM1 through MEM_CUSTOM9
Describes blocks of memory that must be
paired with a particular deallocator. These types
allow developers to declare their own custom
memory allocators that do not interact with the
standard memory allocators described above.

DevPartner Error Detection verifies that a block of
memory allocated with a given memory type is
freed by a function of the same type. If the type
doesn't match, DevPartner Error Detection dis-
plays a memory conflict error at runtime.
 DevPartner Advanced Error Detection Techniques 59

Chapter 4 · Working with User-Written Allocators
DevPartner Error Detection does not check the return value from a deallocation function.

Sample Deallocator Records

The following examples show hypothetical deallocator records.

param_num The number of parameters passed to your func-
tion. This value must be between 1 and 32.
Provide the proper number of parameters when
describing a user-written allocator function. Failure
to provide the correct value can cause unpredict-
able results.

address_value The number of the parameter that contains the
pointer to the block being deallocated. The num-
ber of the first parameter is 1.

[Optional Parame-
ters]

The following optional parameters may be
included at the end of the record:
• DEBUG

If this parameter is specified, DevPartner Error
Detection displays additional information about
the hook. The output window (or dbgview) con-
tains information on any errors that occurred
when attempting to place the hook. The tran-
script pane displays statistics about each hook,
including whether the function was successfully
hooked and the number of times the hooked
function was called.

• NODISPLAY
If this parameter is specified, DevPartner Error
Detection stops displaying detailed information
on each hook requested at the top of the tran-
script pane.

• NOPOSION
When you specify NOPOISON, DevPartner Error
Detection does not 'poison' the block of memory
after it has been deallocated.

If your user-written allocator stores data in the
block after it has been deallocated or your appli-
cation continues to use data in the block after it
has been deallocated, specify NOPOSION to
avoid corrupting your data.

• STATIC
DevPartner Error Detection statically patches
the user-written allocator. Specify the static
option if your user-written allocator is linked into
your application and is not provided in a sepa-
rate DLL with an exported interface.

Table 4-4. Deallocator record parameters

Parameter Description
60 DevPartner Advanced Error Detection Techniques

Chapter 4 · Working with User-Written Allocators
Example 1

In this example, a function called freeXX is located in a library called MyAlloc.dll. The
function takes one parameter with the pointer to the block to be deallocated being passed in the
first parameter. DevPartner Error Detection should not poison the memory before returning to
the application program.

Deallocator Module=MyAlloc.dll Function=freeXX
MemoryType=MEM_MALLOC NumParams=1 Address=1 NOPOISON

Example 2

This example describes a function called MyFree in foo.dll. The function takes one param-
eter with the pointer to the block to be deallocated being passed in the first parameter.
DevPartner Error Detection should poison the memory before returning to the application
program. When the block is deallocated, DevPartner Error Detection verifies that the block
was allocated by an allocator of type MEM_CUSTOM1. If the block was not from this group, an
error would be generated.

Deallocator Module=foo.dll Funtion=MyFree
MemoryType=MEM_CUSTOM1 NumParams=1 Address=1

Example 3

In this example, a function called MyFree has been built as a .LIB file and is statically linked
to a data collection component called DataStore.dll. MyFree accepts three parameters.
The first and last parameters are of no interest to DevPartner Error Detection. The second
parameter contains the address to be deallocated. Also, the private deallocation routine
maintains private information in the deallocated block after the block has been freed.

Deallocator Module=DataStore.dll Function=MyFree
MemoryType=MEM_MALLOC NumParams=3 Address=2 NOPOISON
STATIC

Note: Specify STATIC if the function name is not exported from the DLL.

QuerySize Records

Create a QuerySize record to describe a function that returns the size of an allocated block of
memory. Follow this format:

QuerySize Module=module_name Function=func_name MemoryType=mem_type
NumParams=param_num Address=address_value [Optional Parameters]

Note: if you omit a QuerySize record for a user-defined allocator, DevPartner Error
Detection returns an incorrect block size for that function.

Table 4-5. QuerySize records

Parameter Description

QuerySize The first parameter in the record must be the word
QuerySize to indicate that you are describing a
size routine.
 DevPartner Advanced Error Detection Techniques 61

Chapter 4 · Working with User-Written Allocators
module_name The name of the module (Executable or DLL) that
contains the user-written allocator.
Note: Module names do not support the use of
wildcards.

func_name The name of the function that returns the size of
allocated blocks of memory in your user-written
allocator. If you are using C++, this should be the
'mangled' name of the function.
This parameter is case-sensitive.

mem_type This parameter provides a mechanism to describe
what type of memory is being queried. DevPartner
Error Detection currently defines the following
memory types:
• MEM_MALLOC

Describes blocks of memory returned from rou-
tines such as malloc, calloc, strdup, and so on.
Memory of this type is freed using a routine sim-
ilar to the C runtime library free routine.

• MEM_NEW
Describes blocks of memory that are returns
from operator new and are freed by operator
delete.

• MEM_CUSTOM1 through MEM_CUSTOM9
Describes blocks of memory that must be
paired with a particular deallocator. These types
allow developers to declare their own custom
memory allocators that do not interact with the
standard memory allocators described above.

DevPartner Error Detection verifies that a block of
memory allocated with a given memory type is
freed by a function of the same type. If the type
doesn't match, DevPartner Error Detection dis-
plays a memory conflict error at runtime.

param_num The number of parameters passed to your func-
tion. This value must be between 1 and 32.
Provide the proper number of parameters when
describing a user-written allocator function. Failure
to provide the correct value can cause unpredict-
able results.

address_value The number of the parameter that contains the
pointer to the block being queried. The number of
the first parameter is 1.

Table 4-5. QuerySize records

Parameter Description
62 DevPartner Advanced Error Detection Techniques

Chapter 4 · Working with User-Written Allocators
The return value from this function is assumed to be a size_t that provides the size of the
block.

Sample QuerySize Records

The following examples show hypothetical QuerySize records.

Example 1

In this example, a function called MySize is located in a library called foo.dll. The function
takes one parameter with the pointer to the block being queried in the first parameter

QuerySize Module=foo.dll Function=MySize
MemoryType=Mem_Custom1 NumParams=1
Address=1

Example 2

In this example, a function MySize has been statically linked into a data collection compo-
nent called DataStore.dll. The MySize function accepts two parameters and the address
being queried passes to the first parameter.

QuerySize Module=DataStore.dll Function=MySize
MemoryType=MEM_NEW NumParams=2
Address=1 STATIC

Note: Specify STATIC if the function name is not exported from the DLL.

[Optional Parame-
ters]

The following optional parameter may be included
at the end of the record:
• DEBUG

If this parameter is specified, DevPartner Error
Detection displays additional information about
the hook. The output window (or dbgview) con-
tains information on any errors that occurred
when attempting to place the hook. The tran-
script pane displays statistics about each hook,
including whether the function was successfully
hooked and the number of times the hooked
function was called.

• NODISPLAY
If this parameter is specified, DevPartner Error
Detection stops displaying detailed information
on each hook requested at the top of the tran-
script pane.

• STATIC
DevPartner Error Detection statically patches
the user-written allocator. Specify the static
option if your user-written allocator is linked into
your application and is not provided in a sepa-
rate DLL with an exported interface.

Table 4-5. QuerySize records

Parameter Description
 DevPartner Advanced Error Detection Techniques 63

Chapter 4 · Working with User-Written Allocators
Reallocator Records

Create a Reallocator record to describe a function that reallocates memory. Follow this format:

Reallocator Module=module_name Function=func_name MemoryType=mem_type
NumParams=param_num Address=address_value Size=size_value
[Count=count_num] [BufferLoc=buffer_loc] [Optional Parameters]

Note: By default, the address of the allocated block is the returned value of the
specified function. Override this behavior by specifying the BufferLoc
parameter to indicate that the address of the allocated block is returned in a
parameter. (see MAPIAllocateBuffer in the UserAllocators.dat file).

Table 4-6. Reallocator record parameters

Parameter Description

Reallocator The first parameter in the record must be the word
Reallocator to indicate that you are describing a
Reallocation routine.

module_name The name of the module (Executable or DLL) that
contains the user-written allocator.
Note: Module names do not support the use of
wildcards.

func_name The name of the function that reallocates blocks of
memory in your user-written allocator. If you are
using C++, this should be the 'mangled' name of
the function.
This parameter is case-sensitive.

mem_type This parameter provides a mechanism to describe
what type of memory is being reallocated. Dev-
Partner Error Detection currently defines the fol-
lowing memory types:
• MEM_MALLOC

Describes blocks of memory returned from rou-
tines such as malloc, calloc, strdup, and
so on. Memory of this type is freed using a rou-
tine similar to the C runtime library free routine.

• MEM_NEW
Describes blocks of memory that are returns
from operator new and are freed by operator
delete.

• MEM_CUSTOM1 through MEM_CUSTOM9
Describes blocks of memory that must be
paired with a particular deallocator. These types
allow developers to declare their own custom
memory allocators that do not interact with the
standard memory allocators described above.

DevPartner Error Detection verifies that a block of
memory allocated with a given memory type is
freed by a function of the same type. If the type
doesn't match, DevPartner Error Detection dis-
plays a memory conflict error at runtime.
64 DevPartner Advanced Error Detection Techniques

Chapter 4 · Working with User-Written Allocators
param_num The number of parameters passed to your func-
tion. This value must be between 1 and 32.
Provide the proper number of parameters when
describing a user-written allocator function. Failure
to provide the correct value can cause unpredict-
able results.

address_value The number of the parameter that contains the
pointer to the block being reallocated. The number
of the first parameter is 1.

size_value The number of the parameter that contains the
size of the block to be reallocated. The number of
the first parameter is 1.

count_num This optional parameter describes calloc-like
functions that accept size and count parameters. If
specified, the count indicates how many blocks of
the specified size should be allocated. If you omit
this parameter, DevPartner Error Detection
assumes that the count is always 1.

buffer_loc The number of the parameter containing the
address that holds the address of the reallocated
block. The number of the first parameter is 1.

Table 4-6. Reallocator record parameters

Parameter Description
 DevPartner Advanced Error Detection Techniques 65

Chapter 4 · Working with User-Written Allocators
DevPartner Error Detection checks the return value from the reallocation function and
assumes that a NULL value indicates error. Non-NULL addresses are assumed to be the
address of the newly allocated block of memory.

Sample Reallocator Records

The following examples show hypothetical Reallocator records:

[Optional Parame-
ters]

The following optional parameters may be
included at the end of the record:
• DEBUG

If this parameter is specified, DevPartner Error
Detection displays additional information about
the hook. The output window (or dbgview) con-
tains information on any errors that occurred
when attempting to place the hook. The tran-
script pane displays statistics about each hook,
including whether the function was successfully
hooked and the number of times the hooked
function was called.

• NODISPLAY
If this parameter is specified, DevPartner Error
Detection stops displaying detailed information
on each hook requested at the top of the tran-
script pane.

• NOFILL
If this parameter is specified DevPartner Error
Detection does not fill any additional bytes
added to the end of the previous allocation with
the DevPartner Error Detection 'fill' character.

Note: If your user-written allocator initializes the
block with data, like calloc does, specify
NOFILL to avoid corrupting your data.

• NOGUARD
If this parameter is specified, DevPartner Error
Detection does not add any guard bytes at the
end of the blocks created by this allocation func-
tion.

• STATIC
DevPartner Error Detection statically patches
the user-written allocator. Specify the static
option if your user-written allocator is linked into
your application and is not provided in a sepa-
rate DLL with an exported interface.

Table 4-6. Reallocator record parameters

Parameter Description
66 DevPartner Advanced Error Detection Techniques

Chapter 4 · Working with User-Written Allocators
Example 1

A function called reallocXX that is declared in a module called foo.dll. This function
accepts two parameters. The first parameter is the address of the existing memory block and
the second parameter is the size of the requested block. Since no optional parameters were
specified, DevPartner Error Detection fills any new memory (assuming the block is larger)
with the fill pattern before returning control to the application program.

Reallocator Module=foo.dll Function=reallocXX
MemoryType=MEM_MALLOC NumParams=2 Address=1 Size=2

Example 2

A function called reallocClear is declared in a module called foo.dll. This function
accepts three parameters. The first parameter is the address of the existing memory block and
the third parameter is the size of the requested block. This reallocation routine performs its
own fill operation on any additional memory allocated in the new block so DevPartner Error
Detection should not fill additional memory in new blocks.

Note: DevPartner Error Detection ignores the contents of parameter 2 since it is not
of interest.

Reallocator Module=foo.dll Function=reallocClear
MemoryType=MEM_MALLOC NumParams=3 Address=1 Size=3
NOFILL

Example 3

A function called MyRealloc has been built in a .LIB file and is statically linked into a data
collection component called DataStore.dll. MyRealloc accepts four parameters. The first
and fourth parameters are of no interest to DevPartner Error Detection. The second parameter
contains the address of the existing block and the third parameter contains the new size of the
block. The data collection routine pre-loads new data into the block on reallocation.

Reallocator Module=DataStore.dll Function=MyRealloc
MemoryType=MEM_ALLOC NumParams=4 Address=2 Size=3
NOFILL STATIC

Note: Specify STATIC if the function name is not exported from the DLL.

Ignore Records

Create an Ignore record to describe a function that should be ignored by the DevPartner Error
Detection memory tracking system. Follow this format:

Ignore Module=module_name Function=func_name [Optional Parameters]

Use Ignore records to instruct DevPartner Error Detection to either ignore a user-written
allocator or ignore a lower-level access routine used by a user-written allocator. Ignore records
tell the DevPartner Error Detection memory tracking system not to track APIs that would
normally be monitored.
 DevPartner Advanced Error Detection Techniques 67

Chapter 4 · Working with User-Written Allocators
Note: If you create Ignore records, the DevPartner Error Detection memory tracking
system no longer monitors memory allocated or freed from those APIs. As a
result, DevPartner Error Detection is no longer aware of this memory. This
may cause the Call Validation and FinalCheck analysis modules to generate
incorrect or incomplete error messages. If you have any questions about the
use of this feature please contact Customer Care for assistance.

Table 4-7. Ignore record parameters

Parameter Description

Ignore The first parameter in the record must be the word
Ignore to indicate that you are describing an API to
be ignored.

module_name The name of the module (Executable or DLL) that
contains the function to be ignored.
Note: Module names do not support the use of
wildcards.

func_name The name of the function to be ignored by the
memory tracking system. If you are using C++,
this should be the 'mangled' name of the function.
This parameter is case-sensitive.

[Optional Parame-
ters]

• DEBUG
If this parameter is specified, DevPartner Error
Detection displays additional information about
the hook. The output window (or dbgview) con-
tains information on any errors that occurred
when attempting to place the hook. The tran-
script pane displays statistics about each hook,
including whether the function was successfully
hooked and the number of times the hooked
function was called.

• NODISPLAY
If this parameter is specified, DevPartner Error
Detection stops displaying detailed information
on each hook requested at the top of the tran-
script pane.

• STATIC
DevPartner Error Detection statically patches
the user-written allocator. Specify the static
option if your user-written allocator is linked into
your application and is not provided in a sepa-
rate DLL with an exported interface.

Sample Ignore Records

The following examples show hypothetical ignore records.
68 DevPartner Advanced Error Detection Techniques

Chapter 4 · Working with User-Written Allocators
Example 1

This example creates an ignore record that causees DevPartner Error Detection to monitor
memory allocated by GlobalAlloc but does not see any requests to free the memory
returned to the operating system using GlobalFree.

Note: This causes DevPartner Error Detection to report a large number of false
memory leaks.

Ignore Module=Kernel32.dll Function=GlobalFree

Example 2

This example tells DevPartner Error Detection to ignore memory manipulated by the
GlobalAlloc family of calls.

Note: This causes DevPartner Error Detection to report a large number of false Call
Validation and FinalCheck errors.

Ignore Module=Kernel32.dll Function=GlobalAlloc

Ignore Module=Kernel32.dll Function=GlobalReAlloc

Ignore Module=Kernel32.dll Function=GlobalFree

Note: Adding these three lines to UserAllocators.dat is not recommended.

Example 3

This example tells DevPartner Error Detection to ignore memory manipulated by a statically
linked function within a specified module. You might need to add lines like these if you write
your own replacement memory allocation library and use the same names as the standard C
runtime library and don’t want DevPartner Error Detection to monitor your library usage.

Ignore Module=MyDLL.dll Function=Malloc STATIC

Ignore Module=MyDLL.dll Function=free STATIC

Ignore Module=MyDLL.dll Function=realloc STATIC

Note: Before adding lines like this to your UserAllocators.dat file, you should
contact Micro Focus Customer Care for assistance.

Coding UserAllocator Hook Requests

When you create UserAllocator hook requests, keep the following important notes in mind:

� Use MEM_CUSTOM1 through MEM_CUSTOM9 to segregate your memory allocations from
the system’s allocations.

� Designate unique custom allocator types for each distinct and separate allocator type.

� Always deallocate memory using the type that corresponds to the allocator. For example,
if the allocator was hooked with type MEM_CUSTOM1, you must free the memory with a
deallocator that is also hooked with type MEM_CUSTOM1. If the deallocator is different,
an allocation conflict error is reported.
 DevPartner Advanced Error Detection Techniques 69

Chapter 4 · Working with User-Written Allocators
Code Requirements for UserAllocators

To make use of the UserAllocator memory allocation hooks, the application code must include
functions that control memory allocation and deallocation.

Allocator Function Hooks

� The allocator function being called must include a parameter specifying the number of
bytes of memory requested.

� The function must either return the location of the allocated memory, or include a parame-
ter containing an address pointing to the location.

� Other parameters may also be included in the function.

Examples

void *GetMemory(int BytesRequested);

Allocator

 Module=bcheap.dll

 Function=GetMemory

 MemoryType=MEM_CUSTOM1

 NumParams=1

 Size=1

 Static

 Noguard

 NoFill

 Debug

Or

void *pVoid;

HRESULT GetMemoryAgain(int BytesRequested, &pVoid);

// in the above example, the memory allocator places the location of
the allocated memory in the pVoid pointer.

Allocator

 Module=bcheap.dll

 Function=GetMemoryAgain

 MemoryType=MEM_CUSTOM1

 NumParams=2

 Size=1
70 DevPartner Advanced Error Detection Techniques

Chapter 4 · Working with User-Written Allocators
 BufferLoc=2

 Static

 Noguard

 NoFill

 Debug

Deallocator Function Hooks

� The deallocator function being called must include a parameter specifying the address of
the memory being deallocated.

� Other parameters may also be included in the function.

Example

; static void *mark_free(void *p, int nLen, void *pExclude, int
nExcludeLen)

Deallocator

 Module=bcheap.dll

 Function=mark_free

 MemoryType=MEM_CUSTOM1

 NumParams=4

 Address=1

 Static

 NoPoison

 Debug

Reallocator Function Hooks

� The reallocator function being called must include a parameter specifying the number of
bytes of memory requested.

� The reallocator function must include a parameter specifying the address of the ‘old’
memory being reallocated.

� The reallocator function must either return the location of the ‘new’ memory that was allo-
cated, or include a parameter containing an address pointing to the location.

� Other parameters may also be included in the function.

Example

; void *DoMyRealloc(MyHeap *me, void *p, uint32 uSize)

ReAllocator
 DevPartner Advanced Error Detection Techniques 71

Chapter 4 · Working with User-Written Allocators
 Module=bcheap.dll

 Function=DoMyRealloc

 MemoryType=MEM_CUSTOM1

 NumParams=3

 Address=2

 Size=3

 NoFill

 NoGuard

 Static

 Debug

Debugging UserAllocator Hooks

Error Detection provides two keywords you can use to modify the presentation of information
about your UserAllocator hooks, making debugging those hooks easier.

NoDisplay

By default, Error Detection displays the details of the hook as interpreted from the file request
at the top of the Transcript pane. For example:

Allocator Module=bcheap.dll Function=MarkNodeAllocated
MemoryType=MEM_CUSTOM1 NumParams=3 Size=1 BufferLoc=3 NoFill NoGuard
Static Debug

If you do not want the detailed hook information displayed at the top of the Transcript pane,
add the keyword NoDisplay to the hook request.

Debug

Error Detection also provides the Debug keyword, which provides extended details when you
add it to the hook request.

The Transcript Pane

The presence of the Debug keyword in a hook request shows extended details at the bottom of
the Transcript pane after Error Detection completes the run. The details displayed at the
bottom of the Transcript pane include statistics about each hook, including whether the
function was successfully hooked and the number of times the hooked function was called.

Error Details

If the bottom of the Transcript pane indicates that the function was not hooked, Error Detec-
tion provides more details to aid in debugging the failed hook:

If you are working inside Visual Studio, the output window provides the error details.
72 DevPartner Advanced Error Detection Techniques

Chapter 4 · Working with User-Written Allocators
If you are running the standalone version of Error Detection, the DbgView tool provides the
error details.

How to Diagnose Errors in UserAllocators.dat

If you add records to UserAllocators.dat you may receive one or more of the following
types of errors:

� File access errors

UserAllocators.dat is a text file stored in the Data folder of the DevPartner Error
Detection installation folder. If the file is deleted or made non-readable, DevPartner Error
Detection reports an error.

� File write errors

When the DevPartner Error Detection session is started, it creates a file named UserAl-
locators.nlb. If the location specified in Options >Data > NLB File Directory is
invalid or read-only, a failure occurs. To resolve this, either change the folder specification
under Options, or change the properties of the folder to make it writeable.

� Parsing errors

If DevPartner Error Detection encounters errors while parsing the UserAlloca-
tors.dat file, it logs the errors in the Errors tab. If Memory Tracking or Resource Track-
ing are enabled when these UserAllocators.dat errors are encountered, these features
are disabled.

Token Parsing Errors

DevPartner Error Detection parses the file one line at a time using the following rules:

� Blank lines and lines that start with semi-colons (;) or double-slashes (//) are ignored.

� Each UserAllocator definition that is added must begin with a valid record type.

� All parameters for each definition must be separated by one or more spaces or tabs, and
must follow the rules for each record type.

Semantic Errors

Each record type is parsed according to the rules for each parameter. Parameters may be case-
sensitive and in some cases must fall inside a valid range (for example, the maximum number
of parameters supported on a function is 32).

Duplicate entries in the same file may also generate errors if the records conflict with one
another. UserAllocators.dat is assumed to be an advanced feature, so extensive cross
checking is not performed.

If Your Application becomes Unstable after Changing UserAllocators.dat

When you add records to UserAllocators.dat, you are telling DevPartner Error Detection
to monitor calls to and from your user-written allocator. If you did not properly describe the
APIs to DevPartner Error Detection, your application may crash or function unpredictably.
 DevPartner Advanced Error Detection Techniques 73

Chapter 4 · Working with User-Written Allocators
Specifying the incorrect number of parameters for your functions is one of the most common
causes of such problems.

You may also encounter problems if you depend on the contents of memory remaining
constant and you did not add the NOFILL or NOPOSION options to your description.

If you encounter an error and are unsure how to proceed please contact Micro Focus Customer
Care for assistance. When you contact Customer Care, please provide the following informa-
tion:

� The version of DevPartner you are running

� A copy of your UserAllocators.dat file

� A description of the problem you are encountering

In some cases, you may be asked to provide a copy of the DLL containing your user allocator
functions and a map file used to link the DLL.

If possible, avoid using Ignore records. Ignore records can cause DevPartner Error Detection
to respond unpredictably when you analyze an application.
74 DevPartner Advanced Error Detection Techniques

Chapter 5

Deadlock Analysis
Deadlock Analysis provides an automated method to search for deadlocks, potential deadlocks
and other synchronization errors in your customer applications.

This chapter provides:

� An overview of the terms used in deadlock analysis

� Examples of deadlocks and potential deadlocks

� Sources of additional information on synchronization topics.

Background: Single and Multi-threaded Applications

Old style C/C++ programs had a simple main routine that called a number of functions,
performed various operations, and then exited. These programs used a single thread of execu-
tion. In other words, the program executed one instruction at a time. If you were to step
through the program using a debugger, you could watch every operation pass by like the
frames in a movie.

Threads

Newer applications can be multi-threaded. A thread is a flow of control. A multi-threaded
application has two or more flows of control. You can create additional threads by calling the
Windows CreateThread function. CreateThread accepts a number of parameters
including the address of a function that should be run on the newly created thread. If the
CreateThread function is successful, the application has an additional thread of execution.

There are many ways to implicitly create a thread. A few examples include calling
_beginthread, using third-party libraries, using COM or DCOM, or by using the Common
Language Runtime.

If you have more than one thread executing in your program, it is possible for the two threads
to try to access the same resources at the same time. This might include variables, files,
handles, Windows resources, and so on. If multiple threads try to access the same resource at
the same time, synchronization problems can occur. For example, if two threads, called T1 and
T2, both attempt to print out the numbers from 1 to 100, the output from each thread might
appear as follows:

1 2 3 4 5 6 7 8 9 10 11 12 … 95 96 97 98 99 100

When both threads run at the same time, the output be jumbleds, as in the following example.
The output from thread T1 is in plain type; the output from thread T2 is in bold italic type.

1 2 3 4 1 2 5 6 3 4 5 6 7 8 7 … 95 96 97 94 95 96 97 98 99 98 99 100 100
 DevPartner Advanced Error Detection Techniques 75

Chapter 5 · Deadlock Analysis
Critical Sections

To prevent such problems, you need to coordinate the interactions between threads. Most
modern operating systems provide a series of synchronization functions that can be called to
coordinate access to shared resources. The easiest to use and most common synchronization
object is called a critical section. A critical section is a simple function that allows only one
thread to have access to a resource at a time.

Consider the example of threads T1 and T2, each written to print the numbers from 1 to 100,
as described above. Defining a critical section C1 prevents jumbled output when both threads
are running. This critical section controls access to the output stream. The functions executed
by threads T1 and T2 would need to be modified as follows:

1 One of the threads would create the critical section C1.

2 Each thread would then perform the following steps:

a Request critical section C1

b Print out the list of numbers from 1 to 100

c Release critical section C1

3 The threads would then go off and do whatever additional processing was required that did
not interact with the other thread.

Step 2- a translates into an EnterCriticalSection call asking the operating system to
grant the thread exclusive access to critical section C1. If the critical section is not available,
the operating system pauses the thread and wait until C1 becomes available.

Once a thread has access to the critical section, any other thread following the critical section
rules for C1 does not attempt to print its output. After the thread prints the numbers from 1 to
100, step 2- c tells the operating system to LeaveCriticalSection. This releases the
critical section for some other thread.

There is no rule that states that every thread in your program must use the critical section to
print its output to the terminal. However, if you follow this rule, your output always appears
correctly.

This same rule can be applied to accessing variables, structures, files, or any other shared
resource.

Note: In most cases you do not need to wrap console output in critical sections
unless you are writing code that causes the two output streams to collide with
each other.

Deadlock - A Basic Definition

Based on the preceding example, a critical section seems to be a very simple mechanism to
grant access to a shared resource. However, it can cause problems.

Consider a program that creates multiple critical sections named C1, C2 and C3. Each of these
critical sections is used to guard access to a separate resource shared between the threads.
76 DevPartner Advanced Error Detection Techniques

Chapter 5 · Deadlock Analysis
If a thread is granted access to one critical section (for example, C1) and then attempts to gain
access to another critical section (for example, C2), it is possible that C2 has already been
allocated by another thread. If the other thread quickly releases C2, there is no problem. The
first thread waits until C2 becomes available then grants access to C2 so the operation can
continue.

On the other hand, if the thread that holds C2 needs to wait for some other synchronization
object to become available (such as C1), both threads stall waiting to gain access to the neces-
sary resources. When two or more threads stall while waiting for resources that never become
available, the result is called a deadlock.

Techniques for Avoiding Deadlocks

Deadlocks occur when multiple threads attempt to use shared resources but are unable to gain
access to those resources. There are a number of methods to avoid deadlocks.

� Request access to synchronization objects only when you need them. Once you gain
access to the objects, use them as quickly as possible and release the objects so other
threads can use them.

� If you need to gain access to multiple synchronization objects at once to perform a given
operation, request the first object and then try to gain access to the second object. If the
second object is not available, release both objects and wait a short random interval. After
the wait completes, attempt to gain access to the resources again. It is very important to
release ownership of a resource if your thread becomes blocked waiting for another
resource. Failure to release the object might cause a “deadly embrace” which makes the
deadlock situation worse.

� Always ask for resources in the same order. For example, if you are required to gain access
to C1, C2 and C3 to perform an operation, always access them in the same order (C1, C2,
and C3) and release them in the opposite order (C3, C2, C1).

� Once you have acquired all the synchronization objects you need to perform an operation,
do not perform an operation that might block waiting for another resource.

There are many more techniques for dealing with synchronization objects. “Additional Infor-
mation” on page 80 lists MSDN resources and books that discuss synchronization objects.

Potential Deadlocks

DevPartner Error Detection reports a potential deadlock when it detects that you are not
accessing resources in a safe manner. An example would be an application with three threads
T1, T2, and T3, all of which make use of a series of resources controlled by critical sections
C1, C2, and C3.

Table 5-1 illustrates the critical sections each thread requires to perform a given operation:

Table 5-1. Potential deadlock example: Threads and their required critical sections

Thread Critical Section

T1 C1, C2
 DevPartner Advanced Error Detection Techniques 77

Chapter 5 · Deadlock Analysis
Each thread can run independently and acquire the necessary critical sections to perform their
designated tasks. However, a problem can occur when all three threads try to perform these
operations at the same time.

The Dining Philosophers

The Dining Philosophers is a classic example often used to illustrate potential deadlocks in
computer science classes. The DevPartner Error Detection software contains sample code for a
version of the Dining Philosophers. You can find it under:

...\DevPartner Studio\Examples\DeadlockPhilosophers

The Dining Philosophers problem is based on a group of philosophers sitting at a round table
with a large plate of food in the middle. Between each philosopher is a single chopstick.

The philosophers seated around the table can do three different things:

1 Rest: Resting philosophers sit and do nothing. They rest for a random period of time.

2 Talk: Talking philosophers speak to anyone else at the table interested in listening. They
talk for a random period of time.

3 Eat: A hungry philosopher attempts to eat. To do this, they try to pick up a chopstick. In
the simplest case, the philosopher always tries to pick up the left chopstick first, and, if
successful, tries to pick up the right chopstick. A philosopher with both left and right
chopsticks eats for a random amount of time, and then put down the chopsticks and either
rest or start talking.

A philosopher who can't pick up the first chopstick waits a few seconds and tries again. A
philosopher who succeeds then attempts to pick up the right chopstick. If the right
chopstick isn't available, the philosopher waits a few seconds and then tries again.

The problem occurs when all philosophers pick up the left chopstick at once. If this occurs,
none of them ever put down the left chopstick and all starve to death (deadlock).

Depending on how you configure the Dining Philosopher algorithm, it might deadlock
immediately or might run for several minutes before deadlocking. If you add philosophers and
chopsticks to the table, the number of actual deadlocks tends to decrease. However, the poten-
tial for all philosophers to get hungry at once still exists. This is called a potential deadlock.

Potential deadlocks are often the hardest deadlocks to track down because they tend to occur
on heavily loaded production systems. Attempts to duplicate these problems on development
systems are usually time consuming and often don't find the real root of the problem.

DevPartner Error Detection notifies you if a potential deadlock is detected long before the
actual deadlock occurs. DevPartner Error Detection also provides detailed information
describing how the actual deadlock occurs. This can make it easier to modify your code to
prevent the problem from occurring.

T2 C2, C3

T3 C3, C1

Table 5-1. Potential deadlock example: Threads and their required critical sections

Thread Critical Section
78 DevPartner Advanced Error Detection Techniques

Chapter 5 · Deadlock Analysis
Monitoring Synchronization Objects

Deadlock analysis also monitors all the synchronization objects in your application for errors
and questionable usage such as:

� Waits over a user specified duration

� Threads that re-enter an already owned critical section

� A wait on a mutex that is already owned by the thread

� Exiting a thread without releasing a synchronization object

In addition, you can configure DevPartner Error Detection to verify that synchronization
objects that can be named follow your naming rules. For example, you might decide that your
synchronization objects should be unnamed so that they cannot be accessed from outside the
process. Any named synchronization objects are flagged as potential errors. You can then use
this list to verify that the named synchronization objects contain the necessary security
descriptors to prevent unwanted access by other processes on the system.

A complete list of synchronization errors appears in the online help, under Deadlock Errors in
the Descriptions of Detected Errors section.

Other Synchronization Objects

The Windows operating system provides many different types of synchronization objects
beyond the critical sections described on page 76. Below is a list of synchronization objects
and excerpts of their definitions from MSDN. Excerpted text is printed in italics. With each
term, the URL for the complete definition and a URL for a related code example are provided.

Critical Section

Critical section objects provide synchronization similar to that provided by mutex objects,
except that critical section objects can be used only by the threads of a single process.

Complete definition:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
dllproc/base/Critical_Section_Objects.asp

Code example:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
dllproc/base/using_critical_section_objects.asp

Event

An event object is a synchronization object whose state can be explicitly set to be signaled by
use of the SetEvent function. The event object is useful in sending a signal to a thread
indicating that a particular event has occurred.

Complete definition:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
dllproc/base/event_objects.asp
 DevPartner Advanced Error Detection Techniques 79

Chapter 5 · Deadlock Analysis
Code example:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
dllproc/base/using_event_objects.asp

Mutex

A mutex object is a synchronization object whose state is set to signaled when it is not owned
by any thread, and nonsignaled when it is owned. Only one thread at a time can own a mutex
object.

Mutex objects are considerably slower than critical sections.

Complete definition:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
dllproc/base/mutex_objects.asp

The following URL shows an example of using Mutex objects:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
dllproc/base/using_mutex_objects.asp

Semaphore

A semaphore object is a synchronization object that maintains a count between zero and a
specified maximum value. The count is decremented each time a thread completes a wait for
the semaphore object and incremented each time a thread releases the semaphore.

Complete definition:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
dllproc/base/semaphore_objects.asp

Code example:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
dllproc/base/using_semaphore_objects.asp

Additional Information

MSDN References

For more information on synchronization objects please refer to the following links on
MSDN:

Synchronization Overview:

http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/dllproc/base/about_synchronization.asp

Synchronization Objects:

http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/dllproc/base/synchronization_objects.asp
80 DevPartner Advanced Error Detection Techniques

Chapter 5 · Deadlock Analysis
Wait Functions:

http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/dllproc/base/wait_functions.asp

Using Synchronization Objects:

http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/dllproc/base/using_synchronization.asp

Synchronization Reference:

http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/dllproc/base/synchronization_reference.asp

Other References

The following books contain more information on synchronization objects:

Win32 Multithreaded Programming, by Aaron Cohen and Mike Woodring

Debugging Applications for Microsoft .NET and Microsoft Windows, by John Robbins

Debugging Windows Applications, 1st Edition, by John Robbins

Operating Systems, 4th Edition, by William Stallings

Foundations of Multithread, Parallel and Distributed Programming, by Gregory R. Andrews.
 DevPartner Advanced Error Detection Techniques 81

Chapter 5 · Deadlock Analysis
82 DevPartner Advanced Error Detection Techniques

Appendix A
Troubleshooting Error Detection
Troubleshooting

If you encounter the following problems, try the corresponding solutions. If you encounter
further difficulties, contact Micro Focus Customer Care.

Problem Solution

Error Detection is stepping on my mem-
ory.

• Disable Poison on Free under Memory Tracking in the
Options/Settings dialog box.

• Disable Enable Fill on Allocation under Memory Track-
ing in the Options/Settings dialog box.

Error Detection fails to stop in the
debugger when the Program Error
Detected dialog box is dismissed with
the Debug button.

• When you close the Program Error Detected dialog box
with the Debug button, Error Detection puts a temporary
breakpoint in your application at the start of the first line
after the error. The breakpoint is removed when the appli-
cation stops in the debugger. If your application has an
exception handler that catches the breakpoint exception
and continues execution, the debugger does not get a
chance to catch the breakpoint and stop the application.

I am getting a Memory Allocation Con-
flict: Function Mismatch error, and Error
Detection is reporting that the block
was deallocated by Free.

• If you are using new and delete, and Error Detection is
complaining that the block was deallocated by free, then
you may be using a release version of the C Run Time
Library DLL
(/MD). To fix this, build against the debug version of the C
Run Time Library DLL (/MDd). This is controlled on the C++
Code Generation properties page by the Runtime Library
entry.

Error Detection complains about an
allocation conflict between operator
new and free.

• Make sure that you have added all user written allocators to
userallocators.dat. See the comments in the
...\Data\UserAllocators.dat file.
 DevPartner Advanced Error Detection Techniques 83

Appendix A · Troubleshooting Error Detection
Error Detection appears to be ignoring
my memory and resource allocations.
Why?

• If running Error Detection on a managed C++ application
with the managed debugger, memory and resource alloca-
tions appears to be coming from mscorwks.dll or
mscorsrv.dll instead of the application, and Error
Detection ignores them. To use Error Detection on a mixed
or managed code application, follow these steps:

1 Open the Visual Studio version you want to debug your pro-
cess.

2 Start the DevPartner Error Detection standalone applica-
tion.

3 Open your target process inside Error Detection, and select
Program > Start to run your process.

4 Attach the debugger to your target process by clicking
Tools > Attach to Process

Note: Specify Managed Code Debugging (not Mixed or
Auto) to allow the debugger to hit your managed code break-
points correctly.
Once you complete the steps, you can set and hit breakpoints
in your managed code, and Error Detection detects your
memory and resource allocations.

Problem Solution
84 DevPartner Advanced Error Detection Techniques

Appendix A · Troubleshooting Error Detection
I am getting an Invalid String error when
I run my application under Error Detec-
tion.

• When ASCII strings are cast to wide-char strings and used
as API parameters, errors may be reported that do not
appear to be related to the actual problem. A cast means
the data type is trusted, so it is not detectable by Error
Detection. For example:

BSTR m_DSNName;
m_DSNName=SysAllocString(BSTR(""));

Is interpreted by the compiler as:

m_DSNName=SysAllocString((wchar_t *)"");

Error Detection reports:

Invalid String: In call to SysAllocString,
address 0x0FE2751F is not null terminated in
block 0x0FDF0000 (290816).

The SysAllocString statement casts an empty ASCII
string to a wide-char string to use as the input parameter to
SysAllocString. SysAllocString looks for the first
double-byte null to find the end of the wchar_t string. It
uses the length determined by the location of this double-
byte null to determine the size of the new BSTR. SysAl-
locString validly creates a new BSTR for m_DSNName
that holds a copy of all of the junk that exists between the
beginning of the single-byte ASCII string & the first double-
byte null that happened to occur later in memory.

In the example above, Error Detection examines the input
wchar_t string (which is actually a 1-byte empty ASCII
string) and reports an invalid string (not null terminated). In
the test code used for this case, DevPartner Error Detection
knows about a valid block of memory that physically exists
between the beginning of the single-byte ASCII string and
the accidental double-byte null. It scans the input string only
as far as the memory is not allocated for anything else. So
in this case only a few bytes are scanned, reporting indi-
cates a double-byte null in that area of memory is not
found. To avoid this problem, change the code to use a
wide-char string as input.

Problem Solution
 DevPartner Advanced Error Detection Techniques 85

Appendix A · Troubleshooting Error Detection
Error Detection is not reporting any
errors.

• Enable Log Events under General in the Options/Settings
dialog box.

• There are two situations in which DCOM or COM-based
applications or components try to run under the restrictions
of the aspnet account. By default, when a DCOM or COM
application or component is launched from within an
ASP.NET enabled web page, it runs in the context of the
aspnet account. For security reasons, the aspnet
account is a restricted account (it is a member of the Users
group and has equivalent privileges). In this situation your
COM component does not have the security privileges
required for Error Detection to function properly. To work
around this issue, you must configure your DCOM or COM
application or component to execute within the context of
the interactive user (via dcomcnfg.exe). To configure your
DCOM or COM application or component to run under the
context of the interactive user:

1 Open a command prompt and run dcomcnfg.exe.
2 Expand Component Services > Computers > My Com-

puter > DCom Config.
3 Right-click on your COM component, and select Proper-

ties.
4 Select the Identity tab.
5 Ensure that you have selected The interactive user.
6 Click OK.

Error Detection is running exceedingly
slow.

• Verify that you have not turned on all of the Error Detection
options. Some options are very expensive when it comes to
processor and memory usage, and you should only use
those you really need.

• Limit your maximum call stack depth on allocation (via Data
Collection in the Options/Settings dialog box). Deep allo-
cation call stacks consume large amounts of memory.

• Limit your analysis by excluding modules and files (via
Modules and Files in the Options/Settings dialog box).

• Only use FinalCheck at major development milestones.
• Disable .NET Call Reporting, or limit the number of assem-

blies selected in the All types tree view.
• If you are only interested in detecting leaks in your applica-

tion, consider enabling leak-only analysis. Checking the
Enable Leak Analysis Only check box under Memory
Track options disables everything in Memory Track, with
the exception of monitoring for leaks. Memory Track does
not look for overruns, use of uninitialized memory, or dan-
gling pointers. Call Validation Memory Block Checking is
also disabled because Memory Track is not evaluating any
memory allocated by system modules.

Problem Solution
86 DevPartner Advanced Error Detection Techniques

Appendix A · Troubleshooting Error Detection
The log is far too large. • Disable Log Events under General in the Options/Settings
dialog box.

• Limit the Parameter Encoding depth (via Data Collection in
the Options/Settings dialog box).

• Limit your analysis by excluding modules and files (via
Modules and Files in the Options/Settings dialog box).

• Use Filters and Suppressions to limit the scope of what is
reported.

• Disable .NET Call Reporting, or limit the number of
assemblies selected in the All types tree view.

• Disable Collect API Method Calls and Returns under API
Call Reporting.

• Disable Resource Tracking, or limit the resources being
tracked.

I get an error stating that Error Detec-
tion failed to create the UserAlloca-
tors.log file.

• If attempting to run an application with Error Detection in a
folder to which you do not have write access, you may
receive an error similar to the following:

UserAllocatorsError: An error was discovered
when processing the UserAllocators.dat file.
Failed to create UserAllocators.log file
Error:0x00000005

You can control the folder that the UserAllocators.log
file is written to by setting the NLB File Directory on the
Data Collection settings page.

I receive errors when I try to open my
target application using Error Detection
under Windows Vista.

• Error Detection creates data files for each target applica-
tion. You must ensure that you have write access to the
folder containing the target executable before starting Error
Detection.

Error Detection has incomplete or erro-
neous call stacks.

• Error Detection cannot locate the symbols, or the symbols
are out of date. Enable Microsoft Symbol Server to retrieve
symbols that match your current files, then rerun your appli-
cation.

• The application under test uses a mixture of managed and
unmanaged code. Transitions between the two kinds of
modules can throw off the call stack.

Symbol Server is taking far too long. • Error Detection is trying to retrieve symbols from Microsoft
Symbol Server every time you run. Disable Microsoft Sym-
bol Server once you have retrieved the symbols that match
your current files, and run your application using local sym-
bols.

• Download and permanently install a symbol server package
for you specific operating system. See Microsoft's symbol
download page for details.

Problem Solution
 DevPartner Advanced Error Detection Techniques 87

Appendix A · Troubleshooting Error Detection
COM Object Tracking (or COM Call
Reporting) does not appear to be work-
ing correctly.

• Check your Modules and Files settings in the Options/Set-
tings dialog boxto verify that you have not disabled report-
ing of events for certain modules.

• Check your Suppression and Filter settings in the
Options/Settings dialog box to verify that you have not pre-
viously set a filter or suppression for certain COM Tracking
event(s).

• Allow Error Detection to monitor more COM interfaces via
the All Interfaces check-box under COM Call Reporting in
the Options/Settings dialog box.

My application does not start, or it starts
and immediately crashes.

• Clear the Enable Poison On Free check box under Mem-
ory Tracking in the Options/Settings dialog box. The appli-
cation may be referencing deallocated memory.

• Clear the Fill Output Arguments Before Call check box
under Call Validation in the Options/Settings dialog box.

• Investigate your user written allocators if you have any (see
the ...\Data\UserAllocators.dat file).

• If your system has OS symbols present, you could have a
bad symbol file.

• If the crash is timing related, disable some of the Error
Detection features and try running the application again.

My service starts and immediately
hangs.

• Make sure you are running your service with Administrative
privileges.

My service starts and almost immedi-
ately terminates.

• The most likely cause is that the Windows Service Control
Manager terminated your service. Increase the value of
dwWait in your service’s initialization logic and re-run your
service.

• Verify that Error Detection has a valid working folder. Spec-
ify the working folder via the General settings, under Set-
tings in the Program menu.

My service runs for a while then termi-
nates unexpectedly.

• Your service may be responding too slowly to a control
message requesting your service state. Increase the time
out value in dwWait when responding to service state
requests.

• Error Detection may have poisoned memory in your appli-
cation, causing the crash. Disable the Memory Tracking
feature in the Options/Settings dialog box. If this eliminates
the crash, instrument your service with FinalCheck, then re-
run your application looking for uninitialized memory refer-
ences, buffer overruns, and dangling pointers.

My service runs correctly, but termi-
nates unexpectedly when it shuts down.

• Your service is given a limited time to respond when it
receives a shut down request from the Service Control
Manager. When an application shuts down, Error Detection
performs many checks, looking for memory, resource and
interface leaks, and re-checking allocated memory blocks
for memory overruns. If the dwWait value specified for
acknowledging the shut down request is too small, the Ser-
vice Control Manager terminates the service. In this case,
increase the dwWait value.

Problem Solution
88 DevPartner Advanced Error Detection Techniques

Appendix A · Troubleshooting Error Detection
Error Detection fails to analyze my ser-
vice.

Error Detection may fail to analyze a service. A common
cause is that one (or more) of the directories used to monitor
the process is not writable to the process being created. The
following directories must be writable:
• The TMP and TEMP environment variables must reference a

folder that is writable to the process. If you have configured
your service to run the LOCAL_SYSTEM context, assign
these environment variables system wide.

• The service must have write access to the NLB File folder.
• The service may require write access to the working folder.

Visual Studio crashes when I try to run
an application with Error Detection.

Narrow down the cause of the crash by using at least one of
the following methods.
• Set breakpoints at various locations in the application test

code.
• Reconfigure the Error Detection settings by disabling vari-

ous sub-systems or modules. See "Changing Program Set-
tings" in the online help for more details.

I see memory growth in Task Manager,
but Error Detection is not reporting any
leaks. Why not?

• Make sure that you have fully instrumented your application
with FinalCheck.

• Make sure Log Events is enabled under General in the
Options/Settings dialog box.

• Make sure your application test modules are enabled via
Modules and Files in the Options/Settings dialog box.

When running Error Detection on a
managed C++ application, I am not
seeing as many leaks and errors
reported as I was expecting.

• This is a known limitation of Error Detection. You must be
using the native debugger (or both the managed and native
debugger) for Error Detection to see the memory alloca-
tions and report them properly. When using just the man-
aged debugger, memory and resource allocations appear
to be coming from mscorewks.dll instead of the applica-
tion, and are ignored.

ActiveCheck does not find a memory
leak, but FinalCheck does. Why?

• Instrumentation with FinalCheck allows for more robust
memory tracking. FinalCheck is scope-aware, and allows
Error Detection to track every pointer as well as all memory
usage. For more information, refer to ActiveCheck and
FinalCheck in the Error Detection section in the Quick Ref-
erence.

Problem Solution
 DevPartner Advanced Error Detection Techniques 89

Appendix A · Troubleshooting Error Detection
My application fails when run under
Error Detection (usually with Memory
Track enabled).

• Clear the Enable Poison On Free check box under Mem-
ory Tracking in the Options/Settings dialog box.

• Try using alternate fill patterns for the Enable Guard Bytes
and Enable Fill On Allocation settings under Memory
Tracking in the Options/Settings dialog box.

• You may have bad PDBs. Create an ASCII text file named
NMSYMDATA.DAT in the NMShared\4.7 folder. This file
should contain the names of the modules associated with
bad PDB files followed by “,0x0”. For example:
ADVAPI32.DLL,0x0

• If you are debugging an application generated using the
Visual Studio MFC application wizard, and have enabled
the Memory Track subsystem’s memory filling features,
Error Detection may cause the application to crash. MFC
sets an obscure pragma that causes the compiler to gener-
ate “minimal debugging information”. If the OS structures
you are using have had additional fields added to them,
Error Detection may get the wrong structure size from the
debugging information when it attempts to determine how
big the structure is, causing it to fill memory it should not be
touching. Add _AFX_FULLTYPEINFO to the Preprocessor
Definitions on the C++ Preprocessor settings page for your
project, and then rebuild your solution.

• If creating the NMSYMDATA.DAT file does not solve the
problem, you may have to exclude the entire module. To
exclude an application module, create an ASCII text file
named EXCLUDEDMODULES.DAT in the Data folder where
Error Detection is installed on your system. For example:

<InstallationRoot>\Data\EXCLUDEDMODULES.DAT

Add the names of each module you want to exclude on a
separate line of the file. For example: MYCUSTOM-
DRIVER.DLL

I cannot debug my Web application
using Error Detection integrated in
Visual Studio.

• To debug applications and services such as Web applica-
tions, use the Wait for Process option (see “Analyzing Ser-
vices” on page 39) available from the Error Detection
application (BC.EXE). This option is not available when run-
ning Error Detection integrated in Visual Studio.

Problem Solution
90 DevPartner Advanced Error Detection Techniques

Appendix A · Troubleshooting Error Detection
I have a module located in the System
files folder that I want to debug. The
System files are restricted, and I cannot
debug my module. What can I do?

• Enable your modules via Modules and Files in the
Options/Settings dialog box, and you can debug it for the
current project.

• To make the module valid for all projects and solutions, edit
the file named Unrestricted_modules.txt in the Data
folder where Error Detection is installed on your system.
For example:

<Installation-
Root>\Data\Unrestricted_modules.dat

Add the names of each module you want to include on a
separate line of the file. For example: MYCUSTOM-
DRIVER.DLL

Error Detection is reporting errors in
dllhost.exe or TestCon32.exe.

• To prevent Error Detection from reporting errors on dll-
host.exe or TestCon32.exe, exclude the executable
from the list of modules to check.

COM Call Reporting is not logging calls
to my object or component.

• Error Detection logs methods only for COM interfaces that it
has been instructed to recognize. To tell Error Detection
about your ActiveX control, select Enable COM method
call reporting on objects that are implemented in the
selected modules under COM Call Reporting in the
Options/Settings dialog box.

Error Detection is not reporting COM
interface leaks in my object or compo-
nent.

• To collect COM interface leak information, select Enable
COM object tracking under COM Object Tracking in the
Options/Settings dialog box, then select the COM classes
to monitor.

• To track your own objects, review the list of COM classes in
the COM Object Tracking settings and select only your
classes. If you are unsure which classes to select, select
All COM classes.

Error Detection appears to hang and
not respond for a long time after I stop
exercising my component.

• Error Detection is waiting for dllhost.exe to time out and
terminate the process. When dllhost.exe terminates,
Error Detection performs the final memory, resource and
interface leak detection.

Why does IIS startup and then hang? • Error Detection requires Administrative privileges to debug
a service. If the account used does not have Administrator
privileges, IIS eitherstops respondiog or terminates with an
error.

I cannot instrument my code for Error
Detection when I compile automatically
via my command line batch process
(using VCBUILD.EXE).

• To instrument your code when you call the compiler from
the command line, you need to use the NMVCBUILD variant
installed with DevPartner. Refer to “Instrumenting Native C/
C++ Code with nmvcbuild” for more information about com-
piling with NMVCBUILD.

I receive errors when I try to build my
target application with instrumentation
for Error Detection under Windows
Vista.

• Error Detection creates data files for each target applica-
tion. You must ensure that you have write access to the
folder containing the target executable before starting Error
Detection.

Problem Solution
 DevPartner Advanced Error Detection Techniques 91

Appendix A · Troubleshooting Error Detection
When I run my application under Error
Detection, I receive bad data and/or
unexpected results.

• Check to ensure that you do not have expressions in your
code that rely on an undefined order of evaluation. Instru-
menting code without a well defined order of evaluation can
cause unexpected results, including erroneous data, hangs,
and even crashes.

The C/C++ standard explicitly does not define the order of
evaluation when there are side effects, such as storing a
value in an object. For example, the following statement
does not have a well defined order of evaluation: i = ++i
+ 2;

There are two points in this statement when values are
stored in the variable i, and the language does not define
what order they occur in. Instrumenting code like this may
change the order of evaluation and change the result.

Error Detection is reporting false leaks
and overruns in a mixed-mode (man-
aged / unmanaged) environment.

• If you are running Error Detection on a managed C++ appli-
cation with the managed debugger, memory and resource
allocations appear to be coming from mscorwks.dll or
mscorsrv.dll instead of the application, and Error
Detection ignores them. To use Error Detection on a mixed
or managed code application, follow these steps:

1 Open the Visual Studio version you want to debug your pro-
cess.

2 Start the DevPartner Error Detection standalone applica-
tion.

3 Open your target process inside Error Detection, and select
Program > Start to run your process.

4 Attach the debugger to your target process by clicking
Tools > Attach to Process

Note: Specify Managed Code Debugging (not Mixed or
Auto) to allow the debugger to hit your managed code break-
points correctly.
Once you complete the steps, you can set and hit breakpoints
in your managed code, and Error Detection detects your
memory and resource allocations.

Problem Solution
92 DevPartner Advanced Error Detection Techniques

Appendix B
Important Error Detection Files
Files and Their Purpose

The following table lists the files Error Detection uses to control and define behavior during a
session. Included are the file location, name, purpose, and whether the file is user-modifiable.

Filename and Path Purpose

<Program Root>\Data\ctisafe.dat Specifies functions known to accept pointers
without storing the pointer values. MemTrack
and FinalCheck use this file to keep track of
safe functions. This information prevents an
error from being triggered when a pointer visits
an unknown function. When a function is listed
in this file, MemTrack and FinalCheck assume
that the function has not saved a copy of the
pointer.
Functions may be added when necessary.
Consult with Micro Focus Customer Care
before removing any default functions from this
list.

<Program Root>\Data\BCDefault.DPRul Lists the default set of suppression and filter
files that Error Detection will load.
Add to this list using the suppression and filter
editing dialogs within Error Detection; the infor-
mation you add is valid for the current project
directory only. To make information valid sys-
tem-wide, edit the file manually and include the
full path name to the suppression/filter file
being added.

<Program Root>\Data*.DPFlt
<Program Root>\Data*.DPSup

Defines the filters and suppressions Error
Detection should use. Each one of these
.DPFlt and .DPSup files contains specific fil-
ters and suppressions for system modules.
Add, modify, or delete suppressions and filters
via the Error Detection suppression and filter
editing dialogs. Do not edit these files manually.
 DevPartner Advanced Error Detection Techniques 93

Appendix B · Important Error Detection Files
<Program
Root>\Data\Unrestricted_modules.txt

Specifies modules that should be unrestricted
DLLs despite being found in system
directories. A module existing in a system
directory needs to be marked as unrestricted to
be examined for errors. By default,
Unrestricted_modules.txt lists the vari-
ous versions of MFC modules.
Edit this file manually to add the names of spe-
cific modules existing in system directories so
Error Detection examines them for errors.

<Program Root>\Data\UserAllocators.dat Specifies custom allocators. For more informa-
tion on this file and how it is used by Error
Detection, see Chapter 4, “Working with User-
Written Allocators”.

<Program Root>\ERptApi\NMApiLib.* Provides access to the Error Detection user-
callable interface. NMApiLib.h defines and
documents the user-callable interface to Error
Detection, which is implemented by linking
NMApiLib.lib into your project. For more
information on the user-callable interface, see
Chapter 3, “Analyzing Complex Applications”.

<Program Root>\Data\ExcludedModules.dat (User-created File) Contains a list of excluded
modules. Each module is listed on a separate
line of the file. For example: MYCUSTOM-
DRIVER.DLL

<Program Root>\DPSErrorDetection.xsd Contains the schema information used when
exporting session file data to XML. Do not edit
this file.

<NMShared Root>\NMSymData.dat (User-created File) Contains the names of any
modules associated with bad PDB files, fol-
lowed by “,0x0”. For example:
ADVAPI32.DLL,0x0

<Program Root>\DPSErrorDetection.xsd Specifies the schema to be used by the Data
Export to XML feature.

Key

<Program Root> = C:\Program Files\Micro Focus\DevPartner Studio\Bound-
sChecker

<NMShared Root> = C:\Program Files\Common Files\Compuware\NMShared\4.7

Note: For installs on 64-bit versions of Windows, DevPartner Studio is located at: \Program
Files (x86)\Micro Focus\DevPartner Studio\ and \Program Files
(x86)\Common Files\Compuware\

Filename and Path Purpose
94 DevPartner Advanced Error Detection Techniques

Index
A
ActiveCheck 49
ActiveX 39

components 33
debugging controls 37

administrative privileges 40, 46, 91
applications

complex 33
multi-threaded 31, 75
single-threaded 75
transactional 38

B
BCDefault.DPRul 93

C
call parameter encoding depth 28
call validation 23, 25
CLR analysis 25
COM

components 33
servers 39
usage 17

command line 12
complex applications 33

analyzing 26
debugging 38

conditional code 35
configuration file management 20
critical section, synchronization object 76
CTISafe.dat 93

D
dangling pointers 32
deadlock 77

potential 77

default settings 23
dwWait 40

E
ExcludedModules.dat 94
executable files

dllhost.exe 43

F
file extensions

.DPFlt 93

.DPRul 93

.DPSup 93
filters 35
FinalCheck 49

G
guard bytes 18

I
IIS 34

process 45
important files

BCDefault.DPRul 93
CTISafe.dat 93
ExcludedModules.dat 94
NMApiLib 94
NMSymData.dat 94
Unrestricted_modules.txt 94
UserAllocators.dat 94

instrumenting native code 14
interface

command line 12
leaks 26
95 Understanding BoundsChecker

 Index
ISAPI filters 20, 33, 37, 45, 46

L
log file 28

M
managed code 19, 24, 25
memory

leaks 26
overrun 24
poisoning 18
tracker 20

modules and files 20, 34, 37
and complex applications 27
and reverse engineering 30

modules tab 27
multiprocessor application servers 31
multi-threaded applications 31, 75

N
native code 19, 24, 25
NMApiLib 94
NMSymData.dat 94
NMVCBUILD 14

P
P/Invoke 24, 29

interop monitoring 25
pointers, dangling 32
poisoning memory 18, 31
potential deadlock 77

R
resource leaks 20, 26
resource tracker 20

S
service control logic 40

services, debugging 34
settings 20, 21

default 12
refining 12

single-threaded applications 75
StartEvtReporting 36
StopEvtReporting 36
suppression 35

T
test container 38
third-party software 12, 26, 35
thread, definition of 75
transactional applications 38
troubleshooting 83

U
Unrestricted_modules.txt 94
UserAllocators.dat 94

V
VCBUILD 14

W
Windows

service control manager 41, 88
services 33, 39
services, debugging 37

worker thread 40
96 Understanding BoundsChecker

	Preface
	Who Should Read This Manual
	What This Manual Covers
	Conventions Used In This Manual
	Getting Help
	Contact

	Workflow and Configuration Settings
	DevPartner Error Detection Workflow
	Benefits of the DevPartner Error Detection Workflow
	Saving Error Detection Configurations
	Using Error Detection from the Command Line
	Compiling, Instrumenting, and Building Unmanaged (Native) C++ Projects with NMDEVENV
	Instrumenting Native C/C++ Code with nmvcbuild

	Customizing the DevPartner Error Detection Settings
	General
	Data Collection
	API Call Reporting
	Call Validation
	COM Call Reporting
	COM Object Tracking
	Deadlock Analysis
	Memory Tracking
	.NET Call Reporting
	.NET Analysis
	Resource Tracking
	Modules and Files
	Fonts and Colors
	Configuration File Management

	Checking and Analyzing Programs
	Error Detection Tasks
	Finding Leaks
	Finding Pointer and Memory Errors
	Finding Memory Corruption
	Analyzing Transitions to Legacy Code in .NET Applications
	Validating Win32 API Calls
	Searching for Application Deadlocks

	Expanded Uses for DevPartner Error Detection
	Understanding Complex Applications
	Reverse Engineering
	Stress Testing

	Analyzing Complex Applications
	About Complex Applications
	Wait for Process
	Analyzing Limited Parts of Your Program
	Using Modules and Files Settings

	Deciding What to Monitor
	How Does an Application Start Up?

	Analyzing Services
	Requirements and Guidelines
	Analyzing a Service
	Timing Problems and dwWait
	Alternate Method: Separating Control Logic from the Worker Thread
	Custom Code to Turn the DevPartner Error Detection Log On and Off
	Common Service-related Issues

	Analyzing ActiveX Controls Using the Test Container
	Common Test Container Issues

	Analyzing Applications That Use COM
	Common COM Issues

	Analyzing ISAPI Filters Under IIS 5.0
	Common ISAPI Filter Issues

	Analyzing ISAPI Filters under IIS 6.0
	IIS 5.0 Isolation Mode
	IIS 6.0 Default Configuration
	Common IIS 6.0 ISAPI Filter Issues

	Frequently Asked Questions

	Working with User-Written Allocators
	Introduction
	Gathering Necessary Information
	Finding the Names of User-Written Allocators
	Special Assumptions Made By User-Written Allocators about Memory

	Creating Entries in UserAllocators.dat
	Modules
	Allocator Records
	Deallocator Records
	QuerySize Records
	Reallocator Records
	Ignore Records

	Coding UserAllocator Hook Requests
	Code Requirements for UserAllocators
	Allocator Function Hooks
	Deallocator Function Hooks
	Reallocator Function Hooks

	Debugging UserAllocator Hooks
	NoDisplay
	Debug

	How to Diagnose Errors in UserAllocators.dat
	Token Parsing Errors
	Semantic Errors
	If Your Application becomes Unstable after Changing UserAllocators.dat

	Deadlock Analysis
	Background: Single and Multi-threaded Applications
	Threads
	Critical Sections

	Deadlock - A Basic Definition
	Techniques for Avoiding Deadlocks
	Potential Deadlocks
	The Dining Philosophers
	Monitoring Synchronization Objects

	Other Synchronization Objects
	Additional Information
	MSDN References
	Other References

	Troubleshooting Error Detection
	Troubleshooting

	Important Error Detection Files
	Files and Their Purpose

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

